
1

Agile Product Lifecycle Management
Document Publishing Solution

Release 9.3.4

E52164-02

March 2015

During the life of a product, Agile PLM acquires, processes, and maintains a wide
range of data related to the product. This data is used in many ways and for different
requirements to expedite, manage, and control product development activities.

Executive Overview
Dynamic Publishing of product information enables publishing documents such as
product data sheets, Parts List, or service manuals with embedded PLM data. To
support this solution, Agile PLM provides two Web services APIs for XML publishing.
The Dynamic Document Publishing of product information can be used by Industrial,
Retail, Life Sciences, Pharmaceutical, and High Tech industries to:

■ Create new structured document templates (Product Data sheets, Parts List,
Service Manual)

■ Create documents in the native document publishing tool such as MS Word or
Adobe Framemaker

■ Browse and insert PLM metadata and file contents into documents

■ Create formatted reports from PLM objects, search results, and push selected rows
to reporting tools (compliance report, pricing model, quality report)

■ Push a selected object ID, or all search results to a report for formatting purposes

■ Modify the content that is shared by other documents already stored in PLM

■ Update documents that reference content that was modified

This White Paper provides background and procedural information to install and
configure the necessary components to update, format, and publish product
documents using Agile PLM-based data about the given product. This includes
procedures to create, and publish a sample document using the Oracle-supplied
Process Extensions.

About this Whitepaper
This White Paper is a supplement to the release Readme and other Agile manuals. For
example, the Capacity Planning Guide, the PLM Administrator Guide, or the SDK
Developer Guides. The purpose of this document is to introduce Oracle’s Dynamic
Document Publishing solution and is not intended as a User or Developer Guide.

2

New in Release 9.3.4
New features in Release 9.3.4 are:

■ Configuring the Large Text Field attribute field. See "Defining Agile Content
Services Filters for XML and HTML Data Files" on page 16.

■ Updating Oracle BI Publisher Desktop 11.1.1.6. to Oracle BI Publisher Desktop
11.1.1.17.0. See "Setting Up BI Publisher 11g for PLM Release 9.3.2 and Earlier
Releases" on page 11.

Note: The update to BI Publisher Desktop 11.1.1.17.0, enables
operation with. BI report.

■ Limitations of Oracle BI Publisher Report for Large Text field. See "Font Mapping
Constraints for Large Text Content and BI Publisher Reports" on page 18.

■ Configuring SSL Reporting requirements. These steps are documented in Agile
PLM Webservices User Guide.

New in the Second Revision of Release 9.3.3
This revision of Release 9.3.3 provides information for installations that want to run BI
publisher 11g with earlier releases of PLM, such as Release 9.3.2, or 9.3.1.

Note: For information to run BI publisher 11g with earlier releases of
Oracle Agile PLM, see "Setting Up BI Publisher 11g for PLM Release
9.3.2 and Earlier Releases" on page 11.

New in the First Revision of Release 9.3.3
The Document Publishing solution Release 9.3.3 uses the BI publisher 11g instead of BI
publisher 10g for template construction and formatting purposes. In addition, this
release supports Oracle BI Publisher 11.1.1.6.0 to create and configure Document
Publishing Templates and Web Service Reports in a Windows 7 environment. For the
URL and steps to install and verify BI Publisher availability, see "To install BI Publisher
Desktop:" on page 10, and to log in to BI Server, see "Accessing the BI Server" on
page 2.

Accessing the BI Server
#username to log in to BI Server#BI_SERVER_LOGIN_USERNAME =Administrator
BI_SERVER_LOGIN_USERNAME =weblogic
#password to log in to BI Server
#BI_SERVER_LOGIN_PASSWORD =Administrator
BI_SERVER_LOGIN_PASSWORD =agile123
#Report absolute path
#REPORT_ABSOLUTE_PATH =Boilerplates/A932/A932/xdo
use 11G
REPORT_ABSOLUTE_PATH =/agile933wspx/agile933wspx.xdo

#BI SERVER URL
#BI_SERVER_URL =http://dineshp.agile.agilesoft.com:9704/
 xmlpserver/services/PublicReportService
11G
BI_SERVER_URL =http://scl34059.us.oracle.com:7001/
 xmlpserver/services/PublicReportService

3

New in Release 9.3.2
For Release 9.3.2, the Document Publishing solution operates in a Web Logic Server
(WLS) environment. Other enhancements and changes are:

■ Resolution of reported issues to extract the sample files on WLS and broken PXs

■ Setting BI Publisher option to read Agile XML files. See "Installing and Setting Up
BI Publisher Desktop 11.1.1.7.0" on page 10.

Content and Organization
Information provided in this document is organized as follows:

■ Introduction - This section describes the solution, the required environment, and
applicable processes.

■ Installing BI Publisher and Defining the Template files - This section provides
information to install and set up the BI Publisher and ancillary tools and define
templates and publish reports

■ Configuring the PLM Client and PLM Server - This section provides information
to configure the PLM client and PLM server, and develop the Event Management
process extensions (PXs) that enable the Dynamic Document Generation
capability.

■ Generating a sample report - This section provides several examples that vary the
Event Trigger and objects to publish documents with data extracted from Agile
PLM as input. It also includes information to configure the Agile PLM for specific
reports and generate and store Templates.

Note: See "The Document Publishing Blog" on page 1-3 for
background information and steps to generate printouts for a single
object sample.

Intended Audience
The primary users of the Dynamic Document Publishing solution are document
authors who use it to prepare and maintain documents with embedded PLM data.
That is, documents such as product data sheets, parts lists, or service manuals. In
performing these tasks, they are supported by Agile PLM administrators, and where
applicable, SDK developers who create and manage the necessary templates and
Event subscriptions that automate document updating and document generation.

References
The following Oracle Agile PLM and BI Publisher publications provide useful
information to install and configure the Dynamic Document Publishing components
and to publish the documents.

The Document Publishing Blog
This site provides background information and a script that enables generating
automatic printouts of a supplied sample. You can access this site at:
https://blogs.oracle.com/PLM/entry/update_on_document_publishing_sample.

Note: Oracle recommends reviewing and printing the sample in the
Blog before continuing with the Whitepaper to configure the PLM and
print other documents.

4

Oracle Agile PLM1

■ Agile PLM Readme

■ Agile PLM SDK Developer Guide - Developing PLM Extensions

■ Agile PLM AIS Developer Guide

■ Installing Agile PLM for WebLogic Server/Installing Agile PLM for Oracle Application
Server

■ Agile PLM Administrator Guide

■ Agile PLM Web Services User Guide

Oracle BI Publisher2

■ Oracle BI Publisher 10g and 11g

Document Accessibility and Oracle Support
For information about Oracle’s commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info and
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs for hearing impaired.

Introduction
To support the Document Publishing Solution, Agile PLM provides two new Web
services APIs to enable XML publishing. These APIs return an XML package
containing the object's schema and the actual data. These XML packages are used with
a publishing tool such as Oracle's BI Publisher to generate any type of document using
Agile PLM metadata.

Solution Architecture
Although the flexible architecture of this solution can support other authoring tools
such as Adobe Framemaker, this Whitepaper uses Word and Oracle BI Publisher to
generate these reports.

Figure 1 summarizes the document and template formatting tasks by integrating
Oracle Agile PLM and Oracle BI Publisher. BI Publisher is a reporting and document
management solution. BI Publisher report formats are designed using MS Word and
published in PDF, HTML, RTF, and Excel formats. The flow of data from Agile PLM

1 These Oracle Agile PLM documents are available at Oracle Technology Network (OTN) Web site:
http://www.oracle.com/technetwork/documentation/agile-085940.html

2 Oracle BI Publisher 10g documents are available at: http://www.oracle.com/technetwork/middleware/
bi-publisher/documentation/xmlpdocs-084437.html

5

supported output formats, and potential destinations are summarized in the following
illustration.

Figure 1 Document Publishing architecture

Operating Environment
Oracle's Dynamic Document Publishing is the integration of Oracle BI Publisher and
Oracle Agile PLM. PLM is Oracle's product lifecycle management solution and BI
Publisher is a reporting and document generation and management solution from
Oracle. The operating environment includes:

■ Oracle Agile PLM

■ Oracle BI Publisher

■ Microsoft Word

Oracle Agile PLM Components
■ Agile PLM Release 9.3.3 (Server and databases)

■ Agile PLM Release 9.3.3 File Manager

■ Agile PLM Release 9.3.3 SDK (Template Management Java and Script PXs)

■ Agile PLM Release 9.3.3 Web Services APIs - The following APIs support
Dynamic3

- loadXMLSchema - This Web Service API returns an XML package that fully
describes the attributes of the object. This Web Service is used to create XML
schema files that are used by BI Publisher to create the Templates. For
example, if you use this Web Service against a subclass like Engineering
Change Order (ECO), it will tell BI Publisher all of the possible attributes for
ECOs. This is useful to enable using all potential attributes of an object when
creating a Template.

