

[1] Oracle® Fusion Middleware
Administering JDBC Data Sources for Oracle WebLogic Server
12.1.3

12c (12.1.3)

E41864-09

May 2016

This book contains JDBC data source configuration and
administration information for WebLogic Server 12.1.3.

Oracle Fusion Middleware Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E41864-09

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xv

Documentation Accessibility ... xv
Conventions ... xv

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-2
1.4 JDBC Samples and Tutorials ... 1-3
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-3
1.4.2 JDBC Examples in the WebLogic Server Distribution ... 1-3
1.5 New and Changed JDBC Data Source Features in This Release.. 1-3
1.5.1 Oracle 12c Driver Support .. 1-4
1.5.2 Derby Database Driver Support .. 1-4
1.5.3 Encrypted Connection Properties ... 1-4
1.5.4 Connection Labeling Enhancements to Avoid Connection Costs................................ 1-4
1.5.5 Connection Labeling with Packaged Applications... 1-4
1.5.6 oracle.jdbc.enableJavaNetFastPath Disabled... 1-4
1.5.7 Oracle Data Base Testing Using SQL ISVALID... 1-4
1.5.8 CountOfTestFailuresTillFlush and CountOfRefreshFailuresTillDisable 1-4
1.5.9 securityCacheTimeoutSeconds Default Value .. 1-5
1.5.10 JDBC 4.0 setPoolable(false) Removes Statement... 1-5

2 Configuring WebLogic JDBC Resources

2.1 Understanding JDBC Resources in WebLogic Server ... 2-1
2.2 Ownership of Configured JDBC Resources .. 2-2
2.3 Data Source Configuration Files ... 2-2
2.3.1 JDBC System Modules .. 2-2
2.3.1.1 Generic Data Source Modules .. 2-3
2.3.1.2 Active GridLink Data Source System Modules ... 2-3
2.3.1.3 Multi Data Source System Modules .. 2-4
2.3.2 JDBC Application Modules .. 2-5
2.3.2.1 Standard Java EE Application Modules ... 2-5
2.3.2.2 Proprietary JDBC Application Modules ... 2-5
2.3.2.2.1 Including Drivers in EAR/WAR Files ... 2-6

iv

2.3.3 JDBC Module File Naming Requirements ... 2-6
2.3.4 JDBC Modules in Versioned Applications... 2-6
2.3.5 JDBC Schema.. 2-7
2.4 JMX and WLST Access for JDBC Resources ... 2-7
2.4.1 JDBC MBeans for System Resources... 2-8
2.4.2 JDBC Management Objects in the Java EE Management Model (JSR-77 Support) ... 2-8
2.4.3 Using WLST to Create JDBC System Resources ... 2-9
2.4.4 How to Modify and Monitor JDBC Resources ... 2-10
2.4.5 Best Practices when Using WLST to Configure JDBC Resources.............................. 2-11
2.5 Creating High-Availability JDBC Resources ... 2-11

3 Configuring JDBC Data Sources

3.1 Understanding JDBC Data Sources.. 3-1
3.2 Types of WebLogic Server JDBC Data Sources .. 3-1
3.3 Creating a JDBC Data Source .. 3-2
3.3.1 JDBC Data Source Properties ... 3-2
3.3.1.1 Data Source Names .. 3-2
3.3.1.2 JNDI Names .. 3-2
3.3.1.3 Selecting a Database Type ... 3-2
3.3.1.4 Selecting a JDBC Driver... 3-3
3.3.2 Configure Transaction Options ... 3-4
3.3.3 Configure Connection Properties.. 3-5
3.3.3.1 Configuring Connection Properties for Oracle BI Server 3-5
3.3.4 Test Connections.. 3-5
3.3.5 Target the Data Source.. 3-6
3.4 Configuring Generic Connection Pool Features... 3-6
3.4.1 Enabling JDBC Driver-Level Features .. 3-6
3.4.2 Enabling Connection-based System Properties... 3-6
3.4.3 Enabling Connection-based Encrypted Properties... 3-7
3.4.4 Initializing Database Connections with SQL Code .. 3-7
3.5 Advanced Connection Properties... 3-7
3.5.1 Define Fatal Error Codes .. 3-7
3.5.2 Enabling Edition-Based Redefinition.. 3-8
3.6 Configuring Oracle Parameters .. 3-8
3.7 Configuring an ONS Client ... 3-8
3.8 Tuning Generic Data Source Connection Pools .. 3-9
3.9 Generic Data Source Handling for Oracle RAC Outages ... 3-9

4 Configuring JDBC Multi Data Sources

4.1 Multi Data Source Features ... 4-1
4.1.1 Removing a Database Node... 4-2
4.1.2 Adding a Database Node ... 4-2
4.2 Creating and Configuring Multi Data Sources... 4-3
4.3 Choosing the Multi Data Source Algorithm ... 4-3
4.3.1 Failover.. 4-3
4.3.2 Load Balancing... 4-3
4.4 Multi Data Source Fail-Over Limitations and Requirements... 4-3

v

4.4.1 Test Connections on Reserve to Enable Fail-Over .. 4-4
4.4.2 No Fail-Over for In-Use Connections ... 4-4
4.5 Multi Data Source Failover Enhancements... 4-4
4.5.1 Connection Request Routing Enhancements When a Generic Data Source Fails...... 4-4
4.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi

Data Source .. 4-5
4.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data Source.................. 4-5
4.5.4 Controlling Multi Data Source Failover with a Callback... 4-5
4.5.4.1 Callback Handler Requirements .. 4-6
4.5.4.2 Callback Handler Configuration.. 4-6
4.5.4.3 How It Works—Failover ... 4-6
4.5.5 Controlling Multi Data Source Failback with a Callback .. 4-8
4.5.5.1 How It Works—Failback ... 4-8
4.6 Deploying JDBC Multi Data Sources on Servers and Clusters .. 4-9

5 Using Active GridLink Data Sources

5.1 What is an Active GridLink Data Source .. 5-1
5.1.1 Fast Connection Failover .. 5-2
5.1.2 Runtime Connection Load Balancing ... 5-3
5.1.3 AGL Support During Oracle RAC Outages... 5-4
5.1.3.1 Handling for Oracle RAC Outages Prior to Oracle RAC 11.2 5-5
5.1.4 GridLink Affinity ... 5-5
5.1.4.1 Session Affinity Policy ... 5-5
5.1.4.2 XA Affinity Policy .. 5-6
5.1.5 SCAN Addresses ... 5-7
5.1.6 Secure Communication using Oracle Wallet with ONS Listener................................. 5-8
5.2 Creating an Active GridLink Data Source .. 5-8
5.2.1 JDBC Data Source Properties ... 5-9
5.2.1.1 Data Source Names .. 5-9
5.2.1.2 JNDI Names .. 5-9
5.2.1.3 Select a Driver ... 5-9
5.2.2 Configure Transaction Options ... 5-9
5.2.3 Configure Connection Properties... 5-10
5.2.3.1 Enter Connection Properties .. 5-10
5.2.3.2 Enter a Complete URL .. 5-11
5.2.3.2.1 Supported AGL Data Source URL Formats ... 5-11
5.2.3.2.2 Recommendations for AGL Data Source URLs... 5-11
5.2.4 Test Connections... 5-12
5.2.5 Configure an ONS Client Configuration... 5-12
5.2.5.1 Secure ONS Client Communication ... 5-12
5.2.6 Test ONS Client Configuration... 5-12
5.2.7 Target the Data Source... 5-13
5.3 Using Socket Direct Protocol.. 5-13
5.3.1 Configuring Runtime Load Balancing using SDP ... 5-13
5.4 Configuring AGL Connection Pool Features... 5-13
5.4.1 Enabling JDBC Driver-Level Features ... 5-14
5.4.2 Enabling Connection-based System Properties.. 5-14

vi

5.4.3 Initializing Database Connections with SQL Code ... 5-14
5.5 Configuring Oracle Parameters ... 5-15
5.6 Configuring an ONS Client .. 5-15
5.6.1 Enabling FAN Events... 5-15
5.6.2 Using a Wallet File.. 5-16
5.7 Tuning Active GridLink Data Source Connection Pools .. 5-16
5.8 Monitoring GridLink JDBC Resources ... 5-16
5.8.1 Viewing Run-Time Statistics ... 5-16
5.8.1.1 JDBCOracleDataSourceRuntimeMBean... 5-16
5.8.1.2 JDBCOracleDataSourceInstanceRuntimeMBean.. 5-16
5.8.1.3 ONSDaemonRuntimeMBean... 5-17
5.8.2 Debug Active GridLink Data Sources ... 5-17
5.8.2.1 JDBC Debugging Scopes .. 5-17
5.8.2.2 UCP JDK Logging.. 5-17
5.8.2.3 Enable Debugging Using the Command Line .. 5-17
5.9 Using Active GridLink Data Sources without FAN Notification 5-18
5.9.1 Understanding the ActiveGridlink Attribute... 5-18
5.10 Best Practices for Active GridLink Data Sources .. 5-19
5.10.1 Catch and Handle Exceptions... 5-19
5.10.2 Connection Creation with Active Gridlink Data Sources... 5-19
5.11 Comparing AGL and Multi Data Sources .. 5-19
5.12 Migrating from Multi Data Source to Active GridLink .. 5-20
5.12.1 Application Changes to Migrate a Multi Data Source ... 5-20
5.12.2 Configuration Changes to Migrate a Multi Data Source .. 5-20
5.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink Data Source 5-21

6 Advanced Configurations for Oracle Drivers and Databases

6.1 Application Continuity .. 6-1
6.1.1 How Application Continuity Works .. 6-2
6.1.2 Requirements and Considerations .. 6-2
6.1.3 Configuring Application Continuity .. 6-3
6.1.3.1 Selecting the Driver for Application Continuity.. 6-3
6.1.3.2 Using a Connection Callback.. 6-4
6.1.3.2.1 Create an Initialization Callback ... 6-4
6.1.3.2.2 Registering an Initialization Callback .. 6-4
6.1.3.2.3 Unregister an Initialization Callback.. 6-5
6.1.3.3 Setting the Replay Timeout... 6-5
6.1.3.4 Disabling Application Continuity for a Connection ... 6-5
6.1.3.5 Configuring Logging for Application Continuity ... 6-5
6.1.4 Limitations with Application Continuity with Oracle 12c Database........................... 6-6
6.2 Database Resident Connection Pooling... 6-6
6.2.1 Requirements and Considerations .. 6-6
6.2.2 Configuring DRCP .. 6-7
6.2.2.1 Configuring a Data Source for DRCP.. 6-7
6.2.2.2 Configuring a Database for DRCP... 6-8
6.3 Global Database Services ... 6-9
6.3.1 Requirements and Considerations .. 6-9

vii

6.3.2 Creating a GridLink DataSource for GDS Connectivity .. 6-9
6.4 Container Database with Pluggable Databases... 6-10
6.4.1 Creating Service for PDB Access .. 6-10
6.4.2 DRCP and CDB/PDB... 6-11
6.4.3 Setting the PDB using JDBC.. 6-11
6.5 Limitations with Tenant Switching ... 6-11

7 Connection Harvesting

7.1 What is Connection Harvesting? .. 7-1
7.2 Enable Connection Harvesting ... 7-1
7.3 Marking Connections Harvestable... 7-2
7.4 Recover Harvested Connections... 7-2

8 Labeling Connections

8.1 What is Connection Labeling? .. 8-1
8.2 Implementing Labeling Callbacks.. 8-2
8.3 Creating a Labeling Callback .. 8-2
8.3.1 Example Labeling Callback.. 8-3
8.4 Registering a Labeling Callback ... 8-4
8.4.1 Removing a Labeling Callback .. 8-4
8.4.2 Applying Connection Labels ... 8-5
8.5 Reserving Labeled Connections.. 8-5
8.6 Checking Unmatched labels.. 8-6
8.7 Removing a Connection Label .. 8-6
8.8 Using Initialization and Reinitialization Costs to Select Connections 8-7
8.8.1 Considerations When Using Initialization and Reinitialization Costs 8-7
8.9 Using Connection Labeling with Packaged Applications .. 8-8
8.9.1 Considerations When using Labelled Connections in Packaged Applications.......... 8-8

9 JDBC Data Source Transaction Options

9.1 Enabling Support for Global Transactions with a Non-XA JDBC Driver 9-2
9.2 Understanding the Logging Last Resource Transaction Option ... 9-2
9.2.1 Advantages to Using the Logging Last Resource Optimization 9-3
9.2.2 Enabling the Logging Last Resource Transaction Optimization 9-4
9.2.3 Programming Considerations and Limitations for LLR Data Sources........................ 9-4
9.2.4 Administrative Considerations and Limitations for LLR Data Sources...................... 9-5
9.3 Understanding the Emulate Two-Phase Commit Transaction Option............................... 9-6
9.3.1 Limitations and Risks When Emulating Two-Phase Commit Using a

Non-XA Driver... 9-7
9.3.1.1 Heuristic Completions and Data Inconsistency... 9-7
9.3.1.2 Cannot Recover Pending Transactions ... 9-8
9.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-Server

Configurations ... 9-8
9.3.1.4 Multiple Non-XA Participants.. 9-8
9.4 Local Transaction Completion when Closing a Connection .. 9-8

viii

10 Understanding Data Source Security

10.1 Introduction to WebLogic Data Source Security Options.. 10-1
10.2 WebLogic Data Source Security Options ... 10-2
10.2.1 Security Credential Configuration Options.. 10-3
10.2.2 Credential Mapping vs. Database Credentials... 10-3
10.2.3 Set Client Identifier on Connection.. 10-5
10.2.4 Oracle Proxy Session .. 10-6
10.2.5 Identity-based Connection Pooling.. 10-8
10.3 Connections within Transactions .. 10-9
10.4 WebLogic Data Source Resource Permissions... 10-9
10.5 Data Source Security Example ... 10-11
10.6 Using Encrypted Connection Properties .. 10-12
10.6.1 Best Practices for Ecrypting Connection Properties when Using the Administration

Console .. 10-12
10.6.2 WLST Examples to Encrypt Connection Properties .. 10-13
10.6.2.1 Use WLST to Update an Existing Data Source with Encrypted Properties.... 10-13
10.6.2.2 Use WLST to Create Encryped Properties ... 10-13
10.7 Using SSL and Encrytption with Data Sources and Oracle Drivers............................... 10-14
10.7.1 Using SSL with Data Sources and Oracle Drivers ... 10-14
10.7.1.1 Using SSL with Oracle Wallet.. 10-14
10.7.1.2 Active GridLink ONS over SSL ... 10-15
10.7.2 Using Data Encryption with Data Sources and Oracle Drivers............................... 10-15

11 Creating and Managing Oracle Wallet

11.1 What is Oracle Wallet.. 11-1
11.2 Where to Keep Your Wallet.. 11-1
11.3 How to Create an External Password Store ... 11-2
11.4 Defining a WebLogic Server Datasource using the Wallet.. 11-3
11.4.1 Copy the Wallet Files .. 11-3
11.4.2 Update the Datasource Configuration... 11-3
11.5 Using a TNS Alias instead of a DB Connect String... 11-3

12 Deploying Data Sources on Servers and Clusters

12.1 Deploying Data Sources on Servers and Clusters... 12-1
12.2 Minimizing Server Startup Hang Caused By an Unresponsive Database 12-1

13 Using WebLogic Server with Oracle RAC

13.1 Overview of Oracle Real Application Clusters ... 13-1
13.2 Software Requirements ... 13-2
13.3 JDBC Driver Requirements .. 13-2
13.4 Hardware Requirements... 13-2
13.4.1 WebLogic Server Cluster ... 13-2
13.4.2 Oracle RAC Cluster .. 13-2
13.4.3 Shared Storage... 13-2
13.5 Configuration Options in WebLogic Server with Oracle RAC ... 13-3
13.5.1 Choosing a WebLogic Server Configuration for Use with Oracle RAC................... 13-3

ix

13.5.2 Validating Connections when using WebLogic Server with Oracle RAC 13-4
13.5.3 Additional Considerations When Using WebLogic Server with Oracle RAC 13-4

14 Using JDBC Drivers with WebLogic Server

14.1 JDBC Driver Support... 14-1
14.2 JDBC Drivers Installed with WebLogic Server.. 14-1
14.3 Using Third-Party JDBC Drivers ... 14-2
14.4 Adding or Updating JDBC Drivers .. 14-2
14.5 Globalization Support for the Oracle Thin Driver .. 14-2
14.6 Using the Oracle Thin Driver in Debug Mode .. 14-3

15 Monitoring WebLogic JDBC Resources

15.1 Viewing Run-Time Statistics .. 15-1
15.1.1 Data Source Statistics ... 15-1
15.1.2 Prepared Statement Cache Statistics .. 15-2
15.2 Profile Logging... 15-2
15.3 Collecting Profile Information ... 15-2
15.3.1 Profile Types.. 15-2
15.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE) 15-3
15.3.1.2 Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT) 15-3
15.3.1.3 Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)......... 15-3
15.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)... 15-4
15.3.1.5 Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)................. 15-4
15.3.1.6 Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE) .. 15-4
15.3.1.7 Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)............... 15-5
15.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE) .. 15-5
15.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)............................. 15-5
15.3.1.10 Example Profile Information Record Log .. 15-5
15.3.2 Accessing Diagnostic Data .. 15-6
15.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated)................................. 15-6
15.4 Debugging JDBC Data Sources.. 15-7
15.4.1 Enabling Debugging... 15-7
15.4.1.1 Enable Debugging Using the Command Line .. 15-7
15.4.1.2 Enable Debugging Using the WebLogic Server Administration Console 15-7
15.4.1.3 Enable Debugging Using the WebLogic Scripting Tool 15-7
15.4.1.4 Changes to the config.xml File .. 15-8
15.4.2 JDBC Debugging Scopes.. 15-9
15.4.3 Setting Debugging for UCP/ONS.. 15-9
15.4.3.1 Debugging UCP... 15-10
15.4.3.2 Debugging ONS... 15-10
15.4.4 Request Dyeing ... 15-10

16 Managing WebLogic JDBC Resources

16.1 Testing Data Sources and Database Connections ... 16-1
16.2 Managing the Statement Cache for a Data Source.. 16-2
16.2.1 Clearing the Statement Cache for a Data Source ... 16-2

x

16.2.2 Clearing the Statement Cache for a Single Connection... 16-2
16.3 Shrinking a Connection Pool.. 16-3
16.4 Resetting a Connection Pool... 16-3
16.5 Suspending a Connection Pool .. 16-3
16.6 Resuming a Connection Pool ... 16-4
16.7 Shutting Down a Data Source .. 16-4
16.8 Starting a Data Source ... 16-4
16.9 Managing DBMS Network Failures .. 16-5

17 Tuning Data Source Connection Pools

17.1 Increasing Performance with the Statement Cache .. 17-1
17.1.1 Statement Cache Algorithms .. 17-2
17.1.1.1 LRU (Least Recently Used) .. 17-2
17.1.1.2 Fixed .. 17-2
17.1.2 Statement Cache Size.. 17-2
17.1.3 Usage Restrictions for the Statement Cache ... 17-3
17.1.3.1 Calling a Stored Statement After a Database Change May Cause Errors 17-3
17.1.3.2 Using setNull In a Prepared Statement .. 17-3
17.1.3.3 Statements in the Cache May Reserve Database Cursors.................................... 17-4
17.1.3.4 Other Considerations When Using the Statement Cache.................................... 17-4
17.2 Connection Testing Options for a Data Source ... 17-4
17.2.1 Database Connection Testing Semantics... 17-5
17.2.1.1 Connection Testing When Database Connections are Created 17-6
17.2.1.2 Periodic Connection Testing .. 17-6
17.2.1.3 Testing Reserved Connections... 17-7
17.2.1.4 Minimizing Connection Test Delay After Database Connectivity Loss............ 17-7
17.2.1.5 Minimizing Connection Request Delays After Loss of DBMS Connectivity.... 17-7
17.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an Idle Pool

Connection .. 17-8
17.2.2 Database Connection Testing Configuration Recommendations.............................. 17-9
17.2.3 Database Connection Testing Using Default Test Table Name................................. 17-9
17.2.4 Database Connection Testing Options .. 17-10
17.3 Enabling Connection Creation Retries.. 17-10
17.4 Enabling Connection Requests to Wait for a Connection .. 17-11
17.4.1 Connection Reserve Timeout .. 17-11
17.4.2 Limiting the Number of Waiting Connection Requests.. 17-11
17.5 Automatically Recovering Leaked Connections ... 17-12
17.6 Avoiding Server Lockup with the Correct Number of Connections 17-12
17.7 Limiting Statement Processing Time with Statement Timeout....................................... 17-12
17.8 Using Pinned-To-Thread Property to Increase Performance .. 17-12
17.8.1 Changes to Connection Pool Administration Operations When PinnedToThread is

Enabled ... 17-13
17.8.2 Additional Database Resource Costs When PinnedToThread is Enabled 17-14
17.9 Using Unwrapped Data Type Objects .. 17-14
17.9.1 How to Disable Wrapping... 17-15
17.9.1.1 Disable Wrapping using the Administration Console....................................... 17-15
17.9.1.2 Disable Wrapping using WLST... 17-16

xi

17.10 Tuning Maintenance Timers .. 17-16

A Using an Oracle 12c Database

A.1 WebLogic JDBC Features for Oracle 12c Database ... A-1
A.1.1 JDBC 4.1 Support for JDK 7... A-1
A.1.2 Application Continuity Support... A-2
A.1.3 Database Resident Connection Pooling Support ... A-2
A.1.4 Container Database with Pluggable Databases.. A-2
A.1.5 Global Database Services Support ... A-2
A.1.6 Automatic ONS Listeners.. A-2
A.2 Summary of 12C Database Feature Support with WebLogic Server A-2

B Configuring JDBC Application Modules for Deployment

B.1 Packaging a JDBC Module with an Enterprise Application: Main Steps B-1
B.2 Creating Packaged JDBC Modules.. B-2
B.2.1 Creating a JDBC Data Source Module Using the Administration Console B-2
B.2.2 JDBC Packaged Module Requirements ... B-3
B.2.3 JDBC Application Module Limitations ... B-3
B.2.4 Creating a Generic Data Source Module... B-3
B.2.5 Creating an Active GridLink Data Source Module ... B-4
B.2.6 Creating a Multi Data Source Module... B-5
B.2.7 Encrypting Database Passwords in a JDBC Module ... B-5
B.2.7.1 Deploying JDBC Modules to New Domains ... B-5
B.2.8 Application Scoping for a Packaged JDBC Module .. B-6
B.3 Referencing a JDBC Module in Java EE Descriptor Files... B-6
B.3.1 Packaged JDBC Module References in weblogic-application.xml B-7
B.3.2 Packaged JDBC Module References in Other Descriptors ... B-7
B.4 Packaging an Enterprise Application with a JDBC Module.. B-8
B.5 Deploying an Enterprise Application with a JDBC Module ... B-8
B.6 Getting a Database Connection from a Packaged JDBC Module B-8

C Using Multi Data Sources with Oracle RAC

C.1 Overview of Oracle Real Application Clusters ... C-1
C.1.1 Oracle RAC Scalability with WebLogic Server Multi Data Sources C-2
C.1.2 Oracle RAC Availability with WebLogic Server Multi Data Sources......................... C-3
C.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data Sources C-3
C.2 Software Requirements ... C-3
C.3 JDBC Driver Requirements .. C-3
C.4 Hardware Requirements... C-3
C.4.1 WebLogic Server Cluster ... C-3
C.4.2 Oracle RAC Cluster .. C-4
C.4.3 Shared Storage... C-4
C.5 Configuring Multi Data Sources with Oracle RAC .. C-4
C.5.1 Choosing a Multi Data Source Configuration for Use with Oracle RAC................... C-4
C.5.2 Configuring Multi Data Sources for use with Oracle RAC .. C-4
C.5.2.1 Attributes of a Multi Data Source ... C-6

xii

C.5.3 Configuration Considerations for Failover... C-6
C.5.3.1 Multi Data Source-Managed Failover and Load Balancing C-6
C.5.3.2 Delays During Failover... C-6
C.5.3.3 Failure Handling Walkthrough for Global Transactions C-8
C.5.4 Configuring the Listener Process for Each Oracle RAC Instance................................ C-8
C.5.5 Configuring Multi Data Sources When Remote Listeners are

Enabled or Disabled ... C-10
C.5.6 Additional Configuration Considerations .. C-10
C.6 Using Multi Data Sources with Global Transactions.. C-11
C.6.1 Rules for Data Sources within a Multi Data Source Using Global Transactions..... C-11
C.6.2 Required Attributes of Data Sources within a Multi Data Source Using Global

Transactions ...C-12
C.6.3 Sample Configuration Code.. C-12
C.7 Using Multi Data Sources without Global Transactions.. C-14
C.7.1 Attributes of Data Sources within a Multi Data Source Not Using

Global Transactions .. C-14
C.7.2 Sample Configuration Code.. C-14
C.8 Configuring Connections to Services on Oracle RAC Nodes ... C-16
C.8.1 Configuring a Data Source to Connect to a Service... C-16
C.8.2 Service Connection Configurations ... C-17
C.8.2.1 Workload Management .. C-17
C.8.2.2 Load Balancing... C-18
C.8.3 Connection Pool Capacity Planning .. C-19
C.9 Using SCAN Addresses with Multi Data Sources .. C-22
C.10 XA Considerations and Limitations when using multi Data Sources with

Oracle RAC ... C-23
C.10.1 Oracle RAC XA Requirements when using multi Data Sources C-23
C.10.1.1 Use Multi Data Sources .. C-23
C.10.1.2 A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same

Instance of the Oracle RAC Cluster ...C-23
C.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster C-24
C.10.2 Known Limitations When Using Oracle RAC with multi Data Sources.................. C-24
C.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios..................................... C-24
C.10.2.2 Potential for Transactions Completed Out of Sequence C-24
C.10.3 Known Issue Occurring After Database Server Crash.. C-24
C.11 JDBC Store Recovery with Oracle RAC.. C-25
C.11.1 Configuring a JDBC Store for Use with Oracle RAC... C-25
C.11.2 Automatic Retry for JMS Connections .. C-25

D Using Connect-Time Failover with Oracle RAC (Deprecated)

D.1 Using Connect-Time Failover without Global Transactions ... D-1
D.2 Attributes of a Connect-Time Failover Configuration without Global Transactions D-3
D.3 Sample Configuration Code... D-3

E Using Fast Connection Failover with Oracle RAC

E.1 JDBC Driver Configuration for use with Oracle Fast Connection Failover E-1

xiii

F Smart Upgrade Support for JDBC

F.1 Smart Upgrade Features ... F-1

xiv

xv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

[2] This chapter describes the contents and organization of this guide—Administering
JDBC Data Sources for Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "JDBC Samples and Tutorials"

■ Section 1.5, "New and Changed JDBC Data Source Features in This Release"

1.1 Document Scope and Audience
This document is a resource for software developers and system administrators who
develop and support applications that use the Java Database Connectivity (JDBC) API.
It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server. The topics in this document are relevant during
the evaluation, design, development, pre-production, and production phases of a
software project.

This document does not address specific JDBC programming topics. For links to
WebLogic Server documentation and resources for this topic, see Section 1.3, "Related
Documentation."

It is assumed that the reader is familiar with Java EE and JDBC concepts. This
document emphasizes the value-added features provided by WebLogic Server.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide and lists new features in the current release.

■ Chapter 2, "Configuring WebLogic JDBC Resources," provides an overview of
WebLogic JDBC resources.

■ Chapter 3, "Configuring JDBC Data Sources," describes WebLogic JDBC data
source configuration.

■ Chapter 4, "Configuring JDBC Multi Data Sources," describes WebLogic JDBC
multi data source configuration.

■ Chapter 5, "Using Active GridLink Data Sources," describes WebLogic Active
GridLink Data Source configuration.

Related Documentation

1-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Chapter 6, "Advanced Configurations for Oracle Drivers and Databases," provides
advanced configuration options that can provide improved data source and driver
performance when using Oracle drivers and databases.

■ Chapter 7, "Connection Harvesting," describes how to configure and use
connection harvesting in your applications.

■ Chapter 8, "Labeling Connections," provides information on how to label
connections to increase performance.

■ Chapter 9, "JDBC Data Source Transaction Options," provides information on XA,
non-XA, and Global Transaction options for WebLogic data sources.

■ Chapter 10, "Understanding Data Source Security," provides information on how
WebLogic Server uses configuration options to secure JDBC data sources.

■ Chapter 11, "Creating and Managing Oracle Wallet," provides information on how
to create and manage an Oracle Wallet to store database credentials for WebLogic
Server datasource definitions.

■ Chapter 12, "Deploying Data Sources on Servers and Clusters," provides
information on how to deploy data sources on servers and clusters.

■ Chapter 13, "Using WebLogic Server with Oracle RAC," describes how to
configure WebLogic Server for use with Oracle Real Application Clusters.

■ Chapter 14, "Using JDBC Drivers with WebLogic Server," describes how to use
JDBC drivers from other sources in your WebLogic JDBC data source
configuration.

■ Chapter 15, "Monitoring WebLogic JDBC Resources," describes how to monitor
JDBC resources, gather profile information about database connection usage, and
enable JDBC debugging.

■ Chapter 16, "Managing WebLogic JDBC Resources," describes how to administer
data sources.

■ Chapter 17, "Tuning Data Source Connection Pools," provides information on how
to properly tune the connection pool attributes in JDBC data sources in your
WebLogic Server domain to improve application and system performance.

■ Appendix A, "Using an Oracle 12c Database," provides information on how to
configure WebLogic Server Release 12.1.2 and higher to interoperate with an
Oracle 12c database.

■ Appendix B, "Configuring JDBC Application Modules for Deployment," describes
how to package a WebLogic JDBC module with your enterprise application.

■ Appendix C, "Using Multi Data Sources with Oracle RAC," describes how to
configure multi data sources for use with Oracle Real Application Clusters.

■ Appendix D, "Using Connect-Time Failover with Oracle RAC (Deprecated),"
describes how WebLogic Server provides Connect-Time Failover (deprecated) for
legacy applications that use data sources configured to use connect-time failover
and load balancing.

■ Appendix E, "Using Fast Connection Failover with Oracle RAC," describes how to
use WebLogic server with Oracle Fast Connection Failover.

1.3 Related Documentation
This document contains JDBC data source configuration and administration
information.

New and Changed JDBC Data Source Features in This Release

Introduction and Roadmap 1-3

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

■ Developing JDBC Applications for Oracle WebLogic Server is a guide to JDBC API
programming with WebLogic Server.

■ Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

■ Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications in development and
production environments.

1.4 JDBC Samples and Tutorials
In addition to this document, Oracle provides a variety of JDBC code samples and
tutorials that show configuration and API use, and provide practical instructions on
how to perform key JDBC development tasks.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is optionally installed with the WebLogic
Server installation. You can start MedRec from the ORACLE_HOME\user_
projects\domains\medrec directory, where ORACLE_HOME is the directory you specified
as the Oracle Home when you installed Oracle WebLogic Server.

1.4.2 JDBC Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in EXAMPLES_HOME\wl_
server\examples\src\examples, where EXAMPLES_HOME represents the directory in
which the WebLogic Server code examples are configured. For more information, see
"Sample Applications and Code Examples" in Understanding Oracle WebLogic Server.

1.5 New and Changed JDBC Data Source Features in This Release
This release includes the following new and changed features:

■ Section 1.5.1, "Oracle 12c Driver Support"

■ Section 1.5.2, "Derby Database Driver Support"

■ Section 1.5.3, "Encrypted Connection Properties"

■ Section 1.5.4, "Connection Labeling Enhancements to Avoid Connection Costs"

■ Section 1.5.5, "Connection Labeling with Packaged Applications"

■ Section 1.5.6, "oracle.jdbc.enableJavaNetFastPath Disabled"

■ Section 1.5.7, "Oracle Data Base Testing Using SQL ISVALID"

■ Section 1.5.8, "CountOfTestFailuresTillFlush and
CountOfRefreshFailuresTillDisable"

■ Section 1.5.9, "securityCacheTimeoutSeconds Default Value"

New and Changed JDBC Data Source Features in This Release

1-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

1.5.1 Oracle 12c Driver Support
WebLogic Server 12.1.3.0 includes Oracle 12c JDBC drivers and is certified to operate
with the Oracle 12c database. For details, see "Supported Configurations" in What's
New in Oracle WebLogic Server.

For information on limitations when using Application Continuity, see Section 6.1.4,
"Limitations with Application Continuity with Oracle 12c Database."

1.5.2 Derby Database Driver Support
The Derby Database driver has been updated to version 10.10.1.1.

1.5.3 Encrypted Connection Properties
As part of a secure configuration, it may be necessary to provide one or more
connection property values that should not appear as clear text in the Data Source
descriptor file. Update existing Data Source configurations using the Encrypted
Properties attribute. See Section 10.6, "Using Encrypted Connection Properties."

1.5.4 Connection Labeling Enhancements to Avoid Connection Costs
WebLogic Server provides two new connection pool properties,
ConnectionLabelingHighCost and HighCostConnectionReuseThreshold, to allow a
connection pool to use brand-new physical connections to serve connection requests
from different tenants without incurring re-initialization overhead on other tenant
connections already in the pool. See Section 8.8, "Using Initialization and
Reinitialization Costs to Select Connections."

1.5.5 Connection Labeling with Packaged Applications
WebLogic Server supports callbacks, such as labeling and connection initialization, in
EAR or WAR files used by packaged applications. See Section 8.9, "Using Connection
Labeling with Packaged Applications."

1.5.6 oracle.jdbc.enableJavaNetFastPath Disabled
weblogic.j2ee.descriptor.wl.JDBCOracleParamsBean.OracleEnableJavaNetFastPa
th is not supported in WebLogic Server 12.1.3. This functionality is always enabled by
default for Oracle Exalogic environments.

1.5.7 Oracle Data Base Testing Using SQL ISVALID
A new Test Table name value of SQL ISVALID is now supported for Oracle databases.
To improve connection testing performance of your Oracle data source, the default
setting of the Test Table Name attribute of the connection pool is now SQL ISVALID.
See Section 17.2.4, "Database Connection Testing Options."

1.5.8 CountOfTestFailuresTillFlush and CountOfRefreshFailuresTillDisable
As of this release, the CountOfTestFailuresTillFlush and
CountOfRefreshFailuresTillDisable attributes are disabled when their value is set to

New and Changed JDBC Data Source Features in This Release

Introduction and Roadmap 1-5

0. In prior releases, the value was 2147483647. See "JDBCConnectionPoolParamsBean"
in the MBean Reference for Oracle WebLogic Server.

1.5.9 securityCacheTimeoutSeconds Default Value
A default value of 10 minutes has been implemented for the
weblogic.jdbc.securityCacheTimoutSeconds parameter. See Section 17.10, "Tuning
Maintenance Timers"

1.5.10 JDBC 4.0 setPoolable(false) Removes Statement
When the JDBC 4.0 setPoolable(false) method is called for a WebLogic data source
that has prepared statement caching enabled, the statement is removed from the cache
in addition to calling the method on the driver object. See Section 16.2, "Managing the
Statement Cache for a Data Source."

New and Changed JDBC Data Source Features in This Release

1-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

2

Configuring WebLogic JDBC Resources 2-1

2Configuring WebLogic JDBC Resources

[3] This chapter describes WebLogic JDBC resources, how they are configured, and how
those resources apply to a WebLogic domain in WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 2.1, "Understanding JDBC Resources in WebLogic Server"

■ Section 2.2, "Ownership of Configured JDBC Resources"

■ Section 2.3, "Data Source Configuration Files"

■ Section 2.4, "JMX and WLST Access for JDBC Resources"

■ Section 2.5, "Creating High-Availability JDBC Resources"

2.1 Understanding JDBC Resources in WebLogic Server
In WebLogic Server, you can configure database connectivity by configuring JDBC
data sources and then targeting or deploying the JDBC resources to servers or clusters
in your WebLogic domain.

Each data source that you configure contains a pool of database connections that are
created when the data source instance is created—when it is deployed or targeted, or
at server startup. Applications lookup a data source on the JNDI tree or in the local
application context (java:comp/env), depending on how you configure and deploy the
object, and then request a database connection. When finished with the connection, the
application calls connection.close(), which returns the connection to the connection
pool in the data source. For more information about data sources in WebLogic Server,
see Chapter 3, "Configuring JDBC Data Sources."

An Active GridLink (AGL) datasource is a datasource that provides a connection pool
that spans one or more nodes in one or more Oracle RAC clusters. It supports dynamic
load balancing of connections across the nodes and handles events that indicates
nodes that are added and removed from the cluster(s). See Chapter 5, "Using Active
GridLink Data Sources."

A multi data source is an abstraction around a selected list of generic data sources that
provides load balancing or failover processing between the generic data sources
associated with the multi data source. Multi data sources are bound to the JNDI tree or
local application context just like generic data sources are bound to the JNDI tree.
Applications lookup a multi data source on the JNDI tree or in the local application
context (java:comp/env) just like they do for generic data sources, and then request a
database connection. The multi data source determines which generic data source to
use to satisfy the request depending on the algorithm selected in the multi data source
configuration: load balancing or failover. For more information about multi data
sources, see Chapter 4, "Configuring JDBC Multi Data Sources."

Ownership of Configured JDBC Resources

2-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

2.2 Ownership of Configured JDBC Resources
A key to understanding WebLogic JDBC data source configuration and management is
that who creates a JDBC resource or how a JDBC resource is created determines how a
resource is deployed and modified. Both WebLogic Administrators and programmers
can create JDBC resources:

■ WebLogic Administrators typically use the WebLogic Server Administration
Console or the WebLogic Scripting Tool (WLST) to create and deploy (target) JDBC
modules. These JDBC modules are considered system modules. See Section 2.3.1,
"JDBC System Modules" for more details.

■ Programmers create modules in a development tool that supports creating an
XML descriptor file, then package the JDBC modules with an application (for
example, an EAR or WAR file) and pass the application to a WebLogic
Administrator to deploy. These JDBC modules are considered application modules.
See Section 2.3.2, "JDBC Application Modules" for more details.

Table 2–1 lists the JDBC module types and how they can be configured and modified.

2.3 Data Source Configuration Files
WebLogic JDBC data source configurations are stored in XML documents that conform
to the jdbc-data-source.xsd schema (available at
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/inde
x.html).

You create and manage JDBC resources either as system modules or as application
modules. WebLogic supports either standard or proprietary JDBC application
modules. The standard JDBC application modules are created using the JEE 6
annotations or schema definitions based on datasourcedefinition. The proprietary
JDBC application modules are a WebLogic-specific extension of Java EE modules and
can be configured either within a Java EE application or as stand-alone modules.

Regardless of whether you are using JDBC system modules or JDBC application
modules, each JDBC data source is represented by an XML file (a module).

2.3.1 JDBC System Modules
When you create a JDBC resource (data source) using the WebLogic Server
Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic
Server creates a JDBC module in the config/jdbc subdirectory of the domain
directory, and adds a reference to the module in the domain's config.xml file. The
JDBC module conforms to the jdbc-data-source.xsd schema (available at

Table 2–1 JDBC Module Types and Configuration and Management Options

Module
Type Created with

Add/Remove
Modules with
Administratio
n Console

Modify
with JMX
(remotely)

Modify with
JSR-88
(non-remotely)

Modify with
Administration
Console

System WebLogic Server
Administration Console or
WLST

Yes Yes No Yes—via JMX

Application Oracle Enterprise Pack for
Eclipse (OEPE), Oracle
JDeveloper, another IDE, or an
XML editor

No No Yes—via a
deployment
plan

Yes—via a
deployment plan

Data Source Configuration Files

Configuring WebLogic JDBC Resources 2-3

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/inde
x.html).

JDBC data sources that you configure this way are considered system modules. System
modules are owned by an Administrator, who can delete, modify, or add similar
resources at any time. System modules are globally available for targeting to servers
and clusters configured in the domain, and therefore are available to all applications
deployed on the same targets and to client applications. System modules are also
accessible through JMX as JDBCSystemResourceMBeans.

2.3.1.1 Generic Data Source Modules
Generic data source system modules are included in the domain's config.xml file as a
JDBCSystemResource element, which includes the name of the JDBC module file and
the list of target servers and clusters on which the module is deployed. Figure 2–1
shows an example of a data source listing in a config.xml file and the module that it
maps to.

Figure 2–1 Reference from config.xml to a Data Source System Module

In this illustration, the config.xml file lists the examples-demo data source as a
jdbc-system-resource element, which maps to the examples-demo-jdbc.xml module
in the domain\config\jdbc folder.

2.3.1.2 Active GridLink Data Source System Modules
AGL data source system modules are included in the domain's config.xml file as a
JDBCSystemResource element, similar to generic data source system modules. AGL
data sources include an jdbc-oracle-params section that includes ONS and FAN.

For more information on AGL data sources, see Section 5, "Using Active GridLink
Data Sources."

Note: "Generic" is the term used to distinguish a simple data source
from a multi data source or AGL data source.

Data Source Configuration Files

2-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

2.3.1.3 Multi Data Source System Modules
Similarly, multi data source system modules are included in the domain's config.xml
file as a jdbc-system-resource element. The multi data source module includes a
data-source-list parameter that maps to the data source modules used by the multi
data source. The individual data source modules are also included in the config.xml.
Figure 2–2 shows the relationship between elements in the config.xml file and the
system modules in the config/jdbc directory.

Figure 2–2 Reference from config.xml to Multi Data Source and Data Source System Modules

In this illustration, the config.xml file lists three JDBC modules—one multi data
source and the two generic data sources used by the multi data source, which are also
listed within the multi data source module. Your application can look up any of these
modules on the JNDI tree and request a database connection. If you look up the multi
data source, the multi data source determines which of the generic data sources to use
to supply the database connection, depending on the data sources in the
data-source-list parameter, the order in which the data sources are listed, and the
algorithm specified in the algorithm-type parameter.

 For more information about multi data sources, see Chapter 4, "Configuring JDBC
Multi Data Sources."

Note: Members of a multi data source must be generic data sources;
they cannot be multi data sources or AGL data sources.

Data Source Configuration Files

Configuring WebLogic JDBC Resources 2-5

2.3.2 JDBC Application Modules
In contrast to system resource modules, JDBC modules that are packaged with an
application are owned by the developer who created and packaged the module, rather
than the Administrator who deploys the module. This means that the Administrator
has more limited control over packaged modules. When deploying a resource module,
an Administrator can change resource properties that were specified in the module,
but the Administrator cannot add or delete modules. (As with other Java EE modules,
deployment configuration changes for a resource module are stored in a deployment
plan for the module, leaving the original module untouched.)

2.3.2.1 Standard Java EE Application Modules
Java EE 6 provides the ability to programmatically define DataSource resources as
application modules for a more flexible and portable method of database connectivity.
See "Using DataSource Resource Definitions" in Developing JDBC Applications for Oracle
WebLogic Server.

2.3.2.2 Proprietary JDBC Application Modules
JDBC resources can also be managed as application modules, similar to standard Java
EE modules. A proprietary JDBC application module is simply an XML file that
conforms to the jdbc-data-source.xsd schema (available at
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/inde
x.html) and represents a data source.

JDBC modules can be included as part of an Enterprise Application as a packaged
module. Packaged modules are bundled with an EAR or exploded EAR directory, and
are referenced in all appropriate deployment descriptors, such as the
weblogic-application.xml and ejb-jar.xml deployment descriptors. The JDBC
module is deployed along with the enterprise application, and can be configured to be
available only to the enclosing application or to all applications. Using packaged
modules ensures that an application always has access to required resources and
simplifies the process of moving the application into new environments. With
packaged JDBC modules, you can migrate your application and the required JDBC
configuration from environment to environment, such as from a testing environment
to a production environment, without opening an EAR file and without extensive
manual data source reconfiguration.

By definition, packaged JDBC modules are included in an enterprise application, and
therefore are deployed when you deploy the enterprise application. For more
information about deploying applications with packaged JDBC modules, see Deploying
Applications to Oracle WebLogic Server.

A proprietary JDBC application module can also be deployed as a stand-alone
resource using the weblogic.Deployer utility or the WebLogic Server Administration
Console, in which case the resource is typically available to the server or cluster
targeted during the deployment process. JDBC resources deployed in this manner are
called stand-alone modules and can be reconfigured using the WebLogic Server
Administration Console or a JSR-88 compliant tool, but are unavailable through JMX
or WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You
can create a data source configuration and distribute it to other developers.
Stand-alone JDBC modules can also be used to move data source configuration
between domains, such as between the development domain and the staging domain.

