
[image: Oracle Corporation]

Oracle® Big Data Discovery Cloud Service

Data Processing Guide

E65369-05

November 2016

Oracle Big Data Discovery Cloud Service Data Processing Guide

E65369-05

Copyright © 2016, 2016, Oracle and/or its affiliates. All rights reserved.

This software or hardware is developed for general use in a variety of
		information management applications. It is not developed or intended for use in
		any inherently dangerous applications, including applications that may create a
		risk of personal injury. If you use this software or hardware in dangerous
		applications, then you shall be responsible to take all appropriate fail-safe,
		backup, redundancy, and other measures to ensure its safe use. Oracle
		Corporation and its affiliates disclaim any liability for any damages caused by
		use of this software or hardware in dangerous applications.
	

If this is software or related documentation that is delivered to the
		U.S. Government or anyone licensing it on behalf of the U.S. Government, then
		the following notice is applicable:
	

U.S. GOVERNMENT END USERS: Oracle programs, including any operating
		system, integrated software, any programs installed on the hardware, and/or
		documentation, delivered to U.S. Government end users are "commercial computer
		software" pursuant to the applicable Federal Acquisition Regulation and
		agency-specific supplemental regulations. As such, use, duplication,
		disclosure, modification, and adaptation of the programs, including any
		operating system, integrated software, any programs installed on the hardware,
		and/or documentation, shall be subject to license terms and license
		restrictions applicable to the programs. No other rights are granted to the
		U.S. Government.
	

This software or hardware is developed for general use in a variety of
		information management applications. It is not developed or intended for use in
		any inherently dangerous applications, including applications that may create a
		risk of personal injury. If you use this software or hardware in dangerous
		applications, then you shall be responsible to take all appropriate fail-safe,
		backup, redundancy, and other measures to ensure its safe use. Oracle
		Corporation and its affiliates disclaim any liability for any damages caused by
		use of this software or hardware in dangerous applications.
	

Oracle and Java are registered trademarks of Oracle and/or its
		affiliates. Other names may be trademarks of their respective owners.
	

Intel and Intel Xeon are trademarks or registered trademarks of Intel
		Corporation. All SPARC trademarks are used under license and are trademarks or
		registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
		and the AMD Opteron logo are trademarks or registered trademarks of Advanced
		Micro Devices. UNIX is a registered trademark of The Open Group.
	

This software or hardware and documentation may provide access to or
		information about content, products, and services from third parties. Oracle
		Corporation and its affiliates are not responsible for and expressly disclaim
		all warranties of any kind with respect to third-party content, products, and
		services unless otherwise set forth in an applicable agreement between you and
		Oracle. Oracle Corporation and its affiliates will not be responsible for any
		loss, costs, or damages incurred due to your access to or use of third-party
		content, products, or services, except as set forth in an applicable agreement
		between you and Oracle.
	

Contents

Preface

	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

1 Introduction

	BDD integration with Spark and Hadoop
	Secure Hadoop options
	 Kerberos authentication
	TLS/SSL and Encryption options

	Preparing your data for ingest

2 Data Processing Workflows

	Overview of workflows
	Workflow for loading new data
	Working with Hive tables
	Sampling and attribute handling
	Data type discovery
	Studio creation of Hive tables

3 Data Processing Configuration

	Date format configuration
	Spark configuration
	Adding a SerDe JAR to DP workflows

4 DP Command Line Interface Utility

	 DP CLI overview
	DP CLI permissions and logging
	DP CLI configuration
	DP CLI flags
	Using whitelists and blacklists
	DP CLI cron job
	Modifying the DP CLI cron job

	DP CLI workflow examples
	Processing Hive tables with Snappy compression
	Changing Hive table properties

5 Updating Data Sets

	About data set updates
	Obtaining the Data Set Logical Name
	Refresh updates
	Refresh flag syntax
	Running a Refresh update

	Incremental updates
	Incremental flag syntax
	Running an Incremental update

	Creating cron jobs for updates

6 Data Processing Logging

	DP logging overview
	DP logging properties file
	DP log entry format
	DP log levels

	Example of DP logs during a workflow
	Accessing YARN logs
	Transform Service log

7 Data Enrichment Modules

	About the Data Enrichment modules
	 Entity extractor
	Noun Group extractor
	TF.IDF Term extractor
	 Sentiment Analysis (document level)
	 Sentiment Analysis (sub-document level)
	 Address GeoTagger
	IP Address GeoTagger
	Reverse GeoTagger
	Tag Stripper
	Phonetic Hash
	Language Detection

8 Dgraph Data Model

	About the data model
	Data records
	Attributes
	Assignments on attributes
	Attribute data types

	Supported languages

9 Dgraph HDFS Agent

	About the Dgraph HDFS Agent
	Importing records from HDFS for ingest
	Exporting data from Studio
	Dgraph HDFS Agent logging
	Log entry format
	Logging properties file

Index

Preface

Oracle Big Data Discovery is a set of end-to-end visual analytic
		capabilities that leverage the power of Apache Spark to turn raw data into
		business insight in minutes, without the need to learn specialist big data
		tools or rely only on highly skilled resources. The visual user interface
		empowers business analysts to find, explore, transform, blend and analyze big
		data, and then easily share results.
	

About this guide

This guide describes the Data Processing component of Big Data
	 Discovery (BDD). It explains how the product behaves in Spark when it runs its
	 processes, such as sampling, loading, updating, and transforming data. It also
	 describes Spark configuration, the Data Processing CLI for loading and updating
	 data sets (via cron jobs and on demand), and the behavior of Data Enrichment
	 Modules, such as GeoTagger and Sentiment Analysis. Lastly, it includes logging
	 information for the Data Processing component in BDD, the Transform Service,
	 and the Dgraph HDFS Agent.

Audience

This guide is intended for Hadoop IT administrators, Hadoop data
	 developers, and ETL data engineers and data architects who are responsible for
	 loading source data into Big Data Discovery.

The guide assumes that you are familiar with the Spark and Hadoop
		environment and services, and that you have already installed Big Data
		Discovery and used Studio for basic data exploration and analysis.
	

This guide is specifically targeted for Hadoop developers and
		administrators who want to know more about data processing steps in Big Data
		Discovery, and to understand what changes take place when these processes run
		in Spark.
	

The guide covers all aspects of data processing, from initial data
		discovery, sampling and data enrichments, to data transformations that can be
		launched at later stages of data analysis in BDD.
	

Conventions

The following conventions are used in this document.

Typographic conventions

		
		The following table describes the typographic conventions used in this
		 document.
		

		
		
	Typeface
				 	Meaning
				
	User Interface Elements
				 	This formatting is used for graphical user interface
					 elements such as pages, dialog boxes, buttons, and fields.
				
	Code Sample
				 	This formatting is used for sample code segments within a
					 paragraph.
				
	Variable
				 	This formatting is used for variable values.
					 For variables within a code sample, the formatting is
						Variable.
					

				
	File Path
				 	This formatting is used for file names and paths.
				

		

	

Symbol conventions

		
		The following table describes symbol conventions used in this
		 document.
		

		
		
	Symbol
				 	Description
				 	Example
				 	Meaning
				
	>
				 	The right angle bracket, or greater-than sign, indicates
					 menu item selections in a graphic user interface.
				 	 File > New > Project
				 	From the File menu, choose New, then from the New submenu,
					 choose Project.
				

		

	

Path variable conventions

		
		This table describes the path variable conventions used in this
		 document.
		

		
		
	Path variable
				 	Meaning
				
	$ORACLE_HOME
				 	Indicates the absolute path to your Oracle
					 Middleware home directory, where BDD and WebLogic Server are installed.
				
	$BDD_HOME
				 	Indicates the absolute path to your Oracle
					 Big Data Discovery home directory,
					 $ORACLE_HOME/BDD-<version>.
				
	$DOMAIN_HOME
				 	Indicates the absolute path to your
					 WebLogic domain home directory. For example, if your domain is named
					 bdd-<version>_domain, then
					 $DOMAIN_HOME is
					 $ORACLE_HOME/user_projects/domains/bdd-<version>_domain.
					
				
	$DGRAPH_HOME
				 	Indicates the absolute path to your Dgraph
					 home directory,
					 $BDD_HOME/dgraph.
				

		

	

Contacting Oracle Customer Support

Oracle customers that have purchased support have access to
	 electronic support through My Oracle Support. This includes important
	 information regarding Oracle software, implementation questions, product and
	 solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal,
		My Oracle Support at
		https://support.oracle.com.
	

1 Introduction

This section provides a high-level introduction to the Data
	 Processing component of Big Data Discovery.

	BDD integration with Spark and Hadoop

 Hadoop provides a number of components and tools that BDD 	 requires to process and manage data. The Hadoop Distributed File System (HDFS) 	 stores your source data and Hadoop Spark on YARN runs all Data Processing jobs. 	 This topic discusses how BDD fits into the Spark and Hadoop environment.
	Secure Hadoop options

This section describes how BDD workflows can be used in a secure 	 Hadoop environment.
	Preparing your data for ingest

Although not required, it is recommended that you clean your 	 source data so that it is in a state that makes Data Processing workflows run 	 smoother and prevents ingest errors.

BDD integration with Spark and Hadoop

 Hadoop provides a number of components and tools that BDD
	 requires to process and manage data. The Hadoop Distributed File System (HDFS)
	 stores your source data and Hadoop Spark on YARN runs all Data Processing jobs.
	 This topic discusses how BDD fits into the Spark and Hadoop environment.

 Hadoop is a platform
		for distributed storing, accessing, and analyzing all kinds of data:
		structured, unstructured, and data from the Internet Of Things. It is broadly
		adopted by IT organizations, especially those that have high volumes of data.
	

As a data scientist, you often must practice two kinds of analytics
		work:
	 	In operational analytics,
		 you may work on model fitting and its analysis. For this, you may write code
		 for machine-learning models, and issue queries to these models at scale, with
		 real-time incoming updates to the data. Such work involves relying on the
		 Hadoop ecosystem. Big Data Discovery allows you to work without leaving the
		 Spark environment that the rest of your work takes place in. BDD supports an
		 enterprise-quality business intelligence experience directly on Hadoop data,
		 with high numbers of concurrent requests and low latency of returned results.
		
	In investigative analytics,
		 you may use interactive statistical environments, such as R to answer ad-hoc,
		 exploratory questions and gain insights. BDD also lets you export your data
		 from BDD back into Hadoop, for further investigative analysis with other tools
		 within your Hadoop deployment.
		

	

By coupling tightly with Spark and Hadoop, Oracle Big Data Discovery
		achieves data discovery for any data, at significantly-large scale, with high
		query-processing performance.
	

About Hadoop distributions

		
		 Big Data Discovery works with very large amounts of data stored
		 within HDFS. A Hadoop distribution is a prerequisite for the product, and it is
		 critical for the functionality provided by the product.
		

		BDD uses the HDFS, Hive, Spark, and YARN components packaged with a
		 specific Hadoop distribution. For detailed information on Hadoop version
		 support and packages, see the
		 Installation Guide.
		

	

BDD inside the Hadoop Infrastructure

		
		Big Data Discovery brings itself to the data that is natively
		 available in Hadoop.
		

		BDD maintains a list of all of a company’s data sources found in Hive
		 and registered in HCatalog. When new data arrives, BDD lists it in Studio's
		 Catalog, decorates it with profiling and
		 enrichment metadata, and, when you take this data for further exploration,
		 takes a sample of it. It also lets you explore the source data further by
		 providing an automatically-generated list of powerful visualizations that
		 illustrate the most interesting characteristics of this data. This helps you
		 cut down on time spent for identifying useful source data sets, and on data set
		 preparation time; it increases the amount of time your team spends on analytics
		 leading to insights and new ideas.
		

		BDD is embedded into your data infrastructure, as part of Hadoop
		 ecosystem. This provides operational simplicity:
			Nodes in the BDD cluster
			 deployment can share hardware infrastructure with the existing Hadoop cluster
			 at your site. Note that the existing Hadoop cluster at your site may still be
			 larger than a subset of Hadoop nodes on which data-processing-centric
			 components of BDD are deployed.
		
	Automatic indexing, data
			 profiling, and enrichments take place when your source Hive tables are
			 discovered by BDD. This eliminates the need for a traditional approach of
			 cleaning and loading data into the system, prior to analyzing it.
		
	BDD performs distributed
			 query evaluation at a high scale, letting you interact with data while
			 analyzing it.
			 A Studio component of BDD also takes advantage of being part of
				Hadoop ecosystem:
			 	It brings you insights
				 without having to work for them — this is achieved by data discovery, sampling,
				 profiling, and enrichments.
				
	 It lets you create
				 links between data sets.
				
	It utilizes its access
				 to Hadoop as an additional processing engine for data analysis.
				

			

		

		

	

Benefits of integration of BDD with Hadoop and Spark
		 ecosystem

		
		Big Data Discovery is deployed directly on a subset of nodes in the
		 pre-existing Hadoop cluster where you store the data you want to explore,
		 prepare, and analyze.
		

		By analyzing the data in the Hadoop cluster itself, BDD eliminates the
		 cost of moving data around an enterprise’s systems — a cost that becomes
		 prohibitive when enterprises begin dealing with hundreds of terabytes of data.
		 Furthermore, a tight integration of BDD with HDFS allows profiling, enriching,
		 and indexing data as soon as the data enters the Hadoop cluster in the original
		 file format. By the time you want to see a data set, BDD has already prepared
		 it for exploration and analysis. BDD leverages the resource management
		 capabilities in Spark to let you run mixed-workload clusters that provide
		 optimal performance and value.
		

		Finally, direct integration of BDD with the Hadoop ecosystem
		 streamlines the transition between the data preparation done in BDD and the
		 advanced data analysis done in tools such as Oracle R Advanced Analytics for
		 Hadoop (ORAAH), or other 3rd party tools. BDD lets you export a cleaned,
		 sampled data set as a Hive table, making it immediately available for users to
		 analyze in ORAAH. BDD can also export data as a file and register it in Hadoop,
		 so that it is ready for future custom analysis.
		

	

Secure Hadoop options

This section describes how BDD workflows can be used in a secure
	 Hadoop environment.

Additional information on BDD security is provided in the
		Security Guide.
	

	Kerberos authentication

Data Processing components can be configured to run in a Hadoop 	 cluster that has enabled Kerberos authentication.
	TLS/SSL and Encryption options

BDD workflows can run on clusters that are secured with TLS/SSL 	 and HDFS Data at Rest Encryption.

 Kerberos authentication

Data Processing components can be configured to run in a Hadoop
	 cluster that has enabled Kerberos authentication.

The Kerberos
		Network Authentication Service version 5, defined in RFC 1510, provides a means
		of verifying the identities of principals in a Hadoop environment. Hadoop uses
		Kerberos to create secure communications among its various components and
		clients. Kerberos is an authentication mechanism, in which users and services
		that users want to access rely on the Kerberos server to authenticate each to
		the other. The Kerberos server is called the Key Distribution Center (KDC). At
		a high level, it has three parts:
	

	 	A database of the users and
		 services (known as principals) and their respective Kerberos passwords
		
	An authentication server
		 (AS) which performs the initial authentication and issues a Ticket Granting
		 Ticket (TGT)
		
	A Ticket Granting Server
		 (TGS) that issues subsequent service tickets based on the initial TGT
		

	

The principal gets service tickets from the TGS. Service tickets are
		what allow a principal to access various Hadoop services.
	

To ensure that Data Processing workflows can run on a secure Hadoop
		cluster, these BDD components are enabled for Kerberos support:
	 	Dgraph and Dgraph HDFS Agent
		
		
	Data Processing workflows
		 (whether initiated by Studio or the DP CLI)
		
	Studio
		

	

All these BDD components share one principal and keytab. Note that there
		is no authorization support (that is, these components do not verify
		permissions for users).
	

The BDD components are enabled for Kerberos support at installation
		time, via the
		ENABLE_KERBEROS parameter in the
		bdd.conf file. The
		bdd.conf file also has parameters for specifying the
		name of the Kerberos principal, as well as paths to the Kerberos keytab file
		and the Kerberos configuration file. For details on these parameters, see the
		Installation Guide.
	

Note:
 If you use Sentry for authorization in your Hadoop cluster, you must
		configure it to grant BDD access to your Hive tables.
	

Kerberos support in DP workflows

		
		Support for Kerberos authentication ensures that
		 Data Processing workflows can run on a secure Hadoop cluster. The support for
		 Kerberos includes the DP CLI, via the Kerberos properties in the
		 edp.properties configuration file.
		

		The
		 spark-submit script in Spark's
		 bin directory is used to launch DP applications on
		 a cluster, as follows:
			Before the call to
			 spark-submit, Data Processing logs in using the
			 local keytab. The
			 spark-submit process grabs the Data Processing
			 credentials during job submission to authenticate with YARN and Spark.
		
	Spark gets the HDFS
			 delegation tokens for the name nodes listed in the
			 spark.yarn.access.namenodes property and this
			 enables the Data Processing workflow to access HDFS.
		
	When the workflow starts,
			 the Data Processing workflow logs in using the Hadoop cluster keytab.
		
	When the Data Processing
			 Hive Client is initialized, a SASL client is used along with the Kerberos
			 credentials on the node to authenticate with the Hive Metastore. Once
			 authenticated, the Data Processing Hive Client can communicate with the Hive
			 Metastore.
		

		

		When a Hive JDBC connection is used, the credentials are used to
		 authenticate with Hive, and thus be able to use the service.
		

	

Kerberos support in Dgraph and Dgraph HDFS Agent

		
		In BDD, the Dgraph HDFS Agent is a client for
		 Hadoop HDFS because it reads and writes HDFS files from and to HDFS. If your
		 Dgraph databases are stored on HDFS, you must also enable Kerberos for the
		 Dgraph.
		

		For Kerberos support for the Dgraph, make sure these
		 bdd.conf properties are set correctly:
			KERBEROS_TICKET_REFRESH_INTERVAL
			 specifies the interval (in minutes) at which the Dgraph's Kerberos ticket is
			 refreshed.
		
	KERBEROS_TICKET_LIFETIME
			 sets the amount of time that the Dgraph's Kerberos ticket is valid.
		

		

		See the
		 Administrator's Guide for instructions on setting up the
		 Dgraph for Kerberos support.
		

		For Kerberos support, the Dgraph HDFS Agent will be started with three
		 Kerberos flags:
			The
			 --principal flag specifies the name of the
			 principal.
		
	The
			 --keytab flag specifies the path to the
			 principal's keytab.
		
	The
			 --krb5conf flag specifies the path to the
			 krb5.conf configuration file.
		

		

		The values for the flag arguments are set by the installation script.
		

		When started, the Dgraph HDFS Agent logs in with the specified
		 principal and keytab. If the login is successful, the Dgraph HDFS Agent passed
		 Kerberos authentication and starts up successfully. Otherwise, HDFS Agent
		 cannot be started.
		

	

Kerberos support in Studio

		
		Studio also has support for running the
		 following jobs in a Hadoop Kerberos environment:
			Transforming data sets
		
	Uploading files
		
	Export data
		

		

		The Kerberos login is configured via the following properties in
		 portal-ext.properties:
			kerberos.principal
		
	kerberos.keytab
		
	kerberos.krb5.location
			
		

		

		The values for these properties are inserted during the installation
		 procedure for Big Data Discovery.
		

	

TLS/SSL and Encryption options

BDD workflows can run on clusters that are secured with TLS/SSL
	 and HDFS Data at Rest Encryption.

TLS/SSL

		
		TLS/SSL provides encryption and authentication in communication
		 between specific Hadoop services in the secured cluster. When TLS/SSL is
		 enabled, all communication between the services is encrypted, and therefore
		 provides a much higher level of security than a cluster that is not secured
		 with TLS/SSL.
		

		These BDD components can be configured to communicate in a cluster
		 secured with TLS/SSL:
			Studio
		
	DP CLI
		
	Dgraph HDFS Agent
		
	Transform Service
		

		

		The
		 Installation Guide provides details on how to install BDD
		 in a cluster secured with TLS/SSL.
		

	

HDFS Data at Rest Encryption

		
		If HDFS Data at Rest Encryption is enabled in your Hadoop cluster,
		 data is stored in encrypted HDFS directories called encryption zones. All files
		 within an encryption zone are transparently encrypted and decrypted on the
		 client side. Decrypted data is therefore never stored in HDFS.
		

		If HDFS Data at Rest Encryption is enabled in your cluster, you must
		 also enable it for BDD. For details, see the
		 Installation Guide.
		

	

Preparing your data for ingest

Although not required, it is recommended that you clean your
	 source data so that it is in a state that makes Data Processing workflows run
	 smoother and prevents ingest errors.

Data Processing does not
		have a component that manipulates the source data as it is being ingested. For
		example, Data Processing cannot remove invalid characters (that are stored in
		the Hive table) as they are being ingested. Therefore, you should use Hive or
		third-party tools to clean your source data.
	

After a data set is created, you can manipulate the contents of the data
		set by using the Transform functions in Studio.
	

Removing invalid XML characters

		
		During the ingest procedure that is run by Data Processing, it is
		 possible for a record to contain invalid data, which will be detected by the
		 Dgraph during the ingest operation. Typically, the invalid data will consist of
		 invalid XML characters. A valid character for ingest must be a character
		 according to production 2 of the XML 1.0 specification.
		

		If an invalid XML character is detected, it is replaced with an
		 escaped version. In the escaped version, the invalid character is represented
		 as a decimal number surrounded by two hash characters (##) and a semi-colon
		 (;). For example, a control character whose 32-bit value is decimal 15 would be
		 represented as
		 ##15;

		

		The record with the replaced character would then be ingested.
		

	

Fixing date formats

		
		Ingested date values come from one (or more) Hive table columns:
			Columns configured as
			 DATE data types.
		
	Columns configured as
			 TIMESTAMP data types.
		
	Columns configured as
			 STRING data types but having date values. The date
			 formats that are supported via this data type discovery method are listed in
			 the
			 dateFormats.txt file. For details on this file,
			 see
			 Date format configuration.
		

		

		Make sure that dates in
		 STRING columns are well-formed and conform to a format
		 in the
		 dateFormats.txt file, or else they will be
		 ingested as string values, not as Dgraph
		 mdex:dateTime data types.
		

		In addition, make sure that the dates in a
		 STRING column are valid dates. For example, the date
		 Mon, Apr 07, 1925 is invalid because April 7,
		 1925 is a Tuesday, not a Monday. Therefore, this invalid date would cause the
		 column to be detected as a
		 STRING column, not a
		 DATE column.
		

	

Uploading Excel and CSV files

		
		In Studio, you can create a new data set by uploading data from an
		 Excel or CSV file. The data upload for these file types is always done as
		 STRING data types.
		

		For this reason, you should make sure that the file's column data are
		 of consistent data types. For example, if a column is supposed to store
		 integers, check that the column does not have non-integer data. Likewise, check
		 that date input conforms to the formats in the
		 dateFormats.txt file.
		

		Note that BDD cannot load multimedia or binary files (other than
		 Excel).
		

	

Non-splittable input data handling for Hive tables

		
		Hive tables supports the use of input data that has been compressed
		 using non-splittable compression at the individual file level. However, Oracle
		 discourages using a non-splittable input format for Hive tables that will be
		 processed by BDD. The reason is that when the non-splittable compressed input
		 files are used, the suggested input data split size specified by the DP
		 configuration will not be honored by Spark (and Hadoop), as there is no clear
		 split point on those inputs. In this situation, Spark (and Hadoop) will read
		 and treat each compressed file as a single partition, which will result in a
		 large amount of resources being consumed during the workflow.
		

		If you must non-splittable compression, you should use block-based
		 compression, where the data is divided into smaller blocks first and then the
		 data is compressed within each block. More information is available at:
		 https://cwiki.apache.org/confluence/display/Hive/CompressedStorage
		
		

		In summary, you are encouraged to use splittable compression, such as
		 BZip2. For information on choosing a data compression format, see:
		 http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html
		
		

	

Anti-Virus and Malware

		
		Oracle strongly encourages you to use anti-virus products prior to
		 uploading files into Big Data Discovery. The Data Processing component of BDD
		 either finds Hive tables that are already present and then loads them, or lets
		 you load data from new Hive tables, using DP CLI. In either case, use
		 anti-virus software to ensure the quality of the data that is being loaded.
		

	

2 Data Processing Workflows

This section describes how Data Processing discovers data in Hive
	 tables and prepares it for ingest into the Dgraph.

	Overview of workflows

This topic provides an overview of Data Processing workflows.
	Workflow for loading new data

 This topic discusses the workflow that runs inside Data 	 Processing component of BDD when new data is loaded.
	Working with Hive tables

Hive tables contain the data for the Data Processing workflows.
	Sampling and attribute handling

When creating a new data set, you can specify the maximum number 	 of records that the Data Processing workflow should process from the Hive 	 table.
	Data type discovery

When Data Processing retrieves data from a Hive table, the Hive 	 data types are mapped to Dgraph data types when the data is ingested into the 	 Dgraph.
	Studio creation of Hive tables

Hive tables can be created from Studio.

Overview of workflows

This topic provides an overview of Data Processing workflows.

When the Data Processing
		component runs, it performs a series of steps; these steps are called a
		data processing workflow. Many workflows exist, for loading
		initial data, updating data, or for cleaning up unused data sets.
	

All Data Processing workflows are launched either from Studio (in which
		case they run automatically) or from the DP CLI (Command Line Interface)
		utility.
	

 In either case,
		when the workflow runs, it manifests itself in various parts of the user
		interface, such as
		Explore, and
		Transform in Studio. For example, new source data
		sets become available for your discovery, in
		Explore. Or, you can make changes to the project
		data sets in
		Transform. Behind all these actions, lie the
		processes in Big Data Discovery known as
		Data Processing workflows. This guide describes these
		processes in detail.
	

For example, a Data Processing (DP) workflow for loading data is the
		process of extracting data and metadata from a Hive table and ingesting it as a
		data set in the Dgraph. The extracted data is turned into Dgraph records while
		the metadata provides the schema for the records, including the Dgraph
		attributes that define the BDD data set.
	

Once data sets are ingested into the Dgraph, Studio users can view the
		data sets and query the records in them. Studio users can also modify
		(transform) the data set and even delete it.
	