- loadXMLData - This Web Service API returns the actual data that is stored for
an object in an XML package. This Web service is used to retrieve the object
data that is combined with the Template to create the output file. You can also
use the saved output from this Web Service to test a Template in BI Publisher

Microsoft Word 2003/2007 and BI Publisher
Microsoft (MS) Word 2003/2007 is fully integrated with BI Publisher and serves as the
Document Template Authoring tool.

3 For more information about these APIs, refer to Agile PLM Web Services User Guide.

6

The Dynamic Document Publishing Process
The figure below is a streamlined view of the Document Publishing process. In this
process, a “trigger” invokes a “handler” and that causes steps 1, 2, 3, and 4 to execute
automatically.

Figure 2 Steps in the Dynamic Document Publishing Process

To describe what actually occurs, consider Figure 3. It provides information about an
assembly part that is not yet a PLM object. When this object is loaded into the PLM,
applicable information about this object is maintained in the object's attributes. You
can see some of these attributes in The Datasheet Configuration in Agile PLM.

Because of recent business activities, there is a need to update some of these attributes.
For example, the Name and Address attributes, and then publish the updated
Datasheet. The next few paragraphs summarize the Dynamic Document Publishing
process that updates and publishes this Datasheet

Figure 3 Datasheet before it is loaded into Agile PLM

7

The Datasheet Configuration in Agile PLM
The Datasheet attributes are shown in the following illustration. As a PLM object,
anytime the Datasheet is updated, its attributes such as date, product title, and
descriptions are subject to change. Dynamic Document Publishing enables publication
of the Datasheet with the latest information. However, because BI Publisher generates
the final document, it is necessary is to convert these attributes to a Data XML file for
BI Publisher processing.

Figure 4 Data sheet attributes in Agile PLM

Generating the Data XML File
When the Web Service loadXMLData is invoked, the resulting XML output looks like
the figure below. The samples in this document describe how to generate an
attachment in Agile PLM of the XML file. Download the XML file from Agile to your
computer. Using the BI Publisher menus in Word, select to load Sample XML and open
this file. The next step is to combine the Data XML and Schema XML (Template) files
for BI Publisher to generate the Datasheet.

8

Figure 5 Data XML file

Creating the Template
Template is an RTF file created and formatted using Word, BI Publisher, and object's
attributes in Agile PLM. For procedures, see "Building BI Publisher Templates" on
page 35 and "References" on page 3. The following XSD file assumes you have
generated the Schema file using the Sample, and then downloaded and loaded it with
BI Publisher.

Figure 6 Datasheet Schema XML file

Viewing and Testing the Template
Now, you can view the Template and make sure it is properly formatted and the
specified PLM attributes are selected. Figure 7 shows the output in RTF format. Upon
completion of the testing process, you must load the completed template into Agile
PLM template location for use in the Even trigger.

9

Figure 7 Template output

Combining XML Data with Template - Publishing the Document
When the appropriate Event subscription, which is set up in advance, is triggered,
XML Data is combined with the Template and the document is generated in the
specified format. In this case, in PDF format. For information to set up the various
Event subscriptions, see Getting Started with Publishing the Sample.

Figure 8 Combining Data XML and Template to generate the document

10

Setting Up the Environment for Document Publishing
Setting up the environment requires installing and the following installations and BI
Publisher and Agile PLM configurations. The setup documented below, supports the
shipped samples. If the samples are altered to use different classes and attributes, then
these configurations are not necessary.

These steps include installing BI Publisher to enable:

■ Inserting data fields into RTF templates

■ Inserting data driven tables and crosstabs

■ Inserting data driven charts

■ Previewing and Validating RTF templates with sample XML data

■ Browsing and updating the data in the selected fields

Configuring Agile PLM Administrator
These configurations include:

■ Creating the Template Subclass

■ Configuring Attributes and Agile Content Services (ACS) Filter

Configuring Agile PLM Server
Server configuration involves creating and setting up the following Process Extensions
(PXs)4:

■ Template Management Structure Creation PX

■ SchemaGeneration PX

■ DataGeneration PX

■ DocumentGeneration PX

Installing and Setting Up BI Publisher Desktop 11.1.1.7.0
The BI Publisher extension to Microsoft Word simplifies the development of RTF
templates.

Note: If you are running Agile PLM Release 9.3.2 or earlier releases,
and plan to install BI Publisher 11g (revision11.1.1.7.0), see "Setting Up
BI Publisher 11g for PLM Release 9.3.2 and Earlier Releases" to
prepare the environment .

To install BI Publisher Desktop:
1. Download and install BI Publisher Desktop 11.1.1.7.0 from the OTN at:

http://www.oracle.com/technetwork/middleware/bi-publisher/downloads/ind
ex.html

4 See the Oracle-Supplied PXs described in "Using Oracle-Supplied Document Publishing PXs" on page 19.

Note: In this document, BI Publisher 11g implies BI Publisher
Desktop 11.1.1.7.0 and conversely.

11

2. Depending on the version of Windows and Word that you are using, verify either
Add-Ins or, BI Publisher are available in MS Word’s banner.

Figure 9 BI Publisher in MS Word

3. To view the tutorial documenting the Creation of RTF Templates and Updating the
Data Fields, in MS Word’s banner, click BI Publisher, and click the Help. to
display Template Builder for Microsoft Word’s Help dialog.

Figure 10 Template Builder for Microsoft Word Tutorial

4. Navigate the Template Builder Help to information you need to create the
required templates. For other options, see"Creating RTF Templates and Updating
Data Fields" on page 47.

Setting Up BI Publisher 11g for PLM Release 9.3.2 and Earlier Releases
If you need to run BI Publisher 11g Desktop to develop templates for Agile PLM
Releases 9.3.2 and earlier releases, do as follows:

1. Open a Word document and depending on your version of Word, select Add-Ins >
Tools > Option or BI Publisher > Option. The Option dialog appears.

2. In Option dialog, select the Build tab and then select the Backward Compatible
radio button in the Form field size box and then click OK.

12

Figure 11 BI Publisher Option dialog’s Build page

3. Insert new tags throughout your template before using them, because all existing
tags are incorrectly set.

4. Change the class path statements as shown below to run the script for Agile PLM
Release 9.3.2 and lower and Release 9.3.3 and higher. This step is necessary
because BI Publisher10g and 11g use different class paths and the Oracle-supplied
script calls BI Publisher10g directly.

Import statements for BI Publisher 10G embedded in Agile PLM 9.3.2 and lower.
Uncomment these lines for Agile PLM 9.3.2 and lower.
// import oracle.apps.xdo.template.FOProcessor;
// import oracle.apps.xdo.template.RTFProcessor;
// import oracle.apps.xdo.XDOException;
Import statements for BI Publisher 11G embedded in Agile PLM 9.3.3 and higher.
Comment out these lines for Agile PLM 9.3.3 and lower.
import oracle.xdo.template.FOProcessor;
import oracle.xdo.template.RTFProcessor;
import oracle.xdo.XDOException;

5. If necessary, complete the steps in "To set up BI Publisher Desktop to read aXML
files in the Design mode:" on page 12. Otherwise, complete configuring the PLM
Administrator and Server steps.

To set up BI Publisher Desktop to read aXML files in the Design mode:
1. Open a Word document and select Add-Ins > Tools > Option or BI Publisher >

Option. The Option dialog appears.

2. In Option dialog, select the Build tab.

3. In the Form field size box, select the Backward Compatible radio button and then
Click OK.

Note: Configuring or not configuring this setting does not prevent BI
Publisher from reading aXML files in the Design mode. It only
produces an error when the embedded BI Publisher attempts to access
a document from within Agile.

13

Performing Agile PLM Administrator Configurations
The Agile PLM Administrator configurations include:

■ One time configurations

■ Add a Subclass called DocumentTemplate

■ Object-level configurations

■ Add Page 2 fields

■ Define ACS Filters

■ Create Event Subscriptions consisting of Event Masks, Handler Masks, and
Subscriber Masks for Script PX or Java PX5

Creating the DocumentTemplate Subclass
This is a new Document Subclass for the XML schema (Templates) files and is used in
Script PX and Java PX configurations. The PX that creates the object schema XML
automatically creates an object of this subclass for every object in the system and
attaches the schema XML to this object.

Note: This is a onetime configuration that creates a subclass which
serves as a place holder for all Template files organized by Base Class,
Class, and Subclass. This is typically used in a Test or QA system, and
is not required in a production environment.

To create the DocumentTemplate Subclass:6

1. Log in to Java Client as an administrator. For information on Event Management
framework, refer to the Agile PLM Administrator Guide.

