Oracle® Big Data Discovery Cloud Service
Data Processing Guide
E65369-05

November 2016

ORACLE"

Oracle Big Data Discovery Cloud Service Data Processing Guide,
E65369-05
Copyright © 2016, 2016, Oracle and/or its affiliates. All rights reserved.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... vii
ADbOoUt this GUIAE ... e vii
AUAIEICE ..ttt ettt ettt ettt et et et e bt e bt e st et e st et e st st e st et ent et et ebe s et et ebesenenaenens Vii
CONVEINEIONS ...ttt ettt ettt ettt ettt sttt et s b et et et e b et e b et e bt st e st st est st ene st ent st e st et entebentebensebesenensanens Vii
Contacting Oracle Customer SUPPOTLcorueveiiiiiieiiiceee e viii

1 Introduction

BDD integration with Spark and Hadoop ... 1-1
Secure Hadoop OPHONS.........c.c.iiirieic e 1-3
Kerberos authentiCation ... 1-3
TLS/SSL and ENcryption OPtiONS ..ot 1-5
Preparing your data fOr INGESt........cccoviiiiiiiiiiiiiiiicc s 1-6

2 Data Processing Workflows

OVEIVIEW Of WOTKILOWS ..ottt ettt ettt et et ettt ae et beesaeebeeabeebeeaseeseenteersenseens 2-1
Workflow for loading New data ..o 2-2
Working with Hive tables...........oooiiii 2-6
Sampling and attribute handling ... 2-8
Data tyPe diSCOVETYcuiuiuiiiiiiiiciciricccc e 2-9
Studio creation Of HIVE tabIes......c.cciiiiiiiiiiiciececeeeteeteeteeteett ettt ettt et eve e s re e e s reebesbaenbenseens 2-13

3 Data Processing Configuration

Date format configurationccccceviiiiiiiiiiiiiiiiiii s 3-1
Spark CONfAGUIATIONoieiuiiiicece e 3-2
Adding a SerDe JAR to DP WOIKflOWS.........ccoviiiiiiiiiiiccc e 3-7

4 DP Command Line Interface Utility

DP CLI OVEIVIEW ...oviiiiiiiiieiiieieieeiee e 4-1
DP CLI permissions and loGZIng..........cccceveueiiiiiirriiiniiireceeeeeeeeeieeeeeeeeeeeeeee e 4-3
DP CLI CONfIGUIALION ...ttt s 4-3
DP CLIIAEScviviviiiiiiiiiiiiciciirii s 4-9
Using whitelists and blacklists.............cooiiiioiiiii 4-12

DP CLI CION JOD oottt 4-13

Modifying the DP CLI CION JODc.coiiiiiiiiiiiiicccceeccc e 4-14
DP CLI WOTKEIOW @XamPLEScocviiiiiiiiriiiiiciicici e 4-15
Processing Hive tables with Snappy cOmpression ..o 4-16
Changing Hive table properties ...t 4-17

Updating Data Sets

About data set UPAates ..o 5-1
Obtaining the Data Set Logical NamMeccccoviiiiiiiiii e 5-2
Refresh UPAates.c.cuoviiiiiiiiiiiiiccc s 5-3
Refresh flag SYNEAXc.oiiiiiiiiiiii e 5-4
Running a Refresh update..........ccoooiiiiii 5-5
Incremental UPAAtes ... e 5-6
Incremental flag SYINEAXcovviiiiiiiiiiiiiii 5-10
Running an Incremental update ... 5-12
Creating cron jobs fOr Updates..........ccccciiiviiiiiiiiiiiniiiii s 5-13

Data Processing Logging

DP 10ZZING OVEIVIEWcoviiiiiiiiiiiii s 6-1
DP logging properties file...........ooi e 6-2

DP log entry fOrmat.........ccoooiuiiiiiiiiiiee e 6-5

DP LOZ LEVELS......oeiiiiiiiccicce e 6-6
Example of DP logs during a WOorkflOWcccccviviiiiiiiiininiiiniiiccccccreeeeees 6-7
AccessiNg YARN LOES.......ooviiiiiiiiiiiiii s 6-10
Transform Service 10g ... e 6-10

Data Enrichment Modules

About the Data Enrichment modules............cccooiiiiiiiiiis 7-2
ENtity @XETactOr cocvceiiicee e 7-3
INOUN GIOUP XETACLOTciiiiiiiiiiiiiic e 7-4
TEIDF Term @XIractOr .. .ccouioiiiiiiiiiiiiiiiiicirec ettt 7-5
Sentiment Analysis (document level) ..o 7-6
Sentiment Analysis (sub-document level)ccooooii e 7-7
AdAress GEOTAGZETccciuiiiiiiiiiiiiiiii s 7-7
IP AdAress GEOTAZEETc.cueueueuiuiuiiriiiiicicieieieieie ettt 7-10
Reverse GEOTAZEET ..ot 7-11
TAG SEIAPPET et 7-12
Phonetic Hash.......ccoiiiiiiiii s 7-12
Language DeteCtion...........ccciiiiiiiiiiiiic s 7-13

Dgraph Data Model

AbOoUt the data TNOAEL........ocuviieiiieeiceeceee ettt et e et sreeeteeeaeesraeeenaeennes 8-1
| DY 7 I <o 0) 4 =TT 8-1

BN 10 T o] << SRR 8-2

AssigNMents 0N attrIDULES.c.cciuiuiiiiiiiiccc e 8-2
Attribute data tYPES ...c.ooeiiiiiii e 8-3
SUpported JaNGUAZES.........ccvuviiiiiiiiiiiiiiii s 8-3

9 Dgraph HDFS Agent

About the Dgraph HDES AGeNtcccoiiiiiiiiiiiiiici s 9-1
Importing records from HDFS for ingest..........ccoooiieiiiiiiii e 9-1
Exporting data from StUdio.........ccouiueiiiiiii s 9-2
Dgraph HDFS Agent IoGZIng.........ccovuiiiuiiririiiiiieeceerceee e 9-3
Log entry fOrmat......c.coiiiiiiiiiiiii e 9-6
Logging properties file ... 9-7

Index

Vi

Preface

Oracle Big Data Discovery is a set of end-to-end visual analytic capabilities that
leverage the power of Apache Spark to turn raw data into business insight in minutes,
without the need to learn specialist big data tools or rely only on highly skilled
resources. The visual user interface empowers business analysts to find, explore,
transform, blend and analyze big data, and then easily share results.

About this guide

Audience

This guide describes the Data Processing component of Big Data Discovery (BDD). It
explains how the product behaves in Spark when it runs its processes, such as
sampling, loading, updating, and transforming data. It also describes Spark
configuration, the Data Processing CLI for loading and updating data sets (via cron
jobs and on demand), and the behavior of Data Enrichment Modules, such as
GeoTagger and Sentiment Analysis. Lastly, it includes logging information for the
Data Processing component in BDD, the Transform Service, and the Dgraph HDFS
Agent.

This guide is intended for Hadoop IT administrators, Hadoop data developers, and
ETL data engineers and data architects who are responsible for loading source data
into Big Data Discovery.

The guide assumes that you are familiar with the Spark and Hadoop environment and
services, and that you have already installed Big Data Discovery and used Studio for
basic data exploration and analysis.

This guide is specifically targeted for Hadoop developers and administrators who
want to know more about data processing steps in Big Data Discovery, and to
understand what changes take place when these processes run in Spark.

The guide covers all aspects of data processing, from initial data discovery, sampling
and data enrichments, to data transformations that can be launched at later stages of
data analysis in BDD.

Conventions

The following conventions are used in this document.
Typographic conventions

The following table describes the typographic conventions used in this document.

Vii

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements
such as pages, dialog boxes, buttons, and fields.

Code Sanpl e This formatting is used for sample code segments within a
paragraph.

Variable This formatting is used for variable values.
For variables within a code sample, the formatting is
Vari abl e.

File Path This formatting is used for file names and paths.

Symbol conventions

The following table describes symbol conventions used in this document.

Symbol Description Example Meaning

> The right angle File > New > Project ~ From the File menu,
bracket, or greater- choose New, then
than sign, indicates from the New
menu item selections submenu, choose
in a graphic user Project.
interface.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$ORACLE_HOMVE Indicates the absolute path to your Oracle Middleware home
directory, where BDD and WebLogic Server are installed.

$BDD_HOVE Indicates the absolute path to your Oracle Big Data Discovery
home directory, SORACLE_HOVE/ BDD- <ver si on>.

$DOVAI N_HOVE Indicates the absolute path to your WebLogic domain home
directory. For example, if your domain is named bdd-
<ver si on>_donai n, then $DOMAI N_HOVE is
$ORACLE_HOVE/ user _pr oj ect s/ domai ns/ bdd-
<ver si on>_donai n.

$DGRAPH_HOVE Indicates the absolute path to your Dgraph home directory,
$BDD_HOVE/ dgr aph.

Contacting Oracle Customer Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. This includes important information regarding Oracle

software, implementation questions, product and solution help, as well as overall
news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle
Support at https:/ /support.oracle.com.

viii

https://support.oracle.com

1

Introduction

This section provides a high-level introduction to the Data Processing component of
Big Data Discovery.

BDD integration with Spark and Hadoop
Hadoop provides a number of components and tools that BDD requires
to process and manage data. The Hadoop Distributed File System
(HDFS) stores your source data and Hadoop Spark on YARN runs all
Data Processing jobs. This topic discusses how BDD fits into the Spark
and Hadoop environment.

Secure Hadoop options
This section describes how BDD workflows can be used in a secure
Hadoop environment.

Preparing your data for ingest
Although not required, it is recommended that you clean your source
data so that it is in a state that makes Data Processing workflows run
smoother and prevents ingest errors.

BDD integration with Spark and Hadoop

Hadoop provides a number of components and tools that BDD requires to process and
manage data. The Hadoop Distributed File System (HDEFS) stores your source data
and Hadoop Spark on YARN runs all Data Processing jobs. This topic discusses how
BDD fits into the Spark and Hadoop environment.

Hadoop is a platform for distributed storing, accessing, and analyzing all kinds of
data: structured, unstructured, and data from the Internet Of Things. It is broadly
adopted by IT organizations, especially those that have high volumes of data.

As a data scientist, you often must practice two kinds of analytics work:

¢ In operational analytics, you may work on model fitting and its analysis. For this,
you may write code for machine-learning models, and issue queries to these
models at scale, with real-time incoming updates to the data. Such work involves
relying on the Hadoop ecosystem. Big Data Discovery allows you to work without
leaving the Spark environment that the rest of your work takes place in. BDD
supports an enterprise-quality business intelligence experience directly on Hadoop
data, with high numbers of concurrent requests and low latency of returned
results.

¢ Ininvestigative analytics, you may use interactive statistical environments, such as
R to answer ad-hoc, exploratory questions and gain insights. BDD also lets you
export your data from BDD back into Hadoop, for further investigative analysis
with other tools within your Hadoop deployment.

Introduction 1-1

BDD integration with Spark and Hadoop

By coupling tightly with Spark and Hadoop, Oracle Big Data Discovery achieves data
discovery for any data, at significantly-large scale, with high query-processing
performance.

About Hadoop distributions

Big Data Discovery works with very large amounts of data stored within HDFS. A
Hadoop distribution is a prerequisite for the product, and it is critical for the
functionality provided by the product.

BDD uses the HDEFS, Hive, Spark, and YARN components packaged with a specific
Hadoop distribution. For detailed information on Hadoop version support and
packages, see the Installation Guide.

BDD inside the Hadoop Infrastructure
Big Data Discovery brings itself to the data that is natively available in Hadoop.

BDD maintains a list of all of a company’s data sources found in Hive and registered
in HCatalog. When new data arrives, BDD lists it in Studio's Catalog, decorates it with
profiling and enrichment metadata, and, when you take this data for further
exploration, takes a sample of it. It also lets you explore the source data further by
providing an automatically-generated list of powerful visualizations that illustrate the
most interesting characteristics of this data. This helps you cut down on time spent for
identifying useful source data sets, and on data set preparation time; it increases the
amount of time your team spends on analytics leading to insights and new ideas.

BDD is embedded into your data infrastructure, as part of Hadoop ecosystem. This
provides operational simplicity:

* Nodes in the BDD cluster deployment can share hardware infrastructure with the
existing Hadoop cluster at your site. Note that the existing Hadoop cluster at your
site may still be larger than a subset of Hadoop nodes on which data-processing-
centric components of BDD are deployed.

* Automatic indexing, data profiling, and enrichments take place when your source
Hive tables are discovered by BDD. This eliminates the need for a traditional
approach of cleaning and loading data into the system, prior to analyzing it.

* BDD performs distributed query evaluation at a high scale, letting you interact
with data while analyzing it.

A Studio component of BDD also takes advantage of being part of Hadoop
ecosystem:

— It brings you insights without having to work for them — this is achieved by
data discovery, sampling, profiling, and enrichments.

— It lets you create links between data sets.

— It utilizes its access to Hadoop as an additional processing engine for data
analysis.

Benefits of integration of BDD with Hadoop and Spark ecosystem

Big Data Discovery is deployed directly on a subset of nodes in the pre-existing
Hadoop cluster where you store the data you want to explore, prepare, and analyze.

By analyzing the data in the Hadoop cluster itself, BDD eliminates the cost of moving
data around an enterprise’s systems — a cost that becomes prohibitive when
enterprises begin dealing with hundreds of terabytes of data. Furthermore, a tight
integration of BDD with HDFS allows profiling, enriching, and indexing data as soon

1-2 Data Processing Guide

Secure Hadoop options

as the data enters the Hadoop cluster in the original file format. By the time you want
to see a data set, BDD has already prepared it for exploration and analysis. BDD
leverages the resource management capabilities in Spark to let you run mixed-
workload clusters that provide optimal performance and value.

Finally, direct integration of BDD with the Hadoop ecosystem streamlines the
transition between the data preparation done in BDD and the advanced data analysis
done in tools such as Oracle R Advanced Analytics for Hadoop (ORAAH), or other
3rd party tools. BDD lets you export a cleaned, sampled data set as a Hive table,
making it immediately available for users to analyze in ORAAH. BDD can also export
data as a file and register it in Hadoop, so that it is ready for future custom analysis.

Secure Hadoop options

This section describes how BDD workflows can be used in a secure Hadoop
environment.

Additional information on BDD security is provided in the Security Guide.

Kerberos authentication
Data Processing components can be configured to run in a Hadoop
cluster that has enabled Kerberos authentication.

TLS/SSL and Encryption options
BDD workflows can run on clusters that are secured with TLS/SSL and
HDFS Data at Rest Encryption.

Kerberos authentication

Data Processing components can be configured to run in a Hadoop cluster that has
enabled Kerberos authentication.

The Kerberos Network Authentication Service version 5, defined in RFC 1510,
provides a means of verifying the identities of principals in a Hadoop environment.
Hadoop uses Kerberos to create secure communications among its various
components and clients. Kerberos is an authentication mechanism, in which users and
services that users want to access rely on the Kerberos server to authenticate each to
the other. The Kerberos server is called the Key Distribution Center (KDC). At a high
level, it has three parts:

* A database of the users and services (known as principals) and their respective
Kerberos passwords

* An authentication server (AS) which performs the initial authentication and issues
a Ticket Granting Ticket (TGT)

® A Ticket Granting Server (TGS) that issues subsequent service tickets based on the
initial TGT

The principal gets service tickets from the TGS. Service tickets are what allow a
principal to access various Hadoop services.

To ensure that Data Processing workflows can run on a secure Hadoop cluster, these
BDD components are enabled for Kerberos support:

e Dgraph and Dgraph HDFS Agent
¢ Data Processing workflows (whether initiated by Studio or the DP CLI)

e Studio

Introduction 1-3

Secure Hadoop options

All these BDD components share one principal and keytab. Note that there is no
authorization support (that is, these components do not verify permissions for users).

The BDD components are enabled for Kerberos support at installation time, via the
ENABLE_KERBERGCS parameter in the bdd. conf file. The bdd. conf file also has
parameters for specifying the name of the Kerberos principal, as well as paths to the
Kerberos keytab file and the Kerberos configuration file. For details on these
parameters, see the Installation Guide.

Note: If you use Sentry for authorization in your Hadoop cluster, you must
configure it to grant BDD access to your Hive tables.

Kerberos support in DP workflows

Support for Kerberos authentication ensures that Data Processing workflows can run
on a secure Hadoop cluster. The support for Kerberos includes the DP CLI, via the
Kerberos properties in the edp. proper ti es configuration file.

The spar k- subni t script in Spark's bi n directory is used to launch DP applications
on a cluster, as follows:

1. Before the call to spar k- submi t , Data Processing logs in using the local keytab.
The spar k- submi t process grabs the Data Processing credentials during job
submission to authenticate with YARN and Spark.

2. Spark gets the HDFS delegation tokens for the name nodes listed in the
spar k. yarn. access. nanenodes property and this enables the Data
Processing workflow to access HDFS.

3. When the workflow starts, the Data Processing workflow logs in using the
Hadoop cluster keytab.

4. When the Data Processing Hive Client is initialized, a SASL client is used along
with the Kerberos credentials on the node to authenticate with the Hive
Metastore. Once authenticated, the Data Processing Hive Client can communicate
with the Hive Metastore.

When a Hive JDBC connection is used, the credentials are used to authenticate with
Hive, and thus be able to use the service.

Kerberos support in Dgraph and Dgraph HDFS Agent

In BDD, the Dgraph HDFS Agent is a client for Hadoop HDFS because it reads and
writes HDEFS files from and to HDFS. If your Dgraph databases are stored on HDFS,
you must also enable Kerberos for the Dgraph.

For Kerberos support for the Dgraph, make sure these bdd. conf properties are set
correctly:

e KERBEROS_TI CKET_REFRESH_| NTERVAL specifies the interval (in minutes) at
which the Dgraph's Kerberos ticket is refreshed.

e KERBEROS_TI CKET_LI FETI ME sets the amount of time that the Dgraph's
Kerberos ticket is valid.

See the Administrator’s Guide for instructions on setting up the Dgraph for Kerberos
support.

For Kerberos support, the Dgraph HDFS Agent will be started with three Kerberos
flags:

1-4 Data Processing Guide

Secure Hadoop options

e The--principal flagspecifies the name of the principal.
e The - - keyt ab flag specifies the path to the principal's keytab.

¢ The - - krb5conf flag specifies the path to the kr b5. conf configuration file.
The values for the flag arguments are set by the installation script.

When started, the Dgraph HDFS Agent logs in with the specified principal and keytab.
If the login is successful, the Dgraph HDFS Agent passed Kerberos authentication and
starts up successfully. Otherwise, HDFS Agent cannot be started.

Kerberos support in Studio

Studio also has support for running the following jobs in a Hadoop Kerberos
environment:

* Transforming data sets
¢ Uploading files
¢ Export data

The Kerberos login is configured via the following properties in port al -
ext. properties:

e Kkerberos. princi pal
e Kkerberos. keyt ab

e kerberos. krb5.1ocation

The values for these properties are inserted during the installation procedure for Big
Data Discovery.

TLS/SSL and Encryption options

BDD workflows can run on clusters that are secured with TLS/SSL and HDFS Data at
Rest Encryption.

TLS/SSL

TLS/SSL provides encryption and authentication in communication between specific
Hadoop services in the secured cluster. When TLS/SSL is enabled, all communication
between the services is encrypted, and therefore provides a much higher level of
security than a cluster that is not secured with TLS/SSL.

These BDD components can be configured to communicate in a cluster secured with
TLS/SSL:

¢ Studio
e DPCLI
e Dgraph HDFS Agent

e Transform Service

The Installation Guide provides details on how to install BDD in a cluster secured with
TLS/SSL.

Introduction 1-5

Preparing your data for ingest

HDFS Data at Rest Encryption

If HDFS Data at Rest Encryption is enabled in your Hadoop cluster, data is stored in
encrypted HDFS directories called encryption zones. All files within an encryption
zone are transparently encrypted and decrypted on the client side. Decrypted data is
therefore never stored in HDFS.

If HDFS Data at Rest Encryption is enabled in your cluster, you must also enable it for
BDD. For details, see the Installation Guide.

Preparing your data for ingest

Although not required, it is recommended that you clean your source data so that it is
in a state that makes Data Processing workflows run smoother and prevents ingest
errors.

Data Processing does not have a component that manipulates the source data as it is
being ingested. For example, Data Processing cannot remove invalid characters (that
are stored in the Hive table) as they are being ingested. Therefore, you should use
Hive or third-party tools to clean your source data.

After a data set is created, you can manipulate the contents of the data set by using the
Transform functions in Studio.

Removing invalid XML characters

During the ingest procedure that is run by Data Processing, it is possible for a record
to contain invalid data, which will be detected by the Dgraph during the ingest
operation. Typically, the invalid data will consist of invalid XML characters. A valid
character for ingest must be a character according to production 2 of the XML 1.0
specification.

If an invalid XML character is detected, it is replaced with an escaped version. In the
escaped version, the invalid character is represented as a decimal number surrounded
by two hash characters (##) and a semi-colon (;). For example, a control character
whose 32-bit value is decimal 15 would be represented as

##15;

The record with the replaced character would then be ingested.
Fixing date formats

Ingested date values come from one (or more) Hive table columns:
¢ Columns configured as DATE data types.
* Columns configured as TI MESTAMP data types.

¢ Columns configured as STRI NGdata types but having date values. The date
formats that are supported via this data type discovery method are listed in the
dat eFor mat s. t xt file. For details on this file, see Date format configuration.

Make sure that dates in STRI NG columns are well-formed and conform to a format in
the dat eFor mat s. t xt file, or else they will be ingested as string values, not as
Dgraph ndex: dat eTi ne data types.

In addition, make sure that the dates in a STRI NG column are valid dates. For
example, the date Mon, Apr 07, 1925 is invalid because April 7, 1925 is a Tuesday,
not a Monday. Therefore, this invalid date would cause the column to be detected as a
STRI NG column, not a DATE column.

1-6 Data Processing Guide

Preparing your data for ingest

Uploading Excel and CSV files

In Studio, you can create a new data set by uploading data from an Excel or CSV file.
The data upload for these file types is always done as STRI NGdata types.

For this reason, you should make sure that the file's column data are of consistent data
types. For example, if a column is supposed to store integers, check that the column
does not have non-integer data. Likewise, check that date input conforms to the
formats in the dat eFor mat s. t xt file.

Note that BDD cannot load multimedia or binary files (other than Excel).
Non-splittable input data handling for Hive tables

Hive tables supports the use of input data that has been compressed using non-
splittable compression at the individual file level. However, Oracle discourages using
a non-splittable input format for Hive tables that will be processed by BDD. The
reason is that when the non-splittable compressed input files are used, the suggested
input data split size specified by the DP configuration will not be honored by Spark
(and Hadoop), as there is no clear split point on those inputs. In this situation, Spark
(and Hadoop) will read and treat each compressed file as a single partition, which will
result in a large amount of resources being consumed during the workflow.

If you must non-splittable compression, you should use block-based compression,
where the data is divided into smaller blocks first and then the data is compressed
within each block. More information is available at: https://cwiki.apache.org/
confluence/display /Hive/CompressedStorage

In summary, you are encouraged to use splittable compression, such as BZip2. For
information on choosing a data compression format, see: http:/ /www.cloudera.com/
content/cloudera/en/documentation/core/v5-3-x/topics/
admin_data_compression_performance.html

Anti-Virus and Malware

Oracle strongly encourages you to use anti-virus products prior to uploading files into
Big Data Discovery. The Data Processing component of BDD either finds Hive tables
that are already present and then loads them, or lets you load data from new Hive
tables, using DP CLI. In either case, use anti-virus software to ensure the quality of the
data that is being loaded.

Introduction 1-7

https://cwiki.apache.org/confluence/display/Hive/CompressedStorage
https://cwiki.apache.org/confluence/display/Hive/CompressedStorage
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html

Preparing your data for ingest

1-8 Data Processing Guide

2

Data Processing Workflows

This section describes how Data Processing discovers data in Hive tables and prepares
it for ingest into the Dgraph.

Overview of workflows
This topic provides an overview of Data Processing workflows.

Workflow for loading new data
This topic discusses the workflow that runs inside Data Processing
component of BDD when new data is loaded.

Working with Hive tables
Hive tables contain the data for the Data Processing workflows.

Sampling and attribute handling
When creating a new data set, you can specify the maximum number of
records that the Data Processing workflow should process from the Hive
table.

Data type discovery
When Data Processing retrieves data from a Hive table, the Hive data
types are mapped to Dgraph data types when the data is ingested into
the Dgraph.

Studio creation of Hive tables
Hive tables can be created from Studio.

Overview of workflows

This topic provides an overview of Data Processing workflows.

When the Data Processing component runs, it performs a series of steps; these steps
are called a data processing workflow. Many workflows exist, for loading initial data,
updating data, or for cleaning up unused data sets.

All Data Processing workflows are launched either from Studio (in which case they
run automatically) or from the DP CLI (Command Line Interface) utility.

In either case, when the workflow runs, it manifests itself in various parts of the user
interface, such as Explore, and Transform in Studio. For example, new source data
sets become available for your discovery, in Explore. Or, you can make changes to the
project data sets in Transform. Behind all these actions, lie the processes in Big Data
Discovery known as Data Processing workflows. This guide describes these processes
in detail.

For example, a Data Processing (DP) workflow for loading data is the process of
extracting data and metadata from a Hive table and ingesting it as a data set in the
Dgraph. The extracted data is turned into Dgraph records while the metadata
provides the schema for the records, including the Dgraph attributes that define the
BDD data set.

Data Processing Workflows 2-1

Workflow for loading new data

Once data sets are ingested into the Dgraph, Studio users can view the data sets and
query the records in them. Studio users can also modify (transform) the data set and
even delete it.

All Data Processing jobs are run by Spark workers. Data Processing runs
asynchronously — it puts a Spark job on the queue for each Hive table. When the first
Spark job on the first Hive table is finished, the second Spark job (for the second Hive
table) is started, and so on.

Note that although a BDD data set can be deleted by a Studio user, the Data
Processing component of BDD software can never delete a Hive table. Therefore, it is
up to the Hive administrator to delete obsolete Hive tables.

DataSet Inventory

The DataSet Inventory (DSI) is an internal structure that lets Data Processing keep
track of the available data sets. Each data set in the DSI includes metadata that
describes the characteristics of that data set. For example, when a data set is first
created, the names of the source Hive table and the source Hive database are stored in
the metadata for that data set. The metadata also includes the schemas of the data sets.