All Data Processing jobs are run by Spark workers. Data Processing runs
		asynchronously — it puts a Spark job on the queue for each Hive table. When the
		first Spark job on the first Hive table is finished, the second Spark job (for
		the second Hive table) is started, and so on.
	

Note that although a BDD data set can be deleted by a Studio user, the
		Data Processing component of BDD software can never delete a Hive table.
		Therefore, it is up to the Hive administrator to delete obsolete Hive tables.
	

DataSet Inventory

		
		The
		 DataSet Inventory (DSI) is an internal structure that lets
		 Data Processing keep track of the available data sets. Each data set in the DSI
		 includes metadata that describes the characteristics of that data set. For
		 example, when a data set is first created, the names of the source Hive table
		 and the source Hive database are stored in the metadata for that data set. The
		 metadata also includes the schemas of the data sets.
		

		The DataSet Inventory contains an
		 ingestStatus attribute for each data set, which
		 indicates whether the data set has been completely provisioned (and therefore
		 is ready to be added to a Studio project). The flag is set by Studio after
		 being notified by the Dgraph HDFS Agent on the completion of an ingest.
		

	

Language setting for attributes

		
		During a normal Data Processing workflow, the language setting for all
		 attributes is either a specific language (such as English or French) or
		 unknown (which means a DP workflow does not use a
		 language code for any specific language). The default language is set at
		 install time for Studio and the DP CLI by the
		 LANGUAGE property of the
		 bdd.conf file. However, both Studio and the DP CLI
		 can override the default language setting and specify a different language code
		 for a workflow. For a list of supported languages, see
		 Supported languages.
		

	

Workflow for loading new data

 This topic discusses the workflow that runs inside Data
	 Processing component of BDD when new data is loaded.

The Data Processing workflow shown in this topic is for loading data; it
		is one of many possible workflows. This workflow does not show updating data
		that has already been loaded. For information on running Refresh and
		Incremental update operations, see
		Updating Data Sets.
	

Loading new data includes these stages:
	 	Discovery of source data in
		 Hive tables
		
	Loading and creating a
		 sample of a data set
		
	Running a select set of
		 enrichments on this data set (if so configured)
		
	Profiling the data
		
	Transforming the data set
		
	 Exporting data from Big
		 Data Discovery into Hadoop
		

	

You launch the Data Processing workflow for loading new data either from
		Studio (by creating a Hive table), or by running the Data Processing CLI
		(Command Line Interface) utility. As a Hadoop system administrator, you can
		control some steps in this workflow, while other steps run automatically in
		Hadoop.
	

The following diagram illustrates how the data processing workflow for
		loading new data fits within Big Data Discovery:
	

[image: This diagram describes how Data Processing component fits into Big Data Discovery.]
	

The steps in this diagram are:
	 	The workflow for data
		 loading starts either from Studio or the Data Processing CLI.
		
	The Spark job is launched on
		 Hadoop nodes that have Data Processing portion of Big Data Discovery installed
		 on them.
		
	The counting, sampling,
		 discovery, and transformations take place and are processed on Hadoop nodes.
		 The information is written to HDFS and sent back.
		
	The data processing workflow
		 launches the process of loading the records and their schema into the Dgraph,
		 for each data set.
		

	

To summarize, during an initial data load, the Data Processing component
		of Big Data Discovery counts data in Hive tables, and optionally performs
		data set sampling. It then runs an initial data profiling,
		and applies some enrichments. These stages are discussed in this topic.
	

Sampling of a data set

		
		 If you work with a sampled subset of
		 the records from large tables discovered in HDFS, you are using sample data as
		 a proxy for the full tables. This lets you:
			Avoid latency and increase
			 the interactivity of data analysis, in Big Data Discovery
		
	Analyze the data as if
			 using the full set.
		

		

		Data Processing does not always perform sampling; Sampling occurs only
		 if a source data set contains more records than the default sample size used
		 during BDD deployment. The default sample size used during deployment is 1
		 million records. When you subsequently run data processing workflow yourself,
		 using the Command Line Interface (DP CLI), you can override the default sample
		 size and specify your own.
		

		
		 Note:
If the number of records in the source data set is less than the
			 value specified for the sample size, then no sampling takes place and Data
			 Processing loads the source data in full.
		

		

		Samples in BDD are taken as follows:
			Data Processing takes a
			 random sample of the data, using either the default size sample, or the size
			 you specify. BDD leverages the inbuilt Spark random sampling functionality.
		
	 Based on the number of
			 rows in the source data and the number of rows requested for the sample, BDD
			 passes through the source data and, for each record, includes it in the sample
			 with a certain (equal) probability. As a result, Data Processing creates a
			 simple random sampling of records, in which:
			 	Each element has the
				 same probability of being chosen
				
	Each subset of the
				 same size has an equal probability of being chosen.
				

		

		

		These requirements, combined with the large absolute size of the data
		 sample, mean that samples taken by Big Data Discovery allow for making reliable
		 generalizations on the entire corpus of data.
		

	

Profiling of a data set

		
		Profiling is a process that determines the
		 characteristics (columns) in the Hive tables, for each source Hive table
		 discovered by the Data Processing in Big Data Discovery during data load.
		

		Profiling is carried out by the data processing workflow for loading
		 data and results in the creation of metadata information about a data set,
		 including:
			Attribute value
			 distributions
		
	Attribute type
		
	Topics
		
	Classification
		

For example, a specific data set can be recognized as a collection
		of structured data, social data, or geographic data.
		

		Using
		 Explore in Studio, you can then look deeper into
		 the distribution of attribute values or types. Later, using
		 Transform, you can change some of these
		 metadata. For example, you can replace null attribute values with actual
		 values, or fix other inconsistencies.
		

	

Enrichments

		
		Enrichments are derived
		 from a data set's additional information such as terms, locations, the language
		 used, sentiment, and views. Big Data Discovery determines which enrichments are
		 useful for each discovered data set, and automatically runs them on samples of
		 the data. As a result of automatically applied enrichments, additional derived
		 metadata (columns) are added to the data set, such as geographic data, a
		 suggestion of the detected language, or positive or negative sentiment.
		

		The data sets with this additional information appear in
		 Catalog in Studio. This provides initial insight
		 into each discovered data set, and lets you decide if the data set is a useful
		 candidate for further exploration and analysis.
		

		In addition to automatically-applied enrichments, you can also apply
		 enrichments using
		 Transform in Studio, for a project data set.
		 From
		 Transform, you can configure parameters for each
		 type of enrichment. In this case, an enrichment is simply another type of
		 available transformation.
		

		Some enrichments allow you to add additional derived meaning to your
		 data sets, while others allow you to address invalid or inconsistent values.
		

	

Transformations

		
		Transformations are
		 changes to a data set. Transformations allow you to perform actions such as:
			Changing data types
		
	 Changing capitalization
			 of values
		
	 Removing attributes or
			 records
		
	 Splitting columns
		
	 Grouping or binning
			 values
		
	 Extracting information
			 from values
		

		

		You can think of transformations as a substitute for an ETL process of
		 cleaning your data before or during the data loading process. Use could
		 transformations to overwrite an existing attribute, or create new attributes.
		 Some transformations are enrichments, and as such, are applied automatically
		 when data is loaded.
		

		Most transformations are available directly as specific options in
		 Transform in Studio. Once the data is loaded,
		 you can use a list of predefined Transform functions, to create a
		 transformation script.
		

		For a full list of transformations available in BDD, including
		 aggregations and joining of data sets, see the
		 Studio User's Guide.
		

	

Exporting data from Big Data Discovery into HDFS

		
		You can export the results of your analysis from Big Data Discovery
		 into HDFS/Hive; this is known as
		 exporting to HDFS.
		

		 From the perspective of Big Data Discovery, the process is about
		 exporting the files from Big Data Discovery into HDFS/Hive. From the
		 perspective of HDFS, you are importing the results of your work from Big Data
		 Discovery into HDFS. In Big Data Discovery, the
		 Dgraph HDFS Agent is responsible for exporting to HDFS and
		 importing from it.
		

	

Working with Hive tables

Hive tables contain the data for the Data Processing workflows.

	

When processed, each Hive table results in the creation of a BDD data
		set, and that data set contains records from the Hive table. Note that a Hive
		table must contain at least one record in order for it to be processed. That
		is, Data Processing does not create a data set for an empty table.
	

Starting workflows

		
		A Data Processing workflow can be started in one of two ways:
			A user in Studio invokes
			 an operation that creates a new Hive table. After the Hive table is created,
			 Studio starts the Data Processing process on that table.
		
	The DP CLI (Command Line
			 Interface) utility is run.
		

		

		The DP CLI, when run either manually or from a cron job, invokes the
		 BDD Hive Table Detector, which can find a Hive table that does not already
		 exist in the DataSet Inventory. A Data Processing workflow is then run on the
		 table. For details on running the DP CLI, see
		 DP Command Line Interface Utility.
		
		

	

New Hive table workflow and diagram

		
		Both Studio and the DP CLI can be configured to launch a Data
		 Processing workflow that does not use the Data Enrichment modules. The
		 following high-level diagram shows a workflow in which the Data Enrichment
		 modules are run:
		

		[image: New Hive table workflow]
		

		The steps in the workflow are:
			The workflow is started
			 for a single Hive table by Studio or by the DP CLI.
		
	The job is started and the
			 workflow is assigned to a Spark worker. Data is loaded from the Hive table's
			 data files. The total number of rows in the table is counted, the data sampled,
			 and a primary key is added. The number of processed (sampled) records is
			 specified in the Studio or DP CLI configuration.
		
	The data from step 2 is
			 written to an Avro file in HDFS. This file will remain in HDFS as long as the
			 associated data set exists.
		
	The data set schema and
			 metadata are discovered. This includes discovering the data type of each
			 column, such as long, geocode, and so on. (The DataSet Inventory is also
			 updated with the discovered metadata. If the DataSet Inventory did not exist,
			 it is created at this point.)
		
	 The Data Enrichment
			 modules are run. A list of recommended enrichments is generated based on the
			 results of the discovery process. The data is enriched using the recommended
			 enrichments. If running enrichments is disabled in the configuration, then this
			 step is skipped.
		
	The data set is created in
			 the Dgraph, using settings from steps 4 and 5. The DataSet Inventory is also
			 updated to include metadata for the new data set.
		
	The data set is
			 provisioned (that is, HDFS files are written for ingest) and the Dgraph HDFS
			 Agent is notified to pick up the HDFS files, which are sent to the Bulk Load
			 Interface for ingesting into the Dgraph.
		
	After provisioning has
			 finished, Studio updates the
			 ingestStatus attribute of the DataSet Inventory with
			 the final status of the provisioning (ingest) operation.
		

		

	

Handling of updated Hive tables

		
		Existing BDD data sets are not automatically updated if their Hive
		 source tables are updated. For example, assume that a data set has been created
		 from a specific Hive table. If that Hive table is updated with new data, the
		 associated BDD data set is not automatically changed. This means that now the
		 BDD data set is not in synch with its Hive source table.
		

		To update the data set from the updated Hive table, you must run the
		 DP CLI with either the
		 --refreshData flag or the
		 --incrementalUpdate flag. For details, see
		 Updating Data Sets.
		
		

	

Handling of deleted Hive tables

		
		BDD will never delete a Hive table, even if the associated BDD data
		 set has been deleted from Studio. However, it is possible for a Hive
		 administrator to delete a Hive table, even if a BDD data set has been created
		 from that table. In this case, the BDD data set is not automatically deleted
		 and will still be viewable in Studio. (A data set whose Hive source table was
		 deleted is called an
		 orphaned data set.)
		

		The next time that the DP CLI runs, it detects the orphaned data set
		 and runs a Data Processing job that deletes the data set.
		

	

Handling of empty Hive tables

		
		 Data Processing does not process empty Hive tables. Instead, the
		 Spark driver throws an
		 EmptyHiveTableException when running against an empty
		 Hive table. This causes the Data Processing job to not create a data set for
		 the table. Note that the command may appear to have successfully finished, but
		 the absence of the data set means the job ultimately failed.
		

	

Handling of Hive tables created with header/footer
		 information

		
		Data Processing does not support processing Hive tables that are based
		 on files (such as CSV files) containing header/footer rows. In this case, the
		 DP workflow will ignore the header and footer set on the Hive table using the
		 skip.header.line.count and
		 skip.footer.line.count properties. If a workflow on
		 such a table does happen to succeed, the header/footer rows will get added to
		 the resulting BDD data set as records, instead of being omitted.
		

	

Deletion of Studio projects

		
		When a Studio user deletes a project, Data Processing is called and it
		 will delete the transformed data sets in the project. However, it will not
		 delete the data sets which have not been transformed.
		

	

Sampling and attribute handling

When creating a new data set, you can specify the maximum number
	 of records that the Data Processing workflow should process from the Hive
	 table.

The number of sampled
		records from a Hive table is set by the Studio or DP CLI configuration:
	 	In Studio, the
		 bdd.sampleSize parameter in the
		 Data Processing Settings page on Studio's
		 Control Panel.
		
	In DP CLI, the
		 maxRecordsForNewDataSet configuration parameter or the
		
		 --maxRecords flag.
		

	

If the settings of these parameters are greater than the number of
		records in the Hive table, then all the Hive records are processed. In this
		case, the data set will be considered a full data set.
	

Discovery for attributes

		
		The Data Processing discovery phase discovers the data set metadata in
		 order to suggest a Dgraph attribute schema. For detailed information on the
		 Dgraph schema, see
		 Dgraph Data Model.
		
		

	

Record and value search settings for string attributes

		
		When the DP data type discoverer determines that an attribute should
		 be a string attributes, the settings for the record search and value search for
		 the attribute are configured according to the settings of two properties in the
		
		 bdd.conf file:
			The attribute is
			 configured as record searchable if the average string length is greater than
			 the
			 RECORD_SEARCH_THRESHOLD property value.
		
	The attribute is
			 configured as value searchable if the average string length is equal to or less
			 than the
			 VALUE_SEARCH_THRESHOLD property value.
		

		

		In both cases, "average string length" refers to the average string
		 length of the values for that column.
		

		You can
		 override this behavior by using the
		 --disableSearch flag with the DP CLI. With this
		 flag, the record search and value search settings for string attributes are set
		 to false, regardless of the average String length of the attribute values. Note
		 the following about using the
		 --disableSearch flag:
			The flag can used only for
			 provisioning workflows (when a new data set is created from a Hive table) and
			 for refresh update workflows (when the DP CLI
			 --refreshData flag is used). The flag cannot
			 be used with any other type of workflow (for example, workflows that use the
			 --incrementalUpdate flag are not supported
			 with the
			 --disableSearch flag).
		
	A disable search workflow
			 can be run only with the DP CLI. This functionality is not available in Studio.
			
		

		

	

Effect of NULL values on column conversion

		
		When a Hive table is being sampled, a Dgraph attribute is created for
		 each column. The data type of the Dgraph attribute depends on how Data
		 Processing interprets the values in the Hive column. For example, if the Hive
		 column is of type String but it contains Boolean values only, the Dgraph
		 attribute is of type
		 mdex:boolean. NULL values are basically ignored in the
		 Data Processing calculation that determines the data type of the Dgraph
		 attribute.
		

	

Handling of Hive column names that are invalid Avro names

		
		 Data Processing uses Avro files to store data that should be ingested
		 into the Dgraph (via the Dgraph HDFS Agent). In Avro, attribute names must
		 start with an alphabetic or underscore character (that is, [A-Za-z_]), and the
		 rest of the name can contain only alphanumeric characters and underscores (that
		 is, [A-Za-z0-9_]).
		

		 Hive column names, however, can contain almost any Unicode
		 characters, including characters that are not allowed in Avro attribute names.
		 This format was introduced in Hive 0.13.0.
		

		Because Data Processing uses Avro files to do ingest, this limits the
		 names of Dgraph attributes to the same rules as Avro. This means that the
		 following changes are made to column names when they are stored as Avro
		 attributes:
			Any non-ASCII alphanumeric
			 characters (in Hive column names) are changed to _ (the underscore).
		
	If the leading character
			 is disallowed, that character is changed to an underscore and then the name is
			 prefixed with "A_". As a result, the name would actually begin with "A__" (an A
			 followed by two underscores).
		
	If the resulting name is a
			 duplicate of an already-process column name, a number is appended to the
			 attribute name to make it unique. This could happen especially with non-English
			 column names.
		

		

		For example:
		 Hive column name: @first-name

Changed name: A__first_name

		

		In this example, the leading character (@) is not a valid Avro
		 character and is, therefore, converted to an underscore (the name is also
		 prefixed with "A_"). The hyphen is replaced with an underscore and the other
		 characters are unchanged.
		

		Attribute names for non-English tables would probably have quite a few
		 underscore replacements and there could be duplicate names. Therefore, a
		 non-English attribute name may look like this: A_______2
		

	

Data type discovery

When Data Processing retrieves data from a Hive table, the Hive
	 data types are mapped to Dgraph data types when the data is ingested into the
	 Dgraph.

		The discovery phase of a workflow means that Data Processing discovers
		 the data set metadata in order to determine the Dgraph attribute schema. Once
		 Data Processing can ascertain what the data type is of a given Hive table
		 column, it can map that Hive column data type to a Dgraph attribute data type.
		

		For most types of workflows, the discovery phase is performed on the
		 sample file. The exception is a Refresh update, which is a full data refresh on
		 a BDD data set from the original Hive table.
		

	

Hive-to-Dgraph data conversions

		
		When a Hive table is created, a data type is specified for each column
		 (such as
		 BOOLEAN or
		 DOUBLE). During a Data Processing workflow, a Dgraph
		 attribute is created for each Hive column. The Dgraph data type for the created
		 attribute is based on the Hive column data type. For more information on the
		 data model, including information about what are Dgraph records, and what are
		 Dgraph attributes, see the section
		 Dgraph Data Model.
		
		

		This table lists the mappings for supported Hive data types to Dgraph
		 data types. If a Hive data type is not listed, it is not supported by Data
		 Processing and the data in that column will not be provisioned.
		
	Hive Data Type
				 	Hive Description
				 	Dgraph Data Type Conversion
				
	ARRAY<data_type>
				 	Array of values of a Hive data type (such
					 as,
					 ARRAY<STRING>)
				 	mdex:data_type-set
					 where
						data_type is a Dgraph data type in this
						column. These
						-set data types are for multi-assign
						attributes (such as
						mdex:string-set).
					

				
	BIGINT
				 	8-byte signed integer.
				 	mdex:long
				
	BOOLEAN
				 	Choice of
					 TRUE or
					 FALSE.
				 	mdex:boolean
				
	CHAR
				 	Character string with a fixed length
					 (maximum length is 255)
				 	mdex:string
				
	DATE
				 	Represents a particular year/month/day, in
					 the form:
					 YYYY-MM-DD

Date types do not have a time-of-day component. The range of values
					 supported is 0000-01-01 to 9999-12-31.
				 	mdex:dateTime
				
	DECIMAL
				 	Numeric with a precision of 38 digits.
				 	mdex:double
				
	DOUBLE
				 	8-byte (double precision) floating point
					 number.
				 	mdex:double
				
	FLOAT
				 	4-byte (single precision) floating point
					 number.
				 	mdex:double
				
	INT
				 	4-byte signed integer.
				 	mdex:long
				
	SMALLINT
				 	2-byte signed integer.
				 	mdex:long
				
	STRING
				 	String values with a maximum of 32,767
					 bytes.
				 	mdex:string
					 A String column can be mapped as a Dgraph non-string data
						type if 100% of the values are actually in another data format, such as long,
						dateTime, and so on.
					

				
	TIMESTAMP
				 	Represents a point in time, with an
					 optional nanosecond precision. Allowed date values range from 1400-01-01 to
					 9999-12-31.
				 	mdex:dateTime
				
	TINYINT
				 	1-byte signed integer.
				 	mdex:long
				
	VARCHAR
				 	Character string with a length specifier
					 (between 1 and 65355)
				 	mdex:string
				

		

	

Data type discovery for Hive string columns

		
		If a Hive column is configured with a data type other than
		 STRING, Data Processing assumes that the formats of
		 the record values in that column are valid. In this case, a Dgraph attributes
		 derived from the column automatically use the mapped Dgraph data type listed in
		 the table above.
		

		String columns, however, often store data that really is non-string
		 data (for example, integers can be stored as strings). When it analyzes the
		 content of Hive table string columns, Data Processing makes a determination as
		 to what type of data is actually stored in each column, using this algorithm:
			If 100% of the column
			 values are of a certain type, then the column values are ingested into the
			 Dgraph as their Dgraph data type equivalents (see the table above).
		
	If the data types in the
			 column are mixed (such as integers and dates), then the Dgraph data type for
			 that column is string (mdex:string). The only exception to
			 this rule is if the column has a mixture of integers and doubles (or floats);
			 in this case, the data type maps to
			 mdex:double (because an integer can be ingested as a
			 double but not vice-versa).
		

		

		For example, if the Data Processing discoverer concludes that a given
		 string column actually stores geocodes (because 100% of the column values are
		 proper geocodes), then those geocode values are ingested as Dgraph
		 mdex:geocode data types. If however, 95% of the column
		 values are geocodes but the other 5% are another data type, then the data type
		 for the column defaults to the Dgraph
		 mdex:string data type. Note, however, that double
		 values that are in scientific notation (such as "1.4E-4") are evaluated as
		 strings, not as doubles.
		

		To take another example, if 100% of a Hive string column consists of
		 integer values, then the values are ingested as Dgraph
		 mdex:long data types. Any valid integer format is
		 accepted, such as "10", "-10", "010", and "+10".
		

	

Space-padded values

		
		Hive values that are padded with spaces are treated as follows:
			All integers with spaces
			 are converted to strings (mdex:string)
		
	Doubles with spaces are
			 converted to strings (mdex:string)
		
	 Booleans with spaces are
			 converted to strings (mdex:string)
		
	Geocodes are not affected
			 even if they are padded with spaces.
		
	All date/time/timestamps
			 are not affected even if they are padded with spaces.
		

		

	

Supported geocode formats

		
		The following Hive geocode formats are supported during the discovery
		 phase and are mapped to the Dgraph
		 mdex:geocode data type:
		 Latitude Longitude
Latitude, Longitude
(Latitude Longitude)
(Latitude, Longitude)

		

		For example:
		 40.55467767 -54.235
40.55467767, -54.235
(40.55467767 -54.235)
(40.55467767, -54.235)

		

		Note that the comma-delimited format requires a space after the comma.
		
		

		If Data Processing discovers any of these geocode formats in the
		 column data, the value is ingested into the Dgraph as a geocode
		 (mdex:geocode) attribute.
		

	

Supported date formats

		
		Dates that are stored in Hive tables as
		 DATE values are assumed to be valid dates for ingest.
		 These
		 DATE values are ingested as Dgraph
		 mdex:dateTime data types.
		

		For a date that is stored in a Hive table as a string, Data Processing
		 checks it against a list of supported date formats. If the string date matches
		 one of the supported date formats, then it is ingested as an
		 mdex:dateTime data type. The date formats that are
		 supported by Data Processing are listed in the
		 dateFormats.txt file. Details on this file are
		 provided in the topic
		 Date format configuration.
		
		

		In addition, Data Processing verifies that each date in a string
		 column is a valid date. If a date is not valid, then the column is considered a
		 string column, not a date column.
		

		As an example of how a Hive column date is converted to a Dgraph date,
		 a Hive date value of:
		 2013-10-23 01:23:24.1234567

will be converted to a Dgraph dateTime value of:
		 2013-10-23T05:23:24.123Z

		

		The date will be ingested as a Dgraph
		 mdex:dateTime data type.
		

	

Support of timestamps

		
		 Hive
		 TIMESTAMP values are assumed to be valid dates and are
		 ingested as Dgraph
		 mdex:dateTime data types. Therefore, their format is
		 not checked against the formats in the
		 dateFormats.txt file.
		

		When shown in Studio, Hive
		 TIMESTAMP values will be formatted as "yyyy-MM-dd" or
		 "yyyy-MM-dd HH:mm:ss" (depending on if the values in that column have times).
		

		Note that if all values in a Hive timestamp column are not in the same
		 format, then the time part in the Dgraph record becomes zero. For example,
		 assume that a Hive column contains the following values:
		 2013-10-23 01:23:24
2012-09-22 02:24:25

		

		Because both timestamps are in the same format, the corresponding
		 values created in the Dgraph records are:
		 2013-10-23T01:23:24.000Z
2012-09-22T02:24:25.000Z

		

		Now suppose a third row is inserted into that Hive table without the
		 time part. The Hive column now has:
		 2013-10-23 01:23:24
2012-09-22 02:24:25
2007-07-23

		

		In this case, the time part of the Dgraph records (the
		 mdex:dateTime value) becomes zero:
		 2013-10-23T00:00:00.000Z
2012-09-22T00:00:00.000Z
2007-07-23T00:00:00.000Z

		

		The reason is that if there are different date formats in the input
		 data, then the Data Processing discoverer selects the more general format that
		 matches all of the values, and as a result, the values that have more specific
		 time information may end up losing some information.
		

		To take another example, the pattern "yyyy-MM-dd" can parse both
		 "2001-01-01" and "2001-01-01 12:30:23". However, a pattern like "yyyy-MM-dd
		 hh:mm:ss" will throw an error when applied on the short string "2001-01-01".
		 Therefore, the discoverer picks the best (longest possible) choice of
		 "yyyy-MM-dd" that can match both "2001-01-01" and "2001-01-01 12:30:23".
		 Because the picked pattern does not have time in it, there will be loss of
		 precision.
		

	

Handling of unconvertible values

		
		It is possible for your data to have column values that result in
		 conversion errors (that is, where the original value cannot be converted to a
		 Dgraph data type). Warnings are logged for the columns that contain conversion
		 errors. For each column, one of the values that could not be converted is
		 logged, as well as the total number of records that contained values that could
		 not be converted. In addition, the values from the data set.
		