2. Select Admin > Classes > Items > Documents to open the Class:Documents
dialog.

3. Point to the Class:Documents dialog, select the Subclasses tab and click New
Subclass to open the New Subclass dialog.

4. Create a new Documents Subclass called DocumentTemplate for the Item in
Figure 12.

5 For information on Event Management framework, refer to Agile PLM Administrator Guide.
6 This is a onetime configuration and provides a placeholder for all Template files.

14

Figure 12 DocumentTemplate subclass settings

Make sure you are selecting Document Number for a New Autonumber. For
details, see TemplateManagement.properties file in Template Management
Process Extensions. You can find a copy in the Doc-Publishing folder described in
SDK Samples Folder and Document Publishing Examples.

5. Click OK. The DocumentTemplate subclass opens in the General Information
page.

Figure 13 DocumentTemplate General Information page

Setting the Title Block Number Fields
Complete the following steps to set these fields.

1. In Agile PLM Java client select the Admin tab.

2. Select Classes> Items > Documents> User Interface Tabs > TitleBlock >
Attributes:Title Block > Number. The Attributes:Number page appears.

Figure 14 Page 2 Attributes for the object

15

3. Set the MaxLength field 75 and set the Include Characters field to All.

4. Click Save to complete this task.

Note: You can rename this subclass if you modify the configuration
of the PX. For example, if you change TEMPLATE_SUBCLASS_API_
NAME=DocumentTemplate in ManagementStructure.properties file.

Configuring Information Objects
These samples expect to read three pieces of information from the attributes of the
Object. These information are the:

■ Location of the BI Publisher Template

■ ACS filter API name for the object

■ Output format

Document publishing Web Services rely on Agile Content Services (ACS) filters to
determine the data that is returned for the object in the XML file.

You can customize these filters to return the minimum information to improve
performance and minimize performance degradation during data transfer. An ACS
filter is referred to by its API Name. As indicated earlier, these are object-level
configurations.

Defining Page 2 Fields for the Object
The required fields for the Sample are a Heading field, two Text fields, and one List
field7. The Base IDs are for later use.

■ Heading field - This is for BI Publisher to display the Doc Publishing attributes in
a Heading area.

■ Output Type -List field - This Alpha Type filed determines the Output Type
(EXCEL, RTF, PDF, and HTML). The sample PXs assume this field is stored as
List11 with Base ID 1271.

■ ACS Filter -Text field - This is for the Filter which assumes Text 12 and Base ID
1302. PXs read this attribute to correctly call the Web Service with a Filter for
Exporting the object information. An empty filter will cause an error when
running the PXs.

■ Template Holder -Text field - This is for the Object identifier of the BI Publisher
Template and assumes Text11 and Base ID 1301. PXs will retrieve the BI Publisher
template from the Attachments Tab of the object in this attribute.

Complete the following steps to define these fields:

1. Log in to Java Client and select Admin > Classes > Documents > User
Interface Tabs > Page 2 > Attributes:Page Two > List11.

7 The selected fields provide flexibility for the sample and may not be necessary in a production
implementation.

16

Figure 15 Text field attributes settings

2. Click Save.

3. In Java client, select Admin > Data Settings > Classes > Documents Class >
User Interface Tabs > Page 2, and configure the remaining Text and Header
fields as shown in the following figure.

Figure 16 Object Page 2 fields for Document Publishing sample

Note: The Base ID values are used in the Java PX Properties files and
the Script PX text files. If different fields are used, you must change
the Java or Script PXs to reflect the new Base ID values.

Defining Agile Content Services Filters for XML and HTML Data Files
Document Publishing PXs use ACS filters to determine how to build the XML files.
Agile PLM provides a set of Agile PLM filters and you can use these filters or define
your own. Fields selected for the filter provide flexibility for the sample and you can
alter them for a production environment8. In this Whitepaper, the Default Item Filter is
selected for this purpose.

To access and set the Default ACS Item Filter:
1. Log in to Agile PLM Java Client with administrator privileges.

2. Select Admin > System Settings > Agile Content Service > Filters > Default Item
Filter. The following dialog appears.

8 When defining a filter, use the API Name that was used for the object that you plan to publish.

17

Figure 17 Attribute and Setting Fields in the Create Filter dialog box

Note: Dynamic Document Generation does not support the Files
option feature. Therefore, avoid using the Tabs and Files option, and
use the Tabs Only option instead.

3. Make sure the Tab Only option is selected for BOM Options, AML Options, and
Attachments Options. In View Tabs, as a minimum, select Page Three, Page Two,
Title Block, Attachments, BOM, and Manufactures options.

4. If at this time, you need to set the Large Text Options, you must invoke the steps in
"To access and setup the HTML Item Filter:" on page 17. Otherwise, click Save to
save the new settings.

To access and setup the HTML Item Filter:
1. Repeat steps 1 through 3 in "To access and set the Default ACS Item Filter:" on

page 16.

2. In Figure 21, above, point to the down arrow in the Large Text Options box. The
following selection box appears.

Figure 18 The Large Text Options selection box

18

3. Based on your requirements, select either Page Two or Page Three options, as well
as page Two and Page three options. Select the page or pages that you want to use
for Large Text attribute fields and then, click OK.

Font Mapping Constraints for Large Text Content and BI Publisher Reports
BI Publisher reports do not directly support HTML data fields. Data entered in a rich
text enabled long edit field are stored in HTML format. To transform this HTML data,
you must incorporate a special style-sheet into your RTF template to perform this
conversion. You can find more information about this topic, including procedures, at:

http://docs.oracle.com/cd/E38689_01/pt853pbr0/eng/pt/txml/concept_
UnderstandingRichTextEditorDatainBIReporting-177f04.html

BI Publisher's Font Mapping enables mapping base fonts in RTF or PDF templates for
use in the published document. Font mapping is only performed for PDF PowerPoint
output. You can find more information about font mapping types, required templates,
and available and user defined fonts at:

https://docs.oracle.com/cd/E10415_
01/doc/bi.1013/e12187/T518230T522345.htm#fontmaps

Agile PLM Server Configurations
Dynamic Document Publishing involves configuring and deploying the following
Agile PLM Event Management components:

■ Event Node - These masks are configured around Event types. For example,
Create Object, Delete Object, Audit for Workflow. Agile PLM provides a list of
pre-defined Events for which an event can occur.

■ Event Handler - These masks configure a custom action that is called when the
Event is raised. They extend the function of an action taken by a user, interface, or
the system when the Event subscription is triggered.

■ Event Subscriber - These masks link a Handler mask to an Event mask.

Deploying these components enables creating the Templates, and generating the
schema and document files. These configurations make use of PXs described in. For
information on Event components, refer to Agile PLM Administrator Guide and Agile
PLM SDK Developer Guide - Developing PLM Extensions.

Understanding Process Extensions and Events Framework
Process Extensions (PX) is a framework for extending the functionality of the Agile
PLM system. The functionality can be server-side extensions, or extensions to
client-side functionalities, such as external reports or new commands added to the
Actions menu or Tools menu. Regardless of the type of functionality a PX provides, all
custom actions are invoked on the Agile Application Server rather than the local client.

In Agile SDK environment, Event Management framework extends the PX framework
to enable developing and deploying event-driven applications. Events act as trigger
points for generating an automation action within the PLM application. Every Event is
generated from a source within Agile PLM applications. The source can be a business
action triggered by a user, a UI action, or a system initiated action. Agile PLM's Event
framework supports developing extensions using the Java programming language and
Groovy Script.

19

For information to develop Java PXs/Script PXs and Events, refer to the latest release
of the Agile PLM SDK Developer Guide - Developing PLM Extensions and Agile PLM
Administrator Guide. You can find referential and procedural information about PXs,
Events, and Event triggers in these documents.

Java and Script PXs described in this chapter, namely,
TemplateManagementStructureCreationPX, SchemaGenerationPX,
DataGenerationPX, and DocumentGenerationPX make use of settings defined in Agile
PLM Server Configurations.

