
Oracle® Big Data Discovery Cloud Service
EQL Reference

E65371-04

September 2016

Oracle Big Data Discovery Cloud Service EQL Reference,

E65371-04

Copyright © 2016, 2016, Oracle and/or its affiliates. All rights reserved.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... vii

About this guide ... vii

Audience .. vii

Conventions... vii

Contacting Oracle Customer Support .. viii

1 Introduction to EQL

EQL overview.. 1-1

Important concepts and terms .. 1-1

EQL and SQL: a comparison... 1-2

Query overview .. 1-3

How queries are processed ... 1-4

EQL reserved keywords .. 1-5

2 Statements and Clauses

DEFINE clause .. 2-1

RETURN clause... 2-2

LET clause .. 2-3

SELECT clause... 2-5

AS clause .. 2-6

FROM clause.. 2-7

JOIN clause .. 2-9

WHERE clause .. 2-13

HAVING clause .. 2-14

ORDER BY clause ... 2-15

PAGE clause .. 2-18

3 Aggregation

GROUP/GROUP BY clauses .. 3-2

MEMBERS extension.. 3-4

GROUPING SETS expression ... 3-7

ROLLUP extension ... 3-8

iii

CUBE extension... 3-9

GROUPING function ... 3-10

COUNT function... 3-11

COUNT_APPROX .. 3-13

COUNTDISTINCT function.. 3-13

APPROXCOUNTDISTINCT function ... 3-14

Multi-level aggregation.. 3-16

Per-aggregation filters.. 3-16

4 Expressions

Supported data types ... 4-2

Operator precedence rules .. 4-3

Handling of literals and values... 4-4

Character handling... 4-4

Handling of upper- and lower-case... 4-6

Handling NULL attribute values ... 4-6

Handling of NaN, inf, and -inf results .. 4-7

Integer type promotion.. 4-8

Handling of precision for doubles ... 4-9

Functions and operators .. 4-10

Numeric functions.. 4-10

Aggregation functions ... 4-13

Geocode functions.. 4-16

Date and time functions .. 4-16

String functions... 4-23

Arithmetic operators.. 4-25

Boolean operators... 4-25

Using EQL results to compose follow-on queries.. 4-26

Using LOOKUP expressions for inter-statement references .. 4-27

ARB ... 4-29

BETWEEN.. 4-30

CASE... 4-31

COALESCE.. 4-32

CORRELATION.. 4-32

HAS_REFINEMENTS .. 4-33

IN... 4-34

PERCENTILE .. 4-35

RECORD_IN_FAST_SAMPLE.. 4-36

5 Sets and Multi-assign Data

About sets .. 5-1

Aggregate functions ... 5-3

SET function .. 5-3

iv

SET_INTERSECTIONS function .. 5-6

SET_UNIONS function.. 5-7

Row functions.. 5-8

ADD_ELEMENT function .. 5-9

CARDINALITY function... 5-10

COUNTDISTINCTMEMBERS function.. 5-11

DIFFERENCE function .. 5-12

FOREACH function ... 5-14

INTERSECTION function ... 5-18

IS_EMPTY and IS_NOT_EMPTY functions ... 5-19

IS_MEMBER_OF function... 5-21

SINGLETON function ... 5-23

SUBSET function .. 5-24

TRUNCATE_SET function.. 5-25

UNION function... 5-26

Set constructor... 5-26

Quantifiers ... 5-28

Grouping by sets ... 5-30

6 EQL Use Cases

Re-normalization .. 6-2

Grouping by range buckets ... 6-2

Manipulating records in a dynamically computed range value.. 6-3

Grouping data into quartiles... 6-4

Combining multiple sparse fields into one... 6-5

Joining data from different types of records... 6-6

Linear regressions in EQL ... 6-6

Using an IN filter for pie chart segmentation... 6-8

Running sum ... 6-8

Query by age ... 6-9

Calculating percent change between most recent month and previous month.............................. 6-9

7 EQL Best Practices

Controlling input size .. 7-1

Filtering as early as possible.. 7-2

Controlling join size ... 7-3

Additional tips .. 7-3

Index

v

vi

Preface

Oracle Big Data Discovery is a set of end-to-end visual analytic capabilities that
leverage the power of Apache Spark to turn raw data into business insight in minutes,
without the need to learn specialist big data tools or rely only on highly skilled
resources. The visual user interface empowers business analysts to find, explore,
transform, blend and analyze big data, and then easily share results.

About this guide
This guide describes how to write EQL queries.

Audience
This guide is intended for data developers who need to create EQL queries.

Conventions
The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements
such as pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code segments within a
paragraph.

Variable This formatting is used for variable values.
For variables within a code sample, the formatting is
Variable.

File Path This formatting is used for file names and paths.

Symbol conventions

The following table describes symbol conventions used in this document.

vii

Symbol Description Example Meaning

> The right angle
bracket, or greater-
than sign, indicates
menu item selections
in a graphic user
interface.

File > New > Project From the File menu,
choose New, then
from the New
submenu, choose
Project.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$ORACLE_HOME Indicates the absolute path to your Oracle Middleware home
directory, where BDD and WebLogic Server are installed.

$BDD_HOME Indicates the absolute path to your Oracle Big Data Discovery
home directory, $ORACLE_HOME/BDD-<version>.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home
directory. For example, if your domain is named bdd-
<version>_domain, then $DOMAIN_HOME is
$ORACLE_HOME/user_projects/domains/bdd-
<version>_domain.

$DGRAPH_HOME Indicates the absolute path to your Dgraph home directory,
$BDD_HOME/dgraph.

Contacting Oracle Customer Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. This includes important information regarding Oracle
software, implementation questions, product and solution help, as well as overall
news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle
Support at https://support.oracle.com.

viii

https://support.oracle.com

1
Introduction to EQL

This section introduces EQL and walks you through the query processing model.

EQL overview
EQL is a SQL-like language designed specifically to query and
manipulate data from the Dgraph.

Important concepts and terms
In order to work with EQL, you need to understand the following
concepts.

EQL and SQL: a comparison
EQL is, in many ways, similar to SQL, but has some marked differences
as well.

Query overview
An EQL query contains one or more semicolon-delimited statements
with at least one RETURN clause.

How queries are processed
This topic walks you through the steps involved in EQL query
processing.

EQL reserved keywords
EQL reserves certain keywords for its exclusive use.

EQL overview
EQL is a SQL-like language designed specifically to query and manipulate data from
the Dgraph.

EQL enables Dgraph–based applications to examine aggregate information such as
trends, statistics, analytical visualizations, comparisons, and more.

An EQL query contains one or more statements, each of which can group, join, and
analyze records, either those stored in the server or those produced by other
statements. Multiple statements within a single query can return results back to the
application, allowing complex analyses to be done within a single query.

Important concepts and terms
In order to work with EQL, you need to understand the following concepts.

• Attribute: An attribute is the basic unit of a record schema. Attributes describe
records in the Dgraph. From the point of view of assignments on records, an
attribute can be either:

Introduction to EQL 1-1

– Single-assign attribute: An attribute for which a record may have only one
value. For example, because a book has only one price, the Price attribute would
be single-assign. Single-assign attributes are of the atomic data type (such as
mdex:string and mdex:double).

– Multi-assign attribute: An attribute for which a record may have more than one
value. For example, because a book may have more than one author, the Author
attribute would be multi-assign. Multi-assign attributes are of the set data type
(such as mdex:string-set and mdex:double-set). They are represented in
EQL by sets (see Sets and Multi-assign Data).

• Record: The fundamental unit of data in the Dgraph. Records are assigned attribute
values. An assignment indicates that a record has a value for an attribute. A record
typically has assignments from multiple attributes. Records in collections can
include multiple assignments to the same attribute, as can records in EQL results.

• Collection: The full body of Dgraph application records is contained in one or
more collections (called data sets in Studio). Thus, Dgraph data is collection-based
rather than table-based. By using a FROM clause in your statement, you specify a
named state. This serves as the record source for your query. (The named state
references a collection name and the Dgraph database, for the data set.)
Alternatively, theFROM clause can specify a previously-defined statement as the
record source. Note that a FROM clause is mandatory in an EQL statement.

• Statement: A unit of EQL that computes related or independent analytics results.
In EQL, a statement starts with DEFINE or RETURN and ends with a semi-colon if it
is between statements (the semi-colon is optional on the last statement). The
statement also includes a mandatory SELECT clause and, optionally, some other
clause(s).

• Result: Query results are a collection of statement results; statement results are a
collection of records.

– Intermediate results: Results from RETURN statements can also be used as
intermediate results for further processing by other statements.

– Returned results: Set of matching values returned by the query or statement.

• Query: A request sent to the Dgraph Gateway (and ultimately to the Dgraph). In
general, a query consists of multiple statements.

EQL and SQL: a comparison
EQL is, in many ways, similar to SQL, but has some marked differences as well.

This topic identifies EQL concepts that may be familiar to users familiar with SQL, as
well as the unique features of EQL:

• Tables with a single schema vs collections of records with more than one
schema. SQL is designed around tables of records — all records in a table have the
same schema. EQL is designed around one or more collections of records with
heterogeneous schemas.

• EQL Query vs SQL Query. An EQL statement requires a DEFINE or RETURN
clause, which, like a SQL common table expression (or CTE), defines a temporary
result set. The following differences apply, however:

– EQL does not support a schema declaration.

EQL and SQL: a comparison

1-2 EQL Reference

– In EQL, the scope of a CTE is the entire query, not just the immediately
following statement.

– In EQL, a RETURN is both a CTE and a normal statement (one that produces
results).

– EQL does not support recursion. That is, a statement cannot refer to itself using
a FROM clause, either directly or indirectly.

– EQL does not contain an update operation.

• Clauses. In EQL, SELECT, FROM, WHERE, HAVING, GROUP BY, and ORDER BY are
all like SQL, with the following caveats:

– In SELECT statements, AS aliasing is optional when selecting an attribute
verbatim; statements using expressions require an AS alias. Aliasing is optional
in SQL.

– In EQL, GROUP BY implies SELECT. That is, grouping attributes are always
included in statement results, whether or not they are explicitly selected.

– Grouping by a multi-assign attribute can cause a single record to participate in
multiple groups. With the use of the MEMBERS extension in a GROUP BY clause,
a single record can participate in multiple groups.

– WHERE can be applied to an aggregation expression.

– In SQL, use of aggregation implies grouping. In EQL, grouping is always
explicit.

• Other language comparisons:

– PAGE works in the same way as many common vendor extensions to SQL.

– In EQL, a JOIN expression's Boolean join condition must be contained within
parentheses. This is not necessary in SQL.

– EQL supports SELECT statements only. It does not support other DML
statements, such as INSERT or DELETE, nor does it support DDL, DCL, or TCL
statements.

– EQL supports a different set of data types, expressions, and functions than
described by the SQL standard.

Query overview
An EQL query contains one or more semicolon-delimited statements with at least one
RETURN clause.

Any number of statements from the query can return results, while others are defined
only as generating intermediate results.

Each statement must contain at least three clauses: a DEFINE or a RETURN clause, a
SELECT clause, and a FROM clause. In addition, the statement may contain other,
optional clauses.

Most clauses can contain expressions. Expressions are typically combinations of one or
more functions, attributes, constants, or operators. Most expressions are simple
combinations of functions and attributes. EQL provides functions for working with
numeric, string, dateTime, duration, Boolean, and geocode attribute types.

Query overview

Introduction to EQL 1-3

Input records, output records, and records used in aggregation can be filtered in EQL.
EQL supports filtering on arbitrary, Boolean expressions.

Syntax conventions used in this guide

The syntax descriptions in this guide use the following conventions:

Convention Meaning Example

Square
brackets []

Optional
FROM <statementKey> [alias]

Asterisk * May be
repeated

[, JOIN statement [alias] ON <Boolean expression>]*

Ellipsis ... Additional,
unspecified
content

DEFINE <recordSetName> AS ...

Angle
brackets < >

Variable
name

HAVING <Boolean expression>

Commenting in EQL

You can comment your EQL code using the following notation:

DEFINE Example AS SELECT /* This is a comment */

You can also comment out lines or sections as shown in the following example:

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
FROM SaleState
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

/*
RETURN Others AS SELECT
SUM(Sale) AS Sales
FROM SaleState
WHERE NOT [Customer] IN Top5
GROUP
*/

...

Note that EQL comments cannot be nested.

How queries are processed
This topic walks you through the steps involved in EQL query processing.

Note: This abstract processing model is provided for educational purposes
and is not meant to reflect actual query evaluation.

Prior to processing each statement, EQL computes source records for that statement.
When the records come from a single statement or from a collection, the source

How queries are processed

1-4 EQL Reference

records are the result records of the statement or the appropriately filtered collection
records, respectively. When the records come from a JOIN, there is a source record for
every pair of records from the left and right sides for which the join condition
evaluates to true on that pair of records. Before processing, statements are re-ordered,
if necessary, so that statements are processed before other statements that depend on
them.

EQL then processes queries in the following order. Each step is performed within each
statement in a query, and each statement is done in order:

1. It filters source records (both statement and per-aggregate) according to the
WHERE clauses.

2. For each source record, it computes SELECT clauses that are used in the GROUP
BY clause (as well as GROUP BYs not from SELECT clauses) and arguments to
aggregations.

3. It maps source records to result records and computes aggregations.

4. It finishes computing SELECT clauses.

5. It filters result records according to the HAVING clause.

6. It orders result records.

7. It applies paging to the results.

EQL reserved keywords
EQL reserves certain keywords for its exclusive use.

Reserved keywords

Reserved keywords cannot be used in EQL statements as identifiers, unless they are
delimited by double quotation marks. For example, this EQL snippet uses the YEAR
and MONTH reserved keywords as delimited identifiers:

DEFINE Input AS SELECT
 DimDate_CalendarYear AS "Year",
 DimDate_MonthNumberOfYear AS "Month",
 ...

However, as a rule of thumb it is recommended that you do not name any identifier
with a name that is the same as a reserved word.

The reserved keywords are:

AND, AS, ASC, BETWEEN, BY, CASE, COUNT, CROSS, CUBE, CURRENT, CURRENT_DATE,
CURRENT_TIMESTAMP, DATE, DAY_OF_MONTH, DAY_OF_WEEK, DAY_OF_YEAR, DEFINE, DESC, ELSE,
EMPTY, END, EVERY, FALSE, FOLLOWING, FOREACH, FROM, FULL, GROUP, GROUPING, HAVING,
HOUR, IN, INNER, IS, JOIN, JULIAN_DAY_NUMBER, LEFT, LET, MEMBERS, MINUTE, MONTH,
NOT,
NULL, ON, OR, ORDER, OVER, PAGE, PARTITION, PERCENT, PRECEDING, QUARTER, RANGE,
RETURN,
RIGHT, ROLLUP, SATISFIES, SECOND, SELECT, SETS, SOME, SYSDATE, SYSTIMESTAMP, THEN,
TRUE, UNBOUNDED, UNPAGED, VALUE, WEEK, WHEN, WHERE, WITH, YEAR

Keep in mind that many function names (such as SUM and STRING_JOIN) are not
keywords and, therefore, could be used as identifiers. However, as a best practice, you
should also avoid using function names as identifiers.

EQL reserved keywords

Introduction to EQL 1-5

Reserved punctuation symbols

• , (comma)

• ; (semicolon)

• . (dot)

• / (division)

• + (plus)

• - (minus)

• * (star)

• < (less than)

• > (greater than)

• <= (less than or equal)

• => (greater than or equal)

• = (equal)

• <> (not equal)

• ((left parenthesis)

•) (right parenthesis)

• { (left brace)

• } (right brace)

• [(left bracket)

•] (right bracket)

EQL reserved keywords

1-6 EQL Reference

2
Statements and Clauses

This section describes the types of clauses used in EQL statements.

For information on the GROUP and GROUP BY clauses, see Aggregation.

DEFINE clause
DEFINE is used to generate an intermediate result that will not be
included in the query result.

RETURN clause
RETURN indicates that the statement result should be included in the
query result.

LET clause
The LET clause defines attributes that may be used elsewhere in the
statement but do not necessarily appear in the statement's result.

SELECT clause
The SELECT clause defines the list of attributes on the records produced
by the statement.

AS clause
The AS clause allows you to give an alias name to EQL attributes and
results.

FROM clause
You must include a FROM clause in your statement to specify a record
source.

JOIN clause
JOIN clauses allow records from multiple statements and/or named
states to be combined, based on a relationship between certain attributes
in these statements.

WHERE clause
The WHERE clause is used to filter input records for an expression.

HAVING clause
The HAVING clause is used to filter output records.

ORDER BY clause
The ORDER BY clause is used to control the order of result records.

PAGE clause
The PAGE clause specifies a subset of records to return.

DEFINE clause
DEFINE is used to generate an intermediate result that will not be included in the
query result.

Statements and Clauses 2-1

All EQL statements begin with either DEFINE or RETURN.

You can use multiple DEFINE clauses to make results available to other statements.
Typically, DEFINE clauses are used to look up values, compare attribute values to
each other, and normalize data.

The DEFINE syntax is:

DEFINE <recordSetName> AS ...

Note that the statement name cannot be the same as the state name or as any other
statement.

In the following example, the RegionTotals record set is used in a subsequent
calculation:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState
GROUP BY Region;

RETURN ProductPct AS
SELECT 100*SUM(Amount) / RegionTotals[Region].Total AS PctTotal
FROM RegionTotals
GROUP BY Region, Product Type

RETURN clause
RETURN indicates that the statement result should be included in the query result.

All EQL statements begin with either DEFINE or RETURN.

RETURN provides the key for accessing EQL results from the Dgraph query result. This
is important when more than one statement is submitted with the query.

The RETURN syntax is:

RETURN <statementName> AS ...

Note that the statement name cannot be the same as the state name or as any other
statement.

The following statement returns for each size the number of different values for the
Color attribute:

RETURN Result AS
SELECT COUNTDISTINCT(Color) AS Total
FROM ProductState
GROUP BY Size

WITH UNPAGED COUNT modifier

A RETURN clause can include an optional WITH UNPAGED COUNT modifier that
computes the unpaged (total) record count for the statement and returns the count as
in a NumRecords element in the results metadata. The syntax is:

RETURN <statementName> WITH UNPAGED COUNT AS ...

Assume, for example, this query:

RETURN clause

2-2 EQL Reference

RETURN Results WITH UNPAGED COUNT AS
SELECT
 WineType AS types,
 Flavors AS tastes
FROM winestate

If 50 records are returned, the metadata in the results would include this element:

NumRecords="50"

It would then be the responsibility of the application to parse this element and print
number for the application's UI. Note that NumRecords will still be 50 if you add, say
PAGE(0,10) to the statement.

Note the following about this parameter:

• WITH UNPAGED COUNT can be used in a statement with a PAGE clause.

• WITH UNPAGED COUNT is ignored if used in a DEFINE statement.

LET clause
The LET clause defines attributes that may be used elsewhere in the statement but do
not necessarily appear in the statement's result.

The primary intent of LET is to make it easier to group by the value of a computed
attribute (and especially to group by the MEMBERS of a computed attribute). However,
LET can be used in any statement, grouping or not, to define temporary values of use
elsewhere in the statement.

The syntax is:

LET <expression> [AS <attribute>][, <expression> [AS <attribute>]]*

LET may appear in any statement, immediately before the SELECT clause, as in this
example:

RETURN Results AS
LET
 x + y AS intermediateSum
SELECT
 MIN(x) AS min_x,
 intermediateSum + z AS finalSum
FROM WineState
GROUP BY finalSum

The output of the Results statement contains only two attributes, min_x and
finalSum. The LET-bound attribute intermediateSum does not appear in the output.

If present, LET must appear immediately before the SELECT clauses (as in the example
above) and it must be followed by one or more attribute definitions, separated by
commas. These attribute definitions look and act exactly like those that appear after
SELECT. In particular, if the expression on the left-hand side of the definition is a bare
attribute reference (optionally with data-source qualifier), then the AS clause of the
definition is optional. That is, you may write:

LET x,
 State.y AS y,
 3 as z

which is equivalent to:

LET clause

Statements and Clauses 2-3

LET x AS x,
 State.y AS y,
 3 as z

LET attributes are computed immediately after the statement WHERE clause (if used)
and before any of the SELECT attributes are computed.

Because LET attributes are computed before grouping, aggregators like AVG and SUM
are illegal in LET clauses, and EQL signals an error if any appear in that context.

LET scoping

An attribute defined with LET is in scope:

• for all following LET definitions in the same statement

• for all SELECT definitions in the same statement

• for the GROUP BY clause, including MEMBERS, in the same statement.

In addition, if a LET attribute is used as a grouping key, then it also appears in the
statement's results and is available for use in ORDER BY and HAVING clauses. If the
attribute is not a grouping key, then it is not in scope for ORDER BY or HAVING.

This example illustrates the LET scoping rules:

RETURN results AS
LET
 (FOREACH d IN orderDates RETURN (EXTRACT(d, YEAR))) AS orderYears
SELECT
 MAX(totalCost) AS maxCost
FROM OrderHistory
GROUP BY orderYears
HAVING 2014 IN orderYears

The example assumes that the data-source OrderHistory defines an attribute
orderDates of type mdex:dateTime-set. The definition of the orderYears attribute
extracts the year from each date in orderDates and then re-assembles these years into
a set. The statement groups its results by the set of order years, computing the
maximum cost for each, and returning rows for those orders that have at least one date
in 2014 in orderDates. Because orderYears is a group key, the output table has two
attributes (maxCost and orderYears), and orderYears is available for use in the
HAVING clause.

As an alternative, consider this example:

RETURN results AS
LET
 (FOREACH d IN orderDates RETURN (EXTRACT(d, YEAR))) AS orderYears
SELECT
 MAX(totalCost) AS maxCost
FROM OrderHistory
GROUP BY MEMBERS(orderYears) AS yr

This statement is the same as the previous example, except that this statement groups
not by orderYears but rather by its members. Therefore, orderYears is not a group key,
but is merely used to compute the group key yr. Therefore, orderYears does not
appear in the statement's output, and it cannot appear in either HAVING or ORDER BY
clauses. (The statement's output contains two attributes, yr and maxCost.)

LET clause

2-4 EQL Reference

To summarize the rules given above: in a non-grouping statement, LET attributes
never appear in the output, and they are never visible in HAVING and ORDER BY
clauses.

SELECT clause
The SELECT clause defines the list of attributes on the records produced by the
statement.

Its syntax is as follows:

SELECT <expression> AS <attributeKey>[, <expression> AS <key>]*

For example:

SELECT Sum(Amount) AS TotalSales

The attribute definitions can refer to previously-defined attributes, as shown in the
following example:

SELECT Sum(Amount) AS TotalSales, TotalSales / 4 AS QuarterAvg

Note: If an attribute defined in a SELECT clause is used in the statement's
GROUP clause, then the expression can only refer to source attributes and other
attributes used in the GROUP clause. It must not contain aggregations.

Using SELECT *

SELECT * selects all the attributes at once from a given record source. The rules for
using SELECT * are:

• You can use SELECT * over a collection. The statement's FROM clause specifies a
named state (which in turn references a collection name). Keep in mind that
retrieving all records from a very large collection can take some time.

• You cannot use the AS clause with a SELECT * statement. For example, this
returns an error:

SELECT * AS allRecs

• You cannot use SELECT * in a grouping statement.

• SELECT * expansion will include grouping keys that are defined by a LET clause
in the source statement.

For example, assume this simple query:

DEFINE ResellerInfo AS
SELECT
 DimReseller_ResellerName,
 DimGeography_StateProvinceName,
 DimReseller_Phone
FROM SaleState;

RETURN Resellers as
SELECT *
FROM ResellerInfo

The query first generates an intermediate result (named ResellerInfo) from data in
three attributes, and then uses SELECT * to select all the attributes from ResellerInfo.

SELECT clause

Statements and Clauses 2-5

The sample query selects all the attributes from a given collection:

RETURN Results as
SELECT *
FROM WineState

In the query, the WineState state references the Wines collection, which means that all
of that collection's records are returned.

You can also use SELECT * with a JOIN clause, as shown in this example:

DEFINE Reseller AS
SELECT
 DimReseller_ResellerKey,
 DimReseller_ResellerName,
 DimReseller_AnnualSales
FROM SaleState;

DEFINE Orders AS
SELECT
 FactSales_ResellerKey,
 FactSales_SalesAmount
FROM SaleState;

RETURN TopResellers AS
SELECT
 R.*, O.FactSales_SalesAmount
FROM Reseller R JOIN Orders O on (R.DimReseller_ResellerKey =
O.FactSales_ResellerKey)
WHERE O.FactSales_SalesAmount > 10000

In the example, the expression R.* (in the RETURN TopResellers statement)
expands to include all the attributes selected in the DEFINE Reseller statement.

Note that you should be aware of the behavior of SELECT * clauses in regard to
attributes with the same name in statements. That is, assuming this SELECT clause:

SELECT Amt, *

If * includes an attribute named Amt, then the SELECT will trigger the EQL error:
"Attribute "Amt" is defined more than once."

Likewise in a join:

SELECT * FROM a JOIN b ON (...)

If a and b both contain an attribute with the same name, then the query triggers the
same EQL error as above. It will list one of the attributes that the two sides of the join
share. Note that the error message will reference the statement name with the
problem.

AS clause
The AS clause allows you to give an alias name to EQL attributes and results.

The alias name can be given to an attribute, attribute list, expression result, or query
result set. The aliased name is temporary, as it does not persist across different EQL
queries.

Alias names must be NCName-compliant (for example, they cannot contain spaces).
The NCName format is defined in the W3C document Namespaces in XML 1.0
(Second Edition), located at this URL: http://www.w3.org/TR/REC-xml-names/.

AS clause

2-6 EQL Reference

http://www.w3.org/TR/REC-xml-names/

Note: Attribute names are not required to be aliased, as the names are already
NCName-compliant. However, you can alias attribute names if you wish (for
example, for better human readability of a query that uses long attribute
names).

AS is used in:

• DEFINE statements, to name a record set that will later be referenced by another
statement (such as a SELECT or FROM clause).

• RETURN statements, to name the EQL results. This name is typically shown at the
presentation level.

• SELECT statements, to name attributes, attribute lists, or expression results. This
name is also typically shown at the presentation level.

Assume this DEFINE example:

DEFINE EmployeeTotals AS
SELECT
 DimEmployee_FullName AS Name,
 SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY DimEmployee_EmployeeKey, ProductSubcategoryName;

In the example, EmployeeTotals is an alias for the results produced by the SELECT
and GROUP BY statements, while Name is an alias for the DimEmployee_FullName
attribute, and Total is an alias for the results of the SUM expression.

Using AS expressions to calculate derived attributes

EQL statements typically use expressions to compute one or more derived attributes.
Each aggregation operation can declare an arbitrary set of named expressions,
sometimes referred to as derived attributes, using SELECT AS syntax. These
expressions represent aggregate analytic functions that are computed for each
aggregated record in the statement result.

Important: Derived attribute names must be NCName-compliant. They
cannot contain spaces or special characters. For example, the following
statement would not be valid:

RETURN price AS SELECT AVG(Price) AS "Average Price"

The space would have to be removed:

RETURN price AS SELECT AVG(Price) AS AveragePrice

FROM clause
You must include a FROM clause in your statement to specify a record source.

A FROM clause is mandatory in a statement and specifies the source of records for an
EQL statement, such as from a state name or from a previously-defined statement.

The FROM syntax is:

FROM <recSource> [alias]

FROM clause

Statements and Clauses 2-7

where <recSource> can be:

• The name of previously-defined statement (whether that statement is a DEFINE or
a RETURN).

• A state name. Note that FROM does not directly support collection names, but does
in essence because the state includes a collection name and the Dgraph database for
the data set.

• A JOIN or a CROSS JOIN.

If you omit the FROM clause in your query, the EQL parser returns an error.

Using FROM with a previously-defined statement

You can use the result of a different statement as your record source. In the following
example, the first statement (named RepQuarters) computes the total number of sales
transactions for each quarter and sales representative. To then compute the average
number of transactions per sales rep, a subsequent statement (named Quarters)
groups those results by quarter:

DEFINE RepQuarters AS
SELECT COUNT(TransId) AS NumTrans
FROM SaleState
GROUP BY SalesRep, Quarter;

RETURN Quarters AS
SELECT AVG(NumTrans) AS AvgTransPerRep
FROM RepQuarters
GROUP BY Quarter

The RepQuarters statement generates a list of records. Each record contains the
attributes { SalesRep, Quarter, NumTrans }. For example:

{ J. Smith, 11Q1, 10 }
{ J. Smith, 11Q2, 3 }
{ F. Jackson, 10Q4, 10 }
...

The Quarters statement then uses the results of the RepQuarters statement to generate
a list with the attributes { Quarter, AvgTransPerRep }. For example:

{ 10Q4, 10 }
{ 11Q1, 4.5 }
{ 11Q2, 6 }
...

State name in FROM clauses

State names can be specified in EQL FROM clauses with this syntax:

FROM <statename>[_FILTERED | _UNFILTERED | _ALL]

where:

• statename_FILTERED represents the state with all filters applied (i.e., all the filters
that are in the state of the query).