		The following are examples of these log messages for unconvertible
		 values:
		 [2016-03-16T16:01:43.315-04:00] [DataProcessing] [WARN] []
[com.oracle.endeca.pdi.logging.ProvisioningLogger] [tid:Driver] [userID:yarn]
Found 2 records containing unconvertible values (such as "2.718") for data source key type_tinyint.
These values could not be converted to type mdex:long and have been removed from the data set.

[2016-03-16T16:01:43.315-04:00] [DataProcessing] [WARN] []
[com.oracle.endeca.pdi.logging.ProvisioningLogger] [tid:Driver] [userID:yarn]
Found 4 records containing unconvertible values (such as "maybe") for data source key
type_string_as_boolean. These values could not be converted to type mdex:boolean and
have been removed from the data set.

		

	

Studio creation of Hive tables

Hive tables can be created from Studio.

	

The Studio user can create a Hive table by:
	 	Uploading data from a
		 Microsoft Excel.
		
	Uploading data from
		 delimited files, such as CSV, TSV, and TXT.
		
	Uploading data from
		 compressed files, such as ZIP, GZ, and GZIP. A compressed file can include only
		 one delimited file.
		
	Importing a JDBC data
		 source.
		
	Exporting data from a Studio
		 component.
		
	Transforming data in a data
		 set and then creating a new data set from the transformed data.
		

	

After the Hive table is created, Studio starts a Data Processing
		workflow on the table. For details on these Studio operations, see the
		Studio User's Guide.
	

A Studio-created Hive table will have the
		skipAutoProvisioning property added at creation time.
		This property prevents the table from being processed again by the BDD Hive
		Table Detector.
	

Another table property will be
		dataSetDisplayName, which stores the display name for
		the data set. The display name is a user-friendly name that is visible in the
		Studio UI.
	

3 Data Processing Configuration

This section describes configuration for attribute searchability,
	 date formats, and configuration for Spark. It also discusses how to add a SerDe
	 JAR to the Data Processing workflows.

	Date format configuration

The 	 dateFormats.txt file provides a list of date formats 	 supported by Data Processing workflows. This topic lists the defaults used in 	 this file. You can add or remove a date format from this file if you use the 	 formats supported by it.
	Spark configuration

Data Processing uses a Spark configuration file, 	 sparkContext.properties. This topic describes how Data 	 Processing obtains the settings for this file and includes a sample of the 	 file. It also describes options you can adjust in this file to tweak the amount 	 of memory required to successfully complete a Data Processing workflow.
	Adding a SerDe JAR to DP workflows

This topic describes the process of adding a custom 	 Serializer-Deserializer (SerDe) to the Data Processing (DP) classpath.

Date format configuration

The
	 dateFormats.txt file provides a list of date formats
	 supported by Data Processing workflows. This topic lists the defaults used in
	 this file. You can add or remove a date format from this file if you use the
	 formats supported by it.

		 If a date in the Hive table is stored with a
		 DATE data type, then it is assumed to be a valid date
		 format and is not checked against the date formats in the
		 dateFormats.txt file. Hive
		 TIMESTAMP values are also assumed to be valid dates,
		 and are also not checked against the
		 dateFormats.txt formats.
		

		However, if a date is stored in the Hive table within a column of type
		
		 STRING, then Data Processing uses the
		 dateFormats.txt to check if this date format is
		 supported.
		

		Both dates and timestamps are then ingested into the Big Data
		 Discovery as Dgraph
		 mdex:dateTime data types.
		

	

Default date formats

		
		 The default date formats that are supported and listed in the
		 dateFormats.txt file are:
		 d/M/yy
d-M-yy
d.M.yy
M/d/yy
M-d-yy
M.d.yy
yy/M/d
yy-M-d
yy.M.d
MMM d, yyyy
EEE, MMM d, yyyy
yyyy-MM-dd HH:mm:ss
yyyy-MM-dd h:mm:ss a
yyyy-MM-dd'T'HH-mm-ssZ
yyyy-MM-dd'T'HH:mm:ss'Z'
yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
yyyy-MM-dd HH:mm:ss.SSS
yyyy-MM-dd'T'HH:mm:ss.SSS
EEE d MMM yyyy HH:mm:ss Z
H:mm
h:mm a
H:mm:ss
h:mm:ss a
HH:mm:ss.SSS'Z'
d/M/yy HH:mm:ss
d/M/yy h:mm:ss a
d-M-yy HH:mm:ss
d-M-yy h:mm:ss a
d.M.yy HH:mm:ss
d.M.yy h:mm:ss a
M/d/yy HH:mm:ss
M/d/yy h:mm:ss a
M-d-yy HH:mm:ss
M-d-yy h:mm:ss a
M.d.yy HH:mm:ss
M.d.yy h:mm:ss a
yy/M/d HH:mm:ss
yy/M/d h:mm:ss a
yy.M.d HH:mm:ss
yy.M.d h:mm:ss a

		

		For details on interpreting these formats, see
		 http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
		
		

	

Modifying the dateFormats file

		
		You can remove a date format from the file. If you remove a data
		 format, Data Processing workflows will no longer support it.
		

		You can also add date formats, as long as they conform to the formats
		 in the
		 SimpleDateFormat class. This class is described in
		 the Web page accessed by the URL link listed above. Note that US is used as the
		 locale.
		

	

Spark configuration

Data Processing uses a Spark configuration file,
	 sparkContext.properties. This topic describes how Data
	 Processing obtains the settings for this file and includes a sample of the
	 file. It also describes options you can adjust in this file to tweak the amount
	 of memory required to successfully complete a Data Processing workflow.

		Data Processing workflows are run by Spark workers. When a Spark
		 worker is started for a Data Processing job, it has a set of default
		 configuration settings that can be overridden or added to by the
		 sparkContext.properties file.
		

		The Spark configuration is very granular and needs to be adapted to
		 the size of the cluster and also the data. In addition, the timeout and failure
		 behavior may have to be altered. Spark offers an excellent set of configurable
		 options for these purposes that you can use to configure Spark for the needs of
		 your installation. For this reason, the
		 sparkContext.properties is provided so that you
		 can fine tune the performance of the Spark workers.
		

		The
		 sparkContext.properties file is located in the
		 $CLI_HOME/edp_cli/config directory. As shipped,
		 the file is empty. However, you can add any Spark configuration property to the
		 file. The properties that you specify will override all previously-set Spark
		 settings. The documentation for the Spark properties is at:
		 https://spark.apache.org/docs/latest/configuration.html
		
		

		Keep in mind that the
		 sparkContext.properties file can be empty. If the
		 file is empty, a Data Processing workflow will still run correctly because the
		 Spark worker will have a sufficient set of configuration properties to do its
		 job.
		

		Note:
Do not delete the
		 sparkContext.properties file. Although it can be
		 empty, a check is made for its existence and the Data Processing workflow will
		 not run if the file is missing.
		

	

Spark default configuration

		
		 When started, a Spark worker gets its configuration settings in a
		 three-tiered manner, in this order:
			From the Hadoop default
			 settings.
		
	From the Data Processing
			 configuration settings, which can either override the Hadoop settings, and/or
			 provide additional settings. For example, the
			 sparkExecutorMemory property (in the DP CLI
			 configuration) can override the Hadoop
			 spark.executor.memory property.
		
	From the property settings
			 in the
			 sparkContext.properties file, which can either
			 override any previous settings and/or provide additional settings.
		

		

		If the
		 sparkContext.properties file is empty, then the
		 final configuration for the Spark worker is obtained from Steps 1 and 2.
		

	

Sample Spark configuration

		
		The following is a sample
		 sparkContext.properties configuration file:
		 ###
Spark additional runtime properties
###
spark.broadcast.compress=true
spark.rdd.compress=false
spark.io.compression.codec=org.apache.spark.io.LZFCompressionCodec
spark.io.compression.snappy.block.size=32768
spark.closure.serializer=org.apache.spark.serializer.JavaSerializer
spark.serializer.objectStreamReset=10000
spark.kryo.referenceTracking=true
spark.kryoserializer.buffer.mb=2
spark.broadcast.factory=org.apache.spark.broadcast.HttpBroadcastFactory
spark.broadcast.blockSize=4096
spark.files.overwrite=false
spark.files.fetchTimeout=false
spark.storage.memoryFraction=0.6
spark.tachyonStore.baseDir=System.getProperty("java.io.tmpdir")
spark.storage.memoryMapThreshold=8192
spark.cleaner.ttl=(infinite)

		

	

Configuring fail fast behavior for transforms

		
		When a transform is committed, the ApplyTransformToDataSetWorkflow
		 will not retry on failure. This workflow cannot safely be re-run after failure
		 because the state of the data set may be out of sync with the state of the HDFS
		 sample files. This non-retry behavior applies to all Hadoop environments.
		

		Users can modify the
		 yarn.resourcemanager.am.max-attempts setting on their
		 cluster to prevent retries of any YARN job. If users do not do this, it may
		 look like the workflow succeeded, but will fail on future transforms because of
		 the inconsistent sample data files. Users do not have to set this property
		 unless they want the fail fast behavior.
		

	

Enabling Spark event logging

		
		You can enable Spark event logging with this file. At runtime, Spark
		 internally compiles the DP workflow into multiple stages (a stage is usually
		 defined by a set of Spark Transformation and bounded by Spark Action). The
		 stages can be matched to the DP operations. The Spark event log includes the
		 detailed timing information on a stage and all the tasks within the stage.
		

		The following Spark properties are used for Spark event logging:
			spark.eventLog.enabled
			 (which set to true) enables the logging of Spark events.
		
	spark.eventLog.dir
			 specifies the base directory in which Spark events are logged.
		
	spark.yarn.historyServer.address
			 specifies the address of the Spark history server (i.e., host.com:18080). The
			 address should not contain a scheme (http://).
		

		

		For example:
		 spark.eventLog.enabled=true
spark.eventLog.dir=hdfs://busj40CDH3-ns/user/spark/applicationHistory
spark.yarn.historyServer.address=busj40bda13.example.com:18088

		

		Note that enabling Spark event logging should be done by Oracle
		 Support personnel when trouble-shooting problems. Enabling Spark event logging
		 under normal circumstances is not recommended as it can have an adverse
		 performance impact on workflows.
		

	

 Spark worker OutOfMemoryError

		
		If insufficient memory is allocated to a Spark worker, an
		 OutOfMemoryError may occur and the Data
		 Processing workflow may terminate with an error message similar to this
		 example:
		 java.lang.OutOfMemoryError: Java heap space
 at java.util.Arrays.copyOf(Arrays.java:2271)
 at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
 at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
 at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
 at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
 at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
 at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1876)
 at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1785)
 at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1188)
 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
 at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
 at org.apache.spark.serializer.SerializationStream$class.writeAll(Serializer.scala:102)
 at org.apache.spark.serializer.JavaSerializationStream.writeAll(JavaSerializer.scala:30)
 at org.apache.spark.storage.BlockManager.dataSerializeStream(BlockManager.scala:996)
 at org.apache.spark.storage.BlockManager.dataSerialize(BlockManager.scala:1005)
 at org.apache.spark.storage.MemoryStore.putValues(MemoryStore.scala:79)
 at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:663)
 at org.apache.spark.storage.BlockManager.put(BlockManager.scala:574)
 at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:108)
 at org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
 at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
 at org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
 at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
 at org.apache.spark.scheduler.Task.run(Task.scala:51)
 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
 at java.lang.Thread.run(Thread.java:745)

		

		The amount of memory required to successfully complete a Data
		 Processing workflow depends on database considerations such as:
			The total number of
			 records in each Hive table.
		
	The average size of each
			 Hive table record.
		

		

		It also depends on the DP CLI configuration settings, such as:
			
			 maxRecordsForNewDataSet
		
	
			 runEnrichment
		
	
			 sparkExecutorMemory
		

		

		If
		 OutOfMemoryError instances occur, you can
		 adjust the DP CLI default values, as well as specify
		 sparkContext.properties configurations, to suit
		 the provisioning needs of your deployment.
		

		For example, Data Processing allows you to specify a
		 sparkExecutorMemory setting, which is used to define
		 the amount of memory to use per executor process. (This setting corresponds to
		 the
		 spark.executor.memory parameter in the Spark
		 configuration.) The Spark
		 spark.storage.memoryFraction parameter is another
		 important option to use if the Spark Executors are having memory issues.
		

		You should also check the "Tuning Spark" topic:
		 http://spark.apache.org/docs/latest/tuning.html
		
		

	

Benign sparkDriver shutdown error

		
		After a Spark job finishes successfully, you may see a sparkDriver
		 shutdown ERROR message in the log, as in this abbreviated example:
		 ...
11:11:42.828 Thread-2 INFO : Shutting down all executors
11:11:42.829 sparkDriver-akka.actor.default-dispatcher-19 INFO : Asking each executor to shut down
11:11:42.892 sparkDriver-akka.actor.default-dispatcher-17 ERROR: AssociationError [akka.tcp://sparkDriver@10.152.110.203:62743] <- [akka.tcp://sparkExecutor@atm.example.com:30203]: Error [Shut down address: akka.tcp://sparkExecutor@bus00atm.us.oracle.com:30203] [
akka.remote.ShutDownAssociation: Shut down address: akka.tcp://sparkExecutor@atm.example.com:30203
Caused by: akka.remote.transport.Transport$InvalidAssociationException: The remote system terminated the association because it is shutting down.
]
akka.event.Logging$Error$NoCause$
11:11:42.893 sparkDriver-akka.actor.default-dispatcher-19 INFO : Driver terminated or disconnected! Shutting down. atm.example.com:30203
11:11:42.897 sparkDriver-akka.actor.default-dispatcher-19 INFO : MapOutputTrackerMasterEndpoint stopped!
...

		

		The actual Spark work is done successfully. However, the sparkDriver
		 shutdown generates the error message. The log message is displayed by Spark
		 (not the Data Processing code). The message is benign and there is no actual
		 impact to functionality.
		

	

Note on differentiating job queuing and cluster locking

		
		Sites that have a small and busy cluster may encounter problems with
		 Spark jobs not running with a message similar to the following example:
		 [DataProcessing] [WARN] [] [org.apache.spark.Logging$class] [tid:Timer-0] [userID:yarn]
Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered
and have sufficient memory

		

		 The cause may be due to normal YARN job queuing rather than cluster
		 locking. (Cluster locking is when a cluster is deadlocked by submitting many
		 applications at once, and having all cluster resources taken up by the
		 ApplicationManagers.) The appearance of the normal YARN job queuing is very
		 similar to cluster locking, especially when there is a large YARN job taking
		 excess time to run. To check on the status of jobs, use the Hadoop cluster
		 manager for your Hadoop distribution.
		

		The following information may help differentiate between job queuing
		 and suspected cluster locking: Jobs are in normal queuing state unless there
		 are multiple jobs in a RUNNING state, and you observe "Initial job has not
		 accepted any resources" in the logs of
		 all these jobs. As long as there is one job making
		 progress where you usually see "Starting task X.X in stage X.X", those jobs are
		 actually in normal queuing state. Also, when checking Spark RUNNING jobs
		 through ResourceManager UI, you should browse beyond the first page or use the
		 Search box in the UI, so that no RUNNING applications are left out.
		

		If your Hadoop cluster has a Hadoop version earlier than 2.6.0., it is
		 recommended that the explicit setting is used to limit the ApplicationMaster
		 share:
		

		
		 <queueMaxAMShareDefault>0.5</queueMaxAMShareDefault>

		

		This property limits the fraction of the queue's fair share that can
		 be used to run Application Masters.
		

	

Adding a SerDe JAR to DP workflows

This topic describes the process of adding a custom
	 Serializer-Deserializer (SerDe) to the Data Processing (DP) classpath.

		When customers create a Hive table, they can specify a
		 Serializer-Deserializer (SerDe) class of their choice. For example, consider
		 the last portion of this statement:
		 CREATE TABLE samples_table(
 id INT,
 city STRING,
 country STRING,
 region STRING,
 population INT)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde';

		

		If that SerDe JAR is not packaged with the Data Processing package
		 that is part of the Big Data Discovery, then a Data Processing run is unable to
		 read the Hive table, which prevents the importing of the data into the Dgraph.
		 To solve this problem, you can integrate your custom SerDe into the Data
		 Processing workflow.
		

		This procedure assumes this pre-requisite:
			Before integrating the
			 SerDe JAR with Data Processing, the SerDe JAR should be present on the Hadoop
			 cluster's HiveServer2 node and configured via the
			 Hive Auxiliary Jars Directory property in the
			 Hive service. To check this, you can verify that, for a table created with this
			 SerDe, a
			 SELECT * query on the table does not issue an error.
			 This query should be verified to work from Hue and the Hive CLI to ensure the
			 SerDe was added properly.
		

		

	

		 To integrate a custom SerDe JAR into the Data Processing workflow:
		

	

	Copy the SerDe JAR into the same location on each cluster node.
		 Note that this location can be the same one as used when adding
			 the SerDe Jar to the HiveServer2 node.
		

	Edit the DP CLI
			 edp.properties file and add the path to the
			 SerDe JAR to the
			 extraJars property. This property should be a
			 colon-separated list of paths to JARs. This will allow DP jobs from the CLI to
			 pick up the SerDe JAR.
		 By default, the
			 edp.properties file is in the
			 $BDD_HOME/dataprocessing/edp_cli/config
			 directory.
		
You should also update the
			 DP_ADDITIONAL_JARS property in the installation
			 version of the
			 bdd.conf file with the path, in case you ever
			 re-install BDD.
		

	For Studio, edit the
			 $DOMAIN_HOME/config/studio/portal-ext.properties
			 file and add the path to the SerDe Jar to the
			 dp.settings.extra.jars property. This property
			 should be a colon-separated list of paths to JARs. This will allow DP jobs from
			 Studio to pick up the SerDe JAR.
		

		As a result, the SerDe JAR is added in the Data Processing classpath.
		 This means that the SerDe class will be used in all Data Processing workflows,
		 whether they are initiated automatically by Studio or by running the Data
		 Processing CLI.
		

	

4 DP Command Line Interface Utility

This section provides information on configuring and using the
	 Data Processing Command Line Interface utility.

	DP CLI overview

The DP CLI (Command Line Interface) shell utility is used to 	 launch Data Processing workflows, either manually or via a cron job.
	DP CLI permissions and logging

This topic provides brief overviews of permissions and logging.
	DP CLI configuration

The DP CLI has a configuration file, 	 edp.properties, that sets its default properties.
	DP CLI flags

The DP CLI has a number of runtime flags that control its 	 behavior.
	Using whitelists and blacklists

A whitelist specifies which Hive tables should be processed in Big 	 Data Discovery, while a blacklist specifies which Hive tables should be ignored 	 during data processing.
	DP CLI cron job

You can specify that the BDD installer create a cron job to run 	 the DP CLI.
	DP CLI workflow examples

This topic shows some workflow examples using the DP CLI.
	Processing Hive tables with Snappy compression

This topic explains how to set up the Snappy libraries so that the 	 DP CLI can process Hive tables with Snappy compression.
	Changing Hive table properties

This topic describes how to change the value of the 	 skipAutoProvisioning property in a Hive table.

 DP CLI overview

The DP CLI (Command Line Interface) shell utility is used to
	 launch Data Processing workflows, either manually or via a cron job.

The Data
		Processing workflow can be run on an individual Hive table, all tables within a
		Hive database, or all tables within Hive. The tables must be of the
		auto-provisioned type (as explained further in this topic).
	

The DP CLI starts workflows that are run by Spark workers. The results
		of the DP CLI workflow are the same as if the tables were processed by a
		Studio-generated Data Processing workflow.
	

Two important use cases for the DP CLI are:
	 	Ingesting data from your
		 Hive tables immediately after installing the Big Data Discovery (BDD) product.
		 When you first install BDD, your existing Hive tables are not processed.
		 Therefore, you must use the DP CLI to launch a first-time Data Processing
		 operation on your tables.
		
	Invoking the BDD Hive Table
		 Detector, which in turn can start Data Processing workflows for new or deleted
		 Hive tables.
		

	

The DP CLI can be run either manually or from a cron job. The BDD
		installer creates a cron job as part of the installation procedure if the
		ENABLE_HIVE_TABLE_DETECTOR property is set to TRUE in
		the
		bdd.conf file.
	

Skipped and auto-provisioned Hive tables

		
		From the point of view of Data Processing, there are two types of Hive
		 tables: skipped tables and auto-provisioned tables. The table type depends on
		 the presence of a special table property,
		 skipAutoProvisioning. The
		 skipAutoProvisioning property (when set to
		 true) tells the BDD Hive Table Detector to skip the
		 table for processing.
		
		

		Skipped tables are Hive tables that have the
		 skipAutoProvisioning table property present and set to
		
		 true. Thus, a Data Processing workflow will never be
		 launched for a skipped table (unless the DP CLI is run manually with the
		 --table flag set to the table). This property is set
		 in two instances:
			The table was created from
			 Studio, in which case the
			 skipAutoProvisioning property is always set at table
			 creation time.
		
	The table was created by a
			 Hive administrator and a corresponding BDD data set was provisioned from that
			 table. Later, that data set was deleted from Studio. When a data set (from an
			 admin-created table) is deleted, Studio modifies the underlying Hive table by
			 adding the
			 skipAutoProvisioning table property.
		

		

		For information on changing the value of the
		 skipAutoProvisioning property, see
		 Changing Hive table properties.
		
		

		Auto-provisioned tables are Hive tables that were created by
		 the Hive administrator and do not have a
		 skipAutoProvisioning property. These tables can be
		 provisioned by a Data Processing workflow that is launched by the BDD Hive
		 Table Detector.
		

		Note:
Keep in mind that when a BDD data set is deleted, its source Hive
		 table is not deleted from the Hive database. This applies to data sets that
		 were generated from either Studio-created tables or admin-created tables. The
		 skipAutoProvisioning property ensures that the table
		 will not be re-provisioned when its corresponding data set is deleted
		 (otherwise, the deleted data set would re-appear when the table was
		 re-processed).
		

	

BDD Hive Table Detector

		
		The BDD Hive Table Detector is a process that automatically keeps a
		 Hive database in sync with the BDD data sets. The BDD Hive Table Detector has
		 two major functions:
			Automatically checks all
			 Hive tables within a Hive database:
			 	 For each
				 auto-provisioned table that does not have a corresponding BDD data set, the BDD
				 Hive Table Detector launches a new data provisioning workflow (unless the table
				 is skipped via the blacklist).
				
	For all skipped
				 tables, such as, Studio-created tables, the BDD Hive Table Detector never
				 provisions them, even if they do not have a corresponding BDD data set.
				

		
	Automatically launches the
			 data set clean-up process if it detects that a BDD data set does not have an
			 associated Hive table. (That is, an orphaned BDD data set is automatically
			 deleted if its source Hive table no longer exists.) Typically, this scenario
			 occurs when a Hive table (either admin-created or Studio-created) has been
			 deleted by a Hive administrator.
		

		

		The BDD Hive Table Detector detects empty tables, and does not launch
		 workflows for those tables.
		

		 The BDD Hive Table Detector is invoked with the DP CLI, which has
		 command flags to control the behavior of the script. For example, you can
		 select the Hive tables you want to be processed. The
		 --whitelist flag of the CLI specifies a file
		 listing the Hive tables that should be processed, while the
		 --blacklist flag controls a file with Hive
		 tables that should be filtered out during processing.
		

	

DP CLI permissions and logging

This topic provides brief overviews of permissions and logging.

DP CLI permissions

		
		The DP CLI script is installed with ownership permission for the
		 person who ran the installer. These permissions can be changed by the owner to
		 allow anyone else to run the script.
		
		

	

DP CLI logging

		
		The DP CLI logs detailed information about its workflow into the log
		 file defined in the
		 log4j.properties file. This file is located in the
		
		 $BDD_HOME/dataprocessing/edp_cli directory and is
		 documented in
		 DP logging properties file.
		
		
		

		The implementation of the BDD Hive Table Detector is based on the DP
		 CLI, so it uses the same logging properties as the DP CLI script. It also
		 produces verbose outputs (on some classes) to stdout/stderr.
		

	

DP CLI configuration

The DP CLI has a configuration file,
	 edp.properties, that sets its default properties.

		By default, the
		 edp.properties file is located in the
		 $BDD_HOME/dataprocessing/edp_cli/config directory.
		
		
		

		 Some of the default values for the properties are populated from the
		 bdd.conf installation configuration file. After
		 installation, you can change the CLI configuration parameters by opening the
		 edp.properties file with a text editor.
		

	

Data Processing defaults

		
		The properties that set the Data Processing defaults are:
		
	Data Processing Property
				 	Description
				
	maxRecordsForNewDataSet
				 	Specifies the maximum number of records in
					 the sample size of a new data set (that is, the number of sampled records from
					 the source Hive table). In effect, this sets the maximum number of records in a
					 BDD data set. Note that this setting controls the sample size for all new data
					 sets and it also controls the sample size resulting from transform operations
					 (such as during a Refresh update on a data set that contains a transformation
					 script).
					 The default is set by the
						MAX_RECORDS property in the
						bdd.conf file. The CLI
						--maxRecords flag can override this
						setting.
					

				
	runEnrichment
				 	Specifies whether to run the Data
					 Enrichment modules. The default is set by the
					 ENABLE_ENRICHMENTS property in the
					 bdd.conf file.
					 You can override this setting by using the CLI
						--runEnrichment flag. The CLI
						--excludePlugins flag can also be used
						to exclude some of the Data Enrichment modules.
					

				
	defaultLanguage
				 	The language for all attributes in the
					 created data set. The default is set by the
					 LANGUAGE property in the
					 bdd.conf file. For the supported language
					 codes, see
					 Supported languages.
				
	edpDataDir
				 	Specifies the location of the HDFS
					 directory where data ingest and transform operations are processed. The default
					 location is the
					 /user/bdd/edp/data directory.
				
	datasetAccessType
				 	Sets the access type for the data set,
					 which determines which Studio users can access the data set in the Studio UI.
					 This property takes one of these case-insensitive values:
					 	public means that all
						 Studio users can access the data set. This is the default.
						
	private means that
						 only designated Studio users and groups can access the data set. The users and
						 groups are specified in attributes set in the data set's entry in the DataSet
						 Inventory.
						

				
	notificationsServerUrl
				 	Specifies the URL of the Notification
					 Service. This value is automatically set by the BDD installer and will have a
					 value similar to this example:
					 https://web14.example.com:7003/bdd/v1/api/workflows

				

		

	

Dgraph Gateway connectivity settings

		
		These properties are used to control access to the Dgraph Gateway that
		 is managing the Dgraph nodes:
		
	Dgraph Gateway Property
				 	Description
				
	endecaServerHost
				 	The name of the host on which the Dgraph
					 Gateway is running. The default name is specified in the
					 bdd.conf configuration file.
				
	endecaServerPort
				 	The port on which Dgraph Gateway is
					 listening. The default is 7003.
				
	endecaServerContextRoot
				 	The context root of the Dgraph Gateway when
					 running on Managed Servers within the WebLogic Server. The value should be set
					 to:
					 /endeca-server
				

		

	

Kerberos credentials

		
		The DP CLI is enabled for Kerberos support at installation time, if
		 the
		 ENABLE_KERBEROS property in the
		 bdd.conf file is set to TRUE. The
		 bdd.conf file also has parameters for specifying
		 the name of the Kerberos principal, as well as paths to the Kerberos keytab
		 file and the Kerberos configuration file. The installation script populates the
		
		 edp.properties file with the properties in the
		 following table.
		