Using Oracle-Supplied Document Publishing PXs
Oracle provides Document Publishing configuration examples for PLM server and
PLM Administrator. Server examples include PXs and related Java and properties files.
Configurations described in setting up the PLM server use the following
Oracle-supplied Java and Script PXs (Event Handlers):

■ TemplateManagementStructureCreation – Generates objects in DocumentTemplate
subclass in a tree representing every base class, class, and subclass

■ SchemaGeneration - Generates an XML Schema Attachment for the current object's
subclass and adds it to the DocumentTemplate object for the current subclass

■ DataGeneration - Creates an XML Data attachment and adds to a new object in
DocumentTemplate subclass called DocumentTemplate

■ DocumentGeneration – Publishes the document when the Event is triggered

Figure 19 Oracle-supplied PXs

Accessing the Oracle Supplied PXs.
You can find these folders in <release#>Doc-Publishing_samples.zip which is
maintained on the Oracle Agile PLM Event and Web Services Samples Web site at:
http://www.oracle.com/technetwork/indexes/samplecode/agileplm-sample-52094
5.html

You can use these PXs to create the Event Handler and the Event Subscriber that
trigger the Event. For details, see "Configuring the
TemplateManagementStructureCreationPX" on page 22, "Configuring the
SchemaGenerationPX" on page 26, and "Configuring the DataGenerationPX" on
page 30. Alternatively, you can use the information to develop your own Java Client
and server configuration. For more information and procedures to access its contents,
contact your system administrator, or refer to your Agile PLM Installation Guide.

20

Customizing Settings in JavaOpen PX's web.xml File
This is one of the files in the DocumenGenerationJavaOpen folder. You can find this file
in the Doc-Publishing folder.

Customizing this file to enable the PX to run in your environment requires modifying
the URL, USERNAME, and PASSWORD parameters. Set USERNAME to admin,
PASSWORD to agile1, and the URL parameter as shown below.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">
<display-name>Agile933 Doc-Publishing URL PX</display-name>
<description>URLPX Servlet</description>
<servlet>
<servlet-name>PX</servlet-name>
<servlet-class>samples.DocumentGeneration.DocumentGenerationJavaPxOpen.DocumentGen
erationJavaPxOpen</servlet-class>
<init-param>
<param-name>URL</param-name>
<param-value> http://<your-server>.us.oracle.com:7001/Agile</param-value>
</init-param>
<init-param>
<param-name>USERNAME</param-name>
<param-value>admin</param-value>
</init-param>
<init-param>
<param-name>PASSWORD</param-name>
<param-value>agile1</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>PX</servlet-name>
<url-pattern>/PX</url-pattern>
</servlet-mapping>
</web-app>

Extracting the WLS Application File
The required Agile Application file is application.earwhich is a .ZIP file and is located
in the 9.3.3 Install folder. The path to this file is agileDomain > applications >
application.ear. You must extract this file into Applicationfolder and specify the
path shown in Figure 20.

Creating JAR Files and Deploying Script and Java PX Handlers
Doc-Publishing folder contains both the Java PX and Script PX handlers. The Java
Handlers provide the Java, Properties, and Resources files that you need to deploy the
sample Java PX and Script PX handlers. To deploy the Script PXs, refer to Agile PLM
Administrator Guide. To deploy the Oracle-Supplied Java PXs, you must first create the
JAR files by completing the following steps.

1. In Doc-Publishing folder, open the custom.property file and using the
information in Figure 20, specify the name and path for the Agile PLM server
wls.deploy the name and path for the Application server in wls.home and the
location that the PXs will reside in your environment, in px.deploy.

21

Figure 20 Custom Properties file settings for Jar files

2. Make sure you are running apache-ant-1.7.1 and specify the path for ANT_HOME.

3. Make sure the JAR files are in:
“<AgileHomeDir>\integration\sdk\extensions“directory and wls.home is set to
Weblogic Server 12 installation folder, and then run buid.bat to create the JAR
files for Windows environment, or buid.sh to create them for the UNIX
environment.

Note: After running the build files, the .JAR files are loaded in the
Doc-Publishing folder.

Figure 21 PX JAR files

You can use these PXs to implement the Dynamic Document Publishing capabilities
and create the Event Handler and Event Subscribers that trigger these Events.

Figure 22 Events list

Creating Events and Even Subscribers
For procedures, see: "Configuring the TemplateManagementStructureCreationPX" on
page 22, and "Configuring the SchemaGenerationPX" on page 26, and "Configuring
the DataGenerationPX" on page 30. Alternatively, you can use the information to
develop your own Java Client and server configurations.

Publishing the Sample
Steps in publishing the sample are illustrated in "Publishing the Sample" on page 21.
For more information to complete these steps, see "The Task Sequence" on page 22.

22

Figure 23 Steps in publishing a document

The Task Sequence
Publishing a document requires completing of the following tasks:

1. Configure and run the TemplateManagementStructureCreationPX.

2. Configure and run the SchemaGenerationPX.

3. Configure and run the DataGenerationPX.

4. Download the schema (XSD) and data (XML) files to the local drive.

5. Load the schema file.

6. Load the data file.

7. Lay out the BI Publisher Template and saving the Word file in RTF format.

8. Upload the Template into Agile PLM.

9. Trigger the Event to create the output file

Configuring the TemplateManagementStructureCreationPX
The TemplateManagementStructureCreationPX creates a 3 level Bill of Material (BOM)
for Base Classes, Classes, and Subclasses defined in Creating the DocumentTemplate
Subclass. This is a placeholder for all future .RTF template files9.

You can find this Script or the Java PX in SDK Samples Folder and Document
Publishing Examples. The paths to the Script PX and Java PX with its .JAR and
Properties files are:

■ Script PX for WLS - 932_wls_sdk\
samples\Doc-Publishing\TemplateCreation\TemplateCreationScript.groovy

■ Java PX for WLS - 932_wls_
sdk\samples\Doc-Publishing\TemplateCreation\samples\TemplateManagement
StructureCreation\TemplateManagementStructureCreationPX.jaava

9 This PX is run once only and is not necessary if you not need the Schema Structure.

23

Configuring Event Masks for TemplateManagementStructureCreationPX
This procedure creates the necessary Event masks, Handler masks, and Subscriber
masks for the PX.

To create Event mask and set Event Type:
1. Log in to Java Client with Admin privileges.

2. In Java Client, select Admin > System Settings > Event Management > Events.

3. In Events page, select the New button to open the Create Event dialog and define
an Event mask called CreateBomTemplate for Object Type Parts with the settings
shown in "The Create Event mask for TemplateManagementStructureCreationPX"
on page 23, and then Click OK.

Figure 24 The Create Event mask for TemplateManagementStructureCreationPX

To set up the Event Handler mask do as follows:

1. In Java Client with Admin privileges, select Admin > System Settings > Event
Management > Event Handlers

2. In Event Handlers pane, select the New button to open the Create Event Handler
dialog.

3. Create a new Event Handler mask called CreateBomTemplate.

4. Set Enabled to Yes and for Role, select the applicable roles. For example, Quality
Administrator, Quality Analyst, or Quality Analytics User. For Event Handler
Type you have the option to select the Script or Java PX option. You can find the
Oracle-Supplied Script and Java PXs in "Using Oracle-Supplied Document
Publishing PXs" on page 19.

Figure 25 The Create Event Handler dialogs for Java and Script PXs

24

To configure the Script PX Event Handler: 1

1. In Create Event Handler, paste the contents of TemplateCreationScript.groovy file
in the dialog's Script box.

2. Click OK. For more information, refer to Agile PLM Events and Event Framework
chapter in Agile PLM SDK Developer Guide - Developing PLM Extensions. You can
also find information on configuring Script PXs in Agile PLM Administrator Guide.

To configure the Event Subscriber mask:

1. In Java client with Admin privileges, select Admin > System Settings > Event
Management > Event Subscribers.

2. In Event Subscribers pane, select the New button to open the Create Event
Subscriber dialog.

3. Create a new Event Subscriber mask called CreateBomTemplate with the following
settings:

■ Enabled to Yes

■ Trigger Type to post

■ Error Handling Rule to Stop

Figure 26 Template Management Event Subscriber settings

4. Click the drop-down arrow to select the Event and Event Handler you created
earlier.

5. Click OK.

Properties File Settings for TemplateManagementStructureCreationPX
Values set in the Oracle-Supplied Properties file are shown in the shaded region of
Figure 27 below. Make sure these values conform to Java Client Admin settings for this
PX.

25

Figure 27 TemplateManagementStructureCreationPX Properties file

If there are no changes to the PX, you can use the JAR files described in "Creating JAR
Files and Deploying Script and Java PX Handlers" on page 20 (Event Handlers). If you
need to modify the Java or Script PXs, do as follows:

For Java PX:

1. Copy "TemplateManagementStructreCreation.jar" to
"<AgileHomeDir>\integration\sdk\extensions".

2. Unpack "TemplateManagementStructreCreation.jar" to gain access to
“ResourceTemplateManagement.properties“file.

3. Update as needed.

4. Repack and recopy to PLM server.

For Script PX:

1. Open the Handler in PLM client.

2. Configuration is at the beginning of the Script. Modify the Script as needed.

3. Save the modified Handler.

Output Generated by TemplateManagementStructureCreationPX
The Script PX and Java PXs are invoked from the Tools menu and when triggered will
do as follows:

1. Configure the Template Subclass and create a new Documents Subclass called
CreateBomTemplate for Item - Document.

2. Create a 3-level BOM with Level 1 for all Agile Base classes in the system.

26

Figure 28 Template Management Outputs

Configuring the SchemaGenerationPX
The purpose of SchemaGenerationPX is to programmatically generate XML schema
files using the Agile Java API for a given object.