The DataSet Inventory contains an i ngest St at us attribute for each data set, which
indicates whether the data set has been completely provisioned (and therefore is ready
to be added to a Studio project). The flag is set by Studio after being notified by the
Dgraph HDFS Agent on the completion of an ingest.

Language setting for attributes

During a normal Data Processing workflow, the language setting for all attributes is
either a specific language (such as English or French) or unknown (which means a DP
workflow does not use a language code for any specific language). The default
language is set at install time for Studio and the DP CLI by the LANGUAGE property of
the bdd. conf file. However, both Studio and the DP CLI can override the default
language setting and specify a different language code for a workflow. For a list of
supported languages, see Supported languages.

Workflow for loading new data

This topic discusses the workflow that runs inside Data Processing component of BDD
when new data is loaded.

The Data Processing workflow shown in this topic is for loading data; it is one of
many possible workflows. This workflow does not show updating data that has
already been loaded. For information on running Refresh and Incremental update
operations, see Updating Data Sets.

Loading new data includes these stages:

* Discovery of source data in Hive tables

¢ Loading and creating a sample of a data set

* Running a select set of enrichments on this data set (if so configured)
¢ Profiling the data

* Transforming the data set

e Exporting data from Big Data Discovery into Hadoop

You launch the Data Processing workflow for loading new data either from Studio (by
creating a Hive table), or by running the Data Processing CLI (Command Line

2-2 Data Processing Guide

Workflow for loading new data

Interface) utility. As a Hadoop system administrator, you can control some steps in
this workflow, while other steps run automatically in Hadoop.

The following diagram illustrates how the data processing workflow for loading new
data fits within Big Data Discovery:

Data Processing workflow for loading new data

Hadoop environment

Studio
1. Start Spark job—— ?Hmaﬁnizz:m
Data
Processing
CLI i

2. Sample, Profile, Enrch

3.
A sche
rec
Yarn Mode
Manager
HDFS
Dgraph Dgraph <

The steps in this diagram are:

1. The workflow for data loading starts either from Studio or the Data Processing
CLL

2. The Spark job is launched on Hadoop nodes that have Data Processing portion of
Big Data Discovery installed on them.

3. The counting, sampling, discovery, and transformations take place and are
processed on Hadoop nodes. The information is written to HDFS and sent back.

4. The data processing workflow launches the process of loading the records and
their schema into the Dgraph, for each data set.

To summarize, during an initial data load, the Data Processing component of Big Data
Discovery counts data in Hive tables, and optionally performs data set sampling. It
then runs an initial data profiling, and applies some enrichments. These stages are
discussed in this topic.

Data Processing Workflows 2-3

Workflow for loading new data

Sampling of a data set

If you work with a sampled subset of the records from large tables discovered in
HDFS, you are using sample data as a proxy for the full tables. This lets you:

¢ Avoid latency and increase the interactivity of data analysis, in Big Data Discovery

* Analyze the data as if using the full set.

Data Processing does not always perform sampling; Sampling occurs only if a source
data set contains more records than the default sample size used during BDD
deployment. The default sample size used during deployment is 1 million records.
When you subsequently run data processing workflow yourself, using the Command
Line Interface (DP CLI), you can override the default sample size and specify your
own.

Note: If the number of records in the source data set is less than the value
specified for the sample size, then no sampling takes place and Data
Processing loads the source data in full.

Samples in BDD are taken as follows:

¢ Data Processing takes a random sample of the data, using either the default size
sample, or the size you specify. BDD leverages the inbuilt Spark random sampling
functionality.

* Based on the number of rows in the source data and the number of rows requested
for the sample, BDD passes through the source data and, for each record, includes
it in the sample with a certain (equal) probability. As a result, Data Processing
creates a simple random sampling of records, in which:

— Each element has the same probability of being chosen

— Each subset of the same size has an equal probability of being chosen.

These requirements, combined with the large absolute size of the data sample, mean
that samples taken by Big Data Discovery allow for making reliable generalizations on
the entire corpus of data.

Profiling of a data set

Profiling is a process that determines the characteristics (columns) in the Hive tables,
for each source Hive table discovered by the Data Processing in Big Data Discovery
during data load.

Profiling is carried out by the data processing workflow for loading data and results in
the creation of metadata information about a data set, including:

e Attribute value distributions
e Attribute type

¢ Topics

e (lassification

For example, a specific data set can be recognized as a collection of structured data,
social data, or geographic data.

2-4 Data Processing Guide

Workflow for loading new data

Using Explore in Studio, you can then look deeper into the distribution of attribute
values or types. Later, using Transform, you can change some of these metadata. For
example, you can replace null attribute values with actual values, or fix other
inconsistencies.

Enrichments

Enrichments are derived from a data set's additional information such as terms,
locations, the language used, sentiment, and views. Big Data Discovery determines
which enrichments are useful for each discovered data set, and automatically runs
them on samples of the data. As a result of automatically applied enrichments,
additional derived metadata (columns) are added to the data set, such as geographic
data, a suggestion of the detected language, or positive or negative sentiment.

The data sets with this additional information appear in Catalog in Studio. This
provides initial insight into each discovered data set, and lets you decide if the data set
is a useful candidate for further exploration and analysis.

In addition to automatically-applied enrichments, you can also apply enrichments
using Transform in Studio, for a project data set. From Transform, you can configure
parameters for each type of enrichment. In this case, an enrichment is simply another
type of available transformation.

Some enrichments allow you to add additional derived meaning to your data sets,
while others allow you to address invalid or inconsistent values.

Transformations

Transformations are changes to a data set. Transformations allow you to perform
actions such as:

* Changing data types

¢ Changing capitalization of values

* Removing attributes or records

* Splitting columns

¢ Grouping or binning values

¢ Extracting information from values

You can think of transformations as a substitute for an ETL process of cleaning your
data before or during the data loading process. Use could transformations to overwrite
an existing attribute, or create new attributes. Some transformations are enrichments,
and as such, are applied automatically when data is loaded.

Most transformations are available directly as specific options in Transform in Studio.
Once the data is loaded, you can use a list of predefined Transform functions, to create
a transformation script.

For a full list of transformations available in BDD, including aggregations and joining
of data sets, see the Studio User’s Guide.

Exporting data from Big Data Discovery into HDFS

You can export the results of your analysis from Big Data Discovery into HDFS/Hive;
this is known as exporting to HDFS.

From the perspective of Big Data Discovery, the process is about exporting the files
from Big Data Discovery into HDFS/Hive. From the perspective of HDFS, you are
importing the results of your work from Big Data Discovery into HDFS. In Big Data

Data Processing Workflows 2-5

Working with Hive tables

Discovery, the Dgraph HDFS Agent is responsible for exporting to HDFS and
importing from it.

Working with Hive tables

Hive tables contain the data for the Data Processing workflows.

When processed, each Hive table results in the creation of a BDD data set, and that
data set contains records from the Hive table. Note that a Hive table must contain at
least one record in order for it to be processed. That is, Data Processing does not create
a data set for an empty table.

Starting workflows

A Data Processing workflow can be started in one of two ways:

® A user in Studio invokes an operation that creates a new Hive table. After the Hive
table is created, Studio starts the Data Processing process on that table.

e The DP CLI (Command Line Interface) utility is run.

The DP CLI, when run either manually or from a cron job, invokes the BDD Hive
Table Detector, which can find a Hive table that does not already exist in the DataSet
Inventory. A Data Processing workflow is then run on the table. For details on running
the DP CLIL, see DP Command Line Interface Utility.

New Hive table workflow and diagram

Both Studio and the DP CLI can be configured to launch a Data Processing workflow
that does not use the Data Enrichment modules. The following high-level diagram
shows a workflow in which the Data Enrichment modules are run:

1a. Studio Data Processing Worfklow: detailed view
creates a
Hive table

2. Load/ 3. Sample - 8. Update
>—) samplea — datafilein — 4 Discovery — 2ol U — 6. Creats — Lol — DataSet

Hive data HDFS Enrichments dala set dala set Inventory

1b. CLI finds
a new Hive
tabla

The steps in the workflow are:
1. The workflow is started for a single Hive table by Studio or by the DP CLIL

2. Thejob is started and the workflow is assigned to a Spark worker. Data is loaded
from the Hive table's data files. The total number of rows in the table is counted,
the data sampled, and a primary key is added. The number of processed
(sampled) records is specified in the Studio or DP CLI configuration.

3. The data from step 2 is written to an Avro file in HDFS. This file will remain in
HDFS as long as the associated data set exists.

4. The data set schema and metadata are discovered. This includes discovering the
data type of each column, such as long, geocode, and so on. (The DataSet
Inventory is also updated with the discovered metadata. If the DataSet Inventory
did not exist, it is created at this point.)

2-6 Data Processing Guide

Working with Hive tables

5. The Data Enrichment modules are run. A list of recommended enrichments is
generated based on the results of the discovery process. The data is enriched using
the recommended enrichments. If running enrichments is disabled in the
configuration, then this step is skipped.

6. The data set is created in the Dgraph, using settings from steps 4 and 5. The
DataSet Inventory is also updated to include metadata for the new data set.

7. The data set is provisioned (that is, HDFS files are written for ingest) and the
Dgraph HDFS Agent is notified to pick up the HDFS files, which are sent to the
Bulk Load Interface for ingesting into the Dgraph.

8. After provisioning has finished, Studio updates the i ngest St at us attribute of
the DataSet Inventory with the final status of the provisioning (ingest) operation.

Handling of updated Hive tables

Existing BDD data sets are not automatically updated if their Hive source tables are
updated. For example, assume that a data set has been created from a specific Hive
table. If that Hive table is updated with new data, the associated BDD data set is not
automatically changed. This means that now the BDD data set is not in synch with its
Hive source table.

To update the data set from the updated Hive table, you must run the DP CLI with
either the - - r ef r eshDat a flag or the - - i ncr enment al Updat e flag. For details, see
Updating Data Sets.

Handling of deleted Hive tables

BDD will never delete a Hive table, even if the associated BDD data set has been
deleted from Studio. However, it is possible for a Hive administrator to delete a Hive
table, even if a BDD data set has been created from that table. In this case, the BDD
data set is not automatically deleted and will still be viewable in Studio. (A data set
whose Hive source table was deleted is called an orphaned data set.)

The next time that the DP CLI runs, it detects the orphaned data set and runs a Data
Processing job that deletes the data set.

Handling of empty Hive tables

Data Processing does not process empty Hive tables. Instead, the Spark driver throws
an Enpt yHi veTabl eExcept i on when running against an empty Hive table. This
causes the Data Processing job to not create a data set for the table. Note that the
command may appear to have successfully finished, but the absence of the data set
means the job ultimately failed.

Handling of Hive tables created with header/footer information

Data Processing does not support processing Hive tables that are based on files (such
as CSV files) containing header/footer rows. In this case, the DP workflow will ignore
the header and footer set on the Hive table using the ski p. header. | i ne. count
and ski p. f oot er. | i ne. count properties. If a workflow on such a table does
happen to succeed, the header/footer rows will get added to the resulting BDD data
set as records, instead of being omitted.

Deletion of Studio projects

When a Studio user deletes a project, Data Processing is called and it will delete the
transformed data sets in the project. However, it will not delete the data sets which
have not been transformed.

Data Processing Workflows 2-7

Sampling and attribute handling

Sampling and attribute handling

When creating a new data set, you can specify the maximum number of records that
the Data Processing workflow should process from the Hive table.

The number of sampled records from a Hive table is set by the Studio or DP CLI
configuration:

* In Studio, the bdd. sanpl eSi ze parameter in the Data Processing Settings page
on Studio's Control Panel.

¢ In DP CLI, the maxRecor dsFor NewDat aSet configuration parameter or the - -
maxRecor ds flag.

If the settings of these parameters are greater than the number of records in the Hive
table, then all the Hive records are processed. In this case, the data set will be
considered a full data set.

Discovery for attributes

The Data Processing discovery phase discovers the data set metadata in order to
suggest a Dgraph attribute schema. For detailed information on the Dgraph schema,
see Dgraph Data Model.

Record and value search settings for string attributes

When the DP data type discoverer determines that an attribute should be a string
attributes, the settings for the record search and value search for the attribute are
configured according to the settings of two properties in the bdd. conf file:

* The attribute is configured as record searchable if the average string length is
greater than the RECORD_SEARCH_THRESHOLD property value.

® The attribute is configured as value searchable if the average string length is equal
to or less than the VALUE_SEARCH_THRESHOL D property value.

In both cases, "average string length" refers to the average string length of the values
for that column.

You can override this behavior by using the - - di sabl eSear ch flag with the DP CLI.
With this flag, the record search and value search settings for string attributes are set
to false, regardless of the average String length of the attribute values. Note the
following about using the - - di sabl eSear ch flag:

¢ The flag can used only for provisioning workflows (when a new data set is created
from a Hive table) and for refresh update workflows (when the DP CLI - -
r ef r eshDat a flag is used). The flag cannot be used with any other type of
workflow (for example, workflows that use the - - i ncr ement al Updat e flag are
not supported with the - - di sabl eSear ch flag).

¢ A disable search workflow can be run only with the DP CLI. This functionality is
not available in Studio.

Effect of NULL values on column conversion

When a Hive table is being sampled, a Dgraph attribute is created for each column.
The data type of the Dgraph attribute depends on how Data Processing interprets the
values in the Hive column. For example, if the Hive column is of type String but it
contains Boolean values only, the Dgraph attribute is of type mdex: bool ean. NULL
values are basically ignored in the Data Processing calculation that determines the
data type of the Dgraph attribute.

2-8 Data Processing Guide

Data type discovery

Handling of Hive column names that are invalid Avro names

Data Processing uses Avro files to store data that should be ingested into the Dgraph
(via the Dgraph HDFS Agent). In Avro, attribute names must start with an alphabetic
or underscore character (that is, [A-Za-z_]), and the rest of the name can contain only
alphanumeric characters and underscores (that is, [A-Za-z0-9_]).

Hive column names, however, can contain almost any Unicode characters, including
characters that are not allowed in Avro attribute names. This format was introduced in
Hive 0.13.0.

Because Data Processing uses Avro files to do ingest, this limits the names of Dgraph
attributes to the same rules as Avro. This means that the following changes are made
to column names when they are stored as Avro attributes:

* Any non-ASCII alphanumeric characters (in Hive column names) are changed to _
(the underscore).

e [f the leading character is disallowed, that character is changed to an underscore
and then the name is prefixed with "A_". As a result, the name would actually
begin with "A__" (an A followed by two underscores).

¢ If the resulting name is a duplicate of an already-process column name, a number
is appended to the attribute name to make it unique. This could happen especially
with non-English column names.

For example:

Hive colum nanme: @i rst-nanme
Changed name: A__first_nanme

In this example, the leading character (@) is not a valid Avro character and is,
therefore, converted to an underscore (the name is also prefixed with "A_"). The
hyphen is replaced with an underscore and the other characters are unchanged.

Attribute names for non-English tables would probably have quite a few underscore
replacements and there could be duplicate names. Therefore, a non-English attribute
name may look like this: A 2

Data type discovery

When Data Processing retrieves data from a Hive table, the Hive data types are
mapped to Dgraph data types when the data is ingested into the Dgraph.

The discovery phase of a workflow means that Data Processing discovers the data set
metadata in order to determine the Dgraph attribute schema. Once Data Processing
can ascertain what the data type is of a given Hive table column, it can map that Hive
column data type to a Dgraph attribute data type.

For most types of workflows, the discovery phase is performed on the sample file. The
exception is a Refresh update, which is a full data refresh on a BDD data set from the
original Hive table.

Hive-to-Dgraph data conversions

When a Hive table is created, a data type is specified for each column (such as
BOOLEAN or DOUBLE). During a Data Processing workflow, a Dgraph attribute is
created for each Hive column. The Dgraph data type for the created attribute is based
on the Hive column data type. For more information on the data model, including

Data Processing Workflows 2-9

Data type discovery

information about what are Dgraph records, and what are Dgraph attributes, see the
section Dgraph Data Model.

This table lists the mappings for supported Hive data types to Dgraph data types. If a
Hive data type is not listed, it is not supported by Data Processing and the data in that
column will not be provisioned.

Hive Data Type

Hive Description

Dgraph Data Type
Conversion

ARRAY<dat a_t ype>

Array of values of a Hive data type
(such as, ARRAY<STRI NG>)

ndex: dat a_t ype- set
where dat a_t ype isa
Dgraph data type in this
column. These - set data
types are for multi-assign
attributes (such as

ndex: string-set).

Bl G NT 8-byte signed integer. nmdex: | ong
BOOLEAN Choice of TRUE or FALSE. nmdex: bool ean
CHAR Character string with a fixed mdex: string
length (maximum length is 255)
DATE Represents a particular year/ nmdex: dat eTi me
month/day, in the form:
YYYY- Mt DD
Date types do not have a time-of-
day component. The range of
values supported is 0000-01-01 to
9999-12-31.
DECI VAL Numeric with a precision of 38 nmdex: doubl e
digits.
DOUBLE 8-byte (double precision) floating ndex: doubl e
point number.
FLOAT 4-byte (single precision) floating ndex: doubl e
point number.
I NT 4-byte signed integer. nmdex: | ong
SMALLI NT 2-byte signed integer. mdex: | ong
STRI NG String values with a maximum of ndex: string
32,767 bytes. A String column can be
mapped as a Dgraph non-
string data type if 100% of the
values are actually in another
data format, such as long,
dateTime, and so on.
TI MESTAMP Represents a point in time, with an ndex: dat eTi e

2-10 Data Processing Guide

optional nanosecond precision.
Allowed date values range from
1400-01-01 to 9999-12-31.

Data type discovery

Hive Data Type Hive Description Dgraph Data Type
Conversion

TI NYI NT 1-byte signed integer. nmdex: | ong

VARCHAR Character string with a length ndex: string

specifier (between 1 and 65355)

Data type discovery for Hive string columns

If a Hive column is configured with a data type other than STRI NG, Data Processing
assumes that the formats of the record values in that column are valid. In this case, a
Dgraph attributes derived from the column automatically use the mapped Dgraph
data type listed in the table above.

String columns, however, often store data that really is non-string data (for example,
integers can be stored as strings). When it analyzes the content of Hive table string
columns, Data Processing makes a determination as to what type of data is actually
stored in each column, using this algorithm:

¢ If100% of the column values are of a certain type, then the column values are
ingested into the Dgraph as their Dgraph data type equivalents (see the table
above).

¢ If the data types in the column are mixed (such as integers and dates), then the
Dgraph data type for that column is string (mdex: st ri ng). The only exception to
this rule is if the column has a mixture of integers and doubles (or floats); in this
case, the data type maps to ndex: doubl e (because an integer can be ingested as a
double but not vice-versa).

For example, if the Data Processing discoverer concludes that a given string column
actually stores geocodes (because 100% of the column values are proper geocodes),
then those geocode values are ingested as Dgraph ndex: geocode data types. If
however, 95% of the column values are geocodes but the other 5% are another data
type, then the data type for the column defaults to the Dgraph ndex: st ri ng data
type. Note, however, that double values that are in scientific notation (such as "1.4E-4")
are evaluated as strings, not as doubles.

To take another example, if 100% of a Hive string column consists of integer values,
then the values are ingested as Dgraph ndex: | ong data types. Any valid integer
format is accepted, such as "10", "-10", "010", and "+10".

Space-padded values

Hive values that are padded with spaces are treated as follows:

¢ All integers with spaces are converted to strings (nmdex: st ri ng)
* Doubles with spaces are converted to strings (mdex: st ri ng)

* Booleans with spaces are converted to strings (ndex: st ri ng)

* Geocodes are not affected even if they are padded with spaces.

e All date/time/timestamps are not affected even if they are padded with spaces.

Data Processing Workflows 2-11

Data type discovery

Supported geocode formats

The following Hive geocode formats are supported during the discovery phase and
are mapped to the Dgraph ndex: geocode data type:

Latitude Longitude
Latitude, Longitude
(Latitude Longitude)
(Latitude, Longitude)

For example:

40. 55467767 -54.235

40. 55467767, -54.235

(40. 55467767 -54. 235)

(40. 55467767, -54. 235)

Note that the comma-delimited format requires a space after the comma.

If Data Processing discovers any of these geocode formats in the column data, the
value is ingested into the Dgraph as a geocode (nmdex: geocode) attribute.

Supported date formats

Dates that are stored in Hive tables as DATE values are assumed to be valid dates for
ingest. These DATE values are ingested as Dgraph ndex: dat eTi ne data types.

For a date that is stored in a Hive table as a string, Data Processing checks it against a
list of supported date formats. If the string date matches one of the supported date
formats, then it is ingested as an ndex: dat eTi me data type. The date formats that are
supported by Data Processing are listed in the dat eFor mat s. t xt file. Details on this
file are provided in the topic Date format configuration.

In addition, Data Processing verifies that each date in a string column is a valid date. If
a date is not valid, then the column is considered a string column, not a date column.

As an example of how a Hive column date is converted to a Dgraph date, a Hive date
value of:

2013-10- 23 01: 23: 24. 1234567

will be converted to a Dgraph dateTime value of:

2013-10- 23T05: 23: 24. 1232

The date will be ingested as a Dgraph ndex: dat eTi e data type.

Support of timestamps

Hive TI MESTAMP values are assumed to be valid dates and are ingested as Dgraph
ndex: dat eTi me data types. Therefore, their format is not checked against the
formats in the dat eFor mat s. t xt file.

When shown in Studio, Hive TI MESTAMP values will be formatted as "yyyy-MM-dd"
or "'yyyy-MM-dd HH:mm:ss" (depending on if the values in that column have times).

Note that if all values in a Hive timestamp column are not in the same format, then the
time part in the Dgraph record becomes zero. For example, assume that a Hive column
contains the following values:

2013-10-23 01:23: 24
2012-09-22 02: 24: 25

2-12 Data Processing Guide

Studio creation of Hive tables

Because both timestamps are in the same format, the corresponding values created in
the Dgraph records are:

2013- 10- 23T01: 23: 24. 000Z
2012- 09- 22T02: 24: 25. 000Z

Now suppose a third row is inserted into that Hive table without the time part. The
Hive column now has:

2013-10-23 01:23: 24
2012-09-22 02: 24: 25
2007-07-23

In this case, the time part of the Dgraph records (the ndex: dat eTi nme value) becomes
Zero:

2013- 10- 23T00: 00: 00. 000Z
2012- 09- 22T00: 00: 00. 000Z
2007-07-23T00: 00: 00. 000Z

The reason is that if there are different date formats in the input data, then the Data
Processing discoverer selects the more general format that matches all of the values,
and as a result, the values that have more specific time information may end up losing
some information.

To take another example, the pattern "yyyy-MM-dd" can parse both "2001-01-01" and
"2001-01-01 12:30:23". However, a pattern like "yyyy-MM-dd hh:mm:ss" will throw an
error when applied on the short string "2001-01-01". Therefore, the discoverer picks the
best (longest possible) choice of "yyyy-MM-dd" that can match both "2001-01-01" and
"2001-01-01 12:30:23". Because the picked pattern does not have time in it, there will be
loss of precision.

Handling of unconvertible values

It is possible for your data to have column values that result in conversion errors (that
is, where the original value cannot be converted to a Dgraph data type). Warnings are
logged for the columns that contain conversion errors. For each column, one of the
values that could not be converted is logged, as well as the total number of records
that contained values that could not be converted. In addition, the values from the
data set.

The following are examples of these log messages for unconvertible values:

[2016- 03- 16T16: 01: 43. 315-04: 00] [Dat aProcessing] [WARN] []

[com oracl e. endeca. pdi . | oggi ng. Provi si oni ngLogger] [tid:Driver] [userlD:yarn]

Found 2 records containing unconvertible values (such as "2.718") for data source
key type_tinyint.

These val ues could not be converted to type ndex:|ong and have been renoved fromthe
data set.

[2016- 03- 16T16: 01: 43. 315-04: 00] [Dat aProcessing] [WARN] []

[com oracl e. endeca. pdi . | oggi ng. Provi si oni ngLogger] [tid:Driver] [userlD:yarn]

Found 4 records containing unconvertible values (such as "maybe") for data source key
type_string_as_bool ean. These val ues could not be converted to type ndex: bool ean and
have been renoved fromthe data set.

Studio creation of Hive tables

Hive tables can be created from Studio.

Data Processing Workflows 2-13

Studio creation of Hive tables

The Studio user can create a Hive table by:
¢ Uploading data from a Microsoft Excel.
¢ Uploading data from delimited files, such as CSV, TSV, and TXT.

* Uploading data from compressed files, such as ZIP, GZ, and GZIP. A compressed
file can include only one delimited file.

e Importing a JDBC data source.
¢ Exporting data from a Studio component.

¢ Transforming data in a data set and then creating a new data set from the
transformed data.

After the Hive table is created, Studio starts a Data Processing workflow on the table.
For details on these Studio operations, see the Studio User’s Guide.

A Studio-created Hive table will have the ski pAut oPr ovi si oni ng property added
at creation time. This property prevents the table from being processed again by the
BDD Hive Table Detector.

Another table property will be dat aSet Di spl ayNamne, which stores the display
name for the data set. The display name is a user-friendly name that is visible in the
Studio UL

2-14 Data Processing Guide

3

Data Processing Configuration

This section describes configuration for attribute searchability, date formats, and
configuration for Spark. It also discusses how to add a SerDe JAR to the Data
Processing workflows.

Date format configuration
The dat eFor mat s. t xt file provides a list of date formats supported by
Data Processing workflows. This topic lists the defaults used in this file.
You can add or remove a date format from this file if you use the
formats supported by it.

Spark configuration
Data Processing uses a Spark configuration file,
spar kCont ext . properti es. This topic describes how Data
Processing obtains the settings for this file and includes a sample of the
file. It also describes options you can adjust in this file to tweak the
amount of memory required to successfully complete a Data Processing
workflow.

Adding a SerDe JAR to DP workflows
This topic describes the process of adding a custom Serializer-
Deserializer (SerDe) to the Data Processing (DP) classpath.

Date format configuration

The dat eFor mat s. t xt file provides a list of date formats supported by Data
Processing workflows. This topic lists the defaults used in this file. You can add or
remove a date format from this file if you use the formats supported by it.

If a date in the Hive table is stored with a DATE data type, then it is assumed to be a
valid date format and is not checked against the date formats in the

dat eFor mat s. t xt file. Hive TI MESTAMP values are also assumed to be valid dates,
and are also not checked against the dat eFor mat s. t xt formats.