Data Source Configuration Files

2-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

For more information about JDBC application modules, see Appendix B, "Configuring
JDBC Application Modules for Deployment."

For information about deploying stand-alone JDBC modules, see "Deploying JDBC,
JMS, WLDF Application Modules" in Deploying Applications to Oracle WebLogic Server."

2.3.2.2.1 Including Drivers in EAR/WAR Files In WebLogic Server 10.3.6 and higher
releases, you can include a database driver in the APP-INF/lib directory of the
EAR/WAR file that contains a packaged data source. This allows you to deploy a
self-contained EAR/WAR file that has both the data source and driver required for an
application.

An EAR has its own classloader and it is shared across all of the nested applications so
any of them can use it. You can deploy multiple EAR/WAR files, each with a different
driver version. However, if there are other versions of the driver in the system
classpath, set PREFER-WEB-INF-CLASSES=true in the weblogic.xml file to ensure
the application uses the driver classes that it was packaged with.

When using the Oracle driver embedded in an EAR or WAR with ojdbc6.jar or
ojdbc7.jar, there is a known problem related to cleaning up the associated
classloader. To resolve this problem, call
oracle.jdbc.OracleDriver.deregisterHack() from the contextDestroyed() method
of a ServletContextListener.

2.3.3 JDBC Module File Naming Requirements
All WebLogic JDBC module files must end with the -jdbc.xml suffix, such as
examples-demo-jdbc.xml. WebLogic Server checks the file name when you deploy the
module. If the file does not end in -jdbc.xml, the deployment will fail and the server
will not boot.

2.3.4 JDBC Modules in Versioned Applications
When you use production redeployment (versioning) to deploy a version of an
application that includes a packaged JDBC module, WebLogic Server identifies the
data source defined in the JDBC module with a name in the following format:

application_id#version_id@module_name@data_source_name

This name is used for data source run-time MBeans and for registering the data source
instance with the WebLogic Server transaction manager.

If transactions in a retiring version of an application time out and the version of the
application is then undeployed, you may have to manually resolve any pending or
incomplete transactions on the data source in the retired version of the application.
After a data source is undeployed (in this case, with the retired version of the

Note: When deploying proprietary JDBC modules as standalone
modules, a multi data source needs to have a deployment order that is
greater than the deployment orders of its member generic data
sources.

Note: You do not need to update the Classpath of the manifest file
to include the driver location.

JMX and WLST Access for JDBC Resources

Configuring WebLogic JDBC Resources 2-7

application), the WebLogic Server transaction manager cannot recover pending or
incomplete transactions.

For more information about production redeployment, see:

■ "Developing Applications for Production Redeployment" in Developing
Applications for Oracle WebLogic Server

■ "Using Production Redeployment to Update Applications" in Deploying
Applications to Oracle WebLogic Server

2.3.5 JDBC Schema
In support of the modular deployment model for JDBC resources in WebLogic Server,
Oracle provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you
create JDBC resource modules (descriptors), the modules must conform to the schema.
IDEs and other tools can validate JDBC resource modules based on the schema.

The schema is available at
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/inde
x.html.

2.4 JMX and WLST Access for JDBC Resources
You can create JDBC resources using any of the administration tools listed in
"Summary of System Administration Tools and APIs" in Understanding Oracle WebLogic
Server. When you create JDBC resources, WebLogic Server creates MBeans (Managed
Beans) for each of the resources. You can then access these MBeans using JMX or the
WebLogic Scripting Tool (WLST). See Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server and Understanding the WebLogic Scripting Tool for more
information.

■ Section 2.4.1, "JDBC MBeans for System Resources"

■ Section 2.4.2, "JDBC Management Objects in the Java EE Management Model
(JSR-77 Support)"

■ Section 2.4.3, "Using WLST to Create JDBC System Resources"

Note: The scope in the jdbc-data-source-params element of the
schema may only be set to Application for packaged data sources.
The value Application is not valid for:

■ System resources in config/jdbc, including generic, multi-data
sources, and AGL data sources.

■ Stand-alone data sources that are deployed dynamically or
statically using the <app-deployment> element in the config.xml
file.

For these data source types, there is no application to scope the data
source and no associated module. WebLogic Server does not generate
a scope of Application. This omission was not flagged as an error in
releases of prior to WebLogic Server 10.3.6.0 and is displayed in the
console with an invalid name similar to ds0@null@ds0. For WebLogic
Server 10.3.6.0 and higher, an Error message is logged for this
configuration error and the system attempts to set the scope to Global
and display the data source name as ds0. In future releases, this error
may be treated as fatal.

JMX and WLST Access for JDBC Resources

2-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Section 2.4.4, "How to Modify and Monitor JDBC Resources"

■ Section 2.4.5, "Best Practices when Using WLST to Configure JDBC Resources"

2.4.1 JDBC MBeans for System Resources
The JDBCSystemResourceMBean is a container for the JavaBeans created from a data
source module. However, all JMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans
created from the data source module.

Figure 2–3 shows the hierarchy of the MBeans for JDBC objects in a WebLogic domain.

Figure 2–3 JDBC Bean Tree

2.4.2 JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
The WebLogic Server JDBC subsystem supports JSR-77, which defines the Java EE
Management Model. The Java EE Management Model is used for monitoring the
run-time state of a Java EE Web application server and its resources. You can access the
Java EE Management Model to monitor resources, including the WebLogic JDBC
subsystem as a whole, JDBC drivers loaded into memory, and JDBC data sources.

To comply with the specification, Oracle added the following run-time MBean types
for the WebLogic JDBC subsystem:

■ JDBCServiceRuntimeMBean—Which represents the JDBC subsystem and provides
methods to access the list of JDBCDriverRuntimeMBeans,
JDBCMultiDataSourceRuntimeMBean, and JDBCDataSourceRuntimeMBeans
currently available in the system.

■ JDBCMultiDataSourceRuntimeMBean—Which represents a JDBC multi data source
deployed on a server or cluster.

JMX and WLST Access for JDBC Resources

Configuring WebLogic JDBC Resources 2-9

■ JDBCDriverRuntimeMBean—Which represents a JDBC driver that the server loaded
into memory.

■ JDBCDataSourceRuntimeMBeans—Which represents a JDBC generic or AGL data
source deployed on a server or cluster.

For more information about using the Java EE management model with WebLogic
Server, see Developing Java EE Management Applications for Oracle WebLogic Server.

2.4.3 Using WLST to Create JDBC System Resources
Basic tasks you need to perform when creating JDBC resources with the WLST are:

■ Start an edit session.

■ Create a JDBC system module that includes JDBC system resources, such as pools,
data sources, multi data sources, and JDBC drivers.

■ Target your JDBC system module.

Example 2–1 WLST Script to Create JDBC Resources

#--
Create JDBC Resources
#--

import sys
from java.lang import System

print "@@@ Starting the script ..."
global props

url = sys.argv[1]
usr = sys.argv[2]
password = sys.argv[3]

connect(usr,password, url)
edit()
startEdit()

servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'
else:
 def addJDBC(prefix):

 print("")
 print("*** Creating JDBC resources with property prefix " + prefix)

Create the Connection Pool. The system resource will have
generated name of <PoolName>+"-jdbc"

 myResourceName = props.getProperty(prefix+"PoolName")
 print("Here is the Resource Name: " + myResourceName)

 jdbcSystemResource = wl.create(myResourceName,"JDBCSystemResource")

Note: WebLogic JDBC run-time MBeans do not implement the optional
Statistics Provider interfaces specified by JSR-77.

JMX and WLST Access for JDBC Resources

2-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

 myFile = jdbcSystemResource.getDescriptorFileName()
 print ("HERE IS THE JDBC FILE NAME: " + myFile)

 jdbcResource = jdbcSystemResource.getJDBCResource()
 jdbcResource.setName(props.getProperty(prefix+"PoolName"))

Create the DataSource Params
 dpBean = jdbcResource.getJDBCDataSourceParams()
 myName=props.getProperty(prefix+"JNDIName")
 dpBean.setJNDINames([myName])

Create the Driver Params
 drBean = jdbcResource.getJDBCDriverParams()
 drBean.setPassword(props.getProperty(prefix+"Password"))
 drBean.setUrl(props.getProperty(prefix+"URLName"))
 drBean.setDriverName(props.getProperty(prefix+"DriverName"))

 propBean = drBean.getProperties()
 driverProps = Properties()
 driverProps.setProperty("user",props.getProperty(prefix+"UserName"))

 e = driverProps.propertyNames()
 while e.hasMoreElements() :
 propName = e.nextElement()
 myBean = propBean.createProperty(propName)
 myBean.setValue(driverProps.getProperty(propName))

Create the ConnectionPool Params
 ppBean = jdbcResource.getJDBCConnectionPoolParams()
 ppBean.setInitialCapacity(int(props.getProperty(prefix+"InitialCapacity")))
 ppBean.setMaxCapacity(int(props.getProperty(prefix+"MaxCapacity")))

 if not props.getProperty(prefix+"ShrinkPeriodMinutes") == None:
 ppBean.setShrinkFrequencySeconds(int(props.getProperty(prefix+"ShrinkPeriodMinutes")))
 if not props.getProperty(prefix+"TestTableName") == None:
 ppBean.setTestTableName(props.getProperty(prefix+"TestTableName"))

 if not props.getProperty(prefix+"LoginDelaySeconds") == None:
 ppBean.setLoginDelaySeconds(int(props.getProperty(prefix+"LoginDelaySeconds")))

Adding KeepXaConnTillTxComplete to help with in-doubt transactions.
 xaParams = jdbcResource.getJDBCXAParams()
 xaParams.setKeepXaConnTillTxComplete(1)

Add Target
 jdbcSystemResource.addTarget(wl.getMBean("/Servers/examplesServer"))
.
.
.

2.4.4 How to Modify and Monitor JDBC Resources
You can modify or monitor JDBC objects and attributes by using the appropriate
method available from the MBean.

■ You can modify JDBC objects and attributes using the set, target, untarget, and
delete methods.

■ You can monitor JDBC run-time objects using get methods.

Creating High-Availability JDBC Resources

Configuring WebLogic JDBC Resources 2-11

For more information, see "Navigating MBeans (WLST Online)" in Understanding the
WebLogic Scripting Tool.

2.4.5 Best Practices when Using WLST to Configure JDBC Resources
This section provides best practices information when using WLST to configure JDBC
resources:

■ Trap for Null MBean objects (such as pools, data sources, drivers) before trying to
manipulate the MBean object.

■ When using WLST offline, the following characters are not valid in names of
management objects: period (.), forward slash (/), or backward slash (\). See
"Syntax for WLST Commands" in Understanding the WebLogic Scripting Tool.

2.5 Creating High-Availability JDBC Resources
You can target or deploy a JDBC data source to the members of a cluster using the
WebLogic Server Administration Console to improve the availability your JDBC
resource and load balance communication between resources. However, connections
do not fail over in the event that a cluster member becomes unavailable for any reason.
New connections are created as needed on available cluster members. See Section 12,
"Deploying Data Sources on Servers and Clusters."

Note: A multi data source can only use generic data sources that are
deployed on the same cluster member (in the same JVM).

Creating High-Availability JDBC Resources

2-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

3

Configuring JDBC Data Sources 3-1

3Configuring JDBC Data Sources

[4] This chapter provides information on how to configure and tune JDBC data sources in
WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 3.1, "Understanding JDBC Data Sources"

■ Section 3.2, "Types of WebLogic Server JDBC Data Sources"

■ Section 3.3, "Creating a JDBC Data Source"

■ Section 3.4, "Configuring Generic Connection Pool Features"

■ Section 3.5, "Advanced Connection Properties"

■ Section 3.6, "Configuring Oracle Parameters"

■ Section 3.7, "Configuring an ONS Client"

■ Section 3.8, "Tuning Generic Data Source Connection Pools"

■ Section 3.9, "Generic Data Source Handling for Oracle RAC Outages."

3.1 Understanding JDBC Data Sources
In WebLogic Server, you configure database connectivity by adding data sources to
your WebLogic domain. WebLogic JDBC data sources provide database access and
database connection management. Each data source contains a pool of database
connections that are created when the data source is created and at server startup.
Applications reserve a database connection from the data source by looking up the
data source on the JNDI tree or in the local application context and then calling
getConnection(). When finished with the connection, the application should call
connection.close() as early as possible, which returns the database connection to the
pool for other applications to use.

3.2 Types of WebLogic Server JDBC Data Sources
WebLogic Server provides three types of data sources:

■ Generic data sources—Generic data sources and their connection pools provide
connection management processes that help keep your system running
efficiently.You can set options in the data source to suit your applications and your
environment.

■ Active GridLink (AGL) data sources—A datasource that provides a connection
pool that spans one or more nodes in one or more Oracle RAC clusters. It supports
dynamic load balancing of connections across the nodes and handles events that

Creating a JDBC Data Source

3-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

indicates nodes that are added and removed from the cluster(s). See Chapter 5,
"Using Active GridLink Data Sources."

■ Multi data sources (MDS)—A multi data source is an abstraction around a group of
generic data sources that provides load balancing or failover processing. See
Section 4, "Configuring JDBC Multi Data Sources."

3.3 Creating a JDBC Data Source
You can create JDBC data sources in your WebLogic domain using the WebLogic
Server Administration Console or the WebLogic Scripting Tool (WLST):

■ "Create a JDBC Data Source" in the Oracle WebLogic Server Administration Console
Online Help.

■ The sample WLST script EXAMPLES_HOME\wl_
server\examples\src\examples\wlst\online\jdbc_data_source_creation.py,
where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. See "WLST Online Sample Scripts" in Understanding the
WebLogic Scripting Tool

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server
Administration Console:

■ Section 3.3.1, "JDBC Data Source Properties"

■ Section 3.3.2, "Configure Transaction Options"

■ Section 3.3.3, "Configure Connection Properties"

■ Section 3.3.4, "Test Connections"

■ Section 3.3.5, "Target the Data Source"

3.3.1 JDBC Data Source Properties
JDBC Data Source Properties include options that determine the identity of the data
source and the way the data is handled on a database connection.

3.3.1.1 Data Source Names
JDBC data source names are used to identify the data source within the WebLogic
domain. For system resource data sources, names must be unique among all other
JDBC system resources. To avoid naming conflicts, data source names should also be
unique among other configuration object names, such as servers, applications, clusters,
and JMS queues, topics, and servers. For JDBC application modules packaged in an
application, data source names must be unique among JDBC data sources that are
similarly scoped.

3.3.1.2 JNDI Names
You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. For more information, see "Developing JNDI Applications for Oracle
WebLogic Server."

3.3.1.3 Selecting a Database Type
Select a DBMS. For information about supported databases, see "Supported
Configurations" in What's New in Oracle WebLogic Server.

Creating a JDBC Data Source

Configuring JDBC Data Sources 3-3

3.3.1.4 Selecting a JDBC Driver
When creating a JDBC data source using the WebLogic Server Administration Console,
you are prompted to select a JDBC driver class. The WebLogic Server Administration
Console provides most of the more common driver class names and in most cases tries
to help you construct the URL as required by the driver. You should verify, however,
that the URL is as you want it before asking the console to test it. The driver you select
must be in the classpath on all servers on which you intend to deploy the data source.
Some but not all JDBC drivers listed in the WebLogic Server Administration Console
are shipped (and/or are already in the classpath) with WebLogic Server:

■ Oracle Thin Driver

– Oracle Thin Driver XA

– Oracle Thin Driver non-XA

■ MySQL (non-XA)

■ Third-party JDBC drivers (see Chapter 14, "Using JDBC Drivers with WebLogic
Server"):

■ WebLogic-branded DataDirect drivers for the following database management
systems (see Using WebLogic-branded DataDirect Drivers):

– DB2

– Informix

– Microsoft SQL Server

– Sybase

All of these drivers are referenced by the weblogic.jar manifest file and do not need
to be explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try
drivers from various vendors in your environment. In general, JDBC driver
performance is dependent on many factors, especially the SQL code used in
applications and the JDBC driver implementation.

For information about supported JDBC drivers, see "Supported Configurations" in
What's New in Oracle WebLogic Server.

Creating a JDBC Data Source

3-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

3.3.2 Configure Transaction Options
When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver:

■ For XA drivers, the system automatically selects the Two-Phase Commit protocol
for global transaction processing.

■ For non-XA drivers, local transactions are supported by definition, and WebLogic
Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you want
to use connections from the data source in global transactions, even though you
have not selected an XA driver. See Section 9.1, "Enabling Support for Global
Transactions with a Non-XA JDBC Driver" for more information.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

– Logging Last Resource: With this option, the transaction branch in which the
connection is used is processed as the last resource in the transaction and is
processed as a local transaction. Commit records for two-phase commit (2PC)
transactions are inserted in a table on the resource itself, and the result
determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Section 9.2, "Understanding the Logging Last Resource Transaction Option."

Note: JDBC drivers listed in the WebLogic Server Administration
Console when creating a data source are not necessarily certified for
use with WebLogic Server. JDBC drivers are listed as a convenience to
help you create connections to many of the database management
systems available.

You must install JDBC drivers in order to use them to create database
connections in a data source on each server on which the data source
is deployed. Drivers are listed in the WebLogic Server Administration
Console with known required configuration options to help you
configure a data source. The JDBC drivers in the list are not
necessarily installed. Driver installation can include setting system
Path, Classpath, and other environment variables. See Section 14.3,
"Using Third-Party JDBC Drivers."When a JDBC driver is updated,
configuration requirements may change. The WebLogic Server
Administration Console uses known configuration requirements at
the time the WebLogic Server software was released. If configuration
options for your JDBC driver have changed, you may need to
manually override the configuration options when creating the data
source or in the property pages for the data source after it is created.

Note: Logging Last Resource is not supported for data sources used by a
multi data source except when used with Oracle RAC version 10g Release 2
(10gR2) and greater versions as described in Section 9.2.4, "Administrative
Considerations and Limitations for LLR Data Sources.".

Creating a JDBC Data Source

Configuring JDBC Data Sources 3-5

– Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase of
the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Section 9.3, "Understanding the Emulate Two-Phase
Commit Transaction Option."

– One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResource.prepare on the 1PC resource.

For more information on configuring transaction support for a data source, see
Section 9, "JDBC Data Source Transaction Options."

3.3.3 Configure Connection Properties
Connection Properties are used to configure the connection between the data source
and the DBMS. Typical attributes are the database name, host name, port number, user
name, and password.

3.3.3.1 Configuring Connection Properties for Oracle BI Server
If you selected Oracle BI Server as your DBMS, configure the additional connection
properties on the Connection Properties page as described in "Connection String" in
Oracle Business Intelligence Publisher Administrator's and Developer's Guide.

3.3.4 Test Connections
Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement. If necessary,
you can test additional configuration information using the Properties and System
Properties attributes.

Note: You can use a Single Client Access Name (SCAN) address to
represent the host name. When using Oracle RAC 11.2 and higher,
consider the following:

■ If the Oracle RAC REMOTE_LISTENER your data source connects to
is set to SCAN, the data source connection url can only use a SCAN
address.

■ If the Oracle RAC REMOTE_LISTENER your data source connects to
is set to List of Node VIPs, the data source connection url can
only use a list of VIP addresses.

■ If the Oracle RAC REMOTE_LISTENER your data source connects to
is set to Mix of SCAN and List of Node VIPs, the data source
connection url can use both SCAN and VIP addresses.

For more information on using SCAN addresses, see "Introduction to
Automatic Workload Management" in Real Application Clusters
Administration and Deployment Guide 11g Release 2 (11.2).

Configuring Generic Connection Pool Features

3-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

3.3.5 Target the Data Source
You can select one or more targets to which to deploy your new JDBC data source. If
you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time before getting connections.

3.4 Configuring Generic Connection Pool Features
Each JDBC data source has a pool of JDBC connections that are created when the data
source is deployed or at server startup. Applications use a connection from the pool
then return it when finished using the connection. Connection pooling enhances
performance by eliminating the costly task of creating database connections for the
application.

The following sections include information about connection pool options for a JDBC
data source.

■ Section 3.4.1, "Enabling JDBC Driver-Level Features"

■ Section 3.4.2, "Enabling Connection-based System Properties"

■ Section 3.4.3, "Enabling Connection-based Encrypted Properties"

■ Section 3.4.4, "Initializing Database Connections with SQL Code"

■ Section 3.5, "Advanced Connection Properties"

You can see more information and set these and other related options through the:

■ JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console. See "JDBC Data Source: Configuration: Connection Pool"
in the Oracle WebLogic Server Administration Console Online Help

■ JDBCConnectionPoolParamsBean, which is a child MBean of the
JDBCDataSourceBean

3.4.1 Enabling JDBC Driver-Level Features
WebLogic JDBC data sources support the javax.sql.ConnectionPoolDataSource
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properties attribute in a JDBC data source.
Driver-level properties in the Properties attribute are set on the driver's
ConnectionPoolDataSource object.

3.4.2 Enabling Connection-based System Properties
WebLogic JDBC data sources support setting driver properties using the value of
system properties. The value of each property is derived at runtime from the named
system property. You can configure connection-based system properties using the
WebLogic Server Administration Console by editing the System Properties attribute
of your data source configuration.

Note: Certain Oracle JDBC extensions, and possibly other
non-standard methods available from other drivers may durably alter
a connection's behavior in a way that future users of the pooled
connection will inherit. WebLogic Server attempts to protect
connections against some types of these calls when possible.

Advanced Connection Properties

Configuring JDBC Data Sources 3-7

3.4.3 Enabling Connection-based Encrypted Properties
WebLogic JDBC data sources support setting driver properties using encrypted values.
You can configure connection-based encrypted properties using the WebLogic Server
Administration Console by editing the Encrypted Properties attribute of your data
source configuration. For more information, see Section 10.6, "Using Encrypted
Connection Properties."

3.4.4 Initializing Database Connections with SQL Code
When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this
feature, enter SQL followed by a space and the SQL code you want to run in the Init
SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the
WebLogic Server Administration Console. Alternatively, you can specify simply a
table name without SQL and the statement SELECT COUNT(*) FROM tablename is used.
If you leave this attribute blank (the default), WebLogic Server does not run any code
to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data
source, which includes at server startup, when expanding the connection pool, and
when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are
connection-specific or to ensure that a connection has memory or permissions to
perform required actions.

Start the code with SQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute(). Options that you
can set using InitSQL vary by DBMS. See the documentation for your database
vendor for supported statements. If you want to execute multiple statements, you may
want to create a stored procedure and execute it. The syntax is vendor specific. For
example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE()

3.5 Advanced Connection Properties
The following sections highlight some important advanced connection properties.

■ Section 3.5.1, "Define Fatal Error Codes"

■ Section 3.5.2, "Enabling Edition-Based Redefinition"

3.5.1 Define Fatal Error Codes
You can define fatal error codes that indicate that the database server with which the
data source communicates is no longer accessible on a connection. The connection is
marked invalid and taken out of the pool but the data source is not suspended. These
errors include deployment errors that cause a server to fail to boot and connection
errors that prevent a connection from being put back in the connection pool.

Configuring Oracle Parameters

3-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

When specified as the exception code within a SQLException (retrieved by
sqlException.getErrorCode()), it indicates that a fatal error has occurred, the
connection is no longer good, and it is removed from the connection pool. For Oracle
databases the following fatal error codes are predefined within WLS and do not need
to be placed in the configuration file:

For DB2, the following fatal error codes are predefined: -4498, -4499, -1776, -30108,
-30081, -30080, -6036, -1229, -1224, -1035, -1034, -1015, -924, -923, -906, -518, -514, 58004.

For Informix, the following fatal error codes are predefined: -79735, -79716, -43207,
-27002, -25580, -4499, -908, -710, 43012.

To define fatal error codes in the WebLogic Server Administration Console, see "Define
Fatal Error Codes" in Oracle WebLogic Server Administration Console Online Help.

3.5.2 Enabling Edition-Based Redefinition
Edition-based redefinition is an Oracle database feature that enables you to upgrade
the database component of an application while it is in use, thereby minimizing or
eliminating down time. To use this feature, the data source must be configured with:

SQL ALTER SESSION SET EDITION = name

in the Init SQL parameter in Connection Pool tab of a datasource configuration. You
can also use WLST and update the InitSQL attribute in MBean Reference for Oracle
WebLogic Server.

This SQL statement is executed for each newly created physical database connection.
See "Edition-Based Redefinition" in the Oracle Database Advanced Application Developer's
Guide.

3.6 Configuring Oracle Parameters
WebLogic Server provides several attributes that provide improved Data Source
performance when using Oracle drivers, for more information, see Section 6,
"Advanced Configurations for Oracle Drivers and Databases."

3.7 Configuring an ONS Client
Configuring an ONS client changes a generic data source to an AGL data source. For
more detailed configuration information and additional environment requirements,
see Section 5, "Using Active GridLink Data Sources."

Error Code Description

3113 end-of-file on communication channel

3114 not connected to ORACLE

1033 ORACLE initialization or shutdown in
progress

1034 ORACLE not available

1089 immediate shutdown in progress - no
operations are permitted

1090 shutdown in progress - connection is not
permitted

17002 I/O exception

Generic Data Source Handling for Oracle RAC Outages

Configuring JDBC Data Sources 3-9

3.8 Tuning Generic Data Source Connection Pools
By properly configuring the connection pool attributes in JDBC data sources in your
WebLogic Server domain, you can improve application and system performance. For
more information, see Section 17, "Tuning Data Source Connection Pools."

3.9 Generic Data Source Handling for Oracle RAC Outages
It is possible to use a generic data source with Oracle RAC with some limitations.
These limitations complicate transaction processing, monitoring, and graceful
handling of RAC outages.

The following limitations are due to WebLogic Server instances not being aware of the
RAC instances associated with the connections in the pool:

■ A generic data source does not have the ability to disable a single instance in the
pool that a MDS or AGL data source provides. If one of the RAC instances goes
down (planned or unplanned), the data source tests all connections in the pool for
the down instance, disabling them individually. In addition to more overhead and
application delays, the pool sees multiple failures which cause the entire pool to be
disabled. To prevent the pool from being disabled, set the value of Count Of Test
Failures Till Flush to 0. See the JDBC Data Source: Configuration: Connection
Pool page in the WebLogic Server Administration Console or see
"JDBCConnectionPoolParamsBean" in the MBean Reference for Oracle WebLogic
Server.

■ JTA or global transactions should not be used with this configuration. Because
WebLogic Server is not aware of the RAC instances, it cannot guarantee
transaction affinity. This is a problem if the transaction spans multiple servers or if
a failure occurs such that another connection is used to complete the transaction.
Since the additional connections required to complete the transaction may not be
within the same RAC instance, transaction processing may fail.

■ It is not possible to monitor the connections based on the RAC instances.

Note: Oracle recommends using MDS or AGL with an Oracle RAC
database. See Section 5, "Using Active GridLink Data Sources" or
Section C, "Using Multi Data Sources with Oracle RAC."

Generic Data Source Handling for Oracle RAC Outages

3-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

4

Configuring JDBC Multi Data Sources 4-1

4Configuring JDBC Multi Data Sources

[5] This chapter provides information on how to configure and use a multi data source in
WebLogic Server 12.1.3 to provide load balancing or failover processing at the time of
connection requests, between the generic data sources associated with the multi data
source.

A multi data source is an abstraction around a group of generic data sources that is
bound to the JNDI tree or local application context just like generic data sources are
bound to the JNDI tree. Applications lookup a multi data source on the JNDI tree or in
the local application context (java:comp/env) just as they do for generic data sources,
and then request a database connection. The multi data source determines which
generic data source to use to satisfy the request depending on the algorithm selected in
the multi data source configuration: load balancing or failover.

This section includes the following sections:

■ Section 4.1, "Multi Data Source Features"

■ Section 4.2, "Creating and Configuring Multi Data Sources"

■ Section 4.3, "Choosing the Multi Data Source Algorithm"

■ Section 4.4, "Multi Data Source Fail-Over Limitations and Requirements"

■ Section 4.5, "Multi Data Source Failover Enhancements"

■ Section 4.6, "Deploying JDBC Multi Data Sources on Servers and Clusters"

4.1 Multi Data Source Features
A multi data source can be thought of as a pool of generic data sources. Multi data
sources are best used for failover or load balancing between nodes of a highly
available database system, such as redundant databases or Oracle Real Application
Clusters (Oracle RAC).

The generic data source member list for a Multi data source supports dynamic
updates. This allows environments, such as those using Oracle RAC, to add and
remove database nodes and corresponding generic data sources without redeployment
and provide the ability to:

Note: Active GridLink and Multi Data Source are designed to work
with Oracle RAC clusters. Oracle does not recommend using generic
data sources with Oracle RAC clusters. See Section 5.11, "Comparing
AGL and Multi Data Sources."

Multi Data Source Features

4-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Grow and shrink Oracle RAC clusters in response to throughput. See Section 4.1.2,
"Adding a Database Node."

■ Shutdown Oracle RAC nodes for maintenance. See Section 4.1.1, "Removing a
Database Node."

See Section C, "Using Multi Data Sources with Oracle RAC."

4.1.1 Removing a Database Node
You can remove a database node and corresponding generic data sources without
redeployment. This capability provides you the ability to shutdown a node for
maintenance or shrink a cluster. Use the following high-level steps to shutdown a
database node:

1. Remove the generic data source from the multi data source. See "Add or remove
generic data sources in a JDBC multi data source" in Oracle WebLogic Server
Administration Console Online Help

2. When all transactions have completed, suspend the generic data source. See
"Suspend JDBC data sources" in Oracle WebLogic Server Administration Console
Online Help

3. When all transactions have completed, shut down the generic data source. See
"Shut down JDBC data sources" in Oracle WebLogic Server Administration Console
Online Help

4. Shut down the database node.

4.1.2 Adding a Database Node
You can add a database node and corresponding generic data sources without
redeployment. This capability provides you the ability to start a node after
maintenance or grow a cluster. Use the following high-level steps to add a database
node:

1. Restart the database node.

2. Restart the generic data source. See "Start JDBC data sources" in Oracle WebLogic
Server Administration Console Online Help.

3. Add the generic data source back to the multi data source. See "Add or remove
data sources in a JDBC multi data source" in Oracle WebLogic Server Administration
Console Online Help.

Note: Multi data sources do not provide any synchronization between
databases. It is assumed that database synchronization is handled properly
outside of WebLogic Server so that data integrity is maintained. Adding and
removing database nodes is a manual operation performed by the database
administrator.

Note: Failure to follow these step may cause transaction roll-backs.

Multi Data Source Fail-Over Limitations and Requirements

Configuring JDBC Multi Data Sources 4-3

4.2 Creating and Configuring Multi Data Sources
You create a multi data source by first creating generic data sources, then creating the
multi data source using the WebLogic Server Administration Console or the WebLogic
Scripting Tool and then assigning the generic data sources to the multi data source.

For instructions to create a multi data source, see "Configure JDBC multi data sources"
in the Oracle WebLogic Server Administration Console Online Help.

For information about the configuration files created when configuring a multi data
source, see Section 2.1, "Understanding JDBC Resources in WebLogic Server." Also see
Section B.2.6, "Creating a Multi Data Source Module."

4.3 Choosing the Multi Data Source Algorithm
Before you set up a multi data source, you need to determine the primary purpose of
the multi data source—failover or load balancing. You can choose the algorithm that
corresponds with your requirements.

4.3.1 Failover
The Failover algorithm provides an ordered list of generic data sources to use to satisfy
connection requests. Normally, every connection request to this kind of multi data
source is served by the first generic data source in the list. If a database connection test
fails and the connection cannot be replaced, or if the generic data source is suspended,
a connection is sought sequentially from the next generic data source on the list.

4.3.2 Load Balancing
Connection requests to a load-balancing multi data source are served from any generic
data source in the list. The multi data source selects generic data sources to use to
satisfy connection requests using a round-robin scheme. When the multi data source
provides a connection, it selects a connection from the generic data source listed just
after the last generic data source that was used to provide a connection. Multi data
sources that use the Load Balancing algorithm also fail over to the next generic data
source in the list if a database connection test fails and the connection cannot be
replaced, or if the generic data source is suspended.

4.4 Multi Data Source Fail-Over Limitations and Requirements
WebLogic Server provides the Failover algorithm for multi data sources so that if a
generic data source fails (for example, if the database management system crashes),

Note: This algorithm requires that Test Reserved Connections
(TestConnectionsOnReserve) on the generic data source is enabled. If enabled,
a connection in the first generic data source is tested to verify if the generic
data source is healthy. If the connection fails the test, the multi data source
uses a connection from the next generic data source listed in the multi data
source. See Section 17.2, "Connection Testing Options for a Data Source" for
information about configuring TestConnectionsOnReserve.

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection
and transactional state are tied directly to the socket between the DBMS
process and the client (driver). For this reason, failover of a connection while it
is in use is not supported.

Multi Data Source Failover Enhancements

4-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

your system can continue to operate. However, you must consider the following
limitations and requirements when configuring your system.

4.4.1 Test Connections on Reserve to Enable Fail-Over
Generic data sources rely on the Test Reserved Connections
(TestConnectionsOnReserve) feature on the generic data source to know when
database connectivity is lost. Testing reserved connections must be enabled for the
generic data sources within the multi data source. WebLogic Server will test each
connection before giving it to an application. With the Failover algorithm, the multi
data source uses the results from connection test to determine when to fail over to the
next generic data source in the multi data source. After a test failure, the generic data
source attempts to recreate the connection. If that attempt fails, the multi data source
fails over to the next generic data source.

4.4.2 No Fail-Over for In-Use Connections
It is possible for a connection to fail after being reserved, in which case your
application must handle the failure. WebLogic Server cannot provide fail-over for
connections that fail while being used by an application. Any failure while using a
connection requires that the application code close the failed connection, and the
transaction must be restarted from the beginning with a new connection.

4.5 Multi Data Source Failover Enhancements
The following enhancements improve failover processing for multi data sources:

■ Connection request routing enhancements to avoid requesting a connection from
an automatically disabled (dead) generic data source within a multi data source.
See Section 4.5.1, "Connection Request Routing Enhancements When a Generic
Data Source Fails."

■ Automatic failback on recovery of a failed generic data source within a multi data
source. See Section 4.5.2, "Automatic Re-enablement on Recovery of a Failed
Generic Data Source within a Multi Data Source."

■ Failover for busy generic data sources within a multi data sources. See
Section 4.5.3, "Enabling Failover for Busy Generic Data Sources in a Multi Data
Source."

■ Failover callbacks for multi data sources with the Failover algorithm. See
Section 4.5.4, "Controlling Multi Data Source Failover with a Callback."

■ Failback callbacks for multi data sources with either algorithm. See Section 4.5.5,
"Controlling Multi Data Source Failback with a Callback."

4.5.1 Connection Request Routing Enhancements When a Generic Data Source Fails
To improve performance when a generic data source within a multi data source fails,
WebLogic Server automatically disables the generic data source when a pooled
connection fails a connection test. After a generic data source is disabled, WebLogic
Server does not route connection requests from applications to the generic data source.
Instead, it routes connection requests to the next available generic data source listed in
the multi data source.

This feature requires that generic data source testing options are configured for all
generic data sources in a multi data source, specifically Test Table Name and Test
Reserved Connections. See Section 17.2, "Connection Testing Options for a Data

Multi Data Source Failover Enhancements

Configuring JDBC Multi Data Sources 4-5

Source."

If a callback handler is registered for the multi data source, WebLogic Server calls the
callback handler before failing over to the next generic data source in the list. See
Section 4.5.4, "Controlling Multi Data Source Failover with a Callback" for more
details.

4.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

After a generic data source is automatically disabled because a connection failed a
connection test, the multi data source periodically tests a connection from the disabled
generic data source to determine when the generic data source (or underlying
database) is available again. When the generic data source becomes available, the
multi data source automatically re-enables the generic data source and resumes
routing connection requests to the generic data source, depending on the multi data
source algorithm and the position of the generic data source in the list of included
generic data sources. Frequency of these tests is controlled by the Test Frequency
Seconds attribute of the multi data source. The default value for Test Frequency is 120
seconds, so if you do not specifically set a value for the option, the multi data source
will test disabled generic data sources every 120 seconds. See "JDBC Multi Data
Source: Configuration: General" in the Oracle WebLogic Server Administration Console
Online Help.

WebLogic Server does not test and automatically re-enable generic data sources that
you manually disable. It only tests generic data sources that are automatically
disabled.

If a callback handler is registered for the multi data source, WebLogic Server calls the
callback handler before re-enabling the generic data source. See Section 4.5.5,
"Controlling Multi Data Source Failback with a Callback" for more details.

4.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data Source
By default, for multi data sources with the Failover algorithm, when the number of
requests for a database connection exceeds the number of available connections in the
current generic data source in the multi data source, subsequent connection requests
fail.

To enable the multi data source to failover when all connections in the current generic
data source are in use, you can enable the Failover Request if Busy option on the JDBC
Multi Data Source: Configuration: General page in the WebLogic Server
Administration Console. (Also available as the FailoverRequestIfBusy attribute in
the JDBCDataSourceParamsBean). If enabled (set to true), when all connections in the
current generic data source are in use, application requests for connections will be
routed to the next available generic data source within the multi data source. When
disabled (set to false, the default), connection requests do not failover.

If a ConnectionPoolFailoverCallbackHandler is included in the multi data source
configuration, WebLogic Server calls the callback handler before failing over. See
Section 4.5.4, "Controlling Multi Data Source Failover with a Callback" for more
details.

4.5.4 Controlling Multi Data Source Failover with a Callback
You can register a callback handler with WebLogic Server that controls when a multi
data source with the Failover algorithm fails over connection requests from one JDBC
generic data source in the multi data source to the next generic data source in the list.

Multi Data Source Failover Enhancements

4-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

You can use callback handlers to control if or when the failover occurs so that you can
make any other system preparations before the failover, such as priming a database or
communicating with a high-availability framework.

Callback handlers are registered via the Failover Callback Handler attribute of the
multi data source and are registered per multi data source. You must register the
callback handler for each multi data source to which you want the callback handler to
apply. And you can register different callback handlers for each multi data source in
your domain.

4.5.4.1 Callback Handler Requirements
A callback handler used to control the failover and failback within a multi data source
must include an implementation of the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface. When the
multi data source needs to failover to the next generic data source in the list or when a
previously disabled generic data source becomes available, WebLogic Server calls the
allowPoolFailover() method in the ConnectionPoolFailoverCallback interface, and
passes a value for the three parameters, currPool, nextPool, and opcode, as defined
below. WebLogic Server then waits for the return from the callback handler before
completing the task.

Your application must return OK, RETRY_CURRENT, or DONOT_FAILOVER as defined below.
The application should handle failover and failback cases.

See the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface for more
details.

4.5.4.2 Callback Handler Configuration
There are two multi data source configuration attributes associated with the failover
and failback functionality:

■ Failover Callback Handler (ConnectionPoolFailoverCallbackHandler)—To
register a failover callback handler for a multi data source, you add a value for this
attribute to the multi data source configuration. The value must be an absolute
name, such as
com.bea.samples.wls.jdbc.MultiDataSourceFailoverCallbackApplication.
You can set the Failover Callback Handler using the WebLogic Server
Administration Console (see "Register a failover callback handler" in the Oracle
WebLogic Server Administration Console Online Help) or on the
JDBCDataSourceParamsBean for the multi data source using WLST.

■ Test Frequency (TestFrequencySeconds)—To control how often the multi data
source checks disabled (dead) generic data sources to see if they are now available.
See Section 4.5.2, "Automatic Re-enablement on Recovery of a Failed Generic Data
Source within a Multi Data Source" for more details.

4.5.4.3 How It Works—Failover
WebLogic Server attempts to failover connection requests to the next generic data
source in the list when the current generic data source fails a connection test or, if you

Note: Failover callback handlers are optional. If no callback handler is
specified in the multi data source configuration, WebLogic Server proceeds
with the operation (failing over or re-enabling the disabled generic data
source).

Multi Data Source Failover Enhancements

Configuring JDBC Multi Data Sources 4-7

enabled FailoverRequestIfBusy, when all connections in the current generic data
source are busy.

To enable the callback feature, you register the callback handler with Weblogic Server
using Failover Callback Handler in the multi data source configuration.

With the Failover algorithm, connection requests are served from the first generic data
source in the list. If a connection from that generic data source fails a connection test,
WebLogic Server marks the generic data source as dead and disables it. If a callback
handler is registered, WebLogic Server calls the callback handler, passing the following
information, and waits for a return:

■ currPool—For failover, this is the name of generic data source currently being
used to supply database connections. This is the "failover from" generic data
source.

■ nextPool—The name of next available generic data source listed in the multi data
source. For failover, this is the "failover to" generic data source.

■ opcode—A code that indicates the reason for the call:

– OPCODE_CURR_POOL_DEAD—WebLogic Server determined that the current
generic data source is dead and has disabled it.

– OPCODE_CURR_POOL_BUSY—All database connections in the generic data source
are in use. (Requires FailoverIfBusy=true in the multi data source
configuration. See Section 4.5.3, "Enabling Failover for Busy Generic Data
Sources in a Multi Data Source.")

Failover is synchronous with the connection request: Failover occurs only when
WebLogic Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

■ OK—proceed with the operation. In this case, that means to failover to the next
generic data source in the list.

■ RETRY_CURRENT—Retry the connection request with the current generic data
source.

■ DONOT_FAILOVER—Do not retry the current connection request and do not failover.
WebLogic Server will throw a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary generic data sources fails, WebLogic Server calls the callback handler
again, as in the previous failover, in an attempt to failover to the next available generic
data source in the multi data source, if there is one.

For multi data sources with the Load-Balancing algorithm, WebLogic Server does not
call the callback handler when a generic data source is disabled. However, it does call
the callback handler when attempting to re-enable a disabled generic data source. See
the following section for more details.

Note: WebLogic Server does not call the callback handler when you manually
disable a generic data source.

Multi Data Source Failover Enhancements

4-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

4.5.5 Controlling Multi Data Source Failback with a Callback
If you register a failover callback handler for a multi data source, WebLogic Server
calls the same callback handler when re-enabling a generic data source that was
automatically disabled. You can use the callback to control if or when the disabled
generic data source is re-enabled so that you can make any other system preparations
before the generic data source is re-enabled, such as priming a database or
communicating with a high-availability framework.

See the following sections for more details about the callback handler:

■ "Callback Handler Requirements"

■ "Callback Handler Configuration"

4.5.5.1 How It Works—Failback
WebLogic Server periodically checks the status of generic data sources in a multi data
source that were automatically disabled. (See Section 4.5.2, "Automatic Re-enablement
on Recovery of a Failed Generic Data Source within a Multi Data Source.") If a
disabled generic data source becomes available and if a failover callback handler is
registered, WebLogic Server calls the callback handler with the following information
and waits for a return:

■ currPool—For failback, this is the name of the generic data source that was
previously disabled and is now available to be re-enabled.

■ nextPool—For failback, this is null.

■ opcode—A code that indicates the reason for the call. For failback, the code is
always OPCODE_REENABLE_CURR_POOL, which indicates that the generic data source
named in currPool is now available.

Failback, or automatically re-enabling a disabled generic data source, differs from
failover in that failover is synchronous with the connection request, but failback is
asynchronous with the connection request.

The callback handler can return one of the following values:

■ OK—proceed with the operation. In this case, that means to re-enable the indicated
generic data source. WebLogic Server resumes routing connection requests to the
generic data source, depending on the multi data source algorithm and the
position of the generic data source in the list of included generic data sources.

■ DONOT_FAILOVER—Do not re-enable the currPool generic data source. Continue to
serve connection requests from the generic data source(s) in use.

WebLogic Server acts according to the value returned by the callback handler.

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt to
re-enable the generic data source during the next testing cycle as determined by the
TestFrequencySeconds attribute in the multi data source configuration, and will call
the callback handler as part of that process.

The order in which generic data sources are listed in a multi data source is very
important. A multi data source with the Failover algorithm will always attempt to
serve connection requests from the first available generic data source in the list of
generic data sources in the multi data source. Consider the following scenario:

1. MultiDataSource_1 uses the Failover algorithm, has a registered
ConnectionPoolFailoverCallbackHandler, and includes three generic data
sources: DS1, DS2, and DS3, listed in that order.

