

[1] Oracle® Database Mobile Server
Administration and Deployment Guide

Release 12.1.0

E58650-01

January 2015

Oracle Database Mobile Server Administration and Deployment Guide Release 12.1.0

E58650-01

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiii
Conventions ... xiii

1 Oracle Database Mobile Server Management

1.1 Using Mobile Manager to Manage Your Mobile Server ... 1-1
1.1.1 Viewing Mobile Servers.. 1-3
1.1.1.1 Mobile Server Home Page... 1-3
1.1.1.2 Manage Applications ... 1-5
1.1.1.3 Manage Users.. 1-5
1.1.1.4 Mobile Server Administration .. 1-5
1.1.1.5 Data Synchronization... 1-6
1.1.1.6 Job Scheduler... 1-6
1.1.2 Viewing Mobile Devices ... 1-7
1.1.2.1 Installed Mobile Devices ... 1-7
1.1.2.2 Mobile Device Platforms ... 1-7
1.2 Manage Mobile Server Farms ... 1-8
1.3 Enabling UIX Dynamic Image Generation on UNIX to See Mobile Manager Buttons 1-8
1.3.1 Headless Java.. 1-8
1.3.2 X Server Access .. 1-8
1.4 Mobile Server Run Time Libraries ... 1-8

2 Managing the Client and Back-End
Databases

2.1 Creating and Managing the Database for a Mobile Client ... 2-1
2.2 Connecting to the Back-End Oracle Database .. 2-1

3 Managing Your Mobile Applications

3.1 Listing Applications ... 3-1
3.2 Publishing Applications to the Mobile Server Repository.. 3-2
3.3 Deleting an Application ... 3-2
3.4 Managing Application ... 3-2
3.5 Managing User-Specific Application Parameters (Data Subsetting) 3-3

iv

3.6 Managing Access Privileges for Users and Groups... 3-4
3.6.1 Granting Application Access to Users and Groups.. 3-4
3.6.2 Revoking Application Access to Users and Groups... 3-5

4 Managing Users and Groups

4.1 What Are the Types of Mobile Server Users? ... 4-1
4.1.1 Mobile Server User Privilege: Administrator .. 4-1
4.1.2 Mobile Server User Privilege: Organizer ... 4-2
4.1.3 Mobile Server User Privilege: User ... 4-2
4.2 Guide to Creating User and Administrator Types .. 4-2
4.2.1 Creating a User to Access a Published Application ... 4-2
4.2.2 Creating an Administrator ... 4-3
4.3 Managing Users and Groups .. 4-3
4.3.1 Managing Mobile Server Users ... 4-3
4.3.1.1 Displaying Users... 4-4
4.3.1.2 Adding New Users... 4-5
4.3.1.3 Associating Mobile Server Users With Published Applications 4-7
4.3.1.4 Duplicating Existing Users.. 4-8
4.3.1.5 Swap Users on a Device... 4-8
4.3.1.6 Managing OID Users in the Mobile Server... 4-9
4.3.1.7 Providing Your Own Authentication for a User... 4-10
4.3.2 Adding New Groups.. 4-11
4.3.3 Deleting Groups or Individual Users .. 4-11
4.4 Managing Access Privileges for Users and Groups.. 4-11
4.4.1 Grant or Revoke Application Access to Users ... 4-11
4.4.1.1 Grant Application Access to Users ... 4-12
4.4.1.2 Revoke Application Access to Users .. 4-12
4.4.2 Include or Exclude Users from Group Based Access .. 4-12
4.4.2.1 Include Users in a Group.. 4-13
4.4.2.2 Exclude Users from a Group.. 4-13
4.4.3 Grant or Revoke Application Access to Groups .. 4-13
4.5 Managing Application Parameter Input (Data Subsetting)... 4-14
4.6 Manually Adding Devices for a User ... 4-14
4.7 Configuring How the Device Receives Software Updates for the User 4-15

5 Managing Synchronization

5.1 How Does the Synchronization Process Work? ... 5-1
5.1.1 Defining Behavior of Apply/Compose Phase for Synchronization 5-4
5.2 Initiate Synchronization of the Mobile Client... 5-4
5.2.1 Network Options for MSync Tool ... 5-7
5.2.2 Sync Options for MSync Tool .. 5-7
5.2.3 Use Mobile Client Tools on Linux... 5-8
5.3 User Scenarios for Synchronization ... 5-8
5.4 Managing the Sync Server from the Data Synchronization Home Page 5-9
5.4.1 Starting/Stopping the Sync Server ... 5-9
5.4.2 Checking Synchronization Alerts... 5-10
5.4.3 Managing Sync Sessions .. 5-11

v

5.4.4 Displaying Operating System (OS) and Java Virtual Machine (JVM) Information 5-12
5.5 Using Automatic Synchronization .. 5-13
5.5.1 Specifying Platform Rules for Automatic Synchronization 5-14
5.5.2 Start, Stop, or Get Status for Automatic Synchronization ... 5-19
5.5.3 How the Automatic Synchronization Transaction is Retried 5-20
5.6 Configuring Data Synchronization For Farm or Single Mobile Server............................ 5-20
5.7 Resuming an Interrupted Synchronization.. 5-20
5.7.1 Defining Temporary Storage Location for Client Data ... 5-21
5.7.2 Controlling Server Load .. 5-21
5.8 Register a Remote Oracle Database for Application Data ... 5-22
5.8.1 Register or Deregister a Remote Oracle Database for Application Data.................. 5-23
5.9 Improving Performance for Multiple Clients that Use the Same Read-Only Data With a

Cached User ... 5-25
5.10 Synchronizing to a File With File-Based Sync ... 5-26
5.10.1 Upload Synchronization Transactions to an Encrypted File on the Mobile Client. 5-27
5.10.2 Apply and Compose Mobile Client Transactions on the Mobile Server 5-27
5.10.3 Download Composed Transactions from Mobile Server to the Mobile Client 5-28
5.10.4 Troubleshooting File-Based Synchronization Scenarios... 5-28
5.10.4.1 Normal Network Synchronization Occurs During File Upload 5-28
5.10.4.2 Conflict Resolution for File-Based Synchronization... 5-29
5.11 Managing Trace Settings and Trace Files ... 5-29
5.12 Browsing the Repository for Synchronization Details ... 5-29
5.12.1 Viewing User Information... 5-29
5.12.2 Viewing Publications ... 5-31
5.12.3 Viewing Publication Items .. 5-32
5.12.4 Viewing Synchronization Queues.. 5-32
5.12.4.1 Viewing Transactions in the In-Queue... 5-32
5.12.4.2 Viewing Subscriptions in the Out-Queue .. 5-32
5.12.4.3 Viewing Server-Side Synchronization Conflicts and Errors in the Error Queue........

.. 5-33
5.13 Monitoring and Analyzing Performance ... 5-37
5.13.1 Viewing Sync Server Statistics .. 5-37
5.13.2 Displaying MGP Cycles and Statistics... 5-38
5.13.3 Analyzing Performance of Publications With the Consperf Utility.......................... 5-39
5.13.4 Monitoring Synchronization Using SQL Scripts.. 5-40

6 Managing Jobs with the Job Scheduler

6.1 Scheduling a Job to Execute at a Specific Time or Interval ... 6-1
6.2 Managing the Job Engine... 6-2
6.2.1 Starting the Job Scheduler .. 6-2
6.2.2 Checking Job Scheduler Alerts .. 6-3
6.2.3 Managing Active Jobs ... 6-3
6.2.4 Managing the Job History List... 6-3
6.3 Manage Scheduled Jobs Using the Mobile Manager ... 6-4
6.3.1 Creating a New Job.. 6-5
6.3.2 Editing Existing Jobs ... 6-7
6.3.3 Viewing MGP Current Cycle Statistics... 6-8

vi

6.3.4 Viewing MGP Cycle Statistics.. 6-9
6.3.5 Enabling or Disabling Jobs .. 6-10
6.3.6 Deleting Jobs.. 6-10
6.3.7 Default Jobs.. 6-10
6.3.7.1 MGP_DEFAULT.. 6-10
6.3.7.2 PURGE_HISTORY_DEFAULT.. 6-11
6.4 Managing or Creating Jobs Using ConsolidatorManager APIs.. 6-11

7 Manage Your Devices

7.1 Customize the Mobile Client Software Installation for Your Mobile Device..................... 7-1
7.2 Configuring Mobile Clients Before Installation.. 7-2
7.2.1 Modifying Device Management Parameters for Client Device 7-3
7.3 Managing Devices... 7-5
7.3.1 Configuring the Mobile Device through Properties... 7-6
7.3.1.1 Enabling or Disabling a Mobile Device... 7-8
7.3.2 Viewing Device Information.. 7-8
7.3.3 Viewing Database Information.. 7-8
7.3.4 Viewing Software Information .. 7-9
7.3.5 Commands.. 7-9
7.3.6 Queue .. 7-9
7.3.7 Command History... 7-9
7.4 Configuring and Customizing Your Mobile Device Platform ... 7-9
7.4.1 Modifying Platform Properties for Installation.. 7-10
7.4.2 Enabling or Disabling All Mobile Devices in a Platform.. 7-11
7.4.3 Extend or Create a Custom Platform... 7-11
7.4.3.1 Enable a Platform for Your Mobile Client ... 7-11
7.4.3.2 Create a Custom Platform By Extending an Existing Platform.......................... 7-11
7.5 Sending Commands to Your Mobile Devices.. 7-12
7.5.1 Scheduling or Sending Commands.. 7-12
7.5.1.1 Sending Commands .. 7-12
7.5.1.2 Scheduling Commands... 7-14
7.5.2 Modifying Existing Commands ... 7-16
7.5.2.1 Adding Parameters to Mobile Device Commands... 7-16
7.5.3 Creating New Commands... 7-17
7.5.4 Creating Group Commands.. 7-18
7.5.5 Enabling or Disabling Mobile Device Commands .. 7-18
7.5.6 Viewing the Mobile Device Command History... 7-19
7.6 Managing Device Software Updates... 7-19
7.6.1 Configuring the Device to Receive Required Software Updates............................... 7-19
7.6.1.1 Allowing Automatic Software Updates for the Oracle Database Mobile Server

Platform ... 7-19
7.6.1.2 Updating Application Software On Each Client... 7-20
7.6.1.3 Rolling Out Updates With Controlled Upgrade... 7-21
7.6.2 Configuring Application Software for Automatic Update... 7-21
7.6.2.1 Configuring Major Software Updates for Download .. 7-22
7.6.2.2 Configuring Patches or Minor Updates for Download 7-22
7.6.3 Initiate Updates of Oracle Database Mobile Server Software from the Client 7-23

vii

7.7 Using the Device Manager Agent (dmagent) on the Client .. 7-24
7.8 Managing the Network Protocol Between the Device and the Mobile Client Software 7-27
7.9 Installation Configuration (INF) File .. 7-28
7.9.1 Setup Information... 7-29
7.9.2 Properties ... 7-29
7.9.3 Initialization... 7-31
7.9.4 Including Other INF Files.. 7-31
7.9.5 INSTALL Element .. 7-31
7.9.5.1 DIRECTORY Section ... 7-32
7.9.5.2 FILE Section.. 7-32
7.9.5.3 ENV Section.. 7-33
7.9.5.4 REGISTRY Section... 7-33
7.9.5.5 ODBC Section... 7-33
7.9.5.6 LINK Section .. 7-34
7.9.5.7 INI Section .. 7-34
7.9.5.8 EXECUTE Section.. 7-35
7.9.5.9 REGISTER Section ... 7-35
7.9.5.10 FINISH Section... 7-35
7.10 Defining Device Manager Commands With the Device Manager OTL Tag Language 7-36
7.10.1 Device Manager Tag Language Data Types .. 7-37
7.10.1.1 Character... 7-37
7.10.1.2 Number ... 7-37
7.10.1.3 Integer ... 7-37
7.10.1.4 Long... 7-37
7.10.1.5 Double ... 7-37
7.10.1.6 Boolean.. 7-37
7.10.1.7 String ... 7-37
7.10.1.8 Array.. 7-39
7.10.1.9 Date Methods ... 7-39
7.10.1.10 Time Methods .. 7-40
7.10.1.11 Enumeration... 7-40
7.10.1.12 File.. 7-40
7.10.2 Operators That You Can Use With the Device Manager Tag Language.................. 7-40
7.10.3 Syntax for the Device Manager Tag Language .. 7-41
7.10.3.1 Initialization Statements ... 7-41
7.10.3.2 Assignment Statements .. 7-41
7.10.4 Conditional Statements.. 7-42
7.10.4.1 If-Else Conditional Statement .. 7-42
7.10.4.2 While Conditional Statement... 7-42
7.10.4.3 Foreach Conditional Statement ... 7-43
7.10.4.4 Break Statement ... 7-43
7.10.4.5 Choose Statement .. 7-43
7.10.5 Define Custom Functions .. 7-43
7.10.6 Manage the Database Connection.. 7-44
7.10.6.1 Specify Database Connection Information for an Application........................... 7-44
7.10.6.2 Disconnect from the Database ... 7-44
7.10.7 Global Classes ... 7-44

viii

7.10.7.1 Methods of the System Class ... 7-44
7.10.7.2 Methods of the DeviceManager Class .. 7-47
7.10.8 Importing Another OTL Page... 7-49
7.10.9 Error Handling.. 7-49
7.10.10 Sample Device Manager Commands Using the Tag Language 7-49
7.11 Using Mobile Manager to Manage iOS Devices.. 7-50
7.11.1 iOS Device Enrollment... 7-50
7.11.2 View iOS Device Information ... 7-56
7.11.3 iOS MDM Command Management ... 7-57
7.11.3.1 All Commands ... 7-57
7.11.3.2 Send Command from Mobile Manager.. 7-58
7.11.3.3 View Command History .. 7-61
7.11.3.4 Differences between iOS Device Management and Non-iOS Device Management ..

... 7-62
7.11.4 iOS Profile Management on Mobile Manager .. 7-62
7.11.4.1 Create or Update Profiles ... 7-63
7.11.4.2 Delete Profiles .. 7-64
7.11.4.3 Retrieve Profile Information .. 7-65

8 Offline Instantiation for Mobile Clients

8.1 Using Offline Instantiation to Distribute Multiple Mobile Clients...................................... 8-1
8.2 Setting Up the Mobile Server Host and Mobile Development Kit Host............................. 8-2
8.3 Downloading the Mobile Client SETUP Executable.. 8-2
8.4 Configure How OLI Creates the Client Distribution Packages With the OLI Configuration

File .. 8-3
8.4.1 SETUP.. 8-3
8.4.2 USERS.. 8-5
8.4.3 Example of OLI.INI File.. 8-5
8.5 Using the OLI Engine to Create and Package the Client Distribution File 8-6
8.5.1 Create and Populate Client Database Files with the MAKEDB Command................ 8-7
8.5.2 Package the Mobile Client Binaries with the Client Database Files with the PACKAGE

Command .. 8-7
8.5.3 Clean Up the OLI Tables Before Executing OLI for Another Distribution 8-8
8.5.4 Check the Status of OLI Clients ... 8-8
8.6 Deploying Client Distribution Files on Client Machines .. 8-8

9 Configure Security in Oracle Database Mobile Server

9.1 Security Enhancements .. 9-1
9.2 Which Password is Which? ... 9-1
9.2.1 Modifying Repository Password... 9-3
9.3 Providing Security for the Mobile Client .. 9-3
9.4 Configuring for Secure Socket Layer (SSL) Communication ... 9-4
9.4.1 Creating an SSL Certificate... 9-4
9.4.2 Configuring Mobile Server for SSL... 9-5
9.4.3 Troubleshooting Error Messages for an SSL-Enabled Mobile Server 9-6
9.4.4 Support for Non-SSL Mobile Clients .. 9-6
9.5 Providing Your Own Authentication Mechanism for Oracle Database Mobile Server ... 9-6

ix

9.6 Using a Load Balancer.. 9-6
9.6.1 Configure the Oracle Web Cache as a Load Balancer .. 9-7
9.6.2 Configure Mobile Server for Load Balancer .. 9-7
9.6.3 Communicate with Mobile Servers... 9-8
9.7 Using Security Manager... 9-8
9.7.1 Enabling Java Security Manager with WebLogic Server ... 9-8
9.7.2 Editing Java Security Policy File.. 9-8
9.8 Using a Firewall Proxy or Reverse Proxy.. 9-9
9.8.1 Using a Reverse Proxy to Communicate from Internet to Intranet.............................. 9-9
9.8.1.1 Configure the Apache Web Server as a Reverse Proxy 9-10
9.8.1.2 Set Up Mobile Server for Mobile Client Download ... 9-11
9.8.1.3 Download Reverse Proxy Mobile Client.. 9-11
9.8.1.4 Enable SSL When Using a Reverse Proxy.. 9-12
9.8.1.5 Configure Device Management to Work With a Firewall................................... 9-14
9.8.2 Using HTTP Proxy to Communicate From Inside a Firewall 9-15
9.8.2.1 Proxy Configuration for Mobile Clients... 9-16
9.8.2.2 Proxy Configuration for the Device Manager Agent ... 9-16
9.8.2.3 Reverse Proxy Configuration for HTTP PUSH from Mobile Server Not Supported.

... 9-16
9.9 Providing SSL Client Authentication with a Common Access Card 9-16
9.9.1 Introduction to SSL Client Authentication ... 9-17
9.9.2 Smartcard and Common Access Card Overview .. 9-17
9.9.3 Oracle Database Mobile Server Supports Common Access Cards 9-18
9.9.4 Supported Platforms for the Common Access Card ... 9-18
9.9.4.1 Support for Mobile Clients That Are Not Enabled for Client Authentication . 9-18
9.9.5 Prerequisites for Common Access Card.. 9-19
9.9.6 Configuration for Client Authentication Using the Common Access Card 9-19
9.9.6.1 Configuration of the Mobile Server to Request Client Authentication 9-19
9.9.6.2 Configuration of the Mobile Client to Use a CAC.. 9-19
9.9.6.3 Configuration for Reverse Proxy and Load Balancer .. 9-20
9.9.7 Using the Common Access Card.. 9-20
9.10 Security Warning for Demo Applications.. 9-21

10 Reports

10.1 Viewing System Status Reports for the Server .. 10-1
10.2 Viewing Active User Sessions.. 10-2

11 iOS Device Management

11.1 iOS Device Management with MDM.. 11-1
11.1.1 Introduction to iOS MDM ... 11-1
11.1.1.1 Mobile Server and MDM.. 11-1
11.1.1.2 MDM and Push Notifications.. 11-2
11.1.2 Profiles and Device Enrollment .. 11-3
11.1.2.1 Configuration Profiles... 11-3
11.1.2.2 Device Enrollment Process... 11-6
11.1.3 iOS MDM Commands.. 11-6

x

11.1.3.1 Command Status ... 11-6
11.1.3.2 Commands.. 11-8
11.1.4 Managing iOS Applications .. 11-10
11.1.4.1 Provisioning Profiles ... 11-10
11.1.4.2 Preparing and Publishing iOS Application ... 11-11
11.1.4.3 Application Security Considerations.. 11-16
11.2 Server and Security Configuration for iOS Mobile Device Management 11-17
11.2.1 Creating and Configuring Certificate Authority ... 11-17
11.2.1.1 Creating Private CA .. 11-18
11.2.1.2 Importing the CA into Mobile Server MDM Keystore 11-19
11.2.1.3 Importing the CA into the Application Server Trust Store 11-20
11.2.1.4 Important Considerations .. 11-22
11.2.2 SSL Configuration for MDM... 11-23
11.2.2.1 Creating SSL Certificate Signed by Private CA... 11-23
11.2.2.2 Importing SSL Certificate into Application Server's Keystore 11-24
11.2.3 Obtaining and Importing APNS Certificate ... 11-26
11.2.3.1 Obtain MDM CSR Signing Certificate.. 11-27
11.2.3.2 Create APNS CSR.. 11-28
11.2.3.3 Sign CSR with MDM CSR Signing Certificate .. 11-28
11.2.3.4 Submit CSR and Obtain APNS Certificate... 11-29
11.2.3.5 Import APNS Certificate and Private Key into Mobile Server MDM Keystore 11-29
11.2.3.6 Renewing MDM Certificates.. 11-30
11.2.3.7 Important Considerations .. 11-31

A Configuration Files for the Mobile Server

A.1 Configuration Parameters for the MOBILE.ORA File... A-1
A.1.1 [APPLICATIONS]... A-1
A.1.2 [MOBILE] ... A-1
A.1.3 [FILESYSTEM]... A-3
A.1.4 [DEBUG] .. A-4
A.1.5 [CONSOLIDATOR].. A-6
A.1.5.1 Data Synchronization Parameters... A-6
A.1.5.2 Data Synchronoization Tracing and Logging ... A-10
A.1.6 [EXTERNAL_AUTHENTICATION] ... A-13
A.2 Data Synchronization Requirements in INIT.ORA... A-13
A.2.1 Relationships Between Relevant Parameters.. A-13
A.2.2 Values for Processes and DML Locks.. A-13

B Write Scripts for the Mobile Server
With the WSH Tool

B.1 Description of Syntax for WSH Batch Scripts .. B-1
B.1.1 Creating a User.. B-1
B.1.1.1 EXTERNALUSER Parameter ... B-2
B.1.1.2 PRIVILEGE Parameter.. B-2
B.1.2 Creating a Group .. B-2
B.1.3 Adding Users to a Group .. B-2
B.1.4 Removing Users from a Group... B-2

xi

B.1.5 Creating Access Privileges .. B-3
B.1.6 Granting Access .. B-3
B.1.7 Revoking Access ... B-3
B.1.8 Creating Registries.. B-3
B.1.9 Creating Snapshot Variables ... B-4
B.1.10 Deleting a User.. B-4
B.1.11 Deleting a Group... B-4
B.1.12 Deleting Access Privileges... B-4
B.1.13 Deleting a Registry ... B-4
B.1.14 Deleting Snapshot Variables ... B-4
B.2 Running a Script INI File With the WSH Tool .. B-5
B.3 Examples of Batch Script Files for WSH... B-5
B.3.1 Creating, Adding, and Granting Access ... B-5
B.3.2 Deleting, Removing, and Revoking Access .. B-7

C Catalog Views for the Mobile Server

C.1 CV$ALL_CLIENTS.. C-1
C.2 CV$ALL_ERRORS ... C-1
C.3 CV$ALL_PUBLICATIONS... C-2
C.4 CV$ALL_SUBSCRIPTIONS ... C-2
C.5 CV$ALL_SEQUENCES... C-2
C.6 CV$ALL_SEQUENCE_PARTITIONS... C-3
C.7 CV$ALL_PUBLICATION_ITEMS_ADDED.. C-3
C.8 CV$ALL_PUBLICATION_ITEMS... C-4
C.9 CV$ALL_PUBLICATION_INDEXES ... C-4
C.10 CV$ALL_SUBSCRIPTION_PARAMS .. C-4

D iOS Mobile Device Management (MDM) Architecture

D.1 Description - MDM Architecture... D-1
D.1.1 MDM Command Cycle.. D-1
D.1.2 Additional Resources ... D-3
D.2 Device Enrollment Process ... D-3
D.3 Application Server Configuration for MDM ... D-5
D.3.1 Glassfish ... D-5
D.3.2 WebLogic ... D-7

Glossary

Index

xii

xiii

Preface

This preface introduces you to the Oracle Database Mobile Server Administration and
Deployment Guide, discussing the intended audience, documentation accessibility, and
structure of this document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Use the following manuals as reference when performing administration tasks for
either a WebLogic or Glassfish server:

■ Oracle® Fusion Middleware documentation for Oracle WebLogic Server

■ Oracle® GlassFish Server 3.1 documentation

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

xiv

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning

1

Oracle Database Mobile Server Management 1-1

1 Oracle Database Mobile Server Management

The following sections describe management for Oracle Database Mobile Server by
using the Mobile Manager for managing the mobile server and its mobile clients.

■ Section 1.1, "Using Mobile Manager to Manage Your Mobile Server"

■ Section 1.2, "Manage Mobile Server Farms"

■ Section 1.3, "Enabling UIX Dynamic Image Generation on UNIX to See Mobile
Manager Buttons"

■ Section 1.4, "Mobile Server Run Time Libraries"

1.1 Using Mobile Manager to Manage Your Mobile Server
The Mobile Manager only displays the relevant functionality for the user who logs in.
Use the Mobile Manager to manage mobile applications and its users.

Note: See the Oracle Database Mobile Server Mobile Client Guide for
more information on how to manage and synchronize the mobile
client.

The Mobile Manager is used to manage the mobile server. An administrator is the only
user that is able to log on and use the Mobile Manager. To logon to the Mobile
Manager, perform the following steps.

1. Connect to the Mobile Server (using a browser) by entering the following Mobile
Server URL:

http://<Mobile_Server_hostname>:<Mobile_Server_port>/mobile

Figure 1–1 displays the Mobile Manager Login page.

Using Mobile Manager to Manage Your Mobile Server

1-2 Oracle Database Mobile Server Administration and Deployment Guide

Figure 1–1 Mobile Manager Logon Page

2. Log on to the Mobile Manager with the Mobile Server administrator user name
and password, which were specified during the repository setup step of the
Mobile Server installation process. See Figure 1–2.

Figure 1–2 Mobile Server Administrator

Note: See Section 4.3.1.2.1, "Define User Name and Password" for
conventions for creating the user name or password.

3. As Figure 1–3 displays, the mobile server farm page appears with a list of installed
mobile servers that use the same repository.

The mobile servers farm page lists all mobile servers that are configured to run
against the same repository. This page lists mobile server information such as Host
name, Port, SSL enabled, Mobile Server Up or Down Status, the MGP Up or
Down, Start Time of the Mobile Server instance, and mobile server version.

If a mobile server instance is not running (status column displays down), the
hyperlink for the host name—where the mobile server exists—is not enabled.
Refresh this page after a mobile server instance is started or stopped by clicking on
the appropriate mobile server link to see the updated status for the mobile server.

Using Mobile Manager to Manage Your Mobile Server

Oracle Database Mobile Server Management 1-3

Using search criteria based on host name, you can filter the mobile server display
list for only those servers you are interested in.

Figure 1–3 Mobile Server Farm Page

If you are using a browser from a different machine than the Mobile Server to access
the Mobile Manager, then those machines must be using compatible character sets.

A mobile server farm is a group of mobile servers configured to run against the same
repository. The mobile server farm page contains Mobile Server and Mobile Devices
tabs. The following sections describe each component of the mobile server farm:

■ Section 1.1.1, "Viewing Mobile Servers"

■ Section 1.1.2, "Viewing Mobile Devices"

1.1.1 Viewing Mobile Servers
From the mobile server farm page, select the mobile server on which you want to
administer. This displays the home page for that mobile server.

The following sections describe the mobile server pages and how you can use them to
administer your mobile server and its components:

■ Section 1.1.1.1, "Mobile Server Home Page"

■ Section 1.1.1.2, "Manage Applications"

■ Section 1.1.1.3, "Manage Users"

■ Section 1.1.1.4, "Mobile Server Administration"

■ Section 1.1.1.5, "Data Synchronization"

■ Section 1.1.1.6, "Job Scheduler"

1.1.1.1 Mobile Server Home Page
The mobile server home page provides a reference to the working status of its
components. It displays if the mobile server is running or shut down and properties of
the database in which the repository resides. When required to lookup current MGP
Cycles, In Queue transactions, Out Queue publications, and transactions listed in the
Error Queue, use the given links. Alerts are displayed as exceptions and failures for
the Synchronization server, MGP, and the Job Scheduler. You use the mobile server

Using Mobile Manager to Manage Your Mobile Server

1-4 Oracle Database Mobile Server Administration and Deployment Guide

home page to start or shut down the Synchronization server and the Job Scheduler.
You also access these components from this page.

In addition, from this page, you can navigate to display mobile server applications,
users, and other administrative details by selecting the Applications, Users, or
Administration tabs.

The following sections describe information displayed on the mobile server home
page.

■ Section 1.1.1.1.1, "Checking Mobile Server Status"

■ Section 1.1.1.1.2, "Viewing Main Database Properties"

■ Section 1.1.1.1.3, "Monitoring Data Synchronization"

■ Section 1.1.1.1.4, "Tracking Synchronization, MGP, and Job Scheduler Alerts"

■ Section 1.1.1.1.5, "Starting or Stopping Mobile Server Components"

1.1.1.1.1 Checking Mobile Server Status General information such as current mobile
server status, version, and mode. To lookup if the mobile server is running or not, you
refer to this section. It also displays general information about the mobile server such
as current status, version, date and time since it has been running, and installation
mode. This information can be used when reporting a problem to Oracle Support.

1.1.1.1.2 Viewing Main Database Properties Displays properties of the main database in
which the mobile server repository resides, such as database version, JDBC URL, JDBC
Driver, JDBC version, and schema name.

1.1.1.1.3 Monitoring Data Synchronization Data Synchronization information such as
MGP Job status, In Queue, Out Queue, and Error Queue details. See Chapter 5,
"Managing Synchronization" for more information on Data Synchronization and the
queues.

■ To check the status of any of the MGP Job processes, click the Status link that is
displayed for the desired MGP Cycle Status. The MGP Cycle page for that MGP
Job displays the MGP cycle summary, lists the log tables that have been processed
and corresponding dirty record count, and lists MGP Cycle statistics for users.

■ The "In Queue" link displays the number of transactions that are currently present
in the In Queue. To lookup these transactions, click the "In Queue" link. The "In
Queue" transactions page allows you to search for transactions by user and lists
current transactions in the In Queue.

■ The "Out Queue" link displays the number of publications that are currently
present in the Out Queue. To lookup these publications, click the "Out Queue"
link. The "Out Queue" page allows you to search for publications by user and lists
current publications in the Out Queue. You can also select an Out Queue
publication and display the publication items that are associated with it.

■ The "Error Queue" link displays the number of transactions that are currently
present in the Out Queue. To lookup these transactions, click the "Error Queue"
link. The "Error Queue" page also allows you to search for transactions that
contain errors by user and lists current transactions in the Error Queue.

1.1.1.1.4 Tracking Synchronization, MGP, and Job Scheduler Alerts Alert details that
describe alert severity and the date and time on which the alert was triggered. Based
on the alert severity and the date and time on which the alert was triggered,
information displayed in the Alerts table enables you to drill down to the root cause of
an error and resolve it accordingly.

Using Mobile Manager to Manage Your Mobile Server

Oracle Database Mobile Server Management 1-5

Your mobile server may encounter the following alerts.

■ Synchronization server exceptions

■ User synchronization failures

■ Job scheduler exceptions

■ Job failures

■ MGP Job exceptions

■ MGP User Apply or Compose failures

To view alert details, select the "Alert Name" and click "Check".

1.1.1.1.5 Starting or Stopping Mobile Server Components The mobile server home page
provides controls to start and shut down the Synchronization server and the Job
Scheduler. It displays the current status of these components and time since they are
operating in the current status.

By default, the Data Synchronization server and Job Scheduler are available is running
mode. To stop the Data Synchronization server or the Job Scheduler for maintenance
or debugging, select the required component and click "Stop". The Job Scheduler stops
after scheduled jobs have been executed and synchronization sessions have been
completed. To restart, select the required component and click "Start".

See Chapter 5, "Managing Synchronization" for more information on Data
Synchronization. See Chapter 6, "Managing Jobs with the Job Scheduler" for more
information on the Job Scheduler.

1.1.1.2 Manage Applications
The Applications page enables the mobile server administrator to accomplish the
following tasks.

1. Publish applications.

2. Create or edit application properties.

3. Resume, suspend, and delete applications.

4. Grant or revoke application access to users and groups.

5. Create or edit data subsetting parameters.

6. When required, provision mobile application files for public use.

See Chapter 3, "Managing Your Mobile Applications" for more information on how to
manage your applications.

1.1.1.3 Manage Users
The Users page enables the mobile server administrator to manage groups and users
and their permissions. See Chapter 4, "Managing Users and Groups" for full details.

1.1.1.4 Mobile Server Administration
Figure 1–4 shows the Administration page that enables the mobile server
administrator to accomplish the following tasks:

Using Mobile Manager to Manage Your Mobile Server

1-6 Oracle Database Mobile Server Administration and Deployment Guide

Figure 1–4 Administration Page

1. View the sessions that are active. See Section 10.2, "Viewing Active User Sessions"
for full details.

2. Edit trace settings. See Chapter 3, "Tracing and Logging" in the Oracle Database
Mobile Server Troubleshooting and Tuning Guide for full details.

3. Edit the configuration file. We prefer that you modify the configuration using the
GUI tool; however, if you decide to edit the mobile.ora file directly, you can access
it with this link. See Appendix A, "Configuration Files for the Mobile Server" for
details on the parameters.

4. View a summary of the database, JDK, and Operating System. See Section 10.1,
"Viewing System Status Reports for the Server" for full details.

5. Upload an SSL certificate. When you are using an SSL connection with a reverse
proxy, you need to upload an SSL certificate. See Section 9.8.1.4, "Enable SSL When
Using a Reverse Proxy" for full details.

1.1.1.5 Data Synchronization
When you select this link, you can configure and manage how synchronization occurs.

■ Start or stop all synchronization activity for this mobile server.

■ View the active sessions where synchronization is currently occurring.

■ View statistics of previously executed synchronization sessions.

■ Execute the Consperf performance tool to evaluate the synchronization
performance.

■ Modify parameters that affect how synchronization is performed.

■ View the activity within the repository—with each of the queues used for
managing synchronization or with the users, publications, and publication items
loaded in the repository.

■ View all details about the MGP, including statistics, cycles and the Job Scheduler.

1.1.1.6 Job Scheduler
If you click on the Job Scheduler link, you can do the following:

■ Start/stop the Job Scheduler

■ View, enable, disable or delete any scheduled job.

Using Mobile Manager to Manage Your Mobile Server

Oracle Database Mobile Server Management 1-7

1.1.2 Viewing Mobile Devices
The Mobile Devices tab lists all mobile devices that are registered with any mobile
server, and are part of the same mobile server farm. The following sections briefly
describe the functionality available to you in the Mobile Devices tab:

■ Section 1.1.2.1, "Installed Mobile Devices"

■ Section 1.1.2.2, "Mobile Device Platforms"

For full details on managing your mobile devices, see Chapter 7, "Manage Your
Devices".

1.1.2.1 Installed Mobile Devices
View the installed mobile device information such as device name, owner, platform,
version, and date and time on which it was last accessed. Figure 1–5 displays the
Devices page.

Figure 1–5 Devices Page

To manage the mobile device, click the Device Name link from the list. For full details
on managing your mobile devices, see Chapter 7, "Manage Your Devices".

1.1.2.2 Mobile Device Platforms
This page lists mobile device platform information such as platform name, language,
enabled, bootstrap, device count, and base platform.

There are hyperlinks that enable you to do the following:

■ View device, installed Oracle Database Mobile Server software, back-end database
information, what is currently in the command queues, and the logs.

■ Extend and manage device platforms—You can extend existing platforms for your
own customization—adding other binaries to download or instructions on how to
modify the client environment.

■ Create commands to be sent to the mobile device—You can create commands that
execute on the device. These commands can start a synchronization, retrieve
information, modify the client environment, and many other options.

For full details on managing your mobile devices, see Chapter 7, "Manage Your
Devices".

Manage Mobile Server Farms

1-8 Oracle Database Mobile Server Administration and Deployment Guide

1.2 Manage Mobile Server Farms
When you configure multiple mobile servers against a single repository, this is known
as a farm.

To enable the Device Manager, Mobile Manager and all of the mobile clients to work
properly in Farms, you need to modify the mobile.ora file on EACH mobile server.

Add and enable the following parameter in the [MOBILE] section of mobile.ora file on
all mobile servers in the farm:

DM_AUTO_SYNC_CACHE=YES

Then, to enable synchronization for all mobile servers in the farm, perform the tasks
described in Section 5.6, "Configuring Data Synchronization For Farm or Single Mobile
Server".

1.3 Enabling UIX Dynamic Image Generation on UNIX to See Mobile
Manager Buttons

UIX generates images dynamically. On UNIX systems, this requires headless Java to be
enabled or access to an X server to be enabled for the JVM. If you do not configure one
of the following, then you will not see the buttons in the Mobile Manager.

■ Section 1.3.1, "Headless Java"

■ Section 1.3.2, "X Server Access"

1.3.1 Headless Java
In order to avoid X server configuration issues, enable headless operation by setting
the java.awt.headless Java option to true.

1.3.2 X Server Access
An accessible X server must be running at the same time as the mobile server. To make
an X server accessible to the mobile server, the X server host grants access to the
mobile server host through commands, such as xhost +. The mobile server host
configures the DISPLAY environment variable to point to the X server, as follows:

set DISPLAY=<X server machine name>:<X server number>.<screen number>

1.4 Mobile Server Run Time Libraries
You can find mobile server run time libraries in the following folders after you finish
database mobile server installation. They are located at different locations for mobile
servers on different application servers.

For mobile server on top of Glassfish or Weblogic or OracleAS, those run time libraries
are in $MOBILE_HOME\mobile\server\admin\repository\mobile\lib and
$MOBILE_HOME\mobile\server\admin\repository\mobile\console\WEB-INF\lib,
where $MOBILE_HOME is the installation directory of mobile server.

For mobile server on top of TomEE, those run time libraries are in $TOMEE_
HOME\apps\mobile\lib and $TOMEE_HOME\apps\mobile\console\WEB-INF\lib,
where $TOMEE_HOME is TomEE application server installation directory.

2

Managing the Client and Back-End Databases 2-1

2 Managing the Client and Back-End
Databases

The following sections describe how to create and manage the client database and how
to connect to the back-end Oracle database:

■ Section 2.1, "Creating and Managing the Database for a Mobile Client"

■ Section 2.2, "Connecting to the Back-End Oracle Database"

2.1 Creating and Managing the Database for a Mobile Client
When you use the mobile client and mobile server to replicate data between the
back-end Oracle database and your mobile device, a small database is created on your
mobile device to contain the data—that is stored in tables known as snapshots. The
snapshot tables are used to track the modifications that the client makes on the data,
which is then replicated during the synchronization process to the back-end database.
All of this activity is transparent to the client. Your application queries and modifies
data using SQL as if interacting with any Oracle database.

The client database is automatically created on the first synchronization request. In
addition, the data is replicated and updated with the data on the Oracle database
automatically for you. See Section 2.3, "What is the Process for Setting Up a User for
Synchronization?" in the Oracle Database Mobile Server Developer's Guide for techniques
that can be used to create publication items on the mobile server, which then
automatically creates snapshots on the client when you synchronize with the database.

2.2 Connecting to the Back-End Oracle Database
When you are connecting to the back-end Oracle database, use the JDBC driver. When
connecting to the repository in the back-end Oracle database, provide a URL to locate
the database. Use the Thin JDBC driver to connect to the back-end Oracle database.
With the Thin JDBC driver, you can either provide the host, port and SID, the Oracle
Net address or tnsnames entry.

For oracle database 11g or below, the syntax for providing the host, port and SID is as
follows:

jdbc:oracle:thin:@<hostname>:<port>:<sid>

For example, the following JDBC URL for the thin JDBC driver connects to
my-pc.us.oracle.com on port 1521 with SID of orcl:

jdbc:oracle:thin:@my-pc.us.oracle.com:1521:orcl

Connecting to the Back-End Oracle Database

2-2 Oracle Database Mobile Server Administration and Deployment Guide

For oracle database 12c, the syntax for providing the host, port and service name is as
follows:

jdbc:oracle:thin:@//<hostname>:<port>/<service name>
For example, the following JDBC URL for the thin JDBC driver connects to
my-pc.us.oracle.com on port 1522 with service name of pdborcl.us.oracle.com:

jdbc:oracle:thin:@//my-pc.us.oracle.com:1522/pdborcl.us.oracle.com
The syntax for using an Oracle Net address or tnsnames entry is as follows:

 jdbc:oracle:thin:@oracle-net-address-or-tnsnames-entry

For example, the following JDBC URL for the thin JDBC driver connects to the MyDB
tnsnames entry:

jdbc:oracle:thin:@MyDb

Alternatively, you could provide the full Oracle Net address, as follows:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
 (HOST=my-pc.us.oracle.com)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=mypc)))

If the mobile server repository is installed in an Oracle RAC database, then provide the
JDBC URL for an Oracle RAC database, which can have more than one address for
multiple Oracle databases in the cluster. The following is the URL structure for an
Oracle RAC database address:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

3

Managing Your Mobile Applications 3-1

3 Managing Your Mobile Applications

The administrator manages applications through the following tasks:

■ Section 3.1, "Listing Applications"

■ Section 3.2, "Publishing Applications to the Mobile Server Repository"

■ Section 3.3, "Deleting an Application"

■ Section 3.4, "Managing Application"

■ Section 3.5, "Managing User-Specific Application Parameters (Data Subsetting)"

■ Section 3.6, "Managing Access Privileges for Users and Groups"

3.1 Listing Applications
You can view all applications that are currently published on this mobile server from
the mobile server home page. Click "Applications". Figure 3–1 displays the
"Applications" page, which lists existing applications and corresponding virtual paths.

Figure 3–1 Applications Page

To search applications, enter your application name in the "Search" field and click
"Go". The Applications page displays the search result.

Publishing Applications to the Mobile Server Repository

3-2 Oracle Database Mobile Server Administration and Deployment Guide

3.2 Publishing Applications to the Mobile Server Repository
A developer builds the mobile application and packages it together with a publication.
At this point, the application is ready to be published to the mobile server through one
of the following options:

Note: If you developed the application on a machine remote to
where the mobile server is installed, copy the application JAR file to
this machine.

■ An organizer or administrator can publish the application using the packaging
wizard.

■ An administrator can publish the application using the Mobile Manager from the
Applications page with the Publish Application button, as shown in Figure 3–1.

3.3 Deleting an Application
To delete any application, select the application on the applications page (see
Figure 3–1) and click "Delete". This deletes it from the mobile server repository.

By deleting the application, all synchronization related objects—such as publication,
publication items, sequences and script definitions—are removed from the mobile
server repository. However, the actual application tables in the back-end Oracle
database are not removed.

Once the application has been deleted, existing mobile clients can no longer
synchronize for this application—ever again. Even if you were to publish the same
application again, synchronizing existing mobile clients will still fail. Instead, all
transactions uploaded by the mobile clients are placed in the error queue and require
manual intervention from the administrator.

When a publication item is created, the mobile server assigns a unique identifier to
each publication item. These unique identifiers are then used during the
synchronization process to map snapshot tables on the mobile clients to publication
items and base tables on the back-end Oracle Database server. When a mobile client
uploads data, it uses this unique identifier to inform the mobile server as to which
publication item this data is designated. If an application is deleted and republished,
the mobile server uses a different set of identifiers for the publication items than the
mobile client; thus, the synchronization fails.

You should never delete an application if you have existing mobile clients that still
need to synchronize with this application.

If you want to modify an existing application, do not delete the application using
Mobile Manager. Instead, simply republish the application and indicate that you wish
to overwrite the existing application.

3.4 Managing Application
From the "Applications" page, you can modify application properties for each
application. Click on the "Application Name" to bring up its "Properties" page, shown
in Figure 3–2.

Managing User-Specific Application Parameters (Data Subsetting)

Managing Your Mobile Applications 3-3

Figure 3–2 Application Properties Page

Table 3–1 describes the application properties that you can modify in this screen.

Table 3–1 Application Properties Page Description

Field Description

Application Name Name of your mobile application.

Application Description A brief description of your mobile application.

Publication Name Your application is published with a publication that
contains the definition of the snapshot data for the clients.
This field displays the publication name of the mobile
application. You cannot modify this field.

Platform Name The platform name consists of the platform type and the
language of the application. You can modify this platform
to another type as displayed in the pull-down list.

To retain the modified application properties, click "Apply". To remove the application,
click "Remove". To reset the Application Properties page, click "Revert".

3.5 Managing User-Specific Application Parameters (Data Subsetting)
In retrieving data for each user, the application often requires that a parameter is set
defining the type of data to retrieve. Set this parameter, also known as data subsetting,
in one of two places: on the "Data Subsetting" page off the "Applications" page or on
the "Data Subsetting" page off the "Users" page. See Section 4.5, "Managing
Application Parameter Input (Data Subsetting)" for directions on how to manage the
input parameter values for the application from the User page.

What is Data Subsetting? When you set up your publication item, you may have set
up an input parameter that defines what snapshot of data is to be retrieved for this
user. For example, if you have an application that retrieves the customer base for each
sales manager, the application needs to know the sales manager’s identification

Managing Access Privileges for Users and Groups

3-4 Oracle Database Mobile Server Administration and Deployment Guide

number to retrieve the data specific to each manager. Thus, if you set up each sales
manager as a unique user and set their identification number in the data subsetting
screen, then the application is provided that unique information for retrieving data.

1. Navigate to the "Applications" page. Click the specific application.

2. Click "Data Subsetting". The "Data Subsetting" page enables the administrator to
add parameter input for each user of this application. This displays all of the users
that the application is associated with.

3. Select the user for which you want to add the parameter value.

4. Enter the parameter values for the application.

5. Click "Save".

3.6 Managing Access Privileges for Users and Groups
Similar to Data Subsetting, you can set the access privileges for the application either
from the Users page or from the Applications page—except for groups. Groups can
only be given access to applications from the Applications page. See Section 4.4.1,
"Grant or Revoke Application Access to Users" for directions on how to manage the
access privileges from the user page.

The mobile server administrator grants access privileges to mobile applications by
designating the users that can access these applications. This section describes how an
adminstrator may grant or revoke application access to users and groups:

■ Section 3.6.1, "Granting Application Access to Users and Groups"

■ Section 3.6.2, "Revoking Application Access to Users and Groups"

3.6.1 Granting Application Access to Users and Groups
The administrator can grant access to applications for specific users within the Mobile
Manager, as follows:

1. Navigate to the "Applications" page. Click the specific application that you wish to
modify. The "Properties" page appears.

2. Click "Access". The Access page displays a list of users and groups for this
application.

3. Select the checkbox next to each user or group that you wish to give access to for
this particular application.

4. Click "Save".

As Figure 3–3 displays, the Access page displays a list of available users and groups
for the Transport_Win32 application. Select the users or groups that you want
Transport_Win32 to have access to and click Save". In this example, the administrator
granted access for the Transport_Win32 application to the SampleUsers group and to
the users: John, Jane, and Jack.

Note: Once you provide access to a group, all users in that group
have access to this application.

Managing Access Privileges for Users and Groups

Managing Your Mobile Applications 3-5

Figure 3–3 Granting Application Access

3.6.2 Revoking Application Access to Users and Groups
To revoke application access to any user or group, clear the check box displayed
against a group or user name and click "Save".

Managing Access Privileges for Users and Groups

3-6 Oracle Database Mobile Server Administration and Deployment Guide

4

Managing Users and Groups 4-1

4 Managing Users and Groups

This chapter describes how to manage users and groups using the Mobile Manager.
The following topics are covered in this chapter:

■ Section 4.1, "What Are the Types of Mobile Server Users?"

■ Section 4.2, "Guide to Creating User and Administrator Types"

■ Section 4.3, "Managing Users and Groups"

■ Section 4.4, "Managing Access Privileges for Users and Groups"

■ Section 4.5, "Managing Application Parameter Input (Data Subsetting)"

■ Section 4.6, "Manually Adding Devices for a User"

■ Section 4.7, "Configuring How the Device Receives Software Updates for the User"

4.1 What Are the Types of Mobile Server Users?
The mobile server user types are described in the following sections:

Note: Do not confuse mobile server users with database users. Each
mobile server user is authenticated by the mobile server for access to
applications and appropriate publications. The mobile server users are
not used to access data on the database.

■ Section 4.1.1, "Mobile Server User Privilege: Administrator"

■ Section 4.1.2, "Mobile Server User Privilege: Organizer"

■ Section 4.1.3, "Mobile Server User Privilege: User"

4.1.1 Mobile Server User Privilege: Administrator
Any user created with the user privilege of administrator can perform any of the
following functions:

■ The administrator user can be a general user when logging in to a mobile
application on a device, which is the same as described in Section 4.1.3, "Mobile
Server User Privilege: User".

■ The administrator can publish applications either through the Packaging Wizard
or through the Mobile Manager.

■ The administrator has authorization to use the Mobile Manager.

Guide to Creating User and Administrator Types

4-2 Oracle Database Mobile Server Administration and Deployment Guide

Once an administrator user is created, it must be associated with the Mobile Manager
in the same manner that an ordinary mobile server user is associated with any
application. See Section 4.3.1.3, "Associating Mobile Server Users With Published
Applications" for more information on this process.

4.1.2 Mobile Server User Privilege: Organizer
The organizer can perform the following tasks.

■ The organizer user can use organizer as the user name and password when
logging in to a mobile server application on a device.

■ The organizer can publish applications through the Packaging Wizard only. A user
with this privilege cannot log in to the Mobile Manager and perform
administration tasks.

4.1.3 Mobile Server User Privilege: User
The mobile server user with privilege of user is created only for accessing and
synchronizing published applications and its data. The user has a specific user
name/password for synchronizing the application from a device.

Note: See Section 4.3.1.2.1, "Define User Name and Password" for
conventions for creating the user name or password.

Thus, this mobile server user enables access to a particular mobile application and its
publication items. That is, in order for the Windows Mobile or other devices to be able
to synchronize and retrieve a snapshot of data from the database, the mobile server
validates that the user name/password that is entered is valid for the application. If it
is, then mobile server enables the device to retrieve the snapshot that is indicated by
the publication items packaged with the application.

After creating the user, the administrator associates the user with the published
applications from which this user will receive data. In addition, if any of the
publication items require a parameter to be set, the administrator also sets this
parameter for each user. See Section 4.3.1.3, "Associating Mobile Server Users With
Published Applications" for more information.

Note: You can swap out users for a single device. See Section 4.3.1.5,
"Swap Users on a Device" for more information.

4.2 Guide to Creating User and Administrator Types
The following sections provide an overview of how to create all user types:

■ Section 4.2.1, "Creating a User to Access a Published Application"

■ Section 4.2.2, "Creating an Administrator"

4.2.1 Creating a User to Access a Published Application
To create any user, including administrators, to access published applications, perform
the following:

Managing Users and Groups

Managing Users and Groups 4-3

1. Create one or more users or groups that will use the application to retrieve data
from the database down to a device. See Section 4.3.1.2, "Adding New Users" for
more information.

2. Associate the new user with the application as described in Section 4.3.1.3,
"Associating Mobile Server Users With Published Applications".

3. Associate the users or groups with the application. See Section 4.4, "Managing
Access Privileges for Users and Groups" for more information.

Note: You can share a device among several users by swapping out
users on that device. For more information, see Section 4.3.1.5, "Swap
Users on a Device".

4. Optionally, if the application has a parameter, also known as data subsetting, that
is set for each user or group, define the parameters for each user or group. See
Section 4.5, "Managing Application Parameter Input (Data Subsetting)" for more
information.

You now have a new user or group that is associated with an application.

4.2.2 Creating an Administrator
In order to log in as an administrator with a user name/password that is different
from the administrator created upon installation, perform the following:

1. As described in Section 4.2.1, "Creating a User to Access a Published Application",
create a user with the name of the administrator that you want, with the privilege
of administrator.

2. Navigate to the "Access" tab for this new administrator and check the checkbox
next to Mobile Manager.

You now have a new administrator user. You can log into your Mobile Manager with
this user’s name and password.

4.3 Managing Users and Groups
The following sections discuss how to manage users:

■ Section 4.3.1, "Managing Mobile Server Users"

■ Section 4.3.2, "Adding New Groups"

■ Section 4.3.3, "Deleting Groups or Individual Users"

4.3.1 Managing Mobile Server Users
The following sections define the user types and describe how to manage your users:

■ Section 4.3.1.1, "Displaying Users"

■ Section 4.3.1.2, "Adding New Users"

■ Section 4.3.1.3, "Associating Mobile Server Users With Published Applications"

■ Section 4.3.1.4, "Duplicating Existing Users"

■ Section 4.3.1.5, "Swap Users on a Device"

■ Section 4.3.1.6, "Managing OID Users in the Mobile Server"

Managing Users and Groups

4-4 Oracle Database Mobile Server Administration and Deployment Guide

■ Section 4.3.1.7, "Providing Your Own Authentication for a User"

4.3.1.1 Displaying Users
You can see what users and groups have been created with all information relevant to
users—such as user names and so on.

To display individual users, logon to the Mobile Manager. Refer to Figure 1–3, for the
mobile servers farm page.

Click your mobile server name link. Your mobile server home page appears. Click the
"Users" link. As Figure 4–1 displays, the Users page lists existing groups and
individual users.

Figure 4–1 Users Page

4.3.1.1.1 Enabling OID Users By default, the users defined for access within mobile
server are contained within the mobile server repository. However, you can specify to
use OID as the repository for all users. In this case, you can migrate any existing users
from the mobile server repository into OID. For more details, see Section 4.3.1.6,
"Managing OID Users in the Mobile Server".

The mobile server is aware of which users were migrated into OID and marks them as
"enabled" for use within Oracle Database Mobile Server. By default, all users created
within OID are not "enabled" for use within Oracle Database Mobile Server. All OID
users are displayed, but are not enabled for the mobile server. You can enable these
users within OID by checking the Enabled box next to the name on the Users screen.
This box is only displayed in the case where OID is used as the repository for the
users.

Managing Users and Groups

Managing Users and Groups 4-5

4.3.1.1.2 Searching Group Names or User Names To search for a group name or individual
user name, enter the group name or user name in the "Search" field and click "Go". The
Users page displays the search result under the Group Name or User Name column.

4.3.1.2 Adding New Users
To add a new user, navigate to the Users page and click "Add User". As Figure 4–2
displays, the Add User page appears and lists the requisite criteria to register user
properties.

Note: You cannot have a user name with multi-byte characters.

Figure 4–2 Add User Page

To register user properties for new users, enter the following:

■ Section 4.3.1.2.1, "Define User Name and Password"

■ Section 4.3.1.2.2, "User Type Assigns Privileges"

■ Section 4.3.1.2.3, "Specify Device Policy for Receiving Updates for this User"

4.3.1.2.1 Define User Name and Password To add a new user, enter data as described in
the following table.

Table 4–1 Add User Page Description

Field Description

Display Name Name used to display as mobile server user name.

Managing Users and Groups

4-6 Oracle Database Mobile Server Administration and Deployment Guide

4.3.1.2.2 User Type Assigns Privileges Users can be assigned either the administrator or
user privileges.

■ Administrator—The administrator manages the mobile server and its
components, publishes and manages applications, and provides application access
to groups and users. Once an administrator user is created, it must be associated
with the Mobile Manager in the same manner that an ordinary mobile server user
is associated with any application. The Mobile Manager is similar to any other
mobile application. It provides the following privileges to the administrator.

User Name Name used to logon to the mobile server. The following are the
restrictions when defining the user name:

■ Not case sensitive

■ Cannot contain white space characters

■ Maximum length of 28 characters

■ Can contain only alphanumeric characters and special characters
'-' (hyphen), '_' (underscore), and '.' (period).

■ Only single-byte characters allowed. You cannot have a user name
with multi-byte characters.

Authentication Select whether this user will be using Oracle Database Mobile Server
authentication or if the user will be providing their own.

■ Internal—For Oracle Database Mobile Server authentication, select
Internal and provide the password used to access the mobile
server.

■ External—Select external if this user will be authenticated using
External Authentication. See Section 4.3.1.7, "Providing Your Own
Authentication for a User" for more information.

Password For internal authentication, enter password used to logon to the
mobile server. When defining, the password must conform to the
following restrictions:

■ Not case sensitive

■ Cannot contain white space characters

■ Maximum length of 28 characters

■ Must begin with an alphabet

■ Can contain only alphanumeric characters, and special characters
of '$' (dollar sign), '#' (number sign), and '_' (underscore).

■ Cannot be an Oracle database reserved word

Password Confirm To confirm the above mentioned password for internal authentication,
re-enter your password.

Privilege Lists available privileges for the mobile server user.

■ The Administrator privilege allows the user to modify mobile
server resources.

■ The Organizer privilege publishes applications.

■ The User privilege enables access for registered users to the
mobile server.

For a description of each privilege type, see Section 4.1, "What Are the
Types of Mobile Server Users?" and Section 4.3.1.2.2, "User Type
Assigns Privileges".

Table 4–1 (Cont.) Add User Page Description

Field Description

Managing Users and Groups

Managing Users and Groups 4-7

■ To logon to an application on a device, the administrator can use
administrator as the user name and password.

■ The administrator can publish applications either through the Packaging
Wizard or through the Mobile Manager.

■ The administrator has authorization to use the Mobile Manager.

■ User—The User type can access published applications. The mobile server user is
assigned user privileges and is created for being associated with published
applications. The user is provided a user name and password for logging in to a
mobile client and accessing applications from a device. When a user synchronizes
with the mobile server, the mobile server validates the user name and password
that is provided by a user and downloads the corresponding applications and
snapshots to the client.

After creating a user, the administrator associates the user with a published
application. The user can then access such applications and receive data. If any of
the publication items require a data subsetting parameter to be set, the
administrator sets this parameter for each user.

4.3.1.2.3 Specify Device Policy for Receiving Updates for this User Specify the device policy
as follows:

Note: For full details on the device policy for receiving updates, see
Section 7.6.1, "Configuring the Device to Receive Required Software
Updates"

■ Delete Device: Normally, when the device associated with the user is de-installed,
the device is deregistered in the Mobile Server. If you select "Yes" on this
pull-down, then the device object is removed when the device is de-installed. This
option is enabled only on a specific user’s page, which is shown when you select
the user name on the "User’s Page" as shown in Figure 4–1.

■ Register Device: To indicate device registration for the group, select "True".

■ Software Update: To indicate the device software update type, select the
appropriate option. For example, to update the user’s devices with major updates,
select this option. To indicate the update date, select the date pulldown and choose
the software update date.

To add the new user and record the device policy, click "OK".

4.3.1.3 Associating Mobile Server Users With Published Applications
Any user that wants to use an application must be associated with that application by
an administrator user in the Mobile Manager. In order to associate mobile server users
with applications, a mobile server administrator performs the following:

1. Package and publish an application with appropriate publications.

2. Create one or more users or groups that will use the application to retrieve data
from the database down to a device. See Section 4.3.1.2, "Adding New Users" for
more information.

3. Associate the users or groups with the application. See Section 4.4.1, "Grant or
Revoke Application Access to Users" for more information.

4. Optionally, if the application has parameters, also known as data subsetting, that
are set for each user or group, define these parameters for each user or group. See

Managing Users and Groups

4-8 Oracle Database Mobile Server Administration and Deployment Guide

Section 4.5, "Managing Application Parameter Input (Data Subsetting)" for more
information.

4.3.1.4 Duplicating Existing Users
You can duplicate the privilege and device policy of an existing user in creating a new
user. On the main User page, as shown in Figure 4–1, select the user that you want to
duplicate and then click "Create Like". This brings you to a screen where you can enter
Display Name, User Name, Authentication and Password, see Table 4–1 for
description of these properties. This is the same as when you create a new user, the
only difference is that you do not need to specify the Privilege. See Figure 4–3.

Figure 4–3 Create Like

For more information on privileges and device policy, see Section 4.3.1.2, "Adding
New Users".

4.3.1.5 Swap Users on a Device
Normally, you permit a single user to use the mobile client on a device. Other users
cannot use the device unless one of the following is true:

■ All users on the device share the same credentials. This is not secure.

■ The mobile client can have any number of users, where each provides their
respective credentials. The current user swaps in user’s identity for that device by
registering the user before using the mobile device. Swapping in a new user
de-registers the current user, brings down all of the new user’s applications and
bootstraps the device with the new user’s configuration.

For example, a mobile device that is shared between many employees of a
company every day. Each employee selects any device that is pre-loaded with a
mobile client installation and uses that device for all daily responsibilities. The
employee does not need to retrieve the same device the next day.

Note: All users must be registered with the mobile server before you
can swap in a new user.

For Win32, Linux and Windows Mobile platforms, follow below steps to register a new
swapped in user:

1. Modify devmgr.ini (mobileclient\bin)

Reset device id:

Managing Users and Groups

Managing Users and Groups 4-9

DEVICE_ID=UNKNOWN
Update the USER_NAME with a new user (for example, BRIAN)

USER_NAME=BRIAN
2. Stop currently running dmagent:

<mobileclient>\bin\dmagent.exe /c $exit
3. Run dmagent to re-register the device with the new user:

<mobileclient>\bin\dmagent.exe http://mobile_server_ip/mobile BRIAN <password>

Note: If password is not provided, user will be prompted for it.

4.3.1.6 Managing OID Users in the Mobile Server
If you want, you can use the Oracle Internet Directory (OID) for storing and retrieving
user information instead of the mobile server repository. To facilitate using OID, you
must first migrate all user information from the repository into OID. Once migrated,
you can use OID instead of the repository.

If you decide to use OID users, then—after you install the application server and
Oracle Database Mobile Server—perform the following:

1. If you currently have installed the mobile server and have existing users in the
mobile server, then you must migrate any existing mobile users to OID as
described in Section 4.3.1.6.1, "Migrate Your Users From the Mobile Server
Repository to Oracle Internet Directory (OID)".