• statename (i.e., using just the state name without a filtering qualifier) is a synonym
for statename_FILTERED.

• statename_UNFILTERED represents the state with only the security filter applied.

FROM clause

2-8 EQL Reference

• statename_ALL is a synonym for statename_UNFILTERED.

As an example, assume this simple Conversation Service query that uses the
EQLQuery type:

<Request>
 <Language>en</Language>
 <State>
 <Name>WineState</Name>
 <CollectionName>Wines</CollectionName>
 <DataSourceFilter Id="DataFltr">
 <filterString>WineType <> 'Red'</filterString>
 </DataSourceFilter>
 <SelectionFilter Id="SecFltr">
 <filterString>Price > 25</filterString>
 </SelectionFilter>
 </State>
 <EQLConfig Id="WineRecs">
 <EQLQueryString>
 RETURN results AS
 SELECT Price AS prices
 FROM WineState
 GROUP BY prices
 </EQLQueryString>
 </EQLConfig>
</Request>

The query works as follows:

1. The DataSourceFilter filter (which is the security filter) first removes any
record that has a WineType=Red assignment. In our small data set, only 11
records pass the filter. (Note that WineType must be single-assign or the query
will fail.)

2. The SelectionFilter filter then selects any record whose Price assignment is
$25 or more. 7 more records are filtered out (from the previous 11 records),
leaving 4 records.

3. The FROM clause in the EQL statement references the state named WineState.

Thus, because the FROM clause in the EQL statement references the state named
WineState, both filters from the state are applied and the 4 records are returned.

JOIN clause
JOIN clauses allow records from multiple statements and/or named states to be
combined, based on a relationship between certain attributes in these statements.

JOIN clauses, which conform to a subset of the SQL standard, do a join with the
specified join condition. The join condition may be an arbitrary Boolean expression
referring to the attributes in the FROM statement. The expression must be enclosed in
parentheses.

The JOIN clause always modifies a FROM clause. Two named sources (one or both of
which can be named states) can be indicated in the FROM clause. Fields must be dot-
qualified to indicate which source they come from, except in queries from a single
table.

Self-join is supported. Statement aliasing is required for self-join.

Both input tables must result from DEFINE or RETURN statements (that is, from
intermediate results).

JOIN clause

Statements and Clauses 2-9

Any number of joins can be performed in a single statement.

The syntax of JOIN is as follows:

FROM <statement1> [alias]
 [INNER,CROSS,LEFT,RIGHT,FULL] JOIN <statement2> [alias]
 ON (Boolean-expression) [JOIN <statementN> [alias] ON (Boolean-expression)]*

where statement is either a statement or a named state. Note that you can put multiple
JOIN clauses under a FROM clause, but there must be exactly one FROM clause in any
statement.

Types of joins

EQL supports the following types of joins:

• INNER JOIN: INNER JOIN joins records on the left and right sides, then filters the
result records by the join condition. That means that only rows for which the join
condition is TRUE are included. If you do not specify the join type, JOIN defaults to
INNER JOIN. Note that the INNER keyword can be used only with JOIN, and EQL
will throw an error if it is used with the other join types.

• LEFT JOIN, RIGHT JOIN, and FULL JOIN: LEFT JOIN, RIGHT JOIN, and FULL
JOIN (collectively called outer joins) extend the result of an INNER JOIN with
records from a side for which no record on the other side matched the join
condition. When such an additional record is included from one side, the record in
the join result contains NULLs for all attributes from the other side. LEFT JOIN
includes all such rows from the left side, RIGHT JOIN includes all such rows from
the right side, and FULL JOIN includes all such rows from either side.

• CROSS JOIN: The result of CROSS JOIN is the Cartesian product of the left and
right sides. Each result record has the assignments from both of the corresponding
records from the two sides.

Keep in mind that if not used correctly, joins can cause the Dgraph to grow beyond
available RAM because they can easily create very large results. For example, a CROSS
JOIN of a result with 100 records and a result with 200 records would contain 20,000
records. Two best practices are to avoid CROSS JOIN if possible and to be careful with
ON conditions so that the number of results are reasonable.

INNER JOIN example

The following INNER JOIN example finds employees whose sales in a particular
subcategory account for more than 10% of that subcategory's total:

DEFINE EmployeeTotals AS
SELECT
 ARB(DimEmployee_FullName) AS Name,
 SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY DimEmployee_EmployeeKey, ProductSubcategoryName;

DEFINE SubcategoryTotals AS
SELECT
 SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY ProductSubcategoryName;

RETURN Stars AS
SELECT
 EmployeeTotals.Name AS Name,
 EmployeeTotals.ProductSubcategoryName AS Subcategory,

JOIN clause

2-10 EQL Reference

 100 * EmployeeTotals.Total / SubcategoryTotals.Total AS Pct
FROM EmployeeTotals
 INNER JOIN SubcategoryTotals
 ON (EmployeeTotals.ProductSubcategoryName =
SubcategoryTotals.ProductSubcategoryName)
HAVING Pct > 10

Self-join example

The following self-join using INNER JOIN computes cumulative daily sales totals per
employee:

DEFINE Days AS
SELECT
 FactSales_OrderDateKey AS DateKey,
 DimEmployee_EmployeeKey AS EmployeeKey,
 ARB(DimEmployee_FullName) AS EmployeeName,
 SUM(FactSales_SalesAmount) AS DailyTotal
FROM SaleState
GROUP BY DateKey, EmployeeKey;

RETURN CumulativeDays AS
SELECT
 SUM(PreviousDays.DailyTotal) AS CumulativeTotal,
 Day.DateKey AS DateKey,
 Day.EmployeeKey AS EmployeeKey,
 ARB(Day.EmployeeName) AS EmployeeName
FROM Days Day
 JOIN Days PreviousDays
 ON (PreviousDays.DateKey <= Day.DateKey)
GROUP BY DateKey, EmployeeKey

LEFT JOIN examples

The following LEFT JOIN example computes the top 5 subcategories along with an
Other bucket, for use in a pie chart:

DEFINE Totals AS
SELECT
 SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY ProductSubcategoryName;

DEFINE Top5 AS
SELECT
 ARB(Total) AS Total
FROM Totals
GROUP BY ProductSubcategoryName
ORDER BY Total DESC PAGE(0,5);

RETURN Chart AS
SELECT
 COALESCE(Top5.ProductSubcategoryName, 'Other') AS Subcategory,
 SUM(Totals.Total) AS Total
FROM Totals
 LEFT JOIN Top5
 ON (Totals.ProductSubcategoryName = Top5.ProductSubcategoryName)
GROUP BY Subcategory

The following LEFT JOIN computes metrics for each product in a particular region,
ensuring all products appear in the list even if they have never been sold in that
region:

JOIN clause

Statements and Clauses 2-11

DEFINE Product AS
SELECT
 ProductAlternateKey AS Key,
 ARB(ProductName) AS Name
FROM SaleState
GROUP BY Key;

DEFINE RegionTrans AS
SELECT
 ProductAlternateKey AS ProductKey,
 FactSales_SalesAmount AS Amount
FROM SaleState
WHERE DimSalesTerritory_SalesTerritoryRegion='United Kingdom';

RETURN Results AS
SELECT
 Product.Key AS ProductKey,
 ARB(Product.Name) AS ProductName,
 COALESCE(SUM(RegionTrans.Amount), 0) AS SalesTotal,
 COUNT(RegionTrans.Amount) AS TransactionCount
FROM Product
 LEFT JOIN RegionTrans
 ON (Product.Key = RegionTrans.ProductKey)
GROUP BY ProductKey

FULL JOIN example

The following FULL JOIN computes the top 10 employees' sales totals for the top 10
products, ensuring that each employee and each product appears in the result:

DEFINE TopEmployees AS
SELECT
 DimEmployee_EmployeeKey AS Key,
 ARB(DimEmployee_FullName) AS Name,
 SUM(FactSales_SalesAmount) AS SalesTotal
FROM SaleState
GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE TopProducts AS
SELECT
 ProductAlternateKey AS Key,
 ARB(ProductName) AS Name,
 SUM(FactSales_SalesAmount) AS SalesTotal
FROM SaleState
GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE EmployeeProductTotals AS
SELECT
 DimEmployee_EmployeeKey AS EmployeeKey,
 ProductAlternateKey AS ProductKey,
 SUM(FactSales_SalesAmount) AS SalesTotal
FROM SaleState
GROUP BY EmployeeKey, ProductKey
HAVING [EmployeeKey] IN TopEmployees AND [ProductKey] IN TopProducts;

RETURN Results AS
SELECT
 TopEmployees.Key AS EmployeeKey,

JOIN clause

2-12 EQL Reference

 TopEmployees.Name AS EmployeeName,
 TopEmployees.SalesTotal AS EmployeeTotal,
 TopProducts.Key AS ProductKey,
 TopProducts.Name AS ProductName,
 TopProducts.SalesTotal AS ProductTotal,
 EmployeeProductTotals.SalesTotal AS EmployeeProductTotal
FROM EmployeeProductTotals
 FULL JOIN TopEmployees
 ON (EmployeeProductTotals.EmployeeKey = TopEmployees.Key)
 FULL JOIN TopProducts
 ON (EmployeeProductTotals.ProductKey = TopProducts.Key)

CROSS JOIN example

The following CROSS JOIN example finds the percentage of total sales each product
subcategory represents:

DEFINE GlobalTotal AS
SELECT
 SUM(FactSales_SalesAmount) AS GlobalTotal
FROM SaleState
GROUP;

DEFINE SubcategoryTotals AS
SELECT
 SUM(FactSales_SalesAmount) AS SubcategoryTotal
FROM SaleState
GROUP BY ProductSubcategoryName;

RETURN SubcategoryContributions AS
SELECT
 SubcategoryTotals.ProductSubcategoryName AS Subcategory,
 SubcategoryTotals.SubcategoryTotal / GlobalTotal.GlobalTotal AS Contribution
FROM SubcategoryTotals
 CROSS JOIN GlobalTotal

WHERE clause
The WHERE clause is used to filter input records for an expression.

EQL provides two filtering options: WHERE and HAVING. The syntax of the WHERE
clause is as follows:

WHERE <BooleanExpression>

The WHERE clause must appear immediately after the FROM clause.

You can use the WHERE clause with any Boolean expression, such as:

• Numeric and string value comparison: {= , <>, <, <=, >, >=}

• Set operations: such as SUBSET and IS_MEMBER_OF

• Null value evaluation: <attribute> IS {NULL, NOT NULL} (for atomic
values) and <attribute> IS {EMPTY, NOT EMPTY} (for sets)

• Grouping keys of the source statement: <attribute-list> IN <source-
statement>. The number and type of these keys must match the number and
type of keys used in the statement referenced by the IN clause. For more
information, see IN.

WHERE clause

Statements and Clauses 2-13

Aliased attributes (from the SELECT clause) cannot be used in the WHERE clause,
because WHERE looks for an attribute in the source. Thus, this example:

RETURN results AS
SELECT
 FactSales_RecordSpec AS id,
 FactSales_ProductKey AS keys
FROM SaleState
WHERE id > 5
ORDER BY keys

is invalid and returns the error message:

In statement "results": In WHERE clause: The state "Sales" does not have an
attribute named "id"

If an aggregation function is used with a WHERE clause, then the Boolean expression
must be enclosed within parentheses. The aggregation functions are listed in the topic
Aggregation functions.

In this example, the amounts are only calculated for sales in the West region. Then,
within those results, only sales representatives who generated at least $10,000 are
returned:

RETURN Reps AS
SELECT
 SUM(Amount) AS SalesTotal
FROM SaleState
WHERE Region = 'West'
GROUP BY SalesRep
HAVING SalesTotal > 10000

In the next example, a single statement contains two expressions. The first expression
computes the total for all of the records and the second expression computes the total
for one specific sales representative:

RETURN QuarterTotals AS
SELECT
 SUM(Amount) As SalesTotal,
 SUM(Amount) WHERE (SalesRep = 'Juan Smith') AS JuanTotal
FROM SaleState
GROUP BY Quarter

This would return both the total overall sales and the total sales for Juan Smith for
each quarter. Note that the Boolean expression in the WHERE clause is in parentheses
because it is used with an aggregation function (SUM in this case).

The second example also shows how use a per-aggregate WHERE clause:

SUM(Amount) WHERE (SalesRep = 'Juan Smith') AS JuanTotal

For more information on per-aggregate WHERE filters, see Per-aggregation filters.

HAVING clause
The HAVING clause is used to filter output records.

The syntax of the HAVING clause is as follows:

HAVING <BooleanExpression>

You can use the HAVING clause with any Boolean expression, such as:

HAVING clause

2-14 EQL Reference

• Numeric and string value comparison: {= , <>, <, <=, >, >=}

• Null value evaluation: <attribute> IS {NULL, NOT NULL, EMPTY, NOT
EMPTY}

• Set operations: such as SUBSET and IS_MEMBER_OF

• Grouping keys of the source statement: <attribute-list> IN <source-
statement>

In the following example, the results include only sales representatives who generated
at least $10,000:

RETURN Reps AS
SELECT SUM(Amount) AS SalesTotal
FROM SaleState
GROUP BY SalesRep
HAVING SalesTotal > 10000

Note that HAVING clauses may refer only to attributes defined in the same statement
(such as aliased attributes defined by a SELECT clause). For example, this is an invalid
statement:

// Invalid because "Price" is not defined in the statement (i.e., Price is a
collection attribute).
Return results AS
SELECT SUM(Price) AS TotalPrices
FROM SaleState
GROUP BY WineType
HAVING Price > 100

The invalid statement example would return this error message:

In statement "results": In HAVING clause: Local statement attribute "Price" is not
in scope

To correct the error, replace the local statement attribute (Price) with an attribute
defined in the statement (TotalPrices):

// Valid because "TotalPrices" is defined in the statement.
Return results AS
SELECT SUM(Price) AS TotalPrices
FROM SaleState
GROUP BY WineType
HAVING TotalPrices > 100

ORDER BY clause
The ORDER BY clause is used to control the order of result records.

You can sort result records by specifying attribute names or an arbitrary expression.

The ORDER BY syntax is as follows:

ORDER BY <Attr|Exp> [ASC|DESC] [,<Attr|Exp> [ASC|DESC]]*

where Attr|Exp is either an attribute name or an arbitrary expression. The attribute
can be either a single-assign or multi-assign attribute.

Optionally, you can specify whether to sort in ascending (ASC) or descending (DESC)
order. You can use any combination of values and sort orders. The absence of a
direction implies ASC.

ORDER BY clause

Statements and Clauses 2-15

An ORDER BY clause has the following behavior:

• NULL values will always sort after non-NULL values for a given attribute, and
NaN (not-a-number) values will always sort after values other than NaN and
NULL, regardless of the direction of the sort.

• An arbitrary but stable order is used when sorting by sets (multi-assign attributes).

• Tied ranges (or all records in the absence of an ORDER BY clause) are ordered in an
arbitrary but stable way: the same query will always return its results in the same
order, as long as it is querying against the same version of the data.

• Data updates add or remove records from the order, but will not change the order
of unmodified records.

In this example, the Price single-assign attribute is totaled and then grouped by the
single-assign WineType attribute. The resulting records are sorted by the total amount
in descending order:

RETURN Results AS
SELECT SUM(Price) AS Total
FROM WineState
GROUP BY WineType
ORDER BY Total DESC

The result of this statement from a small set of twenty-five records might be:

Total WineType

142.34	Red
97.97	White
52.90	Chardonnay
46.98	Brut
25.99	Merlot
21.99	Bordeaux
16.99	Blanc de Noirs
14.99	Pinot Noir
	Zinfandel

The Zinfandel bucket is sorted last because it has a NULL value for Price. Note that if
the sort order were ASC, Zinfandel would still be last in the result.

String sorting

String values are sorted in Unicode code point order.

Geocode sorting

When sorting by geocode values, the order is arbitrary but stable, but not otherwise
specified. To establish a more meaningful sort order when using geocode data,
compute the distance from some point, and then sort by the distance. For example:

ORDER BY LATITUDE(location), LONGITUDE(location)

Expression sorting

An ORDER BY clause allows you to use an arbitrary expression to sort the resulting
records. The expressions in the ORDER BY clause will only be able to refer to attributes
of the local statement, except through lookup expressions, as shown in these simple
statements:

ORDER BY clause

2-16 EQL Reference

/* Invalid statement */
DEFINE T1 AS
SELECT ... AS foo
FROM SaleState;

RETURN T2 AS
SELECT ... AS bar
FROM T1
ORDER BY T1.foo /* not allowed */

/* Valid statement */
DEFINE T1 AS
SELECT ... AS foo
FROM SaleState;

RETURN T2 AS
SELECT ... AS bar
FROM T1
ORDER BY T1[].foo /* allowed */

In addition, the expression cannot contain aggregation functions. For example:

RETURN T AS
SELECT ... AS bar
FROM T1
ORDER BY SUM(bar) /* not allowed because of SUM aggregation function */

RETURN T AS
SELECT ... AS bar
FROM T1
ORDER BY ABS(bar) /* allowed */

Sorting by sets

As mentioned above, an arbitrary but stable order is used when sorting by sets (multi-
assign attributes).

In this example, the Price single-assign attribute is converted to a set and then grouped
by the single-assign WineType attribute. The resulting records are sorted by the set in
descending order:

RETURN Results AS
SELECT SET(Price) AS PriceSet
FROM WineState
GROUP BY WineType
ORDER BY PriceSet DESC

The result of this statement from a small set of 25 records might be:

PriceSet WineType
--
{ 14.99 }	Pinot Noir
{ 12.99, 13.95, 17.5, 18.99, 19.99, 21.99, 9.99 }	Red
{ 25.99}	Merlot
{ 22.99, 23.99 }	Brut
{ 21.99 }	Bordeaux
{ 20.99, 32.99, 43.99 }	White
{ 16.99 }	Blanc de Noirs
{ 17.95, 34.95 }	Chardonnay
	Zinfandel
--

ORDER BY clause

Statements and Clauses 2-17

In this descending order, the Zinfandel bucket is sorted last because it does not have a
Price assignment (and thus returns an empty set).

Stability of ORDER BY

EQL guarantees that the results of a statement are stable across queries. This means
that:

• If no updates are performed, then the same statement will return results in the
same order on repeated queries, even if no ORDER BY clause is specified, or there
are ties in the order specified in the ORDER BY clause.

• If updates are performed, then only changes that explicitly impact the order will
impact the order; the order will not be otherwise affected. The order can be
impacted by changes such as deleting or inserting records that contribute to the
result on or prior to the returned page, or modifying a value that is used for
grouping or ordering.

For example, on a statement with no ORDER BY clause, queries that use PAGE(0,
10), then PAGE(10, 10), then PAGE(20, 10) will, with no updates, return
successive groups of 10 records from the same arbitrary but stable result.

For an example with updates, on a statement with ORDER BY Num PAGE(3, 4), an
initial query returns records {5, 6, 7, 8}. An update then inserts a record with 4 (before
the specified page), deletes the record with 6 (on the specified page), and inserts a
record with 9 (after the specified page). The results of the same query, after the update,
would be {4, 5, 7, 8}. This is because:

• The insertion of 4 shifts all subsequent results down by one. Offsetting by 3 records
includes the new record.

• The removal of 6 shifts all subsequent results up by one.

• The insertion of 9 does not impact any of the records prior to or included in this
result.

Note that ORDER BY only impacts the result of a RETURN clause, or the effect of a
PAGE clause. ORDER BY on a DEFINE with no PAGE clause has no effect.

PAGE clause
The PAGE clause specifies a subset of records to return.

By default, a statement returns all of the result records. In some cases, however, it is
useful to request only a subset of the results. In these cases, you can use the PAGE
(<offset>, <count>) clause to specify how many result records to return:

• The <offset> argument is an integer that determines the number of records to
skip. An offset of 0 will return the first result record; an offset of 8 will return the
ninth.

• The <count> argument is an integer that determines the number of records to
return.

Note that if <offset> is greater than the total number of available records, an empty
table is returned. However, if <offset> + <count> is greater than the total number
of available records, it returns as many records as it can.

The following example groups records by the SalesRep attribute, and returns result
records 11-20:

PAGE clause

2-18 EQL Reference

DEFINE Reps AS
FROM ResellerState
GROUP BY SalesRep
PAGE (10,10)

PAGE applies to intermediate results; a statement FROM a statement with PAGE(0,
10) will have at most 10 source records.

Top-K

You can use the PAGE clause in conjunction with the ORDER BY clause in order to
create Top-K queries. The following example returns the top 10 sales representatives
by total sales:

DEFINE Reps AS
SELECT SUM(Amount) AS Total
FROM ResellerState
GROUP BY SalesRep
ORDER BY Total DESC
PAGE (0,10)

Percentile

The PAGE clause supports a PERCENT modifier. When PERCENT is specified, fractional
offset and size are allowed, as in the example PAGE(33.3, 0.5) PERCENT. This
specified the portion of the data set to skip and the portion to return.

The number of records skipped equals round(offset * COUNT / 100).

The number of records returned equals round((offset + size) * COUNT /
100) - round(offset * COUNT / 100).

DEFINE ModelYear AS
SELECT SUM(Cost) AS Cost
FROM ProductState
GROUP BY Model, Year
ORDER BY Cost DESC
PAGE(0, 10) PERCENT

The PERCENT keyword will not repeat records at non-overlapping offsets, but the
number of results for a given page size may not be uniform across the same query.

For example, if COUNT = 6:

PAGE clause Resulting behavior is the same as

PAGE (0, 25) PERCENT PAGE (0, 2)

PAGE (25, 25) PERCENT PAGE (2, 1)

PAGE (50, 25) PERCENT PAGE (3, 2)

PAGE (75, 25) PERCENT PAGE (5, 1)

PAGE clause

Statements and Clauses 2-19

PAGE clause

2-20 EQL Reference

3
Aggregation

In EQL, aggregation operations bucket a set of records into a resulting set of
aggregated records.

GROUP/GROUP BY clauses
The GROUP and GROUP BY clauses specify how to map source records to
result records in order to group statement output.

MEMBERS extension
MEMBERS is an extension to GROUP BY that allows grouping by the
members of a set.

GROUPING SETS expression
A GROUPING SETS expression allows you to selectively specify the set
of groups that you want to create within a GROUP BY clause.

ROLLUP extension
ROLLUP is an extension to GROUP BY that enables calculation of multiple
levels of subtotals across a specified group of attributes. It also calculates
a grand total.

CUBE extension
CUBE takes a specified set of attributes and creates subtotals for all of
their possible combinations.

GROUPING function
The GROUPING helper function indicates whether a specified attribute
expression in a GROUP BY list is aggregated.

COUNT function
The COUNT function returns the number of records that have a value for
an attribute.

COUNT_APPROX
COUNT_APPROX returns the most frequent refinements.

COUNTDISTINCT function
The COUNTDISTINCT function counts the number of distinct values for
an attribute.

APPROXCOUNTDISTINCT function
The APPROXCOUNTDISTINCT function counts the number of distinct
values for an attribute.

Multi-level aggregation
You can perform multi-level aggregation in EQL.

Aggregation 3-1

Per-aggregation filters
Each aggregation can have its own filtering WHERE clause. Aggregation
function filters filter the inputs to an aggregation expression. They are
useful for working with sparse or heterogeneous data. Only records that
satisfy the filter contribute to the calculation of the aggregation function.

GROUP/GROUP BY clauses
The GROUP and GROUP BY clauses specify how to map source records to result records
in order to group statement output.

Some of the ways to use these clauses in a query are:

• Omitting the GROUP clause maps each source record to its own result record.

• GROUP maps all source records to a single result record.

• GROUP BY <attributeList> maps source records to result records by the
combination of values in the listed attributes.

You can also use other grouping functions (such as MEMBERS, CUBE, or GROUPING
SETS) with the GROUP and GROUP BY clauses. Details on these functions are given
later in this section.

BNF grammar for grouping

The BNF grammar representation for GROUP and the family of group functions is:

GroupClause ::= GROUP | GROUP BY GroupByList | GROUP BY GroupAll
GroupByList ::= GroupByElement | GroupByList , GroupByElement
GroupByElement ::= GroupBySingle | GroupingSets | CubeRollup

GroupingSets ::= GROUPING SETS (GroupingSetList)
GroupingSetList ::= GroupingSetElement | GroupingSetList , GroupingSetElement
GroupingSetElement ::= GroupBySingle | GroupByComposite | CubeRollup | GroupAll

CubeRollup ::= {CUBE | ROLLUP} (CubeRollupList)
CubeRollupList ::= CubeRollupElement | CubeRollupList , CubeRollupElement
CubeRollupElement ::= GroupBySingle | GroupByComposite

GroupBySingle ::= Identifier | GroupByMembers
GroupByComposite ::= (GroupByCompositeList)
GroupByCompositeList ::= GroupBySingle | GroupByCompositeList, GroupBySingle
GroupByMembers ::= MEMBERS (Identifier | Identifier.Identifier) AS Identifier

GroupAll ::= ()

Note that the use of GroupAll results in the following being all equivalent:

GROUP = GROUP BY() = GROUP BY GROUPING SETS(())

Specifying only GROUP

You can use a GROUP clause to aggregate results into a single bucket. As the BNF
grammar shows, the GROUP clause does not take an argument.

For example, the following statement uses the SUM statement to return a single sum
across a set of records:

RETURN ReviewCount AS
SELECT SUM(NumReviews) AS NumberOfReviews
FROM ProductState
GROUP

GROUP/GROUP BY clauses

3-2 EQL Reference

This statement returns one record for NumberOfReviews. The value is the sum of the
values for the NumReviews attribute.

Specifying GROUP BY

You can use GROUP BY to aggregate results into buckets with common values for the
grouping keys. The GROUP BY syntax is:

GROUP BY attributeList

where attributeList is a single attribute, a comma-separated list of multiple attributes,
GROUPING SETS, CUBE, ROLLUP, or () to specify an empty group. The empty group
generates a total.

Grouping is allowed on source and locally-defined attributes.

Note: If you group by a locally-defined attribute, that attribute cannot refer to
non-grouping attributes and cannot contain any aggregates. However, IN
expressions and lookup expressions are valid in this context.

All grouping attributes are part of the result records. In any grouping attribute, NULL
values (for single-assign attributes) or empty sets (for multi-assign attributes) are
treated like any other value, which means the source record is mapped to result
records. For information about user-defined NULL-value handling in EQL, see
COALESCE.

For example, suppose we have sales transaction data with records consisting of the
following attributes:

{ TransId, ProductType, Amount, Year, Quarter, Region,
 SalesRep, Customer }

For example:

{ TransId = 1, ProductType = "Widget", Amount = 100.00,
 Year = 2011, Quarter = "11Q1", Region = "East",
 SalesRep = "J. Smith", Customer = "Customer1" }

If an EQL statement uses Region and Year as GROUP BY attributes, the statement
results contain an aggregated record for each valid, non-empty combination of Region
and Year. In EQL, this example is expressed as:

DEFINE RegionsByYear AS
GROUP BY Region, Year

resulting in the aggregates of the form { Region, Year }, for example:

{ "East", "2010" }
{ "West", "2011" }
{ "East", "2011" }

Note that using duplicated columns in GROUP BY clauses is allowed. This means that
the following two queries are treated as equivalent:

RETURN Results AS
SELECT SUM(PROMO_COST) AS PR_Cost
FROM SaleState
GROUP BY PROMO_NAME

RETURN Results AS

GROUP/GROUP BY clauses

Aggregation 3-3

SELECT SUM(PROMO_COST) AS PR_Cost
FROM SaleState
GROUP BY PROMO_NAME, PROMO_NAME

Using a GROUP BY that is an output of a SELECT expression

A GROUP BY key can be the output of a SELECT expression, as long as that expression
itself does not contain an aggregation function.

For example, the following syntax is a correct usage of GROUP BY:

SELECT COALESCE(Person, 'Unknown Person') AS Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error, because Sales2 contains an
aggregation function (SUM):

SELECT SUM(Sales) AS Sales2, ... GROUP BY Sales2

MEMBERS extension
MEMBERS is an extension to GROUP BY that allows grouping by the members of a set.

MEMBERS lets you group by multi-assign attributes. Keep in mind that when grouping
by a multi-assign attribute, all rows are preserved (including those with no
assignments for the attribute).

MEMBERS syntax

MEMBERS appears in the GROUP BY clause, using this syntax:

GROUP BY MEMBERS(<set>) AS <alias> [,MEMBERS(<set2>) AS <alias2>]*

where:

• set is a set of any set data type (such as mdex:string-set or mdex:long-set)
and must be an attribute reference. For example, set can be a multi-assign string
attribute from a given collection.

If LET is not used, then MEMBERS can only refer to attributes from the source
statements or from a collection (i.e., cannot be locally defined). If LET is used, then
MEMBERS can refer to attributes defined in the same statement, as long as those
attributes are defined in a LET clause, not a SELECT clause.

• alias is an aliased name, which must be NCName-compliant. In statement results,
the aliased name has the same data type as the elements of the set.

As the syntax shows, EQL supports grouping by the members of multiple sets
simultaneously. To do this, simply include multiple MEMBERS clauses in a GROUP list.