2. DS1 becomes disabled, so MultiDataSource_1 fails over connection requests to DS2.

Deploying JDBC Multi Data Sources on Servers and Clusters

Configuring JDBC Multi Data Sources 4-9

3. DS2 then becomes disabled, so MultiDataSource_1 fails over connection requests
to DS3.

4. After some time, DS1 becomes available again and the callback handler allows
WebLogic Server to re-enable the generic data source. Future connection requests
will be served by DS1 because DS1 is the first generic data source listed in the multi
data source.

5. If DS2 subsequently becomes available and the callback handler allows WebLogic
Server to re-enable the generic data source, connection requests will continue to be
served by DS1 because DS1 is listed before DS2 in the list of generic data sources.

4.6 Deploying JDBC Multi Data Sources on Servers and Clusters
All generic data sources used by a multi data source to satisfy connection requests
must be deployed on the same servers and clusters as the multi data source. A multi
data source always uses a generic data source deployed on the same server to satisfy
connection requests. Multi data sources do not route connection requests to other
servers in a cluster or in a domain.

To deploy a multi data source to a cluster or server, you select the server or cluster as a
deployment target. When a multi data source is deployed on a server, WebLogic Server
creates an instance of the multi data source on the server. When you deploy a multi
data source to a cluster, WebLogic Server creates an instance of the multi data source
on each server in the cluster.

For instructions, see "Target and deploy JDBC multi data sources" in the Oracle
WebLogic Server Administration Console Online Help.

Deploying JDBC Multi Data Sources on Servers and Clusters

4-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

5

Using Active GridLink Data Sources 5-1

5Using Active GridLink Data Sources

[6] This chapter provides information on how to configure and tune Active GridLink
(AGL) data sources in WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 5.1, "What is an Active GridLink Data Source"

■ Section 5.2, "Creating an Active GridLink Data Source"

■ Section 5.3, "Using Socket Direct Protocol"

■ Section 5.4, "Configuring AGL Connection Pool Features"

■ Section 5.5, "Configuring Oracle Parameters"

■ Section 5.6, "Configuring an ONS Client"

■ Section 5.7, "Tuning Active GridLink Data Source Connection Pools"

■ Section 5.8, "Monitoring GridLink JDBC Resources"

■ Section 5.9, "Using Active GridLink Data Sources without FAN Notification"

■ Section 5.10, "Best Practices for Active GridLink Data Sources"

■ Section 5.11, "Comparing AGL and Multi Data Sources"

■ Section 5.12, "Migrating from Multi Data Source to Active GridLink."

5.1 What is an Active GridLink Data Source
A single AGL data source provides connectivity between WebLogic Server and an
Oracle Database service, which may include one or more Oracle RAC clusters. An
Oracle Database service represents a workload with common attributes that enables
administrators to manage the workload as a single entity. You scale the number of
AGL data sources as the number of services increases in the data base, independent of
the number of nodes in the Oracle RAC cluster(s). Examples of High Availability
support for multiple clusters include Data Guard, GoldenGate, and Global Database
Service.

Note: Active GridLink and Multi Data Source are designed to work
with Oracle RAC clusters. Oracle does not recommend using generic
data sources with Oracle RAC clusters. See Section 5.11, "Comparing
AGL and Multi Data Sources."

What is an Active GridLink Data Source

5-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Figure 5–1 Active GridLink Data Source Connectivity

An AGL data source includes the features of generic data sources plus the following
support for Oracle RAC:

■ Section 5.1.1, "Fast Connection Failover"

■ Section 5.1.2, "Runtime Connection Load Balancing"

■ Section 5.1.3, "AGL Support During Oracle RAC Outages"

■ Section 5.1.4, "GridLink Affinity"

■ Section 5.1.5, "SCAN Addresses"

■ Section 5.1.6, "Secure Communication using Oracle Wallet with ONS Listener."

5.1.1 Fast Connection Failover
An AGL data source uses Fast Connection Failover and responds to Oracle RAC
events using Oracle Notification Service (ONS). This ensures that the connection pool
in the AGL data source contains valid connections (including reserved connections)
without the need to poll and test connections. It also ensures that connections are
created on new nodes as they become available.

What is an Active GridLink Data Source

Using Active GridLink Data Sources 5-3

Figure 5–2 Fast Connection Failover

An AGL data source uses Fast Connection Failover to:

■ Provide rapid failure detection.

■ Abort and remove invalid connections from the connection pool.

■ Perform graceful shutdown for planned and unplanned Oracle RAC node
outages. See Section 5.1.3, "AGL Support During Oracle RAC Outages."

■ Adapt to changes in topology, such as adding or removing a node.

■ Distribute runtime work requests to all active Oracle RAC instances, including
those rejoining a cluster.

5.1.2 Runtime Connection Load Balancing
AGL data sources provide load balancing. AGL data sources use runtime connection
load balancing (RCLB) to distribute connections to Oracle RAC instances based on
Oracle FAN events issued by the database. This simplifies data source configuration
and improves performance as the database drives load balancing of connections
through the AGL data source, independent of the database topology.

Runtime Connection Load Balancing allows WebLogic Server to:

Note: AGL data sources do not support the deprecated
FastConnectionFailoverEnabled connection property. An attempt to
create an XA connection with this property enabled results in a
java.sql.SQLException: Can not use getXAConnection() when
connection caching is enabled exception because the driver
implementation of Fast Connection Failover for this property does not
support XA connections.

What is an Active GridLink Data Source

5-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Adjust the distribution of work based on back end node capacities such as CPU,
availability, and response time.

■ React to changes in Oracle RAC topology.

■ Manage pooled connections for high performance and scalability.

Figure 5–3 Runtime Connection Load Balancing

If FAN is not enabled, AGL data sources use a round-robin load balancing algorithm
to allocate connections to Oracle RAC nodes.

5.1.3 AGL Support During Oracle RAC Outages
This section provides information on how an AGL data source handles the planned
and unplanned shutdown of an Oracle RAC service:

■ A planned shutdown occurs when a database instance or service is targeted for a
shutdown operation, with the corresponding issuance of a database event
indicating the shutdown has been requested. To support the planned shutdown of
a database, AGL does not immediately abort connections that are in use when it
detects that the database shutdown target is no longer accepting new connections.
Instead, the AGL data source allows any in progress transactions to complete
before closing and recreating the physical connections, while cleaning up idle
connections so that new requests for connections are not sent the database target
in active shutdown mode. This allows for the connections on the shutdown
instance to be drained.

Note: Connections may be shut down periodically on AGL data
sources. If the connections allocated to various RAC instances do not
correspond to the Runtime Load Balancing percentages in the FAN
load-balancing advisories, connections to overweight instances are
destroyed and new connections opened. This process occurs every 30
seconds by default.

You can tune this behavior using the
weblogic.jdbc.gravitationShrinkFrequencySeconds system
property which specifies the amount of time, in seconds, the system
waits before rebalancing connections. A value of 0 disables the
rebalancing process.

What is an Active GridLink Data Source

Using Active GridLink Data Sources 5-5

Planned shutdowns require AGL data sources configured with FAN enabled and
that the application returns connections to the pool in a timely manner. See
Section 5.2.5, "Configure an ONS Client Configuration."

■ For unplanned shutdowns, the data source rolls back in-progress transactions and
closes the connections. New requests are load balanced to active Oracle RAC
instances.

5.1.3.1 Handling for Oracle RAC Outages Prior to Oracle RAC 11.2
In releases prior to Oracle RAC 11.2, manually shutting down an Oracle RAC instance
without first shutting down the corresponding services results in an unplanned
shutdown.

5.1.4 GridLink Affinity
WebLogic Server GridLink affinity policies are designed to improve application
performance by maximizing RAC cluster utilization. See:

■ Section 5.1.4.1, "Session Affinity Policy"

■ Section 5.1.4.2, "XA Affinity Policy"

5.1.4.1 Session Affinity Policy
Web applications have better performance when repeated operations against the same
set of records are processed by the same RAC instance. Business applications such as
online shopping and online banking are typical examples of this pattern.

An AGL data source uses the Session Affinity policy to ensure all the data base
operations for a web session, including transactions, are directed to the same Oracle
RAC instance of a RAC cluster.

If an AGL data source with a session affinity policy is accessed outside the context of a
web session, the affinity policy changes to the XA affinity policy. See Section 5.1.4.2,
"XA Affinity Policy."

Note: The context is stored in the HTTP session. It is up to the
application how windows (within a browser or across browsers) are
mapped to HTTP sessions.

What is an Active GridLink Data Source

5-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Figure 5–4 Session Affinity

An AGL data source monitors RAC load balancing advisories (LBAs) using the
AffEnabled attribute to determine if RAC affinity is enabled for a RAC cluster. The
first connection request is load balanced using Runtime Connection Load-Balancing
(RCLB) and is assigned an Affinity context. All subsequent connection requests are
routed to the same Oracle RAC instance using the Affinity context of the first
connection until the session ends or the transaction completes. Affinity is based on the
database name, service name, and instance name. Although the Session Affinity policy
for an AGL data source is always enabled by default, a Web session is active for
Session Affinity if:

■ Oracle RAC is enabled, active, and the service has enabled RCLB. RCLB is enabled
for a service if the service GOAL (NOT CLB_GOAL) is set to either SERVICE_TIME or
THROUGHPUT.

■ The database determines there is sufficient performance improvement in the
cluster wait time and the Affinity flag in the payload in the information from ONS
is set to TRUE.

If the database determines it is not advantageous to implement session affinity, such as
a high database availability condition, the database load balancing algorithm reverts to
its default work allocation policy and the Affinity flag in the payload is set to FALSE.

5.1.4.2 XA Affinity Policy
XA Affinity for global transactions ensures all the data base operations for a global
transaction performed on an Oracle RAC cluster are directed to the same Oracle RAC
instance. There are limitations to consider:

■ XA transaction can’t span instances.

■ Strict affinity is enforced for connections within an XA transaction. If a connection
cannot be created on the correct instance, an exception is thrown.

What is an Active GridLink Data Source

Using Active GridLink Data Sources 5-7

Figure 5–5 XA Affinity

5.1.5 SCAN Addresses
There are two options to load balance connections across nodes:

■ Use multiple non-SCAN addresses with LOAD_BALANCE=on

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(LOAD_
BALANCE=ON)(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))(ADDRESS=(PRO
TOCOL=TCP)(HOST=host2)(PORT=1521)))(CONNECT_DATA=(SERVICE_
NAME=myservice)))

■ Use a single Oracle Single Client Access Name (SCAN) address

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=scanname)(P
ORT=scanport))(CONNECT_DATA=(SERVICE_NAME=myservice)))

SCAN addresses can be used to specify the host for both the TNS listener and the ONS
listener in the WebLogic console. An AGL data source containing SCAN addresses
does not need to change if you add or remove Oracle RAC nodes and is recommended
over using multiple non-SCAN addresses. However, a SCAN address can only be used
if your database is configured to use it. Contact your network administrator for
appropriately configured SCAN URLs for your environment.

Creating an Active GridLink Data Source

5-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

5.1.6 Secure Communication using Oracle Wallet with ONS Listener
This feature allows you to configure secure communication with the ONS listener
using Oracle Wallet. See Section 5.2.5.1, "Secure ONS Client Communication."

5.2 Creating an Active GridLink Data Source
To create an AGL data source in your WebLogic domain, you can use the WebLogic
Server Administration Console or the WebLogic Scripting Tool (WLST).

See the following for more information:

■ "Create an Active GridLink data source" in the Oracle WebLogic Server
Administration Console Online Help.

■ The sample WLST script EXAMPLES_HOME\wl_
server\examples\src\examples\wlst\online\jdbc_data_source_creation.py,
where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. This example creates a generic data source. See "WLST
Online Sample Scripts" in Understanding the WebLogic Scripting Tool.

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server
Administration Console:

■ Section 5.2.1, "JDBC Data Source Properties"

■ Section 5.2.2, "Configure Transaction Options"

■ Section 5.2.3, "Configure Connection Properties"

■ Section 5.2.4, "Test Connections"

■ Section 5.2.5, "Configure an ONS Client Configuration"

■ Section 5.2.6, "Test ONS Client Configuration"

■ Section 5.2.7, "Target the Data Source"

Note: When using Oracle RAC 11.2 and higher, consider the
following:

■ If the Oracle RAC listener is set to SCAN, the AGL data source
configuration can only use a SCAN address.

■ If the Oracle RAC listener is set to List of Node VIPs, the AGL
data source configuration can only use a list of VIP addresses.

■ If the Oracle RAC listener is set to Mix of SCAN and List of
Node VIPs, the AGL data source configuration can use both SCAN
and VIP addresses.

For more information on using SCAN addresses, see "Introduction to
Automatic Workload Management" in Real Application Clusters
Administration and Deployment Guide 11g Release 2 (11.2) and
http://www.oracle.com/technetwork/database/clustering/overvi
ew/scan-129069.pdf.

Creating an Active GridLink Data Source

Using Active GridLink Data Sources 5-9

5.2.1 JDBC Data Source Properties
JDBC Data Source Properties include options that determine the identity of the data
source and the way the data is handled on a database connection.

5.2.1.1 Data Source Names
JDBC data source names are used to identify the data source within the WebLogic
domain. For system resource data sources, names must be unique among all other
JDBC system resources, including data sources. To avoid naming conflicts, data source
names should also be unique among other configuration object names, such as servers,
applications, clusters, and JMS queues, topics, and servers. For JDBC application
modules scoped to an application, data source names must be unique among JDBC
data sources that are similarly scoped.

5.2.1.2 JNDI Names
You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. You can use a multi-JNDI-named data source in place of legacy
configurations that included multiple data sources that pointed to a single JDBC
connection pool. For more information, see Developing JNDI Applications for Oracle
WebLogic Server.

5.2.1.3 Select a Driver
Select the replay driver for application continuity, or the XA or non-XA Thin driver.

5.2.2 Configure Transaction Options
When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver:

■ For the XA driver, the system automatically selects the Two-Phase Commit
protocol for global transaction processing.

■ For the non-XA or replay driver, local transactions are supported by definition,
and WebLogic Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you want
to use connections from the data source in global transactions, even though you
have not selected an XA driver. See Section 9.1, "Enabling Support for Global
Transactions with a Non-XA JDBC Driver" for more information.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

– Logging Last Resource: With this option, the transaction branch in which the
connection is used is processed as the last resource in the transaction and is
processed as a local transaction. Commit records for two-phase commit (2PC)
transactions are inserted in a table on the resource itself, and the result
determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Section 9.2, "Understanding the Logging Last Resource Transaction Option."

Note: The replay driver does not currently support XA transactions.

Creating an Active GridLink Data Source

5-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

– Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase of
the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Section 9.3, "Understanding the Emulate Two-Phase
Commit Transaction Option."

– One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResource.prepare on the 1PC resource.

For more information on configuring transaction support for a data source, see
Section 9, "JDBC Data Source Transaction Options."

5.2.3 Configure Connection Properties
Connection Properties are used to configure the connection between the data source
and the DBMS. Typical attributes are the service name, database name, host name, port
number, user name, and password.

The console allows you to enter connection properties in one of the following ways:

■ Section 5.2.3.1, "Enter Connection Properties"

■ Section 5.2.3.2, "Enter a Complete URL"

■ Section 5.2.3.2.1, "Supported AGL Data Source URL Formats"

5.2.3.1 Enter Connection Properties
On the GridLink data source connection Properties Options page, select Enter
individual listener information and click Next. Enter the connection properties. For
example:

■ Enter myService in Service Name.

■ Enter left:1234, center:1234, right:1234 in the Host and Port:. Separate the host
and port of each listener with colon.

■ Enter myDataBase in Database User Name.

■ Enter myPassword1 in Password.

■ If required, set Protocol to SDP.

The console automatically generates the complete JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS_LIST = (LOAD_BALANCE=on)
(FAILOVER=ON) (ADDRESS=(PROTOCOL=TCP)(HOST=left)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=center)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=right)(PORT=1521))) (CONNECT_DATA=(SERVICE_
NAME=myService)))

Note: Using service names:

■ When a Database Domain is used, service names must be suffixed
with the domain name. For example, if the database name is
db.country.myCorp.com, the service name myservice would need
to be entered as myservice.db.country.myCorp.com.

Creating an Active GridLink Data Source

Using Active GridLink Data Sources 5-11

5.2.3.2 Enter a Complete URL
On the GridLink data source connection Properties Options page, select Enter
complete JDBC URL and click Next. Enter the connection properties. For example:

■ In Complete JDBC URL, enter the JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS_LIST = (LOAD_BALANCE=on)
(FAILOVER=ON) (ADDRESS=(PROTOCOL=TCP)(HOST=left)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=center)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=right)(PORT=1521))) (CONNECT_
DATA=(SERVICE_NAME=myService)))

You can also use a SCAN address. For example:
jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=MyScanAddr-scn.myCompany.com)(PORT=12
34)))(CONNECT_DATA=(SERVICE_NAME=myService)))

■ Enter myDataBase in Database User Name.

■ Enter myPassword1 in Password.

■ If required, set Protocol to SDP.

5.2.3.2.1 Supported AGL Data Source URL Formats AGL data sources only support long
format JDBC URLs. The supported long format pattern is:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=[SCAN_VIP])(PORT=[SCAN_PORT])))(CONNECT_
DATA=(SERVICE_NAME=[SERVICE_NAME])))

Easy Connect (short) format URLs are not supported for AGL data sources. The
following is an example of a Easy Connect URL pattern that is not supported for use
with AGL data sources:

jdbc:oracle:thin:[SCAN_VIP]:[SCAN_PORT]/[SERVICE_NAME]

5.2.3.2.2 Recommendations for AGL Data Source URLs The following section provides
general recommendations when creating AGL data source URLs.

■ Use a single DESCRIPTION. Avoid a DESCRIPTION_LIST to avoid connection delays.

■ Use one ADDRESS_LIST for each RAC cluster or DataGuard database.

■ Enter RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT at the DESCRIPTION level so
that all ADDRESS_LIST entries use the same value.

■ RETRY_DELAY specifies the delay, in seconds, between the connection retries. This
attribute is new in the Oracle 12.1.0.2 release.

■ RETRY_COUNT is used to specify the number of times an ADDRESS list is traversed
before the connection attempt is terminated. The default value is 0. When using
SCAN listeners with FAILOVER=on, setting RETRY_COUNT to a value of 2 means that if
you had 3 SCAN IP addresses, each would be traversed three times each, resulting
in a total of nine connect attempts (3 * 3).

■ Specify LOAD_BALANCE=on for each address list to balance the SCAN addresses.

■ The service name should be a configured application service, not a PDB or
administration service.

■ CONNECT_TIMEOUT is used to specify the overall time used to complete the Oracle
Net connect. Set CONNECT_TIMEOUT=90 or higher to prevent logon storms. For
JDBC driver 12.1.0.2 and earlier, CONNECT_TIMEOUT is also used for the TCP/IP

Creating an Active GridLink Data Source

5-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

connection timeout for each address in the URL. When considering TCP/IP
connections, a shorter CONNECT_TIMEOUT is preferred though secondary to overall
timeout requirements.

■ Do not set the oracle.net.CONNECT_TIMEOUT driver property on the data source
because it is overridden by the URL property.

5.2.4 Test Connections
Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement. If necessary,
you can test additional configuration information using the Properties and System
Properties attributes.

5.2.5 Configure an ONS Client Configuration
ONS client configuration allows the data source to subscribe to and process Oracle
FAN events. To configure an ONS client:

■ Select Fan Enabled.

■ In ONS host and port, enter a comma-separate list of ONS daemon listen
addresses and ports for receiving ONS-based FAN events. You can use a Single
Client Access Name (SCAN) address to access FAN notifications.

■ Optionally, configure secure ONS client communication using SSL. See
Section 5.2.5.1, "Secure ONS Client Communication."

5.2.5.1 Secure ONS Client Communication
To use an Oracle Wallet file with WebLogic Server, you must:

■ Update your AGL data source configuration to include the directory of the Oracle
wallet file in which the SSL certificates are stored and optionally, the ONS Wallet
password. See Secure ONS Listener using Oracle Wallet in Oracle WebLogic Server
Administration Console Online Help.

■ For more information on Oracle Wallet, see the Database Advanced Security
Administrator's Guide.

5.2.6 Test ONS Client Configuration
Test ONS client configuration allows you to test a connection to the ONS listener
before the data source configuration is finalized.

Note: If you are using an Oracle 12c database with WebLogic Server
Release 12.1.2 and higher, you are no longer required to provide the
ONS Listener list. The ONS list is automatically provided from the
database to the driver and you can see this information in the
associated runtime Mbean. However, if you want to use an associated
Oracle wallet for ONS with SSL, the ONS listener list must be
specified.

Configuring AGL Connection Pool Features

Using Active GridLink Data Sources 5-13

5.2.7 Target the Data Source
You can select one or more targets to which to deploy your new AGL data source. If
you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time.

5.3 Using Socket Direct Protocol
To use Socket Direct Protocol (SDP), your database network must be configured to use
Infiniband. SDP does not support SCAN addresses. See Configuring SDP Support for
InfiniBand Connections in the Oracle Database Net Services Administrator's Guide.

5.3.1 Configuring Runtime Load Balancing using SDP
To configure load balancing across SDP connections, you must edit the TNSNAMES.ORA
file on all nodes and add an SDP end-point to the LISTENER_IBLOCAL entry.

For example:

LISTENER_IBLOCAL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST =

 sclcgdb02ibvip.country.myCorp.com)(PORT=1522))
 (ADDRESS = (PROTOCOL = SDP)(HOST =
 sclcgdb02-bvip.country.myCorp.com)(PORT=1522))
)
)

You should then distribute connections on the LISTERNER_IB network using the
following URL:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=SDP)
(HOST=sclcgdb01-bvip.country.myCorp.com)(PORT=1522))(ADDRESS=(PROTOCOL=SDP)
(HOST=sclcgdb02-ibvip.country.myCorp.com)(PORT=1522)))(CONNECT_DATA=(SERVICE_
NAME=elservice)))

5.4 Configuring AGL Connection Pool Features
Each JDBC data source has a pool of JDBC connections that are created when the data
source is deployed or at server startup. Applications use a connection from the pool
then return it when finished using the connection. Connection pooling enhances
performance by eliminating the costly task of creating database connections for the
application.

Note: The TNSNAMES.ORA file is only read at instance startup or when
using an ALTER SYSTEM SET LISTENER_NETWORKS="listener
address" command. After updating the TNSNAMES.ORA file, restart all
instances or run the ALTER SYSTEM SET LISTENER_NETWORKS command
on all networks.

Configuring AGL Connection Pool Features

5-14 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

The following sections include information about connection pool options for a JDBC
data source.

■ Section 5.4.1, "Enabling JDBC Driver-Level Features"

■ Section 5.4.2, "Enabling Connection-based System Properties."

■ Section 5.4.3, "Initializing Database Connections with SQL Code"

You can see more information and set these and other related options through the:

■ JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console. See "JDBC Data Source: Configuration: Connection Pool"
in the Oracle WebLogic Server Administration Console Online Help

■ JDBCConnectionPoolParamsBean, which is a child MBean of the
JDBCDataSourceBean

5.4.1 Enabling JDBC Driver-Level Features
WebLogic JDBC data sources support the javax.sql.ConnectionPoolDataSource
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properties attribute in a JDBC data source.
Driver-level properties in the Properties attribute are set on the driver's
ConnectionPoolDataSource object.

5.4.2 Enabling Connection-based System Properties
WebLogic JDBC data sources support setting driver properties using the value of
system properties. The value of each property is derived at runtime from the named
system property. You can configure connection-based system properties using the
WebLogic Server Administration Console by editing the System Properties attribute
of your data source configuration.

5.4.3 Initializing Database Connections with SQL Code
When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this
feature, enter SQL followed by a space and the SQL code you want to run in the Init
SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the
WebLogic Server Administration Console. Alternatively, you can specify simply a
table name without SQL and the statement SELECT COUNT(*) FROM tablename is used.

Note: Certain Oracle JDBC extensions may durably alter a
connection's behavior in a way that future users of the pooled
connection will inherit. WebLogic Server attempts to protect
connections against some types of these calls when possible.

Note: Do not use FastConnectionFailoverEnabled,
ConnectionCachingEnabled, or ConnectionCacheName as Driver-level
properties in the Properties attribute in a JDBC data source.

Note: Do not specify oracle.jdbc.FastConnectionFailover as a
Java system property when starting the WebLogic Server.

Configuring an ONS Client

Using Active GridLink Data Sources 5-15

If you leave this attribute blank (the default), WebLogic Server does not run any code
to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data
source, which includes at server startup, when expanding the connection pool, and
when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are
connection-specific or to ensure that a connection has memory or permissions to
perform required actions.

Start the code with SQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute(). Options that you
can set using InitSQL vary by DBMS. See the documentation for your database
vendor for supported statements. If you want to execute multiple statements, you may
want to create a stored procedure and execute it. The syntax is vendor specific. For
example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE()

5.5 Configuring Oracle Parameters
WebLogic Server provides several attributes that provide improved Data Source
performance when using Oracle drivers, for more information, see Section 6,
"Advanced Configurations for Oracle Drivers and Databases."

5.6 Configuring an ONS Client
The following section provides information on how to configure an ONS client.

■ Section 5.6.1, "Enabling FAN Events"

■ Section 5.6.2, "Using a Wallet File"

5.6.1 Enabling FAN Events
Enabling a data source to subscribe to and process Oracle Fast Application
Notification (FAN) events.

1. Select Fan Enabled

2. Provide a comma-separate list of ONS daemon listen addresses and ports for
receiving ONS-based FAN events. You can use a Single Client Access Name
(SCAN) address to access FAN notifications.

Tuning Active GridLink Data Source Connection Pools

5-16 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

See Configure ONS client parameters in Oracle WebLogic Server Administration Console
Online Help.

5.6.2 Using a Wallet File
To communicate with ONS daemons using SSL, you must use a wallet file. See
Section 5.2.5.1, "Secure ONS Client Communication.".

5.7 Tuning Active GridLink Data Source Connection Pools
By properly configuring the connection pool attributes in JDBC data sources in your
WebLogic Server domain, you can improve application and system performance. For
more information, see Section 17, "Tuning Data Source Connection Pools."

5.8 Monitoring GridLink JDBC Resources
The following sections include details about monitoring GridLink JDBC objects:

■ Section 5.8.1, "Viewing Run-Time Statistics"

■ Section 5.8.2, "Debug Active GridLink Data Sources."

For more information on JDBC monitoring, see Section 15, "Monitoring WebLogic
JDBC Resources."

5.8.1 Viewing Run-Time Statistics
You can view run-time statistics for an AGL data source via the WebLogic Server
Administration Console or through the associated runtime MBeans.

5.8.1.1 JDBCOracleDataSourceRuntimeMBean
The JDBCOracleDataSourceRuntimeMBean provides methods for getting the current
state of the data source instance. The JDBCOracleDataSourceRuntimeMBean provides
methods for getting the current state of the data source and for getting statistics about
the data source, such as the average number of active connections, the current number
of active connections, and the highest number of active connections. This MBean also
has a child JDBCOracleDataSourceInstanceRuntimeMBean for each node that is active
in the AGL datasource.For more information, see
"JDBCOracleDataSourceRuntimeMBean" in the MBean Reference for Oracle WebLogic
Server.

5.8.1.2 JDBCOracleDataSourceInstanceRuntimeMBean
The JDBCOracleDataSourceInstanceRuntimeMBean provides methods for getting the
current state of the data source instance. There an instance for each ONS listener that is
active. In a configuration that uses auto-ONS where the administrator doesn't configure

Note: If you are using an Oracle 12c database with WebLogic Server
Release 12.1.2 and higher, you are no longer required to provide the
ONS Listener list as part of an AGL data source configuration. The
ONS list is automatically provided from the database to the driver and
you can see this information in the associated runtime Mbean.
However, if you want to use an associated Oracle wallet for ONS with
SSL, the ONS listener list must be specified.

Monitoring GridLink JDBC Resources

Using Active GridLink Data Sources 5-17

the ONS string, this is the only way to discover which ONS listeners are available.For
more information, see "JDBCOracleDataSourceInstanceRuntimeMBean" in the MBean
Reference for Oracle WebLogic Server.

5.8.1.3 ONSDaemonRuntimeMBean
The ONSDaemonRuntimeMBean provides methods for monitoring the ONS client
configuration that is associated with an AGL data source.

The following is a WLST script for testing an ONS connection. In this example, the
Active GridLink data source is named glds and it is targeted to myserver:

connect(<wluser>, <wlpassword>, 't3://localhost:7001')
serverRuntime()
cd('JDBCServiceRuntime')
cd('myserver')
cd('JDBCDataSourceRuntimeMBeans')
cd('glds')
cd('ONSClientRuntime')
cd('glds')
cd('ONSDaemonRuntimes')
cd('glds_0')
cmo.ping()

For more information, see "ONSDaemonRuntimeMBean" in the MBean Reference for
Oracle WebLogic Server.

5.8.2 Debug Active GridLink Data Sources
You can activate WebLogic Server's debugging features to track down the specific
problem within the application

5.8.2.1 JDBC Debugging Scopes
The following are registered debugging scopes for JDBC:

■ DebugJDBCRAC—prints information about AGL data source lifecycle, UCP
callback, and connection information.

■ DebugJDBCONS—traces ONS client information, including the LBA event body.
One trace is available for each ONS listener that is active. In a configuration that
uses auto-ONS where the administrator doesn't configure the ONS string, this is
the only way to see what ONS listeners are available.

■ DebugJDBCReplay—traces application continuity replay information.

■ DebugJDBCUCP—traces low level RAC information from the UCP driver.

5.8.2.2 UCP JDK Logging
You can enable UPC JDK logging by following the instructions at
http://download.oracle.com/docs/cd/B28359_01/java.111/e10788/get_
started.htm#sthref67.

5.8.2.3 Enable Debugging Using the Command Line
Set the appropriate AGL data source debugging properties on the command line. For
example,

-Dweblogic.debug.DebugJDBCRAC=true
-Dweblogic.debug.DebugJDBCONS=true
-Dweblogic.debug.DebugJDBCUCP=true

Using Active GridLink Data Sources without FAN Notification

5-18 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

-Dweblogic.debug.DebugJDBCREPLAY=true

Setting these values is static and can only be used at server startup.

5.9 Using Active GridLink Data Sources without FAN Notification
Although not recommended, you can configure and use an AGL data source without
enabling Fast Application Notification (FAN). In this configuration, disabling a
connection to a RAC node occurs after two successive connection test failures.
Connectivity is reestablished after a successful connection test. Oracle recommends
that you enable TestConnectionsOnReserve. You might need to turn off FAN if a
configured firewall doesn't allow this protocol to flow.

The following table indicates the availability of AGL data source features when FAN
Enabled set to false.

5.9.1 Understanding the ActiveGridlink Attribute
In WebLogic Server 12.1.2 and higher, the ActiveGridlink attribute is used to
explicitly declare a data source configuration as an AGL datasource. It is automatically
enabled by the WebLogic Server Administration Console when creating a GridLink
data source. If you create data source configurations using WLST, you must remember
to set ActiveGridlink=true.

Legacy data source configurations are not updated during the upgrade process. If you
need to update a legacy AGL data source to access RAC clusters without enabling Fast
Application Notification (FAN), edit or use WLST to set ActiveGridlink=true in the
configuration.

Table 5–1 GridLink Features when FAN Enabled is False

Active GridLink Feature Available when FAN Enabled is False?

Single data source configuration for access to
RAC cluster

Yes

Runtime MBeans for individual RAC cluster
instances

Yes

Connection load balancing using Runtime
Load Balancing (RLB)

No

Fast Application Notification (FAN) No

Fast Connection Failover (FCF) No

Graceful shutdown No

Gravitation (rebalancing connections) No

ONS Client Support, including password and
encrypted wallet configurations

Yes

Transaction affinity Yes

Session affinity No

Note: To maintain backward compatibility with releases prior to
WebLogic Server 12.1.2, a data source configuration is always an AGL
data source configuration if FanEnabled=true or the OnsNodeList is
non-null. In this case, the ActiveGridlink value is ignored.

Comparing AGL and Multi Data Sources

Using Active GridLink Data Sources 5-19

5.10 Best Practices for Active GridLink Data Sources
The following sections provide best practices for using AGL data sources:

■ Section 5.10.1, "Catch and Handle Exceptions"

■ Section 5.10.2, "Connection Creation with Active Gridlink Data Sources"

5.10.1 Catch and Handle Exceptions
Applications need to catch and handle all exceptions. Applications using AGL data
sources should expect exceptions, such as an IO socket read error, when
performing JDBC operations on borrowed connections. Best practice is to check the
connection validity and reconnect if necessary. Connection exceptions can occur if the
driver detects an outage earlier than FAN event arrival or as a result of the cleanup of
a connection. For unplanned down events, a connection pool aborts all borrowed
connections that are affected by the outage.

5.10.2 Connection Creation with Active Gridlink Data Sources
This section summarizes the change in connections in AGL, assuming FAN and ONS
are enabled:

■ Connections are added to the pool initially based on the configured initial capacity.
That uses connect time load balancing based on the listener. For that to work
correctly, you must either specify LOAD_BALANCE=ON for multiple non-scan
addresses or use SCAN.

■ Connections are added to the pool on demand based on runtime load balancing.
However, this is overridden by XA affinity or Web session affinity, in which case
connections are added on the instance providing affinity to the last request in the
transaction or Web session.

■ When a planned down event occurs, unused connections for that instance are
released immediately and connections in use are released when returned to the
pool.

■ When an unplanned down event occurs, all connections for that instance are
destroyed immediately.

■ When an up event occurs, connections are proactively created on the new instance.

■ When gravitation shrinking occurs, one unused connection is destroyed on a
heavily loaded instance (per period).

■ When normal shrinking occurs, half of the unused connections down to minimum
capacity are destroyed without respect to load (per period).

5.11 Comparing AGL and Multi Data Sources
AGL is a superior implementation to Multi Data Source (MDS) for supporting RAC
clusters. The following section provides additional information on the benefits of AGL
data sources. AGL:

■ Requires one data source with a single URL. Multi data sources require a
configuration with n generic data sources and a multi data source.

■ Eliminates a polling mechanism that can fail if one of the generic data sources is
performing slowly.

■ Eliminates the need to manually add or delete a node to/from the cluster.

Migrating from Multi Data Source to Active GridLink

5-20 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Provides a fast internal notification (out-of-band) when nodes are available so that
connections are load-balanced to the new nodes using Oracle Notification Service
(ONS).

■ Provides a fast internal notification when a node goes down so that connections
are steered away from the node using ONS.

■ Provides load balancing advisories (LBA) so that new connections are created on
the node with the least load, and the LBA information is also used for gravitation
to move idle connections around based on load.

■ Provides affinity based on your XA transaction or your web session which may
significantly improve performance.

■ Leverages all the advantages of HA configurations like DataGuard. For more
information, see "Oracle WebLogic Server and Highly Available Oracle Databases:
Oracle Integrated Maximum Availability Solutions."

5.12 Migrating from Multi Data Source to Active GridLink
Multi data source (MDS) for RAC connectivity has been supported in WebLogic Server
since 2005. As the popularity of Oracle RAC has grown, so has the use of MDS. With
the introduction of Active GridLink (AGL) in early 2011, many MDS users are
migrating to AGL. Although there is no automated upgrade path, it is a simple
manual process to implement AGL in your environment. See Section 5.11, "Comparing
AGL and Multi Data Sources."

5.12.1 Application Changes to Migrate a Multi Data Source
No changes should be required to your applications. A standard application looks up
the MDS in JNDI and uses it to get connections. By giving the AGL the same JNDI
name as the MDS, the process is exactly the same in the application to use a data
source name from JNDI.

5.12.2 Configuration Changes to Migrate a Multi Data Source
The only changes necessary should be to your configuration. An AGL data source is
composed of information from the MDS and the member generic data sources
combined into a single AGL descriptor. The only additional information that is needed
is the configuration of Oracle Notification Service (ONS) on the RAC cluster. In many
cases, the ONS information consists of the same host names as used in the MDS and
the only additional information is the port number, and which can be simplified by the
use of a SCAN address.

A MDS descriptor does not contain much information. The key components are:

■ The JNDI name. It must become the name of your new AGL data source to keep
things transparent to the application. If you want to run the MDS in parallel with
the AGL data source, then you must give the AGL data source a new JNDI name
but you must also update the application to use that new JNDI name.

■ A list of the member generic data sources which provide any remaining
information that you need to configure the AGL data source.

Each of the member generic data sources has its own URL. As described in
Section C, "Using Multi Data Sources with Oracle RAC,", it has the following
pattern:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=
 (PROTOCOL=TCP)(HOST=host1-vip)(PORT=1521))

Migrating from Multi Data Source to Active GridLink

Using Active GridLink Data Sources 5-21

 (CONNECT_DATA=(SERVICE_NAME=dbservice)(INSTANCE_NAME=inst1)))

Each member should have its own host and port pair. The members probably have
the same service and often have the same port on different hosts. The URL for the
AGL data source is a combination of the host and port pairs. For example:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1-vip)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2-vip)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=dbservice))

It is preferable to use an Oracle Single Client Access Name (SCAN) address
instead of multiple host or Virtual IP (VIP) addresses. SCAN addresses are simpler
and makes changes to the nodes in the cluster transparent. For more information
on SCAN addresses, see the Oracle Real Application Clusters Administration and
Deployment Guide. For example:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=TCP)(HOST=scanaddress)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=dbservice))

■ Ignore the Algorithm Type.

5.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink Data Source
The following section provides the basic steps needed to migrate a MDS to a AGL data
source:

■ Delete the MDS and the generic data sources from the configuration using the
WebLogic Server Administration Console.

■ Add a single AGL data source using the WebLogic Server Administration Console.

– Give it the same JNDI name as the MDS.

– Select an XA or non-XA driver based on your what generic data sources used.

– Enter the complete URL as described in Section 5.12.2, "Configuration
Changes to Migrate a Multi Data Source."

– Set the user and password, it should be the same as what you had on the MDS
members.

– On the Test GridLink Datasource Connection page, click Test All Listeners
and verify the new URL.

– Enter the information for the ONS connections. Specify one or more host:port
pairs. For example, host1-vip:6200 or scanaddress:6200. If possible, use a
single SCAN address and port. Make sure that FAN Enabled is checked.

– Test the ONS connections.

■ Deploy the data source.

■ Edit the AGL data source and configure additional parameters.

There are many data source parameters that can’t be configured while creating a
new data source. In most cases, you should be able to use the parameter setting
used in the MDS. If there are conflicts, you will need to resolve them and select the
appropriate settings for your environment.

For more information on creating AGL data sources using the WebLogic Server
Administration Console, see "Configure JDBC GridLink data sources" in Oracle
WebLogic Server Administration Console Online Help.

Migrating from Multi Data Source to Active GridLink

5-22 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

6

Advanced Configurations for Oracle Drivers and Databases 6-1

6Advanced Configurations for Oracle Drivers
and Databases

[7] This chapter provides advanced configuration options in WebLogic Server 12.1.3 that
can provide management of connection reservation in the data source.

This chapter includes the following sections:

■ Section 6.1, "Application Continuity"

■ Section 6.2, "Database Resident Connection Pooling"

■ Section 6.3, "Global Database Services"

■ Section 6.4, "Container Database with Pluggable Databases"

■ Section 6.5, "Limitations with Tenant Switching"

6.1 Application Continuity
In today’s environment, application developers are required to deal explicitly with
outages of the underlying software, hardware, communications, and storage layers. As
a result, application development is complex and outages are exposed to the end
users. For example, some applications warn users not to hit the submit button twice.
When the warning is not heeded, users may unintentionally purchase items twice or
submit multiple payments for the same invoice.

Application Continuity (also referred to as Replay) is a general purpose,
application-independent infrastructure for GridLink and Generic data sources that
enables the recovery of work from an application perspective and masks many system,
communication, and hardware failures. The semantics assure that end-user
transactions can be executed on time and at-most-once. The only time an end user
should see an interruption in service is when the outage is such that there is no point
in continuing.

The following sections provide information on how to configure and use Application
Continuity:

■ Section 6.1.1, "How Application Continuity Works"

■ Section 6.1.2, "Requirements and Considerations"

■ Section 6.1.3, "Configuring Application Continuity"

■ Section 6.1.4, "Limitations with Application Continuity with Oracle 12c Database"

Application Continuity

6-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

6.1.1 How Application Continuity Works
Following any outage that is due to a loss of database service, planned or unplanned,
Application Continuity rebuilds the database session. Once an outage is identified by
Fast Application Notification or a recoverable ORACLE error, the Oracle driver:

■ Establishes a new database session to clear any residual state.

■ If a callback is registered, issues a callback allowing the application to re-establish
initial state for that session.

■ Executes the saved history accumulated during the request.

The Oracle driver determines the timing of replay calls. Calls may be processed
chronologically or using a lazy processing implementation depending on how the
application changes the database state. The replay is controlled by the Oracle 12c
Database Server. For a replay to be approved, each replayed call must return exactly
the same client visible state that was seen and potentially used by the application
during the original call execution.

Figure 6–1 Application Continuity

6.1.2 Requirements and Considerations
The following section provides requirements and items to consider when using
Application Continuity with WebLogic applications:

■ Requires an Oracle 12c JDBC Driver and Database. See Appendix A, "Using an
Oracle 12c Database."

■ Application Continuity supports read and read/write transactions. XA
transactions are not supported. To support transactions using non-XA drivers such
as an Oracle driver for Application Continuity, see "Enabling Support for Global
Transactions with a Non-XA JDBC Driver" in Administering JDBC Data Sources for
Oracle WebLogic Server for information.

Application Continuity

Advanced Configurations for Oracle Drivers and Databases 6-3

■ Deprecated oracle.sql.* concrete classes are not supported. Occurrences should
be changed to use either the corresponding oracle.jdbc.* interfaces or
java.sql.* interfaces. Oracle recommends using the standard java.sql.*
interfaces. See "Using API Extensions for Oracle JDBC Types" in Developing JDBC
Applications for Oracle WebLogic Server.

■ Application Continuity works by storing intermediate results in memory. An
application may run slower and require significantly more memory than running
without the feature.

■ The WLS data source statement cache must be disabled when the replay is used. It
is typically disabled by setting StatementCacheSize to a value of 0. However,
when using Application Continuity, Oracle recommends enabling the JDBC
statement cache by setting the following connection property:

 oracle.jdbc.implicitstatementcachesize=nnn

■ There are additional limitations and exceptions to the Application Continuity
feature which may affect whether your application can use Replay. For more
information, see "Application Continuity for Java" in the Oracle® Database JDBC
Developer's Guide.

■ The database service that is specified in the URL for the data source must be
configured with the failover type set to TRANSACTION and the -commit_outcome
parameter to TRUE . For example:

srvctl modify service -d mydb -s myservice -e TRANSACTION -commit_
outcome TRUE -rlbgoal SERVICE_TIME -clbgoal SHORT

6.1.3 Configuring Application Continuity
The following sections provide information on how to implement Application
Continuity in your environment:

■ Section 6.1.3.1, "Selecting the Driver for Application Continuity"

■ Section 6.1.3.2, "Using a Connection Callback"

■ Section 6.1.3.3, "Setting the Replay Timeout"

■ Section 6.1.3.4, "Disabling Application Continuity for a Connection"

■ Section 6.1.3.5, "Configuring Logging for Application Continuity"

6.1.3.1 Selecting the Driver for Application Continuity
Configure your data source to use the correct JDBC driver using one of the following
methods:

■ If you are creating a new data source, when asked to select a Database driver from
the drop-down menu in the configuration wizard, select the appropriate Oracle
driver that supports Application Continuity for your environment. See "Enable
Application Continuity" in Oracle WebLogic Server Administration Console Online
Help.

Note: Remember to set autocommit=FALSE to prevent breaking the
transaction semantics and disabling Application Continuity in your
environment.

Application Continuity

6-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ If you are editing an existing data source in the Administrator Console, select the
Connection Pool tab, change the Driver Class Name to
oracle.jdbc.replay.OracleDataSourceImpl, and click Save.

■ When creating or editing a data source with a text editor or WLST, set the JDBC
driver to oracle.jdbc.replay.OracleDataSourceImpl.

See Section 6.1.2, "Requirements and Considerations."