2. Enable OID users for the mobile server. See Section 4.3.1.1.1, "Enabling OID
Users".

Note: When you navigate to the Users page in the Mobile Manager,
all OID users are displayed. Add any new users through OID. On this
page, you can only enable OID users for use within the mobile server
or change the password.

To enable OID users for the mobile server, select the user and click "Enable".

3. Assign the appropriate application to these users. As with any mobile server user,
you must grant access to the appropriate applications. See Section 4.4.1, "Grant or
Revoke Application Access to Users" for more information.

4.3.1.6.1 Migrate Your Users From the Mobile Server Repository to Oracle Internet Directory
(OID) You can use the Oracle Internet Directory (OID), which is the LDAP directory
server in the Oracle Identity Management Suite, for storing and retrieving user
information instead of the mobile server repository. To use OID, you must migrate all
user information from the existing repository into OID.

When you migrate users from a mobile server repository into OID, you cannot have
duplicate users in OID. So, if you migrate users from two repositories into a single
OID and you have users with the same name, but different passwords on two separate
repositories, the user that is first migrated into OID is the one that is valid. The second
attempt to migrate an existing user name into OID from a different repository will not
migrate and no message is provided. This can be a problem if you have two users in
different repositories with different passwords.

Managing Users and Groups

4-10 Oracle Database Mobile Server Administration and Deployment Guide

Migrate existing users in the repository to OID through the oiduser tool, which is
located in MOBILE_HOME\Mobile\Server\bin. The oiduser tool migrates existing users
with either randomly-generated passwords or a common password.

Perform the following to migrate your users to ID:

1. Set the IAS_MODE parameter in the mobile.ora file to YES.

2. Migrate the user information using the oiduser tool, for either
randomly-generated passwords or a common password, as follows:

■ To use randomly-generated passwords for each user, execute the oiduser tool
without the -P option, as follows:

oiduser <Mobile Server Repository username> <Mobile
Server Repository password> <OID port number> <OID host name> <OID
password> <OID admin name> <OID subscriber name>

For example, the default setting would be:

oiduser mobileadmin manager 389 ldap://myhost-pc1.com
welcome1 orcladmin dc=us,dc=oracle,dc=com

■ To use a common password for all users, provide the common password with
the -P option, as follows:

oiduser <Mobile Server Repository username> <Mobile
Server Repository password> <-P> <common password> <OID port number> <OID
host name> <OID password> <OID admin name> <OID subscriber name>

where the common password is specified by you.

All users from the mobile server repository are now migrated to the OID with the
required passwords.

If you want to enable Oracle Single Sign On on the mobile server then perform the
following:

1. Login to Mobile Manager as the administrator and select the appropriate server.

2. Click on the "Administration" tab.

3. Click "Edit Config File" to edit the mobile.ora file for this server.

4. If SSO_ENABLED has a hash mark (#) before it, then eliminate the hash mark and set
SSO_ENABLED to NO. Click "Apply".

5. In mobile.ora, add the following in section[EXTERNAL_
AUTHENTICATION]:CLASS=oracle.lite.resource.OidAuthenticator

6. Restart both application server and the mobile server.

4.3.1.7 Providing Your Own Authentication for a User
By default, Oracle Database Mobile Server provides authentication through the user
name and password to both the mobile server. However, if you want to add your own
external authentication for the user, such as a fingerprint pad and so on, then you can
use APIs to designate what authenticator to use.

For logging on and access to the mobile server, external authentication can be added.
For full details, see Section 8.1, "Providing Your Own Authentication Mechanism for
Authenticating Users for the Mobile Server" in the Oracle Database Mobile Server
Developer's Guide.

Managing Access Privileges for Users and Groups

Managing Users and Groups 4-11

4.3.2 Adding New Groups
If you have several users that require access to the same application, you can bypass
adding access rights for each user by including these users in a group. Once all of the
users are included in a group, then assign access to the intended application to the
group; at this point, all users in the group have access to the application.

As an administrator, you can add a new group that accesses the mobile server. To add
a new group, navigate to the Users page and click "Add Group". As Figure 4–4
displays, the "Add Group" page appears and lists the requisite criteria to register user
group properties.

Figure 4–4 Add Group Page

Enter the new group name in the "Group Name" field. The device policy for the group
has the same options as for a single user. For more information on device policy, see
Section 4.3.1.2.3, "Specify Device Policy for Receiving Updates for this User". When
finished, click OK.

4.3.3 Deleting Groups or Individual Users
As an administrator, you can delete groups or individual users from the system. To
permanently delete groups or individual users from the system, select the "Delete"
check box against the group name or individual user name that you want to delete,
and click "Delete". The Mobile Manager seeks your confirmation to delete the chosen
group or user name. Click "Yes". You will be returned to the "Users" page.

4.4 Managing Access Privileges for Users and Groups
The mobile server administrator grants access privileges to mobile applications by
designating the users that can access these applications. The following sections
describe the access feature of the mobile server:

■ Section 4.4.1, "Grant or Revoke Application Access to Users"

■ Section 4.4.2, "Include or Exclude Users from Group Based Access"

■ Section 4.4.3, "Grant or Revoke Application Access to Groups"

4.4.1 Grant or Revoke Application Access to Users
The following sections describe how an administrator can grant or revoke application
access to users and groups:

Managing Access Privileges for Users and Groups

4-12 Oracle Database Mobile Server Administration and Deployment Guide

■ Section 4.4.1.1, "Grant Application Access to Users"

■ Section 4.4.1.2, "Revoke Application Access to Users"

4.4.1.1 Grant Application Access to Users
The administrator can grant access to applications for specific users within the Mobile
Manager, as follows:

1. Navigate to the "Users" page. Click the specific user name to which you wish to
give access. This user’s Properties page appears.

2. Click "Access". The Access page displays a list of published applications.

3. Select the checkbox next to each application that you wish to give access to for this
particular user.

4. Click "Save".

As Figure 4–5 displays, the Access page displays a list of available applications for the
user Jack. Select the applications that you want Jack to have access to and click "Save".
In this example, Jack is given access to Transport_PPC60.ARMV4I application.

Figure 4–5 Granting Application Access

4.4.1.2 Revoke Application Access to Users
To revoke application access to any user, clear the check box displayed against an
application name and click "Save".

Note: Granting application access to an entire group gives each
user in the group, access to the application. For directions on how
to include or exclude any user from a group, see Section 4.4.2,
"Include or Exclude Users from Group Based Access".

4.4.2 Include or Exclude Users from Group Based Access
The following sections describe how the administrator can include or exclude users
from group based access:

■ Section 4.4.2.1, "Include Users in a Group"

■ Section 4.4.2.2, "Exclude Users from a Group"

Using the Mobile Manager, you can modify group based access privileges to include or
exclude users requiring access to mobile applications. To modify group based access
privileges, click the "Users" link. The Users page lists existing groups and individual
users.

Managing Access Privileges for Users and Groups

Managing Users and Groups 4-13

4.4.2.1 Include Users in a Group
To include users into a group, do the following:

1. Navigate to the "Users" page. Click the name of the user you wish to include in a
group. The user "Properties "page appears.

2. Click "Groups".

3. Select the group name that you want to include the user into.

4. Click "Save".

Note: Existing users with privileges for group based access only
can be excluded from group based access.

Now the user takes on the access for all applications to which the group has access. In
order for the group to be given access to additional applications, follow the
instructions in Section 4.4.1, "Grant or Revoke Application Access to Users". However,
instead of selecting a particular user, select the group instead.

4.4.2.2 Exclude Users from a Group
To remove a user from any group, do the following:

1. Navigate to the "Users" page. Click on the name of the user you wish to exclude
from a group. The user Properties page appears.

2. Click "Groups".

3. Clear the group name that you want to exclude the user from.

4. Click "Save".

Figure 4–6 displays the "Clear Group" page for the "Public Group". If you wanted to
clear Jack from this group, you would uncheck the checkbox next to Jack’s name and
click "Save".

Figure 4–6 Clear Group Page

4.4.3 Grant or Revoke Application Access to Groups
Once you have the users that you want in a group, you must indicate what
applications that the group has access to. In order to assign application access to

Managing Application Parameter Input (Data Subsetting)

4-14 Oracle Database Mobile Server Administration and Deployment Guide

groups, you have to add the access rights off the application page. See Section 3.6.1,
"Granting Application Access to Users and Groups" for directions.

4.5 Managing Application Parameter Input (Data Subsetting)
If the application that this user accesses requires one or more parameters to determine
what data is retrieved from the database, you set these parameters, also known as data
subsetting, within the user configuration in Mobile Manager.

Note: You can only set the parameter values once a user has been
granted access to the application. See Section 4.4, "Managing Access
Privileges for Users and Groups" for instructions.

For example, if you have an application that retrieves the customer base for each sales
manager, the application needs to know the sales manager’s identification number to
retrieve the data specific to each manager. The identification number, in this example,
is the application parameter required that is associated with this user. Thus, if you set
up each sales manager as a unique user and set their identification number in the data
subsetting screen, then the application is given that unique information and can
replace it appropriately in the application.

1. Navigate to the "Users" page. Click the specific user name to which you wish to
give access. This user’s "Properties" page appears.

2. Click "Data Subsetting". The Data Subsetting page enables the administrator to
add parameter input for this user. This displays all of the applications that the user
is associated with.

3. Select the application for which you want to add the parameter value.

4. Enter the parameter values for the application.

5. Click "Save".

4.6 Manually Adding Devices for a User
Normally, when you download and install a client, the device is registered
automatically for the user. There are two instances where you may need to manually
add the device:

■ As an administrator, you could hand a device that is fully loaded with the mobile
client software, but is not assigned to any user or application. After handing the
device to your user, you can add their user information, application access, and
device that they are using manually.

■ When you hand a user the mobile client software on an installation CD, and the
user installs the mobile client software offline, then the installation does not
register the device automatically—since it is not connected to mobile server. See
Chapter 8, "Offline Instantiation for Mobile Clients," for more information. For
each user that install the mobile client software offline, you will have to add the
device to this user.

To add a device for an individual user, navigate to the specific user’s page and
perform the following:

1. On the "Users" page, select the user for which you want to add a device.

2. Click "Devices". All currently registered devices for this user appear.

Configuring How the Device Receives Software Updates for the User

Managing Users and Groups 4-15

3. Click "Add". The "Create Device" screen (as shown in Figure 4–7) appears.

Figure 4–7 Manually Add Device to User

4. Enter the device information, as described in Figure 4–2, and click "OK" to add the
device for this user:

Table 4–2 Device Information

Device Field Description

Language Select the language that the platform will use. The default is
English.

Name Configure a user-defined name for the device.

Platform Select the platform for this device.

Address The device address indicates the unique network identifier of a
device. The device address must have a corresponding Network
Provider associated with it. To transmit data to a device, the
DMS uses the Network Provider associated with the address
object. For example, RAPI, HTTP. To enable a communication
link between the DMS and the DMC, the administrator must
create a proper device address for all devices. In the Address
field, enter the device address.

Network Provider To specify the network provider, click the Network Provider box
and choose the required network provider from the list
displayed.

Once added, the user can now synchronize the device to retrieve their applications
and related snapshots.

4.7 Configuring How the Device Receives Software Updates for the User
You can control whether a new version of an application software is downloaded on
each client. See Section 4.3.1.2.3, "Specify Device Policy for Receiving Updates for this
User" for full details on how the device policy is implemented for receiving updates
for this user.

Configuring How the Device Receives Software Updates for the User

4-16 Oracle Database Mobile Server Administration and Deployment Guide

5

Managing Synchronization 5-1

5 Managing Synchronization

The mobile server administrator uses the Data Synchronization Manager to manage
synchronization tasks. This chapter includes the following:

■ Section 5.1, "How Does the Synchronization Process Work?"

■ Section 5.2, "Initiate Synchronization of the Mobile Client"

■ Section 5.3, "User Scenarios for Synchronization"

■ Section 5.4, "Managing the Sync Server from the Data Synchronization Home
Page"

■ Section 5.5, "Using Automatic Synchronization"

■ Section 5.6, "Configuring Data Synchronization For Farm or Single Mobile Server"

■ Section 5.7, "Resuming an Interrupted Synchronization"

■ Section 5.8, "Register a Remote Oracle Database for Application Data"

■ Section 5.9, "Improving Performance for Multiple Clients that Use the Same
Read-Only Data With a Cached User"

■ Section 5.10, "Synchronizing to a File With File-Based Sync"

■ Section 5.11, "Managing Trace Settings and Trace Files"

■ Section 5.12, "Browsing the Repository for Synchronization Details"

■ Section 5.13, "Monitoring and Analyzing Performance"

5.1 How Does the Synchronization Process Work?
With Oracle Database Mobile Server, you can create an application where multiple
users enter data on their client devices and the data is synchronized with a back-end
Oracle database. In addition, only the data designated for each user is downloaded
from the server to the client’s device.

The mobile server uses synchronization to replicate data between the mobile clients
with their client databases and the application tables, which are stored on a back-end
Oracle database. The Oracle Database Mobile Server architecture consists of the mobile
client, the mobile server as the middle tier, and the mobile server repository in the
back-end Oracle database server. The mobile client contains the client database and
client applications, which resides on the mobile device. The mobile server acts as the
middle tier to coordinate the synchronization process and provide management tools
for the administrator. The mobile server repository resides in the back-end Oracle
database server and is where all data from all users is stored.

How Does the Synchronization Process Work?

5-2 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–1 shows a simplified architecture of the Oracle Database Mobile Server
synchronization tiers:

Figure 5–1 General Synchronization Architecture

Client Mobile

Mobile Server

Middle Tier

Oracle Database

Mobile

Client System: Mobile Device

Database

Application

Server

Repository

Server

When most people think of synchronizing data, they think of their Palm Pilot. When
you hit the synchronization button for the Palm Pilot, any changes are added to the
database of information on the Windows machine immediately. This is not the case for
Oracle Database Mobile Server, which is used for multiple clients. In order to
accommodate multiple users, the application tables on the back-end database cannot
be locked by a single user. Thus, the synchronization process involves using queues to
manage the information between the mobile clients and the application tables in the
database.

In reality, our synchronization process uses asynchronous communication and queues
to ensure that multiple users can be synchronizing at the same time as well as ensuring
data integrity and performance. By using queues and asynchronous communication,
the user can queue the updates for processing and then download any updates from
the server without ever locking the database. The only downside is that the changes
are not immediately updated. Instead, the updates occur when the In Queue is read
and processed on the server-side.

The following graphic and steps shows the full details and the additional components
that work in conjunction to enable a seamless synchronization from multiple clients.
This graphic introduces the following new components:

■ Sync Client and Sync Server: The Sync Client and Sync Server work in conjunction
to upload mobile client changes to the mobile server In Queue. The Sync Client
resides on the mobile client; the Sync Server resides on the mobile server. The Sync
Server places the client modifications into the In Queue and downloads any new
data from the server for the client from the Out Queue.

■ Message Generator and Processor (MGP): A background process called the
Message Generator and Processor (MGP) runs in the same tier as the mobile
server, periodically collects all the uploaded changes from the multiple mobile
users out of the In-Queue and applies these changes to the repository in the server
database. The MGP executes independently and periodically based upon an
interval specified in the Job Scheduler in the mobile server.

The MGP prepares any modifications that are sent to each mobile user and places
them into the Out Queue. The next time the mobile user synchronizes with the

How Does the Synchronization Process Work?

Managing Synchronization 5-3

mobile server, these changes can be downloaded to the client and applied to the
client database.

 Figure 5–2 describes how each of these components interact to complete the
asynchronous, queue-based synchronization for each client:

Figure 5–2 Data Synchronization Architecture

In Queue

Database

Error Queue

Out Queue

Mobile client

1. Synchronize
Sync Sync

Mobile Server

2. Upload

E1

E2

E3

MGP

3. Place client
7. MGP executes,

8. MGP applies

9. MGP composes

10. Updates for client

**Any errors during

placed in the

4. Grab transaction

5. Download

6. Execute changes

Steps 1 through 6 occur between Steps 7-10 occur between

client database

changes

changes

against database
for client database

Client Server

transaction in
the In Queue

Error Queue

steps 7-10 are

placed in Out Queue

grabs the client
transaction

the Mobile Server and the client

when the MGP executes

the Mobile Server
and the Database

client
transaction to

application tables

updates destined
for the client

1. Synchronization is initiated on the mobile client either by the user or from
automatic synchronization. Note that the mobile client may be a PDA, a Windows
platform client or a supported Linux platform client.

2. The mobile client software gathers all of the client changes into a transaction and
the Sync Client uploads the transaction to the Sync Server on the mobile server.

3. Sync Server places the transaction into the In-Queue.

Note: When packaging your application, you can specify if the
transaction is to be applied at the same time as the synchronization. If
you set this option, then the transaction is immediately applied to the
application tables. However, note that this may not be scaleable and
you should only do this if the application of the transaction
immediately is important and you have enough resources to handle
the load.

4. Sync Server gathers all transactions destined for the mobile client from the
Out-Queue.

5. Sync Client downloads all changes for client database.

6. The mobile client applies all changes for client database.

7. All transactions uploaded by all mobile clients are gathered by the MGP out of the
In-Queue.

8. The MGP executes the apply phase by applying all transactions for the mobile
clients to their respective application tables to the back-end Oracle database. The
MGP commits after processing each publication.

Note: The behavior of the apply/compose phase can be modified.
See Section 5.1.1, "Defining Behavior of Apply/Compose Phase for
Synchronization" for more information.

Initiate Synchronization of the Mobile Client

5-4 Oracle Database Mobile Server Administration and Deployment Guide

9. MGP executes the compose phase by gathering the client data into outgoing
transactions for mobile clients.

10. MGP places the composed data for mobile clients into the Out-Queue, waiting for
the next client synchronization for the Sync Server to gather the updates to the
client.

Synchronization involves two components: the Sync Client/Server and the MGP
process, which are displayed separately in the Data Synchronization section of the
Mobile Manager. On the mobile server home page, you can navigate to the Data
Synchronization home page by clicking Data Synchronization, which is located under
the Components section.

5.1.1 Defining Behavior of Apply/Compose Phase for Synchronization
By default, before the MGP processes the Compose, it checks to see if user data has
been uploaded into the In Queue. The MGP checks to see if the user uploaded data
before it performs the compose for that user, because if the compose completes with
unresolved data from the user, then the user data may be compromised. So, the
Compose is not performed to ensure that user data is not overwritten. Instead, the
Compose phase is terminated and then waits until the next time that the MGP runs the
Apply/Compose phase.

However, you can modify this behavior. The compose phase may take a while,
depending on the number of users, so you may not want to wait until the next MGP
compose phase. In this case, set the DO_APPLY_BFR_COMPOSE parameter to NO. Or,
maybe you know that the uploaded client data will not be compromised by the
compose; in this case, use the SKIP_INQ_CHK_BFR_COMPOSE parameter.

Table 5–1

MOBILE.ORA Parameter Description

DO_APPLY_BFR_COMPOSE Setting DO_APPLY_BFR_COMPOSE to no, the Compose executes.
However, by default, this parameter is set to yes, so that if
data is in the in queue, MGP will execute a second Apply to
commit all user data and then will execute the Compose.

SKIP_INQ_CHK_BFR_COMPOSE Setting SKIP_INQ_CHK_BFR_COMPOSE to true modifies this
behavior. Even if data is in the in queue, MGP executes the
Compose. The data that was uploaded to the In Queue must
be data that will not be compromised by downloading data
from the server to the client.

Note: Setting these parameters can also avoid the MGP Compose
postponed error. For more information, see Section 2.1.4 "MGP
Compose Postponed Due to Transaction in the In-Queue" in the Oracle
Database Mobile Server Troubleshooting and Tuning Guide.

5.2 Initiate Synchronization of the Mobile Client
You can initiate synchronization of the client using one of the following methods:

Initiate Synchronization of the Mobile Client

Managing Synchronization 5-5

■ You can initiate synchronization of the client using the mSync GUI.

■ Implement synchronization within your application using the synchronization
APIs (see Chapter 2, "Synchronization" and Chapter 3, "Managing Synchronization
on the Mobile Client" in the Oracle Database Mobile Server Developer's Guide for
more information)

Note: The mobile client device clock must be accurate for the time
zone set on the device before attempting to synchronize. An
inaccurate time may result in the following exception during
synchronization: CNS: 9026 "Wrong user name or password.
Please enter correct value and reSync."

When you initiate a synchronization from the client, either manually or by scheduling
a job, the synchronization cannot occur if there is an active connection with an
uncommitted transaction opened from another source. This could be from scheduling
two jobs to synchronize at the same time, from mSync or the client synchronization
APIs.

The mSync GUI is shown in Figure 5–3.

Figure 5–3 Using the mSync GUI to Initiate Synchronization

To bring up the mSync GUI, execute msync.exe on Windows Mobile and Win32 or
msync on Linux, which is located in the /bin subdirectory under the directory where
you installed the mobile client. Modify the following supplied values, if incorrect:

■ User name and password for the user that is starting the synchronization.

Note: See Section 4.3.1.2.1, "Define User Name and Password" for
conventions for creating the user name or password.

■ Check the "Save Password" box if you want the password saved for future
requests.

■ Mobile Server URL, which is http://<mobile_server_hostname>:<port_number>,
replace 'http' with 'https' in case SSL is used. If SSL is not used, 'http://' can be
skipped.

Click "Sync" to start the Synchronization. Click "Apply" to save any modifications you
made to the entries. Click "Exit" to leave the tool.

Initiate Synchronization of the Mobile Client

5-6 Oracle Database Mobile Server Administration and Deployment Guide

If there are software updates that are waiting to be downloaded to the client, the
update tool is automatically executed after the end of the synchronization process, see
Figure 5–5.

Figure 5–4 Update Tool

Note: The only time that the client does not check for software
updates after the end of the synchronization process is if you are using
the Synchronization APIs. If you want to launch the update UI, then
enter update on the command line.

You can also modify the tool options by selecting the "Tools Selection" at the bottom of
the UI, as shown in Figure 5–5.

Figure 5–5 The mSync Tools Selection

The following sections describe the Tools options:

■ Section 5.2.1, "Network Options for MSync Tool"

■ Section 5.2.2, "Sync Options for MSync Tool"

■ Section 5.2.3, "Use Mobile Client Tools on Linux"

Initiate Synchronization of the Mobile Client

Managing Synchronization 5-7

5.2.1 Network Options for MSync Tool
Figure 5–6 displays the Network options screen where you can specify a proxy if your
network provider requires that you use a proxy server to access the internet. Click
"Use Proxy" to use a proxy and then enter the proxy server and port number.

Figure 5–6 The mSync Network Options Selection

5.2.2 Sync Options for MSync Tool
Figure 5–7 displays the "Sync Options" screen where you can specify the following:

■ Mobile User Password—Modify the existing password. The mobile user password
is stored on both the client and the mobile server. To ensure that both are
modified, only change the password when connected to the mobile server.

■ High Priority—Select this checkbox to specify synchronizing only High Priority
data. This specifies under what conditions the different priority records are
synchronized. By default, the value is LOW, which is synchronized last. If you
have a very low network bandwidth and a high ping delay, you may only want to
synchronize your HIGH priority data.

When you select this checkbox, you are enabling pre-defined high priority records
to be synchronized first. This only for those publication items that have specified a
restricting predicate. See Section 1.2.10, "Priority-Based Replication" in the Oracle
Database Mobile Server Troubleshooting and Tuning Guide for more information.

■ Force Refresh—The force refresh option is an emergency only synchronization
option. Check this option when a client is corrupt or malfunctioning, so that you
decide to replace the mobile client data with a fresh copy of data from the
enterprise data store with the forced refresh. When this option is selected, any data
transactions that have been made on the client are lost.

When a force refresh is initiated all data on the client is removed. The client then
brings down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

User Scenarios for Synchronization

5-8 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–7 The mSync Options Selection

5.2.3 Use Mobile Client Tools on Linux
The mobile client for Linux supports the msync, dmagent and update tools. To use the
UI-based tools, use the following executables: msync, dmagent, or update.

To synchronize on a Linux client with the command line tool, use the msync executable
for synchronization, as follows:

./msync username/password@server[:port][@proxy:port]

For example,

./msync john/john@testserver:8000

The other msync options, such as -save, -a, -password and -force currently will not
result in a successful sync. This is a limitation only for the msync executable in the
MDK installation on Linux.

5.3 User Scenarios for Synchronization
The following scenarios demonstrate how a client user may want to synchronize the
data:

■ You can enable Automatic Synchronization between the client and the server,
which is specified on the publication item level. With automatic synchronization,
you can specify under which conditions synchronization is automatically started
to save any changes on the client back to the server. This way, the client data is
synchronized on a regular basis in the background, automatically, without user
intervention.

For more information on automatic synchronization, see Section 5.5, "Using
Automatic Synchronization".

■ You can specify that the client or the client application manually synchronizes. The
user can synchronize through a GUI; an application can initiate synchronization
programmatically through the APIs. This manually initiates synchronization for
uploading/downloading the modifications made on the client and server. This is
the default mechanism for synchronization.

– If the user is going to start the synchronization, use the GUI tools, as described
in Section 5.2, "Initiate Synchronization of the Mobile Client"

– If the application is going to initiate the synchronization, use the
synchronization APIs, as described in Chapter 3, "Managing Synchronization
on the Mobile Client" in the Oracle Database Mobile Server Developer's Guide.

Managing the Sync Server from the Data Synchronization Home Page

Managing Synchronization 5-9

■ You can enable a type of synchronization where only the data on the client is
uploaded to the server; data is never downloaded from the server. This is an
option for read-only clients, where multiple clients are using the same data. If you
have a situation where you have a large number of clients that use the same
read-only data, use the cached user, which can be replicated on multiple clients.
See Section 5.9, "Improving Performance for Multiple Clients that Use the Same
Read-Only Data With a Cached User" for more details.

■ You may save all synchronization transactions in an encrypted file. There are times
when you do not have network access to the mobile server, but there is a way you
can manually carry a file between the mobile server and the client. In this instance,
you may want to use File-Based Sync, which saves all transactions in an encrypted
file either for the upload from the client for the mobile server or the download
from the mobile server for the client. See Section 5.10, "Synchronizing to a File
With File-Based Sync" for more details.

■ You may decide that it would be more performant to store your application data
on an Oracle database that is separate from the Oracle database that contains the
mobile server repository. In this case, you can have multiple back-end databases,
where the mobile server repository exists on the main database and the data for
one or more applications may exist on the main database or another database of
your choosing. For more information, see Section 5.8, "Register a Remote Oracle
Database for Application Data".

5.4 Managing the Sync Server from the Data Synchronization Home Page
The Sync Server is an HTTP servlet that listens to client synchronization requests. As
demonstrated by Figure 5–2, during every synchronization session, the Sync Server
uploads client transactions from the client database and places them within the
In-Queues. The Sync Server then downloads any server-side transactions from the
Out-Queues to the client database.

From the Data Synchronization home page, you can manage Sync Server tasks—such
as the following:

■ Section 5.4.1, "Starting/Stopping the Sync Server"

■ Section 5.4.2, "Checking Synchronization Alerts"

■ Section 5.4.3, "Managing Sync Sessions"

■ Section 5.4.4, "Displaying Operating System (OS) and Java Virtual Machine (JVM)
Information"

5.4.1 Starting/Stopping the Sync Server
To start the Sync Server, navigate to the Data Synchronization home page. The Sync
Server default status is "Up", as displayed in Figure 5–8.

Managing the Sync Server from the Data Synchronization Home Page

5-10 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–8 Data Synchronization Home Page

To gracefully shut down the Sync Server, click "Stop". The Sync Server stops after all
current sessions have completed synchronization. To immediately stop the Sync
Server, click "Stop Immediately", which kills current sync sessions immediately. Use
for emergency situations.

5.4.2 Checking Synchronization Alerts
On the right-hand side of the Data Synchronization Home page, you can see all of the
alerts. Both the Sync Server and MGP register alerts if a problem occurs within any
part of the synchronization phases. There are two types of alerts, as follows:

■ Critical alerts—For the Sync Server, clients cannot synchronize if the Sync Server
encounters an exception (also known as a critical alert); thus, the errors must be
resolved by the administrator. Once resolved, the administrator re-starts the Sync
Server.

■ Warning alerts—These alerts are registered when an individual synchronization
session fails. The administrator checks the Sync session details in the Sync Session
History and determines the reasons for the failure. If necessary, the administrator
may need to involve a DBA, if the reason is database-related.

Each alert provides the alert name, degree of severity, time when the alert was
triggered, and time when the alert was last checked by a DBA.

 Table 5–2 lists sample alerts. Note that the type designates whether the alert originates
from the Sync Server or the MGP.

Table 5–2 Alert Types

Name Type Severity

Sync Server Exception Sync Server CRITICAL

Managing the Sync Server from the Data Synchronization Home Page

Managing Synchronization 5-11

5.4.3 Managing Sync Sessions
For all users, the sessions that are currently in the process of synchronization are
displayed in the Active Sessions table at the bottom of the Data Synchronization Home
Page. Synchronization involves uploading or downloading updates between the the
Sync Client and Sync Server.

You can terminate any active session on the Data Synchronization Home page by
performing the following steps:

1. Select the active session that you wish to terminate and click "Kill".

2. Click "Yes".

3. Click "OK" for the confirmation message.

The Active Sessions table on the Data Synchronization home page also displays
session details. Select the active session that you wish to view and click "Details" to see
the publication items that have been uploaded or downloaded, waiting publication
items, records and timing information, and the session trace file.

If you want to view all details about completed synchronization sessions, navigate to
the "Synchronization History Sessions" screen. To navigate to this screen, either click
the number hyperlink next to "History Sessions" on the home page or navigate
through the "Performance" tab. The total number of registered sessions is designated
by the number next to "History Sessions".

Note: The session history for each user between the Sync Client and
Sync Server is saved only if you set the SYNC_HISTORY parameter to
YES, which is the default. You can set the SYNC_HISTORY instance
parameter to YES or NO by navigating to Data
Synchronization->Administration->Instance Parameters.

Figure 5–9 shows the "Synchronization History Sessions" page.

User Sync Failure(s) Sync Server WARNING

MGP Job Exception MGP CRITICAL

MGP User Apply/Compose Failure(s) MGP WARNING

Table 5–2 (Cont.) Alert Types

Name Type Severity

Managing the Sync Server from the Data Synchronization Home Page

5-12 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–9 Synchronization History Sessions Page

All session history is not displayed until you search for the appropriate records. If you
want all records within a specified date, then the only thing that you need to provide
is the From and To date range and click "Search". Be careful to only click "Search and
Delete" if you want these records removed. You can further narrow the search by
specifying one or more of the following:

■ The name of the user from which all synchronizations originated

■ The device platform type to see all synchronizations from just these platforms.

■ Only those synchronizations that were successful or failures from the server-side.

■ Only those synchronizations that were successful or failures from the device-side.

The Session History page displays matched sessions in the "Results" section. Once
displayed, you can sort by most of the headers to either sort top to bottom or bottom
to top. For example, to sort sync sessions by user, click the "User" header title.

To delete a session, select the session that you want to delete and click "Delete". To
view the details of a session, select the session and click "Details". The Sync History
Session page displays session details, such as publication items that are uploaded or
downloaded, records and timing information, and the session trace file. The "View"
and "Download" links are automatically enabled for viewing or downloading trace
files that are available for the chosen session.

5.4.4 Displaying Operating System (OS) and Java Virtual Machine (JVM) Information
You can see the operating system and JVM versions that are installed on the host
where the mobile server resides by clicking the "Host" hyperlink that is located below
the Start/Stop buttons on the Data Synchronization home page. As displayed in
Figure 5–10, the Host page displays host information, such as host name, IP address,
OS type, and OS user name. The JVM section displays the Java CLASSPATH, Java
version, and heap memory size.

Using Automatic Synchronization

Managing Synchronization 5-13

Figure 5–10 Host Page

5.5 Using Automatic Synchronization
In the past, a client had to manually request synchronization either through an
application program executing an API or by a user manually pushing the Sync button.
Now, you are provided the option to configure under what circumstances
synchronization should occur and then Oracle Database Mobile Server performs the
synchronization for you automatically. This way, synchronization can happen
seamlessly without the user’s knowledge.

For example, you may have a user who changes data on their handheld device, but
does not sync as often as you would prefer. You may have multiple users who all
synchronize at the same time and overload your system. These are just a few examples
of how automatic synchronization can make managing your data easier, be more
timely, and occur at the moment you need it to be uploaded.

Automatic synchronization is specified on the publication item. The rules for when
and how synchronization is automatically started may be specified in the publication,
publication item, and/or platform level. With automatic synchronization, the client
data is backed up on a regular basis in the background, automatically, without user
intervention.

The rules for Automatic Synchronization are defined in three places:

■ Enable Automatic Synchronization at the publication item level when creating the
publication item.

For more information on how to enable automatic synchronization at the
publication item level, see Section 5.5.2, "Start, Stop, or Get Status for Automatic
Synchronization" or Section 2.2, "Enabling Automatic Synchronization" in the
Oracle Database Mobile Server Developer's Guide.

■ Define publication-specific rules that apply to all the publication items within this
publication. This includes rules that are defined for the data or for specific
platforms using this publication.

Note: Within a publication, you can have one or more publication
items. If automatic synchronization is enabled for one of the
publication items, by default all the publication items in the same
publication would be enabled with automatic synchronization.

Using Automatic Synchronization

5-14 Oracle Database Mobile Server Administration and Deployment Guide

For more information on how to specify rules for all enabled publication items, see
Section 2.2, "Enabling Automatic Synchronization" in the Oracle Database Mobile
Server Developer's Guide.

■ Define platform-based rules that apply to all publications on a specific platform.
This is specified at the platform-level. Thus, see Section 5.5.1, "Specifying Platform
Rules for Automatic Synchronization" for more information.

Automatic synchronization is based on a different model than manual
synchronization. Automatic synchronization operates on a transactional basis. Thus,
when the conditions are correct, any new data transactions are uploaded to the server,
in the order of the specified priority for the data. In the manual synchronization
model, you can synchronize all data or use the selective sync option, where you can
detail only certain portions of the data to be synchronized. The selective sync option is
not supported in automatic synchronization, since we are no longer concerned with
synchronization of only a subset of data.

The following provides more information about your automatic synchronization:

■ Section 5.5.1, "Specifying Platform Rules for Automatic Synchronization"

■ Section 5.5.2, "Start, Stop, or Get Status for Automatic Synchronization"

■ Section 5.5.3, "How the Automatic Synchronization Transaction is Retried"

5.5.1 Specifying Platform Rules for Automatic Synchronization
You can specify rules that apply to publications that are enabled for automatic
synchronization for a given platform. There are two types of rules: events and
conditions. If an event is true, it starts synchronization; however, the synchronization
cannot occur unless all conditions are true, as well. This evaluates as follows:

when EVENT and if (CONDITIONS), then SYNC

Specify these rules in the Mobile Manager Platforms page under Data
Synchronization.

Note: These rules only apply to automatic synchronization. If the
user manually starts synchronization, it will execute.

To specify platform-based rules for all publications, perform the following:

1. On the Data Synchronization page, select "Platforms". Figure 5–11 shows the
settings for automatic synchronization on each platform.

Figure 5–11 Platforms for Automatic Synchronization

Using Automatic Synchronization

Managing Synchronization 5-15

2. Select the platform name to modify the automatic synchronization platform
settings. Figure 5–12 shows the screen for the platform-based rules. There are three
tabs: "Events", "Conditions", and "Networks".

Figure 5–12 Platform-Based Events for Automatic Synchronization

3. Configure the Events. Figure 5–12 shows the "Events" page. Select the checkbox for
each event that you want to enable. If the event requires a value, enter the value
you desire to be followed. If one event is true, then the automatic synchronization
is initiated the first time the event occurs. For example, if the battery runs below
the percentage you specified, the automatic synchronization occurs. As the battery
continues to deplete, you will not trigger another synchronization.

The following events will trigger an automatic synchronization if true.

■ Synchronize when the network bandwidth is greater than <number>
KB/second. Where <number> is an integer that indicates the bandwidth in
KB/seconds. When the bandwidth becomes available, the synchronization
occurs.

■ Synchronize when the battery level drops to <number>%, where <number> is a
percentage. Often you may wish to synchronize before you lose battery power.
Set this to the percentage of battery left, when you want the synchronization to
automatically occur.

■ Synchronize when the AC power is detected. Select this checkbox if you want
the synchronization to occur when the device is plugged in.

■ Synchronize at a specific time or time interval. You can configure an automatic
synchronization to occur at a specific time each day or as an interval.

– Select "Specify Time" if you want to automatically synchronize at a specific
hour, such as 8:00 AM, everyday.

However, you must enter the time in Coordinated Universal Time (UTC)
for a specific time as it gives us a common base. Every timezone can be
expressed as an offset from UTC (that is, UTC+4) and by doing this the

Using Automatic Synchronization

5-16 Oracle Database Mobile Server Administration and Deployment Guide

server does not need to know about each client's respective timezones.
For example, if you want something to happen at 8:00 A.M your time, you
must specify that time in UTC and then enter that into the server.

– Select "Specify Time Interval" if you want to synchronize at a specific
interval. For example, if you want to synchronize every hour, then specify
how long to wait in-between synchronization attempts.

4. Configure the Platform Conditions. Select the "Conditions" tab. Figure 5–13
displays the "Conditions" screen.

If an Automatic Synchronization is about to start, Oracle Database Mobile Server
evaluates the conditions to determine if the synchronization can continue. If the
condition is not true, the synchronization cannot proceed. For example, if you
enabled that synchronization can only occur if the battery level is greater than
30%, then if an automatic synchronization is about to start, but the battery level is
at 20%, this synchronization is canceled.

Figure 5–13 Platform-Based Conditions for Automatic Synchronization

The following conditions must be true for this platform for any automatic
synchronization to occur:

■ Synchronize only if the battery level is greater than <number>%, where
<number> is the percentage of battery level left. Sometimes you may not want
synchronization to occur and use up what battery you may have left. Thus,
you can specify a minimum at which point you do not want this feature to
occur. This condition must be true in order for an automatic synchronization
to occur.

Click "Apply" to save changes; click "Revert" to cancel changes.

■ Data/Network Conditions: You could have defined records in your snapshot
with a data priority of HIGH (value of 0) or LOW (value of 1).

Note: Data priority is a column that is added to the table to indicate
priority of the row. You can modify the values in this column to either
0 or 1.

Using Automatic Synchronization

Managing Synchronization 5-17

Use this condition to specify under what conditions the different priority
records are synchronized. By default, the value is LOW, which is
synchronized last. If you have a very low network bandwidth and a high ping
delay, you may only want to synchronize your HIGH priority data.

– Select an existing condition and click "Edit" to modify an existing
condition.

– Select an existing condition and click "Delete" to remove an existing
condition.

If you selected a condition and clicked "Edit", Figure 5–14 displays the fields
that you can specify for this condition.

Figure 5–14 Editing the Data Priority Condition

The values you can specify for the data priority condition are as follows:

■ Minimum Network Bandwidth (bits/sec): Configure the minimum bandwidth
(bits/second) in which the automatic synchronization can occur for records
with this data priority.

■ Maximum Ping Delay (ms): Configure the maximum ping delay
(milliseconds) in which the automatic synchronization can occur for records
with this data priority.

■ Include Dial-up Networks?: The always-on network is used if available.
However, if this network is not available, select "YES" if you want to use any
of the dial-up networks for this data priority.

5. Configure the Network settings for the platform rules.

Using Automatic Synchronization

5-18 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–15 Add Network Information for Automatic Synchronization

The Network settings screen provides any proxy server configuration—if your
network provider requires that you specify a proxy server to access the internet.
You could have two types of networks, as follows:

■ Always-on: If this network uses a proxy server, then define the proxy and port
number. Click "Apply" when finished.

■ Dial-up:

– Click "Add Dial-up Network" to add a new entry for dial-up
configuration.

– To edit an existing configuration, select the name of the existing
configuration.

– To delete an existing configuration, select the checkbox next to the desired
configuration and click "Delete".

Figure 5–16 Add Dial-Up Network Information

If you are required to provide proxy configuration for any dial-up network, then
configure the following so that Oracle Database Mobile Server can connect to the
mobile server for the automatic synchronization process. If you do not need to
define a proxy for a dial-up network, but you want to include it in the order of
execution, you can add an entry with only the network name. You do not need to
specify the proxy server and port.

■ Network Name—Specify the network name, which is the same as the network
name defined on the device.

■ Proxy Server—If you have to go through a proxy server, then provide the
name of the proxy server for the dial-up network.

Using Automatic Synchronization

Managing Synchronization 5-19

■ Port—Provide the port number of the proxy server.

5.5.2 Start, Stop, or Get Status for Automatic Synchronization
You can start, stop or retrieve status of automatic synchronization through the Sync
Agent UI, which is started either through the Start menu or by running the autosync
executable in a command prompt. Figure 5–17 shows the Sync Agent UI.

Note: You can also start and stop automatic synchronization using
programmatic APIs. For full details, see Section 3.2, "Managing
Automatic Synchronization on the Mobile Client" in the Oracle
Database Mobile Server Developer's Guide.

Figure 5–17 Managing Automatic Sync Agent

The Sync Agent controls the automatic synchronization for the client device. If you
want to stop synchronization in order to execute a manual synchronization, click the
"Stop" button. This allows any currently executing synchronization to complete fully. If
you want to terminate the existing synchronization, click "End". To restart the
automatic synchronization, click "Start".

Note: If you notice that the automatic synchronization does not start,
check the Status to see if the Sync Agent is "Disabled". Enable the Sync
Agent by clicking "Enable" in the Sync Agent UI.

The start, stop, and end buttons only control the automatic synchronization
temporarily. To fully disable automatic synchronization, so that it is not restarted when
a device is powered on, click "Disable". To re-enable automatic synchronization, click
"Enable". To see the status of any existing or the last automatic synchronization, click
"Refresh".

Configuring Data Synchronization For Farm or Single Mobile Server

5-20 Oracle Database Mobile Server Administration and Deployment Guide

5.5.3 How the Automatic Synchronization Transaction is Retried
If the automatic synchronization fails because of a network error, the client-side Sync
Agent probes the network to retry the transaction, as follows:

■ The network is always checked before synchronization is attempted. If the
network is not available, the network is checked as follows:

1. every 15 seconds three times

2. every 30 seconds three times

3. every 60 seconds three times

4. every 20 minutes until the network is available

■ If the network is available, then the transaction is retried, as follows:

1. every 15 seconds three times

2. every 30 seconds three times

3. every 60 seconds three times

If the network is still not available, the Sync Agent continues to check the network
every 20 minutes. If it detects an available network, the automatic synchronization is
started.

5.6 Configuring Data Synchronization For Farm or Single Mobile Server
There are two types of configuration parameters for Data Synchronization:

■ Shared—Shared parameters affect all mobile server instances in the farm. The
administrator can have multiple mobile server instances in a single farm that uses
the same mobile server repository. To modify these parameters, navigate to the
Administration screen and click "Shared Parameters".

■ Instance—Instance parameters only affect a single mobile server instance; that is,
the mobile server that you are currently viewing. These parameters are stored in
the mobile.ora file; thus, once modified, you may need to restart the mobile
server. Check the Need Restart column to verify if a restart is necessary. To modify
these parameters, navigate to the Administration screen and click "Instance
Parameters". See Appendix A, "Configuration Files for the Mobile Server" for a
description of each of these parameters.

It is never recommended to modify the mobile.ora file directly; instead, use the
Mobile Manager to modify any of the mobile.ora file parameters. In the Mobile
Manager, migrate Administration tab and select "Edit Config File". This is the
mobile.ora file.

To view the parameter description and additional information, click "Show". You can
modify any of the values in the "New Value" field and click "Apply". Some of the
Instance parameter values do not take effect until the mobile server is restarted.

5.7 Resuming an Interrupted Synchronization
With client/server networking, communication may be interrupted by unreliable
network conditions, physical disconnections, limited transport bandwidth, and so on.
To efficiently cope with these conditions, the transport protocol between the client and
server resumes a synchronization session from the last acknowledged byte. For
example, the client starts to upload 10 MB of data and the connection fails after
sending 9 MB of the data. In this instance, the client does not resend the 9 MB that was

Resuming an Interrupted Synchronization

Managing Synchronization 5-21

acknowledged, but resumes the synchronization by uploading the last 1 MB of data.
The resume feature works the same for both the upload and download phases of the
transport.

The resume feature manages intermittent network failures. If resume is enabled on
both the server and the client, synchronization resumes automatically within the
specified resume timeout period. Also, if sync session was interrupted during a
network operation, the next synchronization resume the operation, as long as resume
is enabled and the resume timeout has not expired.

Configure the resume feature parameters, as follows:

■ Section 5.7.1, "Defining Temporary Storage Location for Client Data"

■ Section 5.7.2, "Controlling Server Load"

5.7.1 Defining Temporary Storage Location for Client Data
By default, the client data is buffered in memory and maximum of 16 MB is allocated
for the buffering. If more space is needed, new clients are blocked until space is freed.
Alternatively, you can configure where the client data is temporarily stored and how
much space to allocate with the RESUME_FILE and RESUME_FILE_SIZE parameters in the
CONSOLIDATOR section of the mobile.ora file on the mobile server, as follows:

RESUME_FILE=d:\path\file
RESUME_FILE_SIZE =NNN (MB)

Setting the RESUME_FILE_SIZE parameter configures the amount of memory allocated
for the buffering. Setting RESUME_FILE allows using a disk file instead of RAM, which
is more efficient if JDK 1.4 or later is installed and memory mapping can be used.

If there are multiple disks available on the mobile server host, one spool file should be
created per disk to optimize performance. You can specify several spool files with
multiple RESUME_FILE and RESUME_FILE_SIZE parameters, each designated with a
unique suffix, as follow: RESUME_FILE_2, RESUME_FILE_SIZE_2. The maximum number
of files is determined by the operating system and hardware for the mobile server. The
maximum size for each file is 2047 MB.

Normally, 64 KB blocks are used to buffer client data. Resume block size can be
specified in KB, with the RESUME_BLOCKSIZE parameter. If you are using disk files to
minimize fragmentation, then the block size should be specified as a larger number.

5.7.2 Controlling Server Load
If too many clients connect to a mobile server at once, the mobile server can become
overloaded, run out of memory, or have poor performance when responding to the
clients.

The RESUME_MAXACTIVE parameter controls the maximum number of connections that
the mobile server handles at a single time. If more clients try to connect, they are
queued until existing connections complete. The default is 100 connections.

After RESUME_MAXACTIVE has reached, configure RESUME_MAX_WAIT for the number of
minutes a new client should wait before returning with error message. This parameter
is configured in minutes.

The RESUME_TIMEOUT parameter indicates how long to keep client data while the client
is not connected. The default is 0, which means that resume is disabled and after
disconnection, the client data is discarded. A short timeout, such as 15 minutes, is
suitable to resume any accidentally dropped connections. A longer timeout may be

Register a Remote Oracle Database for Application Data

5-22 Oracle Database Mobile Server Administration and Deployment Guide

needed if users explicitly pause and resume synchronization to switch networks or use
a dialup connection for another purpose.

The RESUME_MAXCHUNK parameter causes the server to drop the connection after
sending the specified data size, in KB. This forces the client to reconnect and inform
the server on how much data it already has. The server can discard all data before that
offset. The fault value is 1024 KB.

These parameters are all configured within the mobile.ora file on the mobile server.

5.8 Register a Remote Oracle Database for Application Data
By default, the mobile server repository metadata and the application schemas are
present in the same database. However, it is possible to place the application schemas
in a database other than the Main database where the mobile server repository exists.
This can be an advantage from a performance or administrative viewpoint.

Thus, you can spread your application data across multiple databases.

Note: We refer to the database where the application schema resides
as remote because it is separate from the Main database that contains
the mobile server repository. It does not mean that the database is
geographically remote. It can be local or remote. For performance
reasons, the mobile server must have connectivity to all databases
involved in the synchronization—Main and remote.

Figure 5–18 Separating Application Data from Mobile Server Repository

Mobile

Middle Tier

Application 1

Application 2

Mobile Server

MAIN

Client 1

Client 5

Client 4

Client 3

Client 2

Repository

Oracle
Database

Server

Oracle
Database

Server

Oracle
Database

Server

Data

Data

Server

You can register one or more remote Oracle databases that host the application data.
Once registered, you can specify application schemas on these databases during
publication creation. Synchronization is executed on a per publication basis rotating
through the databases.

To use an Oracle database other than the Oracle database used for the mobile server
repository, you must perform the following:

1. Register the remote Oracle database as described in Section 5.8.1, "Register or
Deregister a Remote Oracle Database for Application Data".

Register a Remote Oracle Database for Application Data

Managing Synchronization 5-23

2. When creating the publication item, specify the URL of the Oracle database for
storing the application data. All data for a single application must be contained in
the same Oracle database. In MDW, when you select New-Project, you can specify
the URL for the remote database for the publication. For more information, see
Section 4.2, "Create a Project" in the Oracle Database Mobile Server Developer's Guide.

In order for the synchronization to complete successfully, both the application
database and the mobile server repository database must be up.

Note: For details on how to use Consolidator APIs or to modify
callbacks to use a remote Oracle database, see Section 2.15, "Register a
Remote Oracle Database for Application Data" in the Oracle Database
Mobile Server Developer's Guide.

5.8.1 Register or Deregister a Remote Oracle Database for Application Data
If you want your application data to be in a database other than where the mobile
server resides, then you can register a remote database through the Mobile Manager.
However, once registered, the remote database cannot be used by any other
installation of Oracle Database Mobile Server.

Publications and publication items can be defined against application data in the
remote database. The Mobile Manager manages the Main database and all registered
application databases in the same way.

Note: All registered databases must be up and running for proper
operation. If a database is already used by a separate Oracle Database
Mobile Server installation, either as a mobile server repository or as an
application repository, then the registration fails. An application
repository can be deregistered from one installation and then
registered to a different installation.

To register the Oracle database, navigate to Data Synchronization->Repository. The
bottom section lists the registered Oracle databases, where MAIN is the Oracle
database that contains the mobile server repository.

1. As shown in Figure 5–19, click the "Register Database" button to register a new
database.

Register a Remote Oracle Database for Application Data

5-24 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–19 Register or Deregister Oracle Database for Application Data

2. Enter the Oracle database information as follows:

■ Name—An identifying name for the database where the application schema
resides. Once defined, this name cannot be modified. This name must be
unique across all registered database names.

Note: A log is generated for each remote database application in the
ORACLE_HOME/Mobile/Server/<DB_NAME>/apprepository.log file,
where the <DB_Name> is this identifying name.

■ Description—A user-defined description to help identify this database.

■ JDBC URL—The JDBC URL can be one of the following formats:

* The URL for a single Oracle database has the following structure:
jdbc:oracle:thin:@<host>:<port>:<SID> for Oracle Database 10g and
Oracle Database 11g, jdbc:oracle:thin:@//<host>:<port>/<ServiceName>
for Oracle Database 12c.

* The JDBC URL for an Oracle RAC database can have more than one address
in it for multiple Oracle databases in the cluster and follows this URL
structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

■ Schema Name—The application schema name.

■ Password—The administrator password is used to logon to the database. The
administrator name is the same as what was defined for the main database.

When defining, the password must conform to the following restrictions:

– not case sensitive

Improving Performance for Multiple Clients that Use the Same Read-Only Data With a Cached User

Managing Synchronization 5-25

– cannot contain white space characters

– maximum length of 28 characters

– must begin with an alphabet

– can contain only alphanumeric characters, and special characters of '$'
(dollar sign), '#' (number sign), and '_' (underscore)

– cannot be an Oracle database reserved word

3. Click "Apply". The Oracle database is now registered with the mobile server and
can be specified in a publication item.

After you register a database, Oracle Database Mobile Server creates the application
database repository in the application database. The application database repository
includes the schema and related consolidator tables. This is similar to the mobile
server repository creation on the MAIN database.

When registering an application database, the user must provide the correct password
for the repository schema. The password used is the user password. However, if the
password provided is incorrect, then the administrator user name and password are
requested.

Edit Oracle Database Details
To edit, select the name of the desired registered Oracle database in the list.

You can edit the description and password for any registered database. The password
is used to logon to the application database. Before you can modify the password here,
you must first modify the password on the database itself. Once modified on the
database, then modify it in the mobile server as well on this screen.

DeRegister Oracle Database
Before you can deregister any database, you must first drop all associated publication
and publication items. To deregister, select the radio button next to the desired
database and click "Deregister". Click "Yes".

5.9 Improving Performance for Multiple Clients that Use the Same
Read-Only Data With a Cached User

If you have the default method for synchronization, each mobile client must have a
unique synchronization user ID, which is used to coordinate the modifications
between the client and the server. However, if you have multiple mobile clients that
use the same data—where the clients only are allowed to read this data—then there is
no need to track modifications on the client. Thus, in this scenario, you can choose a
more performant solution by configuring a single user for all read-only clients with
access to the same publication data.

All mobile clients share the same user ID, which is subscribed to a publication, where
all publication items are read-only. Thus, when they synchronize, they are only
downloading data from the mobile server. The only difference, then, between the
clients is when they synchronize to download the data. Since the mobile clients could
synchronize at different times, each is provided a unique state, where the cached user
and state combination informs the server how much data to download to each
particular mobile client.

To use this feature, perform the following:

Synchronizing to a File With File-Based Sync

5-26 Oracle Database Mobile Server Administration and Deployment Guide

1. Ensure that the publication items are read-only. When adding publication items to
the publication, pass the value of IUD for the argument DISABLED_DML. In this state,
client-side DML modifications cannot be uploaded to the mobile server.

2. Create one user for each group of clients that subscribe to the same subset of data.
In the simplest case, where all clients share the same data, create a single user and
subscribe it to the read-only publications.

3. Configure the users that are sharing the data, as follows:

a. On Mobile Manager, navigate as follows: Data
Synchronization->Administration->Instance Parameters.

b. Configure each user that is to share the data from the read-only publications in
the CACHED_USERS field. If you have more than one cached user, separate each
user by a comma.

Note: In this scenario, you may consider using Offline Instantiation
for installing the mobile client and the initial data download on each
client. See Chapter 8, "Offline Instantiation for Mobile Clients" for
more information.

A restriction for this feature is that the synchronization user can only subscribe to
read-only publication items. A workaround is to create a shared user for all of the
clients and a unique user for each client. The shared user subscribes to the shared
read-only publication items and the unique user subscribes to the updateable
publication items. The mobile client needs to synchronize both users.

For cached user, if you try to synchronize for multiple clients at the same time, the
server will synchronize serially and will block all clients while a single client is
updated.

If you are using the cached user feature, you cannot enable automatic synchronization.
If you do enable automatic synchronization, only one client will be notified to initiate
an automatic synchronization.

5.10 Synchronizing to a File With File-Based Sync
There are times when you do not have network access to the mobile server, but there is
a way you can manually carry a file between the mobile server and the client. In this
instance, you may want to use File-Based Sync, which saves all transactions in an
encrypted file either for the upload from the client to the mobile server or the
download from the mobile server to the client. File-Based Sync cannot be automatic,
because files need to be manually transferred from client to server and back.

Once saved within the encrypted file, the file is manually transported and copied onto
the desired recipient—whether mobile client or mobile server. This file is uploaded
and the normal synchronization steps are performed.

Most of the activity on the mobile client and the mobile server is the same as with a
network synchronization. The only difference is that instead of the data being
transmitted over the network, it is placed into a file that is transported in another
manner.

The following sections describe the activity necessary on the mobile client and the
mobile server for file-based synchronization:

■ Section 5.10.1, "Upload Synchronization Transactions to an Encrypted File on the
Mobile Client"

Synchronizing to a File With File-Based Sync

Managing Synchronization 5-27

■ Section 5.10.2, "Apply and Compose Mobile Client Transactions on the Mobile
Server"

■ Section 5.10.3, "Download Composed Transactions from Mobile Server to the
Mobile Client"

■ Section 5.10.4, "Troubleshooting File-Based Synchronization Scenarios"

5.10.1 Upload Synchronization Transactions to an Encrypted File on the Mobile Client
Perform the following on the mobile client to upload all synchronization transactions
to an encrypted file destined for the mobile server:

1. Enable file-based synchronization with one of the following methods:

■ When using the mSync UI tool, select the File-Based Sync option off the Tools
menu. Perform the steps described in Section 3.3.3, "Sync to a File Using
File-Based Sync" in the Oracle Database Mobile Server Mobile Client Guide, setting
the radio button to Send.

■ Enable file-based synchronization programmatically with the set
Synchronization Property APIs. For upload, set the filename and the sync
direction to Send. See the appropriate programming language section in
Chapter 3, "Managing Synchronization on the Mobile Client" in the Oracle
Database Mobile Server Developer's Guide.

2. For manual synchronization, initiate the synchronization.

If the synchronization fails during writing of the synchronization file, then the file
may be deleted and the synchronization can be restarted. When restarted, the
synchronization engine recreates the same synchronization file. If the failure
occurs again, then it is most likely a hardware issue that must be resolved, such as
not enough storage, database corruption or other hardware errors.

Note: When the mobile server uploads the synchronization file or
receives an upload from a network synchronization, it downloads any
new data for the client as well as sends an acknowledgement for the
transactions it received.

If, during a synchronization request, the client has not received or
downloaded any acknowledgement from the mobile server from the
last upload, then the client will send all unacknowledged, previously
uploaded transactions as well as any new transactions.

3. Once the file is created in the directory specified, transport it to the mobile server
using removable media or any other appropriate manner.

5.10.2 Apply and Compose Mobile Client Transactions on the Mobile Server
To perform the apply and compose function on the mobile server for mobile client
transactions that are saved in an encrypted synchronization file, perform the following
on the mobile server:

Note: Only the user is allowed to upload the synchronization file
from the client with the user’s id. All other users will be denied
permission for the upload.

Synchronizing to a File With File-Based Sync

5-28 Oracle Database Mobile Server Administration and Deployment Guide

1. On the "Mobile Manager Home" page, before you log in your mobile server, select
the "File-Based Sync" tab.

2. Enter the user name and password of the client user. Click "Logon".

3. Using the "Browse" button, locate and identify the encrypted synchronization file
on the mobile server machine. Click "Sync". The file uploads to the mobile server.

The mobile server starts the MGP to perform the apply/compose phase for the
mobile client based upon the uploaded synchronization file. If this fails after
several attempts, then the file may be corrupted. You can re-create the file and try
again.

4. A screen prompts the user for the name and directory for the synchronization file
for the mobile client. This file downloads all composed transactions meant for the
user to the designated file from the mobile server. Enter the name and directory
for the file. Use your removable media to transport this file to the mobile client.

5.10.3 Download Composed Transactions from Mobile Server to the Mobile Client
To download all transactions from the mobile server to the mobile client, perform the
following on the mobile client:

1. Enable file-based synchronization with one of the following methods:

■ When using the mSync UI tool, select the File Based Sync option off the Tools
menu. Perform the steps described in Section 3.3.3, "Sync to a File Using
File-Based Sync" in the Oracle Database Mobile Server Mobile Client Guide, setting
the radio button to "Receive". Browse for the encrypted synchronization file
that was transported from the mobile server.

■ Enable file-based synchronization programmatically with the set
Synchronization Property APIs. For download, browse for the file that was
transferred from the mobile server and set the sync direction to "Receive". See
the appropriate programming language section in Chapter 3, "Managing
Synchronization on the Mobile Client" in the Oracle Database Mobile Server
Developer's Guide.

2. For manual synchronization, initiate the synchronization.

If an error occurs while receiving the synchronization file, you may restart the
processing again. The client verifies that the transaction has not been processed.

5.10.4 Troubleshooting File-Based Synchronization Scenarios
When you have a disconnected synchronization, you may run into one of the
following scenarios:

■ Section 5.10.4.1, "Normal Network Synchronization Occurs During File Upload"

■ Section 5.10.4.2, "Conflict Resolution for File-Based Synchronization"

5.10.4.1 Normal Network Synchronization Occurs During File Upload
What happens if a network synchronization from the client was in progress when you
started uploading a synchronization file to the mobile server? In this case, the file
upload is aborted and a Network Sync In Progress error is reported. Since the data
included in the synchronization file is also likely to be within the network
synchronization, the appropriate data is synchronized and there is no need to upload
the file.

Browsing the Repository for Synchronization Details

Managing Synchronization 5-29

However, if you do upload a synchronization file of data that has already been applied
to the mobile server, then the server recognizes that it has already applied one or all of
the client transactions. In this case, the mobile server skips the transactions it already
has processed, sends any acknowledgements to the client that have not been sent, and
applies any client transactions that have not been applied previously.

Additionally, any data destined for the client is sent by the mobile server to the client.

5.10.4.2 Conflict Resolution for File-Based Synchronization
The disconnected nature of file-based synchronization increases the probability that
the client may have modified data, which has not been uploaded to ther server.
Meanwhile, the server may have modified the same data, which creates a conflict. This
conflict is solved using the same conflict rules that are configured in the subscription.

5.11 Managing Trace Settings and Trace Files
You can configure the type of tracing that occurs for Data Synchronization
components. For more information, see Section 3.2, "Data Synchronization Tracing" in
the Oracle Database Mobile Server Troubleshooting and Tuning Guide.