It is necessary to run this PX for each Subclass to generate the Schema XSD file.
Alternately, you can run the GlobalSchemaGeneration.jar Java PX from the Tools
menu to generate a schema for ALL subclasses in the system. The Schema XSD will be
attached to the applicable object in the Template (Schema) Management Structure'

The paths to the Script PX and Java PX with its .JAR and Properties files are:

■ Script PX - 933_wls_
sdk\samples\Doc-Publishing\SchemaGenerationScript.groovy

■ Java PX - 933_wls_
sdk\samples\Doc-Publishing\SchemaGeneration\samples\SchemaGenerationPX.
java

Configuring Event Components for SchemaGenerationPX
Similar to TemplateManagementStructureCreationPX, these configurations require
creating the Event and setting the Event Type, Event Handler (Java or Script PX), and
Event Subscriber.

To create Event mask and set Event Type:

Follow the steps in "Configuring the TemplateManagementStructureCreationPX" on
page 22 to define an Event mask called for Object Type Items with setting in Figure 29
and then click OK.

Figure 29 Event mask for SchemaGenerationPX

27

To set up the Event Handler mask:

1. Use the information in Configuring Event Masks for
TemplateManagementStructureCreationPX and create a new Event Handler
(Script PX, or Java PX) called CreateSchema.

2. Set Enabled to Yes, and for Role, select the applicable roles. For example, Quality
Administrator, Quality Analyst, Quality Analytics User. For Event Handler
Type, you have the option to select Script PX, or Java PX and use the Oracle
supplied PXs. To access these PXs, see "Accessing the Oracle Supplied PXs." on
page 19.

3. To configure your Script or Java PX Handler Type do as follows.

For Script PX Event Handlers - In Create Event Handler, paste the contents of
Schema Generation Groovy script file in the dialog's Script box and click OK. For
more information, see Agile PLM Events and Event Framework chapter in Agile
PLM SDK Developer Guide - Developing PLM Extensions. You can also find
information on configuring Script PXs in Agile PLM Administrator Guide.

For Java PX Event Handler - Make sure the Event Action for this Java PX is
deployed. See "Creating JAR Files and Deploying Script and Java PX Handlers" on
page 20. Check values in the SchemaGeneration.properties file and make sure
they conform to settings defined in Java Client Admin in "Properties File Settings
for SchemaGenerationPX" on page 27.

4. Click OK.

To configure the Event Subscriber mask:

1. In Java Client with Admin privileges, select Admin > System Settings > Event
Management > Event Subscribers.

2. Event Subscribers pane, select the New button to open the Create Event Subscriber
dialog.

3. Create a new Event Subscriber called CreateSchema with settings shown in
"Create Event Subscriber dialog" on page 27, and then Click OK.

Figure 30 Create Event Subscriber dialog

Properties File Settings for SchemaGenerationPX
Values set in the Oracle-Supplied Properties file are shown in the shaded region of the
following illustration. Make sure these values conform to Java Client Admin settings
for this PX.

28

Figure 31 Properties file settings for SchemaGenerationPX

If there are no changes to the PX, you can use the JAR files described in Creating JAR
Files and Deploying PXs (Event Handlers). If you need to modify the Java or Script PX,
then do as follows:

For Java PX:

1. Copy SchemaGenerationPX.jar to
<AgileHomeDir>\integration\sdk\extensions.

2. Unpack SchemaGenerationPX.jar to gain access to SchemaGeneration.properties
file.

3. Update as needed

4. Repack and redeploy to PLM server

For Script PX:

1. Open the Handler in PLM client.

2. Configuration is at the beginning of the Script. Modify the Script as needed.

3. Save the modified Handler.

Output Generated by SchemaGenerationPX
When the Event is triggered from the Actions menu or Tools menu, a Schema for the
sub class is created and added to the Template BOM created by
TemplateManagementStructureCreationPX. It is necessary to run this PX for each
Subclass you defined in Performing Agile PLM Administrator Configurations to
generate the required Schema XSD file. Alternatively, you can run the
GlobalSchemaGenerationPX from Tools menu and generate a Schema for all subclasses
in the system. The Schema XSD file is attached to the applicable object in created in
TemplateManagementStructureCreationPX.

The Schema Naming Convention is
<ObjectClassName>:<ObjectSubClassName>:<SchemaSuffix>.

These attributes are:

■ ObjectClassName - This is the name of the class. For example, Document.

■ ObjectSubClassName - This is the name of the subclass. For example,
Documents.

■ SchemaSuffix - The SchemaSuffix is set in the properties file.

29

Figure 32 Event type settings for the GlobalSchemaPX

In the output of SchemaGenerationPX shown in Figure 33, Document is the Class name
and Documents is the name of the Subclass of Document.

Figure 33 SchemaGenerationPX output

Generating Schema XSD and Data XML files
This requires triggering the first three Document Publishing Events. When they are
triggered, the PXs will perform the following tasks in the listed order:

1. TemplateManagementStructureCreationPX - This PX will create a 3 level BOM
for all Base Classes/Classes/Sub Classes in the system.

2. SchemaGenerationPX - This PX generates the Schema file (.XSD) for the
referenced objects.

3. DataGenerationPX - This PX creates the Data.XML file and attaches it to the object.
As prerequisite, it requires creating Item - Part/Document and setting the Page
Two attributes, in this case, DocType, Filter and TemplateHolder. These
prerequisites for this PX were defined in "Performing Agile PLM Administrator
Configurations" on page 13 and "Configuring the DataGenerationPX" on page 30.

Naming Convention for DocumentPublishing Events and Event Handlers
For your convenience and to facilitate search, names used for PX Events and Event
Handlers start with letters DP for “Document Publishing” in Figure 34 and Figure 35.

30

Figure 34 Document Publishing Events and Event Handlers - 1

Figure 35 Document Publishing Events and Event Handlers - 2

To run the PXs:
1. In Java Client (Admin client), select Tools > DP Generate Schema Structure to

create the schema for the desired object.

2. In Java Client, select Part - Action > Generate Schema10.

3. Trigger the Event that runs the Generate Data Handler.

Make sure to update the Title Block of a Part in the Oracle-Supplied sample to trigger
the PX to run.

■ Make sure all Document Publishing attributes are correct before triggering this PX

Note: When triggered, this Event generates attachments for the
Schema XSD and Data XML for use in Word with BI Publisher.
Schema XSD is attached to a DocumentTemplate object, for example,
“Assembly_2467572“where Assembly is the Item Type and 2467572 is
the internal ID of the subclass.

Configuring the DataGenerationPX
The purpose of the DataGenerationPX is to programmatically generate sample data
using the Agile Java API Get XML Schema for document authors to preview the
generated outputs in the format of the selected authoring tool. When invoked, the PX
creates and loads the XML file into the authoring tool (in this case, MS Word) to test
the Template with BI Publisher11. As indicated in Creating JAR Files and Deploying
PXs (Event Handlers), this PX requires creating the Item - Part/Document and setting
values for Page Two attributes DocType, Filter, and TemplateHolder.

10 The PX does not rely on the Filter and generates the entire schema.
11 This PX binds the Event to update the Title Block. This is not necessary because the Action menu Event

alone will generate the required XML. Therefore, binding this PX to Create Items, leads to a recursive
situation because this out of the box PX creates a document and attaches the XML file to the document.

31

Configuring Event Components for DataGenerationPX
These configurations are similar to the two preceding PXs. The Script PX or Java PX
Event Handlers call the SDK Agile API to load Data for the object and add it as an
attachment to the object.

To create Event masks and set Event Types:

1. Follow the steps in Configuring Event Masks for
TemplateManagementStructureCreationPX and define an Event called Create
Object for Object Type Part and the following settings.

Figure 36 Create Event mask for DataGenerationPX

2. Click OK.

To set up the Event Handler mask:

1. Use the information in Configuring Event Masks for
TemplateManagementStructureCreationPX and create a new Event Handler mask
(Script PX, or Java PX) called part creation.

2. Set Enabled to Yes, and for Role, select the applicable roles. For example, Quality
Administrator, Quality Analyst, Quality Analytics User. For Event Handler Type,
you have the option to select Script PX, or Java PX. You can find the
Oracle-supplied Script and Java PXs in "Accessing the Oracle Supplied PXs." on
page 19.

3. Click OK.

To configure your Script PX or Java PX Handler Type do as follows.