6.1.3.2 Using a Connection Callback
The following sections provide information on how to use a Connection Callback:

■ Section 6.1.3.2.1, "Create an Initialization Callback"

■ Section 6.1.3.2.2, "Registering an Initialization Callback"

■ Section 6.1.3.2.3, "Unregister an Initialization Callback"

6.1.3.2.1 Create an Initialization Callback To create a connection initialization callback,
your application must implement the initialize(java.sql.Connection
connection) method of the oracle.ucp.jdbc.ConnectionInitializationCallback
interface. Only one callback can be created per connection pool.

The callback is ignored if a labeling callback is registered for the connection pool.
Otherwise, the callback is executed at every connection check out from the pool and at
each successful reconnect following a recoverable error at replay. Use the same
callback at runtime and at replay to ensure that exactly the same initialization that was
used when the original session was established is used during the replay. If the
callback invocation fails, replay is disabled on that connection.

The following example demonstrates a simple initialization callback implementation:

. . .
import oracle.ucp.jdbc.ConnectionInitializationCallback ;
. . .
class MyConnectionInitializationCallback implements ConnectionInitializationCallba
ck {
 public MyConnectionInitializationCallback() {
 }
 public void initialize(java.sql.Connection connection) throws SQLException {
 // Re-set the state for the connection, if necessary
 }
}

6.1.3.2.2 Registering an Initialization Callback The WLDataSource interface provides the
registerConnectionInitializationCallback(ConnectionInitializationCallback
callback) method for registering initialization callbacks. Only one callback may be
registered on a connection pool. The following example demonstrates registering an
initialization callback that is implemented in the
MyConnectionInitializationCallback class:

. . .
import weblogic.jdbc.extensions.WLDataSource;
. . .
MyConnectionInitializationCallback callback = new MyConnectionInitializationCallba

Note: Connection Initialization Callback is not supported for clients
(JDBC over RMI).

Application Continuity

Advanced Configurations for Oracle Drivers and Databases 6-5

ck();
((WLDataSource)ds).registerConnectionInitializationCallback(callback);
. . .

The callback can also be registered by entering the callback class in the Connection
Initialization Callback attribute on the Oracle tab for a data source in the WebLogic
Server Administration Console. Oracle recommends configuring this callback attribute
instead of setting the callback at runtime. See "Enable Application Continuity" in
Oracle WebLogic Server Administration Console Online Help.

6.1.3.2.3 Unregister an Initialization Callback The WLDataSource interface provides the
unregisterConnectionInitializationCallback() method for unregistering a
ConnectionInitializationCallback. The following example demonstrates removing
an initialization callback:

. . .
import weblogic.jdbc.extensions.WLDataSource;
((WLDataSource)ds).unregisterConnectionInitializationCallback();
. . .

6.1.3.3 Setting the Replay Timeout
Use the ReplayInitiationTimeout attribute on the Oracle tab for a data source in the
WebLogic Server Administration Console to set the amount of time a data source
allows for Application Continuity replay processing before timing out and ending a
replay session context for a connection.

For applications that use the WebLogic HTTP request timeout, make sure to set the
ReplayInitiationTimeout appropriately:

■ You should set the ReplayInitiationTimeout value equal to the HTTP session
timeout value to ensure the entire HTTP session is covered by a replay session.
The default ReplayInitiationTimeout and the default HTTP session timeout are
both 3600 seconds.

■ If the HTTP timeout value is longer than ReplayInitiationTimeout value, replay
events will not be available for the entire HTTP session.

■ If the HTTP timeout value is shorter than the ReplayInitiationTimeout value,
your application should close the connection to end the replay session.

6.1.3.4 Disabling Application Continuity for a Connection
You can disable Application Continuity on a per-connection basis using the following:

. . .
if (connection instanceof oracle.jdbc.replay.ReplayableConnection) {
 ((oracle.jdbc.replay.ReplayableConnection)connection).disableReplay();
}
. . .

6.1.3.5 Configuring Logging for Application Continuity
To enable logging of Application Continuity processing, use the following WebLogic
property:

-Dweblogic.debug.DebugJDBCReplay=true

Database Resident Connection Pooling

6-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Use -Djava.util.logging.config.file=configfile, where configfile is the path
and file name of the configuration file property used by standard JDK logging, to
control the log output format and logging level. The following is an example of a
configuration file that uses the SimplFormatter and sets the logging level to FINEST:

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter
#OR - use other formatters like the ones below
#java.util.logging.ConsoleHandler.formatter = java.util.logging.XMLFormatter
#java.util.logging.ConsoleHandler.formatter = oracle.ucp.util.logging.UCPFormatter

#OR - use FileHandler instead of ConsoleHandler
#handlers = java.util.logging.FileHandler
#java.util.logging.FileHandler.pattern = replay.log
#java.util.logging.FileHandler.limit = 3000000000
#java.util.logging.FileHandler.count = 1
#java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter
oracle.jdbc.internal.replay.level = FINEST

See Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server.

6.1.4 Limitations with Application Continuity with Oracle 12c Database
The following section provides information on limitations when using Oracle
Database Release 12c with Application Continuity:

■ DRCP is not supported. That is, a web request will not be replayed and the
original java.sql.SQLRecoverableException is thrown if an outage occurs.

■ Cannot be used with PDB tenant switching using ALTER SESSION SET CONTAINER.

6.2 Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides the ability for multiple
web-tier and mid-tier data sources to pool database server processes and sessions that
are resident in an Oracle database. See Database Resident Connection Pooling (DRCP) at
http://www.oracle.com/technetwork/articles/oracledrcp11g-1-133381.pdf.

The following sections provide more information on using and configuring DRCP in
WebLogic Server:

■ Section 6.2.1, "Requirements and Considerations"

■ Section 6.2.2.1, "Configuring a Data Source for DRCP"

6.2.1 Requirements and Considerations
The following section provides requirements and items to consider when using DRCP
with WebLogic applications:

■ Requires an Oracle 12c JDBC Driver and Database. See Section A, "Using an Oracle
12c Database."

■ If the WebLogic statement cache is configured along with DRCP, the cache is
cleared every time the connection is returned to the pool with close().

■ WebLogic Server data sources do not support connection labeling on DRCP
connections and a SQLException is thrown. For example, using getConnection
with properties on WLDataSource or a method on LabelableConnection is called,

Database Resident Connection Pooling

Advanced Configurations for Oracle Drivers and Databases 6-7

generates an exception. Note, registerConnectionLabelingCallback and
removeConnectionLabelingCallback on WLDataSource are permitted.

■ WebLogic Server does not support defining the
oracle.jdbc.DRCPConnectionClass as a system property. It must be defined as a
connection property in the data source descriptor.

■ For DRCP to be effective, applications must return connections to the connection
pool as soon as work is completed. Holding on to connections and using
harvesting defeats the use of DRCP.

■ For more information on configuring DRCP, see "Configuring Database Resident
Connection Pooling" in the Oracle® Database Administrator's Guide.

6.2.2 Configuring DRCP
The following sections provide information on how to configure DRCP in your
environment:

■ Section 6.2.2.1, "Configuring a Data Source for DRCP"

■ Section 6.2.2.2, "Configuring a Database for DRCP"

6.2.2.1 Configuring a Data Source for DRCP
To configure your data source to support DRCP:

■ If you are creating a new data source, on the Connection Properties tab of the data
source configuration wizard, under Additional Configuration Properties, enter
the DRCP connection class in the oracle.jdbc.DRCPConnectionClass field. See
"Create JDBC generic data sources" and "Create JDBC Active GridLink data
sources" in Oracle WebLogic Server Administration Console Online Help.

In the resulting data source:

– The suffix :POOLED is added to the constructed short-form of the URL. For
example: jdbc:oracle:thin:@//host:port/service_name:POOLED

– For the service form of the URL, (SERVER=POOLED) is added after the
(SERVICE_NAME=name) parameter in the CONNECT_DATA element.

– The value/name pair of the DRCP connection class appears as a connection
property on the Connection Pool tab. For example:
oracle.jdbc.DRCPConnectionClass=myDRCPclass.

■ If you are editing an existing data source in the Administrator Console, select the
Connection Pool tab:

– Change the URL to include a suffix of :POOLED or (SERVER=POOLED) for
service URLs.

– Update the connection properties to include the value/name pair of the DRCP
connection class. For example:
oracle.jdbc.DRCPConnectionClass=myDRCPclass.

– Click Save.

■ When creating or editing a data source with a text editor or using WLST:

– Change the URL element to include a suffix of :POOLED or (SERVER=POOLED)
for service URLs. For example:
<url>jdbc:oracle:thin:@host:port:service:POOLED</url>

Database Resident Connection Pooling

6-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

– Update the connection properties to include the value/name pair of the DRCP
connection class. For example:

<properties>
 <property>
 <name>aname</name>
 <value>avalue</value>
 </property>
 <property>
 <name>oracle.jdbc.DRCPConnectionClass</name>
 <value>myDRCPclass</value>
 </property>
</properties>

■ WebLogic Server throws a configuration error if the a datasource definition has a
oracle.jdbc.DRCPConnectionClass connection property or a POOLED URL but not
both. This validation is performed when testing the connection listener in the
console, deploying a datasource during system boot, or when targeting a
datasource.

■ Set TestConnectionsOnReserve=true to minimize problems with MAX_THINK_TIME.
See Section 6.2.2.2, "Configuring a Database for DRCP."

■ Set TestFrequencySeconds to a value less than INACTIVITY_TIMEOUT. See
Section 6.2.2.2, "Configuring a Database for DRCP."

6.2.2.2 Configuring a Database for DRCP
To configure your Oracle database to support DRCP:

■ DRCP must be enabled on the Database side using:

SQL> DBMS_CONNECTION_POOL.CONFIGURE_POOL('SYS_DEFAULT_CONNECTION_POOL')

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();

■ The following parameters of the server pool configuration must be set correctly:

– MAXSIZE: The maximum number of pooled servers in the pool. The default
value is 40. The connection pool reserves 5% of the pooled servers for
authentication and at least one pooled server is always reserved for
authentication. When setting this parameter, ensure that there are enough
pooled servers for both authentication and connections.

It may be necessary to set MAXSIZE to the size of the largest WebLogic
connection pool using the DRCP.

– INACTIVITY_TIMEOUT: The maximum time, in seconds, the pooled server can
stay idle in the pool. After this time, the server is terminated. The default
value is 300. This parameter does not apply if the server pool has a size of
MINSIZE.

If a connection is reserved from the WebLogic datasource and then not used,
the inactivity timeout may occur and the DRCP connection will be released.
Set INACTIVITY_TIMEOUT appropriately or return connections to the WebLogic
datasource if they will not be used. You can also use TestFrequencySeconds to
ensure that unused connections don't time out.

– MAX_THINK_TIME: The maximum time of inactivity, in seconds, for a client after
it obtains a pooled server from the pool. After obtaining a pooled server from
the pool, if the client application does not issue a database call for the time
specified by MAX_THINK_TIME, the pooled server is freed and the client
connection is terminated. The default value is 120.

Global Database Services

Advanced Configurations for Oracle Drivers and Databases 6-9

If a connection is reserved from the WebLogic datasource and no activity is
done within the MAX_THINK_TIME, the connection is released. You can set Test
Connections On Reserve (see Section 17.2.1.3, "Testing Reserved
Connections") or set MAX_THINK_TIME appropriately. You can minimize the
overhead of testing connections by setting
SecondstoTrustanIdlePoolConnection to a reasonable value less than MAX_
THINK_TIME. See Section 17, "Tuning Data Source Connection Pools."

If the server pool configuration parameters are not set correctly for your
environment, your datasource connections may be terminated and your
applications may receive an error, such as a socket exception, when accessing a
WebLogic datasource connection.

6.3 Global Database Services
Global Data Services (GDS) enables you to use a global service to provide seamless
central management in a distributed database environment. A global server provides
automated load balancing, fault tolerance and resource utilization across multiple
RAC and single-instance Oracle databases interconnected by replication technologies
such as Data Guard or GoldenGate.

The following sections provide information on requirements and configuration for
GDS in WebLogic Server:

■ Section 6.3.1, "Requirements and Considerations"

■ Section 6.3.2, "Creating a GridLink DataSource for GDS Connectivity"

6.3.1 Requirements and Considerations
The following section provides requirements and considerations when using Global
Database Services in WebLogic Server:

■ Requires an Oracle 12c JDBC Driver and Database. See Section A, "Using an Oracle
12c Database."

■ It is not possible to use a single SCAN address to replace multiple Global Service
manger (GSM) addresses.

■ For update operations to be handled correctly, you must define a service for
updates that is only enabled on the primary database.

■ Define a separate service for Read-only operations that is located on the primary
and secondary databases.

■ Since only a single service can be defined for a URL and a single URL for a
datasource configuration, one datasource must be defined for the update service
and another datasource defined for the read-only service.

■ Your application must be written so that update operations are process by the
update datasource and read-only operations are processed by the read-only
datasource.

6.3.2 Creating a GridLink DataSource for GDS Connectivity
Use the WebLogic Server Administration Console to create a GridLink datasource that
uses a modified URL to provide GDS connectivity. See "Create JDBC Active GridLink
data sources" in the Oracle WebLogic Server Administration Console Online Help.

Container Database with Pluggable Databases

6-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

 The connection information for a GDS URL is similar to a RAC Cluster, containing the
following basic information:

■ Service name (Global Service Name)

■ Address/port pairs for Global Service Managers

■ GDS Region in the CONNECT_DATA parameter

The following is a sample URL:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=(LOAD_BALANCE=ON)(FAILOVER=ON)
 (ADDRESS=(HOST=myHost1.com)(PORT=1111)(PROTOCOL=tcp))
 (ADDRESS=(HOST=myHost2.com)(PORT=2222)(PROTOCOL=tcp)))
 (CONNECT_DATA=(SERVICE_NAME=my.gds.cloud)(REGION=west)))

6.4 Container Database with Pluggable Databases
Container Database (CDB) is an Oracle Database feature that minimizes the overhead
of having many of databases by consolidating them into a single database with
multiple Pluggable Databases (PDB) in a single CDB. See "Managing Oracle Pluggable
Databases" in the Oracle Database Administrator's Guide.

■ Section 6.4.1, "Creating Service for PDB Access"

■ Section 6.4.2, "DRCP and CDB/PDB"

■ Section 6.4.3, "Setting the PDB using JDBC"

6.4.1 Creating Service for PDB Access
Access to a PDB is completely transparent to a WebLogic Server data source. It is
accessed like any other database using a URL with a service. The service must be
associated with the PDB. It can be created in SQLPlus by associating a session with the
PDB, creating the service and starting it.

alter session set container = cdb1_pdb1; -- configure service for each PDB
execute dbms_service.create_service('replaytest_cdb1_
pdb1.regress.rdbms.dev.us.myCompany.com','replaytest_cdb1_
pdb1.regress.rdbms.dev.us.myCompany.com');
execute DBMS_SERVICE.START_SERVICE('replaytest_cdb1_
pdb1.regress.rdbms.dev.us.myCompany.com');

If you want to set up the service for use with Application Continuity, it needs to be
appropriately configured. For example, SQLPlus:

declare
params dbms_service.svc_parameter_array ;
begin
params('goal') := 'service_time' ;
params('commit_outcome') := 'true' ;
params('aq_ha_notifications') := 'true' ;
params('failover_method') := 'BASIC' ;
params('failover_type') := 'TRANSACTION' ;
params('failover_retries') := 60 ;
params('failover_delay') := 2 ;
dbms_service.modify_service('replaytest_cdb1_
pdb1.regress.rdbms.dev.us.myCompany.com', params);
end;
/

Limitations with Tenant Switching

Advanced Configurations for Oracle Drivers and Databases 6-11

6.4.2 DRCP and CDB/PDB
DRCP cannot be used in a PDB. It must be associated with a CDB only. To configure,
set a session to point to the CDB and start the DRCP pool. For example:

alter session set container = cdb$root;
execute dbms_connection_pool.configure_pool('SYS_DEFAULT_CONNECTION_POOL');
execute dbms_connection_pool.start_pool();

6.4.3 Setting the PDB using JDBC
Initially when a connection is created for the pool, it is created using the URL with the
service associated with a specific PDB in a CDB. It is possible to dynamically change
the PDB within the same CDB. Changing PDB’s is done by executing the SQL
statement:

ALTER SESSION SET CONTAINER = name;

After the container is changed, the following do not change:

■ The RAC instance

■ The connection object

■ The WebLogic connection lifecycle (enabled/disabled/destroyed)

■ The WebLogic connection attributes.

Any remaining state on the connection is cleared to avoid leaking information between
PDB's.

If configured, the following are reset:

■ Application Continuity (Replay)

■ DRCP

■ client identifier

■ proxy user

■ The connection harvesting callback.

6.5 Limitations with Tenant Switching
When you switch from one tenant to another tenant using ALTER SESSION SET
CONTAINER, there is currently no mechanism to indicate to which user service you want
to switch in that PDB. Instead the PDB service on the new tenant is used. The PDB
service is an administrative service that is created for every PDB (so every PDB has at
least one service for administration). As an administrative service, user-level service
features are not supported. These restrictions will be removed in a future database
release by allowing user services.

The following additional WebLogic Server limitations exist when using tenant
switching with the 12.1 database release:

■ XA and global transactions are not supported.

■ FAN is not supported. Even though FAN is not supported, Active GridLink still
provides the benefit of a single datasource view of multiple RAC instances and the
ability to reserve connections on new instances as they are available without

Limitations with Tenant Switching

6-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

reconfiguration using connection load balancing. This connection load balancing is
based strictly on session counts as there is no metrics support. If you want to use
tenant switching with an Active GridLink data source, FAN enabled must be set to
false. Runtime Load Balancing is not available to optimally reserve existing
connections (either local or with Global Data Services). Instead, round robin is
used to assign connections. This also implies that connection gravitation is not
supported since the runtime load balancing information is not available. Session
affinity is not supported. ONS (including auto-ONS) is not supported; this also
affects features like Global Data Services and Active Data Guard. Instead of
receiving down events, WebLogic uses connection testing to see if an instance is
down. See Section 5.9, "Using Active GridLink Data Sources without FAN
Notification" for details of what this implies for AGL. Transaction Affinity is not
affected because it is not based on FAN. This restriction does not apply to Generic
data sources (they don’t use FAN).

■ DRCP is not supported. If a connection is chosen from the database-resident
connection pool that doesn't match the requested tenant, an error occurs (service
switching is not supported by DRCP). Since WebLogic Server is not matching on
the tenant when selecting a connection, WebLogic Server cannot guarantee that a
valid connection will be selected.

■ Application Continuity is not supported. The attributes needed (FAILOVER_
TYPE=TRANSACTION and COMMIT_OUTCOME=true) can not be set on the PDB service.

■ Proxy authentication is not supported. A java.sql.SQLException "ORA-01017:
invalid username/password" is thrown.

■ A number of database features based on services are not available including:
management operations based on services, service-based metrics, top consumers
in Enterprise Manager, database service-based alerts, restriction of parallel query
to a user service.

7

Connection Harvesting 7-1

7Connection Harvesting

[8] This chapter provides information on how to configure and use connection harvesting
in your applications in WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 7.1, "What is Connection Harvesting?"

■ Section 7.2, "Enable Connection Harvesting"

■ Section 7.3, "Marking Connections Harvestable"

■ Section 7.4, "Recover Harvested Connections"

7.1 What is Connection Harvesting?
You can specify a number of reserved connections to be released when a data source
reaches a specified number of available connections. Harvesting helps to ensure that a
specified number of connections are always available in the pool and improves
performance by minimizing connection initialization.

Connection harvesting is particularly useful if an application caches connection
handles. Caching is typically performed for performance reasons because it minimizes
the initialization of state necessary for connections to participate in a transaction. For
example: A connection is reserved from the data source, initialized with necessary
session state, and then held in a context object. Holding connections in this manner
may cause the connection pool to run out of available connections. Connection
harvesting appropriately reclaims the reserved connections and allows the connections
to be reused.

Use the following steps to use connection harvesting in your applications:

1. Enable Connection Harvesting

2. Marking Connections Harvestable

3. Recover Harvested Connections

7.2 Enable Connection Harvesting
The Connection Harvest Trigger Count attribute of a data source configuration is
used to enable and specify a threshold to trigger connection harvesting. For example,
if Connection Harvest Trigger Count is set to 10, connection harvesting is enabled
and the data source begins to harvest reserved connections when the number of
available connections drops to 10. A value of -1, the default, indicates that connection
harvesting is disabled.

Marking Connections Harvestable

7-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

When connection harvesting is triggered, the Connection Harvest Max Count
specifies how many reserved connections should be returned to the pool. The number
of connections actually harvested ranges from 1 to the value of Connection Harvest
Max Count, depending on how many connections are marked harvestable.

See "Configure connection harvesting for a connection pool" in Oracle WebLogic Server
Administration Console Online Help.

7.3 Marking Connections Harvestable
When connection harvesting is enabled, all connections are initially marked
harvestable. If you do not want a connection to be harvestable, you must explicitly
mark it as unharvestable by calling the setConnectionHarvestable(boolean) method
in the oracle.ucp.jdbc.HarvestableConnection interface with false as the argument
value.

For example, use the following statements to prevent harvesting when a transaction is
used within a transaction:

. . .
Connection conn = datasource.getConnection();
((HarvestableConnection) conn).setConnectionHarvestable(false);
. . .

After work with the connection is completed, you can mark the connection as
harvestable by setting setConnectionHarvestable(true) so the connection can be
harvested if required. You can tell the harvestable status of a connection by calling
isConnectionHarvestable().

7.4 Recover Harvested Connections
When a connection is harvested, an application callback is executed to cleanup the
connection if the callback has been registered. A unique callback must be generated for
each connection; generally it needs to be initialized with the connection object. For
example:

import java.sql.Connection;
 . . .
public myHarvestingCallback implements ConnectionHarvestingCallback {
 private Connection conn;
 mycallback(Connection conn) {
 this.conn = conn;
 }
 public boolean cleanup() {
 try {
 conn.close();
 } catch (Exception ignore) {
 return false;
 }
 return true;
 }
}
. . .
Connection conn = ds.getConnection();
try {
 (HarvestableConnection)conn).registerConnectionHarvestingCallback(
 new myHarvestingCallback(conn));
 (HarvestableConnection)conn).setConnectionHarvestable(true);
} catch (Exception exception) {

Recover Harvested Connections

Connection Harvesting 7-3

 // This can’t be from registration – setConnectionHarvestable must have failed.
 // That most likely means that the connection has already been harvested.
 // Do whatever logic is necessary to clean up here and start over.
 throw new Exception("Need to get a new connection");
}
. . .

Note: Consider the following:

■ After a connection is harvested, an application can only call
Connection.close.

■ If the connection is not closed by the application, a warning is
logged indicating that the connection was forced closed if LEAK
profiling is enabled.

■ If the callback throws an exception, a message is logged and the
exception is ignored. Use JDBCCONN debugging to retrieve a full
stack trace.

■ The return value of the cleanup method is ignored.

■ Connection harvesting releases reserved connections that are
marked harvestable by the application when a data source falls to
a specified number of available connections. By default, this check
is performed every 30 seconds. You can tune this behavior using
the weblogic.jdbc.harvestingFrequencySeconds system
property which specifies the amount of time, in seconds, the
system waits before harvesting marked connections. Setting this
system property to less than 1 disables harvesting.

Recover Harvested Connections

7-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

8

Labeling Connections 8-1

8Labeling Connections

[9] This chapter provides information on how to label connections to increase
performance in WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 8.1, "What is Connection Labeling?"

■ Section 8.2, "Implementing Labeling Callbacks"

■ Section 8.3, "Creating a Labeling Callback"

■ Section 8.4, "Registering a Labeling Callback"

■ Section 8.5, "Reserving Labeled Connections"

■ Section 8.6, "Checking Unmatched labels"

■ Section 8.7, "Removing a Connection Label"

■ Section 8.8, "Using Initialization and Reinitialization Costs to Select Connections"

■ Section 8.9, "Using Connection Labeling with Packaged Applications"

8.1 What is Connection Labeling?
Applications often initialize connections retrieved from a connection pool before using
the connection. The initialization varies and could include simple state re-initialization
that requires method calls within the application code or database operations that
require round trips over the network. The cost of such initialization may be significant.

Labeling connections allows an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool. By associating particular labels with particular connection states, an
application can retrieve an already initialized connection from the pool and avoid the
time and cost of re-initialization. The connection labeling feature does not impose any
meaning on user-defined keys or values; the meaning of user-defined keys and values
is defined solely by the application.

Some of the examples for connection labeling include role, NLS language settings,
transaction isolation levels, stored procedure calls, or any other state initialization that
is expensive and necessary on the connection before work can be executed by the
resource.

Connection labeling is application-driven and requires the following:

■ The oracle.ucp.jdbc.LabelableConnection interface is used to apply and
remove connection labels, as well as retrieve labels that have been set on a
connection.

Implementing Labeling Callbacks

8-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ The oracle.ucp.ConnectionLabelingCallback interface is used to create a
labeling callback that determines whether or not a connection with a requested
label already exists. If no connections exist, the interface allows current
connections to be configured as required.

■ A Connection Labeling Callback, see "JDBC Data Source: Configuration:
Connection Pool" in Oracle WebLogic Server Administration Console Online Help.

8.2 Implementing Labeling Callbacks
A labeling callback is used to define how the connection pool selects labeled
connections and allows the selected connection to be configured before returning it to
an application. Applications that use the connection labeling feature must provide a
callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines which
connection requires the least amount of work in order to be re-configured to match the
requested label and then allows the connection's labels to be updated before returning
the connection to the application.

8.3 Creating a Labeling Callback
To create a labeling callback, an application implements the
oracle.ucp.ConnectionLabelingCallback interface. One callback is created per
connection pool. The interface provides two methods as shown below:

public int cost(Properties requestedLabels, Properties currentLabels);

public boolean configure(Properties requestedLabels, Connection conn);

The connection pool iterates over each connection available in the pool. For each
connection, it calls the cost method. The result of the cost method is an integer which
represents an estimate of the cost required to reconfigure the connection to the
required state. The larger the value, the costlier it is to reconfigure the connection. The
connection pool always returns connections with the lowest cost value. The algorithm
is as follows:

■ If the cost method returns 0 for a connection, the connection is a match (note that
this does not guarantee that requestedLabels equals currentLabels). The
connection pool does not call configure on the connection found and simply
returns the connection.

■ If the cost method returns a value that is not 0 (a negative or positive integer), then
the connection pool iterates until it finds a connection with a cost value of 0 or
runs out of available connections.

■ If the pool has iterated through all available connections and the lowest cost of a
connection is Integer.MAX_VALUE (2147483647 by default), then no connection in
the pool is able to satisfy the connection request. The pool creates a new
connection, calls the configure method on it, and then returns this new
connection. If the pool has reached the maximum pool size (it cannot create a new
connection), then the pool either throws an SQL exception or waits if the
connection wait timeout attribute is specified.

Note: Connection Labeling is not supported from client applications
that use RMI. See "Using the WebLogic RMI Driver (Deprecated)" in
Developing JDBC Applications for Oracle WebLogic Server.

Creating a Labeling Callback

Labeling Connections 8-3

■ If the pool has iterated through all available connections and the lowest cost of a
connection is less than Integer.MAX_VALUE, then the configure method is called on
the connection and the connection is returned. If multiple connections are less than
Integer.MAX_VALUE, the connection with the lowest cost is returned.

There is also an extended callback interface
oracle.ucp.jdbc.ConnectionLabelingCallback that has an additional
getRequestedLabels() method. getRequestedLabels is invoked at getConnection()
time when no requested labels are provided and there is an instance registered. This
occurs when the standard java.sql.Datasource getConnection() methods are used
that do not provide the label information on the getConnection() call.

8.3.1 Example Labeling Callback
The following code example demonstrates a simple labeling callback implementation
that implements both the cost and configure methods. The callback is used to find a
labeled connection that is initialized with a specific transaction isolation level.

Example 8–1 Labeling Callback

import oracle.ucp.jdbc.ConnectionLabelingCallback;
import oracle.ucp.jdbc.LabelableConnection;
import java.util.Properties;
import java.util.Map;
import java.util.Set;
import weblogic.jdbc.extensions.WLDataSource;
class MyConnectionLabelingCallback implements ConnectionLabelingCallback {

 public MyConnectionLabelingCallback() {
 }
 public int cost(Properties reqLabels, Properties currentLabels) {
 // Case 1: exact match
 if (reqLabels.equals(currentLabels)) {
 System.out.println("## Exact match found!! ##");
 return 0;
 }

 // Case 2: some labels match with no unmatched labels
 String iso1 = (String) reqLabels.get("TRANSACTION_ISOLATION");
 String iso2 = (String) currentLabels.get("TRANSACTION_ISOLATION");
 boolean match =
 (iso1 != null && iso2 != null && iso1.equalsIgnoreCase(iso2));
 Set rKeys = reqLabels.keySet();
 Set cKeys = currentLabels.keySet();
 if (match && rKeys.containsAll(cKeys)) {
 System.out.println("## Partial match found!! ##");
 return 10;

 }
 // No label matches to application's preference.
 // Do not choose this connection.
 System.out.println("## No match found!! ##");
 return Integer.MAX_VALUE;
 }

 public boolean configure(Properties reqLabels, Object conn) {
 try {
 String isoStr = (String) reqLabels.get("TRANSACTION_ISOLATION");
 ((Connection)conn).setTransactionIsolation(Integer.valueOf(isoStr));

Registering a Labeling Callback

8-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

 LabelableConnection lconn = (LabelableConnection) conn;

 // Find the unmatched labels on this connection
 Properties unmatchedLabels =
 lconn.getUnmatchedConnectionLabels(reqLabels);
 // Apply each label <key,value> in unmatchedLabels to conn

 for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet()) {
 String key = (String) label.getKey();
 String value = (String) label.getValue();

 lconn.applyConnectionLabel(key, value);

 }
 } catch (Exception exc) {
 return false;
 }
 return true;
 }

public java.util.Properties getRequestedLabels() {
 Properties props = new Properties();

 // Set based on some application state that might be on a thread-local, http
session info, etc.
 String value = "value";

 props.put("TRANSACTION_ISOLATION", value);

 return props;
 }
}

8.4 Registering a Labeling Callback
A WLS data source provides the
registerConnectionLabelingCallback(ConnectionLabelingCallback callback)
method for registering labeling callbacks. Only one callback may be registered on a
connection pool. The following code example demonstrates registering a labeling
callback that is implemented in the MyConnectionLabelingCallback class:

. . .
import weblogic.jdbc.extensions.WLDataSource;
. . .
MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
((WLDataSource)ds).registerConnectionLabelingCallback(callback);
. . .

You can also register the callback using the WebLogic Server Administration Console,
see "Configure a connection labeling callback class" in Oracle WebLogic Server
Administration Console Online Help.

8.4.1 Removing a Labeling Callback
You can remove a labeling callback by using one of the following methods:

Reserving Labeled Connections

Labeling Connections 8-5

■ If you have programmatically set a callback, use the
removeConnectionLabelingCallback() method as shown in the following
example:

. . .
import weblogic.jdbc.extensions.WLDataSource;
. . .
((WLDataSource)ds).removeConnectionLabelingCallback(callback);
. . .

■ If you have administratively configured the callback, remove the callback from the
data source configuration. See "Configure a connection labeling callback class" in
Oracle WebLogic Server Administration Console Online Help

8.4.2 Applying Connection Labels
Labels are applied on a reserved connection using the applyConnectionLabel method
from the LabelableConnection interface. Any number of connection labels may be
cumulatively applied on a reserved connection. Each time a label is applied to a
connection, the supplied key/value pair is added to the existing collection of labels.
Only the last applied value is retained for any given key.

The following example demonstrates initializing a connection with a transaction
isolation level and then applying a label to the connection:

. . .
String pname = "property1";
String pvalue = "value";
Connection conn = ds.getConnection();
// initialize the connection as required.
conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
((LabelableConnection) conn).applyConnectionLabel(pname, pvalue);
. . .

8.5 Reserving Labeled Connections
A WLS data source provides two getConnection methods that are used to reserve a
labeled connection from the pool. The methods are shown below:

public Connection getConnection(java.util.Properties labels) throws
SQLException;

public Connection getConnection(String user, String password,
java.util.Properties labels) throws SQLException;

Note: An application must use one of the methods to register and
remove callbacks but not both. For example, if you register the
callback on a connection using
registerConnectionLabelingCallback(callback), you must use
removeConnectionLabelingCallback() to remove it.

Note: A labeling callback must be registered on the connection pool
before a label can be applied on a reserved connection; otherwise,
labeling is ignored. See Chapter 8.3, "Creating a Labeling Callback."

Checking Unmatched labels

8-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

The methods require that the label be passed to the getConnection method as a
Properties object. The following example demonstrates getting a connection with the
label property1 value.

. . .
import weblogic.jdbc.extensions.WLDataSource;
. . .
String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
. . .
Connection conn = ((WLDataSource)ds).getConnection(label);
. . .

It is also possible to use the standard java.sql.Datasource getConnection()
methods. In this case, the label information is not provided on the getConnection()
call. The interface oracle.ucp.jdbc.ConnectionLabelingCallback is used:

 java.util.Properties getRequestedLabels();

getRequestedLabels is invoked at getConnection() time when no requested labels
are provided and there is an instance registered.

8.6 Checking Unmatched labels
A connection may have multiple labels that each uniquely identifies the connection
based on some desired criteria. The getUnmatchedConnectionLabels method is used to
verify which connection labels matched from the requested labels and which did not.
The method is used after a connection with multiple labels is reserved from the
connection pool and is typically used by a labeling callback. The following code
example demonstrates checking for unmatched labels:

. . .
String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
. . .
Connecion conn = ((WLDataSource)ds).getConnection(label);
Properties unmatched =
 ((LabelableConnection)connection).getUnmatchedConnectionLabels (label);
. . .

8.7 Removing a Connection Label
The removeConnectionLabel method is used to remove a label from a connection. This
method is used after a labeled connection is reserved from the connection pool. The
following code example demonstrates removing a connection label:

. . .
String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
Connection conn = ((WLDataSource)ds).getConnection(label);
. . .
((LabelableConnection) conn).removeConnectionLabel(pname);
. . .

Using Initialization and Reinitialization Costs to Select Connections

Labeling Connections 8-7

8.8 Using Initialization and Reinitialization Costs to Select Connections
Some applications require that a connection pool to be able to identify high-cost
connections and avoid using those connections to serve requests when the number of
connections is below a certain threshold. This allows a pool to use brand-new physical
connections to serve connection requests from different tenants without incurring
re-initialization overhead on other tenant connections already in the pool.

WebLogic Server provides the following connection properties to identify high cost
connections:

■ ConnectionLabelingHighCost—When greater than 0, connections with a cost
value equal to or greater than the property value are considered high-cost
connections. The default value is Integer.MAX_VALUE.

For example, if the property value is set to 5, any connection whose calculated cost
value from the labeling callback is equal to or greater than 5 is considered a
high-cost connection.

■ HighCostConnectionReuseThreshold—When greater than 0, specifies a threshold
of the number of total connections in the pool beyond which Connection Labeling
is allowed to reuse high-cost connections in the pool to serve a request. Below this
threshold, Connection Labeling either uses an available low-cost connection or
creates a brand-new physical connection to serve a request. The default value is 0.

For example, if set to 20, Connection Labeling reuses high-cost connections when
there are no low-cost connections available and the total connections reach 20.

For more information on configuring configuration properties:

■ For generic data sources see Section 3.4, "Configuring Generic Connection Pool
Features"

■ For AGL data sources, see Section 5.4, "Configuring AGL Connection Pool
Features"

8.8.1 Considerations When Using Initialization and Reinitialization Costs
This section provides additional considerations when selecting connections based on
connection costs:

■ Valid callback registration activates Connection Labeling. Once registered, the
connection pool checks for new threshold values at regular intervals and
determines:

– if a connnection has a cost that is equal to or greater than
ConnectionLabelingHighCost.

– If the number of total connections accounts for the number of active
connection creation requests, including restrictions for MinCapacity and
MaxCapacity.

■ Any labeled connection with cost value of Integer.MAX_VALUE is not reused, even
if a new threshold is reached.

■ There is no requirement not to reuse connections without labels (stateless) in the
pool to serve connection requests with labels (labeled requests). Once the
HighCostConnectionReuseThreshold is reached and Connection Labeling is

Using Connection Labeling with Packaged Applications

8-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

activated, the pool continues to favor connections without labels (stateless) over
creating new physical connections.

8.9 Using Connection Labeling with Packaged Applications
WebLogic Server allows callbacks, such as labeling and connection initialization, in
EAR or WAR files used by a packaged application.

To define an application-packaged callback class in a datasource configuration:

■ Define the datasource as part of the application.

For example, if the callback implementation classes are packaged in a WAR or
defined as part of a shared library that is referenced by the application, the EAR
file contains application packaged datasource configurations that reference the
callback class names in their module descriptors.

■ Specify the application WAR file (that contains the callback implementations) as
part of the application classloader hierarchy in the weblogic-application.xml
file.

For example:

. . .
<classloader-structure>
<module-ref>
<module-uri>appcallbacks.war</module-uri>

</module-ref>
</classloader-structure>

8.9.1 Considerations When using Labelled Connections in Packaged Applications
WebLogic Server does not support specifying a connection labeling callback or
connection initialization callback in the module descriptor for a globally scoped
datasource system resource when the callback class is packaged in an application. A
global datasource requires that callback implementation classes be on the WebLogic
classpath. However, you can workaround this restriction for an application callback
that is packaged in a WAR or EAR by having the application register the callback at
runtime using the WLDataSource interface in the Java API Reference for Oracle WebLogic
Server.

9

JDBC Data Source Transaction Options 9-1

9JDBC Data Source Transaction Options

[10] This chapter provides information on XA, non-XA, and Global Transaction options for
WebLogic data sources in WebLogic Server 12.1.3.

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver:

■ For XA drivers, the system automatically selects the Two-Phase Commit protocol
for global transaction processing.

■ For non-XA drivers, local transactions are supported by definition, and WebLogic
Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you want
to use connections from the data source in global transactions, even though you
have not selected an XA driver. See Section 9.1, "Enabling Support for Global
Transactions with a Non-XA JDBC Driver" for more information.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

– Logging Last Resource: With this option, the transaction branch in which the
connection is used is processed as the last resource in the transaction and is
processed as a local transaction. Commit records for two-phase commit (2PC)
transactions are inserted in a table on the resource itself, and the result
determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Section 9.2, "Understanding the Logging Last Resource Transaction Option."

– Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase of
the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Section 9.3, "Understanding the Emulate Two-Phase
Commit Transaction Option."

Note: Logging Last Resource is not supported for data sources used by a
multi data source except when used with Oracle RAC version 10g Release 2
(10gR2) and greater versions as described in Section 9.2.4, "Administrative
Considerations and Limitations for LLR Data Sources.".

Enabling Support for Global Transactions with a Non-XA JDBC Driver

9-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

– One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResource.prepare on the 1PC resource.

This section includes the following sections:

■ Section 9.1, "Enabling Support for Global Transactions with a Non-XA JDBC
Driver"

■ Section 9.2, "Understanding the Logging Last Resource Transaction Option"

■ Section 9.3, "Understanding the Emulate Two-Phase Commit Transaction Option"

■ Section 9.4, "Local Transaction Completion when Closing a Connection"

9.1 Enabling Support for Global Transactions with a Non-XA JDBC Driver
If you use global transactions in your applications, you should use an XA JDBC driver
to create database connections in the JDBC data source. If an XA driver is unavailable
for your database, or you prefer not to use an XA driver, you should enable support
for global transactions in the data source. You should also enable support for global
transaction if your applications meet any of the following criteria:

■ Use the EJB container in WebLogic Server to manage transactions

■ Include multiple database updates within a single transaction

■ Access multiple resources, such as a database and the Java Messaging Service
(JMS), during a transaction

■ Use the same data source on multiple servers (clustered or non-clustered)

With an EJB architecture, it is common for multiple EJBs that are doing database work
to be invoked as part of a single transaction. Without XA, the only way for this to work
is if all transaction participants use the exact same database connection. When you
enable global transactions and select either Logging Last Resource or Emulate
Two-Phase Commit, WebLogic Server internally uses the JTS driver to make sure all
EJBs use the same database connection within the same transaction context without
requiring you to explicitly pass the connection from EJB to EJB.

If multiple EJBs are participating in a transaction and you do not use an XA JDBC
driver for database connections, configure a Data Source with the following options:

■ Supports Global Transactions selected

■ Logging Last Resource or Emulate Two-Phase Commit selected

This configuration will force the JTS driver to internally use the same database
connection for all database work within the same transaction.

With XA (requires an XA driver), EJBs can use a different database connection for each
part of the transaction. WebLogic Server coordinates the transaction using the
two-phase commit protocol, which guarantees that all or none of the transaction will
be completed.

9.2 Understanding the Logging Last Resource Transaction Option
WebLogic Server supports the Logging Last Resource (LLR) transaction optimization
through JDBC data sources. LLR is a performance enhancement option that enables
one non-XA resource to participate in a global transaction with the same ACID

Understanding the Logging Last Resource Transaction Option

JDBC Data Source Transaction Options 9-3

guarantee as XA. LLR is a refinement of the "Last Agent Optimization." It differs from
Last Agent Optimization in that it is transactionally safe. The LLR resource uses a local
transaction for its transaction work. The WebLogic Server transaction manager
prepares all other resources in the transaction and then determines the commit
decision for the global transaction based on the outcome of the LLR resource's local
transaction.

The LLR optimization improves performance by:

■ Removing the need for an XA JDBC driver to connect to the database. XA JDBC
drivers are typically inefficient compared to non-XA JDBC drivers.

■ Reducing the number of processing steps to complete the transaction, which also
reduces network traffic and the number of disk I/Os.

■ Removing the need for XA processing at the database level

When a connection from a data source configured for LLR participates in a two-phase
commit (2PC) global transaction, the WebLogic Server transaction manager completes
the transaction by:

■ Calling prepare on all other (XA-compliant) transaction participants.

■ Inserting a commit record to a table on the LLR participant (rather than to the
file-based transaction log).

■ Committing the LLR participant's local transaction (which includes both the
transaction commit record insert and the application's SQL work).

■ Calling commit on all other transaction participants.

For a one-phase commit (1PC) global transaction, LLR eliminates the XA overhead by
using a local transaction to complete the database operations, but no 2PC transaction
record is written to the database.

The Logging Last Resource optimization maintains data integrity by writing the
commit record on the LLR participant. If the transaction fails during the local
transaction commit, the WebLogic Server transaction manager rolls back the
transaction on all other transaction participants. For failure recovery, the WebLogic
Server transaction manager reads the transaction log on the LLR resource along with
other transaction log files in the default store and completes any transaction
processing as necessary. Work associated with XA participants is committed if a
commit record exists, otherwise their work is rolled back.

For instructions on how to create an LLR-enabled JDBC data source, see "Create
LLR-enabled JDBC data sources" in the Oracle WebLogic Server Administration Console
Online Help. For more details about the Logging Last Resource transaction processing,
see "Logging Last Resource Transaction Optimization" in Developing JTA Applications
for Oracle WebLogic Server.

9.2.1 Advantages to Using the Logging Last Resource Optimization
Depending on your environment, you may want to consider the LLR transaction
protocol in place of the two-phase commit protocol for transaction processing because
of its performance benefits. The LLR transaction protocol offers the following
advantages:

■ Allows non-XA JDBC drivers and even non-XA–capable databases to safely
participate in two-phase commit transactions.

■ Eliminates the database's use of the XA protocol.

■ Performs better than JDBC XA connections.

Understanding the Logging Last Resource Transaction Option

9-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Reduces the length of time that database row locks are held.

■ Always commits database work prior to other XA work. In XA transactions, these
operations are committed in parallel, so, for example, when a JMS send
participates in the transaction, the JMS message may be delivered before database
work commits. With LLR, the database work in the local transaction is completed
before all other transaction work.

■ Has no increased risk of heuristic hazards, unlike the Emulate Two-Phase Commit
option for a JDBC data source.

9.2.2 Enabling the Logging Last Resource Transaction Optimization
To enable the LLR transaction optimization, you create a JDBC data source with the
Logging Last Resource transaction protocol, then use database connections from the
data source in your applications. WebLogic Server automatically creates the required
table on the database.

See "Create LLR-enabled JDBC data sources" in the Oracle WebLogic Server
Administration Console Online Help.