5.12 Browsing the Repository for Synchronization Details
The repository screen describes how to look up user information, publications,
publication items, and the In-Queue, Out-Queue, and Error queues that facilitate
synchronization. This section contains the following topics:

■ Section 5.12.1, "Viewing User Information"

■ Section 5.12.2, "Viewing Publications"

■ Section 5.12.3, "Viewing Publication Items"

■ Section 5.12.4, "Viewing Synchronization Queues"

5.12.1 Viewing User Information
All users that have been added by the administrator (see Section 4.3, "Managing Users
and Groups") are contained within the mobile server repository.

1. To view information about existing users in the repository, click the "Repository"
tab on the "Data Synchronization" home page. The number next to "Users" details
the number of users currently in the repository.

As displayed in Figure 5–20, the Repository tab appears.

Browsing the Repository for Synchronization Details

5-30 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–20 Repository Tab

2. Click "Users", which brings up a list of all users currently in the repository. With
this Users screen, you can view everything that is attached to this user, such as
application subscriptions, publication items, parameters, SQL scripts, sequences,
and performance analysis, see Figure 5–21.

Figure 5–21 Users Repository

3. Choose the user in which you are interested and click "Subscriptions". The
"Subscriptions" page displays the existing publications for the user. A subscription
is the combination of the publication, its publications items, and the user to which
it is attached.

On the subscriptions screen, choose any publication and then click any of the
buttons above it to see all of the publication items, parameters, SQL scripts, and
sequences. In addition, if you click the "Consperf Performance Analysis" button,
you can generate performance analysis for the publication items. See
Section 5.13.3, "Analyzing Performance of Publications With the Consperf Utility"
for more information on Consperf performance analysis.

You can add subscriptions to the user by granting the user access to the application
that contains the publication. See Section 4.4.1, "Grant or Revoke Application Access to

Browsing the Repository for Synchronization Details

Managing Synchronization 5-31

Users" on how to grant access to applications. To add a publication to an application,
use the Mobile Database Workbench.

5.12.2 Viewing Publications
To view all publications that have been published against the mobile server, click
"Publications" under the "Users and Publications" section of the "Data
Synchronization" screen, see Figure 5–22. The number next to Publications are the
number of publications currently in the repository, which were uploaded to the
repository when the application was published. You can view these publications
individually using this link. Clicking "Publications" brings up a screen that contains a
list of all of the publications. If there are too many to fit on a page, you can search for a
specific publication. Similar to the "Users" screen, you can select a publication and then
view the publication items, parameters, SQL scripts, sequences, and users that are
attached to this publication.

Figure 5–22 Data Synchronization

When you add publication items to each publication, you specify certain properties for
each publication item within the publication, such as the order weight of when this
item is executed in relation to the other publication items in the subscription, who
wins when a conflict occurs, and options for disabling DML. You can view some of
these properties when you select the publication and click "Publication Items". For
more information on these properties, see Section 2.4.1.7, "Adding Publication Items to
Publications" in the Oracle Database Mobile Server Developer's Guide.

You can also view the users subscribed to each publication by selecting the publication
and then clicking "Users". When you do so, you see the following information about
each user subscribed:

■ User: the user name

■ Parameter Set: If a data subsetting parameter is required for the publication, then
this indicates if the parameter was set for this user.

■ Instantiated: This indicates if the user is ready for synchronization. If there is a
data subsetting parameter for the publication, but the value has not been set for
this user, then this value is NO. The value is YES if either there is no data
subsetting parameter or that the required parameters are set.

■ Complete Refresh Requested: Indicates if this user requests a complete refresh.

You can only view publications in this screen. To modify your publication, use the
Mobile Database Workbench. For more information, see Chapter 4, "Using Mobile
Database Workbench to Create Publications" in the Oracle Database Mobile Server
Developer's Guide.

Browsing the Repository for Synchronization Details

5-32 Oracle Database Mobile Server Administration and Deployment Guide

5.12.3 Viewing Publication Items
To view publication items, click "Publication Items" under the "Users and Publications"
section of the "Data Synchronization" screen, see Figure 5–22. The number next to
Publication Items details the number of publication items stored in the repository.
These items were uploaded to the repository when the application was published.

Click "Show" to view the publication item properties.

You can only view publication items in this screen. To modify you publication and its
publication item, use the Mobile Database Workbench. For more information, see
Chapter 4, "Using Mobile Database Workbench to Create Publications" in the Oracle
Database Mobile Server Developer's Guide.

5.12.4 Viewing Synchronization Queues
You can view what is currently in the synchronization queues. To view transactions
that are listed in queues, click the required hyperlink under the "Queues" section. For
example, to view transactions that are listed in the Out-Queue, click Out Queue. The
number next to each queue shows the number of transactions contained within that
queue.

The In-Queue and Error Queue are organized by transactions.

■ Section 5.12.4.1, "Viewing Transactions in the In-Queue"

■ Section 5.12.4.2, "Viewing Subscriptions in the Out-Queue"

■ Section 5.12.4.3, "Viewing Server-Side Synchronization Conflicts and Errors in the
Error Queue"

5.12.4.1 Viewing Transactions in the In-Queue
You can view the current transactions that exist in the In-Queue. If you are wondering
if your changes have been applied to the application tables, you can verify if they are
still in the In-Queue or have already been processed by the MGP. If you see your
transactions held in the In-Queue longer than you wish, then modify the timing on
how often the MGP executes in the Job Scheduler. See Section 6.3, "Manage Scheduled
Jobs Using the Mobile Manager" for more information on the Job Scheduler.

5.12.4.2 Viewing Subscriptions in the Out-Queue
The Out-Queue contains the transactions that are destined for the mobile client. The
transactions are organized by subscriptions, which is a combination of the user and
each publication for the user. Also, you can see if a complete refresh is requested.
Figure 5–23 displays the "Out-Queue Publications" page.

Browsing the Repository for Synchronization Details

Managing Synchronization 5-33

Figure 5–23 Out-Queue Publications Page

You can view the details of each subscription by performing the following:

1. Select the subscription to view with the Select button next to the user
name/publication in which you are interested.

2. Click "Publication Items", which brings up Figure 5–23.

The Publications Items screen describes how many records is in the publication
and whether it uses a fast or complete refresh mode.

Figure 5–24 Publication Items in the Out-Queue Subscription

3. View the records of the publication item by clicking the Select button and then
click "View Records".

4. Click "Show" on each record to see the record data.

5.12.4.3 Viewing Server-Side Synchronization Conflicts and Errors in the Error
Queue
Synchronization conflicts are resolved by the MGP using the relevant conflict rules. All
modifications are applied to the server tables and the transaction is committed. If the
conflict rule is "Server Wins", then an error queue record with the message CONFLICT
DETECTED is also generated to let you know that a conflict occurred and this rule was
applied. A conflict that is resolved by the conflict rules is not rolled back. You can
choose to override the conflict resolution performed by modifying the error queue
record for a conflict and re-executing the transaction.

Browsing the Repository for Synchronization Details

5-34 Oracle Database Mobile Server Administration and Deployment Guide

A mobile server synchronization conflict occurs if:

■ The client and the server update the same row. This error is resolved by the mobile
server by the conflict rules, but is logged in the error queue for you to see the
result. You can choose to modify the result.

■ The client and server create rows with the same primary key values. This error is
resolved by the mobile server, but is logged in the error queue for you to see the
result. You can choose to modify the result.

■ The client deletes the same row that the server updates. This error is resolved by
the mobile server, but is logged in the error queue for you to see the result. You
can choose to modify the result.

A mobile server synchronization error occurs if:

■ The server deletes the same row that the client updates. This error is unresolved
by the mobile server. The administrator must decide how this is resolved.

■ Client is out of sync. This error is unresolved by the mobile server. The
administrator must decide how this is resolved.

■ Client records violate server database constraints. This error is unresolved by the
mobile server. The administrator must decide how this is resolved by either
modifying the database constraints and re-executing the transaction, or by
modifying the error queue record to conform to the constraints.

■ An error occurs when reapplying a backup.

■ An unexpected error occurs with the back-end database, such as a constraint
violation or storage issue.

Note: Normally, only the first error is reported if an error occurs in
the apply phase of the transaction. If you want to view all errors that
occur for the transaction, set the REPORT_ALL_ERRORS parameter to YES
in the Consolidator parameters, which is set in the Instance
Parameters section of the Mobile Manager GUI.

If the administrator resolves the error condition that caused the problem, then the
administrator may attempt to re-apply the transaction or purge the error queues.

The purpose of the error queue is to store transactions that fail due to errors or
conflicts that can arise when a client synchronization does not perform as planned.
Synchronization errors cause a rollback of the application of the client data to the
server database and the error is posted to the error queue. In order to have the
transaction apply to the base tables in the server database, you must resolve the error
condition and re-apply the transaction.

If you decide to reapply the records in the transaction to the application tables, click on
"Error Queue" off the main page for the mobile server, which displays Figure 5–25.

Note: To modify the error queue programmatically, use the
ConsolidatorManager API, as described in Section 2.10, "Resolving
Conflicts with Winning Rules" in the Oracle Database Mobile Server
Developer's Guide.

Browsing the Repository for Synchronization Details

Managing Synchronization 5-35

Figure 5–25 Main Page for Error Queue

As Figure 5–25 shows, you can perform the following for the error transactions for
each user:

■ To view and modify the details for the transaction in the error queue, select the
transaction and click "Publication Items". See Section 5.12.4.3.1, "Modifying
Transaction in the Error Queue" for full details.

■ If you want to re-execute all records for a user, select the transaction and click
"Execute". This may be useful if you have modified the records and want to
execute all transactions at once after the modification.

■ To delete all transactions for a user from the error queue, select the transaction and
click "Purge".

■ To search for a user error queue transaction, enter the user name in the "Search"
field and click "Go". Based on your search criteria, the mobile server displays the
result.

5.12.4.3.1 Modifying Transaction in the Error Queue Before re-executing the transaction,
correct the error within each record of the transaction, as follows:

1. To view the transaction details, select a particular transaction and click
"Publication Items". This shows the Error Queue transaction with the associated
publication items with a number designating Sync Errors or Conflicts. If a
publication item shows an error count of zero, no errors have been reported.

2. Select the publication item to analyze and correct, and click "View Records", which
brings you to the Edit Error Queue Records page, as shown in Figure 5–26. All of
the details of the client and server data are displayed. If the Message field for any
row is not blank, it means that this record produced a Sync Error or a Conflict. A
message of CONFLICT DETECTED signifies a Sync Conflict; any other Message
indicates a Sync Error. A blank Message field implies that the record did not cause
any problems.

Figure 5–26 Error Queue Records for a Single Publication Item

The Error Queue record displays the data that arrived from the client and the data
on the server for the corresponding row, if any. If you click "Show" under "Details",
then you can edit the Error Queue record, as shown in Figure 5–27.

Browsing the Repository for Synchronization Details

5-36 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–27 Show Details of Error Queue Record

3. Correct the reason why the error occurred in the first place. By performing one or
more of the following, you are modifying the record within the error queue. The
changes that you make in this record are not executed until you select the
transaction and click the "Execute" button in the main Error Queue screen shown
in Figure 5–25.

■ Take Server Values—Click "Take Server Values" under Record Details. If a
server record is present, the server-side values will appear in Error Queue
Record. That is, the Error Queue Record will have the same values as Server
Record.

Note: If the conflict resolution is set to "server wins," then you may
lose the client modifications. Thus, if you set the conflict resolution to
"client wins," then you force these changes to overwrite the server.

■ Edit Fields and Select DML Action: Modify any fields in the Error Queue
Record section under Record Details. Once you have completed all necessary
changes to any records, then verify the DML action to be executed for this
record in thee "Select DML Action" pulldown. You can select Update, Insert or
Delete in the Update DML pull-down. Clicking "Save" modifies the record in
the transaction in the error queue.

Alternatively, you can update several transactions at once on a group of selected
records; that is, the operations are simultaneously executed for all records for which
the Select checkbox is checked. This is shown in Figure 5–26.

After selecting the desired rows, choose the buttons at the top of the page ot performs
one or more of the following:

■ Update DML—Select a set of rows using the checkboxes. Choose a value from the
Update DML drop-down list at the top of the page and click "Go".

■ Update Field—Select a set of rows using the checkboxes. Choose the name of the
field from the Update Field drop-down list which contains all the editable fields
in the table. Then enter the value you want to enter for that field and click "Go".

■ Take Server Values—Select a set of rows using the checkboxes and click on Take
Server Values at the top of the page.

Monitoring and Analyzing Performance

Managing Synchronization 5-37

■ Create New Transaction—Select one or more rows with the checkboxes and click
"Create New Transaction". The selected records will be removed from the current
Error Queue transaction and a fresh transaction is created that consists of only
these records. This operation may be used when you want to re-execute a subset of
the original records. After you create a new transaction, you can execute it off the
main Error Queue page.

5.13 Monitoring and Analyzing Performance
The following sections describe how to monitor and analyze Data Synchronization
performance.

■ Section 5.13.1, "Viewing Sync Server Statistics"

■ Section 5.13.2, "Displaying MGP Cycles and Statistics"

■ Section 5.13.3, "Analyzing Performance of Publications With the Consperf Utility"

■ Section 5.13.4, "Monitoring Synchronization Using SQL Scripts"

5.13.1 Viewing Sync Server Statistics
The Performance tab displays the Sync Server statistics of the current session and
statistics of history sessions that have occurred in the last 24 hours.

To view Sync Statistics, click the "Performance" tab. As displayed in Figure 5–28, you
can see the Sync Server statistics from the currently active sessions and compare it to
overall statistics gathered from all sessions in the past 24 hours. This includes an
overall section, the upload phase, and the download phase.

Monitoring and Analyzing Performance

5-38 Oracle Database Mobile Server Administration and Deployment Guide

Figure 5–28 Performance Page

To view statistics from other dates, click the "Synchronization Statistics" link in the
General section of this page. The Synchronization Statistics page contains search
criteria such as user name, device type, and duration. Specify your criteria in the
Search section and click "Go". The Sync Statistics page displays results such as
summary, upload phase, and download phase details.

5.13.2 Displaying MGP Cycles and Statistics
As shown in the Mobile Manager Home page on Figure 5–29, the status for all MGP
Jobs are listed in a table under the Data Synchronization section on the top. To see the
statistics for each MGP Job, select the link under the Status column for the desired
MGP job. For more details, refer to Section 6.3.4, "Viewing MGP Cycle Statistics".

Monitoring and Analyzing Performance

Managing Synchronization 5-39

Figure 5–29 MGP Status

5.13.3 Analyzing Performance of Publications With the Consperf Utility
The Consperf utility profiles your subscriptions and may modify how the publication
item is executed if the utility determines that there is a more performant option. The
Consperf tool evaluates how the SQL within the publication item interacts with our
Data Synchronization query templates. The first synchronization is always a complete
refresh, which is a direct invocation of the query. On subsequent synchronizations, the
query templates determine incremental refreshes. This improves your performance
from not having to perform a complete refresh each time you synchronize. However,
the interaction of our query templates and your SQL may not be optimal, which is
discovered by the Consperf tool. We either modify the query template or type of
logical delete or insert for you or enable you to adjust your SQL to be more performant
in regards to our templates.

In addition, application developers and administrators use this utility to analyze the
performance of subscriptions and identify potential bottlenecks during
synchronization.

This tool generates the following two primary analysis reports:

1. Timing statistics for publication items

2. Explain plans for publications

The Consperf tool automatically tunes subscription properties, if the default templates
do not supply the highest performing option. You can select a client and choose the
desired subscription for performance analysis. Users can change parameter values
before analyzing performance. The analysis results, which are timing and execution
plan reports, are stored on the server and can be accessed by viewing the same user
and subscription.

For a full description of how to use the Consperf utility, see Section 1.2.1 "Analyzing
Performance of Publications With the Consperf Utility" in the Oracle Database Mobile
Server Troubleshooting and Tuning Guide. The Consperf tool uses the Oracle Database

Monitoring and Analyzing Performance

5-40 Oracle Database Mobile Server Administration and Deployment Guide

version of the Explain Plan; thus, for full details on the Oracle Database Explain Plan,
refer to the Oracle Database documentation.

5.13.4 Monitoring Synchronization Using SQL Scripts
If, instead of viewing MGP statistics within the Mobile Manager, you can execute SQL
scripts to monitor mobile application status during synchronization. For a full
description of how to monitor synchronization, see Section 1.2.2, "Monitoring
Synchronization Using SQL Scripts" in the Oracle Database Mobile Server Troubleshooting
and Tuning Guide.

6

Managing Jobs with the Job Scheduler 6-1

6 Managing Jobs with the Job Scheduler

You can schedule one or more jobs to execute at a specific time. To enhance
performance, you can manage your jobs across one or more Job Schedulers. Each
mobile server in the farm starts a Job Scheduler, also known as a Job engine.

By default, jobs are not registered for specific Job Schedulers. Instead, all Job
Schedulers distribute and execute the registered jobs. All Job Schedulers work in
tandem with each other, providing failover to each other. Only one job can execute at a
Job engine at a time.

You can further manage your jobs by selecting which Job Scheduler on a specified
mobile server is to execute the job. Or you can start a Standalone Job engine to execute
jobs, where a Standalone Job engine exists outside of the mobile servers.

The following sections describe how you can schedule jobs through the Mobile
Manager and manage one or more job engines.

■ Section 6.1, "Scheduling a Job to Execute at a Specific Time or Interval"

■ Section 6.2, "Managing the Job Engine"

■ Section 6.3, "Manage Scheduled Jobs Using the Mobile Manager"

■ Section 6.4, "Managing or Creating Jobs Using ConsolidatorManager APIs"

6.1 Scheduling a Job to Execute at a Specific Time or Interval
You can choose to execute any job—which can be any application—at a specific time or
interval. For example, the default MGP process (see Section 5.1, "How Does the
Synchronization Process Work?") is a job that executes at a regular interval. The default
behavior is for the MGP process to execute every 60 seconds to apply all incoming
modifications from the clients and compose all outgoing messages to the clients from
the repository. You can define how often the MGP process executes, or even schedule a
time for it to stop execution. You can schedule any job with this same mindset.

Note: For an overview on how to create a job out of one of your
applications, see Section 6.4, "Managing or Creating Jobs Using
ConsolidatorManager APIs".

The Job engine that monitors the job execution is the Job Scheduler. For example, by
default, the Job Scheduler fires off the default MGP process every 60 seconds. It is the
mechanism that tracks all of the scheduled jobs and ensures that your defined job is
executed when you wanted it to be executed. You can turn it on and off, and monitor
alerts specific to the Job Scheduler.

Managing the Job Engine

6-2 Oracle Database Mobile Server Administration and Deployment Guide

Each mobile server in the farm starts a Job Scheduler to enhance the performance of
your job execution through failover and executing jobs concurrently. You can also start
a Standalone Job engine, as described in Chapter 6, "Create and Manage Jobs With
APIs" in the Oracle Database Mobile Server Developer's Guide.

See Section 6.2, "Managing the Job Engine" for details on how to manage the Job
Schedulers; see Section 6.3, "Manage Scheduled Jobs Using the Mobile Manager" on
how to create and manage jobs that you want scheduled.

6.2 Managing the Job Engine
The Job Scheduler manages jobs that you create and schedule. However, each Job
Scheduler needs to be managed, as well. You navigate to each Job Scheduler page in
the Mobile Manager by selecting the desired mobile server from the list of mobile
servers on the mobile server farm screen. At the bottom of the mobile server screen,
click "Job Scheduler", which brings up the "Home" screen for that Job Scheduler.

Note: If you schedule jobs at any of the Job Schedulers, they will be
managed across all Job Schedulers in the farm unless you designate
the job to be executed on a specified mobile server.

The following sections describe how to manage the Job Scheduler:

■ Section 6.2.1, "Starting the Job Scheduler"

■ Section 6.2.2, "Checking Job Scheduler Alerts"

■ Section 6.2.3, "Managing Active Jobs"

■ Section 6.2.4, "Managing the Job History List"

6.2.1 Starting the Job Scheduler
Figure 6–1 displays the Job Scheduler’s default status on the Job Scheduler home page.
To start the Job Scheduler, click "Start". At this stage, the "Start" button is replaced by
the "Stop" button. The following image displays that the Job Scheduler is up and
running.

Managing the Job Engine

Managing Jobs with the Job Scheduler 6-3

Figure 6–1 The Job Scheduler Home Page

To stop the Job Scheduler, click "Stop". Stopping the Job Scheduler prevents any new
jobs from starting on this mobile server. However, any existing jobs on this mobile
server will continue to execute until finished. Stopping the Job Scheduler does not kill
any existing jobs. All other jobs are moved to other available Job Schedulers in the
farm.

If you want to prevent a single job from being launched, disable the application on the
Administration screen. See Section 6.3.5, "Enabling or Disabling Jobs" for more
information on disabling applications.

6.2.2 Checking Job Scheduler Alerts
When the Job Scheduler fails, then the Alerts table displays these exceptions as critical
alerts. When the Job Scheduler has trouble with executing your job, then these
exceptions are displayed as warning alerts.

The Job Scheduler home page enables administrators to check alerts that are registered
in the job engine. To check alerts, locate the "Alerts" table and select the alert that you
need to view under the "Select" column. Click "Check".

6.2.3 Managing Active Jobs
As shown in Figure 6–1, the Active Jobs table on the Job Scheduler home page contains
information—such as job name, class name, parameter value, job start time, and
duration.

For more information on how to manage jobs, see Section 6.3, "Manage Scheduled Jobs
Using the Mobile Manager".

To terminate a job, click the "Administration" tab, select the job, and click "Delete". This
does not terminate active jobs, but prevents the job from executing in the future.

6.2.4 Managing the Job History List
The number of current registered jobs in the Job History list is listed on the Job
Scheduler home page under the Status Date line. All registered jobs from all Job

Manage Scheduled Jobs Using the Mobile Manager

6-4 Oracle Database Mobile Server Administration and Deployment Guide

Schedulers are listed. Click on the number displayed to bring up the Job History page.
The Job History page enables you to provide criteria to search, sort, and manage the
job history based on job properties—such as name, class name, result, or a specific date
and time. Based on your search criteria, the Job History page displays job history
details under the "Results" section.

Figure 6–2 displays the "Job History" page.

Figure 6–2 Job History Page

You can sort the messages by any of the headers. For example, to sort the job history
details by name, click "Name" in the header title region. It toggles between A-Z and
Z-A.

To delete a single job, select the job and click "Delete". To delete all job history entries
that match your search criteria, click "Search and Delete".

6.3 Manage Scheduled Jobs Using the Mobile Manager
The most notable scheduled job is the MGP (see Section 5.1, "How Does the
Synchronization Process Work?"). By default, it is scheduled to execute every 60
seconds to perform a specific task for data synchronization. You can modify the
schedule of this existing job, as well as create other jobs for your own purposes to
execute at a regular interval.

From the "Job Scheduler" screen, click the "Administration" tab, where you can create a
new job or edit existing jobs. The Scheduled Jobs section displays the jobs that are
scheduled in the job engine.

The following sections enable administrators to accomplish the following tasks:

■ Section 6.3.1, "Creating a New Job"

■ Section 6.3.2, "Editing Existing Jobs"

■ Section 6.3.3, "Viewing MGP Current Cycle Statistics"

■ Section 6.3.4, "Viewing MGP Cycle Statistics"

■ Section 6.3.5, "Enabling or Disabling Jobs"

Manage Scheduled Jobs Using the Mobile Manager

Managing Jobs with the Job Scheduler 6-5

■ Section 6.3.6, "Deleting Jobs"

■ Section 6.3.7, "Default Jobs"

6.3.1 Creating a New Job
In order to create a new job, you create the schedule of how often and when an
existing application is executed. To create this schedule, navigate to the Job Scheduler
Administration screen and click "Create A New Job".

Figure 6–3 displays the top section of the "Create a New Job" page. Give the job a
name, select the checkbox for Enabled to enable the job (or leave blank to leave
disabled), and select the checkbox for "Save to Job History" if you want a record of this
application executing.

In the Preferred Location field, specify a preferred Job Scheduler location. This enables
you to specify that the job executes on a specific mobile server or, if available, a
Standalone Job engine. All available Job Schedulers and the Standalone Job engine are
shown in the drop-down list.

If you do not specify a preferred location, the job is executed by one of the available
Job Schedulers in the registered mobile servers or Standalone Job Scheduler, if any.
This job can fail over to any of the Job Schedulers, if necessary. However, if a job has
been given a preference for specific Job Scheduler, it will keep running on that Job
Scheduler as long as the Job Scheduler is available. Only if that Job Scheduler becomes
unavailable will it failover to another Job Scheduler in the farm.

Note: You can start a Standalone Job engine if all the mobile servers
are busy with processing and you want to execute one or more jobs in
a separate process for performance reasons.

A Standalone Job engine can be started with the ConsolidatorManager
API, as described in Chapter 6, "Create and Manage Jobs With APIs"
in the Oracle Database Mobile Server Developer's Guide.

Figure 6–3 Create a New Job - Top Section

Under the "Job Class" section, select if the Job class is for an MGP process or another
class.

■ MGP process: For an MGP process, select if this is for "Apply Only" or "Apply and
Compose". The MGP process can be modified to perform application only of new
and modified records from the clients. This is beneficial for applications that never
have to update information from the back-end server database.

For the "Select Database" pull-down, select the database where the MGP job
process shall execute.

Manage Scheduled Jobs Using the Mobile Manager

6-6 Oracle Database Mobile Server Administration and Deployment Guide

Choosing "Apply Only" saves performance if it is relevant for your application.
For example, if you had a company that performed a lot of updates throughout the
day, but no one needed to know the new information until the next day, you could
schedule an MGP process to perform "Apply Only" all day to update the
repository, and schedule another MGP process that executes only at night with
"Apply/Compose" to perform the last updates and then bring down all of the
days modifications to all of the users.

■ Custom class: If this is not for an MGP process, then enter the class name to be
executed for this job and any parameter values. Since you design the class, enter
the parameter as you have designed the parameter format. There are two default
jobs, which are described in Section 6.3.7, "Default Jobs".

Figure 6–4 displays the bottom section of the "Create a New Job" page, which is where
you define when and how often your job executes.

Figure 6–4 Create a New Job - Bottom Section

Enter data in the "Create a New Job" page as described in the following tables.

Table 6–1 describes data that must be entered in the "Start" section.

Table 6–1 Start Details Description - Schedule Section

Field Description Required

Immediately To start the job immediately, select this option. Optional

Later To start the job at a later time, select this option and specify
the date and time when this job is to start.

Optional

Table 6–2 describes data that must be entered in the "Expiration" section.

Table 6–2 Expiration Details Description - Schedule Section

Field Description Required

Never Expire To ensure that the chosen job schedule does not
expire—that is, this job always executes—select this
option.

Optional

Expire If you want the job to expire after a specified number of
minutes—even if it has not execute yet—then specify the
number of minutes in this field.

The Job Scheduler cancels jobs that do not start at the
specified time. However, it does not stop jobs that have
already started.

Optional

Manage Scheduled Jobs Using the Mobile Manager

Managing Jobs with the Job Scheduler 6-7

Table 6–3 describes how often the job executes in the "Repeat" section.

Table 6–3 Repeat Details Description - Repeat Section

Field Description Required

One Time Only The job executes only once. Optional

Interval The job executes after a specified interval has passed. The
interval duration between execution of the job is defined in
seconds.

Optional

Weekly The job executes on the specified day of the week. You can
specify an interval of whether this executes weekly (1 in
the Frequency pulldown), every other week (2 in the
Frequency pulldown) and so on.

Optional

Monthly The job executes on a specified day of the month. Same as
above, but with the months of the year.

Optional

Table 6–4 defines whether the chosen schedule repeats indefinitely or whether you
want it to execute only on a certain date/time.

Table 6–4 Repeat Until Details Description - Repeat Section

Field Description Required

Indefinite To repeat the job schedule indefinitely, select this option. Optional

Custom To specify how long this job executes until, specify the
date and time of when the job is canceled.

Optional

To implement the job schedule after specifying changes to the schedule, click "OK". To
retain or restore previous job schedule values, click "Cancel".

Note: The calendar does not display the selected date if the Java
script feature in your browser, any pop up blocking tools, or search
tools are installed and enabled.

6.3.2 Editing Existing Jobs
Navigate to the Job Scheduler Administration screen. To edit existing jobs, click "Edit".
Modify the same fields that are described in Section 6.3.1, "Creating a New Job".

Manage Scheduled Jobs Using the Mobile Manager

6-8 Oracle Database Mobile Server Administration and Deployment Guide

6.3.3 Viewing MGP Current Cycle Statistics
As shown in the Mobile Manager Home page, the status for all MGP Jobs are listed in
the "MGP Status" table under the "Data Synchronization" section on the top. To see the
statistics for each MGP Job, select the link under the "Status" column for the desired
MGP Job.

Figure 6–5 MGP Status

On the MGP Current Cycle page as shown in Figure 6–6, the administrator can view
the current cycle status of the desired MGP Job.

Manage Scheduled Jobs Using the Mobile Manager

Managing Jobs with the Job Scheduler 6-9

Figure 6–6 MGP Current Cycle

6.3.4 Viewing MGP Cycle Statistics
From the mobile server home page, select "Data Synchronization" and navigate to the
"MGP" tab to display more MGP Job statistics. The mobile server administrator can
view MGP job statistics as shown on Figure 6–7. The columns are separated so that
you can see how, in the last 24 hours, the MGP has performed overall, as well as for
each individual phase: apply, compose and process.

Figure 6–7 MGP Page

When you click on "MGP Current Cycle", you can see what the MGP process is
currently doing. For instance, you can check if the apply or compose cycle is running
when the MGP cycle is in progress. If you have set the MGP_HISTORY instance
parameter, (see Section 5.6, "Configuring Data Synchronization For Farm or Single

Manage Scheduled Jobs Using the Mobile Manager

6-10 Oracle Database Mobile Server Administration and Deployment Guide

Mobile Server"), then upon completion of the apply or compose cycle, the cycle details
are stored in Cycle History.

Since the front page only shows the last 24 hours, you can view farther back by
clicking on the MGP Apply/Compose Cycle Statistics. You can set a date range to
search and can even specify whether to search based upon the following:

■ Apply Only or Apply/Compose

■ Success, Failure, or Conflict results

When you click "MGP Apply/Compose" cycles, you can search for a range of
historical records of these cycles and then view the details of each cycle.

6.3.5 Enabling or Disabling Jobs
You can enable or disable a job from the Administration screen off of the main Job
Scheduler screen. Select the job that you need to modify and either click "Enable" or
"Disable". The "Status" column confirms the changed status.

6.3.6 Deleting Jobs
Navigate to the Job Scheduler Administration screen. To delete a job, select the job that
you need to delete and click "Delete". The Job Scheduler displays a warning message
that seeks your confirmation to delete the chosen job. Click "Yes". You will be returned
to the "Administration" tab.

6.3.7 Default Jobs
Oracle Database Mobile Server contains default jobs. As a user, you can enable or
disable these default jobs and edit or delete them. This edition contains the following
default jobs.

■ MGP Process: MGP_DEFAULT

■ Purging History: PURGE_HISTORY_DEFAULT

6.3.7.1 MGP_DEFAULT
You have to have at least a single MGP process for apply/compose phase of the
synchronization phase. The MGP_DEFAULT is this process. You can modify this
process to be apply only, or you can modify when the MGP process is executed. You
can create other MGP processes, if you wish.

Job Name
MGP_DEFAULT

Job Class
oracle.lite.sync.MgpJob

Job Parameter Value
APPLY_COMPOSE

The parameter value must be a string of the value APPLY_COMPOSE or APPLY_ONLY.
When scheduling or editing this parameter using the "Job Scheduler’s Edit Jobs" page,
you can choose the required parameter value from the "Apply/Compose" list.

Managing or Creating Jobs Using ConsolidatorManager APIs

Managing Jobs with the Job Scheduler 6-11

6.3.7.2 PURGE_HISTORY_DEFAULT
In order to preserve disk space, the administrator wants to purge the history. This job
is created for you to automatically purge the history at a selected interval. You can
modify the interval or disable this job, if you wish. This section describes the job class,
job parameter value and its corresponding description.

Job Name
PURGE_HISTORY_DEFAULT

Job Class
oracle.lite.sync.PurgeHistoryJob

Job Parameter Value
History=Sync,MGP,Job;Days=7

Since this Job is a customized class, the parameter is defined and parsed within the
purge history class. The structure of this parameter is a string with two name/value
pairs: what type of history to purge and for how many days. In this example, the
history purged is for the Sync, MGP, and Job historical data. The history is purged for
the last seven days. You can modify the number of days or add/delete the history logs
that this applies to. The only options are Sync, MGP, or Job. For example, if you want
every record that is 3 days old or more to be erased, modify the 7 to a 3.

6.4 Managing or Creating Jobs Using ConsolidatorManager APIs
Application developers can create and manage their jobs using the
ConsolidatorManager APIs. For full details, see Chapter 6, "Create and Manage Jobs
With APIs" in the Oracle Database Mobile Server Developer's Guide.

Managing or Creating Jobs Using ConsolidatorManager APIs

6-12 Oracle Database Mobile Server Administration and Deployment Guide

7

Manage Your Devices 7-1

7 Manage Your Devices

When you install your mobile client software, the mobile device manager client
software is automatically installed and, in most cases, bootstrapped. Within the Mobile
Manager, the administrator can send commands to remote devices. The next time that
the device is available—either through wireless connection or synchronization—the
command that you send will execute.

The following sections describe how to manage your devices:

■ Section 7.1, "Customize the Mobile Client Software Installation for Your Mobile
Device"

■ Section 7.2, "Configuring Mobile Clients Before Installation"

■ Section 7.3, "Managing Devices"

■ Section 7.4, "Configuring and Customizing Your Mobile Device Platform"

■ Section 7.5, "Sending Commands to Your Mobile Devices"

■ Section 7.6, "Managing Device Software Updates"

■ Section 7.7, "Using the Device Manager Agent (dmagent) on the Client"

■ Section 7.8, "Managing the Network Protocol Between the Device and the Mobile
Client Software"

■ Section 7.9, "Installation Configuration (INF) File"

■ Section 7.10, "Defining Device Manager Commands With the Device Manager OTL
Tag Language"

■ Section 7.11, "Using Mobile Manager to Manage iOS Devices"

7.1 Customize the Mobile Client Software Installation for Your Mobile
Device

The mobile device software for your language and platform is installed when you
install the mobile client on your device.

You can customize the installation for your mobile clients by customizing the platform
and the setup configuration files for the platform, as follows:

■ Certain modifications can be made to the mobile client configuration files before
installation. See Section 7.2, "Configuring Mobile Clients Before Installation" for
more information.

Configuring Mobile Clients Before Installation

7-2 Oracle Database Mobile Server Administration and Deployment Guide

■ Customize the platform to install additional binaries, applications, and other
environment modifications. See Section 7.4, "Configuring and Customizing Your
Mobile Device Platform" for more information.

Once installed, you can locally or remotely manage the client using the Device
Manager tool. See Section 7.7, "Using the Device Manager Agent (dmagent) on the
Client" for more information.

7.2 Configuring Mobile Clients Before Installation
When you install the mobile client on the device, a few configuration files are installed,
such as the ose.ini, devmgr.ini and odbc.ini files. However, you can pre-configure
some of the parameters destined for the client ose.ini, devmgr.ini and odbc.ini files
using either of the following:

■ Using the Mobile Manager: Navigate to the Mobile
Devices->Administration->Configuration Management page, which enables you to
modify the parameters, located in the INF file, corresponding to the mobile client
platform that is to be downloaded to the client.

■ Edit the <ini> section of the INF file: To edit the INF file directly, see Section 7.9,
"Installation Configuration (INF) File".

Note: The ose.ini, devmgr.ini and odbc.ini files are available in
under $MOBILE_CLIENT_HOME/bin. You must have write
permissions on the directory where these are located to be able to
modify them.

1. Navigate to the "Mobile Device" screen.

2. Click "Administration".

3. Click "Configuration Management".

4. The parameters destined for the client configuration files are initially set up in
different INF files. You can modify some of the parameters in these files. However,
this is a very sensitive configuration and should only be done if you fully
understand the function of each parameter. Normally, the only time you modify
these parameters is when directed by Oracle Support.

Select the INF file from the File Name pull down and click Show. This enables you
to modify the INI section in this particular INF file. All of the current assignments
are displayed.

For each INF file, the parameters in each INI section is displayed. You can only
add name value pairs to existing sections.

5. To add name/value pairs to the existing sections, click "Add". To modify a
parameter, modify it and click "Apply". To delete, select the configuration pair and
click "Delete".

6. To add more sections, you must modify the INF file directly. To modify or add
items to the existing sections, you can click "Add".

7. A screen is displayed asking for two strings: a name and a value. Enter these items
and click "OK".

The following sections describe each INF file:

■ Section 7.2.1, "Modifying Device Management Parameters for Client Device"

Configuring Mobile Clients Before Installation

Manage Your Devices 7-3

7.2.1 Modifying Device Management Parameters for Client Device
When you select Device Management from the File Name pull down, you can modify
the dmc.inf file. The following example shows the INI section directly from the
dmc.inf file:

<ini>
 <item name="DEVMGR" section="DMC">
 <item name='PUSH_PORT'>8521</item>
 <item name='DISABLE_PROMPT'>FALSE</item>
 <item name='UPDATE_DAY'>0</item>
 <item name='UPDATE_TIME'>0</item>
 </item>
</ini>

When you select Device Management->Administration->Configuration Management,
you can modify the device management parameters as follows:

■ Modify generic platform parameters, as shown in Figure 7–1.

■ Modify platform-specific parameters, as shown in Figure 7–2. These parameters
exist only for certain platform types.

To add a name/value pair, click "Add". To modify a parameter, modify it and click
"Apply". To delete, select the configuration pair and click "Delete".

Figure 7–1 Adding Name/Value Pairs to Device Management INF File

Where the parameters are as follows:

Table 7–1 Device Management Parameters in DEVMGR.INF File

Parameter Description

PUSH_PORT The listening port on the mobile device for incoming commands
from the mobile server. By default, the value is 8521. Port listed
here is for all mobile devices; thus, all clients are configured with
the identical port number. Also, the server administrator can
disable the PUSH_PORT completely (for security reasons) by
setting the value of PUSH_PORT to zero. Do not modify the PUSH_
PORT value on the client in the devmgr.ini file.

Configuring Mobile Clients Before Installation

7-4 Oracle Database Mobile Server Administration and Deployment Guide

DISABLE_PROMPT The DISABLE_PROMPT parameter accepts a TRUE or FALSE value,
which causes the following action:

■ TRUE: The device checks for software updates available on
the server. If updates are available, these are brought down
to the client and installed.

■ FALSE: The device checks for software updates available on
the server. If updates are available, the option to bring down
the updates and install them is displayed to the user, who
decides what action to take. If the client chooses to update,
then these are brought down to the client and installed.

UPDATE_DAY Day when the mobile device checks for software updates. Used
in combination with UPDATE_TIME. UPDATE_DAY takes 0 - 8 which
translates to the following days:

■ Never = 0

■ Daily = 1

■ Sunday = 2

■ Monday = 3

■ Tuesday = 4

■ Wednesday = 5

■ Thursday = 6

■ Friday = 7

■ Saturday = 8

UPDATE_TIME Time of day that the mobile device checks for software updates
from the mobile server. Used in combination with UPDATE_DAY.
UPDATE_TIME can take values 0 - 23 which translates to the
following time:

■ 00:00 = 0

■ 01:00 = 1

■ 12:00 = 12

■ 13:00 = 13

■ 23:00 = 23

USER_NAME Do not modify; automatically retrieves the user name from the
mobile server when downloaded to the client.

Note: You can also modify the UPDATE_DAY and UPDATE_TIME
parameters on the client through the dmagent UI. See Section 7.7,
"Using the Device Manager Agent (dmagent) on the Client" for details.

Table 7–1 (Cont.) Device Management Parameters in DEVMGR.INF File

Parameter Description

Managing Devices

Manage Your Devices 7-5

Figure 7–2 Platform-Specific Parameters

7.3 Managing Devices
From the Mobile Devices screen, as shown in Figure 7–3, you can perform the
following:

■ Add—Click Add to add a new device.

■ View—Select the device to view information about this device.

■ Delete—Select the checkbox next to the desired device and click Delete.

Note: If you want to delete a device, use the delete method from the
Device class. To retrieve the Device object, use either the getDevice
or getDeviceByName methods, as demonstrated below.

If the device id is available, the following can be directly used:

if (oracle.lite.resource.ResourceManager.getInstance() == NULL)
oracle.lite.resource.ResourceManager.initialize(JDBC_URL, USER,
PASSWORD);

oracle.lite.resource.Device d =
oracle.lite.resource.ResourceManager.getInstance().getDevice(device
Id);

d.delete();

If the device id is not available, then you can provide the device name,
which is shown on the Mobile Manager UI in the
oracle.lite.resource.User.getDeviceByName (deviceName)
method. Once retrieved, use the delete method of the Device object as
demonstrated above.

Managing Devices

7-6 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–3 Devices Page

Once you select the intended device, several tabs at the top provides information
about the device. Use this information to determine what sort of administration each
one needs in order to continue to operate smoothly. You can use this information to tell
what needs to be upgraded on each device. The following sections cover each of these
tabs.

■ Section 7.3.1, "Configuring the Mobile Device through Properties"

■ Section 7.3.2, "Viewing Device Information"

■ Section 7.3.3, "Viewing Database Information"

■ Section 7.3.4, "Viewing Software Information"

■ Section 7.3.5, "Commands"

■ Section 7.3.6, "Queue"

■ Section 7.3.7, "Command History"

7.3.1 Configuring the Mobile Device through Properties
To modify the configuration of a specific device, select the device. Figure 7–4 is
displayed:

Managing Devices

Manage Your Devices 7-7

Figure 7–4 Mobile Device Properties and Information

To modify the configuration of a specific device, do the following:

1. The device name is displayed on the first line. You can modify the name of the
device to anything that you want. For example, if you have a naming convention
for all devices in your organization, modify this field to reflect this convention.
The name defaults to the mobile device platform.

2. Enable the device by selecting "Yes"; disable the device by selecting "No." See
Section 7.4.2, "Enabling or Disabling All Mobile Devices in a Platform" or
Section 7.3.1.1, "Enabling or Disabling a Mobile Device" for more information.

3. "Set Upgradable" to "Yes" to retrieve all software updates for the device. If you
want the device to continue to receive automatic software updates for the device,
choose Yes. If you want the device to stay with the current software versions,
choose No. See Section 7.6, "Managing Device Software Updates" for more
information.

4. Valid: If the Device Manager software is installed and correct. If de-installed, Valid
displays "No".

5. The installed address is displayed in the "Address" field. If the address is an IP
address or a phone number, these may change at some point. You can enter the
new addresses in this field.

6. Choose the Network Provider type. You can choose a different network provider
than that with which you chose to install. The default list includes HTTP, SMS, or
RAPI. For Android client, the only supported network provider is SMS. If you
have added another network provider, these custom network providers will also
be included in the list. For iOS client, there is no need to choose the network
provider type.

Note: To create a network provider, see Section 7.8, "Managing the
Network Protocol Between the Device and the Mobile Client
Software".

Managing Devices

7-8 Oracle Database Mobile Server Administration and Deployment Guide

7.3.1.1 Enabling or Disabling a Mobile Device
You can enable or disable a mobile device. By default, the device is enabled, which
means that the user can log in, perform updates, synchronize, and perform other
duties. If you disable the device, then it can no longer perform work for the user. See
Section 7.3.1, "Configuring the Mobile Device through Properties" for where you
enable or disable the device.

Why would you want to disable the device? If the mobile device was lost or the user is
no longer with the company, but did not return the device, then you might choose to
send a deinstall command (see Section 7.5, "Sending Commands to Your Mobile
Devices") and then disable the device. This way, the software is no longer on the
device and even if the user had another copy of the software to reinstall the
application, they could no longer log in and retrieve any information from your
company.

7.3.2 Viewing Device Information
The Mobile Manager displays general and database information for a chosen device.
To view device information, click "Device Info". If no information is displayed, click
"Retrieve Device Information". This sends a command to the device, which is then
posted back to this page. Click reload until the information is posted.

In the first section, all of the details about the operating system is provided. You no
longer have to go to the machine and type in a command to determine the operating
system, its version and the latest service pack applied. This section will provide you
with all of this information. In addition, you can see what the host name and IP
address is.

The second section details how much memory you have on the device. This includes
how much virtual or physical memory is on the device, and how much of that
memory is still available.

The third section details the type of processor that is installed on the machine. For
example, it describes the type of Intel processor that is installed on your Windows
machine. You know exactly when your users must be upgraded to the next version of
processor for the capability that they need.

For Windows-based devices only, the fourth section details the version of the JDK that
you have installed and where it is installed. You no longer have to ask your users to
check which version of JDK that they have installed. You can view this information for
each device and know if the mobile client software must be upgraded or not. In
addition, this section describes the CLASSPATH for the mobile client environment.

The last section details the amount of storage space that exists and is currently
available on each drive.

7.3.3 Viewing Database Information
When you select the Database Info tab, you see all of the information about any
databases installed on the mobile client.

Configuring and Customizing Your Mobile Device Platform

Manage Your Devices 7-9

The first section provides the ODBC driver name, so that you can know which version
that is installed on your client. In addition, you can see what DLL is used for the
database and the directory.

The third section displays the configuration in raw form in the DEVMGR.INI files on the
client. Each section in the DEVMGR.INI file is displayed. The purpose of this section is
for you to view the sections and parameters in the INI files.

7.3.4 Viewing Software Information
You can view all of the software that is installed on the mobile device by clicking
"Applications", which lists each application, its version, setup time, and location
details. If no information is available, click "Retrieve Software Information", which
sends a command to the device.

Once the information becomes available, which is dependent on when the device
reconnects, the platform is listed for the device. Select the platform to see the software
information.

7.3.5 Commands
You can send commands to each device by itself or to all devices in a platform to
gather information or execute some function. This is described fully in Section 7.5,
"Sending Commands to Your Mobile Devices".

7.3.6 Queue
The queue shows any commands that are currently in process. That is, if the device is
not currently connected, then the command is placed into the queue until the device
becomes available. Viewing this queue shows you all of the commands that are
queued up waiting for devices.

7.3.7 Command History
This shows all of the commands executed against this device.

7.4 Configuring and Customizing Your Mobile Device Platform
Oracle Database Mobile Server ships with a number of predefined platforms that you
can download and install on your mobile client device. However, there are some
devices that the CAB file is provided within the installation, but which are not
registered and available for download within the Mobile Manager. You can register
these devices—if necessary—for any needed device platform. After registration, the
platform appears on the Mobile Manager setup screen for your mobile client
installations.

A mobile client platform consists of a CAB file and an Installation Configuration File
(INF file) that describes how to install the files.

As described in Section 4.3.5, "Mobile Client Install" in the Oracle Database Mobile Server
Installation Guide, you normally install the mobile client software by selecting the type
of mobile device and the language in the setup UI. However, you can extend any of
these platforms to not only install the mobile client software for the platform, but also
install any of your binaries or applications. The following sections describe how to
configure your platform or create and customize a new platform.

■ Section 7.4.1, "Modifying Platform Properties for Installation"

Configuring and Customizing Your Mobile Device Platform

7-10 Oracle Database Mobile Server Administration and Deployment Guide

■ Section 7.4.2, "Enabling or Disabling All Mobile Devices in a Platform"

■ Section 7.4.3, "Extend or Create a Custom Platform"

7.4.1 Modifying Platform Properties for Installation
Before you install a platform on your system, you should ensure that all of the
configuration details for the mobile device setup are what you want. A setup file is
used to detail installation details, such as directories, binaries to install, path and
CLASSPATH additions, and so on. You can modify the setup INF file that is defaulted for
each platform, or you can create your own and point the platform to the new setup
INF file.

Generally, you do not want to modify the generic platforms provided for you, in case
you need to go back to basics. Thus, you should create your own unique platform by
extending one of the provided platforms. This copies the existing platform into a
separate platform with a user-provided name. Once extended, modify this platform
with your own characteristics. For instructions on how to extend one of the provided
platforms, see Section 7.4.3, "Extend or Create a Custom Platform".

To modify how the platform is installed, perform the following:

1. Designate the name and path of the setup INF file for your platform by navigating
to the Mobile Devices page.

a. Click "Platforms".

b. Click on the platform for which you are currently modifying the INF file.

c. Make sure that the correct setup INF file is listed in the Setup INF field.

Note: If you want to modify this INF file or provide a different INF
file, then on the mobile server, navigate on the file system to $MOBILE_
HOME/Mobile/Server/admin/repository/setup/dmc/ to where the
setup INF files are located. Open the file that you want to modify or
create a new INF file. Add the changes you want for this platform. See
Section 7.9, "Installation Configuration (INF) File" for the
configuration syntax.

2. Choose a Bootstrap group command from the list displayed. After the device
bootstrap is complete, you can choose a group command to execute when it is
completed. For example, choosing the device information command retrieves all
of the device information to the Mobile Manager for viewing.

3. Enable or disable all devices in the platform. If you enable these devices by
choosing Yes, then each user can log in, perform updates, synchronize, and
perform other duties. If you disable these devices by selecting No, then they can
no longer perform work for the user. See Section 7.4.2, "Enabling or Disabling All
Mobile Devices in a Platform" for more information.

4. "Set Upgradable" to "Yes" to retrieve all software updates for all devices in the
platform. If you want these devices to continue to receive automatic software
updates, choose "Yes". If you want these devices to stay with the current software
versions, choose "No". See Section 7.6, "Managing Device Software Updates" for
more information on updating software on your device.

Configuring and Customizing Your Mobile Device Platform

Manage Your Devices 7-11

7.4.2 Enabling or Disabling All Mobile Devices in a Platform
You can enable or disable all mobile devices in a platform. By default, each device in
the platform is enabled, which means that the user can synchronize to the database
and perform software updates. If you disable the device, then it can no longer perform
work for the user. If you wanted to disable a single device—because a user has lost the
device or left the company—then you follow the instructions in Section 7.3.1.1,
"Enabling or Disabling a Mobile Device". However, if you want to enable or disable all
devices for a platform, then see Section 7.4.1, "Modifying Platform Properties for
Installation".

When disabling all devices for a platform, you could send a deinstall command (see
Section 7.5, "Sending Commands to Your Mobile Devices") and then disable all of the
analog mobile devices.

7.4.3 Extend or Create a Custom Platform
You can create custom device platforms either by using an existing platform as the
template or by enabling a platform.

■ Only a few of the available platforms are displayed in the mobile client setup
screen. To add a platform that you need, enable the desired platform. See
Section 7.4.3.1, "Enable a Platform for Your Mobile Client" for more information.

■ You can extend an existing platform to customize that platform to install
additional binaries, applications, or with specific instructions to modify the client
machine. See Section 7.4.3.2, "Create a Custom Platform By Extending an Existing
Platform" for more information.

7.4.3.1 Enable a Platform for Your Mobile Client
Not all of the possible platforms are enabled for the mobile client setup screen. To
enable a platform for your client device, do the following:

1. On the Mobile Devices screen, click "Platforms".

2. On the Platforms screen in the Search pulldowns, select the language and either
Disabled or All and click "Go".

3. Select the platform name that you want to enable.

4. Enable the device by selecting "Yes" in the Enable pulldown.

5. Click "OK". The device is now enabled and will be visible in the client setup
screen.

7.4.3.2 Create a Custom Platform By Extending an Existing Platform
You may wish to install additional binaries, applications, or provide specific
instructions to modify the client machine when the client platform is installed on the
device. The INF file contains the "directions" to the client on how the platform is
installed.

To create a custom platform from an existing platform, do the following:

1. Create a new INF file for your extended platform—On the mobile server, navigate
on the file system to $MOBILE_
HOME/Mobile/Server/admin/repository/setup/dmc/ to where the setup INF files
are located. Create an empty INF file for your new platform. As discussed in
Section 7.9, "Installation Configuration (INF) File", when you extend a platform,
the INF files that are used for the installation is a concatenation of your platform

Sending Commands to Your Mobile Devices

7-12 Oracle Database Mobile Server Administration and Deployment Guide

and every platform that it was extended from—just like how objects extend
methods, properties and attributes from each other in an object-oriented language.

2. On the Mobile Devices screen, click "Platforms".

3. On the Platforms screen, select the platform name and click "Extend".

4. Enter the custom platform name, path, and file name of the blank setup INF file
you created in step 1. The setup INF file determines what is installed and how the
client machine environment is modified. See Section 7.9, "Installation
Configuration (INF) File" for instructions on how to modify the setup INF file after
you have completed extending the platform.

5. Choose a Bootstrap group command from the list displayed. After the device
bootstrap is complete, you can choose a group command to execute when it is
completed. For example, choosing the device information command retrieves all
of the device information to the Mobile Manager for viewing.

6. Enable or disable the device. If you enable the device by choosing Yes, then the
user can log in, perform updates, synchronize, and perform other duties. If you
disable the device by selecting No, then it can no longer perform work for the user.

7. Set Upgradable to Yes to retrieve all software updates for the device. If you want
the device to continue to receive automatic software updates for the device, choose
Yes. If you want the device to stay with the current software versions, choose No.

8. Click "OK".

9. After you have extended your platform and given it a unique name, you should
modify the setup INF file for this platform.

The client can now install your customized platform from the setup UI.

7.5 Sending Commands to Your Mobile Devices
As an administrator, you can create and send commands to any mobile device. The
following sections describe how to send existing commands to devices and create new
commands for your own purposes:

■ Section 7.5.1, "Scheduling or Sending Commands"

■ Section 7.5.2, "Modifying Existing Commands"

■ Section 7.5.3, "Creating New Commands"

■ Section 7.5.4, "Creating Group Commands"

■ Section 7.5.5, "Enabling or Disabling Mobile Device Commands"

■ Section 7.5.6, "Viewing the Mobile Device Command History"

7.5.1 Scheduling or Sending Commands
You can send or schedule a command to be sent from the Mobile Manager.

7.5.1.1 Sending Commands
You can send commands to devices that are installed and registered with the Mobile
Manager. You can send these commands from several places.

■ Sending a command to a single device—To send a command to a single device,
select the device from the list displayed on the Mobile Devices page. Select
"Commands". Under the "Send Commands" section, choose the command—as

Sending Commands to Your Mobile Devices

Manage Your Devices 7-13

designated by the description—and click "Send Now". The Mobile Manager seeks
your confirmation and then displays a confirmation message.

If the command requires arguments, then the Mobile Manager displays an
argument collection page. For example, the Upload File command requires a file
name as an argument. To send the command to the device, click "Yes".

■ Sending a command to all devices of the same platform type—To send a command
to all devices of a certain platform, click "Platform" off of the Mobile Devices page.
Click the "Select" button next to the desired platform, select the command from the
command pull-down list, and click "Send Command".

Note: If a Windows Mobile device is not physically connected to the
mobile server, then the device manager commands are not sent
immediately. Instead, all commands are queued up. The client device
receives these commands when connected to the mobile server and
polls the command queue.

The default frequency to pull commands is 1800 seconds, which can
be configured through the options section of the Device Manager
Agent (dmagent.exe) located on the client.

For information on how to create a command, see Section 7.5.3, "Creating New
Commands".

7.5.1.1.1 Description of Existing Commands The following are the commands that you
can use to control your device:

■ Retrieve Device Information—retrieves hardware and software information from
the device. The retrieved information may be viewed by clicking on 'Device Info'
and 'Database Info' pages.

■ Install Application—Send this command to force the device to install an
application. In order for this command to work, the following conditions must be
met:

■ The application must be published correctly to the mobile server.

■ The application platform must match the device platform.

■ The user must have access to the application.

If the application already is installed on the client and an update is available, this
command forces an update for the client.

■ Retrieve Software Information—Retrieves information regarding Oracle Database
Mobile Server and its applications. Retrieved information is displayed on
'Software Info' page.

■ Stop Device Manager Client—Sends a stop signal to the device manager client.
Once the client is stopped, it will not receive any more commands from the server.
User must either start the Device Manager agent explicitly (dmagent.exe) or
invoke "Check For Update" program in order to restart the device manager client.

■ Retrieve synchronization log—Retrieves the data synchronization log from the
client. The retrieved information is displayed in "Device Log->Synchronization"
page.

■ Synchronize databases—Synchronize all the databases that are 'synchronizable'.
This command does not retrieve the synchronization log.

Sending Commands to Your Mobile Devices

7-14 Oracle Database Mobile Server Administration and Deployment Guide

■ Retrieve a file from the device—Force the device to upload a file. By default, this
command will retrieve the file from mobile client HOME directory. If you want to
retrieve an arbitrary file, you must provide the full path name of the file. The
retrieved file is stored in the mobile server repository and may be viewed by
clicking on the hyper-link on the "Command History" status column. The physical
location of the file in the server is MOBILE_
HOME\Mobile\Server\admin\repository\devmgr\<USER_NAME>\<DEVICE_
ID>,where MOBILE_HOME is the installation directory of Oracle Mobile Server.

■ Modify Configuration—Modify configuration settings in DEVMGR.INI files.

■ Update Device Manager Client—Force the device manager client to update the
OTL script files. The common use of this command is to propagate the OTL script
files copied to the mobile server script directory.

■ De-install Oracle Database Mobile Server—Remotely de-install Oracle Database
Mobile Server on the client device.

■ Reset Password—Reset the client side password to match the new password on
the server side. This command DOES NOT change the password. In order to use
the command, the administrator must change the user's password in mobile server
and later send the command to the device to reset its stored password. Also, the
device must be immediately reachable from the Server.

7.5.1.2 Scheduling Commands
You can schedule a command to execute at a later time or at certain intervals. Select
the device to which you want this command to be directed. Select "Commands".
Perform the following:

1. Click "Schedule". The Schedule Command page appears.

2. As shown in Figure 7–5, configure the following:

■ The name and descriptor are unique identifiers. You can modify them to your
own unique identifiers.

■ Choose the command that you want to schedule from the "Parameter
Command" pull-down list.

■ Check the "Enabled" box to enable or disable the command. If disabled, the
command cannot be executed.

■ Check "Save to History" if you want to keep a log of when this is executed and
the results, which are printed to the "Command History" screen.

■ Choose from the Priority pull-down list if this is to be high, medium, or low
priority. This determines in what order the scheduled commands are executed.

Note: You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

■ Enter any expected parameter values, separated by semi-colons, in the Extra
Parameter field. For example, if you chose the Synchronize databases
command and you wanted a fast refresh, you would enter ’fast’ in the "Extra"
parameter field.

Note: If you use complete refresh, it erases all of the data on the
client and brings down the snapshot from the server. This is only a
problem if you have not specified the publication as updateable. An
updateable publication enables all new data entered in the client to be
uploaded to the back-end Oracle server.

Sending Commands to Your Mobile Devices

Manage Your Devices 7-15

Figure 7–5 The General Section of the Command Scheduler

3. As Figure 7–6 shows, enter the timing that the command is to execute. Choose
when it is to start, when it will expire (if it does not execute within a certain time
frame), how often it will repeat, and a date and time that it will repeat until.

Figure 7–6 Timing Section of the Command Scheduler

Sending Commands to Your Mobile Devices

7-16 Oracle Database Mobile Server Administration and Deployment Guide

4. Click "Apply". The Mobile Manager displays a confirmation message.

7.5.2 Modifying Existing Commands
To view the available commands, select the "Mobile Devices" tab on the Mobile
Manager. Navigate to the "Administration" page and click the "Command
Management" link. As Figure 7–7 displays, the "Command Management" page
appears.

Figure 7–7 Command Management Page

Using the Command Management page, you can modify existing device commands
and create new device commands. To modify existing commands, do the following:

1. Click the required "Command Name" link. The "Properties" page for this
command appears.

2. Enter the command name, description, and syntax in the corresponding fields. For
more information on modifying these fields, see Section 7.5.3, "Creating New
Commands".

3. To check the accuracy of the command syntax, click "Syntax Check" button. If no
errors are found, the Mobile Manager displays a confirmation message.

4. Click "Apply". The Mobile Manager displays a confirmation message.

7.5.2.1 Adding Parameters to Mobile Device Commands
You must configure the command to prompt for expected input parameters. For
example, the Synchronize command requires that you define what type of refresh you
want: fast, force, or push.

Sending Commands to Your Mobile Devices

Manage Your Devices 7-17

You can specify any parameters by modifying the command, as follows:

1. Click the required "Command Name" link. The "Properties" page for this
command appears.

2. Add the parameter name and values, as follows:

■ The parameter name—This is the name specified in the OTL script.

■ A short description—The description is what is displayed when the user is
prompted for the value of the parameter.

■ The display name—This is the description for each value. For example, the
Synchronize databases command has three possible values: fast, force or push.
However, the display values to describe each of these actual values is Fast
Refresh, Force Refresh, and Push Only. These values are separated by a
semi-colon, as follows: Fast Refresh;Force Refresh;Push Only.

Note: If you use complete refresh, it erases all of the data on the
client and brings down the snapshot from the server. This is only a
problem if you have not specified the publication as updateable. An
updateable publication enables all new data entered in the client to be
uploaded to the back-end Oracle server.