The MEMBERS form is available in grouping sets, with surface syntax like:

GROUP BY ROLLUP(a, b, MEMBERS(c) AS cValue, d)

Note that grouping by the members of a set is available in any statement, not just
those over a collection (because EQL preserves all values in a set across statement
boundaries).

MEMBERS data type error message

If an attempt is made to use a single-assign attribute as an argument to MEMBERS, an
error message is returned similar to this example:

MEMBERS extension

3-4 EQL Reference

Argument to MEMBERS has type mdex:double; only set types are permitted.

In this error example, MEMBERS was used with a single-assign double attribute
(mdex:double), instead of a multi-assign double attribute (mdex:double-set).

MEMBERS examples

Assume a small data set of 25 records, with each record having zero, one, or two
assignments from the Body multi-assign attribute. WineID is a single-assign attribute
and is the key for the Wine collection. This sample query is made:

RETURN Results AS
SELECT
 SET(WineID) AS IDs
FROM WineState
GROUP BY MEMBERS(Body) AS bodyType

The result of this statement might be:

IDs bodyType

{ 14, 15 }	Supple
{ 22, 25 }	Firm
{ 19 }	Fresh
{ 11, 19, 22, 23, 24, 25, 4, 6, 8 }	Robust
{ 10, 11, 12, 13, 16, 18, 3, 4, 5, 7, 9 }	Tannins
{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }	Silky
{ 1, 17, 2, 20, 21 }	

In the results, note that several records contribute to multiple buckets, because they
have two Body assignments. The last five records in the result have no assignments for
the Body attribute, but they are not discarded during the grouping and are thus listed
with bodyType being NULL. (Note that using WineID allows you to look at the values
in the IDs sets to determine exactly which input rows contributed to which output
rows. For example, Record 4 contributes to both Robust and Tannins; Record 14 only
contributes to Supple; and Record 16 contributes to Tannins and Silky.)

This second example shows how to group by the members of multiple sets
simultaneously. The Body and Score multi-assign attributes are used in the query, as is
the WineType single-assign attribute:

RETURN Results AS
SELECT
 SET(WineID) as IDs
FROM WineState
WHERE WineType = 'White'
GROUP BY MEMBERS(Body) AS bodyType, MEMBERS(Score) AS scoreValue

The result of this query might be:

IDs bodyType scoreValue

{ 25 }	Firm	82
{ 25 }	Firm	84
{ 19 }	Fresh	88
{ 25 }	Robust	82
{ 25 }	Robust	84
{ 19 }	Robust	88
{ 20 }		71
{ 20 }		75

MEMBERS extension

Aggregation 3-5

| { 21 } | | 87 |
| { 21 } | | 89 |

Note that the record with WineID=25 contributes to four buckets, corresponding to the
cross product of { Firm, Robust } and { 82, 84 }. Records 20 and 21 have assignments for
the Score attribute but have no assignments for the Body attribute, and are listed with
bodyType being NULL and scoreValue having values.

Note on MEMBERS interaction with GROUPING SETS

You should be aware that grouping by set members may interact with GROUPING
SETS (including CUBE and ROLLUP) to produce results that at first glance may seem
unexpected.

For example, first we make a query that groups only by the ROLLUP extension:

RETURN Results AS
SELECT
 SUM(Price) AS totalPrice
FROM WineState
GROUP BY ROLLUP(WineType)

The result with our data set is:

WineType totalPrice

Blanc de Noirs	16.99
Brut	46.98
Zinfandel	
Merlot	25.99
Bordeaux	21.99
Chardonnay	52.90
White	97.97
Pinot Noir	14.99
Red	142.34
	420.15

We get one row for each WineType, and one summary row at the bottom, which
includes records from all of the WineType values. Because SUM is associative, the
expected behavior is that the totalPrice summary row will be equal to the sum of the
totalPrice values for all other rows, and in fact the 420.15 result meets that expectation.
(Note that the total for White wines is 97.97.)

Then we make a similar query, but selecting only the White wines and grouping with
MEMBERS and ROLLUP:

RETURN Results AS
SELECT
 SUM(Price) AS totalPrice
FROM WineState
WHERE WineType = 'White'
GROUP BY ROLLUP(WineType, MEMBERS(Body) AS bodyType)

The result from this second query is:

WineType bodyType totalPrice

| White | Firm | 43.99 |
| White | Fresh | 20.99 |

MEMBERS extension

3-6 EQL Reference

White	Robust	64.98
White		32.99
White		97.97
		97.97

The results show that the correspondence between the summary row and the
individual rows is not as expected. One might expect the totalPrice for the 'White'
summary row (that is, the row where WineType is White and bodyType is null) to be
the sum of the total prices for the (White, Firm), (White, Fresh), and (White, Robust)
rows above it.

However, if you add the total prices for the first four rows, you get 162.95, rather than
the expected value of 97.97. This discrepancy arises because, when you group by the
members of a set, a row can contribute to multiple buckets. In particular, Record 19
has two Body assignments (Fresh and Robust) and therefore contributes to both the
(White, Fresh) and (White, Robust) rows, and so its price is in effect double-counted.

EQL effectively computes the 'White' summary row, however, by grouping by
WineType (which is a single-assign attribute), so each input row counts exactly once.

GROUPING SETS expression
A GROUPING SETS expression allows you to selectively specify the set of groups that
you want to create within a GROUP BY clause.

GROUPING SETS specifies multiple groupings of data in one query. Only the specified
groups are aggregated, instead of the full set of aggregations that are generated by
CUBE or ROLLUP. GROUPING SETS can contain a single element or a list of elements.
GROUPING SETS can specify groupings equivalent to those returned by ROLLUP or
CUBE.

GROUPING SETS syntax

The GROUPING SETS syntax is:

GROUPING SETS(groupingSetList)

where groupingSetList is a single attribute, a comma-separated list of multiple
attributes, CUBE, ROLLUP, or () to specify an empty group. The empty group generates
a total. Note that nested grouping sets are not allowed.

For example:

GROUP BY GROUPING SETS(a, (b), (c, d), ())

Multiple grouping sets expressions can exist in the same query.

GROUP BY a, GROUPING SETS(b, c), GROUPING SETS((d, e))

is equivalent to:

GROUP BY GROUPING SETS((a, b, d, e),(a, c, d, e))

Keep in mind that the use of () to specify an empty group means that the following are
all equivalent:

GROUP = GROUP BY() = GROUP BY GROUPING SETS(())

GROUPING SETS expression

Aggregation 3-7

How duplicate attributes in a grouping set are handled

Specifying duplicate attributes in a given grouping set will not raise an error, but only
one instance of the attribute will be used because duplicate grouping set instances are
discarded. For example, these two queries are equivalent:

GROUP BY GROUPING SETS ((x), (x))
GROUP BY GROUPING SETS ((x)))

GROUPING SETS example

DEFINE ResellerSales AS
SELECT SUM(DimReseller_AnnualSales) AS TotalSales,
 ARB(DimReseller_ResellerName) AS RepNames,
 DimReseller_OrderMonth AS OrderMonth
FROM ResellerState
GROUP BY OrderMonth;

RETURN MonthlySales AS
SELECT AVG(TotalSales) AS AvgSalesPerRep
FROM ResellerSales
GROUP BY TotalSales, GROUPING SETS(RepNames), GROUPING SETS(OrderMonth)

ROLLUP extension
ROLLUP is an extension to GROUP BY that enables calculation of multiple levels of
subtotals across a specified group of attributes. It also calculates a grand total.

ROLLUP (like CUBE) is syntactic sugar for GROUPING SETS:

ROLLUP(a, b, c) = GROUPING SETS((a,b,c), (a,b), (a), ())

The action of ROLLUP is that it creates subtotals that roll up from the most detailed
level to a grand total, following a grouping list specified in the ROLLUP clause.
ROLLUP takes as its argument an ordered list of attributes and works as follows:

1. It calculates the standard aggregate values specified in the GROUP BY clause.

2. It creates progressively higher-level subtotals, moving from right to left through
the list of attributes.

3. It creates a grand total.

4. Finally, ROLLUP creates subtotals at n+1 levels, where n is the number of
attributes.

For instance, if a query specifies ROLLUP on attributes of time, region, and
department (n=3), the result set will include rows at four aggregation levels.

In summary, ROLLUP is intended for use in tasks involving subtotals.

ROLLUP syntax

ROLLUP appears in the GROUP BY clause, using this syntax:

GROUP BY ROLLUP(attributeList)

where attributeList is either a single attribute or a comma-separated list of multiple
attributes. The attributes may be single-assign or multi-assign attributes. ROLLUP can
be used on collections.

ROLLUP extension

3-8 EQL Reference

ROLLUP example

DEFINE Resellers AS SELECT
 DimReseller_AnnualSales AS Sales,
 DimGeography_CountryRegionName AS Countries,
 DimGeography_StateProvinceName AS States,
 DimReseller_OrderMonth AS OrderMonth
FROM ResellerState
WHERE DimReseller_OrderMonth IS NOT NULL;

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY ROLLUP(Countries, States, OrderMonth)

Partial ROLLUP

You can also roll up so that only some of the subtotals are included. This partial rollup
uses this syntax:

GROUP BY expr1, ROLLUP(expr2, expr3)

In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels. That
is, at level (expr1, expr2, expr3), (expr1, expr2), and (expr1).

Using the above example, the GROUP BY clause for partial ROLLUP would look like
this:

DEFINE Resellers AS SELECT
 ...

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY Countries, ROLLUP(States, OrderMonth)

CUBE extension
CUBE takes a specified set of attributes and creates subtotals for all of their possible
combinations.

If n attributes are specified for a CUBE, there will be 2 to the n combinations of
subtotals returned.

CUBE (like ROLLUP) is syntactic sugar for GROUPING SETS:

CUBE(a, b, c) = GROUPING SETS((a,b,c), (a,b), (a,c), (b,c), (a), (b), (c), ())

CUBE syntax

CUBE appears in the GROUP BY clause, using this syntax:

GROUP BY CUBE(attributeList)

where attributeList is either one attribute or a comma-separated list of multiple
attributes. The attributes may be single-assign or multi-assign attributes. CUBE can be
used on collections.

CUBE example

This example is very similar to the ROLLUP example, except that it uses CUBE:

CUBE extension

Aggregation 3-9

DEFINE Resellers AS SELECT
 DimReseller_AnnualSales AS Sales,
 DimGeography_CountryRegionName AS Countries,
 DimGeography_StateProvinceName AS States,
 DimReseller_OrderMonth AS OrderMonth
FROM ResellerState
WHERE DimReseller_OrderMonth IS NOT NULL;

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY CUBE(Countries, States, OrderMonth)

Partial CUBE

Partial CUBE is similar to partial ROLLUP in that you can limit it to certain attributes
and precede it with attributes outside the CUBE operator. In this case, subtotals of all
possible combinations are limited to the attributes within the cube list (in parentheses),
and they are combined with the preceding items in the GROUP BY list.

The syntax for partial CUBE is:

GROUP BY expr1, CUBE(expr2, expr3)

This syntax example calculates 2^2 (i.e., 4) subtotals:

• (expr1, expr2, expr3)

• (expr1, expr2)

• (expr1, expr3)

• (expr1)

Using the above example, the GROUP BY clause for partial CUBE would look like this:

DEFINE Resellers AS SELECT
 ...
RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY Countries, CUBE(States, OrderMonth)

GROUPING function
The GROUPING helper function indicates whether a specified attribute expression in a
GROUP BY list is aggregated.

GROUPING is a helping function for GROUPING SETS, CUBE, and ROLLUP. Note that
GROUPING cannot be used in a WHERE clause, join condition, inside an aggregate
function, or in the definition of a grouping attribute.

The use of ROLLUP and CUBE can result in two challenging problems:

• How can you programmatically determine which result set rows are subtotals, and
how do you find the exact level of aggregation for a given subtotal? You often need
to use subtotals in calculations such as percent-of-totals, so you need an easy way
to determine which rows are the subtotals.

• What happens if query results contain both stored NULL values and NULL values
created by a ROLLUP or CUBE? How can you differentiate between the two?

GROUPING function

3-10 EQL Reference

The GROUPING function can handle these problems.

GROUPING is used to distinguish the NULL values that are returned by ROLLUP,
CUBE, or GROUPING SETS from standard null values. The NULL returned as the
result of a ROLLUP, CUBE, or GROUPING SETS operation is a special use of NULL.
This acts as a column placeholder in the result set and means all values.

GROUPING returns TRUE when it encounters a NULL value created by a ROLLUP,
CUBE, or GROUPING SETS operation. That is, if the NULL indicates the row is a
subtotal, GROUPING returns TRUE. Any other type of value, including a stored NULL,
returns FALSE.

GROUPING thus lets you programmatically determine which result set rows are
subtotals, and helps you find the exact level of aggregation for a given subtotal.

GROUPING syntax

The GROUPING syntax is:

GROUPING(attribute)

where attribute is a single attribute.

GROUPING example

DEFINE r AS SELECT
 DimReseller_AnnualRevenue AS Revenue,
 DimReseller_AnnualSales AS Sales,
 DimReseller_OrderMonth AS OrderMonth
FROM SaleState;

RETURN results AS SELECT
 COUNT(1) AS COUNT,
 GROUPING(Revenue) AS grouping_Revenue,
 GROUPING(Sales) AS grouping_Sales,
 GROUPING(OrderMonth) AS grouping_OrderMonth
FROM r
GROUP BY
 GROUPING SETS (
 ROLLUP(
 (Revenue),
 (Sales),
 (OrderMonth)
)
)

COUNT function
The COUNT function returns the number of records that have a value for an attribute.

The COUNT function counts the number of records that have non-NULL values in a
field for each GROUP BY result. COUNT can be used with both multi-assign attributes
(sets) and single-assign attributes.

For multi-assign attributes, the COUNT function counts all non-NULL sets in the group.
Note that because sets are never NULL but can be empty, COUNT will also count a
record with an empty set (that is, an empty set is returned for any record that does not
have an assignment for the specified multi-assign attribute). See the second example
below for how to ignore empty sets from the results.

COUNT function

Aggregation 3-11

The syntax of the COUNT function is:

COUNT(<attribute>)

where attribute is either a multi-assign or single-assign attribute.

COUNT examples

The following records include the single-assign Size attribute and the multi-assign
Color attribute:

Record 1: Size=small, Color=red, Color=white
Record 2: Size=small, Color=blue, Color=green
Record 3: Size=small, Color=black
Record 4: Size=small

The following statement returns the number of records for each size that have a value
for the Color attribute:

RETURN Result AS
SELECT COUNT(Color) AS Total
FROM ProductState
GROUP BY Size

The statement result is:

Record 1: Size=small, Total=4

Because all of the records have the same value for Size, there is only one group, and
thus only one record. For this group, the value of Total is 4, because Records 1-3 have
Color assignments (and thus return non-empty sets) and Record 4 does not have a
Color assignment (and an empty set is returned).

If you are using COUNT with a multi-assign attribute and want to exclude empty sets,
use a per-aggregate WHERE clause with the IS NOT EMPTY function, as in this
example:

RETURN result AS
SELECT COUNT(Color) WHERE (Color IS NOT EMPTY) AS Total
FROM ProductState
GROUP BY Size

This statement result is:

Record 1: Size=small, Total=3

because the empty set for Record 4 is not counted.

COUNT(1) format

The COUNT(1) syntax returns a count of all records (including those with NULL
values) in a specific collection. For example, you can get the number of data records in
your Sales collection as follows:

RETURN Results AS
SELECT COUNT(1) AS recordCount
FROM SalesState
GROUP

The statement result should be an integer that represents the total number of data
records.

COUNT function

3-12 EQL Reference

COUNT_APPROX
COUNT_APPROX returns the most frequent refinements.

COUNT_APPROX is similar to the COUNT function except that it is allowed to produce
imprecise results in certain circumstances. Like COUNT, the COUNT_APPROX function
counts the number of records that have non-NULL values in a field for each GROUP
BY result.

The syntax of the COUNT_APPROX function is:

COUNT_APPROX(<attribute>)

where attribute is either a multi-assign or single-assign attribute. You can also use the
COUNT_APPROX(1) format.

The COUNT_APPROX function uses a FrequentK pattern-matching algorithm that
calculates a set of refinements. Specifically, it reports the most frequent values. By
using the PAGE function, you can indicate the frequency range (as illustrated in the
example below).

COUNT_APPROX works best when the distribution is skewed so that a small set of
values appear very frequently. However, if the FrequentK pattern matching fails to
produce any results, then COUNT_APPROX falls back to using the same implementation
as the COUNT function (which does not use the FrequentK algorithm). When running
in the FrequentK pattern-matching mode, COUNT_APPROX may return imprecise
results; however, its accuracy is precise if it falls back to COUNT mode.

COUNT_APPROX example

In this example, COUNTRY is a single-assign attribute containing country names:

RETURN Results AS
 SELECT
 COUNT_APPROX(COUNTRY) AS Approx
 FROM SalesData
 WHERE COUNTRY IS NOT NULL
 GROUP BY COUNTRY
 ORDER BY Approx DESC
 PAGE(0, 10)

The result of this statement might be:

Approx COUNTRY

81970	USA
1590	GERMANY
1353	JAPAN
667	KOREA
598	ENGLAND
585	ITALY
546	CANADA
242	GUAM
203	COLOMBIA
176	SPAIN

COUNTDISTINCT function
The COUNTDISTINCT function counts the number of distinct values for an attribute.

COUNT_APPROX

Aggregation 3-13

The COUNTDISTINCT function returns the number of unique values in a field for each
GROUP BY result. COUNTDISTINCT can be used for both single-assign and multi-
assigned attributes.

Note that because sets are never NULL but can be empty, COUNTDISTINCT will also
evaluate a record with an empty set (that is, an empty set is returned for any record
that does not have an assignment for the specified multi-assign attribute). See the
second example below for how to ignore empty sets from the results.

The syntax of the COUNTDISTINCT function is:

COUNTDISTINCT(<attribute>)

where attribute is either a multi-assign or single-assign attribute.

COUNTDISTINCT example

The following records include the single-assign Size attribute and the multi-assign
Color attribute:

Record 1: Size=small, Color=red
Record 2: Size=small, Color=blue
Record 3: Size=small, Color=red
Record 4: Size=small

The following statement returns for each size the number of different values for the
Color attribute:

RETURN Result AS
SELECT COUNTDISTINCT (Color) as Total
FROM ProductState
GROUP BY Size

The statement result is:

Record 1: Size=small, Total=3

Because all of the records have the same value for Size, there is only one group, and
thus only one record. For this group, the value of Total is 3 because there are two non-
empty sets with unique values for the Color attribute (red and blue), and an empty set
is returned for Record 4.

If you are using COUNTDISTINCT with a multi-assign attribute and want to exclude
empty sets, use a WHERE clause with the IS NOT EMPTY function, as in this example:

RETURN Result AS
SELECT COUNTDISTINCT(Color) WHERE (Color IS NOT EMPTY) AS Total
FROM ProductState
GROUP BY Size

This statement result is:

Record 1: Size=small, Total=2

because the empty set for Record 4 is not counted.

APPROXCOUNTDISTINCT function
The APPROXCOUNTDISTINCT function counts the number of distinct values for an
attribute.

APPROXCOUNTDISTINCT function

3-14 EQL Reference

APPROXCOUNTDISTINCT is similar to the COUNTDISTINCT function except that it is
allowed to produce an approximation for the number of distinct values in certain
circumstances. The APPROXCOUNTDISTINCT function returns the number of unique
values in a field for each GROUP BY result. APPROXCOUNTDISTINCT can be used for
both single-assign and multi-assigned attributes.

The APPROXCOUNTDISTINCT function uses the HyperLogLog algorithm to calculate
the a set of refinements. If the number of distinct values is low, then the results will be
accurate; if the number of distinct values is high, the results will be an approximation.

APPROXCOUNTDISTINCT will also evaluate a record with an empty set (that is, an
empty set is returned for any record that does not have an assignment for the specified
multi-assign attribute).

APPROXCOUNTDISTINCT syntax

The syntax of the APPROXCOUNTDISTINCT function is:

APPROXCOUNTDISTINCT(<attribute>)

where attribute is either a multi-assign or single-assign attribute.

APPROXCOUNTDISTINCT example

Assume the following nine records that are of WineType=Red (where WineType is a
single-assign attribute). Each record includes one or two assignments for the multi-
assign Body attribute:

Body WineID

{ Silky, Tannins } 3
{ Robust, Tannins } 4
{ Silky, Tannins } 5
{ Robust } 6
{ Robust } 8
{ Silky, Tannins } 9
{ Silky, Tannins } 12
{ Silky, Tannins } 16
{ Silky, Tannins } 18

The following statement returns the number of different values for the Body attribute
in the WineType=Red records:

RETURN Result AS
SELECT APPROXCOUNTDISTINCT (Body) AS Total
FROM WineState
WHERE WineType = 'Red'
GROUP BY WineType

The statement result is:

Total=3, WineType=Red

For this group, the value of Total is 3 because there are three non-empty sets with
unique values for the Body attribute:

• One set for Records 3, 5, 9, 12, 16, and 18, each of which has the "Silky" and
"Tannins" assignments for Body.

APPROXCOUNTDISTINCT function

Aggregation 3-15

• One set for Records 6 and 8, each of which has the "Robust" assignment for Body.

• One set for Record 4, which has the "Robust" and "Tannins" assignments for Body.

Thus, there are three sets of distinct values for the Body attribute, when grouped by
the WineType attribute.

Multi-level aggregation
You can perform multi-level aggregation in EQL.

This example computes the average number of transactions per sales representative
grouped by Quarter and Region.

This query represents a multi-level aggregation. First, transactions must be grouped
into sales representatives to get per-representative transaction counts. Then these
representative counts must be aggregated into averages by quarter and region.

DEFINE DealCount AS
SELECT COUNT(TransId) AS NumDeals
FROM SaleState
GROUP BY SalesRep, Quarter, Region ;

RETURN AvgDeals AS
SELECT AVG(NumDeals) AS AvgDealsPerRep
FROM DealCount
GROUP BY Quarter, Region

Per-aggregation filters
Each aggregation can have its own filtering WHERE clause. Aggregation function filters
filter the inputs to an aggregation expression. They are useful for working with sparse
or heterogeneous data. Only records that satisfy the filter contribute to the calculation
of the aggregation function.

Per-aggregate WHERE filters are indeed applied pre-aggregation. The reason is that if it
is delayed until post-aggregation, the implementation may not necessarily have access
to all of the columns that it needs.

The per-aggregation syntax is:

AggregateFunction(Expression) WHERE (Filter)

For example:

RETURN NetSales AS
SELECT
 SUM(Amount) WHERE (Type='Sale') AS SalesTotal,
 SUM(Amount) WHERE (Type='Return') AS ReturnTotal,
 ARB(SalesTotal – ReturnTotal) AS Total
FROM SaleState
GROUP BY Year, Month, Category

This is the same as:

SUM(CASE WHEN Type='Sale' THEN Amount END) AS SalesTotal,
SUM(CASE WHEN type='Return' THEN Amount END) AS ReturnTotal
...

Multi-level aggregation

3-16 EQL Reference

Note: These WHERE clauses also operate on records, not assignments, just like
the statement-level WHERE clause. A source record will contribute to an
aggregation if it passes the statement-level WHERE clause and the aggregation's
WHERE clause.

Per-aggregation filters

Aggregation 3-17

Per-aggregation filters

3-18 EQL Reference

4
Expressions

Expressions are typically combinations of one or more functions, attributes, constants,
or operators. Most expressions are simple combinations of functions and attributes.

Supported data types
This topic describes the format of data types supported by EQL.

Operator precedence rules
EQL enforces the following precedence rules for operators.

Handling of literals and values
This section discusses how characters, numeric values, and NULL values
are used in EQL.

Functions and operators
EQL contains a number of built-in functions that process data. It also
supports arithmetic operators.

Using EQL results to compose follow-on queries
You can select a value in an EQL result and use it to compose a follow-
on query.

Using LOOKUP expressions for inter-statement references
In EQL, you can define statements and then refer to these statements
from other statements via a LOOKUP expression.

ARB
ARB selects an arbitrary but consistent value from the set of values in a
field.

BETWEEN
The BETWEEN expression determines whether an attribute's value falls
within a range of values.

CASE
CASE expressions allow conditional processing in EQL, allowing you to
make decisions at query time.

COALESCE
The COALESCE expression allows for user-specified NULL-handling. It
is often used to fill in missing values in dirty data.

CORRELATION
CORRELATION computes the correlation coefficient between two
numeric attributes for all rows within a group.

HAS_REFINEMENTS
HAS_REFINEMENTS computes whether a particular attribute has non-
implicit refinements in the current navigation state.

Expressions 4-1

IN
IN expressions perform a membership test.

PERCENTILE
PERCENTILE computes a specified percentile of the values of an
attribute for all records in the group.

RECORD_IN_FAST_SAMPLE
RECORD_IN_FAST_SAMPLE is a row function that returns a Boolean
indicating whether the current record is in the sample of the records in
the named state.

Supported data types
This topic describes the format of data types supported by EQL.

EQL data type Description

mdex:boolean Represents a Boolean value (TRUE or FALSE). Used for atomic
values (from single-assign Boolean attributes).

mdex:boolean-set Represents a Boolean value (TRUE or FALSE). Used for sets
(from multi-assign Boolean attributes).

mdex:dateTime Represents a date and time to a resolution of milliseconds.
Used for atomic values (from single-assign dateTime
attributes).

mdex:dateTime-set Represents a date and time to a resolution of milliseconds.
Used for sets (from multi-assign dateTime attributes).

mdex:double Represents a floating point number. Used for atomic values
(from single-assign double attributes).

mdex:double-set Represents a floating point number. Used for sets (from multi-
assign double attributes).

mdex:duration Represents a length of time with a resolution of milliseconds.
Used for atomic values (from single-assign duration
attributes).

mdex:duration-set Represents a length of time with a resolution of milliseconds.
Used for sets (from multi-assign duration attributes).

mdex:geocode Represents a latitude and longitude pair. Used for atomic
values (from single-assign geocode attributes).

mdex:geocode-set Represents a latitude and longitude pair. Used for sets (from
multi-assign geocode attributes).

mdex:long Represents a 64-bit integer. Used for atomic values (from
single-assign 32-bit integer attributes and single-assign 64-bit
long attributes).
Note that while Dgraph records support both 32-bit integers
(mdex:int data type) and 64-bit integers (mdex:long data
type), EQL only supports 64-bit integers (i.e., mdex:long data
type). This means that if you query an attribute that has a 32-
bit integer value, it will appear as a long (64-bit value) in EQL
results.

Supported data types

4-2 EQL Reference

EQL data type Description

mdex:long-set Represents a 64-bit integer. Used for sets (from multi-assign
32-bit integer attributes multi-assign and 64-bit long
attributes). See note for mdex:long data type.

mdex:string Represents character strings. Used for atomic values (from
single-assign string attributes).

mdex:string-set Represents character strings. Used for sets (from multi-assign
string attributes).

mdex:time Represents the time of day to a resolution of milliseconds.
Used for atomic values (from single-assign time attributes).

mdex:time-set Represents the time of day to a resolution of milliseconds.
Used for sets (from multi-assign time attributes).

Operator precedence rules
EQL enforces the following precedence rules for operators.

The rules are listed in descending order:

1. Parentheses (as well as brackets in lookup expressions and IN expressions). Note
that you can freely add parentheses any time you want to impose an alternative
precedence or to make precedence clearer.

2. * /

3. + -

4. = <> < > <= >=

5. IS (IS NULL, IS NOT NULL, IS EMPTY, IS NOT EMPTY)

6. IN

7. BETWEEN

8. NOT

9. AND

10. OR

Except for IN, the binary operators are left-associative, as are all of the JOIN operators.
IN (for set membership) is not associative (for example, writing x IN y IN z results
in a syntax error.)

Comparisons with sets

When comparing values against sets (multi-assign data), you must use the appropriate
set functions and expressions.

For example, if Price is a single-assign double attribute, then this syntax is correct:

RETURN Results AS
SELECT Price AS prices
FROM ProductsState
WHERE Price > 20

However, if Score is a multi-assign integer attribute, then this syntax will fail:

Operator precedence rules

Expressions 4-3

RETURN Results AS
SELECT Score AS ratings
FROM ProductsState
WHERE Score > 80

The error message will be:

In statement "Results": in WHERE clause: The comparison operators are not defined on
arguments
of types mdex:long-set and mdex:long

The error message means that Score is a set (an mdex:long-set data type) and
therefore cannot be compared to an integer (80, which is an mdex:long data type).

You therefore must re-write the query, as in this example:

RETURN Results AS
SELECT Score AS Ratings
FROM ProductsState
WHERE SOME x IN Score SATISFIES (x > 80)

This example uses an existential quantifier expression.

Handling of literals and values
This section discusses how characters, numeric values, and NULL values are used in
EQL.

Character handling
EQL accepts all Unicode characters.

Handling of upper- and lower-case
This topic discusses character case handling in EQL.

Handling NULL attribute values
If an attribute value is missing for a record, then the attribute is referred
to as being NULL. For example, if a record does not contain an
assignment for a Price attribute, EQL defines the Price value as NULL.