■ For Script PX Event Handler mask:, in Create Event Handler, paste the contents of
Data Generation Groovy Script file in the dialog's Script box and then click OK.
For more information, see Agile PLM Events and Event Framework chapter in
Agile PLM SDK Developer Guide - Developing PLM Extensions. You can also find
information on configuring Script PXs in Agile PLM Administrator Guide. Figure 37
is an example of a Script PX Handle.

32

Figure 37 Script PX Handler for DataGenerationPX

■ For Java PX Event Handler mask, make sure the Event Action for this Java PX is
deployed, for procedures, see Creating JAR Files and Deploying PXs (Event
Handlers) and check the values in DataGeneration.properties file and make sure
they conform to Java Client Admin settings shown in "Properties File Settings for
DataGenerationPX" on page 33.

Figure 38 Java PX Handler for DataGenerationPX

To configure the Event Subscriber mask:

1. In Java Client with Admin privileges, select Admin > System Settings > Event
Management > Event Subscribers.

2. In Event Subscribers pane, select the New button to open the Create Event
Subscriber dialog.

3. Create a new Event Subscriber called item creation with settings shown in
Figure 39.

33

Figure 39 Event Subscriber for DataGenerationPX

4. Click the drop-down arrow to select the Event mask and Event Handler mask you
created earlier.

5. Click OK.

Properties File Settings for DataGenerationPX
Values set in the Oracle-Supplied Properties file are shown in the shaded region of the
following illustration. Make sure these values conform to Java Client Admin settings
for this PX.

Figure 40 Properties file settings for DataGenerationPX

For Java PX:

1. Copy DataGenerationPX.jar to <AgileHomeDir>\integration\sdk\extensions.

2. Unpack DataGenerationPX.jar to gain access to DataGeneration.properties file.

3. Update as needed.

4. Repack and redeploy to PLM server.

For Script PX:

1. Open the Handler in PLM client.

2. Configuration is at the beginning of the Script. Modify the Script as needed.

3. Save the modified Handler.

34

Modifying the DataGenerationPX Script
The Sample creates a Document and then attaches the XML file to the new document.
A better behavior is to simply attach the XML file to the source object, especially when
dealing with processes such as Problem Reports.

To change this behavior, modify the script as shown in the bold font blow.

try {
String TEMPLATE_SUBCLASS_API_NAME="DocumentTemplate";
String DATA_OBJECT_NUMBER="OBJECT_NUMBER";
String DATA_FILE_NAME=" \"AgileData\" + \"_\" +API_NAME+\".xml\"";
int ACS_FILTER_ATTRIBUTE=1302;
String DATA_FILE_DESCRIPTION=" \"AgileData for \"+OBJECT_NUMBER";
ITable attachmentTable =null;
IAgileObject agileObject=null;
String msg="";

Output Generated by DataGenerationPX
When triggered from the Actions menu, the PX will perform the following:

1. Gets the current object data using the Agile SDK.

2. Gets the Template BOM ID, filter ID, and output format using Page 3 attributes in
the property file.

3. Creates a Document and attaches the XML file to the new document.

The output of the PX is an XML file. The naming convention for the Data XML file is
<ObjectSubclassName>:<ObjectName>:<Rev>:<DataSuffix>.<XML>.

These attributes are defined as follows:

■ ObjectSubClassName - This is the name of the Subclass. For example,
Documents.

■ ObjectName - This is the instance of the Object. For example, D000001.

■ Rev - This is the Revision name/number.

■ DataSuffix - This is set by the user in the Properties file.

Figure 41 Output Generated by DataGenerationPX

35

Building BI Publisher Templates for PLM Release 9.3.2 and Lower
If you need to run BI Publisher 11g Desktop to develop templates for Agile PLM
Release 9.3.2 or lower, you must select Options > Options > Build and then select the
Backward Compatible radio button in the Form field size section. Because existing tags
are no longer setup incorrectly, you must insert new tags throughout your template
before using the template. If your template is built incorrectly, you will get errors
creating the final document.

BI Publisher10g and 11g also use different class paths. Because the Oracle-supplied
script calls BI Publisher10g directly, you must change the class path statements to run
the script on 9.3.2 and lower. Both statements are added to the script, so make sure to
uncommon the 10g statements and comment out the 11g statements for the older
version. If the wrong class path is used, errors will appear in the log file.

For more information, refer to "The Document Publishing Blog" on page 3.

Import statements for BI Publisher 10G embedded in Agile PLM 9.3.2 or lower
// If running Agile PLM 9.3.2 or lower, uncomment these lines.
// import oracle.apps.xdo.template.FOProcessor;
// import oracle.apps.xdo.template.RTFProcessor;
// import oracle.apps.xdo.XDOException;

Import statements for BI Publisher 11G embedded in Agile PLM 9.3.3 and higher
// If running Agile PLM 9.3.2 or lower, comment out these lines.
import oracle.xdo.template.FOProcessor;
import oracle.xdo.template.RTFProcessor;
import oracle.xdo.XDOException;

Building BI Publisher Templates
To build a template, you need the Schema XML and Data XML files. For
Doc-Publishing purposes, these are the files that are generated by invoking Web
ServicesloadXMLSchema and loadXMLData APIs.

To configure the template
1. In the BI Publisher menu, select Insert > Field.

This opens a BI Publisher screen that lists all available fields from the Agile PLM
Schema previously loaded using their API Names.

2. In the Field selection dialog, point to the field of interest and using Insert, add
them in the order that you want them to appear in the resulting document.

3. Scroll through the list, or use Find Next to select fields, for example, CreateUser.

4. Using Word features, customize fonts and other formats for the inserted tags.

36

Figure 42 Building the BI Publisher Template

5. When you complete the layout, save your Template as an RTF file in the local
drive.

6. From the BI Publisher menus, select Preview Template > PDF (or any format) to
see the Data formatted in your Template.

Copying XSD and XML Files to the Local Drive
In Agile PLM Web client, search by document name and the click the Attachments tab.

To copy XSD and XML files to the local drive:

1. Select the XSD file and either click Get, or double-click on the file.

Figure 43 Downloading XSD file to local drive

2. Select the applicable Download method and then save the file to the local drive.

3. Repeat the process for the XML Data

Loading Schema XSD and Data XML Using BI Publisher
The following procedure assumes that you have already:

■ Installed BI Publisher Desktop on your system

■ Ran the SchemaGenerationPX and DataGenerationPX and created the Schema XML
and Data XML files.

■ Ran FileManagementSetup.msi (The Word Plug in Installer)

To load the Schema XSD and Data XML files:

1. Open the document that you want to generate. For example, a data sheet
containing text that it describes and is not subject to change and variable (data)
such as Part Number, Date, and so on that you want to update with Agile PLM
data for publication purposes.

37

Figure 44 Load XML Schema and XML data

2. Open Microsoft Word and select Add-Ins > Data.

3. Select Load XML Data... and then Load XML Schema...to load the files. Word will
display “Data loaded successfully” after each completed action.

Loading the files enables BI Publisher to access Agile PLM fields in the XML file
that were defined earlier for the Subclass. For example, for “Documents” subclass
defined in Creating a Placeholder for Template Files, you can use all features of
Word with BI Publisher to create a template for the data sheet.

Selecting Agile PLM Data Fields and Formatting the Template
BI Publisher facilitates selecting Agile PLM data fields and provides extensive facilities
to format the data and output document.

To configure the template and inserting Agile PLM data in the Template

1. In the BI Publisher menu, select Insert > Field.

This opens a BI Publisher screen that lists all available fields from the Agile PLM
Schema previously loaded using their API Names.

2. In the Field selection dialog, point to the field of interest and using Insert, add
them in the order that you want them to appear in the resulting document.

3. Scroll through the list, or use Find Next to select fields, for example, CreateUser.

4. Using Word features, customize the fonts and other formats of the inserted tags.

Figure 45 Building the BI Publisher Template

5. After completing the layout, save your Template as an RTF file.

6. From the BI Publisher menus, select Preview Template > PDF (or any format) to
preview the Data formatted in your Template. See Figure 46.

Figure 46 Viewing the template

38

Inserting and Formatting Tables
Using BI Publisher, you can insert and represent Agile PLM fields in a tabular form. BI
Publisher's Table formatting combined with Word, provide rich formatting
capabilities, for example, generating totals for numeric fields in columns or rows. For
more information, see BI Publisher publication in "References" on page 3.

To present Agile data in tabular format:

1. In Word with BI Publisher Desktop, select Add-Ins > Insert > Table Wizard. The
Wizard prompts you to select the grouping fields that you want to report on.

Figure 47 Formatting Agile data in tabular format

2. Select the applicable group, for example, AgileDocumentTitleBlock.

Figure 48 Displaying Agile data in a tabular form

3. Select the required fields and then format the table.

Inserting Images and Charts in Templates
BI Publisher supports several options for adding images in a published document.
These options require including the image files in the document Template.