You can only use fast refresh with a high priority restricting predicate.
If you use any other type of refresh, the high priority restricting
predicate is ignored.

■ The default values for this parameter—Enter one or more potential values for
this parameter, if applicable. For example, the Synchronize databases
command values would be fast;force;push. These values are separated by
semi-colons and in the same order as the display name. If you do not have
definitive values, leave blank and the user will enter their own value.

7.5.3 Creating New Commands
You can create commands using the OTL scripting language, as described in
Section 7.10, "Defining Device Manager Commands With the Device Manager OTL
Tag Language". These commands are then used to perform activity on the mobile
devices, but controlled by the administrator within the Mobile Manager.

You can create a command with a single or multiple OTL script commands. Each is
created in a different manner, as described in the following sections:

To create new commands, click "Create Command". Enter a unique Command ID,
Command String, and Description in the corresponding fields. Click the Create button.
The Mobile Manager displays a confirmation message.

To create a command that has several lines, you must perform the following:

1. Create a file with an .otl extension with the OTL commands in it. Place this file in
the MOBILE_HOME\Mobile\Server\admin\repository\setup\dmc\otl directory.

2. With any editor, add all OTL commands that you want executed within the file.
See Section 7.10, "Defining Device Manager Commands With the Device Manager
OTL Tag Language" for a full description of the OTL scripting language.

3. Within Mobile Manager, navigate to the "Command Management" page.

4. Click "Create Command".

Sending Commands to Your Mobile Devices

7-18 Oracle Database Mobile Server Administration and Deployment Guide

5. In the "Name" field, pick a short name to identify the command within Mobile
Manager.

6. In the "Command" field, put the name of the OTL file, without the .otl extension.

7. In the "Description" field, type in a sentence describing accurately the purpose of
the command.

8. Click "OK".

9. Back on the "Command Management" screen, select the command that you just
created.

10. If you ask the user to enter parameters, then add the parameter definitions. See
Section 7.5.2.1, "Adding Parameters to Mobile Device Commands" for a full
description.

11. Click "Apply".

12. You have now successfully created a new command. After you send the command
to the device, you can execute this command against your mobile device. See
Section 7.5.1, "Scheduling or Sending Commands" for information on how to send
the command to the device.

7.5.4 Creating Group Commands
To create group commands, do the following:

1. Click "Create Group". The "Create Group Command" page appears.

2. Enter a unique Command Name, which will be used to identify the grouping.

3. Enter a description.

4. Select the set of existing commands that you want to execute together. The
Command Weight feature controls the order in which the commands are executed.
For example, a command with Weight 1 is executed first and a command with
Weight 2 is executed next. Users must specify a weight for all the commands for
the chosen group command.

Note: If you provide similar weights to more than one command, the
commands with the same weight are executed in the sequence in
which they are listed on the GUI, which is alphabetical.

5. Click "Add". The Mobile Manager displays a confirmation message.

7.5.5 Enabling or Disabling Mobile Device Commands
By default, all commands are enabled, which means that you can execute the
command. If you want to disable a command, so that it can no longer be executed, do
the following:

1. From the Mobile Devices page, click "Administration".

2. Choose "Command Management".

3. Select the command that you want to enable or disable.

4. Select either "Yes" for enable or "No" for disable on the Enabled pull-down.

5. Click "Apply".

Managing Device Software Updates

Manage Your Devices 7-19

7.5.6 Viewing the Mobile Device Command History
To view the Device Command History, click the Command History link from the
single mobile device screen. The Command History page lists a history of commands
that were implemented for the chosen device. You can delete a single historical
message by clicking the select box next to the message and clicking "Delete". To delete
all messages, click "Purge".

7.6 Managing Device Software Updates
This section describes how to enable and initiate software updates and patches for
your devices.

■ Section 7.6.1, "Configuring the Device to Receive Required Software Updates"

■ Section 7.6.2, "Configuring Application Software for Automatic Update"

■ Section 7.6.3, "Initiate Updates of Oracle Database Mobile Server Software from
the Client"

7.6.1 Configuring the Device to Receive Required Software Updates
If you configure for automatic software updates, then when a new software update
comes available—either for the mobile client software or for any applications installed
on the client—the mobile device will receive these updates. However, if you want a
device to stay with the level of software that is currently installed, disallow automatic
updates.

There are two types of software updates that you can control, as detailed in the
following sections:

■ Section 7.6.1.1, "Allowing Automatic Software Updates for the Oracle Database
Mobile Server Platform"

■ Section 7.6.1.2, "Updating Application Software On Each Client"

7.6.1.1 Allowing Automatic Software Updates for the Oracle Database Mobile
Server Platform
You can configure to automatically allow software updates for the devices through one
of two methods:

■ Set Upgradable to Yes/No—The Upgradable field enables you to configure for
automatic software updates, so that when a new software update comes
available—either for the mobile client software or for any applications installed on
the client—then the mobile device will receive these updates. However, if you
want a device to stay with the level of software that is currently installed, set
Upgradable to No.

See Section 7.3.1, "Configuring the Mobile Device through Properties" for details
on how to modify the Upgradable field within the Mobile Manager GUI.

Note: Do not set your device to No until after the first
synchronization. The device must be configured as upgradable for the
first synchronization.

Change the value of Upgradable in the Mobile Manager GUI to Yes to enable and
No to disable, as follows:

Managing Device Software Updates

7-20 Oracle Database Mobile Server Administration and Deployment Guide

1. Select the Mobile Devices tab in Mobile Manager.

2. Select the Platform tab to display all platforms.

3. Click the appropriate client "WIN32" platform to display its properties.

4. Change the value of Upgradable to Yes/No. Click "OK".

■ Set the UPDATE_SOFTWARE attribute in the Resource Manager to true/false. This
has to be set programmatically on the Resource Manager object, as follows:

rs.setAttribute (ResourceConst.UPDATE_SOFTWARE, "false");

If you want to enable/disable any application updates, but continue to allow platform
updates, then set the UPDATE_SOFTWARE_APPS attribute to true/false.

For example, to set the UPDATE_SOFTWARE_APPS attribute to false, do the following:

rs.setAttribute (ResourceConst.UPDATE_SOFTWARE_APPS, "false");

7.6.1.2 Updating Application Software On Each Client
You can control whether a new version of an application software is downloaded on
each client and which users receive the latest update. The default configuration is for
all devices attached to a user to receive current updates.

For example, you have two users: John and Tom. You want John’s devices to stay at
the current version, which is SQLite Win32 version 11.2.0.0.0; however, you want
Tom’s devices to upgrade to the new version, which is SQLite Win32 version 11.3.0.0.0.
Configure each user’s devices, as follows:

■ For John, configure the update.software.apps attribute to Minor.

■ For Tom, configure the update.software.apps attribute to Major.

Modify the update policy attribute of the user in one of the following ways:

■ On the user page in the Mobile Manager, set the Software Update pulldown to the
appropriate update that you want, as follows:

■ All updates—Include major and minor updates.

■ Major—The devices attached to this user receives only major software
updates, which is denoted by the version number. Any modification of the
version in the first or second position is a major update. For example, any
version that changes from 10.0.0 to 10.1.0 or 11.0 is a major update. This is the
default.

■ Minor—The devices attached to this user receives only minor software
updates. This includes only patch releases. For example, if the client software
is version 11.0.0, then modifications only apply to the third position or later
constitutes a patch update. This would include the version numbers 11.0.1 or
11.0.0.1. It would not include the 11.1.0 which would be a major update.

■ Disable updates—The devices attached to this user does not receive any
software updates.

In addition, you can specify the date that the update occurs.

■ Set the UPDATE_SOFTWARE_APPS policy attribute of the User object to one of the
following values to specify what type of update that the client can receive:

Managing Device Software Updates

Manage Your Devices 7-21

■ Major—The devices attached to this user receives only major software
updates. For example, if the version shows a major release, then this device
receives the update. This is the default.

■ Minor—The devices attached to this user receives only minor software
updates. For example, if the version shows only a minor patch release, then
this device receives the update. However, if the software released is a major
version upgrade, then this is not applied.

■ False—The devices attached to this user does not receive any software
updates.

user.setPolicy (ResourceConst.UPDATE_SOFTWARE_APPS, "Minor");

7.6.1.3 Rolling Out Updates With Controlled Upgrade
If you want to roll out software updates in a staggered fashion to a subset of your
users at a time, you can use the controlled update. A controlled update enables the
following:

■ You can deploy the latest software or patches to a set of users to limit the impact of
your IT team handling multiple responses from affected users.

■ You can deploy the latest software or patches to a set of users for testing purposes,
while keeping the majority of the users on an older version of the software.

To perform a controlled update, perform the following within Mobile Manager:

1. Create a group with all of the users that you want to receive the update.

2. Edit the group and set the update policy for the group to All, Major, Minor or
Disable.

Alternatively, you can use the APIs and perform the following:

1. Create a group with the MobileResourceManager.createGroup method.

2. Set the group update policy with the following method, where the value can be
“major,” “minor,” or “false.”

group.setPolicy(ResourceConst.UPDATE_SOFTWARE, “major”);

3. Add all users to be within the group with the
MobileResourceManager.addUsersToGroup method.

7.6.2 Configuring Application Software for Automatic Update
In order for the mobile server and the device to know if an application software is to
be updated, you need to configure the INF file to detail the current version. This
version is checked against what is currently installed on the client, which then enables
the mobile server and the device management to decide whether an automatic
software update is necessary.

The following sections describe how to configure your application software for
automatic update:

■ Section 7.6.2.1, "Configuring Major Software Updates for Download"

■ Section 7.6.2.2, "Configuring Patches or Minor Updates for Download"

Managing Device Software Updates

7-22 Oracle Database Mobile Server Administration and Deployment Guide

7.6.2.1 Configuring Major Software Updates for Download
In order to facilitate a major software update, the corresponding INF file must be
modified to reflect the new version number. mobile server relies on the application
version number to determine if the client software is out-of-sync.

To update your software, perform the following:

1. In the software INF file, the administrator modifies the version number for the
application to the current version, as follows.

<setup name="Application Name" version="1.2.3">

2. Initiate a synchronization. When the client user synchronizes, mobile server
compares the client application software version number against the version
number in the INF file. If the version numbers are different, mobile server
compares the 'Last Modified Time' of all of the client application files against the
server application files to determine the changes and then sends the modified files
to the client device.

Alternatively, the client user can invoke update.exe to check for the latest version
of the software. See Section 7.6.3, "Initiate Updates of Oracle Database Mobile
Server Software from the Client" for more details on the update tool.

7.6.2.2 Configuring Patches or Minor Updates for Download
In order to apply specific patches to an existing installation for your application, the
application developer creates an INF file with the patch attribute and copies it to the
correct platform patch directory, each of which is located in the ORACLE_
HOME\Mobile\Server\admin\repository\setup\dmc directory in the mobile server.

The following application INF file defines the patch element as myFirstApp for
applying a patch to "Application Name" software:

<setup name="Application Name" version="1.2.3">
 <property>
 ...
 <patch>myFirstApp</patch>
 </property>
 ...
</setup>

The value in the patch element is a user-defined name. This will be the name of the
directory into which the updates for the application are copied. In this example, the
updates for "Application Name" are copied into the myFirstApp directory.

Note: Be careful to have a unique patch directory name for each
application. If you have the same directory name in the patch
element, then all applications with that patch directory name receive
the updates placed there.

In order to update a patch with the olobj40.dll, update the patch INF file as follows:

<setup name="Application Name" version="1.2.3" id='1001'>
 <install>
 <action msg_i='$FILE_I$' msg_u='$FILE_U$'>file</action>
 <file>
 <item>
 <src>/common/win32/olobj40.dll</src>
 <des>APP_DIR\bin\olobj40.dll</des>

Managing Device Software Updates

Manage Your Devices 7-23

 </item>
 </file>
 </install>
</setup>

Note: For a full description of INF files and the elements within
them, see Section 7.9, "Installation Configuration (INF) File".

There are two mandatory attributes in a patch INF file, as follows:

■ The INF file contains a version number, which is the same as the application
version number. In the above example, the version number (1.2.3) tells DMS that
the patch is meant for the application version 1.2.3.

■ The INF file must have an ID, which is used for determining patch dependencies.
This ID can be any number you choose.

If you have dependencies among patches, use the dependency element to indicate
these dependencies. For example, the previous patch for olobj40.dll was configured
with the ID of 1001. The following INF file configures another patch with ID of 1002.
This patch defines a dependency on the patch for olobj40.dll by configuring the ID
number of 1001 in the dependency element.

<setup name="SQLite WIN32" version="10.0.0.0.0" id='1002'>
 <property>
 <dependency>1001</dependency>
 </property>
</setup>

Update the patch, as follows:

1. The administrator copies the patch INF files to the patch directory.

2. The administrator copies the new application files to the application directory.

3. The client user synchronizes with mobile server. Alternatively, the client user can
invoke update.exe to check for the latest version of the software.

The mobile server checks for patches and sends all new patches to the client device.

7.6.3 Initiate Updates of Oracle Database Mobile Server Software from the Client
You can initiate a request for software updates from the mobile server by executing the
Update tool, as shown in Figure 7–8. To execute, choose "Update" from the Oracle
Database Mobile Server Programs list or enter update on the command line.

The mSync tool automatically launches this tool if and only if a software update is
available.

Using the Device Manager Agent (dmagent) on the Client

7-24 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–8 Updating Mobile Client Software

When updates are located, you can select items that you do not want to update and
click "Remove". When all updates are satisfactory, click "Install". When you are
finished, click "Exit".

If you check the Disable Auto Update checkbox, then the next time you execute
mSync, this tool is not automatically executed. You can also disable automatic updates
from the Mobile Manager. See Section 7.6.1.1, "Allowing Automatic Software Updates
for the Oracle Database Mobile Server Platform" for more information.

Note: In Windows Vista, Windows 7, and Windows 8 if the user has
run update.exe with administrator privilege before, the dmagent.exe
will also run as admin, then the next update with normal privilege
will fail.

To run update.exe with normal privilege successfully, the user must
stop dmagent before running update.exe.

Alternatively, you can initiate a request for software updates from the Mobile Server
with the command line:

update /qs <Mobile Server URL> <user name> <password> [http proxy]
*/qs: checks available software updates from Mobile Server and installs all the updates
quietly.

With this option, the software update prompt in Figure 7–8 is skipped.

For example:

* update /qs http://mobile_server_host:7001/mobile JOHN welcome1

7.7 Using the Device Manager Agent (dmagent) on the Client
On any client, you can manage the mobile device client software and commands sent
to the device from the mobile server, as shown in Figure 7–9.

Using the Device Manager Agent (dmagent) on the Client

Manage Your Devices 7-25

Figure 7–9 Using the Device Manager to Manage Your Device

To bring up the Device Manager Agent GUI, choose "Oracle Database Mobile Server
Device Manager"from the Oracle Database Mobile Server Programs list or execute
dmagent. The main screen provides information about the following: platform with
type of platform, language, and version, the owner/user of this device, the name of
the device, and the URL of where the device is installed.

■ Click "Sync Agent" to bring up the Sync Agent UI, which is described in
Section 5.5.2, "Start, Stop, or Get Status for Automatic Synchronization".

■ Click "Version" to see the version number of all mobile client software executables
and DLLs, as shown in Figure 7–10.

Figure 7–10 Mobile Client Software Versions

■ Click "Options", which brings up Figure 7–11, to configure the following:

– Enable Pull: If the server cannot connect to the client, any commands sent to
the client are placed into the Device Manager command queue. These
commands are sent to the client when one of two things occurs:

Using the Device Manager Agent (dmagent) on the Client

7-26 Oracle Database Mobile Server Administration and Deployment Guide

* The client synchronizes.

* A "Pull" is initiated from the client. When you check the "Enable Pull"
checkbox, the device manager client automatically polls the Device
command queue for any commands for this user. The frequency is the
number of seconds to wait between each pull.

– Retry Count: If you have created your own Device Command, this count
specifies the number of times that the command is executed, if it fails to
execute. If it still fails after retrying, the command is deleted. This count also
applies to failed synchronization attempts. The commands are retried with the
same frequency interval that is set for the Enable Pull command. A command
can fail to execute if there is an error within the command or if there is no
connection between the client and the server.

– Check for Update: Select the day and time that you want the device manager
client to automatically poll for updates. This also occurs anytime you start a
synchronization. So, this is useful if you never synchronize with the mobile
server.

This specifies around the time of day to initiate the update tool, which checks
for software updates for the client. The actual time depends on when the
device manager checks for queued commands. See Section 7.6.3, "Initiate
Updates of Oracle Database Mobile Server Software from the Client" for more
details on the update tool.

– Proxy Server: If you have a proxy server between the mobile client and mobile
server, enter the address and port here.

Figure 7–11 Device Client Manager Options

■ Click "Hide" to place the Oracle Database Mobile Server Device Manager in the
Windows System Tray.

Managing the Network Protocol Between the Device and the Mobile Client Software

Manage Your Devices 7-27

7.8 Managing the Network Protocol Between the Device and the Mobile
Client Software

The Network Management page is where the administrator defines the properties of
an installed network provider or register new network providers. A network provider
is the protocol that the mobile client uses to communicate between itself and the
mobile device. The mobile client software, which is often installed on a Windows
system, sends commands to the mobile device over this protocol. Often, you have a
device, such as Windows Mobile, that interacts with the mobile client installed on a
Windows system.

This network provider definition describes what you have already installed as the
protocol between the mobile client and the device. The frequently-used network
providers are as follows:

■ HTTP—If you use HTTP, you will provide an HTTP URL in the Address field. You
cannot use HTTPS between the Device Manager and the mobile device.

Note: HTTP may not work if the device does not have a direct IP
conection to the mobile server.

■ RAPI—Remote API used by the ActiveSync API, which only supports Windows
Mobile class devices. These devices connect directly to the computer that is
executing the mobile server.

– RAPI does not work on LINUX or UNIX-based systems.

– When using RAPI on a Windows machine, install and configure ActiveSync
4.5 or Windows Mobile Device Center 6.1 depending on the Windows
Operating System version.

– Ensure CEUTIL.DLL and RAPI.DLL are in the %WINDIR%\System32
directory.

■ SMS—Short Messaging Service.

Android client only supports SMS as the network provider.

To modify or create a new network provider, navigate to the Devices page, click
"Administration", and click "Network Management". The Network Management page
lists existing network providers. Select any of these providers to see their properties,
which consists of the following:

■ Java classname: The name of the Java class that implements the Network protocol,
such as HTTP, SMS, EMAIL, and so on.

■ Metadata: Any user defined string that is required as input by the Java class
during the initialization. See Section 9.8.1.5.3, "Proxy Configuration for the Mobile
Server" for an example of how to configure the metadata for the HTTP protocol.

To define a new network protocol, do the following:

1. Create a NetworkProvider class using Java. This class must implement the
oracle.lite.provider.NetworkProvider interface.

2. Register the network provider through the Mobile Manager on the Network
Management page, as follows:

a. Click "Create" on the Network Management page.

b. Input the network provider name, Java class name, and metadata.

Installation Configuration (INF) File

7-28 Oracle Database Mobile Server Administration and Deployment Guide

c. Click "OK".

7.9 Installation Configuration (INF) File
The Installation Configuration file contains all the instructions required to install or
de-install client software and its format is based on XML. The INF file contains a set of
actions and each action may have multiple items.

When you extend a platform, the INF files that are used for the installation is a
concatenation of your platform and every platform that it was extended from—just
like how objects extend methods, properties and attributes from each other in an
object-oriented language. When you view the configuration information on Mobile
Manager, the type field describes all of the platforms from which this INF file extends.

Note: The server-side INF files that you can modify for the client
platform are located in the <MOBILE_
HOME>\Mobile\Server\admin\repository\setup\dmc directory.

As Table 7–2 describes, the supported Software Management Client (SMC) keywords
start with a ’$’ character and ends with a ’$’ symbol.

Table 7–2 Software Management Client Keyword Description

Keyword Description

APP_DIR Application directory of the application

APP_NAME Application name

OS_DIR Operating system directory

OS_TYPE Operating system type, which can be one of the
following: WIN32, WinCE, LINUX.

OS_LANG Language or Location name, which can be US for
English or JA for Japanese.

$DESKTOP$ Folder name of the Windows desktop.

CPU Device processor type, which can be one of the
following: X86, ARMV4 or ARMV4I.

$HOST_NAME$ Host name of the client device.

$USER_NAME$ Mobile Server User Name

$HTTP_PROXY$ HTTP Proxy Server URL, if any.

$SERVER_URL$ mobile server URL.

$USER_HOME$ Home directory of the login user, which is determined
by the value of %UserProfile% and $HOME
environment variable on Windows and Linux,
respectively.

The following sections describe the INF file:

■ Section 7.9.1, "Setup Information"

■ Section 7.9.2, "Properties"

■ Section 7.9.3, "Initialization"

■ Section 7.9.4, "Including Other INF Files"

Installation Configuration (INF) File

Manage Your Devices 7-29

■ Section 7.9.5, "INSTALL Element"

7.9.1 Setup Information
All Software Management actions are enclosed within the SETUP XML tag. The SETUP
consists of a set of PROPERTIES, INITIALIZATION, INCLUSION of other INF files and
INSTALLATION actions. All the four items must be child elements of the SETUP element.
A sample INF file is given below.

<setup name="SQLite" version="1.0.0.0">
<property>…. </property>
 <init>…</init>
 <include>…</include>
 <install> …..</install>
</setup>

Setup may have the following attributes specified as XML tag attributes.

1. NAME - Application name (Mandatory).

2. VERSION - Application version number (Mandatory).

3. PACKAGE - Package Type, which can only be cab to specify a Windows CAB
format.

7.9.2 Properties
All of the SETUP properties must be the child element of the PROPERTY tag. Setup may
have following properties.

■ STORAGE—Estimated disk (storage) space (in MB) required for an application.

<storage>5</storage>

■ MEMORY—Minimum amount of system memory in MB. Required.

<memory>5</memory>

■ USERS—Optional setting that defines under what privileges to install the mobile
client. Also, if not configured in the INF file, then a prompt will appear in the
installation to ask under what privileges to install the client.

The prompt attribute describes if the screen prompt for asking under what
privileges to install the mobile client should be displayed. The prompt attribute
defaults to true. Setting the prompt attribute to false eliminates this screen from
displaying during client installation.

The two options for user install privilege are as follows:

■ Install for all users: This requires an administrator to install as it provides
access to the main user on the device. The following is an example of how to
set this privilege:

<users prompt=’false’>All</users>

■ Install for single user: This requires only the user privilege as only a single
user is using the application and device. The following is an example of how
to set this privilege:

<users prompt=’false’>Current</users>

Note: If any other word is provided for the <USERS> setting, then it
will default to prompt=’true’ and the user will be prompted for the
user privilege.

Installation Configuration (INF) File

7-30 Oracle Database Mobile Server Administration and Deployment Guide

The presence of the <users> section will not have any effect if the user is installed
on Windows Mobile or Linux installation, which automatically requires the
administration privilege.

■ LOCATION—Location or directory name of the application. You can specify the
location for the application in one of the following ways:

– Default directory. If you do not specify anything or specify
<location></location>, then the directory defaults to mobileclient, which is
created on the drive with the largest available free space. The user is always
prompted to either accept the default or enter the directory that they wish.

– Absolute directory. Define the absolute path where the application is to be
installed. The following installs the application in the c:\abc directory:

<location>c:\abc</location>

– Specify a default directory name. The directory will be created on the drive
with the largest available free space. In addition, the user is always prompted
to be able to alter the directory into which the application is installed. The
following example defines the default directory as abc:

<location default=’abc’></location>

– Define a default directory and an absolute directory. You can specify an
absolute directory, where the drive may not exist. If the drive does not exist,
then a prompt appears with the default directory, where the user can accept
the default or provide another. The following defines the absolute directory of
e:\abc, which if the E drive does not exist, then the default directory of abc is
created on the drive with the most available free space:

<location default=’abc’>e:\abc</location>

– Specify the platforms that this application is installed upon. You can define,
with the type attribute, what platforms this application is to be installed on or
not installed on. The platforms that you can specify are WIN32, LINUX, and
WinCE.

* To install only on WIN32, do the following:

<location default=’abc’ type=’WIN32’></location>

* To install on all platforms, except WIN32, do the following:

<location default=’abc’ type=!’WIN32’></location>

* To install on either WIN32 or WinCE, do the following:

<location default=’abc’ type=’WIN32|WINCE’></location>

■ PROMPT—You can have a window pop-up with a prompt if one of the files that you
need to install is currently being used. If the user inputs Yes, then the other
instances using that file are terminated. For example, if other executables are using
the sqlite3.dll when you are installing the client, the prompt "Would you like to
terminate the application?" is provided to the user.

Installation Configuration (INF) File

Manage Your Devices 7-31

<prompt><item type=’WINCE’ file=’sqlite3.dll’/>Would you like to terminate
the application?</prompt>

The following is an example of the setup section in the INF file:

<setup name="SQLite" version="1.0.0.0">
<property>
 <storage>4</storage>
 <memory>12</memory>
 <location>d:\tmp\a</location>
 <users prompt=’false’>Current</users>
 <prompt>
 <item>Would you like to install App1?</item>
 <item file='sqlite3.dll'>Would you like to close the
 applications?></item>
 </prompt>
</property>

7.9.3 Initialization
Initialization includes setting keywords that you can use when installing your
application; the Oracle Database Mobile Server installation keywords are described in
Table 7–2. Specify a keyword for your application installation in the type parameter
and its value in the name parameter. The following defines a WIN32 keyword with a
value of APP_DIR/bin.

<init> <item type='WIN32' name='DMC_DIR'>APP_DIR/bin</item> </init>

7.9.4 Including Other INF Files
The following syntax allows an INF file to include other INF files:

<include>/dmc/common/devmgr.inf</include>

The value of this tag can be an application name or a fully qualified INF file name. If
the value is an application name, the DMS includes the INF file of the application.

7.9.5 INSTALL Element
This section lists all the installation steps necessary to perform software installation.
Each of the steps (actions) must correspond to another child entry or tag. Each action
element has a set of ITEMS and two optional caption strings. The caption string is
displayed on the SMC user interface. For example,

<action msg_i=’Creating directories’ msg_u=’Removing
directories’>directory</action>

Where msg_i is the message to be shown during install when an action is executed and
msg_u is the message to be shown during uninstall when an action is executed.

When the SMC interprets the above tag, it looks for a child element by the name
directory and processes all the child items of this element. At this stage, the Device
Manager UI indicates that directories are being created. If you have a child element
without a corresponding action element, it will not be executed. The action elements
force the invocation of the child elements.

Table 7–3 describes INSTALL actions that are supported by the SMC.

Table 7–3 INSTALL Actions Supported by the SMC

Action Description

directory Lists all directories to be created.

file Lists all the files to be copied.

env Lists all the environment variables to be added to the Operating
System.

registry Registry keys and values to be added to the Windows Registry.

odbc ODBC driver and DSN to be created.

java JDK to be installed in the computer.

link Folder links to be created. For example, desktop, menu, and so
on.

ini INI (configuration files) to be updated.

register DLLs to be registered with Windows.

execute Executable files to be launched during the installation process.

finish Installation completion messages.

Installation Configuration (INF) File

7-32 Oracle Database Mobile Server Administration and Deployment Guide

7.9.5.1 DIRECTORY Section
The directory element contains names of all the directories to be created during the
installation process. Entries in this section are fully qualified directory names. For
example,

<directory>
 <item>APP_DIR\sqlite_db</item>
 <item>APP_DIR\crm</item>
</directory>

The SMC creates sqlite_db and CRM directories in the ROOT of the application directory.

7.9.5.2 FILE Section
The file element lists all the files to be copied during the software installation process.
Each item contains a target file name and source file name. The source file name must
be unique. We do not support copying the same source file to multiple destination
files.

<file>
 <item>
 <src> win32/crm/crm.dll </src>
 <des>APP_DIR\crm\crm.dll </des>
 </item>
</file>

If you want to copy a source file multiple times, you cannot just define the source file
and then configure for it to be copied to multiple destinations. Instead, you must
manually copy the source file to another filename and then configure it as follows:

<file>
 <item>
 <src> win32/crm/crm.dll </src>
 <des>APP_DIR\crm\crm1.dll </des>
 </item>
 <item>
 <src> win32/crm/crm2.dll </src>

Installation Configuration (INF) File

Manage Your Devices 7-33

 <des>APP_DIR\crm\crm2.dll </des>
 </item>
</file>

Where crm.dll and crm2.dll are the same source file.

The file element also supports inflation of JAR and ZIP files. To inflate a file, use the
inflate='true' attribute along with the item tag. In the following example, the
inflate tag copies the client.jar. Once copied, the abc.jar file is inflated into the
APP_DIR/bin directory.

<file>
 <item inflate='true'>
 <src>/common/win32/client.jar</src>
 <des>APP_DIR\bin\abc.jar</des>
 </item>
</file>

7.9.5.3 ENV Section
The env element contains all environment variables to be added to a Windows NT
registry. This modifies only the User environment in Windows NT systems.

<env>
 <item name=’PATH’>APP_DIR\MYAPP</item>
</env >

The above example appends the application_root\myapp directory to the PATH
environment variable.

7.9.5.4 REGISTRY Section
The registry element modifies or removes Windows Registry values. All the entries
in this section must be a fully qualified registry key name. Sub key names and values
must be specified as a sub section. For example,

<registry>
 <item>
 <key>HKEY_CURRENT_USER\Software\Oracle\Test</key>
 <item name="Count" type="DWORD">400</item>
 <item name="Test" type="STRING">ABCDE</item>
 </item>
</registry>

The SMC adds the Windows Registry key named Test in the directory named HKEY_
CURRENT_USER\Software\Oracle and creates a String value named Test and a
DWORD value named Count inside the key. If the same script is used in UNINSTALL
mode, the SMC removes the key from the Registry.

7.9.5.5 ODBC Section
This section creates/registers the ODBC driver and DSNs for the mobile client device.

The following example registers and ODBC driver for the Berkeley DB Mobile Client:

<odbc>
 <item name="driver:BDB ODBC Driver" dll='APP_DIR\bin\sqlite3odbc.dll'>
 <version>00.86</version>
 <admin>APP_DIR\bin\sqlite3odbc.dll</admin>
 </item>
 <item name="dsn:MY_APP" driver='BDB ODBC Driver'
 dll='APP_DIR\bin\sqlite3odbc.dll'>

Installation Configuration (INF) File

7-34 Oracle Database Mobile Server Administration and Deployment Guide

 <Data_Directory>APP_DIR\..\bdb\data\$USER_NAME$\my_app.db</Data_Directory>
 </item>
</odbc>

The following example registers and ODBC driver for the SQLite Mobile Client:

<odbc>
 <item name="driver:SQLite ODBC Driver" dll='APP_DIR\bin\sqlite3odbc.dll'>
 <version>00.86</version>
 <admin>APP_DIR\bin\sqlite3odbc.dll</admin>
 </item>
 <item name="dsn:MY_APP" driver='SQLite ODBC Driver'
 dll='APP_DIR\bin\sqlite3odbc.dll'>
 <Data_Directory>APP_DIR\..\sqlite\sqlite_db\$USER_NAME$\my_app.db
 </Data_Directory>
 </item>
</odbc>

7.9.5.6 LINK Section
The LINK element creates a symbolic link on the client system, such as a UNIX soft link
or a Windows program link (or Program menu item). Each entry must have a name, a
program file name and a folder name, which describe where you want to put the
symbolic link and the file path.

The following example creates a symbolic link of libdb_sql.so on a UNIX platform in
$APP_DIR/bin directory, which points to APP_DIR/bin/libdb_sql61.so.

<link>
 <item name=’libdb_sql.so’>
 <folder>$ADD_DIR/bin</folder>
 <file>APP_DIR/bin/libdb_sql61.so/file>
 </item>
</link>

For Windows platforms, you can also optionally set the current working directory
with the <directory> tag and the default arguments can be set using the <arg> tag.
The following example creates a Windows program link to My application.lnk,
where the .lnk is automatically appended, in the Startup folder for the MyApp.exe file,
which is located in the $APP_DIR\bin directory.

<link>
 <item name=’My application’>
 <folder>Startup</folder>
 <file>APP_DIR\my_dir\MyApp.exe</file>
 <directory>$APP_DIR\bin</directory>
 </item>
</link>

7.9.5.7 INI Section
The INI section creates entries in the INI (configuration) files. Each item must have an
INI file name and a set of values to be added to a section. For example, the following
adds the RESUME parameter and modifies the DATA_DIRECTORY parameter in the mobile
client OSE.INI file:

<ini>
 <item name="OSE.INI" section="OSE">
 <item name="RESUME">YES</item>
 </item>
 <item name='OSE.INI' section='SQLITE'>
 <item name="DATA_DIRECTORY">APP_DIR\sqlite</item>

Installation Configuration (INF) File

Manage Your Devices 7-35

 </item>
</ini>

If you want to replace an existing item in the INI file, just provide the name and value,
such as follows:

<item name="DATA_DIRECTORY">c:\mobileclient</item>

The replace attribute defaults to true; thus DataDirectory is modified—whether it
already exists or not in the INI file—to be c:\mobileclient. However, if you do not
want to overwrite any existing value, but want only to add DataDirectory if it does
not exist, then set the replace attribute to false. The following example only adds
DataDirectory with c:\mobileclient if DataDirectory is not currently configured in
the INI file. If it is configured, the value is not replaced.

<item name="DATA_DIRECTORY' replace="false">c:\mobileclient</item>

The default value for the replace attribute is true; thus, if you want to replace the
value, then set the replace attribute to false.

7.9.5.8 EXECUTE Section
The EXECUTE element lists all the programs to be executed during the installation
process. Each item must have a program name, wait period, and program arguments.
The wait value defines how long the installer waits until it moves on to the next action.
The wait value can be either an event name, multiple event names, or time specified in
seconds. If the value is seconds, then the installer waits that many seconds and then
moves on to the next action. However, if the wait value is an event names, then the
installer waits for the executable (in this case, the MyApp.exe) to post that event, before
the installer moves on to the next action. For example,

<execute>
 <item>
 <file>APP_DIR\my_dir\MyApp.exe</file>
 <args>-h</args>
 <wait>MySetupExit/MySetupStop</wait>
 </item>
</execute>

7.9.5.9 REGISTER Section
The REGISTER element lists all DLLs to be registered with the Windows Operating
System. For example,

<register >
 <item>APP_DIR\my_dir\MyApp.dll</item>
</register>

7.9.5.10 FINISH Section
The FINISH element controls what can happen during the last stage of processing an
INF file. It controls whether or not to restart the computer after the client install,
whether or not to show a completion message in the UI, or whether or not to open a
specific URL in a browser.

The FINISH section must be added to the main platform .inf file, located in the
MOBILE_HOME\mobile\server\admin\repository\setup\dmc\ directory. The
FINISH element contains two parameters, namely, "restart" and "show". By default,
"restart"=’false’ and "show"=false’. These can be set to true or false depending on what
behavior is desired. The item contains the URL to open in a browser.

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-36 Oracle Database Mobile Server Administration and Deployment Guide

The following is a complete example of MOBILE_
HOME\mobile\server\admin\repository\setup\dmc\bdb_win32.inf with the
FINISH section added.

BDB Win32 client will show the installation completion message 'Completed software
installation' in UI and open http://localhost:80/mobile in default browser but will
not restart the computer.

For win32 client, the browser used is defined by the windows system.

For linux client, the browser used is /usr/bin/firefox. If firefox is not installed, then
you need to install it.

For Windows Mobile client, opening a specific URL is not supported.

<setup name="BDB WIN32" version="12.1.0.0.0">

 <property>

 <storage>25</storage>

 <memory>20</memory>

 <location/>

 <prompt/>

 <patch>patches\bdb\win32</patch>

 </property>

.

 <include>common/bdb_win32.inf</include>

 <install>

 <action msg_i='$FINISH_I$' msg_u='$FINISH_U$'>finish</action>

 <finish restart='false' show='true'>

 <item>http://localhost:80/mobile</item>

 </finish>

 </install>

 </setup>

 .

FINISH element is supported for Windows Mobile, Win32 and Linux mobile client, but
is not supported for Android mobile client.

7.10 Defining Device Manager Commands With the Device Manager OTL
Tag Language

You can send a command from the mobile server to any device. To create these
commands, use the Device Manager Tag Language, which is described in the
following sections:

■ Section 7.10.1, "Device Manager Tag Language Data Types"

■ Section 7.10.2, "Operators That You Can Use With the Device Manager Tag
Language"

■ Section 7.10.3, "Syntax for the Device Manager Tag Language"

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-37

■ Section 7.10.4, "Conditional Statements"

■ Section 7.10.5, "Define Custom Functions"

■ Section 7.10.6, "Manage the Database Connection"

■ Section 7.10.7, "Global Classes"

■ Section 7.10.8, "Importing Another OTL Page"

■ Section 7.10.9, "Error Handling"

■ Section 7.10.10, "Sample Device Manager Commands Using the Tag Language"

7.10.1 Device Manager Tag Language Data Types
The allowed data types for the device manager are as follows:

7.10.1.1 Character
The Character object represents a UNICODE character. It is a primitive data type with
no public methods. However, this data type supports implicit conversion methods,
such as toString().

7.10.1.2 Number
The Number data type represents either an integer, a double (float), or a large number.

7.10.1.3 Integer
The Integer object represents a four byte signed value. It is a primitive data type with
no public methods.

7.10.1.4 Long
The Long object represents an eight byte signed value. It is a primitive data type with
no public methods.

7.10.1.5 Double
The Double object represents a signed double (float) value. It is a primitive data type
with no public methods.

7.10.1.6 Boolean
The Boolean object has only two possible values of true or false. It is a primitive data
type with no public methods.

7.10.1.7 String
The String object represents a series of NULL terminated characters. The String data
type represents all of the literal strings in OTL. They are immutable and has the
following public methods:

Length ()
Returns the number of characters in the string.

SubString (Integer start, Integer end)
Creates a sub-string from a String object. Provide the start and the end of the index
and it returns the sub-string—beginning at the start value and stopping at the end
value.

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-38 Oracle Database Mobile Server Administration and Deployment Guide

Trim ()
Trim a string to remove white spaces from both ends of the string.

IndexOf (Character ch) or IndexOf (String str)
Find the index of a character or a substring within the string. Provide the character or
substring inside the string to search for and the index of the first occurrence of the
character or substring is returned.

LastIndexOf (Character ch) or LastIndexOf (String str)
Find the index of the last occurrence of a character or a substring within the string.
Provide the character or substring inside the string to search for and the index of the
last occurrence of the character or substring is returned.

EqualsIgnoreCase (String str)
Compares two strings, without comparing the case of the characters within the string.
On one string, execute this method and provide the string to compare it to within the
input parameter. True or false is returned.

StartsWith (String str)
Check if the string starts with the provided sub-string. True or false is returned.

EndsWith (String str)
Check if the string ends with the provided sub-string. True or false is returned.

ParseNumber ()
Parse the string and create a number. This method succeeds only if the string
represents a valid number. A number object is either an Integer, Double, or Long. For
example, if the content of the String is ’12’, then this method returns an Integer of 12.

Replace (String in, String repl)
Replace a substring with another, as follows:

<c:set var='str' value='${str.Replace ("123,"345")}'/>

ToUpperCase ()
Converts characters in the string to upper case.

ToLowerCase ()
Converts characters in the string to lower case.

Tokenize (Character sep)
Tokenize the string into sub-strings, each separated by a character separator. The input
parameter is the character that is to be used as the character separator. The output is an
Enumeration object. For example, the following OTL script separates numbers by
separating a string everytime it encounters a semi-colon:

<c:set var="str" value="1;2;3;4"/>
<c:foreach var="tok" items="${str.Tokenize (’;’)}">
 Token = <c:out value="${tok}"/>
</c:foreach>

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-39

7.10.1.8 Array
The OTL Array object can hold a set of other objects. An array can hold dissimilar
objects and can grow automatically as more objects are added. All of the array objects
have a global scope.

Sort (Boolean ascend)
Sort the content of the array using a Quick Sort algorithm. The array must be single
dimensional. Returns the Sort order.

Length ()
Returns the size of the array.

Compact ()
Removes all of the NULL objects from the array.

Copy (Integer from, Integer count)
Copy a number of elements within the array to another array. Give the place in the
index to start the copy in the from parameter and the number of elements to copy in
the count parameter. An array containing these copied elements is returned.

Insert (Integer index, Object o)
Insert the element provided in Object o into the spot designated by the index
parameter.

Remove (Integer index)
Remove the element in the array at the location of the index parameter.

7.10.1.9 Date Methods
Use System.Date to create a Date object, which contains the date and time. The
following are other methods that pertain to dates.

GetYear ()
Retrieve the year out of the Date object.

GetMonth ()
Retrieve the month represented by an integer from 1 to 12 out of the Date object.

GetDay ()
Retrieve the day of the week where Sunday is 0 to Saturday, which is 6, out of the Date
object.

Format (String format)
Format the date as described by the format string, which can be either dd/mm/yyyy or
mm/dd/yyyy.

IsLeapYear ()
Check if the year of the date is a leap year or not. Returns true if it is a leap year; false
if not.

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-40 Oracle Database Mobile Server Administration and Deployment Guide

7.10.1.10 Time Methods
A Time object represents Time value. A Date object always contains a Time object. You
can also create a Time object using the System.Time function. In addition, the following
methods pertain to time:

GetHour ()
Retrieve the hour out of the Time object.

GetMinute ()
Retrieve the minute out of the Time object.

GetSecond ()
Retrieve the second out of the Time object.

Format (String format)
Format the Time object using the provided format string. The format string should
either be hh:mm:ss or hh:mm.

To12Hour()
Convert the Time object to a 12 hour format instead of a 24 hour format.

7.10.1.11 Enumeration
Contains a list of objects. Some of the object types that can be contained in the
Enumeration object is a SQL result set, a String Tokenizer, or Request Parameter
names.

Count ()
Counts the number of elements in the Enumeration object. Returns the number of
elements.

Next ()
Accesses the next element in the Enumeration object.

7.10.1.12 File
An object of this type can be used to access contents of a file in the file system. You
must use the OpenFile function to open an existing file (a System function). OTL does
not allow creation of new files or modification of existing files.

Exists ()
True is returned if the file exists in the file system.

Open ()
Open the file for reading. Throws an exception if the file does not exist.

ReadLine ()
Returns a string from the open file. It reads a line from the file that is terminated by a
\r\n.

7.10.2 Operators That You Can Use With the Device Manager Tag Language
You can use operators for calculations on certain objects, as

Table 7–4 Device Manager Tag Language Operators

Operator Description

+ Add numbers within Integer, Long, or Double objects. If applied
to a String, the strings are concatenated.

- Subtract numbers contained in Integer, Long, or Double objects.
Subtract dates or time.

* Multiply numbers contained in Integer, Long, or Double objects.

/ Divide numbers contained in Integer, Long, Double, or
Character objects.

% A mod operator applied against Integer, Long, Double, or
Character objects.

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-41

7.10.3 Syntax for the Device Manager Tag Language
OTL supports all regular scripting language syntax rules, such as Assignment,
Conditional Constructs, and Sub Routines.

7.10.3.1 Initialization Statements
You can define primitive data types or arrays using the following:

■ Defining primitive data types: Use the SET syntax to define a new variable in OTL.
SET can also be used as an Assignment statement.

<c:set var="a" value="1"/>
<c:set var="b" value="String variable"/>
<c:set var="c" value="${a}"/>

■ Defining an array: Use the SET syntax to define the array, which can hold any type
of object, including mixed types.

<c:set var="arr1" value="${{"aa", "bb", "cc"}}"/>
<c:set var="arr2" index="0" value="10"/>
<c:set var="arr3" value="${{}}"/>

The first array, arr1, is initialized with the values provided. The second array,
arr2, is initialized with the number 10 at index 0. The third array, arr3, creates an
empty array. When values are assigned to an existing array, the array is expanded,
as necessary.

The following example expands the array, arr1, to size 11. All of the values from
index 3 to 9 is set to NULL.

<c:set var="arr1" index="10" value="dd"/>

If there already was an object at location 10, then the object is replaced with the
new object, "dd". To insert a new object at index 10 and keep existing data, use the
Insert method, as follows:

<c:set value="${arr1.insert(10, "dd")}"/>

7.10.3.2 Assignment Statements
SET and SQL are two distinct assignment syntax statements.

■ SET supports normal operations, such as arithmetic operations. Normal arithmetic
operations can be used on most of the primitive data types, as well as other

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-42 Oracle Database Mobile Server Administration and Deployment Guide

objects. OTL converts data types appropriately when arithmetic operations are
applied to objects.

■ SQL executes SQL statements on a database connection, which results in a
SQLRESULTSET object.

<c:set var="a" value="1"/>
<c:set var="a" value="${a + 2}"/>
<c:set var="b" value="${"1" + 2}"/>
<c:set var="dt" value="${System.Date ("01-01-2004")}"/>
<c:set var="dt" value="${dt + 1}"/>

In this example, a is first assigned the value of 1. Then, two is added to a, which brings
the value to three. The value of b is initialized to 12 and dt is initialized to the date of
Jan. 1, 2004. Lastly, a 1 is added to dt, bringing the date value to 01-02-2004.

7.10.3.2.1 Creating a SQL Result Set Use the SQL syntax to create a SQL Result. SQL
syntax is similar to the SET syntax. The following example assigns a SQL statement to
the rs variable.

<c:sql var="rs" value="select table_name from all_tables"/>

7.10.3.2.2 Print Value to the Output Stream Use the OUT syntax to print a value to the
output stream object, as follows:

<c:out value="${a}"/>

7.10.4 Conditional Statements
OTL supports the following four types of conditional statements:

■ If-Else

■ While

■ Foreach

■ Choose

Each statement must end with the appropriate end tags. Conditional operators, such
as &&, ||, ==, >, >=, <, <=, and != are supported by OTL. However, implicit boolean
conditions are not allowed, such as if (value).

7.10.4.1 If-Else Conditional Statement
The if-else conditional statement enables you to execute a block of statements
depending upon a condition. ELSEIF statements are not supported.

<c:if test="${a == 1 && b == 2}">
 ...
<c:else/>
 ...
</c:if>

7.10.4.2 While Conditional Statement
The while statement enables you to execute a block of statements repeatedly until the
condition check fails.

<c:while test="${a == 1}">
 ...
</c:while>

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-43

7.10.4.3 Foreach Conditional Statement
The foreach conditional statement enables to you enumerate built-in enumeration
objects, such as SQL Result Set and Vectors.

<c:foreach var="row" items="${rs}">
 <c:out value="${row[0]}"/>
</c:foreach>

Also, this statement is used to execute a block of statements repeatedly by
stepping through a STEP value.

<c:set var=”count” value=”100”/>
<c:foreach var="row" begin="1" end="${count}" step="3">
 <c:out value=”${row}”/>
</c:foreach>

7.10.4.4 Break Statement
Break from a loop with the break statement.

<c:foreach var="row" items="${rs}">
 <c:if test="${row[0] == "1"}">
 <c:break/>
 </c:if>
</c:foreach>

7.10.4.5 Choose Statement
The choose statement supports a mutually exclusive conditional execution, where only
one of a number of possible actions is executed. The following example executes one of
the when blocks depending on value:

<c:choose>
 <c:when test="${value < 20}">
 <c:out value="Greater than 20"/>
 </c:when>

 <c:when test="${value == 20}">
 <c:out value="Equal to 20"/>
 </c:when>

 <c:otherwise>
 <c:out value="Less than 20"/>
 </c:otherwise>
</c:choose>

7.10.5 Define Custom Functions
You can define custom functions. These functions have a global scope from the point
of definition, which means that they can access all global variables within the same
OTL page. All variables defined within a function have local scope, except for the
Array data type.

In the following example, the par1, par2, par3, and local variables have local scope.
Any modifications to these variables are not reflected in other parts of the script. If you
want to return more than one object from a function, use the System.SetAttribute
and System.GetAttribute methods.

<c:func var="PrintData" params="par1, par2, par3">
 <c:out value="${par1}"/>
 <c:set var="local" value="${par1}"/>

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-44 Oracle Database Mobile Server Administration and Deployment Guide

 <c:return value="${par2 + par1}"/>
</c:func>

<c:set var="a" value="${PrintData ("Function Call", 1, 2)}"/>
<c:out value="${a}"/>

7.10.6 Manage the Database Connection
You can use database to specify the database connection information used to establish
a connection for the application or to disconnect from the database. Only one
connection for each application is allowed in the OTL engine.

7.10.6.1 Specify Database Connection Information for an Application
Specify the database connection information used to establish a connection for the
application. There is only one connection for each application

<c:database username="SYSTEM" password="P" DSN="MyDSN""/>

7.10.6.2 Disconnect from the Database
To disconnect from the database, then issue the following:

<c:database action="disconnect"/>

7.10.7 Global Classes
The device manager OTL engine contains two predefined global classes, which are
available to any script that access operating system and device manager information.

■ Section 7.10.7.1, "Methods of the System Class": Use to access operating system
information.

■ Section 7.10.7.2, "Methods of the DeviceManager Class": Use to access device
manager information.

7.10.7.1 Methods of the System Class
You can use the following system functions in your device manager command:

■ Section 7.10.7.1.1, "Retrieve HTTP Request Parameters and Session Values"

■ Section 7.10.7.1.2, "Create a Date Object"

■ Section 7.10.7.1.3, "Create a Time Object"

■ Section 7.10.7.1.4, "Get, Set, or Remove Session Attributes"

■ Section 7.10.7.1.5, "Retrieving Parameter Name or Value"

■ Section 7.10.7.1.6, "Retrieving the Request URL"

■ Section 7.10.7.1.7, "Retrieving the Last Error Message"

■ Section 7.10.7.1.8, "Retrieving System Memory Information"

■ Section 7.10.7.1.9, "Retrieving Storage Information"

■ Section 7.10.7.1.10, "URL Encoding a String"

■ Section 7.10.7.1.11, "Opening a File"

■ Section 7.10.7.1.12, "Synchronizing Databases"

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-45

7.10.7.1.1 Retrieve HTTP Request Parameters and Session Values You can retrieve the
existing HTTP request parameters and HTTP Session values, as follows:

■ Retrieve HTTP Request Parameters

■ Retrieve HTTP Session Attributes

Retrieve HTTP Request Parameters
You can retrieve all of the HTTP request parameters, such as the URL and Form
parameters. To retrieve a specific parameter value, prefix the parameter name with a
colon—such as :param_name—or use the GetParameterValue function. All of the
parameter values are preprocessed and the URLs are decoded by the tag language for
you.

For example, if a URL is c://my_app/index.html?my-Par=abcde, then you can retrieve
the parameter value in either of the following ways:

<c:out value="${:my_par} />

or you can use the GetParameterNames function to retrieve all of the input parameters
and then use GetParameterValue function to retrieve the value of each individual
parameter, as follows:

<c:set var="rs" value="${System.GetParameterNames()}" />
<c:foreach var="r" items="${rs}">

Parameter Name = <c:out value="${r} />
 Parameter Value = <c:out value="$System.GetParmaeterValue (r)}" />
</c:foreach>

For more information on GetParameterNames and GetParameterValue, see
Section 7.10.7.1.5, "Retrieving Parameter Name or Value".

Retrieve HTTP Session Attributes
You can retrieve and store session attributes by prefixing the parameter name with a
colon (:name) or through the Session get and set functions.

<c:set var="dummy" value="${System.SetAttribute ("NAME", "VALUE")}"/>
<c:set var="val1 value="${System.GetAttribute ("NAME")}"/>
<c:set var="val2 value="$(:NAME}"/>

As you can see, val1 demonstrates how to retrieve the value using the GetAttribute
function and val2 demonstrates how to retrieve the value using :NAME. Substitute the
actual HTTP session parameter name for NAME.

For more information on get and set attribute functions, see Section 7.10.7.1.4, "Get,
Set, or Remove Session Attributes".

7.10.7.1.2 Create a Date Object Create a Date object with the current time using
System.Date(). Create a Date object with a predefined date value using
System.Date(String date), where date is a date string.

7.10.7.1.3 Create a Time Object Create a Time object with the current time using
System.Time(). Create a Time object with a predefined time value using
System.Time(String time), where time is a time string.

7.10.7.1.4 Get, Set, or Remove Session Attributes You can get, set, or remove Session
attributes. To set an attribute in the application session, use System.SetAttribute
(String name, Object value). Each attribute has a unique name and value. To get

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-46 Oracle Database Mobile Server Administration and Deployment Guide

the attribute value, use System.GetAttribute (String name). To remove the
attribute, use System.RemoveAttribute (String name).

7.10.7.1.5 Retrieving Parameter Name or Value You can retrieve all of the parameters that
are provided through the GetParameterNames method, which returns all parameters in
an Enumeration object. Given a parameter name, you can retrieve the value through
the System.GetParameterValue(String name) method.

Retrieve all parameters into the params variable, as follows:

<c:set var="params" value="${System.GetParameterNames()}" />

Then, once you have retrieved the parameters, you can parse through them using a for
loop, as follows:

<c:foreach var="parm" items="${params}">

Parameter Name = <c:out value="${parm} />
 Parameter Value = <c:out value="$System.GetParameterValue (parm)}" />
</c:foreach>

Each parameter is read into the parm variable and the name is retrieved using
value="${parm}. The value is retrieved with the System.GetParameterValue method.

7.10.7.1.6 Retrieving the Request URL Use the System.GetURL() method for retrieving
the request URL.

7.10.7.1.7 Retrieving the Last Error Message Use the System.GetError method for
retrieving the last error message. If any of the command statements resulted in an
error, such as a database error while executing a SQL statement, retrieve the error
using this method.

7.10.7.1.8 Retrieving System Memory Information Use GetMemoryInfo method to retrieve
the device memory information. The following parameters are supported by this
function:

■ 0 - Retrieve free memory (virtual)

■ 1 - Retrieve total memory (virtual)

■ 2 - Retrieve free memory (physical)

■ 3 - Retrieve total memory (physical)

System.GetMemoryInfo (Integer type)—Given a value between 0 and 3, returns a
Long value containing the requested memory information.

7.10.7.1.9 Retrieving Storage Information Use System.GetStorageInfo to retrieve device
storage information. The return value sent back is in KB.

■ 0 - Retrieve free storage

■ 1 - Retrieve total storage

The second parameter must be a drive name or a directory name. If the function is
invoked without parameters, then the function retrieves the free storage space in the
root directory.

System.GetStorageInfo(Integer type, String drive)—returns a Long value
containing storage information.

7.10.7.1.10 URL Encoding a String Encodes the provided string.

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-47

System.URLEncode (String value)
Returns the given string as a URL encoded string.

7.10.7.1.11 Opening a File Use System.OpenFile (String name) to open the file
provided in the method parameter. Returns the File object.

7.10.7.1.12 Synchronizing Databases Use the System.CreateSyncClient method to
create a Synchronization client object. Call the Synchronization.Synchronize
method to synchronize. Retrieve any error messages using the System.GetError
method.

<c:set var="sync " value="${System.CreateSyncClient()}"/>
<c:set value="${sync.SetUserName ("S11U1")}"/>
<c:set value="${sync.SetPassword ("manager")}"/>
<c:set value="${sync.SetServerURL ("http://localhost")}"/>
<c:set value="${sync.SetProxyInfo ("www-proxy:80")}"/>
<c:set var=’ret’ value="${sync.Synchronize()}"/>
<c:if test="${ret != 0}">

Synchronization error = <c:out value="${System.GetError()}"/>
</c:if>

7.10.7.2 Methods of the DeviceManager Class
The device manager methods are accessed using DeviceManager.FunctionName
syntax. These functions can only be used by trusted OTL scripts.

■ DeviceManager.UploadFile (File file, String URL)

■ DeviceManager.GetServerURL ()

■ DeviceManager.GetBinaryDir ()

■ DeviceManager.GetUserName ()

■ DeviceManager.CreateRequest (String cmd)

■ DeviceManager.GetRegistry (String key, String name)

■ DeviceManager.SetRegistry (String key, String name, String value)

■ DeviceManager.LogMessage (String handler, String name, String message)

DeviceManager.UploadFile (File file, String URL)
Use UploadFile method to upload a file to the mobile server, which contains the
device manager server. In order to use this method, you must first successfully use
System.OpenFile on the file in question.

Given a File object and a URL, returns true if the upload is successful.

DeviceManager.GetServerURL ()
Returns the URL of the mobile server.

<c:set var='url' value='${DeviceManager.GetServerURL()}'/>

DeviceManager.GetBinaryDir ()
Returns the full path of the binary directory of mobile client.

<c:set var='dir' value='${DeviceManager.GetBinaryDir()}'/>

DeviceManager.GetUserName ()
Returns the Oracle Database Mobile Server user name

Defining Device Manager Commands With the Device Manager OTL Tag Language

7-48 Oracle Database Mobile Server Administration and Deployment Guide

<c:set var='user' value='${DeviceManager.GetUserName()}'/>

DeviceManager.CreateRequest (String cmd)
Create a Device Manager request (or command) and notify Device Manager Agent to
process it. Command string must have corresponding OTL script file in the client
device.

The following example demonstrates notifying the DM Agent to process an OTL script
of the name: sync.otl.

<c:set value='${DeviceManager.CreateCommand ("sync")}'/>

DeviceManager.GetRegistry (String key, String name)
Retrieve a value from the configuration file (OSE.INI). All the values are retrieved as
String. The following example retrieves the value for DATA_DIRECTORY configured in
the OSE.INI file.

<c:set var='val' value='${DeviceManager.GetRegistry ("SQLITE", "DATA_
DIRECTORY")}'/>

DeviceManager.SetRegistry (String key, String name, String value)
Set a new configuration value in the configuration file (OSE.INI). The following
example sets a new value for RESUME.

<c:set value='${DeviceManager.SetRegistry ("OSE", "RESUME", "YES")}'/>

DeviceManager.LogMessage (String handler, String name, String message)
Log a message in the Device Manager logging system. The Device Manager client
uploads all logged messages to the mobile server.

<c:set value='${DeviceManager.LogMessage (0, "My Log", "Log message..."}'/>

Applications may use this method to send data to the server. In order to accomplish
this, you must create a handler on the server to process the client message. Once
created, you must register this handler in the mobile server. If your application is
written in C/C++, or Visual Basic, you may use corresponding native APIs to log any
message. For a C/C++ application, use the following:

dmLogMessage (const TCHAR* handler, const TCHAR* name, const TCHAR* message);

In order to use the above API, you must dynamically load the OMCAPI.DLL library and
extract the function pointers. The following sample code demonstrates how to log a
message:

typedef void (*dm_Initialize)();
typedef void (*dm_Destroy)();
typedef void (*dm_LogMessage) (LPCTSTR, LPCTSTR, LPCTSTR);
HMODULE hMod = ::LoadLibrary (TEXT ("omcapi.dll"));
if (hMod)
{
 dm_Initialize init =
 (dm_Initialize)::GetProcAddress (hMod, TEXT ("dmInitialize"));
 dm_Destroy dest = (dm_Destroy)::GetProcAddress (hMod, TEXT ("dmDestroy"));
 dm_LogMessage log =
 (dm_LogMessage)::GetProcAddress (hMod, TEXT ("dmLogMessage"));
 if (init && dest && log)
 {
 (*init)();
 (*log) (TEXT ("MY_HANDLER"), TEXT ("MY LOG"), TEXT ("My Message"));

Defining Device Manager Commands With the Device Manager OTL Tag Language

Manage Your Devices 7-49

 (*dest) ();
 }
 ::FreeLibrary (hMod);
}

Once the message handler is implemented and compiled, copy the JAR file to
<ORACLE_HOME>\Mobile\class directory. Then, execute the following SQL script to
register your message handler implementation:

sqlplus <mobile server schema>/<password>
insert into dm$all_providers values ('MY_HANDLER', 'MESSAGE', 'MyMessage', NULL);

7.10.8 Importing Another OTL Page
Use the import statement to include a page into the current page. All URL parameters
are available to scripts in the imported page, as well as in the current page below the
point of inclusion.

<c:import url="url_of_the_include_page"/>

Specify URL parameters using the HTTP format with the ? or the <c:param> tag, as
shown below:

<c:import url="URL?abc=def">
 <c:param name="name1" value="value1"/>
 <c:param name="name2"> value2 </c:param>
</c:import>

7.10.9 Error Handling
You can throw and catch exceptions within any OTL script. The only restriction is that
you can only have at most one catch block. The throw script terminates the current
script processing and jumps to the catch block. If a page contains a single throw tag
and no catch tag, then the script stops upon reaching the throw tag.

<c:throw value=’1’/>
...
<c:catch var=’ex’>
...
</c:catch>

7.10.10 Sample Device Manager Commands Using the Tag Language
Retrieve current date and time:

<c:set var="d" value="${System.Date()}"/>
<c:out value="Date = ${d}"/>

<c:out value="Time = ${d.Time()}"/>

Perform Date arithmetic by first retrieving the date, then adding or subtracting 2 days
from it. The last two lines changes the date to either be 2 days from now or 2 days ago.