Handling of NaN, inf, and -inf results
Operations in EQL adhere to the conventions for Not a Number (NaN),
inf, and -inf defined by the IEEE 754 2008 standard for handling
floating point numbers.

Integer type promotion
In some cases, EQL supports automatic value promotion of integers to
doubles when there is no risk of loss of information.

Handling of precision for doubles
This topic provides information on the limits of precision in serialization
of doubles in EQL results.

Character handling
EQL accepts all Unicode characters.

<Literal> ::= <StringLiteral> | <NumericLiteral>

Handling of literals and values

4-4 EQL Reference

Literal type Handling

String literals String literals must be surrounded by single quotation marks.
Embedded single quotes and backslashes must be escaped by
backslashes. Examples:

'jim'
'àlêx\'s house'

Numeric literals Numeric literals can be integers or floating point numbers.
Numeric literals cannot be surrounded by single quotation
marks.

Numeric literals do not support exponential notation.

34
.34

Boolean literal TRUE/FALSE

Boolean literals cannot be surrounded by single quotation
marks.

Literals of structured types
(such as Date, Time, or
Geocode)

Literals of structured types must use appropriate
conversions, as shown in the following example:

RETURN Result AS
SELECT TO_GEOCODE(45.0, 37.0) AS Geocode,
 TO_DATETIME('2016-07-21T08:22:00Z') AS
Timestamp
...

Identifiers Identifiers must be NCNames. The NCName format is
defined in the W3C document Namespaces in XML 1.0
(Second Edition), located at this URL: http://
www.w3.org/TR/REC-xml-names/.

An identifier must be enclosed in double quotation marks if:
• The identifier contains characters other than letters, digits,

and underscores. For example, if an attribute name
contains a hyphen (which is a valid NCName), then the
attribute name must be enclosed in double quotation
marks in statements. Otherwise, the hyphen will be
treated as the subtraction operator by the EQL parser.

• The identifier starts with a digit.
• The identifier uses the same name as an EQL reserved

keyword. For example, if an attribute is named WHERE or
GROUP, then it must be specified as "WHERE" or
"GROUP".

If an identifier is in quotation marks, then you must use a
backslash to escape double quotation marks and backslashes.

Examples:

"Count"
"Sales.Amount"

Handling of literals and values

Expressions 4-5

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

Handling of upper- and lower-case
This topic discusses character case handling in EQL.

The following are case sensitive:

• Identifiers

• Literals

• Attribute references

Reserved words are case insensitive.

Handling NULL attribute values
If an attribute value is missing for a record, then the attribute is referred to as being
NULL. For example, if a record does not contain an assignment for a Price attribute,
EQL defines the Price value as NULL.

The following table outlines how EQL handles NULL values for each type of
operation:

Type of operation How EQL handles NULL values

Arithmetic operations and
non-aggregating functions

The value of any operation on a NULL value is also defined as
NULL.
For example, if a record has a value of 4 for Quantity and a
NULL value for Price, then the value of Quantity + Price
is considered to be NULL.

Aggregating functions EQL ignores records with NULL values.
For example, if there are 10 records, and 2 of them have a
NULL value for a Price attribute, all aggregating operations
ignore the 2 records, and instead compute their value using
only the other 8 records.

If all 10 records have a NULL Price, then most aggregations,
such as SUM(Price), also result in NULL values.

The exceptions are COUNT and COUNTDISTINCT, which return
zero if all the records have a NULL value (That is, the output of
COUNT or COUNTDISTINCT is never NULL). Note, however,
that COUNT(1) does count records with NULL values.

Boolean operators See Boolean operators.

Grouping expressions EQL does not ignore records that have a NULL value in any of
the group keys, and considers the record to be present in a
group. Even all-NULL groups are returned.

Handling of literals and values

4-6 EQL Reference

Type of operation How EQL handles NULL values

Filters When doing a comparison against a specific value, the NULL
value will not match the specified filter, except for the IS
NULL filter.
Note that:
• Filters used directly on collections have the same semantics

as filters on intermediate results.
• NOT(x=y) is always equivalent to x<>y for all filters.

For example, if record A has price 5, and record B has no price
value, then:
• WHERE price = 5 matches A
• WHERE NOT(price <> 5) matches A
• WHERE price <> 5 matches neither A nor B
• WHERE NOT(price = 5) matches neither A nor B
• WHERE price = 99 matches neither A nor B
• WHERE NOT(price <> 99) matches neither A nor B
• WHERE price <> 99 matches A
• WHERE NOT(price = 99) matches A

Sorting For any sort order specified, EQL returns:

1. Normal results

2. Records for a NaN value

3. Records with a NULL value

Note: There is no NULL keyword or literal. To create a NULL, use CASE, as
in this example: CASE WHEN False THEN 1 END.

Handling of NaN, inf, and -inf results
Operations in EQL adhere to the conventions for Not a Number (NaN), inf, and -inf
defined by the IEEE 754 2008 standard for handling floating point numbers.

In cases when it has to perform operations involving floating point numbers, or
operations involving division by zero or NULL values, EQL expressions can return
NaN, inf, and -inf results.

For example, NaN, inf, and -inf values could arise in your EQL calculations when:

• A zero divided by zero results in NaN

• A positive number divided by zero results in inf

• A negative number divided by zero results in -inf

For most operations, EQL treats NaN, inf, or -inf values the same way as any other
value.

However, you may find it useful to know how EQL defines the following special
values:

Handling of literals and values

Expressions 4-7

Type of operation How EQL handles NaN, inf, and -inf

Arithmetic
operations

Arithmetic operations with NaN values result in NaN values.

Filters NaN values do not pass filters (except for <>).
Any other comparison involving a NaN value is false.

Sorting For any sort order specified, EQL returns:

1. Normal records

2. Records with a NaN value

3. Records with a NULL value

The following example shows how inf and -inf values are treated in ascending and
descending sort orders:

ASC DESC
---- ----
-inf +inf
-4 3
0 0
3 -4
+inf -inf
NaN NaN
NULL NULL

Integer type promotion
In some cases, EQL supports automatic value promotion of integers to doubles when
there is no risk of loss of information.

Promotion of integers to doubles occurs in the following contexts:

• Arguments to the COALESCE expression when called with a mix of integer and
double.

• Arguments to the following operators when called with a mix of integer and
double:

+ - * = <> < <= > >= BETWEEN

• Integer arguments to the following functions are always converted to double:

– / (division operator; note that duration arguments are not converted)

– CEIL

– CORRELATION

– COS

– EXP

– FLOOR

– IN

Handling of literals and values

4-8 EQL Reference

– LN

– LOOKUP

– LOG

– SIN

– MOD

– POWER

– SIN

– SQRT

– TAN

– TO_GEOCODE

– TRUNC

• When the clauses in a CASE expression return a mix of integer and double results,
the integers are promoted to double.

For example, in the expression 1 + 3.5, 1 is an integer and 3.5 is a double. The
integer value is promoted to a double, and the overall result is 4.5.

In contexts other than the above, automatic type promotion is not performed and an
explicit conversion is required. For example, if Quantity is an integer and SingleOrder
is a Boolean, then an expression such as the following is not allowed:

COALESCE(Quantity, SingleOrder)

An explicit conversion from Boolean to integer such as the following is required:

COALESCE(Quantity, TO_INTEGER(SingleOrder))

Handling of precision for doubles
This topic provides information on the limits of precision in serialization of doubles in
EQL results.

The nature of floating-point numbers is such that EQL cannot guarantee perfect
precision when converting from an internal double to a string representation of that
double and back again. In particular, if a number has more than 15 decimal digits,
doing the double-to-string-to-double round trip will lose precision, and you will get a
different number than you started with. (That's total number of digits, not necessarily
digits after the decimal point.)

In principle, the number of decimal digits depends on a variety of implementation
factors, but it is unlikely to change in practice. (More technically: as long as EQL uses
IEEE 754 64-bit floating-point numbers, that limit will stay the same value.)

Therefore, if a client such as Studio takes a double from an EQL query's results and
submits a new query using that double in a refinement filter, the user should not
expect to get anything useful back if the number itself requires more than 15 decimal
digits to represent. If that behavior is required, consider replacing the refinement filter
with an EQL filter of the form:

x BETWEEN (dblVal - epsilon) AND (dblVal + epsilon)

Handling of literals and values

Expressions 4-9

where dblVal is the value from the previous query, and epsilon is some small positive
number indicating the tolerance with which the record must match.

Similarly, if a client wishes to use a double from EQL results as the end point of a
range filter, the client should probably adjust the range by some small tolerance
amount.

Functions and operators
EQL contains a number of built-in functions that process data. It also supports
arithmetic operators.

Important: With some exceptions, all the functions and operators mentioned
in this chapter work only on atomic data types. That is, they are not supported
with sets. The exceptions are:

• ARB

• COUNT

• COUNT_APPROX

• COUNTDISTINCT

• APPROXCOUNTDISTINCT

• HAS_REFINEMENTS

For information on the set functions, see Sets and Multi-assign Data.

Numeric functions
EQL supports the following numeric functions.

Aggregation functions
EQL supports the following aggregation functions.

Geocode functions
The geocode data type contains the longitude and latitude values that
represent a geocode property.

Date and time functions
EQL provides functions for working with time, dateTime, and
duration data types.

String functions
EQL supports the following string functions.

Arithmetic operators
EQL supports arithmetic operators for addition, subtraction,
multiplication, and division.

Boolean operators
EQL supports the Boolean operators AND, OR, and NOT.

Numeric functions
EQL supports the following numeric functions.

Functions and operators

4-10 EQL Reference

Function Description

addition The addition operator (+).

SELECT NortheastSales + SoutheastSales AS EastTotalSales

subtraction The subtraction operator (-).

SELECT SalesRevenue - TotalCosts AS Profit

multiplication The multiplication operator (*).

SELECT Price * 0.7 AS SalePrice

division The division operator (/).

SELECT YearTotal / 4 AS QuarterAvg

ABS Returns the absolute value of n.
If n is 0 or a positive integer, returns n. Otherwise, n is multiplied by
-1.

SELECT ABS(-1) AS one

RESULT: one = 1

CEIL Returns the smallest integer value not less than n.

SELECT CEIL(123.45) AS x, CEIL(32) AS y, CEIL(-123.45) AS z

RESULT: x = 124, y = 32, z = -123

EXP Exponentiation, where the base is e.
Returns the value of e (the base of natural logarithms) raised to the
power n.

SELECT EXP(1.0) AS baseE

RESULT: baseE = e^1.0 = 2.71828182845905

FLOOR Returns the largest integer value not greater than n.

SELECT FLOOR(123.45) AS x, FLOOR(32) AS y, FLOOR(-123.45)
AS z

RESULT: x = 123, y = 32, z = -124

Functions and operators

Expressions 4-11

Function Description

LN Natural logarithm. Computes the logarithm of its single argument,
the base of which is e.

SELECT LN(1.0) AS baseE

RESULT: baseE = e^1.0 = 0

LOG Logarithm. log(n, m) takes two arguments, where n is the base,
and m is the value you are taking the logarithm of.

Log(10,1000) = 3

MOD Modulo. Returns the remainder of n divided by m.

Mod(10,3) = 1

EQL uses the fmod floating point remainder, as defined in the C/
POSIX standard.

ROUND Returns a number rounded to the specified decimal place.
The unary (one argument) version takes only one argument (the
number to be rounded) and drops the decimal (non-integral) portion
of the input. For example:

ROUND(8.2) returns 8
ROUND(8.7) returns 9

The binary (two argument) version takes two arguments (the
number to be rounded and a positive or negative integer that allows
you to set the number of spaces at which the number is rounded).
The binary version always returns a double:
• Positive second arguments correspond to the number of places

that must be returned after the decimal point. For example:

ROUND(123.4567, 3) returns 123.457

• Negative second arguments correspond to the number of places
that must be returned before the decimal point. For example:

ROUND(123.4, -3) returns 0
ROUND(1234.56, -3) returns 1000

SIGN Returns the sign of the argument as -1, 0, or 1, depending on
whether n is negative, zero, or positive. The result is always a
double.

SELECT SIGN(-12) AS x, SIGN(0) AS y, SIGN(12) AS z

RESULT: x = -1, y = 0, z = 1

Functions and operators

4-12 EQL Reference

Function Description

SQRT Returns the nonnegative square root of n as an mdex:double type.

SELECT SQRT(9) AS x

RESULT: x = 3

TRUNC Returns the number n truncated to m decimal places. If m is 0, the
result has no decimal point or fractional part.
The unary (one argument) version drops the decimal (non-integral)
portion of the input. For example:

SELECT TRUNC(3.14159265) AS x

RESULT: x = 3

The binary (two argument) version allows you to set the number of
spaces at which the number is truncated. The binary version always
returns a double. For example:

SELECT TRUNC(3.14159265, 3) AS y

RESULT: y = 3.141

SIN The sine of n, where the angle of n is in radians.

SIN(3.14159/6) = 0.499999616987256

COS The cosine of n, where the angle of n is in radians.

COS(3.14159/3) = 0.500000766025195

TAN The tangent of n, where the angle of n is in radians.

TAN(3.14159/4) = 0.999998673205984

POWER Returns the value (as a double) of n raised to the power of m.

Power(2,8) = 256

TO_DURATION Casts a string representation of a timestamp into a number of
milliseconds so that it can be used as a duration.

TO_DOUBLE Casts a string representation of an integer as a double.

TO_INTEGER(boolean
)

Casts TRUE/FALSE to 1/0.

Aggregation functions
EQL supports the following aggregation functions.

Functions and operators

Expressions 4-13

Function Description

ARB Selects an arbitrary but consistent value from the set of values in
a field. Works on both multi-assign attributes (sets) and single-
assign attributes.

AVG Computes the arithmetic mean value for a field.

CORRELATION Computes the correlation coefficient between two numeric fields.

COUNT Counts the number of records with valid non-NULL values in a
field for each GROUP BY result. Works on both multi-assign
attributes (sets) and single-assign attributes.

COUNT_APPROX Counts the most frequent refinements. Works on both multi-
assign attributes (sets) and single-assign attributes.

COUNTDISTINCT Counts the number of unique, valid non-NULL values in a field
for each GROUP BY result. Works on both multi-assign attributes
(sets) and single-assign attributes.

APPROXCOUNTDISTIN
CT

Counts the number of unique, valid non-NULL values in a field
for each GROUP BY result. Works on both multi-assign attributes
(sets) and single-assign attributes.

HAS_REFINEMENTS Determines whether a specific attribute has non-implicit
refinements.

MAX Finds the maximum value for a field.

MIN Finds the minimum value for a field.

MEDIAN Finds the median value for a field. (Note that PAGE PERCENT
provides overlapping functionality). If the argument is an
integer, a double is always returned.
Note that the EQL definition of MEDIAN is the same as the
normal statistical definition when EQL is computing the median
of an even number of numbers. That is, given an input relation
containing {1,2,3,4}, the following query:

RETURN results AS SELECT
 MEDIAN(a) AS med
FROM SaleState
GROUP

produces the mean of the two elements in the middle of the
sorted set, or 2.5.

PERCENTILE Computes the percentile for a field.

RECORD_IN_FAST_SAM
PLE

Returns a sample of the records in the named state.

STDDEV Computes the standard deviation for a field.

STRING_JOIN Creates a single string containing all the values of a string
attribute.

SUM Computes the sum of field values.

VARIANCE Computes the variance (that is, the square of the standard
deviation) for a field.

Functions and operators

4-14 EQL Reference

MIN and MAX results ordering

The MIN and MAX functions work with int, double, dateTime, duration, Boolean, and
string fields, as follows:

• For int and double values, MIN finds the numerically smallest integer or double,
while MAX finds the largest integer or double.

• For dateTime values, MIN finds the earliest date while MAX finds the latest date.

• For duration values, MIN finds the shortest time duration date while MAX finds the
longest time duration. Note that a negative duration is considered to be less than a
positive duration.

• For Boolean values, both MIN and MAX consider FALSE to be less than TRUE (if the
data set has both values assigned). If the data set has only Boolean type assigned,
then that value is returned by both functions.

• For string values, both functions use the lexicographical ordering (for example, "89"
< "9" < "90" < "ab" < "xy"). In this example, MIN would return "89" while MAX would
return "xy".

STRING_JOIN function

The STRING_JOIN function takes a string property and a delimiter and creates a
single string containing all of the property's values, separated by the delimiter. Its
syntax is:

STRING_JOIN('delimiter', string_attribute)

The delimiter is a string literal enclosed in single quotation marks.

The resulting strings are sorted in a lexicographical order within each group. NULL
values are ignored in the output, but values having the empty string are not.

For this sample query, assume that the R_NAME attribute is of type string and contains
names of regions, while the N_NAME attribute is also of type string and contains the
names of nations:

RETURN results AS SELECT
 STRING_JOIN(', ',R_NAME) AS Regions,
 STRING_JOIN(',',N_NAME) AS Nations
FROM ProductState
GROUP

The query returns the region and country names delimited by commas:

Nations
ALGERIA, ARGENTINA, BRAZIL, CANADA, CHINA, EGYPT, ETHIOPIA, FRANCE, GERMANY, INDIA,
INDONESIA, IRAN,
IRAQ, JAPAN, JORDAN, KENYA, MOROCCO, MOZAMBIQUE, PERU, ROMANIA, RUSSIA, SAUDI
ARABIA, UNITED KINGDOM,
UNITED STATES, VIETNAM
Regions
AFRICA,AMERICA,ASIA,EUROPE,MIDDLE EAST

Note: The Regions delimiter includes a space while the Nations delimiter
does not. That is, if you want a space between the output terms, you must
specify it in the delimiter.

Functions and operators

Expressions 4-15

Geocode functions
The geocode data type contains the longitude and latitude values that represent a
geocode property.

Note that all distances are expressed in kilometers.

Function Description

LATITUDE(mdex:geocode) Returns the latitude of a geocode as a floating-point
number.

LONGITUDE(mdex:geocode) Returns the longitude of a geocode as a floating-point
number.

DISTANCE(mdex:geocode,
mdex:geocode)

Returns the distance (in kilometers) between the two
geocodes, using the haversine formula.

TO_GEOCODE(mdex:double,
mdex:double)

Creates a geocode from the given latitude and longitude.

The following example enables the display of a map with a pin for each location where
a claim has been filed:

RETURN Result AS
SELECT
 LATITUDE(geo) AS Lat,
 LONGITUDE(geo) AS Lon,
 DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) AS DistanceFromCambridge
FROM ProductState
WHERE DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) BETWEEN 1 AND 10

Note: All distances are expressed in kilometers.

Date and time functions
EQL provides functions for working with time, dateTime, and duration data
types.

EQL supports normal arithmetic operations between these data types.

All aggregation functions can be applied on these types except for SUM, which cannot
be applied to time or dateTime types.

Note: In all cases, the internal representation of dates and times is on an
abstract time line with no time zone. On this time line, all days are assumed to
have exactly 86400 seconds. The system does not track, nor can it
accommodate, leap seconds. This is equivalent to the SQL date, time, and
timestamp data types that specify WITHOUT TIMEZONE. ISO 8601 ("Data
elements and interchange formats - Information interchange - Representation
of dates and times") recommends that, when communicating dates and times
without a time zone to other systems, they be represented using Zulu time,
which is a synonym for GMT. The Dgraph conforms to this recommendation.

The following table summarizes the supported date and time functions:

Functions and operators

4-16 EQL Reference

Function Return Data Type Purpose

CURRENT_TIMESTAMP
SYSTIMESTAMP

dateTime
dateTime

Constants representing the current date
and time (at an arbitrary point during
query evaluation) in GMT and server
time zone, respectively.

CURRENT_DATE
SYSDATE

dateTime
dateTime

Constants representing current date (at
an arbitrary point during query
evaluation) in GMT and server time
zone, respectively.

TO_TIME
TO_DATETIME

TO_DURATION

time
dateTime

duration

Constructs a timestamp representing
time, date, or duration, using an
expression.

EXTRACT integer Extracts a portion of a dateTime value,
such as the day of the week or month of
the year.

TRUNC dateTime Rounds a dateTime value down to a
coarser granularity.

TO_TZ
FROM_TZ

dateTime
dateTime

Returns the given timestamp in a
different time zone.

Note that using CURRENT_DATE, CURRENT_TIMESTAMP, SYSDATE, or
SYSTIMESTAMP affects performance because those functions are not cached. The other
functions in the table are cached.

The following table summarizes supported operations:

Operation Return Data Type

time (+|-) duration time

dateTime (+|-) duration dateTime

time - time duration

dateTime - dateTime duration

duration (+|-) duration duration

duration (*|/) double duration

duration /duration double

Manipulating current date and time
EQL provides four constant keywords to obtain current date and time values. Values
are obtained at an arbitrary point during query evaluation.

GMT time and date are independent of any daylight savings rules, while System time
and date are subject to daylight savings rules.

Keyword Description

CURRENT_TIMESTAMP Obtains current date and time in GMT.

SYSTIMESTAMP Obtains current date and time in server time zone.

Functions and operators

Expressions 4-17

Keyword Description

CURRENT_DATE Obtains current date in GMT.

SYSDATE Obtains system date in server time zone.

Note: CURRENT_DATE and SYSDATE return dateTime data types where time
fields are reset to zero.

The following example retrieves the average duration of service:

RETURN Example AS
SELECT AVG(CURRENT_DATE - DimEmployee_HireDate) AS DurationOfService
FROM EmployeeState
GROUP

Constructing date and time values
EQL provides functions to construct a timestamp representing time, date, or duration
using an expression.

If the expression is a string, it must be in a certain format. If the format is invalid or the
value is out of range, it results in NULL.

Function Description Format

TO_TIME Constructs a
timestamp
representin
g time.

<TimeStringFormat> ::= hh:mm:ss[.sss]((+|-)
hh:mm |Z)

TO_DATETI
ME

Constructs a
timestamp
representin
g date and
time.

See the section below for the syntax of this function's string
interface, date-only numeric interface, and date-time numeric
interface.

TO_DURATI
ON

Constructs a
timestamp
representin
g duration.

<DurationStringFormat> ::=
[-]P[<Days>][T(<Hours>[<Minutes>}[<Seconds>]|

<Minutes>[<Seconds>]|

<Seconds>)]

<Days> ::= <Integer>D

<Hours> ::= <Integer>H

<Minutes> ::= <Integer>M

<Seconds> ::= <Integer>[.<Integer>]S

As stated in the Format column above, TO_TIME and TO_DATETIME accept time zone
offset. However, EQL does not store the offset value. Instead, it stores the value
normalized to the GMT time zone.

The following table shows the output of several date and time expressions:

Functions and operators

4-18 EQL Reference

Expression Normalized value

TO_DATETIME('2016-07-21T16:00:00
.000+02:00')

2016-07-21T14:00:00.000Z

TO_DATETIME('2016-07-31T20:00:00
.000-06:00')

2016-08-01T02:00:00.000Z

TO_DATETIME('2016-06-15T20:00:00
.000Z')

2016-06-15T20:00:00.000Z

TO_TIME('23:00:00.000+03:00') 20:00:00.000Z

TO_TIME('15:00:00.000-10:00') 01:00:00.000Z

TO_DATETIME formats

The single-argument string interface for this function is:

TO_DATETIME(<DateTimeString>)

where:

<DateTimeString> ::= [-]YYYY-MM-DDT<TimeStringFormat>

Three examples of the string interface are listed in the table above.

The numeric interface signatures are:

TO_DATETIME(<Year>, <Month>, <Day>)

TO_DATETIME(<Year>, <Month>, <Day>, <Hour>, <Minute>, <Second>, <Millisecond>)

where all arguments are integers.

In the first signature, time arguments will be filled with zeros. In both signatures, time
zone will be assumed to be UTC. If time zone information exists, duration
(TO_DURATION) and time zone (TO_TZ) constructs can be used, as shown below in the
examples.

Examples of the numeric interface signatures are:

TO_DATETIME(2016, 7, 22)

TO_DATETIME(2016, 7, 22, 23, 15, 50, 500)

TO_DATETIME(2016, 7, 22, 23, 15, 50, 500) + TO_DURATION(1000)

TO_TZ(TO_DATETIME(2016, 7, 22, 23, 15, 50, 500), 'America/New_York')

Time zone manipulation
EQL provides two functions to obtain the corresponding timestamp in different time
zones.

EQL supports the standard IANA Time Zone database (https://www.iana.org/time-
zones).

• TO_TZ. Takes a timestamp in GMT, looks up the GMT offset for the specified time
zone at that time in GMT, and returns a timestamp adjusted by that offset. If the
specified time zone does not exist, the result is NULL.

Functions and operators

Expressions 4-19

https://www.iana.org/time-zones
https://www.iana.org/time-zones

For example, TO_TZ(dateTime,'America/New_York') answers the question,
"What time was it in America/New_York when it was dateTime in GMT?"

• FROM_TZ. Takes a timestamp in the specified time zone, looks up the GMT offset
for the specified time zone at that time, and returns a timestamp adjusted by that
offset. If the specified time zone does not exist, the result is NULL.

For example, FROM_TZ(dateTime,'EST') answers the question, "What time was
it in GMT when it was dateTime in EST?"

The following table shows the results of several time zone expressions:

Expression Results

TO_TZ(TO_DATETIME('2016-07-05T16:00:0
0.000Z'), 'America/New_York')

2016-07-05T12:00:00.000Z

TO_TZ(TO_DATETIME('2016-01-05T16:00:0
0.000Z'), 'America/New_York')

2016-01-05T11:00:00.000Z

FROM_TZ(TO_DATETIME('2016-07-05T16:00
:00.000Z'), 'America/Los_Angeles')

2016-07-05T23:00:00.000Z

FROM_TZ(TO_DATETIME('2016-01-05T16:00
:00.000Z'), 'America/Los_Angeles')

2016-01-06T00:00:00.000Z

Using EXTRACT to extract a portion of a dateTime value
The EXTRACT function extracts a portion of a dateTime value, such as the day of the
week or month of the year. This can be useful in situations where the data must be
filtered or grouped by a slice of its timestamps, for example to compute the total sales
that occurred on any Monday.

The syntax of the EXTRACT function is:

<ExtractExpr> ::= EXTRACT(<expr>,<DateTimeUnit>)
<DateTimeUnit> ::= MILLISECOND | SECOND | MINUTE | HOUR | DAY_OF_WEEK |
 DAY_OF_MONTH | DAY_OF_YEAR | DATE | WEEK |
 MONTH | QUARTER | YEAR | JULIAN_DAY_NUMBER

Date Time Unit Range of
Returned Values

Notes

MILLISECOND (0 - 999)

SECOND (0 - 59)

MINUTE (0 - 59)

HOUR (0 - 23)

DAY_OF_WEEK (1 - 7) Returns the rank of the day within the week,
where Sunday is 1.

DAY_OF_MONTH (DATE) (1 - 31)

DAY_OF_YEAR (1 - 366)

WEEK (1 - 53) Returns the rank of the week in the year,
where the first week starts on the first day of
the year.

Functions and operators

4-20 EQL Reference

Date Time Unit Range of
Returned Values

Notes

MONTH (1 - 12)

QUARTER (1 - 4) Quarters start in January, April, July, and
October.

YEAR (-9999 - 9999)

JULIAN_DAY_NUMBER (0 - 5373484) Returns the integral number of whole days
between the timestamp and midnight, 24
November -4713.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2015
11:35:12.104. The following list shows the results of using the EXTRACT operator to
extract each component of that value:

EXTRACT("TimeStamp", MILLISECOND) = 104
EXTRACT("TimeStamp", SECOND) = 12
EXTRACT("TimeStamp", MINUTE) = 35
EXTRACT("TimeStamp", HOUR) = 11
EXTRACT("TimeStamp", DATE) = 13
EXTRACT("TimeStamp", WEEK) = 41
EXTRACT("TimeStamp", MONTH) = 10
EXTRACT("TimeStamp", QUARTER) = 4
EXTRACT("TimeStamp", YEAR) = 2015
EXTRACT("TimeStamp", DAY_OF_WEEK) = 5
EXTRACT("TimeStamp", DAY_OF_MONTH) = 13
EXTRACT("TimeStamp", DAY_OF_YEAR) = 286
EXTRACT("TimeStamp", JULIAN_DAY_NUMBER) = 2455848

Here is a simple example of using this functionality. The following statement groups
the total value of the Amount attribute by quarter, and for each quarter computes the
total sales that occurred on a Monday (DAY_OF_WEEK=2):

RETURN Quarters AS
SELECT SUM(Amount) AS Total
 ARB(TRUNC(TimeStamp, QUARTER)) AS Qtr
FROM SaleState
WHERE EXTRACT(TimeStamp,DAY_OF_WEEK) = 2
GROUP BY Qtr

The following example allows you to sort claims in buckets by age:

DEFINE ClaimsWithAge AS
SELECT
 ARB(FLOOR((EXTRACT(TO_TZ(CURRENT_TIMESTAMP,claim_tz),JULIAN_DAY_NUMBER)-
 EXTRACT(TO_TZ(claim_ts,claim_tz),JULIAN_DAY_NUMBER))/7)) AS AgeInWeeks,
 COUNT(1) AS Count
FROM SaleState
GROUP BY AgeInWeeks
HAVING AgeInWeeks < 2
ORDER BY AgeInWeeks;

RETURN Result AS
SELECT
 CASE AgeInWeeks
 WHEN 0 THEN 'Past 7 Days'
 WHEN 1 THEN 'Prior 7 Days'
 ELSE 'Other'

Functions and operators

Expressions 4-21

 END
 AS Label, Count
FROM ClaimsWithAge

Using TRUNC to round down dateTime values
The TRUNC function can be used to round a dateTime value down to a coarser
granularity.