		
		
	Kerberos Property
				 	Description
				
	isKerberized
				 	Specifies whether Kerberos support should
					 be enabled. The default value is set by the
					 ENABLE_KERBEROS property in the
					 bdd.conf file.
				
	localKerberosPrincipal
				 	The name of the Kerberos principal. The
					 default name is set by the
					 KERBEROS_PRINCIPAL property in the
					 bdd.conf file.
				
	localKerberosKeytabPath
				 	Path to the Kerberos keytab file on the
					 WebLogic Admin Server. The default path is set by the
					 KERBEROS_KEYTAB_PATH property in the
					 bdd.conf file.
				
	clusterKerberosPrincipal
				 	The name of the Kerberos principal. The
					 default name is set by the
					 KERBEROS_PRINCIPAL property in the
					 bdd.conf file.
				
	clusterKerberosKeytabPath
				 	Path to the Kerberos keytab file on the
					 WebLogic Admin Server. The default path is set by the
					 KERBEROS_KEYTAB_PATH property in the
					 bdd.conf file.
				
	krb5ConfPath
				 	Path to the
					 krb5.conf configuration file. This file
					 contains configuration information needed by the Kerberos V5 library. This
					 includes information describing the default Kerberos realm, and the location of
					 the Kerberos key distribution centers for known realms.
					 The default path is set by the
						KRB5_CONF_PATH property in the
						bdd.conf file. However, you can specify
						a local, custom location for the
						krb5.conf file.
					

				

		

		For further details on these parameters, see the
		 Installation Guide
		

	

Hadoop connectivity settings

		
		The parameters that define connections to Hadoop environment processes
		 and resources are:
		
	Hadoop Parameter
				 	Description
				
	hiveServerHost
				 	Name of the host on which the Hive server
					 is running. The default value is set at the BDD installation time.
				
	hiveServerPort
				 	Port on which the Hive server is listening.
					 The default value is set at the BDD installation time.
				
	clusterOltHome
				 	Path to the OLT directory on the Spark
					 worker node. The default location is the
					 $BDD_HOME/common/edp/olt directory.
				
	oltHome
				 	Both
					 clusterOltHome and this parameter are
					 required, and both must be set to the same value.
				
	hadoopClusterType
				 	The installation type, according to the
					 Hadoop distribution. The value is set by the
					 INSTALL_TYPE property in the
					 bdd.conf file.
				
	hadoopTrustStore
				 	Path to the directory on the install
					 machine where the certificates for HDFS, YARN, Hive, and the KMS are stored.
					 Required for clusters with TLS/SSL enabled. The default path is set by the
					 HADOOP_CERTIFICATES_PATH property in the
					 bdd.conf file.
				

		

	

Spark environment settings

		
		These parameters define settings for interactions with Spark workers:
		
	Spark Properties
				 	Description
				
	sparkMasterUrl
				 	Specifies the master URL of the Spark
					 cluster. In Spark-on-YARN mode, the ResourceManager's address is picked up from
					 the Hadoop configuration by simply specifying
					 yarn-cluster for this parameter. The default
					 value is set at the BDD installation time.
				
	sparkDynamicAllocation
				 	Indicates if Data Processing will
					 dynamically compute the executor resources or use static executor resource
					 configuration:
					 	If set to
						 false, the values of the static
						 resource parameters (sparkDriverMemory,
						 sparkDriverCores,
						 sparkExecutorMemory,
						 sparkExecutorCores, and
						 sparkExecutors) are required and are used.
						
						
	If set to
						 true, the values for the executor
						 resources are dynamically computed. This means that the static resource
						 parameters are not required and will be ignored even if specified.
						

					 The default is set by the
						SPARK_DYNAMIC_ALLOCATION property in the
						bdd.conf file.
					

				
	sparkDriverMemory
				 	Amount of memory to use for each Spark
					 driver process, in the same format as JVM memory strings (such as 512m, 2g,
					 10g, and so on). The default is set by the
					 SPARK_DRIVER_MEMORY property in the
					 bdd.conf file.
				
	sparkDriverCores
				 	Maximum number of CPU cores to use by the
					 Spark driver. The default is set by the
					 SPARK_DRIVER_CORES property in the
					 bdd.conf file.
				
	sparkExecutorMemory
				 	Amount of memory to use for each Spark
					 executor process, in the same format as JVM memory strings (such as 512m, 2g,
					 10g, and so on). The default is set by the
					 SPARK_EXECUTOR_MEMORY property in the
					 bdd.conf file.
					 This setting must be less than or equal to Spark's
						Total Java Heap Sizes of Worker's Executors in
						 Bytes (executor_total_max_heapsize) property in
						Cloudera Manager. You can access this property in Cloudera Manager by selecting
						
						Clusters > Spark (Standalone), then
						clicking the
						Configuration tab. This property is in
						the
						Worker Default Group category (using
						the classic view).
					

				
	sparkExecutorCores
				 	Maximum number of CPU cores to use for each
					 Spark executor. The default is set by the
					 SPARK_EXECUTOR_CORES property in the
					 bdd.conf file.
				
	sparkExecutors
				 	Total number of Spark executors to launch.
					 The default is set by the
					 SPARK_EXECUTORS property in the
					 bdd.conf file.
				
	yarnQueue
				 	The YARN queue to which the Data Processing
					 job is submitted. The default value is set by the
					 YARN_QUEUE property in the
					 bdd.conf file.
				
	maxSplitSizeMB
				 	 The maximum partition size for Spark
					 inputs, in MB. This controls the size of the blocks of data handled by Data
					 Processing jobs. This property overrides the HDFS block size used in Hadoop.
					 Partition size directly affects Data Processing performance
						— when partitions are smaller, more jobs run in parallel and cluster resources
						are used more efficiently. This improves both speed and stability.
					

					 The default is set by the
						MAX_INPUT_SPLIT_SIZE property in the
						bdd.conf file (which is 32, unless
						changed by the user). The 32MB is amount should be sufficient for most
						clusters, with a few exceptions:
					 	If your Hadoop
						 cluster has a very large processing capacity and most of your data sets are
						 small (around 1GB), you can decrease this value.
						
	In rare cases,
						 when data enrichments are enabled the enriched data set in a partition can
						 become too large for its YARN container to handle. If this occurs, you can
						 decrease this value to reduce the amount of memory each partition requires.
						

					

					 If this property is empty, the DP CLI logs an error at
						start-up and uses a default value of 32MB.
					

				

		

	

Jar location settings

		
		These properties specify the paths for jars used by workflows:
		
	Jar Property
				 	Description
				
	sparkYarnJar
				 	Path to JAR files used by Spark-on-YARN.
					 The default path is set by the
					 SPARK_ON_YARN_JAR property in the
					 bdd.conf file. However, additional JARs
					 (such as
					 edpLogging.jar) are appended to the path
					 by the installer.
				
	bddHadoopFatJar
				 	Path to the location of the Hadoop Shared
					 Library (file name of
					 bddHadoopFatJar.jar) on the cluster. The
					 path is set by the installer. and is typically the
					 $BDD_HOME/common/hadoop/lib directory.
					 Note that the
						data_processing_CLI script has a
						BDD_HADOOP_FATJAR property that specifies
						the location of the Hadoop Shared Library on the local file system of the DP
						CLI client.
					

				
	edpJarDir
				 	Path to the directory where the Data
					 Processing JAR files for Spark workers are located on the cluster. The default
					 location is the
					 $BDD_HOME/common/edp/lib directory.
				
	extraJars
				 	Path to any extra JAR files to be used by
					 customers, such as the path to a custom SerDe JAR. The default path is set by
					 the
					 DP_ADDITIONAL_JARS property in the
					 bdd.conf file.
				

		

	

Kryo serialization settings

		
		These properties define the use of Kryo serialization:
		
	Kryo Property
				 	Description
				
	kryoMode
				 	Specifies whether to enable
					 (true) or disable (false) Kryo for
					 serialization. Make sure that this property is set to
					 false because Kryo serialization is not
					 supported in BDD.
				
	kryoBufferMemSizeMB
				 	Maximum object size (in MBs) to allow
					 within Kryo. This property, like the
					 kryoMode property, is not supported by BDD
					 workflows.
				

		

	

JAVA_HOME setting

		
		In addition to setting the CLI configuration properties, make sure
		 that the
		 JAVA_HOME environment variable is set to the
		 directory containing the specific version of Java that will be called when you
		 run the Data Processing CLI.
		

	

DP CLI flags

The DP CLI has a number of runtime flags that control its
	 behavior.

		You can list these flags if you use the
		 --help flag. Each flag has a full name that
		 begins with two dashes (such as
		 --maxRecords) and an abbreviated version with
		 one dash (such as
		 -m).
		

		The
		 --devHelp flag displays flags that are intended
		 for use by Oracle internal developers and support personnel. These flags are
		 therefore not documented in this guide.
		

		Note:
All flag names are case sensitive.
		

		The CLI flags are:
		
	CLI Flag
				 	Description
				
	-a,
					 --all
				 	Runs data processing on all Hive tables in
					 all Hive databases.
				
	-bl,
					 --blackList
						<blFile>
				 	Specifies the file name for the blacklist
					 used to filter out Hive tables. The tables in this list are ignored and not
					 provisioned. Must be used with the
					 --database flag.
				
	-clean,
					 --cleanAbortedJobs
				 	Cleans up artifacts left over from
					 incomplete workflows.
				
	-d,
					 --database
						<dbName>
				 	Runs Data Processing using the specified
					 Hive database. If a Hive table is not specified, runs on all Hive tables in the
					 Hive database (note that tables with the
					 skipAutoProvisioning property set to
					 true will not be provisioned).
					 For Refresh and Incremental updates, can be used to override
						the default database in the data set's metadata.
					

				
	-devHelp,
					 --devHelp
				 	Displays usage information for flags
					 intended to be used by Oracle support personnel.
				
	-disableSearch,
					 --disableSearch
				 	Turns off Dgraph indexing for search. This
					 means that DP Discovery disables record search and value search on all the
					 attributes, irrespective of the average String length of the values. This flag
					 can be used only for provisioning workflows (for new data sets created from
					 Hive tables) and for refresh workflows (with the
					 --refreshData flag). This flag cannot be
					 used in conjunction with the
					 --incrementalUpdate flag.
				
	-e,
					 --runEnrichment
				 	Runs the Data Enrichment modules (except
					 for the modules that never automatically run during the sampling phase).
					 Overrides the
					 runEnrichment property in the
					 edp.properties configuration file.
					 You can also exclude some modules with the CLI
						--excludePlugins flag.
					

				
	-ep,
					 --excludePlugins
						<exList>
				 	Specifies a list of Data Enrichment modules
					 to exclude when Data Enrichments are run.
				
	-h,
					 --help
				 	Displays usage information for flags
					 intended to be used by customers.
				
	-incremental,
					 --incrementalUpdate
						<logicalName>
						<filter>
				 	Performs an incremental update on a BDD
					 data set from the original Hive table, using a filter predicate to select the
					 new records. Optionally, can use the
					 --table and
					 --database flags.
				
	-m,
					 --maxRecords
						<num>
				 	Specifies the maximum number of records in
					 the sample size of a data set (that is, the number of sampled records from the
					 source Hive table). In effect, this sets the maximum number of records in a BDD
					 data set. Note that this setting controls the sample size for all new data sets
					 and it also controls the sample size resulting from transform operations (such
					 as during a Refresh update on a data set that contains a transformation
					 script). Overrides the CLI
					 maxRecordsForNewDataSet property in the
					 edp.properties configuration file.
				
	-mwt,
					 --maxWaitTime
						<secs>
				 	Specifies the maximum waiting time (in
					 seconds) for each table processing to complete. The next table is processed
					 after this interval or as soon as the data ingesting is completed.
					 This flag controls the pace of the table processing, and
						prevents Hadoop and Spark cluster nodes, as well as the Dgraph cluster nodes
						from being flooded with a large number of simultaneous requests.
					

				
	-ping,
					 --pingCheck
				 	Ping checks the status of components that
					 Data Processing needs.
				
	-refresh,
					 --refreshData
						<logicalName>
				 	Performs a full data refresh on a BDD data
					 set from the original Hive table. Optionally, you can use the
					 --table and
					 --database flags.
				
	
					 -t,
					 --table
						<tableName>
				 	Runs data processing on the specified Hive
					 table. If a Hive database is not specified, assumes the default database. Note
					 that the table is skipped in these cases: it does not exist, is empty, or has
					 the table property
					 skipAutoProvisioning set to
					 true.
					 For Refresh and Incremental updates, can be used to override
						the default source table in the data set's metadata.
					

				
	-v,
					 --versionNumber
				 	Prints the version number of the current
					 iteration of the Data Processing component within Big Data Discovery.
				
	
					 -wl,
					 --whiteList
						<wlFile>
				 	Specifies the file name for the whitelist
					 used to select qualified Hive tables for processing. Each table on this list is
					 processed by the Data Processing component and is ingested into the Dgraph as a
					 BDD data set. Must be used with the
					 --database flag.
				
	UpgradeDatesetInventory
						<fromVersion>
				 	Upgrades the DataSet Inventory from a given
					 BDD version to the latest version. Note that this subcommand is called by the
					 upgrade script and should not be run interactively.
				
	UpgradeSampleFiles
						<fromVersion>
				 	Upgrades the sample files (produced as a
					 result of a previous workflow) from a given BDD version to the latest version.
					 Note that this subcommand is called by the upgrade script and should not be run
					 interactively.
				

		

	

Using whitelists and blacklists

A whitelist specifies which Hive tables should be processed in Big
	 Data Discovery, while a blacklist specifies which Hive tables should be ignored
	 during data processing.

		Default lists are provided in the DP CLI package:
			cli_whitelist.txt
			 is the default whitelist name. The default whitelist is empty, as it does not
			 select any Hive tables.
		
	cli_blacklist.txt
			 is the default blacklist name. The default blacklist has one
			 .+ regex which matches all Hive table names (therefore all
			 Hive tables are blacklisted and will not be imported).
		

		

		Both files include commented-out samples of regular expressions that
		 you can use as patterns for your tables.
		

		To specify the whitelist, use this syntax:
		 --whiteList cli_whitelist.txt

		

		To specify the blacklist, use this syntax:
		 --blackList cli_blacklist.txt

		

		Both lists are optional when running the DP CLI. However, you use the
		 --database flag if you want to use one or both
		 of the lists.
		

		If you manually run the DP CLI with the
		 --table flag to process a specific table, the
		 whitelist and blacklist validations will not be applied.
		

	

List syntax

		
		The
		 --whiteList and the
		 --blackList flags take a corresponding text file
		 as their argument. Each text file contains one or more regular expressions
		 (regex). There should be one line per regex pattern in the file. The patterns
		 are only used to match Hive table names (that is, the match is successful as
		 long as there is one matched pattern found).
		

		The default whitelist and blacklist contain commented-out sample
		 regular expressions that you can use as patterns for your tables. You must edit
		 the whitelist file to include at least one regular expression that specifies
		 the tables to be ingested. The blacklist by default excludes all tables with
		 the
		 .+ regex, which means you have to edit the blacklist if you want
		 to exclude only specific tables.
		

		For example, suppose you wanted to process any table whose name
		 started with
		 bdd, such as
		 bdd_sales. The whitelist would have this regex entry:
		

		
		 ^bdd.*

		

		You could then run the DP CLI with the whitelist, and not specify the
		 blacklist.
		

	

List processing

		
		The pattern matcher in Data Processing workflow uses this algorithm:
			The whitelist is parsed
			 first. If the whitelist is not empty, then a list of Hive tables to process is
			 generated. If the whitelist is empty, then no Hive tables are ingested.
		
	If the blacklist is
			 present, the blacklist pattern matching is performed. Otherwise, blacklist
			 matching is ignored.
		

		

		To summarize, the whitelist is parsed first, which generates a list of
		 Hive tables to process, and the blacklist is parsed second, which generates a
		 list of skipped Hive table names. Typically, the names from the blacklist names
		 modify those generated by the whitelist. If the same name appears in both
		 lists, then that table is not processed, that is, the blacklist can, in effect,
		 remove names from the whitelist.
		

	

Example

		
		To illustrate how these lists work, assume that you have 10 Hive
		 tables with sales-related information. Those 10 tables have a
		 _bdd suffix in their names, such as
		 claims_bdd. To include them in data processing, you
		 create a
		 whitelist.txt file with this regex entry:
		 ^.*_bdd$

		

		If you then want to process all
		 *_bdd tables except for the
		 claims_bdd table, you create a
		 blacklist.txt file with this entry:
		 claims_bdd

		

		When you run the DP CLI with both the
		 --whiteList and
		 --blackList flags, all the
		 *_bdd tables will be processed except for the
		 claims_bdd table.
		

	

DP CLI cron job

You can specify that the BDD installer create a cron job to run
	 the DP CLI.

		By default, the BDD installer does not create a cron job for the DP
		 CLI. To create the cron job, set the
		 ENABLE_HIVE_TABLE_DETECTOR parameter to
		 TRUE in the BDD installer's
		 bdd.conf configuration file.
		

		The following parameters in the
		 bdd.conf configuration file control the creation
		 of the cron job:
		
	Configuration Parameter
				 	Description
				
	ENABLE_HIVE_TABLE_DETECTOR
				 	 When set to
					 TRUE, creates a cron job, which automatically
					 runs on the server defined by
					 DETECTOR_SERVER. The default is
					 FALSE.
				
	DETECTOR_SERVER
				 	Specifies the server on which the DP CLI
					 will run.
				
	DETECTOR_HIVE_DATABASE
				 	The name of the Hive database that the DP
					 CLI will run against.
				
	DETECTOR_MAXIMUM_WAIT_TIME
				 	The maximum amount of time (in seconds) that
					 the Hive Table Detector waits between update jobs.
				
	DETECTOR_SCHEDULE
				 	A Cron format schedule that specifies how
					 often the DP CLI runs. The value must be enclosed in quotes. The default value
					 is:
					 "0 0 * * *"

 The default means the Hive Table Detector runs at midnight, every
					 day of every month.
				

		

		If the cron job is created, the default cron job definition settings
		 (as set in the
		 crontab file) are as follows:
		 0 0 * * * /usr/bin/flock -x -w 120 /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/work/detector.lock
 -c "cd /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli && ./data_processing_CLI -d default
 -wl /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/config/cli_whitelist.txt
 -bl /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/config/cli_blacklist.txt -mwt 1800 >>
 /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/work/detector.log 2>&1"

		

		You can modify these settings (such as the time schedule). In
		 addition, be sure to monitor the size of the
		 detector.log file.
		

	

	Modifying the DP CLI cron job

You can modify the crontab file to change settings for the cron 	 job.

Modifying the DP CLI cron job

You can modify the crontab file to change settings for the cron
	 job.

		Some common changes include:
			Changing the schedule when
			 the cron job is run.
		
	Changing which Hive
			 database the DP CLI will run against. To do so, change the argument of the
			 -d flag to specify another Hive database, such
			 as
			 -d mytables to process tables in the database
			 named "mytables".
		
	Changing the amount of
			 time (in seconds) that the Hive Table Detector waits between update jobs. To do
			 so, change the argument of the
			 -mwt flag to specify another time interval,
			 such as
			 -mwt 2400 for an interval of 2400 seconds.
		

		

		 To modify the DP CLI cron job:
		

	

	From the Linux command line, run the
			 crontab -e command.
		 The crontab file is opened in a text editor, such as the
			 vi editor.
		

	Make your changes to the crontab file in the editor.
		
	Save the file.
		

		The modified file may look like this:
		 30 4 * * * /usr/bin/flock -x -w 120 /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/work/detector.lock
 -c "cd /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli && ./data_processing_CLI
 -d mytables
 -wl /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/config/cli_whitelist.txt
 -bl /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/config/cli_blacklist.txt
 -mwt 2400 >> /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/work/detector.log 2>&1"

		

	

		For the first few runs of the cron job, check the
		 detector.log log file to verify that the cron jobs
		 are running satisfactorily.
		

	

DP CLI workflow examples

This topic shows some workflow examples using the DP CLI.

Excluding specific Data Enrichment modules

		
		The
		 --excludePlugins flag (abbreviated as
		 -ep) specifies a list of Data Enrichment modules
		 to exclude when enrichments are run. This flag should be used only enrichments
		 are being run as part of the workflows (for example, with the
		 --excludePlugins flag).
		

		The syntax is:
		 ./data_processing_CLI --excludePlugins <excludeList>

 where
		 excludeList is a space-separated string of one or
		 more of these Data Enrichment canonical module names:
		 	address_geo_tagger
				(for the Address GeoTagger)
			
	ip_geo_extractor (for
				the IP Address GeoTagger)
			
	reverse_geo_tagger
				(for the Reverse GeoTagger)
			
	tfidf_term_extractor
				(for the TF.IDF Term extractor)
			
	doc_level_sentiment_analysis
				(for the document-level Sentiment Analysis module)
			
	language_detection
				(for the Language Detection module)
			

		

		For example:
		 ./data_processing_CLI --table masstowns --runEnrichment --excludePlugins reverse_geo_tagger

		

		For details on the Data Enrichment modules, see
		 Data Enrichment Modules.
		
		

	

Cleaning up aborted jobs

		
		The
		 --cleanAbortedJobs flag (abbreviated as
		 -clean) cleans up artifacts left over from
		 incomplete Data Processing workflows:
		 ./data_processing_CLI --cleanAbortedJobs

		
		

		A successful result should be similar to this example:
		 ...
[2015-07-13T10:18:13.683-04:00] [DataProcessing] [INFO] [] [org.apache.spark.Logging$class] [tid:main] [userID:fcalvill]
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: web12.example.com
 ApplicationMaster RPC port: 0
 queue: root.fcalvill
 start time: 1436797065603
 final status: SUCCEEDED
 tracking URL: http://web12.example.com:8088/proxy/application_1434142292832_0016/A
 user: fcalvill
Clean aborted job completed.
data_processing_CLI finished with state SUCCESS

		

		Note that the name of the workflow on the YARN All Applications page
		 is:
		 EDP: CleanAbortedJobsConfig{}

		

	

Ping checking the DP components

		
		The
		 --pingCheck flag (abbreviated as
		 -ping) ping checks the status of components that
		 Data Processing needs:
		 ./data_processing_CLI --pingCheck

		
		

		A successful result should be similar to this example:
		 ...
[2015-07-14T14:52:32.270-04:00] [DataProcessing] [INFO] [] [com.oracle.endeca.pdi.logging.ProvisioningLogger]
[tid:main] [userID:fcalvill] Ping check time elapsed: 7 ms
data_processing_CLI finished with state SUCCESS

		

	

Processing Hive tables with Snappy compression

This topic explains how to set up the Snappy libraries so that the
	 DP CLI can process Hive tables with Snappy compression.

		By
		 default, the DP CLI cannot successfully process Hive tables with Snappy
		 compression. The reason is that the required Hadoop native libraries are not
		 available in the library path of the JVM. Therefore, you must copy the Hadoop
		 native libraries from their source location into the appropriate BDD directory.
		
		

		 To set up the Snappy libraries:
		

	

	Locate the source directory for the Hadoop native libraries in
			 your Hadoop installation.
		
			 The typical location on CDH is:
				/opt/cloudera/parcels/CDH/lib/hadoop/lib/native/

			

		

	Copy the Hadoop native libraries to this BDD directory:
		
			
				$BDD_HOME/common/edp/olt/bin

			

		

			 The copy operation must be performed on all BDD nodes.
			

		

		Once this copy is done, all subsequent DP workflows should be able to
		 process Hive tables with Snappy compression.
		

	

		Note that if you add a new Data Processing node, you must manually
		 copy the Hadoop native libraries to the new node.
		

	

Changing Hive table properties

This topic describes how to change the value of the
	 skipAutoProvisioning property in a Hive table.

		When a Hive table has a
		 skipAutoProvisioning property set to
		 true, the BDD Hive Table Detector will skip the table
		 for data processing. For details, see
		 DP CLI overview.
		
		

		You can change the value of
		 skipAutoProvisioning property by issuing an SQL
		 ALTER TABLE statement via the Cloudera Manager's Query
		 Editor or as a Hive command.
		

		 To change the value of the
		 skipAutoProvisioning property in a Hive table:
		

	

	From the Cloudera Manager home page, click
			 Hue.
		
	From the Hue home page, click
			 Hue Web UI.
		
	From the Hue Web UI page, click
			 Metastore Manager. As a result, you should see
			 your Hive tables in the default database, as in this example:
		 [image: Hive tables in default database]
		

	Verify that the table has the
			 skipAutoProvisioning property:
		 	Select the table you want to change and click
				 View. The default
				 Columns tab shows the table's columns.
				
	Click the
				 Properties tab.
				
	In the
				 Table Parameters section, locate the
				 skipAutoProvisioning property and (if it exists)
				 verify that its value is set to "true".
				

	From the Metastore Manager page, click
			 Query
				 Editors > Hive.
		 The Query Editor page is displayed.
		