9.2.3 Programming Considerations and Limitations for LLR Data Sources
You use JDBC connections from an LLR-enabled data source in an application as you
would use JDBC connections from any other data source: after beginning a transaction,
you look up the data source on the JNDI tree, then request a connection from the data
source. However, with the LLR optimization, WebLogic Server internally manages the
connection request and handles the transaction processing differently than in an XA
transaction. For more information about how Logging Last Resource works, see
"Logging Last Resource Transaction Optimization" in Developing JTA Applications for
Oracle WebLogic Server.

Note the following:

■ When programming with an LLR data source, you must start the global
transaction before calling getConnection on the LLR data source. If you call
getConnection before starting the global transaction, the connection will be
independent, and will not be associated with any subsequently started global
transaction. The connection will operate in the autoCommit(true) mode. In this
mode, every update will commit automatically on its own, and there will be no
way to roll back any update unless application code has explicitly set the
autoCommit state to false and is explicitly managing its own local transaction.

■ Only one internal JDBC LLR connection is reserved per transaction. And that
connection is used throughout the transaction processing.

■ The reserved connection is always hosted on the transaction's coordinator server.
Make sure that the data source is targeted to the coordinating server or to the
cluster. Also see "Optimizing Performance with LLR"" in Developing JTA
Applications for Oracle WebLogic Server.

Note: The LLR optimization provides a significant increase in performance
for insert, update, and delete operations. However, for read operations with
LLR, performance is somewhat slower than read operations with XA.

For more information about performance tuning with LLR, see "Optimizing
Performance with LLR" in Developing JTA Applications for Oracle WebLogic
Server.

Understanding the Logging Last Resource Transaction Option

JDBC Data Source Transaction Options 9-5

■ For additional JDBC connection requests within the transaction from a
same-named data source, operations are routed to the reserved connection from
the original connection request, even if the subsequent connection request is made
on a different instance of the data source (i.e., a data source deployed on a
different server than the original data source that supplied the connection for the
first request). Note the following:

– Routed LLR connections may be less capable and less performant than locally
hosted XA connections. (See Section 9.3.1.3, "Possible Performance Loss with
Non-XA Resources in Multi-Server Configurations.")

– Connection request routing limits the number of concurrent transactions. The
maximum number of concurrent LLR transactions is equal to the configured
size (MaxCapacity) of the coordinator's JDBC LLR data source.

– Routed connections have less capability than local connections, and may fail
as a result. Specifically, non-serializable "custom" data types within a query
ResultSet may fail.

■ Only instances of a single LLR data source may participate in a particular
transaction. A single LLR data source may have instances on multiple WebLogic
servers, and two data sources are considered to be the same if they have the same
configured name. If more than one LLR data source instance is detected and they
are not instances of the same data source, the transaction manager will roll back
the transaction.

■ Resource adapters (connectors) that implement the
weblogic.transaction.nonxa.NonXAResource interface cannot participate in
global transaction in which an LLR resource also participates because both must
be the last resource in the transaction. If both resource types participate in the
same transaction, the transaction commit() method throws a
javax.transaction.RollbackException when this conflict is detected.

■ Because the LLR connection uses a separate local transaction for database
processing, any changes made (and locks held) to the same database using an XA
connection are not visible during the LLR processing even though all of the
processing occurs in the same global transaction. In some cases, this can cause
deadlocks in the database. You should not combine XA and LLR processing in the
same database in a single global transaction.

■ Connections from an LLR data source cannot participate in transactions
coordinated by foreign transaction managers, such as a transaction started by a
remote object request broker or by Tuxedo.

■ Global transactions cannot span to another legacy domain that includes a data
source with the same name as an LLR data source.

■ For JDBC LLR 2PC transactions, if the transaction data is too large to fit in the LLR
table, the transaction will fail with a rollback exception thrown during commit.
This can occur if your application adds many transaction properties during
transaction processing. (See "Oracle WebLogic Extensions to JTA" in Developing JTA
Applications for Oracle WebLogic Server) Your database administrator can manually
create a table with larger columns if this occurs.

9.2.4 Administrative Considerations and Limitations for LLR Data Sources
Consider the following requirements and limitations when configuring an
LLR-enabled JDBC data source. For more information about how Logging Last
Resource works, see "Logging Last Resource Transaction Optimization" in Developing
JTA Applications for Oracle WebLogic Server.

Understanding the Emulate Two-Phase Commit Transaction Option

9-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ There is one LLR table per server:

– Multiple LLR data sources may share a table.

– WebLogic Server automatically creates the table if it is not found.

– Default name is WL_LLR_SERVERNAME. You can configure the table name in the
WebLogic Server Administration Console on the Server > Configuration >
General tab under Advanced options. See "Servers: Configuration: General" in
Oracle WebLogic Server Administration Console Online Help.

■ A server will not boot if the database is down or the LLR table is unreachable
during boot.

■ Multiple servers must not share the same LLR table. Boot checks to ensure domain
and server name match the domain and server name stored in the table when the
table is created. If WebLogic Server detects that more than one server is sharing the
same LLR table, WebLogic Server will shut down one or more of the servers.

■ LLR supports server migration and transaction recovery service migration. To use
the transaction recovery service migration, ensure that each LLR resource be
targeted to either the cluster or the set of candidate servers in the cluster. See
"Recovering Transactions For a Failed Clustered Server" in Developing JTA
Applications for Oracle WebLogic Server.

■ The LLR transaction option is not permitted for use in JDBC application modules.

■ When using multi data sources, the LLR transaction option can only be used with
Oracle RAC version 10g Release 2 (10gR2) and greater versions with the following
settings:

– All WebLogic application database JDBC interactions must use the READ_
COMMITTED transaction isolation level (the default).

– The Oracle RAC setting MAX_COMMIT_PROPAGATION_DELAY must be set to a
value of 0 (zero, the default).

The use of LLR with multi data sources is supported only with Oracle RAC. LLR is
not supported with any other multi data source configuration.

■ If you use credential mapping or identity pooling on an LLR data source, all
mapped users must have write permissions on the LLR table.

■ You cannot use a JDBC XA driver to create database connections in a JDBC LLR
data source. If the JDBC driver used in a JDBC LLR data source supports XA, a
warning message is logged, and the data source participates in transactions as a
full XA resource rather than as an LLR resource.

■ Transaction statistics for LLR resources are tracked under "NonXAResource." See
"View transaction statistics for non-XA resources" in the Oracle WebLogic Server
Administration Console Online Help.

■ When using LLR with a Sybase DBMS, Sybase's JDBC driver requires that certain
JDBC stored procedures be installed in the DBMS in order to implement some
standard JDBC metadata methods. See the Sybase jConnect documentation for
details.

9.3 Understanding the Emulate Two-Phase Commit Transaction Option
If you need to support distributed transactions with a JDBC data source, but there is
no available XA-compliant driver for your DBMS, you can select the Emulate
Two-Phase Commit for non-XA Driver option for a data source to emulate two-phase

Understanding the Emulate Two-Phase Commit Transaction Option

JDBC Data Source Transaction Options 9-7

commit for the transactions in which connections from the data source participate.
This option is an advanced option on the Configuration > General tab of a data source
configuration.

When the Emulate Two-Phase Commit for non-XA Driver option is selected
(EnableTwoPhaseCommit is set to true), the non-XA JDBC resource always returns XA_
OK during the XAResource.prepare() method call. The resource attempts to commit or
roll back its local transaction in response to subsequent XAResource.commit() or
XAResource.rollback() calls. If the resource commit or rollback fails, a heuristic error
results. Application data may be left in an inconsistent state as a result of a heuristic
failure.

When the Emulate Two-Phase Commit for non-XA Driver option is not selected in the
Console (EnableTwoPhaseCommit is set to false), the non-XA JDBC resource causes
XAResource.prepare() to fail. When there is only one resource participating in a
transaction, the one phase optimization bypasses XAResource.prepare(), and the
transaction commits successfully in most instances.

This non-XA JDBC driver support is often referred to as the "JTS driver" because
WebLogic Server uses the WebLogic JTS Driver internally to support the feature. For
more information about the WebLogic JTS Driver, see "Using the WebLogic JTS Driver"
in Developing JDBC Applications for Oracle WebLogic Server.

9.3.1 Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver
WebLogic Server supports the participation of non-XA JDBC resources in global
transactions with the Emulate Two-Phase Commit data source transaction option, but
there are limitations that you must consider when designing applications to use such
resources. Because a non-XA driver does not adhere to the XA/2PC contracts and only
supports one-phase commit and rollback operations, WebLogic Server (through the
JTS driver) has to make compromises to allow the resource to participate in a
transaction controlled by the Transaction Manager.

Consider the following limitations and risks before using the Emulate Two-Phase
Commit for non-XA Driver option.

9.3.1.1 Heuristic Completions and Data Inconsistency
When Emulate Two-Phase Commit is selected for a non-XA resource,
(enableTwoPhaseCommit = true), the prepare phase of the transaction for the non-XA
resource always succeeds. Therefore, the non-XA resource does not truly participate in
the two-phase commit (2PC) protocol and is susceptible to failures. If a failure occurs
in the non-XA resource after the prepare phase, the non-XA resource is likely to roll
back the transaction while XA transaction participants will commit the transaction,
resulting in a heuristic completion and data inconsistencies.

Because of the data integrity risks, the Emulate Two-Phase Commit option should only
be used in applications that can tolerate heuristic conditions.

Note: There are risks to data integrity when using the Emulate Two-Phase
Commit for non-XA Driver option. Oracle recommends that you use an
XA-compliant JDBC driver or the Logging Last Resource option rather than
use the Emulate Two-Phase Commit option. Make sure you consider the risks
below before enabling this option.

Local Transaction Completion when Closing a Connection

9-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

9.3.1.2 Cannot Recover Pending Transactions
Because a non-XA driver manipulates local database transactions only, there is no
concept of a transaction pending state in the database with regard to an external
transaction manager. When XAResource.recover() is called on the non-XA resource, it
always returns an empty set of Xids (transaction IDs), even though there may be
transactions that need to be committed or rolled back. Therefore, applications that use
a non-XA resource in a global transaction cannot recover from a system failure and
maintain data integrity.

9.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-Server
Configurations
Because WebLogic Server relies on the database local transaction associated with a
particular JDBC connection to support non-XA resource participation in a global
transaction, when the same JDBC data source is accessed by an application with a
global transaction context on multiple WebLogic Server instances, the JTS driver will
always route to the first connection established by the application in the transaction.
For example, if an application starts a transaction on one server, accesses a non-XA
JDBC resource, then makes a remote method invocation (RMI) call to another server
and accesses a data source that uses the same underlying JDBC driver, the JTS driver
recognizes that the resource has a connection associated with the transaction on
another server and sets up an RMI redirection to the actual connection on the first
server. All operations on the connection are made on the one connection that was
established on the first server. This behavior can result in a performance loss due to the
overhead associated with setting up these remote connections and making the RMI
calls to the one physical connection.

9.3.1.4 Multiple Non-XA Participants
If you use more than one non-XA resource in a global transaction, it is possible to see
JTA SystemExceptions in the event of a non-atomic outcome. The chance for
non-atomic outcomes and SystemExceptions tends to increase with the number of
two-phase-emulated data source participants.

9.4 Local Transaction Completion when Closing a Connection
For a non-XA connection, setAutoCommit(true) is called if the connection is currently
in auto-commit false state when a connection is closed. According to the JDBC
specification, this automatically commits any outstanding local transaction. There are
some drivers (Oracle 10.x and 11.x driver) that do not commit the local transaction. If
the application does not complete (commit or rollback) the local transaction before
closing the connection, a connection is returned to the pool with outstanding work and
that work may never be completed or it may be committed or rolled back by the next
reservation of that connection. To prevent that situation from happening, a WebLogic
data source calls commit on the connection when returning it to the pool. If you know
that your driver automatically commits the local transaction on setAutoCommit(true)
or your application code always completes the transaction before calling close, then
the additional commit work is unnecessary and can be avoided by setting the system
property weblogic.datasource.endLocalTxOnNonXaConWithCommit=false.

For an XA connection, WebLogic data sources have always rolled back any local
transaction when closing the connection. The transaction can be committed instead of

Note: The use of a two-phase-emulated data source in a JTA
transaction across domains of different versions is not supported.

Local Transaction Completion when Closing a Connection

JDBC Data Source Transaction Options 9-9

rolled back by setting the system property
weblogic.datasource.endLocalTxOnXaConWithCommit=true.

Local Transaction Completion when Closing a Connection

9-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

10

Understanding Data Source Security 10-1

10Understanding Data Source Security

[11] This chapter provides information on how to configure and use data source security in
your application environment. Considerations include the number and volatility of
WebLogic Server 12.1.3 and Database users, the granularity of data access, the depth of
the security identity (property on the connection or a real user), performance,
coordination of various components in the software stack, and driver capabilities.

The chapter includes the following sections:

■ Section 10.1, "Introduction to WebLogic Data Source Security Options"

■ Section 10.2, "WebLogic Data Source Security Options"

■ Section 10.3, "Connections within Transactions"

■ Section 10.4, "WebLogic Data Source Resource Permissions"

■ Section 10.5, "Data Source Security Example"

■ Section 10.6, "Using Encrypted Connection Properties"

■ Section 10.7, "Using SSL and Encrytption with Data Sources and Oracle Drivers"

10.1 Introduction to WebLogic Data Source Security Options
By default, you define a single database user and password for a datasource. You can
store it in the datasource descriptor or make use of the Oracle wallet (seeSection 11,
"Creating and Managing Oracle Wallet"). This is a very simple and efficient approach
to security. All of the connections in the connection pool are owned by this user and
there is no special processing when a connection is given out. That is, it’s a
homogenous connection pool and any request can get any connection from a security
perspective (there are other aspects, such as affinity). Regardless of the end user of the
application, all connections in the pool use the same security credentials to access the
DBMS. No additional information is needed when you get a connection because it’s all
available from the datasource descriptor or wallet. For example:

java.sql.Connection conn = mydatasource.getConnection();

WebLogic Data Source Security Options

10-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

The JDBC API can also be used to programmatically specify the database username
and password as in the following.

java.sql.Connection conn = mydatasource.getConnection(“user”, “password”);

Although the JDBC specification implies that the getConnection(“user”,
“password”) method should take a database user and associated password, software
vendors have developed implementations according to their own interpretation of the
specification. Oracle WebLogic Server, by default, treats this as an application server
user and password:

■ The pair is authenticated to see if it is a valid user and that user is used for
WebLogic security permission checks.

■ The user is then mapped to a database user and password using the data source
credential mapper.

WebLogic Server’s implementation generically follows the specification but the
database credentials are one-step removed from the application code.

While the default approach is simple, it does mean that only one user is doing all of
the work. You can’t determine who actually did the update nor can you restrict SQL
operations by who is running the operation, at least at the database level. Any type of
per-user logic needs to be in the application code instead of relying on the database.
There are various WebLogic datasource features that can be configured to provide
per-user information about the operations.

10.2 WebLogic Data Source Security Options
All of these features are configurable on the Identity tab of the Data Source
Configuration tab in the WebLogic Server Administration Console. See "JDBC Data
Source: Configuration: Identity Option" in Oracle WebLogic Server Administration
Console Online Help.

The following sections describe these features in more detail:

Note: You can enter the password as a name-value pair in the
Properties field (this not permitted for production environments) or
you can enter it in the Password field. The value in the Password field
overrides any password value defined in the Properties passed to the
JDBC Driver when creating physical database connections.

It is recommended that you use the Password attribute in place of the
password property in the properties string because the Password
value is encrypted in the configuration file (stored as the
password-encrypted attribute in the jdbc-driver-params tag in the
module file) and is hidden in the WebLogic Server Administration
Console. The Properties and Password fields are located on the
WebLogic Server Administration Console data source creation wizard
or data source configuration page. See "JDBC Data Source:
Configuration: Connection Pool" in Oracle WebLogic Server
Administration Console Online Help.

Note: Prior WebLogic Server Release 12.1.2, the Proxy Session and
Use Database Credentials options were only on the Oracle tab.

WebLogic Data Source Security Options

Understanding Data Source Security 10-3

■ Section 10.2.1, "Security Credential Configuration Options"

Section 10.2.2, "Credential Mapping vs. Database Credentials"

■ Section 10.2.3, "Set Client Identifier on Connection"

■ Section 10.2.4, "Oracle Proxy Session"

■ Section 10.2.5, "Identity-based Connection Pooling"

10.2.1 Security Credential Configuration Options
The following table describes the various features available for WebLogic data sources
to configure database security credentials.

10.2.2 Credential Mapping vs. Database Credentials
Each WebLogic data source has a credential map that is a mechanism used to map a
key, in this case a WebLogic user, to security credentials (user and password). By
default, when a user and password are specified when getting a connection, they are
treated as credentials for a WebLogic user, validated, and are converted to a database
user and password using a credential map associated with the data source. If a
matching entry is not found in the credential map for the data source, then the user

Table 10–1 WebLogic Data Source Configuration Options for Security Credentials

Feature Description Can be used with . . .
Can’t be used with . .
.

User authentication

(default)

Default
getConnection(user
, password)
behavior – WebLogic
validates the input
and uses the
user/password in
the descriptor.

Proxy session, Set client
identifier

Identity pooling, Use
database credentials

Use database
credentials

Instead of using the
credential mapping,
use the supplied
user and password
directly.

 Set client identifier,
Proxy session, Identity
pooling

User authentication

Set Client Identifier Set a client identifier
property associated
with the connection
(Oracle and DB2
only).

Everything N/A

Proxy Session Set a light-weight
proxy user
associated with the
connection
(Oracle-only).

User authentication, Set
client identifier, Use
database credentials

Identity pooling

Identity pooling Heterogeneous pool
of connections
owned by specified
users.

Set client identifier, Use
database credentials

Proxy session, User
authentication,
Labeling, Active
GridLink

Note: All of these features are available with both XA and non-XA
drivers.

WebLogic Data Source Security Options

10-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

and password associated with the data source definition are used. Because of this
defaulting mechanism, you should be careful what permissions are granted to the
default user. Alternatively, you can define an invalid default user to ensure that no one
can accidentally get through (in this case, you would need to set the initial capacity for
the pool to zero so that the pool is populated only by valid users).

To create an entry in the credential map:

1. Create a WebLogic user. In the WebLogic Server Administration Console, go to
Security realms, select your realm (for example, myrealm), select Users, and select
New.

2. Create the mapping as described in "Configure credential mapping for a JDBC
data source" in Oracle WebLogic Server Administration Console Online Help.

The advantages of using the credential mapping are that:

■ You don’t hard-code the database user/password into a program or need to
prompt for it in addition to the WebLogic user/password.

■ It provides a layer of abstraction between WebLogic security and database settings
such that many WebLogic identities can be mapped to a smaller set of DB
identities, thereby only requiring middle-tier configuration updates when
WebLogic users are added/removed.

You can cut down the number of users that have access to a data source to reduce the
user maintenance overhead. For example, suppose that a servlet has the one
pre-defined WebLogic user/password for data source access that is hardwired in its
code using a getConnection(user, password) call. Every WebLogic user can reap the
specific DBMS access coded into the servlet, but none has to have general access to the
data source. For instance, there may be a Sales DBMS which needs to be protected from
unauthorized eyes, but it contains some day-to-day data that everyone needs. The
Sales data source is configured with restricted access and a servlet is built that
hardwires the specific data source access credentials in its connection request. It uses
that connection to deliver only the generally needed day-to-day info to any caller. The
servlet cannot reveal any other data and no WebLogic user can get any other access to
the data source. This is the approach that many large applications use and is the logic
behind the default mapping behavior in WebLogic Server.

The disadvantages of using the credential map are that:

■ It is difficult to manage (create, update, delete) with a large number of users; it is
possible to use WLST scripts or a custom JMX client utility to manage credential
map entries.

■ You can’t share a credential map between data sources so they must be duplicated.

Some applications prefer not to use the credential map. Instead, the credentials passed
to getConnection(user, password) should be treated as database credentials and used
to authenticate with the database for the connection, avoiding going through the
credential map. This is enabled by setting the use-database-credentials to true. See
"Configure Oracle parameters" in Oracle WebLogic Server Administration Console Online
Help.

When use-database-credentials is enabled, it turns of credential mapping for the
following attributes:

■ identity-based-connection-pooling-enabled

■ oracle-proxy-session

■ set client identifier

WebLogic Data Source Security Options

Understanding Data Source Security 10-5

To review the behavior of credential mapping and using database credentials:

■ If using the credential map, there needs to be a mapping for each WebLogic user to
database user for those users that have access to the database; otherwise the
default user for the data source is used. If you always specify a user/password
when getting a connection, you only need credential map entries for those specific
users.

■ If using database credentials without specifying a user/password, the default user
and password in the data source descriptor are always used. If you specify a
user/password when getting a connection, that user is used for the credentials.
WebLogic users are not involved at all in the data source connection process.

10.2.3 Set Client Identifier on Connection
When this feature is enabled on the data source, a client property is associated with the
connection. The underlying SQL user remains unchanged for the life of the connection
but the client value can change. This information can be used for accounting, auditing,
or debugging. The client property is based on either the WebLogic user mapped to a
database user based on the credential map or the database user parameter directly
from the getConnection() method, based on the use database credentials setting
described earlier.

To enable this feature, select Set Client ID On Connection in the WebLogic Server
Administration Console. See "Enable Set Client ID On Connection for a JDBC data
source" in Oracle WebLogic Server Administration Console Online Help.

The Set Client Identifier feature is only available for use with the Oracle thin driver
and the IBM DB2 driver, based on the following interfaces:

■ For pre-Oracle 12c,
oracle.jdbc.driver.OracleConnection.setClientIdentifier(client) is used.
For more information about how to use this for auditing and debugging, see
"Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity" in the Oracle
Database Security Guide. You can get the value using getClientIdentifier() from
the driver using the ojdbcN.jar or ojdbcN_g.jar files.

To get back the value from the database as part of a SQL query, use a statement
like the following:

select sys_context('USERENV','CLIENT_IDENTIFIER') from DUAL

■ Starting in Oracle 12c, java.sql.Connection.setClientInfo(“OCSID.CLIENTID",
client) is used. This is a JDBC standard API, although the property values are
proprietary. A problem with setClientIdentifier usage is that there are pieces of
the Oracle technology stack that set and depend on this value. If application code
also sets this value, it can cause problems. This has been addressed with

Note: in the data source schema, the set client identifier feature is
poorly named credential-mapping-enabled. The documentation and
the console refer to it as set client identifier.).

Note: Setting the client identifier using the Oracle driver is disabled
if you are using ojdbcNdms.jar, the default JAR file for Oracle Fusion
MiddleWare and Oracle Fusion Applications. In this case, the Set
Client Identifier feature is not supported.

WebLogic Data Source Security Options

10-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

setClientInfo by making use of this method a privileged operation. A
well-managed container can restrict the Java security policy grants to specific
namespaces and code bases, and protect the container from out-of-control user
code. When running with the Java security manager, permission must be granted
in the Java security policy file for:

permission "oracle.jdbc.OracleSQLPermission" "clientInfo.OCSID.CLIENTID";

Using the name OCSID.CLIENTID allows for upward compatible use of select
sys_context('USERENV','CLIENT_IDENTIFIER') from DUAL or use the JDBC
standard API java.sql.getClientInfo(“OCSID.CLIENTID") to retrieve the value.

■ Setting this value in the Oracle USERENV context can be used to drive the Oracle
Virtual Private Database (VPD) feature to create security policies to control
database access at the row and column level. Essentially, Oracle Virtual Private
Database adds a dynamic WHERE clause to a SQL statement that is issued against
the table, view, or synonym to which an Oracle Virtual Private Database security
policy was applied. See "Using Oracle Virtual Private Database to Control Data
Access" in the Oracle Database Security Guide. Using this data source feature means
that no programming is needed on the WebLogic side to set this context. The
context is set and cleared by the WebLogic data source code.

■ For the IBM DB2 driver,
com.ibm.db2.jcc.DB2Connection.setDB2ClientUser(client) is used for older
releases (prior to version 9.5). This specifies the current client user name for the
connection. Note that the current client user name can change during a connection
(unlike the user). This value is also available in the CURRENT CLIENT_USERID
special register. You can select it using a statement like select CURRENT CLIENT_
USERID from SYSIBM.SYSTABLES.

■ When running the IBM DB2 driver with JDBC 4.0 (starting with version 9.5),
java.sql.Connection.setClientInfo(“ClientUser”, client) is used. You can
retrieve the value using java.sql.Connection.getClientInfo(“ClientUser”)
instead of the DB2 proprietary API (even if set using setDB2ClientUser()).

10.2.4 Oracle Proxy Session
Oracle proxy authentication allows one JDBC connection to act as a proxy for multiple
(serial) light-weight user connections to an Oracle database with the thin driver. You
can configure a WebLogic data source to allow a client to connect to a database
through an application server as a proxy user. The client authenticates with the
application server and the application server authenticates with the Oracle database.
This allows the client's user name to be maintained on the connection with the
database.

Use the following steps to configure proxy authentication on a connection to an Oracle
database.

1. If you have not yet done so, create the necessary database users.

2. On the Oracle database, provide CONNECT THROUGH privileges. For example:

SQL> ALTER USER connectionuser GRANT CONNECT THROUGH dbuser;

Note: This feature is only supported when using the Oracle thin
driver and a supported Oracle database (the database url must contain
oracle.

WebLogic Data Source Security Options

Understanding Data Source Security 10-7

where connectionuser is the name of the application user to be authenticated and
dbuser is an Oracle database user.

3. Create a generic or Active GridLink data source and set the user to the value of
dbuser.

4. To use:

■ WebLogic credentials, create an entry in the credential map that maps the
value of wlsuser to the value of dbuser, as described earlier.

■ Database credentials, enable “Use Database Credentials”, as described earlier

5. Enable Oracle Proxy Authentication, see "Configure Oracle parameters" in Oracle
WebLogic Server Administration Console Help.

6. Log on to a WebLogic Server instance using the value of wlsuser or dbuser.

7. Get a connection using getConnection(username, password). The credentials are
based on either the WebLogic user that is mapped to a database user or the
database user directly, based on the “use database credentials” setting.

You can see the current user and proxy user by executing:

select user, sys_context('USERENV','PROXY_USER') from DUAL

A proxy session is opened on the connection based on the user each time a connection
request is made on the pool. The proxy session is closed when the connection is
returned to the pool. Opening or closing a proxy session has the following impact on
JDBC objects:

■ Closes any existing statements (including result sets) from the original connection.

■ Clears the WebLogic Server statement cache.

■ Clears the client identifier, if set.

■ The WebLogic Server test statement for a connection is recreated for every proxy
session.

These behaviors may impact applications that share a connection across instances and
expect some state to be associated with the connection.

Oracle proxy session is also implicitly enabled when use-database-credentials is
enabled and getConnection(user, password) is called.

The exact definition of oracle-proxy-session is as follows:

■ If proxy authentication is enabled and identity based pooling is also enabled, it is
an error.

■ If a user is specified on getConnection() and
identity-based-connection-pooling-enabled is false, then
oracle-proxy-session is treated as true implicitly (it can also be explicitly true).

Note: getConnection fails if Use Database Credentials is not
enabled and the value of the user/password is not valid for a
WebLogic user. Conversely, it fails if Use Database Credentials is
enabled and the value of the user/password is not valid for a database
user.

WebLogic Data Source Security Options

10-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ If a user is specified on getConnection() and
identity-based-connection-pooling-enabled is true, then
oracle-proxy-session is treated as false.

10.2.5 Identity-based Connection Pooling
An identity based pool creates a heterogeneous pool of connections. This allows
applications to use a JDBC connection with a specific DBMS credential by pooling
physical connections with different DBMS credentials. The DBMS credential is based
on either the WebLogic user mapped to a database user or the database user directly,
based on the use-database-credentials. use-database-credentials=true is how
some implementations interpret the JDBC standard—basically a heterogeneous pool
with users specified by getConnection(user,password).

The allocation of connections is more complex if Enable Identity Based Connection
Pooling attribute is enabled on the data source. When an application requests a
database connection, the WebLogic Server instance selects an existing physical
connection or creates a new physical connection with requested DBMS identity.

The following section provides information on how heterogeneous connections are
created:

1. At connection pool initialization, the physical JDBC connections based on the
configured or default “initial capacity” are created with the configured default
DBMS credential of the data source.

2. An application tries to get a connection from a data source.

3. If:

■ use-database-credentials is not enabled, the user specified in
getConnection is mapped to a DBMS credential, as described earlier. If the
credential map doesn’t have a matching user, the default DBMS credential is
used from the data source descriptor.

■ use-database-credentials is enabled, the user and password specified in
getConnection are used directly.

4. The connection pool is searched for a connection with a matching DBMS
credential.

5. If a match is found, the connection is reserved and returned to the application.

6. If no match is found, a connection is created or reused based on the maximum
capacity of the pool:

■ If the maximum capacity has not been reached, a new connection is created
with the DBMS credential, reserved, and returned to the application.

■ If the pool has reached maximum capacity, based on the least recently used
(LRU) algorithm, a physical connection is selected from the pool and
destroyed. A new connection is created with the DBMS credential, reserved,
and returned to the application.

It should be clear that finding a matching connection is more expensive than a
homogeneous pool. Destroying a connection and getting a new one is very expensive.
If possible, use a normal homogeneous pool or one of the light-weight options (client
identity or an Oracle proxy connection) as they are more efficient than identity-based
pooling.

Regardless of how physical connections are created, each physical connection in the
pool has its own DBMS credential information maintained by the pool. Once a

WebLogic Data Source Resource Permissions

Understanding Data Source Security 10-9

physical connection is reserved by the pool, it does not change its DBMS credential
even if the current thread changes its WebLogic user credential and continues to use
the same connection.

To configure this feature, select Enable Identity Based Connection Pooling. See
"Enable identity-based connection pooling for a JDBC data source" in Oracle WebLogic
Server Administration Console Online Help.

You must make the following changes to use Logging Last Resource (LLR) transaction
optimization with Identity-based Pooling to get around the problem that multiple
users access the associated transaction table:

■ You must configure a custom schema for LLR using a fully qualified LLR table
name. All LLR connections will then use the named schema rather than the default
schema when accessing the LLR transaction table.

■ Use database specific administration tools to grant permission to access the named
LLR table to all users that could access this table via a global transaction. By
default, the LLR table is created during boot by the user configured for the
connection in the data source. In most cases, the database will only allow access to
this user and not allow access to mapped users.

10.3 Connections within Transactions
Connections associated with a transaction context on a particular WebLogic Server
instance have the following behaviors:

■ When getting a connection with a data source configured with non-XA LLR or
1PC (JTS driver) with global transactions, the first connection obtained within the
transaction is returned on subsequent connection requests regardless of the values
of username/password specified and independent of the associated proxy user
session, if any. The connection must be shared among all users of the connection
when using LLR or 1PC.

■ For XA data sources, the first connection obtained within the global transaction is
returned on subsequent connection requests within the application server,
regardless of the values of username/password specified and independent of the
associated proxy user session, if any. The connection must be shared among all
users of the connection within a global transaction within the application
server/JVM.

In summary, when you get a connection within a transaction, it is associated with the
transaction context on a particular WebLogic Server instance.

10.4 WebLogic Data Source Resource Permissions
You can optionally restrict access to JDBC data sources. In WebLogic Server, security
policies answer the question "who has access" to a WebLogic data source resource. A
security policy is created when you define an association between a WebLogic data
source resource and a user, group, or role. A WebLogic data source resource has no
protection until you assign it a security policy. As soon as you add one policy for a
permission, then all other users are restricted. For example, if you add a policy so that
weblogic can reserve a connection, then all other users fail to reserve connections
unless they are also explicitly added. The validation is done for WebLogic user
credentials, not database user credentials. See “Create policies for resource instances”
in Oracle WebLogic Server Administration Console Online Help.

You can protect JDBC resource operations by assigning Administrator methods which
can limit the actions that an administrator may take upon a JDBC data source. These

WebLogic Data Source Resource Permissions

10-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

resources can be defined on the Policies tab on the Security tab associated with the
data source. When you secure an individual data source, you can choose whether to
protect JDBC operations using one or more of the following administrator methods:

■ admin—The following methods on the JDBCDataSourceRuntimeMBean are invoked
as admin operations: clearStatementCache, suspend, forceSuspend, resume,
shutdown, forceShutdown, start, getProperties, and poolExists.

■ reserve—Applications reserve a connection in the data source by looking up the
data source and then calling getConnection. Giving a user the reserve permission
enables them to execute vendor-specific operations. Depending on the database
vendor, some of these operations may have database security implications. See
Section 10.2, "WebLogic Data Source Security Options."

■ shrink—Shrinks the number of connections in the data source to the maximum of
the currently reserved connections or to the initial size.

■ reset—Resets the data source connections by shutting down and re-establishing
all physical database connections. This also clears the statement cache for each
connection. You can only reset data source connections that are running normally.

■ All—An individual data source is protected by the union of the Admin, reserve,
shrink, and reset administrator methods.

See "Java DataBase Connectivity (JDBC) Resources" in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

The following table provides information on the user for permission checking when
using the administrator method reserve:

In summary, if a simple getConnection() is used or database credentials are enabled,
the current user that is authenticated to the WebLogic system is checked. If database
credentials are not enabled, then the user and password on the API are used. This
feature is very useful to restrict what code and users can access your database.

For instructions on how to set up security for all WebLogic Server resources, see "Use
roles and policies to secure resources" in Oracle WebLogic Server Administration Console
Online Help. For more information about securing server resources, see Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Notes: Be aware of the following:

■ If a security policy controls access to connections in a multi data
source, access checks are performed at both levels of the JDBC
resource hierarchy (once at the multi data source level, and again
at the individual data source level). As with all types of WebLogic
resources, this double-checking ensures that the most specific
security policy controls access.

Table 10–2 Determining the User when using the reserve Administration Method

API Use-database-credential
User for permission
checking

getConnection() True or False Current WebLogic user

getConnection(user,password) False User/password from API

getConnection(user,password) True Current WebLogic user

Data Source Security Example

Understanding Data Source Security 10-11

10.5 Data Source Security Example
The following is an actual example of the interactions between
identity-based-connection-pooling-enabled, oracle-proxy-session, and
use-database-credentials.

On the database side, the following objects are configured:

■ users: scott; jdbcqa; jdbcqa3

■ alter user jdbcqa3 grant connect through jdbcqa;

■ alter user jdbcqa grant connect through jdbcqa;

The following WebLogic users are configured:

■ weblogic

■ wluser

The following WebLogic datasource objects are configured.

■ Credential mapping weblogic to scott

■ Credential mapping wluser to jdbcqa3

■ Datasource configured with user jdbcqa

■ All tests run with Set Client ID set to true.

■ All tests run with oracle-proxy-session set to false.

The test program:

■ Runs in servlet

■ Authenticates to WebLogic as user weblogic

If:

Table 10–3 Comparing Identity, Proxy, and Database Credentials

Use DB
Credentia
ls Identity based

getConnect
ion
(scott,***)

getConnection
(weblogic,***)

getConnectio
n
(jdbcqa3,***)

getConnection(
)

true true Identity
scott

Client
weblogic

 Proxy null

weblogic fails –
not a db user

User jdbcqa3

Client
weblogic

Proxy null

Default jdbcqa

Client weblogic

Proxy null

false true scott fails –
not a
WebLogic
user

User scott

Client scott

Proxy null

jdbcqa3 fails –
not a
WebLogic user

User scott

Client scott

Proxy null

true false Proxy for
scott failed

weblogic fails –
not a db user

 User jdbcqa3

Client
weblogic

Proxy jdbcqa

Default jdbcqa

Client weblogic

Proxy null

false false scott fails –
not a
WebLogic
user

User jdbcqa

Client scott

Proxy null

jdbcqa3 fails –
not a
WebLogic user

Default jdbcqa

Client scott

Proxy null

Using Encrypted Connection Properties

10-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Set Client ID is set to false, all cases would have Client set to null.

■ The Oracle thin driver is not used, the one case with the non-null Proxy would
throw an exception because proxy session is only supported with the Oracle thin
driver.

When oracle-proxy-session is set to true, the only cases that pass (with a proxy of
jdbcqa) are:

■ Setting use-database-credentials to true and using getConnection(jdbcqa3,…)
or getConnection().

■ Setting use-database-credentials is false and using getConnection(wluser,
…) or getConnection().

10.6 Using Encrypted Connection Properties
As part of a secure configuration, it may be necessary to provide one or more
connection property values that should not appear as clear text in the connection
properties of the data source descriptor file. These properties can be added using the
Encrypted Properties attribute. See "Encrypt connection properties" in Oracle
WebLogic Server Administration Console Online Help.

10.6.1 Best Practices for Ecrypting Connection Properties when Using the
Administration Console

The following section provides information on best practices and tips when encrypting
connection properties in the WebLogic Server Administration Console:

■ When creating a data source:

– Create it without the encrypted property and do not target the data source.

– It may not be possible to test the connection without the encrypted property.
You might want to temporarily test with a clear text property, then replace the
clear text property with the encrypted property later.

– Edit the data source by going to Summary of JDBC Data Sources page, select
the Data Source, go to the Configuration tab and then select the Connection
Pool tab.

■ To enter values without clear text values displayed on the screen:

– Save any other changes that you wish to make to this page and click the Add
Securely button next to the Encrypted Properties text box.

– On the Add a new Encrypted Property page, enter the property name and
masked value, and click OK.

– Repeat for additional encrypted property values.

– Click Save when you have finished entering encrypted properties.

■ You can enter several values at once if it is appropriate in your environment to
display the encrypted values on the screen until the changes are saved.

Note: You cannot encrypt connection properties when creating a
data source in the WebLogic Server Administration Console. It can
only be done when updating an existing data source configuration.

Using Encrypted Connection Properties

Understanding Data Source Security 10-13

– List each property=value pair on a separate line in the Encrypted Properties
field.

– Click Save to encrypt the values.

■ Activate your changes:

– If the data source was untargeted: Go to the Targets tab, target the data source,
and click Save.

– If the data source was already active when the encrypted property values were
added: Go to the Targets tab, untarget the data source, click Save, retarget the
data source, and click Save.

10.6.2 WLST Examples to Encrypt Connection Properties
The following sections provide examples of WLST scripts that encrypt connection
properties:

■ Section 10.6.2.1, "Use WLST to Update an Existing Data Source with Encrypted
Properties"

■ Section 10.6.2.2, "Use WLST to Create Encryped Properties"

10.6.2.1 Use WLST to Update an Existing Data Source with Encrypted Properties
 The following is an online WLST script shows how to add an encrypted property to
an existing data source named genericds.

connect('admin','password','t3://localhost:7001')
edit()
startEdit()
cd('JDBCSystemResources/genericds/JDBCResource/genericds/JDBCDriverParams/genericd
s/Properties/genericds/Properties')
create('encryptedprop','Property')
cd('encryptedprop')
cmo. setEncryptedValueEncrypted(encrypt('foo'))
save()
activate()

10.6.2.2 Use WLST to Create Encryped Properties
The following WLST script creates encrypted properties:

. . .
create('myProps','Properties')
cd('Properties/NO_NAME_0')
. . .
Create other properties
. . .
p=create('javax.net.ssl.trustStoreType', 'Property')
p.setValue('JKS')

p=create('javax.net.ssl.trustStorePassword', 'Property')
p.setEncryptedValueEncrypted(encrypt('securityCommonTrustKeyStorePassPhrase'))
. . .

Using SSL and Encrytption with Data Sources and Oracle Drivers

10-14 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

10.7 Using SSL and Encrytption with Data Sources and Oracle Drivers
Oracle Advanced Security provides both data encryption and strong authentication for
network connections to the database server. The following sections provide additional
information on using these features with WebLogic Server.

■ Section 10.7.1, "Using SSL with Data Sources and Oracle Drivers"

■ Section 10.7.2, "Using Data Encryption with Data Sources and Oracle Drivers"

For more information, see "JDBC Client-Side Security Features" in the Oracle® Database
JDBC Developer's Guide.

10.7.1 Using SSL with Data Sources and Oracle Drivers
This section provides additional information on a variety of options that use SSL with
data sources and Oracle drivers.

The general requirement when using SSL, regardless of the option, is that you must
specify a protocol of tcps in any url.

For detailed information on configuring and using SSL with Oracle drivers, see:

■ http://www.oracle.com/technetwork/middleware/weblogic/index-087556.html

■ http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-t
hin-ssl-130128.pdf.

If you use a provider that requires a password, such as the
javax.net.ssl.trustStorePassword or javax.net.ssl.keyStorePassword, the value
should be stored as an encrypted property. See Section 10.6, "Using Encrypted
Connection Properties."

10.7.1.1 Using SSL with Oracle Wallet
Oracle wallet can also be used with SSL. By using it correctly, passwords can be
eliminated from the JDBC configuration and client/server configuration can be
simplified by sharing the wallet). The following is a list of basic requirements to use
SSL with Oracle wallet.

■ Update the sqlnet.ora and listener.ora files with the location of the wallet.
These files also indicate whether or not SSL_CLIENT_AUTHENTICATION is being
used.

■ If you use an auto-login wallet type, a password is not needed in the data source
configuration to open the wallet. The store type for an auto-login wallet is SSO
(not JKS or PKCS12) and the file name is cwallet.sso. If you use another provider
type, use the encrypted property type to store the password as an encrypted value
in the data source configuration.

■ Enable the Oracle PKI provider in a WLS startup class using:

Security.insertProviderAt(new oracle.security.pki.OraclePKIProvider (), 3);

■ For encryption and server authentication, use the datasource connection
properties:

javax.net.ssl.trustStore=location of wallet
javax.net.ssl.trustStoreType=”SSO”

■ For client authentication, use the datasource connection properties:

javax.net.ssl.keyStore=location of wallet
javax.net.ssl.keyStoreType=”SSO”

Using SSL and Encrytption with Data Sources and Oracle Drivers

Understanding Data Source Security 10-15

■ Wallets are created using the orapki. They need to be created based on the usage
(encryption or authentication).

Common use cases are:

■ Encryption and server authentication, which requires just a trust store.

■ Encryption and authentication of both tiers (client and server), which requires a trust
store and a key store.

10.7.1.2 Active GridLink ONS over SSL
You can use SSL to secure communication between an Active GridLink (AGL) data
source and the Oracle Notification Service (ONS) which is use to provide load
balancing information and notification of node up/down events.

Use the following basic steps:

■ Create an auto-login wallet and use the wallet on the client and server. The
following is a sample sequence to create a test wallet for use with ONS.

orapki wallet create -wallet ons -auto_login -pwd ONS_Wallet
orapki wallet export -wallet ons -dn "CN=ons_test,C=US" -cert ons/cert.txt -pwd
ONS_Wallet
orapki wallet export -wallet ons -dn "CN=ons_test,C=US" -cert ons/cert.txt -pwd
ONS_Wallet

■ On the database server side:

1. Define the wallet file directory in the file $CRS_HOME/opmn/conf/ons.config.

2. Run onsctl stop/start

■ When configuring an AGL datasource, the connection to the ONS must be
defined. In addition to the host and port, the wallet file directory must be
specified. If you do not provide a password, a SSO wallet is assumed.

10.7.2 Using Data Encryption with Data Sources and Oracle Drivers
To use data encryption with the Oracle Thin driver, you must specify several
connection properties, see "Configuration Parameters" in Oracle® Database Advanced
Security Administrator's Guide. The following table maps the encryption and checksum
configuration parameters to the string constants required when configuring data
source descriptors using the Administration Console or WLST:

Table 10–4 Connection Encryption Parameters and WebLogic Configuration Constants

Client Configuration Parameter
WebLogic Server Configuration String
Constant

OracleConnection.CONNECTION_
PROPERTY_THIN_NET_ENCRYPTION_LEVEL

oracle.net.encryption_client

OracleConnection.CONNECTION_
PROPERTY_THIN_NET_ENCRYPTION_TYPES

oracle.net.encryption_types_client

OracleConnection.CONNECTION_
PROPERTY_THIN_NET_CHECKSUM_LEVEL

oracle.net.crypto_checksum_client

OracleConnection.CONNECTION_
PROPERTY_THIN_NET_CHECKSUM_TYPES

oracle.net.crypto_checksum_types_client

Using SSL and Encrytption with Data Sources and Oracle Drivers

10-16 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

11

Creating and Managing Oracle Wallet 11-1

11Creating and Managing Oracle Wallet

[12] This chapter describes how to create and manage an Oracle Wallet to store database
credentials for WebLogic Server 12.1.3 datasource definitions.