<c:set var="d" value="${System.Date()}"/>
<c:set var="d2" value="${d + 2}"/>
<c:set var="d3" value="${d - 2}"/>
Date + 2 = <c:out value="${d2}"/>

Date - 2 = <c:out value="${d3}"/>

Formatting date and time by retrieving the time using the Date or Time methods, and
then applying a format. For the date, apply either day/month/year or

Using Mobile Manager to Manage iOS Devices

7-50 Oracle Database Mobile Server Administration and Deployment Guide

month/day/year with the Format method. For time, you can choose the format of
hours:minutes.

<c:set var="d" value="${System.Date()}"/>
Date (dd/mm/yyyy) = <c:out value="${d.Format ("dd/mm/yyyy")}"/>
Date (mm/dd/yyyy) = <c:out value="${d.Format ("mm/dd/yyyy")}"/>
<c:set var="t" value="${System.Time()}"/>
Time (hh:mm) = <c:out value="${t.Format ('hh:mm')}"/>

You can apply the names of the month or day to a date by using GetMonth and GetDay,
as follows:

<c:set var="month" value="${{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}}"/>
<c:set var="day" value="${{"Sunday", "Monday", "Tuesday", "Wednessday",
 "Thursday", "Friday", "Saturday"}}"/>
<c:out value="${month[d.GetMonth() - 1]}"/>
<c:out value="${day[d.GetDay()]}"/>

Retrieve the day and add two days to it:

<c:set var="d" value="${d + 2}"/>

Set the date to 02-20-2002.

<c:set var="d" value="${date ("02-20-2002")}"/>

7.11 Using Mobile Manager to Manage iOS Devices
iOS Mobile Device Management (MDM) functionality is supported for iOS 7 devices.
To manage an iOS device from mobile manager, the device must first be enrolled. After
it is enrolled, mobile manager administrator can view the device information, send
commands to the device, and view the command history from history list.

This section describes the following:

■ How to enroll iOS device, see, Section 7.11.1, "iOS Device Enrollment"

■ How to view iOS device information on mobile manager, see, Section 7.11.2, "View
iOS Device Information"

■ iOS MDM command management, see, Section 7.11.3, "iOS MDM Command
Management"

■ iOS device profile management, see, Section 7.11.4, "iOS Profile Management on
Mobile Manager"

Note: Device enrollment is available for all iOS device users but the
other functionalities are available only for mobile manager
administrators.

7.11.1 iOS Device Enrollment
To enroll an iOS device in MDM server, follow the steps below on the iOS device:

1. Go to the setup page:

https://server_ip:server_https_port/mobile/console/setup/setuppage.uix

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-51

2. Choose Language and Platform for the device type you need to enroll as shown in
Figure 7–12. Click "BDB iOS" or "SQLite iOS" to start your enrollment. It will go to
iOS MDM enrollment page:

https://server_ip:server_https_
port/mobile/console/setup/MdmRegisterLogin.uix

See Figure 7–13.

You can access the iOS MDM enrollment page by clicking "BDB iOS" or "SQLite
iOS" on the setup page. You cannot directly access the page.

Figure 7–12 Setup Page

Figure 7–13 iOS MDM Enrollment Page

3. Click "Get CA Certificate" on the iOS MDM enrollment page, to get Certificate
Authority (CA) certificate downloaded on the iOS device. The following steps
describe the procedure on the device.

■ Click "Install" as shown in Figure 7–14.

Using Mobile Manager to Manage iOS Devices

7-52 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–14 Install CA Certificate - Step 1

■ Click "Install Now" as shown in Figure 7–15.

Figure 7–15 Install CA Certificate - Step 2

■ Enter "Passcode" as shown in Figure 7–16.

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-53

Figure 7–16 Install CA Certificate - Step 3

■ Click "Done" as shown in Figure 7–17. The CA certificate is downloaded and
installed successfully.

Figure 7–17 Install CA Certificate - Step 4

■ Enter the username and password on iOS MDM enrollment page (after the CA
certificate is installed) as show in Figure 7–13 and click "Enroll".

The enrollment process will install all published configuration and
provisioning profiles with MDM payload and will also install all applications
granted to this user for the given platform. The following steps illustrate this:

– Click button "Install" as shown in Figure 7–18.

Using Mobile Manager to Manage iOS Devices

7-54 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–18 Enroll - Step 1

– Click "Install Now" as shown in Figure 7–19.

Figure 7–19 Enroll - Step 2

– "Enter Passcode" as shown in Figure 7–20.

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-55

Figure 7–20 Enroll - Step 3

– Click "Install" as shown in Figure 7–21.

Figure 7–21 Enroll - Step 4

– Click "Done" as shown in Figure 7–22. The configuration profile is
installed and the enrollment is done successfully.

Using Mobile Manager to Manage iOS Devices

7-56 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–22 Enroll - Step 5

After the enrollment is finished on the device, all profiles that are installed
during enrollment can be found on the device in iOS settings "General"
Profiles as shown in Figure 7–23. The device is listed in Devices page on
the mobile manager.

Figure 7–23 The Profiles Installed During Enrollment

7.11.2 View iOS Device Information
Once an iOS device is enrolled, see Section 7.11.1, "iOS Device Enrollment", mobile
manager administrators can view the device information on mobile manager.

Go to tab "Device Info" for that device as shown in Figure 7–24. To refresh device and
security information with update-to-date values, use the "Retrieve Device
Information" button.

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-57

Figure 7–24 Device Info Page

You can view application information and status on tab "Software Info" as shown in
Figure 7–25. To retrieve update-to-date information for all applications on the device,
use the "Retrieve Software Information" button.

Figure 7–25 Software Info Page

7.11.3 iOS MDM Command Management
iOS MDM command management is available for mobile manager administrator. For
iOS devices, the following command management is supported:

■ Section 7.11.3.1, "All Commands"

■ Section 7.11.3.2, "Send Command from Mobile Manager"

■ Section 7.11.3.3, "View Command History"

■ Section 7.11.3.4, "Differences between iOS Device Management and Non-iOS
Device Management"

7.11.3.1 All Commands
 You can retrieve commands from tab Mobile Devices -> Administration -> Command
Management.

Using Mobile Manager to Manage iOS Devices

7-58 Oracle Database Mobile Server Administration and Deployment Guide

7.11.3.2 Send Command from Mobile Manager
 The following commands can be sent from mobile manager:

■ Device Information

Retrieve device information from iOS device. Once the command is executed, the
device information can be retrieved on the device information page as shown in
Figure 7–24.

■ Retrieve iOS Security Information

Retrieve iOS security information. Once the command is executed, the security
information can be viewed on the device information page as shown in
Figure 7–24.

■ Install Application

Install an application on iOS device. The application must be published correctly
to mobile server, its platform must match the device platform and the user must
have access to the application.

■ Retrieve iOS Application Status

Retrieve application status for applications which are installed on the device. It
can retrieve status on a specific application or retrieve status on all applications.
Once the command is executed, the application status can be viewed on software
information page as shown in the "Status" column of Figure 7–25.

■ Retrieve Software Information

Retrieve application information for applications which are installed on the device.
Once the command is executed, the application status can be viewed on software
information page as shown in all other columns of Figure 7–25.

■ Remove iOS Application

Remove an application which is installed on the device.

■ Update iOS Application

Update an application which is installed on the device.

■ Update all iOS Applications

Update all applications which are installed on the device.

■ Install Config Profile for iOS Device

Install a configuration profile on the device. The profile needs to be uploaded in
the repository before the command is sent to devices. See Section 7.11.4.1, "Create
or Update Profiles," for information on how to create or update profiles.

■ Install Provisioning Profile for iOS device

Install a provisioning profile on the device. The profile needs to be uploaded in the
repository before the command is sent to devices. See Section 7.11.4.1, "Create or
Update Profiles," for information on how to create or update profiles.

■ Remove Config Profile for iOS Device

Remove a configuration profile from the device.

■ Remove a Provisioning Profile for iOS Device

Remove a provisioning profile from the device.

■ Lock iOS Device

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-59

Lock the device. If a message is entered when the command is sent, the message
will be displayed on the device when the device is locked. Otherwise, the default
message "Device Locked by MDM" will be displayed when the device is locked.

■ Erase iOS Device

■ Clear Passcode for iOS device.

■ Unenroll iOS Device from MDM

Unenorll the device from mobile server. Once the command is executed, the record
of this device is deleted from the mobile repository.

Commands listed above can be viewed in the drop down list in tab "Commands". The
following are examples for sending MDM commands from the mobile manager.

 Example 1: Send "Install Config Profile for iOS Device"

■ Go to the tab "Commands" for the device that will receive the command. Choose
"Install Config Profile for iOS Device" as shown in Figure 7–26. Click "Send Now".

Figure 7–26 Install Configuration Profile - Step 1

■ All available configuration file names in the mobile repository are listed in the
drop down list. Choose the one to be installed and click "Next" as shown in
Figure 7–27. If no configuration files are available in the repository, refer to
Section 7.11.3.1, "All Commands"to upload a new profile.

Figure 7–27 Install Configuration Profile - Step 2

■ The command and parameter will be displayed for confirmation as shown in
Figure 7–28. Click "OK" to send the command. The command is then sent to the
device.

Using Mobile Manager to Manage iOS Devices

7-60 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–28 Install Configuration Profile - Step 3

Example 2: Send "Retrieve Software Infomation"

■ Go to the tab "Commands" for the device that will receive the command. Choose
"Retrieve Software Information" as shown in Figure 7–29. Click "Send Now".

Figure 7–29 Retrieve Software Information - Step 1

■ The drop down list shows all application names that the users have access to and
the application's platform matches the device's platform. If no such application
exists in the repository, a warning message will be displayed. Applications must
be published using packaging wizard and is assigned to the user.

Choose the application name that you want to retrieve information from the drop
down list to retrieve the specific application information. You can also choose "All
Applications" to retrieve all applications that are installed on the device as shown
in Figure 7–30. Click "Next" to continue.

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-61

Figure 7–30 Retrieve Software Information - Step 2

■ Click "Yes" to send the command as shown in Figure 7–31.

Figure 7–31 Retrieve Software Information - Step 3

Once the command is executed successfully, updated application information can
be retrieved as described in Section 7.11.2, "View iOS Device Information".

7.11.3.3 View Command History
 Click tab "Command History". The page lists all commands which have been sent to
the device as shown in Figure 7–32.

Figure 7–32 Command History

Using Mobile Manager to Manage iOS Devices

7-62 Oracle Database Mobile Server Administration and Deployment Guide

7.11.3.4 Differences between iOS Device Management and Non-iOS Device
Management
 See the sections below:

■ Section 7.11.3.4.1, "Device Management on Devices"

■ Section 7.11.3.4.2, "Device Management on Mobile Manager"

7.11.3.4.1 Device Management on Devices A device manager agent is not needed for iOS
devices. For non-iOS devices, a device manager agent (dmagent) runs on native
clients.

7.11.3.4.2 Device Management on Mobile Manager The following functionalities on mobile
manager are not supported for iOS devices:

■ Section 7.1, "Customize the Mobile Client Software Installation for Your Mobile
Device"

■ Section 7.2, "Configuring Mobile Clients Before Installation"

■ Section 7.3.3, "Viewing Database Information"

■ Section 7.3.6, "Queue"

■ Section 7.4, "Configuring and Customizing Your Mobile Device Platform"

■ Section 7.5.1.1.1, "Description of Existing Commands".However, the commands
described in Section 7.11.3.2, "Send Command from Mobile Manager" are
supported for iOS devices.

■ Section 7.5.2, "Modifying Existing Commands"

■ Section 7.5.3, "Creating New Commands"

■ Section 7.6.1.2, "Updating Application Software On Each Client"

■ Section 7.6.2, "Configuring Application Software for Automatic Update"

■ Section 7.6.3, "Initiate Updates of Oracle Database Mobile Server Software from
the Client"

■ Section 7.7, "Using the Device Manager Agent (dmagent) on the Client"

■ Section 7.8, "Managing the Network Protocol Between the Device and the Mobile
Client Software"

■ Section 7.9, "Installation Configuration (INF) File"

■ Section 7.10, "Defining Device Manager Commands With the Device Manager OTL
Tag Language"

■ View device logs in Tab "Device Logs".

7.11.4 iOS Profile Management on Mobile Manager
You can manage iOS profiles in mobile manager by going to tab Mobile Devices ->
Administration -> iOS Device Profile Management. iOS profile management includes
creating or updating profiles in mobile repository, deleting profiles from mobile
repository, and retrieving profile information. The functionalities are supported for
both configuration profiles and provisioning profiles.

The configuration profile management page is:

https://server_ip:server_https_port/mobile/console/DMAdmin-Profile.uix

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-63

Provisioning profile management page is:

https://server_ip:server_https_
port/mobile/console/DMAdmin-ProvisProfile.uix

The following sections describe the iOS profile management functionalities:

■ Section 7.11.4.1, "Create or Update Profiles"

■ Section 7.11.4.2, "Delete Profiles"

■ Section 7.11.4.3, "Retrieve Profile Information"

7.11.4.1 Create or Update Profiles
 To create or update a configuration/provisioning profile, follow the steps below on
configuration/provisioning profile management page:

■ Click "Create or Update Profile" on the page as shown in Figure 7–33.

■ Click "Browse" to retrieve a configuration/provisioning profile on the local
computer for uploading.

■ Click button "OK" to upload it.

If the configuration profile does not exist in the mobile repository, it creates a new
profile in the repository according to the uploaded profile and the new profile is listed
in configuration profile page.

If the configuration profile exists in the mobile repository, it displays a warning
message "Do you want to overwrite the profile" as shown in Figure 7–34. Click "OK" to
overwrite the existing profile in the repository with the uploaded profile. Otherwise,
no change is done in the repository.

Mobile manager checks the configuration profile id to decide whether a configuration
profile exists in the repository or not while it checks the provisioning profile uuid to
decide whether a provisioning profile exists in the repository or not.

The profiles are validated during uploading and invalid profiles are not be allowed to
be stored in the repository. Configuration profiles are signed before getting stored in
the repository. Provisioning profiles are downloaded from Apple Development Portal
and should already be signed by Apple.

Figure 7–33 Configuration Profile Management Page

Using Mobile Manager to Manage iOS Devices

7-64 Oracle Database Mobile Server Administration and Deployment Guide

Figure 7–34 Warning Message for Overwriting an Existing Profile

Figure 7–35 Provisioning Profile Management Page

7.11.4.2 Delete Profiles
 To delete configuration/provisioning profiles from the mobile repository, select the
profiles on configuration/provisioning profile management page and click button
"Delete". A warning message "Do you want to delete the selected profile(s)" with
profile id or profile UUID will be displayed as shown in Figure 7–36. If "Yes" is clicked,
the selected profiles will be deleted from the mobile repository. Otherwise, no change
is done in the repository.

Figure 7–36 Warning Message for Deleting Profiles

Using Mobile Manager to Manage iOS Devices

Manage Your Devices 7-65

7.11.4.3 Retrieve Profile Information
 To retrieve profile information, go to Configuration/Provisioning Profile Management
page, and click the "Profile ID" in the Profile Table as shown in Figure 7–37.

Figure 7–37 Profile Information

Using Mobile Manager to Manage iOS Devices

7-66 Oracle Database Mobile Server Administration and Deployment Guide

8

Offline Instantiation for Mobile Clients 8-1

8 Offline Instantiation for Mobile Clients

The Offline Instantiation (OLI) utility enables mobile administrators to prepare a batch
package that includes the mobile client software and initial data for every mobile user.
The OLI package can be used to set up a mobile client with user-specific initial data.
This procedure helps users avoid an expensive initial synchronization download to the
mobile client.

The following sections discuss the Offline Instantiation feature.

■ Section 8.1, "Using Offline Instantiation to Distribute Multiple Mobile Clients"

■ Section 8.2, "Setting Up the Mobile Server Host and Mobile Development Kit
Host"

■ Section 8.3, "Downloading the Mobile Client SETUP Executable"

■ Section 8.4, "Configure How OLI Creates the Client Distribution Packages With the
OLI Configuration File"

■ Section 8.5, "Using the OLI Engine to Create and Package the Client Distribution
File"

■ Section 8.6, "Deploying Client Distribution Files on Client Machines"

8.1 Using Offline Instantiation to Distribute Multiple Mobile Clients
You can enable your users to install their client using a distribution method, such as a
CD, through the network, or email. To install the mobile client and perform the first
synchronization with the initial data can be a performance issue. In this case, the
administrator can pre-create either just the mobile client binaries or the mobile client
binaries with the user database files, including the user data. The download of this
package is faster than having each user perform the first synchronization on their
device. Thus, this procedure helps users avoid an expensive performance hit when
creating and synchronizing the mobile client for the first time.

Offline instantiation is a tool that enables an administrator to gather and package the
mobile client binaries into a single directory. Offline instantiation is part of the Mobile
Development Kit and is only supported on a Windows platform. We recommend that
you use the same Windows environment where a mobile server exists to create your
distribution files.

When you have multiple users who use the same application, you set up a distribution
for each user through the following steps:

1. Create application: Using the Mobile Manager on the mobile server, the
administrator sets up the application and the users for the mobile client
distribution, as follows:

Setting Up the Mobile Server Host and Mobile Development Kit Host

8-2 Oracle Database Mobile Server Administration and Deployment Guide

a. Using the Mobile Manager on the mobile server, the administrator publishes
the applications that are to be installed on the mobile clients.

b. The administrator creates all of the users for the mobile clients.

c. The administrator grants access for these users to the applications that are to
be downloaded for the distribution.

2. Download the setup.exe file: On the Windows machine where the Mobile
Development Kit is installed, download the mobile client binary (setup.exe) from
Mobile Manager. Choose the Windows platform and language that are appropriate
for the mobile clients that you are creating.

3. Configure the oli.ini file: Configure the oli.ini file to tell the offline
instantiation batch tool how to create the client distribution packages. See
Section 8.4, "Configure How OLI Creates the Client Distribution Packages With the
OLI Configuration File" for directions.

4. Execute the OLI utility: Use the offline instantiation tool (OLI) to create and
package the final client distribution packages for each user. See Section 8.5, "Using
the OLI Engine to Create and Package the Client Distribution File" for directions.

5. Distribute the package: Distribute the client distribution packages to each user to
install on their client device. See Section 8.6, "Deploying Client Distribution Files
on Client Machines" for directions.

8.2 Setting Up the Mobile Server Host and Mobile Development Kit Host
To set up the mobile server host and the Mobile Development Kit (MDK) host,
perform the following steps:

Note: Do not install a mobile client on the same machine as the
Mobile Development Kit where OLI will be executed. If a mobile
client is present, uninstall it before running OLI.

1. Install the mobile server and Mobile Development Kit.

The disk where Mobile Development Kit is installed must have sufficient free
space as this is the staging area where all client binaries and database files are
created before they are copied to the final package. The free space should exceed
the total size of the data to be packaged for all clients combined plus 200 MB. For
example, if you want to package 50 clients where each uses 20 MB of data, then
you need at least 1.2 GB of free space (50 x 20 MB + 200 MB = 1.2 GB).

2. Start the mobile server.

3. Create the appropriate users, publications, and subscriptions on the mobile server.
Subsequent operations are carried out on the MDK host.

8.3 Downloading the Mobile Client SETUP Executable
On the Windows machine where the Mobile Development Kit is installed, download
setup.exe into an empty directory—such as C:\olisetup—from the mobile server
setup page. The setup.exe can be downloaded from the following URL:

http://<mobile_server>:<port>/mobile/setup

Configure How OLI Creates the Client Distribution Packages With the OLI Configuration File

Offline Instantiation for Mobile Clients 8-3

Install the mobile client by running the downloaded setup.exe. The full path where
you install the mobile client must be specified in the SETUP_PATH parameter in the
OLI.INI file. Refer to Section 8.4.1, "SETUP" for more information on this parameter.

8.4 Configure How OLI Creates the Client Distribution Packages With the
OLI Configuration File

The offline instantiation tool, OLI, reads the oli.ini file to determine how many
users, the names of those users, the location of the mobile client binaries, and so on.
Before you use the offline instantiation tool, make sure that you set up these
parameters correctly.

The offline instantiation tool and configuration file is located in the Mobile
Development Kit, under <ORACLE_HOME>\Mobile\Sdk\bin\, it includes a sample OLI
configuration file named oli.ini and the OLI batch script named oli.bat.

The following describes how to configure the OLI.INI file:

■ Section 8.4.1, "SETUP"

■ Section 8.4.2, "USERS"

■ Section 8.4.3, "Example of OLI.INI File"

8.4.1 SETUP
The SETUP section contains the general configuration for OLI to create the client
packages.

SETUP_PATH
Define the absolute location where you downloaded the client setup.exe, as described
in Section 8.3, "Downloading the Mobile Client SETUP Executable".

SETUP_PATH=C:\olisetup\setup.exe

MOBILE_SERVER
Provide the mobile server host and port that the mobile clients will connect to for
synchronization. You can supply a host name or an IP address. The default port
number is 80. Sync server must be running when OLI is launched.

MOBILE_SERVER=myhost.us.oracle.com:80

USE_SSL
If you are going to use SSL, set to YES. Default is NO.

USE_SSL=NO

JDBC_URL
Configure the JDBC URL to the Oracle database or Oracle RAC database where the
mobile server repository exists.

For example, for Oracle Database 10g or 11g whose host, port and SID are <host>,
<port> and <SID>:

jdbc:oracle:thin:@<host>:<port>:<SID>

For example, for Oracle Database 12c whose host, port and service name are <host>,
<port> and <ServiceName>:

Configure How OLI Creates the Client Distribution Packages With the OLI Configuration File

8-4 Oracle Database Mobile Server Administration and Deployment Guide

jdbc:oracle:thin:@//<host>:<port>/<ServiceName>

If the repository exists in an Oracle RAC database, then the JDBC URL for an Oracle
RAC database can have more than one address in it for multiple Oracle databases in
the cluster and follows this URL structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

SCHEMA and PASSWORD
Configure the mobile server administration schema name and password for the mobile
server repository.

SCHEMA=MOBILEADMIN_SCHEMA
PASSWORD=MOBILEADMIN_PASSWORD

OLI_CDS_ROOT
The OLI package directory is a location where all the individual client packages are
placed during the offline instantiation process. This directory must be located on a
drive with adequate free disk space for all client databases. Configure this directory in
the OLI_CDS_ROOT directory.

From this final directory—where OLI places all of the client distribution packages for
each user—you can distribute the packages to each user.

OLI_CDS_ROOT=C:\OLI_CDS

DEVICE_TYPE
This specifies the type of device to which the client distribution packages are installed.
You cannot install the packages to multiple platforms. Provide device platform strings.
Platform types are created by identifying the language and the mobile client database
as follows:

Note: Currently, only Windows platforms are supported.

WIN32_X86_<LANGUAGE>_<DB>

The components of each of section for the device can be as follows:

Table 8–1 Device type platform components

Component Options

<LANGUAGE> JA, ES, KO, DE, US, FR, IT, ZHS, PTB

<DB> Berkeley DB, SQLite

For example, a US Berkeley DB Mobile Client device type is as follows:

DEVICE_TYPE=WIN32_X86_US_BDB

Configure How OLI Creates the Client Distribution Packages With the OLI Configuration File

Offline Instantiation for Mobile Clients 8-5

8.4.2 USERS
The USERS section defines the users and their passwords. For each user, OLI creates a
client distribution package that contains the mobile client binaries. The clients must
have been created on the mobile server, as described in Section 8.1, "Using Offline
Instantiation to Distribute Multiple Mobile Clients". On each line, put the user name
and password, as follows:

[USERS]

CONSC1 MANAGER
CONSC2 MANAGER

For each user, a client distribution package is created.

8.4.3 Example of OLI.INI File
The following sample configuration file is available on the MDK host at ORACLE_
HOME\Mobile\Sdk\bin\.

###
#
OLI.INI
Oracle Database Mobile Server Offline Instantiation Configuration File
Copyright © 1997-2011 Oracle Corporation.
All Rights Reserved.
#
###
#
There are two sections whose names are enclosed in square
brackets: [SETUP] and [CLIENTS].
Lines starting with a "#", ";", "--" or "//" are comments.
#

#
Site specific parameters.
The format for this section is <PARAMETER> = <VALUE>
#
[SETUP]

Absolute path of setup downloaded from mobile server
#
SETUP_PATH=C:\olisetup\setup.exe

#
The mobile server name or IP. If on a port other than 80, append ":<port>".
Sync server need be running when OLI is launched.
#
MOBILE_SERVER=hostname.domain:80

#
If the mobile server port specified above is secure, set "USE_SSL" to "YES".
Otherwise, use "NO".
#
USE_SSL=NO

#
The mobile server database repository JDBC URL, mobileadmin schema and password
#
JDBC_URL=jdbc:oracle:thin:@hostname.domain:1521:orcl
SCHEMA=MOBILEADMIN_SCHEMA

Using the OLI Engine to Create and Package the Client Distribution File

8-6 Oracle Database Mobile Server Administration and Deployment Guide

PASSWORD=MOBILEADMIN_PASSWORD

Each user has its own package created under <OLI_CDS_ROOT>/<USERNAME>.

OLI_CDS_ROOT=C:\OLI_CDS

#
The device type of the targeted mobile client machines.
#
DEVICE_TYPE=WIN32_X86_US_BDB

#
List of clients to be instantiated. The clients must have been created
on the Mobile Server.
The format for this section is <CLIENTID> <PASSWORD>
Passwords are required
#
[USERS]
CONSC1 MANAGER
CONSC2 MANAGER
CONSC3 MANAGER

8.5 Using the OLI Engine to Create and Package the Client Distribution
File

The OLI engine reads the file oli.ini in the current directory for information related
to configuration settings. Before launching the OLI engine, you must edit the oli.ini
file, as described in Section 8.4, "Configure How OLI Creates the Client Distribution
Packages With the OLI Configuration File". The OLI engine uses two repository
tables— C$OLI_CLIENTS and C$OLI_SETUP—that store information related to resuming
OLI tasks during interruptions or failures.

The OLI engine provides commands that enable you to create and populate the client
database files, create packages for mobile clients, and cleanup OLI tables. As a normal
practice, execute them in the given order.

The OLI engine relies on a few Java classes and native libraries. To make the Java
libraries and native libraries accessible to the OLI engine, the software contains a batch
file named oli.bat, in which the necessary environment variables are set. Using the
oli.bat file is recommended instead of directly using the Java class used by OLI,
oracle.lite.sync.OLI_Win32.

To launch the OLI engine using the Command Prompt window, locate the directory
ORACLE_HOME\Mobile\Sdk\bin and execute the oli.bat file at the Command Line.

This action displays the following usage information.

Note: You execute only ONE of the following commands at a time:
makedb, package, cleanup, or checkstatus. Do NOT execute oli.bat
with more than one of these commands. You will notice that the
instructions show how to create the offline instantiation packages by
executing oli.bat several times—once for each command.

 Usage

 oli.bat [-g] [makedb] [package] [cleanup] [checkstatus]

Using the OLI Engine to Create and Package the Client Distribution File

Offline Instantiation for Mobile Clients 8-7

The -g command option for oli.bat turns on debugging.

Note: Before executing the makedb or package command on
Windows Mobile or Win32 devices, ensure that you set the DEVICE_
TYPE parameter in the oli.ini file.

To carry out OLI tasks, re-execute the command using the appropriate switches and
arguments.

The following sections describe how to build the client installation package:

■ Section 8.5.1, "Create and Populate Client Database Files with the MAKEDB
Command"

■ Section 8.5.2, "Package the Mobile Client Binaries with the Client Database Files
with the PACKAGE Command"

■ Section 8.5.3, "Clean Up the OLI Tables Before Executing OLI for Another
Distribution"

■ Section 8.5.4, "Check the Status of OLI Clients"

8.5.1 Create and Populate Client Database Files with the MAKEDB Command
Creates and populates the client database files with the makedb command. For each
user defined in the [USERS] section of the oli.ini file, OLI creates the client database
files for subscribed publications.

Usage

oli.bat [-g] makedb

You can see the state of the client distribution files by executing the checkstatus
command (see Section 8.5.4, "Check the Status of OLI Clients").

8.5.2 Package the Mobile Client Binaries with the Client Database Files with the
PACKAGE Command

After creating the client database file, execute the package command, which packages
up the client database file and the mobile client binaries for each user defined in the
[USERS] section in the oli.ini file.

Note: During execution of this command, some setup dialogs will
display to show information on the installation or download activities.
This is part of the packaging and therefore should not be disturbed in
any way even if it takes a few minutes.

Each client package is written to a subdirectory of the client; the subdirectory is
defined in the OLI_CDS_ROOT parameter in the oli.ini file.

oli.bat [-g] package

After a client package is successfully processed, its status is changed to PACKAGE. You
can see the state of the client distribution files by executing the checkstatus command
(see Section 8.5.4, "Check the Status of OLI Clients").

Deploying Client Distribution Files on Client Machines

8-8 Oracle Database Mobile Server Administration and Deployment Guide

8.5.3 Clean Up the OLI Tables Before Executing OLI for Another Distribution
The cleanup command cleans the OLI tables. The cleanup command purges the OLI
tables. Execute this command before executing OLI for another distribution. There is
no need to execute cleanup if you are not going to execute OLI for another
distribution.

oli.bat [-g] cleanup

8.5.4 Check the Status of OLI Clients
Check the status of OLI clients with the checkstatus command. The initial status of a
client is RESET. After the first client is processed successfully by makedb, its status
changes from RESET to SLUG. After all of the other clients are replicated using the first
client, their status changes from RESET to ODBMADE. Finally, when the OLI engine
packages the client information into a directory, the status changes to PACKAGE.

oli.bat checkstatus

8.6 Deploying Client Distribution Files on Client Machines
Once you have the client packages ready, you can distribute them to your users either
by putting the distribution files on a CD for them or by giving the user access to the
distribution files over the network or through email. Whether you use the CD or
provide your users access to the distribution directory, the client must have network
access to the mobile server. When using OLI to register the client, the connection is
used to propagate the initial synchronization of data.

When you finish packaging the users using the OLI command, a directory is created in
the OLI_CDS_ROOT directory for each user. In each subdirectory, the distribution files,
with a setup.exe, is written. The user can execute the setup.exe directly from this
subdirectory over a network, you can zip up all of these files and send the ZIP file to
the user over email, or you can copy all of the files to a CD for each user. Once the user
has access to the distribution files, the user executes the setup.exe to install the mobile
client binaries.

To deploy on native Win32 client devices, perform the following steps.

1. After a successful server side Offline Instantiation process, each client is provided
with a one-click installable package in the directory specified by the parameter
named OLI_CDS_ROOT in the oli.ini file. The client sub-directory (package) is
named after the client name. Provide each user with the client distribution
package; for example, copy the client package to the client machine.

2. On the client device, perform the following:

a. If you have a mobile client installed, uninstall the existing software.

b. From the client distribution package, run setup.exe.

9

Configure Security in Oracle Database Mobile Server 9-1

9 Configure Security in Oracle Database Mobile
Server

The following sections detail how to manage security in Oracle Database Mobile
Server:

■ Section 9.1, "Security Enhancements"

■ Section 9.2, "Which Password is Which?"

■ Section 9.3, "Providing Security for the Mobile Client"

■ Section 9.4, "Configuring for Secure Socket Layer (SSL) Communication"

■ Section 9.5, "Providing Your Own Authentication Mechanism for Oracle Database
Mobile Server"

■ Section 9.6, "Using a Load Balancer"

■ Section 9.7, "Using Security Manager"

■ Section 9.8, "Using a Firewall Proxy or Reverse Proxy"

■ Section 9.9, "Providing SSL Client Authentication with a Common Access Card"

■ Section 9.10, "Security Warning for Demo Applications"

Note: There is additional information about developing for security
in Chapter 7, "Customizing Oracle Database Mobile Server Security"
in the Oracle Database Mobile Server Developer's Guide.

9.1 Security Enhancements
A number of security enhancements have been made, as follows:

■ It is possible to restrict the database privileges for the MOBILEADMIN user, once the
application has been published.

■ Passwords for all default accounts can be chosen at install time.

9.2 Which Password is Which?
In the Oracle Database Mobile Server product, there are several user name/password
combinations that are used for different security reasons and for separate types of
users or administrators. This section describes each of the user name/password
combinations in order to eliminate confusion.

Which Password is Which?

9-2 Oracle Database Mobile Server Administration and Deployment Guide

Figure 9–1 Components That Use Passwords

Database

Mobile Server
Repository

Mobile Client

Mobile Server

Mobile Manager UI

HTTP

HTTP

JDBC

JDBC or ODBC

1

2

3

4

As shown in Figure 9–1, the passwords for the Database Mobile Server environment
are as follows:

1. When the mobile server accesses the mobile server repository, it uses the
repository user name/password. This defaults to the user MOBILEADMIN and the
password is set during install.

Note: For details on how to modify the repository password, see
Section 9.2.1, "Modifying Repository Password".

2. Within the mobile server, the following are two types of user name/password
combinations, both of which are created using the Mobile Manager UI:

■ Mobile Server Administrator:

Only administrators can use the Mobile Manager, which is a Web
administration UI that provides administrators the ability to modify how the
mobile server behaves. The initial administration user name/password is
created during installation. For adding or modifying, use the Mobile Manager
to modify these on the mobile server.

■ Mobile User:

Normal mobile user provides its user name/password when synchronizing,
which mobile server uses to verify that this use can access the application
data. The mobile user name are stored in the mobile server repository. The
password is stored in the repository only if external authentication is not used.

Note: See Section 4.3.1.2.1, "Define User Name and Password" for
conventions for creating the user name or password.

Providing Security for the Mobile Client

Configure Security in Oracle Database Mobile Server 9-3

– Modify the password on the client using the mSync UI. Only modify the
password if you are connected to the mobile server to ensure that the user
password change is propagated to the repository.

– Modify the mobile user password in the Mobile Manager in the User
Properties page. If you simply want to invalidate the mobile user, then
you only have to modify the password on this screen; however, if you
want to reset the password on both the mobile server and the user, then
also send a Reset Password command from the Device Management
section in the Mobile Manager to the mobile client. However, a Reset
Password command can only modify the password if the client database is
not encrypted. If the client database is encrypted, you can only modify the
password with the mSync UI.

9.2.1 Modifying Repository Password
As described in number 1 in Section 9.2, "Which Password is Which?", the repository
has its own user name/password combination. By default, the mobile server schema is
MOBILEADMIN. However, if, during installation, you chose another name, replace
MOBILEADMIN by your own schema name in the steps described in this section.

If you want to modify the password for your repository schema, perform the
following:

1. Connect to your Oracle database where the mobile server repository was installed.

2. Change the password on the database with the ALTER command. The following
command modifies the repository password to TEST:

alter user mobileadmin identified by TEST account unlock;

3. Backup the mobile.ora file on the mobile server:

cp $MOBILE_HOME/Mobile/Server/bin/mobile.ora $MOBILE_
HOME/Mobile/Server/bin/mobile.ora_backup

4. Comment out or remove ADMIN_USER and ADMIN_PASSWORD parameters in
the mobile.ora file.

5. Restart the mobile server.

6. Go to the following URL: http://mobileserver_
hostname:Port/mobile/console/startup

7. Log into thte mobile server using the new repository password. For our example,
this password is TEST.

8. Click "Save" to save the mobile server repository user name and password.

Note: This enables the auto start feature of the mobile server.

9.3 Providing Security for the Mobile Client
Security for the mobile client involves securing access to the device through
authentication and securing the data stored within the mobile client database. For full
details on both issues, see Section 3.8, "Providing Security for the Mobile Client" in the
Oracle Database Mobile Server Mobile Client Guide.

Configuring for Secure Socket Layer (SSL) Communication

9-4 Oracle Database Mobile Server Administration and Deployment Guide

9.4 Configuring for Secure Socket Layer (SSL) Communication
Oracle Database Mobile Server supports Secure Socket Layer (SSL) communication
between the mobile server and mobile clients. This chapter assumes that you
understand the concepts behind SSL and provides only the steps for using keys and
certificates for SSL communication for the mobile server.

■ Section 9.4.1, "Creating an SSL Certificate"

■ Section 9.4.2, "Configuring Mobile Server for SSL"

■ Section 9.4.3, "Troubleshooting Error Messages for an SSL-Enabled Mobile Server"

■ Section 9.4.4, "Support for Non-SSL Mobile Clients"

Note: These are server-level steps which are typically executed prior
to deployment of an application that requires SSL communication.

9.4.1 Creating an SSL Certificate
SSL communicates by validating an SSL certificate between the client and the server.
This section describes how to ceate the SSL certificate. However, often when you are
first starting with new functionality, you may want to use a temporary certificate just
to see how the SSL functionality works.

To create a keystore file, perform the following steps:

1. Use the Oracle Java keytool utility to generate a private key, public key, and an
unsigned certificate. Place this information into either a new or existing keystore.

Note: A keystore is a java.security.KeyStore instance that you
create and manipulate using the keytool utility, which is provided
with the Oracle JDK. See
http://download.oracle.com/javase/6/docs/technotes/tools/ind
ex.html#security for more information on the keytool utility.

2. Obtain a signature for the certificate, using either of the following approaches:

■ Generate your own signature by using keytool to self-sign the certificate. This
is appropriate only if your clients trust you as your own certificate authority.

■ Obtain a signature from a recognized certificate authority through the
following steps:

a. Using the certificate from Step 1, use keytool to generate a certificate request,
which requests a certificate authority to sign the certificate.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority and import it into the
keystore using keytool. In the keystore, the signature is matched with the
associated certificate.

If you install the mobile client using setup.exe after you create the self-signed
certificate, a message pops up asking if you want to continue. If you click Yes, a
parameter is added to the devmgr.ini that tells Oracle Database Mobile Server to not
validate the certificate. However, if you install the mobile client using any other
method, you need to either set the SSL disable parameter yourself or add the
certificate in the trusted certificate list. These options are listed below:

http://download.oracle.com/javase/6/docs/technotes/tools/index.html#security
http://download.oracle.com/javase/6/docs/technotes/tools/index.html#security

Configuring for Secure Socket Layer (SSL) Communication

Configure Security in Oracle Database Mobile Server 9-5

■ To disable the SSL check, set the SSL disable parameter: Set the DISABLE_SSL_
CHECK parameter to true in the devmgr.ini file to 1 after the [NETWORK] section, as
follows:

[NETWORK]
 DISABLE_SSL_CHECK=true

■ To allow this certificate to be validated, add or install the new certificate in the
trusted certificate list. After completion, the certificate will be trusted.

1. Open your browser and point it at the following site:

https://<server>/mobile/setup

Security alert displays.

2. Click "View Certificate".

3. Click "Install Certificate".

4. Click "Next-> Next-> Finish".

When you next perform the synchronization, the synchronization is successful.
This adds the Oracle Database Mobile Server in the trusted root certification
authority.

Note: If this is for testing only, then remove this certificate after
testing is completed.

Each certificate authority has its own process for requesting and receiving signatures.
Since this is outside the scope and control of Oracle Database Mobile Server, it is not
covered in Oracle Database Mobile Server documentation. For more information, go to
the Web site of any certificate authority. Each browser lists trusted certificate
authorities.

Here are the Web addresses for VeriSign, Inc. and Thawte, for example:

http://www.verisign.com/
http://www.thawte.com/

9.4.2 Configuring Mobile Server for SSL
Once you have a certificate, you must configure SSL on both the application server and
the mobile server, as follows:

1. Configure SSL in the application server as documented in your application server
documentation.

2. Configure SSL in the mobile server by adding SSL=YES and specifying
PORT=server_https_port in the [MOBILE] section of the mobile.ora file. In the
Mobile Manager, migrate to the "Administration" tab and select "Edit Config File".
This is the mobile.ora file.

3. After all configuration is complete, restart the application server to initialize the
changes.

Note: If you have both SSL and non-SSL clients wanting to access the
mobile server, you must configure it to be both SSL and non-SSL
enabled.

Providing Your Own Authentication Mechanism for Oracle Database Mobile Server

9-6 Oracle Database Mobile Server Administration and Deployment Guide

9.4.3 Troubleshooting Error Messages for an SSL-Enabled Mobile Server
The following errors may occur when using SSL certificates on your mobile server:

No available certificate corresponds to the SSL cipher suites which are enabled
Cause: Something is wrong with your certificate.

Action: Examine your certificates and check that at least one of them supports the
SSL cipher suite you are using.

IllegalArgumentException: Mixing secure and non-secure sites on the same ip +
port
Cause: You cannot configure SSL and non-SSL Web sites to listen on the same port
and IP address.

Action: Check to see that different ports are assigned.

9.4.4 Support for Non-SSL Mobile Clients
You may have a non-SSL mobile client that you want to interact with your SSL
enabled mobile server. For the case when you have both SSL and non-SSL mobile
clients interacting with a mobile server, the mobile server must be configured in both
SSL and non-SSL mode. See Section 9.4.2, "Configuring Mobile Server for SSL" for
details.

9.5 Providing Your Own Authentication Mechanism for Oracle Database
Mobile Server

You can provide an external authenticator for the mobile server to authenticate users
with passwords as well as their access privileges to applications. For example, in an
enterprise environment, you may have your user data, such as employee information,
stored in a LDAP-based directory service. The mobile server can retrieve the user
information from the LDAP directory—or from any custom User Management
System—if configured with your own implementation of an external authenticator.
The mobile server links the external user information to the mobile server repository.

For full details, see Section 7.1, "Providing Your Own Authentication Mechanism for
Authenticating Users for the Mobile Server" in the Oracle Database Mobile Server
Developer's Guide.

9.6 Using a Load Balancer
Oracle Database Mobile Server supports handling client synchronization using mobile
server cluster. To use this feature, multiple mobile servers could be set up behind a
load balancer. The mobile client only needs connectivity to the load balancer machine,
and when the load balancer receives an HTTP request, it will relay the client request to
one of the clustered mobile server and send back any response data from the mobile
server to the client. The load balancer will balance all the requests among the multiple
mobile servers hence the overall throughput of the data synchronization will be
increased.

■ Section 9.6.1, "Configure the Oracle Web Cache as a Load Balancer"

■ Section 9.6.2, "Configure Mobile Server for Load Balancer"

■ Section 9.6.3, "Communicate with Mobile Servers"

Using a Load Balancer

Configure Security in Oracle Database Mobile Server 9-7

9.6.1 Configure the Oracle Web Cache as a Load Balancer
Load Balancer is the host machine which has connectivity to the client machine. No
mobile server should be installed on that machine. This release of Oracle Database
Mobile Server supports load balancer using the Oracle Web Cache component, which
is provided with Oracle Fusion Middleware 11g Release 1. For information on how to set
up Oracle Web Cache as a load balancer, refer to the Oracle Fusion Middleware Web
Cache documentation.

You must install mobile server cluster and Oracle Web Cache separately. Multiple
mobile server instances in the cluster must share the same repository. After the
installation of mobile server cluster and Oracle Web Cache, perform below
configuration on the Oracle Web Cache to set up the load balancer. Refer to Oracle®
Fusion Middleware Administrator's Guide for Oracle Web Cache 11g Release 1 (11.1.1) for
more information.

1. Configuring Origin Servers with Oracle Web Cache

Go to "Oracle Web Cache Origin Servers" page. Add each mobile server in the
cluster as an origin server. Specify the communication protocol as HTTP or
HTTPS.

2. Configuring Site Definitions with Oracle Web Cache

Go to "Oracle Web Cache Site Definitions" page. Check if there is any web cache
site. By default, the installation of Oracle Web Cache will create at least one site
using HTTP protocol. If you want to configure the mobile client to communicate
with the mobile servers using HTTPS protocol, add an Oracle Web Cache site
using HTTPS.

Note: Refer to the Oracle Web Cache listening ports about which
port should be used for HTTPS.

3. Configuring Site-to-Server Mapping with Oracle Web Cache

Go to "Oracle Web Cache Site-to-Server Mapping" page, pick up one Oracle Web
Cache site and select all the mobile servers as origin servers for the site.

Note: If the Oracle Web Cache site is using HTTP protocol, the
mobile server should also use HTTP protocol; likewise for HTTPS.

4. Configuring Session Binding on Oracle Web Cache

Go to "Oracle Web Cache Session Binding" page. For each of the Oracle Web Cache
site that maps to the mobile servers, pick up option "Bind using a defined session",
and specify "JSESSIONID" as Session Name, and "Cookie Based" as Session
Binding mechanism.

9.6.2 Configure Mobile Server for Load Balancer
For each mobile server instance in the cluster, specify DM_AUTO_SYNC_
CACHE=YES in mobile.ora.

Using Security Manager

9-8 Oracle Database Mobile Server Administration and Deployment Guide

9.6.3 Communicate with Mobile Servers
Use the IP address and port number of the Oracle Web Cache site as the URL to access
mobile manager, download setup program for mobile client install, and synchronize
client data. Users should never directly access the clustered mobile server URLs.

9.7 Using Security Manager
The Java Security Manager can be used with the application server to provide
additional protection for resources running in the same Java Virtual Machine (JVM).
Using a Java Security Manager is an optional security measure.

This section introduces how to use the Java Security Manager with the WebLogic
Server to protect DMS resources by preventing untrusted code from performing
actions against DMS that are restricted by the Java security policy file. You can also use
the Java Security Manager with other supported application servers to protect DMS
resources. Find more information about using the Java Security Manager with
WebLogic here: http://docs.oracle.com/middleware/1213/wls/SCPRG/server_
prot.htm#SCPRG392

■ Section 9.7.1, "Enabling Java Security Manager with WebLogic Server"

■ Section 9.7.2, "Editing Java Security Policy File"

9.7.1 Enabling Java Security Manager with WebLogic Server
To use the Java Security Manager with the WebLogic Server, specify the
-Djava.security.policy and -Djava.security.manager arguments when starting the
WebLogic Server. The -Djava.security.policy argument specifies a filename, using a
relative or fully-qualified pathname, that contains Java security policies.

In a DMS environment, to enable the Java Security Manager with the WebLogic Server,
add the -Djava.security.manager argument to the end of the startWebLogic.sh script
file in runmobileserver on Linux, and runmobileserver.bat on Windows, and start
DMS. For example:

${WLS_DOMAIN_DIR}/bin/startWebLogic.sh -Djava.security.manager

where, {WLS_DOMAIN_DIR} is the domain directory of DMS in WebLogic, and the
sample Java security policy file provided by WebLogic Server will be used.

9.7.2 Editing Java Security Policy File
WebLogic Server provides a sample Java security policy file, which you can edit and
use. The file is located at <WL_HOME>\server\lib\weblogic.policy, where <WL_
HOME> is the top-level directory of your WebLogic Server installation. Edit this policy
file to add permissions for DMS resources.

■ Add permissions for DMS to use JDBC Driver with WebLogic.

grant codeBase "file:<WL_HOME>/oracle_common/modules/oracle.jdbc_12.1.0/-" {
permission javax.management.MBeanServerPermission "*";
permission javax.management.MBeanTrustPermission "*";
};

■ Add permissions for DMS to access system temporary files and DMS files to the
section which is designated for all domains.

permission java.io.FilePermission "<<ALL FILES>>", "read";
permission java.io.FilePermission "/tmp", "write";
permission java.io.FilePermission "/tmp/-", "write";

Using a Firewall Proxy or Reverse Proxy

Configure Security in Oracle Database Mobile Server 9-9

permission java.io.FilePermission "<MOBILE_HOME>/mobile/server/ConsLog/*",
"write,delete";
permission java.io.FilePermission "<MOBILE_
HOME>/mobile/server/bin/mobile.ora1", "write";
permission java.io.FilePermission "<MOBILE_HOME>/mobile/server/bin/mobile.ora",
"write,delete";
permission java.io.FilePermission "<MOBILE_
HOME>/mobile/server/bin/resumefile.dat", "write,delete";
permission java.io.FilePermission "<MOBILE_
HOME>/mobile/server/admin/repository/mobile/console/cabo/images/-", "write";
permission java.lang.management.ManagementPermission "control";
permission java.net.SocketPermission "*", "accept,connect,resolve,listen";
permission java.lang.RuntimePermission "*";
permission java.sql.SQLPermission "*";

9.8 Using a Firewall Proxy or Reverse Proxy
Normally, the mobile client synchronizes data inside a firewall on the corporate
intranet, where the mobile server also resides. However, what if the user wishes to
synchronize the mobile client either from the internet, which is outside the firewall to a
mobile server that exists inside the firewall? Or what if the mobile server exists on the
public internet and the mobile client is inside the firewall on the corporate intranet?
Either way, you have to modify your configuration to enable a mobile client and
mobile server to communicate through a firewall.

One can think of many scenarios in which case mobile users want to connect to the
corporate server, without being directly connected to the corporate intranet. The
corporate firewall uses proxy support to allow the mobile user to connect to the server.
The following sections describe how to configure the mobile server and mobile client
to communicate through a firewall:

■ Section 9.8.1, "Using a Reverse Proxy to Communicate from Internet to Intranet"

■ Section 9.8.2, "Using HTTP Proxy to Communicate From Inside a Firewall"

9.8.1 Using a Reverse Proxy to Communicate from Internet to Intranet
If you are traveling to a customer site and you want to synchronize over the internet to
the mobile server inside your corporate firewall, use a reverse proxy to communicate.
A reverse proxy is used whenever a client outside a corporate network wants to
connect to a resource available inside the corporate network, as shown in Figure 9–2.
The corporate network is protected by a firewall, which stops the outside world from
having direct access with the systems inside the corporate network. However, the
reverse proxy enables designated traffic that originates outside the corporate network
to reach servers inside the corporate intranet.

Using a Firewall Proxy or Reverse Proxy

9-10 Oracle Database Mobile Server Administration and Deployment Guide

Figure 9–2 Mobile Client Communicating With Mobile Server Through Firewall Using
Reverse Proxy

Internet Intranet

 Firewall
with Reverse
 ProxyMobile Client

Mobile
Server

Oracle
RDBMS

When you configure the reverse proxy, then the mobile client communicates directly
with the reverse proxy, which turns around and communicates with the mobile server.

Note: Reverse proxy can be used with or without authentication.
Using authentication is recommended for better security and access
control to the inside of the firewall. The authentication is supported
only if mobile client's user name and password are identical to those
of the reverse proxy.

In order for this communication to occur seamlessly, do the following:

■ Section 9.8.1.1, "Configure the Apache Web Server as a Reverse Proxy"

■ Section 9.8.1.2, "Set Up Mobile Server for Mobile Client Download"

■ Section 9.8.1.3, "Download Reverse Proxy Mobile Client"

■ Section 9.8.1.4, "Enable SSL When Using a Reverse Proxy"

■ Section 9.8.1.5, "Configure Device Management to Work With a Firewall"

9.8.1.1 Configure the Apache Web Server as a Reverse Proxy
You need to set up the Apache Web Server software for the reverse proxy, as follows:

1. First, use Apache 2.0 or later for your proxy.

2. Configure the proxy server to point to the mobile server. See the Apache Web
Server documentation for instructions on how to do so.

3. Set the following parameter in the httpd.conf configuration file:

BrowserMatch MSIE AuthDigestEnableQueryStringHack=On

4. When you use reverse proxy authentication, you must upper-case the user name
of the proxy digest.

5. If you are using authentication, then configure the Reverse Proxy with the user
name/passwords for all mobile clients that will access this reverse proxy for
synchronization.

When the mSync is launched, the user name/password is sent automatically to the
reverse proxy for authentication; thus, if the reverse proxy is not configured with
the user name/password, then the connection is refused.

Using a Firewall Proxy or Reverse Proxy

Configure Security in Oracle Database Mobile Server 9-11

9.8.1.2 Set Up Mobile Server for Mobile Client Download
If you know that the mobile client is going to be accessing the mobile server through a
reverse proxy, you need to configure mobile server with the proxy server URL. This
ensures that when the setup.exe is downloaded by the client, that the client is
automatically configured with the reverse proxy URL, instead of the mobile server
URL.

So, before you download setup.exe to the mobile client, perform the following on the
mobile server:

1. Configure the mobile server to accept communication from the reverse proxy.

Configure the reverse_proxy parameter in the mobile.ora configuration file on
the mobile server, as follows:

[MOBILE]
REVERSE_PROXY=http://<reverse_proxy_hostname>:<port_number>/mobile

2. If the reverse proxy is set up with authentication enabled, configure HTTP_
AUTH=YES in dmc.inf

Add the following in INI element in

MOBILE_HOME\Mobile\Server\admin\repository\setup\dmc\dmc.inf,
where MOBILE_HOME is where you install the mobile server:

<item name="DEVMGR" section="NETWORK">
<item name="HTTP_AUTH">YES</item>
</item>
.
For example, the updated INI element would be:

<ini>
<item name="DEVMGR" section="DMC">
<item name="USER_NAME">$USER_NAME$</item>
<item name="PUSH_PORT">8521</item>
<item name="DISABLE_PROMPT">FALSE</item>
<item name="UPDATE_DAY">0</item>
<item name="UPDATE_TIME">0</item>
</item>
<item name="DEVMGR" section="NETWORK">
<item name="HTTP_AUTH">YES</item>
</item>
</ini>

9.8.1.3 Download Reverse Proxy Mobile Client
After you have updated the mobile server with the proper reverse proxy
configuration, perform the following on the client:

1. Configure the mobile client to communicate with the reverse proxy in one of the
two following methods:

■ If you configured the mobile server as described in Section 9.8.1.2, "Set Up
Mobile Server for Mobile Client Download", then you can download the
mobile client software directly from the setup UI. The configuration
automatically points to the reverse proxy when you perform the installation of
the mobile client.

■ However, if you installed the mobile client software from within the corporate
intranet or you have a client already installed on a machine, you must modify
its configuration. Modify the devmgr.ini configuration file for your mobile
client. Change or add the SERVER_URL parameter in the NETWORK section of the

Using a Firewall Proxy or Reverse Proxy

9-12 Oracle Database Mobile Server Administration and Deployment Guide

devmgr.ini configuration file to point to the host/port of the reverse proxy
server, as follows:

SERVER_URL=HTTP://<reverse_proxy_host>:<port>/mobile

If you use the msync.exe to synchronize, then enter the hostname of the
reverse proxy in the Server box.

Note: If you are planning on using the mobile client both inside and
outside of the corporate internet, you may want to have two SERVER_
URL definitions—one for the internal corporate mobile server address
and one for the reverse proxy address. Then, comment the one that
you are not using and uncomment the one that you are using.

2. Perform post-installation steps for the mobile client:

If the mobile client is a Windows client—such as Windows 7 and Windows Mobile
devices—then Oracle Database Mobile Server uses the WININET API for SSL over
HTTP.

The following are known issues when using SSL over HTTP:

■ The HTTP connection may slow down if you have the Auto Detect Proxy
enabled in the Internet Explorer. In addition, it may also slow down if you do
not have a proxy server in your network. In this case, uncheck the
Automatically detect proxy option in the Internet Explorer.

■ For Windows 2000 clients, mSync may hang if you do not have all of the
Microsoft patches applied.

■ If your mobile server or reverse proxy does not have a valid SSL certificate,
then the Oracle Database Mobile Server clients may stop working. This is
critical if there are errors in certificate chaining. See Section 9.8.1.4, "Enable SSL
When Using a Reverse Proxy" for details.

You may get "Unsuccessful http response: HTTP/1.1 408 Request Time-out" error
in bglog log0.xml. This is caused by an open bug for Apache Http server.

9.8.1.4 Enable SSL When Using a Reverse Proxy
Normally, when you have a browser and you specify HTTPS for the connection
between the browser and a reverse proxy, then the browser prompts for a user
name/password for authentication. However, with msync, a browser is not displayed.
Instead, msync sends on the user name/password for the user to the reverse proxy.
Thus, you must have your environment configured correctly or the connection fails.

The following describes several scenarios that you may have between the mobile client
and the reverse proxy:

■ Section 9.8.1.4.1, "Using SSL Authentication"

■ Section 9.8.1.4.2, "Using SSL Between Mobile Client and Reverse Proxy"

■ Section 9.8.1.4.3, "Using SSL Between Firewall and Mobile Server"

■ Section 9.8.1.4.4, "Using Certificates That Are Not Signed By Trusted Authority"

9.8.1.4.1 Using SSL Authentication When you are using a reverse proxy firewall, SSL
client authentication is not supported. You can only turn on server-side HTTPS
authentication.

Using a Firewall Proxy or Reverse Proxy

Configure Security in Oracle Database Mobile Server 9-13

9.8.1.4.2 Using SSL Between Mobile Client and Reverse Proxy As Figure 9–3 demonstrates,
you may want to encrypt your data and authenticate using SSL when using a reverse
proxy.

Figure 9–3 Mobile Client Communicating Over SSL Through Firewall Using Reverse
Proxy

Intranet

 Firewall
with Reverse
 Proxy

Mobile Client

Mobile
Server

Oracle
RDBMS

SSL

Internet

no SSL

In this case, you must install the SSL certificate on the firewall for the SSL handshake
between the mobile client and the firewall. If you are using a certificate that is not
signed by a trusted authority or if you want to disable SSL authentication, see
Section 9.8.1.4.4, "Using Certificates That Are Not Signed By Trusted Authority".

9.8.1.4.3 Using SSL Between Firewall and Mobile Server As Figure 9–4 demonstrates, you
may want to encrypt your data and authenticate using SSL when using a reverse
proxy for all communication between the mobile client and the mobile server. In this
case, you would configure SSL between the mobile client and the firewall; as well as
configure SSL between the firewall and the mobile server.

Figure 9–4 Mobile Client Communicating Over SSL Through Firewall Using Reverse
Proxy

Intranet

 Firewall
with Reverse
 Proxy

Mobile Client

Mobile
Server

Oracle
RDBMS

SSL

Internet

SSL

In this case, you need to create a chained certificates with the following two
certificates:

■ A certificate for the connection between the mobile client and the reverse proxy
firewall.

■ A certificate for the connection between the reverse proxy firewall and the mobile
server.

Using a Firewall Proxy or Reverse Proxy

9-14 Oracle Database Mobile Server Administration and Deployment Guide

Perform the following:

1. Create a chained SSL certificate that contains both the certificates from the reverse
proxy followed by the certificate for the mobile server.

2. Install this certificate on the reverse proxy firewall for the mobile client handshake.

In general, install the chained certificate on the firewall for the SSL handshake between
the mobile client and the firewall.

9.8.1.4.4 Using Certificates That Are Not Signed By Trusted Authority You can use certificates
that are not signed by a trusted authority, such as a self-signed certificate, on the
mobile server. In this case, set the following parameter in the NETWORK section in the
devmgr.ini (devmgr.txt) file on the client device:

DISABLE_SSL_CHECK=YES

This parameter enables the client to use the self-signed certificate for SSL encryption,
but not to perform SSL authentication.

9.8.1.5 Configure Device Management to Work With a Firewall
We use device management to send commands to devices for updates, initiating
synchronization, as well as other commands. Device management uses HTTP as its
communication protocol. So, if a firewall is in between the device and the mobile
server, you must perform some configuration to enable device management
communication.

There are two types of device management requests:

■ Device initiated: The Device Manager agent (dmagent), which is included on the
mobile device, registers with the mobile server at device bootstrap. This is known
as HTTP PULL, since the mobile device polls the mobile server for any
outstanding commands. The dmagent periodically polls the mobile server for
command requests on the mobile server listening port.

■ Oracle Database Mobile Server initiated: This is known as HTTP PUSH, since the
mobile server sends the commands directly to the mobile device. You can send
commands to one or more devices through the Mobile Manager or Java APIs.
However, this is unusual, since most communication/synchronization is initiated
from the client. Thus, the proxy must be configured correctly to enable
communication initiated from the mobile server.

The following describes how to configure your mobile server to enable device
management requests to a mobile server that resides behind a firewall:

■ Section 9.8.1.5.1, "Configure Mobile Device Listening Port"

■ Section 9.8.1.5.2, "Firewall Configuration"

■ Section 9.8.1.5.3, "Proxy Configuration for the Mobile Server"

9.8.1.5.1 Configure Mobile Device Listening Port In the mobile server initiated scenario,
the mobile device has a listener with which the mobile server connects. Thus, the
mobile server communicates with the dmagent listening port. The dmagent on the
mobile device, by default, listens on port 8521, which is configured in the PUSH_PORT
parameter.

For all future client installations, you may modify the PUSH_PORT for all the clients by
using Mobile Manager in the Mobile Devices -> Administration -> Configuration
Management page. This change affects only the client installations that are performed
after the modification.

Using a Firewall Proxy or Reverse Proxy

Configure Security in Oracle Database Mobile Server 9-15

9.8.1.5.2 Firewall Configuration Your firewall should be configured so that HTTP traffic
is enabled in the following manner:

■ The dmagent on the mobile device should be able to access the SERVER_PORT on the
firewall.

■ The mobile server should be able to access the PUSH_PORT of all devices.

9.8.1.5.3 Proxy Configuration for the Mobile Server If the mobile server is behind the
firewall, it can only access mobile devices through a proxy. To configure the proxy
server information in the metadata of the HTTP provider, navigate to Mobile Devices
-> Administration -> Network Management -> HTTP in the Mobile Manager.

The metadata is any user-defined string that is required by the Java class during
initialization. The HTTP provider metadata is a sequence of name-value pairs, where
the name and value are separated by and equals sign ('='). Each pair is separated by
the ampersand ('&'). This setting is effective when you send commands from a
standalone Java program using device management APIs.