For example, this may be useful when you want to group your statement results data
for each quarter using a dateTime attribute.

The syntax of the TRUNC function is:

<TruncExpr> ::= TRUNC(<expr>,<DateTimeUnit>)
<dateTimeUnit> ::= MILLISECOND| SECOND | MINUTE | HOUR |
 DATE | WEEK | MONTH | QUARTER | YEAR
 DAY_OF_WEEK | DAY_OF_MONTH | DAY_OF_YEAR
 JULIAN_DAY_NUMBER

Note: WEEK truncates to the nearest previous Sunday.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2015
11:35:12.000. The list below shows the results of using the TRUNC operator to round the
TimeStamp value at each level of granularity. The values are displayed here in a
format that is easier to read—the actual values would use the standard Dgraph
dateTime format.

TRUNC("TimeStamp", MILLISECOND) = 10/13/2015 11:35:12.000
TRUNC("TimeStamp", SECOND) = 10/13/2015 11:35:12.000
TRUNC("TimeStamp", MINUTE) = 10/13/2015 11:35:00.000
TRUNC("TimeStamp", HOUR) = 10/13/2015 11:00:00.000
TRUNC("TimeStamp", DATE) = 10/13/2015 00:00:00.000
TRUNC("TimeStamp", WEEK) = 10/09/2015 00:00:00.000
TRUNC("TimeStamp", MONTH) = 10/01/2015 00:00:00.000
TRUNC("TimeStamp", QUARTER) = 10/01/2015 00:00:00.000
TRUNC("TimeStamp", YEAR) = 01/01/2015 00:00:00.000
TRUNC("TimeStamp", DAY_OF_WEEK) = 10/13/2015 00:00:00:000
TRUNC("TimeStamp", DAY_OF_MONTH) = 10/13/2015 00:00:00:000
TRUNC("TimeStamp", DAY_OF_YEAR) = 10/13/2015 00:00:00:000
TRUNC("TimeStamp", JULIAN_DAY_NUMBER) = 10/13/2015 00:00:00:000

Here is a simple example of using this functionality. In the following statement, the
total value for the Amount attribute is grouped by quarter. The quarter is obtained by
using the TRUNC operation on the TimeStamp attribute:

RETURN Quarters AS
SELECT SUM(Amount) AS Total,
 ARB(TRUNC(TimeStamp, QUARTER)) AS Qtr
FROM SaleState
GROUP BY Qtr

Using arithmetic operations on date and time values
In addition to using the TRUNC and EXTRACT functions, you also can use normal
arithmetic operations with date and time values.

The following are the supported operations:

Functions and operators

4-22 EQL Reference

• Add or subtract a duration to or from a time or a dateTime to obtain a new time or
dateTime.

• Subtract two times or dateTimes to obtain a duration.

• Add or subtract two durations to obtain a new duration.

• Multiply or divide a duration by a double number.

• Divide a duration by a duration.

The following table shows the results of several arithmetic operations on date and
time values:

Expression Results

2015-10-05T00:00:00.000Z + P30D 2015-11-04T00:00:00.000Z

2015-10-05T00:00:00.000Z - PT01M 2015-10-04T23:59:00.000Z

23:00:00.000Z + PT02H 01:00:00.00

20:00:00.000Z - PT02S 19:59:58.000Z

2015-01-01T00:00:00.000Z -
2016-12-31T00:00:00.000Z

-P365DT0H0M0.000S

23:15:00.000Z - 20:12:30.500Z P0DT3H2M29.500S

P1500DT0H0M0.000S -
P500DT0H0M0.000S

P1000DT0H0M0.000S

P1DT0H30M0.500S * 2.5 P2DT13H15M1.250S

P1DT0H30M0.225S / 2 P0DT12H15M0.112S

P5DT12H00M0.000S /
P1DT0H00M0.000S

5.5

String functions
EQL supports the following string functions.

Function Description

CONCAT Concatenates two or more string arguments into a single
string.

SUBSTR Returns a part (substring) of a character expression.

TO_STRING Converts a value to a string.

CONCAT function

CONCAT is a row function that returns a string that is the result of concatenating two or
more string values. Its syntax is:

CONCAT(string1, string2 [, stringN])

Each argument can be a literal string (within single quotation marks), an attribute of
type string, or any expression that produces a string.

Functions and operators

Expressions 4-23

This sample query uses three literal strings for the arguments:

RETURN results AS
SELECT
 CONCAT('Jane ', 'Amanda ', 'Wilson') AS FullName
FROM EmployeeState
GROUP

This similar query uses two string-type attributes, plus a quoted space to separate the
customer's first and last names:

RETURN results AS
SELECT
 ARB(CONCAT(CUST_FIRST_NAME, ' ', CUST_LAST_NAME)) AS CustomerName
FROM EmployeeState
GROUP

SUBSTR function

The SUBSTR function has two syntaxes:

SUBSTR(string, position)

SUBSTR(string, position, length)

where:

• string is the string to be parsed.

• position is a number that indicates where the substring starts (see below for details).

• length is a number that specifies the length of the substring that is to be extracted. If
length is omitted, EQL returns all characters to the end of string. If length is less than
1, EQL returns NULL.

The position argument is treated as follows:

• If position is 0, it is treated as 1.

• If position is positive, then it is counted from the beginning of string to find the first
character.

• If position is negative, the EQL counts backward from the end of string.

• If position is greater than the length of string, EQL returns the empty string.

Note that position is not zero indexed. For example, in order to start with the fifth
character, position must be 5.

TO_STRING function

The TO_STRING function takes an integer value and returns a string equivalent. Its
syntax is:

TO_STRING(int)

If the input value is NULL, the output value will also be NULL.

This sample query converts the value of the P_SIZE integer attribute to a string
equivalent:

Functions and operators

4-24 EQL Reference

RETURN results AS
SELECT
 ARB(TO_STRING(P_SIZE)) AS Sizes
FROM ProductState
GROUP

Arithmetic operators
EQL supports arithmetic operators for addition, subtraction, multiplication, and
division.

The syntax is as follows:

<expr> {+, -, *, /} <expr>

Each arithmetic operator has a corresponding numeric function. For information on
order of operations, see Operator precedence rules.

Boolean operators
EQL supports the Boolean operators AND, OR, and NOT.

The results of Boolean operations (including the presence of NULL) is shown in the
following tables:

Results of NOT operations:

Value of x Result of NOT x

TRUE FALSE

FALSE TRUE

NULL NULL

Results of AND operations:

Value of x Value of y Result of x AND y

TRUE TRUE TRUE

TRUE NULL NULL

TRUE FALSE FALSE

NULL TRUE NULL

NULL NULL NULL

NULL FALSE FALSE

FALSE TRUE FALSE

FALSE NULL FALSE

FALSE FALSE FALSE

Results of OR operations:

Value of x Value of y x OR y

TRUE TRUE TRUE

Functions and operators

Expressions 4-25

Value of x Value of y x OR y

TRUE NULL TRUE

TRUE FALSE TRUE

NULL TRUE TRUE

NULL NULL NULL

NULL FALSE NULL

FALSE TRUE TRUE

FALSE NULL NULL

FALSE FALSE FALSE

For information on order of operations, see Operator precedence rules.

Using EQL results to compose follow-on queries
You can select a value in an EQL result and use it to compose a follow-on query.

This enables users to interact with EQL results through a chart or a graph to compose
follow-on queries. For example, when viewing a chart of year-to-date sales by country,
a user might select a specific country for drill-down.

EQL is specifically designed to support this kind of follow-on query.

If, in the above example, the user selects the country United States, then the follow-on
query should examine only sales of products in the United States. To filter to these
items, a WHERE clause like the following can be added:

WHERE DimGeography_CountryRegionName = 'United States'

For attributes with types other than string, a conversion is necessary to use the string
representation of the value returned by EQL. For an integer attribute, such as
DimDate_CalendarYear, the string representation of the value must be converted to
an integer for filtering, as follows:

WHERE DimDate_CalendarYear = TO_INTEGER('2006').

EQL provides conversions for all non-string data types:

• TO_BOOLEAN()

• TO_DATETIME()

• TO_DOUBLE()

• TO_DURATION()

• TO_GEOCODE()

• TO_INTEGER()

• TO_TIME()

Each of these accepts the string representation of values produced by the Dgraph.
Note that no conversion is necessary for mdex:string attributes.

Using EQL results to compose follow-on queries

4-26 EQL Reference

To determine which conversion function to use, EQL results are accompanied by
attribute metadata that describes the type of the attribute.

Using LOOKUP expressions for inter-statement references
In EQL, you can define statements and then refer to these statements from other
statements via a LOOKUP expression.

Multiple EQL sub-queries can be specified within the context of a single navigation
query, each corresponding to a different analytical view, or to a subtotal at a different
granularity level. Expressions also can use values from other computed statements.
This is often useful when coarser subtotals are required for computing analytics within
a finer-grained bucket.

For example, when computing the percent contribution for each sales representative in
a given year, you must also calculate the overall total for the year. You can use a
lookup table to create these types of queries.

Syntax for LOOKUP expressions

A LOOKUP expression is a simple form of join. It treats the result of a prior statement as
a lookup table.

The syntax for a LOOKUP expression is:

<LookupExpr> ::= <statement-name>[<LookupList>].<attribute-name>

The square bracket operators are literal and are used to identify the record set and
grouping attribute, while the dot operator is also literal and is used to identify the
field.

The BNF for LookupList is

<LookupList> ::= <empty>
 ::= <SimpleExpr> [,<LookupList>]

In this BNF syntax, the square brackets indicate the optional use of a second
LookupList.

The lookup list corresponds to the grouping attributes of the specified statement. The
result is NULL if the lookup list does not match target group key values, or the target
column is NULL for a matching target group key values.

Lookup attributes refer to GROUP BY clauses of the target statement, in order.
Computed lookup of indexed values is allowed, which means you can look up related
information, such as total sales from the prior year, as shown in the following
example:

DEFINE YearTotals AS SELECT
 SUM(SalesAmount) AS Total
FROM SaleState
GROUP BY Year;

RETURN AnnualCategoryPcts AS SELECT
 SUM(SalesAmount) AS Total,
 Total/YearTotals[Year].Total AS Pct
FROM SaleState
GROUP BY Year, Category;

RETURN YoY AS SELECT
 YearTotals[Year].Total AS Total,
 YearTotals[Year-1].Total AS Prior,
 (Total-Prior)/Prior AS PctChange

Using LOOKUP expressions for inter-statement references

Expressions 4-27

FROM SaleState
GROUP BY Year

Using LOOKUP against states

LOOKUP expressions are supported where the target statement is referring to a named
state, with the rule that there must be exactly one expression inside the square
brackets, which is matched against the target state's primary key.

If you use multiple lookup keys against a state, EQL will return an error message
similar to this example that uses two lookup keys:

In the definition of attribute "x": The LOOKUP expression has 2 lookup value(s); a
LOOKUP expression that refers
to state "Sales" must have exactly one lookup value, corresponding to the state's
primary key "SalesID"

Referencing a value from another statement

For example, suppose we want to compute the percentage of sales per ProductType
per Region. One aggregation computes totals grouped by Region, and a subsequent
aggregation computes totals grouped by Region and ProductType.

This second aggregation would use expressions that referred to the results from the
Region aggregation. That is, it would allow each Region and ProductType pair to
compute the percentage of the full Region subtotal represented by the ProductType in
this Region:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState
GROUP BY Region;

RETURN ProductPcts AS
SELECT
 100 * SUM(Amount) / RegionTotals[Region].Total AS PctTotal
FROM RegionTotals
GROUP BY Region, ProductType

The first statement computes the total product sales for each region. The next
statement then uses the RegionTotals results to determine the percentage for each
region, making use of the inter-statement reference syntax.

• The bracket operator indicates to reference the RegionTotals result that has a
group-by value equal to the ProductPcts value for the Region attribute.

• The dot operator indicates to reference the Total field in the specified RegionTotals
record.

Computing percentage of sales

This example computes for each quarter the percentage of sales for each product type.

This query requires calculating information in one statement in order to use it in
another statement.

To compute the sales of a given product as a percentage of total sales for a given
quarter, the quarterly totals must be computed and stored. The calculations for
quarter/product pairs can then retrieve the corresponding quarterly total.

DEFINE QuarterTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState

Using LOOKUP expressions for inter-statement references

4-28 EQL Reference

GROUP BY Quarter;

RETURN ProductPcts AS
SELECT
 100 * SUM(Amount) / QuarterTotals[Quarter].Total AS PctTotal
FROM QuarterTotals
GROUP BY Quarter, ProductType

ARB
ARB selects an arbitrary but consistent value from the set of values in a field.

The syntax of the ARB function is:

ARB(<attribute>)

where attribute is a single-assign attribute or a set (multi-assign attribute).

ARB works as follows:

• For a single-assign attribute, ARB first discards all NULL values and then selects an
arbitrary but consistent value from the remaining non-NULL values. If the attribute
has no non-NULL values, then NULL is returned.

• For a multi-assign attribute, ARB looks at all of the rows in the group (including
those with empty sets) and selects the set value from one of the rows. In other
words, empty sets and non-empty sets are treated equally. This means that because
the selection is arbitrary, the returned set value could be an empty set. The ARB
return type is the same as its argument type: if attribute x is an mdex:long-set,
then so is ARB(x). If the attribute has no non-NULL values, then the empty set is
returned.

ARB examples

Single-assign Example: Price is a single-assign attribute:

RETURN results AS
SELECT ARB(Price) AS prices
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result for this example is:

WineType prices

Blanc de Noirs	16.99
Bordeaux:	21.99
Brut	22.99
Chardonnay:	17.95
Merlot:	25.99
Pinot Noir:	14.99
Red:	9.99
White:	20.99
Zinfandel:	

Some of the interesting result values from this data set are:

ARB

Expressions 4-29

• There are three Bordeaux records: one has a Price assignment of 21.99 and the other
two have no Price assignments. Therefore, for the Bordeaux value, ARB discarded
the two NULL values and returned the 21.99 value.

• There is one Zinfandel record and it does not have a Price assignment. Therefore, a
NULL value is returned.

Multi-assign Example: Body is a multi-assign attribute:

RETURN results AS
SELECT ARB(Body) AS bodies
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result for this example is:

WineType bodies
--
Blanc de Noirs	{ Firm, Robust }
Bordeaux:	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay:	{ }
Merlot:	{ }
Pinot Noir:	{ Supple }
Red:	{ Silky, Tannins }
White:	{ }
Zinfandel:	{ Robust, Tannins }
--

Some interesting results from this attribute are:

• All nine Red records have at least one Body assignment. The returned value for
Red is the {Silky, Tannins} set, but, because it is arbitrary, the value could have
been any of the other eight sets.

• Two of the White records have Body assignments (and therefore have non-empty
sets) while the other two records have no Body assignments (and therefore have
empty sets). One of the White empty sets was returned as the arbitrary value, but it
just as well could have been one of the non-empty sets.

• Neither of the two Chardonnay records have Body assignments, and therefore the
empty set was returned for this group.

BETWEEN
The BETWEEN expression determines whether an attribute's value falls within a range
of values.

BETWEEN is useful in conjunction with WHERE clauses.

The syntax for BETWEEN is:

<attribute> BETWEEN <startValue> AND <endValue>

where <attribute> is the single-assign attribute whose value will be tested.

BETWEEN is inclusive, which means that it returns TRUE if the value of <attribute> is
greater than or equal to the value of <startValue> and less than or equal to the value of
<endValue>.

BETWEEN

4-30 EQL Reference

With one exception, <attribute> must be of the same data type as <startValue> and
<endValue> (supported data types are integer, double, dateTime, duration, time,
string, and Boolean). The exception is that you can use a mix of integer and double,
because the integer is promoted to a double.

Note that if any of the BETWEEN arguments (<attribute>, <startValue>, or <endValue>)
are NaN (Not a Number) values, then the expression evaluates to FALSE.

The following is a simple example of BETWEEN:

RETURN Results AS
SELECT SUM(AMOUNT_SOLD) AS SalesTotal
FROM SaleState
WHERE AMOUNT_SOLD BETWEEN 10 AND 100
GROUP BY CUST_STATE_PROVINCE

CASE
CASE expressions allow conditional processing in EQL, allowing you to make
decisions at query time.

The syntax of the CASE expression, which conforms to the SQL standard, is:

CASE
 WHEN <Boolean-expression> THEN <expression>
 [WHEN <Boolean-expression> THEN <expression>]*
 [ELSE expression]
END

CASE expressions must include at least one WHEN expression. The first WHEN
expression with a TRUE condition is the one selected. NULL is not TRUE. The optional
ELSE clause, if it appears, must appear at the end of the CASE statement and is
equivalent to WHEN TRUE THEN. If no condition matches, the result is NULL or the
empty set, depending on the data type of the THEN expressions.

In this example, division by non-positive integers is avoided:

CASE
 WHEN y < 0 THEN x / (0 - y)
 WHEN y > 0 THEN x / y
 ELSE 0
END

In this example, records are categorized as Recent or Old:

RETURN Result AS
SELECT
 CASE
 WHEN (Days < 7) THEN 'Recent'
 ELSE ‘Old’
 END AS Age
...

The following example groups all records by class and computes the following:

• The minimum DealerPrice of all records in class H.

• The minimum ListPrice of all records in class M.

• The minimum StandardCost of all other records (called class L).

RETURN CaseExample AS
SELECT

CASE

Expressions 4-31

 CASE
 WHEN Class = 'H' THEN MIN(DealerPrice)
 WHEN Class = 'M' THEN MIN(ListPrice)
 ELSE MIN(StandardCost)
 END
AS value
FROM SaleState
GROUP BY Class

COALESCE
The COALESCE expression allows for user-specified NULL-handling. It is often used to
fill in missing values in dirty data.

It has a function-like syntax, but can take unlimited arguments, for example:

COALESCE(a, b, c, x, y, z)

You can use the COALESCE expression to evaluate records for multiple values and
return the first non-NULL value encountered, in the order specified. The following
requirements apply:

• You can specify two or more arguments to COALESCE.

• Arguments that you specify to COALESCE must all be of the same type, with the
exception integers with doubles (in this case, integers are promoted to doubles).

• COALESCE does not support multi-assign attributes.

In the following example, all records without a specified price are treated as zero in
the computation:

AVG(COALESCE(Price, 0))

COALESCE can also be used without aggregation, for example:

SELECT COALESCE(Price, 0) AS price_or_zero WHERE ...

CORRELATION
CORRELATION computes the correlation coefficient between two numeric attributes
for all rows within a group.

The syntax of the CORRELATION function is:

CORRELATION(<arg1>, <arg2>)

where each argument is an arbitrary expression or a single-assign numeric (integer or
double) attribute. Integer inputs are first promoted to doubles. Note that
CORRELATION is symmetric (that is, the same result is returned regardless of which
attribute is specified first).

CORRELATION ignores rows in which either argument is NULL and computes the
correlation coefficient of the remaining rows. If all rows in the group are NULL, then
CORRELATION returns NULL.

The resulting Pearson product-moment correlation coefficient will be a value between
+1 and −1 inclusive, where 1 is total positive correlation, 0 is no correlation, and −1 is
total negative correlation. Note that there are cases where the output will be NaN (a
common case is when there is only a single data point).

COALESCE

4-32 EQL Reference

CORRELATION example

In this simple example, WineRating is a single-assign integer attribute while Price is a
single-assign double attribute:

RETURN results AS
SELECT
 CORRELATION(WineRating, Price) AS corr
FROM WineState
GROUP

The result might be a value of 0.886357407416268.

HAS_REFINEMENTS
HAS_REFINEMENTS computes whether a particular attribute has non-implicit
refinements in the current navigation state.

The syntax of the HAS_REFINEMENTS function is:

HAS_REFINEMENTS(<attribute>)

where attribute is a Dgraph attribute (of any data type) in a collection.

In particular, HAS_REFINEMENTS determines if a specific attribute has the same value
for every record in a group. If so, then the attribute should be able to return actual
refinement values.

Return values

If attribute is an atomic (single-assign) type, the HAS_REFINEMENTS return behavior is:

• If attribute is NULL for all rows in the group, HAS_REFINEMENTS returns NULL.

• If attribute the same (non-NULL) value for all rows in the group,
HAS_REFINEMENTS returns FALSE.

• Otherwise (attribute is a mix of values, possibly but not necessarily including
NULLs), HAS_REFINEMENTS returns TRUE.

If attribute is a set (multi-assign) type, the HAS_REFINEMENTS return behavior is:

• If attribute is the same set for all rows in the group, HAS_REFINEMENTS returns
FALSE. This includes the in which attribute is the empty set for all rows in the
group.

• Otherwise, HAS_REFINEMENTS returns TRUE.

Note that although HAS_REFINEMENTS tells you if a particular attribute has non-
implicit refinements, it does not tell you what they actually are nor does it actually
return the refinement values.

HAS_REFINEMENTS example

In this example, HAS_REFINEMENTS is used to determine whether the ACCT_FIRM
attribute has available refinements:

RETURN Result AS
SELECT
 HAS_REFINEMENTS(ACCT_FIRM) AS Refs

HAS_REFINEMENTS

Expressions 4-33

FROM CorpData
GROUP

In this case, the query returns true, which means that the attribute has available non-
implicit refinements.

Treating empty sets like NULLs

If you want HAS_REFINEMENTS to treat empty sets like NULLs, then you can add a
per-aggregate WHERE clause to the HAS_REFINEMENTS aggregator, as in this example
(x is a multi-assign attribute):

RETURN Result AS
SELECT
 HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY) AS Refs
FROM CorpData
GROUP

With this syntax, the HAS_REFINEMENTS return behavior is:

• If x is the empty set for every row in the group, then HAS_REFINEMENTS(x)
WHERE (x IS NOT EMPTY) is NULL.

• If x is the same non-empty set value for every row in the group, then
HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY) is FALSE.

• Otherwise, x is a mix of different sets (possibly but not necessarily including the
empty set), and HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY) is TRUE.

For more information on per-aggregate WHERE clauses, see Per-aggregation filters.

IN
IN expressions perform a membership test.

IN expressions address use cases where you want to identify a set of interest, and then
filter to records with attributes that are in or out of that set. They are useful in
conjunction with HAVING and PAGE expressions.

IN expressions are supported where the target statement is referring to a named state,
with the rule that there must be exactly one expression inside the square brackets,
which is matched against the target state's primary key. Note that the expression will
be evaluated against the filtered record set of the state, not the unfiltered one.

IN syntax

The syntax where the target is a statement is as follows:

[expr1, expr2, …] IN StatementName

The syntax where the target is a state is as follows:

[expr] IN StatementName

The reason for this state syntax is that states, like the collections they filter, always
have a single key attribute, and thus IN expressions that refer to them must have
exactly one expression inside the square brackets.

Note that sets are supported by IN expressions. If one of the named statement’s group
keys is a set, then the corresponding expression in the square brackets must be a set of
the same type.

IN

4-34 EQL Reference

IN example

The example below helps answer the questions, "Which products do my highest value
customers buy?" and "What is my total spend with suppliers from which I purchase
my highest spend commodities?"

DEFINE HighValueCust AS SELECT
 SUM(SalesAmount) AS Value
FROM SaleState
GROUP BY CustId
HAVING Value>10000 ;

RETURN Top_HVC_Products AS SELECT
 COUNT(1) AS NumSales
FROM SaleState
WHERE [CustId] IN HighValueCust
GROUP BY ProductName
ORDER BY NumSales DESC
PAGE(0,10)

PERCENTILE
PERCENTILE computes a specified percentile of the values of an attribute for all
records in the group.

The syntax of the PERCENTILE function is:

PERCENTILE(<attribute>, <numeric_literal>)

where:

• attribute is a single-assign, numeric attribute. The EQL data type for the attribute
must be either mdex:long or mdex:double.

• numeric_literal is the percentile to compute. The value must range between 0
(greater than or equal to 0) and 100 (less than or equal to 100). You can specify the
value as an integer (such as 50) or a double (such as 50.5). For example, 75 will
compute the 75th percentile of an expression. Note that a percentile of 50 is
identical to the median.

Note that if the percentile falls between two values, then EQL computes a weighted
average. As an example, suppose there are only two values, 10 and 20. If you ask for
the 20th percentile, then the result will be 12, because 12 is 20% of the way from 10 to
20.

PERCENTILE ignores rows in which its first argument is NULL. If the first argument is
NULL for all rows in a group, PERCENTILE returns NULL for that group.

PERCENTILE examples

In both examples, SalesAmount is a single-assign double attribute.

This example returns the 90th percentile of the SalesAmount values within the group:

RETURN Results AS
SELECT PERCENTILE(SalesAmount, 90) AS x90
FROM SalesState
GROUP

The result for this example might be:

PERCENTILE

Expressions 4-35

x90

571.18

This example returns the 25th, 50th, and 75th percentiles of the SalesAmount values
within the group:

RETURN Results AS
SELECT
 PERCENTILE(SalesAmount, 25) AS x25,
 PERCENTILE(SalesAmount, 50) AS x50,
 PERCENTILE(SalesAmount, 75) AS x75
GROUP

The result for this example might be:

x25 x50 x75

| 180.225 | 236.5 | 445.675 |

RECORD_IN_FAST_SAMPLE
RECORD_IN_FAST_SAMPLE is a row function that returns a Boolean indicating
whether the current record is in the sample of the records in the named state.

The syntax of the RECORD_IN_FAST_SAMPLE function is:

RECORD_IN_FAST_SAMPLE(<double_literal>)

where double_literal specifies the size of the requested sample, expressed as a fraction
of the total number of records. The sample size must be between 0.0 and 1.0
(inclusive). For example, a value of 0.1 would return approximately 10% of the records
in the state.

RECORD_IN_FAST_SAMPLE is intended to be a fast and convenient function for
reducing the size of data sent from the Dgraph to Studio (for example, when
generating approximate visualizations like heat maps). However, the function does
not compute a truly random sample. That is, it is not the case that each record in the
collection has the same probability of being chosen, and it is not the case that each
subset of k records has the same probability of being chosen as every other subset of k
records.

Restrictions on function use

The restrictions for using the RECORD_IN_FAST_SAMPLE function are:

• It may appear only as a per-statement WHERE condition.

• It may not appear inside a CASE expression or as an argument to another function.

• It is allowed only in statements that are FROM a single state. EQL will signal an
error if RECORD_IN_FAST_SAMPLE occurs in a statement FROM another statement,
FROM a view, or FROM a JOIN or CROSS.

Any violation of these restrictions will result in an EQL checking error.

This simple example illustrates the use of the function with the WHERE clause:

RECORD_IN_FAST_SAMPLE

4-36 EQL Reference

RETURN Results AS
SELECT TotalSales AS Sales
FROM SalesState
WHERE RECORD_IN_FAST_SAMPLE(0.1)

RECORD_IN_FAST_SAMPLE may be used with any of the Boolean operators, as in this
similar query:

RETURN Results AS
SELECT TotalSales AS Sales
FROM SalesState
WHERE TotalSales IS NOT NULL AND RECORD_IN_FAST_SAMPLE(0.1)

Note on sampling and joins

Although you may not sample the results of a join (see the third restriction above), you
may join the results of sampling. However, be aware that you may not get the desired
results. For example, consider this query:

DEFINE s1 AS
 SELECT ...
 FROM State1
 WHERE RECORD_IN_FAST_SAMPLE(0.1);
DEFINE s2 AS
 SELECT ...
 FROM State2
 WHERE RECORD_IN_FAST_SAMPLE(0.1);
RETURN s3 AS
 SELECT ..
 FROM s1 JOIN s2 ON (...)

The results of s1 and s2 contain roughly 10% of the records from State1 and State2,
respectively. However, in general, the results of s3 will contain far fewer than 10% of
the records it would have had if the previous statements had not been sampled.

RECORD_IN_FAST_SAMPLE

Expressions 4-37

RECORD_IN_FAST_SAMPLE

4-38 EQL Reference

5
Sets and Multi-assign Data

EQL supports sets, in particular the use of sets to represent multi-assign attributes.

About sets
EQL represents multi-assign attributes from collections as sets.

Aggregate functions
EQL provides three aggregators for working with sets.

Row functions
EQL provides a number of row functions for working with sets.

Set constructor
EQL allows users to write sets directly in queries.

Quantifiers
EQL provides existential and universal quantifiers for use with Boolean
expressions against sets.

Grouping by sets
EQL provides support for grouping by sets.

About sets
EQL represents multi-assign attributes from collections as sets.

A set consists of a group of elements, typically derived from the values of a multi-
assign attribute. EQL sets are intended to behave like mathematical sets: the order of
the elements within a set is not specified (and, in general, not observable). An empty
set is a set that contains no elements.