This chapter includes the following sections:

■ Section 11.1, "What is Oracle Wallet"

Section 11.2, "Where to Keep Your Wallet"

■ Section 11.3, "How to Create an External Password Store"

■ Section 11.4, "Defining a WebLogic Server Datasource using the Wallet"

■ Section 11.5, "Using a TNS Alias instead of a DB Connect String"

11.1 What is Oracle Wallet
Oracle Wallet provides an simple and easy method to manage database credentials
across multiple domains. It allows you to update database credentials by updating the
Wallet instead of having to change individual datasource definitions. This is
accomplished by using a database connection string in the datasource definition that is
resolved by an entry in the wallet.

This feature can be taken a step further by also using the Oracle TNS (Transparent
Network Substrate) administrative file to hide the details of the database connection
string (host name, port number, and service name) from the datasource definition and
instead use an alias. If the connection information changes, it is simply a matter of
changing the tnsnames.ora file instead of potentially many datasource definitions.

The wallet can be used to have common credentials between different domains. That
includes two different WLS domains or sharing credentials between WLS and the
database. When used correctly, it makes having passwords in the datasource
configuration unnecessary.

11.2 Where to Keep Your Wallet
Oracle recommends that you create and manage the Wallet in a database environment.
This environment provides all the necessary commands and libraries, including the
$ORACLE_HOME/oracle_common/bin/mkstore command. Often this task is completed
by a database administrator and provided for use by the client. A configured Wallet
consists of two files, cwallet.sso and ewallet.p12 stored in a secure Wallet directory

How to Create an External Password Store

11-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

11.3 How to Create an External Password Store
Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl <wallet_location> -create

where wallet_location is the path to the directory where you want to create and store
the wallet.

This command creates an Oracle Wallet with the autologin feature enabled at the
location specified. Autologin enables the client to access the Wallet contents without
supplying a password and prevents exposing a clear text password on the client.

The mkstore command prompts for a password that is used for subsequent
commands. Passwords must have a minimum length of eight characters and contain
alphabetic characters combined with numbers or special characters. For example:

mkstore -wrl /tmp/wallet –create
Enter password: mysecret
PKI-01002: Invalid password.
Enter password: mysecret1 (not echoed)
Enter password again: mysecret1 (not echoed)

You can store multiple credentials for multiple databases in one client wallet. You
cannot store multiple credentials (for logging in to multiple schemas) for the same
database in the same wallet. If you have multiple login credentials for the same
database, then they must be stored in separate wallets.

To add database login credentials to an existing client wallet, enter the following
command at the command line:

mkstore -wrl <wallet_location> -createCredential <db_connect_string> <username>
<password>

where:

■ The wallet_location is the path to the directory where you created the wallet.

■ The db_connect_string must be identical to the connection string that you specify
in the URL used in the datasource definition (the part of the string that follows the
@). It can be either the short form or the long form of the URL. For example:

myhost:1521/myservice or

(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=myhost-scan)(PORT=1521)))(CONNECT_
DATA=(SERVICE_NAME=myservice)))

Note: You can also install the Oracle Client Runtime package to
provide the necessary commands and libraries to create and manage
Oracle Wallet.

Note: Using Oracle Wallet moves the security vulnerability from a
clear text password in the datasource configuration file to an
encrypted password in the Wallet file. Make sure the Wallet file is
stored in a secure location.

Using a TNS Alias instead of a DB Connect String

Creating and Managing Oracle Wallet 11-3

■ The username and password are the database login credentials.

■ Repeat for each database you want to use in a WebLogic datasource.

See the Oracle Database Advanced Security Administrator's Guide for more information
about using autologin and maintaining Wallet passwords.

11.4 Defining a WebLogic Server Datasource using the Wallet
Use the following procedures to configure a WebLogic Server datasource to use Oracle
Wallet:

■ Section 11.4.1, "Copy the Wallet Files"

■ Section 11.4.2, "Update the Datasource Configuration"

11.4.1 Copy the Wallet Files
Copy the Wallet files, cwallet.sso and ewallet.p12, from the database machine to the
client machine and locate it in a secure directory.

11.4.2 Update the Datasource Configuration
Use the following steps to configure a WebLogic datasource to use Oracle Wallet:

1. Do not enter a user or password in the WebLogic Server Administration Console
when creating a datasource or delete them from an existing datasource. If a user,
password, or encrypted password appear in the configuration, they override the
Oracle wallet values.

2. Modify the URL so that there is a “/” before the “@”. For example: the short form
of the URL should look like jdbc:oracle:thin:/@mydburl:1234/mydb).

3. The following value must be added to Connection Properties:

oracle.net.wallet_location=wallet_directory

where wallet_directory is the secure directory location in Step 1 of Section 11.4.1,
"Copy the Wallet Files." An alternative method is use the -Doracle.net.wallet_
location system property and add it to JAVA_OPTIONS. Oracle recommends using
the connection property.

11.5 Using a TNS Alias instead of a DB Connect String
Instead of specifying a matching database connection string in the URL and in the
Oracle Wallet, you can create an alias to map the URL information. The connection
string information is stored in tnsnames.ora file with an associated alias name. The
alias name is then used both in the URL and the Wallet.

1. Specify the system property -Doracle.net.tns_admin=tns_directory where tns_
directory is the directory location of the tnsnames.ora file.

Note: You should enclose this value in quotation marks to escape
any special characters from the shell. Since this name is generally a
long and complex value, an alternative is to use TNS aliases. See
Section 11.5, "Using a TNS Alias instead of a DB Connect String."

Using a TNS Alias instead of a DB Connect String

11-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

2. Create or modify a tnsnames.ora file in the directory location specified by tns_
directory. The entry has the form:

alias=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port))(CONNE
CT_DATA=(SERVICE_NAME=service)))

Where host is URL of a database listener, port is the port a database listener, and
service is the service name of the database you would like to connect to.

There are additional attributes that can be configured, see "Local Naming
Parameters (tnsnames.ora)" in the Database Net Services Reference. Oracle
recommends that the string be entered on a single line.

3. Use the alias in the datasource definition URL by replacing the connection string
with the alias. For example, change the URL attribute in the Connection Pool tab
of the Administrative Console to jdbc:oracle:thin:/@alias.

Once created, it should not be necessary to modify the alias or the datasource
definition again. To change the user credential, update the Wallet. To change the
connection information, update the tnsnames.ora file. In either case, the datasource
must be re-deployed. The simplest way to redeploy a datasource is to untarget and
target the datasource in the WebLogic Server Administration Console. This
configuration is supported for Oracle release 10.2 and higher drivers.

Note: Do not use the tns_directory location as a connection
property.

12

Deploying Data Sources on Servers and Clusters 12-1

12Deploying Data Sources on Servers and
Clusters

[13] This chapter provides information on how to deploy data sources on WebLogic Server
12.1.3 server instances and clusters.

This chapter includes the following sections:

■ Section 12.1, "Deploying Data Sources on Servers and Clusters"

■ Section 12.2, "Minimizing Server Startup Hang Caused By an Unresponsive
Database"

12.1 Deploying Data Sources on Servers and Clusters
To deploy a data source to a cluster or server, you select the server or cluster as a
deployment target. When a data source is deployed on a server, WebLogic Server
creates an instance of the data source on the server, including the pool of database
connections in the data source. When you deploy a data source to a cluster, WebLogic
Server creates an instance of the data source on each server in the cluster.

For instructions, see "Target JDBC data sources" in the Oracle WebLogic Server
Administration Console Online Help.

12.2 Minimizing Server Startup Hang Caused By an Unresponsive
Database

On server startup, WebLogic Server attempts to create database connections in the
data sources deployed on the server. If a database is unreachable, server startup may
hang in the STANDBY state for a long period of time. This is due to WebLogic Server
threads that hang inside the JDBC driver code waiting for a reply from the database
server. The duration of the hang depends on the JDBC driver and the TCP/IP timeout
setting on the WebLogic Server machine.

To work around this issue, WebLogic Server includes the JDBCLoginTimeoutSeconds
attribute on the ServerMBean. When you set a value for this attribute, the value is
passed into java.sql.DriverManager.setLoginTimeout(). If the JDBC driver being
used to create database connections implements the setLoginTimeout method,
attempts to create database connections will wait only as long as the timeout specified.

An alternative is to set the Initial Capacity for the data source to 0. That means that
no connections are created when the data source is deployed and the database need
not even be available at that time. Connection creation is deferred until the application
needs them.

Minimizing Server Startup Hang Caused By an Unresponsive Database

12-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

13

Using WebLogic Server with Oracle RAC 13-1

13Using WebLogic Server with Oracle RAC

[14] This chapter describes the requirements and configuration tasks for using Oracle Real
Application Clusters (Oracle RAC) with WebLogic Server 12.1.3.

Oracle WebLogic Server provides strong support for Oracle Real Application Clusters
(RAC), minimizing database access time while allowing transparent access to rich
pooling management functions that maximizes both connection performance and
availability.

This chapter includes the following sections:

■ Section 13.1, "Overview of Oracle Real Application Clusters"

■ Section 13.2, "Software Requirements"

■ Section 13.3, "JDBC Driver Requirements"

■ Section 13.4, "Hardware Requirements"

■ Section 13.5, "Configuration Options in WebLogic Server with Oracle RAC"

Both Oracle RAC and WebLogic Server are complex systems. To use them together
requires specific configuration on both systems, as well as clustering software and a
shared storage solution. This document describes the configuration required at a high
level. For more details about configuring Oracle RAC, your clustering software, your
operating system, and your storage solution, see the documentation from the
respective vendors.

13.1 Overview of Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) is a software component you can add
to a high-availability solution that enables users on multiple machines to access a
single database with increased performance. Oracle RAC comprises two or more
Oracle database instances running on two or more clustered machines and accessing a
shared storage device via cluster technology. To support this architecture, the machines
that hosts the database instances are linked by a high-speed interconnect to form the
cluster. The interconnect is a physical network used as a means of communication
between the nodes of the cluster. Cluster functionality is provided by the operating
system or compatible third party clustering software.

An Oracle RAC installation appears like a single standard Oracle database and is
maintained using the same tools and practices. All the nodes in the cluster execute
transactions against the same database and Oracle RAC coordinates each node's access
to the shared data to maintain consistency and ensure integrity. You can add nodes to
the cluster easily and there is no need to partition data when you add them. This
means that you can horizontally scale the database tier as usage and demand grows by
adding Oracle RAC nodes, storage, or both.

Software Requirements

13-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

13.2 Software Requirements
To use WebLogic Server with Oracle RAC, you must install the following software on
each Oracle RAC node:

■ Operating system patches required to support Oracle RAC. See the release notes
from Oracle for details.

■ Oracle database management system. See Oracle® Fusion Middleware Licensing
Information.

■ Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

■ Shared storage software, such as Oracle Automatic Storage Management (ASM).
Note that some clustering software includes a file storage solution, in which case
additional shared storage software is not required.

13.3 JDBC Driver Requirements
To use WebLogic Server with Oracle RAC, your WebLogic JDBC data sources must use
the Oracle JDBC Thin driver 11g or later to create database connections.

13.4 Hardware Requirements
A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an
Oracle RAC cluster, and hardware for shared storage.

13.4.1 WebLogic Server Cluster
The WebLogic Server cluster can be configured in many ways and with various
hardware options. See Administering Clusters for Oracle WebLogic Server for more details
about configuring a WebLogic Server cluster.

13.4.2 Oracle RAC Cluster
For the latest hardware requirements for Oracle RAC, see the Oracle RAC
documentation. However, to use Oracle RAC with WebLogic Server, you must run
Oracle RAC instances on robust, production-quality hardware. The Oracle RAC
configuration must deliver database processing performance appropriate for
reasonably-anticipated application load requirements. Unusual database response
delays can lead to unexpected behavior during database failover scenarios.

13.4.3 Shared Storage
In an Oracle RAC configuration, all data files, control files, and parameter files are
shared for use by all Oracle RAC instances. An HA storage solution that uses one of
the following architectures is recommended:

■ Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

Note: See "Supported Configurations" in What's New in Oracle WebLogic
Server for the latest WebLogic Server hardware platform and operating system
support, and for the Oracle RAC versions supported by WebLogic Server
versions and service packs. See the Oracle documentation for hardware and
software requirements required for running the Oracle RAC software.

Configuration Options in WebLogic Server with Oracle RAC

Using WebLogic Server with Oracle RAC 13-3

■ Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

13.5 Configuration Options in WebLogic Server with Oracle RAC
When using WebLogic Server with Oracle RAC, you must configure your WebLogic
Domain so that it can interact with Oracle RAC instances and so that it performs as
expected. The following sections describe configuration options and requirements:

■ Section 13.5.1, "Choosing a WebLogic Server Configuration for Use with Oracle
RAC"

■ Section 13.5.2, "Validating Connections when using WebLogic Server with Oracle
RAC"

■ Section 13.5.3, "Additional Considerations When Using WebLogic Server with
Oracle RAC"

13.5.1 Choosing a WebLogic Server Configuration for Use with Oracle RAC
Consider the following alternatives:

■ Using Active Gradient (AGL) data sources, see Oracle® Fusion Middleware Licensing
Information. AGL supports automatic additional and removal of RAC instances. It
also automatically handles when nodes go down and come up without waiting for
connection failures and successes. See Section 5, "Using Active GridLink Data
Sources."

■ To connect to multiple Oracle RAC instances when using global transactions (XA),
Oracle recommends the use of transaction-aware WebLogic JDBC multi data
sources, which support failover and load balancing, to connect to the Oracle RAC
nodes. For more information see Section C.6, "Using Multi Data Sources with
Global Transactions."

■ To connect to multiple Oracle RAC instances when not using XA, Oracle
recommends the use of (non-transaction-aware) multi data sources to connect to
the Oracle RAC nodes. Use the standard multi data source configuration, which
supports failover and load balancing. For more information see Section C.7, "Using
Multi Data Sources without Global Transactions."

The following table may help you as you try to determine which configuration is right
for your particular application:

Table 13–1 Choosing Configurations to Use with Oracle RAC

Requires
Load
Balancing?

Requires
Failover?

Requires
Global
Transactions
(XA)?

Uses Oracle
RAC
Services See...

Yes Yes Yes Yes Section 5, "Using Active GridLink Data Sources"

Yes Yes Yes No Section C.6, "Using Multi Data Sources with Global
Transactions"

Configuration Options in WebLogic Server with Oracle RAC

13-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

WebLogic supports the use of Oracle Data Guard with Multi Data Source and AGL.
When used with a Multi Data Source, the following limitations exist:

■ Only the failover policy is supported.

■ Only one RAC instance is allowed in the primary data center. A single generic
data source that is a member of the Multi Data Source is configured for the
primary data center. If SCAN is used, an INSTANCE_NAME must also be specified.

■ For each standby instance, a generic data source that is a member of the Multi
Data Source must be configured. If SCAN is used, an INSTANCE_NAME must also be
specified for each instance. No member of the Multi Data Source can represent
more than one instance in a RAC cluster.

13.5.2 Validating Connections when using WebLogic Server with Oracle RAC
Applications can use the JDBC 4.0 Connection.isValid API to verify connection
viability.

13.5.3 Additional Considerations When Using WebLogic Server with Oracle RAC
The Distributed Transaction Processing (DTP) attribute on a database service should
not be used to coordinate transactions when using AGL data sources or multi data
sources with Oracle RAC. This option implies that the service is guaranteed to run on
only one RAC instance at any time. Transaction affinity to a single instance is
automatically managed by WebLogic Server for either AGL or Multi Data Source. This
allows the whole RAC cluster to be available for distributed transactions, as opposed
to DTP limiting all transactions for the service to a single RAC instance.

Yes Yes Yes Yes Section C.8, "Configuring Connections to Services
on Oracle RAC Nodes"

Yes Yes No Yes Section C.8, "Configuring Connections to Services
on Oracle RAC Nodes"

Yes Yes No No Section C.7, "Using Multi Data Sources without
Global Transactions"

Note: WebLogic Server does not support
oracle.ucp.jdbc.ValidConnection.isValid or
oracle.ucp.jdbc.ValidConnection.setInvalid.

Table 13–1 (Cont.) Choosing Configurations to Use with Oracle RAC

Requires
Load
Balancing?

Requires
Failover?

Requires
Global
Transactions
(XA)?

Uses Oracle
RAC
Services See...

14

Using JDBC Drivers with WebLogic Server 14-1

14Using JDBC Drivers with WebLogic Server

[15] This chapter describes how to set up and use JDBC drivers with WebLogic Server
12.1.3.

This chapter includes the following sections:

■ Section 14.1, "JDBC Driver Support"

■ Section 14.2, "JDBC Drivers Installed with WebLogic Server"

■ Section 14.3, "Using Third-Party JDBC Drivers"

■ Section 14.4, "Adding or Updating JDBC Drivers"

■ Section 14.5, "Globalization Support for the Oracle Thin Driver"

■ Section 14.6, "Using the Oracle Thin Driver in Debug Mode"

14.1 JDBC Driver Support
WebLogic Server provides support for application data access and database dependent
features. For more information, see "Database Interoperability" in What's New in Oracle
WebLogic Server.

14.2 JDBC Drivers Installed with WebLogic Server
The 12c version of the Oracle Thin driver is installed with Oracle WebLogic Server.

■ ojdbc7.jar, ojdbc7_g.jar, and ojdbc7dms.jar for JDK7

■ ojdbc6.jar, ojdbc6_g.jar, and ojdbc6dms.jar for JDK 6

In addition to the Oracle Thin Driver, the mySQL 5.1.x
(mysql-connector-java-commercial-5.1.22-bin.jar) JDBC driver is installed with
WebLogic Server.

These drivers are installed in subdirectories of $ORACLE_HOME/oracle_common/modules.
The manifest in the weblogic.jar file directly or indirectly includes these files so they
load automatically when the server starts. Therefore, you do not need to add these
JDBC drivers to your CLASSPATH. For the Oracle driver, the default is to include
ojdbc7.jar. If you plan to use a different version of any of the drivers installed with
WebLogic Server, see Section 14.4, "Adding or Updating JDBC Drivers."

Note: WebLogic-branded DataDirect drivers are also installed with
WebLogic Server. See Using WebLogic-branded DataDirect Drivers for more
information.

Using Third-Party JDBC Drivers

14-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

14.3 Using Third-Party JDBC Drivers
If you plan to use a third-party JDBC driver that is not installed with WebLogic Server,
you must install the driver files by updating your CLASSPATH with the path to the
driver files. See Section 14.4, "Adding or Updating JDBC Drivers."

For information on supported JDBC drivers, see "Supported Configurations" and
"Database Interoperability" in What's New in Oracle WebLogic Server.

14.4 Adding or Updating JDBC Drivers

To add a new or update an existing JDBC driver:

1. If you are updating existing JDBC drivers, make backup copies of the
corresponding JAR files. Drivers installed with WebLogic Server are located in
subdirectories of the $ORACLE_HOME/oracle_common/modules directory.

2. In the appropriate location, add the new driver JAR or replace the existing JAR
with the updated JAR.

3. Determine if you need to modify your CLASSPATH:

■ If the JDBC driver JAR was installed with WebLogic Server and the
replacement JAR has the same name, you do not need to modify CLASSPATH.
The manifest in the weblogic.jar file directly or indirectly includes these files
so they will load automatically when the server starts.

■ If you are adding a new JDBC driver or updating a JDBC driver where the
replacement JAR has a different name than the original JAR:

– For all domains, edit the commEnv.cmd/sh script in WL_HOME/common/bin
and prepend your JAR file to the WEBLOGIC_CLASSPATH environment
variable. Your JAR must be located before any client JAR files.

– For a specific WebLogic Server domain, edit the setDomainEnv.cmd/sh
script in that domain's bin directory, and prepend the JAR file to the PRE_
CLASSPATH environment variable. Your JAR must be located before any
client JAR files.

Note: WebLogic Server includes a version of the Derby DBMS installed with
the WebLogic Server examples in the WL_HOME\common\derby directory. Derby
is an all-Java DBMS product included in the WebLogic Server distribution
solely in support of demonstrating the WebLogic Server examples. For more
information about Derby, see http://db.apache.org/derby.

Note: It is recommended to update the JDBC drivers using the
OPatch.

Note: setDomainEnv is designed to be sourced from other scripts,
such as the startWebLogic script. setDomainEnv should not be called
directly from within an interactive shell. Doing so can cause
unpredictable issues in the domain.

Using the Oracle Thin Driver in Debug Mode

Using JDBC Drivers with WebLogic Server 14-3

14.5 Globalization Support for the Oracle Thin Driver
For globalization support with the Oracle Thin driver, Oracle supplies the
orai18n.jar file, which replaces nls_charset.zip. If you use character sets other than
US7ASCII, WE8DEC, WE8ISO8859P1 and UTF8 with CHAR and NCHAR data in Oracle object
types and collections, you must include orai18n.jar and orai18n-mapping.jar in
your CLASSPATH.

The orai18n.jar and orai18n-mapping.jar are included with the WebLogic Server
installation in the ORACLE_HOME\oracle_common\modules\oracle.nlsrtl_12.1.0
folder. These files are not referenced by the weblogic.jar manifest file, so you must
add them to your CLASSPATH before they can be used.

14.6 Using the Oracle Thin Driver in Debug Mode
The ORACLE_HOME\oracle_common\modules\oracle.jdbc_12.1.0 folder includes the
ojdbc6_g.jar (for JDK 6) file and ojdbc7_g.jar (for JDK7), which are the versions of
the Oracle Thin driver with classes to support debugging and tracing. To use the
Oracle Thin driver in debug mode, add the path to these files at the beginning of your
CLASSPATH.

Using the Oracle Thin Driver in Debug Mode

14-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

15

Monitoring WebLogic JDBC Resources 15-1

15Monitoring WebLogic JDBC Resources

[16] This chapter provides information on how to create, collect, analyze, archive, and
access diagnostic data generated by a running server and the applications deployed
within its containers in WebLogic Server 12.1.3.

This data provides insight into the run-time performance of servers and applications
and enables you to isolate and diagnose faults when they occur. WebLogic JDBC takes
advantage of this service to provide enhanced run-time statistics, profile information
over a period of time, logging, and debugging to help you keep your WebLogic
domain running smoothly.

You can use the run-time statistics to monitor the data sources in your WebLogic
domain to see if there is a problem. If there is a problem, you can use profiling to
determine which application is the source of the problem. Once you've narrowed it
down to the application, you can then use JDBC debugging features to find the
problem within the application.

This chapter includes the following sections:

■ Section 15.1, "Viewing Run-Time Statistics"

■ Section 15.2, "Profile Logging"

■ Section 15.3, "Collecting Profile Information"

■ Section 15.4, "Debugging JDBC Data Sources"

15.1 Viewing Run-Time Statistics
Viewing run-time statistics allows you to monitor the data sources in your WebLogic
domain.

■ Section 15.1.1, "Data Source Statistics"

■ Section 15.1.2, "Prepared Statement Cache Statistics"

15.1.1 Data Source Statistics
You can view run-time statistics for a data source via the WebLogic Server
Administration Console or through the JBCDataSourceRuntimeMBean. The
JDBCDataSourceRuntimeMBean provides methods for getting the current state of the
data source and for getting statistics about the data source, such as the average
number of active connections, the current number of active connections, the highest
number of active connections, and so forth. For more information, see
"JDBCDataSourceRuntimeMBean" in the MBean Reference for Oracle WebLogic Server.

Profile Logging

15-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

15.1.2 Prepared Statement Cache Statistics
You can view run-time statistics for a prepared statement cache via the WebLogic
Server Administration Console or through the JBCDataSourceRuntimeMBean. For more
information, see "JDBCDataSourceRuntimeMBean" in the MBean Reference for Oracle
WebLogic Server.

15.2 Profile Logging
WebLogic Server uses a data source profile log to store events. The profile log has the
following benefits:

■ Log-rotation—provides the ability to configure, rotate, and retire old data using
the standard WebLogic logging implementation. See the
"DataSourceLogFileMBean" in MBean Reference for Oracle WebLogic Server.

■ Data accessibility—provides the ability to use common text editors, the WLDF
Data Accessor, or the WebLogic Server Administration Console. See Section 15.3.2,
"Accessing Diagnostic Data."

Basic characteristics of the log for data source profiling are:

■ A single log file is used for all data source profile types. Each profile record has the
profile type name for filtering. See Section 15.3.1, "Profile Types."

■ A single log file is used for all data sources on the server. Each profile record has
the decorated data source name for filtering (fully qualified with
application@module@component, if applicable). See the
"DataSourceLogFileMBean" in MBean Reference for Oracle WebLogic Server.

For more information on WebLogic logging services, see:

■ "Enable and configure Datasource Profile logs" in Oracle WebLogic Server
Administration Console Online Help.

■ "Understanding WebLogic Logging Services" in Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.

15.3 Collecting Profile Information
If the statistics that you are seeing indicate that there is a problem in your WebLogic
Server domain, you can configure any data source to collect profile information to help
you pinpoint the source of the problem. The collected profile information is stored in
records in the profile log. The fields contain different information for different profile
types, as described in the sections that follow.

When configuring your data source for profiling, you must specify the interval at
which profile data is harvested (Harvest Frequency Seconds); if the interval is set to
0, harvesting of data is disabled. See "Configure diagnostic profiling for a JDBC data
source" in Oracle WebLogic Server Administration Console Online Help.

15.3.1 Profile Types
For each of the profile types in this section, the User information provides a stack trace
of the thread that allocated the connection and is associated with the operation being
profiled. By default, the value is not set because of the overhead in tracking this
information. To obtain this information, you must also enable profiling of connection
leaks in addition to profile type that you want to track. For more information about
profiling connection leaks, see Section 15.3.1.4, "Connection Leak
(WEBLOGIC.JDBC.CONN.LEAK).".

Collecting Profile Information

Monitoring WebLogic JDBC Resources 15-3

You can choose to profile the following information about data sources and the
prepared statement cache, as described in the following sections of this document:

■ Section 15.3.1.1, "Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)"

■ Section 15.3.1.2, "Connection Reservation Wait
(WEBLOGIC.JDBC.CONN.RESV.WAIT)"

■ Section 15.3.1.3, "Connection Reservation Failed
(WEBLOGIC.JDBC.CONN.RESV.FAIL)"

■ Section 15.3.1.4, "Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)"

■ Section 15.3.1.5, "Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_
USAGE)"

■ Section 15.3.1.6, "Connection Multithreaded Usage
(WEBLOGIC.JDBC.CONN.MT_USAGE)"

■ Section 15.3.1.7, "Statement Cache Entry (WEBLOGIC.JDBC.STMT_
CACHE.ENTRY)"

■ Section 15.3.1.8, "Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)"

■ Section 15.3.1.9, "Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)"

■ Section 15.3.1.10, "Example Profile Information Record Log"

15.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)
Enable connection usage profiling to collect information about threads currently using
connections from the pool of connections in the data source. This profile information
can help determine why applications are unable to get connections from the data
source.

The record contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - connection ID

■ User - stack trace of the thread using the connection

■ Timestamp - time stamp showing when the connection was given to the thread

15.3.1.2 Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)
Enable connection reservation wait profiling to collect information about threads
currently waiting to reserve a connection from the data source. This profile
information can help determine why applications are unable to get connections from
the data source or to wait for connections. The record contains the following
information:

■ PoolName - name of the data source to which this connection belongs

■ ID - thread ID

■ User - stack trace of the thread waiting for the connection

■ Timestamp - time stamp showing when the thread started waiting for a connection

15.3.1.3 Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)
Enable connection reservation failure profiling to collect information about threads
that attempt to reserve a connection from the data source but fail to get that
connection. This profile information can help determine why applications are unable

Collecting Profile Information

15-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

to get connections from the data source even after reserving them. The record contains
the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - thread ID

■ User - stack trace of the thread waiting for the connection plus the exception
received when the reservation request failed

■ Timestamp - time stamp showing when the reservation request failed

15.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)
Enable connection leak profiling to collect information about threads that have
reserved a connection from the data source and the connection leaked (was not
properly returned to the pool of connections). This profile information can help
determine which applications are not properly closing JDBC connections. Connection
leak profiling must be enabled to get user stack trace information for any of the profile
types.The record contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - connection ID

■ User - stack trace of the thread waiting for the connection

■ Timestamp - time stamp showing when the connection leak was detected

15.3.1.5 Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)
Enable connection last usage profiling to collect information about the previous thread
that last used the connection. This information is useful when you are debugging
problems with connections infected in pending transactions that cause subsequent XA
operations on the connections to fail. The record contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - stack trace of the XA exception thrown

■ User - stack trace of the thread that last used the connection

■ Timestamp - timestamp showing when the exception was thrown

15.3.1.6 Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
Enable connection multithreaded usage profiling to collect information about threads
that erroneously use a connection that was previously obtained by a different thread.
This information is useful when an application reports a problem that you suspect
may have been caused by the simultaneous use of a connection by more than one
thread. The record contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - stack trace of the other thread that was found using the connection

■ User - stack trace of the thread that reserved the connection

Note: Inactive Connection Timeout must be set to a value greater
than zero. WebLogic prints a stack trace of where a JDBC pool
connection was reserved. The stack trace is printed after the Inactive
Connection Timeout expires.

Collecting Profile Information

Monitoring WebLogic JDBC Resources 15-5

■ Timestamp - time stamp showing when usage of the connection by multiple
threads was detected

15.3.1.7 Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)
Enable statement cache entry profiling to collect information for prepared and callable
statements added to the statement cache, and for the threads that originated the
cached statements. This information can help you determine how the cache is being
used. The record contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - string representation of the statement

■ User - stack trace of the thread using the statement

■ Timestamp - time stamp showing when the statement was added to the cache

15.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)
Enable statements usage profiling to collect information about threads currently
executing SQL statements from the statement cache. This information can help you
determine how statements are being used. The record contains the following
information:

■ PoolName - name of the data source to which this connection belongs

■ ID - SQL statement being executed via the statement

■ User - stack trace of the thread using the statement

■ Timestamp - duration of statement execution

15.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)
Enable statements usage profiling to collect profile information about application
components that access the underlying JDBC connection using either the
getVendorObject WebLogic extension API or the JDBC 4.0 method unwrap. The record
contains the following information:

■ PoolName - name of the data source to which this connection belongs

■ ID - stack trace of where the object was unwrapped

■ User - stack trace of the thread unwrapping the object

■ Timestamp - time stamp showing when the object was unwrapped.

15.3.1.10 Example Profile Information Record Log
The following is an example profile information record for Section 15.3.1.8,
"Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)" from a standard output log.

####<JDBC Data Source-0> <WEBLOGIC.JDBC.STMT.USAGE> <0> <java.lang.Exception
 at
.
.
.
 weblogic.servlet.provider.ContainerSupportProviderImpl$WlsRequestExecutor.run(
 ContainerSupportProviderImpl.java:254)
 at weblogic.work.ExecuteThread.execute(ExecuteThread.java:295)
 at weblogic.work.ExecuteThread.run(ExecuteThread.java:254)
 > <select 1 from dual>

Collecting Profile Information

15-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Each component of the profile log is surrounded by brackets ("<" and ">"):

■ The PoolName—JDBC Data Source-0

■ The Profile Type— WEBLOGIC.JDBC.STMT.USAGE

■ The Timestamp—0 (milliseconds)

■ User—java.lang.Exception at . . . at
weblogic.work.ExecuteThread.run(ExecuteThread.java:254

■ ID—select 1 from dual

15.3.2 Accessing Diagnostic Data
You can use one of the following methods to access diagnostic data:

■ The WebLogic Server Administration Console. See:

– "View and configure logs" in Oracle WebLogic Server Administration Console
Online Help.

– "Monitor Statistics for a JDBC data source" in Oracle WebLogic Server
Administration Console Online Help.

■ The Data Accessor component of the WebLogic Diagnostic Framework (WLDF).
See "Accessing Diagnostic Data With the Data Accessor" in Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server

■ Manually review information using text editors.

■ When running with DataSource profiling, the default harvesting time is 300
seconds so you may not be able to view data immediately. You may need to set the
harvest time to a small value (say 5 seconds) to better visualize results.

15.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated)

WebLogic Server provides callbacks for methods called on a JDBC driver. You can use
these callbacks to monitor and profile JDBC driver usage, including methods being
executed, any exceptions thrown, and the time spent executing driver methods.

To enable the callback feature, you specify the fully qualified path of the callback
handler for the driver-interceptor element in the JDBC data source descriptor
(module). Your callback handler must implement the
weblogic.jdbc.extensions.DriverInterceptor interface. When you enable JDBC
driver callbacks, WebLogic Server calls the preInvokeCallback(),
postInvokeExceptionCallback(), and postInvokeCallback() methods of the
registered callback handler before and after invoking any method inside the JDBC
driver.

Any time an application calls the JDBC driver, a callback is sent to the class that
implemented the driver.

Note: This feature is deprecated in WebLogic Server 10.3.6.0 and
may be removed in a future release.

Debugging JDBC Data Sources

Monitoring WebLogic JDBC Resources 15-7

15.4 Debugging JDBC Data Sources
Once you have narrowed the problem down to a specific application, you can activate
WebLogic Server's debugging features to track down the specific problem within the
application.

■ Section 15.4.1, "Enabling Debugging"

■ Section 15.4.2, "JDBC Debugging Scopes"

■ Section 15.4.3, "Setting Debugging for UCP/ONS"

■ Section 15.4.4, "Request Dyeing"

15.4.1 Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration
attribute to "true." Optionally, you can also set the server StdoutSeverity to "Debug".

You can modify the configuration attribute in any of the following ways.

15.4.1.1 Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJDBCSQL=true
-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

15.4.1.2 Enable Debugging Using the WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the debugging values:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit (see "Using the Change Center" in
Understanding Oracle WebLogic Server).

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or
disable debugging to open the settings page for that server.

4. Click Debug.

5. Expand default.

6. Select the check box for the debug scopes or attributes you want to modify.

7. Select Enable to enable (or Disable to disable) the debug scopes or attributes you
have checked.

8. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

9. Not all changes take effect immediately—some require a restart (see "Using the
Change Center" in Understanding Oracle WebLogic Server).

This method is dynamic and can be used to enable debugging while the server is
running.

15.4.1.3 Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

Debugging JDBC Data Sources

15-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

java weblogic.WLST debug.py

The debug.py program contains the following code:

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugJDBCSQL','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows a Java file
used to set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {
try {
WLSTInterpreter interpreter = null;
String user="user1";
String pass="pw12ab";
String url ="t3://localhost:7001";
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(user);
env.setSecurityCredentials(pass);
Context ctx = env.getInitialContext();

interpreter = new WLSTInterpreter();
interpreter.exec
("connect('"+user+"','"+pass+"','"+url+"')");
interpreter.exec("edit()");
interpreter.exec("startEdit()");
interpreter.exec
("cd('Servers/myserver/ServerDebug/myserver')");
interpreter.exec("set('DebugJDBCSQL','true')");
interpreter.exec("save()");
interpreter.exec("activate()");

} catch (Exception e) {
System.out.println("Exception "+e);
}
}
}
Using the WLST is a dynamic method and can be used to enable debugging while the
server is running.

15.4.1.4 Changes to the config.xml File
Changes in debugging characteristics, through console, or WLST, or command line are
persisted in the config.xml file. See Example 15–1:

Debugging JDBC Data Sources

Monitoring WebLogic JDBC Resources 15-9

Example 15–1 Example Debugging Stanza for JDBC

.

.

.
<server>
<name>myserver</name>
<server-debug>
<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jdbcsql>true</debug-jdbcsql>
</server-debug>
</server>
.
.
.

This sample config.xml fragment shows a transaction debug scope (set of debug
attributes) and a single JDBC attribute.

15.4.2 JDBC Debugging Scopes
The following are registered debugging scopes for JDBC:

■ DebugJDBCSQL (scope weblogic.jdbc.sql) - prints information about all JDBC
methods invoked, including their arguments and return values, and thrown
exceptions.

■ DebugJDBCConn (scope weblogic.jdbc.connection) - trace all connection reserve
and release operations in data sources as well as all application requests to get or
close connections.

■ DebugJDBCONS (scope weblogic.jdbc.rac) - trace low-level ONS debugging.

■ DebugJDBCRAC (scope weblogic.jdbc.rac) - trace RAC debugging.

■ DebugJDBCUCP (scope weblogic.jdbc.rac) - trace low-level UCP debugging.

■ DebugJDBCReplay (scope weblogic.jdbc.rac) - trace Replay debugging.

■ DebugJDBCRMI (scope weblogic.jdbc.rmi) - similar to JDBCSQL but at the RMI
level; turning on this one and JDBCSQL will get two sets of debug messages for
each operation called from a client.

■ DebugJDBCInternal (scope weblogic.jdbc.internal) - low level debugging in
weblogic/jdbc/common/internal related to the data source, the connection
environment, and the data source manager.

■ DebugJDBCDriverLogging (scope weblogic.jdbc.driverlogging) - enables JDBC
driver level logging (this replaces ServerMBean JDBCLoggingEnabled and
getJDBCLogFileName). Note that to get driver level tracing for Oracle, you need
to use ojdbc6_g.jar instead of ojdbc6.jar. Note that for this debug scope, it can be
turned on once via the command line or configuration when the server is booted
but cannot be turned on or off dynamically (due to the DriverManager interface).

■ DebugJTAJDBC (scope weblogic.jdbc.transaction) - trace transaction debugging.

15.4.3 Setting Debugging for UCP/ONS
The following sections provide information on how to set debugging for UCP/ONS.

Debugging JDBC Data Sources

15-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

15.4.3.1 Debugging UCP
Set UCP debugging directly using:

oracle.ucp.level = FINEST;
oracle.ucp.jdbc.PoolDataSource = WARNING;

15.4.3.2 Debugging ONS
To enable debugging for ONS, use:

oracle.ons.debug=true

To print output, make the following call:

oracle.ons.ONS public static void setLogStream(PrintStream ps, PrintStream ps2);

15.4.4 Request Dyeing
Another option for debugging is to trace the flow of an individual (typically "dyed")
application request through the JDBC subsystem. For more information, see
"Configuring the Dye Vector via the DyeInjection Monitor" in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

16

Managing WebLogic JDBC Resources 16-1

16Managing WebLogic JDBC Resources

[17] This chapter provides information on how to use the WebLogic Server 12.1.3
Administration Console, command line, JMX programs, or WebLogic Scripting Tool
(WLST) scripts to manage the JDBC data sources in your domain.

This chapter includes the following sections:

■ Section 16.1, "Testing Data Sources and Database Connections"

■ Section 16.2, "Managing the Statement Cache for a Data Source"

■ Section 16.3, "Shrinking a Connection Pool"

■ Section 16.4, "Resetting a Connection Pool"

■ Section 16.5, "Suspending a Connection Pool"

■ Section 16.6, "Resuming a Connection Pool"

■ Section 16.7, "Shutting Down a Data Source"

■ Section 16.8, "Starting a Data Source"

■ Section 16.9, "Managing DBMS Network Failures"

16.1 Testing Data Sources and Database Connections
JDBCDataSourceRuntimeMBean.testPool

To make sure that the database connections in a data source remain healthy, you
should periodically test the connections. WebLogic Server includes two basic types of
testing: automatic testing that you configure with attributes on the data source and
manual testing that you can do to trouble-shoot a data source.

Allowing WebLogic Server to automatically maintain the integrity of pool connections
should prevent most DBMS connection problems. For more information about
configuring automatic connection testing, see Section 17.2, "Connection Testing
Options for a Data Source."

To manually test a connection from a data source, you can use the Test Data Source
feature on the JDBC Data Source: Monitoring: Testing page in the WebLogic Server
Administration Console (see "Test JDBC data sources") or the testPool() method in
the JDBCDataSourceRuntimMBean. To test a database connection from a data source,
Test Reserved Connections must be enabled and Test Table Name must be defined in
the data source configuration. Both are defined by default if you create the data source
using the WebLogic Server Administration Console.

When you test a data source, WebLogic Server reserves a connection, tests it using the
query defined in Test Table Name, and then releases the connection.

Managing the Statement Cache for a Data Source

16-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

16.2 Managing the Statement Cache for a Data Source
For each connection in a data source in your system, WebLogic Server creates a
statement cache. When a prepared statement or callable statement is used on a
connection, WebLogic Server caches the statement so that it can be reused. For more
information about the statement cache, see Section 17.1, "Increasing Performance with
the Statement Cache."

Each connection in the data source has its own statement cache, but configuration
settings are made for all connections in the data source. You can clear the statement
cache for all connections in a data source using the WebLogic Server Administration
Console or you can programmatically clear the statement cache for an individual
connection.

16.2.1 Clearing the Statement Cache for a Data Source
JDBCDataSourceRuntimeMBean.clearStatementCache

You can manually clear the statement cache for all connections in a data source using
the WebLogic Server Administration Console (see "Clear the statement cache in a
JDBC data source") or with the clearStatementCache() method on the
JDBCDataSourceRuntimeMBean.

16.2.2 Clearing the Statement Cache for a Single Connection
weblogic.jdbc.extensions.WLConnection.clearStatementCache()
weblogic.jdbc.extensions.WLConnection.clearCallableStatement(java.lang.
String sql)
weblogic.jdbc.extensions.WLConnection.clearCallableStatement(java.lang.
String sql,int resType,int resConcurrency)
weblogic.jdbc.extensions.WLConnection.clearPreparedStatement(java.lang.
String sql)
weblogic.jdbc.extensions.WLConnection.clearPreparedStatement(java.lang.
String sql,int resType,int resConcurrency)

You can use methods in the weblogic.jdbc.extensions.WLConnection interface to
clear the statement cache for a single connection or to clear an individual statement
from the cache. These methods return true if the operation was successful and false if
the operation fails because the statement was not found.

When prepared and callable statements are stored in the cache, they are stored (keyed)
based on the exact SQL statement and result set parameters (type and concurrency
options), if any. When clearing an individual prepared or callable statement, you must
use the method that takes the proper result set parameters. For example, if you have
callable statement in the cache with resSetType of ResultSet.TYPE_SCROLL_
INSENSITIVE and a resSetConcurrency of ResultSet.CONCUR_READ_ONLY, you must
use the method that takes the result set parameters:

clearCallableStatement(java.lang.String sql,int resSetType,int resSetConcurrency)

Note: When the JDBC 4.0 setPoolable(false) method is called for a
WebLogic data source that has prepared statement caching enabled,
the statement is removed from the cache in addition to calling the
method on the driver object.

Suspending a Connection Pool

Managing WebLogic JDBC Resources 16-3

If you use the method that only takes the SQL string as a parameter, the method will
not find the statement, nothing will be cleared from the cache, and the method will
return false.

When you clear a statement that is currently in use by an application, WebLogic Server
removes the statement from the cache, but does not close it. When you clear a
statement that is not currently in use, WebLogic Server removes the statement from the
cache and closes it.

For more details about these methods, see the Javadoc for WLConnection.

16.3 Shrinking a Connection Pool
JDBCDataSourceRuntimeMBean.shrink

A data source has a set of properties that define the initial, minimum, and maximum
number of connections in the pool (initialCapacity, minCapacity, and maxCapacity).
A data source automatically adds one connection to the pool when all connections are
in use. When the pool reaches maxCapacity, the maximum number of connections are
opened, and they remain opened unless you enable automatic shrinking on the data
source or manually shrink the data source with the shrink() method.

You may want to drop some connections from the data source when a peak usage
period has ended, freeing up WebLogic Server and DBMS resources. You can use the
Shrink option on the JDBC Data Source: Control page in the WebLogic Server
Administration Console (see "Shrink the connection pool in a JDBC data source" in
Oracle WebLogic Server Administration Console Online Help) or the shrink() method on
the JDBCDataSourceRuntimeMBean. When you shrink a data source, WebLogic Server
reduces the number of connections in the pool to the greater of either the minCapacity
or the number of connections currently in use. The pool is decreased gradually to
minimize thrashing. The number of unused connections is cut in half each time
automatic shrinking is performed.

16.4 Resetting a Connection Pool
JDBCDataSourceRuntimeMBean.reset

To close and recreate all available database connections in a data source, you can use
the Reset option on the JDBC Data Source: Control page in the WebLogic Server
Administration Console (see "Reset connections in a JDBC data source" in Oracle
WebLogic Server Administration Console Online Help) or the reset() method on the
JDBCDataSourceRuntimeMBean. This may be necessary after the DBMS has been
restarted, for example. Often when one connection in a data source has failed, all of the
connections in the pool are bad.