	In the Query Editor, enter an
			 ALTER TABLE statement similar to the following
			 example (which is altering the warrantyclaims table) and click
			 Execute.
		 [image: An example of the ALTER TABLE command with "skipAutoProvisioning" set to FALSE.]
		

	From the Metastore Manager page, repeat Step 4 to verify that the
			 value of the
			 skipAutoProvisioning property has been changed..
		

		An alternative to using the UI is to issue the
		 ALTER TABLE statement as a Hive command:
		 hive -e "ALTER TABLE warrantyclaims SET TBLPROPERTIES('skipAutoProvisioning'='FALSE');"

		

	

5 Updating Data Sets

This section describes how to run update operations on BDD data
	 sets.

	About data set updates

You can update data sets by running Refresh updates and 	 Incremental updates with the DP CLI.
	Obtaining the Data Set Logical Name

The Data Set Logical Name specifies the data set to be updated.
	Refresh updates

A Refresh update replaces the schema and all the records in a 	 project data set with the schema and records in the source Hive table.
	Incremental updates

An Incremental update adds new records to a project data set from 	 a source Hive table.
	Creating cron jobs for updates

You can create 	 cron jobs to run your Refresh and Incremental updates.

About data set updates

You can update data sets by running Refresh updates and
	 Incremental updates with the DP CLI.

When first created, a BDD data
		set may be sampled, which means that the BDD data set has fewer records than
		its source Hive table. In addition, more records can be added to the source
		Hive table, and these new records will not be added to the data set by default.
		
	

Two DP CLI operations are available that enable the BDD administrator to
		synchronize a data set with its source Hive table:
	 	The
		 --refreshData flag (abbreviated as
		 -refresh) performs a full data refresh on a BDD
		 data set from the original Hive table. This means that the data set will have
		 all records from the source Hive table. If the data set had previously been
		 sampled, it will now be a full data set. And as records get added to the Hive
		 table, the Refresh update operation can keep the data set synchronized with its
		 source Hive table.
		
	The
		 --incrementalUpdate flag (abbreviated as
		 -incremental) performs an incremental update on
		 a BDD data set from the original Hive table, using a filter predicate to select
		 the new records. Note that this operation can be run only after the data set
		 has been configured for Incremental updates.
		

	

Note that the equivalent of a DP CLI Refresh update can done in Studio
		via the
		Load Full Data Set feature. However, Incremental
		Data updates can be performed only via the DP CLI, as Studio does not support
		this feature.
	

Re-pointing a data set

		
		if you created a data set by uploading source data into Studio and
		 want to run Refresh and Incremental updates, you should change the source data
		 set to point to a new Hive table. (Note that this change is not required if the
		 data set is based on a table created directly in Hive.) For information on this
		 re-pointing operation, see the topic on converting a project to a BDD
		 application in the
		 Studio User's Guide.
		

	

Obtaining the Data Set Logical Name

The Data Set Logical Name specifies the data set to be updated.

		The Data Set Logical Name is needed as an argument to the DP CLI flags
		 for the Refresh and Incremental update operations.
		
		

		You can obtain the Data Set Logical Name from the
		 Project Settings > Data Set
				Manager page in Studio.
		

		The
		 Data Set Manager page looks like this cropped
		 example for the WarrantyClaims data set:
		

		[image: Data set logical name]
		

		The
		 Data Set Logical Name field lists the logical
		 name of the data set. In this example,
		 10128:WarrantyClaims is the Data Set Logical
		 Name of this particular data set.
		

	

Refresh updates

A Refresh update replaces the schema and all the records in a
	 project data set with the schema and records in the source Hive table.

The DP
		CLI
		--refreshData flag (abbreviated as
		-refresh) performs a full data refresh on a BDD
		data set from the original Hive table. The data set should be a project data
		set (that is, must added to a Studio project). Loading the full data set
		affects only the data set in a specific project; it does not affect the data
		set as it displays in the Studio Catalog.
	

Running a Refresh update produces the following results:
	 	All records stored in the
		 Hive table are loaded for that data set. This includes any table updates
		 performed by a Hive administrator.
		
	If the data set was sampled,
		 it is increased to the full size of the data set. That is, it is now a full
		 data set.
		
	If the data set contains a
		 transformation script, that script will be run against the full data set, so
		 that all transformations apply to the full data set in the project.
		
	If the
		 --disableSearch flag is also used, record search
		 and value search will be disabled for the data set.
		

	

The equivalent of a DP CLI Refresh update can be done in Studio via the
		Load Full Data Set feature (although you cannot
		specify a different source table as with the DP CLI).
	

Note that you should not start a DP CLI Refresh update if a
		transformation on that data set is in progress. In this scenario, the Refresh
		update will fail and a notification will be sent to Studio:
		Reload of <logical name> from CLI has failed. Please contact an administrator.

	

Schema changes

		
		There are no restrictions on how the schema of the data set is changed
		 due to changes in the schema and/or data of the source Hive table. This
		 non-restriction is because the Refresh update operation uses a kill-and-fill
		 strategy, in which the entire contents of the data set are removed and replaced
		 with those in the Hive table.
		

	

Transformation scripts in Refresh updates

		
		If the data set has an associated Transformation script, then the
		 script will run against the newly-ingested attributes and data. However, some
		 of the schema changes may prevent some of the steps of the script from running.
		 For example:
			Existing columns in Hive
			 table may be deleted. As a result, any Transformation script step that
			 references the deleted attributes will be skipped.
		
	New columns can be added
			 to the Hive table and they will result in new attributes in the data set. The
			 Transformation script will not run on these new attributes as the script would
			 not reference them.
		
	Added data to a Hive
			 column may result in the attribute having a different data type (such as String
			 instead of a previous Long). The Transformation script may or may not run on
			 the changed attribute.
		

		

		The following diagram illustrates the effects of a schema change on
		 the Transformation script:
		

		[image: Effects of schema change on the Transformation script.]
		

		If the data set does not have an associated Transformation script and
		 the Hive table schema has changed, then the data set is updated with the new
		 schema and data.
		

	

	Refresh flag syntax

This topic describes the syntax of the 	 --refreshData flag.
	Running a Refresh update

This topic describes how to run a Refresh update operation.

Refresh flag syntax

This topic describes the syntax of the
	 --refreshData flag.

		The DP CLI flag syntax for a Refresh update operation has one of the
		 following syntaxes:
		 ./data_processing_CLI --refreshData <logicalName>

or
		 ./data_processing_CLI --refreshData <logicalName> --table <tableName>

or
		 ./data_processing_CLI --refreshData <logicalName> --table <tableName> --database <dbName>

		

		where:
			--refreshData
			 (abbreviated as
			 -refresh) is mandatory and specifies the
			 logical name of the data set to be updated.
		
	--table
			 (abbreviated as
			 -t) is optional and specifies a Hive table to
			 be used for the source data. This flag allows you to override the source Hive
			 table that was used to create the original data set (the name of the original
			 Hive table is stored in the data set's metadata).
		
	--database
			 (abbreviated as
			 -d) is optional and specifies the database of
			 the Hive table specified with the
			 --table flag. This flag allows you to override
			 the database that was used to create the original data set). The
			 --database flag can be used only if the
			 --table flag is also used.
		

		

		The
		 logicalName value is available in the
		 Data Set Logical Name property in Studio. For
		 details, see
		 Obtaining the Data Set Logical Name.
		

	

Use of the --table and --database flags

		
		When a data set is first created, the names of the source Hive table
		 and the source Hive database are stored in the DSI (DataSet Inventory) metadata
		 for that data set. The
		 --table flag allows you to override the default
		 source Hive table, while the
		 --database flag can override the database set in
		 the data set's metadata.
		

		Note that these two flags are ephemeral. That is, they are used only
		 for the specific run of the operation and do not update the metadata of the
		 data set.
		

		If these flags are not specified, then the Hive table and Hive
		 database that are used are the ones in the data set's metadata.
		

		Use these flags when you want to temporarily replace the data in a
		 data set with that from another Hive table. If the data change is permanent, it
		 is recommended that you create a new data set from desired Hive table. This
		 will also allow you to create a Transformation script that is exactly tailored
		 to the new data set.
		

	

Running a Refresh update

This topic describes how to run a Refresh update operation.

		This procedure
		 assumes that:
			The data set has been
			 created, either from Studio or with the DP CLI.
		
	The data set has been
			 added to a Studio project.
		

		

	

		 To run a Refresh update on a data set:
		

	

	Obtain the Data Set Logical Name of the data set you want to
			 refresh:
		 	In Studio, go to
				 Project
						Settings > Data Set Manager.
				
	In the
				 Data Set Manager, select the data set and
				 expand the options next to its name.
				
	Get the value from the
				 Data Set Logical Name field.
				

	From a Linux command prompt, change to the
			 $BDD_HOME/dataprocessing/edp_cli directory.
		
	Run the DP CLI with the
			 --refreshData flag and the Data Set Logical
			 Name. For example:
		
			
				./data_processing_CLI --refreshData 10128:WarrantyClaims

			

		

		If the operation was successful, the DP CLI prints these messages at
		 the end of the stdout output:
		 [2016-06-24T09:56:22.963-04:00] [DataProcessing] [INFO] [] [org.apache.spark.Logging$class] [tid:main] [userID:fcalvill]
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: 10.152.105.219
 ApplicationMaster RPC port: 0
 queue: root.fcalvill
 start time: 1466776490743
 final status: SUCCEEDED
 tracking URL: http://bus2014.example.com:8088/proxy/application_1466716670116_0002/A
 user: fcalvill
Refreshing existing collection: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_ad9a93eb-fbec-49ca-bdc9-8ac897dd5c8f,
 collectionName=edp_cli_edp_ad9a93eb-fbec-49ca-bdc9-8ac897dd5c8f}
Collection key for new record: MdexCollectionIdentifier{
 databaseName=refreshed_edp_a284bd0c-23fe-4d26-9e92-cbfc22b1555e,
 collectionName=refreshed_edp_a284bd0c-23fe-4d26-9e92-cbfc22b1555e}
data_processing_CLI finished with state SUCCESS

		

		The YARN Application Overview page should have a
		 State of "FINISHED" and a
		 FinalStatus of "SUCCESSFUL". The
		 Name field will have an entry similar to this
		 example:
		 EDP: DatasetRefreshConfig{hiveDatabase=, hiveTable=,
collectionToRefresh=MdexCollectionIdentifier{databaseName=edp_cli_edp_ad9a93eb-fbec-49ca-bdc9-8ac897dd5c8f,
collectionName=edp_cli_edp_ad9a93eb-fbec-49ca-bdc9-8ac897dd5c8f},
newCollectionId=MdexCollectionIdentifier{databaseName=refreshed_edp_a284bd0c-23fe-4d26-9e92-cbfc22b1555e,
collectionName=refreshed_edp_a284bd0c-23fe-4d26-9e92-cbfc22b1555e},
op=REFRESH_DATASET}

		

		Note the following about the
		 Name information:
			hiveDatabase and
			 hiveTable are blank because the
			 --database and
			 --table flags were not used. In this case, the
			 Refresh update operation uses the same Hive table and database that were used
			 when the data set was first created.
		
	collectionToRefresh
			 is name of the data set that was refreshed. This name is the same as the
			 Refreshing existing collection field in the stdout
			 listed above.
		
	newCollectionId is an
			 internal name for the refreshed data set. This name will not appear in the
			 Studio UI (the original Data Set Logical Name will continue to be used as it is
			 a persistent name). This name is also the same as the
			 Collection key for new record field in the stdout
			 listed above.
		

		

		You can also check the Dgraph HDFS Agent log for the status of the
		 Dgraph ingest operation.
		

	

		Note that future Refresh updates on this data set will continue to use
		 the same Data Set Logical Name. You will also use this name if you set up a
		 Refresh update cron job for this data set.
		

	

Incremental updates

An Incremental update adds new records to a project data set from
	 a source Hive table.

The DP CLI
		--incrementalUpdate flag (abbreviated as
		-incremental) performs a partial update of a
		project data set by selecting adding new and modified records. The data set
		should be a project data set that is a full data set (i.e., is not a sample
		data set) and has been configured for incremental updates.
	

The Incremental update operation fetches a subset of the records in the
		source Hive table. The subset is determined by using a filtering predicate that
		specifies the Hive table column that holds the records and the value of the
		records to fetch. The records in the subset batch are ingested as follows:
	 	If a record is brand new
		 (does not exist in the data set), it is added to the data set.
		
	If a record already exists
		 in the data set but its content has been changed, it replaces the record in the
		 data set.
		

	

The record identifier determines if a record already exists or is new.
	

Schema changes and disabling search

		
		Unlike a Refresh update, an Incremental update has these limitations:
			An Incremental update
			 cannot make schema changes to the data set. This means that no attributes in
			 the data set will be deleted or added.
		
	An Incremental update
			 cannot use the
			 --disableSearch flag. This means that the
			 searchability of the data set cannot be changed.
		

		

	

Transformation scripts in Incremental updates

		
		If the data set has an associated Transformation script, then the
		 script will run against the new records and can transform them (if a transform
		 step applies). Existing records in the data set are not affected.
		

	

Record identifier configuration

		
		A data set must be configured for Incremental updates before you can
		 run an Incremental update against it. This procedure must be done from the
		 Project Settings > Data Set
				Manager page in Studio.
		

		The data set must be configured with a record identifier for
		 determining the delta between records in the Hive table and records in the
		 project data set. If columns have been added or removed from the Hive table,
		 you should run a Refresh update to incorporate those column changes in the data
		 set.
		

		When selecting the attributes that uniquely identify a record, the
		 uniqueness score must be 100%. If the record identifier is not 100% unique, the
		 Data Processing workflow will fail and return an exception. In this example,
		 the
		 Key Uniqueness field shows a 100% figure:
		

		[image: Configure for Updates dialog]
		

		 After the data set is configured, its entry in the
		 Data Set Manager page looks like this example:
		

		[image: An example of a data set entry in the Data Set Manager page.]
		

		Note that the
		 Record Identifiers field now lists the
		 attributes that were selected in the
		 Configure for Updates dialogue.
		

		 The Configure for Updates procedure is documented in the
		 Studio User's Guide.
		

	

Error for non-configured data sets

		
		If the data set has not been configured for Increment updates, the
		 Incremental update fails with an error similar to this:
		 ...
data_processing_CLI finished with state ERROR
Exception in thread "main" com.oracle.endeca.pdi.client.EdpExecutionException: Only curated datasets can be updated.
 at com.oracle.endeca.pdi.client.EdpGeneralClient.invokeIncrementalUpdate(EdpGeneralClient.java:232)
 at com.oracle.endeca.pdi.EdpCli.runEdp(EdpCli.java:814)
 at com.oracle.endeca.pdi.EdpCli.processIncrementalUpdate(EdpCli.java:572)
 at com.oracle.endeca.pdi.EdpCli.commandLineArgumentLogic(EdpCli.java:316)
 at com.oracle.endeca.pdi.EdpCli.main(EdpCli.java:927)

		

		In the error message, the term "curated datasets" refers to data sets
		 that have been configured for Incremental updates. If this error occurs,
		 configure the data set for Incremental updates and re-run the Incremental
		 update operation.
		

	

	Incremental flag syntax

This topic describes the syntax of the 	 --incrementalUpdate flag.
	Running an Incremental update

This topic describes how to run an Incremental update operation.

Incremental flag syntax

This topic describes the syntax of the
	 --incrementalUpdate flag.

		The DP CLI flag syntax for an Incremental update operation is one of
		 the following:
		 ./data_processing_CLI --incrementalUpdate <logicalName> <filter>

or
		 ./data_processing_CLI --incrementalUpdate <logicalName> <filter> --table <tableName>

or
		 ./data_processing_CLI --incrementalUpdate <logicalName> <filter> --table <tableName>
 --database <dbName>

		

		where:
			--incrementalUpdate
			 (abbreviated as
			 -incremental) is mandatory and specifies the
			 Data Set Logical Name (logicalName) of the data set to be
			 updated.
			 filter is a filter predicate that limits the
			 records to be selected from the Hive table.
		
	--table
			 (abbreviated as
			 -t) is optional and specifies a Hive table to
			 be used for the source data. This flag allows you to override the source Hive
			 table that was used to create the original data set (the name of the original
			 Hive table is stored in the data set's metadata).
		
	--database
			 (abbreviated as
			 -d) is optional and specifies the database of
			 the Hive table specified with the
			 --table flag. This flag allows you to override
			 the database that was used to create the original data set). The
			 --database flag can be used only if the
			 --table flag is also used.
		

		

		The
		 logicalName value is available in the
		 Data Set Logical Name property in Studio. For
		 details, see
		 Obtaining the Data Set Logical Name.
		
		

	

Filter predicate format

		
		A filter predicate is mandatory and is one simple Boolean expression
		 (not compounded), with this format:
		 "columnName operator filterValue"

where:
		 	columnName is the
				name of a column in the source Hive table.
			
	operator is one of
				the following comparison operators:
					=
				
	<>
				
	>
				
	>=
				
	<
				
	<=
				

			
	filterValue is a
				primitive value. Only primitive data types are supported, which are: integers
				(TINYINT,
				SMALLINT,
				INT, and
				BIGINT), floating point numbers
				(FLOAT and
				DOUBLE), Booleans (BOOLEAN), and
				strings (STRING). Note that expressions (such as "amount+1")
				are not supported.
			

		

		You should enclose the entire filter predicate in either double quotes
		 or single quotes. If you need to use quotes within the filter predicate, use
		 the other quotation format. For example, if you use double quotes to enclose
		 the filter predicate, then use single quotes within the predicate itself.
		

		If
		 columnName is configured as a
		 DATE or
		 TIMESTAMP data type, you can use the
		 unix_timestamp date function, with one of these
		 syntaxes:
		 columnName operator unix_timestamp(dateValue)

columnName operator unix_timestamp(dateValue, dateFormat)

		

		If
		 dateFormat is not specified, then the DP CLI uses
		 one of two default data formats:
		 // date-time format:
yyyy-MM-dd HH:mm:ss

// time-only format:
HH:mm:ss

		

		The date-time format is used for columns that map to Dgraph
		 mdex:dateTime attributes, while the time-only format
		 is used for columns that map to Dgraph
		 mdex:time attributes.
		

		If
		 dateFormat is specified, use a pattern described
		 here:
		 http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
		
		

	

Note on data types in the filter predicate

		
		You should pay close attention to the Hive column data types when
		 constructing a filter for Incremental update, because the results of a
		 comparison can differ. This is especially important for columns of type String,
		 because results of String comparison are different from results of Number
		 comparison.
		

		Take, as an example, this filter that uses the "age" column in the
		 Hive table:
		 ./data_processing_CLI -incremental 10133:WarrantyClaims "age<18"

		

		If the "age" column is a String column, then the results from the
		 filter will be different than if "age" were a Number column (such as Int or
		 Tinyint). The results would differ because:
			If "age" is a Number
			 column, then "age < 18" means the column value must be numerically less than
			 18. The value 6, for example, is numerically less than 18.
		
	If "age" is a String
			 column, then "age < 18" means the column value must be lexicographically
			 less than 18. The value 6 is lexicographically more than 18.
		

		

		Therefore, the number of filtered records will differ depending on the
		 data type of the "age" column.
		

		Also keep in mind that if the data set was originally created using
		 File Upload in Studio, then the underlying Hive table for that data set will
		 have all columns of type String.
		

	

Examples

		
		Example 1: If the Hive "birthyear" column contains a year of
		 birth for a person, then the command can be:
		 ./data_processing_CLI --incrementalUpdate 10133:WarrantyClaims "claimyear > 1970"

In the example, only the records of claims made after 1970 are
		 processed.
		

		Example 2: Using the
		 unix_timestamp function with a supplied date-time
		 format:
		 ./data_processing_CLI --incrementalUpdate 10133:WarrantyClaims
 "factsales_shipdatekey_date >= unix_timestamp('2006-01-01 00:00:00', 'yyy-MM-dd HH:mm:ss')"

		

		Example 3: Another example of using the
		 unix_timestamp function with a supplied date-time
		 format:
		 ./data_processing_CLI --incrementalUpdate 10133:WarrantyClaims
"creation_date >= unix_timestamp('2015-06-01 20:00:00', 'yyyy-MM-dd HH:mm:ss')"

		

		Example 4: An invalid example of using the
		 unix_timestamp function with a date that does not
		 contain a time:
		 ./data_processing_CLI --incrementalUpdate 10133:WarrantyClaims
"claim_date >= unix_timestamp('2000-01-01')"

		

		The error will be:
		 16:41:29.375 main ERROR: Failed to parse date / time value '2000-01-01' using the format 'yyyy-MM-dd HH:mm:ss'

		

	

Running an Incremental update

This topic describes how to run an Incremental update operation.

		This procedure
		 assumes that the data set has been configured for Incremental updates (that is,
		 a record identifier has been configured).
		

	

		Note that the example in the procedure does not use the
		 --table and
		 --database flags, which means that the command
		 will run against the original Hive table from which the data set was created.
		

		 To run an Incremental update on a data set:
		

	

	Obtain the Data Set Logical Name of the data set you want to
			 incrementally update:
		 	In Studio, go to
				 Project
						Settings > Data Set Manager.
				
	In the
				 Data Set Manager, select the data set and
				 expand the options next to its name.
				
	Get the value from the
				 Data Set Logical Name field.
				

	From a Linux command prompt, change to the
			 $BDD_HOME/dataprocessing/edp_cli directory.
		
	Run the DP CLI with the
			 --incrementalUpdate flag, the Data Set Logical
			 Name, and the filter predicate. For example:
		
			
				./data_processing_CLI --incrementalUpdate 10128:WarrantyClaims "yearest > 1850"

			

		

		If the operation was successful, the DP CLI prints these messages at
		 the end of the stdout output:
		 ...
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: web2014.example.com
 ApplicationMaster RPC port: 0
 queue: root.fcalvill
 start time: 1437415956086
 final status: SUCCEEDED
 tracking URL: http://web2014.example.com:8088/proxy/application_1436970078353_0041/A
 user: fcalvill
data_processing_CLI finished with state SUCCESS

		

		Note that the
		 tracking URL field shows an HTTP link to the Application Page
		 (in Cloudera Manager or Ambari) for this workflow. The YARN Application
		 Overview page should have a
		 State of "FINISHED" and a
		 FinalStatus of "SUCCESSFUL". The
		 Name field will have an entry similar to this
		 example:
		 EDP: IncrementalUpdateConfig{collectionId=MdexCollectionIdentifier{
databaseName=default_edp_2c08eb40-8eff-4c7e-b05e-2e451434936d,
collectionName=default_edp_2c08eb40-8eff-4c7e-b05e-2e451434936d},
whereClause=claim_date >= unix_timestamp('2006-01-01 00:00:00', 'yyy-MM-dd HH:mm:ss')}

		

		Note the following about the
		 Name information:
			IncrementalUpdateConfig
			 is the name of the type of Incremental workflow.
		
	whereClause lists the
			 filter predicate used in the command.
		

		

		You can also check the Dgraph HDFS Agent log for the status of the
		 Dgraph ingest operation.
		

		If the Incremental update determines that there are no records that
		 fit the filter predicate criteria, the DP CLI exits gracefully with a message
		 that no records are to be updated.
		

	

		Note that future Incremental updates on this data set will continue to
		 use the same Data Set Logical Name. You will also use this name if you set up a
		 Incremental update
		 cron job for this data set.
		

	

Creating cron jobs for updates

You can create
	 cron jobs to run your Refresh and Incremental updates.

		You can use the Linux
		 crontab command to create cron jobs for your
		 Refresh and Incremental updates. A
		 cron job will run the DP CLI (with one of the update
		 flags) at a specific date and time.
		

		The
		 crontab file will have one or more
		 cron jobs. Each job should take up a single line. The
		 job command syntax is:
		 schedule path/to/command

		

		The command begins with a five-field
		 schedule of when the command will run. A simple
		 version of the time fields in is:
		 minute hour dayOfMonth month dayOfWeek

where:
		 	minute
				is 0-59.
			
	hour is
				0-23 (0 = midnight).
			
	dayOfMonth is 1-31 or
				* for every day of the month.
			
	month
				is 1-12 or * for every month.
			
	dayOfWeek is 0-6 (0 -
				Sunday) or * for every day of the week.
			

		

		path/to/command is the path (including the command
		 name) of the DP CLI update to run, including the appropriate flag and argument.
		
		

		An example would be:
		 0 0 2 * * /localdisk/Oracle/Middleware/BDD/dataprocessing/edp_cli/data_processing_CLI --refresh 10133:WarrantyClaims

The job would run every day at 2am.
		

		 To set up a cron job for updates:
		

	

	From the Linux command line, use the
			 crontab command with the
			 e flag to open the
			 crontab file for editing:
		 crontab -e
		

	Enter the job command line, as in the above example.
		
	Save the file.
		

		You can also use the Hive Table Detector
		 cron job as a template, as it uses the Linux
		 flock command and generates a log file. For
		 details, see
		 DP CLI cron job.
		
		

	

6 Data Processing Logging

This section describes logging for the Data Processing component
	 of Big Data Discovery.

	DP logging overview

This topic provides an overview of the Data Processing logging 	 files.
	DP logging properties file

Data Processing has a default Log4j configuration file that sets 	 its logging properties.
	Example of DP logs during a workflow

This example gives an overview of the various DP logs that are 	 generated when you run a workflow with the DP CLI.
	Accessing YARN logs

When a client (Studio or the DP CLI) launches a Data Processing 	 workflow, a Spark job is created to run the actual Data Processing job.
	Transform Service log

The Transform Service processes transformations on data sets, and 	 also provides previews of the effects of the transformations on the data sets.

DP logging overview

This topic provides an overview of the Data Processing logging
	 files.

	

Location of the log files

		
		Each run of Data Processing produces one or more log files on each
		 machine that is involved in the Data Processing job. The log files are in these
		 locations:
			On the client machine, the
			 location of the log files is set by the
			 log4j.appender.edpMain.Path property in the DP
			 log4j.properties configuration file. The default
			 location is the
			 $BDD_HOME/logs/edp directory. These log files
			 apply to workflows initiated by both Studio and the DP CLI. When the DP
			 component starts, it also writes a start-up log here.
		