However, if a date is stored in the Hive table within a column of type STRI NG then
Data Processing uses the dat eFor mat s. t Xt to check if this date format is supported.

Both dates and timestamps are then ingested into the Big Data Discovery as Dgraph
nmdex: dat eTi me data types.

Default date formats

The default date formats that are supported and listed in the dat eFor mat s. t xt file
are:

d/ Myy
d-Myy
d.Myy
M d/yy

Data Processing Configuration 3-1

Spark configuration

M d-yy

Md.yy

yyIMd

yy-Md

yy.Md

MM d, yyyy

EEE, MM d, yyyy

yyyy- Mt dd HH: mm ss
yyyy-Mtdd h:mmss a
yyyy- Mt dd' T' HH nm ssZ
yyyy-Mtdd' T' HH: nm ss' Z'
yyyy- Mt dd' T' HH: nm ss. SSS' Z'
yyyy- Mt dd HH: mm ss. SSS
yyyy- Mt dd' T' HH: nm ss. SSS
EEE d MW yyyy HH. nmss Z
H mm

h:mm a

H. mm ss

h:mmss a

HH: nm ss. SSS' Z'

d/Myy HH mmss

d/Myy h:nmss a

d-Myy HH mmss

d-Myy h:nmss a

d.Myy HH mmss

d.Myy h:nmss a

M d/yy HH. mm ss

Md/yy h:mmss a

M d-yy HH. mm ss

Md-yy h:mmss a

Md.yy HH mm ss

Md.yy h:mmss a

yy/Md HH. rm ss

yy/Md h:mmss a

yy.Md HH. nm ss

yy.Md h:nmss a

For details on interpreting these formats, see http://docs.oracle.com/javase/7/
docs/api/java/text/SimpleDateFormat.html

Modifying the dateFormats file

You can remove a date format from the file. If you remove a data format, Data
Processing workflows will no longer support it.

You can also add date formats, as long as they conform to the formats in the
Si npl eDat eFor mat class. This class is described in the Web page accessed by the
URL link listed above. Note that US is used as the locale.

Spark configuration

Data Processing uses a Spark configuration file, spar kCont ext . properti es. This
topic describes how Data Processing obtains the settings for this file and includes a
sample of the file. It also describes options you can adjust in this file to tweak the
amount of memory required to successfully complete a Data Processing workflow.

Data Processing workflows are run by Spark workers. When a Spark worker is started
for a Data Processing job, it has a set of default configuration settings that can be
overridden or added to by the spar kCont ext . properti es file.

3-2 Data Processing Guide

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Spark configuration

The Spark configuration is very granular and needs to be adapted to the size of the
cluster and also the data. In addition, the timeout and failure behavior may have to be
altered. Spark offers an excellent set of configurable options for these purposes that
you can use to configure Spark for the needs of your installation. For this reason, the
spar kCont ext . properti es is provided so that you can fine tune the performance
of the Spark workers.

The spar kCont ext . properti es file is located in the $CLI _HOVE/ edp_cl i /
conf i g directory. As shipped, the file is empty. However, you can add any Spark
configuration property to the file. The properties that you specify will override all
previously-set Spark settings. The documentation for the Spark properties is at:
https:/ /spark.apache.org/docs/latest/configuration.html

Keep in mind that the spar kCont ext . properti es file can be empty. If the file is
empty, a Data Processing workflow will still run correctly because the Spark worker
will have a sufficient set of configuration properties to do its job.

Note: Do not delete the spar kCont ext . properti es file. Although it can
be empty, a check is made for its existence and the Data Processing workflow
will not run if the file is missing.

Spark default configuration

When started, a Spark worker gets its configuration settings in a three-tiered manner,
in this order:

1. From the Hadoop default settings.

2. From the Data Processing configuration settings, which can either override the
Hadoop settings, and/or provide additional settings. For example, the
spar kExecut or Menor y property (in the DP CLI configuration) can override the
Hadoop spar k. execut or . menor y property.

3. From the property settings in the spar kCont ext . properti es file, which can
either override any previous settings and/or provide additional settings.

If the spar kCont ext . properti es file is empty, then the final configuration for the
Spark worker is obtained from Steps 1 and 2.

Sample Spark configuration
The following is a sample spar kCont ext . properti es configuration file:

HUHHHHH R R R R

Spark additional runtime properties

HUHHHHH R R R R

spark. broadcast . conpress=true

spark. rdd. conpress=fal se

spark. i 0. conpressi on. codec=or g. apache. spar k. i 0. LZFConpr essi onCodec
spark. i 0. conpr essi on. snappy. bl ock. si ze=32768

spark. cl osure. serializer=org. apache. spark. serial i zer.JavaSerial i zer
spark. serializer. obj ect St reanReset =10000

spark. kryo. ref erenceTracki ng=true

spark. kryoserial i zer. buffer. nb=2

spark. broadcast . f act ory=or g. apache. spark. broadcast . Ht t pBroadcast Fact ory
spar k. broadcast . bl ockSi ze=4096

spark.files.overwite=fal se

spark. files.fetchTi neout =fal se

spark. st orage. menor yFract i on=0. 6

Data Processing Configuration 3-3

https://spark.apache.org/docs/latest/configuration.html

Spark configuration

spark. tachyonSt ore. baseDi r=Syst em get Property("java.io.tnpdir")
spar k. st or age. memor yMapThr eshol d=8192
spark. cleaner.ttl=(infinite)

Configuring fail fast behavior for transforms

When a transform is committed, the ApplyTransformToDataSetWorkflow will not
retry on failure. This workflow cannot safely be re-run after failure because the state of
the data set may be out of sync with the state of the HDFS sample files. This non-retry
behavior applies to all Hadoop environments.

Users can modify the yar n. r esour cermanager . am nax- at t enpt s setting on their
cluster to prevent retries of any YARN job. If users do not do this, it may look like the
workflow succeeded, but will fail on future transforms because of the inconsistent
sample data files. Users do not have to set this property unless they want the fail fast
behavior.

Enabling Spark event logging

You can enable Spark event logging with this file. At runtime, Spark internally
compiles the DP workflow into multiple stages (a stage is usually defined by a set of
Spark Transformation and bounded by Spark Action). The stages can be matched to
the DP operations. The Spark event log includes the detailed timing information on a
stage and all the tasks within the stage.

The following Spark properties are used for Spark event logging:

¢ spark. event Log. enabl ed (which set to true) enables the logging of Spark
events.

e spark. event Log. di r specifies the base directory in which Spark events are
logged.

e spark.yarn. historyServer. addr ess specifies the address of the Spark
history server (i.e., host.com:18080). The address should not contain a scheme
(http:/ /).

For example:

spar k. event Log. enabl ed=true
spark. event Log. di r =hdf s: // busj 40CDH3- ns/ user/ spar k/ appl i cati onHi story
spark. yarn. hi storyServer. addr ess=busj 40bdal3. exanpl e. com 18088

Note that enabling Spark event logging should be done by Oracle Support personnel
when trouble-shooting problems. Enabling Spark event logging under normal
circumstances is not recommended as it can have an adverse performance impact on
workflows.

Spark worker OutOfMemoryError

If insufficient memory is allocated to a Spark worker, an Qut Of Menor yEr r or may
occur and the Data Processing workflow may terminate with an error message similar
to this example:

java.lang. Qut O MenoryError: Java heap space
at java.util.Arrays.copyOf (Arrays.java: 2271)
at java.io.ByteArrayQut put Stream grow(Byt eArrayQut put Stream j ava: 113)
at java.io.ByteArrayQut put Stream ensureCapaci t y(Byt eArrayCQut put Stream j ava: 93)
at java.io.ByteArrayQutput Stream write(ByteArrayQutput Stream java: 140)
at java.io.BufferedQut put Stream fl ushBuf f er (Buf f eredQut put Stream j ava: 82)

3-4 Data Processing Guide

Spark configuration

at java.io.BufferedQutputStreamwrite(BufferedQutput Streamjava: 126)

at java.io.Object Qut put Strean$Bl ockDat aQut put St ream drai n(Cbj ect Qut put Stream j ava:
1876)

at java.io.ObjectQutputStream
$Bl ockDat aQut put St ream set Bl ockDat aMbde(Cbj ect Qut put Stream j ava: 1785)

at java.io.ObjectQutputStreamwiteChjectO(OhjectQutputStreamjava: 1188)

at java.io.ObjectQutputStreamwiteChject(ChjectQutputStream java: 347)

at
org. apache. spark. serializer.JavaSerializationStreamwitebject(JavaSerializer.scala:
42)

at org.apache. spark.serializer.SerializationStream
$class.writeAl(Serializer.scala:102)

at
org. apache. spark. serializer.JavaSerializationStreamwiteAll (JavaSerializer.scal a: 30)

at org.apache. spark. st orage. Bl ockManager . dat aSeri al i zeSt r ean(Bl ockManager . scal a:
996)

at org.apache. spark. st orage. Bl ockManager . dat aSeri al i ze(Bl ockManager . scal a: 1005)

at org.apache. spark. st orage. Mermor ySt or e. put Val ues(MenorySt ore. scal a: 79)

at org.apache. spark. st orage. Bl ockManager . doPut (Bl ockManager . scal a: 663)

at org.apache. spark. st orage. Bl ockManager . put (Bl ockManager . scal a: 574)

at org. apache. spar k. CacheManager . get O Conput e(CacheManager . scal a: 108)

at org.apache. spark.rdd. RDD. i terator (RDD. scal a: 227)

at org. apache. spark. rdd. MappedRDD. conput e(MappedRDD. scal a: 31)

at org.apache. spark. rdd. RDD. conput eOr ReadCheckpoi nt (RDD. scal a: 262)

at org.apache. spark.rdd. RDD. i terator(RDD. scal a: 229)

at org.apache. spark. schedul er. Resul t Task. runTask(Resul t Task. scal a: 111)

at org.apache. spark. schedul er. Task. run(Task. scal a: 51)

at org.apache. spark. execut or. Execut or $TaskRunner . run(Execut or. scal a: 187)

at java.util.concurrent. ThreadPool Execut or.runWrker (Thr eadPool Execut or. j ava: 1145)

at java.util.concurrent. ThreadPool Execut or $Wr ker . run(Thr eadPool Execut or. j ava: 615)

at java.lang. Thread. run(Thread. j ava: 745)

The amount of memory required to successfully complete a Data Processing workflow
depends on database considerations such as:

e The total number of records in each Hive table.

* The average size of each Hive table record.

It also depends on the DP CLI configuration settings, such as:
¢ maxRecor dsFor NewDat aSet
e runEnrichment

e spar kExecut or Menory

If Qut OF Menror yEr r or instances occur, you can adjust the DP CLI default values, as
well as specify spar kCont ext . pr operti es configurations, to suit the provisioning
needs of your deployment.

For example, Data Processing allows you to specify a spar kExecut or Menory
setting, which is used to define the amount of memory to use per executor process.
(This setting corresponds to the spar k. execut or . menor y parameter in the Spark
configuration.) The Spark spar k. st or age. menor yFr act i on parameter is another
important option to use if the Spark Executors are having memory issues.

You should also check the "Tuning Spark" topic: http:/ /spark.apache.org/docs/
latest/tuning.html

Data Processing Configuration 3-5

http://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/tuning.html

Spark configuration

Benign sparkDriver shutdown error

After a Spark job finishes successfully, you may see a sparkDriver shutdown ERROR
message in the log, as in this abbreviated example:

11:11:42.828 Thread-2 INFO : Shutting down all executors

11:11: 42. 829 sparkDriver-akka. act or. def aul t - di spat cher-19 INFO : Asking each
executor to shut down

11:11: 42. 892 sparkDri ver-akka. actor. def aul t - di spat cher-17 ERROR Associ ati onError
[akka.tcp://sparkDriver@0.152. 110. 203: 62743] <- [akka.tcp://

spar kExecut or @t m exanpl e. com 30203]: Error [Shut down address: akka.tcp://

spar kExecut or @us00at m us. oracl e. com 30203] [

akka. renot e. Shut DownAssoci ation: Shut down address: akka.tcp://

spar kExecut or @t m exanmpl e. com 30203

Caused by: akka.remote.transport. Transport $l nval i dAssoci ati onException: The remote
systemterninated the association because it is shutting down.

]
akka. event . Loggi ng$Er r or $NoCause$

11:11: 42. 893 sparkDri ver-akka. actor. def aul t - di spat cher-19 INFO : Driver terninated
or disconnected! Shutting down. atm exanple.com 30203

11:11: 42. 897 sparkDri ver-akka. actor. def aul t - di spat cher-19 | NFO :

MapQut put Tr acker Mast er Endpoi nt st opped!

The actual Spark work is done successfully. However, the sparkDriver shutdown
generates the error message. The log message is displayed by Spark (not the Data
Processing code). The message is benign and there is no actual impact to functionality.

Note on differentiating job queuing and cluster locking

Sites that have a small and busy cluster may encounter problems with Spark jobs not
running with a message similar to the following example:

[DataProcessing] [WARN] [] [org.apache. spark. Loggi ng$cl ass] [tid: Tinmer-0]
[userlD:yarn]

Initial job has not accepted any resources; check your cluster U to ensure that
workers are registered

and have sufficient menory

The cause may be due to normal YARN job queuing rather than cluster locking.
(Cluster locking is when a cluster is deadlocked by submitting many applications at
once, and having all cluster resources taken up by the ApplicationManagers.) The
appearance of the normal YARN job queuing is very similar to cluster locking,
especially when there is a large YARN job taking excess time to run. To check on the
status of jobs, use the Hadoop cluster manager for your Hadoop distribution.

The following information may help differentiate between job queuing and suspected
cluster locking: Jobs are in normal queuing state unless there are multiple jobs in a
RUNNING state, and you observe "Initial job has not accepted any resources” in the
logs of all these jobs. As long as there is one job making progress where you usually
see "Starting task X.X in stage X.X", those jobs are actually in normal queuing state.
Also, when checking Spark RUNNING jobs through ResourceManager UI, you should
browse beyond the first page or use the Search box in the Ul, so that no RUNNING
applications are left out.

If your Hadoop cluster has a Hadoop version earlier than 2.6.0., it is recommended
that the explicit setting is used to limit the ApplicationMaster share:

<queueMaxAVshar eDef aul t >0. 5</ queueMaxAMshar eDef aul t >

3-6 Data Processing Guide

Adding a SerDe JAR to DP workflows

This property limits the fraction of the queue's fair share that can be used to run
Application Masters.

Adding a SerDe JAR to DP workflows

This topic describes the process of adding a custom Serializer-Deserializer (SerDe) to
the Data Processing (DP) classpath.

When customers create a Hive table, they can specify a Serializer-Deserializer (SerDe)
class of their choice. For example, consider the last portion of this statement:

CREATE TABLE sanpl es_t abl e(
id INT,
city STRING
country STRING,
region STRING
popul ation I NT)
ROW FORMAT SERDE ' or g. apache. hadoop. hi ve. contrib. serde2. JsonSer de' ;

If that SerDe JAR is not packaged with the Data Processing package that is part of the
Big Data Discovery, then a Data Processing run is unable to read the Hive table, which
prevents the importing of the data into the Dgraph. To solve this problem, you can
integrate your custom SerDe into the Data Processing workflow.

This procedure assumes this pre-requisite:

* Before integrating the SerDe JAR with Data Processing, the SerDe JAR should be
present on the Hadoop cluster's HiveServer2 node and configured via the Hive
Auxiliary Jars Directory property in the Hive service. To check this, you can verify
that, for a table created with this SerDe, a SELECT * query on the table does not
issue an error. This query should be verified to work from Hue and the Hive CLI to
ensure the SerDe was added properly.

To integrate a custom SerDe JAR into the Data Processing workflow:

1. Copy the SerDe JAR into the same location on each cluster node.

Note that this location can be the same one as used when adding the SerDe Jar to
the HiveServer2 node.

2. Edit the DP CLI edp. properti es file and add the path to the SerDe JAR to the
ext raJar s property. This property should be a colon-separated list of paths to
JARs. This will allow DP jobs from the CLI to pick up the SerDe JAR.

By default, the edp. properti es file is in the $BDD_HOVE/ dat apr ocessi ng/
edp_cl i/ confi g directory.

You should also update the DP_ADDI TI ONAL_JARS property in the installation
version of the bdd. conf file with the path, in case you ever re-install BDD.

3. For Studio, edit the $DOVAI N_HOWE/ confi g/ st udi o/ port al -
ext . properti es file and add the path to the SerDe Jar to the
dp. settings. extra.j ars property. This property should be a colon-separated
list of paths to JARs. This will allow DP jobs from Studio to pick up the SerDe JAR.

As a result, the SerDe JAR is added in the Data Processing classpath. This means that

the SerDe class will be used in all Data Processing workflows, whether they are
initiated automatically by Studio or by running the Data Processing CLL

Data Processing Configuration 3-7

Adding a SerDe JAR to DP workflows

3-8 Data Processing Guide

A

DP Command Line Interface Utility

This section provides information on configuring and using the Data Processing
Command Line Interface utility.

DP CLI overview
The DP CLI (Command Line Interface) shell utility is used to launch
Data Processing workflows, either manually or via a cron job.

DP CLI permissions and logging
This topic provides brief overviews of permissions and logging.

DP CLI configuration
The DP CLI has a configuration file, edp. pr oper ti es, that sets its
default properties.

DP CLI flags
The DP CLI has a number of runtime flags that control its behavior.

Using whitelists and blacklists
A whitelist specifies which Hive tables should be processed in Big Data
Discovery, while a blacklist specifies which Hive tables should be
ignored during data processing.

DP CLI cron job
You can specify that the BDD installer create a cron job to run the DP
CLL

DP CLI workflow examples
This topic shows some workflow examples using the DP CLIL

Processing Hive tables with Snappy compression
This topic explains how to set up the Snappy libraries so that the DP CLI
can process Hive tables with Snappy compression.

Changing Hive table properties
This topic describes how to change the value of the
ski pAut oPr ovi si oni ng property in a Hive table.

DP CLI overview
The DP CLI (Command Line Interface) shell utility is used to launch Data Processing
workflows, either manually or via a cron job.

The Data Processing workflow can be run on an individual Hive table, all tables
within a Hive database, or all tables within Hive. The tables must be of the auto-
provisioned type (as explained further in this topic).

The DP CLI starts workflows that are run by Spark workers. The results of the DP CLI
workflow are the same as if the tables were processed by a Studio-generated Data
Processing workflow.

DP Command Line Interface Utility 4-1

DP CLI overview

Two important use cases for the DP CLI are:

¢ Ingesting data from your Hive tables immediately after installing the Big Data
Discovery (BDD) product. When you first install BDD, your existing Hive tables
are not processed. Therefore, you must use the DP CLI to launch a first-time Data
Processing operation on your tables.

¢ Invoking the BDD Hive Table Detector, which in turn can start Data Processing
workflows for new or deleted Hive tables.

The DP CLI can be run either manually or from a cron job. The BDD installer creates a
cron job as part of the installation procedure if the ENABLE_HI VE_TABLE_DETECTCR
property is set to TRUE in the bdd. conf file.

Skipped and auto-provisioned Hive tables

From the point of view of Data Processing, there are two types of Hive tables: skipped
tables and auto-provisioned tables. The table type depends on the presence of a special
table property, ski pAut oPr ovi si oni ng. The ski pAut oPr ovi si oni ng property
(when set to t r ue) tells the BDD Hive Table Detector to skip the table for processing.

Skipped tables are Hive tables that have the ski pAut oPr ovi si oni ng table
property present and set to t r ue. Thus, a Data Processing workflow will never be
launched for a skipped table (unless the DP CLI is run manually with the - - t abl e
flag set to the table). This property is set in two instances:

¢ The table was created from Studio, in which case the ski pAut oPr ovi si oni ng
property is always set at table creation time.

* The table was created by a Hive administrator and a corresponding BDD data set
was provisioned from that table. Later, that data set was deleted from Studio.
When a data set (from an admin-created table) is deleted, Studio modifies the
underlying Hive table by adding the ski pAut oPr ovi si oni ng table property.

For information on changing the value of the ski pAut oPr ovi si oni ng property, see
Changing Hive table properties.

Auto-provisioned tables are Hive tables that were created by the Hive administrator
and do not have a ski pAut oPr ovi si oni ng property. These tables can be
provisioned by a Data Processing workflow that is launched by the BDD Hive Table
Detector.

Note: Keep in mind that when a BDD data set is deleted, its source Hive table
is not deleted from the Hive database. This applies to data sets that were
generated from either Studio-created tables or admin-created tables. The

ski pAut oPr ovi si oni ng property ensures that the table will not be re-
provisioned when its corresponding data set is deleted (otherwise, the deleted
data set would re-appear when the table was re-processed).

BDD Hive Table Detector

The BDD Hive Table Detector is a process that automatically keeps a Hive database in
sync with the BDD data sets. The BDD Hive Table Detector has two major functions:

* Automatically checks all Hive tables within a Hive database:

4-2 Data Processing Guide

DP CLI permissions and logging

— For each auto-provisioned table that does not have a corresponding BDD data
set, the BDD Hive Table Detector launches a new data provisioning workflow
(unless the table is skipped via the blacklist).

— For all skipped tables, such as, Studio-created tables, the BDD Hive Table
Detector never provisions them, even if they do not have a corresponding BDD
data set.

* Automatically launches the data set clean-up process if it detects that a BDD data
set does not have an associated Hive table. (That is, an orphaned BDD data set is
automatically deleted if its source Hive table no longer exists.) Typically, this
scenario occurs when a Hive table (either admin-created or Studio-created) has
been deleted by a Hive administrator.

The BDD Hive Table Detector detects empty tables, and does not launch workflows
for those tables.

The BDD Hive Table Detector is invoked with the DP CLI, which has command flags
to control the behavior of the script. For example, you can select the Hive tables you
want to be processed. The - - whi t el i st flag of the CLI specifies a file listing the
Hive tables that should be processed, while the - - bl ackl i st flag controls a file with
Hive tables that should be filtered out during processing.

DP CLI permissions and logging

This topic provides brief overviews of permissions and logging.

DP CLI permissions

The DP CLI script is installed with ownership permission for the person who ran the
installer. These permissions can be changed by the owner to allow anyone else to run
the script.

DP CLI logging

The DP CLI logs detailed information about its workflow into the log file defined in
the | og4j . properti es file. This file is located in the $BDD HOVE/

dat apr ocessi ng/ edp_cl i directory and is documented in DP logging properties
file.

The implementation of the BDD Hive Table Detector is based on the DP CLI, so it uses
the same logging properties as the DP CLI script. It also produces verbose outputs (on
some classes) to stdout/stderr.

DP CLI configuration

The DP CLI has a configuration file, edp. pr operti es, that sets its default properties.

By default, the edp. properti es file is located in the $BDD_HOVE/
dat apr ocessi ng/ edp_cl i/ confi g directory.

Some of the default values for the properties are populated from the bdd. conf
installation configuration file. After installation, you can change the CLI configuration
parameters by opening the edp. pr oper ti es file with a text editor.

Data Processing defaults

The properties that set the Data Processing defaults are:

DP Command Line Interface Utility 4-3

DP CLI configuration

Data Processing Property

Description

maxRecor dsFor NewDat aSet

runEnri chnent

def aul t Language

edpDat abDi r

dat aset AccessType

notificationsServerUrl

Specifies the maximum number of records in the sample
size of a new data set (that is, the number of sampled
records from the source Hive table). In effect, this sets the
maximum number of records in a BDD data set. Note that
this setting controls the sample size for all new data sets
and it also controls the sample size resulting from
transform operations (such as during a Refresh update on
a data set that contains a transformation script).

The default is set by the MAX_RECORDS property in the
bdd. conf file. The CLI - - maxRecor ds flag can
override this setting.

Specifies whether to run the Data Enrichment modules.
The default is set by the ENABLE_ENRI CHVENTS property
in the bdd. conf file.

You can override this setting by using the CLI - -
runknri chment flag. The CLI- - excl udePl ugi ns
flag can also be used to exclude some of the Data
Enrichment modules.

The language for all attributes in the created data set. The
default is set by the LANGUAGE property in the bdd. conf
file. For the supported language codes, see Supported
languages.

Specifies the location of the HDFS directory where data
ingest and transform operations are processed. The default
location is the / user / bdd/ edp/ dat a directory.

Sets the access type for the data set, which determines
which Studio users can access the data set in the Studio UL
This property takes one of these case-insensitive values:

e publ i ¢ means that all Studio users can access the data
set. This is the default.

* privat e means that only designated Studio users and
groups can access the data set. The users and groups
are specified in attributes set in the data set's entry in
the DataSet Inventory.

Specifies the URL of the Notification Service. This value is
automatically set by the BDD installer and will have a
value similar to this example:

https://webl4. exanpl e. com 7003/ bdd/ v1/ api / wor kf | ows

Dgraph Gateway connectivity settings

These properties are used to control access to the Dgraph Gateway that is managing

the Dgraph nodes:

4-4 Data Processing Guide

DP CLI configuration

Dgraph Gateway Property

Description

endecaSer ver Host

endecaSer ver Port

endecaSer ver Cont ext Root

The name of the host on which the Dgraph Gateway is
running. The default name is specified in the bdd. conf
configuration file.

The port on which Dgraph Gateway is listening. The
default is 7003.

The context root of the Dgraph Gateway when running on
Managed Servers within the WebLogic Server. The value
should be set to: / endeca- ser ver

Kerberos credentials

The DP CLI is enabled for Kerberos support at installation time, if the
ENABLE_KERBERGS property in the bdd. conf file is set to TRUE. The bdd. conf file
also has parameters for specifying the name of the Kerberos principal, as well as paths
to the Kerberos keytab file and the Kerberos configuration file. The installation script
populates the edp. proper ti es file with the properties in the following table.

Kerberos Property

Description

i sKerberi zed

| ocal Ker ber osPri nci pal

| ocal Ker ber osKeyt abPat h

cl ust er Ker ber osPri nci pal

cl ust er Ker ber osKeyt abPat
h

kr b5Conf Pat h

Specifies whether Kerberos support should be enabled.
The default value is set by the ENABLE_KERBERCS
property in the bdd. conf file.

The name of the Kerberos principal. The default name is
set by the KERBEROS_PRI NCI PAL property in the
bdd. conf file.

Path to the Kerberos keytab file on the WebLogic Admin
Server. The default path is set by the
KERBEROS_KEYTAB_PATH property in the bdd. conf
file.