16.5 Suspending a Connection Pool
JDBCDataSourceRuntimeMBean.suspend
JDBCDataSourceRuntimeMBean.forceSuspend

To suspend a data source, you can reserve the Suspend and Force Suspend options on
the JDBC Data Source: Control page in the WebLogic Server Administration Console
(see "Suspend JDBC data sources" in Oracle WebLogic Server Administration Console
Online Help) or the suspend() and forceSuspend() methods in the
JDBCDataSourceRuntimeMBean.

Resuming a Connection Pool

16-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

When you suspend a data source (not forcibly suspend), the data source is marked as
disabled and applications cannot reserve connections from the pool. Applications that
already have a reserved connection from the data source when it is suspended will get
an exception when trying to reserve the connection. WebLogic Server preserves all
connections in the data source exactly as they were before the data source was
suspended.

When you forcibly suspend a data source, all pool connections are destroyed and any
subsequent attempt to use reserved connections fail. Any transactions on the
connections that are closed are rolled back.

16.6 Resuming a Connection Pool
JDBCDataSourceRuntimeMBean.resume

To re-enable a data source that you suspended, you can use the Resume option on the
JDBC Data Source: Control page in the WebLogic Server Administration Console (see
"Resume suspended JDBC data sources" in Oracle WebLogic Server Administration
Console Online Help) or the resume() method on the JDBCDataSourceRuntimeMBean.
When you resume a data source, WebLogic Server marks the data source as enabled
and allows applications to reserve connections from the data source. If you suspended
the data source (not forcibly suspended), all connections are preserved exactly as they
were before the data source was suspended. Clients that had reserved a connection
before the data source was suspended can continue exactly where they left off. If you
forcibly suspended the data source, clients will have to reserve new connections to
proceed.

16.7 Shutting Down a Data Source
JDBCDataSourceRuntimeMBean.shutdown
JDBCDataSourceRuntimeMBean.forceShutdown

To shut down a data source, you can use the Shutdown and Force Shutdown options
on the JDBC Data Source: Control page in the WebLogic Server Administration
Console (see "Shut down JDBC data sources" in Oracle WebLogic Server Administration
Console Online Help) or the shutdown() and forceShutdown() methods in the
JDBCDataSourceRuntimeMBean.

When you shut down a data source (not forcibly shut down), WebLogic Server closes
database connections in the data source and shuts down the data source. If any
connections from the data source are currently in use, the operation will fail.

When you forcibly shut down a data source, WebLogic Server closes database
connections in the data source and shuts down the data source. All current connection
users are forcibly disconnected.

16.8 Starting a Data Source
JDBCDataSourceRuntimeMBean.start

After you shut down a data source, you can use the Start option on the JDBC Data
Source: Control page in the WebLogic Server Administration Console (see "Start JDBC
data sources" in Oracle WebLogic Server Administration Console Online Help) or the

Note: You cannot resume a data source that did not start correctly, for
example, if the database server is unavailable.

Managing DBMS Network Failures

Managing WebLogic JDBC Resources 16-5

start() method in the JDBCDataSourceRuntimeMBean. Invoking the Start operation
re-initializes the data source, creates connections and transitions the data source to a
health state of Running.

16.9 Managing DBMS Network Failures
-Dweblogic.resourcepool.max_test_wait_secs=xx

where xx is the amount of time, in seconds, WebLogic Server waits for connection test
before considering the connection test failed. By default, a server instance is assigned a
value of 10 seconds.

This command line flag manages failures, such as a DBMS network failure, which can
cause connection tests and connections in use by applications to hang for extended
periods of time (for example, 10 minutes). If the assigned time period expires, the
server instance purges unused connections and puts a watch on connections that are in
use by the application.

A value of ten seconds provides a reasonable amount of time to allow for peak stress
loads, when a DBMS may temporarily halt responses to clients, and then resume
service on existing connections. However, if the wait time is too long or too short, add
the flag to the startWebLogic script used for starting the server with a value that is
more appropriate for your environment. Setting the value for the amount of time to
zero (0) seconds, causes the server to wait indefinitely on a hanging connection test.

Managing DBMS Network Failures

16-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

17

Tuning Data Source Connection Pools 17-1

17Tuning Data Source Connection Pools

[18] This chapter provides information on how to properly tune the connection pool
attributes in JDBC data sources in your WebLogic Server 12.1.3 domain to improve
application and system performance.

This chapter includes the following sections:

■ Section 17.1, "Increasing Performance with the Statement Cache"

■ Section 17.2, "Connection Testing Options for a Data Source"

■ Section 17.3, "Enabling Connection Creation Retries"

■ Section 17.4, "Enabling Connection Requests to Wait for a Connection"

■ Section 17.5, "Automatically Recovering Leaked Connections"

■ Section 17.6, "Avoiding Server Lockup with the Correct Number of Connections"

■ Section 17.7, "Limiting Statement Processing Time with Statement Timeout"

■ Section 17.8, "Using Pinned-To-Thread Property to Increase Performance"

■ Section 17.9, "Using Unwrapped Data Type Objects"

■ Section 17.10, "Tuning Maintenance Timers"

17.1 Increasing Performance with the Statement Cache
When you use a prepared statement or callable statement in an application or EJB,
there is considerable processing overhead for the communication between the
application server and the database server and on the database server itself. To
minimize the processing costs, WebLogic Server can cache prepared and callable
statements used in your applications. When an application or EJB calls any of the
statements stored in the cache, WebLogic Server reuses the statement stored in the
cache. Reusing prepared and callable statements reduces CPU usage on the database
server, improving performance for the current statement and leaving CPU cycles for
other tasks.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options
per data source. That is, the statement cache for each connection in a data source uses
the statement cache options specified for the data source, but each connection caches
it's own statements. Statement cache configuration options include:

■ Statement Cache Type—The algorithm that determines which statements to store
in the statement cache. See Section 17.1.1, "Statement Cache Algorithms."

Increasing Performance with the Statement Cache

17-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. See Section 17.1.2, "Statement Cache Size."

You can use the WebLogic Server Administration Console to set statement cache
options for a data source. See "Configure the statement cache for a JDBC data source"
in the Oracle WebLogic Server Administration Console Online Help.

17.1.1 Statement Cache Algorithms
The Statement Cache Type (or algorithm) determines which prepared and callable
statements to store in the cache for each connection in a data source. You can choose
from the following options:

■ Section 17.1.1.1, "LRU (Least Recently Used)"

■ Section 17.1.1.2, "Fixed"

17.1.1.1 LRU (Least Recently Used)
When you select LRU (Least Recently Used, the default) as the Statement Cache Type,
WebLogic Server caches prepared and callable statements used on the connection until
the statement cache size is reached. When an application calls
Connection.prepareStatement(), WebLogic Server checks to see if the statement is
stored in the statement cache. If so, WebLogic Server returns the cached statement (if it
is not already being used). If the statement is not in the cache, and the cache is full
(number of statements in the cache = statement cache size), WebLogic Server
determines which existing statement in the cache was the least recently used and
replaces that statement in the cache with the new statement.

The LRU statement cache algorithm in WebLogic Server uses an approximate LRU
scheme.

17.1.1.2 Fixed
When you select FIXED as the Statement Cache Type, WebLogic Server caches
prepared and callable statements used on the connection until the statement cache size
is reached. When additional statements are used, they are not cached.

With this statement cache algorithm, you can inadvertently cache statements that are
rarely used. In many cases, the LRU is preferred because rarely used statements will
eventually be replaced in the cache with frequently used statements.

17.1.2 Statement Cache Size
The Statement Cache Size attribute determines the total number of prepared and
callable statements to cache for each connection in each instance of the data source. By
caching statements, you can increase your system performance. However, you must
consider how your DBMS handles open prepared and callable statements:

■ In many cases, the DBMS has a resource cost, such as a cursor, for each open
statement. This applies to prepared and callable statements in the statement cache.
For example, if you cache too many statements, you may exceed the limit of open
cursors on your database server. If you have a data source with 10 connections
deployed on 2 servers, and set the Statement Cache Size to 10 (the default), you
may open 200 (10 x 2 x 10) cursors on your database server for the cached
statements.

■ Some drivers impose large memory requirements for every open statement. For a
server, memory consumption is based on (number of data sources * number of
connections * number of statements).

Increasing Performance with the Statement Cache

Tuning Data Source Connection Pools 17-3

■ Some DBMSs may impose limits on the number of statements/cursors per
connection.

The statement cache size is dependent on your applications. Ideally it is the total
number of every prepared or callable statement made with a connection from the
DataSource. One way to approximate the maximum size used by your applications is
to set the cache size to a huge number, observe the pool statistics of your application,
and then take a value slightly larger than the largest observed value. From a WebLogic
DataSource perspective, there is no loss in performance for having a cache size larger
than your applications require.

However, having a cache size that is too small negatively impacts performance as the
cache turnover can be so high while trying to accommodate new statements that old
statements are flushed before they are ever reused. In some cases where you cannot
allow a big enough statement cache to hold all or most of your statements, you may
find may the reuse rate is so small that your system performs better without a
statement cache.

17.1.3 Usage Restrictions for the Statement Cache
Using the statement cache can dramatically increase performance, but you must
consider its limitations before you decide to use it. Please note the following
restrictions when using the statement cache.

There may be other issues related to caching statements that are not listed here. If you
see errors in your system related to prepared or callable statements, you should set the
statement cache size to 0, which turns off statement caching, to test if the problem is
caused by caching prepared statements.

17.1.3.1 Calling a Stored Statement After a Database Change May Cause Errors
Prepared statements stored in the cache refer to specific database objects at the time
the prepared statement is cached. If you perform any DDL (data definition language)
operations on database objects referenced in prepared statements stored in the cache,
the statements may fail the next time you run them. For example, if you cache a
statement such as select * from emp and then drop and recreate the emp table, the
next time you run the cached statement, the statement may fail because the exact emp
table that existed when the statement was prepared, no longer exists.

Likewise, prepared statements are bound to the data type for each column in a table in
the database at the time the prepared statement is cached. If you add, delete, or
rearrange columns in a table, prepared statements stored in the cache are likely to fail
when run again.

These limitations depend on the behavior of your DBMS.

17.1.3.2 Using setNull In a Prepared Statement
If you cache a prepared statement that uses a setNull bind variable, you must set the
variable to the proper data type. If you use a generic data type, as in the following
example, data may be truncated or the statement may fail when it runs with a value
other than null.

 java.sql.Types.Long sal=null
 .
 .
 .
 if (sal == null)
 setNull(2,int)//This is incorrect
 else

Connection Testing Options for a Data Source

17-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

 setLong(2,sal)

Instead, use the following:

 if (sal == null)
 setNull(2,long)//This is correct
 else
 setLong(2,sal)

17.1.3.3 Statements in the Cache May Reserve Database Cursors
When WebLogic Server caches a prepared or callable statement, the statement may
open a cursor in the database. If you cache too many statements, you may exceed the
limit of open cursors for a connection. To avoid exceeding the limit of open cursors for
a connection, you can change the limit in your database management system or you
can reduce the statement cache size for the data source.

17.1.3.4 Other Considerations When Using the Statement Cache
There are several cases where special consideration is needed for the statement cache.

■ A datasource is configured to use DRCP. In this case, the cache is cleared
whenever the connection is closed by the application. See Section 6.2, "Database
Resident Connection Pooling."

■ A datasource is configured to use Application Continuity. In this case, the
statement cache is closed whenever the connection is replayed. See Section 6.1,
"Application Continuity."

■ oracle.jdbc.implicitstatementcachesize is set in the connection properties of a
datasource.

■ For ease of use and to ensure caching is disabled, WebLogic Server automatically
sets the statement cache size value to zero (0).

■ When the JDBC 4.0 setPoolable(false) method is called for a WebLogic data
source that has prepared statement caching enabled, the statement is removed
from the cache in addition to calling the method on the driver object.

17.2 Connection Testing Options for a Data Source
To make sure that the database connections in a data source remain healthy, you
should periodically test the connections. WebLogic Server includes two basic types of
testing:

■ Automatic testing that you configure with options on the data source so that
WebLogic Server makes sure that database connections remain healthy.

■ Manual testing that you can do to trouble-shoot a data source. See Section 16.1,
"Testing Data Sources and Database Connections."

To configure automatic testing options for a data source, you set the following options
either through the WebLogic Server Administration Console or through WLST using
the JDBCConnectionPoolParamsBean:

■ Test Frequency—(TestFrequencySeconds in the JDBCConnectionPoolParamsBean)
Use this attribute to specify the number of seconds between tests of unused
connections. WebLogic Server tests unused connections, and closes and replaces
any faulty connections. You must also set the Test Table Name.

Connection Testing Options for a Data Source

Tuning Data Source Connection Pools 17-5

■ Test Reserved Connections—(TestConnectionsOnReserve in the
JDBCConnectionPoolParamsBean) Enable this option to test each connection before
giving to a client. This may add a slight delay to the request, but it guarantees that
the connection is healthy. You must also set a Test Table Name.

■ Test Table Name—(TestTableName in the JDBCConnectionPoolParamsBean) Use
this attribute to specify a table name to use in a connection test. You can also
specify SQL code to run in place of the standard test by entering SQL followed by a
space and the SQL code you want to run as a test. Test Table Name is required to
enable any database connection testing. See Section 17.2.3, "Database Connection
Testing Using Default Test Table Name."

■ Seconds to Trust an Idle Pool
Connection—(SecondsToTrustAnIdlePoolConnection in the
JDBCConnectionPoolParamsBean) Use this option to specify the number of seconds
after a connection has been proven to be OK that WebLogic Server trusts the
connection is still viable and will skip the connection test, either before delivering
it to an application or during the periodic connection testing process. This option
is an optimization that minimizes the performance impact of connection testing,
especially during heavy traffic. See Section 17.2.1.6, "Minimizing Connection
Request Delay with Seconds to Trust an Idle Pool Connection."

■ Count of Test Failures Till Flush—(CountOfTestFailuresTillFlush in the
JDBCConnectionPoolParamsBean) Use this option to specify the number of test
failures allowed before WebLogic Server closes all connections in the connection
pool to minimize the delay caused by further database testing. This parameter
minimizes the amount of time allowed for failover when a Multi Data Source
member fails. See Section 17.2.1.4, "Minimizing Connection Test Delay After
Database Connectivity Loss."

■ Connection Count of Refresh Failures Till
Disable—(CountOfRefreshFailuresTillDisable in the
JDBCConnectionPoolParamsBean) Use this option to specify the number of test
failures allowed before WebLogic Server disables the connection pool to minimize
the delay in handling the connection request caused by a database failure. See
Section 17.2.1.5, "Minimizing Connection Request Delays After Loss of DBMS
Connectivity."

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see "JDBCConnectionPoolParamsBean" in the
MBean Reference for Oracle WebLogic Server for more details about these options.

For instructions to set connection testing options, see "Configure testing options for a
JDBC data source" in the Oracle WebLogic Server Administration Console Online Help.

The following section discusses automatic connection testing options:

■ Section 17.2.1, "Database Connection Testing Semantics"

■ Section 17.2.2, "Database Connection Testing Configuration Recommendations"

■ Section 17.2.3, "Database Connection Testing Using Default Test Table Name"

■ Section 17.2.4, "Database Connection Testing Options"

17.2.1 Database Connection Testing Semantics
When WebLogic Server tests database connections in a data source, it reserves a
connection from the data source, runs a small query on the connection, then returns
the connection to the pool in the data source. The server instance tracks statistics on
the pool status, including the amount of time a required to complete a connection test,

Connection Testing Options for a Data Source

17-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

the number of connections waiting for a connection, and the number of connections
being tested. The history of recent test connection behavior is used to calculate the
amount of time the server instance waits until a connection test is determined to have
failed.

If a thread appears to be taking longer than normal to complete a test, the server
instance may delay testing on other threads until the abnormally long-running test
completes. If that thread hangs too long in connection testing (10 seconds by default), a
pool may declare a DBMS connectivity failure, disable itself, and kill all connections,
whether unreserved or in application hands. A pool closes all in-test or unused
connections, and flags in-use connections to check them later as they may be hanging.
After the Test Frequency Seconds has passed, WebLogic Server kills any in-use
connections that have not progressed.

This is very rare, and is intended to relieve the otherwise interminable hangs that can
be caused by network cable disconnects and other problems that can lock any JVM
thread which is doing a call in a socket read that the JVM will be unable to break until
the OS TCP limit is hit (typically 10 minutes).

The query used in testing is determined by the value in Test Table Name. If the value is
a table name, the query is select count(*) from table_name. If Test Table Name
includes a full query starting with SQL followed by space and the query, WebLogic
Server uses that query when sting database connections.

If a connection fails the test, WebLogic Server closes and recreates the connection, and
then tests the new connection.

Details about the semantics of connection testing is discussed in the following sections:

■ Section 17.2.1.1, "Connection Testing When Database Connections are Created"

■ Section 17.2.1.2, "Periodic Connection Testing"

■ Section 17.2.1.3, "Testing Reserved Connections"

■ Section 17.2.1.4, "Minimizing Connection Test Delay After Database Connectivity
Loss"

■ Section 17.2.1.5, "Minimizing Connection Request Delays After Loss of DBMS
Connectivity"

■ Section 17.2.1.6, "Minimizing Connection Request Delay with Seconds to Trust an
Idle Pool Connection"

17.2.1.1 Connection Testing When Database Connections are Created
When connections are created in a data source, WebLogic Server tests each connection
using the query defined by the value in Test Table Name. Connections are created
when a data source is deployed, either at server startup or when creating a data
source, when increasing capacity to meet demand for connections, or when recreating
a connection that failed a connection test.

The purpose of this testing is to ensure that new connections are viable and ready for
use when an application requests a connection.

17.2.1.2 Periodic Connection Testing
If Test Frequency is greater than 0, WebLogic Server periodically tests the pooled
connections that are not currently reserved by applications. The test is based on the
query defined in Test Table Name. If a connection fails the test, WebLogic Server closes
the connection, recreates the connection, and tests the new connection before returning
it to the pool.

Connection Testing Options for a Data Source

Tuning Data Source Connection Pools 17-7

17.2.1.3 Testing Reserved Connections
When Test Connections On Reserve is enabled, when your application requests a
connection from the data source, WebLogic Server tests the connection using the query
specified in Test Table Name before giving the connection to the application. The
default value is not enabled.

Testing reserved connections can cause a delay in satisfying connection requests, but it
makes sure that the connection is viable when the application gets the connection. You
can minimize the impact of testing reserved connections by tuning Seconds to Trust an
Idle Pool Connection. See Section 17.2.1.6, "Minimizing Connection Request Delay
with Seconds to Trust an Idle Pool Connection."

17.2.1.4 Minimizing Connection Test Delay After Database Connectivity Loss
When connectivity to the DBMS is lost, even if only momentarily, some or all of the
JDBC connections in a data source typically become defunct. If the data source is
configured to test connections on reserve, when an application requests a database
connection, WebLogic Server tests the connection, discovers that the connection is
dead, and tries to replace it with a new connection to satisfy the request. Ordinarily,
when the DBMS comes back online, the refresh process succeeds. However, in some
cases and for some modes of failure, testing a dead connection can impose a long
delay.

To minimize this delay, WebLogic data sources include logic that considers all
connections in the data source as dead after a number of consecutive test failures, and
closes all connections in the data source. After all connections are closed, when an
application requests a connection, the data source creates a connection without first
having to test a dead connection. This behavior minimizes the delay for connection
requests following the data source's connection pool flush.

WebLogic Server determines the number of test failures before closing all connections
based on the Test Frequency setting for the data source:

■ If Test Frequency is greater than 0, the number of test failures before closing all
connections is set to 2.

■ If Test Frequency is set to 0 (periodic testing is disabled), the number of test
failures before closing all connections is set to 25% of the Maximum Capacity for
the data source.

To minimize the delay that occurs during the test of dead database connections, you
can set CountOfTestFailuresTillFlush attribute on the connection pool. To enable
this feature, TestConnectionsOnReserve must also be set to true.

If the configured or default number of consecutive connection test failures are
observed, all currently unused connections in the pool are destroyed so any
subsequent connection requests get a new connection. Active connections are not
interrupted but are monitored for activity. If no activity is detected with in 60 seconds,
these connections are destroyed.

The default value is generally sufficient. You may need to increase this value if your
environment has:

■ Slow-running applications that may not show JDBC activity for several minutes

■ Network/firewall issues that consistently kill one or two connections

17.2.1.5 Minimizing Connection Request Delays After Loss of DBMS Connectivity
If your DBMS becomes and remains unavailable, the data source will persistently test
and try to replace dead connections while trying to satisfy connection requests. This

Connection Testing Options for a Data Source

17-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

behavior is beneficial because it enables the data source to react immediately when the
database becomes available. However, in cases where the DBMS is truly down, it may
be minutes, hours, or days before the DBMS is restored. Testing a dead database
connection can take as long as the network timeout, and can cause a long delay for
clients. This delay occurs for each dead connection in the connection pool until all
connections are replaced and can cause long delays to clients before getting the
expected failure message.

To minimize the delay that occurs for client applications while a database is
unavailable, you can set the CountOfRefreshFailuresTillDisable attribute on the
connection pool. The default value is 2. To enable this feature,
TestConnectionsOnReserve must also be set to true and InitialCapacity must be
greater than 0.

If the configured or default number of consecutive failures to replace a dead
connection are observed, WebLogic Server suspends the connection pool. If an
application requests a connection from a suspended connection pool, WebLogic Server
throws PoolDisabledSQLException to notify the client that a connection is not
available.

For data sources that are disabled in this manner, WebLogic Server periodically runs a
refresh process. The refresh process does the following:

■ The server instance executes a health check on the database server every 5
seconds. This setting is not configurable.

■ If the server instance recognizes that the database was recovered, it creates a new
database connection and enables the data source.

You can also manually enable the data source using the WebLogic Server
Administration Console or WLST.

17.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection
For some applications that use DBMS connections in a lot of very short cycles (such as
reserve-do_one_query-close), the data source's testing of the connection can contribute
a significant amount of overhead to each use cycle. To minimize the impact of
connection testing, you can set the Seconds To Trust An Idle Pool Connection attribute
in the JDBC data source configuration to trust recently-used or recently-tested
database connections and skip the connection test.

If Test Reserved Connections is enabled on your data source, when an application
requests a database connection, WebLogic Server tests the database connection before
giving it to the application. If the request is made within the time specified for Seconds
to Trust an Idle Pool Connection, since the connection was tested or successfully used
by an application, WebLogic Server skips the connection test before delivering it to an
application.

If Test Frequency is greater than 0 for your data source (periodic testing is enabled),
WebLogic Server also skips the connection test if the connection was successfully used

Note: If a data source is added to a multi data source, the multi data
source takes over the responsibility of disabling and re-enabling its
data sources. By default, a multi data source will check every two
minutes (configurable) and re-enable any of its data sources that can
re-establish connections. Configure using test frequency seconds at
the multi data source level. Note that the semantics of this setting are
different than at the data source level.

Connection Testing Options for a Data Source

Tuning Data Source Connection Pools 17-9

and returned to the data source within the time specified for Seconds to Trust an Idle
Pool Connection.

For instructions to set Seconds to Trust an Idle Pool Connection, see "Configure testing
options for a JDBC data source" in the Oracle WebLogic Server Administration Console
Online Help.

Seconds to Trust an Idle Pool Connection is a tuning feature that can improve
application performance by minimizing the delay caused by database connection
testing, especially during heavy traffic. However, it can reduce the effectiveness of
connection testing, especially if the value is set too high. The appropriate value
depends on your environment and the likelihood that a connection will become
defunct.

17.2.2 Database Connection Testing Configuration Recommendations
You should set connection testing attributes so that they best fit your environment. For
example, if your application cannot tolerate database connection failures, you should
set Seconds to Trust an Idle Pool Connection to 0 and make sure Test Reserved
Connections is enabled so that WebLogic Server will test every connection before
giving it to an application. If your application is more sensitive to delays in getting a
connection from the data source and can tolerate a possible application failure due to
using a dead connection, you should set Seconds to Trust an Idle Pool Connection to a
higher number, set Test Frequency to a lower number, and enable Test Reserved
Connections.

With these settings, your application will rely more on the data source testing
connections in the pool when they are not in use, rather than when an application
requests a connection.

When running with AGL and FAN enabled:

■ It is not necessary to run with Test Connections on Reserve because ONS will
send down events when a database instance goes down. This can significantly
improve performance by eliminating (or reducing) testing overhead in the
database. However, Test Connections on Reserve tests for other failures such as
network connectivity and application access to the database. Oracle recommends
running with Test Connections on Reserve and using
SecondsToTrustAnIdlePoolConnection and/or TestFrequencySeconds to reduce
the overhead.

■ CountOfTestFailuresTillFlush and CountOfRefreshFailuresTillDisable are
ignored. The disabling an entire RAC instance occurs when a FAN event is
received that indicates that the instance is down.

17.2.3 Database Connection Testing Using Default Test Table Name
When you create a data source using the WebLogic Server Administration Console, the
WebLogic Server Administration Console automatically sets the Test Table Name
attribute for a data source based on the DBMS that you select. The Test Table Name
attribute is used in connection testing which is optionally performed periodically or

Note: Ultimately, even if WebLogic does its best, a connection may
fail in the instant after WebLogic successfully tested it, and just before
the application uses it. Therefore, every application should be written
to respond appropriately in the case of unexpected exceptions from a
dead connection.

Enabling Connection Creation Retries

17-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

when you create or reserve a connection, depending on how you configure the testing
options. For database tests to succeed, the database user used to create database
connections in the data source must have access to the database table. If not, you
should either grant access to the user (make this change in the DBMS) or change the
Test Table Name attribute to the name of a table to which the user does have access
(make this change in the WebLogic Server Administration Console).

The Test Table Name is an overloaded parameter. Its simplest form is to name a table
that WebLogic Server queries to test a connection. Setting it to any table, such as
"DUAL" for Oracle, causes the data source to run the query select count(*) from
DUAL. If used in this mode, Oracle recommends that you choose a small, infrequently
updated table (preferably a pseudo-table such as DUAL).

The second manner in which you can define this parameter is to allow any specific
SQL string to be executed to test the connection. To use this option, set the parameter
to "SQL " plus the desired SQL string. For example SQL select 1 works for
SQLServer, which does not need a table in queries to select constants. This option is
useful for adding DBMS-side control of WebLogic Server pool connection testing, and
to make the test as fast as possible.

17.2.4 Database Connection Testing Options
For applications using an Oracle data base, particularly those with Oracle RAC
environments, using the default value of the Test Table Name attribute provides the
best overall performance.

Oracle continues to support SQL PINGDATABASE and SQL SELECT 1 FROM DUAL.
Although not as thorough as using the default value SQL SELECT 1 FROM DUAL, SQL
ISVALID significantly eliminate processing overhead and improve SOA workload
performance.

17.3 Enabling Connection Creation Retries
WebLogic JDBC data sources include the Connection Creation Retry Frequency option
(ConnectionCreationRetryFrequencySeconds in the JDBCConnectionPoolParamsBean)
that you can use to specify the number of seconds between attempts to establish
connections to the database. If set and if the database is unavailable when the data
source is created, WebLogic Server attempts to create connections in the pool again
after the number of seconds you specify, and will continue to attempt to create the
connections until it succeeds. This option applies to connections created when the data
source is created at server startup or when the data source is deployed or if the initial
capacity is increased. It does not apply to connections created for pool expansion or to
replace a defunct connection in the pool.

Table 17–1 Default Test Table Name by DBMS

DBMS Default Test Table Name (Query)

DB2 SQL SELECT COUNT(*) FROM SYSIBM.SYSTABLES

Microsoft SQL Server SQL SELECT 1

MySQL SQL SELECT 1

Oracle SQL ISVALID

Sybase SQL SELECT 1

Enabling Connection Requests to Wait for a Connection

Tuning Data Source Connection Pools 17-11

By default, Connection Creation Retry Frequency is 0 seconds. When the value is set to
0, connection creation retries is disabled and data source creation fails if the database is
unavailable.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see "JDBCConnectionPoolParamsBean" in the
MBean Reference for Oracle WebLogic Server for more details about this option.

17.4 Enabling Connection Requests to Wait for a Connection
JDBC data sources have two attributes that you can set to enable connection requests
to wait for a connection from a data source: Connection Reserve Timeout
(ConnectionReserveTimeoutSeconds) and Maximum Waiting for Connection
(HighestNumWaiters). You use these two attributes together to enable connection
requests to wait for a connection without disabling your system by blocking too many
threads.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see "JDBCConnectionPoolParamsBean" in the
MBean Reference for Oracle WebLogic Server for more details about these options.

Also see "Enable connection requests to wait for a connection" in the Administration
Console Online Help.

17.4.1 Connection Reserve Timeout
When an application requests a connection from a data source, if all connections in the
data source are in use and if the data source has expanded to its maximum capacity,
the application will get a Connection Unavailable SQL Exception. To avoid this, you
can configure the Connection Reserve Timeout value (in seconds) so that connection
requests will wait for a connection to become available. After the Connection Reserve
Timeout has expired, if no connection becomes available, the request will fail and the
application will get a PoolLimitSQLException exception.

If you set Connection Reserve Timeout to -1, a connection request will timeout
immediately if there is no connection available. If you set Connection Reserve Timeout
to 0, a connection request will wait indefinitely. The default value is 10 seconds.

See "Enable connection requests to wait for a connection" in the Oracle WebLogic Server
Administration Console Online Help.

17.4.2 Limiting the Number of Waiting Connection Requests
Connection requests that wait for a connection block a thread. If too many connection
requests concurrently wait for a connection and block threads, your system
performance can degrade. To avoid this, you can set the Maximum Waiting for
Connection (HighestNumWaiters) attribute, which limits the number connection
requests that can concurrently wait for a connection.

If you set Maximum Waiting for Connection (HighestNumWaiters) to MAX-INT (the
default), there is effectively no bound on how many connection requests can wait for a
connection. If you set Maximum Waiting for Connection to 0, connection requests
cannot wait for a connection. If the maximum number of requests has been met, a
SQLException is thrown when an application requests a connection.

Automatically Recovering Leaked Connections

17-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

17.5 Automatically Recovering Leaked Connections
A leaked connection is a connection that was not properly returned to the connection
pool in the data source. To automatically recover leaked connections, you can specify a
value for Inactive Connection Timeout on the JDBC Data Source: Configuration:
Connection Pool page in the WebLogic Server Administration Console. When you set
a value for Inactive Connection Timeout, WebLogic Server forcibly returns a
connection to the data source when there is no activity on a reserved connection for
the number of seconds that you specify. When set to 0 (the default value), this feature
is turned off.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see "JDBCConnectionPoolParamsBean" in the
MBean Reference for Oracle WebLogic Server for more details about this option.

Note that the actual timeout could exceed the configured value for Inactive
Connection Timeout. The internal data source maintenance thread runs every 5
seconds. When it reaches the Inactive Connection Timeout (for example 30 seconds), it
checks for inactive connections. To avoid timing out a connection that was reserved
just before the current check or just after the previous check, the server gives an
inactive connection a "second chance." On the next check, if the connection is still
inactive, the server times it out and forcibly returns it to the data source. On average,
there could be a delay of 50% more than the configured value.

17.6 Avoiding Server Lockup with the Correct Number of Connections
When your applications attempt to get a connection from a data source in which there
are no available connections, the data source throws an exception stating that a
connection is not available in the data source. To avoid this error, make sure your data
source can expand to the size required to accommodate your peak load of connection
requests. To increase the maximum number of connections available in the data source,
increase the value for Maximum Capacity for the data source on the JDBC Data
Source: Configuration: Connection Pool page in the Oracle WebLogic Server
Administration Console Online Help.

17.7 Limiting Statement Processing Time with Statement Timeout
With the Statement Timeout option on a JDBC data source, you can limit the amount of
time that a statement takes to execute on a database connection reserved from the data
source. When you set a value for Statement Timeout, WebLogic Server passes the time
specified to the JDBC driver using the java.sql.Statement.setQueryTimeout()
method. WebLogic Server will make the call, and if the driver throws an exception, the
value will be ignored. In some cases, the driver may silently not support the call, or
may document limited support. Oracle recommends that you check the driver
documentation to verify the expected behavior.

When Statement Timeout is set to -1, (the default) statements do not timeout.

See the JDBC Data Source: Configuration: Connection Pool page in the Oracle WebLogic
Server Administration Console Online Help for more details about this option.

17.8 Using Pinned-To-Thread Property to Increase Performance
To minimize the time it takes for an application to reserve a database connection from
a data source and to eliminate contention between threads for a database connection,
you can set the Pinned To Thread option on the JDBC data source to true. See the

Using Pinned-To-Thread Property to Increase Performance

Tuning Data Source Connection Pools 17-13

JDBC Data Source: Configuration: Connection Pool page in the Oracle WebLogic Server
Administration Console Online Help.

When Pinned To Thread is enabled, WebLogic Server pins a database connection from
the data source to an execution thread the first time an application uses the thread to
reserve a connection. When the application finishes using the connection and calls
connection.close(), which otherwise returns the connection to the data source,
WebLogic Server keeps the connection with the execute thread and does not return it
to the data source. When an application subsequently requests a connection using the
same execute thread, WebLogic Server provides the connection already reserved by
the thread. There is no locking contention on the data source that occurs when
multiple threads attempt to reserve a connection at the same time and there is no
contention for threads that attempt to reserve the same connection from a limited
number of database connections.

See "JDBC Data Source: Configuration: Connection Pool" in the Oracle WebLogic Server
Administration Console Online Help.

17.8.1 Changes to Connection Pool Administration Operations When PinnedToThread
is Enabled

Because the nature of connection pooling behavior is changed when PinnedToThread
is enabled, some connection pool attributes or features behave differently or are
disabled to suit the behavior change:

■ Maximum Capacity is ignored. The number of connections in a connection pool
equals the greater of either the initial capacity or the number of connections
reserved from the connection pool.

■ Shrinking does not apply to connection pools with PinnedToThread enabled
because connections are never returned to the connection pool. Effectively, they
are always reserved.

■ When you Reset a connection pool, the reset connections from the connection pool
are marked as Test Needed. The next time each connection is reserved, WebLogic
Server tests the connection and recreates it if necessary. Connections are not tested
synchronously when you reset the connection pool. This feature requires that Test
Connections on Reserve is enabled and a Test Table Name or query is specified.

Consider the following when using the PinnedToThread feature:

■ If used with Identity Based Connection Pooling Enabled set to true, an error is
thrown and the data source will not deploy.

■ When used with Use Database Credentials set to true, all connections are
owned by the default user as defined in the JDBC descriptor but the Oracle proxy
is set to the user and password specified on getConnection(user, password).
Similarly, with Oracle Proxy set to true, the user and password are mapped to a
database credential and the Oracle proxy is set. This is the same behavior as
without PinnedToThread.

■ Connection labeling is not supported when using PinnedToThread and an
exception is thrown when trying to get a connection with label properties.

Note: The Pinned To Thread feature does not work with an IdentityPool.
Starting with WebLogic Server Release 12.1.2, configurations with this
combination will cause the datasource to fail to deploy.

Using Unwrapped Data Type Objects

17-14 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ When using Multi-datasource, connections are maintained by each member
datasource as they are selected by the multi-datasource. For example, with
Algorithm Type of Failover, connections are initially be maintained only for the
primary member of MDS. If a failover occurs, then connections are maintained for
the next member of the MDS. When used with the Algorithm Type of
Load-Balancing, connections are maintained for each member of the MDS.

■ When using Active GridLink, Affinity and Runtime Load Balancing continue to
work as before with regard to choosing an instance. As many as one connection is
stored per instance per thread (the equivalent of setting
OnePinnedConnectionOnly=true but on a per instance basis). Gravitation is not
supported (no migration of connections to lightly used nodes).

17.8.2 Additional Database Resource Costs When PinnedToThread is Enabled
When PinnedToThread is enabled, the maximum capacity of the connection pool
(maximum number of database connections created in the connection pool) becomes
the number of execute threads used to request a connection multiplied by the number
of concurrent connections each thread reserves. This may exceed the Maximum
Capacity specified for the connection pool. You may need to consider this larger
number of connections in your system design and ensure that your database allows for
additional associated resources, such as open cursors.

Also note that connections are never returned to the connection pool, which means
that the connection pool can never shrink to reduce the number of connections and
associated resources in use. You can minimize this cost by setting an additional driver
parameter onePinnedConnectionOnly. When onePinnedConnectionOnly=true, only
the first connection requested is pinned to the thread. Any additional connections
required by the thread are taken from and returned to the connection pool as needed.
Set onePinnedConnectionOnly using the Properties attribute, for example:

Properties="onePinnedConnectionOnly=true;user=examples"

If your system can handle the additional resource requirements, Oracle recommends
that you use the PinnedToThread option to increase performance.

If your system cannot handle the additional resource requirements or if you see
database resource errors after enabling PinnedToThread, Oracle recommends not using
PinnedToThread.

17.9 Using Unwrapped Data Type Objects
Some JDBC objects from a driver that are returned from WebLogic Server are wrapped
by default. Wrapping data source objects provides WebLogic Server the ability to:

■ Generate debugging output from all method calls.

■ Track connection utilization so that connections can be timed out appropriately.

■ Provide transparent automatic transaction enlistment and security authorization.

WebLogic Server provides the ability to disable the wrapping of some objects which
provides the following benefits:

■ Although WebLogic Server generates a dynamic proxy for vendor methods that
implement an interface to show through the wrapper, some data types do not
implement an interface. For example, Oracle data types Array, Blob, Clob, NClob,
Ref, SQLXML, and Struct are classes that do not implement interfaces. Disabling
wrapping allows applications to use native driver objects directly.

Using Unwrapped Data Type Objects

Tuning Data Source Connection Pools 17-15

■ Eliminating wrapping overhead can provide a significant performance
improvement.

When wrapping is disabled (the wrap-types element is false), the following data
types are not wrapped:

■ Array

■ Blob

■ Clob

■ NClob

■ Ref

■ SQLXML

■ Struct

■ ParameterMetaData

– No connection testing performed.

■ ResultSetMetaData

– No connection testing performed.

– No result set testing performed.

– No JDBC MT profiling performed.

17.9.1 How to Disable Wrapping
You can use the WebLogic Server Administration Console and WLST to disable data
type wrapping.

17.9.1.1 Disable Wrapping using the Administration Console
To disable wrapping of JDBC data type objects:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the Domain Structure tree, expand Services, then select Data Sources.

3. On the Summary of Data Sources page, click the data source name.

4. Select the Configuration: Connection Pool tab.

5. Scroll down and click Advanced to show the advanced connection pool options.

6. In Wrap Data Types, deselect the checkbox to disable wrapping.

7. Click Save.

8. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

This change does not take effect immediately—it requires that the data source be
redeployed or the server be restarted.

Note: Oracle recommends not using these concrete classes and
instead using standard SQL types or corresponding Oracle interfaces.
See "Using API Extensions for Oracle JDBC Types" in Developing JDBC
Applications for Oracle WebLogic Server.

Tuning Maintenance Timers

17-16 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

17.9.1.2 Disable Wrapping using WLST
The following is a WLST code snippet to disable data type wrapping:

. . .
jdbcSR = create(dsname,"JDBCSystemResource");
theJDBCResource = jdbcSR.getJDBCResource();
poolParams = theJDBCResource.getJDBCConnectionPoolParams();
poolParams.setWrapTypes(false);
. . .

This change does not take effect immediately—it requires that the data source be
redeployed or the server be restarted.

17.10 Tuning Maintenance Timers
The following section provides information on tunable timer properties used by
WebLogic JDBC:

■ weblogic.jdbc.gravitationShrinkFrequencySeconds—Connections may be shut
down periodically on GridLink data sources. If the connections allocated to
various RAC instances do not correspond to the Runtime Load Balancing
percentages in the FAN load-balancing advisories, connections to overweight
instances are destroyed and new connections opened. This process occurs every 30
seconds by default. You can tune this behavior using the
weblogic.jdbc.gravitationShrinkFrequencySeconds system property which
specifies the amount of time, in seconds, the system waits before rebalancing
connections. A value less than or equal to 0 disables the rebalancing process.

■ weblogic.jdbc.harvestingFrequencySeconds—Connection harvesting releases
reserved connections that are marked harvestable by the application when a data
source falls to a specified number of available connections. This check by default is
done every 30 seconds. This system property can be used to change the frequency
of harvesting by Data Source the amount of time, in seconds. If set less than or
equal to 0, connection harvesting is turned off. See Section 7.4, "Recover Harvested
Connections."

■ weblogic.jdbc.securityCacheTimeoutSeconds—Performance is impacted when
reserving connections from a connection pool, due to the credentials for the
WebLogic server user being checked for each reserve connection request. To
resolve this, checking can be controlled by this system property. If less than or
equal to zero, the cache is turned off and user authentication happens each time. If
greater than zero, user authentication is done only once for each user in the
specified time period in seconds; the value is then cached. In situations where pool
access restrictions are dynamically altered, the pool re-authenticates the users once
each time after the cache is cleared. The default value is 10 minutes.

A

Using an Oracle 12c Database A-1

AUsing an Oracle 12c Database

[19] This appendix provides information on how use WebLogic Server Release 12.1.2 and
higher with an Oracle 12c database. Oracle provides several new features that
specifically require the use of an Oracle 12c database and Oracle 12c JDBC driver.

This appendix includes the following sections:

■ Section A.1, "WebLogic JDBC Features for Oracle 12c Database"

■ Section A.2, "Summary of 12C Database Feature Support with WebLogic Server"

A.1 WebLogic JDBC Features for Oracle 12c Database
The following section provides a list of WebLogic JDBC features for Oracle 12c
Database:

■ Section A.1.1, "JDBC 4.1 Support for JDK 7"

■ Section A.1.2, "Application Continuity Support"

■ Section A.1.3, "Database Resident Connection Pooling Support"

■ Section A.1.4, "Container Database with Pluggable Databases"

■ Section A.1.5, "Global Database Services Support"

■ Section A.1.6, "Automatic ONS Listeners"

A.1.1 JDBC 4.1 Support for JDK 7
WebLogic Server supports the JDBC 4.1 Specification when the environment is using
JDK 7 and the JDBC driver is JDBC 4.1 compliant. To use new JDBC 4.1 methods, you
must use the ojdbc7.jar. See "JDBC™ 4.1 Specification" at
http://download.oracle.com/otndocs/jcp/jdbc-4_1-mrel-spec/index.html.

JDK 7 also brings support for minor changes in Rowset 1.1 defined at
http://jcp.org/aboutJava/communityprocess/maintenance/jsr114/114MR2approved.
pdf. The WebLogic Server implementation of the new RowSetFactory is called
weblogic.jdbc.rowset.JdbcRowSetFactory.

Note: WebLogic Server currently does not support the
java.sql.driver interfaces required to use the Java SE 7
getParentLogger method. See
http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Dri
ver.html.

Summary of 12C Database Feature Support with WebLogic Server

A-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

A.1.2 Application Continuity Support
Application Continuity is an Oracle database feature that provides a general purpose,
application-independent infrastructure that enables recovery of work and masks many
system, communication, and hardware failures. See Section 6.1, "Application
Continuity."

A.1.3 Database Resident Connection Pooling Support
Database Resident Connection Pooling (DRCP) is an Oracle database server feature
that provides the ability to share connections among multiple connection pools that
can span across mid-tier systems. See Section 6.2, "Database Resident Connection
Pooling."

A.1.4 Container Database with Pluggable Databases
Container Database (CDB) is an Oracle Database feature that minimizes the overhead
of having many of databases by consolidating them into a single database with
multiple Pluggable Databases (PDB) in a single CDB. See Section 6.4, "Container
Database with Pluggable Databases."

A.1.5 Global Database Services Support
Global Data Services (GDS) is an Oracle database server feature that provides
automated load balancing, fault tolerance and resource utilization in a distributed
database environment. See Section 6.3, "Global Database Services."

A.1.6 Automatic ONS Listeners
If you are using an Oracle 12c database with WebLogic Server Release 12.1.2 and
higher, you are no longer required to provide the ONS Listener list as part of an Active
GridLink datasource configuration. The ONS list is automatically provided from the
database to the driver. SeeSection 5.6.1, "Enabling FAN Events."