The following example adds the PROXY name-value pair with the proxy URL into the
metadata after the TIMEOUT name-value pair:

TIMEOUT=30&PROXY=http://proxy.foo.com:8080

9.8.2 Using HTTP Proxy to Communicate From Inside a Firewall
Use the HTTP proxy for clients inside a corporate network that want to connect to a
resource on the Internet. As shown in Figure 9–5, the corporate network is protected
by a firewall, which blocks direct access from inside the corporate network to the
outside world. However, you can configure a proxy server on the firewall to allow
designated traffic travel through the firewall.

As demonstrated by Figure 9–5, A mobile user may wish to use a public Internet
connection to connect to the corporate network, using one of the many available
wireless 802.11 hotspots.

Figure 9–5 Client Accessing Mobile Server on Internet

Internet Intranet

Mobile Client
 Firewall
with Proxy

Mobile
Server

 Oracle
RDBMS

If the mobile client is located in the corporate intranet and the mobile server is located
somewhere in the public Internet—where both are separated by a firewall—then the
firewall must be configured to let HTTP traffic travel through by means of a proxy
server.

To enable communication from the mobile client to a mobile server outside the
corporate firewall, perform one of the following:

Note: You may be able to set up the proxy for communication
originated from the client in this scenario; however, we do not support
server-initiated device management requests in this scenario.

Providing SSL Client Authentication with a Common Access Card

9-16 Oracle Database Mobile Server Administration and Deployment Guide

■ Section 9.8.2.1, "Proxy Configuration for Mobile Clients"

■ Section 9.8.2.2, "Proxy Configuration for the Device Manager Agent"

■ Section 9.8.2.3, "Reverse Proxy Configuration for HTTP PUSH from Mobile Server
Not Supported"

9.8.2.1 Proxy Configuration for Mobile Clients
For all mobile clients, perform the following when you synchronize using the
msync.exe tool:

1. Check the "Use Proxy" checkbox.

2. Enter the hostname and port number of the proxy server.

9.8.2.2 Proxy Configuration for the Device Manager Agent
The mobile device is behind the firewall and can access the outside world (mobile
server) only by using a proxy. At the time of client installation, the setup program
prompts the user for the proxy information.

If you configured the proxy after the client installation, then you can configure
dmagent to use the proxy server by adding HTTP_PROXY parameter under the NETWORK
section including both the IP/hostname and port number to the devmgr.ini file, as
follows:

HTTP_PROXY=proxy.foo.com:8080

9.8.2.3 Reverse Proxy Configuration for HTTP PUSH from Mobile Server Not
Supported
In this scenario, the mobile server could only initiate communication with a mobile
device behind a firewall through a reverse proxy. However, a reverse proxy would
have to be configured for each mobile device behind the firewall. This is too intensive,
so we do not support mobile server initiated communication, which includes the
HTTP PUSH Device Management communication.

9.9 Providing SSL Client Authentication with a Common Access Card
Oracle Database Mobile Server supports client authentication for synchronization of
data over SSL-based connections between a mobile client and the mobile server. The
client authentication is based on X.509 certificates that can be stored in a Common
Access Card (CAC).

Note: Encryption of client data with a CAC for databases on either
mobile client is not supported.

The following sections describe how to enable client authentication in Oracle Database
Mobile Server for Common Access Cards:

■ Section 9.9.1, "Introduction to SSL Client Authentication"

Providing SSL Client Authentication with a Common Access Card

Configure Security in Oracle Database Mobile Server 9-17

■ Section 9.9.2, "Smartcard and Common Access Card Overview"

■ Section 9.9.3, "Oracle Database Mobile Server Supports Common Access Cards"

■ Section 9.9.4, "Supported Platforms for the Common Access Card"

■ Section 9.9.5, "Prerequisites for Common Access Card"

■ Section 9.9.6, "Configuration for Client Authentication Using the Common Access
Card"

■ Section 9.9.7, "Using the Common Access Card"

9.9.1 Introduction to SSL Client Authentication
Secure Sockets Layer (SSL) is a security protocol that enables secure and authenticated
data transfer over a network between a server and a client. During the connection
setup, the server is always authenticated using a public key certificate. The client
connects to the server only after establishing its identity based on the certificate.

The server may also choose to authenticate the client by asking for a client certificate.
With client authentication enabled, the server requests a certificate from the client to
verify that the client is who it claims to be. The certificate that the client sends must be
an X.509 certificate and signed by a Certifying Authority (CA) that is trusted by the
server. The server allows the connection if the client's certificate can be trusted.

9.9.2 Smartcard and Common Access Card Overview
SSL Client authentication requires that all users have their own X.509 certificate. There
are several methods for users to store and manage certificates. One method is to store
the certificates on a Common Access Card.

A Smartcard is a pocket-sized card with embedded integrated circuits that store and
process data. A Common Access Card (CAC) is a Smartcard with additional software
that enables you to securely store and manage security certificates and keys on the
card, which are used for authentication. The data on the CAC is secured by a password
or pin number. When the user connects to a server or system that requires
authentication, the user is prompted for the password. The certificates and keys
residing on the card are used to authenticate the user.

The CAC is used to authenticate users for access to computers and facilities. The CAC
also enables encrypting and cryptographically signing email, uses PKI authentication
tools, and establishes identity credentials. The certificates are stored in X.509 format on
the CAC, and can be accessed by software running on a host machine through a card
reader.

For example, the following describes what happens if a user browses a Web site that
requires the client side certificate:

1. Open a browser and navigate to the Web site. The browser prompts for the pin
number of the CAC.

2. After the user provides the correct pin, a CAC session is created. This enables all
applications running on the machine to access the card and read the necessary
certificates and keys. In case there is more than one certificate on the card that the
server will accept, then the user is prompted to select which certificate to use.

3. By default, the CAC session expires after a configurable amount of time, after
which the user must provide the pin number again.

Providing SSL Client Authentication with a Common Access Card

9-18 Oracle Database Mobile Server Administration and Deployment Guide

For Oracle Database Mobile Server, the CAC is used to authenticate the client to the
mobile server when requested before synchronization or any other type of
communication between the client and the mobile server.

9.9.3 Oracle Database Mobile Server Supports Common Access Cards
Oracle Database Mobile Server supports client authentication over SSL connections
using client side certificates and keys residing on the CAC. Oracle Database Mobile
Server supports the ActivIdentity card. When the user supplies the CAC, the user also
enters a pin number to retrieve the certificate and corresponding private key from the
CAC. If the pin number is correct, data on the card can be accessed for a configurable
period of time, known as the idle timeout that is set in the CAC software.

Note: To set the idle timeout for the authenticated sessions, use the
User Console in the ActivIdentity software. The idle timeout defaults
to 15 minutes.

When the pin number is verified, then access to the certificates and keys on the card is
provided either to only the process that prompted the user to enter the pin number or
to all of the user’s processes running on the machine. For all components of the mobile
client to work properly, the authentication must be shared among processes. See
Section 9.9.6.2.1, "Sharing Authentication Acceptance Across Processes" for details.

9.9.4 Supported Platforms for the Common Access Card
The client authentication feature enabled for Oracle Database Mobile Server uses the
CAC, which is supported only on the Win32 platform.

Note: At this point, client authentication is not supported on
Windows Mobile or any UNIX platforms.

The components that must use the CAC when client authentication is requested are
those that communicate with the mobile server. These are as follows:

■ Mobile client

■ Device Manager Agent

■ Automatic Sync agent

■ Packaging Wizard on Windows platform

MDW is not supported. Since MDW does not support SSL/HTTPS, it cannot provide
client authentication over SSL.

9.9.4.1 Support for Mobile Clients That Are Not Enabled for Client Authentication
A mobile server that is configured for client authentication will only interact with
mobile clients that are enabled for client authentication. Enabling client authentication
on the mobile server is optional. Thus, if you do not turn it on, both clients with and
without CAC can communicate with the mobile server without having to present a
certificate.

Providing SSL Client Authentication with a Common Access Card

Configure Security in Oracle Database Mobile Server 9-19

9.9.5 Prerequisites for Common Access Card
You must install the software provided by the Common Access Card vendor to access
the data on the card on each mobile client. This is required in order to access keys and
certificates on the CAC. Refer to the vendor documentation on how to install this
software.

9.9.6 Configuration for Client Authentication Using the Common Access Card
The following sections describe how to configure for client authentication:

■ Section 9.9.6.1, "Configuration of the Mobile Server to Request Client
Authentication"

■ Section 9.9.6.2, "Configuration of the Mobile Client to Use a CAC"

■ Section 9.9.6.3, "Configuration for Reverse Proxy and Load Balancer"

9.9.6.1 Configuration of the Mobile Server to Request Client Authentication
To configure the mobile server to request client authentication, perform the following:

1. Configure for SSL on the mobile server as described in Section 9.4, "Configuring
for Secure Socket Layer (SSL) Communication".

2. Enable client authentication and install the certificate on the application server.

3. For the SSL connection to be established, the mobile server must have the
certificate of the signing authority (CA), which signed the certificates present in
the CACs. Import the CA certificate in the same keystore that you have used for
storing the server certificate, as described in Section 9.4, "Configuring for Secure
Socket Layer (SSL) Communication".

The following is an example of how to import the certificate using the keytool
executable:

keytool.exe –keystore <samplekeystore> -storepass <oracle>
 -import –alias clientCACert –file <CACert.crt>

4. Modify the pkcs11.cfg file on the mobile server before you install the client with
the correct path to the CAC library on the client. The PKCS11 configuration file
defaults with the following entry:

library = C:\WINDOWS\system32\acpkcs11.dll

Note: Verify that this entry refers to the correct PKCS11 library
provided by the CAC vendor on the client.

5. Restart the mobile server to reinitialize with the new modifications.

9.9.6.2 Configuration of the Mobile Client to Use a CAC
If you have configured mobile server to request client authentication, as described in
Section 9.9.6.1, "Configuration of the Mobile Server to Request Client Authentication",
then any setup.exe downloaded for a new mobile client automatically installs a
mobile client enabled for handling certificates and keys from a CAC.

However, if the PKCS11 library location is different on the client than what is specified
in the pkcs11.cfg file on the mobile server, as described in Section 9.9.6.1,
"Configuration of the Mobile Server to Request Client Authentication", then modify
the PKCS11 configuration file on the client to point to the correct directory.

Providing SSL Client Authentication with a Common Access Card

9-20 Oracle Database Mobile Server Administration and Deployment Guide

The configuration file location is specified with the PKCS11_CONFIG_FILE parameter in
the %INSTALL_DIR%\bin\mobile.ora file. The default configuration file is %INSTALL_
DIR%\bin\pkcs11.cfg. Change the library property in the configuration file to refer to
the correct library, as follows:

library = <Full path to PKCS11 library>

9.9.6.2.1 Sharing Authentication Acceptance Across Processes Client authentication
sessions can be shared across processes belonging to the same user. Thus, if one
process prompts the user for the pin number to read data from the CAC, a second
process can also access the CAC without providing the pin number again--as long as
the session is not expired.

You can control whether authentication is provided for all processes for the user or not
through the Pin Caching Service.

On the ActivIdentity card, perform the following:

1. Select the Pin Caching Service through the following pull-down: Tools ->
Advanced -> Configuration -> PIN Caching Service.

2. Select NO in the "Allow per process PIN caching" field.

9.9.6.3 Configuration for Reverse Proxy and Load Balancer
Configuration for the reverse proxy and load balancer are described in Section 9.8,
"Using a Firewall Proxy or Reverse Proxy". However, you must configure the reverse
proxy and load balancer to require and accept the client certificates and to be able to
validate the client’s certificates. In addition, the reverse proxy and load balancer must
create an SSL connection to the mobile server using the client authentication.

The mobile server must be configured to accept the client authentication from the
reverse proxy or load balancer.

9.9.7 Using the Common Access Card
If no CAC session is established yet, then--in most cases--the user is prompted for the
CAC pin number to create a CAC session. The cases where the user may not be
prompted are for the background processes: the Device Manager agent (dmagent) and
the Sync Agent, which is the agent for automatic synchronization.

The Oracle Database Mobile Server dmagent acts both as an HTTP client when
communicating with the mobile server and as an HTTP server when receiving DM
commands over HTTP. The dmagent supports SSL over HTTP when acting as a client
and supports client authenticated SSL connections.

If the background processes—the dmagent and the Sync Agent—start when the CAC
session is already available, then the connection succeeds. However, once the CAC
session expires, then the following may occur:

■ If the CAC card is in the card reader, then the background processes prompt for
the user pin.

■ If the CAC card is not in the card reader, then the processes fail silently and a log
error is written into cac_log.txt file.

Note: The SSL certificate or keys should not be stored in the database
or any other persistence location on the mobile client.

Security Warning for Demo Applications

Configure Security in Oracle Database Mobile Server 9-21

9.10 Security Warning for Demo Applications
If you have the demo applications installed in a production environment, they can be
used to access areas of Oracle Database Mobile Server that you may want to be secure.
The demo applications are provided for you to use when learning how to develop
your own application. Thus, when you are finished developing your product, remove
the demo applications from the repository. For directions, see Chapter 4, "Installation
of Oracle Database Mobile Server" in the Oracle Database Mobile Server Installation
Guide.

Security Warning for Demo Applications

9-22 Oracle Database Mobile Server Administration and Deployment Guide

10

Reports 10-1

10 Reports

This chapter details the types of reports that you can view about the mobile server
environment:

■ Section 10.1, "Viewing System Status Reports for the Server"

■ Section 10.2, "Viewing Active User Sessions"

10.1 Viewing System Status Reports for the Server
The Mobile Manager enables users to view system status reports for the mobile server.
To view system status reports, click the " Administration" link and click the
"Summary" link. As Figure 10–1 displays, the Summary page lists Database, JDK, and
Operating System details.

Viewing Active User Sessions

10-2 Oracle Database Mobile Server Administration and Deployment Guide

Figure 10–1 Summary Page

10.2 Viewing Active User Sessions
The Mobile Manager enables administrators to display a list of all users that are
connected to the mobile server at any given time. To view a report on active user
sessions, navigate to the Administration page and click "Sessions". As Figure 10–2
displays, the "Sessions" page lists user names, date and time of creating the user’s
session, and the date and time of the last session.

Figure 10–2 Sessions Page

11

iOS Device Management 11-1

11iOS Device Management

This chapter covers the following sections broadly:

Section 11.1, "iOS Device Management with MDM"

Section 11.2, "Server and Security Configuration for iOS Mobile Device Management"

11.1 iOS Device Management with MDM
Mobile Device Management (MDM) is a feature of modern mobile platforms such as
iOS and Android that allows managing mobile devices remotely from the server.
Unlike previous device management solutions, MDM is built-in to the mobile
operating system (OS) and does not require special device management application
(like dmagent) running on the mobile device.

In addition, it provides a much broader spectrum of features than can be achieved by
client-side device management application.

The following sections describe basics and features of the MDM architecture:

■ Section 11.1.1, "Introduction to iOS MDM"

■ Section 11.1.2, "Profiles and Device Enrollment"

■ Section 11.1.3, "iOS MDM Commands"

11.1.1 Introduction to iOS MDM
See the following sections:

■ Section 11.1.1.1, "Mobile Server and MDM"

■ Section 11.1.1.2, "MDM and Push Notifications"

11.1.1.1 Mobile Server and MDM
As mentioned above, support for MDM is built-in to iOS operating system. iOS
devices exchange messages with Mobile Server using special MDM protocol, which
enables to retrieve device information, send commands to devices, configure devices
with various rights and restrictions and manage mobile applications. Apple has
supported MDM for a while, however many new features and changes to the protocol
have been added. Currently, Mobile Server supports management of devices running
iOS 7.

Mobile Server seamlessly integrates iOS devices into the existing mobile architecture.
iOS devices are assigned to users and managed using Mobile Manager. iOS
applications can be published using Packaging Wizard, and iOS applications running

iOS Device Management with MDM

11-2 Oracle Database Mobile Server Administration and Deployment Guide

on iOS devices can synchronize data stored in local sqlite or Berkeley DB database
with Oracle back-end Database, using existing synchronization architecture.

However, some device management commands supported for other platforms are not
yet supported for iOS. This includes synchronization-related commands.

For a high-level overview of iOS MDM, see the following:
https://www.apple.com/iphone/business/it/management.html

Note: Not all features described in the document
(https://www.apple.com/iphone/business/it/management.html) are
currently supported by Mobile Server.

In particular, we do not yet support Device Enrollment Program
(where devices can be enrolled in MDM at device activation time) or
Volume Purchasing Program (allowing purchasing of applications
from iTunes Application Store).

For more information on MDM protocol and additional resources see Appendix D.1,
"Description - MDM Architecture".

11.1.1.2 MDM and Push Notifications
Apple Push Notification Service is a cloud-based service run by Apple which is used
to deliver short messages to iOS devices. The main purpose is to deliver notifications
to iOS applications, but it is also a crucial part of MDM protocol to notify iOS devices
that new commands are available (see Appendix D.1, "Description - MDM
Architecture"). Devices listen to push notifications by having SSL connections to APNS
servers. The details of these connections, as well as APNS servers themselves are
managed by Apple, providing a seamless interface to the user. For more information
about APNS, see:
https://developer.apple.com/library/ios/documentation/NetworkingInternet/C
onceptual/RemoteNotificationsPG/Chapters/ApplePushService.html

Mobile Server sends push notifications to iOS devices by connecting to APNS
Gateway and delivering appropriate message which will be used by APNS servers to
deliver notification to the device. Usually push notifications are targeted for and
processed by a particular application on the device. The target application is identified
by a special string called push notification topic.

However, for MDM, push notifications are processed by iOS operating system MDM
component. The topic string for MDM must start with a special prefix. For more
information, see, Section 11.2.3.7.1, "Push Notification Topic".

Current address of production APNS gateway is gateway.push.apple.com, port 2195.

Note: Both Mobile Server and your managed iOS devices must make
SSL connections to APNS gateway for MDM to function. If either your
Mobile Server or your iOS devices are behind firewall, you may have
problems with managing your iOS devices. To fix those, your network
administrator must open up some ports in the firewall.

Refer to the Apple support note:
http://support.apple.com/en-us/HT203609

To cite this note, the following ports must be open:

■ TCP port 5223 (used by devices to communicate to the APNs
servers)

■ TCP port 2195 (used to send notifications to the APNs)

■ TCP port 2196 (used by the APNs feedback service)

■ TCP Port 443 (used as a fallback on Wi-fi only, when devices are
unable to communicate to APNs on port 5223)

iOS Device Management with MDM

iOS Device Management 11-3

11.1.2 Profiles and Device Enrollment
To manage iOS device, you must enroll it in MDM. See Section 7.11.1, "iOS Device
Enrollment" to see the enrollment steps from the user's perspective. During and after
enrollment, you can customize settings on your devices by installing configuration
profiles. In fact, the enrollment itself is done via installing a special configuration
profile on the device. For more information on configuration profiles and what
happens during enrollment process, see the sections below:

■ Section 11.1.2.1, "Configuration Profiles"

■ Section 11.1.2.2, "Device Enrollment Process"

11.1.2.1 Configuration Profiles
Configuration Profile is an XML file used to distribute iOS configuration information.It
uses property list format (for information on property list format, see
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Pro
pertyLists/Introduction/Introduction.html). It allows you to specify restrictions
on device features, WiFi settings, VPN settings, LDAP directory server settings and
many others. In addition, certificates and keys can also be transmitted via
configuration profiles. For full description of configuration profile capabilities and
format, see Configuration Profile Key Reference here:
https://developer.apple.com/library/ios/featuredarticles/iphoneconfigurati
onprofileref/introduction/introduction.html

Note: Configuration profile files have extension .mobileconfig.

There are several ways to deploy configuration profiles to the devices. For example, a
profile can be emailed to the device as an attachment. Once you open the attachment
on iOS device, iOS will know that this is a configuration profile and will install it.
However, the easiest way to deploy configuration profile is via MDM. Mobile Server,
acting as MDM server, can push configuration profiles automatically to managed iOS
devices.

Configuration profiles consist of one or several payloads. Usually there is a one main
profile payload that contains other setting-specific payloads - other payloads being

iOS Device Management with MDM

11-4 Oracle Database Mobile Server Administration and Deployment Guide

embedded as an array inside PayloadContent element. Here is an example of the
profile used to configure device passcode settings:

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
 <plist version="1.0">
 <dict>
 <key>PayloadContent</key>
 <array>
 <dict>
 <key>PayloadDescription</key>
 <string>Configures Configuration Profile security</string>
 <key>PayloadDisplayName</key>
 <string>Profile Security</string>
 <key>PayloadIdentifier</key>
 <string>com.oracle.dms.devpass.ProfileSecurity</string>
 <key>PayloadIdentifier</key>
 <string>com.oracle.dms.devpass.ProfileSecurity</string>
 <key>PayloadOrganization</key>
 <string>Oracle</string>
 <key>PayloadType</key>
 <string>com.apple.profileRemovalPassword</string>
 <key>PayloadUUID</key>
 <string>D3150EF6-299B-4D63-B803-341B159348B2</string>
 <key>PayloadVersion</key>
 <integer>1</integer>
 <key>RemovalPassword</key>
 <string>oracle</string>
 </dict>
 <dict>
 <key>PayloadDescription</key>
 <string>Configures security-related items.</string>
 <key>PayloadDisplayName</key>
 <string>Passcode</string>
 <key>PayloadIdentifier</key>
 <string>com.oracle.dms.devpass.passcodepolicy</string>
 <key>PayloadOrganization</key>
 <string>Oracle</string>
 <key>PayloadType</key>
 <string>com.apple.mobiledevice.passwordpolicy</string>
 <key>PayloadUUID</key>
 <string>6B7812F6-C86C-4AAF-BE5E-CB7A587D38D7</string>
 <key>PayloadVersion</key>
 <integer>1</integer>
 <key>allowSimple</key>
 <true/>
 <key>forcePIN</key>
 <true/>
 <key>maxFailedAttempts</key>
 <integer>10</integer>
 <key>maxInactivity</key>
 <integer>5</integer>
 <key>maxPINAgeInDays</key>
 <integer>730</integer>
 <key>minLength</key>
 <integer>5</integer>
 <key>pinHistory</key>
 <integer>10</integer>
 </dict>
</array>
<key>PayloadDescription</key>

iOS Device Management with MDM

iOS Device Management 11-5

<string>Device passcode policy.
</string>
<key>PayloadDisplayName</key>
 <string>Device passcode profile</string>
 <key>PayloadIdentifier</key>
 <string>com.oracle.dms.devpass</string>
 <key>PayloadOrganization</key>
 <string>Oracle</string>
 <key>PayloadRemovalDisallowed</key>
 <true/>
 <key>PayloadType</key>
 <string>Configuration</string>
 <key>PayloadUUID</key>
 <string>D34F4145-4FE8-4A4B-A45C-5857D54EAB2D</string>
 <key>PayloadVersion</key>
 <integer>1</integer>
 </dict>
</plist>

Note: The same profile can configure several (and could be
un-related) settings via embedded payloads. The following tools
automate creation of configuration profiles so that you do not have to
write XML manually:

■ Apple Configurator - For Mac OS 10.8 and later only.

You can download it from the AppStore, see
https://itunes.apple.com/us/app/apple-configurator/id4344
33123?mt=12

■ iPhone Configuration Utility - Available for both Mac OS (10.8
and earlier), see http://support.apple.com/kb/DL1465 and
Windows, see http://support.apple.com/kb/DL1466.

iPhone Configuration Utility may not support the latest features
of iOS 7. If you need full iOS 7 support, use Apple Configurator.

You can create your own configuration profiles to customize the settings on your
managed iOS devices. You can then upload these profiles to the Mobile Server via
Mobile Manager interface. For more information, see Section 7.11.4, "iOS Profile
Management on Mobile Manager".

Note: All uploaded profiles will be deployed to all iOS devices when
they enroll in MDM.

Configuration profiles can be either signed or unsigned. Signed profiles avoid having
warning displayed on iOS device when the profile is installed. You do not need to sign
configuration profiles that you upload to the Mobile Server (in any case iPhone
Configuration Utility by default uses self-signed certificate which will not be trusted
by the device). Mobile Server will sign the profiles automatically when they are
uploaded.

MDM Certificate Authority (CA) is used for signing of the profiles. For more
information on MDM CA, see Section 11.2.1, "Creating and Configuring Certificate
Authority".

iOS Device Management with MDM

11-6 Oracle Database Mobile Server Administration and Deployment Guide

Another type of profile is provisioning profile. Provisioning profiles tell iOS device
whether a given application can run and also what privileges that application may
have. Provisioning profile files usually have extension .mobileprovision. Provisioning
profiles can also be uploaded to the Mobile Server (see Section 7.11.4, "iOS Profile
Management on Mobile Manager") and will be deployed to all iOS devices that enroll
in MDM. See Section 11.1.4, "Managing iOS Applications" for more details.

11.1.2.2 Device Enrollment Process
During enrollment process:

■ Device receives Certificate Authority certificate that allows it to trust Mobile
Server.

■ Mobile Server uniquely identifies the device and stores this identification in
repository.

■ Device receives special configuration profile allowing it to receive and execute
commands from Mobile Server.

■ Mobile Server receives initial detailed information about the device that would be
displayed in Mobile Manager (see Section 7.11.2, "View iOS Device Information").
You can refresh this information by using corresponding MDM commands (see
Section 11.1.3.2, "Commands").

■ All uploaded configuration and provisioning profiles will be installed on the
device.

■ All published applications for chosen platform (iOS Berkeley DB or iOS SQLite) to
which the user has access will be installed on the device.

 See Appendix D.2, "Device Enrollment Process," for more information on device
enrollment process used by Mobile Server.

11.1.3 iOS MDM Commands
MDM protocol contains a rich set of commands (described in MDM Protocol
Reference, see Chapter D.1.2, "Additional Resources"), not all of which are currently
supported by Mobile Server. Here we will mention the commands that are currently
supported. Section 7.11.3.3, "View Command History," describes Mobile Manager
interface for sending the commands to iOS devices.

The commands, by nature, are asynchronous. It may take some time between when the
command is sent to the device and the status and the results are received back (though
usually it happens very fast). When the status and results are received by Mobile
Server, they will be stored in the repository and can be retrieved for display in Mobile
Manager. You may have to wait and refresh "Device Info", "Software Info" and
"Command History" tabs if you do not see the results right away.

You can find the current state of the command by looking at the command status. The
following sections discuss commands and command status information:

■ Section 11.1.3.1, "Command Status"

■ Section 11.1.3.2, "Commands"

11.1.3.1 Command Status
You can find the status of each command on the Command History page in Mobile
Manager. See Section 7.11.3.3, "View Command History" for more information on
Command History page. Here we list command status values:

iOS Device Management with MDM

iOS Device Management 11-7

■ Command Queued - Command has been queued in the Mobile Server repository
command queue but has not been sent to the device yet.

■ Push Notification Sent - Mobile Server has sent push notification to wake up the
device and prompt it to poll the server for commands.

■ Command Sent - Command has been sent to the device.

■ Command Succeeded - Device successfully executed the command. Mobile Server
has received the command status and results, if any, and stored them in the
repository.

■ Command Failed - Device has failed to execute the command and sent the error
information back to the Mobile Server. Additional error information may be
displayed.

■ Device Not Ready - Sometimes device is unable to execute a command at a certain
time, but the command can be executed at a future time. In this case, device sends
a special NotNow status to the Mobile Server. Once device is ready to execute the
command, it will poll the server again. This only applies to certain commands.
Some commands can always be executed and are immune to the NotNow status.
You can find more information on NotNow status in MDM Protocol Reference, see
Appendix D.1.2, "Additional Resources". When describing the commands we will
indicate which commands can always be executed.

■ Command Execution Started - Not all commands are pure MDM commands (that
is described by command cycle in Appendix D.1.1, "MDM Command Cycle").
There are commands that may send more than one MDM command to the device
and also perform server-side logic in between. For example, "Update Application"
command will first send "Retrieve Software Information" to get the current
application version installed on the device. It will then compare retrieved version
with current published version of the application on the server, and only if a later
version is published, will send "Install Application" command to the device to
install the new application version.

We call these commands "Composite Commands". Composite commands start
with "Command Execution Started" status. The only other valid status values for
composite commands are "Command Succeeded", "Up To Date", and "Command
Failed".

Note: The Command History page in Mobile Manager will display
both composite commands and constituent MDM commands that
they invoked.

■ Up To Date - This status is only valid for "Update Application" command and tells
that application installed on the device is of latest version published, so no
installation action was taken.

■ MDM Protocol Error - Device has received malformed command. Contact Oracle
Support for assistance. Additional error information may be displayed.

■ Failed to Prepare Command - Mobile Server failed to prepare command payload.
This usually indicates problem with Mobile Server repository. Contact Oracle
Support for assistance. Additional error information may be displayed.

■ Failed to Process Result - Mobile Server failed to process result payload from the
device. This usually indicates problem with Mobile Server repository. Contact
Oracle Support for assistance. Additional error information may be displayed.

iOS Device Management with MDM

11-8 Oracle Database Mobile Server Administration and Deployment Guide

11.1.3.2 Commands
The following commands are supported for iOS devices (see Section 7.11.3, "iOS MDM
Command Management" on how to send commands using Mobile Manager interface):

■ Install Configuration Profile for iOS Device - You can choose one of the profiles
you uploaded (see Section 7.11.4, "iOS Profile Management on Mobile Manager").

Note: All uploaded profiles will be installed on the device at
enrollment time. You only need to use this command to install
additional profiles uploaded after device has enrolled in MDM.

■ Remove Configuration Profile for iOS Device - Removes configuration profile
from the device (you can choose from the list of the profiles you uploaded).

■ Install Provisioning Profile for iOS Device - You can choose one of the
provisioning profiles you uploaded (see Section 7.11.4, "iOS Profile Management
on Mobile Manager").

Note: All uploaded provisioning profiles will be installed on the
device at enrollment time. You only need to use this command to
install additional provisioning profiles uploaded after device has
enrolled in MDM.

■ Remove Provisioning Profile for iOS Device - Removes provisioning profile from
the device (you can choose from the list of the provisioning profiles you
uploaded).

■ Device Information - Once Mobile Server receives device information, it will be
displayed on the "Device Info" page (see Section 7.11.2, "View iOS Device
Information"). As mentioned above, you may have to refresh "Device Info" page if
the updated information does not appear immediately.

Note: The device information will be collected from the device when
it enrolls. You only need to use this command to get up-to-date
information that may have changed (for example, battery level or free
disk space).

■ Retrieve iOS Security Information - This information is complimentary to the
device information and will be displayed on the "Security" panel of "Device Info"
page (see Section 7.11.2, "View iOS Device Information"). MDM protocol uses
different command to retrieve this information (as opposed to "Retrieve Device
Information"). The same considerations above apply to this command as to
"Retrieve Device Information".

■ Lock iOS Device - Locks device. Optionally, a message can be provided to be
displayed on device screen when it is locked (it will only be displayed if device is
protected by passcode). Otherwise default message will be displayed.

This command is helpful when the device gets lost. The message may indicate a
contact information where to return the device.

■ Clear Passcode for iOS Device - Clears passcode from the device.

Note: If a configuration profile with passcode requirement is
installed on the device, the device will require a new passcode to be
entered within 60 minutes.

iOS Device Management with MDM

iOS Device Management 11-9

■ Erase iOS Device - Reset device to factory settings. All information on the device
will be lost. This command is used when the device is lost or stolen. The device
will need to re-enroll into MDM.

■ Retrieve Software Information - Retrieve installed application information from
the device, such as version, size, etc. You can either choose which application to
retrieve for, or choose to retrieve for all applications.

Note: Only information for managed applications will be retrieved,
that is only applications that were installed from Mobile Server via
MDM (as opposed to applications installed by device's user from
elsewhere). The information retrieved will be displayed on "Software
Info" page in Mobile Manager (see Section 7.11.2, "View iOS Device
Information"). As for "Device Info" page, you may have to refresh this
page if the updated information does not appear immediately.

■ Retrieve iOS Application Status - Retrieve application status for one or all
applications. This information will also be displayed on "Software Info" page in
Mobile Manager, in "Status" column. This command is used to get up-to-date
installation status of the application (since some applications may take a while to
install) and find if any problems have occurred during installation. Here is the
excerpt from MDM Protocol Reference (see, Chapter D.1.2, "Additional
Resources") describing possible status values (we omitted values that are not
relevant to enterprise-distributed applications):

– Installing - The application is being installed.

– Managed - The application is installed and managed.

– ManagedButUninstalled - The application is managed, but has been removed
by the user. When the application is installed again (even by the user), it will
be managed once again.

– Updating - The application is being updated.

– Unknown - The application state is unknown.

The following statuses are transient, and are reported only once:

– UserInstalledApp - The user has installed the application before managed
application installation could take place.

– UserRejected - The user rejected the offer to install the application.

– UpdateRejected - The user rejected the offer to update the application.

– Failed - The application installation has failed.

■ Install Application - Installs one of the published applications on the device.

Note: If this command is issued for an application already installed
on the device, it will be treated as an update. Application data should
not be lost in this case.

iOS Device Management with MDM

11-10 Oracle Database Mobile Server Administration and Deployment Guide

■ Remove iOS Application - Uninstalls application from the device. All application
data on the device will be removed.

■ Update iOS Application - This is a composite command. It will check what
version of application is installed on the device and will compare it with the
version published on Mobile Server.

If higher version is published (or if application is not installed on the device),
"Install Application" command will be issued to update the application.
Otherwise, the status of this command will be set to "Up To Date".

■ Update All iOS Applications - Same as "Update Application" command, but does
for all managed applications assigned to the device's user.

■ Un-enroll iOS Device from MDM - Terminates device's enrollment so that the
device becomes unmanaged. This is done via removing configuration profile with
MDM payload that was installed on the device during enrollment (see
Section 11.1.2.2, "Device Enrollment Process").

Removing this profile will automatically remove all the configuration and
provisioning profiles and all the applications installed by Mobile Server. All the
information in the Mobile Server repository pertaining to this device will be
removed.

11.1.4 Managing iOS Applications
This section describes concepts and issues related to managing iOS applications with
Mobile Server.

■ Section 11.1.4.1, "Provisioning Profiles"

■ Section 11.1.4.2, "Preparing and Publishing iOS Application"

■ Section 11.1.4.3, "Application Security Considerations"

11.1.4.1 Provisioning Profiles
To run on iOS devices, every application must be digitally signed. There are two kinds
of signing certificates - for development and for production. Both can be obtained from
Apple Developer's portal. Xcode creates certificate signing request and submits it to
the portal. Once approved, the developer will have a signing identity to sign the
application. The signing certificate itself is signed by Apple Certificate Authority, so it
will be trusted by the device.

However, even when signed, Apple wants to restrict which devices can run the
application. Otherwise, an application can avoid going through Apple AppStore
approval process that verifies that the application is safe for anybody to use. That is
where provisioning profiles come in.

Provisioning profile is an XML file in plist format (see Section 11.1.2.1, "Configuration
Profiles"). This files have extension .mobileprovision. There are different provisioning
profiles for development and production.

Development provisioning profiles are used for application development and testing.
They ensure that the application can run only if it is built and signed by certain
developers or team registered on the portal and only on certain devices which also
have to be registered on the portal. Development provisioning profile contains:

■ Application Identifier

iOS Device Management with MDM

iOS Device Management 11-11

This can contain wildcards so that it can match multiple application bundle ids.
For example, if the application identifier is com.oracle.*, it will cover all
applications for which the bundle id starts with com.oracle.

■ List of developer certificates who are allowed to build and sign the application.
Usually it includes all developers in the team.

■ List of UDIDs of devices on which application is allowed to run.

■ Other information like creation and expiration dates, and others.

An application will only run on the device if the provisioning profile is installed on the
device and if all of the following is true:

■ Application bundle id matches the profile's application identifier.

■ Application is signed by one of the certificates listed in the profile.

■ The device's UDID is listed in the profile.

You do not create provisioning profiles manually, instead they are created on the
developer's portal (see Section 11.1.4.2, "Preparing and Publishing iOS Application")
from where you can download them. Each profile is signed by Apple. You can open
.mobileprovision file in text editor (the binary data you would see around the text is
the signature container in CMS format, see http://tools.ietf.org/html/rfc5652) to
find more information.

Distribution provisioning profiles are used either for submission of the application to
the AppStore or for the enterprise app distribution. We will not cover the former here
since the later is what you need to publish and manage your application from the
Mobile Server (see Section 11.1.4.2, "Preparing and Publishing iOS Application").

Apple allows you to distribute your application to a limited audience in your
Enterprise. Because of this, distribution provisioning profiles do not specify list of
devices (you will see ProvisionsAllDevices key in the profile if you open it in text
editor), which means that the application can run on all devices on which the
provisioning profile is installed. In addition, the list of certificates in the profile usually
contain only one certificate, the one with which the application was signed.

Note: You must be a team administrator in Enterprise Developer's
Program to create distribution provisioning profiles (see
Section 11.1.4.2, "Preparing and Publishing iOS Application").

11.1.4.2 Preparing and Publishing iOS Application
Applications managed by MDM use Apple's Enterprise Distribution model. In this
model, applications do not need to be submitted to Apple AppStore, but instead are
distributed in-house to your employees and customers. This approach does not require
Apple AppStore approval process and the applications are distributed to limited
audience only instead of general public.

You must have Apple Enterprise Developer Account to create and distribute
Enterprise Applications. You can apply for Enterprise Program here:
https://developer.apple.com/programs/ios/enterprise/

For information to get started with Enterprise Program, see
https://developer.apple.com/programs/ios/enterprise/gettingstarted/

To distribute iOS Application for enterprise you must obtain distribution certificate
(signing identity) as well as distribution provisioning profile, as opposed to developer

iOS Device Management with MDM

11-12 Oracle Database Mobile Server Administration and Deployment Guide

certificate and developers provisioning profile. To get more information on this, you
can use the following resources:

■ Apple Application Distribution Guide

Contains a lot of information on managing and distributing applications, but
targeted for AppStore distribution. See here:
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/A
ppDistributionGuide/Introduction/Introduction.html

■ Tutorial explaining enterprise in-house distribution. See here:
http://johannesluderschmidt.de/provision-ios-ipa-app-for-in-house-enter
prise-distribution/2993/

Note: You must be a (or contact) team administrator to create
distribution certificates and provisioning profiles.

The following steps help to build and distribute your enterprise application and
publish it to the Mobile Server (based on sample "TransportDemo" application):

■ Open your application project in Xcode (on your Mac machine). Ensure that you
set your build scheme to built for iOS device and choose Release Configuration
(you can do so from the menu Product -> Scheme -> Edit Scheme) (although you can
use Debug Configuration as well if need arises). See Figure 11–1.

Figure 11–1 Setting Release Build Configuration in Xcode

■ Select your project in project navigator. Select your application target on the left
and select "Build Settings" tab (in your application target build settings). Ensure to
choose distribution code signing identity for Release build. See Figure 11–2.

iOS Device Management with MDM

iOS Device Management 11-13

Figure 11–2 Setting Code Signing Identity in Xcode

■ Build your application (Cmd-B or from the Product menu).

■ Go to menu Product -> Archive, after successful build. Click on "Distribute" See
Figure 11–3.

Figure 11–3 Archiving your Application

■ Choose "Save for Enterprise or Ad Hoc Deployment" and click "Next". See
Figure 11–4.

iOS Device Management with MDM

11-14 Oracle Database Mobile Server Administration and Deployment Guide

Figure 11–4 Distributing your Application

■ Ensure your distribution provisioning profile is selected and click "Export". See
Figure 11–5. You will see a dialog box as in Figure 11–6.

Figure 11–5 Choosing Provisioning Profile for Distribution

iOS Device Management with MDM

iOS Device Management 11-15

■ Export your application as .ipa archive file. Choose the destination directory.
Check the check-box "Save for Enterprise Distribution". You will be prompted to
enter some information. See Figure 11–6.

Figure 11–6 Exporting your Application

Application URL is the URL where your application will be hosted on Mobile
Server. The URL should be in the following format:

https://mobile_server_host:mobile_server_port/mobile/app_virtual_path/app_
name.ipa

where:

– mobile_server_host and mobile_server_port are the Mobile Server host and
port respectively.

Note: The HTTPS protocol is required, so you would need to provide
your HTTPS port.

– app_virtual_path is the virtual path for your application. It is the same virtual
path that you specify when you publish your application using Packaging
Wizard.

– app_name.ipa is the name of the application archive that you are going to
save.

Note: If not correctly specified at this time, you can make
adjustments to the application URL in the resulting .plist manifest file.

– Title is the name of your application.

Note: To correctly publish your application to the Mobile Server, the
name of your application must be the last part of your application
bundle id. For example, if your application bundle id is
com.oracle.TransportDemo, your application name must be
TransportDemo.

iOS Device Management with MDM

11-16 Oracle Database Mobile Server Administration and Deployment Guide

■ You can enter additional information in the fields below "Title", though it is
optional.

■ Click "Save". You will have 2 files with extension .ipa and .plist (for example,
TransportDemo.ipa and TransportDemo.plist). The first file is the application
archive. The second file is the application manifest.

■ Use Packaging Wizard as described in Chapter 5 "Using the Packaging Wizard" of
the Mobile Server Developer's Guide to publish the application to Mobile Server.

Note:

■ For iOS applications, you do not enter application name in
Packaging Wizard. Instead you will need to choose your .plist
manifest file from which the Packaging Wizard will retrieve the
application bundle id and derive the application name
accordingly as the last part of the bundle id (see Section 5.1.2
"Specifying New Application Definition Details" of the Mobile
Server Developer's Guide).

■ The Virtual Path you specify in Packaging Wizard must be the
same as the app_virtual_path you specified in the Application
URL above.

■ You must upload two files as part of your application (see Section
5.1.3 "Listing Application Files" of the Mobile Server Developer's
Guide): .ipa archive and .plist application manifest.

■ Once application is published, you will find your application files
under directory MOBILE_
HOME\Mobile\Server\admin\repository\app_virtual_path,
where app_virtual_path is the virtual path you specified above.
You can open .plist manifest file in text editor and make
adjustments to the application URL if needed.

■ Once published, use Mobile Manager to grant application access
to users and groups (see Section 3.6.1, "Granting Application
Access to Users and Groups").

11.1.4.3 Application Security Considerations
Access to application archives hosted on your Mobile Server is not restricted by
authentication. Anyone who can access your Mobile Server can download application
.ipa archive by using the application URL you specified for Enterprise distribution (see
Section 11.1.4.2, "Preparing and Publishing iOS Application"). The reason for this is
that iOS application installation process does not currently use client certificate
authentication.

This means that you must not store unencrypted sensitive information within your
application bundle. Any sensitive information must only be available to an

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-17

authenticated user. One way to do this would be to provide a login screen for the user
at the application startup.

11.2 Server and Security Configuration for iOS Mobile Device
Management

Managing iOS devices with Mobile Server using MDM protocol requires additional
configuration. For better understanding of the requirements and the configuration
steps, see Section 11.1, "iOS Device Management with MDM".

The following are additional security features of iOS MDM:

■ All the communication between the Mobile Server and iOS devices has to be done
over SSL (HTTPS) protocol. Also, self-signed SSL certificates cannot be used for
MDM.

■ MDM uses client certificate authentication to authenticate iOS devices when they
connect to the Mobile Server. Each device needs to be identified by its Identity
Certificate. In addition, Over The Air (OTA) device enrollment requires to issue
additional temporary certificates. This requires creating and configuring
Certificate Authority.

■ MDM uses Apple Push Notification Service (APNS) to notify devices that new
commands are available. APNS requires Mobile Server to have a valid Push
Notification Certificate so that it can authenticate itself to the Apple's APNS
Service.

The following sections describe the necessary configuration steps to setup MDM with
Mobile Server:

■ Section 11.2.1, "Creating and Configuring Certificate Authority"

■ Section 11.2.2, "SSL Configuration for MDM"

■ Section 11.2.3, "Obtaining and Importing APNS Certificate"

11.2.1 Creating and Configuring Certificate Authority
Mobile Server needs to use Certificate Authority for the following reasons:

■ iOS devices enroll in MDM using Over the Air (OTA) profile delivery and
configuration. For information on OTA process, see:
https://developer.apple.com/library/ios/documentation/networkinginterne
t/conceptual/iphoneotaconfiguration/Introduction/Introduction.html

During the enrollment process a configuration profile with MDM payload is
delivered to the device.

Note: This process requires a certificate to be issued for the device.
Mobile Server uses similar process as described in the "Over-the-Air
Profile Delivery Concepts". See here:
https://developer.apple.com/library/ios/documentation/networ
kinginternet/conceptual/iphoneotaconfiguration/OTASecurity/O
TASecurity.html#//apple_ref/doc/uid/TP40009505-CH3-SW1

The only difference is that currently SCEP protocol is not used to issue
device certificates.

Instead, Mobile Server creates and signs device certificates which are
then sent to the device over secure connection.

Server and Security Configuration for iOS Mobile Device Management

11-18 Oracle Database Mobile Server Administration and Deployment Guide

■ MDM uses client certificate authentication to verify device identities of iOS
devices connecting to Mobile Server. MDM protocol requires to issue an Identity
Certificate (certificate bundled together with its private key) for each device.

The Identity Certificate must be unique for each device. During SSL handshake,
the device presents its Identity Certificate to the application server. In addition,
once the device is authenticated over SSL, Mobile Server reads the certificate and
verifies its identity (in fact, Identity Certificates are issued with the Subject
Common Name being the device's UDID).

■ If you use Mobile Server only to manage iOS devices, you can sign your server's
SSL certificate with the CA you created instead of buying SSL certificate from
trusted Certificate Authority. The CA that you have will be deployed to each iOS
device during enrollment process, which means that the managed iOS devices will
trust your server's SSL certificate. For more information, see Section 11.2.2, "SSL
Configuration for MDM".

You do not need to worry about managing iOS device's MDM certificates as
Mobile Server takes care of it. The only requirement is that you create or obtain a
CA and import it to the location where Mobile Server can find it. This can be done
via one of the following:

– Create your own private CA. This will probably be the most common
approach. For more information, see Section 11.2.1.1, "Creating Private CA".

– If you already possess an Enterprise-level Certificate Authority, you can also
use it for MDM (an example would be Windows Active Directory CA).

The following sections describe the necessary steps:

■ Section 11.2.1.1, "Creating Private CA"

■ Section 11.2.1.2, "Importing the CA into Mobile Server MDM Keystore"

■ Section 11.2.1.3, "Importing the CA into the Application Server Trust Store"

■ Section 11.2.1.4, "Important Considerations"

11.2.1.1 Creating Private CA
The private certificate authority is a self-signed certificate that is used to sign other
certificates. The easiest way to create it is with using openssl command line tool. If
you are on Linux or Mac, openssl must be available. For Windows, you can download
openssl from here:

http://slproweb.com/products/Win32OpenSSL.html

You can find more information on openssl from: https://www.openssl.org

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-19

To create your private CA, do the following:

1. Create private key file:

openssl genrsa -out myCA.key 2048

This generates 2048 bit private key.

2. Create the CA self-signed certificate:

openssl req -x509 -new -key myCA.key -out myCA.cer -days 1000

Note: openssl will ask you for some information. Enter as required.

Here is an example:

>openssl req -x509 -new -key myCA.key -out myCA.cer -days 1000
Loading 'screen' into random state - done
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood Shores
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Oracle
Organizational Unit Name (eg, section) []:Database Mobile Server
Common Name (e.g. server FQDN or YOUR name) []:My Custom CA
Email Address []:
Alternatively, you can skip this by specifying only Subject Common Name:

openssl req -x509 -new -key myCA.key -out myCA.cer -days 1000 -subj
/CN="My Custom CA"

This will create self-signed CA certificate valid for 1000 days.

3. Package the certificate and the private key together into PKCS12 format (.p12
extension):

openssl pkcs12 -export -out myCA.p12 -in myCA.cer -inkey myCA.key

Note: This asks you for the export password, choose non-empty
password.

11.2.1.2 Importing the CA into Mobile Server MDM Keystore
For iOS MDM, Mobile Server uses Java Keystore (.jks extension). It is located in the
following directory:

MOBILE_HOME\Mobile\Server\admin\repository\devmgr\apple\mdm\cert

where MOBILE_HOME is your Mobile Server installation directory. The keystore file
name is keystore.jks

The keystore may contain 2 types of entries:

■ Trusted Certificate Entry - just certificate with its public key

Server and Security Configuration for iOS Mobile Device Management

11-20 Oracle Database Mobile Server Administration and Deployment Guide

■ Private Key Entry - certificate (with its public key) together with the
corresponding private key

The keystore is protected by password. In addition, each Private Key Entry is also
protected by its own password.

Note: For Mobile Server MDM Keystore, the password is the same as
your Mobile Server Repository password (the database password for
your Mobile Server Repository schema). In addition, the same Mobile
Server Repository password is used for every Private Key Entry in the
MDM Keystore.

You can use Java keytool utility to access and modify Java keystore. For more
information on keytool, see
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
Keytool should be available wherever JDK is installed.

Note: You must import the CA as a Private Key Entry to the MDM
Keystore because its private key will be used to sign MDM certificates.

Following the previous example:

cd %MOBILE_
HOME%\Mobile\Server\admin\repository\devmgr\apple\mdm\cert

keytool -importkeystore -srckeystore myCA.p12 -srcstoretype pkcs12 -destkeystore
keystore.jks -srcalias 1 -destalias oracle.dms.mdm.ca

Keytool asks you for source keystore and destination keystore passwords. For source
keystore, enter the password that you chose when creating myCA.p12 (openssl
pkcs12...). For destination keystore, remember to use Mobile Server Repository
password.

Note: The source alias is specified as 1. When .p12 file is created,
most likely alias name 1 is chosen for the private key entry. If you get
an error from the previous command, you can always list the contents
of .p12 file:

keytool -v -list -keystore myCA.p12

and find the source alias name.

Note: You will also see that the destination alias is specified as
"oracle.dms.mdm.ca". It is important that you enter destination alias
exactly as specified above. Mobile Server uses this alias name to find
the CA entry.

11.2.1.3 Importing the CA into the Application Server Trust Store
When iOS device connects to Mobile Server, it will first be authenticated by your
Application Server's SSL layer. Application Server will do that by examining the
device's Identity Certificate which is issued by the CA described above. For
application server to trust the device's identity certificate, you need to import the CA

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-21

into the application server's trust store. The procedure differs depending on which
application server you are using. See the sections below:

■ Section 11.2.1.3.1, "Glassfish"

■ Section 11.2.1.3.2, "WebLogic"

11.2.1.3.1 Glassfish For Glassfish, the trust store is located in your domain
subdirectory:

GLASSFISH_HOME\domains\DMS_Domain\config

where GLASSFISH_HOME is the installation directory of the Glassfish Server and
DMS_Domain is the domain under which you are running Mobile Server. In this
directory you will see 2 Java keystore files:

■ keystore.jks

■ cacerts.jks

 You must import your CA certificate into the trust store cacerts.jks:

keytool -import -keystore cacerts.jks -alias myCA -file myCA.cer

Note: We only need to import the CA as trusted certificate, not the
private key entry, so we can use the certificate file myCA.cer that we
generated previously. Also, the alias name does not matter here so you
can choose any alias (that is not already used in cacerts.jks).

You are prompted for the keystore password (the default password for Glassfish
keystores is "changeit") and also asked whether to trust the certificate, answer "yes" to
this.

11.2.1.3.2 WebLogic

For WebLogic, you can configure the location of your keystore (also called Identity
Keystore) and your trust store (also called Trust Keystore). For information on SSL and
security configuration, see

http://docs.oracle.com/cd/E13222_01/wls/docs81/secmanage/ssl.html

In short, the process is as below:

■ Choose the directory location and file names for your keystore and your trust
store. You can choose the same file to use for both of them. For our example, we
assume mykeystore.jks and mytruststore.jks.

■ Import your CA certificate in your trust store (same as for Glassfish):

keytool -import -keystore mytruststore.jks -alias myCA -file myCA.cer

Note: This command creates the trust store (mytruststore.jks) if it
does not exist. Enter password and choose to trust the certificate when
prompted.

■ Login to the WebLogic Administration Console. It should be at URL:
http://myhost:my_admin_port/console

■ Navigate to "Servers" (under "Environment" node), choose your server. You will be
looking at "Configuration" tab. Ensure "SSL Listen Port" checkbox is selected.

Server and Security Configuration for iOS Mobile Device Management

11-22 Oracle Database Mobile Server Administration and Deployment Guide

■ Click on "Keystores" tab. If you have just installed the server, your setting will be
"Demo Identity and Demo Trust". Click "Change" button and from the drop-down
list on the next screen choose "Custom Identity" and "Custom Trust". Click "Save".

■ Enter path to the keystore file, keystore password, and keystore type (for each
Identity Keystore and Trust Keystore), which for our example must be "JKS". Click
"Save".

■ Switch to "SSL" tab. Ensure that "Identity and Trust Locations" are set to
"Keystores" (if it is not, change and save it).

11.2.1.4 Important Considerations
See the sections below:

■ Section 11.2.1.4.1, "Changing Repository Password"

■ Section 11.2.1.4.2, "Dealing with Certificate Expiration"

11.2.1.4.1 Changing Repository Password

Changing repository password is described in Section 9.2.1, "Modifying Repository
Password". After you change the repository password, you must also change the
password of the MDM keystore (see Section 11.2.1.2, "Importing the CA into Mobile
Server MDM Keystore"), because the password of the MDM keystore must match your
repository password. You can do it with this command:

cd %MOBILE_
HOME%\Mobile\Server\admin\repository\devmgr\apple\mdm\cert

keytool -storepasswd -keystore keystore.jks

You are prompted for old and new repository passwords.

Ensure to restart the server (you can do the command above between steps 4 and 5 in
Section 9.2.1, "Modifying Repository Password").

11.2.1.4.2 Dealing with Certificate Expiration

Mobile Server issues device certificates for the same duration as the duration of your
CA. When your CA certificate expires, you must create new CA according to the
procedures outlined above and re-import it into MDM keystore and your Application
Server truststore. This can be done the same way as described above, except that
before importing the new entry into keystore, you must delete the old entry that has
the same alias:

keytool -delete -alias alias_name -keystore keystore_name

where, alias_name and keystore_name are the names of the alias and the keystore file.

We do not have a way to automatically provision new certificates to all managed
devices, so when CA certificate expires, all managed devices will have to re-provision
new CA certificate from Mobile Server setup page and re-enroll into MDM. It is
recommended to use a long duration for your CA certificate.

If you are concerned about security, you can always increase the bit length of your
private key (see openssl genrsa command in Section 11.2.1.1, "Creating Private CA").
The device certificates will be issued with the same bit length (this will have a tradeoff
for RSA performance). It is advisable to use 4096 bit keys for certificates with long
duration.

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-23

11.2.2 SSL Configuration for MDM
For MDM to function, run Mobile Server in SSL mode. For information on SSL setup
process, see Section 9.4, "Configuring for Secure Socket Layer (SSL) Communication".
However, the self-signed server SSL certificate with which most application servers
come by default will not work for MDM because iOS MDM process will not trust
self-signed SSL certificate. There are two options:

■ Obtain server certificate from trusted Certificate Authority. This process is briefly
described in Section 9.4.1, "Creating an SSL Certificate".

■ Use the private CA that you created (see Section 11.2.1, "Creating and Configuring
Certificate Authority") to sign your server's SSL certificate. Since all managed iOS
devices will have to be provisioned with your private CA certificate and your
server's SSL certificate is signed with the same CA, iOS devices will trust your
server's SSL certificate. The procedure for this is described in the following section:
Section 11.2.2.1, "Creating SSL Certificate Signed by Private CA".

11.2.2.1 Creating SSL Certificate Signed by Private CA
You can use SSL certificate signed by your private (or enterprise-level) Certificate
Authority if any of the following applies:

■ You plan to use Mobile Server only to manage iOS devices.

■ You plan to use Mobile server to manage other devices as well, but you do not
need SSL functionality for other platforms. In this case, other devices can access
Mobile Server through regular HTTP.

■ You plan to use SSL for other devices, but can provision the CA certificate to those
devices.

■ You plan to use SSL for other devices, but also set DISABLE_SSL_CHECK
parameter to TRUE (see Section 9.4.1, "Creating an SSL Certificate")

If none of the above applies, you must obtain your SSL certificate from the trusted
certificate authority.

To create SSL certificate signed by your CA, you can use "openssl" (see Section 11.2.1,
"Creating and Configuring Certificate Authority"):

openssl genrsa -out svrcert.key 2048

openssl req -new -out svrcert.csr -key svrcert.key

Loading 'screen' into random state - done
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood Shores
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Oracle
Organizational Unit Name (eg, section) []:DMS
Common Name (e.g. server FQDN or YOUR name) []:pc1.oracle.com
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request

Server and Security Configuration for iOS Mobile Device Management

11-24 Oracle Database Mobile Server Administration and Deployment Guide

A challenge password []:
An optional company name []:
openssl x509 -req -in svrcert.csr -out svrcert.cer -CAkey myCA.key -CA myCA.cer
-days 1000 -CAcreateserial -CAserial serial

openssl pkcs12 -export -out svrcert.p12 -in svrcert.cer -inkey svrcert.key

■ The "openssl req" command creates a certificate service request (CSR) to be signed
by your CA. It asks you for some information. You can enter most as you think
required, except the following:

Note: The Common Name of the certificate must match your server's
host name (which can be fully qualified domain name) or IP address.
This is required for SSL to work. You should use the same hostname
(or ip address) that iOS devices will use to enroll in MDM.

■ The "openssl x509" command creates a certificate based on the CSR you created
signed by your CA. It uses files myCA.key and myCA.cer created previously (see
Section 11.2.1.1, "Creating Private CA"). The options -CAcreateserial and
-CAserial facilitate creating serial numbers for the certificates in case you need to
create multiple certificates with successive serial numbers.

■ The "openssl pkcs12" command packages your certificate and private key into
PKCS12 bundle so that it can be easily imported into Java keystore.

11.2.2.2 Importing SSL Certificate into Application Server's Keystore
Once you have your SSL certificate signed either by trusted CA or your private CA,
you must import it into your Application Server's keystore. It must be imported as
Private Key Entry (containing both certificate and the private key). The procedure
differs depending on which application server you are using. See the sections below:

■ Section 11.2.2.2.1, "Glassfish"

■ Section 11.2.2.2.2, "WebLogic"

Note: For more information on how application servers are
configured for MDM, see Appendix D.3, "Application Server
Configuration for MDM."

11.2.2.2.1 Glassfish For Glassfish, the keystore is located in your domain subdirectory:

GLASSFISH_HOME\domains\DMS_Domain\config

(see Section 11.2.1.3.1, "Glassfish") and is named keystore.jks. The easiest way is to
import it at the same alias as the default self-signed certificate created by Glassfish,
thus replacing default entry.

For this you must delete the default entry first. The alias name of the default entry
should be "s1as".

You can also login to the Glassfish Administration Console, go to SSL settings and
check the certificate alias name. It will also give you an option to change it if you wish
to do so. Continuing from the example above, you can issue the following commands:

cd GLASSFISH_HOME\domains\DMS_Domain\config

keytool -delete -alias s1as -keystore keystore.jks

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-25

keytool -importkeystore -srckeystore svrcert.p12 -srcstoretype pkcs12 -destkeystore
keystore.jks -srcalias 1 -destalias s1as -trustcacerts

 The last option (-trustcacerts) is used to look for certificate chain in file cacerts.jks
since this is where you imported your CA certificate previously (see Section 11.2.1.3.1,
"Glassfish"). This allows the keytool to trust your certificate so that it can be
successfully imported.

You are prompted for destination and source passwords. For source password, use the
one you entered during "openssl pkcs12" command. For destination password, use the
Glassfish keystore password, which by default is "changeit".

Once the configuration is done, restart Mobile Server and check that you can connect
to it via SSL. Before that, you can import your CA certificate into the browser. If you
do that, or if your SSL certificate was obtained from trusted CA, you must be able to
connect without seeing "untrusted" warning from the browser.

11.2.2.2.2 WebLogic For WebLogic Server, you can configure the location of your
keystore (also called Identity Keystore) and your trust store (also called Trust
Keystore). For information on importing your CA into the Trust Keystore, see
Section 11.2.1.3.2, "WebLogic". Follow the steps below:

■ Choose the directory location and file names for your keystore and your trust store
(see Section 11.2.1.3.2, "WebLogic"). For our example, we assume mykeystore.jks
and mytruststore.jks.

■ Import your SSL certificate/private key into your keystore in the same way as it is
done for Glassfish (see Section 11.2.2.2.1, "Glassfish"):

keytool -importkeystore -srckeystore svrcert.p12 -srcstoretype pkcs12
-destkeystore mykeystore.jks -srcalias 1 -destalias mysslalias -trustcacerts

This command creates the keystore (mykeystore.jks) if it does not exist. At this
point you can choose your destination alias name (mysslalias in the example).

■ Login to the WebLogic Administration Console. It must be at URL:
http://myhost:my_admin_port/console

■ Navigate to "Servers" (under "Environment" node), choose your server. You will be
looking at "Configuration" tab. Ensure "SSL Listen Port" checkbox is selected.

■ Click on "Keystores" tab. If you just installed the server, your setting will be "Demo
Identity and Demo Trust". Click "Change" button and from the drop-down list on
the next screen choose "Custom Identity and Custom Trust". Click "Save".

