この項で説明する構文を使用すると、EQLで線形の回帰を発生させることができます。
次の単純なフォーミュレーション:
y = A + Bx
RETURN Regression AS SELECT COUNT(ID) AS N, SUM(X) AS sumX, SUM(Y) AS sumY, SUM(X*Y) AS sumXY, SUM(X*X) AS sumX2, ((N*sumXY)-(sumX*sumY)) / ((N*sumX2)-(sumX*sumX)) AS B, (sumY-(B*sumX))/N AS A FROM DataState GROUP
結果:
N | sumX | sumY | sumXY | sumX2 | B | A |
---|---|---|---|---|---|---|
5 | 311.000000 | 18.600000 | 1159.700000 | 19359.000000 | 0.187838 | -7.963514 |
回帰結果の使用
y = A + Bx
の場合:
DEFINE Regression AS SELECT COUNT(ID) AS N, SUM(X) AS sumX, SUM(Y) AS sumY, SUM(X*Y) AS sumXY, SUM(X*X) AS sumX2, ((N*sumXY)-(sumX*sumY)) / ((N*sumX2)-(sumX*sumX)) AS B, (sumY-(B*sumX))/N AS A FROM DataState GROUP RETURN Results AS SELECT Y AS Y, X AS X, Regression[].A + Regression[].B * X AS Projection ...
前述の例の最後のステップとして、PAGE
またはGROUP
が必要な結果は非常に多い可能性があります。