The name of the Kerberos principal. The default name is
set by the KERBERCS_PRI NCI PAL property in the
bdd. conf file.

Path to the Kerberos keytab file on the WebLogic Admin
Server. The default path is set by the
KERBEROS_KEYTAB_PATH property in the bdd. conf
file.

Path to the kr b5. conf configuration file. This file
contains configuration information needed by the Kerberos
V5 library. This includes information describing the
default Kerberos realm, and the location of the Kerberos
key distribution centers for known realms.

The default path is set by the KRB5_CONF_PATH property
in the bdd. conf file. However, you can specify a local,
custom location for the kr b5. conf file.

For further details on these parameters, see the Installation Guide

DP Command Line Interface Utility 4-5

DP CLI configuration

Hadoop connectivity settings

The parameters that define connections to Hadoop environment processes and

resources are:

Hadoop Parameter

Description

hi veSer ver Host

hi veSer ver Por t

clusterd t Hone

ol t Home

hadoopd ust er Type

hadoopTrust Store

Name of the host on which the Hive server is running.
The default value is set at the BDD installation time.

Port on which the Hive server is listening. The default
value is set at the BDD installation time.

Path to the OLT directory on the Spark worker node. The
default location is the $BDD _HOVE/
common/ edp/ ol t directory.

Both cl ust er d t Horre and this parameter are required,
and both must be set to the same value.

The installation type, according to the Hadoop
distribution. The value is set by the | NSTALL_TYPE
property in the bdd. conf file.

Path to the directory on the install machine where the
certificates for HDFS, YARN, Hive, and the KMS are
stored. Required for clusters with TLS/SSL enabled. The
default path is set by the HADOOP_CERTI FI CATES_PATH
property in the bdd. conf file.

Spark environment settings

These parameters define settings for interactions with Spark workers:

Spark Properties

Description

spar kiast er Ur |

spar kDynami cAl | ocati on

4-6 Data Processing Guide

Specifies the master URL of the Spark cluster. In Spark-
on-YARN mode, the ResourceManager's address is
picked up from the Hadoop configuration by simply
specifying yar n- cl ust er for this parameter. The
default value is set at the BDD installation time.

Indicates if Data Processing will dynamically compute
the executor resources or use static executor resource
configuration:

e If set to false, the values of the static resource
parameters (spar kDri ver Menory,
spar kDri ver Cor es, spar kExecut or Menory,
spar kExecut or Cor es, and spar kExecut or s) are
required and are used.

e If set to true, the values for the executor resources are
dynamically computed. This means that the static
resource parameters are not required and will be
ignored even if specified.

The default is set by the SPARK_DYNAM C_ALLOCATI ON

property in the bdd. conf file.

DP CLI configuration

Spark Properties

Description

spar kDri ver Menory

spar kDri ver Cor es

spar kExecut or Menor y

spar kExecut or Cor es

spar kExecut ors

yar nQueue

Amount of memory to use for each Spark driver process,
in the same format as JVM memory strings (such as
512m, 2g, 10g, and so on). The default is set by the
SPARK_DRI VER_MEMORY property in the bdd. conf
file.

Maximum number of CPU cores to use by the Spark
driver. The default is set by the SPARK_DRI VER_CORES
property in the bdd. conf file.

Amount of memory to use for each Spark executor
process, in the same format as JVM memory strings (such
as 512m, 2g, 10g, and so on). The default is set by the
SPARK_EXECUTOR_MEMORY property in the bdd. conf
file.

This setting must be less than or equal to Spark's Total
Java Heap Sizes of Worker's Executors in Bytes

(execut or _t ot al _max_heapsi ze) property in
Cloudera Manager. You can access this property in
Cloudera Manager by selecting Clusters > Spark
(Standalone), then clicking the Configuration tab. This
property is in the Worker Default Group category (using
the classic view).

Maximum number of CPU cores to use for each Spark
executor. The default is set by the
SPARK_EXECUTOR_CORES property in the bdd. conf
file.

Total number of Spark executors to launch. The default is
set by the SPARK_EXECUTORS property in the
bdd. conf file.

The YARN queue to which the Data Processing job is
submitted. The default value is set by the YARN_QUEUE
property in the bdd. conf file.

DP Command Line Interface Utility 4-7

DP CLI configuration

Spark Properties Description

maxSpl it Si zeMVB The maximum partition size for Spark inputs, in MB.
This controls the size of the blocks of data handled by
Data Processing jobs. This property overrides the HDFS
block size used in Hadoop.
Partition size directly affects Data Processing
performance — when partitions are smaller, more jobs
run in parallel and cluster resources are used more
efficiently. This improves both speed and stability.

The default is set by the MAX_| NPUT_SPLI T_SI ZE
property in the bdd. conf file (which is 32, unless
changed by the user). The 32MB is amount should be
sufficient for most clusters, with a few exceptions:

e If your Hadoop cluster has a very large processing
capacity and most of your data sets are small (around
1GB), you can decrease this value.

¢ Inrare cases, when data enrichments are enabled the
enriched data set in a partition can become too large
for its YARN container to handle. If this occurs, you
can decrease this value to reduce the amount of
memory each partition requires.

If this property is empty, the DP CLI logs an error at
start-up and uses a default value of 32MB.

Jar location settings

These properties specify the paths for jars used by workflows:

Jar Property Description

spar kYar nJar Path to JAR files used by Spark-on-YARN. The default
path is set by the SPARK_ON_YARN_JAR property in the
bdd. conf file. However, additional JARs (such as
edpLoggi ng. j ar) are appended to the path by the
installer.

bddHadoopFat Jar Path to the location of the Hadoop Shared Library (file
name of bddHadoopFat Jar . | ar) on the cluster. The
path is set by the installer. and is typically the
$BDD_HOVE/ common/ hadoop/ | i b directory.
Note that the dat a_pr ocessi ng_CLI| script hasa
BDD_HADOOP_FATJAR property that specifies the location
of the Hadoop Shared Library on the local file system of
the DP CLI client.

edpJarDir Path to the directory where the Data Processing JAR files
for Spark workers are located on the cluster. The default
location is the $BDD_HOVE/ conmon/ edp/ | i b
directory.

4-8 Data Processing Guide

DP CLI flags

DP CLI flags

Jar Property Description

extradars Path to any extra JAR files to be used by customers, such
as the path to a custom SerDe JAR. The default path is set
by the DP_ADDI TI ONAL_JARS property in the
bdd. conf file.

Kryo serialization settings

These properties define the use of Kryo serialization:

Kryo Property Description

kryoMode Specifies whether to enable (t r ue) or disable (f al se)
Kryo for serialization. Make sure that this property is set

to f al se because Kryo serialization is not supported in
BDD.

kryoBuf f er Mentsi zeMB Maximum object size (in MBs) to allow within Kryo. This
property, like the kr yoMode property, is not supported
by BDD workflows.

JAVA_HOME setting

In addition to setting the CLI configuration properties, make sure that the JAVA HOVE
environment variable is set to the directory containing the specific version of Java that
will be called when you run the Data Processing CLI.

The DP CLI has a number of runtime flags that control its behavior.

You can list these flags if you use the - - hel p flag. Each flag has a full name that
begins with two dashes (such as - - mTaxRecor ds) and an abbreviated version with
one dash (such as - m.

The - - devHel p flag displays flags that are intended for use by Oracle internal
developers and support personnel. These flags are therefore not documented in this
guide.

Note: All flag names are case sensitive.

The CLI flags are:
CLI Flag Description
-a,--all Runs data processing on all Hive tables

in all Hive databases.

DP Command Line Interface Utility 4-9

DP CLI flags

CLI Flag Description

-bl,--blackLi st <bl Fil e> Specifies the file name for the blacklist
used to filter out Hive tables. The tables
in this list are ignored and not
provisioned. Must be used with the - -
dat abase flag.

-cl ean,--cl eanAbort edJobs Cleans up artifacts left over from
incomplete workflows.

-d,--dat abase <dbNanme> Runs Data Processing using the specified
Hive database. If a Hive table is not
specified, runs on all Hive tables in the
Hive database (note that tables with the
ski pAut oPr ovi si oni ng property set
to t r ue will not be provisioned).

For Refresh and Incremental updates,
can be used to override the default
database in the data set's metadata.

-devHel p,--devHel p Displays usage information for flags
intended to be used by Oracle support
personnel.

- di sabl eSear ch, - - di sabl eSear ch Turns off Dgraph indexing for search.

This means that DP Discovery disables
record search and value search on all the
attributes, irrespective of the average
String length of the values. This flag can
be used only for provisioning workflows
(for new data sets created from Hive
tables) and for refresh workflows (with
the - - r ef r eshDat a flag). This flag
cannot be used in conjunction with the
--increnent al Updat e flag.

-e,--runEnri chment Runs the Data Enrichment modules
(except for the modules that never
automatically run during the sampling
phase). Overrides the r unEnri chrrent
property in the edp. properti es
configuration file.

You can also exclude some modules
with the CLI - - excl udePl ugi ns
flag.

- ep, - - excl udePl ugi ns <exLi st > Specifies a list of Data Enrichment
modules to exclude when Data
Enrichments are run.

-h,--help Displays usage information for flags
intended to be used by customers.

-increnental ,--increnental Updat e Performs an incremental update on a

<l ogi cal Name> <filter> BDD data set from the original Hive
table, using a filter predicate to select the
new records. Optionally, can use the - -
t abl e and - - dat abase flags.

4-10 Data Processing Guide

DP CLI flags

CLI Flag

Description

-m--nmaxRecords <nune

-mM,--maxWai t Ti ne <secs>

- pi ng, - - pi ngCheck
-refresh,--refreshbDat a

<l ogi cal Nane>

-t,--tabl e <tabl eNanme>

-v,--versi onNunber

-W ,--whiteList <wl File>

Specifies the maximum number of
records in the sample size of a data set
(that is, the number of sampled records
from the source Hive table). In effect,
this sets the maximum number of
records in a BDD data set. Note that this
setting controls the sample size for all
new data sets and it also controls the
sample size resulting from transform
operations (such as during a Refresh
update on a data set that contains a
transformation script). Overrides the CLI
maxRecor dsFor NewDat aSet
property in the edp. properti es
configuration file.

Specifies the maximum waiting time (in
seconds) for each table processing to
complete. The next table is processed
after this interval or as soon as the data
ingesting is completed.

This flag controls the pace of the table
processing, and prevents Hadoop and
Spark cluster nodes, as well as the
Dgraph cluster nodes from being
flooded with a large number of
simultaneous requests.

Ping checks the status of components
that Data Processing needs.

Performs a full data refresh on a BDD
data set from the original Hive table.
Optionally, you can use the - - t abl e
and - - dat abase flags.

Runs data processing on the specified
Hive table. If a Hive database is not
specified, assumes the default database.
Note that the table is skipped in these
cases: it does not exist, is empty, or has
the table property

ski pAut oProvi si oni ngsettotrue.
For Refresh and Incremental updates,
can be used to override the default
source table in the data set's metadata.

Prints the version number of the current
iteration of the Data Processing
component within Big Data Discovery.

Specifies the file name for the whitelist
used to select qualified Hive tables for
processing. Each table on this list is
processed by the Data Processing
component and is ingested into the
Dgraph as a BDD data set. Must be used
with the - - dat abase flag.

DP Command Line Interface Utility 4-11

Using whitelists and blacklists

CLI Flag Description
Upgr adeDat eset | nvent ory Upgrades the DataSet Inventory from a
<f r omVer si on> given BDD version to the latest version.

Note that this subcommand is called by
the upgrade script and should not be run
interactively.

Upgr adeSanpl eFi | es <fronVersi on> Upgrades the sample files (produced as
a result of a previous workflow) from a
given BDD version to the latest version.
Note that this subcommand is called by
the upgrade script and should not be run
interactively.

Using whitelists and blacklists

A whitelist specifies which Hive tables should be processed in Big Data Discovery,
while a blacklist specifies which Hive tables should be ignored during data
processing.

Default lists are provided in the DP CLI package:

e cli_whitelist.txt isthe default whitelist name. The default whitelist is empty,
as it does not select any Hive tables.

e cli_blacklist.txt isthe default blacklist name. The default blacklist has one .
+ regex which matches all Hive table names (therefore all Hive tables are
blacklisted and will not be imported).

Both files include commented-out samples of regular expressions that you can use as
patterns for your tables.

To specify the whitelist, use this syntax:
--whitelList cli_whitelist.txt

To specify the blacklist, use this syntax:

--blackList cli_blacklist.txt

Both lists are optional when running the DP CLIL. However, you use the - - dat abase
flag if you want to use one or both of the lists.

If you manually run the DP CLI with the - - t abl e flag to process a specific table, the
whitelist and blacklist validations will not be applied.

List syntax

The - - whi t eLi st and the - - bl ackLi st flags take a corresponding text file as their
argument. Each text file contains one or more regular expressions (regex). There
should be one line per regex pattern in the file. The patterns are only used to match
Hive table names (that is, the match is successful as long as there is one matched
pattern found).

The default whitelist and blacklist contain commented-out sample regular expressions
that you can use as patterns for your tables. You must edit the whitelist file to include
at least one regular expression that specifies the tables to be ingested. The blacklist by

4-12 Data Processing Guide

DP CLI cron job

default excludes all tables with the .+ regex, which means you have to edit the
blacklist if you want to exclude only specific tables.

For example, suppose you wanted to process any table whose name started with bdd,
such as bdd_sal es. The whitelist would have this regex entry:

“bdd. *

You could then run the DP CLI with the whitelist, and not specify the blacklist.

List processing

The pattern matcher in Data Processing workflow uses this algorithm:

1. The whitelist is parsed first. If the whitelist is not empty, then a list of Hive tables
to process is generated. If the whitelist is empty, then no Hive tables are ingested.

2. If the blacklist is present, the blacklist pattern matching is performed. Otherwise,
blacklist matching is ignored.

To summarize, the whitelist is parsed first, which generates a list of Hive tables to
process, and the blacklist is parsed second, which generates a list of skipped Hive
table names. Typically, the names from the blacklist names modify those generated by
the whitelist. If the same name appears in both lists, then that table is not processed,
that is, the blacklist can, in effect, remove names from the whitelist.

Example

To illustrate how these lists work, assume that you have 10 Hive tables with sales-
related information. Those 10 tables have a _bdd suffix in their names, such as

cl ai ms_bdd. To include them in data processing, you create a whi t el i st. t xt file
with this regex entry:

A% bdd$
If you then want to process all * _bdd tables except for the cl ai ns_bdd table, you
create a bl ackl i st. t xt file with this entry:

cl ai ms_bdd

When you run the DP CLI with both the - - whi t eLi st and - - bl ackLi st flags, all
the * _bdd tables will be processed except for the cl ai ns_bdd table.

DP CLI cron job

You can specify that the BDD installer create a cron job to run the DP CLI.

By default, the BDD installer does not create a cron job for the DP CLI. To create the
cron job, set the ENABLE_HI VE_TABLE_DETECTOR parameter to TRUE in the BDD
installer's bdd. conf configuration file.

The following parameters in the bdd. conf configuration file control the creation of
the cron job:

Configuration Parameter Description

ENABLE HI VE_TABLE DETECTOR When set to TRUE, creates a cron job, which
automatically runs on the server defined by
DETECTOR_SERVER. The default is FALSE.

DP Command Line Interface Utility 4-13

DP CLI cron job

Configuration Parameter Description
DETECTOR_SERVER Specifies the server on which the DP CLI will run.
DETECTOR_HI VE_DATABASE The name of the Hive database that the DP CLI will

run against.

DETECTOR_NMAXI MUM WAI T_TI ME The maximum amount of time (in seconds) that the
Hive Table Detector waits between update jobs.

DETECTOR_SCHEDULE A Cron format schedule that specifies how often
the DP CLI runs. The value must be enclosed in
quotes. The default value is:

"0 Q * ox x"

The default means the Hive Table Detector runs at
midnight, every day of every month.

If the cron job is created, the default cron job definition settings (as set in the cr ont ab
file) are as follows:

00* ** Jusr/bin/flock -x -w 120 /I ocal di sk/ Oracl e/ M ddI ewar e/ BDDY dat apr ocessi ng/
edp_cli/work/detector.|ock

-¢ "cd /1 ocal di sk/ Oracl e/ M ddl ewar e/ BDD/ dat apr ocessi ng/ edp_cli && ./
data_processing_CLlI -d default

-wW /1l ocal di sk/ Oracl e/ M ddl ewar e/ BDDY dat apr ocessi ng/ edp_cl i/ confi g/
cli_whitelist.txt

-bl /1 ocal di sk/ Oracl e/ M ddl ewar e/ BDDY dat apr ocessi ng/ edp_cl i/ confi g/
cli_blacklist.txt -mat 1800 >>

/'l ocal di sk/ Oracl e/ M ddI ewar e/ BDDY dat apr ocessi ng/ edp_cl i / wor k/ det ector. | og 2>&1"

You can modify these settings (such as the time schedule). In addition, be sure to
monitor the size of the det ect or . | og file.

Modifying the DP CLI cron job
You can modify the crontab file to change settings for the cron job.

Modifying the DP CLI cron job

You can modify the crontab file to change settings for the cron job.
Some common changes include:
¢ Changing the schedule when the cron job is run.

¢ Changing which Hive database the DP CLI will run against. To do so, change the
argument of the -d flag to specify another Hive database, such as -d mytables to
process tables in the database named "mytables".

¢ Changing the amount of time (in seconds) that the Hive Table Detector waits
between update jobs. To do so, change the argument of the -mwt flag to specify
another time interval, such as -mwt 2400 for an interval of 2400 seconds.

To modify the DP CLI cron job:

1. From the Linux command line, run the cr ont ab - € command.

The crontab file is opened in a text editor, such as the vi editor.

4-14 Data Processing Guide

DP CLI workflow examples

2. Make your changes to the crontab file in the editor.

3. Save the file.

The modified file may look like this:

30 4 * * * Jusr/bin/flock -x -w 120 /Il ocal di sk/ Oracl e/ M ddl ewar e/ BDDY dat apr ocessi ng/
edp_cli/work/detector.lock

-¢ "cd /local di sk/ Oracl e/ M ddl ewar e/ BDDY dat apr ocessi ng/ edp_cli && ./
dat a_processi ng_CLI

-d mytabl es

-wW /1l ocal di sk/ Oracl e/ M ddl ewar e/ BDD/ dat apr ocessi ng/ edp_cl i/ confi g/
cli_whitelist.txt

-bl /1 ocal di sk/ Oracl e/ M ddl ewar e/ BDD/ dat apr ocessi ng/ edp_cl i/ confi g/
cli_blacklist.txt

-mmt 2400 >> /1 ocal di sk/ Oracl e/ M ddl ewar e/ BDD/ dat apr ocessi ng/ edp_cl i / wor k/
detector.log 2>&1"

For the first few runs of the cron job, check the det ect or . | og log file to verify that
the cron jobs are running satisfactorily.

DP CLI workflow examples

This topic shows some workflow examples using the DP CLI.

Excluding specific Data Enrichment modules

The - - excl udePl ugi ns flag (abbreviated as - ep) specifies a list of Data Enrichment
modules to exclude when enrichments are run. This flag should be used only
enrichments are being run as part of the workflows (for example, with the - -

excl udeP! ugi ns flag).

The syntax is:

./data_processing_CLI --excludePlugins <excludeList>

where excludeList is a space-separated string of one or more of these Data Enrichment
canonical module names:

e address_geo_t agger (for the Address GeoTagger)
e ip_geo_extractor (for the IP Address GeoTagger)
* reverse_geo_t agger (for the Reverse GeoTagger)
e tfidf_termextractor (for the TF.IDF Term extractor)

e doc_| evel _senti ment _anal ysi s (for the document-level Sentiment Analysis
module)

e | anguage_det ecti on (for the Language Detection module)
For example:

./data_processing_CLl --table masstowns --runEnrichnent --excludePl ugins
reverse_geo_t agger

For details on the Data Enrichment modules, see Data Enrichment Modules.

DP Command Line Interface Utility 4-15

Processing Hive tables with Snappy compression

Cleaning up aborted jobs

The - - cl eanAbor t edJobs flag (abbreviated as - cl ean) cleans up artifacts left over
from incomplete Data Processing workflows:

./ data_processing_CLI --cleanAbortedJobs

A successful result should be similar to this example:

[2015-07-13T10: 18: 13. 683-04: 00] [DataProcessing] [INFQ [] [org.apache. spark.Logging
$class] [tid:main] [userlD:fcalvill]
client token: NA
diagnostics: NA
ApplicationMaster host: webl2.exanple.com
ApplicationMaster RPC port: 0
queue: root.fcalvill
start time: 1436797065603
final status: SUCCEEDED
tracking URL: http://webl2. exanpl e. com 8088/ proxy/
application_1434142292832_0016/ A
user: fcalvill
Cl ean aborted job conpl et ed.
data_processing_CLI finished with state SUCCESS

Note that the name of the workflow on the YARN All Applications page is:
EDP: C eanAbort edJobsConfi g{}

Ping checking the DP components

The - - pi ngCheck flag (abbreviated as - pi ng) ping checks the status of components
that Data Processing needs:

./ data_processing_CLI --pingCheck

A successful result should be similar to this example:

[2015-07-14T14: 52: 32. 270- 04: 00] [DataProcessing] [INFQ []
[com oracl e. endeca. pdi . | oggi ng. Provi si oni ngLogger]
[tid:main] [userlID:fcalvill] Ping check time elapsed: 7 nms
data_processing_CLI finished with state SUCCESS

Processing Hive tables with Snappy compression

This topic explains how to set up the Snappy libraries so that the DP CLI can process
Hive tables with Snappy compression.

By default, the DP CLI cannot successfully process Hive tables with Snappy
compression. The reason is that the required Hadoop native libraries are not available
in the library path of the JVM. Therefore, you must copy the Hadoop native libraries
from their source location into the appropriate BDD directory.

To set up the Snappy libraries:

1. Locate the source directory for the Hadoop native libraries in your Hadoop
installation.

4-16 Data Processing Guide

Changing Hive table properties

The typical location on CDH is:
[opt/cl oudera/ parcel s/ COH | i b/ hadoop/ | i b/ nati ve/

2. Copy the Hadoop native libraries to this BDD directory:
$BDD_HOME/ conmon/ edp/ ol t/ bin
The copy operation must be performed on all BDD nodes.
Once this copy is done, all subsequent DP workflows should be able to process Hive

tables with Snappy compression.

Note that if you add a new Data Processing node, you must manually copy the
Hadoop native libraries to the new node.

Changing Hive table properties
This topic describes how to change the value of the ski pAut oPr ovi si oni ng
property in a Hive table.

When a Hive table has a ski pAut oPr ovi si oni ng property set to t r ue, the BDD
Hive Table Detector will skip the table for data processing. For details, see DP CLI
overview.

You can change the value of ski pAut oPr ovi si oni ng property by issuing an SQL
ALTER TABLE statement via the Cloudera Manager's Query Editor or as a Hive
command.

To change the value of the ski pAut oPr ovi si oni ng property in a Hive table:
1. From the Cloudera Manager home page, click Hue.
2. From the Hue home page, click Hue Web UL

3. From the Hue Web Ul page, click Metastore Manager. As a result, you should see
your Hive tables in the default database, as in this example:

éhLJe @& QueryEditors v Metastore Manager Workflows v

EH Metastore Manager

DATABASE Databases > default
default v -)
Search for table name @ \liew = Browse Data @ Drop
ACTIONS
Table Name Comment Type

£ Create a new table from
afie il masstowns Info on Massachusetts towns. Table

il warrantyclaims Table

Create a new table
manually

4. Verify that the table has the ski pAut oPr ovi si oni ng property:

a. Select the table you want to change and click View. The default Columns tab
shows the table's columns.

b. Click the Properties tab.

DP Command Line Interface Utility 4-17

Changing Hive table properties

c. In the Table Parameters section, locate the ski pAut oPr ovi si oni ng property
and (if it exists) verify that its value is set to "true".

5. From the Metastore Manager page, click Query Editors > Hive.
The Query Editor page is displayed.

6. In the Query Editor, enter an ALTER TABLE statement similar to the following
example (which is altering the warrantyclaims table) and click Execute.

e

ALTER TABLE warrantyclaims SET TELPROPERTIES ('skipAutoProvisioning'='FALSE') ,:|

Save as... Explain orcreatea New query

7. From the Metastore Manager page, repeat Step 4 to verify that the value of the
ski pAut oPr ovi si oni ng property has been changed..

An alternative to using the Ul is to issue the ALTER TABLE statement as a Hive
command:

hive -e "ALTER TABLE warrantycl ai ms SET
TBLPROPERTI ES(' ski pAut oProvi si oning' =" FALSE') ;"

4-18 Data Processing Guide

5

Updating Data Sets

This section describes how to run update operations on BDD data sets.

About data set updates
You can update data sets by running Refresh updates and Incremental
updates with the DP CLL

Obtaining the Data Set Logical Name
The Data Set Logical Name specifies the data set to be updated.

Refresh updates
A Refresh update replaces the schema and all the records in a project
data set with the schema and records in the source Hive table.

Incremental updates
An Incremental update adds new records to a project data set from a
source Hive table.

Creating cron jobs for updates
You can create cr on jobs to run your Refresh and Incremental updates.

About data set updates
You can update data sets by running Refresh updates and Incremental updates with
the DP CLL

When first created, a BDD data set may be sampled, which means that the BDD data
set has fewer records than its source Hive table. In addition, more records can be
added to the source Hive table, and these new records will not be added to the data set
by default.

Two DP CLI operations are available that enable the BDD administrator to
synchronize a data set with its source Hive table:

® The - -refreshDat a flag (abbreviated as - r ef r esh) performs a full data refresh
on a BDD data set from the original Hive table. This means that the data set will
have all records from the source Hive table. If the data set had previously been
sampled, it will now be a full data set. And as records get added to the Hive table,
the Refresh update operation can keep the data set synchronized with its source
Hive table.

* The--increnment al Updat e flag (abbreviated as - i ncr ement al) performs an
incremental update on a BDD data set from the original Hive table, using a filter
predicate to select the new records. Note that this operation can be run only after
the data set has been configured for Incremental updates.

Note that the equivalent of a DP CLI Refresh update can done in Studio via the Load
Full Data Set feature. However, Incremental Data updates can be performed only via
the DP CLI as Studio does not support this feature.