All elements in a set must be of the same data type. If the elements in the set come
from two multi-assign attributes (for example, by using the INTERSECTION row
function), then those two multi-assign attributes must be of the same data type. Sets
may not contain duplicate values and sets may not contain other sets.

Sets are constructed in an EQL statement as follows:

• From a reference to a multi-assign attribute. For example, using SELECT with a
multi-assign attribute will return the vales of that attribute in a set.

• From a single-assign attribute, as an argument to the SET function.

• From an expression that results in a set. For example, using a UNION function will
return a set that is a union of two input sets. Note that these set expressions require
at least one set on which to operate.

• From a set constructor.

All of these methods are described in this section.

Sets and Multi-assign Data 5-1

Note that sets are not persistent from one EQL query to another.

Set data types

The data types for sets are:

• mdex:boolean-set for multi-assign Boolean attributes

• mdex:dateTime-set for multi-assign dateTime attributes

• mdex:double-set for multi-assign double attributes

• mdex:duration-set for multi-assign duration attributes

• mdex:geocode-set for multi-assign geocode attributes

• mdex:long-set for multi-assign 32-bit integer and 64-bit long attributes

• mdex:string-set for multi-assign string attributes

• mdex:time-set for multi-assign time attributes

Sets are strictly typed. All of the elements of a specific set must have the same data
type. For example, this set:

{3, 4.0, 'five'}

is invalid because it contains an integer, a double, and a string.

Sets and NULL

Sets may not contain NULL values. In addition, sets may not be NULL, but they may
be empty. These requirements apply to both multi-assign collection attributes and
other expressions of set type.

If a collection record has no assignments for a multi-assign attribute, then in an EQL
query, that attribute's value for that record is the empty set.

The results of an EQL statement (whether DEFINE or RETURN) may contain sets. This
means, for instance, that you can define an entity (view) that provides all of the values
of a multi-assign attribute to queries that use that entity.

Note that the IS NULL and IS NOT NULL operations are not supported on sets.
Instead, use the IS_EMPTY and IS_NOT_EMPTY functions to determine whether a set
is empty. Likewise, the IS_EMPTY and IS_NOT_EMPTY functions cannot be used on
atomic values (such as on a single-assign attribute).

Set equality

Set equality is the same as mathematical set equality: two sets are equal if and only if
they contain exactly the same elements, no more, no less. The order of the elements in
the set is immaterial. Two empty sets are equal.

Set equality and inequality are defined only on two sets of the same type. For example,
you cannot compare an mdex:long-set and an mdex:geocode-set for equality;
doing so will result in an EQL type error.

You can use the = (equal) and <> (not equal) operators to test for equality between
sets. Note that the < (less than) and > (greater than) operators are not defined for sets.

Sets, functions, and operators

This chapter documents the aggregation and row functions that are used with sets.

About sets

5-2 EQL Reference

In addition, sets can be used with the following functions that work on both sets and
single-assign attributes, and are documented elsewhere in this guide:

• ARB on sets looks at all of the rows (both empty sets and non-empty sets) in the
group and selects the set value from one of the rows. For details on this function,
see ARB.

• COUNT counts all non-NULL sets (that is, all the sets in the group, including the
empty ones). For details, see COUNT function.

• COUNT_APPROX also counts all non-NULL sets. For details, see COUNT_APPROX.

• COUNTDISTINCT counts all of the sets, including the empty ones. For details, see
COUNTDISTINCT function.

• APPROXCOUNTDISTINCT also counts all of the sets, including the empty ones. For
details, see APPROXCOUNTDISTINCT function.

• HAS_REFINEMENTS whether a particular attribute has non-implicit refinements in
the current navigation state. For details, see HAS_REFINEMENTS.

As mentioned above, you can use the = (equal) and <> (not equal) operators to test for
equality between sets. The other operators (such as the * multiplication operator)
cannot be used on sets.

Aggregate functions
EQL provides three aggregators for working with sets.

The set aggregate functions can be used only in SELECT clauses.

SET function
The SET aggregation function takes a single-assign attribute and
constructs a set of all of the (non-NULL) values from that attribute.

SET_INTERSECTIONS function
The SET_INTERSECTIONS aggregation function takes a multi-assign
attribute and constructs a set that is the intersection of all of the values
from that attribute.

SET_UNIONS function
The SET_UNIONS aggregation function takes a multi-assign attribute
and constructs a set that is the union of all of the values from that
attribute.

SET function
The SET aggregation function takes a single-assign attribute and constructs a set of all
of the (non-NULL) values from that attribute.

Single-assign attributes have non-set data types (such as mdex:long). So the SET
function takes a non-set data type attribute and produces a set data type result (for
example, mdex:long-set).

The SET function's behavior is as follows:

• All NULL values are discarded. This means that if there are two non-NULL values
for an attribute and one NULL value, then only the two non-NULL values are
returned.

Aggregate functions

Sets and Multi-assign Data 5-3

• If an attribute has no non-NULL values, then the empty set is returned.

• Duplicate values in an attribute are discarded. For example, if three records all
have a WineType=Red assignment and two of them have Price=14.95 assignments
(the third having Price=21.95), then only two Price values (one 14.95 and one 21.95)
will be returned for the Red set.

• String values are case-sensitive. Therefore, the string value "Merlot" is distinct from
the string value "merlot", which means that they are not duplicate values.

• The order of the values within a set is unspecified and unobservable.

The resulting set will have a set data type (such as mdex:double-set). All
subsequent operations on it must follow the rules for sets.

The SET function is available in one-argument and two-argument versions, as
described below. This function can be used only in SELECT clauses.

SET one-argument version

The syntax of the one-argument version of the SET function is:

SET(<single-assign_attribute>)

where the data type of the attribute must be a non-set data type (such as
mdex:double for a single-assign double attribute).

In this example, Price is a single-assign double attribute:

RETURN results AS
SELECT
 SET(Price) AS prices
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType prices

Blanc de Noirs	{ 16.99 }
Bordeaux	{ 21.99 }
Brut	{ 22.99, 23.99 }
Chardonnay	{ 17.95, 34.95 }
Merlot	{ 25.99 }
Pinot Noir	{ 14.99 }
Red	{ 12.99, 13.95, 17.5, 18.99, 21.99, 9.99 }
White	{ 20.99, 32.99, 43.99 }
Zinfandel	{ }

In the results, note that Zinfandel has an empty set because Zinfandel does not have a
Price attribute assignment.

SET two-argument version

For situations where the result of the SET aggregator can be extremely large (causing
the Dgraph to consume excessive memory), a two-argument form of the aggregator is
provided to limit the set size.

The syntax of the two-argument version of the SET function is:

Aggregate functions

5-4 EQL Reference

SET(<single-assign_attribute>, <max-size>)

where:

• single-assign_attribute is an attribute whose data type is a non-set data type (such as
mdex:string for a single-assign string attribute).

• max-size is an integer that specifies the maximum size of the set. If max-size is less
than the number of elements in the set, The Dgraph arbitrarily chooses which
elements to discard; this choice is stable across multiple executions of the query. If
max-size is 0 (zero) or a negative number, SET always returns the empty set.

Note that max-size must be an integer literal:

SET(Price, 3) is valid.

SET(Price, x) is not valid, even if x is an integer.

This sample query is the same as the one-argument example, except that the query
limits the sets to a maximum of two elements:

RETURN results AS
SELECT
 SET(Price, 2) AS prices
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType prices

Blanc de Noirs	{ 16.99 }
Bordeaux	{ 21.99 }
Brut	{ 22.99, 23.99 }
Chardonnay	{ 17.95, 34.95 }
Merlot	{ 25.99 }
Pinot Noir	{ 14.99 }
Red	{ 12.99, 9.99 }
White	{ 20.99, 32.99 }
Zinfandel	{ }

In the results, note that Red set now has two elements, while it had six elements with
the one-argument SET version. Likewise with the White set, which previously had
three elements.

Data type errors

When working with the SET function, keep in mind that its resulting sets are of the set
data types, such as a mdex:double-set data type.

For example, assume that Price is a multi-assign double attribute. This incorrect
example:

RETURN results AS
SELECT SET(Price) AS prices
FROM WineState
GROUP BY WineType
HAVING prices > 10

Aggregate functions

Sets and Multi-assign Data 5-5

will throw this error:

In statement "results": In HAVING clause: Cannot compare mdex:double-set and
mdex:long

The reason for the error is that the "prices" set is of type mdex:double-set and it is
being compared to the number 10 (which is an mdex:double type).

The query should therefore be corrected to something like this:

RETURN results AS
SELECT SET(Price) AS prices
FROM WineState
GROUP BY WineType
HAVING SOME x IN prices SATISFIES (x > 10)

In this example, the SATISFIES expression allows you to make a numerical
comparison.

SET_INTERSECTIONS function
The SET_INTERSECTIONS aggregation function takes a multi-assign attribute and
constructs a set that is the intersection of all of the values from that attribute.

The syntax of the SET_INTERSECTIONS function is:

SET_INTERSECTIONS(<multi-assign_attribute>)

where the data type of the attribute must be a set data type (such as mdex:string-
set for a multi-assign string attribute).

This function can be used only in SELECT clauses.

SET_INTERSECTIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_INTERSECTIONS(Body) AS bodyIntersection
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType bodyIntersection

Bordeaux	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merlot	{ }
Pinot Noir	{ Supple }
Red	{ }
White	{ }
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

Aggregate functions

5-6 EQL Reference

WineType bodyIntersection

Bordeaux Assigned on three records, with each record having two Body
assignments of "Silky" and "Tannins". Therefore, there is an intersection
among the three records and a two-element set is returned.

Brut Assigned on two records, with each record having one Body
assignment of "Robust". Therefore, there is an intersection between the
two records and a one-element set is returned.

Chardonnay Assigned on two records, but neither record has a Body assignment.
Therefore, there is no intersection between the two records (because
there are no values to compare) and the empty set is returned.

Merlot Assigned on two records, with one record having one Body assignment
of "Fruity" and the other record having no Body assignment. Therefore,
there is no intersection between the two records and the empty set is
returned.

Pinot Noir Assigned on only one record, which has one Body assignment of
"Supple". Therefore, there is an intersection on that record.

Red Assigned on eight records, with six records having two Body
assignments of "Silky" and "Tannins", one record with two Body
assignments of "Robust" and "Tannins", and the eighth record with one
Body assignment of "Robust". Therefore, there is no intersection among
the eight records and the empty set is returned.

White Assigned on four records, with the first record having two Body
assignments of "Fresh" and "Robust", the second record with two Body
assignments of "Firm" and "Robust", and the third and fourth records
with no Body assignments. Therefore, there is no intersection among
the four records and the empty set is returned.

Zinfandel Assigned on only one record with two Body assignments of "Robust"
and "Tannins". Therefore, there is an intersection on that record and a
two-element set is returned.

SET_UNIONS function
The SET_UNIONS aggregation function takes a multi-assign attribute and constructs a
set that is the union of all of the values from that attribute.

The syntax of the SET_UNIONS function is:

SET_UNIONS(<multi-assign_attribute>)

where the data type of the attribute must be a set data type (such as mdex:string-
set for a multi-assign string attribute).

This function can be used only in SELECT clauses.

SET_UNIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_UNIONS(Body) AS bodyUnion

Aggregate functions

Sets and Multi-assign Data 5-7

FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType bodyUnion

Bordeaux	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merlot	{ Fruity }
Pinot Noir	{ Supple }
Red	{ Robust, Silky, Tannins }
White	{ Firm, Fresh, Robust }
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

WineType bodyUnion

Bordeaux Assigned on three records, with each record having two Body
assignments of"Silky" and "Tannins". Therefore, the union returns a
two-element set of the two assignments.

Brut Assigned on two records, with each record having one Body
assignment of "Robust". Therefore, the union returns a one-element set
with "Robust".

Chardonnay Assigned on two records, but neither record has a Body assignment.
Therefore, the union is empty.

Merlot Assigned on two records, with one record having one Body assignment
of "Fruity" and the other record having no Body assignment. Therefore,
there is a union of the single assignment on the one record.

Pinot Noir Assigned on only one record, which has one Body assignment of
"Supple". Therefore, there is a union on that record.

Red Assigned on eight records, with six records having two Body
assignments of "Silky" and "Tannins", one record with two Body
assignments of "Robust" and "Tannins", and the eighth record with one
Body assignment of "Robust". Therefore, the resulting union produces
a three-element set of the three distinct assignments.

White Assigned on four records, with the first record having two Body
assignments of "Fresh" and "Robust", the second record with two Body
assignments of "Firm" and "Robust", and the third and fourth records
with no Body assignments. Therefore, there is a union of the "Firm",
"Fresh", and "Robust" assignments.

Zinfandel Assigned on only one record with two Body assignments of "Robust"
and "Tannins". Therefore, there is a union on that record.

Row functions
EQL provides a number of row functions for working with sets.

Row functions

5-8 EQL Reference

The set row functions can be used anywhere that an arbitrary expression can be used.
For example, they can be used in SELECT clauses, WHERE clauses, ORDER BY clauses,
and so on.

ADD_ELEMENT function
The ADD_ELEMENT row function adds an element to a set.

CARDINALITY function
The CARDINALITY row function takes a set and returns the number of
elements in that set.

COUNTDISTINCTMEMBERS function
The COUNTDISTINCTMEMBERS function counts the number of elements
in a set that has the union of all its values.

DIFFERENCE function
The DIFFERENCE row function takes two sets of the same data type and
returns a set containing all of the elements of the first set that do not
appear in the second set.

FOREACH function
The FOREACH function performs a computation on every member of a
set or sets and assembles the results into a set.

INTERSECTION function
The INTERSECTION row function takes two sets of the same data type
and returns a set that is the intersection of both input sets.

IS_EMPTY and IS_NOT_EMPTY functions
The IS_EMPTY and IS_NOT_EMPTY functions determine whether a set
is or is not empty. The IS EMPTY and IS NOT EMPTY functions
provide alternative syntaxes for these functions.

IS_MEMBER_OF function
The IS_MEMBER_OF row function takes an atomic value and a set, and
returns a Boolean indicating whether the atomic value occurs in the set.

SINGLETON function
The SINGLETON function takes a single atomic value and returns a set
containing only that value.

SUBSET function
The SUBSET row function takes two sets of the same data type and
returns a Boolean true if (and only if) the second set is a subset of the
first set.

TRUNCATE_SET function
The TRUNCATE_SET row function takes a set and an integer, and returns
a copy of the set with no more than the specified number of elements in
it.

UNION function
The UNION row function takes two sets of the same data type and
returns a set that is the union of both input sets.

ADD_ELEMENT function
The ADD_ELEMENT row function adds an element to a set.

Row functions

Sets and Multi-assign Data 5-9

ADD_ELEMENT takes an atomic value and a set and returns that set with the atomic
value added to it. The atomic value must be of the same data type as the current
elements in the set. The atomic value is not added to the set if a duplicate value is
already in the set. Note that the atomic value is not added to the set in the Dgraph, but
only to the new, temporary set that is created by the ADD_ELEMENT function.

The syntax of the ADD_ELEMENT function is:

ADD_ELEMENT(<atomic-value>, <set>)

where:

• atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string set.
It can also be a single-assign attribute. atomic-value will be added to set. The type of
the atomic value must match the type of the set's elements.

• set is a set to which atomic-value will be added. The elements of set must have the
same set data type as atomic-value. For example, if atomic-value is a single-assign
double attribute, then the elements of set must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

ADD_ELEMENT(1, { 2, 3 }) = { 1, 2, 3 }
ADD_ELEMENT(1, { 1, 2 }) = { 1, 2 }
ADD_ELEMENT(NULL, { 1, 2 }) = { 1, 2 }
ADD_ELEMENT(1, { 'a', 'b' }) yields a checking error because the atomic value and
the set elements are not of the same data type

ADD_ELEMENT example

In this example, the number 100 is added to the Score integer set (which currently does
not have a value of 100 in it):

RETURN results AS
SELECT
 WineID AS idRec,
 ADD_ELEMENT(100, Score) AS addAttrs
FROM WineState
WHERE WineID BETWEEN 10 AND 14
ORDER BY idRec

The result of this statement might be:

addAttrs idRec

{ 100, 83, 85, 86 }	10
{ 100, 82, 83 }	11
{ 100, 81, 89 }	12
{ 100, 73, 75 }	13
{ 100, 72, 74, 75 }	14

The results show that the number 100 was added to the sets. For example, the Score set
of Record 12 previously had 81 and 89 as its elements, but now has 81, 89, and 100 as
the element values.

CARDINALITY function
The CARDINALITY row function takes a set and returns the number of elements in
that set.

Row functions

5-10 EQL Reference

The syntax of the CARDINALITY function is:

CARDINALITY(<set>)

where set is a set of any set data type (such as mdex:string-set or mdex:long-
set). For example, set can be a multi-assign double attribute.

CARDINALITY example

In this example, Body is a multi-assign string attribute and WineID is the primary key
of the records:

RETURN results AS
SELECT
 WineID AS id,
 CARDINALITY(Body) AS numBody
FROM WineState
WHERE WineID < 7
ORDER BY id

The result of this statement might be:

id numBody

1	0
2	0
3	2
4	2
5	4
6	1

The numBody column shows the number of elements in the Body set for each record.

COUNTDISTINCTMEMBERS function
The COUNTDISTINCTMEMBERS function counts the number of elements in a set that
has the union of all its values.

COUNTDISTINCTMEMBERS is functionally equivalent to this statement:

CARDINALITY(SET_UNIONS(multi-assign-attribute))

That is, COUNTDISTINCTMEMBERS first constructs a set that is the union of all the
values from a multi-assign attribute and then returns the number of elements in that
set.

COUNTDISTINCTMEMBERS syntax

The syntax of the COUNTDISTINCTMEMBERS function is:

COUNTDISTINCTMEMBERS(<multi-assign-attribute>)

where multi-assign-attribute is a multi-assign attribute.

Row functions

Sets and Multi-assign Data 5-11

COUNTDISTINCTMEMBERS example

Assume the following nine records that are of WineType=Red (where WineType is a
single-assign attribute). Each record includes one or two assignments for the multi-
assign Body attribute:

Body WineID

{ Silky, Tannins } 3
{ Robust, Tannins } 4
{ Silky, Tannins } 5
{ Robust } 6
{ Robust } 8
{ Silky, Tannins } 9
{ Silky, Tannins } 12
{ Silky, Tannins } 16
{ Silky, Tannins } 18

The following statement returns the number of different values for the Body attribute
in the WineType=Red records:

RETURN Result AS
SELECT COUNTDISTINCTMEMBERS(Body) AS Total
FROM WineState
WHERE WineType = 'Red'
GROUP BY WineType

The statement result is:

Total=3, WineType=Red

For this group, the value of Total is 3 because there are three non-empty sets with
unique values for the Body attribute:

• One set for Records 3, 5, 9, 12, 16, and 18, each of which has the "Silky" and
"Tannins" assignments for Body.

• One set for Records 6 and 8, each of which has the "Robust" assignment for Body.

• One set for Record 4, which has the "Robust" and "Tannins" assignments for Body.

Thus, there are three sets of distinct values for the Body attribute, when grouped by
the WineType attribute.

DIFFERENCE function
The DIFFERENCE row function takes two sets of the same data type and returns a set
containing all of the elements of the first set that do not appear in the second set.

The syntax of the DIFFERENCE function is:

DIFFERENCE(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can
be a multi-assign string attribute.

Row functions

5-12 EQL Reference

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign
string attribute, then set2 must also be a set of strings (such as another multi-assign
string attribute).

Examples of some results are as follows ({ } indicates an empty set):

DIFFERENCE({ 1, 2, 3, 4, 5 }, { 1, 3, 5 }) = { 2, 4 }
DIFFERENCE({ }, { 1, 3, 5 }) = { }
DIFFERENCE({ 1, 2, 3 }, { }) = { 1, 2, 3 }
DIFFERENCE({ 1, 2 }, { 'a', 'b' }) yields a checking error because the two sets are
not of the same data type

DIFFERENCE example

In the examples below, both Body and Flavors are multi-assign string attributes. Their
values for five records are:

Record 5: Body=Earthy, Silky, Tannins
 Flavors=Blackberry, Earthy, Toast
Record 6: Body=Robust
 Flavors=Berry, Plum, Zesty
Record 7: Body=Silky, Tannins
 Flavors=Cherry, Pepper, Prune
Record 8: Body=Oak, Robust
 Flavors=Cherry, Oak, Raspberry
Record 9: Body=Fruit, Strawberry, Silky, Tannins
 Flavors=Fruit, Earthy, Strawberry

First, we want all the elements of the Body set that do not appear in the Flavors set:

RETURN results AS
SELECT
 WineID AS idRec,
 DIFFERENCE(Body, Flavors) AS diffAttrs
FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

diffAttrs idRec

{ Silky, Tannins }	5
{ Robust }	6
{ Silky, Tannins }	7
{ Robust }	8
{ Silky, Tannins }	9

Records 5, 7, and 9 have "Silky" and "Tannins" in the Body set, but these values do not
appear in the Flavors set. Likewise, Records 6 and 8 have "Robust" in the Body set, but
that value does not appear in the Flavors set.

We then reverse the difference comparison between the two sets. The statement is
identical to the first example, except that Flavors is the first argument rather than
Body:

RETURN results AS
SELECT
 WineID AS idRec,
 DIFFERENCE(Flavors, Body) AS diffAttrs
FROM WineState

Row functions

Sets and Multi-assign Data 5-13

WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

This time, the result of this statement will look different:

diffAttrs idRec

{ Blackberry, Toast }	5
{ Berry, Plum, Zesty }	6
{ Cherry, Pepper, Prune }	7
{ Cherry, Raspberry }	8
{ Earthy }	9

To take Record 9 as an example of the output, "Earthy" is the only element from the
first set (the Flavors set) that does not appear in the second set (the Body set).

FOREACH function
The FOREACH function performs a computation on every member of a set or sets and
assembles the results into a set.

FOREACH may be used in any context within an EQL statement that accepts
expressions: LET, SELECT, row function or aggregator arguments, WHERE, HAVING, or
ORDER BY. Because FOREACH always evaluates to a set, the context must accept set-
typed expressions, or EQL will signal a checking error.

Syntax

The syntax of the FOREACH function is:

FOREACH id_1 IN set_1[, id_n IN set_n] RETURN(expression)

where:

• id is an arbitrary identifier for the item to be computed. The identifier must use the
NCName format.

• set is a set of any set data type.

• expression is an EQL expression. The expression must be enclosed within
parentheses and the RETURN keyword is required. The function must have only
one RETURN regardless of the number of id parameters are used.

At a minimum, you must specify one identifier/set pair (id IN set) and the RETURN
expression.

Scope and Shadowing

FOREACH binds the id_1 through id_n identifiers within the RETURN expression; they
are not in scope in the universes set_1 through set_n. These bindings shadow any other
bindings for id_1 through id_n that may be in scope at the point of the FOREACH
function.

As with the EVERY and SOME quantifiers, EQL does not allow references to these
bound variables to be qualified with data-source aliases. For example, in this
statement:

RETURN results AS
 SELECT

Row functions

5-14 EQL Reference

 Source.x AS x,
 FOREACH x IN {1, 2}, y in {3, 4} RETURN (results.x + Source.y) AS vals
 FROM Source

EQL interprets the reference to results.x (in the FOREACH RETURN expression) as a
reference to the x defined by the SELECT clause (that is, as an alias for Source.x and
not as a reference to the x bound by FOREACH). Similarly, EQL interprets the reference
Source.y as a reference to the attribute y in Source.

However, if you drop the statement qualifiers, as in the following:

RETURN results AS
 SELECT
 Source.x AS x,
 FOREACH x IN {1, 2}, y in {3, 4} RETURN (x + y) AS vals
 FROM Source

then EQL interprets x and y (in the FOREACH RETURN expression) as references to the
FOREACH-bound identifiers, even though x and y are already in scope from the earlier
SELECT and from the data source. Therefore, vals always has the value {4, 5, 6}.

Types

In the FOREACH syntax, set_1 through set_n must be a set data type (such as
mdex:string-set); EQL signals an error otherwise. The corresponding x_1 through
x_n identifiers must have the type of the elements of these sets. To illustrate, consider
this example:

FOREACH x IN {1, 2}, y IN {'abc', 'def'} RETURN (x + y)

Here, the first universe is a set of integers, and thus x has type integer within the
RETURN expression. Similarly, the second universe is a set of strings, so y has type
string. As a result, the RETURN expression x + y is thus ill-typed (and EQL signals an
error accordingly).

If the RETURN expression has atomic type t, then the entire FOREACH expression has
type "set of t". Therefore, if the RETURN expression has type integer, then the
containing FOREACH expression has type integer set.

If, on the other hand, the RETURN expression has a set type, then the FOREACH
expression has the same type as the RETURN expression. (This corresponds to the case
where FOREACH takes the union of the values of the RETURN expression.) So, if the
RETURN expression produces a set of string, then the FOREACH expression does also.

FOREACH and aggregation

FOREACH expressions may appear in both pre-grouping and post-grouping
computation (including WHERE, HAVING, and ORDER BY clauses). They interact with
aggregations in much the same way that quantifier expressions (EVERY and SOME) do:

• FOREACH expressions can appear inside aggregator arguments:

RETURN results AS
 SELECT
 SET_UNIONS(FOREACH x IN e RETURN(b)) AS unions
 FROM Source
 GROUP

• An aggregator must not appear between a FOREACH and its bound variable. That
is, the following is invalid, and EQL signals an error accordingly:

Row functions

Sets and Multi-assign Data 5-15

FOREACH x IN e RETURN(SUM(x))

Operational details

To explain how FOREACH works, we start with a simple example:

FOREACH x IN {1, 2, 3} RETURN(x * 2 + 1)

This expression evaluates to the set {3, 5, 7}. This is because, notionally, EQL evaluates
the RETURN expression x * 2 + 1 once for each member of the set {1, 2, 3}, with x taking
on each element of that set in turn. Finally, EQL assembles the results of these
evaluations into another set.

Because the universe and result are both sets, you cannot specify the order in which
the traversal visits the elements of the universe, or the order in which the result values
appear in the final set.

You can also use FOREACH to iterate over multiple sets:

FOREACH x IN {1, 2, 3}, y IN {40, 50, 60} RETURN(x + y)

This expression evaluates to the set {41, 42, 43, 51, 52, 53, 61, 62, 63}. Here, EQL
evaluates the RETURN expression x + y for all possible combinations of values x and y
from the two sets:

x = 1, y = 40: x + y = 41
x = 2, y = 40: x + y = 42
x = 3, y = 40: x + y = 43
x = 1, y = 50: x + y = 51
...
x = 3, y = 60: x + y = 63

Because sets cannot contain duplicate values or NULLs, the result of a FOREACH
expression may be smaller than the universe (or the cross product of the universes), as
illustrated by these two examples:

FOREACH x IN {-1, 1, 2} RETURN (ABS(x)) // returns {1, 2}
FOREACH x IN {'3', '4', 'y'} RETURN (TO_STRING(x)) // returns {3, 4}

In the first example, ABS(-1) = ABS(1) = 1, so the final set contains only two elements;
the value 1 may not appear twice. In the second example, TO_INTEGER('x') is NULL,
so this value does not appear in the final set.

If the RETURN expression itself produces a set (rather than a single value), then
FOREACH evaluates as described above, but computes the union of all of the RETURN
sets as the final result. For example:

FOREACH x in {3, 4, 5}, y IN {-1, 0, 2} RETURN ({x + y, x - y})

evaluates to the set {1, 2, 3, 4, 5, 6, 7}, as follows:

// Note: "body" is the RETURN expression
| x | y | body |

3	-1	{2,4}
3	0	{3}
3	2	{1,5}
4	-1	{3,5}
4	0	{4}
4	2	{2,6}
5	-1	{4,6}
5	0	{5}

Row functions

5-16 EQL Reference

| 5 | 2 | {3,7} |

Computing the union of all of the sets in the "body" column produces the final result.

An important corollary of the above description is that if any of the universe sets are
empty, then the result set is itself empty. For example, given two multi-assign
attributes whose assigned values are:

| xs | ys |

{1,2}	{3}
{}	{4,5}
{6}	{}

then the statement:

RETURN results AS
 SELECT
 xs,
 ys,
 FOREACH x IN xs, y IN ys RETURN (x + y) AS zs
 FROM InputState

produces the following results:

| xs | ys | zs |

{1,2}	{3}	{4,5}
{}	{4,5}	{}
{6}	{}	{}

FOREACH Examples

Example 1: This is one of the simplest examples of a FOREACH expression, as only one
multi-assign integer attribute (Score) is used and the RETURN expression just returns
the values of each Score set:

RETURN Results AS
SELECT
 WineID AS id,
 FOREACH x IN Score RETURN(x) AS ratings
FROM WineState
ORDER BY id

Example 2: This example uses two multi-assign string attributes (Body and Flavors)
and concatenates the members of the sets:

RETURN Results AS
SELECT
 WineID AS id,
 FOREACH x IN Body, y IN Flavors RETURN (CONCAT(x, ' ', y)) AS bodyflavor
FROM WineState
WHERE IS_NOT_EMPTY(Body) AND IS_NOT_EMPTY(Flavors)
ORDER BY id

Note that the WHERE clause uses two IS_NOT_EMPTY functions to prevent empty sets
being selected.