■ Enter path to the keystore file, keystore password, and keystore type (for each
Identity Keystore and Trust Keystore), which for us must be "JKS". Click "Save".

■ Switch to "SSL" tab. Ensure that "Identity and Trust Locations" are set to
"Keystores" (if it is not, change and save it).

■ Enter the alias under which you imported your SSL private key (mysslalias in the
example above), on the same page, in the "Identity" panel (under "Identity and
Trust Locations"). Also enter private key passphrase which must be your identity
keystore (mykeystore.jks) password. Click "Save".

Once the configuration is done, restart Mobile Server and check that you can
connect to it via SSL. Before that, you can import your CA certificate into the
browser. If you do that, or if your SSL certificate was obtained from trusted CA,
you must be able to connect without seeing "untrusted" warning from the browser.

Server and Security Configuration for iOS Mobile Device Management

11-26 Oracle Database Mobile Server Administration and Deployment Guide

11.2.3 Obtaining and Importing APNS Certificate
MDM protocol uses Apple Push Notification Service to notify the managed devices
when new commands are available for them. For more information on APNS, see:
https://developer.apple.com/library/ios/documentation/NetworkingInternet/C
onceptual/RemoteNotificationsPG/Chapters/ApplePushService.html

For information on how Apple Push Notifications are used in MDM, see, Section 11.1,
"iOS Device Management with MDM".

Mobile Server must have APNS certificate so that APNS service can authenticate it.
Unlike APNS certificates for iOS applications, APNS certificate for MDM is not tied to
a particular application id, and a slightly different procedure is used to obtain it.

Apple recognizes the following two roles:

■ MDM Vendor

■ MDM Customer

MDM Vendor is a company providing MDM solution (for example, Oracle). MDM
Customer is a company that buys MDM solution to manage iOS devices. The
following steps outlines the procedure to obtain APNS certificate:

■ Vendor obtains MDM CSR Signing Certificate.

■ Customer creates a private key and Certificate Signing Request (CSR) for the
APNS certificate and submits it to the Vendor.

■ Vendor signs the CSR submitted with their MDM CSR Signing Certificate and
returns signed CSR to the Customer.

■ Customer submits the signed CSR to Apple Push Certificate Portal and the portal
issues APNS certificate which the customer can download.

■ Customer imports APNS certificate and its private key into MDM keystore.

For more information, see the sections below:

■ Section 11.2.3.1, "Obtain MDM CSR Signing Certificate"

■ Section 11.2.3.2, "Create APNS CSR"

■ Section 11.2.3.3, "Sign CSR with MDM CSR Signing Certificate"

■ Section 11.2.3.4, "Submit CSR and Obtain APNS Certificate"

■ Section 11.2.3.5, "Import APNS Certificate and Private Key into Mobile Server
MDM Keystore"

■ Section 11.2.3.6, "Renewing MDM Certificates"

■ Section 11.2.3.7, "Important Considerations"

Note: A Customer having an iOS Developer Enterprise Account can
easily become a MDM Vendor by doing one of the following:

■ Contact Apple
(https://idmsa.apple.com/IDMSWebAuth/login.html?path=%2F%
2Fcontact%2Fsubmit.php&appIdKey=891bd3417a7776362562d2197
f89480a8547b108fd934911bcbea0110d07f757) and ask to be
assigned MDM Vendor role

■ Talk to your team agent to be assigned appropriate privileges to
create MDM Certificates

Since most customers must have Enterprise account anyway to
develop and distribute Enterprise applications, they can also assume
the Vendor role. This is most expedient option since this allows you to
obtain APNS certificate without any external dependencies.

Thus, in this guide we will describe the steps for both Vendors and
Customers.

If you do not wish to assume the Vendor role, contact Oracle Support
for the Vendor-specific steps.

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-27

11.2.3.1 Obtain MDM CSR Signing Certificate
Follow the steps below:

■ Go to developer portal at https://developer.apple.com/, click on "Member
Center" (top right) and sign in with your Apple ID.

■ Click on "Certificates, Identities & Profiles".

■ Navigate to "Certificates" and click "+" (top right of the table on the right).

■ Select "MDM CSR" (it will be under "Production"), on the page that appears and
click "Continue" button.

■ Generate CSR first to get the Vendor certificate. In the following screen you will
see instructions on how to generate CSR using Mac's Keychain utility. However,
you can also generate CSR using openssl (see Section 11.2.2.1, "Creating SSL
Certificate Signed by Private CA"):

– openssl genrsa -out vendor.key 2048

– openssl req -new -out vendor.csr -key vendor.key

Ensure that you enter your name (CN) and your email address when prompted by
openssl. If instead you choose using Keychain utility, you need to export your
private key from it as PKCS12 bundle (ext .p12 or .pfx).

On the portal, click "Continue" button.

■ Select your generated CSR file (on the next screen) to upload.

■ Download your MDM CSR Signing Certificate (that is generated) from the next
screen.

■ See the row with your newly generated certificate (back at the "Certificates" table
on the portal under "Production"). You can re-download it from the portal later if
you wish. The "Type" column should indicate "MDM CSR".

Server and Security Configuration for iOS Mobile Device Management

11-28 Oracle Database Mobile Server Administration and Deployment Guide

11.2.3.2 Create APNS CSR
To generate APNS private key and CSR you can use openssl, see Section 11.2.2.1,
"Creating SSL Certificate Signed by Private CA":

■ openssl genrsa -out push.key 2048

■ openssl req -new -out push.csr -key push.key

You are asked for some information by "openssl req" command. Enter the information
for your organization (enter at least your name (subject CN) and email address).
Alternatively, you can generate private key and CSR by Apple Keychain Utility on
Mac.

Save the CSR instead of discarding it because it can be reused when your APNS
certificate needs to be renewed.

11.2.3.3 Sign CSR with MDM CSR Signing Certificate
If you do not want/cannot assume the Vendor role, submit the CSR you created to
Oracle Support. Otherwise, follow the steps below. Although there is no official Apple
tool for MDM CSR signing, Mobile Server provides an MDM CSR signing utility. The
utility is located in file applemdm.jar. You can find applemdm.jar in your Mobile
Server subdirectory:

MOBILE_HOME\mobile\server\admin\repository\mobile\lib.

To use the MDM CSR signing utility you must get the following:

■ Vendor's CSR Signing Certificate.

It can be either in PEM format (text, base-64 encoding) with extension .pem or in
binary DER format, with extensions .cer or .der. Refer to Section 11.2.3.1, "Obtain
MDM CSR Signing Certificate"on how to obtain it.

■ Vendor's CSR Signing private key.

The private key has to be in PKCS12 format in a file with extension .p12 or .pfx. If
you exported the private key from the Mac Keychain utility, it must already be in
PKCS12 format. On the other hand, if you used openssl to generate your vendor's
private key and CSR as in Section 11.2.3.1, "Obtain MDM CSR Signing Certificate,",
you can convert the key file generated by openssl to PKCS12 format:

openssl pkcs12 -export -nocerts -inkey vendor.key -out vendor.p12

-nocerts option tells openssl to generate vendor.p12 containing only private key
and no certificates. You will be prompted for the password to protect .p12 file.

■ Customer's CSR

See Section 11.2.3.2, "Create APNS CSR."

■ Apple Root Certificate

Download it here:
http://www.apple.com/appleca/AppleIncRootCertificate.cer

The file name should be AppleIncRootCertificate.cer.

■ Apple WWDR Intermediate Certificate

Download it here:
http://developer.apple.com/certificationauthority/AppleWWDRCA.cer

The file name should be AppleWWDRCA.cer.

Run MDM CSR Signing utility as follows:

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-29

java -cp applemdm.jar oracle.opensync.apple.tools.MDMCSRSign push.csr
vendor.p12 vendor_pk_password vendor.pem AppleWWDRCA.cer
AppleIncRootCertificate.cer > push.signedcsr

where:

– push.csr - Customer's APNS CSR

– vendor.p12 (or vendor.pfx) - Vendor's CSR Signing private key as PKCS12
bundle.

– vendor_pk_password - Password protecting vendor.p12 (or vendor.pfx).

– vendor.pem (or vendor.cer) - Vendor's CSR Signing Certificate that was
downloaded in section 11.2.3.1.

– The last 2 parameters are Apple's WWDR intermediate and Apple's root
certificates.

Note: If their names match the names given above
(AppleWWDRCA.cer and AppleIncRootCertificate.cer), these last 2
parameters can be omitted.

– push.signedcsr - The result of running the utility, Customer's APNS signed
CSR (the utility writes the result to standard output, thus the re-direction).

Save the signed CSR instead of discarding it because it can be reused when your
APNS certificate needs to be renewed.

11.2.3.4 Submit CSR and Obtain APNS Certificate
Follow the steps below:

1. Go to Apple Push Certificate Portal.

2. Sign in with your Apple ID.

3. Click on "Create a Certificate" button.

4. Read and accept terms and conditions.

5. Select the signed CSR to upload (for example, push.signedcsr)

6. Download APNS certificate (newly generated) from the following screen.

11.2.3.5 Import APNS Certificate and Private Key into Mobile Server MDM Keystore
The last step is to import APNS certificate into Mobile Server MDM keystore. See
Section 11.2.1.2, "Importing the CA into Mobile Server MDM Keystore" for details on
the MDM keystore.

You must combine your APNS private key and APNS certificate into PKCS12 bundle.

Note: Mobile Server MDM keystore password is the same as your
Mobile Server repository password.

Here are the commands:

cd %MOBILE_
HOME%\Mobile\Server\admin\repository\devmgr\apple\mdm\cert

openssl pkcs12 -export -out push.p12 -in push.pem -inkey push.key

Server and Security Configuration for iOS Mobile Device Management

11-30 Oracle Database Mobile Server Administration and Deployment Guide

keytool -importkeystore -srckeystore push.p12 -srcstoretype pkcs12 -destkeystore
keystore.jks -srcalias 1 -destalias oracle.dms.mdm.apns

where:

■ push.pem - APNS certificate you downloaded from the portal (see Section 11.2.3.4,
"Submit CSR and Obtain APNS Certificate")

■ push.key - APNS private key (see Section 11.2.3.2, "Create APNS CSR")

■ push.p12 - bundle combining APNS certificate with APNS private key

■ oracle.dms.mdm.apns - destination alias in MDM keystore.

Note: It is important that you enter destination alias exactly as
specified above. Mobile Server uses this alias name to find the
APNS Certificate entry.

After this is completed, restart your Mobile Server.

11.2.3.6 Renewing MDM Certificates
Both Vendor's CSR Signing Certificate and Customer's APNS Certificate have limited
duration (currently 1 year), so they will need to be renewed. Follow the steps below
for renewal:

■ For Vendor's CSR Signing Certificate:

Use the procedure outlined in Section 11.2.3.1, "Obtain MDM CSR Signing
Certificate," to obtain new certificate. No special renewal process is needed.

■ For Customer's APNS Certificate:

You must renew the certificate before it expires. If you do not renew it and obtain a
new certificate instead, Mobile Server will not be able to push notifications to
currently enrolled devices until they re-enroll into MDM. Follow the steps below:

– Go to Apple Push Certificate Portal.

– Sign in with your Apple ID.

At the top, you will see a table named "Certificates for Third-Party Servers".

– Find your APNS certificate in this table and click "Renew" button on the right.

You will be taken to a page to upload your signed CSR.

– Reuse the same signed CSR that you created previously as long as the
Vendor's CSR signing certificate used to sign this CSR has not expired.
Otherwise, you will need to sign your CSR (see Section 11.2.3.2, "Create APNS
CSR") again following procedure in Section 11.2.3.3, "Sign CSR with MDM
CSR Signing Certificate."

– Download the new certificate issued (see Section 11.2.3.4, "Submit CSR and
Obtain APNS Certificate") in the following page.

– Import the new certificate into MDM keystore as described in Section 11.2.3.5,
"Import APNS Certificate and Private Key into Mobile Server MDM Keystore."

Note: You must first delete the old entry from the keystore:

keytool -delete -alias oracle.dms.mdm.apns -keystore keystore.jks

Server and Security Configuration for iOS Mobile Device Management

iOS Device Management 11-31

11.2.3.7 Important Considerations
See the following section:

■ Section 11.2.3.7.1, "Push Notification Topic"

11.2.3.7.1 Push Notification Topic Similar to push notifications sent by iOS Apps, MDM
protocol must specify push notification topic. The push notification topic for MDM
must start with prefix com.apple.mgmt. The topic is located in the APNS certificate's
Subject UID field. You can check this with openssl:

openssl x509 -noout -text -in push.pem

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 20:b6:b9:9e:0b:6f:c2:09
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, O=Apple Inc., OU=Apple Certification Authority, CN=Apple A
pplication Integration Certification Authority
 Validity
 Not Before: Aug 16 07:33:54 2014 GMT
 Not After : Aug 16 07:33:54 2015 GMT
 Subject: UID=com.apple.mgmt.xxx
0, CN=xx, C=US
 Subject Public Key Info:
..
It is useful to check if you get any push notification related errors while running MDM
in Mobile Server.

Server and Security Configuration for iOS Mobile Device Management

11-32 Oracle Database Mobile Server Administration and Deployment Guide

A

Configuration Files for the Mobile Server A-1

AConfiguration Files for the Mobile Server

The following sections describe configuration parameters for the mobile server:

■ Section A.1, "Configuration Parameters for the MOBILE.ORA File"

■ Section A.2, "Data Synchronization Requirements in INIT.ORA"

A.1 Configuration Parameters for the MOBILE.ORA File
The mobile server uses the mobile.ora file to initialize the mobile server; thus, if you
modify these parameters, you must restart the mobile server to receive the change.

The following sections define system-wide parameters for the mobile server in the
mobile.ora file:

■ Section A.1.1, "[APPLICATIONS]"

■ Section A.1.2, "[MOBILE]"

■ Section A.1.3, "[FILESYSTEM]"

■ Section A.1.4, "[DEBUG]"

■ Section A.1.5, "[CONSOLIDATOR]"

■ Section A.1.6, "[EXTERNAL_AUTHENTICATION]"

A.1.1 [APPLICATIONS]
Table A–1 lists the APPLICATIONS parameters and their usage definitions.

Table A–1 APPLICATIONS Parameters

Parameter Definition

PACK_HELP Location for the Packaging Wizard help file. This is only used
with MDK. and only for the purpose of Debug / Support.

XMLFILE Name of the XML file used by the Packaging Wizard to store the
application information. This is only used for Debug / Support.

A.1.2 [MOBILE]
The following MOBILE parameters control the behavior of the mobile server.

Table A–2 lists MOBILE parameters and their usage definitions.

Configuration Parameters for the MOBILE.ORA File

A-2 Oracle Database Mobile Server Administration and Deployment Guide

Table A–2 MOBILE Parameters

Parameter Definition

ADMIN_PASSWORD Encrypted user password. Users must not try to edit the
encrypted password. This parameter can be set by navigating
to the following URL.

<server>/mobile/console/startup

ADMIN_PORT=8080 Admin port for starting the mobile server.

ADMIN_JDBC_URL=<jdbc_url> JDBC URL that the mobile server uses to connect to the
mobile server repository in the back-end Oracle database. For
a description of the syntax for the JDBC URL, see Section 2.2,
"Connecting to the Back-End Oracle Database".

ADMIN_USER Encrypted user name. Users must not try to edit the encrypted
user name. This parameter can be set by navigating to the
following URL.

<server>/mobile/console/startup

DM_AUTO_SYNC_CACHE Set to YES to turn on this feature to force the DeviceManager
to synchronize the cached data on user-related events, such as
create, edit or delete user.

INSTALLATION_TYPE Mobile Server Installation Type, which describes the
application server type where the mobile server is running.
Do NOT modify, for internal use only.

IP_CONFIG Set this parameter to designate what type of IP address the
client uses. If you are using a dynamic (DHCP) dynamic IP
address, set the parameter to DYNAMIC; the default is STATIC
for a static IP address.

If using DHCP, the underlying code needs to know to not use
the IP address that was used for the previous
connection/synchronization. If you are using DHCP and have
set this parameter to STATIC, synchronization may never
occur, since it is trying to synchronize to an IP address that is
no longer valid for this device.

Internally, the IP_CONFIG defines if IP address caching occurs
in the JVM. Thus, if the IP_CONFIG parameter is set to DYNAMIC,
the JVM security property networkaddress.cache.ttl is set
to "0", which determines that the JVM always requests a
naming service lookup to retrieve the IP address for the client.

Disabling Java IP caching may effect performance with the
additional DNS lookups. In addition, there is a risk of DNS
spoofing. See the Oracle Java documentation for more
information.

MAX_THREAD_POOL Limits the number of threads available in the connection pool.
If threading problems occur, set this parameter to 0 or 1.

ORACLE_HOME Location of the Oracle Home where the mobile server is
installed.

PORT=80 The port number on which the mobile server is running.

Configuration Parameters for the MOBILE.ORA File

Configuration Files for the Mobile Server A-3

A.1.3 [FILESYSTEM]
The following FILESYSTEM parameters control the behavior of the mobile server
repository.

Table A–3 lists [FILESYSTEM] parameters and their definitions.

Table A–3 FILESYSTEM Parameters

Parameter Definition

ROOT_DIR=ORACLE_
HOME/MOBILE/SERVER/REPOSITORY

Root Directory. Valid only for OS file system.

This directory path format applies to the
environment where the mobile server runs on
Unix, AIX and Solaris.

Replace ORACLE_HOME with your actual Oracle
Home.

ROOT_DIR=ORACLE_
HOME\MOBILE\SERVER\REPOSITORY

Root directory. Valid only for OS file system.

This directory path format applies to the
environment where the mobile server runs on
Windows NT.

Replace ORACLE_HOME with your actual home.

RESTRICTED_ADMIN_HOSTS=<list of comma
separated IP addresses>

This parameter provides security for accounts with
administrator access. With this parameter, the mobile server
can be configured to allow login requests to a specified set of
IP addresses for accounts with administrator access.

With this parameter, you can also restrict access to the Mobile
Server Startup feature. Only valid login requests from a
browser that runs on machines whose IP address is listed as a
value of this parameter will be granted access.

For example, RESTRICTED_ADMIN_
HOSTS=144.125.127.150,144.125.127.101

Note: Users who have administrator access should not
connect through a proxy server.

REVERSE_
PROXY=http://<proxyhost>:<port>/mobile

Set this parameter if a Reverse proxy is used with the mobile
server. See Section 9.8.1, "Using a Reverse Proxy to
Communicate from Internet to Intranet" for details.

SSO_ENABLED Turn this parameter on (TRUE) if you want to enable Oracle
Single Sign on (SSO) authentication on the mobile server. If
this parameter is turned on then the users trying to connect to
the mobile server in the online mode will receive the login
page from the SSO server.

SQL_RETRIES=5 Number of attempts to modify a JDBC connection before
timing out.

SSL=YES If this parameter is set to YES, then the mobile server runs in
SSL mode.

THIN_JDBC_URL=<jdbc_url> This URL is used by applications to connect to the mobile
server repository database.

For a description of the syntax for the JDBC URL, see
Section 2.2, "Connecting to the Back-End Oracle Database".

USE_SYSTEM_CLASSPATH=YES If set to yes, searches for Java classes in the computer’s
classpath before searching the mobile server repository.

Table A–2 (Cont.) MOBILE Parameters

Parameter Definition

Configuration Parameters for the MOBILE.ORA File

A-4 Oracle Database Mobile Server Administration and Deployment Guide

A.1.4 [DEBUG]
The following DEBUG parameters control the debugging messages in the mobile server.

Table A–4 lists DEBUG parameters and their definitions.

Table A–4 DEBUG Parameters

Parameter Name Definition

TRACE_DESTINATION Trace destinations are CONSOLE and FILE. The
administrator can set this parameter to any of these
destinations.

CONSOLE generates trace output to the console screen.

FILE generates trace output to a file. For more
information, see TRACE_FILE_ NAME, TRACE_FILE_SIZE,
and TRACE_FILE_POOL_SIZE.

TRACE_ENABLE Used to turn the trace feature on (YES) or off (NO). When
the Trace feature is off, trace output is not generated.

TRACE_FILE_NAME=trace.log Used as base name to arrange trace files in sequential
order starting from 1 to FILE_TRACE_POOL_SIZE.

For example: If you set the following parameters.

TRACE_FILE_NAME=mytrace.log

TRACE_FILE_POOL_COUNT=5

then, the Trace files will be named mytrace1.log,
mytrace2.log, mytrace3.log, mytrace4.log,
mytrace5.log, based on how you set the TRACE_FILE_
PER_USER parameter.

Sample Value: trace.log

TRACE_FILE_PER_USER=YES Used to specify an individual trace file pool for every
individual user. Applicable only when the File option is
the Trace destination.

If set to YES, then every traceable user has an own trace
file pool, and the trace file name includes the user’s name.
In addition, the system trace output goes to the user’s
system trace file.

If set to NO, all traceable users share the same trace file
pool, the actual trace file does not contain any user name.

Example: TRACE_FILE_POOL_PER_USER=No

TRACE_FILE_POOL_SIZE=5 The default value is 5. This parameter specifies the
number of files in the trace file pool. If the pool limit is
reached, the trace output is overwritten to the first file in
the pool. See also TRACE_FILE_NAME, TRACE_FILE_POOL_
SIZE, and TRACE_FILE_PER_USER

TRACE_FILE_SIZE=10 Used as the maximum file size in MB for trace files. If the
threshold value is about to be reached, the trace feature
generates output to the next trace file in the pool. For
more information, see TRACE_FILE_NAME, TRACE_FILE_
POOL_SIZE, and TRACE_FILE_PER_USER.

Configuration Parameters for the MOBILE.ORA File

Configuration Files for the Mobile Server A-5

TRACE_LEVEL=1 There are three levels of trace messages:

1(binary 00000001), Basic Trace: General system
information.

2 (binary 00000010), Function Trace: Traces the
function sequence being called, mostly used by Data
Synchronization.

4 (binary 00000100), SQL Trace: Traces SQL queries
being executed, mostly used by Data Synchronization.

In addition, all errors and exceptions are sent to level -1,
which have the binary 11111111. All Java System.out
output are sent to level 9. Both these two levels are always
generated as output, if the user is not filtered out. For
more information, see TRACE_USER.

The parameter value for TRACE_LEVEL is used to do a
Bitwise AND operation against all 3 trace levels. If the
result is greater than 0, then trace output of that level will
be generated as trace output.

The parameter value for TRACE_LEVEL used to do a
Bitwise AND operation against all 3 trace levels. If the
result is greater than 0, then trace output of that level will
be generated as trace output.

EXAMPLE: If you set the following parameters, TRACE_
LEVEL=3, then the Basic and SQL level trace output is
generated, but not Function level trace as the & character
is a Bitwise AND operator.

3 & 1 (Basic) = 1 > 0
3 & 2 (SQL) = 2 > 0
3 & 4 (Function) = 0 = 0

TRACE_REMOTE_HOST The trace output is generated to the named machine, on
which the synchronized trace can be viewed using the wsh
-m %TRACE_REMOTE_PORT%.

Example: TRACE_REMOTE_HOST=adminhost

TRACE_REMOTE_MACHINE Machine name where wsh -m is running. The Mobile
Server sends the debug output to the machine where wsh
-m is running.

TRACE_REMOTE_PORT Trace output is generated to the named port on the
%TRACE_REMOTE_MACHINE% on which the trace output can
be viewed using wsh -m TRACE_REMOTE_PORT%.

TRACE_USERS List of valid user names. The user trace and system trace
information which is listed is generated as trace output.

If the value is an empty string "", then every user is
traced. If the value is or contains TRACE_NO_USER, then no
actual user is traced. Only the system trace information is
generated as trace output.

Note: As the administrator, you must not use the TRACE_
NO_USER value as the user name.

Example: If you set this parameter as follows, TRACE_
USERS=jane,jack, then only jane and jack’s trace
information is generated and displayed as trace output.

Table A–4 (Cont.) DEBUG Parameters

Parameter Name Definition

Configuration Parameters for the MOBILE.ORA File

A-6 Oracle Database Mobile Server Administration and Deployment Guide

A.1.5 [CONSOLIDATOR]
The CONSOLIDATOR parameters control the behavior of Data Synchronization. The
values that are listed in the following table are default values.

■ Section A.1.5.1, "Data Synchronization Parameters"

■ Section A.1.5.2, "Data Synchronoization Tracing and Logging"

A.1.5.1 Data Synchronization Parameters

Table A–5 Consolidator Parameters

Parameter Name Definition

APPLY_TRIES_DELAY Specifies in seconds the delay between successive attempts
to apply a client’s In Queue. Related to the MAX_APPLY_
TRIES parameter.

CACHED_USERS Comma-separated list of users, where each user’s
downloaded data is cached.

CLIENT_RESEND_CHECK If set to YES, then all client resend sessions requests are
rejected. This is the default. If a client uploads a
transaction and the server receives and processes it
correctly, but the client is not notified, then the client will
send the transaction again. To avoid having this
transaction be processed again, the resend session request
is rejected.

However, if you are developing an application and you are
executing a test, such as a performance test, you will
resend the same client request to the server repeatedly to
test how the server responds under heavy load. Only in
this case would you want to set this parameter to NO.

CONNECTION_TIMEOUT Specifies the JDBC connection timeout in minutes for the
synchronization session. Default value is 120 minutes.

COMPOSE_TIMEOUT=300 Specifies in seconds the MGP timeout for the compose
phase for each user to complete. If the compose phase for
this user does not complete, MGP retries the compose
phase for this user in the next cycle. If the compose
consistently fails then increase timeout value. Monitor the
MGP logging to evaluate how long the compose takes to
complete; then add 50% to the value ensure that slightly
larger datasets compose completely.

CONN_CHECK_ON_RESERVE Configure whether to validate a database connection
before retrieving (borrowing) it from the connection pool.
By default, this value is YES.

CONN_CHECK_ON_RELEASE Configure whether to validate the database connection
before releasing it back to the connection pool. By default,
this value is YES.

If the examination determines that the connection is not
valid, then it is destroyed instead of being returned to the
connection pool.

CONNECTION_POOL=YES Enables pooling of database connections if set to YES.

Configuration Parameters for the MOBILE.ORA File

Configuration Files for the Mobile Server A-7

DO_APPLY_BFR_COMPOSE By default, before the MGP processes the Compose phase
for a user, it checks to see if user data has been uploaded
into the In Queue. If so, then the Compose is not
performed to ensure that user data is not overwritten.
Instead, the Compose phase is not executed until the MGP
runs the Apply/Compose phase again.

Setting DO_APPLY_BFR_COMPOSE to true modifies this
behavior. If data for a user is in the in queue, MGP will
execute a second Apply to commit all user data and then
will execute the Compose for that user.

IN_QUEUE_INDEX_ATTRIBUTES Specify the index attributes for the In Queue table indexes,
which exist in the back-end Oracle database. These can
include the storage characteristics and the following
attributes: TABLESPACE, PCTFREE, PCTUSED, INITRANS, and
MAXTRANS. See the Oracle Database SQL Reference for more
information on these properties.

IN_QUEUE_TABLE_PROPERTIES Specify the physical and/or table properties for the In
Queue tables, which exist in the back-end Oracle database.
These can include the storage characteristics and the
following properties: TABLESPACE, PCTFREE, PCTUSED,
INITRANS, and MAXTRANS. See the Oracle Database SQL
Reference for more information on these properties.

JDBC_URL This is the JDBC_URL used by the Sync Service and the
MGP for connections to the mobile server repository. If
absent, it defaults to the ADMIN_JDBC_URL in the MOBILE
section of the mobile.ora file.

JOB_ENGINE_AUTO_START If set to YES, the Job Scheduler is started up at mobile
server start time.

JOB_ENGINE_SLEEP_TIME The amount of time in seconds that the Job Scheduler
sleeps in each loop.

LOG_LOCK_DELAY Specifies in the number seconds the delay between
successive attempts to lock the log tables. Related to the
MAX_LOG_LOCK_TRIES parameter.

MAGIC_CHECK Control the magic number checking of publication items. If
enabled, and there is a mismatch between the server and
the client magic numbers, the publication item receives a
complete refresh. If set to ALL, then the magic check is
enabled, which is the default. If NONSHARED, then the magic
check is enabled only for publication items that are not
shared among users. If set to SHARED, the magic check is
enabled only for shared publication items.

A shared publication item has the following
characteristics:

■ Read only

■ The publication item query either has no parameters
or all users share the same parameter values.

MAP_INDEX_ATTRIBUTES Specify the index attributes for the map table indexes,
which exist in the back-end Oracle database. These can
include the storage characteristics and the following
attributes: TABLESPACE, PCTFREE, PCTUSED, INITRANS, and
MAXTRANS. See the Oracle Database SQL Reference for more
information on these properties.

Table A–5 (Cont.) Consolidator Parameters

Parameter Name Definition

Configuration Parameters for the MOBILE.ORA File

A-8 Oracle Database Mobile Server Administration and Deployment Guide

MAP_TABLE_PROPERTIES Specify the physical and/or table properties for the map
tables, which exist in the back-end Oracle database. These
can include the storage characteristics and the following
properties: TABLESPACE, PCTFREE, PCTUSED, INITRANS, and
MAXTRANS. See the Oracle Database SQL Reference for more
information on these properties.

MAX_APPLY_TRIES Specifies the maximum number of times the MGP retries
to apply the client In Queue data before terminating the
apply phase.

MAX_BATCH_SIZE JDBC performance parameter which defines the number of
DML records (inserts only) to send from the mobile server
to the back-end Oracle database at one time. Without
batching, each record is sent to the database one at a time.
These records are originally from client.

This only applies to insert, and not to delete or update
records.

MAX_LOG_LOCK_TRIES Specifies the number of attempts to lock the logs before
giving up the compose phase.

MAX_THREADS=3 Specifies the number of concurrent threads spawned
within the MGP process. As a rule, do not set this higher
than 1.5 times the number of CPUs on the database
machine. The default is 3.

MAX_CONNECTIONS Sets the maximum number of JDBC connections that can
be open at one time by the Mobile Server. When this
number is reached, no further synchronization sessions are
allowed until active connections are released back to the
connection pool.

MAX_U_COUNT The MAX_U_COUNT parameter controls the number of SQL
statements that are executed together in a SQL batch
statement while performing the map cleanup. The default
value for the MAX_U_COUNT parameter is 256. However, if
the value is 256 during the map cleanup, then a maximum
of 256 SQL statements can be executed together in a batch.
Modify this parameter and restart the mobile server to
enable a larger batch of SQL statements to be processed
during map cleanup.

You may want to modify the MAX_U_COUNT parameter
before the synchronization starts.

See Section 2.7.1.10, "BeforeSyncMapCleanup" in the Oracle
Database Mobile Server Developer's Guide for more
information.

MGP_CYCLES_BEFORE_INS_CHK How often should MGP compose phase look for map table
records that are marked for deletion but have been
re-added to the subscription. By default, this is set to 1. If
the application logic guarantees that such records never
exist, then this check may be skipped altogether by setting
the value to –1, which improves MGP compose
performance.

MGP_HISTORY If set to YES, enables MGP history recording, which can be
viewed in the Data Synchronization section of the Mobile
Manager.

REPORT_ALL_ERRORS If set to YES, then the MGP attempts to detect and report
all apply transaction errors. If set to NO, which is the
default, only the first error is reported.

Table A–5 (Cont.) Consolidator Parameters

Parameter Name Definition

Configuration Parameters for the MOBILE.ORA File

Configuration Files for the Mobile Server A-9

RESUME_FILE This is a server-side parameter that defines the filename of
the resume buffer for the client users. By default, we use
memory mapped file; however, with this parameter, users
can provide their own storage files. The size of this file is
specified by the RESUME_FILE_SIZE parameter.

For more information on how to use RESUME_FILE and
RESUME_FILE_SIZE, see Section 5.7, "Resuming an
Interrupted Synchronization".

RESUME_FILE_SIZE Set the maximum size of the resume file in MegaBytes
(MB).

RESUME_MAXACTIVE The RESUME_MAXACTIVE parameter controls the maximum
number of connections that the mobile server handles at a
single time. If more clients try to connect, they are queued
until existing connections complete. The default is 100
connections.

You can enable maximum concurrent clients by setting
RESUME_MAX_WAIT and RESUME_MAXACTIVE. This limits the
maximum number of concurrently synchronizing clients to
RESUME_MAXACTIVE; additional incoming clients wait
RESUME_MAX_WAIT before timing out. To eliminate the
resume feature, set RESUME_TIMEOUT to 0.

RESUME_MAXCHUNK The RESUME_MAXCHUNK parameter causes the server to drop
the connection after sending the specified data size, in KB.
This forces the client to reconnect and inform the server on
how much data it already has. The server can the discard
all data before that offset. The fault value is 1024 KB.

RESUME_MAX_WAIT The RESUME_MAX_WAIT parameter specifies the number of
MINUTES a new client waits for a connection if the
RESUME_MAXACTIVE threshold has been reached. Default is
30 minutes.

RESUME_CLIENT_TIMEOUT The RESUME_CLIENT_TIMEOUT parameter specifies the
number of SECONDS the client will try to resume before it
gives up and returns an error.

RESUME_TIMEOUT The RESUME_TIMEOUT parameter indicates time in
MINUTES the server will keep client data while the client
is not connected. The default is 0, which means that
resume is disabled and after disconnection, the client data
is discarded. A short timeout, such as 15 minutes, is
suitable to resume any accidentally dropped connections.
A longer timeout may be needed if users explicitly pause
and resume synchronization to switch networks or use a
dialup connection for another purpose.

SKIP_INQ_CHK_BFR_COMPOSE By default, before the MGP processes the Compose for a
user, it checks to see if user data has been uploaded into
the In Queue. If so, then the Compose for the user is not
performed to ensure that user data is not overwritten.
Instead, the Compose phase is not executed until the MGP
runs the Apply/Compose phase again.

Setting SKIP_INQ_CHK_BFR_COMPOSE to true modifies this
behavior. Even if data is in the in queue, MGP executes the
Compose for the user. The data that was uploaded to the
In Queue must be data that will not be compromised by
downloading data from the server to the client.

Table A–5 (Cont.) Consolidator Parameters

Parameter Name Definition

Configuration Parameters for the MOBILE.ORA File

A-10 Oracle Database Mobile Server Administration and Deployment Guide

A.1.5.2 Data Synchronoization Tracing and Logging
Data Synchronization uses a log engine that supports the following parameters for
logging:

■ GLOBALLogger

■ SYNCLogger

■ MGPLogger

■ MGPAPPLYLogger

■ MGPCOMPOSELogger

Each parameter sets up a logger for a component which you can use to specify the
trace level, trace type, trace destination, trace file pool size, trace file size, and trace
users in the following sample format.

<X>Logger=TRACE_LEVEL=<trace_level>|TRACE_TYPE=<trace_type[,trace_
type...]>|TRACE_DESTINATION=<trace_destination>[|TRACE_FILE_POOL_
SIZE=<trace_file_pool_size>|TRACE_FILE_SIZE=<trace_file_size>|TRACE_
USER=<trace_users>]

SLEEP_TIME=20000 Specifies how long (in milliseconds) the MGP sleeps before
scheduling the next client’s apply phase. By default, it is
set to 2 milliseconds.

STMT_CACHE_SIZE The number of prepared statements to be cached for each
connection. These statements are not re-parsed by the
database when they are prepared again. To turn off
caching, set this variable to -1.

SYNC_HISTORY If set to YES, enables synchronization history recording,
which can be viewed in the Data Synchronization section
of the Mobile Manager.

SYNC_SERVICE_AUTO_START If set to YES, the Sync Server is started automatically at
mobile server startup. The client cannot synchronize until
the Sync Server is started. So, if you want to prevent the
client from synchronizing, then set this parameter to NO
and then start and stop the Sync Server manually through
the Mobile Manager after you have completed the tasks
that you want to perform while the client is unable to
synchronize. For example, you do not want a client to
synchronize if you are re-publishing the client’s
application.

TEMP = C:\TEMP Specifies the directory where the binary trace file, which
includes the request and response data, is written. This file
is created to cache the data in transport, so that if a failure
occurs, Oracle Database Mobile Server can recover. You
initialize this binary trace file by selecting the Data Trace
Type checkbox.

USE_JVM_COMPRESSION Specifies whether the JVM implementation of ZIP or the
Oracle pure Java version for compression should be used.
This is a performance parameter, where depending on a
particular environment, each implementation may have
different performance results. By default, this is set to YES
to use the JVM implementation.

Table A–5 (Cont.) Consolidator Parameters

Parameter Name Definition

Note:

■ Separate each parameter with the ’|’ symbol. Separate values with
a comma ’,’.

■ If there are any invalid values in the definition, the whole
definition is ignored.

■ For each logger, the trace level, type, and destination parameters
are mandatory.

■ The parameters TRACE_FILE_POOL_SIZE and TRACE_FILE_SIZE are
only applicable for the GLOBALLogger only.

■ If you define the LOCAL_CONSOLE, then you must also define
SYNCLogger and GLOBALLogger.

Configuration Parameters for the MOBILE.ORA File

Configuration Files for the Mobile Server A-11

Table A–6 lists the parameters for each logger.

Table A–6 Acceptable Parameter Values

Parameter Description

TRACE_LEVEL Trace Level parameter can be set to the following trace message
levels:

MANDATORY: This option logs mandatory messages only. For
example, Program Exceptions. Regardless of component
settings, this option logs exceptions in the error log file
(err.log) located in the Conslog directory.

WARNING: This option logs warning messages and messages at
the Mandatory level. For example, Program Exceptions that
users can ignore, messages that the program wants to warn the
users with, and so on.

NORMAL: This option logs normal messages that the user must
be informed with and messages at the Mandatory and Warning
level.

INFO: This option logs information messages and messages at
the Mandatory, Warning, and Normal levels.

Examples:

■ Timing of synchronization: When the SYNCLogger is set to
the TRACE_TYPE=TIMING and TRACE_LEVEL=INFO.

■ MGP Apply: When the MGPAPPLYLogger is set to the
TRACE_TYPE=TIMING and TRACE_LEVEL=INFO. MGP Apply
must be started with Timing of. COMPOSE must be
started with Timing of MGP Compose. MGP must be
started with Timing of.

■ COMPOSE: When the MGPAPPLYLogger is set to the TRACE_
TYPE=TIMING and TRACE_LEVEL=INFO.

■ Status of MGP: When the MGPLogger is set to the TRACE_
TYPE=GENERAL and TRACE_LEVEL=INFO.

CONFIG: This option logs configuration messages and messages
at the Mandatory, Warning, Normal, and Info levels. For
example, JDBC driver version.

FINEST: The finest level. This level is used for developers only.

ALL: This option logs all messages according to the other
settings such as Trace Type and Users.

Configuration Parameters for the MOBILE.ORA File

A-12 Oracle Database Mobile Server Administration and Deployment Guide

The new log engine does not support the parameters that have been used in the old
log engine. They are:

■ TRACE_REMOTE_PORT

■ TRACE_REMOTE_MACHINE

■ TRACE_REMOTE_HOST

TRACE_TYPE SQL: This option logs SQL-related messages only. For example,
SQL statements. Note: This option is not trace level sensitive.

TIMING: This option logs timing data only. Note: This option is
trace level sensitive. For MGP Cycle time and Synchronization
time, use the Trace Level INFO option. If the MGPLogger is set
to TIMING and INFO, it will log the MGP Cycle time. If the
SYNCLogger is set to TIMING and INFO, it logs the
synchronization time.

DATA: This option logs data only. Note: This option is not trace
level sensitive. This option prints all data with any trace level
other than the OFF option.

RESUME: Messages dealing with Reliable Transport have a
RESUME trace type. This option only logs messages with
Reliable Transport. Note: This option is not trace level
sensitive. This option prints all the RESUME trace type messages
with any trace level other than the OFF option.

FUNCTION: This option displays the program flow by logging
methods such as Entry, Exit or Invoke. For Long methods, this
option logs the method’s entry or exit; which is a simple
invoke log. Note: This option is not trace level sensitive. This
option prints all the FUNCTION trace type messages with any
trace level other than the OFF option.

GENERAL: This option logs messages that do not belong to any
of the above listed trace types. Note: This type is trace level
sensitive.

ALL: This option generates logs of all trace types.

TRACE_DESTINATION The administrator can set this parameter to any of these
destinations: LOCAL_CONSOLE or TEXTFILE. The Console option
generates trace output to the Console screen. The TEXTFILE
option generates trace output to a file. See also TRACE_FILE_
SIZE, and TRACE_FILE_POOL_SIZE.

Sample Value: TRACE_DESTINATION=TEXTFILE

TRACE_FILE_POOL_SIZE=2 The default value is 2. This parameter specifies the number of
files in the trace file pool. If the pool limit is reached, the trace
output is overwritten to the first file in the pool. See also
TRACE_FILE_POOL_SIZE.

TRACE_FILE_SIZE=1 Used as the maximum file size in MB for trace files. If the value
is about to be reached, the trace feature generates output to the
next trace file in the pool. For more information, see TRACE_
FILE_POOL_SIZE.

TRACE_USERS List of valid user names. The listed user trace information and
system trace information is generated as output. If the value is
an empty string "", then every user is traced.

Table A–6 (Cont.) Acceptable Parameter Values

Parameter Description

Data Synchronization Requirements in INIT.ORA

Configuration Files for the Mobile Server A-13

A.1.6 [EXTERNAL_AUTHENTICATION]
The parameters in Table A–7 are used for configuring external authentication.

Table A–7 EXTERNAL_AUTHENTICATION

Parameter Description

CLASS=<sampleAuthenticator> The external Authenticator JAVA class name.

EXPIRATION = <numberOfSeconds> The mobile server caches the user instantiated
through the external authenticator for a period of
time in order to improve efficiency. Provide the
number of sections for this period. The default
expiration time for the cached user object is 30
minutes (or 1800 seconds).

A.2 Data Synchronization Requirements in INIT.ORA
The following sections describe the Data Synchronization requirements for Oracle and
Oracle parameter settings in the init.ora file:

■ Section A.2.1, "Relationships Between Relevant Parameters"

■ Section A.2.2, "Values for Processes and DML Locks"

A.2.1 Relationships Between Relevant Parameters
You should set the following parameters in the file init.ora as given below:

Table A–8 lists parameters that must be set in the file init.ora:

Table A–8 init.ora Parameter Settings

Parameter Name Definition

PROCESSES Default value: 59 to 200.

SESSIONS Default value:

Derived: 1.1 * PROCESSES + 5

TRANSACTIONS Default value:

Derived: (1.1 * SESSIONS)

DML_LOCKS Default Value:

Derived: (4 * TRANSACTIONS)

A.2.2 Values for Processes and DML Locks
Check values for processes and DML_LOCKS. Massive concurrent synchronization
processes use the maximum amount of resources. For each one of the concurrent
clients, Data Synchronization requires one database connection (one session, one
transaction). Therefore, the parameter value of PROCESSES must be set to be no less
than the maximum number of concurrent clients.

During the sync, the Data Synchronization will make changes to the publication map
tables. One DML lock is needed for each client and changed publication:

DML_LOCKS = (Number of changed publications) * (Maximum number of concurrent
clients)

During the first and second sync, all publication map tables are changed for each
client. So, the required DML locks are:

Data Synchronization Requirements in INIT.ORA

A-14 Oracle Database Mobile Server Administration and Deployment Guide

DML_LOCKS = (Number of publications) * (Maximum number of concurrent clients)

If you have a large number of publications, the default DML_LOCKS may not be
sufficient. You should set it explicitly in the file init.ora. For example, CRM has
approximately 50 publications. For 30 concurrent first syncs, Data Synchronization
needs 1500 DML locks. The default value for DML_LOCKS with PROCESSES set to 200 is
1000.

B

Write Scripts for the Mobile Server With the WSH Tool B-1

B Write Scripts for the Mobile Server
With the WSH Tool

You can use the scripting language saved in an INI file and used by the WSH tool to
perform batch processing tasks on the mobile server that are performed frequently by
the administrator.

The following sections describe the scripting language for the mobile server:

■ Section B.1, "Description of Syntax for WSH Batch Scripts"

■ Section B.2, "Running a Script INI File With the WSH Tool"

■ Section B.3, "Examples of Batch Script Files for WSH"

B.1 Description of Syntax for WSH Batch Scripts
The following sections describe the parameters and syntax available in the scripting
language:

■ Section B.1.1, "Creating a User"

■ Section B.1.2, "Creating a Group"

■ Section B.1.3, "Adding Users to a Group"

■ Section B.1.4, "Removing Users from a Group"

■ Section B.1.5, "Creating Access Privileges"

■ Section B.1.6, "Granting Access"

■ Section B.1.7, "Revoking Access"

■ Section B.1.8, "Creating Registries"

■ Section B.1.9, "Creating Snapshot Variables"

■ Section B.1.10, "Deleting a User"

■ Section B.1.11, "Deleting a Group"

■ Section B.1.12, "Deleting Access Privileges"

■ Section B.1.13, "Deleting a Registry"

■ Section B.1.14, "Deleting Snapshot Variables"

B.1.1 Creating a User
Using the following syntax, you can create users.

Description of Syntax for WSH Batch Scripts

B-2 Oracle Database Mobile Server Administration and Deployment Guide

[USER]
NAME=<User Name>
PASSWORD=<User Password>
EXTERNALUSER=<True or False>
ENCRYPTED=<True or False; True if the password is encrypted, False if not>
FULLNAME=<User Full Name>
PRIVILEGE=<User privilege level as A, O, U, or null>

B.1.1.1 EXTERNALUSER Parameter
By default, this value is false for a user with password that is authenticated by the
mobile server. If you are creating an external user that will be authenticated by an
external authenticator class, set to True. If true, you do not provide a password in the
INI script file with PASSWORD as the user is authenticated by the external
authenticator. See Chapter 7, "Customizing Oracle Database Mobile Server Security" in
the Oracle Database Mobile Server Developer's Guide for information on the external
authenticator.

B.1.1.2 PRIVILEGE Parameter
There are four options for setting the PRIVILEGE value for users. They are:

■ A - Administrator

■ O - Organizer

■ U - User

■ Null - No privileges

B.1.2 Creating a Group
Using the [GROUP] script, you can create a new group (if this group does not already
exist) and add listed users to the group. If you use this entry and specify the name of a
group that exists, all the users in the existing group will be removed and users who are
listed will be added to this group.

The following syntax enables you to create a group.

[GROUP]
NAME=<Group Name>
USER=<User name you want to add to this group>
USER=<User name you want to add to this group>
USER=<User name you want to add to this group>

B.1.3 Adding Users to a Group
Using the [ADDUSERTOGROUP] script, you can create a new group (if this group does not
already exist) and add listed users to this group. You can also use this entry to add
users to an existing group.

[ADDUSERTOGROUP]
NAME=<Group Name>
USER=<User name you want to add to this group>
USER=<User name you want to add to this group>

B.1.4 Removing Users from a Group
Using the [REMOVEUSERFROMGROUP] script, you can remove listed users from a specified
group.

NAME=<Group Name>

Description of Syntax for WSH Batch Scripts

Write Scripts for the Mobile Server With the WSH Tool B-3

USER=<User name you want to remove from this group>
USER=<User name you want to remove from this group>

B.1.5 Creating Access Privileges
Using the [ACL] script, you can create a new ACL (if this ACL does not already exist).
After creating the ACL, all the existing users will be removed and all the listed users
will be added to this ACL.

Using the [GRANTACCESS] script, you can add users to the existing ACL.

The following syntax enables you to create access privileges for users and groups.

[ACL]
APPLICATION=<Virtual path of the application you want to create ACL for>
ROLE=<Role of the user; set the value as DEFAULT ROLE or ADMINISTRATIVE ROLE>
USER=<User's name>
ACCESS=<Set access status as ENABLED>
ROLE=<Role of the user>
USER=<User name>
ACCESS=<Set access status as ENABLED>
ROLE=<Role of the group>
GROUP=<Groups name>
ACCESS=<Set access status as ENABLED>

B.1.6 Granting Access
Using the [GRANTACCESS] script, you can create a new ACL (if this ACL does not
already exist) and add listed users to this ACL.

[GRANTACCESS]
APPLICATION=<Virtual path of the application you want to add ACL for>
ROLE=<Role of the user>
USER=<User name>
ACCESS=<Access Status ENABLED/DISABLED>
ROLE=<Role of the group>
GROUP=<Group name>

B.1.7 Revoking Access
Using the [REVOKEACCESS] script, you can remove users that are listed in the specified
ACL.

[REVOKEACCESS]
APPLICATION=<Virtual path of the application you want to revoke ACL for>
ROLE=<Role of the user>
USER=<User name>
ACCESS=<Access Status>
ROLE=<Role of the group>
GROUP=<Groups name>

B.1.8 Creating Registries
Using the [REGISTRY] script, you can create registries.

[REGISTRY]
APPLICATION=<Virtual path of the application>
NAME=<Registry Variable Name>
VALUE=<Value for this variable>

Description of Syntax for WSH Batch Scripts

B-4 Oracle Database Mobile Server Administration and Deployment Guide

B.1.9 Creating Snapshot Variables
Using the [SNAPSHOTVAR] script, you can create snapshot variables.

[SNAPSHOTVAR]
NAME=<Name of the publication item>
PLATFORM=<Platform for which this publication item is>
VIRTUALPATH=<Virtual path of the application this publication item
belongs to>
USER=<Name of the user who subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>
USER=<Name of the user who subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>
GROUP=<Name of the group which subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>

B.1.10 Deleting a User
Using the [DROPUSER] script, you can delete a user.

[DROPUSER]
NAME=<User Name>

B.1.11 Deleting a Group
Using the [DROPGROUP] script, you can delete a group.

[DROPGROUP]
NAME=<Group Name>

B.1.12 Deleting Access Privileges
Using the [DROPACL] script, you can delete access privileges provided to users.

[DROPACL]
APPLICATION=<Virtual path of the application you want to delete ACL for>
ROLE=<Role of the user; set the value as DEFAULT ROLE or ADMINISTRATIVE ROLE>
USER=<User name>
ACCESS=<Set access status as DISABLED>
ROLE=<Role of the group; set the value as DEFAULT ROLE or ADMINISTRATIVE ROLE>
GROUP=<Groups name>
ACCESS=<Set access status as DISABLED>

B.1.13 Deleting a Registry
Using the [DROPREGISTRY] script, you can delete a registry.

[DROPREGISTRY]
APPLICATION=<Name of the application>
NAME=<Registry Variable Name>
VALUE=<Value for this variable>

B.1.14 Deleting Snapshot Variables
Using the following [DROPSNAPSHOTVAR] script, you can delete snapshot variables.

[DROPSNAPSHOTVAR]
NAME=<Name of the publication item>
PLATFORM=<Platform for which this publication item is>
VIRTUALPATH=<Virtual path of the application this publication item belongs to>
USER=<Name of the user who subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>

Examples of Batch Script Files for WSH

Write Scripts for the Mobile Server With the WSH Tool B-5

USER=<Name of the user who subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>
GROUP=<Name of the group which subscribes to this application>
VAR=<Name of the Data Subsetting parameter, value of this parameter>

B.2 Running a Script INI File With the WSH Tool
The WSH tool is a command-line tool that you can use to execute batch commands on
the mobile server. Use the -c option to execute the commands you developed in the
script INI file on the mobile server. The syntax for this option is as follows:

wsh –c <path_and_filename.ini> <username>/<password>[@<jdbc_url>]

Where:

■ <path_and_filename.ini>: The INI file contains the batch commands for the
mobile server. Provide the name and absolute path for the desired INI file.

■ <username>/<password>: The mobile server repository administrator user name
and password.

■ <jdbc_url>: If the optional JDBC URL for the Oracle database that contains the
mobile server repository is specified in the command line, then WSH will use this
URL, else it defaults to use the URL configured in the mobile.ora file. You can
specify the JDBC URL of a single Oracle database or an Oracle RAC database.

■ The JDBC URL for a single Oracle database has the structure of
jdbc:oracle:thin:@<host>:<port>:<SID>.

■ The JDBC URL for an Oracle RAC database can have more than one address in
it for multiple Oracle databases in the cluster and follows this URL structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

For example, if you have an INI file called mybatch.ini, you can execute the WSH tool
on this file. For this example, the mobile server repository user name and password is
mobileadmin/manager and the JDBC URL (<host>:<port>:<SID>) is
myhost:1521:mySID:

wsh -c mybatch.ini mobileadmin/manager@jdbc:oracle:thin:@myhost:1521:mySID

B.3 Examples of Batch Script Files for WSH
The following sections enable you to accomplish the following tasks and describes
examples from a script file in INI format:

■ Section B.3.1, "Creating, Adding, and Granting Access"

■ Section B.3.2, "Deleting, Removing, and Revoking Access"

B.3.1 Creating, Adding, and Granting Access
The following examples illustrate how to create users, groups, registries, access
privileges, snapshotvar template variables, add users to a group, and add users to an
ACL.

Examples of Batch Script Files for WSH

B-6 Oracle Database Mobile Server Administration and Deployment Guide

[DATABASE]
TYPE=ORACLE
#Creation or modification of users, groups, access privileges, registry,
and snapshot variable entries using the following entries in the INI file:
#[USER], [GROUP], [ACL], [REGISTRY],[SNAPSHOTVAR].
Create user JOHN
#
[USER]
NAME=JOHN
PASSWORD=john
ENCRYPTED=false
FULLNAME=Sample1 User John
PRIVILEGE=U
#
Create group 'Sample Users' containing JANE, JOHN, JACK
#
[GROUP]
NAME=Sample Users
USER=JANE
USER=JOHN
USER=JACK
#
Set the ACL on the Sample3 application.
The following gives John, Jane, and Jack, plus all the users in the group
Sample Users access to the application
#
[ACL]
APPLICATION=/sample3
ROLE=Default Role
USER=JOHN
ACCESS=ENABLED
ROLE=Default Role
USER=JANE
ACCESS=ENABLED
ROLE=Default Role
USER=JACK
ACCESS=ENABLED
ROLE=Default Role
GROUP=Sample Users
ACCESS=ENABLED
#
Add registry entry for user JOHN and a default value for the Sample3
application to the Repository
#
[REGISTRY]
APPLICATION=/sample3
USER=JOHN
NAME=USERCODE
VALUE=1111
#
Add template variables.
You can specify user/group specific values for these variables
#
[SNAPSHOTVAR]
NAME=RECORDINGS
PLATFORM=WIN32
VIRTUALPATH=/sample3
USER=JOHN
VAR=CODE, 1111
USER=JACK

Examples of Batch Script Files for WSH

Write Scripts for the Mobile Server With the WSH Tool B-7

VAR=CODE, 1111
USER=JANE
VAR=CODE, 2222
GROUP=Sample Users
VAR=CODE, 2222
#
#Add users to a group.
#
[ADDUSERTOGROUP]
NAME=Sample Users
USER=USER1
USER=USER2
#
#Grant Access to users.
#
[GRANTACCESS]
APPLICATION=/sample3
ROLE=Default Role
USER=USER1
ACCESS=ENABLED
ROLE=Default Role
USER=USER2
ACCESS=ENABLED
ROLE=Default Role
GROUP=Sample Users

B.3.2 Deleting, Removing, and Revoking Access
The following examples illustrate how to delete a user, group, registry and
snapshotvar, remove users from a group, and revoke access.

#Deletion of users, groups, access privileges, registry and snapshot
#variable entries using the following entries in the INI file:
#[DROPUSER], [DROPGROUP], [DROPACL], [DROPREGISTRY],[DROPSNAPSHOTVAR].
#
Dropuser JOHN
#
[DROPUSER]
NAME=JOHN
#
Drop group 'Sample Users'
#
[DROPGROUP]
NAME=Sample Users
#
Drop the ACL on the sample3 application.
#
[DROPACL]
APPLICATION=/sample3
ROLE=Default Role
USER=JOHN
ACCESS=DISABLED
ROLE=Default Role
GROUP=Sample Users
ACCESS=DISABLED
#
Drop registry entriy for user JOHN from Sample3 application.
#
[DROPREGISTRY]
APPLICATION=/sample3

Examples of Batch Script Files for WSH

B-8 Oracle Database Mobile Server Administration and Deployment Guide

USER=JOHN
NAME=USERCODE
#
Drop template variables for user JOHN and group 'Sample Users'
#
[DROPSNAPSHOTVAR]
NAME=RECORDINGS
PLATFORM=WIN32
USER=JOHN
VAR=CODE, 1111
GROUP=Sample Users
VAR=CODE, 2222
#
#Remove users from a group.
#
[REMOVEUSERFROMGROUP]
NAME=Sample Users
USER=USER1
USER=USER2
#
#Revoke access.
#
[REVOKEACCESS]
APPLICATION=/sample3
ROLE=Default Role
USER=USER1
ACCESS=DISABLED
ROLE=Default Role
USER=USER2
ACCESS=DISABLED
ROLE=Default Role
GROUP=Sample Users

C

Catalog Views for the Mobile Server C-1

C Catalog Views for the Mobile Server

The following sections are a reference for the system catalog views for the Mobile
Admin schema for the mobile server. The Mobile Admin schema is installed as part of
the mobile server during installation. However, the Mobile Admin schema is not part
of the Mobile Development Kit.

The system catalog views are read-only and should not be modified.

■ Section C.1, "CV$ALL_CLIENTS"

■ Section C.2, "CV$ALL_ERRORS"

■ Section C.3, "CV$ALL_PUBLICATIONS"

■ Section C.4, "CV$ALL_SUBSCRIPTIONS"

■ Section C.5, "CV$ALL_SEQUENCES"

■ Section C.6, "CV$ALL_SEQUENCE_PARTITIONS"

■ Section C.7, "CV$ALL_PUBLICATION_ITEMS_ADDED"

■ Section C.8, "CV$ALL_PUBLICATION_ITEMS"

■ Section C.9, "CV$ALL_PUBLICATION_INDEXES"

■ Section C.10, "CV$ALL_SUBSCRIPTION_PARAMS"

C.1 CV$ALL_CLIENTS
The CV$ALL_CLIENTS view provides information about mobile clients.

Table C–1 provides a description of ALL_CLIENT parameters.

Table C–1 ALL_CLIENTS Parameters

Column Datatype Null Description

CLIENT VARCHAR2(60) NOT
NULL

The mobile client

LASTREFRESH_STARTIME VARCHAR2(19) NULL Start time of the last refresh session

LASTREFRESH_ENDTIME VARCHAR2(19) NULL End time of the last refresh session

C.2 CV$ALL_ERRORS
The CV$ALL_ERRORS view provides information about failed client transactions.

Table C–2 provides a description of ALL_ERRORS parameters.

Table C–2 ALL_ERRORS Parameters

Column Datatype Null Description

CLIENT VARCHAR2(60) NOT NULL Client to which the failed
transaction belongs.

TRANSACTION_ID NUMBER(10) NOT NULL ID of the failed transaction.

ITEM_NAME VARCHAR2(30) NULL Name of the publication item that
failed.

MESSAGE_TEXT VARCHAR2(2048) NULL Error text associated with the
failed transaction and publication
item.

CV$ALL_PUBLICATIONS

C-2 Oracle Database Mobile Server Administration and Deployment Guide

C.3 CV$ALL_PUBLICATIONS
The ALL_PUBLICATIONS view provides information about mobile server publications.

Table C–3 provides a description of ALL_PUBLICATIONS parameters.

Table C–3 ALL_PUBLICATIONS Parameters

Column Datatype Null Description

NAME VARCHAR2(30) NOT NULL Publication Name.

TYPE VARCHAR2(40) NULL Publication Type.

NAME_TEMPLATE VARCHAR2(30) NULL Snapshot Name Template.

ENFORCE_RI CHAR(1) NOT NULL Reserved.

C.4 CV$ALL_SUBSCRIPTIONS
The ALL_SUBSCRIPTIONS view provides information about mobile server
subscriptions.

Table C–4 provides a description of ALL_SUBSCRIPTIONS parameters.

Table C–4 ALL_SUBSCRIPTIONS Parameters

Column Datatype Null Description

CLIENT VARCHAR2(30) NULL The subscription’s clients.

PUBLICATION VARCHAR2(30) NULL The subscription’s publication.

INSTANTIATED CHAR(1) NULL A boolean value that indicates
whether the subscription is
instantiated.

C.5 CV$ALL_SEQUENCES
The ALL_SEQUENCES view provides information about mobile server sequences.

Table C–5 provides a description of ALL_SEQUENCES parameters.

Table C–5 ALL_SEQUENCES Parameters

Column Datatype Null Description

NAME VARCHAR2(30) NOT
NULL

The sequence name.

CV$ALL_PUBLICATION_ITEMS_ADDED

Catalog Views for the Mobile Server C-3

C.6 CV$ALL_SEQUENCE_PARTITIONS
The ALL_SEQUENCE_PARTITIONS view provides information about mobile server
sequence partitions.

Table C–6 provides a description of ALL_SEQUENCE_PARTITIONS parameters.

Table C–6 ALL_SEQUENCE_PARTITIONS Parameters

Column Datatype Null Description

CLIENT VARCHAR2(60) NOT
NULL

The client to which the sequence is
assigned.

NAME VARCHAR2(30) NOT
NULL

The sequence name.

CURR_VALUE NUMBER(38) NULL The current sequence value.