Updating Data Sets 5-1

Obtaining the Data Set Logical Name

Re-pointing a data set

if you created a data set by uploading source data into Studio and want to run Refresh
and Incremental updates, you should change the source data set to point to a new
Hive table. (Note that this change is not required if the data set is based on a table
created directly in Hive.) For information on this re-pointing operation, see the topic
on converting a project to a BDD application in the Studio User’s Guide.

Obtaining the Data Set Logical Name

The Data Set Logical Name specifies the data set to be updated.

The Data Set Logical Name is needed as an argument to the DP CLI flags for the
Refresh and Incremental update operations.

You can obtain the Data Set Logical Name from the Project Settings > Data Set
Manager page in Studio.

The Data Set Manager page looks like this cropped example for the WarrantyClaims
data set:

Data Set Manager

Data Sets in This Project

b EH WarrantyClaims (5983 records, 23
attribute=)

Created:
232016 T:24 PN (UTC)

Data Set Logical Name:
10128 WarrantyClaims

Last Updated:
2132016 9:09 PM (UTC)

Data Volume:
Full data =et is loaded

Data Source:
WarrantyClaims. . xlz.

Data Source Type:
Excel

Record ldentifiers:
part_amount, complaint, part_number

Description:

Actions

I/ Reioad Data et

|Ei Configure for Updates

The Data Set Logical Name field lists the logical name of the data set. In this example,
10128:WarrantyClaims is the Data Set Logical Name of this particular data set.

5-2 Data Processing Guide

Refresh updates

Refresh updates

A Refresh update replaces the schema and all the records in a project data set with the
schema and records in the source Hive table.

The DP CLI - - r ef r eshDat a flag (abbreviated as - r ef r esh) performs a full data
refresh on a BDD data set from the original Hive table. The data set should be a project
data set (that is, must added to a Studio project). Loading the full data set affects only
the data set in a specific project; it does not affect the data set as it displays in the
Studio Catalog.

Running a Refresh update produces the following results:

¢ Allrecords stored in the Hive table are loaded for that data set. This includes any
table updates performed by a Hive administrator.

e [f the data set was sampled, it is increased to the full size of the data set. That is, it
is now a full data set.

¢ If the data set contains a transformation script, that script will be run against the
full data set, so that all transformations apply to the full data set in the project.

e If the - - di sabl eSear ch flag is also used, record search and value search will be
disabled for the data set.

The equivalent of a DP CLI Refresh update can be done in Studio via the Load Full
Data Set feature (although you cannot specify a different source table as with the DP
CLI).

Note that you should not start a DP CLI Refresh update if a transformation on that
data set is in progress. In this scenario, the Refresh update will fail and a notification
will be sent to Studio:

Rel oad of <logical name> from CLlI has failed. Please contact an administrator.

Schema changes

There are no restrictions on how the schema of the data set is changed due to changes
in the schema and/or data of the source Hive table. This non-restriction is because the
Refresh update operation uses a kill-and-fill strategy, in which the entire contents of
the data set are removed and replaced with those in the Hive table.

Transformation scripts in Refresh updates

If the data set has an associated Transformation script, then the script will run against
the newly-ingested attributes and data. However, some of the schema changes may
prevent some of the steps of the script from running. For example:

¢ Existing columns in Hive table may be deleted. As a result, any Transformation
script step that references the deleted attributes will be skipped.

¢ New columns can be added to the Hive table and they will result in new attributes
in the data set. The Transformation script will not run on these new attributes as
the script would not reference them.

* Added data to a Hive column may result in the attribute having a different data
type (such as String instead of a previous Long). The Transformation script may or
may not run on the changed attribute.

The following diagram illustrates the effects of a schema change on the
Transformation script:

Updating Data Sets 5-3

Refresh updates

Transform Script during Refresh Data
{column-by-column decision)

Mo schema
change Change in
ef""’ff schema
Pearform transform step
and treat bad values as nulls

Existing
CDLET:; at MNew column,
column new type
é“"f!_{, found \
lgnore transform step \b If new type is compatible, perform

transform step, else fail
Transform step does not apply a

If the data set does not have an associated Transformation script and the Hive table
schema has changed, then the data set is updated with the new schema and data.

Refresh flag syntax
This topic describes the syntax of the - - r ef r eshDat a flag.

Running a Refresh update
This topic describes how to run a Refresh update operation.

Refresh flag syntax
This topic describes the syntax of the - - r ef r eshDat a flag.

The DP CLI flag syntax for a Refresh update operation has one of the following
syntaxes:

./data_processing_CLI --refreshData <l ogi cal Nane>

or

./data_processing_CLlI --refreshData <l ogi cal Name> --tabl e <tabl eName>

or

.ldata_processing_CLlI --refreshData <l ogical Name> --table <tabl eName> --dat abase
<dbNane>

where:

e --refreshDat a (abbreviated as - r ef r esh) is mandatory and specifies the
logical name of the data set to be updated.

e --tabl e (abbreviated as - t) is optional and specifies a Hive table to be used for
the source data. This flag allows you to override the source Hive table that was
used to create the original data set (the name of the original Hive table is stored in
the data set's metadata).

e --dat abase (abbreviated as - d) is optional and specifies the database of the Hive
table specified with the - - t abl e flag. This flag allows you to override the
database that was used to create the original data set). The - - dat abase flag can
be used only if the - - t abl e flag is also used.

5-4 Data Processing Guide

Refresh updates

The logicalName value is available in the Data Set Logical Name property in Studio.
For details, see Obtaining the Data Set Logical Name.

Use of the --table and --database flags

When a data set is first created, the names of the source Hive table and the source Hive
database are stored in the DSI (DataSet Inventory) metadata for that data set. The - -

t abl e flag allows you to override the default source Hive table, while the - -

dat abase flag can override the database set in the data set's metadata.

Note that these two flags are ephemeral. That is, they are used only for the specific run
of the operation and do not update the metadata of the data set.

If these flags are not specified, then the Hive table and Hive database that are used are
the ones in the data set's metadata.

Use these flags when you want to temporarily replace the data in a data set with that
from another Hive table. If the data change is permanent, it is recommended that you
create a new data set from desired Hive table. This will also allow you to create a
Transformation script that is exactly tailored to the new data set.

Running a Refresh update

This topic describes how to run a Refresh update operation.

This procedure assumes that:

¢ The data set has been created, either from Studio or with the DP CLI.
® The data set has been added to a Studio project.

To run a Refresh update on a data set:

1. Obtain the Data Set Logical Name of the data set you want to refresh:
a. In Studio, go to Project Settings > Data Set Manager.

b. In the Data Set Manager, select the data set and expand the options next to its
name.

c. Get the value from the Data Set Logical Name field.

2. From a Linux command prompt, change to the $BDD_HOVE/ dat apr ocessi ng/
edp_cl i directory.

3. Run the DP CLI with the - - r ef r eshDat a flag and the Data Set Logical Name. For
example:

./data_processing_CLI --refreshData 10128: Warrantyd ai ns

If the operation was successful, the DP CLI prints these messages at the end of the
stdout output:

[2016- 06- 24T09: 56: 22. 963- 04: 00] [Dat aProcessing] [INFQ [] [org.apache. spark.Logging
$class] [tid:main] [userID:fcalvill]

client token: N A

diagnostics: NA

ApplicationMaster host: 10.152.105.219

ApplicationMaster RPC port: 0

queue: root.fcalvill

start time: 1466776490743

Updating Data Sets 5-5

Incremental updates

final status: SUCCEEDED
tracking URL: http://bus2014. exanpl e. com 8088/ proxy/
application_1466716670116_0002/ A
user: fcalvil
Refreshing existing collection: MexCollectionldentifier{
dat abaseNane=edp_cl i _edp_ad9a93eb- f bec- 49ca- bdc9- 8ac897dd5c8f
col | ectionNanme=edp_cli_edp_ad9a93eb-f bec- 49ca- bdc9- 8ac897dd5c8f }
Col l ection key for new record: MlexCollectionldentifier{
dat abaseNane=r ef r eshed_edp_a284hd0c- 23f e- 4d26- 9e92- chf c22h1555¢
col | ecti onNanme=r ef r eshed_edp_a284bd0c- 23f e- 4d26- 9¢92- cbf c22b1555¢}
data_processing_CLI finished with state SUCCESS

The YARN Application Overview page should have a State of "FINISHED" and a
FinalStatus of "SUCCESSFUL". The Name field will have an entry similar to this
example:

EDP: Dat aset Ref reshConf i g{ hi veDat abase=, hi veTabl e=,

col | ecti onToRef resh=MiexCol | ecti onl dentifi er{dat abaseName=edp_cl i _edp_ad9a93eb-

f bec-49ca- bdc9- 8ac897dd5c8f,

col I ecti onName=edp_cl i _edp_ad9a93eb- f bec- 49ca- bdc9- 8ac897dd5¢8f },

newCol | ecti onl d=MlexCol | ecti onl denti fi er{dat abaseNane=r ef r eshed_edp_a284bd0c- 23f e- 4d2
6- 9e92- cbhf c22b1555e,

col I ecti onNanme=r ef reshed_edp_a284bd0c- 23f e- 4d26- 9e92- cbf c22b1555¢},
0p=REFRESH_DATASET}

Note the following about the Name information:

e hi veDat abase and hi veTabl e are blank because the - - dat abase and - -
t abl e flags were not used. In this case, the Refresh update operation uses the
same Hive table and database that were used when the data set was first created.

e col |l ecti onToRef r esh is name of the data set that was refreshed. This name is
the same as the Ref r eshi ng exi sting col |l ecti on field in the stdout listed
above.

* newCol | ecti onl d is an internal name for the refreshed data set. This name will
not appear in the Studio UI (the original Data Set Logical Name will continue to be
used as it is a persistent name). This name is also the same as the Col | ecti on
key for new record field in the stdout listed above.

You can also check the Dgraph HDFS Agent log for the status of the Dgraph ingest
operation.

Note that future Refresh updates on this data set will continue to use the same Data
Set Logical Name. You will also use this name if you set up a Refresh update cron job
for this data set.

Incremental updates

An Incremental update adds new records to a project data set from a source Hive
table.

The DP CLI - - i ncr enment al Updat e flag (abbreviated as - i ncr ement al) performs
a partial update of a project data set by selecting adding new and modified records.
The data set should be a project data set that is a full data set (i.e., is not a sample data
set) and has been configured for incremental updates.

The Incremental update operation fetches a subset of the records in the source Hive
table. The subset is determined by using a filtering predicate that specifies the Hive
table column that holds the records and the value of the records to fetch. The records
in the subset batch are ingested as follows:

5-6 Data Processing Guide

Incremental updates

e [f arecord is brand new (does not exist in the data set), it is added to the data set.

e If arecord already exists in the data set but its content has been changed, it replaces
the record in the data set.

The record identifier determines if a record already exists or is new.
Schema changes and disabling search
Unlike a Refresh update, an Incremental update has these limitations:

® An Incremental update cannot make schema changes to the data set. This means
that no attributes in the data set will be deleted or added.

¢ An Incremental update cannot use the - - di sabl eSear ch flag. This means that
the searchability of the data set cannot be changed.

Transformation scripts in Incremental updates

If the data set has an associated Transformation script, then the script will run against
the new records and can transform them (if a transform step applies). Existing records
in the data set are not affected.

Record identifier configuration

A data set must be configured for Incremental updates before you can run an
Incremental update against it. This procedure must be done from the Project
Settings > Data Set Manager page in Studio.

The data set must be configured with a record identifier for determining the delta
between records in the Hive table and records in the project data set. If columns have
been added or removed from the Hive table, you should run a Refresh update to
incorporate those column changes in the data set.

When selecting the attributes that uniquely identify a record, the uniqueness score
must be 100%. If the record identifier is not 100% unique, the Data Processing
workflow will fail and return an exception. In this example, the Key Uniqueness field
shows a 100% figure:

Updating Data Sets 5-7

Incremental updates

Configure for Updates

'0' Thiz action will load the entire data zet into this project
This process will allow your project to receive incremental updates to the data and will also load
your entire data =set into thiz project.

Select the attribute(s) that uniquely identify a record in your data set

Thizs may be a primary key or a natural key and may congist of one or more gingle-assign
attributes.

Key Unigueness:
municipality

100%

county

+ Attribute

Configure for Updates

After the data set is configured, its entry in the Data Set Manager page looks like this
example:

5-8 Data Processing Guide

Incremental updates

Data Set Manager

Data Sets in This Project

b EH maszstowns (333 records, § attributes)

Created:

2212016 943 PM (UTC)
Data Set Logical Hame:

10125 masstowns
Last Updated:

2212016 943 PM (UTC)
Data Violume:

Full data =et iz loaded
Data Source:

default. masstowns
Data Source Type:

Hive
Record ldentifiers:

municipality, county

Description:
Info on Massachusetts towns.

Actions

—

W Remowve From Project

Note that the Record Identifiers field now lists the attributes that were selected in the
Configure for Updates dialogue.

The Configure for Updates procedure is documented in the Studio User’s Guide.
Error for non-configured data sets

If the data set has not been configured for Increment updates, the Incremental update
fails with an error similar to this:

data_processing_CLI finished with state ERROR
Exception in thread "main" com oracl e. endeca. pdi. client. EdpExecuti onException: Only
curated datasets can be updat ed.

at
com oracl e. endeca. pdi . client. EdpGeneral dient.invokel ncrenent al Updat e(EdpCGeneral Cl i en
t.java: 232)

at com oracl e. endeca. pdi . EdpCl i . runEdp(EdpC i . j ava: 814)

at com oracl e. endeca. pdi . EdpCl i . processl ncrenent al Updat e(Edpd i . j ava: 572)
at com oracl e. endeca. pdi . EdpCl i . conmandLi neAr gunent Logi c(Edpd i . j ava: 316)
at com oracl e. endeca. pdi . EdpCl i . mai n(Edpd i . j ava: 927)

In the error message, the term "curated datasets" refers to data sets that have been
configured for Incremental updates. If this error occurs, configure the data set for
Incremental updates and re-run the Incremental update operation.

Incremental flag syntax
This topic describes the syntax of the - - i ncr ement al Updat e flag.

Updating Data Sets 5-9

Incremental updates

Running an Incremental update
This topic describes how to run an Incremental update operation.

Incremental flag syntax

This topic describes the syntax of the - - i ncr ement al Updat e flag.

The DP CLI flag syntax for an Incremental update operation is one of the following:

./ data_processing_CLI --incremental Update <l ogical Name> <filter>

or

./data_processing_CLI --incremental Update <l ogical Nane> <filter> --table <tabl eName>
or

./data_processing_CLl --incremental Update <l ogical Nane> <filter> --table <tabl eName>

- - dat abase <dbNane>
where:

e --incremnental Updat e (abbreviated as - i ncr enent al) is mandatory and
specifies the Data Set Logical Name (logicalName) of the data set to be updated. filter
is a filter predicate that limits the records to be selected from the Hive table.

¢ --tabl e (abbreviated as - t) is optional and specifies a Hive table to be used for
the source data. This flag allows you to override the source Hive table that was
used to create the original data set (the name of the original Hive table is stored in
the data set's metadata).

e --dat abase (abbreviated as - d) is optional and specifies the database of the Hive
table specified with the - - t abl e flag. This flag allows you to override the
database that was used to create the original data set). The - - dat abase flag can
be used only if the - - t abl e flag is also used.

The logicalName value is available in the Data Set Logical Name property in Studio.
For details, see Obtaining the Data Set Logical Name.

Filter predicate format

A filter predicate is mandatory and is one simple Boolean expression (not
compounded), with this format:

"col umNane operator filterValue"
where:
e col ummNane is the name of a column in the source Hive table.

e operat or is one of the following comparison operators:

5-10 Data Processing Guide

Incremental updates

- <
— <=

e filterVal ueisa primitive value. Only primitive data types are supported, which
are: integers (T NYI NT, SMALLI NT, | NT, and Bl G NT), floating point numbers
(FLOAT and DOUBLE), Booleans (BOOLEAN), and strings (STRI NG). Note that
expressions (such as "amount+1") are not supported.

You should enclose the entire filter predicate in either double quotes or single quotes.
If you need to use quotes within the filter predicate, use the other quotation format.
For example, if you use double quotes to enclose the filter predicate, then use single
quotes within the predicate itself.

If col utmNarre is configured as a DATE or TI MESTAMP data type, you can use the
uni x_t i mest anp date function, with one of these syntaxes:

col unmNanme operator uni x_tinestanp(dateVal ue)
col unmName operator uni x_tinestanp(dateVal ue, dateFornat)

If dateFormat is not specified, then the DP CLI uses one of two default data formats:

/] date-tinme format:
yyyy- Mt dd HH: mm ss

/] time-only format:
HH: nm ss

The date-time format is used for columns that map to Dgraph ndex: dat eTi e
attributes, while the time-only format is used for columns that map to Dgraph
nmdex: ti me attributes.

If dateFormat is specified, use a pattern described here: http:/ /docs.oracle.com/javase/
tutorial /i18n/format/simpleDateFormat.html

Note on data types in the filter predicate

You should pay close attention to the Hive column data types when constructing a
filter for Incremental update, because the results of a comparison can differ. This is
especially important for columns of type String, because results of String comparison
are different from results of Number comparison.

Take, as an example, this filter that uses the "age" column in the Hive table:

./data_processing_CLlI -incremental 10133:WarrantyC aims "age<18"

If the "age" column is a String column, then the results from the filter will be different
than if "age" were a Number column (such as Int or Tinyint). The results would differ
because:

e [f "age" is a Number column, then "age < 18" means the column value must be
numerically less than 18. The value 6, for example, is numerically less than 18.

e If "age" is a String column, then "age < 18" means the column value must be
lexicographically less than 18. The value 6 is lexicographically more than 18.

Therefore, the number of filtered records will differ depending on the data type of the
"age" column.

Updating Data Sets 5-11

http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Incremental updates

Also keep in mind that if the data set was originally created using File Upload in
Studio, then the underlying Hive table for that data set will have all columns of type
String.

Examples

Example 1: If the Hive "birthyear" column contains a year of birth for a person, then
the command can be:

./data_processing_CLlI --incremental Update 10133: WarrantyC ains "cl ai nyear > 1970"

In the example, only the records of claims made after 1970 are processed.
Example 2: Using the uni x_t i mest anp function with a supplied date-time format:

.Idata_processing_CLI --increnental Update 10133: WarrantyC ai ns
"fact sal es_shi pdat ekey_date >= uni x_ti mestanp(' 2006-01-01 00: 00: 00", 'yyy- Mt dd
HH nmss')"

Example 3: Another example of using the uni x_t i mest anp function with a supplied
date-time format:

./data_processing_CLI --increnental Update 10133: WarrantyC ai ns
"creation_date >= unix_timestanp('2015-06-01 20: 00: 00", 'yyyy-M#dd HH: mmss')"

Example 4: An invalid example of using the uni x_t i mest anp function with a date
that does not contain a time:

./data_processing_CLI --increnental Update 10133: WarrantyC ai ns
"claimdate >= unix_tinmestanp(' 2000-01-01")"

The error will be:

16:41:29.375 main ERROR Failed to parse date / time value '2000-01-01'" using the
format 'yyyy-M#dd HH: nm ss'

Running an Incremental update

This topic describes how to run an Incremental update operation.

This procedure assumes that the data set has been configured for Incremental updates
(that is, a record identifier has been configured).

Note that the example in the procedure does not use the - - t abl e and - - dat abase
flags, which means that the command will run against the original Hive table from
which the data set was created.

To run an Incremental update on a data set:

1. Obtain the Data Set Logical Name of the data set you want to incrementally
update:

a. In Studio, go to Project Settings > Data Set Manager.

b. In the Data Set Manager, select the data set and expand the options next to its
name.

c. Get the value from the Data Set Logical Name field.

2. From a Linux command prompt, change to the $BDD_HOMVE/ dat apr ocessi ng/
edp_cl i directory.

5-12 Data Processing Guide

Creating cron jobs for updates

3. Run the DP CLI with the - - i ncr ement al Updat e flag, the Data Set Logical
Name, and the filter predicate. For example:

./data_processing_CLl --incremental Update 10128: WarrantyC ai ns "yearest > 1850"

If the operation was successful, the DP CLI prints these messages at the end of the
stdout output:

client token: NA

diagnostics: NA

ApplicationMaster host: web2014. exanpl e. com

ApplicationMaster RPC port: 0

queue: root.fcalvill

start time: 1437415956086

final status: SUCCEEDED

tracking URL: http://web2014. exanpl e. com 8088/ proxy/
application_1436970078353_0041/ A

user: fcalvill
data_processing_CLI finished with state SUCCESS

Note that the tracking URL field shows an HTTP link to the Application Page (in
Cloudera Manager or Ambari) for this workflow. The YARN Application Overview
page should have a State of "FINISHED" and a FinalStatus of "SUCCESSFUL". The
Name field will have an entry similar to this example:

EDP: I ncrenent al Updat eConfi g{col | ectionl d=MlexCol | ectionl dentifier{

dat abaseNane=def aul t _edp_2c08eb40- 8ef f - 4c7e- b05e- 2e451434936d,

col I ecti onName=def aul t _edp_2c08eb40- 8ef f - 4c7e- b05e- 2e451434936d},

wher eCl ause=cl ai m date >= uni x_ti mestanp(' 2006- 01-01 00: 00: 00", 'yyy- M dd
HH mm ss')}

Note the following about the Name information:
* I ncremnent al Updat eConfi g is the name of the type of Incremental workflow.

e wher ed ause lists the filter predicate used in the command.

You can also check the Dgraph HDFS Agent log for the status of the Dgraph ingest
operation.

If the Incremental update determines that there are no records that fit the filter
predicate criteria, the DP CLI exits gracefully with a message that no records are to be
updated.

Note that future Incremental updates on this data set will continue to use the same
Data Set Logical Name. You will also use this name if you set up a Incremental update
cron job for this data set.

Creating cron jobs for updates

You can create Cr on jobs to run your Refresh and Incremental updates.

You can use the Linux cr ont ab command to create cron jobs for your Refresh and
Incremental updates. A cr on job will run the DP CLI (with one of the update flags) at
a specific date and time.

The cr ont ab file will have one or more cr on jobs. Each job should take up a single
line. The job command syntax is:

schedul e path/to/ command

Updating Data Sets 5-13

Creating cron jobs for updates

The command begins with a five-field schedule of when the command will run. A
simple version of the time fields in is:

m nute hour dayOf Month nonth dayCOf Week

where:

m nut e is 0-59.

hour is 0-23 (0 = midnight).

dayCf Mont his 1-31 or * for every day of the month.
nmont h is 1-12 or * for every month.

dayOf ek is 0-6 (0 - Sunday) or * for every day of the week.

path/to/command is the path (including the command name) of the DP CLI update to
run, including the appropriate flag and argument.

An example would be:

00 2* * [local di sk/Oracl e/ M ddl ewar e/ BDDY dat apr ocessi ng/ edp_cl i/
data_processing_CLI --refresh 10133: Warrantyd ai ns

The job would run every day at 2am.

To set up a cron job for updates:

1.

2.

3.

From the Linux command line, use the cr ont ab command with the e flag to open
the cr ont ab file for editing:

crontab -e
Enter the job command line, as in the above example.

Save the file.

You can also use the Hive Table Detector cr on job as a template, as it uses the Linux
f 1 ock command and generates a log file. For details, see DP CLI cron job.

5-14 Data Processing Guide

6

Data Processing Logging

This section describes logging for the Data Processing component of Big Data
Discovery.

DP logging overview
This topic provides an overview of the Data Processing logging files.

DP logging properties file
Data Processing has a default Log4j configuration file that sets its
logging properties.

Example of DP logs during a workflow
This example gives an overview of the various DP logs that are
generated when you run a workflow with the DP CLIL

Accessing YARN logs
When a client (Studio or the DP CLI) launches a Data Processing
workflow, a Spark job is created to run the actual Data Processing job.

Transform Service log
The Transform Service processes transformations on data sets, and also
provides previews of the effects of the transformations on the data sets.

DP logging overview

This topic provides an overview of the Data Processing logging files.

Location of the log files

Each run of Data Processing produces one or more log files on each machine that is
involved in the Data Processing job. The log files are in these locations:

* On the client machine, the location of the log files is set by the
| og4j . appender . edpMai n. Pat h property in the DP | 0og4j . properti es
configuration file. The default location is the $BDD_HOME/ | ogs/ edp directory.
These log files apply to workflows initiated by both Studio and the DP CLI. When
the DP component starts, it also writes a start-up log here.

* On the client machine, Studio workflows are also logged in the $BDD_DOVAI N/
server s/ <server Nane>/ | ogs/ bdd- st udi o. | og file.

¢ On the Hadoop nodes, logs are generated by the Spark-on-YARN processes.

Local log files

The Data Processing log files (in the $BDD_HOME/ | ogs/ edp directory) are named
edpLog*. | 0g. The naming pattern is set in the | oggi ng. properties
configuration.

Data Processing Logging 6-1

DP logging properties file

The default naming pattern for each log file is

edp_% i mest anp_%ini que. | og
where:
* % i mest anp provides a timestamp in the format: yyyyMMddHHmMmssSSS

* %uni que provides a uniquified string
For example:

edp_20150728100110505_0bb9cla2- ce73- 4909- 9de0- al0ec83bf d8b. | og

The | og4j . appender . edpMai n. MaxSegmrent Si ze property sets the maximum
size of a log file, which is 100MB by default. Logs that reach the maximum size roll
over to the next log file. The maximum amount of disk space used by the main log file
and the logging rollover files is about 1GB by default.

DP logging properties file

Data Processing has a default Log4j configuration file that sets its logging properties.

The file is named | 0g4j . properti es and is located in the $BDD_HOVE/
dat apr ocessi ng/ edp_cl i/ confi g directory.