	On the client machine,
			 Studio workflows are also logged in the
			 $BDD_DOMAIN/servers/<serverName>/logs/bdd-studio.log
			 file.
		
	On the Hadoop nodes, logs
			 are generated by the Spark-on-YARN processes.
		

		

	

Local log files

		
		The Data Processing log files (in the
		 $BDD_HOME/logs/edp directory) are named
		 edpLog*.log. The naming pattern is set in the
		 logging.properties configuration.
		

		The default naming pattern for each log file is
		 edp_%timestamp_%unique.log

 where:
		 	%timestamp provides a
				timestamp in the format: yyyyMMddHHmmssSSS
			
	%unique
				provides a uniquified string
			

		

		For example:
		 edp_20150728100110505_0bb9c1a2-ce73-4909-9de0-a10ec83bfd8b.log

		

		The
		 log4j.appender.edpMain.MaxSegmentSize property sets
		 the maximum size of a log file, which is 100MB by default. Logs that reach the
		 maximum size roll over to the next log file. The maximum amount of disk space
		 used by the main log file and the logging rollover files is about 1GB by
		 default.
		

	

DP logging properties file

Data Processing has a default Log4j configuration file that sets
	 its logging properties.

		The file is named
		 log4j.properties and is located in the
		 $BDD_HOME/dataprocessing/edp_cli/config directory.
		
		

		The default version of the file looks like the following example:
		 ##
Global properties
##

log4j.rootLogger = INFO, console, edpMain

##
Handler specific properties.
##

log4j.appender.console = org.apache.log4j.ConsoleAppender

##
EdpODPFormatterAppender is a custom log4j appender that gives two new optional
variables that can be added to the log4j.appender.*.Path property and are
filled in at runtime:
%timestamp - provides a timestamp in the format: yyyyMMddHHmmssSSS
%unique - provides a uniquified string
##

log4j.appender.edpMain = com.oracle.endeca.pdi.logging.EdpODLFormatterAppender
log4j.appender.edpMain.ComponentId = DataProcessing
log4j.appender.edpMain.Path = /localdisk/Oracle/Middleware/1.2.0.31.801/logs/edp/edp_%timestamp_%unique.log
log4j.appender.edpMain.Format = ODL-Text
log4j.appender.edpMain.MaxSegmentSize = 100000000
log4j.appender.edpMain.MaxSize = 1000000000
log4j.appender.edpMain.Encoding = UTF-8

##
Formatter specific properties.
##

log4j.appender.console.layout = org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern = [%d{yyyy-MM-dd'T'HH:mm:ss.SSSXXX}] [DataProcessing] [%p] [] [%C] [tid:%t] [userID:${user.name}] %m%n

##
Facility specific properties.
##

These loggers from dependency libraries are explicitly set to different logging levels.
They are known to be very noisy and obscure other log statements.
log4j.logger.org.eclipse.jetty = WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper = INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter = INFO

		

		The file has the following properties:
		
	Logging property
				 	Description
				
	
					 log4j.rootLogger
				 	The level of the root logger is
					 defined as INFO and attaches the
					 console and
					 edpMain handlers to it.
				
	
					 log4j.appender.console
				 	Defines
					 console as a Log4j
					 ConsoleAppender.
				
	log4j.appender.edpMain
				 	Defines
					 edpMain as
					 EdpODPFormatterAppender (a custom Log4j
					 appender).
				
	log4j.appender.edpMain.ComponentId
				 	Sets
					 DataProcessing as the name of the component
					 that generates the log messages.
				
	log4j.appender.edpMain.Path
				 	Sets the path for the log files to
					 the
					 $BDD_HOME/logs/edp directory. Each log
					 file is named:
					 edp_%timestamp_%unique.log

See the comments in the log file for the definitions of the
					 %timestamp and
					 %unique variables.
				
	log4j.appender.edpMain.Format
				 	Sets
					 ODL-Text as the formatted string as specified
					 by the conversion pattern.
				
	log4j.appender.edpMain.MaxSegmentSize
				 	Sets the maximum size (in bytes) of
					 a log file. When the file reaches this size, a rollover file is created. The
					 default is 100000000 (about 100 MB).
				
	log4j.appender.edpMain.MaxSize
				 	Sets the maximum amount of disk
					 space to be used by the main log file and the logging rollover files. The
					 default is 1000000000 (about 1GB).
				
	log4j.appender.edpMain.Encoding
				 	Sets character encoding for the log
					 file. The default
					 UTF-8 value prints out UTF-8 characters in the
					 file.
				
	
					 log4j.appender.console.layout
				 	Sets the
					 PatternLayout class for the
					 console layout.
				
	log4j.appender.console.layout.ConversionPattern
					
				 	Defines the log entry conversion
					 pattern as:
					 	%d is the
						 date of the logging event, in the specified format.
						
	%p
						 outputs the priority of the logging event.
						
	%c
						 outputs the category of the logging event.
						
	%L
						 outputs the line number from where the logging request was issued.
						
	%m
						 outputs the application-supplied message associated with the logging event
						 while
						 %n is the platform-dependent line separator
						 character.
						

					 For other conversion characters, see:
						https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
						
					

				
	
					 log4j.logger.org.eclipse.jetty
					

					 log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper
						
					

					 log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter
						
					

				 	Sets the default logging level for
					 the Spark and Jetty loggers.
				

		

	

Logging levels

		
		The logging level specifies the amount of information that is logged.
		 The levels (in descending order) are:
			SEVERE —
			 Indicates a serious failure. In general,
			 SEVERE messages describe events that are of
			 considerable importance and which will prevent normal program execution.
		
	WARNING —
			 Indicates a potential problem. In general,
			 WARNING messages describe events that will be of
			 interest to end users or system managers, or which indicate potential problems.
			
		
	INFO — A
			 message level for informational messages. The
			 INFO level should only be used for reasonably
			 significant messages that will make sense to end users and system
			 administrators.
		
	CONFIG —
			 A message level for static configuration messages.
			 CONFIG messages are intended to provide a variety of
			 static configuration information, and to assist in debugging problems that may
			 be associated with particular configurations.
		
	FINE — A
			 message level providing tracing information. All options,
			 FINE,
			 FINER, and
			 FINEST, are intended for relatively detailed
			 tracing. Of these levels,
			 FINE should be used for the lowest volume (and most
			 important) tracing messages.
		
	FINER —
			 Indicates a fairly detailed tracing message.
		
	FINEST —
			 Indicates a highly detailed tracing message.
			 FINEST should be used for the most voluminous
			 detailed output.
		
	ALL —
			 Enables logging of all messages.
		

		

		These levels allow you to monitor events of interest at the
		 appropriate granularity without being overwhelmed by messages that are not
		 relevant. When you are initially setting up your application in a development
		 environment, you might want to use the
		 FINEST level to get all messages, and change to a less
		 verbose level in production.
		

	

	DP log entry format

This topic describes the format of Data Processing log entries, 	 including their message types and log levels.
	DP log levels

This topic describes the log levels that can be set in the DP 	 log4j.properties file.

DP log entry format

This topic describes the format of Data Processing log entries,
	 including their message types and log levels.

		The following is an example of a NOTIFICATION message resulting from
		 the part of the workflow where DP connects to the Hive Metastore:
		 [2015-07-28T11:45:08.502-04:00] [DataProcessing] [NOTIFICATION] [] [hive.metastore]
 [host: web09.example.com] [nwaddr: 10.152.105.219] [tid: Driver] [userId: yarn]
 [ecid: 0000KvLLfZE7ADkpSw4Eyc1LhuE0000002,0] Connected to metastore.

		

		The format of the DP log fields (using the above example) and their
		 descriptions are as follows:
		
	Log entry field
				 	Description
				 	Example
				
	Timestamp
				 	The date and time when the message
					 was generated. This reflects the local time zone.
				 	[2016-04-28T11:45:08.502-04:00]
				
	Component ID
				 	 The ID of the component that
					 originated the message. "DataProcessing" is hard-coded for the DP component.
				 	[DataProcessing]
				
	Message Type
				 	 The type of message (log level):
					 	INCIDENT_ERROR
						
	ERROR
						
	WARNING
						
	NOTIFICATION
						
	TRACE
						
	UNKNOWN
						

				 	[NOTIFICATION]
				
	Message ID
				 	 The message ID that uniquely
					 identifies the message within the component. The ID may be null.
				 	[]
				
	Module ID
				 	 The Java class that prints the
					 message entry.
				 	[hive.metastore]
				
	Host name
				 	The name of the host where the
					 message originated.
				 	[host: web09.example.com]
				
	Host address
				 	The network address of the host
					 where the message originated
				 	[nwaddr: 10.152.105.219]
				
	Thread ID
				 	The ID of the thread that generated
					 the message.
				 	[tid: Driver]
				
	User ID
				 	The name of the user whose execution
					 context generated the message.
				 	[userId: yarn]
				
	ECID
				 	 The Execution Context ID (ECID),
					 which is a global unique identifier of the execution of a particular request in
					 which the originating component participates. Note that
				 	[ecid:
						0000KvLLfZE7ADkpSw4Eyc1LhuE0000002,0]
				
	Message Text
				 	The text of the log message.
				 	Connected to metastore.
				

		

	

DP log levels

This topic describes the log levels that can be set in the DP
	 log4j.properties file.

		The Data Processing logger is configured with the type of information
		 written to log files, by specifying the log level. When you specify the type,
		 the DP logger returns all messages of that type, as well as the messages that
		 have a higher severity. For example, if you set the message type to
		 WARN, messages of type
		 FATAL and
		 ERROR are also returned.
		

		The DP
		 log4j.properties file lists these four packages
		 for which you can set a logging level:
			log4j.rootLogger
		
	log4j.logger.org.eclipse.jetty
			
		
	log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper
			
		
	log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter
			
		

		

		You can change a log level by opening the properties file in a text
		 editor and changing the level of any of the four packages. You use a Java log
		 level from the table below. :
		

		This example shows how you can manually change a log level setting:
		 log4j.rootLogger = FATAL, console, edpMain

		

		In the example, the log level for the main logger is set to FATAL.
		

	

Logging levels

		
		The log levels (in decreasing order of severity) are:
		
	Java Log Level
				 	ODL Log Level
				 	Meaning
				
	OFF
				 	N/A
				 	Has the highest possible rank and is
					 used to turn off logging.
				
	FATAL
				 	INCIDENT_ERROR
				 	Indicates a serious problem that may be
					 caused by a bug in the product and that should be reported to Oracle Support.
					 In general, these messages describe events that are of considerable importance
					 and which will prevent normal program execution.
				
	ERROR
				 	ERROR
				 	Indicates a serious problem that
					 requires immediate attention from the administrator and is not caused by a bug
					 in the product.
				
	WARN
				 	WARNING
				 	Indicates a potential problem that
					 should be reviewed by the administrator.
				
	INFO
				 	NOTIFICATION
				 	A message level for informational
					 messages. This level typically indicates a major lifecycle event such as the
					 activation or deactivation of a primary sub-component or feature. This is the
					 default level.
				
	DEBUG
				 	TRACE
				 	Debug information for events that are
					 meaningful to administrators, such as public API entry or exit points. You
					 should not use this level in a production environment, as performance for DP
					 jobs will be slower.
				

		

		These levels allow you to monitor events of interest at the
		 appropriate granularity without being overwhelmed by messages that are not
		 relevant. When you are initially setting up your application in a development
		 environment, you might want to use the
		 DEBUG level to get most of the messages, and change to
		 a less verbose level in production.
		

	

Example of DP logs during a workflow

This example gives an overview of the various DP logs that are
	 generated when you run a workflow with the DP CLI.

		The example assumes that the Hive administrator has created a table
		 named
		 masstowns (which contains information about towns and cities in
		 Massachusetts). The workflow will be run with the DP CLI, which is described in
		
		 DP Command Line Interface Utility.
		
		

		The DP CLI command line is:
		 ./data_processing_CLI --database default --table masstowns --maxRecords 1000

		

		The
		 --table flag specifies the name of the Hive
		 table, the
		 --database flag states that the table in is the
		 Hive database named "default", and the
		 --maxRecords flag sets the sample size to be a
		 maximum of 1,000 records.
		

	

Command stdout

		
		The DP CLI first prints out the configuration with which it is
		 running, which includes the following:
		 ...
EdpEnvConfig{endecaServer=http://web07.example.oracle.com:7003/endeca-server/, edpDataDir=/user/bdd/edp/data,
...
ProvisionDataSetFromHiveConfig{hiveDatabaseName=default, hiveTableName=masstowns,
newCollectionId=MdexCollectionIdentifier{databaseName=
edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e},
runEnrichment=false, maxRecordsForNewDataSet=1000, disableTextSearch=false,
languageOverride=en, operation=PROVISION_DATASET_FROM_HIVE, transformScript=,
accessType=public_default, autoEnrichPluginExcludes=[Ljava.lang.String;@71034e3b}
ProvisionDataSetFromHiveConfig{notificationName=CLIDATALOAD,
ecid=0000LM3rDDu7ADkpSw4Eyc1NROXb000001, startTime=1466796128122,
properties={dataSetDisplayName=Taxi_Data, isCli=true}}
New collection name = MdexCollectionIdentifier{
databaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e}
data_processing_CLI finished with state SUCCESS
...

		

		The
		 operation field lists the operation type of the Data Processing
		 workflow. In this example, the operation is PROVISION_DATASET_FROM_HIVE, which
		 means that it will create a new BDD data set from a Hive table.
		

	

$BDD_HOME/logs/edp logs

		
		In this example, the
		 $BDD_HOME/logs/edp directory has three logs. The
		 owner of one of them is the user ID of the person who ran the DP CLI, while the
		 owner of other two logs is the user yarn:
			The non-YARN log contains
			 information similar to the stdout information. Note that it does contain
			 entries from the Spark executors.
		
	The YARN logs contain
			 information that is similar to YARN logs in the next section.
		

		

	

YARN logs

		
		If you use the YARN
		 ResourceManager Web UI link, the
		 All Applications page shows the Spark
		 applications that have run. In our example, the job name is:
		 EDP: ProvisionDataSetFromHiveConfig{hiveDatabaseName=default, hiveTableName=masstowns,
newCollectionId=MdexCollectionIdentifier{
databaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e}}

		

		The
		 Name field shows these characteristics about the
		 job:
			ProvisionDataSetFromHiveConfig
			 is the type of DP workflow that was run.
		
	hiveDatabaseName
			 lists the name of the Hive database (default in this example).
		
	hiveTableName lists
			 the name of the Hive table that was provisioned (masstowns in this
			 example).
		
	newCollectionId lists
			 the name of the new data set and its Dgraph database (both names are the same).
			
		

		

		Clicking on
		 History in the
		 Tracking UI field displays the job history. The
		 information in the Application Overview panel includes the name of the name of
		 the user who ran the job, the final status of the job, and the elapsed time of
		 the job. FAILED jobs will have error information in the
		 Diagnostics field.
		

		Clicking on
		 logs in the
		 Logs field displays the
		 stdout and
		 stderr output. The
		 stderr output will be especially useful for FAILED
		 jobs. In addition, the
		 stdout section has a link (named
		 Click here for the full log) that displays more
		 detailed output information.
		

	

Dgraph HDFS Agent log

		
		When the DP workflow finishes, the Dgraph HDFS Agent fetches the
		 DP-created files and sends them to the Dgraph for ingest. The log messages for
		 the Dgraph HDFS Agent component for the ingest operation will be similar to the
		 following entries (note that the message details are not shown):
		 Received request for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e
Starting ingest for: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
 collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e},
 ...
createBulkIngester edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e
Finished reading 1004 records for MdexCollectionIdentifier{
 databaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
 collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e},
 ...
sendRecordsToIngester 1004
closeBulkIngester
Ingest finished with 1004 records committed and 0 records rejected.
 Status: INGEST_FINISHED. Request info: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
 collectionName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e},
 ...
Notification server url: http://busgg2014.us.oracle.com:7003/bdd/v1/api/workflows
About to send notification
Terminating
Notification{workflowName=CLIDataLoad, sourceDatabaseName=null, sourceDatasetKey=null,
 targetDatabaseName=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
 targetDatasetKey=edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e,
 ecid=0000LM3rDDu7ADkpSw4Eyc1NROXb000001, status=SUCCEEDED,
 startTime=1466796128122, timestamp=1466796195365, progressPercentage=100.0,
 errorMessage=null, properties={dataSetDisplayName=masstowns, isCli=true}}
Notification sent successfully
Terminating

		

		The ingest operation is complete when the final
		 Status: INGEST_FINISHED message is written to
		 the log.
		

	

Dgraph out log

		
		As a result of the ingest operation for the data set, the Dgraph out
		 log (dgraph.out) will have these bulk_ingest messages:
		 Start ingest for collection: edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e	
Starting a bulk ingest operation for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e	
batch 0 finish BatchUpdating status Success for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e	
Ending bulk ingest at client's request for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e - finalizing changes	
Bulk ingest completed: Added 1004 records and rejected 0 records, for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e	
Ingest end - 0.584MB in 2.010sec = 0.291MB/sec for database edp_cli_edp_ac680edd-c25f-4b9d-8cab-11441c5a3d2e

		

		At this point, the data set records are in the Dgraph and the data set
		 can be viewed in Studio.
		

	

Studio log

		
		Similar to workflows run from the DP CLI, Studio-generated workflows
		 also produce logs in the
		 $BDD_HOME/logs/edp directory, as well as YARN
		 logs, Dgraph HDFS Agent logs, and Dgraph out logs.
		

		In addition, Studio workflows are also logged in the
		 $BDD_DOMAIN/servers/<serverName>/logs/bdd-studio.log
		 file.
		

	

Accessing YARN logs

When a client (Studio or the DP CLI) launches a Data Processing
	 workflow, a Spark job is created to run the actual Data Processing job.

		 This Spark job is run by an arbitrary node in the Hadoop cluster
		 (node is chosen by YARN). To find the Data Processing logs, use Cloudera
		 Manager.
		

		 To access YARN logs:
		

	

	From the Cloudera Manager home page, click
			 YARN (MR2 Included).
		
	In the YARN menu, click the
			 ResourceManager Web UI quick link.
		
	The All Applications page lists the status of all submitted jobs.
			 Click on the
			 ID field to list job information.
		
			 Note that failed jobs will list exceptions in the
				Diagnostics field.
			

		

	To show log information, click on the appropriate log in the
			 Logs field at the bottom of the Applications
			 page.
		

		The Data Processing log also contains the locations of the Spark
		 worker STDOUT and STDERR logs. These locations are listed in the "YARN executor
		 launch context" section of the log. Search for the "SPARK_LOG_URL_STDOUT" and
		 "SPARK_LOG_URL_STDERR" strings, each of which will have a URL associated with
		 it. The URLs are for the worker logs.
		

		Also note that if a workflow invoked the Data Enrichment modules, the
		 YARN logs will contain the results of the enrichments, such as which columns
		 were created.
		

	

Transform Service log

The Transform Service processes transformations on data sets, and
	 also provides previews of the effects of the transformations on the data sets.

		The Transform Service logs are stored in the
		 $BDD_HOME/logs/transformservice directory. When
		 the Transform Service receives a request to preview a data set, it logs the
		 schema of that data set, as shown in this abbreviated example:
		 16/06/29 14:51:29.775 - INFO [GridPreviewRunner@37]:- Start processing preview request
for MdexCollectionIdentifier{databaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
collectionName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c}
16/06/29 14:51:29.778 - INFO [GridPreviewRunner@38]:- class TransformConfig {
 schema: [class Column {
 name: production_country
 type: STRING
 isSingleAssign: true
 isRecordSearchable: false
 isValueSearchable: true
 language: en
 }, class Column {
 name: dealer_geocode
 type: GEOCODE
 isSingleAssign: true
 isRecordSearchable: false
 isValueSearchable: false
 language: en
...
 }, class Column {
 name: labor_description
 type: STRING
 isSingleAssign: true
 isRecordSearchable: false
 isValueSearchable: true
 language: en
 }]
 transformList: [class PutColumnTransform {
 class TransformInfo {
 transformType: null
 }
 column: class Column {
 name: sentiments
 type: STRING
 isSingleAssign: true
 isRecordSearchable: null
 isValueSearchable: null
 language: null
 }
 exceptionAction: class SetNullAction {
 class TransformExceptionAction {
 actionType: null
 }
 actionType: null
 }
 transformType: null
 script: getSentiment(complaint)
 }]
 resultRowCount: 50
 sort: null
 filter: null
 databaseName: edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c
 collectionName: edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c
 optimization: null

		

		Note that the
		 transformList section lists the contents of the
		 transformation script (if one exists). In this example, the Transform
		 getSentiment function is used on the
		 complaint attribute.
		

	

Logging the configuration

		
		When it receives its first preview or transformation request, the
		 Transform Service logs the system, Spark, and Hadoop configurations that it is
		 using. An abbreviated configuration entry is as follows:
		 Number of processors available: 2
Total available memory: 226 MB
Free memory: 170 MB
Maximum available memory: 3403 MB

16/06/29 14:51:37.807 - INFO [LocalSparkClient@50]:- Spark configuration:
spark.externalBlockStore.folderName = spark-78c17408-b81f-4d0e-a4ac-f06174e67c42
spark.driver.cores = 4
spark.io.compression.codec = lzf
spark.lib = /localdisk/Oracle/Middleware/BDD-1.3.0.35.999/transformservice/bddservices/spark_lib/spark-assembly.jar
spark.app.name = transformservice
spark.executor.memory = 4g
spark.master = local[8]
spark.driver.host = 10.152.105.219
spark.executor.id = driver
spark.app.id = local-1467226296747
spark.driver.port = 50018
spark.local.dir = /localdisk/Oracle/Middleware/BDD-1.3.0.35.999/transformservice/tmp
spark.fileserver.uri = http://10.152.105.219:13880
spark.ui.enabled = false
spark.driver.maxResultSize = 4g

16/06/29 14:51:37.966 - INFO [LocalSparkClient@59]:- Hadoop configuration:
s3.replication = 3
mapreduce.output.fileoutputformat.compress.type = BLOCK
mapreduce.jobtracker.jobhistory.lru.cache.size = 5
hadoop.http.filter.initializers = org.apache.hadoop.http.lib.StaticUserWebFilter
...
yarn.resourcemanager.system-metrics-publisher.enabled = false
mapreduce.client.output.filter = FAILED

		

		If you are reporting a Transform Service problem to Oracle Support,
		 make sure you include the Transform Service log when you report the problem.
		

	

7 Data Enrichment Modules

This section describes the Data Enrichment modules of Big Data
	 Discovery.

	About the Data Enrichment modules

The Data Enrichment modules increase the usability of your data by 	 discovering value in its content.
	Entity extractor

The Entity extractor module extracts the names of people, 	 companies and places from the input text inside records in source data.
	Noun Group extractor

This plugin extracts noun groups from the input text.
	TF.IDF Term extractor

This module extracts key words from the input text.
	Sentiment Analysis (document level)

The document-level Sentiment Analysis module analyzes a piece of 	 text and determines whether the text has a positive or negative sentiment.
	Sentiment Analysis (sub-document level)

The sub-document-level Sentiment Analysis module returns a list of 	 sentiment-bearing phrases which fall into one of the two categories: positive 	 or negative.
	Address GeoTagger

The Address GeoTagger returns geographical information for a valid 	 global address.
	IP Address GeoTagger

The IP Address GeoTagger returns geographical information for a 	 valid IP address.
	Reverse GeoTagger

The Reverse GeoTagger returns geographical information for a valid 	 geocode latitude/longitude coordinates that resolve to a metropolitan area.
	Tag Stripper

The Tag Stripper module removes any HTML, XML and XHTML markup 	 from the input text.
	Phonetic Hash

The Phonetic Hash module returns a string attribute that contains 	 the hash value of an input string.
	Language Detection

The Language Detection module can detect the language of input 	 text.

About the Data Enrichment modules

The Data Enrichment modules increase the usability of your data by
	 discovering value in its content.

Bundled in the Data Enrichment
		package is a collection of modules along with the logic to associate these
		modules with a column of data (for example, an address column can be detected
		and associated with a GeoTagger module).
	

During the sampling phase of the Data Processing workflow, some of the
		Data Enrichment modules run automatically while others do not. If you run a
		workflow with the DP CLI, you can use the
		--excludePlugins flag to specify which modules
		should not be run.
	

After a data set has been created, you can run any module from Studio's
		Transform page.
	

Pre-screening of input

		
		When Data Processing is running against a Hive table, the Data
		 Enrichment modules that run automatically obtain their input pre-screened by
		 the sampling stage. For example, only an IP address is ever passed to the IP
		 Address GeoTagger module.
		

	

Attributes that are ignored

		
		All Data Enrichment modules ignore both the primary-key attribute of a
		 record and any attribute whose data type is inappropriate for that module. For
		 example, the Entity extractor works only on string attributes, so that numeric
		 attributes are ignored. In addition, multi-assign attributes are ignored for
		 auto-enrichment.
		

	

Sampling strategy for the modules

		
		When Data Processing runs (for example, during a full data ingest),
		 each module runs only under the following conditions during the sampling phase:
		
			 Entity: never runs
			 automatically.
		
	TF-IDF: runs only if the
			 text contains between 35 and 30,000 tokens.
		
	Sentiment Analysis (both
			 document level and sub-document level) : never runs automatically
		
	Address GeoTagger: runs
			 only on well-formed addresses. Note that the GeoTagger sub-modules
			 (City/Region/Sub-Region/Country) never run automatically.
		
	IP Address GeoTagger: runs
			 only on IPV4 type addresses (does not run on private IP addresses and does not
			 run on automatically on IPV6 type addresses).
		
	Reverse GeoTagger: only
			 runs on valid geocode formats.
		
	Boilerplate Removal: never
			 runs automatically.
		
	 Tag Stripper: never runs
			 automatically.
		
	Phonetic Hash: never runs
			 automatically.
		
	Language Detection: runs
			 only if the input text is at least 30 words long. This module is enabled for
			 tokens in the range 30 to 30,000 tokens.
		

		

		Note that when the Data Processing workflow finishes, you can manually
		 run any of these modules from
		 Transform in Studio.
		