Row functions

Sets and Multi-assign Data 5-17

Example 3: This example uses both LET and FOREACH, and also uses the EXTRACT
function in the RETURN expression:

RETURN Results AS
LET
 (FOREACH d IN ShipDate RETURN (EXTRACT(d, YEAR))) AS yearSet
SELECT
 SET(Price) AS prices
FROM WineState
GROUP BY MEMBERS(yearSet) AS shipyear

In the example, ShipDate is a multi-assign dateTime attribute. The attribute d is
visible only within the RETURN expression, and it shadows any other attribute by the
same name within that expression. Note that, because yearSet is defined in a LET
clause rather than a SELECT clause, it will not appear in the statement's results.

INTERSECTION function
The INTERSECTION row function takes two sets of the same data type and returns a
set that is the intersection of both input sets.

The syntax of the INTERSECTION function is:

INTERSECTION(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can
be a multi-assign string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign
string attribute, then set2 must also be a set of strings (such as another multi-assign
string attribute).

If an attempt is made to intersect two sets of different set data types, an error message
is returned similar to this example:

The function "INTERSECTION" is defined for the argument type(s) mdex:string-set,
mdex:double-set

In this error case, INTERSECTION was used with a multi-assign string attribute
(mdex:string-set) and a multi-assign double attribute (mdex:double-set) as
inputs.

INTERSECTION example

In this example, both Body and Flavors are multi-assign string attributes and WineID
is the primary key of the records:

RETURN results AS
SELECT
 WineID AS idRec,
 INTERSECTION(Body, Flavors) AS intersectAttrs
FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

Row functions

5-18 EQL Reference

idRec intersectAttrs

5	{ Earthy }
6	{ }
7	{ }
8	{ Oak }
9	{ Fruit, Strawberry }

Records 5 and 8 have one-element result sets because there is one intersection between
their Body and Flavors assignments, while Record 9 has a two-element intersection.
Records 6 and 7 return empty sets because there is no intersection among their Body
and Flavors assignments.

IS_EMPTY and IS_NOT_EMPTY functions
The IS_EMPTY and IS_NOT_EMPTY functions determine whether a set is or is not
empty. The IS EMPTY and IS NOT EMPTY functions provide alternative syntaxes for
these functions.

Note: The IS NULL and IS NOT NULL operations are not supported on sets.

Sample data for the examples

The sample data used to illustrate these functions consists of a Body multi-assign
string attribute and five records:

Rec ID Body attribute

16	{ Silky, Tannins }
17	{ }
18	{ Silky, Tannins }
19	{ Fresh, Robust }
20	{ }
21	{ }
22	{ Firm, Robust }

Three of the records have no Body assignment (and therefore are empty sets), while
the other three records have two Body assignments.

Note that these functions are used in WHERE clauses in the examples. However, they
can be used anywhere that an arbitrary expression can be used, such as in SELECT and
HAVING clauses.

IS_EMPTY function

The IS_EMPTY function takes a set and returns TRUE if that set is empty. The syntax of
the IS_EMPTY function is:

IS_EMPTY(<set>)

where set is a set of any set data type (such as mdex:string-set or mdex:long-
set). For example, set can be a multi-assign double attribute.

Examples of two results are as follows (note that { } indicates an empty set):

IS_EMPTY({ }) = TRUE
IS_EMPTY({ 1 }) = FALSE

Row functions

Sets and Multi-assign Data 5-19

In this example, the Body attribute is checked for emptiness:

RETURN results AS
SELECT
 WineID AS idRec,
 Body AS bodyAttr
FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (IS_EMPTY(Body))
ORDER BY idRec

The result of this statement would be:

idRec

| 17 |
| 20 |
21

In the result, only Records 17, 20, and 21 are returned because they have an empty
Body set.

IS EMPTY function

The IS EMPTY function provides an alternative syntax to IS_EMPTY and also returns
TRUE if that set is empty.

The syntax of the IS EMPTY function is:

<set> IS EMPTY

where set is a set of any set data type, such as a multi-assign double attribute.

The previous IS_EMPTY example can be re-written as follows:

RETURN results AS
SELECT
 WineID AS idRec,
 Body AS bodyAttr
FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (Body IS EMPTY)
ORDER BY idRec

The results of this example would the same as the previous IS_EMPTY example.

IS_NOT_EMPTY function

The IS_NOT_EMPTY function takes a set and returns TRUE if that set is not empty. The
syntax of the IS_NOT_EMPTY function is:

IS_NOT_EMPTY(<set>)

where set is a set of any set data type. For example, set can be a multi-assign geocode
attribute.

Examples of two results are as follows ({ } indicates an empty set):

IS_NOT_EMPTY({ }) = FALSE
IS_NOT_EMPTY({ 1 }) = TRUE

In this example, the Body attribute is checked for non-emptiness:

Row functions

5-20 EQL Reference

RETURN results AS
SELECT
 WineID AS idRec,
 Body AS bodyAttr
FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (IS_NOT_EMPTY(Body))
ORDER BY idRec

The result of this statement might be:

bodyAttr idRec

{ Silky, Tannins }	16
{ Silky, Tannins }	18
{ Fresh, Robust }	19
{ Firm, Robust }	22

In the result, Records 16, 18, 19, and 22 are returned because they have non-empty
Body sets. However, Records 17, 20, and 21 are not returned because there is no Body
assignment for those records (and therefore those sets would be empty).

IS NOT EMPTY function

The IS NOT EMPTY function provides an alternative syntax to IS_NOT_EMPTY and
also returns TRUE if that set is not empty.

The syntax of the IS NOT EMPTY function is:

<set> IS NOT EMPTY

where set is a set of any set data type, such as a multi-assign string attribute.

The previous IS_NOT_EMPTY example can be re-written as follows:

RETURN results AS
SELECT
 WineID AS idRec,
 Body AS bodyAttr
FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (Body IS NOT EMPTY)
ORDER BY idRec

The results of this example would the same as the previous IS_NOT_EMPTY example.

IS_MEMBER_OF function
The IS_MEMBER_OF row function takes an atomic value and a set, and returns a
Boolean indicating whether the atomic value occurs in the set.

The syntax of the IS_MEMBER_OF function is:

IS_MEMBER_OF(<atomic-value>, <set>)

where:

• atomic-value is an atomic value, such as 50 (for an integer set) or 'test' (for a string
set). It can also be a single-assign attribute. atomic-value will be checked to see
whether it occurs in set. The type of the atomic value must match the type of the
set's elements.

Row functions

Sets and Multi-assign Data 5-21

• set is a set in which its elements have the same set data type as atomic-value. For
example, if atomic-value is a single-assign string attribute, then the elements of set
must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

IS_MEMBER_OF(1, { }) = FALSE
IS_MEMBER_OF(1, { 1, 2, 3 }) = TRUE
IS_MEMBER_OF(1, { 2, 3, 4 }) = FALSE
IS_MEMBER_OF(NULL, { }) = NULL
IS_MEMBER_OF(NULL, { 1, 2, 3 }) = NULL
IS_MEMBER_OF(1, { 'a', 'b', 'c' }) yields a checking error because the atomic value
and the set elements are not of the same data type

The IS_MEMBER_OF function is intended as a membership check function.

IS_MEMBER_OF examples

Example 1: In this example, the statement determines whether the number 82 (which
is an integer) occurs in the Score set (which has integer elements):

RETURN results AS
SELECT
 WineID AS idRec,
 IS_MEMBER_OF(82, Score) AS memberAttrs
FROM WineState
WHERE WineID BETWEEN 22 AND 25
ORDER BY idRec

The result of this statement might be:

idRec memberAttrs

22	false
23	true
24	false
25	true

The results show that the number 82 occurs in the Score set of Records 23 and 25, but
not in Records 22 and 24.

Example 2: This example is similar to Example 1, except that it uses the Ranking
single-assign integer attribute as the first argument to the IS_MEMBER_OF function
and the Score set (which has integer elements) as the second argument:

RETURN results AS
SELECT
 WineID AS idRec,
 IS_MEMBER_OF(Ranking, Score) AS memberAttrs
FROM WineState
ORDER BY idRec

Example 3: This example is similar to Example 2, except that it uses the
IS_MEMBER_OF function in a WHERE clause:

RETURN results AS
SELECT
 WineID AS idRec,
 Price AS prices
FROM WineState

Row functions

5-22 EQL Reference

WHERE IS_MEMBER_OF(Ranking, Score) AND Price IS NOT NULL
ORDER BY idRec

Using the IN expression

You can use the IN expression as an alternative to the IS_MEMBER_OF function for
membership tests. To illustrate this, Example 3 can be re-written as:

RETURN results AS
SELECT
 WineID AS idRec,
 Price AS prices
FROM WineState
WHERE Ranking IN Score AND Price IS NOT NULL
ORDER BY idRec

For details on the IN expression, see IN.

SINGLETON function
The SINGLETON function takes a single atomic value and returns a set containing only
that value.

The syntax of the SINGLETON function is:

SINGLETON(<atomic-value>)

where atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string
set. It can also be a single-assign attribute. The resulting set will contain only atomic-
value.

Examples of some results are as follows ({ } indicates an empty set):

SINGLETON(NULL) = { }
SINGLETON(1) = { 1 }
SINGLETON('a') = { 'a' }

SINGLETON example

In this example, WineType is a single-assign string attribute and WineID is the
primary key of the records:

RETURN results AS
SELECT
 WineID AS idRec,
 SINGLETON(WineType) AS singleAttr
FROM WineState
WHERE WineID BETWEEN 10 AND 14
ORDER BY idRec

The result of this statement might be:

idRec singleAttr

10	{ Bordeaux }
11	{ Zinfandel }
12	{ Red }
13	{ Bordeaux }
14	{ Merlot }

Row functions

Sets and Multi-assign Data 5-23

SUBSET function
The SUBSET row function takes two sets of the same data type and returns a Boolean
true if (and only if) the second set is a subset of the first set.

The syntax of the SUBSET function is:

SUBSET(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can
be a multi-assign string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign
string attribute, then set2 must also be a set of strings (such as another multi-assign
string attribute). set2 will be checked to see if it is completely contained within
set1.

For example, assuming this statement:

SUBSET(A, B)

then the SUBSET result is true if (and only if) B is a subset of A.

Other examples of some results are as follows ({ } indicates an empty set):

SUBSET({ }, { }) = TRUE
SUBSET({ 1, 2, 3 }, { }) = TRUE
SUBSET({ 1, 2 }, { 1, 2 }) = TRUE
SUBSET({ 1, 2, 3 }, { 1, 2 }) = TRUE
SUBSET({ 1, 3, 5 }, { 1, 2 }) = FALSE
SUBSET({ 1, 2 }, { 'x', 'y', 'z' }) yields a checking error because the two sets are
not of the same data type

Note that the empty set is always a subset of every other set (including the empty set).

SUBSET example

In this example, both Flavors and Body are multi-assign string attributes, and WineID
is the primary key of the records:

RETURN results AS
SELECT
 WineID AS id,
 SUBSET(Body, Flavors) AS subAttrs
FROM WineState
WHERE WineID < 5
ORDER BY id

The result of this statement might be:

id subAttrs

1	true
2	true
3	false
4	false

Row functions

5-24 EQL Reference

The results show that the Flavors set is a subset of the Body set in Records 1 and 2, but
not in Records 3 and 4.

TRUNCATE_SET function
The TRUNCATE_SET row function takes a set and an integer, and returns a copy of the
set with no more than the specified number of elements in it.

The syntax of the TRUNCATE_SET function is:

TRUNCATE_SET(<set>, <max-size>)

where:

• set is a set of any set data type (such as mdex:string-set or mdex:long-set).
For example, set can be a multi-assign string attribute.

• max-size is an integer that specifies the maximum size of the truncated set. If max-
size is less than the number of elements in the set, the Dgraph arbitrarily chooses
which elements to discard; this choice is stable across multiple executions of the
query. If max-size is 0 (zero) or a negative number, the empty set is returned.

Examples of some results are as follows ({ } indicates an empty set):

TRUNCATE_SET({ }, 2) = { }
TRUNCATE_SET({ 'a', 'b' }, 2) = { 'a', 'b' }
TRUNCATE_SET({ 'a', 'b', 'c' }, 2) = { 'b', 'c' }
TRUNCATE_SET({ 1, 2 }, 20) = { 1, 2 }
TRUNCATE_SET({ 1, 2 }, -3) = { }

TRUNCATE_SET is useful when you want to ensure that final results of a set are of a
reasonable and manageable size for your front-end UI.

TRUNCATE_SET example

In this example, Flavors is a multi-assign string attribute and WineID is the primary
key of the records:

RETURN results AS
SELECT
 WineID AS id,
 Flavors AS fullFlavors,
 TRUNCATE_SET(fullFlavors, 1) AS truncFlavors
FROM WineState
WHERE WineID BETWEEN 15 AND 19
ORDER BY id

The result of this statement might be:

fullFlavors id truncFlavors

{ Blackberry, Oaky, Strawberry }	15	{ Blackberry }
{ Currant, Licorice, Tobacco }	16	{ Licorice }
{ Cedar, Cherry, Spice }	17	{ Cherry }
{ Black Cherry, Cedar, Fruit }	18	{ Black Cherry }
{ Herbal, Strawberry, Vanilla }	19	{ Herbal }

The fullFlavors set shows the full set of Flavors assignments on each of the five chosen
records. The fullFlavors set is then truncated to a one-element set.

Row functions

Sets and Multi-assign Data 5-25

UNION function
The UNION row function takes two sets of the same data type and returns a set that is
the union of both input sets.

The syntax of the UNION function is:

UNION(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can
be a multi-assign string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign
string attribute, then set2 must also be a set of strings (such as another multi-assign
string attribute).

If an attempt is made to union two sets of different set data types, an error message is
returned similar to this example:

The function "UNION" is not defined for the argument type(s) mdex:string-set,
mdex:double-set

In this error case, UNION was used with a multi-assign string attribute
(mdex:string-set) and a multi-assign double attribute (mdex:double-set) as
inputs.

UNION example

In this example, both Body and Flavors are multi-assign string attributes and WineID
is the primary key of the records:

RETURN results AS
SELECT
 WineID AS idRec,
 UNION(Body, Flavors) AS unionAttrs
FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

idRec unionAttrs

5	{ Blackberry, Earthy, Silky, Tannins, Toast }
6	{ Berry, Plum, Robust, Zesty }
7	{ Cherry, Pepper, Prune, Silky, Tannins }
8	{ Cherry, Oak, Raspberry, Robust }
9	{ Earthy, Fruit, Strawberry, Silky, Tannins }

To take one set as an example, Record 5 has "Silky" and "Tannins" for its two Body
assignments and "Blackberry", "Earthy", and "Toast" for its three Flavors assignments.
The resulting set is a union of all five attribute values.

Set constructor
EQL allows users to write sets directly in queries.

Set constructor

5-26 EQL Reference

The syntax of the set constructor is:

{<expr1> [,<expr2>]*}

where the curly braces enclose a comma-separated list of one or more expressions.

For example, this is an integer set:

{ 1, 4, 7, 10 }

while this is a string set:

{ 'Red', 'White', 'Merlot', 'Chardonnay' }

Keep the following in mind when using set constructors:

• Set constructors may appear anywhere in a query where an expression is legal.
(Because set constructors have a set type, you will get an EQL checking error if you
use a set constructor in a context that expects an atomic value.)

• The individual elements of the set constructor may be arbitrary expressions, as long
as they have the correct type. For instance, you may write the following as long as
x, y, and z are integers:

{ x, y + z, 3 }

• All of the expressions within the curly braces must have the same type. For
example, you cannot mix integers and strings.

• Empty set constructors are not allowed; there must be at least one expression
within the curly braces.

Note that EQL promotes integers to doubles in a set constructor as needed. Therefore,
writing {1, 2} results in an mdex:long-set type while {1, 2.5} results in an
mdex:double-set type.

Set constructor examples

In this first example, the SELECT clause constructs a string-type set (named
selectWines) that contains 'Red' and 'White' as its two elements. The selectWines set is
then used in a HAVING clause to limit the returned records to those have WineType
assignments of either 'Red' or 'White'.

RETURN results AS
SELECT
 {'Red', 'White'} AS selectWines,
 WineID AS idRec,
 WineType AS wines,
 Body AS bodyAttr
FROM WineState
HAVING wines IN selectWines
ORDER BY idRec

This second example is similar to the first example, except that the set is used in a
WHERE clause:

RETURN results AS
SELECT
 WineID AS idRec,
 WineType AS wines,

Set constructor

Sets and Multi-assign Data 5-27

 Body AS bodyAttr
FROM WineState
WHERE WineType IN {'Red', 'White'}
ORDER BY idRec

Both queries would return only records with a WineType of 'Red' or 'White'.

Quantifiers
EQL provides existential and universal quantifiers for use with Boolean expressions
against sets.

Both types of expressions can appear in any context that accepts a Boolean expression,
such as SELECT clauses, WHERE clauses, HAVING clauses, ORDER BY clauses, join
conditions, and so on.

Existential quantifier

An existential quantifier uses the SOME keyword. In an existential quantifier, if any
item in the set has a match based on the comparison operator that is used, the returned
value is TRUE.

The syntax of the existential quantifier is:

SOME id IN set SATISFIES (booleanExpr)

where:

• id is an arbitrary identifier for the item to be compared. The identifier must use the
NCName format.

• set is a set of any set data type.

• booleanExpr is any expression that produces a Boolean (or NULL).

The expression binds the identifier id within booleanExpr. This binding shadows any
other attributes with the same name inside the predicate. Note that this shadowing
applies only to references to identifiers/attributes that do not have a statement
qualifier.

To evaluate an existential quantifier expression, EQL evaluates the predicate
expression for every member of the indicated set. Then, EQL computes the results of
the quantifier based on these predicate values as follows:

1. If set is empty, the quantifier is FALSE.

2. Otherwise, if booleanExpr is true for least one element of set, the quantifier is
TRUE.

3. Otherwise, if booleanExpr is false for every id element of set, the quantifier is
FALSE.

4. Otherwise (the values of booleanExpr are either false or NULL, with at least one
NULL), the quantifier is NULL.

Some results of this evaluation are:

• SOME x IN { } SATISFIES (x > 0) is FALSE.

• SOME x IN { -3, -2, 1 } SATISFIES (x > 0) is TRUE, because the predicate expression
is true for x = 1.

Quantifiers

5-28 EQL Reference

• SOME x IN { 5, 7, 10 } SATISFIES (x > 0) is TRUE, because the predicate is true for x
= 5.

• SOME x IN { 'foo', '3', '4' } SATISFIES (TO_INTEGER(x) > 0) is TRUE, because the
predicate is true for x = '3'.

• SOME x IN { 'foo', '-1', '-2' } SATISFIES (TO_INTEGER(x) > 0) is NULL. The
predicate is false for x = '-1' and x = '-2', but NULL for x = 'foo'.

In this existential quantifier example, Body is a multi-assign string attribute (one of
whose assignments on several records is 'Robust'):

RETURN results AS
SELECT
 WineID AS idRec,
 WineType AS wines,
 Body AS bodyAttr
FROM WineState
WHERE SOME x IN Body SATISFIES (x = 'Robust')
ORDER BY idRec

The result of this statement would be:

bodyAttr idRec wines

{ Robust, Tannins }	4	Red
{ Robust }	6	Red
{ Oak, Robust	8	Red
{ Robust, Tannins }	11	Zinfandel
{ Fresh, Robust }	19	White
{ Firm, Robust }	22	Blanc de Noirs
{ Robust }	23	Brut
{ Robust }	24	Brut
{ Firm, Robust }	25	White

Only the nine records that have the Body='Robust' assignment are returned.

Universal quantifier

A universal quantifier uses the EVERY keyword. In a universal quantifier, if every item
in the set has a match based on the comparison operator that is used, the returned
value is TRUE.

The syntax of the universal quantifier is:

EVERY id IN set SATISFIES (booleanExpr)

where id, set, and booleanExpr have the same meanings as in the existential
quantifier.

The expression binds the identifier id within booleanExpr. This binding shadows any
other attributes with the same name inside the predicate. Note that this shadowing
applies only to references to identifiers/attributes that do not have a statement
qualifier.

Similar to an existential quantifier expression, for a universal quantifier expression
EQL evaluates the predicate expression for every member of the indicated set. Then,
EQL computes the results of the quantifier based on these predicate values as follows:

1. If set is empty, the quantifier is TRUE.

Quantifiers

Sets and Multi-assign Data 5-29

2. Otherwise, if booleanExpr is false for at least one element of set, the quantifier is
FALSE.

3. Otherwise, if booleanExpr is true for every element of set, the quantifier is TRUE.

4. Otherwise (the values of booleanExpr are either true or NULL, with at least one
NULL), the quantifier is NULL.

Some results of this evaluation are:

• EVERY x IN { } SATISFIES (x > 0) is TRUE.

• EVERY x IN { -3, -2, 1 } SATISFIES (x > 0) is FALSE, because the predicate is false
for x = -3.

• EVERY x IN { 5, 7, 10 } SATISFIES (x > 0) is TRUE, because the predicate is true for
every value in the set.

• EVERY x IN { 'foo', '3', '4' } SATISFIES (TO_INTEGER(x) > 0) is NULL. The
predicate is true for x = '3' and x = '4', but NULL for x = 'foo'.

• EVERY x IN { 'foo', '-1', '-2' } SATISFIES (TO_INTEGER(x) > 0) is FALSE, because
the predicate is false for x = '-1'.

This universal quantifier example is very similar to the existential quantifier example
above:

RETURN results AS
SELECT
 WineID AS idRec,
 WineType AS wines,
 Body AS bodyAttr
FROM WineState
WHERE (EVERY x IN Body SATISFIES (x = 'Robust')) AND (WineID IS NOT NULL)
ORDER BY idRec

The result of this statement would be:

bodyAttr idRec wines

	1	Chardonnay
	2	Chardonnay
{ Robust }	6	Red
	17	Merlot
	20	White
	21	White
{ Robust }	23	Brut
{ Robust }	24	Brut

The only records that are returned are those that have only one Body='Robust'
assignment (Records 6, 23, and 24) and those that have no Body assignments (Records
1, 2, 17, 20, and 21).

In the query, note the use of the "WineID IS NOT NULL" expression in the WHERE
clause. This prevents the return of other records in the system for which the universal
expression would normally be evaluated as TRUE but which would return empty sets.

Grouping by sets
EQL provides support for grouping by sets.

Grouping by sets

5-30 EQL Reference

Using GROUP BY

In the normal grouping syntax for the GROUP BY clause, EQL groups by set equality
(that is, rows for which the sets are equal are placed into the same group).

For example, assume a data set in which Body is a multi-assign attribute and every
record has at least one Body assignment except for Records 1, 2, 17, 20, and 21. This
query is made against that data set:

RETURN results AS
SELECT
 SET(WineID) AS IDs
FROM WineState
GROUP BY Body

The result of this statement might be:

Body IDs
--
	{ 1, 17, 2, 20, 21 }
{ Fresh, Robust }	{ 19 }
{ Supple }	{ 14, 15 }
{ Silky, Tannins }	{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }
{ Firm, Robust }	{ 22, 25 }
{ Robust }	{ 23, 24, 6, 8 }
{ Robust, Tannins }	{ 11, 4 }
--

Keep in mind that when using GROUP BY that EQL preserves rows in which the group
key is the empty set or a NULL value). Therefore, Records 1, 2, 17, 20, and 21 are
returned even though they have no Body assignments (because the empty set is
returned for those records).

For more information on the GROUP BY clause, see GROUP/GROUP BY clauses.

Using GROUP BY MEMBERS

The MEMBERS extension to GROUP BY allows grouping by the members of a set. To
illustrate the use of MEMBERS, the previous example can be re-written as:

RETURN results AS
SELECT
 SET(WineID) AS IDs
FROM WineState
GROUP BY MEMBERS(Body) AS BodyType

The result might be:

BodyType IDs

Supple	{ 14, 15 }
Firm	{ 22, 25 }
Fresh	{ 19 }
Robust	{ 11, 19, 22, 23, 24, 25, 4, 6, 8 }
Tannins	{ 10, 11, 12, 13, 16, 18, 3, 4, 5, 7, 9 }
Silky	{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }
	{ 1, 17, 2, 20, 21 }

Note that like the previous example, Records 1, 2, 17, 20, and 21 are returned.

For more information on MEMBERS, see MEMBERS extension.

Grouping by sets

Sets and Multi-assign Data 5-31

Grouping by sets

5-32 EQL Reference

6
EQL Use Cases

This section describes how to handle various business scenarios using EQL. The
examples in this section are not based on a single data schema.

Re-normalization
Re-normalization is important in denormalized data models in the
Dgraph, as well as when analyzing multi-value attributes.

Grouping by range buckets
To create value range buckets, divide the records by the bucket size, and
then use FLOOR or CEIL if needed to round to the nearest integer.

Manipulating records in a dynamically computed range value
The following scenario describes how to manipulate records in a
dynamically computed range value.

Grouping data into quartiles
EQL allows you to group your data into quartiles.

Combining multiple sparse fields into one
EQL allows you to combine multiple sparse fields into a single field.

Joining data from different types of records
You can use EQL to join data from different types of records.

Linear regressions in EQL
Using the syntax described in this topic, you can produce linear
regressions in EQL.

Using an IN filter for pie chart segmentation
This query shows how the IN filter can be used to populate a pie chart
showing sales divided into six segments: one segment for each of the
five largest customers, and one segment showing the aggregate sales for
all other customers.

Running sum
A running (or cumulative) sum calculation can be useful in warranty
scenarios.

Query by age
In this example, records are tagged with a Date attribute on initial ingest.
No updates are necessary.

Calculating percent change between most recent month and previous month
The following example finds the most recent month in the data that
matches the current filters, and compares it to the prior month, again in
the data that matches the current filters.

EQL Use Cases 6-1

Re-normalization
Re-normalization is important in denormalized data models in the Dgraph, as well as
when analyzing multi-value attributes.

In a sample data set, Employees source records were de-normalized onto Transactions,
as shown in the following example:

Attribute Value

DimEmployee_FullName Tsvi Michael Reiter

DimEmployee_HireDate 2005-07-01T04:00:00.000Z

DimEmployee_Title Sales Representative

FactSales_RecordSpec SO49122-2

FactSales_SalesAmount 939.588

Incorrect

The following EQL code double-counts the tenure of Employees with multiple
transactions:

RETURN AvgTenure AS
SELECT
 AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure
FROM EmployeeState
GROUP BY DimEmployee_Title

Correct

In this example, you re-normalize each Employee, and then operate over them using
FROM:

DEFINE Employees AS
SELECT
 ARB(DimEmployee_HireDate) AS DimEmployee_HireDate,
 ARB(DimEmployee_Title) AS DimEmployee_Title
FROM EmployeeState
GROUP BY DimEmployee_EmployeeKey;

RETURN AvgTenure AS
SELECT
 AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure
FROM Employees
GROUP BY DimEmployee_Title

Grouping by range buckets
To create value range buckets, divide the records by the bucket size, and then use
FLOOR or CEIL if needed to round to the nearest integer.

The following examples group sales into buckets by amount:

/**
 * This groups results into buckets by amount,

Re-normalization

6-2 EQL Reference

 * rounded to the nearest 1000.
 */
RETURN Results AS
SELECT
 ROUND(FactSales_SalesAmount, -3) AS Bucket,
 COUNT(1) AS CT
FROM SaleState
GROUP BY Bucket

/**
 * This groups results into buckets by amount,
 * truncated to the next-lower 1000.
 */
RETURN Results AS
SELECT
 FLOOR(FactSales_SalesAmount/1000)*1000 AS Bucket,
 COUNT(1) AS CT
FROM SaleState
GROUP BY Bucket

A similar effect can be achieved with ROUND, but the set of buckets is different:

• FLOOR(900/1000) = 0

• ROUND(900,-3) = 1000

In the following example, records are grouped into a fixed number of buckets:

DEFINE ValueRange AS SELECT
 COUNT(1) AS CT
FROM SaleState
GROUP BY SalesAmount
HAVING SalesAmount > 1.0 AND SalesAmount < 10000.0;

RETURN Buckets AS SELECT
 SUM(CT) AS CT,
 FLOOR((SalesAmount - 1)/999.0) AS Bucket
FROM ValueRange
GROUP BY Bucket
ORDER BY Bucket

Manipulating records in a dynamically computed range value
The following scenario describes how to manipulate records in a dynamically
computed range value.

In the following example:

• Use GROUP to calculate a range of interest.

• Use an empty lookup list to get the range of interest into the desired expression.

• Use subtraction and HAVING to enable filtering by a dynamic value (HAVING must
be used because Diff is not in scope in a WHERE clause on Result).

DEFINE CustomerTotals AS SELECT
 SUM(SalesAmount) AS Total
FROM SaleState
GROUP BY CustomerKey ;

DEFINE Range AS SELECT
 MAX(Total) AS MaxVal,

Manipulating records in a dynamically computed range value

EQL Use Cases 6-3

 MIN(Total) AS MinVal,
 ((MaxVal - MinVal)/10) AS Decile,
 MinVal + (Decile*9) AS Top10Pct
FROM CustomerTotals
GROUP ;

RETURN Result AS SELECT
 SUM(SalesAmount) AS Total,
 Total - Range[].Top10Pct AS Diff
FROM Range
GROUP BY CustomerKey
HAVING Diff > 0

Grouping data into quartiles
EQL allows you to group your data into quartiles.