The default version of the file looks like the following example:

HUHH BB R R R R
dobal properties
HUHHHHH R R R R R

| 0g4j . root Logger = INFO, consol e, edpMain

HUHHHHH R R R R R
Handl er specific properties.
HUHHHHH R R R R R

| og4j . appender. consol e = org. apache. | 0g4j . Consol eAppender

HUHHHHH R R R R R

EdpODPFormatt er Appender is a custom | og4j appender that gives two new optional
variables that can be added to the | og4j.appender.*.Path property and are

filled in at runtine:

%imestanp - provides a tinmestanp in the format: yyyyMWdHHMBSSSS

%nique - provides a uniquified string

HUHHHHH R R R R R

| og4j . appender . edpMai n = com oracl e. endeca. pdi . | oggi ng. EdpODLFor mat t er Appender

| og4j . appender . edpMai n. Conponent | d = Dat aPr ocessi ng

| 0g4j . appender . edpMai n. Path = /1 ocal di sk/ Oracl e/ M ddl ewar e/ 1. 2. 0. 31. 801/ | ogs/ edp/ edp_
% i mest amp_%ni que. | og

| 0g4j . appender . edpMai n. Format = CDL- Text

| og4j . appender . edpMai n. MaxSegment Si ze = 100000000

| og4j . appender . edpMai n. MaxSi ze = 1000000000

| 0g4j . appender . edpMai n. Encodi ng = UTF-8

HHHR R R R R AR AR

Formatter specific properties.
HUHH BB R R R R

6-2 Data Processing Guide

DP logging properties file

| 0g4j . appender. consol e. | ayout = org. apache. | og4j . PatternLayout
| 0g4j . appender. consol e. | ayout. ConversionPattern = [%{yyyy- Mt dd' T' HH: nm ss. SSSXXX} |
[DataProcessing] [%] [] [% [tid:%] [userlD: ${user.nane}] %Pn

HHHBHRH R R R R R R
Facility specific properties.
HHHBHRH R R R R R R R

These | oggers from dependency libraries are explicitly set to different |ogging
| evel s.

They are known to be very noisy and obscure other |og statenents.

I 0g4j .l ogger.org.eclipse.jetty = WARN

| 0g4j . | ogger. org. apache. spark. repl . Spar kI Mai n$expr Typer = | NFO

| 0g4j . | ogger. org. apache. spark. repl . Sparkl Loop$Spar kI Loopl nterpreter = I NFO

The file has the following properties:

Logging property Description

| og4j . r oot Logger The level of the root logger is defined
as INFO and attaches the consol e
and edpMai n handlers to it.

| og4j . appender . consol e Defines consol e as a Log4j
Consol eAppender.

| og4j . appender . edpMai n Defines edpMai n as
EdpODPFor mat t er Appender (a
custom Log4j appender).

| 0g4j . appender . edpMai n. Conponent | d Sets Dat aPr ocessi ng as the name
of the component that generates the
log messages.

| 0g4j . appender . edpMai n. Pat h Sets the path for the log files to the
$BDD_HOWVE/ | ogs/ edp directory.

Each log file is named:

edp_% i mest anp_%ini que. | og

See the comments in the log file for
the definitions of the % i nest anp
and %uni que variables.

| og4j . appender . edpMai n. For mat Sets ODL- Text as the formatted
string as specified by the conversion
pattern.

| 0g4j . appender . edpMai n. MaxSegnent Si ze Sets the maximum size (in bytes) of a

log file. When the file reaches this
size, a rollover file is created. The
default is 100000000 (about 100 MB).

| 0g4j . appender . edpMai n. MaxSi ze Sets the maximum amount of disk
space to be used by the main log file
and the logging rollover files. The
default is 1000000000 (about 1GB).

| 0g4j . appender . edpMai n. Encodi ng Sets character encoding for the log
file. The default UTF- 8 value prints
out UTF-8 characters in the file.

| og4j . appender . consol e. | ayout Sets the Pat t er nLayout class for
the consol e layout.

Data Processing Logging 6-3

DP logging properties file

Logging property Description

| og4j . appender . consol e. | ayout . Conver si on Defines the log entry conversion
Pattern pattern as:

* %d is the date of the logging
event, in the specified format.

* %p outputs the priority of the
logging event.

* %c outputs the category of the
logging event.

* %L outputs the line number from
where the logging request was
issued.

* %m outputs the application-
supplied message associated with
the logging event while %n is the
platform-dependent line
separator character.

For other conversion characters, see:

https:/ /logging.apache.org/

log4j/1.2/apidocs/org/apache/
log4j/PatternLayout.html

| og4j .l ogger.org. eclipse.jetty Sets the default logging level for the
| 0g4j . | ogger . or g. apache. spark. repl . Spark Sparkand Jetty loggers.
| Mai n$expr Typer

| og4j . | ogger. or g. apache. spark. repl . Spar k
I Loop$Spar ki Loopl nt er preter

Logging levels

The logging level specifies the amount of information that is logged. The levels (in
descending order) are:

SEVERE — Indicates a serious failure. In general, SEVERE messages describe events
that are of considerable importance and which will prevent normal program
execution.

WARNI NG— Indicates a potential problem. In general, WARNI NGmessages describe
events that will be of interest to end users or system managers, or which indicate
potential problems.

| NFO— A message level for informational messages. The | NFOlevel should only
be used for reasonably significant messages that will make sense to end users and
system administrators.

CONFI G— A message level for static configuration messages. CONFI Gmessages
are intended to provide a variety of static configuration information, and to assist
in debugging problems that may be associated with particular configurations.

FI NE — A message level providing tracing information. All options, FI NE, FI NER,
and FI NEST, are intended for relatively detailed tracing. Of these levels, FI NE
should be used for the lowest volume (and most important) tracing messages.

FI NER— Indicates a fairly detailed tracing message.

6-4 Data Processing Guide

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

DP logging properties file

¢ FI NEST — Indicates a highly detailed tracing message. FI NEST should be used for
the most voluminous detailed output.

* ALL — Enables logging of all messages.

These levels allow you to monitor events of interest at the appropriate granularity
without being overwhelmed by messages that are not relevant. When you are initially
setting up your application in a development environment, you might want to use the
FI NEST level to get all messages, and change to a less verbose level in production.

DP log entry format
This topic describes the format of Data Processing log entries, including
their message types and log levels.

DP log levels
This topic describes the log levels that can be set in the DP
| og4j . properti es file.

DP log entry format

This topic describes the format of Data Processing log entries, including their message
types and log levels.

The following is an example of a NOTIFICATION message resulting from the part of
the workflow where DP connects to the Hive Metastore:

[2015-07-28T11: 45: 08. 502- 04: 00] [Dat aProcessing] [NOTIFI CATION] [] [hive. metastore]
[host: web09. exanpl e.con] [nwaddr: 10.152.105.219] [tid: Driver] [userld: yarn]
[ecid: 0000KvLLfZE7ADkpSwAEyc1LhuE0000002, 0] Connected to netastore.

The format of the DP log fields (using the above example) and their descriptions are as
follows:

Log entry Description Example
field

Timestamp The date and time when the message [2016- 04- 28T11: 45: 08. 502- 04:
was generated. This reflects the local ~ 00]

time zone.
Component The ID of the component that [Dat aPr ocessi ng]
ID originated the message.

"DataProcessing” is hard-coded for
the DP component.

Message The type of message (log level): [NOTI FI CATI ON|
Type INCIDENT_ERROR

e ERROR

¢ WARNING

¢ NOTIFICATION

e TRACE

e UNKNOWN

Message ID The message ID that uniquely [1
identifies the message within the
component. The ID may be null.

ModuleID The Java class that prints the message [hi ve. net ast or e]
entry.

Data Processing Logging 6-5

DP logging properties file

Log entry Description Example
field
Hostname The name of the host where the [host: web09. exanpl e. coni
message originated.
Host The network address of the host [nwaddr: 10.152. 105. 219]
address where the message originated
Thread ID The ID of the thread that generated [tid: Driver]
the message.
User ID The name of the user whose execution [userld: yarn]
context generated the message.
ECID The Execution Context ID (ECID), [ecid:
which is a global unique identifier of =~ 0000KvLLf ZE7ADkpSwAEyc1LhuEO
the execution of a particular requestin 000002, 0]
which the originating component
participates. Note that
Message The text of the log message. Connected to netastore.
Text

DP log levels

This topic describes the log levels that can be set in the DP | 0g4j . pr operti es file.

The Data Processing logger is configured with the type of information written to log

files, by specifying the log level. When you specify the type, the DP logger returns all
messages of that type, as well as the messages that have a higher severity. For
example, if you set the message type to WARN, messages of type FATAL and ERROR are
also returned.

The DP | 0g4j . properti es file lists these four packages for which you can set a
logging level:

e | 0g4j.root Logger
e | o0g4j.logger.org.eclipse.jetty
¢ | og4j.logger.org.apache. spark. repl . Sparkl Mai n$expr Typer

e | 0og4j .l ogger. org. apache. spar k. repl . Spar kl Loop
$Spar kl Loopl nter preter

You can change a log level by opening the properties file in a text editor and changing
the level of any of the four packages. You use a Java log level from the table below. :

This example shows how you can manually change a log level setting:

| 0g4j . root Logger = FATAL, console, edpMain

In the example, the log level for the main logger is set to FATAL.

Logging levels

The log levels (in decreasing order of severity) are:

6-6 Data Processing Guide

Example of DP logs during a workflow

Java Log Level ODL Log Level Meaning

COFF N/A Has the highest possible rank and is used to
turn off logging.

FATAL I NCI DENT_ERROR Indicates a serious problem that may be

caused by a bug in the product and that
should be reported to Oracle Support. In
general, these messages describe events that
are of considerable importance and which
will prevent normal program execution.

ERROR ERROR Indicates a serious problem that requires
immediate attention from the administrator
and is not caused by a bug in the product.

WARN WARNI NG Indicates a potential problem that should be
reviewed by the administrator.

I NFO NOTI FI CATI ON A message level for informational messages.
This level typically indicates a major
lifecycle event such as the activation or
deactivation of a primary sub-component or
feature. This is the default level.

DEBUG TRACE Debug information for events that are
meaningful to administrators, such as public
API entry or exit points. You should not use
this level in a production environment, as
performance for DP jobs will be slower.

These levels allow you to monitor events of interest at the appropriate granularity
without being overwhelmed by messages that are not relevant. When you are initially
setting up your application in a development environment, you might want to use the
DEBUGevel to get most of the messages, and change to a less verbose level in
production.

Example of DP logs during a workflow

This example gives an overview of the various DP logs that are generated when you
run a workflow with the DP CLL

The example assumes that the Hive administrator has created a table named
masstowns (which contains information about towns and cities in Massachusetts). The
workflow will be run with the DP CLI, which is described in DP Command Line
Interface Utility.

The DP CLI command line is:
./data_processing_CLl --database default --table masstowns --maxRecords 1000
The - - t abl e flag specifies the name of the Hive table, the - - dat abase flag states

that the table in is the Hive database named "default", and the - - maxRecor ds flag
sets the sample size to be a maximum of 1,000 records.

Data Processing Logging 6-7

Example of DP logs during a workflow

Command stdout

The DP CLI first prints out the configuration with which it is running, which includes
the following;:

EdpEnvConf i g{ endecaServer =htt p: // web07. exanpl e. or acl e. com 7003/ endeca- server/,
edpDat aDi r =/ user/ bdd/ edp/ dat a,

Provi si onDat aSet Fr onHi veConfi g{ hi veDat abaseName=def aul t, hi veTabl eNane=nasst owns,
newCol | ecti onl d=MlexCol | ecti onl denti fi er { dat abaseNane=

edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,

col I ecti onName=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e},

runEnri chment =f al se, maxRecor dsFor NewDat aSet =1000, di sabl eText Sear ch=f al se,

| anguageOverride=en, operation=PROVI SI ON_DATASET _FROM HI VE, transfornScript=,
accessType=public_defaul t, aut oEnrichPl ugi nExcl udes=[Ljava.lang. String; @1034e3b}
Provi si onDat aSet FronHi veConfi g{noti fi cati onName=CL| DATALQOAD,

eci d=0000LM3r DDu7ADkpSw4Ey c INROXb000001, start Ti ne=1466796128122,
properties={dataSet Di spl ayNane=Taxi _Data, isCi=true}}

New col | ection name = MiexCol | ectionl dentifier{

dat abaseNane=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,

col I ecti onName=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e}
data_processing_CLI finished with state SUCCESS

The operation field lists the operation type of the Data Processing workflow. In this
example, the operation is PROVISION_DATASET_FROM_HIVE, which means that it
will create a new BDD data set from a Hive table.

$BDD_HOME/logs/edp logs

In this example, the $BDD_HOME/ | ogs/ edp directory has three logs. The owner of
one of them is the user ID of the person who ran the DP CLI, while the owner of other
two logs is the user yarn:

* The non-YARN log contains information similar to the stdout information. Note
that it does contain entries from the Spark executors.

* The YARN logs contain information that is similar to YARN logs in the next
section.

YARN logs

If you use the YARN ResourceManager Web Ul link, the All Applications page
shows the Spark applications that have run. In our example, the job name is:

EDP: Provi si onDat aSet FronH veConfi g{ hi veDat abaseName=def aul t,

hi veTabl eName=nasst owns,

newCol | ecti onl d=MlexCol | ectionl dentifier{

dat abaseNane=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,

col I ecti onName=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e} }

The Name field shows these characteristics about the job:
¢ Provisi onDat aSet Fr onHi veConf i g is the type of DP workflow that was run.
¢ hi veDat abaseNane lists the name of the Hive database (default in this example).

e hiveTabl eNare lists the name of the Hive table that was provisioned (masstowns
in this example).

6-8 Data Processing Guide

Example of DP logs during a workflow

e newCol | ecti onl d lists the name of the new data set and its Dgraph database
(both names are the same).

Clicking on History in the Tracking Ul field displays the job history. The information
in the Application Overview panel includes the name of the name of the user who ran
the job, the final status of the job, and the elapsed time of the job. FAILED jobs will
have error information in the Diagnostics field.

Clicking on logs in the Logs field displays the st dout and st der r output. The
st der r output will be especially useful for FAILED jobs. In addition, the st dout
section has a link (named Click here for the full log) that displays more detailed
output information.

Dgraph HDFS Agent log

When the DP workflow finishes, the Dgraph HDFS Agent fetches the DP-created files
and sends them to the Dgraph for ingest. The log messages for the Dgraph HDFS
Agent component for the ingest operation will be similar to the following entries (note
that the message details are not shown):

Recei ved request for database edp_cli_edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e
Starting ingest for: MiexCollectionldentifier{

dat abaseNane=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,

col I ectionName=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e},

creat eBul kI ngester edp_cli_edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e
Fi ni shed reading 1004 records for MilexCollectionldentifier{

dat abaseNane=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,

col I ecti onName=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e},

sendRecor dsTol ngester 1004

cl oseBul kI ngest er

Ingest finished with 1004 records committed and 0 records rejected.
Status: | NGEST_FI NI SHED. Request info: MlexCol | ectionldentifier{
dat abaseNane=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,
col I ectionName=edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e},

Notification server url: http://busgg2014. us. oracle.com 7003/ bdd/ v1/ api / wor kf | ows
About to send notification
Termi nating
Noti fication{workf| owName=CLI Dat aLoad, sourceDat abaseNane=nul |,
sour ceDat aset Key=nul |,
tar get Dat abaseName=edp_cl i _edp_ac680edd- c25f - 4h9d- 8cab- 11441c5a3d2e,
target Dat aset Key=edp_cl i _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e,
eci d=0000LNM3r DDu7ADkpSw4Eyc INROXb000001, st at us=SUCCEEDED,
start Ti me=1466796128122, tinestanp=1466796195365, progressPercentage=100.0,
errorMessage=nul |, properties={dataSet D spl ayName=nmsstowns, isCi=true}}
Notification sent successfully
Termi nating

The ingest operation is complete when the final Status: INGEST_FINISHED message
is written to the log.

Dgraph out log

As a result of the ingest operation for the data set, the Dgraph out log (dgr aph. out)
will have these bulk_ingest messages:

Start ingest for collection: edp_cli_edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e for
dat abase edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e
Starting a bulk ingest operation for database edp_cli_edp_ac680edd-

Data Processing Logging 6-9

Accessing YARN logs

c25f - 4b9d- 8cab- 11441c5a3d2e

batch 0 finish BatchUpdating status Success for database edp_cli_edp_ac680edd-
c25f - 4b9d- 8cab- 11441c5a3d2e

Ending bulk ingest at client's request for database edp_cli_edp_ac680edd-

c25f - 4b9d- 8cab- 11441c5a3d2e - finalizing changes

Bul k ingest conpleted: Added 1004 records and rejected 0 records, for database
edp_cli _edp_ac680edd- c25f - 4b9d- 8cab- 11441c5a3d2e

Ingest end - 0.584MB in 2.010sec = 0.291MB/sec for database edp_cli_edp_ac680edd-
c25f - 4b9d- 8cab- 11441c5a3d2e

At this point, the data set records are in the Dgraph and the data set can be viewed in
Studio.

Studio log

Similar to workflows run from the DP CLI, Studio-generated workflows also produce
logs in the $BDD_HOME/ | ogs/ edp directory, as well as YARN logs, Dgraph HDFS
Agent logs, and Dgraph out logs.

In addition, Studio workflows are also logged in the $BDD_DOVAI N/ ser ver s/
<server Name>/ | ogs/ bdd- st udi o. | og file.

Accessing YARN logs

When a client (Studio or the DP CLI) launches a Data Processing workflow, a Spark
job is created to run the actual Data Processing job.

This Spark job is run by an arbitrary node in the Hadoop cluster (node is chosen by
YARN). To find the Data Processing logs, use Cloudera Manager.

To access YARN logs:

1. From the Cloudera Manager home page, click YARN (MR2 Included).
2. In the YARN menu, click the ResourceManager Web UI quick link.

3. The All Applications page lists the status of all submitted jobs. Click on the ID field
to list job information.

Note that failed jobs will list exceptions in the Diagnostics field.

4. To show log information, click on the appropriate log in the Logs field at the
bottom of the Applications page.

The Data Processing log also contains the locations of the Spark worker STDOUT and
STDERR logs. These locations are listed in the "YARN executor launch context" section
of the log. Search for the "SPARK_LOG_URL_STDOUT" and
"SPARK_LOG_URL_STDERR" strings, each of which will have a URL associated with
it. The URLSs are for the worker logs.

Also note that if a workflow invoked the Data Enrichment modules, the YARN logs
will contain the results of the enrichments, such as which columns were created.

Transform Service log

The Transform Service processes transformations on data sets, and also provides
previews of the effects of the transformations on the data sets.

6-10 Data Processing Guide

Transform Service log

The Transform Service logs are stored in the $BDD_HOVE/ | ogs/ t r ansf or mser vi ce
directory. When the Transform Service receives a request to preview a data set, it logs
the schema of that data set, as shown in this abbreviated example:

16/ 06/ 29 14:51:29.775 - INFO [GidPrevi ewRunner @7]:- Start processing preview
request
for MlexCol | ectionldentifier{databaseNane=edp_cli _edp_4dd5ac28- 2e85- 4ef c-
a3c2- 391b6a78f 69¢
col I ecti onName=edp_cl i _edp_4dd5ac28- 2e85- 4ef ¢- a3c2- 391bh6a78f 69c}
16/ 06/ 29 14:51:29.778 - INFO [GidPrevi ewRunner @8]:- class TransfornConfig {
schema: [class Colum {
nane: production_country
type: STRING
i sSi ngl eAssign: true
i sRecor dSear chabl e: fal se
i sVal ueSear chabl e: true
| anguage: en
}, class Colum {
nane: deal er _geocode
type: GEOCCDE
i sSi ngl eAssign: true
i sRecor dSear chabl e: fal se
i sVal ueSear chabl e: fal se
| anguage: en

}, class Colum {
name: |abor_description
type: STRING
i sSingl eAssign: true
i sRecordSear chabl e: fal se
i sVal ueSearchabl e: true
| anguage: en

}

transfornList: [class PutCol umTransform {
class Transformnfo {

transfornfype: nul

}

colum: class Col um {
name: sentiments
type: STRING
i sSi ngl eAssign: true
i sRecor dSear chabl e: nul
i sVal ueSear chabl e: nul
| anguage: nul
}
exceptionAction: class SetNull Action {
class TransfornExceptionAction {
actionType: nul
}

actionType: nul

}

transfornfype: nul

script: getSentiment(conplaint)
H
resul t RowCount : 50
sort: nul
filter: nul
dat abaseNane: edp_cli_edp_4dd5ac28- 2e85- 4ef c- a3c2- 391b6a78f 69¢
col I ectionName: edp_cli_edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69¢
optim zation: nul

Data Processing Logging 6-11

Transform Service log

Note that the t r ansf or mLi st section lists the contents of the transformation script (if
one exists). In this example, the Transform get Sent i ment function is used on the
conpl ai nt attribute.

Logging the configuration

When it receives its first preview or transformation request, the Transform Service
logs the system, Spark, and Hadoop configurations that it is using. An abbreviated
configuration entry is as follows:

Number of processors available: 2
Total available menory: 226 MB
Free nenory: 170 MB

Maxi num avai | abl e menory: 3403 MB

16/ 06/ 29 14:51:37.807 - INFO [Local Sparkd ient @0]:- Spark configuration

spar k. ext ernal Bl ockSt ore. f ol der Name = spark- 78¢17408- b81f - 4d0e- adac-f 06174e67c42
spark.driver.cores = 4

sparKk. i o. conpression. codec = |zf

spark.lib = /local di sk/ Oracl e/ M ddl ewar e/ BDD- 1. 3. 0. 35. 999/ t r ansf or nser vi ce/
bddservi ces/ spark_| i b/ spark-assenbly. jar

spark. app. name = transfornmservice

spark. executor. memory = 4g

spark. master = |ocal [8]

spark.driver.host = 10.152.105. 219

spark. executor.id = driver

spark.app.id = | ocal - 1467226296747

spark.driver.port = 50018

spark.local.dir = /local di sk/ Oracl e/ M ddl ewar e/ BDD- 1. 3. 0. 35. 999/ t r ansf or mser vi ce/ t np
spark.fileserver.uri = http://10.152.105.219: 13880

spark. ui.enabled = fal se

spark.driver. maxResul t Si ze = 4g

16/06/29 14:51:37.966 - INFO [Local Sparkd ient@9]:- Hadoop configuration:
s3.replication = 3

mapr educe. out put . fil eout put f ormat. conpress. type = BLOCK

mapr educe. j obt racker. j obhistory.lru. cache.size =5

hadoop. http.filter.initializers = org.apache. hadoop. http.lib. StaticUserWbFilter

yarn. resour cemanager . system metrics- publisher.enabl ed = fal se
mapreduce. client.output.filter = FAILED

If you are reporting a Transform Service problem to Oracle Support, make sure you
include the Transform Service log when you report the problem.

6-12 Data Processing Guide

v

Data Enrichment Modules

This section describes the Data Enrichment modules of Big Data Discovery.

About the Data Enrichment modules
The Data Enrichment modules increase the usability of your data by
discovering value in its content.

Entity extractor
The Entity extractor module extracts the names of people, companies
and places from the input text inside records in source data.

Noun Group extractor
This plugin extracts noun groups from the input text.

TF.IDF Term extractor
This module extracts key words from the input text.

Sentiment Analysis (document level)
The document-level Sentiment Analysis module analyzes a piece of text
and determines whether the text has a positive or negative sentiment.

Sentiment Analysis (sub-document level)
The sub-document-level Sentiment Analysis module returns a list of
sentiment-bearing phrases which fall into one of the two categories:
positive or negative.

Address GeoTagger
The Address GeoTagger returns geographical information for a valid
global address.

IP Address GeoTagger
The IP Address GeoTagger returns geographical information for a valid
IP address.

Reverse GeoTagger
The Reverse GeoTagger returns geographical information for a valid
geocode latitude/longitude coordinates that resolve to a metropolitan
area.

Tag Stripper
The Tag Stripper module removes any HTML, XML and XHTML
markup from the input text.

Phonetic Hash
The Phonetic Hash module returns a string attribute that contains the
hash value of an input string.

Language Detection
The Language Detection module can detect the language of input text.

Data Enrichment Modules 7-1

About the Data Enrichment modules

About the Data Enrichment modules

The Data Enrichment modules increase the usability of your data by discovering value
in its content.

Bundled in the Data Enrichment package is a collection of modules along with the
logic to associate these modules with a column of data (for example, an address
column can be detected and associated with a GeoTagger module).

During the sampling phase of the Data Processing workflow, some of the Data
Enrichment modules run automatically while others do not. If you run a workflow
with the DP CLI, you can use the - - excl udePl ugi ns flag to specify which modules
should not be run.

After a data set has been created, you can run any module from Studio's Transform
page.
Pre-screening of input

When Data Processing is running against a Hive table, the Data Enrichment modules
that run automatically obtain their input pre-screened by the sampling stage. For
example, only an IP address is ever passed to the IP Address GeoTagger module.

Attributes that are ignored

All Data Enrichment modules ignore both the primary-key attribute of a record and
any attribute whose data type is inappropriate for that module. For example, the
Entity extractor works only on string attributes, so that numeric attributes are ignored.
In addition, multi-assign attributes are ignored for auto-enrichment.

Sampling strategy for the modules

When Data Processing runs (for example, during a full data ingest), each module runs
only under the following conditions during the sampling phase:

¢ Entity: never runs automatically.
e TEF-IDF: runs only if the text contains between 35 and 30,000 tokens.

* Sentiment Analysis (both document level and sub-document level) : never runs
automatically

* Address GeoTagger: runs only on well-formed addresses. Note that the GeoTagger
sub-modules (City/Region/Sub-Region/Country) never run automatically.

e [P Address GeoTagger: runs only on IPV4 type addresses (does not run on private
IP addresses and does not run on automatically on IPV6 type addresses).

¢ Reverse GeoTagger: only runs on valid geocode formats.
¢ Boilerplate Removal: never runs automatically.

* Tag Stripper: never runs automatically.

¢ Phonetic Hash: never runs automatically.

¢ Language Detection: runs only if the input text is at least 30 words long. This
module is enabled for tokens in the range 30 to 30,000 tokens.

Note that when the Data Processing workflow finishes, you can manually run any of
these modules from Transform in Studio.

7-2 Data Processing Guide

Entity extractor

Supported languages

The supported languages are specific to each module. For details, see the topic for the
module.

Output attribute names

The types and names of output attributes are specific to each module. For details on

output attributes, see the topic for the module.

Data Enrichment logging

If Data Enrichment modules are run in a workflow, they are logged as part of the
YARN log. The log entries described which module was run and the columns
(attributes) created by the modules.