	

Supported languages

		
		The supported languages are specific to each module. For details, see
		 the topic for the module.
		

	

Output attribute names

		
		The types and names of output attributes are specific to each module.
		 For details on output attributes, see the topic for the module.
		

	

Data Enrichment logging

		
		If Data Enrichment modules are run in a workflow, they are logged as
		 part of the YARN log. The log entries described which module was run and the
		 columns (attributes) created by the modules.
		

		For example, a data set that contains many geocode values can be
		 produce the following log entries:
		 Running enrichments (if any)..
generate plugin recommendations and auto enrich transform script
TOTAL AVAILABLE PLUGINS: 12
SampleValuedRecommender::Registering Plugin: AddressGeoTaggerUDF
SampleValuedRecommender::Registering Plugin: IPGeoExtractorUDF
SampleValuedRecommender::Registering Plugin: ReverseGeoTaggerUDF
SampleValuedRecommender::Registering Plugin: LanguageDetectionUDF
SampleValuedRecommender::Registering Plugin: DocLevelSentimentAnalysisUDF
SampleValuedRecommender::Registering Plugin: BoilerPlateRemovalUDF
SampleValuedRecommender::Registering Plugin: TagStripperUDF
SampleValuedRecommender::Registering Plugin: TFIDFTermExtractorUDF
SampleValuedRecommender::Registering Plugin: EntityExtractionUDF
SampleValuedRecommender::Registering Plugin: SubDocLevelSentimentAnalysisUDF
SampleValuedRecommender::Registering Plugin: PhoneticHashUDF
SampleValuedRecommender::Registering Plugin: StructuredAddressGeoTaggerUDF
valid input string count=0, total input string count=101, success ratio=0.0
AddressGeotagger won't be invoked since the success ratio is < 80%
SampleValuedRecommender: --- [ReverseGeoTaggerUDF] plugin RECOMMENDS column: [latlong] for Enrichment, based on 101 samples
SampleValuedRecommender: --- new enriched column 'latlong_geo_city' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_country' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_postcode' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_region' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_subregion' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_regionid' will be created from 'latlong'
SampleValuedRecommender: --- new enriched column 'latlong_geo_subregionid' will be created from 'latlong'

		

		In the example, the Reverse GeoTagger created seven columns.
		

	

 Entity extractor

The Entity extractor module extracts the names of people,
	 companies and places from the input text inside records in source data.

		The Entity extractor locates and classifies individual elements in
		 text into the predefined categories, which are PERSON, ORGANIZATION, and
		 LOCATION.
		

		The Entity extractor supports only English input text.
		

	

Configuration options

		
		This module does not automatically run during the sampling phase of a
		 Data Processing workflow, but you can launch it from
		 Transform in Studio.
		

	

Output

		
		For each predefined category, the output is a list of names which are
		 ingested into the Dgraph as a multi-assign string Dgraph attribute. The names
		 of the output attributes are:
			<attribute>_entity_person
			
		
	<attribute>_entity_loc
			
		
	<attribute>_entity_org
			
		

		

		In addition, the Transform API has a
		 getEntities function that wraps the Name Entity
		 extractor to return single values from the input text.
		

	

Example

		
		Assume the following input text:
		 While in New York City, Jim Davis bought 300 shares of Acme Corporation in 2012.

		

		The output would be:
		

		
		 location: New York City
organization: Acme Corporation
person: Jim Davis

		

	

Noun Group extractor

This plugin extracts noun groups from the input text.

		The Noun Group extractor retrieves noun groups from a string attribute
		 in each of the supported languages. The extracted noun groups are sorted by
		 C-value and (optionally) truncated to a useful number, which is driven by the
		 size of the original document and how many groups are extracted. One use of
		 this plugin is in tag cloud visualization to find the commonly occurring themes
		 in the data.
		

		A typical noun group consists of a determiner (the head of the
		 phrase), a noun, and zero or more dependents of various types. Some of these
		 dependents are:
			noun adjuncts
		
	attribute adjectives
		
	adjective phrases
		
	 participial phrases
		
	prepositional phrases
		
	relative clauses
		
	infinitive phrases
		

		

		The allowability, form, and position of these elements depend on the
		 syntax of the language being used.
		

	

Design

		
		This plugin works by applying language-specific phrase grouping rules
		 to an input text. A phrase grouping rule consists of sequences of lexical tests
		 that apply to the tokens in a sentence, identifying a grouping action. The
		 action of a grouping rule is a single part of speech with a weight value, which
		 can be negative or positive integers, followed by optional component labels and
		 positions. The POS (part of speech) for noun groups will use the noun POS. The
		 components must either be head or mod, and the positions are zero-based index
		 into the pattern, excluding the left and right context (if exists).
		

	

Configuration options

		
		There are no configuration options.
		

		Note that this plugin is not run automatically during the Data
		 Processing sampling phase (i.e., when a new or modified Hive table is sampled).
		
		

	

Output

		
		The output of this plugin is an ordered list of phrases (single- or
		 multi-word) that are ingested into the Dgraph as a multi-assign, string
		 attribute.
		

		The name of the output attributes is
		 <colname>_ noun_groups.
		

		In addition, the Transform API has the
		 extractNounGroups function that is a wrapper around
		 the Name Group extractor to return noun group single values from the input
		 text.
		

	

Example

		
		The following sentence provides a high-level illustration of noun
		 grouping:
		 The quick brown fox jumped over the lazy dog.

		

		 From this sentence, the extractor would return two noun groups:
			The quick brown fox
		
	the lazy dog
		

		

		Each noun group would be ingested into the Dgraph as a multi-assign
		 string attribute.
		

	

TF.IDF Term extractor

This module extracts key words from the input text.

		The TF.IDF Term module extracts key terms (salient terms) using a
		 predictable, statistical algorithm. (TF is "term frequency" while IDF is
		 "inverse document frequency".)
		

		The TF.IDF statistic is a common tool for the purpose of extracting
		 key words from a document by not only considering a single document but all
		 documents from the corpus. For the TF.IDF algorithm, a word is important for a
		 specific document if it shows up relatively often within that document and
		 rarely in other documents of the corpus.
		

		The number of output terms produced by this module is a function of
		 the TF.IDF curve. By default, the module stops returning terms when the score
		 of a given term falls below ~68%.
		

		The TF.IDF Term extractor supports these languages:
			English (UK/US)
		
	French
		
	German
		
	Italian
		
	Portuguese (Brazil)
		
	Spanish
		

		

	

Configuration options

		
		During a Data Processing sampling operation, this module runs
		 automatically on text that contains between 30 and 30,000 tokens. However,
		 there are no configuration options for such an operation.
		

		In Studio, the Transform API provides a language argument that
		 specifies the language of the input text, to improve accuracy.
		

	

Output

		
		The output is an ordered list of single- or multi-word phrases which
		 are ingested into the Dgraph as a multi-assign string Dgraph attribute. The
		 name of the output attribute is
		 <attribute>_key_phrases.
		

	

 Sentiment Analysis (document level)

The document-level Sentiment Analysis module analyzes a piece of
	 text and determines whether the text has a positive or negative sentiment.

		It supports any sentiment-bearing text (that is, texts which are not
		 too short, numeric, include only a street address, or an IP address). This
		 module works best if the input text is over 40 characters in length.
		

		This module supports these languages:
			English (US and UK)
		
	French
		
	German
		
	Italian
		
	Spanish
		

		

	

Configuration options

		
		This module never runs automatically during a Data Processing
		 workflow.
		

		In addition, the Transform API has a
		 getSentiment function that wraps this module.
		

	

Output

		
		The default output is a single text that is one of these values:
			POSITIVE
		
	NEGATIVE
		

		

		 Note that NULL is returned for any input which is either null or
		 empty.
		

		The output string is subsequently ingested into the Dgraph as a
		 single-assign string Dgraph attribute. The name of the output attribute is
		 <attribute>_doc_sent.
		

	

 Sentiment Analysis (sub-document level)

The sub-document-level Sentiment Analysis module returns a list of
	 sentiment-bearing phrases which fall into one of the two categories: positive
	 or negative.

		The SubDocument-level Sentiment Analysis module obtains the sentiment
		 opinion at a sub-document level. This module returns a list of
		 sentiment-bearing phrases which fall into one of the two categories: positive
		 or negative. Note that this module uses the same Sentiment Analysis classes as
		 the document-level Sentiment Analysis module.
		

		This module supports these languages:
			 English (US and UK)
		
	French
		
	German
		
	Italian
		
	Spanish
		

		

	

Configuration options

		
		Because this module never runs automatically during a Data Processing
		 sampling operation, there are no configuration options for such an operation.
		

	

Output

		
		For each predefined category, the output is a list of names which are
		 ingested into the Dgraph as a multi-assign string Dgraph attribute. The names
		 of the output attributes are:
			<attribute>_sub_sent_neg
			 (for negative phrases)
		
	<attribute>_sub_sent_pos
			 (for positive phrases)
		

		

	

 Address GeoTagger

The Address GeoTagger returns geographical information for a valid
	 global address.

		The geographical information includes all of the possible
		 administrative divisions for a specific address, as well as the latitude and
		 longitude information for that address. The Address GeoTagger only runs on
		 valid, unambiguous addresses which correspond to a city. In addition, the
		 length of the input text must be less than or equal to 350 characters.
		

		For triggering on auto-enrichment, the Address GeoTagger requires two
		 or more match points to exist. For a postcode to match, it must be accompanied
		 by a country.
		

		Some valid formats are:
			City + State
		
	City + State + Postcode
		
	City + Postcode
		
	Postcode + Country
		
	City + State + Country
		
	City + Country (if the
			 country has multiple cities of that name, information is returned for the city
			 with the largest population)
		

		

		For example, these inputs generate geographical information for the
		 city of Boston, Massachusetts:
			Boston, MA (or Boston,
			 Massachusetts)
		
	Boston, Massachusetts
			 02116
		
	02116 US
		
	Boston, MA US
		
	Boston US
		

		

		The final example ("Boston US") returns information for Boston,
		 Massachusetts because even though there are several cities and towns named
		 "Boston" in the US, Boston, Massachusetts has the highest population of all the
		 cities named "Boston" in the US.
		

		Note that for this module to run automatically, the minimum
		 requirement is that the city plus either a state or a postcode are specified.
		

		Keep in mind that regardless of the input address, the geographical
		 resolution does not get finer than the city level. For example, this module
		 will not resolve down to the street level if given a full address. In other
		 words, this full address input:
		 400 Oracle Parkway, Redwood City, CA 94065

produces the same results as supplying only the city and state:
		 Redwood City, CA

		

	

GeoNames data

		
		The information returned by this geocode tagger comes from the
		 GeoNames geographical database, which is included as part of the Data
		 Enrichment package in Big Data Discovery.
		

	

Configuration options

		
		This module is run (on well-formed addresses) during a Data Processing
		 sampling operation. However, there are no configuration options for such an
		 operation.
		

	

Output

		
		The output information includes the latitude and longitude, as well as
		 all levels of administrative areas.
		

		 Depending on the country, the output attributes consist of these
		 administrative divisions, as well as the geocode of the address:
			<attribute>_geo_geocode
			 — the latitude and longitude values of the address (such as "42.35843
			 -71.05977").
		
	<attribute>_geo_city
			 — corresponds to a city (such as "Boston").
		
	<attribute>_geo_country
			 — the country code (such as "US").
		
	<attribute>_geo_postcode
			 — corresponds to a postcode, such as a zip code in the US (such as "02117").
		
	<attribute>_geo_region
			 — corresponds to a geographical region, such as a state in the US (such as
			 "Massachusetts").
		
	<attribute>_geo_regionid
			 — the ID of the region in the GeoNames database (such as "6254926" for
			 Massachusetts).
		
	<attribute>_geo_subregion
			 — corresponds to a geographical sub-region, such as a county in the US (such as
			 "Suffolk County").
		
	<attribute>_geo_subregionid
			 — the ID of the sub-region in the GeoNames database (such as "4952349" for
			 Suffolk County in Massachusetts).
		

		

		All are output as single-assign string (mdex:string)
		 attributes, except for
		 Geocode which is a single-assign geocode
		 (mdex:geocode) attribute.
		

		Note that if an invalid input is provided (such as a zip code that is
		 not valid for a city and state), the output may be NULL.
		

	

Examples

		
		The following output might be returned for the "Boston, Massachusetts
		 USA" address:
		 ext_geo_city Boston
ext_geo_country US
ext_geo_geocode 42.35843 -71.05977
ext_geo_postcode 02117
ext_geo_region Massachusetts
ext_geo_regionid 6254926
ext_geo_subregion Suffolk Country
ext_geo_subregionid 4952349

		

		This sample output is for the "London England" address:
		 ext_geo_city City of London
ext_geo_country GB
ext_geo_geocode 51.51279 -0.09184
ext_geo_postcode ec4r
ext_geo_region England
ext_geo_regionid 6269131
ext_geo_subregion Greater London
ext_geo_subregionid 2648110

		

	

IP Address GeoTagger

The IP Address GeoTagger returns geographical information for a
	 valid IP address.

		The IP Address GeoTagger is similar to the Address GeoTagger, except
		 that it uses IP addresses as its input text. This module is useful IP addresses
		 are present in the source data and you want to generate geographical
		 information based on them. For example, if your log files contain IP addresses
		 as a result of people coming to your site, this module would be most useful for
		 visualization where those Web visitors are coming from.
		

		Note that when given a string that is not an IP address, the IP
		 Address GeoTagger returns NULL.
		

	

GeoNames data

		
		The information returned by this geocode tagger comes from the
		 GeoNames geographical database, which is included as part of the Data
		 Enrichment package in Big Data Discovery.
		

	

Configuration options

		
		There are no configuration options for a Data Processing sampling
		 operation.
		

	

Output

		
		The output of this module consists of the following attributes:
			<attribute>_geo_geocode
			 — the latitude and longitude values of the address (such as "40.71427 -74.00597
			 ").
		
	<attribute>_geo_city
			 — corresponds to a city (such as "New York City").
		
	<attribute>_geo_region
			 — corresponds to a region, such as a state in the US (such as "New York").
		
	<attribute>_geo_regionid
			 — the ID of the region in the GeoNames database (such as "5128638 " for New
			 York).
		
	<attribute>_geo_postcode
			 — corresponds to a postcode, such as a zip code in the US (such as "02117").
		
	<attribute>_geo_country
			 — the country code (such as "US").
		

		

	

Example

		
		The following output might be returned for the 148.86.25.54 IP
		 address:
		 ext_geo_city New York City
ext_geo_country US
ext_geo_geocode 40.71427 -74.00597
ext_geo_postcode 10007
ext_geo_region New York
ext_geo_regionid 5128638

		

	

Reverse GeoTagger

The Reverse GeoTagger returns geographical information for a valid
	 geocode latitude/longitude coordinates that resolve to a metropolitan area.

		The purpose of the Reverse GeoTagger is, based on a given latitude and
		 longitude value, to find the closest place (city, state, country, postcode,
		 etc) with population greater than 5000 people. The location threshold for this
		 module is 100 nautical miles. When the given location exceeds this radius and
		 the population threshold, the result is NULL.
		

		The syntax of the input is:
		 <double>separator<double>

where:
		 	The first double is the
				latitude, within the range of -90 to 90 (inclusive).
			
	The second double is the
				longitude, within the range of -180 to 180 (inclusive).
			
	The separator is any of
				these characters: whitespace, colon, comma, pipe, or a combination of
				whitespaces and one the other separator characters.
			

		

		For example, this input:
		 42.35843 -71.05977

returns geographical information for the city of Boston,
		 Massachusetts.
		

		However, this input:
		 39.30 89.30

returns NULL because the location is in the middle of the Gobi
		 Desert in China.
		

	

GeoNames data

		
		The information returned by this geocode tagger comes from the
		 GeoNames geographical database, which is included as part of the Data
		 Enrichment package in Big Data Discovery.
		

	

Configuration options

		
		There are no configuration options for a Data Processing sampling
		 operation.
		

		In Studio, the
		 Transform area includes functions that return
		 only a specified piece of the geographical results, such as only a city or only
		 the postcode.
		

	

Output

		
		The output of this module consists of these attribute names and
		 values:
			<attribute>_geo_city
			 — corresponds to a city (such as "Boston").
		
	<attribute>_geo_country
			 — the country code (such as "US").
		
	<attribute>_geo_postcode
			 — corresponds to a postcode, such as a zip code in the US (such as "02117").
		
	<attribute>_geo_region
			 — corresponds to a geographical region, such as a state in the US (such as
			 "Massachusetts").
		
	<attribute>_geo_regionid
			 — the ID of the region in the GeoNames database (such as "6254926" for
			 Massachusetts).
		
	<attribute>_geo_subregion
			 — corresponds to a geographical sub-region, such as a county in the US (such as
			 "Suffolk County").
		
	<attribute>_geo_subregionid
			 — the ID of the sub-region in the GeoNames database (such as "4952349" for
			 Suffolk County in Massachusetts).
		

		

	

Tag Stripper

The Tag Stripper module removes any HTML, XML and XHTML markup
	 from the input text.

	

Configuration options

		
		This module never runs
		 automatically during a Data Processing sampling operation.
		

		When you run it from within
		 Transform in Studio, the module takes only the
		 input text as an argument.
		

	

Output

		
		The output is a single text which is ingested into the Dgraph as a
		 single-assign string Dgraph attribute. The name of the output attribute is
		 <attribute>_html_strip.
		

	

Phonetic Hash

The Phonetic Hash module returns a string attribute that contains
	 the hash value of an input string.

		A word's phonetic hash is based on its pronunciation, rather than its
		 spelling. This module uses a phonetic coding algorithm that transforms small
		 text blocks (names, for example) into a spelling-independent hash comprised of
		 a combination of twelve consonant sounds. Thus, similar-sounding words tend to
		 have the same hash. For example, the term "purple" and its misspelled version
		 of "pruple" have the same hash value (PRPL).
		

		Phonetic hashing can used, for example, to normalize data sets in
		 which a data column is noisy (for example, misspellings of people's names).
		

		This module works only with whitespace languages.
		

	

Configuration options

		
		This module never runs automatically during a Data Processing sampling
		 operation and therefore there are no configuration options.
		

		In Studio, you can run the module within
		 Transform, but it does not take any arguments
		 other than the input string.
		

	

Output

		
		The module returns the phonetic hash of a term in a single-assign
		 Dgraph attribute named
		 <attribute>_phonetic_hash. The value of the
		 attribute is useful only as a grouping condition.
		

	

Language Detection

The Language Detection module can detect the language of input
	 text.

		The Language Detection module can accurately detect and report primary
		 languages in a plain-text input, even if it contains more than one language.
		 The size of the input text must be between 35 and 30,000 words for more than
		 80% of the values sampled.
		

		The Language Detection module can detect all languages supported by
		 the Dgraph. The module parses the contents of the specified text field and
		 determines a set of scores for the text. The supported language with the
		 highest score is reported as the language of the text.
		

		If the input text of the specified field does not match a supported
		 language, the module outputs "Unknown" as the language value. If the value of
		 the specified field is NULL, or consists only of white spaces or non-alphabetic
		 characters, the component also outputs "Unknown" as the language.
		

	

Configuration options

		
		There are no configuration options for this module, both when it is
		 run as part of a Data Processing sampling operation and when you run it from
		 Transform in Studio.
		

	

Output

		
		If a valid language is detected, this module outputs a separate
		 attribute with the ISO 639 language code, such as "en" for English, "fr" for
		 French, and so on. There are two special cases when NULL is returned:
			 If the input is NULL, the
			 output is NULL.
		
	If there is a valid input
			 text but the module cannot decide on a language, then the output is NULL.
		

		

		The name of the output attribute is
		 <attribute>_lang.
		

	

8 Dgraph Data Model

This section introduces basic concepts associated with the schema
	 of records in the Dgraph, and describes how data is structured and configured
	 in the Dgraph data model. When a Data Processing workflow runs, a resulting
	 data set is created in the Dgraph. The records in this data set, as well as
	 their attributes, are discussed in this section.

	About the data model

The data model in the Dgraph consists of data sets, records, and 	 attributes.
	Data records

 Records are the fundamental units of data in the Dgraph.
	Attributes

An 	 attribute is the basic unit of a record schema. Assignments 	 from attributes (also known as 	 key-value pairs) describe records in the Dgraph.
	Supported languages

The Dgraph uses a language code to identify a language for a 	 specific attribute.

About the data model

The data model in the Dgraph consists of data sets, records, and
	 attributes.

	 	Data sets contain records.
		
	Records are the fundamental
		 units of data.
		
	Attributes are the
		 fundamental units of the schema. For each attribute, a record may be assigned
		 zero, one, or more attribute values.
		

	

Data records

 Records are the fundamental units of data in the Dgraph.

Dgraph records are processed from rows in a Hive table that have been
		sampled by a Data Processing workflow in Big Data Discovery.
	

Source information that is consumed by the Dgraph, including application
		data and the data schema, is represented by records. Data records in Big Data
		Discovery are the business records that you want to explore and analyze using
		Studio. A specific record belongs to only one specific data set.
	

Attributes

An
	 attribute is the basic unit of a record schema. Assignments
	 from attributes (also known as
	 key-value pairs) describe records in the Dgraph.

 For a
		data record, an assignment from an attribute provides information about that
		record. For example, for a list of book records, an assignment from the Author
		attribute contains the author of the book record.
	

Each attribute is identified by a unique name within each data set.
		Because attribute names are scoped within their own data sets, it is possible
		for two attributes to have the same name, as long as each belongs to a
		different data set.
	

Each attribute on a data record is itself represented by a record that
		describes this attribute. Following the book records example, there is a record
		that describes the Author attribute. A set of these records that describe
		attributes forms a schema for your records. This set is known as system
		records. Each attribute in a record in the schema controls an aspect of the
		attribute on a data record. For example, an attribute on any data record can be
		searchable or not. This fact is described by an attribute in the schema record.
		
	

	Assignments on attributes

Records are assigned values from attributes. An 	 assignment indicates that a record has a value from an 	 attribute.
	Attribute data types

The attribute type identifies the type of data allowed for the 	 attribute value (key-value pair).

Assignments on attributes

Records are assigned values from attributes. An
	 assignment indicates that a record has a value from an
	 attribute.

		
		
		
		
	

A record typically has assignments from multiple attributes. For each
		assigned attribute, the record may have one or more values. An assignment on an
		attribute is known as a
		key-value pair (KVP).
	

Not all attributes will have an assignment for every record. For
		example, for a publisher that sells both books and magazines, the ISBNnumber
		attribute would be assigned for book records, but not assigned (empty) for most
		magazine records.
	

Attributes may be single-assign or multi-assign:
	

	A single-assign attribute is
		 an attribute for which each record can have at most one value. For example, for
		 a list of books, the ISBN number would be a single-assign attribute. Each book
		 only has one ISBN number.
		
	A multi-assign attribute is
		 an attribute for which a single record can have more than one value. For the
		 same list of books, because a single book may have multiple authors, the Author
		 attribute would be a multi-assign attribute.
		

At creation time, the Dgraph attribute is configured to be either
		single-assign or multi-assign.
	

Attribute data types

The attribute type identifies the type of data allowed for the
	 attribute value (key-value pair).

	

The Dgraph supports the following attribute data types:
	

	
	Attribute type
					Description
				
	mdex:string
					XML-valid character strings.
				
				
	mdex:int
					A 32-bit signed integer. Although the
				 Dgraph supports
				 mdex:int attributes, they are not used by Data
				 Processing workflows.
				
	mdex:long
					A 64-bit signed integer.
				 mdex:long values accepted by the Dgraph can be
				 up to the value of 9,223,372,036,854,775,807.
				
				
	mdex:double
					A floating point value.
				
				
	mdex:time
					Represents the hour and minutes of an
				 instance of time, with the optional specification of fractional seconds. The
				 time value can be specified as a universal (UTC) date time or as a local time
				 plus a UTC time zone offset.
				
	mdex:dateTime
					Represents the year, month, day, hour,
				 minute, and seconds of a time point, with the optional specification of
				 fractional seconds. The dateTime value can be specified as a universal (UTC)
				 date time or as a local time plus a UTC time zone offset.
				
				
	mdex:duration
					Represents a duration of the days,
				 hours, and minutes of an instance of time. Although the Dgraph supports
				 mdex:duration attributes, they are not used by
				 Data Processing workflows.
				
	mdex:boolean
					 A Boolean. Valid Boolean values are
				 true (or
				 1, which is a synonym for
				 true) and
				 false (or
				 0, which is a synonym for
				 false).
				
				
	mdex:geocode
					 A latitude and longitude pair. The
				 latitude and longitude are both double-precision floating-point values, in
				 units of degrees.
				
				

	

During a Data Processing workflow, the created Dgraph attributes are
		derived from the columns in a Hive table. For information on the mapping of
		Hive column data types to Dgraph attribute data types, see
		Data type discovery.
	

Supported languages

The Dgraph uses a language code to identify a language for a
	 specific attribute.