The following example demonstrates how to group data into four roughly equal-sized
buckets:

/* This finds quartiles in the range
 * of ProductSubCategory, arranged by
 * total sales. Adjust the grouping
 * attribute and metric to your use case.
 */
DEFINE Input AS SELECT
 ProductSubcategoryName AS Key,
 SUM(FactSales_SalesAmount) AS Metric
FROM SaleState
GROUP BY Key
ORDER BY Metric;

DEFINE Quartile1Records AS SELECT
 Key AS Key,
 Metric AS Metric
FROM Input
ORDER BY Metric
PAGE(0, 25) PERCENT;

/* Using MAX(Metric) as the Quartile boundary isn't quite
 * right: if the boundary falls between two records, the
 * quartile is the average of the values on those two records.
 * But this gives the right groupings.
 */
DEFINE Quartile1 AS SELECT
 MAX(Metric) AS Quartile,
 SUM(Metric) AS Metric /* ...or any other aggregate */
FROM Quartile1Records
GROUP;

DEFINE Quartile2Records AS SELECT
 Key AS Key,
 Metric AS Metric
FROM Input
ORDER BY Metric
PAGE(25, 25) PERCENT;

DEFINE Quartile2 AS SELECT
 MAX(Metric) AS Quartile,
 SUM(Metric) AS Metric
FROM Quartile2Records
GROUP;

Grouping data into quartiles

6-4 EQL Reference

DEFINE Quartile3Records AS SELECT
 Key AS Key,
 Metric AS Metric
FROM Input
ORDER BY Metric
PAGE(50, 25) PERCENT;

DEFINE Quartile3 AS SELECT
 MAX(Metric) AS Quartile,
 SUM(Metric) AS Metric
FROM Quartile3Records
GROUP;

DEFINE Quartile4Records AS SELECT
 Key AS Key,
 Metric AS Metric
FROM Input
ORDER BY Metric
PAGE(75, 25) PERCENT;

DEFINE Quartile4 AS SELECT
 MAX(Metric) AS Quartile,
 SUM(Metric) AS Metric
FROM Quartile4Records
GROUP;

/**
 * The technical definition of "Quartile" is
 * the values that segment the data into four
 * roughly equal groups. Here, we return not
 * just the Quartiles, but the metric aggregated
 * over the records within the groups defined
 * by the Quartiles.
 */
RETURN Quartiles AS
SELECT
 Quartile AS Quartile1,
 Metric AS Quartile1Metric,
 Quartile2[].Quartile AS Quartile2,
 Quartile2[].Metric AS Quartile2Metric,
 Quartile3[].Quartile AS Quartile3,
 Quartile3[].Metric AS Quartile3Metric,
 Quartile4[].Quartile AS Quartile4,
 Quartile4[].Metric AS Quartile4Metric
FROM Quartile1;

Combining multiple sparse fields into one
EQL allows you to combine multiple sparse fields into a single field.

In the example below, we use the AVG and COALESCE functions to combine the
leasePayment and loanPayment fields into a single avgPayment field.

ID Make Model Type leasePayment loanPayment

1 Audi A4 lease 380

2 Audi A4 loan 600

3 BMW 325 lease 420

Combining multiple sparse fields into one

EQL Use Cases 6-5

ID Make Model Type leasePayment loanPayment

4 BMW 325 loan 700

RETURN Result AS
SELECT
 AVG(COALESCE(loanPayment,leasePayment)) AS avgPayment
FROM CombinedColumns
GROUP BY Make

Joining data from different types of records
You can use EQL to join data from different types of records.

Use lookups against unfiltered records to avoid eliminating all records of a secondary
type when navigation refinements are selected from an attribute only associated with
the primary record type.

In the following example, the following types of records are joined:

Record type 1

RecordType: Review
Rating: 4
ProductId: Drill-X15
Text: This is a great product...

Record type 2

RecordType: Transaction
SalesAmount: 49.99
ProductId: Drill-X15
...

The query is:

DEFINE Ratings AS SELECT
 AVG(Rating) AS AvScore
FROM Reviews.UNFILTERED
WHERE RecordType = 'Review'
GROUP BY ProductId ;

RETURN TopProducts AS SELECT
 SUM(SalesAmount) AS TotalSales,
 Ratings[ProductId].AvScore AS AvScore
FROM Ratings
WHERE RecordType = 'Transaction'
GROUP BY ProductId
ORDER BY TotalSales DESC
PAGE(0,10)

Linear regressions in EQL
Using the syntax described in this topic, you can produce linear regressions in EQL.

Using the following data set:

ID X Y

1 60 3.1

Joining data from different types of records

6-6 EQL Reference

ID X Y

2 61 3.6

3 62 3.8

4 63 4

5 65 4.1

The following simple formulation:

y = A + Bx

Can be expressed in EQL as:

RETURN Regression AS
SELECT
 COUNT(ID) AS N,
 SUM(X) AS sumX,
 SUM(Y) AS sumY,
 SUM(X*Y) AS sumXY,
 SUM(X*X) AS sumX2,
 ((N*sumXY)-(sumX*sumY)) /
 ((N*sumX2)-(sumX*sumX)) AS B,
 (sumY-(B*sumX))/N AS A
FROM DataState
GROUP

With the result:

N s
u
m
X

sumY sumXY sumX2 B A

5 3
1
1
.
0
0
0
0
0
0

18.600
000

1159.700000 19359.000000 0.1878
38

-7.963
514

Using the regression results

For y = A + Bx:

DEFINE Regression AS
SELECT
 COUNT(ID) AS N,
 SUM(X) AS sumX,
 SUM(Y) AS sumY,
 SUM(X*Y) AS sumXY,
 SUM(X*X) AS sumX2,
 ((N*sumXY)-(sumX*sumY)) /
 ((N*sumX2)-(sumX*sumX)) AS B,
 (sumY-(B*sumX))/N AS A

Linear regressions in EQL

EQL Use Cases 6-7

FROM DataState
GROUP

RETURN Results AS
SELECT
 Y AS Y, X AS X, Regression[].A + Regression[].B * X AS Projection
...

As a final step in the example above, you would need to PAGE or GROUP what could
be a very large number of results.

Using an IN filter for pie chart segmentation
This query shows how the IN filter can be used to populate a pie chart showing sales
divided into six segments: one segment for each of the five largest customers, and one
segment showing the aggregate sales for all other customers.

The first statement gathers the sales for the top five customers, and the second
statement aggregates the sales for all customers not in the top five:

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
FROM SaleState
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

RETURN Others AS SELECT
SUM(Sale) AS Sales
FROM SaleState
WHERE NOT [Customer] IN Top5
GROUP

Running sum
A running (or cumulative) sum calculation can be useful in warranty scenarios.

/* This selects the total sales in the 12 most recent months. */
DEFINE Input AS
SELECT
 DimDate_CalendarYear AS CalYear,
 DimDate_MonthNumberOfYear AS NumMonth,
 SUM(FactSales_SalesAmount) AS TotalSales
FROM SaleState
GROUP BY CalYear, NumMonth
ORDER BY CalYear DESC, NumMonth DESC
PAGE(0, 12);

RETURN CumulativeSum AS SELECT
 one.CalYear AS CalYear,
 one.NumMonth AS NumMonth,
 SUM(many.TotalSales) AS TotalSales
FROM Input one JOIN Input many
ON ((one.CalYear > many.CalYear) OR
 (one.CalYear = many.CalYear AND
 one.NumMonth >= many.NumMonth)
)
GROUP BY CalYear, NumMonth
ORDER BY CalYear, NumMonth

Using an IN filter for pie chart segmentation

6-8 EQL Reference

In the example, the words "one" and "many" are statement aliases to clarify the roles in
this many-to-one self-join. Looking at the join condition, you can think of this as, for
each (one) record, create multiple records based on the (many) values that match the
join condition.

Query by age
In this example, records are tagged with a Date attribute on initial ingest. No updates
are necessary.

RETURN Result AS
SELECT
 EXTRACT(CURRENT_DATE,
 JULIAN_DAY_NUMBER) -
 EXTRACT(Date, JULIAN_DAY_NUMBER)
 AS AgeInDays
FROM SaleState
HAVING (AgeInDays < 30)

Calculating percent change between most recent month and previous
month

The following example finds the most recent month in the data that matches the
current filters, and compares it to the prior month, again in the data that matches the
current filters.

/* This computes the percent change between the most
 * recent month in the current nav state, compared to the prior
 * month in the nav state. Note that, if there's only
 * one month represented in the nav state, this will return NULL.
 */
DEFINE Input AS
SELECT
 ARB(DimDate_CalendarYear) AS CalYear,
 ARB(DimDate_MonthNumberOfYear) AS NumMonth,
 DimDate_CalendarYear * 12 + DimDate_MonthNumberOfYear AS OrdinalMonth,
 SUM(FactSales_SalesAmount) AS TotalSales
FROM SaleState
GROUP BY OrdinalMonth;

RETURN Result AS
SELECT
 CalYear AS CalYear,
 NumMonth AS NumMonth,
 TotalSales AS TotalSales,
 Input[OrdinalMonth - 1].TotalSales AS PriorMonthSales,
 100 * (TotalSales - PriorMonthSales) / PriorMonthSales AS PercentChange
FROM Input
ORDER BY CalYear DESC, NumMonth DESC
PAGE(0, 1)

Query by age

EQL Use Cases 6-9

Calculating percent change between most recent month and previous month

6-10 EQL Reference

7
EQL Best Practices

This section discusses ways to maximize your EQL query performance.

Controlling input size
The size of the input for a statement can have a big impact on the
evaluation time of the query.

Filtering as early as possible
Filtering out rows as soon as possible improves query latency because it
reduces the amount of data that must be tracked through the evaluator.

Controlling join size
Joins can cause the Dgraph to grow beyond available RAM. Going
beyond the scale capabilities will cause very, very large materializations,
intense memory pressure, and can result in an unresponsive Dgraph.

Additional tips
This topic contains additional tips for working effectively with EQL.

Controlling input size
The size of the input for a statement can have a big impact on the evaluation time of
the query.

The input for a statement is defined by the FROM clause. When possible, use an already
completed result from another statement instead of using collection records, to avoid
inputting unnecessary records.

Consider the following queries. In the first query, the input to each statement is of a
size on the order of the navigation state. In the first two statements, Sums and Totals,
the data is aggregated at two levels of granularity. In the last statement, the data set is
accessed again for the sole purpose of identifying the month/year combinations that
are present in the data. The computations of interest are derived from previously-
computed results:

DEFINE Sums AS SELECT
 SUM(a) AS MonthlyTotal
FROM SaleState
GROUP BY month,year;

DEFINE Totals AS SELECT
 SUM(a) AS YearlyTotal
FROM SaleState
GROUP BY year;

DEFINE Result AS SELECT
 Sums[month,year].MonthlyTotal AS MonthlyTotal,
 Sums[month,year].MonthlyTotal/Totals[year].YearlyTotal AS Fraction
FROM SaleState
GROUP BY month,year

EQL Best Practices 7-1

In the following rewritten version of the same query, the Dgraph database for this data
set is accessed only once. The first statement accesses the database to compute the
monthly totals. The second statement has been modified to compute yearly totals
using the results of the first statement. Assuming that there are many records per
month, the savings could be multiple orders of magnitude. Finally, the last statement
has also been modified to use the results of the first statement. The first statement has
already identified all of the valid month/year combinations in the data set. Rather
than accessing the broader data set (possibly millions of records) just to identify the
valid combinations, the month/year pairs are read from the much smaller (probably
several dozen records) previous result:

DEFINE Sums AS SELECT
 SUM(a) AS MonthlyTotal
FROM SalesState
GROUP BY month,year;

DEFINE Totals AS SELECT
 SUM(MonthlyTotal) AS YearlyTotal
FROM Sums
GROUP year;

DEFINE Result AS SELECT
 MonthlyTotal AS MonthlyTotal,
 MonthlyTotal/Totals[year].YearlyTotal AS Fraction
FROM Sums

Defining constants independent of data set size

A common practice is to define constants for a query through a single group, as shown
in the first query below. The input for this query is the entire navigation state, even
though nothing from the input is used:

DEFINE Constants AS SELECT
 500 AS DefaultQuota
FROM SaleState
GROUP

Since none of the input is actually needed, restrict the input to the smallest size
possible with a very restrictive filter, such as the one shown in this second example:

DEFINE Constants AS SELECT
 500 AS DefaultQuota
FROM SaleState
WHERE FactSales_ProductKey IS NOT NULL
GROUP

In the example, FROM SalesState is the unique property key for the Sales collection.

Filtering as early as possible
Filtering out rows as soon as possible improves query latency because it reduces the
amount of data that must be tracked through the evaluator.

Consider the following two versions of a query. The first form of the query first
groups records by g, passes each group through the filter (b < 10), and then
accumulates the records that remain. The input records are not filtered, and the
grouping operation must operate on all input records.

RETURN Result AS SELECT
 SUM(a) WHERE (b < 10) AS sum_a_blt10

Filtering as early as possible

7-2 EQL Reference

FROM SaleState
GROUP BY g

The second form of the query filters the input (with the WHERE clause) before the
records are passed to the grouping operation. Thus the grouping operation must
group only those records of interest to the query. By eliminating records that are not of
interest sooner, evaluation will be faster.

RETURN Results AS SELECT
 SUM(a) AS sum_a_blt10
FROM SaleState
WHERE (b < 10)
GROUP BY g

Another example of filtering records early is illustrated with the following pair of
queries. Recall that a WHERE clauses filters input records and a HAVING clause filters
output records. The first query computes the sum for all values of g and (after
performing all of that computation) throws away all results that do not meet the
condition (g < 10).

RETURN Result AS SELECT
 SUM(a) AS sum_a
FROM SaleState
GROUP BY g
HAVING g < 10

The second query, on the other hand, first filters the input records to only those in the
interesting groups. It then aggregates only those interesting groups.

RETURN Result AS SELECT
 SUM(a) AS sum_a
FROM SaleState
WHERE g < 10
GROUP BY g

Controlling join size
Joins can cause the Dgraph to grow beyond available RAM. Going beyond the scale
capabilities will cause very, very large materializations, intense memory pressure, and
can result in an unresponsive Dgraph.

Additional tips
This topic contains additional tips for working effectively with EQL.

• String manipulations are unsupported in EQL. Therefore, ensure you prepare
string values for query purposes in the data ingest stage.

• Normalize information to avoid double counting or summing.

• Use a common case (upper case) for attribute string values when sharing attributes
between data sources.

• Name each DEFINE statement something meaningful so that others reading your
work can make sense of what your logic is.

• Use paging in DEFINE statements to reduce the number of records returned.

Controlling join size

EQL Best Practices 7-3

• When using CASE statements, bear in mind that all conditions and expressions are
always evaluated, even though only one is returned.

If an expression is repeated across multiple WHEN clauses of a CASE expression, it is
best to factor the computation of that expression into a separate SELECT, then reuse
it.

Additional tips

7-4 EQL Reference

Index

A

about queries, 1-3
ABS function, 4-11
ADD_ELEMENT function, 5-9
addition operator, 4-11
aggregation

function filters, 3-16
functions, 4-13
multi-level, 3-16
with APPROXCOUNTDISTINCT, 3-15
with COUNT, 3-11
with COUNT_APPROX, 3-13
with COUNTDISTINCT, 3-14
with COUNTDISTINCTMEMBERS, 5-11

APPROXCOUNTDISTINCT function, 3-15
ARB function, 4-29
arithmetic operators, 4-25
AVG function, 4-14

B
best practices

additional tips, 7-3
controlling input size, 7-1
defining constants, 7-2
filtering as early as possible, 7-2

BETWEEN operator, 4-30
Boolean

literal handling, 4-5
operators, 4-25

C

calculate percent change over month, 6-9
CARDINALITY function, 5-10
CASE expression, 4-31
case handling in EQL, 4-6
CEIL function, 4-11
characters in EQL, 4-4
clauses

DEFINE, 2-2
FROM, 2-7

clauses (continued)
GROUP, 3-2
GROUP BY, 3-2
HAVING, 2-14
JOIN, 2-9
LET, 2-3
ORDER BY, 2-15
PAGE, 2-18
RETURN, 2-2
SELECT, 2-5
WHERE, 2-13

COALESCE expression, 4-32
collections

in FROM clause, 2-8
record sources, 1-2

combining multiple sparse fields into one, 6-5
commenting in EQL, 1-4
CONCAT function, 4-23
controlling input size, 7-1
controlling join size, 7-3
CORRELATION function, 4-32
COS function, 4-13
COUNT function, 3-11
COUNT_APPROX function, 3-13
COUNTDISTINCT function, 3-14
COUNTDISTINCTMEMBERS function, 5-11
CROSS JOIN, 2-9
CUBE extension, 3-9
cumulative sum, 6-9
CURRENT_DATE function, 4-18
CURRENT_TIMESTAMP function, 4-17

D

data types, 4-2
date and time values

constructing, 4-18
using arithmetic operations on, 4-22

DAY_OF_MONTH function, 4-20
DAY_OF_WEEK function, 4-20
DAY_OF_YEAR function, 4-20
DEFINE clause, 2-2

Index-1

defining constants for best performance, 7-2
DIFFERENCE function, 5-12
DISTANCE function, 4-16
division operator, 4-11
double

data type, 4-2
handling of precision, 4-9
promotion from integer, 4-8

E
EQL

case handling, 4-6
characters, 4-4
commenting, 1-4
concepts, 1-1
handling of inf results, 4-7
handling of NaN results, 4-7
handling of NULL results, 4-6
inter-statement references, 4-27
LOOKUP expressions, 4-27
multi-level aggregation example, 3-16
overview, 1-1
processing order, 1-4
reserved keywords, 1-5
SQL comparison, 1-2
syntax conventions, 1-4

evaluation time and input size, 7-1
EVERY function, 5-29
existential quantifier, 5-28
EXP function, 4-11
expressions

CASE, 4-31
COALESCE, 4-32
GROUPING SETS, 3-7
IN, 4-34
in ORDER BY, 2-16
LOOKUP, 4-27

EXTRACT function, 4-20

F
filtering

geocode, 4-16
performance impact of, 7-2

filters
per-aggregation, 3-16
using results values as, 4-26

FLOOR function, 4-11
follow-on queries, 4-26
FOREACH function, 5-14
FROM clause, 2-7
FROM_TZ function, 4-20
FULL JOIN, 2-9
functions

ABS, 4-11

functions (continued)
aggregation, 4-13
APPROXCOUNTDISTINCT, 3-15
ARB, 4-29
arithmetic operators, 4-25
AVG, 4-14
CEIL, 4-11
CONCAT, 4-23
CORRELATION, 4-32
COS, 4-13
COUNT, 3-11
COUNT_APPROX, 3-13
COUNTDISTINCT, 3-14
COUNTDISTINCTMEMBERS, 5-11
CURRENT_DATE, 4-18
CURRENT_TIMESTAMP, 4-17
date and time, 4-16
DAY_OF_MONTH, 4-20
DAY_OF_WEEK, 4-20
DAY_OF_YEAR, 4-20
DISTANCE, 4-16
EXP, 4-11
EXTRACT, 4-20
FLOOR, 4-11
FROM_TZ, 4-20
GROUPING, 3-10
HOUR, 4-20
JULIAN_DAY_NUMBER, 4-21
LATITUDE, 4-16
LN, 4-12
LOG, 4-12
LONGITUDE, 4-16
MAX, 4-14
MEDIAN, 4-14
MILLISECOND, 4-20
MIN, 4-14
MINUTE, 4-20
MOD, 4-12
MONTH, 4-21
numeric, 4-11
PERCENTILE, 4-35
POWER, 4-13
QUARTER, 4-21
RECORD_IN_FAST_SAMPLE, 4-36
ROUND, 4-12
SECOND, 4-20
SIGN, 4-12
SIN, 4-13
SQRT, 4-13
STDDEV, 4-14
string, 4-23
STRING_JOIN, 4-15
SUBSTR, 4-24
SUM, 4-14
SYSDATE, 4-18
SYSTIMESTAMP, 4-17

Index-2

functions (continued)
TAN, 4-13
TO_DATETIME, 4-18
TO_DOUBLE, 4-13
TO_DURATION, 4-13, 4-18
TO_GEOCODE, 4-16
TO_INTEGER, 4-13
TO_STRING, 4-24
TO_TIME, 4-18
TO_TZ, 4-20
TRUNC, 4-13, 4-22
VARIANCE, 4-14
WEEK, 4-20
YEAR, 4-21

G
geocode

data type, 4-2
filtering, 4-16
sorting by, 2-16

GROUP BY clause
CUBE extension, 3-9
MEMBERS extension, 3-4
ROLLUP extension, 3-8

GROUP clause, 3-2
grouping

by range buckets, 6-2
data into quartiles, 6-4

GROUPING function, 3-10
GROUPING SETS expression, 3-7

H

HAS_REFINEMENTS, 4-33
HAVING clause, 2-14
HOUR function, 4-20

I

identifier handling, 4-5
important concepts, 1-1
IN expression, 4-34
inf, EQL handling of, 4-7
INNER JOIN, 2-9
integer promotion to double, 4-8
inter-statement references, EQL, 4-27
INTERSECTION function, 5-18
IS EMPTY function, 5-20
IS NOT EMPTY function, 5-21
IS_EMPTY function, 5-19
IS_MEMBER_OF function, 5-21
IS_NOT_EMPTY function, 5-20

J

JOIN clause, 2-9
join size constraints, 7-3
joining data from different types of records, 6-6
JULIAN_DAY_NUMBER function, 4-21

L

LATITUDE function, 4-16
LEFT JOIN, 2-9
LET clause, 2-3
linear regression in EQL, 6-6
literals, 4-4
LN function, 4-12
LOG function, 4-12
LONGITUDE function, 4-16
LOOKUP expression, 4-27

M
manipulating records in a dynamically computed

range value, 6-3
MAX function, 4-14
MEDIAN function, 4-14
MEMBERS extension, 3-4
MILLISECOND function, 4-20
MIN function, 4-14
MINUTE function, 4-20
MOD function, 4-12
MONTH function, 4-21
multi-level aggregation example, 3-16
multiplication operator, 4-11

N

NaN, EQL handling of, 4-7
NULL values

and sets, 5-2
EQL handling of, 4-6

numeric
functions, 4-11
literal handling, 4-5

O

operations, date and time, 4-16
operators

arithmetic, 4-25
Boolean, 4-25
precedence order, 4-3

ORDER BY clause, 2-15
order of processing in EQL, 1-4
overview of queries, 1-3

Index-3

P
PAGE clause

PERCENT modifier, 2-18
Top-K queries, 2-18

PERCENT modifier, 2-19
PERCENTILE function, 4-35
pie chart segmentation with IN filters, 6-8
POWER function, 4-13
precedence rules for operators, 4-3

Q

QUARTER function, 4-21
queries, 1-3
query by age, 6-9
query processing order, 1-4

R

re-normalization, 6-2
RECORD_IN_FAST_SAMPLE function, 4-36
reserved keywords, 1-5
result values used as filters, 4-26
RETURN clause, 2-2
RIGHT JOIN, 2-9
ROLLUP extension, 3-8
ROUND function, 4-12
running sum, 6-9

S

SATISFIES function, 5-28
SECOND function, 4-20
SELECT clause, 2-5
SET function, 5-3
set functions

ADD_ELEMENT, 5-9
APPROXCOUNTDISTINCT, 3-15
ARB, 4-29
CARDINALITY, 5-10
COUNT, 3-11
COUNT_APPROX, 3-13
COUNTDISTINCT, 3-14
COUNTDISTINCTMEMBERS, 5-11
DIFFERENCE, 5-12
EVERY, 5-29
FOREACH, 5-14
INTERSECTION, 5-18
IS EMPTY, 5-20
IS NOT EMPTY, 5-21
IS_EMPTY, 5-19
IS_MEMBER_OF, 5-21
IS_NOT_EMPTY, 5-20
SET, 5-3
SET_INTERSECTIONS, 5-6

set functions (continued)
SET_UNIONS, 5-7
SINGLETON, 5-23
SOME, 5-28
SUBSET, 5-24
TRUNCATE_SET, 5-25
UNION, 5-26

SET_INTERSECTIONS function, 5-6
SET_UNIONS function, 5-7
sets

constructing from single-assign attributes, 5-3
constructor, 5-27
data types, 5-2
grouping by, 5-31
sort order, 2-17

SIGN function, 4-12
SIN function, 4-13
SINGLETON function, 5-23
SOME function, 5-28
SQL comparison, 1-2
SQRT function, 4-13
state names in FROM clause, 2-8
STDDEV function, 4-14
string

data type, 4-2, 4-3
literal handling, 4-5
sort order, 2-16

STRING_JOIN function, 4-15
structured literal handling, 4-5
SUBSET function, 5-24
SUBSTR function, 4-24
subtraction operator, 4-11
SUM function, 4-14
syntax conventions, 1-4
SYSDATE function, 4-18
SYSTIMESTAMP function, 4-17

T

TAN function, 4-13
terminology, EQL, 1-1
TO_DATETIME function, 4-18
TO_DOUBLE function, 4-13
TO_DURATION function, 4-13, 4-18
TO_GEOCODE function, 4-16
TO_INTEGER function, 4-13
TO_STRING function, 4-24
TO_TIME function, 4-18
TO_TZ function, 4-20
Top-K queries, 2-18
TRUNC function, 4-13, 4-22
TRUNCATE_SET function, 5-25

U

UNION function, 5-26

Index-4

universal quantifier, 5-29
use cases

calculate percent change over month, 6-9
combining multiple sparse fields into, 6-5
grouping by range buckets, 6-2
grouping data into quartiles, 6-4
joining data from different types of, 6-6
linear regression, 6-6
manipulating records in a dynamically computed,

6-3
pie chart segmentation, 6-8
query by age, 6-9
re-normalization, 6-2
running sum, 6-9

using arithmetic operations on date and time values,
4-22

V

VARIANCE function, 4-14

W

WEEK function, 4-20
WHERE clause, 2-13
WITH UNPAGED COUNT modifier for RETURN, 2-2

Y

YEAR function, 4-21

Index-5

Index-6

	Contents
	Preface
	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

	1 Introduction to EQL
	EQL overview
	Important concepts and terms
	EQL and SQL: a comparison
	Query overview
	How queries are processed
	EQL reserved keywords

	2 Statements and Clauses
	DEFINE clause
	RETURN clause
	LET clause
	SELECT clause
	AS clause
	FROM clause
	JOIN clause
	WHERE clause
	HAVING clause
	ORDER BY clause
	PAGE clause

	3 Aggregation
	GROUP/GROUP BY clauses
	MEMBERS extension
	GROUPING SETS expression
	ROLLUP extension
	CUBE extension
	GROUPING function
	COUNT function
	COUNT_APPROX
	COUNTDISTINCT function
	APPROXCOUNTDISTINCT function
	Multi-level aggregation
	Per-aggregation filters

	4 Expressions
	Supported data types
	Operator precedence rules
	Handling of literals and values
	Character handling
	Handling of upper- and lower-case
	Handling NULL attribute values
	Handling of NaN, inf, and -inf results
	Integer type promotion
	Handling of precision for doubles

	Functions and operators
	Numeric functions
	Aggregation functions
	Geocode functions
	Date and time functions
	Manipulating current date and time
	Constructing date and time values
	Time zone manipulation
	Using EXTRACT to extract a portion of a dateTime value
	Using TRUNC to round down dateTime values
	Using arithmetic operations on date and time values

	String functions
	Arithmetic operators
	Boolean operators

	Using EQL results to compose follow-on queries
	Using LOOKUP expressions for inter-statement references
	ARB
	BETWEEN
	CASE
	COALESCE
	CORRELATION
	HAS_REFINEMENTS
	IN
	PERCENTILE
	RECORD_IN_FAST_SAMPLE

	5 Sets and Multi-assign Data
	About sets
	Aggregate functions
	SET function
	SET_INTERSECTIONS function
	SET_UNIONS function

	Row functions
	ADD_ELEMENT function
	CARDINALITY function
	COUNTDISTINCTMEMBERS function
	DIFFERENCE function
	FOREACH function
	INTERSECTION function
	IS_EMPTY and IS_NOT_EMPTY functions
	IS_MEMBER_OF function
	SINGLETON function
	SUBSET function
	TRUNCATE_SET function
	UNION function

	Set constructor
	Quantifiers
	Grouping by sets

	6 EQL Use Cases
	Re-normalization
	Grouping by range buckets
	Manipulating records in a dynamically computed range value
	Grouping data into quartiles
	Combining multiple sparse fields into one
	Joining data from different types of records
	Linear regressions in EQL
	Using an IN filter for pie chart segmentation
	Running sum
	Query by age
	Calculating percent change between most recent month and previous 	 month

	7 EQL Best Practices
	Controlling input size
	Filtering as early as possible
	Controlling join size
	Additional tips

	Index