These options are:

■ Direct insertion

■ Using a URL Reference

■ Referencing Elements in XML Files

To directly insert an image or chart:
Similar to inserting images or charts in Word documents, you can simply insert or
paste JPG, GIF, or PNG images directly in the RTF Template.

39

To insert an image using a URL reference:
1. Insert/paste an image in the Template file. This is used to access MS Word's

Picture Format dialog box.

2. Depending on the version of Word that you are using do as follows to open the
Alternative text box:

■ In Word 2007, right click the image and select Format Picture > Alt Text.

■ For earlier versions of Word, right click the image and select Format Picture in
the drop-down list and then select the Web tab.

3. In Alternative text box, type the URL that is pointing to the location of the image
that is using this syntax: url:{'http://<location_of_the_image>'}. For
example, url:{'http://www.oracle.com/images/ora_log.gif"}

Figure 49 URL referencing in Word 2007 (on the left) and earlier versions on the right

To reference an element in an XML File:
1. Similar to inserting an image using a URL reference, insert/paste an image in the

Template file.

2. Open the Alternative text box as you did in "To insert an image using a URL
reference:" on page 39.

3. In the Alternative text box, type the path to the image, using this syntax url:
{IMAG_LOCATION}. IMAGE_LOCATION is an element in the XML file that holds the
full URL to the image.

By using the concat function to build the URL string, you can build a URL based
on multiple elements at runtime. For example, url:{concat(SERVER,'/',IMAGE_
DIR,'/',IMAGE_FILE)}, where SERVER, IMAGE_DIR, and IMAGE_FILE are element
names in the XML file that holds the values to construct the URL

Inserting Thumbnails into Templates
Similar to images, you must also furnish information about Thumbnails in the
document Template as shown in Figure 50.

40

Figure 50 Adding Thumbnails to Templates

Loading the Template into Agile PLM
This is done using Web client's Add function as shown below.

To load the Template into Agile PLM:

1. Log in to Agile PLM and select the folder you want to load the file into. In this
case, DOCUMENT_TEMPLATE that you defined earlier.

2. Select Attachments > Add. The Add Files dialog opens.

3. In Add Files dialog, use Browse to locate the file on the local drive and then click
the Add.

Figure 51 Loading the template into Agile PLM

4. Repeat the process to load other files.

Configuring the DocumentGenerationPX
Document Generation provides the following options to publish a document:

■ DocumentGenerationJavaPX - This PX generates a file based on a Template and
using BI Publisher

■ DocumentGenerationJavaPXOpen - This PX opens the document instead of saving it
as an attachment

■ DocumentGenerationWS PX - The purpose of this Document generation PX is to
programmatically generate documents using the Document Publication engines
such as BI Publisher.

41

Configuring DocumentGenerationJavaPX
The purpose of the Oracle-Supplied Document Generation PX is to programmatically
generate a file based on a Template and a PLM object and use BI Publisher as the
Document Publication engine to publish the file/document.

As prerequisite, this PX requires an object number for the TemplateHolder attribute,
for example, P00001, or P00021.

Configuring Event Masks for DocumentGenerationJava PX
Similar to the preceding PXs, you must create an Event and set Event Type, Event
Handler, and Event Subscriber for the Java or Script PX. Upon the release of an ECO,
the PX loads all items from the BOM tab and will Generate Document from each BOM
item using the Agile embedded BI Publisher.

To create Event mask and set Event Type:

1. Follow the steps in Configuring Event Masks for "Configuring Event Masks for
TemplateManagementStructureCreationPX" on page 23,, and define an Event
called CreateDocument for Object Type Change Requests with settings in
Figure 52.

Figure 52 Event settings for DcocumentGenerationJavaPX

2. Click OK.

To set up the Event Handler mask:

1. Use the information in Configuring Event Masks for
TemplateManagementStructureCreationPX and create a new Event Handler mask
(Script PX, or Java PX) called GenerateDocument.

2. Set Enabled to Yes, and for Role, select the applicable roles. For example, Quality
Administrator, Quality Analyst, Quality Analytics User. For Event Handler Type,
you have the option to select Script PX, or Java PX. You can find the
Oracle-Supplied Script and Java PX in Doc-Publishing folder in SDK_samples.zip.

3. Click OK.

To configure your Script PX or Java PX Handler Type do as follows. ·

■ For Script PX Event Handler mask, in Create Event Handler, paste the contents of
Document Generation Groovy Script file in the dialog's Script box and click OK.
For more information, see Agile PLM Events and Event Framework chapter in
Agile PLM SDK Developer Guide - Developing PLM Extensions. You can also find
information on configuring Script PXs in Agile PLM Administrator Guide. Following
is an example of a Script PX Handler and then click OK.

42

Figure 53 Script PX Handler for DocumentGenerationPX

■ For Java PX Event Handler mask, make sure the Event Action for this Java PX is
deployed. See Deploying PXs (Event Handler masks) and then check the values in
DocumentGeneration.properties file and make sure they conform to Java Client
Admin settings shown in Properties File Settings for DocumentGenerationJavaPX.
And then click OK.

To configure the Event Subscriber mask:

1. In Java Client with Admin privileges, select Admin > System Settings > Event
Management > Event Subscribers.

2. In Event Subscribers pane, select the New button to open the Create Event
Subscriber dialog.

3. Create a new Event Subscriber called GenerateDocument with settings shown in
the following figure.

Figure 54 Event Subscriber settings for DataGenerationPX

4. Click OK.

Properties File Settings for DocumentGenerationJavaPX
See Figure 55 for these settings.

43

Figure 55 Properties file settings for DocumentGeneration Java PX and JavaOpen PX

Output Generated by DocumentGenerationJavaPX
When the PX is triggered upon the release of an ECO, it will:

1. Load the Affected Items Tab of the change and calls the SDK to get the data for the
Affected Item

2. Use the settings in the Properties file for the following P2 Item attributes:

■ TemplateID

■ ACS filter name

■ Document Type

3. Load the template using the P2 Document Number attribute for the Item.

4. Call the SDK to load the data for BOM items.

5. Call BI publisher and pass the data Template to generate the document.

6. Save the document along the naming convention for the generated file in the
Attachments Tab.

The PX creates a separate document object and attaches the output file to this object.

The naming convention for the generated file is <ObjectSubclassName>
:<ObjectName> :<Rev>:<templateID><documentSuffix>.<documentType>.

These attributes are defined as follows:

■ ObjectSubClassName - This is the name of the Subclass. For example,
Documents.

■ ObjectName - This is the instance of the Object. For example, D000001.

■ Rev - This is the Revision name/number.

■ TemplateID - This is the template name.

■ DataSuffix - This is set by the user in the Properties file.

■ DocumentType - This is the format of the output file. Options are PDF, EXCEL,
HTML, RTF and PowerPoint.

When creating Events, Event handlers and Event subscribers, you must enable the
Event by clicking the enable button in Java Client to see the Events in their respective
actions. If Events are disabled, you cannot see the Events under their respective
actions.

44

Figure 56 DocumentGenerationPX output in PDF format

Configuring DocumentGenerationJavaOpen (URL PX)
The DocumentGenerationJavaPxOpen or URL PX, instead of saving the document as an
attachment, displays the output generated by the DocumentGenerationJavaPX in the
URL that you specified in Java PX's Properties file, or in Script PX's Groovy script. For
procedures, see "To setup the URL PX:" below.

Note: To run the DocumentGenerationJavaPxOpen or URL PX in a
Web Services configured environment, you must import the following
certificates to the Agile934Home\jdk\jre\lib\security folder:

fm-ssl-cert.cer
agile-ssl-cert.cer
a9-democa-cert.cer

To setup the URL PX:
1. Unzip URLPX.zip to tomcat directory at tomcat\webapps.

After unzipping, you will see the URLPX directory in tomcat\webapps.

2. Edit the tomcat\webapps\URLPX\WEB-INF\ web.xml by changing the
http://shahdesk-dgx520.agile.agilesoft.com:8888/web to your application
server’s hostname.

3. Type the correct value for FILESERVER_URL in
Tomcat\webapps\URLPX\WEB-INF\classes\samples\DocumentGeneration\Documen
tGenerationJavaPxOpen\ DocumentGeneration.properties.

4. In Java Client, with Admin privileges, select Admin > Data Settings > Process
Extensions.

The Process Extension Library panel opens.

5. In Process Extension Library, select the New button to open and configure the Add
Process Extension dialog as shown in the following figure.

The Address field should point to the Filemanager. For example,
http://<filemgerHost>:<FilemgerPort>/URLPX/PX.