For example, a data set that contains many geocode values can be produce the

following log entries:

Running enrichments (if any)..
generate plugin recomendations and auto enrich transform script

TOTAL AVAI LABLE PLUG NS: 12

Sanpl eVal uedRecomrender : : Regi stering Plugin: AddressGeoTagger UDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: |PGeoExtractor UDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: ReverseGeoTagger UDF

Sanpl eVal uedRecommender : : Regi stering Pl ugin: LanguageDet ecti onUDF

Sanpl eVal uedRecommender : : Regi stering Plugin: DocLevel Senti nent Anal ysi sUDF
Sanpl eVal uedRecomrender : : Regi stering Plugin: BoilerPl ateRenoval UDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: TagStripper UDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: TFI DFTer mExt ract or UDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: EntityExtracti onUDF

Sanpl eVal uedRecommender : : Regi stering Plugin: SubDocLevel Senti ment Anal ysi sUDF
Sanpl eVal uedReconmmender : : Regi stering Plugin: PhoneticHashUDF

Sanpl eVal uedRecomrender : : Regi stering Plugin: StructuredAddressCGeoTagger UDF

valid input string count=0, total input string count=101, success ratio0=0.0
Addr essCGeot agger won't be invoked since the success ratio is < 80%

--- [ReverseGeoTagger UDF] pl ugi n RECOWENDS col um:
[latlong] for Enrichment, based on 101 sanples

Sanpl eVal uedRecomrender :

Sanpl eVal uedRecommender: --- new enriched colum 'latlong_geo_city' will be created
from'latlong'

Sanpl eVal uedRecommender: --- new enriched colum 'latlong_geo_country' will be
created from'latlong'

Sanpl eVal uedRecomender: --- new enriched colurm 'l atlong_geo_postcode' will be
created from'latlong'

Sanpl eVal uedRecomender: --- new enriched colum 'latlong_geo_region' wll be
created from'latlong'

Sanpl eVal uedRecomender: --- new enriched colurm 'latlong_geo_subregion' wll be
created from'latlong'

Sanpl eVal uedRecomender: --- new enriched colum 'latlong_geo_regionid wll be
created from'latlong'

Sanpl eVal uedRecomender: --- new enriched colurm 'latlong_geo_subregionid wll be

created from'latlong'

In the example, the Reverse GeoTagger created seven columns.

Entity extractor

The Entity extractor module extracts the names of people, companies and places from
the input text inside records in source data.

The Entity extractor locates and classifies individual elements in text into the
predefined categories, which are PERSON, ORGANIZATION, and LOCATION.

Data Enrichment Modules 7-3

Noun Group extractor

The Entity extractor supports only English input text.

Configuration options

This module does not automatically run during the sampling phase of a Data
Processing workflow, but you can launch it from Transform in Studio.

Output

For each predefined category, the output is a list of names which are ingested into the
Dgraph as a multi-assign string Dgraph attribute. The names of the output attributes
are:

e <attribute>_entity_person
e <attribute> entity |oc

e <attribute>_entity_org

In addition, the Transform APl has a get Enti ti es function that wraps the Name
Entity extractor to return single values from the input text.

Example

Assume the following input text:

Vhile in New York Gity, JimDavis bought 300 shares of Acme Corporation in 2012.
The output would be:

I ocation: New York City
organi zation: Acme Corporation
person: Jim Davis

Noun Group extractor

This plugin extracts noun groups from the input text.

The Noun Group extractor retrieves noun groups from a string attribute in each of the
supported languages. The extracted noun groups are sorted by C-value and
(optionally) truncated to a useful number, which is driven by the size of the original
document and how many groups are extracted. One use of this plugin is in tag cloud
visualization to find the commonly occurring themes in the data.

A typical noun group consists of a determiner (the head of the phrase), a noun, and
zero or more dependents of various types. Some of these dependents are:

* noun adjuncts

¢ attribute adjectives

¢ adjective phrases

¢ participial phrases

® prepositional phrases
¢ relative clauses

¢ infinitive phrases

7-4 Data Processing Guide

TF.IDF Term extractor

The allowability, form, and position of these elements depend on the syntax of the
language being used.

Design

This plugin works by applying language-specific phrase grouping rules to an input
text. A phrase grouping rule consists of sequences of lexical tests that apply to the
tokens in a sentence, identifying a grouping action. The action of a grouping rule is a
single part of speech with a weight value, which can be negative or positive integers,
followed by optional component labels and positions. The POS (part of speech) for
noun groups will use the noun POS. The components must either be head or mod, and
the positions are zero-based index into the pattern, excluding the left and right context
(if exists).

Configuration options
There are no configuration options.

Note that this plugin is not run automatically during the Data Processing sampling
phase (i.e., when a new or modified Hive table is sampled).

Output

The output of this plugin is an ordered list of phrases (single- or multi-word) that are
ingested into the Dgraph as a multi-assign, string attribute.

The name of the output attributes is <col name>_ noun_gr oups.

In addition, the Transform API has the ext r act NounGr oups function that is a
wrapper around the Name Group extractor to return noun group single values from
the input text.

Example
The following sentence provides a high-level illustration of noun grouping;:

The quick brown fox junped over the |azy dog.
From this sentence, the extractor would return two noun groups:
* The quick brown fox

¢ thelazy dog

Each noun group would be ingested into the Dgraph as a multi-assign string attribute.

TF.IDF Term extractor

This module extracts key words from the input text.

The TF.IDF Term module extracts key terms (salient terms) using a predictable,
statistical algorithm. (TF is "term frequency" while IDF is "inverse document
frequency".)

The TF.IDF statistic is a common tool for the purpose of extracting key words from a
document by not only considering a single document but all documents from the
corpus. For the TF.IDF algorithm, a word is important for a specific document if it
shows up relatively often within that document and rarely in other documents of the
corpus.

Data Enrichment Modules 7-5

Sentiment Analysis (document level)

The number of output terms produced by this module is a function of the TF.IDF
curve. By default, the module stops returning terms when the score of a given term
falls below ~68%.

The TF.IDF Term extractor supports these languages:
¢ English (UK/US)

e French

e German

e Jtalian

* Portuguese (Brazil)

® Spanish

Configuration options

During a Data Processing sampling operation, this module runs automatically on text
that contains between 30 and 30,000 tokens. However, there are no configuration
options for such an operation.

In Studio, the Transform API provides a language argument that specifies the
language of the input text, to improve accuracy.

Output

The output is an ordered list of single- or multi-word phrases which are ingested into
the Dgraph as a multi-assign string Dgraph attribute. The name of the output attribute
is<attri bute> key phrases.

Sentiment Analysis (document level)

The document-level Sentiment Analysis module analyzes a piece of text and
determines whether the text has a positive or negative sentiment.

It supports any sentiment-bearing text (that is, texts which are not too short, numeric,
include only a street address, or an IP address). This module works best if the input
text is over 40 characters in length.

This module supports these languages:
* English (US and UK)

e French

e German

e [talian

¢ Spanish

Configuration options

This module never runs automatically during a Data Processing workflow.

In addition, the Transform API has a get Sent i ment function that wraps this module.

7-6 Data Processing Guide

Sentiment Analysis (sub-document level)

Output

The default output is a single text that is one of these values:
e POSITIVE
e NEGATIVE

Note that NULL is returned for any input which is either null or empty.

The output string is subsequently ingested into the Dgraph as a single-assign string
Dgraph attribute. The name of the output attribute is <at t r i but e>_doc_sent .

Sentiment Analysis (sub-document level)

The sub-document-level Sentiment Analysis module returns a list of sentiment-
bearing phrases which fall into one of the two categories: positive or negative.

The SubDocument-level Sentiment Analysis module obtains the sentiment opinion at
a sub-document level. This module returns a list of sentiment-bearing phrases which
fall into one of the two categories: positive or negative. Note that this module uses the
same Sentiment Analysis classes as the document-level Sentiment Analysis module.

This module supports these languages:
* English (US and UK)

¢ French

¢ German

e [talian

¢ Spanish

Configuration options

Because this module never runs automatically during a Data Processing sampling
operation, there are no configuration options for such an operation.

Output

For each predefined category, the output is a list of names which are ingested into the
Dgraph as a multi-assign string Dgraph attribute. The names of the output attributes
are:

e <attribute>_sub_sent _neg (for negative phrases)
e <attribute>_sub_sent_pos (for positive phrases)

Address GeoTagger

The Address GeoTagger returns geographical information for a valid global address.

The geographical information includes all of the possible administrative divisions for a
specific address, as well as the latitude and longitude information for that address.
The Address GeoTagger only runs on valid, unambiguous addresses which
correspond to a city. In addition, the length of the input text must be less than or equal
to 350 characters.

Data Enrichment Modules 7-7

Address GeoTagger

For triggering on auto-enrichment, the Address GeoTagger requires two or more
match points to exist. For a postcode to match, it must be accompanied by a country.

Some valid formats are:

¢ City + State

¢ C(ity + State + Postcode
¢ City + Postcode

® Postcode + Country

¢ City + State + Country

¢ City + Country (if the country has multiple cities of that name, information is
returned for the city with the largest population)

For example, these inputs generate geographical information for the city of Boston,
Massachusetts:

e Boston, MA (or Boston, Massachusetts)
e Boston, Massachusetts 02116

e 02116 US

e Boston, MA US

e Boston US

The final example ("Boston US") returns information for Boston, Massachusetts
because even though there are several cities and towns named "Boston" in the US,
Boston, Massachusetts has the highest population of all the cities named "Boston" in
the US.

Note that for this module to run automatically, the minimum requirement is that the
city plus either a state or a postcode are specified.

Keep in mind that regardless of the input address, the geographical resolution does
not get finer than the city level. For example, this module will not resolve down to the
street level if given a full address. In other words, this full address input:

400 Oracl e Parkway, Redwood City, CA 94065

produces the same results as supplying only the city and state:

Redwood City, CA

GeoNames data

The information returned by this geocode tagger comes from the GeoNames
geographical database, which is included as part of the Data Enrichment package in
Big Data Discovery.

Configuration options

This module is run (on well-formed addresses) during a Data Processing sampling
operation. However, there are no configuration options for such an operation.

7-8 Data Processing Guide

Address GeoTagger

Output

The output information includes the latitude and longitude, as well as all levels of
administrative areas.

Depending on the country, the output attributes consist of these administrative
divisions, as well as the geocode of the address:

e <attribute>_geo_geocode — the latitude and longitude values of the address
(such as "42.35843 -71.05977").

e <attribute>_geo_city — corresponds to a city (such as "Boston").
e <attribute>_geo_country — the country code (such as "US").

e <attribute>_geo_postcode — corresponds to a postcode, such as a zip code
in the US (such as "02117").

e <attribute>_geo_regi on — corresponds to a geographical region, such as a
state in the US (such as "Massachusetts").

e <attribute>_geo_regi oni d— theID of the region in the GeoNames database
(such as "6254926" for Massachusetts).

e <attribute>_geo_subregi on — corresponds to a geographical sub-region,
such as a county in the US (such as "Suffolk County").

e <attribute>_geo_subregi oni d — the ID of the sub-region in the GeoNames
database (such as "4952349" for Suffolk County in Massachusetts).

All are output as single-assign string (mdex: st r i ng) attributes, except for Geocode
which is a single-assign geocode (mdex: geocode) attribute.

Note that if an invalid input is provided (such as a zip code that is not valid for a city
and state), the output may be NULL.

Examples

The following output might be returned for the "Boston, Massachusetts USA" address:

ext_geo_city Bost on

ext _geo_country uS

ext _geo_geocode 42.35843 -71.05977
ext _geo_post code 02117

ext _geo_region Massachusetts

ext _geo_regionid 6254926

ext _geo_subregi on
ext _geo_subregi oni d

Suffol k Country
4952349

This sample output is for the "London England" address:

ext_geo_city
ext_geo_country

ext _geo_geocode

ext _geo_post code
ext _geo_region

ext _geo_regionid
ext _geo_subregi on
ext _geo_subregi oni d

City of London
GB

51.51279 -0.09184
ecar

Engl and

6269131

Greater London
2648110

Data Enrichment Modules 7-9

IP Address GeoTagger

IP Address GeoTagger

The IP Address GeoTagger returns geographical information for a valid IP address.

The IP Address GeoTagger is similar to the Address GeoTagger, except that it uses IP
addresses as its input text. This module is useful IP addresses are present in the source
data and you want to generate geographical information based on them. For example,
if your log files contain IP addresses as a result of people coming to your site, this
module would be most useful for visualization where those Web visitors are coming
from.

Note that when given a string that is not an IP address, the IP Address GeoTagger
returns NULL.

GeoNames data

The information returned by this geocode tagger comes from the GeoNames
geographical database, which is included as part of the Data Enrichment package in
Big Data Discovery.

Configuration options

There are no configuration options for a Data Processing sampling operation.

Output

The output of this module consists of the following attributes:

<attri but e>_geo_geocode — the latitude and longitude values of the address
(such as "40.71427 -74.00597 ").

e <attribute>_geo_city — corresponds to a city (such as "New York City").

e <attribute>_geo_regi on — corresponds to a region, such as a state in the US
(such as "New York").

e <attribute>_geo_regi oni d— thelID of the region in the GeoNames database
(such as "5128638 " for New York).

e <attribute>_geo_postcode — corresponds to a postcode, such as a zip code
in the US (such as "02117").

e <attribute>_geo_country — the country code (such as "US").

Example
The following output might be returned for the 148.86.25.54 IP address:

ext_geo city New York City

ext _geo_country uS

ext _geo_geocode 40. 71427 -74.00597
ext _geo_post code 10007

ext _geo_region New York

ext _geo_regionid 5128638

7-10 Data Processing Guide

Reverse GeoTagger

Reverse GeoTagger

The Reverse GeoTagger returns geographical information for a valid geocode
latitude/longitude coordinates that resolve to a metropolitan area.

The purpose of the Reverse GeoTagger is, based on a given latitude and longitude
value, to find the closest place (city, state, country, postcode, etc) with population
greater than 5000 people. The location threshold for this module is 100 nautical miles.
When the given location exceeds this radius and the population threshold, the result is
NULL.

The syntax of the input is:

<doubl e>separ at or <doubl e>

where:

* The first double is the latitude, within the range of -90 to 90 (inclusive).

® The second double is the longitude, within the range of -180 to 180 (inclusive).

* The separator is any of these characters: whitespace, colon, comma, pipe, or a
combination of whitespaces and one the other separator characters.

For example, this input:

42.35843 -71.05977

returns geographical information for the city of Boston, Massachusetts.
However, this input:

39.30 89.30

returns NULL because the location is in the middle of the Gobi Desert in China.

GeoNames data

The information returned by this geocode tagger comes from the GeoNames
geographical database, which is included as part of the Data Enrichment package in
Big Data Discovery.

Configuration options
There are no configuration options for a Data Processing sampling operation.

In Studio, the Transform area includes functions that return only a specified piece of
the geographical results, such as only a city or only the postcode.

Output

The output of this module consists of these attribute names and values:
e <attribute>_geo_city — corresponds to a city (such as "Boston").
e <attribute>_geo_country — the country code (such as "US").

e <attribute>_geo_postcode — corresponds to a postcode, such as a zip code
in the US (such as "02117").

Data Enrichment Modules 7-11

Tag Stripper

Tag Stripper

e <attribute>_geo_regi on — corresponds to a geographical region, such as a
state in the US (such as "Massachusetts").

e <attribute>_geo_regioni d— theID of the region in the GeoNames database
(such as "6254926" for Massachusetts).

e <attribute>_geo_subregi on — corresponds to a geographical sub-region,
such as a county in the US (such as "Suffolk County").

e <attribute>_geo_subregi oni d — the ID of the sub-region in the GeoNames
database (such as "4952349" for Suffolk County in Massachusetts).

The Tag Stripper module removes any HTML, XML and XHTML markup from the
input text.

Configuration options
This module never runs automatically during a Data Processing sampling operation.

When you run it from within Transform in Studio, the module takes only the input
text as an argument.

Output

The output is a single text which is ingested into the Dgraph as a single-assign string
Dgraph attribute. The name of the output attributeis <at t ri but e>_ht ml _stri p.

Phonetic Hash

7-12 Data Process

The Phonetic Hash module returns a string attribute that contains the hash value of an
input string.

A word's phonetic hash is based on its pronunciation, rather than its spelling. This
module uses a phonetic coding algorithm that transforms small text blocks (names, for
example) into a spelling-independent hash comprised of a combination of twelve
consonant sounds. Thus, similar-sounding words tend to have the same hash. For
example, the term "purple" and its misspelled version of "pruple" have the same hash
value (PRPL).

Phonetic hashing can used, for example, to normalize data sets in which a data column
is noisy (for example, misspellings of people's names).

This module works only with whitespace languages.

Configuration options

This module never runs automatically during a Data Processing sampling operation
and therefore there are no configuration options.

In Studio, you can run the module within Transform, but it does not take any
arguments other than the input string.

Output

The module returns the phonetic hash of a term in a single-assign Dgraph attribute
named <at t ri but e>_phoneti c_hash. The value of the attribute is useful only as a
grouping condition.

ing Guide

Language Detection

Language Detection

The Language Detection module can detect the language of input text.

The Language Detection module can accurately detect and report primary languages
in a plain-text input, even if it contains more than one language. The size of the input
text must be between 35 and 30,000 words for more than 80% of the values sampled.

The Language Detection module can detect all languages supported by the Dgraph.
The module parses the contents of the specified text field and determines a set of
scores for the text. The supported language with the highest score is reported as the
language of the text.

If the input text of the specified field does not match a supported language, the
module outputs "Unknown" as the language value. If the value of the specified field is
NULL, or consists only of white spaces or non-alphabetic characters, the component
also outputs "Unknown" as the language.

Configuration options

There are no configuration options for this module, both when it is run as part of a
Data Processing sampling operation and when you run it from Transform in Studio.

Output

If a valid language is detected, this module outputs a separate attribute with the ISO
639 language code, such as "en" for English, "fr" for French, and so on. There are two
special cases when NULL is returned:

o [f the input is NULL, the output is NULL.

e If there is a valid input text but the module cannot decide on a language, then the
output is NULL.

The name of the output attribute is <at t ri but e>_| ang.

Data Enrichment Modules 7-13

Language Detection

7-14 Data Processing Guide

8

Dgraph Data Model

This section introduces basic concepts associated with the schema of records in the
Dgraph, and describes how data is structured and configured in the Dgraph data
model. When a Data Processing workflow runs, a resulting data set is created in the
Dgraph. The records in this data set, as well as their attributes, are discussed in this

section.
About the data model
The data model in the Dgraph consists of data sets, records, and
attributes.

Data records
Records are the fundamental units of data in the Dgraph.

Attributes
An attribute is the basic unit of a record schema. Assignments from
attributes (also known as key-value pairs) describe records in the
Dgraph.

Supported languages
The Dgraph uses a language code to identify a language for a specific
attribute.

About the data model

The data model in the Dgraph consists of data sets, records, and attributes.

e Data sets contain records.
e Records are the fundamental units of data.

e Attributes are the fundamental units of the schema. For each attribute, a record
may be assigned zero, one, or more attribute values.

Data records

Records are the fundamental units of data in the Dgraph.

Dgraph records are processed from rows in a Hive table that have been sampled by a
Data Processing workflow in Big Data Discovery.

Source information that is consumed by the Dgraph, including application data and
the data schema, is represented by records. Data records in Big Data Discovery are the
business records that you want to explore and analyze using Studio. A specific record
belongs to only one specific data set.

Dgraph Data Model 8-1

Attributes

Attributes

An attribute is the basic unit of a record schema. Assignments from attributes (also
known as key-value pairs) describe records in the Dgraph.

For a data record, an assignment from an attribute provides information about that
record. For example, for a list of book records, an assignment from the Author
attribute contains the author of the book record.

Each attribute is identified by a unique name within each data set. Because attribute
names are scoped within their own data sets, it is possible for two attributes to have
the same name, as long as each belongs to a different data set.

Each attribute on a data record is itself represented by a record that describes this
attribute. Following the book records example, there is a record that describes the
Author attribute. A set of these records that describe attributes forms a schema for
your records. This set is known as system records. Each attribute in a record in the
schema controls an aspect of the attribute on a data record. For example, an attribute
on any data record can be searchable or not. This fact is described by an attribute in
the schema record.

Assignments on attributes
Records are assigned values from attributes. An assignment indicates
that a record has a value from an attribute.

Attribute data types
The attribute type identifies the type of data allowed for the attribute
value (key-value pair).

Assignments on attributes

Records are assigned values from attributes. An assignment indicates that a record
has a value from an attribute.

A record typically has assignments from multiple attributes. For each assigned
attribute, the record may have one or more values. An assignment on an attribute is
known as a key-value pair (KVP).

Not all attributes will have an assignment for every record. For example, for a
publisher that sells both books and magazines, the ISBNnumber attribute would be
assigned for book records, but not assigned (empty) for most magazine records.

Attributes may be single-assign or multi-assign:

* A single-assign attribute is an attribute for which each record can have at most one
value. For example, for a list of books, the ISBN number would be a single-assign
attribute. Each book only has one ISBN number.

* A multi-assign attribute is an attribute for which a single record can have more
than one value. For the same list of books, because a single book may have multiple
authors, the Author attribute would be a multi-assign attribute.

At creation time, the Dgraph attribute is configured to be either single-assign or multi-
assign.

8-2 Data Processing Guide

Supported languages

Attribute data types

The attribute type identifies the type of data allowed for the attribute value (key-value
pair).

The Dgraph supports the following attribute data types:

Attribute type Description

nmdex: string XML-valid character strings.

nmdex: i nt A 32-bit signed integer. Although the Dgraph supports mdex: i nt
attributes, they are not used by Data Processing workflows.

ndex: | ong A 64-bit signed integer. mdeXx: | ong values accepted by the Dgraph
can be up to the value of 9,223,372,036,854,775,807.

ndex: doubl e A floating point value.

ndex: ti ne Represents the hour and minutes of an instance of time, with the
optional specification of fractional seconds. The time value can be
specified as a universal (UTC) date time or as a local time plus a UTC
time zone offset.

ndex: dat eTi m Represents the year, month, day, hour, minute, and seconds of a time

e point, with the optional specification of fractional seconds. The dateTime
value can be specified as a universal (UTC) date time or as a local time
plus a UTC time zone offset.

nmdex: durati o Represents a duration of the days, hours, and minutes of an instance of
n time. Although the Dgraph supports mdex: dur at i on attributes, they
are not used by Data Processing workflows.

ndex: bool ean A Boolean. Valid Boolean values are t r ue (or 1, which is a synonym for
true)and f al se (or 0, which is a synonym for f al se).

ndex: geocode A latitude and longitude pair. The latitude and longitude are both
double-precision floating-point values, in units of degrees.

During a Data Processing workflow, the created Dgraph attributes are derived from
the columns in a Hive table. For information on the mapping of Hive column data
types to Dgraph attribute data types, see Data type discovery.

Supported languages

The Dgraph uses a language code to identify a language for a specific attribute.

Language codes must be specified as valid RFC-3066 language code identifiers. The
supported languages and their language code identifiers are:

Afrikaans: af Danish: da Indonesian:id Norwegian Spanish, Latin
Bokmal: nb American:
es_lam
Albanian: sq Divehi: nl Italian: i t Norwegian Spanish,
Nynorsk: nn Mexican: es_mnx
Ambharic: am Dutch: nl Japanese: j a Oriya: or Swahili: sw

Dgraph Data Model 8-3

Supported languages

Arabic: ar

Armenian: hy

Assamese: as
Azerbaijani: az

Bangla: bn

Basque: eu

Belarusian: be
Bosnian: bs

Bulgarian: bg

Catalan: ca

Chinese,
simplified:
zh_CN
Chinese,

traditional:
zh_TW

Croatian: hr

Czech: cs

English,
American: en

English, British:

en_GB
Estonian: et
Finnish: f i

French: fr

French,
Canadian:
fr_ca

Galician: gl
Georgian: ka

German: de

Greek: el

Gujarati: gu

Hebrew: he

Hungarian: hu

Icelandic: i s

Kannada: kn

Kazakh, Cyrillic:

kk
Khmer: km

Korean: ko

Kyrgyz: ky

Lao:1 0

Latvian: | v

Lithuanian: | t

Macedonian: mk

Malay: s

Malayalam: mi

Maltese: nt

Marathi: nr

Nepali: ne

Persian: f a

Persian, Dari:
prs

Polish: pl
Portuguese: pt

Portuguese,

Brazilian: pt _BR

Punjabi: pa

Romanian: r o
Russian: r u

Serbian, Cyrillic:
sr_Cyrl

Serbian, Latin:
sr_Latn

Sinhala: si

Slovak: sk

Slovenian: sl

Spanish: es

Swedish: sv

Tagalog: t |

Tamil: t a
Telugu:t e
Thai: t h

Turkish: t r

Turkmen: t k
Ukrainian: uk

Urdu: ur

Uzbek, Cyrillic:
uz

Uzbek, Latin:
uz_latin

Valencian: vc

Vietnamese: vn

unknown (i.e.,
none of the
above
languages):
unknown

The language codes are case insensitive.

Note that an error is returned if you specify an invalid language code.

With the language codes, you can specify the language of the text to the Dgraph
during a record search or value search query, so that it can correctly perform
language-specific operations.

How country locale codes are treated

A country locale code is a combination of a language code (such as es for Spanish)
and a country code (such as MX for Mexico or AR for Argentina). Thus, the es_MX
country locale means Mexican Spanish while es_ARis Argentinian Spanish.

If you specify a country locale code for a Language element, the software ignores the
country code but accepts the language code part. In other words, a country locale code
is mapped to its language code and only that part is used for tokenizing queries or
generating search indexes. For example, specifying es_MXis the same as specifying
just es. The exceptions to this rule are the codes listed above (such as pt _BR).

8-4 Data Processing Guide

Supported languages

Note, however, that if you create a Dgraph attribute and specify a country locale code
in the Language field, the attribute will be tagged with the country locale code, even
though the country code will be ignored during indexing and querying.

Language-specific dictionaries and Dgraph database

The Dgraph has two spelling correction engines:

e If the Language property in an attribute is set to en, then spelling correction will
be handled through the English spelling engine (and its English spelling
dictionary).

¢ If the Language property is set to any other value, then spelling correction will use
the non-English spelling engine (and its language-specific dictionaries).

All dictionaries are generated from the data records in the Dgraph, and therefore
require that the attribute definitions be tagged with a language code.

A data set's dictionary files are stored in the Dgraph database directory for that data
set.

Specifying a language for a data set

When creating a data set, you can specify the language for all attributes in that data
set, as follows:

e Studio: When uploading a file in via the Data Set Creation Wizard, the Advanced
Settings > Language field in the Preview page lets you select a language.

e DP CLI: The def aul t Language property in the edp. properti es configuration
file sets the language.

Note that you cannot set languages on a per-attribute basis.