INCREMENT_BY NUMBER(38) NULL The sequence’s increment value.
The sequence increments based on
this number.

C.7 CV$ALL_PUBLICATION_ITEMS_ADDED
The ALL_PUBLICATION_ITEMS_ADDED view provides information about mobile server
publication items.

Table C–7 provides a description of ALL_PUBLICATION_ITEMS_ADDED parameters.

Table C–7 ALL_PUBLICATION_ITEMS_ADDED Parameters

Column Datatype Null Description

PUB_NAME VARCHAR2(30) NOT NULL The publication name.

ITEM_NAME VARCHAR2(30) NOT NULL The publication item name.

OWNER VARCHAR2(30) NOT NULL The base object owner.

OBJECT_NAME VARCHAR2(30) NOT NULL The base object name.

TEXT CLOB NULL The select statement.

UPDATABLE VARCHAR2(1) NULL The updatable option.

REFRESH_METHOD CHAR(1) NOT NULL The refresh method. Options
include fast refresh and complete
refresh.

Note: If you use complete refresh,
it erases all of the data on the
client and brings down the
snapshot from the server. If your
publication item is updateable,
this does not cause a loss of data
on the client.

You can only use fast refresh with
a high priority restricting
predicate. If you use any other
type of refresh, the high priority
restricting predicate is ignored.

WINNING_RULE VARCHAR2(30) NULL The winning rules option for
resolving replication conflicts.
Options include "client wins" and
"server wins".

CV$ALL_PUBLICATION_ITEMS

C-4 Oracle Database Mobile Server Administration and Deployment Guide

C.8 CV$ALL_PUBLICATION_ITEMS
The ALL_PUBLICATION_ITEMS view provides information about mobile server
publication items.

Table C–8 provides a description of ALL_PUBLICATION_ITEMS parameters.

Table C–8 ALL_PUBLICATION_ITEMS Parameters

Column Datatype Null Description

NAME VARCHAR2(30) NOT NULL The publication item name.

OWNER VARCHAR2(30) NOT NULL The owner of the publication
items’ base object.

OBJECT_NAME VARCHAR2(30) NOT NULL Name of the base object.

TEXT CLOB NULL The select statement.

REFRESH_METHOD CHAR(1) NOT NULL The refresh method. Options
include fast refresh and complete
refresh.

Note: If you use complete refresh,
it erases all of the data on the
client and brings down the
snapshot from the server. If your
publication item is updateable,
this does not cause a loss of data
on the client.

You can only use fast refresh with
a high priority restricting
predicate. If you use any other
type of refresh, the high priority
restricting predicate is ignored.

C.9 CV$ALL_PUBLICATION_INDEXES
The ALL_PUBLICATION_INDEXES view provides information about mobile server
publication item indexes.

Table C–9 provides a description of ALL_PUBLICATION_INDEXES parameters.

Table C–9 ALL_PUBLICATION_INDEXES Parameters

Column Datatype Null Description

NAME VARCHAR2(30) NOT NULL Index name.

PUB_ITEM VARCHAR2(30) NULL Publication item name.

INDX_TYPE CHAR(1) NULL Index type.

COLUMN_LIST VARCHAR2(2048) NULL Column list.

C.10 CV$ALL_SUBSCRIPTION_PARAMS
The ALL_SUBSCRIPTION_PARAMS view provides information about mobile server
subscription parameters.

Table C–10 provides a description of ALL_SUBSCRIPTION_PARAMS parameters.

Table C–10 ALL_SUBSCRIPTION_PARAMS Parameters

Column Datatype Null Description

NAME VARCHAR2(30) NOT NULL Publication name.

CLIENT VARCHAR2(60) NOT NULL Client name.

PARAM_NAME VARCHAR2(30) NOT NULL Parameter name.

PARAM_VALUE VARCHAR2(62) NULL Parameter value.

CV$ALL_SUBSCRIPTION_PARAMS

Catalog Views for the Mobile Server C-5

CV$ALL_SUBSCRIPTION_PARAMS

C-6 Oracle Database Mobile Server Administration and Deployment Guide

D

iOS Mobile Device Management (MDM) Architecture D-1

DiOS Mobile Device Management (MDM)
Architecture

The following sections describe the Mobile Device Management (MDM) architecture
and the device enrollment process:

■ Section D.1, "Description - MDM Architecture"

■ Section D.2, "Device Enrollment Process"

■ Section D.3, "Application Server Configuration for MDM"

D.1 Description - MDM Architecture
See the following sections:

■ Section D.1.1, "MDM Command Cycle"

■ Section D.1.2, "Additional Resources"

D.1.1 MDM Command Cycle
The main purpose of MDM protocol is to send commands to iOS devices and process
the results. MDM protocol is based on HTTPS (secure HTTP) which is used for
exchanging XML messages called property lists (plists). For more information on
plists, see here:
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Prop
ertyLists/Introduction/Introduction.html

In MDM protocol, the server does not push commands to the device. Instead, the
server uses Apple Push Notification Service (APNS) to notify the device that the new
commands are available.

Once device receives push notification, it queries MDM server for commands, executes
them and sends the results back to MDM server. Figure D–1 shows how this works
(for example, the command is GetDeviceInfo).

Description - MDM Architecture

D-2 Oracle Database Mobile Server Administration and Deployment Guide

Figure D–1 Mobile Server MDM Architecture

The following steps explain how the MDM command cycle works:

1. User logs in to mobile manager via web interface, finds their device and issues
command to it. Refer to Section 7.11, "Using Mobile Manager to Manage iOS
Devices" for information on how iOS device management is integrated with
Mobile Manager. See Section 7.11.3, "iOS MDM Command Management" for
information on command management.

2. Mobile Server queues the command in the repository in command queue table.

Note: The other commands for the same device may be already
queued as well.

3. Mobile Server contacts APNS Server via APNS Gateway and asks to send push
notification to the device. APNS servers uniquely identify each device by a binary
string called Device Token.

4. The push notification wakes up the device.

5. Device contacts Mobile Server to ask if a new command is available. In addition,
the request can contain status and results of previous command already executed.

6. Mobile Server retrieves next queued command from command queue and sends it
to the device.

7. The device executes the command and sends back to the server the command
status - success or error (and error description) and the command result (which in
our example would be device information).

Mobile Server will store both command status and device information received in
its repository. If there are more queued commands available for this device the
next queued command is retrieved from the repository and sent to the device as in
step 6.

Device Enrollment Process

iOS Mobile Device Management (MDM) Architecture D-3

8. In Mobile Manager interface, the user can see the command history to verify that
the command was executed successfully as well as device information which was
retrieved by the command. For more information on Mobile Manager interface,
see Section 7.11.2, "View iOS Device Information" and Section 7.11.3, "iOS MDM
Command Management".

The cycle continues in this manner. The device executes commands, sends results to
the server, asks for more commands and so on as long as more commands are
available. If no more commands are available for this device, the device waits until
another push notification is sent to it.

D.1.2 Additional Resources
On the internet, one of the most extensive documents provided on MDM is "MDM
Protocol Reference". It describes in depth the interaction between MDM Server (in our
case, Mobile Server), iOS devices and APNS. This information is helpful in case of any
issues.

You need to have Enterprise account (iOS Developer Enterprise Program) to access
MDM Protocol Reference document. Follow the steps below to get the document:

■ Go to the Apple Developer's Portal, Member Center, and login with your
Enterprise account credentials.

■ Go to "Developer Centers" and click on "Mac" to go to Mac Developer's Center.

■ Click on "Downloads". At the bottom right, you will see a link titled "View All
Downloads". Click on this link. You will be taken to "Downloads for Apple
Developers" page.

■ Type "MDM" or "mobile" in the search box, and choose "Enter".

■ Download "Mobile Device Management Protocol Reference" (you see that to the
right in the search results).

D.2 Device Enrollment Process
Devices enroll in MDM when the server delivers a special configuration profile to the
device. This profile contains:

■ MDM Payload

This is a special payload that tells the device that it will be managed by the MDM
server. It contains server URL, push notification topic and other attributes. For
more details on MDM payload, see MDM Protocol Reference.

■ Device Identity Certificate

Mobile Server needs to authenticate connected devices. Since MDM is done
automatically without user interaction, a usual user name/password
authentication will not work. Mobile Server (as MDM Server) authenticates
devices by their identity certificates. This is called Client Certificate Authentication
and is done in the server’s SSL layer.

During enrollment, Mobile Server issues identity certificate for the device. Identity
certificate is a X509 certificate/private key pair. It is included in the configuration
profile in PKCS12 format. Each device certificate is signed by MDM CA (see
Section 11.2.1, "Creating and Configuring Certificate Authority"). In addition, each
certificate's Common Name (CN) contains unique device id (UDID).

Device Enrollment Process

D-4 Oracle Database Mobile Server Administration and Deployment Guide

After enrollment, when device connects to Mobile Server as part of MDM, server's
SSL layer will verify that the device certificate is trusted. In addition, after SSL
connection is established, Mobile Server will verify that the certificate was signed
by MDM CA and that the UDID stored in the certificate's CN matches UDID in the
message (each MDM message from the device contains UDID). For more
information, see MDM Protocol Reference.

The enrollment process follows OTA (Over The Air) Profile Delivery and
Configuration outlined by Apple. See here:

https://developer.apple.com/library/ios/documentation/networkinginternet/c
onceptual/iphoneotaconfiguration/Introduction/Introduction.html

■ As described in Section 7.11.1, "iOS Device Enrollment", user provisions the device
with MDM CA certificate. This is needed so that the device can accept certificates
signed by this CA that will be provisioned in the following steps.

In addition, as described in Section 11.2.2, "SSL Configuration for MDM," if the
Mobile Server's SSL certificate was not obtained by trusted certificate authority, it
should be signed by the MDM CA. In this case, having MDM CA certificate on the
device will make the device trust the server's SSL certificate.

■ User enters their credentials and clicks on the "Enroll" button (see Section 7.11.1,
"iOS Device Enrollment").

■ Mobile Server receives user's credentials and authenticates the user. If
authentication is successful, a special configuration profile is sent to the device
asking for the device's UDID. This profile also contains a special challenge token.

■ Device responds with its UDID and the challenge token it has received. The
challenge token allows Mobile Server to associate UDID received with the user
authenticated in the previous step. It also verifies that the server is talking to the
device that was previously authenticated.

■ Mobile Server generates another identity certificate and sends a configuration
profile containing this identity certificate to the device. This is not the same profile
or identity certificate used by MDM described above. This special
certificate/private key pair is required by OTA process. This OTA certificate is also
signed by MDM CA.

■ Device sends back a response signed by the OTA private key received above. The
response contains device's UDID.

■ Mobile Server receives the response above and verifies it's signature. If the
verification is successful, MDM configuration profile containing MDM Payload
and Device Identity Certificate will be sent to the device.

■ At this point the device is considered enrolled. A special command is be issued
that will install all uploaded Configuration and Provisioning profiles to the device
and will also install all published applications assigned to the device's user. In
addition, device information will be collected and stored in the repository.

This process mostly follows the diagram of OTA enrollment. See here:
https://developer.apple.com/library/ios/documentation/networkinginternet/c
onceptual/iphoneotaconfiguration/OTASecurity/OTASecurity.html#//apple_
ref/doc/uid/TP40009505-CH3-SW1

One significant difference is that Mobile Server does not use SCEP protocol to sign
identity certificates. Instead, the certificate/private key pair is generated by the Mobile
Server and sent to the device as part of configuration profile in PKCS12 format. This is
safe because all communication takes place over secure (SSL/HTTPS) connection.

Application Server Configuration for MDM

iOS Mobile Device Management (MDM) Architecture D-5

D.3 Application Server Configuration for MDM
If you choose to enable MDM on your Mobile Server, additional configuration steps on
your application server are performed. You do not need to perform these steps
manually, they will be done automatically by the Mobile Server Repository Wizard
(refer to step 15 of section 4.3.1.1, "Installation of the Mobile Server" of the Mobile
Server Installation Guide). However, it may be useful to know the details in case you
need to customize your Application Server.

By default, Mobile Server, when SSL is enabled, uses 1-way SSL protocol, where only
the server presents its certificate to the client, but the client is not required to have or
present certificate to the server (if client authentication is needed, it is done on an
application level). However, MDM protocol uses 2-way SSL where both server and
client present their certificates to each other, since the default way for the MDM client
to be authenticated is via the client certificate.

Mobile Server supports both 2-way SSL (for iOS MDM) and 1-way SSL (for the rest of
Mobile Server functionality) by using 2 different HTTPS listeners - one configured
with 1-way SSL and the other with 2-way SSL. If you choose to enable MDM during
Mobile Server installation, 2 SSL listeners will be configured each running on its own
port. The default 1-way SSL listener is used for all Mobile Server functionality except
iOS MDM (for example, sync, device management for non-Apple platforms, Mobile
Manager access, and others). The 2-way SSL listener is used for iOS MDM exclusively.

 The following sections show example configurations for supported application
servers:

■ Section D.3.1, "Glassfish"

■ Section D.3.2, "WebLogic"

D.3.1 Glassfish
In Glassfish Administration Console, if you navigate under Configuration->Server
Config->HTTP Service->Http Listeners, you see 3 HTTP listeners:

■ HTTP listener for regular HTTP access

■ HTTPS listener for SSL access to Mobile Server via 1-way SSL

■ HTTPS listener with 2-way SSL used for MDM protocol

 In Figure D–2, they are named http-listener-1, http-listener-2 and mdm-listener
respectively. All these listeners are running within the same server instance.

Application Server Configuration for MDM

D-6 Oracle Database Mobile Server Administration and Deployment Guide

Figure D–2 Glassfish HTTP Listener Configuration

The "mdm-listener" is HTTPS listener with 2-way SSL enabled. You can see "Client
Authentication" check-box selected in Figure D–3:

Figure D–3 Mdm-listener SSL Configuration

Note: The "Key Store" and "Trust Store" are not specified as this
listener uses default Glassfish keystore and truststore located under
GLASSFISH_HOME\domains\DMS_Domain\config directory in
files keystore.jks and cacerts.jks respectively. These are the same
keystore and truststore used by the 1-way SSL listener (http-listener-2
in our example). The "mdm-listener" also uses the same server identity
(server private key/certificate pair) as the 1-way SSL listener.

This is specified by the same certificate alias (NickName).

If you decide to change the location of your keystore, trustrore or
server identity, be sure to specify the same for both SSL listeners.

Application Server Configuration for MDM

iOS Mobile Device Management (MDM) Architecture D-7

D.3.2 WebLogic
In WebLogic, you can specify the main server ports called "Listen Port" and "SSL
Listen Port" for HTTP and HTTPS respectively, as well as create additional HTTP or
HTTPS listeners called "Channels" which are running within the same server instance.

 In WebLogic Administration Console, if you navigate to your server's main
configuration page (Environment->Servers, then click on your server), you will see SSL
Listen Port specified, as in Figure D–4:

Figure D–4 WebLogic Server Configuration Page

Application Server Configuration for MDM

D-8 Oracle Database Mobile Server Administration and Deployment Guide

This is the default 1-way SSL Listen Port used for all of Mobile Server functionality
except iOS MDM. To see the 2-way SSL Listen Port used for iOS MDM, click on
"Protocols" and then choose "Channels". You see a channel called "mdm-channel"
configured for HTTPS protocol, as shown in Figure D–5:

Figure D–5 WebLogic Server Channels Page

This channel runs on different port from the main server's SSL Listen Port. If you click
on the "mdm-channel" and then click on "Security" tab, you will see that it is
configured for 2-way SSL, as in Figure D–6:

Application Server Configuration for MDM

iOS Mobile Device Management (MDM) Architecture D-9

Figure D–6 Channel Security Configuration Page

Note: The "Two Way SSL Enabled" and "Client Certificate Enforced"
check-boxes are selected, which means that valid client certificate is
required to access this port.

This channel uses the same keystore, truststore and server identity as
on the main SSL listen port.

Application Server Configuration for MDM

D-10 Oracle Database Mobile Server Administration and Deployment Guide

Glossary-1

Glossary

Base Table

A source of data, either a table or a view, that underlies a view. When you access data
in a view, you are really accessing data from its base tables.

Connected

Connected is a generic term that refers to users, applications, or devices that are
connected to a server.

Database Object

A database object is a named database structure: a table, view, sequence, index,
snapshot, or synonym.

Database Server

The database server is the third tier of the mobile server three-tier Web model. It stores
the application data.

Disconnected

Disconnected is a generic term that refers to users, applications, or devices that are not
connected to a server.

Foreign Key

A foreign key is a column or group of columns in one table or view whose values
provide a reference to the rows in another table or view. A foreign key generally
contains a value that matches a primary key value in another table. See also "Primary
Key".

Index

An index is a database object that provides fast access to individual rows in a table.
You create an index to accelerate queries and sorting operations performed against the
table’s data. Indexes can also be used to enforce certain constraints on tables, such as
unique and primary key constraints.

Indexes, once created, are automatically maintained and used for data access by the
database engine whenever possible.

Integrity Constraint

An integrity constraint is a rule that restricts the values that can be entered into one or
more columns of a table.

JDBC

Glossary-2

JDBC

JDBC (Java Database Connectivity) is a standard set of Java classes providing
vendor-independent access to relational data. Modeled on ODBC, the JDBC classes
provide standard features such as simultaneous connections to several databases,
transaction management, simple queries, manipulation of pre-compiled statements
with bind variables, and calls to stored procedures. JDBC supports both static and
dynamic SQL.

Join

A relationship established between keys (both primary and foreign) in two different
tables or views. Joins are used to link tables that have been normalized to eliminate
redundant data in a relational database. A common type of join links the primary key
in one table to the foreign key in another table to establish a master-detail relationship.
A join corresponds to a WHERE clause condition in an SQL statement.

Leapfrog Sequence

The leapfrog sequence is one of two sequence types that provides a unique primary
key values to the mobile client. Leapfrog sequences contain a different start value for
each client, and each sequence increment is set to a larger value than the maximum
number of clients.

Master-Detail Relationship

A master-detail relationship exists between tables or views in a database when
multiple rows in one table or view (the detail table or view) are associated with a
single master row in another table or view (the master table or view).

Master and detail rows are normally joined by a primary key column in the master
table or view that matches a foreign key column in the detail table or view.

When you change values for the primary key, the application should query a new set
of detail records, so that values in the foreign key match values in the primary key. For
example, if detail records in the EMP table are to be kept synchronized with master
records in the DEPT table, the primary key in DEPT should be DEPTNO, and the foreign
key in EMP should be DEPTNO. See also "Primary Key" and "Foreign Key".

MIME

MIME (Multipurpose Internet Mail Extensions) is a message format used on the
Internet to describe the contents of a message. MIME is used by HTTP servers to
describe the type of file being delivered.

MIME Type

MIME Type is a file format defined by Multipurpose Internet Mail Extension (MIME).

Mobile Development Kit

The Mobile Development Kit enables application developers to develop and debug
applications.

Mobile Manager

The Mobile Manager is a mobile application that runs in the browser for easy
administration of applications and users. administrators use the Mobile Manager to
perform such functions as granting or revoking application access to users or groups,
modifying snapshot template variables, or deleting applications from the mobile
server.

Referential Integrity

Glossary-3

Mobile Server Repository

The mobile server repository is a virtual file system that resides on Oracle. It is a
persistent resource repository that contains all application files and definitions of the
applications.

ODBC

ODBC (Open Database Connectivity) is a Microsoft standard that enables database
access on different platforms. You can enable ODBC support on the mobile client for
troubleshooting purposes. ODBC support enables you to view the client's data, which
is stored on a local database.

Oracle Database

The Oracle database is the database component of the mobile server.

Oracle Database Mobile Server

The mobile server resides on the application server tier of the three-tier mobile server
model and processes requests from mobile clients to modify data in the database
server.

Packaging Wizard

The Packaging Wizard enables developers to define and package new or existing
mobile server applications.

Positioned Delete

A positioned DELETE statement deletes the current row of the cursor. Its format is as
follows:

DELETE FROM table
 WHERE CURRENT OF cursor_name

Positioned Update

A positioned UPDATE statement updates the current row of the cursor. Its format is as
follows:

UPDATE table SET set_list
 WHERE CURRENT OF cursor_name

Primary Key

A table's primary key is a column or group of columns used to uniquely identify each
row in the table. The primary key provides fast access to the table’s records, and is
frequently used as the basis of a join between two tables or views. Only one primary
key may be defined per table.

To satisfy a PRIMARY KEY constraint, no primary key value can appear in more than
one row of the table, and no column that is part of the primary key can contain a NULL
value.

Referential Integrity

Referential integrity is defined as the accuracy of links between tables in a
master-detail relationship that is maintained when records are added, modified, or
deleted.

Registry

Glossary-4

Carefully defined master-detail relationships promote referential integrity. Constraints
in your database enforce referential integrity at the database (the server in a
client/server environment).

The goal of referential integrity is to prevent the creation of an orphan record, which is
a detail record that has no valid link to a master record. Rules that enforce referential
integrity prevent the deletion or update of a master record, or the insertion or update
of a detail record, that creates an orphan record.

Registry

The registry contains a unique name/value pairs. All registry names must be unique.

Replication

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. Changes applied at one site are
captured and stored locally before being forwarded and applied at each of the remote
locations. Replication provides users with fast, local access to shared data, and protects
the availability of applications because alternate data access options exist. Even if one
site becomes unavailable, users can continue to query or even update the remaining
locations.

Replication Conflict

Replication conflicts occur when contradictory changes to the same data are made.
Replication conflicts can be avoided by proper subsetting of data. The Packaging
Wizard allows the developer to specify rules on how to handle conflicts.

Schema

A schema is a named collection of database objects, including tables, views, indexes,
and sequences.

Sequence

A sequence is a schema object that generates sequential numbers. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. These unique integers can include primary key values. If a transaction
generates a sequence number, the sequence is incremented immediately whether you
commit or roll back the transaction.

Sequence Window

The sequence window contains a unique range of values. The range of values never
overlaps with those of other clients. When a client uses all the values in the range of its
sequence window, the mobile client recreates the sequence with a new, unique range of
values.

Snapshots

Snapshots are copies of application data that are captured in real-time from the Oracle
database and downloads the same to the client. A snapshot can be a copy of an entire
database table, or a subset of rows from the table. When you define your snapshot,
you can use the SQL WHERE clause to specify a parameterized SQL query, where only
the row data that your application uses is downloaded to the client. Thus, you can
define what is downloaded to the client: the entire contents of the table or the subset of
information that is relevant to the specific user. Most applications specify a particular
subset of data that is relevant only to the user to be downloaded.

View

Glossary-5

The snapshots are automatically created on the client machine. Each subsequent time
that a user goes connects through synchronization, the snapshots are either refreshed
with the most recent data, or recreated depending on the complexity of the snapshot.

SQL

SQL, or Structured Query Language, is a non-procedural database access language
used by most relational database engines. Statements in SQL describe operations to be
performed on sets of data. When a SQL statement is sent to a database, the database
engine automatically generates a procedure to perform the specified tasks.

Synchronization

Synchronization is the process used to replicate data between the mobile client and
Oracle. The mobile server replicates (downloads) the user applications and data to the
mobile client from the repository, based upon the SQL query defined in the
publication. In addition, all modifications made on the client are uploaded to the
Oracle Server, if the publication is defined as updateable and not as read-only.

Synonym

A synonym is an alternative name, or alias, for a table, view, sequence, snapshot, or
another synonym.

Table

A table is a database object that stores data that is organized into rows and columns. In
a well designed database, each table stores information about a single topic (such as
company employees or customer addresses).

Three-Tier Web Model

The three-tier Web model is an Internet database configuration that contains a client, a
middle tier, and a database server.

Transaction

A set of changes made to selected data in a relational database. Transactions are
usually executed with a SQL statement such as ADD, UPDATE, or DELETE. A transaction is
complete when it is either committed (the changes are made permanent) or rolled back
(the changes are discarded).

A transaction is frequently preceded by a query, which selects specific records from the
database that you want to change. See also "SQL".

Unique Key

A table's unique key is a column or group of columns that are unique in each row of a
table. To satisfy a UNIQUE KEY constraint, no unique key value can appear in more
than one row of the table. However, unlike the PRIMARY KEY constraint, a unique key
made up of a single column can contain NULL values.

View

A view is a customized presentation of data selected from one or more tables (or other
views). A view is like a "virtual table" that allows you to relate and combine data from
multiple tables (called base tables) and views. A view is a kind of "stored query"
because you can specify selection criteria for the data that the view displays.

Views, like tables, are organized into rows and columns. However, views contain no
data themselves. Views allow you to treat multiple tables or views as one database
object.

View

Glossary-6

Index-1

Index

A
access

defining access, 4-7
grant, 3-4, 4-11
revoke, 3-4, 4-11

administrator
definition, 4-1
functions, 4-1
password, 9-1
privilege, 4-1

alerts
synchronization, 5-10

application
access, 4-1, 4-7
deleting, 3-2
grant access, 3-4, 4-11
properties

modify, 3-2
register database, 5-22
revoke access, 3-4, 4-11
scheduling to execute, 6-1
security, 4-7, 9-3
setting parameter values, 3-3, 4-14
user, 4-2

apply
behavior, 5-4, A-7, A-9

authentication
certificate rejection, 9-14
client, 9-17
external, 9-6
SSL, 9-17

authorization, 4-7
automatic synchronization, 5-13

platform rules, 5-14
conditions, 5-16
events, 5-15
network setttings, 5-17

B
Berkeley DB

encryption, 9-3

C
cached user, 5-25
catalog views

system, C-1
certificate

authority
examples, 9-5

rejection, 9-14
self-signed, 9-14

checkstatus command, 8-8
cleanup command, 8-8
client

clock, 5-5
device

delete, 7-5
dmagent, 7-24
non-SSL, 9-6
proxy, 9-15
software update request, 7-23
synchronization

GUI, 5-4, 5-5
updates

automatic, 7-4
using reverse proxy, 9-9

clock, 5-5
command

client pull, 7-25
create group commands, 7-18
create new, 7-17
disabling, 7-18
enabling, 7-18
history, 7-9, 7-19
in process, 7-9
input parameters, 7-16
modify, 7-16
reset password, 7-14
retrieve device information, 7-13
scheduling, 7-12, 7-14
sending, 7-9, 7-12

multiple devices, 7-12
single device, 7-12

Common Access Card, 9-16, 9-17
configuration, 9-19
platforms, 9-18
using, 9-20

Index-2

compose
behavior, 5-4, A-7, A-9

conditions
automatic synchronization

platform rules, 5-16
configuration

mobile server, A-1
mobile.ora, A-1

connections
maximum concurrent, A-9

CONSOLIDATOR section, A-6
Consperf utility, 5-39

D
data

subsetting, 3-3, 4-14
Data Synchronization, see synchronization
database

password, 9-1
register for application, 5-22
restrict privileges, 9-1
users, 4-1
view information, 7-8

DEBUG section, A-4
device

add, 7-5
applying patches, 7-22
clock, 5-5
configure, 7-6
create commands, 1-7
customizing platforms, 1-7
delete, 7-5
disabling, 7-8, 7-11
enabling, 7-8, 7-11
management

client, 7-24
configuration, 7-3

modify configuration, 7-14
multiple users, 4-8
policy

user, 4-7
proxy server, 7-26
pull commands, 7-25
registration, 4-7
reset password, 7-14
retrieve

information, 7-13
retrieve file, 7-14
retrieve software information, 7-13
retrieve sync log, 7-13
sending commands, 7-9, 7-12
software

automatic update, 7-21
update, 7-19, 7-20, 7-26

software update, 7-22
stop, 7-13
swap user, 4-8
synchronize, 7-13
update, 7-14

update software, 4-7
view properties, 7-5
viewing information, 1-7

devmgr.inf file, 7-3
devmgr.ini

configuring reverse proxy, 9-11
DISABLE_PROMPT parameter, 7-4
DISABLE_SSL_CHECK parameter, 9-14
DISABLED_DML, 5-26
dmagent, 5-8, 7-24
DML

locks, A-13
DO_APPLY_BFR_COMPOSE parameter, 5-4, A-7
download

JAR or ZIP files, 7-33

E
encryption, 9-3

password, 9-1
Error queue

fixing synchronization errors, 5-34
synchronization, 5-3

events
automatic synchronization, 5-15

external authentication, 9-6

F
farm

manage, 1-8
mobile server, 1-3, 4-4
synchronization configuration, 5-20

file-based synchronization, 5-26
FILESYSTEM section, A-3
firewall

communication through proxy, 9-9
force refresh

synchronization, 5-7

G
group

access applications, 4-1
add, 4-11
add users, 4-12
delete, 4-11
grant application access, 4-13
managing, 4-1
remove users, 4-12
revoke access, 3-4, 4-11
revoke application access, 4-13
search, 4-5

H
heap memory size, 5-12
history

purging, 6-11
HTTP

network protocol, 7-27

Index-3

remote access, 9-1

I
IAS_MODE parameter, 4-9
id element

INF file, 7-23
In Queue

overview, 5-2
synchronization, 5-3
viewing transactions, 5-32

INF file
configuration, 7-10
description, 7-28
directory element, 7-32
env element, 7-33
execute section, 7-35
file element, 7-32
id element, 7-23
include element, 7-31
INI section, 7-34
install element, 7-31
keywords, 7-28
link element, 7-34
patch element, 7-22
register section, 7-35
registry element, 7-33
setup element, 7-29
user privileges, 7-29
version element, 7-23

install
distributing multiple clients, 8-1
distribution for multiple users, 8-8
Installation CD, 8-8

Installation Configuration File, see INF file
instance parameters

configuration, 5-20
internet

communication from inside intranet, 9-15
IP address, 5-12

J
JAR

download, 7-33
inflate, 7-33

Java
classpath, 5-12

job
creating, 6-5

using APIs, 6-11
define execution schedule, 6-6
definition, 6-1
delete, 6-10
disable, 6-3
disabling, 6-10
displaying history, 6-3
enabling, 6-10
history

purging, 6-11

managing, 6-3, 6-4
modifying, 6-7
scheduling, 6-1

Job engine
alerts, 6-3
Standalone, 6-2

Job Scheduler, 6-1
alerts, 6-3
engine management, 6-2
history, 6-3
managing active jobs, 6-3
start, 6-2
stop, 6-3

JVM
version on mobile server host, 5-12

K
keystore

creating, 9-4
keytool utility, 9-4

keytool utility, 9-4
keywords

INF file, 7-28

M
makedb command, 8-7
MAX_U_COUNT parameter, A-8
Message Generator and Processor, see MGP
MGP

alerts, 5-10
composing transaction, 5-3
create new MGP, 6-5
default process, 6-10
define execution schedule, 6-6
disabling, 6-10
enabling, 6-10
execution process, 5-3
managing, 6-4
modifying schedule, 6-7
overview, 5-2
purge history, 6-11
scheduled job, 6-1
statistics, 5-38, 6-8, 6-9

middle-tier
overview, 5-1

mobile client
configuring reverse proxy, 9-11
distributing multiple clients, 8-1
installation CD, 8-8
overview, 5-1
platforms, 7-9
proxy, 9-15, 9-16
viewing, 7-8

mobile device, see device
Mobile Manager

access, 4-1
active users, 10-2
how to use, 1-1

Index-4

log on, 1-1
Upgradable parameter, 7-19

MOBILE section, A-1
mobile server

active sessions, 1-5
active users, 10-2
catalog views, C-1
configuring, A-1

reverse proxy, 9-11
SSL, 9-5

connect, 1-1
farm, 1-3, 1-8, 4-4
information, 1-2
list all, 1-2
manage, 1-1

applications, 1-5
users, 1-5

management tool, 1-1
overview, 5-1
password, 9-1
scripting language, B-1

example, B-5
SSL, 9-4
starting, 1-2
synchronization configuration, 5-20
tracing, 1-5
WSH tool, B-5

mobile.ora, A-1
configuration, 5-20
configuring reverse proxy, 9-11
IAS_MODE parameter, 4-9
SSO_ENABLED parameter, 4-10

msync
proxy, 9-16

msync executable, 5-4, 5-5, 5-8
multibyte characters

user name, 4-5, 4-6

N
network

failure
automatic synchronization, 5-20

management, 7-27
protocol, 7-27

HTTP, 7-27
RAPI, 7-27
SMS, 7-27

provider
properties, 7-27

settings
automatic synchronization, 5-17

synchronizing when network unavailable, 5-26
network provider, 5-7
non-SSL

client, 9-6

O
ODBC

driver
specify registration on client, 7-33

odbc.ini
location, 7-2

offline instantiation, 8-1
client directory, 8-2
configuration, 8-3
deploying, 8-8
MDK, 8-2
mobile server, 8-2
OLI engine, 8-6
overview, 8-1
tool, 8-3

OID
migrating users, 4-9
migrating users from repository, 4-9
users, 4-4, 4-9

oiduser tool, 4-9
OLI

using makedb, 8-7
oli.ini file, 8-3
operating system

version on mobile server host, 5-12
Oracle Internet Directory, see OID
Oracle Single Sign

enable, 4-10
Oracle Tag Language, see OTL
ose.ini

location, 7-2
OTL, 7-36

data types, 7-37
database connection, 7-44
DeviceManager, 7-47
HTTP request parameters, 7-45
HTTP session values, 7-45
operators, 7-40
sample, 7-49

Out Queue
overview, 5-2
synchronization, 5-3
viewing subscriptions, 5-32

P
package command, 8-7
parameter

value, 3-3, 4-14
password

allowed characters, 4-6
default account, 9-1
modify, 5-7
repository, 9-3
stored, 5-7
summary, 9-1

patch
applying, 7-22
element, 7-22

performance
analyzing synchronization, 5-39
Consperf utility, 5-39

Index-5

MGP, 5-38, 6-8, 6-9
Sync Server, 5-37
synchronization, 5-37

platform
configure, 7-9
custom, 7-11
customize, 7-9
customized, 7-10
enable, 7-11
extend, 7-11
extending, 7-10
predefined, 7-9
rules

automatic synchronization, 5-14
policy

setting attributes, 7-20
privilege

administrator, 4-1
defining, 4-6
user, 4-2

provisioning, 4-7
proxy

reverse, 9-9, 9-15
server, 5-7

proxy server
device, 7-26

publication item
setting parameter values, 3-3, 4-14
view as listed in repository, 5-32

publications
performance, 5-39
view as listed in repository, 5-31

publishing, 4-1

Q
queues

involved in synchronization, 5-3

R
RAPI

network protocol, 7-27
reports

system status, 10-1
repository

browsing publication items, 5-29
browsing publications, 5-29
browsing synchronization queues, 5-29
browsing users, 5-29
migrating users to OID, 4-9
password, 9-1, 9-3

Resource Manager
setting attributes, 7-20
UPDATE_SOFTWARE attribute, 7-20

resume
synchronization, 5-20

resume file, A-9
sizing, A-9

RESUME_BLOCKSIZE parameter, 5-21

RESUME_FILE parameter, 5-21, A-9
RESUME_FILE_SIZE parameter, 5-21, A-9
RESUME_MAX_WAIT parameter, 5-21, A-9
RESUME_MAXACTIVE parameter, 5-21

synchronization
resuming interrupted, A-9

RESUME_MAXCHUNK parameter, 5-22, A-9
RESUME_TIMEOUT parameter, 5-21, A-9
retry

automatic synchronization, 5-20
reverse proxy, 9-9, 9-15

configuring mobile client, 9-11
SSL, 9-12

REVERSE_PROXY parameter, A-3
reverse_proxy parameter, 9-11

S
scripting language, B-1

example, B-5
execution of INI file, B-5
mobile server, B-1

security, 4-7
authentication, 9-1, 9-6
desiging application, 9-3
firewall, 9-1, 9-9
manage, 9-1
mobile client, 9-1, 9-3
password, 9-1
repository password, 9-3
restrict database privileges, 9-1
reverse proxy, 9-1, 9-9
SSL, 9-1, 9-4

client authentication, 9-1, 9-16
server

controlling load, 5-21
set max connections, 5-21

SERVER_URL parameter
reverse proxy, 9-11

sessions
active users, 10-2

setAttribute method, 7-20
shared parameters

configuration, 5-20
SKIP_INQ_CHK_BFR_COMPOSE parameter, 5-4,

A-9
SLEEP_TIME parameter, A-10
smartcard, 9-17
SMS

network protocol, 7-27
software

automatic update, 7-21
request update, 7-23
update, 5-6, 7-19, 7-20, 7-22, 7-26
viewing installed, 7-9

SQLite
encryption, 9-3

SSL, 9-4
client authentication, 9-16
Common Access Card, 9-16, 9-17

Index-6

configuring mobile server, 9-5
creating keystore, 9-4
mixing secure and non-secure sites, 9-6
No available certificate, 9-6
reverse proxy, 9-12
smartcard, 9-17
troubleshooting, 9-6

SSO_ENABLED parameter, 4-10
Standalone Job engine, 6-2
subscriptions

profiling, 5-39
Sync Agent

manages automatic synchronization, 5-19
Sync Client

downloading data, 5-3
Sync client

overview, 5-2
Sync Server

alerts, 5-10
execution process, 5-3
history, 5-11
managing, 5-9
overview, 5-2
start, 5-9
statistics, 5-37
uploading data, 5-3
user sessions, 5-11

SYNC_HISTORY parameter, 5-11
synchronization

alerts, 5-10
analyzing performance, 5-39
automatic

retry after failure, 5-20
Sync Agent, 5-19

browsing repository, 5-29
client GUI, 5-4, 5-5
composing transaction, 5-3
configuration

instance parameters, 5-20
shared parameters, 5-20

conflict, 5-34
controlling server load, 5-21
correcting errors, 5-34
DML locks, A-13
downloading data, 5-3
error

re-execute transaction, 5-34
execution steps, 5-3
file-based, 5-26

create file, 5-27
troubleshooting, 5-28

force refresh, 5-7
history, 5-11
init.ora parameters, A-13
Linux, 5-8
monitor with SQL scripts, 5-40
no network, 5-26
options, 5-7
overview, 5-1
performance, 5-37

priority, 5-7
purge history, 6-11
queues, 5-3

view, 5-32
resuming interrupted, 5-20
separate databases, 5-22
sharing data among clients, 5-25
temporary data storage, 5-21
tracing, 5-29
uploading data, 5-3

system
status, 10-1

T
time zone, 5-5
timeout

client, A-9

U
update

software for device, 4-7
update utility, 5-8
UPDATE_SOFTWARE attribute, 7-20
UPDATE_SOFTWARE_APPS attribute, 7-20

Resource Manager
UPDATE_SOFTWARE_APPS attribute, 7-20

UPDATE_SOFTWARE_PLATFORM attribute, 7-20
updating software, 7-22
Upgradable parameter, 7-19
upgrade

software, 7-22
user

access applications, 4-1
active, 10-2
add new, 4-5
administrator, 4-1
allowed characters in name, 4-6
application user, 4-2
authentication, 5-5, 5-7
authorization, 4-7
cached, 5-25
database users, 4-1
definition, 4-1
delete, 4-11
device policy, 4-7
display, 4-4
display name, 4-5
duplicating, 4-8
enabled, 4-4
install privileges, 7-29
listed in repository, 5-29
managing, 4-1
migrating to OID, 4-9
name, 4-5
OID, 4-4, 4-9
password, 4-5, 9-1
privilege, 4-6
privileges, 4-1, 4-6

Index-7

properties, 4-5
repository, 4-4
revoke access, 3-4, 4-11
search, 4-5
software update, 7-22
swap, 4-8
types of, 4-1

user name
multibyte characters, 4-5, 4-6

V
variable

setting, 3-3, 4-14
version element, 7-23

W
Workspace

Mobile Manager, 1-1
WSH tool

description, B-5
overview, B-1
scripting language, B-1

Z
ZIP

download, 7-33
inflate, 7-33

Index-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle Database Mobile Server Management
	1.1 Using Mobile Manager to Manage Your Mobile Server
	1.1.1 Viewing Mobile Servers
	1.1.1.1 Mobile Server Home Page
	1.1.1.1.1 Checking Mobile Server Status
	1.1.1.1.2 Viewing Main Database Properties
	1.1.1.1.3 Monitoring Data Synchronization
	1.1.1.1.4 Tracking Synchronization, MGP, and Job Scheduler Alerts
	1.1.1.1.5 Starting or Stopping Mobile Server Components

	1.1.1.2 Manage Applications
	1.1.1.3 Manage Users
	1.1.1.4 Mobile Server Administration
	1.1.1.5 Data Synchronization
	1.1.1.6 Job Scheduler

	1.1.2 Viewing Mobile Devices
	1.1.2.1 Installed Mobile Devices
	1.1.2.2 Mobile Device Platforms

	1.2 Manage Mobile Server Farms
	1.3 Enabling UIX Dynamic Image Generation on UNIX to See Mobile Manager Buttons
	1.3.1 Headless Java
	1.3.2 X Server Access

	1.4 Mobile Server Run Time Libraries

	2 Managing the Client and Back-End Databases
	2.1 Creating and Managing the Database for a Mobile Client
	2.2 Connecting to the Back-End Oracle Database

	3 Managing Your Mobile Applications
	3.1 Listing Applications
	3.2 Publishing Applications to the Mobile Server Repository
	3.3 Deleting an Application
	3.4 Managing Application
	3.5 Managing User-Specific Application Parameters (Data Subsetting)
	3.6 Managing Access Privileges for Users and Groups
	3.6.1 Granting Application Access to Users and Groups
	3.6.2 Revoking Application Access to Users and Groups

	4 Managing Users and Groups
	4.1 What Are the Types of Mobile Server Users?
	4.1.1 Mobile Server User Privilege: Administrator
	4.1.2 Mobile Server User Privilege: Organizer
	4.1.3 Mobile Server User Privilege: User

	4.2 Guide to Creating User and Administrator Types
	4.2.1 Creating a User to Access a Published Application
	4.2.2 Creating an Administrator

	4.3 Managing Users and Groups
	4.3.1 Managing Mobile Server Users
	4.3.1.1 Displaying Users
	4.3.1.1.1 Enabling OID Users
	4.3.1.1.2 Searching Group Names or User Names

	4.3.1.2 Adding New Users
	4.3.1.2.1 Define User Name and Password
	4.3.1.2.2 User Type Assigns Privileges
	4.3.1.2.3 Specify Device Policy for Receiving Updates for this User

	4.3.1.3 Associating Mobile Server Users With Published Applications
	4.3.1.4 Duplicating Existing Users
	4.3.1.5 Swap Users on a Device
	4.3.1.6 Managing OID Users in the Mobile Server
	4.3.1.6.1 Migrate Your Users From the Mobile Server Repository to Oracle Internet Directory (OID)

	4.3.1.7 Providing Your Own Authentication for a User

	4.3.2 Adding New Groups
	4.3.3 Deleting Groups or Individual Users

	4.4 Managing Access Privileges for Users and Groups
	4.4.1 Grant or Revoke Application Access to Users
	4.4.1.1 Grant Application Access to Users
	4.4.1.2 Revoke Application Access to Users

	4.4.2 Include or Exclude Users from Group Based Access
	4.4.2.1 Include Users in a Group
	4.4.2.2 Exclude Users from a Group

	4.4.3 Grant or Revoke Application Access to Groups

	4.5 Managing Application Parameter Input (Data Subsetting)
	4.6 Manually Adding Devices for a User
	4.7 Configuring How the Device Receives Software Updates for the User

	5 Managing Synchronization
	5.1 How Does the Synchronization Process Work?
	5.1.1 Defining Behavior of Apply/Compose Phase for Synchronization

	5.2 Initiate Synchronization of the Mobile Client
	5.2.1 Network Options for MSync Tool
	5.2.2 Sync Options for MSync Tool
	5.2.3 Use Mobile Client Tools on Linux

	5.3 User Scenarios for Synchronization
	5.4 Managing the Sync Server from the Data Synchronization Home Page
	5.4.1 Starting/Stopping the Sync Server
	5.4.2 Checking Synchronization Alerts
	5.4.3 Managing Sync Sessions
	5.4.4 Displaying Operating System (OS) and Java Virtual Machine (JVM) Information

	5.5 Using Automatic Synchronization
	5.5.1 Specifying Platform Rules for Automatic Synchronization
	5.5.2 Start, Stop, or Get Status for Automatic Synchronization
	5.5.3 How the Automatic Synchronization Transaction is Retried

	5.6 Configuring Data Synchronization For Farm or Single Mobile Server
	5.7 Resuming an Interrupted Synchronization
	5.7.1 Defining Temporary Storage Location for Client Data
	5.7.2 Controlling Server Load

	5.8 Register a Remote Oracle Database for Application Data
	5.8.1 Register or Deregister a Remote Oracle Database for Application Data

	5.9 Improving Performance for Multiple Clients that Use the Same Read-Only Data With a Cached User
	5.10 Synchronizing to a File With File-Based Sync
	5.10.1 Upload Synchronization Transactions to an Encrypted File on the Mobile Client
	5.10.2 Apply and Compose Mobile Client Transactions on the Mobile Server
	5.10.3 Download Composed Transactions from Mobile Server to the Mobile Client
	5.10.4 Troubleshooting File-Based Synchronization Scenarios
	5.10.4.1 Normal Network Synchronization Occurs During File Upload
	5.10.4.2 Conflict Resolution for File-Based Synchronization

	5.11 Managing Trace Settings and Trace Files
	5.12 Browsing the Repository for Synchronization Details
	5.12.1 Viewing User Information
	5.12.2 Viewing Publications
	5.12.3 Viewing Publication Items
	5.12.4 Viewing Synchronization Queues
	5.12.4.1 Viewing Transactions in the In-Queue
	5.12.4.2 Viewing Subscriptions in the Out-Queue
	5.12.4.3 Viewing Server-Side Synchronization Conflicts and Errors in the Error Queue
	5.12.4.3.1 Modifying Transaction in the Error Queue

	5.13 Monitoring and Analyzing Performance
	5.13.1 Viewing Sync Server Statistics
	5.13.2 Displaying MGP Cycles and Statistics
	5.13.3 Analyzing Performance of Publications With the Consperf Utility
	5.13.4 Monitoring Synchronization Using SQL Scripts

	6 Managing Jobs with the Job Scheduler
	6.1 Scheduling a Job to Execute at a Specific Time or Interval
	6.2 Managing the Job Engine
	6.2.1 Starting the Job Scheduler
	6.2.2 Checking Job Scheduler Alerts
	6.2.3 Managing Active Jobs
	6.2.4 Managing the Job History List

	6.3 Manage Scheduled Jobs Using the Mobile Manager
	6.3.1 Creating a New Job
	6.3.2 Editing Existing Jobs
	6.3.3 Viewing MGP Current Cycle Statistics
	6.3.4 Viewing MGP Cycle Statistics
	6.3.5 Enabling or Disabling Jobs
	6.3.6 Deleting Jobs
	6.3.7 Default Jobs
	6.3.7.1 MGP_DEFAULT
	6.3.7.2 PURGE_HISTORY_DEFAULT

	6.4 Managing or Creating Jobs Using ConsolidatorManager APIs

	7 Manage Your Devices
	7.1 Customize the Mobile Client Software Installation for Your Mobile Device
	7.2 Configuring Mobile Clients Before Installation
	7.2.1 Modifying Device Management Parameters for Client Device

	7.3 Managing Devices
	7.3.1 Configuring the Mobile Device through Properties
	7.3.1.1 Enabling or Disabling a Mobile Device

	7.3.2 Viewing Device Information
	7.3.3 Viewing Database Information
	7.3.4 Viewing Software Information
	7.3.5 Commands
	7.3.6 Queue
	7.3.7 Command History

	7.4 Configuring and Customizing Your Mobile Device Platform
	7.4.1 Modifying Platform Properties for Installation
	7.4.2 Enabling or Disabling All Mobile Devices in a Platform
	7.4.3 Extend or Create a Custom Platform
	7.4.3.1 Enable a Platform for Your Mobile Client
	7.4.3.2 Create a Custom Platform By Extending an Existing Platform

	7.5 Sending Commands to Your Mobile Devices
	7.5.1 Scheduling or Sending Commands
	7.5.1.1 Sending Commands
	7.5.1.1.1 Description of Existing Commands

	7.5.1.2 Scheduling Commands

	7.5.2 Modifying Existing Commands
	7.5.2.1 Adding Parameters to Mobile Device Commands

	7.5.3 Creating New Commands
	7.5.4 Creating Group Commands
	7.5.5 Enabling or Disabling Mobile Device Commands
	7.5.6 Viewing the Mobile Device Command History

	7.6 Managing Device Software Updates
	7.6.1 Configuring the Device to Receive Required Software Updates
	7.6.1.1 Allowing Automatic Software Updates for the Oracle Database Mobile Server Platform
	7.6.1.2 Updating Application Software On Each Client
	7.6.1.3 Rolling Out Updates With Controlled Upgrade

	7.6.2 Configuring Application Software for Automatic Update
	7.6.2.1 Configuring Major Software Updates for Download
	7.6.2.2 Configuring Patches or Minor Updates for Download

	7.6.3 Initiate Updates of Oracle Database Mobile Server Software from the Client

	7.7 Using the Device Manager Agent (dmagent) on the Client
	7.8 Managing the Network Protocol Between the Device and the Mobile Client Software
	7.9 Installation Configuration (INF) File
	7.9.1 Setup Information
	7.9.2 Properties
	7.9.3 Initialization
	7.9.4 Including Other INF Files
	7.9.5 INSTALL Element
	7.9.5.1 DIRECTORY Section
	7.9.5.2 FILE Section
	7.9.5.3 ENV Section
	7.9.5.4 REGISTRY Section
	7.9.5.5 ODBC Section
	7.9.5.6 LINK Section
	7.9.5.7 INI Section
	7.9.5.8 EXECUTE Section
	7.9.5.9 REGISTER Section
	7.9.5.10 FINISH Section

	7.10 Defining Device Manager Commands With the Device Manager OTL Tag Language
	7.10.1 Device Manager Tag Language Data Types
	7.10.1.1 Character
	7.10.1.2 Number
	7.10.1.3 Integer
	7.10.1.4 Long
	7.10.1.5 Double
	7.10.1.6 Boolean
	7.10.1.7 String
	7.10.1.8 Array
	7.10.1.9 Date Methods
	7.10.1.10 Time Methods
	7.10.1.11 Enumeration
	7.10.1.12 File

	7.10.2 Operators That You Can Use With the Device Manager Tag Language
	7.10.3 Syntax for the Device Manager Tag Language
	7.10.3.1 Initialization Statements
	7.10.3.2 Assignment Statements
	7.10.3.2.1 Creating a SQL Result Set
	7.10.3.2.2 Print Value to the Output Stream

	7.10.4 Conditional Statements
	7.10.4.1 If-Else Conditional Statement
	7.10.4.2 While Conditional Statement
	7.10.4.3 Foreach Conditional Statement
	7.10.4.4 Break Statement
	7.10.4.5 Choose Statement

	7.10.5 Define Custom Functions
	7.10.6 Manage the Database Connection
	7.10.6.1 Specify Database Connection Information for an Application
	7.10.6.2 Disconnect from the Database

	7.10.7 Global Classes
	7.10.7.1 Methods of the System Class
	7.10.7.1.1 Retrieve HTTP Request Parameters and Session Values
	7.10.7.1.2 Create a Date Object
	7.10.7.1.3 Create a Time Object
	7.10.7.1.4 Get, Set, or Remove Session Attributes
	7.10.7.1.5 Retrieving Parameter Name or Value
	7.10.7.1.6 Retrieving the Request URL
	7.10.7.1.7 Retrieving the Last Error Message
	7.10.7.1.8 Retrieving System Memory Information
	7.10.7.1.9 Retrieving Storage Information
	7.10.7.1.10 URL Encoding a String
	7.10.7.1.11 Opening a File
	7.10.7.1.12 Synchronizing Databases

	7.10.7.2 Methods of the DeviceManager Class

	7.10.8 Importing Another OTL Page
	7.10.9 Error Handling
	7.10.10 Sample Device Manager Commands Using the Tag Language

	7.11 Using Mobile Manager to Manage iOS Devices
	7.11.1 iOS Device Enrollment
	7.11.2 View iOS Device Information
	7.11.3 iOS MDM Command Management
	7.11.3.1 All Commands
	7.11.3.2 Send Command from Mobile Manager
	7.11.3.3 View Command History
	7.11.3.4 Differences between iOS Device Management and Non-iOS Device Management
	7.11.3.4.1 Device Management on Devices
	7.11.3.4.2 Device Management on Mobile Manager

	7.11.4 iOS Profile Management on Mobile Manager
	7.11.4.1 Create or Update Profiles
	7.11.4.2 Delete Profiles
	7.11.4.3 Retrieve Profile Information

	8 Offline Instantiation for Mobile Clients
	8.1 Using Offline Instantiation to Distribute Multiple Mobile Clients
	8.2 Setting Up the Mobile Server Host and Mobile Development Kit Host
	8.3 Downloading the Mobile Client SETUP Executable
	8.4 Configure How OLI Creates the Client Distribution Packages With the OLI Configuration File
	8.4.1 SETUP
	8.4.2 USERS
	8.4.3 Example of OLI.INI File

	8.5 Using the OLI Engine to Create and Package the Client Distribution File
	8.5.1 Create and Populate Client Database Files with the MAKEDB Command
	8.5.2 Package the Mobile Client Binaries with the Client Database Files with the PACKAGE Command
	8.5.3 Clean Up the OLI Tables Before Executing OLI for Another Distribution
	8.5.4 Check the Status of OLI Clients

	8.6 Deploying Client Distribution Files on Client Machines

	9 Configure Security in Oracle Database Mobile Server
	9.1 Security Enhancements
	9.2 Which Password is Which?
	9.2.1 Modifying Repository Password

	9.3 Providing Security for the Mobile Client
	9.4 Configuring for Secure Socket Layer (SSL) Communication
	9.4.1 Creating an SSL Certificate
	9.4.2 Configuring Mobile Server for SSL
	9.4.3 Troubleshooting Error Messages for an SSL-Enabled Mobile Server
	9.4.4 Support for Non-SSL Mobile Clients

	9.5 Providing Your Own Authentication Mechanism for Oracle Database Mobile Server
	9.6 Using a Load Balancer
	9.6.1 Configure the Oracle Web Cache as a Load Balancer
	9.6.2 Configure Mobile Server for Load Balancer
	9.6.3 Communicate with Mobile Servers

	9.7 Using Security Manager
	9.7.1 Enabling Java Security Manager with WebLogic Server
	9.7.2 Editing Java Security Policy File

	9.8 Using a Firewall Proxy or Reverse Proxy
	9.8.1 Using a Reverse Proxy to Communicate from Internet to Intranet
	9.8.1.1 Configure the Apache Web Server as a Reverse Proxy
	9.8.1.2 Set Up Mobile Server for Mobile Client Download
	9.8.1.3 Download Reverse Proxy Mobile Client
	9.8.1.4 Enable SSL When Using a Reverse Proxy
	9.8.1.4.1 Using SSL Authentication
	9.8.1.4.2 Using SSL Between Mobile Client and Reverse Proxy
	9.8.1.4.3 Using SSL Between Firewall and Mobile Server
	9.8.1.4.4 Using Certificates That Are Not Signed By Trusted Authority

	9.8.1.5 Configure Device Management to Work With a Firewall
	9.8.1.5.1 Configure Mobile Device Listening Port
	9.8.1.5.2 Firewall Configuration
	9.8.1.5.3 Proxy Configuration for the Mobile Server

	9.8.2 Using HTTP Proxy to Communicate From Inside a Firewall
	9.8.2.1 Proxy Configuration for Mobile Clients
	9.8.2.2 Proxy Configuration for the Device Manager Agent
	9.8.2.3 Reverse Proxy Configuration for HTTP PUSH from Mobile Server Not Supported

	9.9 Providing SSL Client Authentication with a Common Access Card
	9.9.1 Introduction to SSL Client Authentication
	9.9.2 Smartcard and Common Access Card Overview
	9.9.3 Oracle Database Mobile Server Supports Common Access Cards
	9.9.4 Supported Platforms for the Common Access Card
	9.9.4.1 Support for Mobile Clients That Are Not Enabled for Client Authentication

	9.9.5 Prerequisites for Common Access Card
	9.9.6 Configuration for Client Authentication Using the Common Access Card
	9.9.6.1 Configuration of the Mobile Server to Request Client Authentication
	9.9.6.2 Configuration of the Mobile Client to Use a CAC
	9.9.6.2.1 Sharing Authentication Acceptance Across Processes

	9.9.6.3 Configuration for Reverse Proxy and Load Balancer

	9.9.7 Using the Common Access Card

	9.10 Security Warning for Demo Applications

	10 Reports
	10.1 Viewing System Status Reports for the Server
	10.2 Viewing Active User Sessions

	11 iOS Device Management
	11.1 iOS Device Management with MDM
	11.1.1 Introduction to iOS MDM
	11.1.1.1 Mobile Server and MDM
	11.1.1.2 MDM and Push Notifications

	11.1.2 Profiles and Device Enrollment
	11.1.2.1 Configuration Profiles
	11.1.2.2 Device Enrollment Process

	11.1.3 iOS MDM Commands
	11.1.3.1 Command Status
	11.1.3.2 Commands

	11.1.4 Managing iOS Applications
	11.1.4.1 Provisioning Profiles
	11.1.4.2 Preparing and Publishing iOS Application
	11.1.4.3 Application Security Considerations

	11.2 Server and Security Configuration for iOS Mobile Device Management
	11.2.1 Creating and Configuring Certificate Authority
	11.2.1.1 Creating Private CA
	11.2.1.2 Importing the CA into Mobile Server MDM Keystore
	11.2.1.3 Importing the CA into the Application Server Trust Store
	11.2.1.3.1 Glassfish
	11.2.1.3.2 WebLogic

	11.2.1.4 Important Considerations
	11.2.1.4.1 Changing Repository Password
	11.2.1.4.2 Dealing with Certificate Expiration

	11.2.2 SSL Configuration for MDM
	11.2.2.1 Creating SSL Certificate Signed by Private CA
	11.2.2.2 Importing SSL Certificate into Application Server's Keystore
	11.2.2.2.1 Glassfish
	11.2.2.2.2 WebLogic

	11.2.3 Obtaining and Importing APNS Certificate
	11.2.3.1 Obtain MDM CSR Signing Certificate
	11.2.3.2 Create APNS CSR
	11.2.3.3 Sign CSR with MDM CSR Signing Certificate
	11.2.3.4 Submit CSR and Obtain APNS Certificate
	11.2.3.5 Import APNS Certificate and Private Key into Mobile Server MDM Keystore
	11.2.3.6 Renewing MDM Certificates
	11.2.3.7 Important Considerations
	11.2.3.7.1 Push Notification Topic

	A Configuration Files for the Mobile Server
	A.1 Configuration Parameters for the MOBILE.ORA File
	A.1.1 [APPLICATIONS]
	A.1.2 [MOBILE]
	A.1.3 [FILESYSTEM]
	A.1.4 [DEBUG]
	A.1.5 [CONSOLIDATOR]
	A.1.5.1 Data Synchronization Parameters
	A.1.5.2 Data Synchronoization Tracing and Logging

	A.1.6 [EXTERNAL_AUTHENTICATION]

	A.2 Data Synchronization Requirements in INIT.ORA
	A.2.1 Relationships Between Relevant Parameters
	A.2.2 Values for Processes and DML Locks

	B Write Scripts for the Mobile Server With the WSH Tool
	B.1 Description of Syntax for WSH Batch Scripts
	B.1.1 Creating a User
	B.1.1.1 EXTERNALUSER Parameter
	B.1.1.2 PRIVILEGE Parameter

	B.1.2 Creating a Group
	B.1.3 Adding Users to a Group
	B.1.4 Removing Users from a Group
	B.1.5 Creating Access Privileges
	B.1.6 Granting Access
	B.1.7 Revoking Access
	B.1.8 Creating Registries
	B.1.9 Creating Snapshot Variables
	B.1.10 Deleting a User
	B.1.11 Deleting a Group
	B.1.12 Deleting Access Privileges
	B.1.13 Deleting a Registry
	B.1.14 Deleting Snapshot Variables

	B.2 Running a Script INI File With the WSH Tool
	B.3 Examples of Batch Script Files for WSH
	B.3.1 Creating, Adding, and Granting Access
	B.3.2 Deleting, Removing, and Revoking Access

	C Catalog Views for the Mobile Server
	C.1 CV$ALL_CLIENTS
	C.2 CV$ALL_ERRORS
	C.3 CV$ALL_PUBLICATIONS
	C.4 CV$ALL_SUBSCRIPTIONS
	C.5 CV$ALL_SEQUENCES
	C.6 CV$ALL_SEQUENCE_PARTITIONS
	C.7 CV$ALL_PUBLICATION_ITEMS_ADDED
	C.8 CV$ALL_PUBLICATION_ITEMS
	C.9 CV$ALL_PUBLICATION_INDEXES
	C.10 CV$ALL_SUBSCRIPTION_PARAMS

	D iOS Mobile Device Management (MDM) Architecture
	D.1 Description - MDM Architecture
	D.1.1 MDM Command Cycle
	D.1.2 Additional Resources

	D.2 Device Enrollment Process
	D.3 Application Server Configuration for MDM
	D.3.1 Glassfish
	D.3.2 WebLogic

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