45

Figure 57 URL PX settings in Add Process Extension dialog

6. Click OK.

Configuring the Properties file for DocumentGenerationJava OpenPX
1. Navigate to the respective object, for example, Items > Documents class.

2. Navigate to Process Extensions tab of that Document class and add this URL PX
which is already created.

3. Use these steps for other objects of interest.

DocumentGenerationJavaPxOpen Output Sample
When the PX is invoked from the Actions Menu, it will open the document in the
specified URL in HTML format.

Figure 58 Output generated by URL PX

Triggering DocumentGenerationPX
On releasing the trigger (for example, a change), this PX generates a report with the
file extension defined in DocType and attaches it to the object specified in
TemplateHolder. Because it is a prerequisite, it requires assigning an existing object
number for the TemplateHolder attribute. The required settings are defined in
"Performing Agile PLM Administrator Configurations" on page 1-13“and
"Configuring the DocumentGeneration WebService PX" on page 1-46.

46

Modifying DocumentGenerationPX
The Sample creates a Document object and then attaches the output file to the new
document. Oracle recommends attaching the output file to the source object, especially
with processes such as Problem Reports. Be sure to specify the correct location of the
Template because getting the Template retrieves the first file from the specified object.

To modify the PX, for example, to change the name of the document from Document
name, to Document and Object name, you must modify the PX's Properties file as
shown below.

Public ITem getTargetObject(IAgileSession session, Item object)throws Exception{
private static final String TEMPLATE_SUBCLASS_API_NAME = "documentTemplate";
private static final String TARGET_DOCUMENT_NAME = "DOCUMENT + OBJECT_NAME";

Triggering the Event and Creating the Output File
To trigger the Event and generate the sample document do as follows:

1. Make sure the object that you want to process has the correct configuration for the
Template, Filter, and output file type in Script PX Code, or Java PX Properties file.
For the example, the settings are as shown below.

■ Output Type = PDF

■ ACS Filter = Itemstabs

■ Template Holder = D-00004

2. Trigger the Event (release the ECR).

Figure 59 Triggering the Event by releasing the ECO

3. Open the generated document to view the output file.

Figure 60 The output file

Configuring the DocumentGeneration WebService PX
The purpose of this Document generation PX is to programmatically generate
documents using Document Publication engines such as BI Publisher. This PX gets the
necessary data from Agile PLM and generates the document in Agile Java PX using
the Agile bundled BI Publisher (engine).

47

Steps in the document generation process:

1. Get current object data from Agile PLM.

2. Generate document in PX using BI Publisher Web Services APIs.

3. Add generated documents to the object attachment table.

Properties File Settings for DocumentGeneration WebService PX
Settings for this PX appear in Figure 61 below.

Figure 61 Properties File Settings for DocumentGeneration WebService PX

Creating RTF Templates and Updating Data Fields
The BI Template Builder is an extension of Microsoft Word that simplifies the
development of RTF templates. While the Template Builder is not required to create
RTF templates, it provides many functions that greatly increase your productivity.

The Template Builder is fully integrated with Microsoft Word and enables you to
perform the following functions:

■ Insert data fields into your RTF templates

■ Insert data driven tables and crosstabs

■ Insert data driven charts

■ Review and Validate RTF templates with sample XML data

■ Browse and update the content of form fields

■ Extract boilerplate text into an XLIFF translation file and test translations

48

To create your RTF Templates:
1. Point to http://docs.oracle.com/cd/E23943_01/bi.1111/e22254/create_rtf_

tmpl.htm for information and procedures to create RTF templates.

2. Create your RTF template(s) use supplied procedures.

The Oracle® Fusion Middleware Report Designer's Guide opens in Creating RTF
Templates shown in Figure 62 below.

Figure 62 Oracle® Fusion Middleware Report Designer's Guide for Oracle BI Publisher

3. Navigate the Creating RTF Templates panel to view basic and advanced
techniques to create complex report formats, including those that are subject to
predefined conditions.

49

Copyright Page
E52164-01

Copyright © 2013-2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

50

	Executive Overview
	About this Whitepaper
	New in Release 9.3.4
	New in the Second Revision of Release 9.3.3

	New in the First Revision of Release 9.3.3
	Accessing the BI Server
	New in Release 9.3.2

	Content and Organization
	Intended Audience
	References
	The Document Publishing Blog
	Oracle Agile PLM
	Oracle BI Publisher

	Document Accessibility and Oracle Support

	Introduction
	Solution Architecture
	Operating Environment
	Oracle Agile PLM Components
	Microsoft Word 2003/2007 and BI Publisher

	The Dynamic Document Publishing Process
	The Datasheet Configuration in Agile PLM
	Generating the Data XML File
	Creating the Template
	Viewing and Testing the Template
	Combining XML Data with Template - Publishing the Document

	Setting Up the Environment for Document Publishing
	Configuring Agile PLM Administrator
	Configuring Agile PLM Server

	Installing and Setting Up BI Publisher Desktop 11.1.1.7.0
	Setting Up BI Publisher 11g for PLM Release 9.3.2 and Earlier Releases

	Performing Agile PLM Administrator Configurations
	Creating the DocumentTemplate Subclass
	To create the DocumentTemplate Subclass:

	Setting the Title Block Number Fields
	Configuring Information Objects
	Defining Page 2 Fields for the Object

	Defining Agile Content Services Filters for XML and HTML Data Files
	Font Mapping Constraints for Large Text Content and BI Publisher Reports

	Agile PLM Server Configurations
	Understanding Process Extensions and Events Framework
	Using Oracle-Supplied Document Publishing PXs
	Accessing the Oracle Supplied PXs.

	Customizing Settings in JavaOpen PX's web.xml File
	Extracting the WLS Application File
	Creating JAR Files and Deploying Script and Java PX Handlers
	Creating Events and Even Subscribers

	Publishing the Sample
	The Task Sequence
	Configuring the TemplateManagementStructureCreationPX
	Configuring Event Masks for TemplateManagementStructureCreationPX
	To set up the Event Handler mask do as follows:
	To configure the Script PX Event Handler:
	To configure the Event Subscriber mask:

	Properties File Settings for TemplateManagementStructureCreationPX
	Output Generated by TemplateManagementStructureCreationPX

	Configuring the SchemaGenerationPX
	Configuring Event Components for SchemaGenerationPX
	To create Event mask and set Event Type:
	To set up the Event Handler mask:
	To configure the Event Subscriber mask:

	Properties File Settings for SchemaGenerationPX
	For Java PX:
	For Script PX:

	Output Generated by SchemaGenerationPX

	Generating Schema XSD and Data XML files
	Naming Convention for DocumentPublishing Events and Event Handlers
	To run the PXs:

	Configuring the DataGenerationPX
	Configuring Event Components for DataGenerationPX
	To create Event masks and set Event Types:
	To set up the Event Handler mask:
	To configure your Script PX or Java PX Handler Type do as follows.
	To configure the Event Subscriber mask:

	Properties File Settings for DataGenerationPX

	Modifying the DataGenerationPX Script
	Output Generated by DataGenerationPX

	Building BI Publisher Templates for PLM Release 9.3.2 and Lower
	Import statements for BI Publisher 10G embedded in Agile PLM 9.3.2 or lower
	Import statements for BI Publisher 11G embedded in Agile PLM 9.3.3 and higher

	Building BI Publisher Templates
	To configure the template
	Copying XSD and XML Files to the Local Drive
	To copy XSD and XML files to the local drive:

	Loading Schema XSD and Data XML Using BI Publisher
	To load the Schema XSD and Data XML files:

	Selecting Agile PLM Data Fields and Formatting the Template
	To configure the template and inserting Agile PLM data in the Template

	Inserting and Formatting Tables
	To present Agile data in tabular format:

	Inserting Images and Charts in Templates
	Inserting Thumbnails into Templates
	Loading the Template into Agile PLM
	To load the Template into Agile PLM:

	Configuring the DocumentGenerationPX
	Configuring DocumentGenerationJavaPX
	Configuring Event Masks for DocumentGenerationJava PX
	To create Event mask and set Event Type:
	To set up the Event Handler mask:
	To configure your Script PX or Java PX Handler Type do as follows.
	To configure the Event Subscriber mask:

	Properties File Settings for DocumentGenerationJavaPX
	Output Generated by DocumentGenerationJavaPX

	Configuring DocumentGenerationJavaOpen (URL PX)
	To setup the URL PX:
	Configuring the Properties file for DocumentGenerationJava OpenPX
	DocumentGenerationJavaPxOpen Output Sample
	Triggering DocumentGenerationPX
	Modifying DocumentGenerationPX

	Triggering the Event and Creating the Output File
	Configuring the DocumentGeneration WebService PX
	Steps in the document generation process:

	Properties File Settings for DocumentGeneration WebService PX

	Creating RTF Templates and Updating Data Fields