Dgraph Data Model 8-5

Supported languages

8-6 Data Processing Guide

9

Dgraph HDFS Agent

This section describes the role of the Dgraph HDFS Agent in the exporting and
ingesting of data.

About the Dgraph HDFS Agent
The Dgraph HDFS Agent acts as a data transport layer between the
Dgraph and an HDFS environment.

Importing records from HDEFS for ingest
The Dgraph HDFS Agent plays a major part in the loading of data from
a Data Processing workflow into the Dgraph.

Exporting data from Studio
The Dgraph HDFS Agent is the conduit for exporting data from a Studio
project.

Dgraph HDFS Agent logging
The Dgraph HDFS Agent writes its stdout/stderr output to a log file.

About the Dgraph HDFS Agent

The Dgraph HDFS Agent acts as a data transport layer between the Dgraph and an
HDFS environment.

The Dgraph HDFS Agent plays two important roles:
¢ Takes part in the ingesting of records into the Dgraph. It does so by first reading

records from HDFS that have been output by a Data Processing workflow and then
sending the records to the Dgraph's Bulk Load interface.

¢ Takes part in the exporting of data from Studio back into HDFS. The exported data
can be in the form of either a local file or an HDFS Avro file that can be used to
create a Hive table.

Importing records from HDFS for ingest

The Dgraph HDFS Agent plays a major part in the loading of data from a Data
Processing workflow into the Dgraph.

The Dgraph HDFS Agent's role in the ingest procedure is to read the output Avro files
from the Data Processing workflow, format them for ingest, and send them to the
Dgraph.

Specifically, the high-level, general steps in the ingest process are:

1. A Data Processing workflow finishes by writing a set of records in Avro files in
the output directory.

2. The Spark client then locates the Dgraph leader node and the Bulk Load port for
the ingest, based on the data set name. The Dgraph that will ingest the records

Dgraph HDFS Agent 9-1

Exporting data from Studio

must be a leader within the Dgraph cluster, within the BDD deployment. The
leader Dgraph node is elected and determined automatically by Big Data
Discovery.

3. The Dgraph HDFS Agent reads the Avro files and prepares them in a format that
the Bulk Load interface of the Dgraph can accept.

4. The Dgraph HDFS Agent sends the files to the Dgraph via the Bulk Load
interface's port.

5. When a job is successfully completed, the files holding the initial data are deleted.

The ingest of data sets is done with a round-robin, multiplexing algorithm. The
Dgraph HDFS Agent divides the records from a given data set into batches. Each
batch is processed as a complete ingest before the next batch is processed. If two or
more data sets are being processed, the round-robin algorithm alternates between
sending record batches from each source data set to the Dgraph. Therefore, although
only one given ingest operation is being processed by the Dgraph at any one time, this
multiplexing scheme does allow all active ingest operations to be scheduled in a fair
fashion.

Note that if Data Processing writes a NULL or empty value to the HDFS Avro file, the
Dgraph HDFS Agent skips those values when constructing a record from the source
data for the consumption by the Bulk Load interface.

Updating the spelling dictionaries

When the Dgraph HDFS Agent sends the ingest request to the Dgraph, it also sets the
updat eSpel | i ngDi cti onari es flag in the bulk load request. The Dgraph thus
updates the spelling dictionaries for the data set from the data corpus. This operation
is performed after every successful ingest. The operation also enables spelling
correction for search queries against the data set.

Post-ingest merge operation

After sending the record files to the Dgraph for ingest, the Dgraph HDFS Agent also
requests a full merge of all generations of the Dgraph database files.

The merge operation consists of two actions:
1. The Dgraph HDFS Agent sends a URL merge request to the Dgraph.

2. Ifit successfully receives the request, the Dgraph performs the merge.

The final results of the merge are logged to the Dgraph out log.

Exporting data from Studio
The Dgraph HDFS Agent is the conduit for exporting data from a Studio project.

From within a project in Studio, you can export data as a new Avro file (. avr o
extension), CSV file (. csv extension), or text file (. t Xt extension). Files can be
exported to either an external directory on your computer, or to HDFS. For details on
the operation, see the Studio User’s Guide.

When a user exports a data set to a file in HDFS from Studio, the exported file's owner
will always be the owner of HDFS agent process (or the HDFS agent principal owner
in a Kerberized cluster). That is, the Dgraph HDFS Agent uses the username from the
export request to create a FileSystem object. That way, BDD can guarantee that a file
will not be created if the user does not have permissions, and if the file it created, it is
owned by that user. The group is assign automatically by Hadoop.

9-2 Data Processing Guide

Dgraph HDFS Agent logging

As part of the export operation, the user specifies the delimiter to be used in the
exported file:

¢ If the delimiter is a comma, the export process creates a . csV file.

e [f the delimiter is anything except a comma, the export process creates a . t xt file.

If you export to HDFS, you also have the option of creating a Hive table from the data.
After the Hive table is created, a Data Processing workflow is launched to create a new
data set.

The following diagram illustrates the process of exporting data from Studio into

HDEFS:
. Dgraph
Studio ———s Dgraph - e HDFS
1. Send a 2. Export to HOFS Agent 3. Write the file
request to HDFS to HOFS

export data
to HDFS
4. (Optional) Create a Hive table

In this diagram, the following actions take place:

1. From Transform in Studio, you can select to export the data into HDFS. This
sends an internal request to export the data to the Dgraph.

2. The Dgraph communicates with the Dgraph HDFS Agent, which launches the
data exporting process and writes the file to HDFS.

3. Optionally, you can choose to create a Hive table from the data. If you do so, the
Hive table is created in HDFS.

Errors that may occur during the export are entered into the Dgraph HDFS Agent's
log.

Dgraph HDFS Agent logging

The Dgraph HDFS Agent writes its stdout/stderr output to a log file.

The Dgraph HDES Agent - - out flag specifies the file name and path of the Dgraph
HDFS Agent's stdout/stderr log file. This log file is used for both import (ingest) and
export operations.

The name and location of the output log file is set at installation time via the
AGENT_CQUT_FI LE parameter of the bdd. conf configuration file. Typically, the log
name is dgr aphHDFSAgent . out and the location is the $BDD_HOVE/ | ogs directory.

The Dgraph HDFS Agent log is especially important to check if you experience
problems with loading records at the end of a Data Processing workflow. Errors
received from the Dgraph (such as rejected records) are logged here.

Ingest operation messages

The following are sample messages for a successful ingest operation for a data set. The
messages have been edited for readability:

New i nport request received: MlexCollectionldentifier{
dat abaseNane=edp_cli _edp_4dd5ac28- 2e85- 4ef c- a3¢c2- 391h6a78f 69c,
col | ectionNane=edp_cli _edp_4dd5ac28- 2e85- 4ef ¢c- a3c2- 391b6a78f 69c},

request Ori gi n: FROM DATASET
Recei ved request for database edp_cli_edp_4dd5ac28- 2e85- 4ef c- a3c2- 391bh6a78f 69¢

Dgraph HDFS Agent 9-3

Dgraph HDFS Agent logging

Starting ingest for: MiexCollectionldentifier{
dat abaseNane=edp_cl i _edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69c,
col | ectionNanme=edp_cli _edp_4dd5ac28- 2e85- 4ef ¢c- a3c2- 391b6a78f 69c},

request Origin: FROM DATASET
Fini shed reading 9983 records for MlexCol | ectionldentifier{
dat abaseNane=edp_cli _edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69c,
col | ectionNanme=edp_cli_edp_4dd5ac28- 2e85- 4ef ¢c- a3c2- 391b6a78f 69c},

request Origin: FROM DATASET
creat eBul kI ngester edp_cli_edp_4dd5ac28- 2e85- 4ef ¢- a3c2- 391b6a78f 69¢c
sendRecor dsTol ngest er 9983
cl oseBul kl ngest er
Ingest finished with 9983 records commtted and O records rejected.
Status: | NGEST_FI NI SHED.
Request info: MlexCol | ectionldentifier{
dat abaseNane=edp_cl i _edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69c,
col | ectionNanme=edp_cli _edp_4dd5ac28- 2e85- 4ef ¢c- a3c2- 391b6a78f 69c},
| ocation: /user/bdd/edp/datal.datal ngest Swanp/.. .,
user nane: fcalvill,
notification: {"workflowName":"CLI Dat aLoad",
"sour ceDat abaseName": nul |,
"sour ceDat aset Key": nul |,
"t arget Dat abaseName" :
"edp_cli_edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69c",
"target Dat aset Key": "edp_cli_edp_4dd5ac28- 2e85- 4ef ¢c- a3c2- 391b6a78f 69¢",
"eci d": " 0000LMSUNOTY ADk pSw4 Ey c INSxMLO00000"
"status":"| N _PROGRESS",
"startTime": 1467209085630,
"timestanp": 1467209136298,
"progressPercentage": 0.0,
"errorMessage": nul |,
“trackingUl":null,
"properties":{"dat aSet Di spl ayNane": "VrrantyC ai ns",
"isOi":"true"}},
act ual Eci d: 0000LMSUMCnY7 ADk pSw4Ey ¢ INSxML0O00000,
request Origin: FROM DATASET
Notification server url: http://busgg2014. us. oracl e.com 7003/ bdd/ v1/ api / wor kf | ows
About to send notification
Terminating
Noti fi cati on{workf | owName=CLI| Dat aLoad,
sour ceDat abaseName=nul |, sour ceDat aset Key=nul | ,
t ar get Dat abaseName=edp_cl i _edp_4dd5ac28- 2e85- 4ef ¢- a3c2- 391b6a78f 69c,
target Dat aset Key=edp_cl i _edp_4dd5ac28- 2e85- 4ef c- a3c2- 391h6a78f 69c,
eci d=0000LMSUMCTY ADk pSw4 Ey c INSxMLO00000,
st at us=SUCCEEDED,
start Ti me=1467209085630,
timest anp=1467209222088,
progr essPer cent age=100. 0,
error Message=nul | ,
properties={dataSet Di spl ayNane=WarrantyC ains, isCi=true}}
Notification sent successfully
Terminating

Some events in the sample log are:

1. The Data Processing workflow has written a set of Avro files in the /
user/ bdd/ edp/ dat a/ . dat al ngest Swanp directory in HDEFS.

2. The Dgraph HDFS Agent starts an ingest operation for the data set.

9-4 Data Processing Guide

Dgraph HDFS Agent logging

3. ThecreateBul kl ngest er operation is used to instantiate a Bulk Load ingester
instance for the data set.

4. The Dgraph HDFS Agent reads 9983 records from the Avro files.

5. ThesendRecor dsTol ngest er operation sends the 9983 records to the Dgraph's
ingester.

6. The Bulk Load instance is closed with the cl oseBul kl ngest er operation.

7. The Status: | NGEST_FI NI SHED message signals the end of the ingest
operation. The message also lists the number of successfully committed records
and the number of rejected records. In addition, the Dgraph HDFS Agent notifies
Studio that the ingest has finished, at which point Studio updates the st at us
attribute of the DataSet Inventory with the final status of the ingest operation. The
status should be FI NI SHED for a successful ingest or ERRORif an error occurred.

8. The Dgraph HDFS Agent sends a final notification to Studio that the workflow
has finished, with a status of SUCCEEDED.

Note that throughout the workflow, Dgraph HDFS Agent constantly sends
notification updates to Studio, so that Studio can report on the progress of the
workflow to the end user.

Rejected records

It is possible for a certain record to contain data which cannot be ingested or can even
crash the Dgraph. Typically, the invalid data will consist of invalid XML characters. In
this case, the Dgraph cannot remove or cleanse the invalid data, it can only skip the
record with the invalid data. The interface rejects non-XML 1.0 characters upon ingest.
That is, a valid character for ingest must be a character according to production 2 of
the XML 1.0 specification. If an invalid character is detected, the record with the
invalid character is rejected with this error message in the Dgraph HDFS Agent log:

Received error nessage fromserver: Record rejected: Character <c> is not legal in
XM 1.0

A source record can also be rejected if it is too large. There is a limit of 128MB on the
maximum size of a source record. An attempt to ingest a source record larger than
128MB fails and an error is returned (with the primary key of the rejected record), but
the bulk load ingest process continues after that rejected record.

Logging for new and deleted attributes

The Dgraph HDFS Agent logs the names of attributes being created or deleted as
result of transforms. For example:

Fi ni shed reading 499 records for Collection nane:

def aul t _edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b

Adding attributes to collection: default_edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b
[Num nSt ock]

Added attributes to collection: default_edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b

Del eting attributes fromcollection: default_edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b
[AdPrice?]
Del eted attributes fromcollection: default_edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b

In the example, the NumInStock attribute was added to the data set and the OldPrice2
attribute was deleted.

Dgraph HDFS Agent 9-5

Dgraph HDFS Agent logging

Log entry format
This topic describes the format of Dgraph HDFS Agent log entries,
including their message types and log levels.

Logging properties file
The Dgraph HDFS Agent has a default Log4j configuration file that sets
its logging properties.

Log entry format

This topic describes the format of Dgraph HDFS Agent log entries, including their
message types and log levels.

The following is an example of a NOTIFICATION message:

[2015- 07- 27T13: 32: 26. 529- 04: 00] [Dyr aphHDFSAgent] [NOTI FI CATION] []

[com endeca. dgr aph. hdf s. agent . i nport er. Recor dsConsuner |

[host: webO5. exanpl e. conj [nwaddr: 10.152.105.219] [tid: RecordsConsuner] [userld:
fecalvill]

[ecid: 0000KvFouxK7ADkpSwAEyc1LhZW000006, 0] fetchMreRecords for collection:

def aul t _edp_2a0122f 2- 4d15- 46bf - 9669- 21333442f 10b

The format of the Dgraph HDFS Agent log fields (using the above example) and their
descriptions are as follows:

Log entry Description Example
field

Timestamp The date and time when the [2015-07-27T13: 32: 26. 529- 04: 00]
message was generated.
This reflects the local time
zone.

Component The ID of the component [Dgr aphHDFSAgent]
ID that originated the message.

"DgraphHDFSAgent" is

hard-coded for the Dgraph

HDFS Agent.

Message The type of message (log [NOTI FI CATI ON]
Type level):
¢ INCIDENT_ERROR

¢ ERROR

e WARNING

e NOTIFICATION
¢ TRACE

¢ UNKNOWN

Message ID The message ID that []
uniquely identifies the
message within the
component. Currently is left
blank.

ModuleID The Java class that prints [com endeca. dgr aph. hdf s. agent . i npor
the message entry. ter. RecordsConsuner]

Hostname The name of the host where [host: web05. exanpl e. conj
the message originated.

9-6 Data Processing Guide

Dgraph HDFS Agent logging

Log entry Description Example
field
Host The network address of the [nwaddr: 10.152. 105. 219]
address host where the message
originated
Thread ID The ID of the thread that [tid: RecordsConsuner]
generated the message.
User ID The name of the user whose [userld: fcalvill]
execution context generated
the message.
ECID The Execution Context ID [0000KvFouxK7ADkpSwWAEyc1LhZW 000006
(ECID), which is a global , 0]
unique identifier of the
execution of a particular
request in which the
originating component
participates.
Message The text of the log message. fetchMoreRecords for collection:
Text def aul t _edp_2a0122f 2- 4d15- 46bf - 9669
-21333442f 10b
Logging properties file

The Dgraph HDFS Agent has a default Log4j configuration file that sets its logging

properties.

The file is named | 0g4j . properti es and is located in the $DGRAPH_HOVE/
dgr aph- hdf s- agent /| i b directory.

The log file is a rolling log file. The default version of the file is as follows:

| 0g4j . root Logger =I NFO, ROLLI NGFI LE

#

Add ROLLINGFILE to rootLogger to get log file output
Log DEBUG | evel and above nmessages to a log file

| 0g4j
| 0g4j
| 0g4j
| 0g4j
| 0g4j
| 0g4j
| 0g4j
| 0g4j
| 0g4j
%] -1 %]

. appender .
. appender .
. appender .
. appender .
. appender .
. appender .
. appender .
. appender .
. appender .

%P

ROLLI NGFI LE=or acl e. core. oj dl . | og4j . Or acl eAppender

ROLLI NGFI LE. Conponent | d=Dgr aphHDFSAgent

ROLLI NGFI LE. Pat h=${! ogf i | enane}

ROLLI NGFI LE. For mat =ODL- Text

ROLLI NGFI LE. MaxSegnent Si ze=10485760

ROLLI NGFI LE. MaxSi ze=1048576000

ROLLI NGFI LE. Encodi ng=UTF- 8

ROLLI NGFI LE. | ayout = org. apache. | og4j . PatternLayout

ROLLI NGFI LE. | ayout . ConversionPattern = % d{yyyy- M\ dd HH nm ss}

[%:

The file defines the ROLLI NGFI LE appenders for the root logger and also sets the log
level for the file.

The file has the following properties:

Dgraph HDFS Agent 9-7

Dgraph HDFS Agent logging

Loggin

g property

Description

| 0og4j . r oot Logger

| og4j .

| og4j .

tid

| 0g4j .

| og4j .

| 0g4j

. appender .

nt Si ze

| 0g4j

| 0g4j

| 0g4j

| 0g4j

. appender.

. appender.

. appender.

. appender.

appender .

appender.

appender.

appender.

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

ROLLI NGFI LE

onversi onPattern

. Conponen

. Path

. For mat

. MaxSegne

. MBxSi ze

. Encodi ng

. | ayout

.layout.C

The level of the root logger is defined as
| NFOand attaches the ROLLI NGFI LE
appender to it.

You can change the log level, but do not
change the ROLLI NGFI LE appender.

Sets the appender to be Or acl eAppender .
This defines the ODL (Oracle Diagnostics
Logging) format for the log entries.

Do not change this property.

Sets Dgr aphHDFSAgent as the name of the
component that generates the log messages.
Do not change this property.

Sets the path for the log files. The $

{1 ogfi | ename} variable picks up the
path from the Dgraph HDFS Agent - - out
flag used at start-up time.

Do not change this property.

Sets ODL- Text as the formatted string as
specified by the conversion pattern.
Do not change this property.

Sets the maximum size (in bytes) of the log
file. When the dgr aphHDFSAgent . out
file reaches this size, a rollover file is
created. The default is 10485760 (about 10
MB).

Sets the maximum amount of disk space to
be used by the dgr aphHDFSAgent . out
file and the logging rollover files. The
default is 1048576000 (about 1GB).

Sets character encoding for the log file. The
default UTF- 8 value prints out UTF-8
characters in the file.

Sets the
org. apache. | og4j . Patt er nLayout
class for the layout.

Defines the log entry conversion pattern.
For the conversion characters, see: https://
logging.apache.org/log4j/1.2/
apidocs/org/apache/log4j/
PatternLayout.html

Loggin

g levels

You can change the log level by opening the properties file in a text editor and
changing the level for the | 0g4j . r oot Logger property to a Java log level from the
table below. This example shows how you can change the log level setting to ERROR:

| 0g4j . root Logger =ERROR

9-8 Data Processing Guide

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Dgraph HDFS Agent logging

When writing log messages, however, the logging system converts the Java level to an
ODL equivalent level. The table below The log levels (in decreasing order of severity)

are:

Java Log Level

ODL Log Level

Meaning

OFF

FATAL

ERROR

I NFO

DEBUG

N/A

I NCI DENT_ERRCR

ERROR

WARNI NG

NOTI FI CATI ON

TRACE

Has the highest possible rank and is used to
turn off logging.

Indicates a serious problem that may be
caused by a bug in the product and that
should be reported to Oracle Support. In
general, these messages describe events that
are of considerable importance and which
will prevent normal program execution.

Indicates a serious problem that requires
immediate attention from the administrator
and is not caused by a bug in the product.

Indicates a potential problem that should be
reviewed by the administrator.

A message level for informational messages.
This level typically indicates a major
lifecycle event such as the activation or
deactivation of a primary sub-component or
feature. This is the default level.

Debug information for events that are
meaningful to administrators, such as public
API entry or exit points.

These levels allow you to monitor events of interest at the appropriate granularity
without being overwhelmed by messages that are not relevant. When you are initially
setting up your application in a development environment, you might want to use the
I NFOlevel to get most of the messages, and change to a less verbose level in

production.

Dgraph HDFS Agent 9-9

Dgraph HDFS Agent logging

9-10 Data Processing Guide

A

aborted workflow jobs, cleaning up, 4-16
Address GeoTagger, /-7
assignments, §-2
attributes
data types, 8-3
multi-assign, §-2
single-assign, §-2

B

blacklists, CLI, 4-12
boolean attribute type, 8-3

C

Cleaning the source data, 1-6
cleaning up aborted jobs, 4-16
CLI, DP
--incrementalUpdate flag, 5-10
--refreshData flag, 5-4
about, 4-1
configuration, 4-3
cron job, 4-13
flags, 4-9
logging, 4-3
permissions, 4-3
running Incremental updates, 5-12
running Refresh updates, 5-5
white- and blacklists, 4-12
configuration
date formats, 3-1
Dgraph HDFS Agent logging, 9-7
DP CLI, 4-3
DP logging, 6-2
Spark worker, 3-2
cron job
Hive Table Detector, 4-13
Refresh and Incremental updates, 5-13

Index

D

Data Enrichment modules
about, 7-2
Entity extractor, 7-3
excluding from workflows, 4-15
IP Address GeoTagger, 7-10
Language Detection, 7-13
Noun Group extractor, 7-4
Phonetic Hash, 7-12
Reverse GeoTagger, 7-11
Sentiment Analysis, document, 7-6
Sentiment Analysis, sub-document, 7-7
Tag Stripper, 7-12
TE.IDF Term extractor, 7-5
data model, Dgraph, 8-1
Data Processing workflows
about, 2-1
cleaning up aborted jobs, 4-16
excluding enrichments, 4-15
Kerberos support, 1-4
logging, 6-1
processing Hive tables, 2-6
sampling, 2-8
Data Set Logical Name for updates, 5-2
data type conversions from Hive to Dgraph, 2-9
date formats, supported, 3-1
dateTime attribute type, 8-3
Dgraph
attributes, 8-2
data model, 8-1
Kerberos support, 1-4
record assignments, 8-2
supported languages, 8-3
Dgraph HDFS Agent
about, 9-1
exporting data from Studio, 9-2
ingesting records, 9-1
Kerberos support, 1-4
logging, 9-3
logging configuration, 9-7
disabling record and value search, 2-8
double attribute type, 8-3

Index-1

E

enrichments, 2-5
Entity extractor, 7-3

F

flags, CLI, 4-9

G

geocode attribute type, 8-3

H

Hadoop integration with BDD, 1-1
HDFS Data at Rest Encryption for BDD, 1-6
Hive tables

created from Studio, 2-13

ingesting, 2-6

Incremental updates
--incrementalUpdate flag, 5-10
about, 5-6
Data Set Logical Name, 5-2
running, 5-12

IP Address GeoTagger, 7-10

K

Kerberos support for BDD components, 1-3

L

Language Detection module, 7-13
languages, Dgraph supported, 8-3
logging

Data Processing, 6-1

Dgraph HDFS Agent, 9-3

DP CLI, 4-3

logs created during workflow, 6-7

Transform Service, 6-10
logging configuration file

Data Processing, 6-2

Dgraph HDFS Agent, 9-7
logical name for data sets, 5-2
long attribute type, 8-3

M

multi-assign attributes, §-2

N

Noun Group extractor, 7-4

Index-2

P

permissions, CLI, 4-3

Phonetic Hash module, 7-12

ping check for DP components, 4-16
profiling, 2-4

R

Refresh updates
--refreshData flag, 5-4
about, 5-3

Data Set Logical Name, 5-2
running, 5-5
Reverse GeoTagger, 7-11

S

sampling, 2-4

Sentiment Analysis module
document level, 7-6
sub-document level, 7-7

SerDe jar, adding, 3-7

single-assign attributes, §-2

skipAutoProvisioning table property
about, 4-2
changing, 4-17

Snappy compression tables, processing, 4-16

Spark node configuration, 3-2

string attribute type, 8-3

Studio
Hive tables created, 2-13
Kerberos support, 1-5

T

Tag Stripper module, 7-12
TF.IDF Term extractor

about, 7-5
time attribute type, 8-3
TLS/SSL support in BDD, 1-5
Transform Service log, 6-10
transformations, 2-5
type discovery, on columns, 2-4

U

updates, data set, 5-1

w

white lists, CLI, 4-12
workflows run by Data Processing, 2-1

Y
YARN logs, accessing, 6-10

Index-3

Index-4

	Contents
	Preface
	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

	1 Introduction
	BDD integration with Spark and Hadoop
	Secure Hadoop options
	Kerberos authentication
	TLS/SSL and Encryption options

	Preparing your data for ingest

	2 Data Processing Workflows
	Overview of workflows
	Workflow for loading new data
	Working with Hive tables
	Sampling and attribute handling
	Data type discovery
	Studio creation of Hive tables

	3 Data Processing Configuration
	Date format configuration
	Spark configuration
	Adding a SerDe JAR to DP workflows

	4 DP Command Line Interface Utility
	DP CLI overview
	DP CLI permissions and logging
	DP CLI configuration
	DP CLI flags
	Using whitelists and blacklists
	DP CLI cron job
	Modifying the DP CLI cron job

	DP CLI workflow examples
	Processing Hive tables with Snappy compression
	Changing Hive table properties

	5 Updating Data Sets
	About data set updates
	Obtaining the Data Set Logical Name
	Refresh updates
	Refresh flag syntax
	Running a Refresh update

	Incremental updates
	Incremental flag syntax
	Running an Incremental update

	Creating cron jobs for updates

	6 Data Processing Logging
	DP logging overview
	DP logging properties file
	DP log entry format
	DP log levels

	Example of DP logs during a workflow
	Accessing YARN logs
	Transform Service log

	7 Data Enrichment Modules
	About the Data Enrichment modules
	Entity extractor
	Noun Group extractor
	TF.IDF Term extractor
	Sentiment Analysis (document level)
	Sentiment Analysis (sub-document level)
	Address GeoTagger
	IP Address GeoTagger
	Reverse GeoTagger
	Tag Stripper
	Phonetic Hash
	Language Detection

	8 Dgraph Data Model
	About the data model
	Data records
	Attributes
	Assignments on attributes
	Attribute data types

	Supported languages

	9 Dgraph HDFS Agent
	About the Dgraph HDFS Agent
	Importing records from HDFS for ingest
	Exporting data from Studio
	Dgraph HDFS Agent logging
	Log entry format
	Logging properties file

	Index