		Language codes must be specified as valid RFC-3066
		 language code identifiers. The supported languages and their language code
		 identifiers are:
		
	Afrikaans:
					 af
				 	Danish:
					 da
				 	Indonesian:
					 id
				 	Norwegian Bokmal:
					 nb
				 	Spanish, Latin American:
					 es_lam
				
	Albanian:
					 sq
				 	Divehi:
					 nl
				 	Italian:
					 it
				 	Norwegian Nynorsk:
					 nn
				 	Spanish, Mexican:
					 es_mx
				
	Amharic:
					 am
				 	Dutch:
					 nl
				 	Japanese:
					 ja
				 	Oriya:
					 or
				 	Swahili:
					 sw
				
	Arabic:
					 ar
				 	English, American:
					 en
				 	Kannada:
					 kn
				 	Persian:
					 fa
				 	Swedish:
					 sv
				
	Armenian:
					 hy
				 	English, British:
					 en_GB
				 	Kazakh, Cyrillic:
					 kk
				 	Persian, Dari:
					 prs
				 	Tagalog:
					 tl
				
	Assamese:
					 as
				 	Estonian:
					 et
				 	Khmer:
					 km
				 	Polish:
					 pl
				 	Tamil:
					 ta
				
	Azerbaijani:
					 az
				 	Finnish:
					 fi
				 	Korean:
					 ko
				 	Portuguese:
					 pt
				 	Telugu:
					 te
				
	Bangla:
					 bn
				 	French:
					 fr
				 	Kyrgyz:
					 ky
				 	Portuguese, Brazilian:
					 pt_BR
				 	Thai:
					 th
				
	Basque:
					 eu
				 	French, Canadian:
					 fr_ca
				 	Lao:
					 lo
				 	Punjabi:
					 pa
				 	Turkish:
					 tr
				
	Belarusian:
					 be
				 	Galician:
					 gl
				 	Latvian:
					 lv
				 	Romanian:
					 ro
				 	Turkmen:
					 tk
				
	Bosnian:
					 bs
				 	Georgian:
					 ka
				 	Lithuanian:
					 lt
				 	Russian:
					 ru
				 	Ukrainian:
					 uk
				
	Bulgarian:
					 bg
				 	German:
					 de
				 	Macedonian:
					 mk
				 	Serbian, Cyrillic:
					 sr_Cyrl
				 	Urdu:
					 ur
				
	Catalan:
					 ca
				 	Greek:
					 el
				 	Malay:
					 ms
				 	Serbian, Latin:
					 sr_Latn
				 	Uzbek, Cyrillic:
					 uz
				
	Chinese, simplified:
					 zh_CN
				 	Gujarati:
					 gu
				 	Malayalam:
					 ml
				 	Sinhala:
					 si
				 	Uzbek, Latin:
					 uz_latin
				
	Chinese, traditional:
					 zh_TW
				 	Hebrew:
					 he
				 	Maltese:
					 mt
				 	Slovak:
					 sk
				 	Valencian:
					 vc
				
	Croatian:
					 hr
				 	Hungarian:
					 hu
				 	Marathi:
					 mr
				 	Slovenian:
					 sl
				 	Vietnamese:
					 vn
				
	Czech:
					 cs
				 	Icelandic:
					 is
				 	Nepali:
					 ne
				 	Spanish:
					 es
				 	unknown (i.e., none of the above
					 languages):
					 unknown
				

		

		The language codes are case insensitive.
		

		Note that an error is returned if you specify an invalid language
		 code.
		

		With the language codes, you can specify the language of the text to
		 the Dgraph during a record search or value search query, so that it can
		 correctly perform language-specific operations.
		

	

How country locale codes are treated

		
		A country locale code is a combination of a language code (such as
		 es for Spanish) and a country code (such as
		 MX for Mexico or
		 AR for Argentina). Thus, the
		 es_MX country locale means Mexican Spanish while
		 es_AR is Argentinian Spanish.
		

		If you specify a country locale code for a
		 Language element, the software ignores the country
		 code but accepts the language code part. In other words, a country locale code
		 is mapped to its language code and only that part is used for tokenizing
		 queries or generating search indexes. For example, specifying
		 es_MX is the same as specifying just
		 es. The exceptions to this rule are the codes listed
		 above (such as
		 pt_BR).
		

		Note, however, that if you create a Dgraph attribute and specify a
		 country locale code in the
		 Language field, the attribute will be tagged with the
		 country locale code, even though the country code will be ignored during
		 indexing and querying.
		

	

Language-specific dictionaries and Dgraph database

		
		The Dgraph has two spelling correction engines:
			If the
			 Language property in an attribute is set to
			 en, then spelling correction will be handled through
			 the English spelling engine (and its English spelling dictionary).
		
	If the
			 Language property is set to any other value, then
			 spelling correction will use the non-English spelling engine (and its
			 language-specific dictionaries).
		

		

		All dictionaries are generated from the data records in the Dgraph,
		 and therefore require that the attribute definitions be tagged with a language
		 code.
		

		A data set's dictionary files are stored in the Dgraph database
		 directory for that data set.
		

	

Specifying a language for a data set

		
		When creating a data set, you can specify the language for all
		 attributes in that data set, as follows:
			Studio: When uploading a
			 file in via the Data Set Creation Wizard, the
			 Advanced
				 Settings > Language field in the
			 Preview page lets you select a language.
		
	 DP CLI: The
			 defaultLanguage property in the
			 edp.properties configuration file sets the
			 language.
		

		

		Note that you cannot set languages on a per-attribute basis.
		

	

9 Dgraph HDFS Agent

This section describes the role of the Dgraph HDFS Agent in the
	 exporting and ingesting of data.

	About the Dgraph HDFS Agent

The Dgraph HDFS Agent acts as a data transport layer between the 	 Dgraph and an HDFS environment.
	Importing records from HDFS for ingest

The Dgraph HDFS Agent plays a major part in the loading of data 	 from a Data Processing workflow into the Dgraph.
	Exporting data from Studio

The Dgraph HDFS Agent is the conduit for exporting data from a 	 Studio project.
	Dgraph HDFS Agent logging

The Dgraph HDFS Agent writes its stdout/stderr output to a log 	 file.

About the Dgraph HDFS Agent

The Dgraph HDFS Agent acts as a data transport layer between the
	 Dgraph and an HDFS environment.

The
		Dgraph HDFS Agent plays two important roles:
	 	Takes part in the ingesting
		 of records into the Dgraph. It does so by first reading records from HDFS that
		 have been output by a Data Processing workflow and then sending the records to
		 the Dgraph's Bulk Load interface.
		
	Takes part in the exporting
		 of data from Studio back into HDFS. The exported data can be in the form of
		 either a local file or an HDFS Avro file that can be used to create a Hive
		 table.
		

	

Importing records from HDFS for ingest

The Dgraph HDFS Agent plays a major part in the loading of data
	 from a Data Processing workflow into the Dgraph.

The Dgraph HDFS Agent's role in the ingest
		procedure is to read the output Avro files from the Data Processing workflow,
		format them for ingest, and send them to the Dgraph.
	

Specifically, the high-level, general steps in the ingest process are:
	 	A Data Processing workflow
		 finishes by writing a set of records in Avro files in the output directory.
		
	The Spark client then
		 locates the Dgraph leader node and the Bulk Load port for the ingest, based on
		 the data set name. The Dgraph that will ingest the records must be a leader
		 within the Dgraph cluster, within the BDD deployment. The leader Dgraph node is
		 elected and determined automatically by Big Data Discovery.
		
	The Dgraph HDFS Agent reads
		 the Avro files and prepares them in a format that the Bulk Load interface of
		 the Dgraph can accept.
		
	The Dgraph HDFS Agent sends
		 the files to the Dgraph via the Bulk Load interface's port.
		
	When a job is successfully
		 completed, the files holding the initial data are deleted.
		

	

The ingest of data sets is done with a round-robin, multiplexing
		algorithm. The Dgraph HDFS Agent divides the records from a given data set into
		batches. Each batch is processed as a complete ingest before the next batch is
		processed. If two or more data sets are being processed, the round-robin
		algorithm alternates between sending record batches from each source data set
		to the Dgraph. Therefore, although only one given ingest operation is being
		processed by the Dgraph at any one time, this multiplexing scheme does allow
		all active ingest operations to be scheduled in a fair fashion.
	

Note that if Data Processing writes a NULL or empty value to the HDFS
		Avro file, the Dgraph HDFS Agent skips those values when constructing a record
		from the source data for the consumption by the Bulk Load interface.
	

Updating the spelling dictionaries

		
		When the Dgraph HDFS Agent sends the ingest request to the Dgraph, it
		 also sets the
		 updateSpellingDictionaries flag in the bulk load
		 request. The Dgraph thus updates the spelling dictionaries for the data set
		 from the data corpus. This operation is performed after every successful
		 ingest. The operation also enables spelling correction for search queries
		 against the data set.
		

	

Post-ingest merge operation

		
		After sending the record files to the Dgraph for ingest, the Dgraph
		 HDFS Agent also requests a full merge of all generations of the Dgraph database
		 files.
		

		The merge operation consists of two actions:
			The Dgraph HDFS Agent
			 sends a URL merge request to the Dgraph.
		
	If it successfully
			 receives the request, the Dgraph performs the merge.
		

		

		The final results of the merge are logged to the Dgraph out log.
		

	

Exporting data from Studio

The Dgraph HDFS Agent is the conduit for exporting data from a
	 Studio project.

From within a project in Studio, you can export
		data as a new Avro file (.avro extension), CSV file
		(.csv extension), or text file (.txt
		extension). Files can be exported to either an external directory on your
		computer, or to HDFS. For details on the operation, see the
		Studio User's Guide.
	

When a user exports a data set to a file in HDFS from Studio, the
		exported file's owner will always be the owner of HDFS agent process (or the
		HDFS agent principal owner in a Kerberized cluster). That is, the Dgraph HDFS
		Agent uses the username from the export request to create a FileSystem object.
		That way, BDD can guarantee that a file will not be created if the user does
		not have permissions, and if the file it created, it is owned by that user. The
		group is assign automatically by Hadoop.
	

As part of the export operation, the user specifies the delimiter to be
		used in the exported file:
	 	If the delimiter is a comma,
		 the export process creates a
		 .csv file.
		
	If the delimiter is anything
		 except a comma, the export process creates a
		 .txt file.
		

	

If you export to HDFS, you also have the option of creating a Hive table
		from the data. After the Hive table is created, a Data Processing workflow is
		launched to create a new data set.
	

The following diagram illustrates the process of exporting data from
		Studio into HDFS:
	

[image: This diagram shows the process of exporting data from Studio (in Big Data Discovery) into HDFS.]
	

In this diagram, the following actions take place:
	 	From
		 Transform in Studio, you can select to export
		 the data into HDFS. This sends an internal request to export the data to the
		 Dgraph.
		
	The Dgraph communicates with
		 the Dgraph HDFS Agent, which launches the data exporting process and writes the
		 file to HDFS.
		
	Optionally, you can choose
		 to create a Hive table from the data. If you do so, the Hive table is created
		 in HDFS.
		

	

Errors that may occur during the export are entered into the Dgraph HDFS
		Agent's log.
	

Dgraph HDFS Agent logging

The Dgraph HDFS Agent writes its stdout/stderr output to a log
	 file.

The Dgraph HDFS Agent
		--out flag specifies the file name and path of the
		Dgraph HDFS Agent's stdout/stderr log file. This log file is used for both
		import (ingest) and export operations.
	

The name and location of the output log file is set at installation time
		via the
		AGENT_OUT_FILE parameter of the
		bdd.conf configuration file. Typically, the log name
		is
		dgraphHDFSAgent.out and the location is the
		$BDD_HOME/logs directory.
	

The Dgraph HDFS Agent log is especially important to check if you
		experience problems with loading records at the end of a Data Processing
		workflow. Errors received from the Dgraph (such as rejected records) are logged
		here.
	

Ingest operation messages

		
		The following are sample messages for a successful ingest operation
		 for a data set. The messages have been edited for readability:
		 New import request received: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 collectionName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c},
 ...
 requestOrigin: FROM_DATASET
Received request for database edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c
Starting ingest for: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 collectionName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c},
 ...
 requestOrigin: FROM_DATASET
Finished reading 9983 records for MdexCollectionIdentifier{
 databaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 collectionName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c},
 ...
 requestOrigin: FROM_DATASET
createBulkIngester edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c
sendRecordsToIngester 9983
closeBulkIngester
Ingest finished with 9983 records committed and 0 records rejected.
 Status: INGEST_FINISHED.
 Request info: MdexCollectionIdentifier{
 databaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 collectionName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c},
 location: /user/bdd/edp/data/.dataIngestSwamp/...,
 user name: fcalvill,
 notification: {"workflowName":"CLIDataLoad",
 "sourceDatabaseName":null,
 "sourceDatasetKey":null,
 "targetDatabaseName":
 "edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c",
 "targetDatasetKey":"edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c",
 "ecid":"0000LMSUWCm7ADkpSw4Eyc1NSxM1000000",
 "status":"IN_PROGRESS",
 "startTime":1467209085630,
 "timestamp":1467209136298,
 "progressPercentage":0.0,
 "errorMessage":null,
 "trackingUrl":null,
 "properties":{"dataSetDisplayName":"WarrantyClaims",
 "isCli":"true"}},
 actualEcid: 0000LMSUWCm7ADkpSw4Eyc1NSxM1000000,
 requestOrigin: FROM_DATASET
Notification server url: http://busgg2014.us.oracle.com:7003/bdd/v1/api/workflows
About to send notification
Terminating
Notification{workflowName=CLIDataLoad,
 sourceDatabaseName=null, sourceDatasetKey=null,
 targetDatabaseName=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 targetDatasetKey=edp_cli_edp_4dd5ac28-2e85-4efc-a3c2-391b6a78f69c,
 ecid=0000LMSUWCm7ADkpSw4Eyc1NSxM1000000,
 status=SUCCEEDED,
 startTime=1467209085630,
 timestamp=1467209222088,
 progressPercentage=100.0,
 errorMessage=null,
 properties={dataSetDisplayName=WarrantyClaims, isCli=true}}
Notification sent successfully
Terminating
...

		

		Some events in the sample log are:
			The Data Processing
			 workflow has written a set of Avro files in the
			 /user/bdd/edp/data/.dataIngestSwamp directory in
			 HDFS.
		
	The Dgraph HDFS Agent
			 starts an ingest operation for the data set.
		
	The
			 createBulkIngester operation is used to instantiate
			 a Bulk Load ingester instance for the data set.
		
	The Dgraph HDFS Agent
			 reads 9983 records from the Avro files.
		
	The
			 sendRecordsToIngester operation sends the 9983
			 records to the Dgraph's ingester.
		
	The Bulk Load instance is
			 closed with the
			 closeBulkIngester operation.
		
	The
			 Status: INGEST_FINISHED message signals the end of
			 the ingest operation. The message also lists the number of successfully
			 committed records and the number of rejected records. In addition, the Dgraph
			 HDFS Agent notifies Studio that the ingest has finished, at which point Studio
			 updates the
			 status attribute of the DataSet Inventory with the
			 final status of the ingest operation. The status should be
			 FINISHED for a successful ingest or
			 ERROR if an error occurred.
		
	The Dgraph HDFS Agent
			 sends a final notification to Studio that the workflow has finished, with a
			 status of
			 SUCCEEDED.
		

		

		Note that throughout the workflow, Dgraph HDFS Agent constantly sends
		 notification updates to Studio, so that Studio can report on the progress of
		 the workflow to the end user.
		

	

Rejected records

		
		It is possible for a certain record to contain data which cannot be
		 ingested or can even crash the Dgraph. Typically, the invalid data will consist
		 of invalid XML characters. In this case, the Dgraph cannot remove or cleanse
		 the invalid data, it can only skip the record with the invalid data. The
		 interface rejects non-XML 1.0 characters upon ingest. That is, a valid
		 character for ingest must be a character according to production 2 of the XML
		 1.0 specification. If an invalid character is detected, the record with the
		 invalid character is rejected with this error message in the Dgraph HDFS Agent
		 log:
		 Received error message from server: Record rejected: Character <c> is not legal in XML 1.0

		

		A source record can also be rejected if it is too large. There is a
		 limit of 128MB on the maximum size of a source record. An attempt to ingest a
		 source record larger than 128MB fails and an error is returned (with the
		 primary key of the rejected record), but the bulk load ingest process continues
		 after that rejected record.
		

	

Logging for new and deleted attributes

		
		The Dgraph HDFS Agent logs the names of attributes being created or
		 deleted as result of transforms. For example:
		 Finished reading 499 records for Collection name: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
Adding attributes to collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
 [NumInStock]
Added attributes to collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
...
Deleting attributes from collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
 [OldPrice2]
Deleted attributes from collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b

		

		In the example, the NumInStock attribute was added to the data set and
		 the OldPrice2 attribute was deleted.
		

	

	Log entry format

This topic describes the format of Dgraph HDFS Agent log entries, 	 including their message types and log levels.
	Logging properties file

The Dgraph HDFS Agent has a default Log4j configuration file that 	 sets its logging properties.

Log entry format

This topic describes the format of Dgraph HDFS Agent log entries,
	 including their message types and log levels.

		The following is an example of a NOTIFICATION message:
		 [2015-07-27T13:32:26.529-04:00] [DgraphHDFSAgent] [NOTIFICATION] [] [com.endeca.dgraph.hdfs.agent.importer.RecordsConsumer]
[host: web05.example.com] [nwaddr: 10.152.105.219] [tid: RecordsConsumer] [userId: fcalvill]
[ecid: 0000KvFouxK7ADkpSw4Eyc1LhZWv000006,0] fetchMoreRecords for collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b

		

		The format of the Dgraph HDFS Agent log fields (using the above
		 example) and their descriptions are as follows:
		
	Log entry field
				 	Description
				 	Example
				
	Timestamp
				 	The date and time when the message
					 was generated. This reflects the local time zone.
				 	[2015-07-27T13:32:26.529-04:00]
				
	Component ID
				 	 The ID of the component that
					 originated the message. "DgraphHDFSAgent" is hard-coded for the Dgraph HDFS
					 Agent.
				 	[DgraphHDFSAgent]
				
	Message Type
				 	 The type of message (log level):
					 	INCIDENT_ERROR
						
	ERROR
						
	WARNING
						
	NOTIFICATION
						
	TRACE
						
	UNKNOWN
						

				 	[NOTIFICATION]
				
	Message ID
				 	 The message ID that uniquely
					 identifies the message within the component. Currently is left blank.
				 	[]
				
	Module ID
				 	 The Java class that prints the
					 message entry.
				 	[com.endeca.dgraph.hdfs.agent.importer.RecordsConsumer]
					
				
	Host name
				 	The name of the host where the
					 message originated.
				 	[host: web05.example.com]
				
	Host address
				 	The network address of the host
					 where the message originated
				 	[nwaddr: 10.152.105.219]
				
	Thread ID
				 	The ID of the thread that generated
					 the message.
				 	[tid: RecordsConsumer]
				
	User ID
				 	The name of the user whose execution
					 context generated the message.
				 	[userId: fcalvill]
				
	ECID
				 	 The Execution Context ID (ECID),
					 which is a global unique identifier of the execution of a particular request in
					 which the originating component participates.
				 	[0000KvFouxK7ADkpSw4Eyc1LhZWv000006,0]
				
	Message Text
				 	The text of the log message.
				 	 fetchMoreRecords for collection:
						default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
				

		

	

Logging properties file

The Dgraph HDFS Agent has a default Log4j configuration file that
	 sets its logging properties.

		The file is named
		 log4j.properties and is located in the
		 $DGRAPH_HOME/dgraph-hdfs-agent/lib directory.
		
		

		The log file is a rolling log file. The default version of the file is
		 as follows:
		 log4j.rootLogger=INFO, ROLLINGFILE
#
Add ROLLINGFILE to rootLogger to get log file output
Log DEBUG level and above messages to a log file
log4j.appender.ROLLINGFILE=oracle.core.ojdl.log4j.OracleAppender
log4j.appender.ROLLINGFILE.ComponentId=DgraphHDFSAgent
log4j.appender.ROLLINGFILE.Path=${logfilename}
log4j.appender.ROLLINGFILE.Format=ODL-Text
log4j.appender.ROLLINGFILE.MaxSegmentSize=10485760
log4j.appender.ROLLINGFILE.MaxSize=1048576000
log4j.appender.ROLLINGFILE.Encoding=UTF-8
log4j.appender.ROLLINGFILE.layout = org.apache.log4j.PatternLayout
log4j.appender.ROLLINGFILE.layout.ConversionPattern = %-d{yyyy-MM-dd HH:mm:ss} [%t:%r] - [%p] %m%n

		

		The file defines the
		 ROLLINGFILE appenders for the root logger and also
		 sets the log level for the file.
		

		The file has the following properties:
		
	Logging property
				 	Description
				
	
					 log4j.rootLogger
				 	The level of the root logger is
					 defined as
					 INFO and attaches the
					 ROLLINGFILE appender to it.
					 You can change the log level, but do not change the
						ROLLINGFILE appender.
					

				
	
					 log4j.appender.ROLLINGFILE
				 	Sets the appender to be
					 OracleAppender. This defines the ODL (Oracle
					 Diagnostics Logging) format for the log entries.
					 Do not change this property.
					

				
	log4j.appender.ROLLINGFILE.ComponentId
				 	Sets
					 DgraphHDFSAgent as the name of the component
					 that generates the log messages.
					 Do not change this property.
					

				
	log4j.appender.ROLLINGFILE.Path
				 	Sets the path for the log files.
					 The
					 ${logfilename} variable picks up the path from
					 the Dgraph HDFS Agent
					 --out flag used at start-up time.
					 Do not change this property.
					

				
	log4j.appender.ROLLINGFILE.Format
				 	Sets
					 ODL-Text as the formatted string as specified
					 by the conversion pattern.
					 Do not change this property.
					

				
	log4j.appender.ROLLINGFILE.MaxSegmentSize
				 	Sets the maximum size (in bytes) of
					 the log file. When the
					 dgraphHDFSAgent.out file reaches this
					 size, a rollover file is created. The default is 10485760 (about 10 MB).
				
	log4j.appender.ROLLINGFILE.MaxSize
				 	Sets the maximum amount of disk
					 space to be used by the
					 dgraphHDFSAgent.out file and the logging
					 rollover files. The default is 1048576000 (about 1GB).
				
	log4j.appender.ROLLINGFILE.Encoding
				 	Sets character encoding for the log
					 file. The default
					 UTF-8 value prints out UTF-8 characters in the
					 file.
				
	
					 log4j.appender.ROLLINGFILE.layout
				 	Sets the
					 org.apache.log4j.PatternLayout class for the
					 layout.
				
	log4j.appender.ROLLINGFILE.layout.ConversionPattern
					
				 	Defines the log entry conversion
					 pattern.
					 For the conversion characters, see:
						https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
						
					

				

		

	

Logging levels

		
		You can change the log level by opening the properties file in a text
		 editor and changing the level for the
		 log4j.rootLogger property to a Java log level from the
		 table below. This example shows how you can change the log level setting to
		 ERROR:
		 log4j.rootLogger=ERROR

		

		When writing log messages, however, the logging system converts the
		 Java level to an ODL equivalent level. The table below The log levels (in
		 decreasing order of severity) are:
		
	Java Log Level
				 	ODL Log Level
				 	Meaning
				
	OFF
				 	N/A
				 	Has the highest possible rank and is
					 used to turn off logging.
				
	FATAL
				 	INCIDENT_ERROR
				 	Indicates a serious problem that may be
					 caused by a bug in the product and that should be reported to Oracle Support.
					 In general, these messages describe events that are of considerable importance
					 and which will prevent normal program execution.
				
	ERROR
				 	ERROR
				 	Indicates a serious problem that
					 requires immediate attention from the administrator and is not caused by a bug
					 in the product.
				
	WARN
				 	WARNING
				 	Indicates a potential problem that
					 should be reviewed by the administrator.
				
	INFO
				 	NOTIFICATION
				 	A message level for informational
					 messages. This level typically indicates a major lifecycle event such as the
					 activation or deactivation of a primary sub-component or feature. This is the
					 default level.
				
	DEBUG
				 	TRACE
				 	Debug information for events that are
					 meaningful to administrators, such as public API entry or exit points.
				

		

		These levels allow you to monitor events of interest at the
		 appropriate granularity without being overwhelmed by messages that are not
		 relevant. When you are initially setting up your application in a development
		 environment, you might want to use the
		 INFO level to get most of the messages, and change to
		 a less verbose level in production.
		

	

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Big Data Discovery
Cloud Service Data
Processing Guide

OEBPS/img/hive_change_skip.png
1 ALTER TABLE warrantyclaims SET TBLEROPERTIES ('skipAutoProvisioning'='FALSE'

EEPE saveas.. Explain orcreatea New query

OEBPS/img/DSManager_IncConfig.png
Data Set Manager
Data Sets in This Project

+ 5] massouns (332 resorcs, 6 trttes)
Createa:
21212016 9:43 PM (UTC)
Dota et Logica ame:
To129massiowns
Last Updatea:
21212016 9:43 PM (UTC)
Data Volume:
Fuldaa s s oaded
Data Source:
Getou masstowns

Data Source Type:
Hive

Record Identifiers:
‘municipaity, county

Description:
Info on Massachusetts towns.

Actions

T Reroverrom o

OEBPS/img/transform_script_refresh_data_schema_changes.png
‘Transform Script during Refresh Data
(column-by-column decision)

No smsma/.\

— change Change in
schema
Perform transform step
and treat bad values as nulls

Gomnno— i
found comn,
wumn newip
— found T~
Ignore ransforn step i fnew ype s compatibie, porfom

ransform sep,else fal
Transform step does not apply il

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Big Data Discovery
Cloud Service Data
Processing Guide

OEBPS/img/data_processing_wokflow_within_bdd.png
Data Processing workflow for loading new data

Hadoop environment

1. Start Spark Job—)-i
Processing

cul

2. Sample, Proflle, Enrich

3 Load
schema and
records.

OEBPS/dcommon/oracle.gif

OEBPS/img/IncConfig.png
Configure for Updates

“Ths process wil albow your project to receive incremental updates o the data and wil lso load
‘your entire data set nto this project.

Select the attribute(s) that uniquely identify a record in your data set
This may be a primary key or @ natural key and may consist of one or more single-assign
attrbutes.

Key Uniqueness:
municipality

100%
county

OEBPS/img/hive_default_tables.png
ry Editors v M

EH Metastore Manager

DATABASE Databases -~ default
[ees— st
ACTIONS
Table Name Comment Type
£ Create a new table from
afie lml masstowns Info on Massachusetts towns. Table
@ warrantyclaims Table

Create a new table
manually

OEBPS/img/DataSetManager.png
Data Set Manager
Data Sets in This Project

~ 5] WarranyCiams (9983 records, 23
atbutes)

Created:
232016 7:24 P (UTC)
Data Set Logical ame:
10128 WarrantyCaims
Last Updated:
2312016 8:08 PM (UTC)
Data Volume:
Full data set s loaded

S
B contoure foruptes

OEBPS/img/data_processing_detailed.png
Data Processing Worfklow: detailed view

2. Load/ 3. Sample 8 Update
sample — dataflein — 4.Discovery — Enf";:"‘::ms - sd:;"i" -