A.2 Summary of 12C Database Feature Support with WebLogic Server
This section provides information on how Oracle 12c database features are supported
in WebLogic Server releases.

Table A–1 Summary of 12c Database Feature Support with WebLogic Server

Feature

WebLogic
Server
10.3.6/12.1.x
with 11g
drivers and
11gR2 DB

WebLogic
Server
10.3.6/12.1.x
with 11g
drivers and
12c DB

WebLogi
c Server
10.3.6/12.
1.1 with
12c
drivers
and
11gR2 DB

WebLogic
Server
12.1.2 and
higher with
12c drivers
and 11gR2
DB

WebLogic
Server
10.3.6/12.1.
1 with 12c
drivers and
12c DB

WebLogic
Server
12.1.2 and
higher with
12c drivers
with 12c DB

JDBC
replay
(read/write
)

No No No No Yes
(Read/Writ
e with
Active
GridLink
only, no XA
transactions
)

Yes
(Read/Write
with Active
GridLink and
generic data
source, no
XA
transactions)

Summary of 12C Database Feature Support with WebLogic Server

Using an Oracle 12c Database A-3

Pluggable
Database
(PDB)

No Yes (Except
Set
Container)

No No Yes Yes

Dynamic
switching
between
PDBs

No No No No No Yes (no XA)

Database
Resident
Connection
pooling
(DRCP)

No No No Yes No Yes

Oracle
Notification
Service
(ONS) auto
configurati
on

No No No No No Yes (Active
GridLink
only)

Global
Database
Services
(GDS)

No Yes (Active
GridLink
only)

No No Yes (Active
GridLink
only)

Yes (Active
GridLink
only)

JDBC 4.1
(using
ojdbc7.jar
files & JDK
7)

No No Yes Yes Yes Yes

Table A–1 (Cont.) Summary of 12c Database Feature Support with WebLogic Server

Feature

WebLogic
Server
10.3.6/12.1.x
with 11g
drivers and
11gR2 DB

WebLogic
Server
10.3.6/12.1.x
with 11g
drivers and
12c DB

WebLogi
c Server
10.3.6/12.
1.1 with
12c
drivers
and
11gR2 DB

WebLogic
Server
12.1.2 and
higher with
12c drivers
and 11gR2
DB

WebLogic
Server
10.3.6/12.1.
1 with 12c
drivers and
12c DB

WebLogic
Server
12.1.2 and
higher with
12c drivers
with 12c DB

Summary of 12C Database Feature Support with WebLogic Server

A-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

B

Configuring JDBC Application Modules for Deployment B-1

BConfiguring JDBC Application Modules for
Deployment

[20] This appendix provides information on how to package and scope a datasource in
WebLogic Server 12.1.3 for use in enterprise applications and describes the details of
packaged JDBC modules.

When you package your enterprise application, you can include JDBC resources in the
application by packaging JDBC modules in the archive and adding references to the
JDBC modules in all applicable descriptor files. When you deploy the application, the
JDBC resources are deployed, too. Depending on how you configure the JDBC
modules, the JDBC data sources deployed with the application will either be restricted
for use only by the containing application (application-scoped modules) or will be
available to all applications and clients (globally-scoped modules).

This appendix includes the following sections:

■ Section B.1, "Packaging a JDBC Module with an Enterprise Application: Main
Steps"

■ Section B.2, "Creating Packaged JDBC Modules"

■ Section B.3, "Referencing a JDBC Module in Java EE Descriptor Files"

■ Section B.4, "Packaging an Enterprise Application with a JDBC Module"

■ Section B.5, "Deploying an Enterprise Application with a JDBC Module"

■ Section B.6, "Getting a Database Connection from a Packaged JDBC Module"

B.1 Packaging a JDBC Module with an Enterprise Application: Main
Steps

The main steps for creating, packaging, and deploying a JDBC module with an
enterprise application are as follows:

1. Create the module. See Section B.2, "Creating Packaged JDBC Modules."

Note: This chapter provides information on a proprietary
mechanism provided by WebLogic Server prior to the
DatasourceDefinition feature introduced in Java EE 6. See "Using Java
EE DataSources Resource Definitions" in Developing JDBC Applications
for Oracle WebLogic Server.

Creating Packaged JDBC Modules

B-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

2. Add references to the module in all applicable descriptor files. See Section B.3,
"Referencing a JDBC Module in Java EE Descriptor Files."

3. Package all application modules in an EAR. See Section B.4, "Packaging an
Enterprise Application with a JDBC Module."

4. Deploy the application. See Section B.5, "Deploying an Enterprise Application
with a JDBC Module."

B.2 Creating Packaged JDBC Modules
You can create JDBC application modules using any development tool that supports
creating an XML descriptor file. You then deploy and manage JDBC modules using
JSR 88-based tools, such as the weblogic.Deployer utility, or the WebLogic Server
Administration Console.

Each JDBC module represents a data source. Modules that represent a generic or
Active GridLink (AGL) data source include all of the configuration parameters for the
generic or AGL data source. Modules that represent a multi data source include
configuration parameters for the multi data source, including a list of generic data
source modules used by the multi data source.

B.2.1 Creating a JDBC Data Source Module Using the Administration Console
To create a data source module in the WebLogic Server Administration Console that
you can re-use as an application module, follow these steps.

1. Create a data source as described in Section 3.3, "Creating a JDBC Data Source."
The data source module is created in the config/jdbc subdirectory of the domain
directory.

2. Copy the data-source-name.xml file to a subdirectory within your application
and rename the copy to include -jdbc as a suffix, such as
new-data-source-name-jdbc.xml.

3. Open the file in an editor and change the following elements:

■ name—change the name to a name that is unique within the domain.

■ jndi-name—change the jndi-name to a name that you want the enterprise
application to use to lookup the data source in the local application context.

■ scope—optionally, to limit access to the data source to only the containing
application, add a scope element to the jdbc-data-source-params section of
the module. For example, <scope>Application</scope>. See Section B.2.8,
"Application Scoping for a Packaged JDBC Module."

4. Continue with adding references to the descriptor files in the enterprise
application. See Section B.3, "Referencing a JDBC Module in Java EE Descriptor
Files."

Note: You can create a JDBC data source using the WebLogic Server
Administration Console, then copy the module as a template for use in your
applications. You must change the name and jndi-name elements of the module
before deploying it with your application to avoid a naming conflict in the
namespace.

Creating Packaged JDBC Modules

Configuring JDBC Application Modules for Deployment B-3

B.2.2 JDBC Packaged Module Requirements
A JDBC module must meet the following criteria:

■ Conforms to the jdbc-data-source.xsd schema. The schema is available at
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/i
ndex.html.

■ Uses a file name that ends in -jdbc.xml.

■ Includes a name element that is unique within the WebLogic domain.

Data source modules must also include the following JDBC driver parameters:

■ url

■ driver-name

■ properties, including any properties required by the JDBC driver to create
database connections, such as a user name and password.

Multi data source modules must also include the data-source-list, which is a list of
data source modules, separated by commas, that the multi data source uses to satisfy
database connection requests from applications.

All other configuration parameters are optional or have a default value that WebLogic
Server uses if a value is not specified. However, to create a useful JDBC module, you
will likely need to specify additional configuration options as required by your
applications and your environment.

B.2.3 JDBC Application Module Limitations
Note the following limitations for JDBC application modules:

■ The LoggingLastResource global-transactions-protocol is not permitted for use in
JDBC application modules.

■ When deploying an application in production with application-scoped JDBC
resources, if the resource uses EmulateTwoPhaseCommit for the
global-transactions-protocol, you cannot deploy multiple versions of the
application at the same time.

B.2.4 Creating a Generic Data Source Module
The main sections within a JDBC data source module are:

■ jdbc-driver-params—includes entries for the JDBC driver used to create database
connections, including url, driver-name, and individual driver property entries.
See the jdbc-data-source.xsd schema for more valid entries. For an explanation
of each element, see "JDBCDriverParamsBean" in the MBean Reference for Oracle
WebLogic Server.

■ jdbc-connection-pool-params—includes entries for connection pool
configuration, including connection testing options, statement cache options, and
so forth. This element also inherits connection-pool-params from the
weblogic-javaee.xsd schema, including initial-capacity, min-capacity,
max-capacity, and other options common to pooled resources. For more
information, see the following:

Note: All data sources listed in the data-source-list must have the
same XA and transaction protocol settings.

Creating Packaged JDBC Modules

B-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

– "JDBCConnectionPoolParamsBean" in the MBean Reference for Oracle WebLogic
Server

– jdbc-data-source.xsd schema

■ jdbc-data-source-params—includes entries for data source behavior options and
transaction processing options, such as jndi-name, row-prefetch-size, and
global-transactions-protocol. See the jdbc-data-source.xsd schema for more
valid entries. For an explanation of each element, see
"JDBCDataSourceParamsBean" in the MBean Reference for Oracle WebLogic Server.

■ jdbc-xa-params—includes entries for XA database connection handling options,
such as keep-xa-conn-till-tx-complete, and xa-transaction-timeout. For an
explanation of each element, see "JDBCXAParamsBean" in the MBean Reference for
Oracle WebLogic Server.

Example B–1 shows an example of a JDBC module for a data source with some typical
configuration options.

Example B–1 Sample Generic Data Source Module

<jdbc-data-source xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/domain.xsd"
 xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
 <name>examples-demoXA-2</name>
 <jdbc-driver-params>
 <url>jdbc:derby://localhost:1527/examples;create=true</url>
 <driver-name>org.apache.derby.jdbc.ClientXADataSource</driver-name>
 <properties>
 <property>
 <name>user</name>
 <value>examples</value>
 </property>
 <property>
 <name>DatabaseName</name>
 <value>examples</value>
 </property>
 </properties>
 <password-encrypted>{AES}MEK6bPum8M69KRP4FANx3TG/O0iSWRYu2rZGUwnVo6U=</password-encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <max-capacity>100</max-capacity>
 <connection-reserve-timeout-seconds>25</connection-reserve-timeout-seconds>
 <test-table-name>SQL SELECT 1 FROM SYS.SYSTABLES</test-table-name>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <global-transactions-protocol>TwoPhaseCommit</global-transactions-protocol>
 </jdbc-data-source-params>
</jdbc-data-source>

B.2.5 Creating an Active GridLink Data Source Module
AGL data source modules are similar to generic data source system modules. AGL
data sources include an jdbc-oracle-params section that includes ONS and FAN.

Creating Packaged JDBC Modules

Configuring JDBC Application Modules for Deployment B-5

B.2.6 Creating a Multi Data Source Module
A JDBC multi data source module is much simpler than a generic data source module.
Only one main section is required: jdbc-data-source-params. The
jdbc-data-source-params element in a multi data source differs in that it contains
options for multi data source behavior options instead of data source behavior options.
Only the following parameters in the jdbc-data-source-params are valid for multi
data sources:

■ jndi-name (required)

■ data-source-list (required)

■ scope

■ algorithm-type

■ connection-pool-failover-callback-handler

■ failover-request-if-busy

For an explanation of each element, see "JDBCDataSourceParamsBean" in the MBean
Reference for Oracle WebLogic Server.

Example B–2 shows an example of a JDBC module for a data source with some typical
configuration options.

Example B–2 Sample JDBC Multi Data Source Module

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source">
 <name>examples-demoXA-multi-data-source</name>
 <jdbc-data-source-params>
 <jndi-name>examples-demoXA -multi-data-source</jndi-name>
 <algorithm-type>Load-Balancing</algorithm-type>
 <data-source-list>examples-demoXA,examples-demoXA-2</data-source-list>
 </jdbc-data-source-params>
</jdbc-data-source>

B.2.7 Encrypting Database Passwords in a JDBC Module
Oracle recommends that you encrypt database passwords in a JDBC module to keep
your data secure. To encrypt a database password, you process the password with the
WebLogic Server encrypt utility, which returns an encrypted equivalent of the
password that you include in the JDBC module as the password-encrypted element.
For more details about using the WebLogic Server encrypt utility, see "encrypt" in the
WebLogic Scripting Tool Command Reference.

B.2.7.1 Deploying JDBC Modules to New Domains
It it common practice for JDBC modules to be moved from one domain to another,
such as moving an application from development to production. However, the
encryption key generated by the WebLogic Server encrypt utility is not transferable to
a new domain. When moving a JDBC module with an encrypted database password,
you must do one of the following:

■ Override the old encrypted password within a deployment plan that includes a
password that was encrypted specifically for the new domain. See "Update a
deployment plan" in Oracle WebLogic Server Administration Console Online Help.

■ Re-encrypt the passwords for your new domain. See Section B.2.7, "Encrypting
Database Passwords in a JDBC Module."

Referencing a JDBC Module in Java EE Descriptor Files

B-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ If you use the Oracle wallet, you can simply reference the wallet and copy the
wallet file to the new domain. See Section 11, "Creating and Managing Oracle
Wallet."

B.2.8 Application Scoping for a Packaged JDBC Module
By default, when you package a JDBC module with an application, the JDBC resource
is globally scoped—that is, the resource is bound to the global JNDI namespace and is
available to all applications and clients. To reserve the resource for use only by the
enclosing application, you must include the <scope>Application</scope> parameter
in the jdbc-data-source-params element in the JDBC module, which binds the
resource to the local application namespace. For example:

<jdbc-data-source-params>
 <jndi-name>examples-demoXA-2</jndi-name>
 <scope>Application</scope>
</jdbc-data-source-params>

All generic data sources in a multi data source for an application-scoped JDBC module
must also be application scoped.

B.3 Referencing a JDBC Module in Java EE Descriptor Files
When you package a JDBC module with an enterprise application, you must reference
the module in all applicable descriptor files, including among others:

■ weblogic-application.xml

■ ejb-jar.xml

■ weblogic-ejb-jar.xml

■ web.xml

■ weblogic.xml

Figure B–1 shows the relationship between entries in various descriptor files for an EJB
application and how they refer to a JDBC module packaged with the application.

Referencing a JDBC Module in Java EE Descriptor Files

Configuring JDBC Application Modules for Deployment B-7

Figure B–1 Relationship Between JDBC Modules and Descriptors in an Enterprise Application

B.3.1 Packaged JDBC Module References in weblogic-application.xml
When including JDBC modules in an enterprise application, you must list each JDBC
module as a module element of type JDBC in the weblogic-application.xml descriptor
file packaged with the application. For example:

<module>
 <name>data-source-1</name>
 <type>JDBC</type>
 <path>datasources/data-source-1-jdbc.xml</path>
</module>

B.3.2 Packaged JDBC Module References in Other Descriptors
For other application modules in your enterprise application to use the JDBC modules
packaged with your application, you must add the following entries in the descriptor
files packaged with application modules:

■ In the standard Java EE descriptor files packaged with your application modules,
such as ejb-jar.xml for an EJB, you must add resource-ref-name references to
specify the JNDI name of the data source as used in the application. For example:

Packaging an Enterprise Application with a JDBC Module

B-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

<resource-ref>
 <res-ref-name>my-data-source</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

In this example, my-data-source is the data source name as used in the
application module. Your application would look up the data source with the
following code:

javax.sql.DataSource ds =
 (javax.sql.DataSource) ctx.lookup("java:comp/env/my-data-source");

■ In the WebLogic-specific descriptor files, such as weblogic-ejb-jar.xml for an EJB,
you must map each resource-ref-name reference to the jndi-name element of a
data source. For example:

<resource-description>
 <res-ref-name>my-data-source</res-ref-name>
 <jndi-name>qa-database-1</jndi-name>
</resource-description>

In this example, the resource name
(<res-ref-name>my-data-source</res-ref-name>) from the standard descriptor
is mapped to the JNDI name (<jndi-name>qa-database-1</jndi-name>) of the
data source in the JDBC module.

Figure B–1 shows the mapping of the of the data source name as used in the
application module to the JNDI name of the JDBC data source in the JDBC module.

B.4 Packaging an Enterprise Application with a JDBC Module
You package an application with a JDBC module as you would any other enterprise
application. See "Packaging Applications Using wlpackage" in Developing Applications
for Oracle WebLogic Server.

B.5 Deploying an Enterprise Application with a JDBC Module
You deploy an application with a JDBC module as you would any other enterprise
application. See "Deploying Applications Using wldeploy" in Developing Applications
for Oracle WebLogic Server.

B.6 Getting a Database Connection from a Packaged JDBC Module
To get a connection from JDBC module packaged with an enterprise application, you
look up the data source defined in the JDBC module in the local environment

Note: For application-scoped data sources, if you do not add these entries to
the descriptor files, your application will be unable to look up the data source
to get a database connection.

Note: When deploying an application in production with application-scoped
JDBC resources, if the resource uses EmulateTwoPhaseCommit for the
global-transactions-protocol, you cannot deploy multiple versions of the
application at the same time.

Getting a Database Connection from a Packaged JDBC Module

Configuring JDBC Application Modules for Deployment B-9

(java:comp/env) or on the JNDI tree and then request a connection from the data
source or multi data source. For example:

javax.sql.DataSource ds =
 (javax.sql.DataSource) ctx.lookup("java:comp/env/my-data-source");
java.sql.Connection conn = ds.getConnection();

When you are finished using the connection, make sure you close the connection to
return it to the connection pool in the data source:

conn.close();

Getting a Database Connection from a Packaged JDBC Module

B-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C

Using Multi Data Sources with Oracle RAC C-1

CUsing Multi Data Sources with Oracle RAC

[21] This appendix provides information on how to configure and use multi data sources
when using Oracle Real Application Clusters (RAC) with WebLogic Server 12.1.3.
Oracle continues to support multi data source configurations for legacy application
environments using RAC.

This appendix includes the following sections:

■ Section C.1, "Overview of Oracle Real Application Clusters"

■ Section C.2, "Software Requirements"

■ Section C.3, "JDBC Driver Requirements"

■ Section C.4, "Hardware Requirements"

■ Section C.5, "Configuring Multi Data Sources with Oracle RAC"

■ Section C.6, "Using Multi Data Sources with Global Transactions"

■ Section C.7, "Using Multi Data Sources without Global Transactions"

■ Section C.8, "Configuring Connections to Services on Oracle RAC Nodes"

■ Section C.9, "Using SCAN Addresses with Multi Data Sources"

■ Section C.10, "XA Considerations and Limitations when using multi Data Sources
with Oracle RAC"

■ Section C.11, "JDBC Store Recovery with Oracle RAC"

Both Oracle RAC and WebLogic Server are complex systems. To use them together
requires specific configuration on both systems, as well as clustering software and a
shared storage solution. This section describes the configuration required at a high
level. For more details about configuring Oracle RAC, your clustering software, your
operating system, and your storage solution, see the documentation from the
respective vendors.

C.1 Overview of Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) is a software component you can add
to a high-availability solution that enables users on multiple machines to access a
single database with increased performance. Oracle RAC comprises two or more

Note: Oracle recommends using Active GridLink data sources when
developing new Oracle RAC applications and when legacy
applications do not use multi data sources. See Section 13, "Using
WebLogic Server with Oracle RAC."

Overview of Oracle Real Application Clusters

C-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Oracle database instances running on two or more clustered machines and accessing a
shared storage device via cluster technology. To support this architecture, the machines
that host the database instances are linked by a high-speed interconnect to form the
cluster. The interconnect is a physical network used as a means of communication
between the nodes of the cluster. Cluster functionality is provided by the operating
system, Oracle Automatic Storage Management (ASM), or compatible third party
clustering software. Figure C–1 shows an Oracle RAC configuration.

Figure C–1 Oracle Real Application Clusters Configuration

Oracle RAC offers features in the following areas:

■ Section C.1.1, "Oracle RAC Scalability with WebLogic Server Multi Data Sources."

■ Section C.1.2, "Oracle RAC Availability with WebLogic Server Multi Data Sources."

■ Section C.1.3, "Oracle RAC Load Balancing with WebLogic Server Multi Data
Sources."

C.1.1 Oracle RAC Scalability with WebLogic Server Multi Data Sources
An Oracle RAC installation appears like a single standard Oracle database and is
maintained using the same tools and practices. All the nodes in the cluster execute
transactions against the same database and Oracle RAC coordinates each node's access
to the shared data to maintain consistency and ensure integrity. You can add nodes to
the cluster easily and there is no need to partition data when you add them. This
means that you can horizontally scale the database tier as usage and demand grows by
adding Oracle RAC nodes, storage, or both.

As the number of nodes in an Oracle RAC increases, you scale the number of generic
data sources by the number of nodes added to the Oracle RAC. This requires a
complex configuration (requiring n+1 data sources where n is the number of generic
data sources plus a multi data source) that requires administrative intervention when
the Oracle RAC topology changes.

Hardware Requirements

Using Multi Data Sources with Oracle RAC C-3

C.1.2 Oracle RAC Availability with WebLogic Server Multi Data Sources
A multi data source provides an ordered list of generic data sources to use to satisfy
connection requests. Normally, every connection request to this kind of multi data
source is served by the first generic data source in the list. If a database connection test
fails and the connection cannot be replaced, or if the generic data source is suspended,
a connection is sought sequentially from the next generic data source on the list. See
Section 4.3.1, "Failover" and Section C.5.3.1, "Multi Data Source-Managed Failover and
Load Balancing."

C.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data Sources
Multi data sources provide load balancing for XA and non-XA environments. The
generic data sources that form a multi data source are accessed using a round-robin
scheme. When switching connections, WebLogic Server selects a connection from the
next generic data source in the order listed.

C.2 Software Requirements
To use WebLogic Server with Oracle RAC, you must install the following software on
each Oracle RAC node:

■ Operating system patches required to support Oracle RAC. See the release notes
from Oracle for details.

■ Oracle 11g database management system

■ Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

■ Shared storage software, such as Oracle Automated Storage Management (ASM).
Note that some clustering software includes a file storage solution, in which case
additional shared storage software is not required.

C.3 JDBC Driver Requirements
To use WebLogic Server with Oracle RAC, your WebLogic generic data sources must
use the Oracle JDBC Thin driver 11g or later to create database connections.

C.4 Hardware Requirements
A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an
Oracle RAC cluster, and hardware for shared storage.

C.4.1 WebLogic Server Cluster
The WebLogic Server cluster can be configured in many ways and with various
hardware options. See Administering Clusters for Oracle WebLogic Server for more details
about configuring a WebLogic Server cluster.

Note: See "Supported Configurations" in What's New in Oracle WebLogic
Server for the latest WebLogic Server hardware platform and operating system
support, and for the Oracle RAC versions supported by WebLogic Server
versions and service packs. See the Oracle documentation for hardware and
software requirements required for running the Oracle RAC software.

Configuring Multi Data Sources with Oracle RAC

C-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C.4.2 Oracle RAC Cluster
For the latest hardware requirements for Oracle RAC, see the Oracle RAC
documentation. However, to use Oracle RAC with WebLogic Server, you must run
Oracle RAC instances on robust, production-quality hardware. The Oracle RAC
configuration must deliver database processing performance appropriate for
reasonably-anticipated application load requirements. Unusual database response
delays can lead to unexpected behavior during database failover scenarios.

C.4.3 Shared Storage
In an Oracle RAC configuration, all data files, control files, and parameter files are
shared for use by all Oracle RAC instances. An HA storage solution that uses one of
the following architectures is recommended:

■ Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

■ Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

C.5 Configuring Multi Data Sources with Oracle RAC
When using Multi data sources with Oracle RAC, you must configure your WebLogic
Domain so that it can interact with Oracle RAC instances and so that it performs as
expected. The following sections describe configuration options and requirements:

■ Section C.5.1, "Choosing a Multi Data Source Configuration for Use with Oracle
RAC"

■ Section C.5.2, "Configuring Multi Data Sources for use with Oracle RAC"

■ Section C.5.3, "Configuration Considerations for Failover"

■ Section C.5.4, "Configuring the Listener Process for Each Oracle RAC Instance"

■ Section C.5.5, "Configuring Multi Data Sources When Remote Listeners are
Enabled or Disabled"

■ Section C.5.6, "Additional Configuration Considerations"

C.5.1 Choosing a Multi Data Source Configuration for Use with Oracle RAC
WebLogic Server multi data sources support several configuration options for using
Oracle RAC:

■ To connect to multiple Oracle RAC instances when using global transactions (XA),
see Section C.6, "Using Multi Data Sources with Global Transactions."

■ To connect to multiple Oracle RAC instances when not using XA, see Section C.7,
"Using Multi Data Sources without Global Transactions."

■ You can also configure multi data sources to connect to specific services that are
running on Oracle RAC nodes. Both XA and non-XA drivers are supported, see
Section C.8, "Configuring Connections to Services on Oracle RAC Nodes."

C.5.2 Configuring Multi Data Sources for use with Oracle RAC
To connect WebLogic Server to multiple Oracle RAC nodes using multi data sources,
first configure a generic data source for each Oracle RAC instance in your Oracle RAC
cluster with the Oracle Thin driver. Then configure a multi data source, using either

Configuring Multi Data Sources with Oracle RAC

Using Multi Data Sources with Oracle RAC C-5

the algorithm for load balancing or the algorithm for failover, and add generic data
sources to it.

Figure C–2 shows a typical multi data source configuration.

Figure C–2 Multi Data Source Configuration

You can use the WebLogic Server Administration Console or any other means that you
prefer to configure your domain, such as the WebLogic Scripting Tool (WLST) or a
JMX program. For information about configuring a WebLogic JDBC multi data source
see Chapter 4, "Configuring JDBC Multi Data Sources." For information on how to
configure the generic data sources in a multi data source to connect to services running
on Oracle RAC nodes, see Section C.8, "Configuring Connections to Services on Oracle
RAC Nodes."

To use a database connection in this configuration, your applications look up one multi
data source on the JNDI tree and then request a connection. The multi data source
determines which generic data source to use to satisfy the connection request based on
the algorithm type specified in the configuration (that is, failover or load balancing).

Configuring Multi Data Sources with Oracle RAC

C-6 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C.5.2.1 Attributes of a Multi Data Source
The multi data source may have the following attributes, depending on the role of
Oracle RAC in your system—load balancing or failover:

■ AlgorithmType="Load-Balancing" or AlgorithmType="Failover"

With the Load-Balancing option, connection requests are distributed among
available generic data sources; with the Failover option, connection requests are
served by the first available pool in the list. When a generic data source becomes
defunct, connection requests are served by the next generic data source in the list.

■ FailoverRequestIfBusy="true"

With the Failover algorithm, this attribute enables failover when all connections in
a generic data source are in use.

■ TestFrequencySeconds="120"

This attribute controls the frequency at which WebLogic Server checks the health
of generic data sources previously marked as unhealthy to see if connections can
be recreated and if the generic data source can be re-enabled. For more details see
Chapter 4, "Configuring JDBC Multi Data Sources."

For fast failover of Oracle RAC nodes, set this value to a smaller interval, for
example, 10 (seconds).

C.5.3 Configuration Considerations for Failover
Consider the following information when configuring for failover.

C.5.3.1 Multi Data Source-Managed Failover and Load Balancing
Multi data sources offer failover and load balancing for global transactions. For a
description of multi data source failover features, see Section 4.5, "Multi Data Source
Failover Enhancements."

With this configuration, pictured in Figure C–2, you get:

■ Fast failover controlled by the multi data source

■ Automatic failback by the WebLogic Server health monitor

The multi data source handles failover for database connections when an Oracle RAC
node becomes unavailable. When WebLogic Server tests a connection and the
connection fails, it attempts to recreate the connection. If that attempt fails, the server
disables the generic data source and routes connection requests to other generic data
sources (which correspond to other Oracle RAC nodes) in the multi data source.
WebLogic Server periodically tries to recreate the database connections in the disabled
generic data source. When WebLogic Server is successful in recreating the connections,
it next re-enables the generic data source and begins routing connection requests to the
generic data source again. Because of the connection request routing and automatic
health checking features, there is minimal delay in satisfying connection requests after
a failure.

C.5.3.2 Delays During Failover
Occasionally, when one Oracle RAC node fails over to another, there may be a delay
before the data associated with a transaction branch in progress on the now failed
node is available throughout the cluster. This prevents incomplete transactions from
being properly completed, which could further result in data locking in the database.
To protect against the potential consequences of such a delay, WebLogic Server

Configuring Multi Data Sources with Oracle RAC

Using Multi Data Sources with Oracle RAC C-7

provides two configuration attributes that enable XA call retry for Oracle RAC:
XARetryDurationSeconds and XARetryIntervalSeconds.

When a server acting as Coordinator returns to service, it takes the following actions
during recovery:

■ The Transaction Manager reads the transaction checkpoints and the resource
checkpoints from the TLog.

■ The transactions read from the TLOG (transaction checkpoints) become active and
the state is set to committing. The TM tries to commit these transactions just as it
does for other runtime transactions. If the commit fails a retry-commit process
takes place until AbandonTimeoutSeconds after a grace period has expired.

■ The TM calls xa.recover on resources read from the TLOG (resource checkpoints)
to obtain a list of pending transactions. If the xa.recover call fails, the TM retries
the xa.recover call on the resource every XARetryIntervalSeconds for a period of
XARetryDurationSeconds.

Use the following formula to determine the value for XARetryDurationSeconds:

XARetryDurationSeconds = (longest transaction timeout for transactions that use
connections from the generic data source) + (delay before XIDs are available on all
Oracle RAC nodes, typically less than 5 minutes)

For example, if your application sets the longest transaction timeout as 180 seconds,
you should set XARetryDurationSeconds to 180 seconds + 300 seconds, for a total of
480 seconds.

You can also optionally set a value for XARetryIntervalSeconds. This value
determines the time between XA retry calls. By default, the value is 60 seconds.
Decreasing the value will decrease the amount of time between XA retry attempts. The
default value should suffice in most cases.

To enable XARetryDurationSeconds and XARetryIntervalSeconds from the WebLogic
Server Administration Console, use the following steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the Domain Structure tree, expand Services > JDBC, then select Data Sources.

3. On the Summary of Data Sources page, click the data source name.

4. Select the Configuration: Connection Pool tab.

5. Scroll down and click Advanced to show the advanced connection pool options.

6. Update XA Retry Duration and XA Retry Interval.

7. Click Save.

Optionally, you can use WebLogic Scripting Tool (WLST) or a JMX program.

Note: It is generally better to set XARetryDurationSeconds higher than
minimally necessary to make sure that all transactions are completed properly.
Setting the value higher than minimally required should not affect application
performance during normal operations. The additional processing only affects
transactions that have been prepared but have failed to complete.

Configuring Multi Data Sources with Oracle RAC

C-8 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C.5.3.3 Failure Handling Walkthrough for Global Transactions
What happens to in-flight transactions to a database node if that node fails? When the
primary Oracle RAC node fails? Does WebLogic Server support transparent failover?
To answer these and other questions about how WebLogic Server handles failures, let's
walk through the transaction processing steps and describe how a failure would be
handled at each stage along the way.

The first stage at which a failure may occur is before the application calls for the
transaction to be committed. If a database or Oracle RAC node fails at this stage, the
application receives an exception and must get a new connection and make a new
attempt at processing the transaction. WebLogic Server does not support transparent
failover.

If a failure occurs after the application has called for the transaction to be committed,
the handling of any in-flight transaction depends upon whether the PREPARE operation
is complete. If the PREPARE operation is not complete, the transaction manager rolls
back the transaction and sends the application an exception for the failed transaction.
If the PREPARE operation is complete, the transaction manager attempts to drive the
in-flight transaction to completion using another node.

If a failure occurs during the COMMIT operation, the transaction manager attempts to
retry the COMMIT operation several times. Note that the connection is blocked during
these attempts. If the COMMIT operation is not successful during the first set of retry
attempts, the application receives an exception. The transaction manager then
continues to retry the COMMIT operation periodically until it is successful; if the
transaction cannot be completed successfully within the abandon time period, the
transaction is driven to completion heuristically.

C.5.4 Configuring the Listener Process for Each Oracle RAC Instance
For Oracle RAC, the listener process establishes a communication pathway between a
user process and an Oracle instance. When you use Oracle RAC with WebLogic Server,
the user process is typically a data source.

When a multi data source is created, it attempts to create a pool of database
connections for applications to borrow. If a pooled database connection becomes
inoperative or if the generic data source is configured to grow in capacity, the data
source attempts to create additional database connections up to the maximum
specified in the configuration file. In all of these instances, the Oracle listener process
handles the connection request on the Oracle RAC instance.

Figure C–3 shows the Oracle listener process functionality.

Configuring Multi Data Sources with Oracle RAC

Using Multi Data Sources with Oracle RAC C-9

Figure C–3 Oracle Listener Process Functionality

To enable this functionality, you have two options:

■ Use local listeners. Configure the listener process for each Oracle RAC instance in
the Oracle cluster. WebLogic Server requires that you configure a local listener on
each Oracle RAC instance. Each database instance should be configured to register
only with its local listener.

Oracle instances can be configured to register with the listener statically in the
listener.ora file or registered dynamically using the instance initialization
parameter local_listener, or both. Oracle recommends using dynamic
registration.

A listener can start either a shared dispatcher process or a dedicated process.
When using with WebLogic Server, Oracle recommends using dedicated
processes.

■ Use remote listeners. WLS requires that you specify both the SERVICE_NAME
and the INSTANCE_NAME in the JDBC URL for the generic data sources in the
multi data source. See Section C.5.5, "Configuring Multi Data Sources When
Remote Listeners are Enabled or Disabled."

Configuring Multi Data Sources with Oracle RAC

C-10 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C.5.5 Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
If the server-side load balancing feature has been enabled for the Oracle RAC backend
(using remote_listeners), the JDBC URL that you use in the generic data sources of a
multi data source configuration should include the INSTANCE_NAME. For example,
the URL can be specified in the following format:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host-vip)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=dbservice)(INSTANCE_NAME=inst1)))

If specifying the INSTANCE_NAME in the URL is not possible, remote listeners must
be disabled. To disable remote listeners, delete any listed remote listeners in
spfile.ora on each Oracle RAC node. For example:

*.remote_listener="

In this case, the recommended URL that you use in the generic data sources of a multi
data source configuration is:

jdbc:oracle:thin:@host-vip:port/dbservice

or

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host-vip)(PORT=1521))(
CONNECT_DATA=(SERVICE_NAME=dbservice)))

C.5.6 Additional Configuration Considerations
In some deployments of Oracle RAC, you may need to set parameters in addition to
the out of the box configuration of a data source in an Oracle RAC configuration. The
additional parameters are:

■ Set oracle.jdbc.ReadTimeout=300000 (300000 milliseconds) for each generic data
source.

The actual value of the ReadTimeout parameter used may differ based on your
application environment.

■ If the network is not reliable, it is difficult for a client to detect the frequent
disconnections when the server is abruptly disconnected. By default, a client
running on Linux takes 7200 seconds (2 hours) to sense the abrupt disconnections.
This value is equal to the value of the tcp_keepalive_time property. To configure
the application to detect the disconnections faster, set the value of the tcp_
keepalive_time, tcp_keepalive_interval, and tcp_keepalive_probes properties
to a lower value at the operating system level.

For example, set tcp_keepalive_time=600 for a system running a WebLogic
Server managed server.

■ Specify the ENABLE=BROKEN parameter in the DESCRIPTION clause in the connection
descriptor. For example:

jdbc:oracle:thin:@(DESCRIPTION=(enable=broken)(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=node1-vip.mycompany.com)(PORT=1521)))

Note: Setting a low value for the tcp_keepalive_interval property
leads to frequent probe packets on the network, which can make the
system slower. Set the value of this property based on system
requirements of your application environment.

Using Multi Data Sources with Global Transactions

Using Multi Data Sources with Oracle RAC C-11

(CONNECT_DATA=(SERVICE_NAME=orcl.country.myCorp.com)(INSTANCE_
NAME=orcl1)))

The following code snippet provides an example generic data source configuration:

<url>jdbc:oracle:thin:@(DESCRIPTION=(enable=broken)(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=node1-vip.country.myCorp.com)(PORT=1521)))(CONNE
CT_DATA=(SERVICE_NAME=orcl.country.myCorp.com)(INSTANCE_NAME=orcl1)))</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>
<properties>
<property>
<name>oracle.jdbc.ReadTimeout</name>
<value>300000</value>
</property>
<property>
<name>user</name>
<value>jmsuser</value>
</property>
<property>
<name>oracle.net.CONNECT_TIMEOUT</name>
<value>10000</value>
</property>
</properties>

C.6 Using Multi Data Sources with Global Transactions
In this configuration, a multi data source "pins" a transaction to one and only one
Oracle RAC instance. Individual transactions are load balanced with the initial
connection request for the transaction. Failover is handled at the multi data source
level when a Oracle RAC instance becomes unavailable. If there is a failure on a Oracle
RAC instance before PREPARE, the transaction is lost. If there is a failure after
PREPARE, the transaction is failed over to another instance.

■ Section C.6.1, "Rules for Data Sources within a Multi Data Source Using Global
Transactions"

■ Section C.6.2, "Required Attributes of Data Sources within a Multi Data Source
Using Global Transactions"

■ Section C.6.3, "Sample Configuration Code"

C.6.1 Rules for Data Sources within a Multi Data Source Using Global Transactions
The following rules apply to the XA data sources within a multi data source:

■ All the data sources must be homogeneous. In other words, either all of them must
use an XA driver or none of them can use an XA driver.

■ If you choose to specify them, all XA-related attributes must be set to the same
values for each generic data source. The attributes include the following:

– XARetryDurationSeconds

– SupportsLocalTransaction

– KeepXAConnTillTxComplete

– NeedTxCtxOnClose

– XAEndOnlyOnce

– NewXAConnForCommit

Using Multi Data Sources with Global Transactions

C-12 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

– RollbackLocalTxUponConnClose

– RecoverOnlyOnce

– KeepLogicalConnOpenOnRelease

C.6.2 Required Attributes of Data Sources within a Multi Data Source Using Global
Transactions

Each generic data source within the multi data source should have the following
attributes:

■ Oracle JDBC Thin driver. For example:

<url>jdbc:oracle:thin:@host1:1521:SNRAC1</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>

■ KeepXAConnTillTxComplete="true"

– Forces the generic data source to reserve a physical database connection and
provide the same connection to an application throughout transaction
processing until the distributed transaction is complete.

– Required for proper transaction processing with Oracle RAC.

■ XARetryDurationSeconds="300"

– Enables the WebLogic Server transaction manager to retry XA recover,
commit, and rollback calls for the specified amount of time.

■ TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a
connection from the generic data source. See Section 4.4.1, "Test Connections
on Reserve to Enable Fail-Over" for more details about this attribute.

– Required to enable failover to another Oracle RAC node.

■ TestTableName="name_of_small_table" The name of the table used to test a
physical database connection. For more details about this attribute, see
Section 17.2, "Connection Testing Options for a Data Source."

C.6.3 Sample Configuration Code
Sample configuration code for a multi data source and two associated generic data
sources is shown below.

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>oracleRACXAPool</name>
 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@host1:1521:SNRAC1</url>
 <driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>

Note: If you are not using Active GridLink data sources, Oracle recommends
the use of multi data sources for failover and load balancing across Oracle RAC
instances for XA and non-XA environments. For more information on using
multi data sources in non-XA environments, see Section C.7, "Using Multi Data
Sources without Global Transactions."

Using Multi Data Sources with Global Transactions

Using Multi Data Sources with Oracle RAC C-13

 <properties>
 <property>
 <name>user</name>
 <value>wlsqa</value>
 </property>
 </properties>
 <password-encrypted>{3DES}aP/xScCS8uI=</password-encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <profile-type>0</profile-type>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <jndi-name>oracleRACXAJndiName</jndi-name>
 <global-transactions-protocol>TwoPhaseCommit
 </global-transactions-protocol>
 </jdbc-data-source-params>
 <jdbc-xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 <xa-end-only-once>true</xa-end-only-once>
 <xa-set-transaction-timeout>true</xa-set-transaction-timeout>
 <xa-transaction-timeout>120</xa-transaction-timeout>
 <xa-retry-duration-seconds>300</xa-retry-duration-seconds>
 </jdbc-xa-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>oracleRACXAPool2</name>
 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@host2:1521:SNRAC2</url>
 <driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>
 <properties>
 <property>
 <name>user</name>
 <value>wlsqa</value>
 </property>
 </properties>
 <password-encrypted>{3DES}aP/xScCS8uI=</password-encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <profile-type>0</profile-type>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <jndi-name>oracleRACXAJndiName2</jndi-name>
 <global-transactions-protocol>TwoPhaseCommit
 </global-transactions-protocol>
 </jdbc-data-source-params>
 <jdbc-xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 <xa-end-only-once>true</xa-end-only-once>
 <xa-set-transaction-timeout>true</xa-set-transaction-timeout>
 <xa-transaction-timeout>120</xa-transaction-timeout>
 <xa-retry-duration-seconds>300</xa-retry-duration-seconds>
 </jdbc-xa-params>
</jdbc-data-source>

Using Multi Data Sources without Global Transactions

C-14 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>oracleRACXAMDS</name>
 <jdbc-data-source-params>
 <jndi-name>oracleRACMDSJndiName</jndi-name>
 <algorithm-type>Load-Balancing</algorithm-type>
 <data-source-list>oracleRACXAPool,oracleRACXAPool2</data-source-list>
 </jdbc-data-source-params>
</jdbc-data-source>

C.7 Using Multi Data Sources without Global Transactions
The following sections describe a configuration that uses Oracle RAC with multi data
sources in an application that does not require global transactions.

■ Section C.7.1, "Attributes of Data Sources within a Multi Data Source Not Using
Global Transactions"

■

C.7.1 Attributes of Data Sources within a Multi Data Source Not Using Global
Transactions

Generic data sources must have the following attributes:

■ Oracle JDBC Thin driver. For example:

 <url>jdbc:oracle:thin:@host1:1521:SNRAC1</url>
 <driver-oracle.jdbc.OracleDriver/driver-name>

■ TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a
connection from the generic data source. Section 4.4.1, "Test Connections on
Reserve to Enable Fail-Over" for more details about this attribute.

– Required to enable failover and connection request routing within a multi data
source (effectively, failover to another Oracle RAC node).

■ TestTableName="name_of_small_table"

– The name of the table used to test a physical database connection. For more
details about this attribute, see Section 17.2, "Connection Testing Options for a
Data Source."

C.7.2 Sample Configuration Code
Sample configuration code for a WebLogic JDBC multi data source and associated
generic data sources is shown below.

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>jdbcPool</name>

Using Multi Data Sources without Global Transactions

Using Multi Data Sources with Oracle RAC C-15

 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@host1:1521:snrac1</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <property>
 <name>user</name>
 <value>wlsqa</value>
 </property>
 </properties>
 <password-encrypted>{3DES}aP/xScCS8uI=</password-encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <jndi-name>jdbcDataSource</jndi-name>
 </jdbc-data-source-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>jdbcPool2</name>
 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@host2:1521:SNRAC2</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <property>
 <name>user</name>
 <value>wlsqa</value>
 </property>
 </properties>
 <password-encrypted>{3DES}aP/xScCS8uI=</password-encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <jndi-name>jdbcDataSource2</jndi-name>
 <global-transactions-protocol>OnePhaseCommit
 </global-transactions-protocol>
 </jdbc-data-source-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>jdbcNonXAMultiPool</name>
 <jdbc-data-source-params>
 <jndi-name>jdbcDataSource</jndi-name>
 <algorithm-type>Failover</algorithm-type>
 <data-source-list>jdbcPool,jdbcPool2</data-source-list>
 <failover-request-if-busy>true</failover-request-if-busy>
 </jdbc-data-source-params>

Configuring Connections to Services on Oracle RAC Nodes

C-16 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

</jdbc-data-source>

C.8 Configuring Connections to Services on Oracle RAC Nodes
If you rely on Oracle services in your Oracle RAC cluster for workload management,
you must use multi data sources to connect to those services instead of you using a
Service ID (SID). A WebLogic Server generic data source can be configured to connect
only to a specific service on a specific Oracle RAC node, providing both workload
management and load balancing.

In general, to connect to Oracle RAC services, you need to:

■ Create a multi data source for each service to which you want to connect.

■ Within each multi data source, create one generic data source for each Oracle RAC
node in the cluster on which the service will be configured, whether or not the
service will be actively running on each node.

Section C.8.1, "Configuring a Data Source to Connect to a Service," describes special
considerations for configuring these data sources. Section C.8.2, "Service Connection
Configurations," shows example configurations for either load balancing or workload
management.

C.8.1 Configuring a Data Source to Connect to a Service
You configure a generic data source to connect to a service running on an Oracle RAC
node in the same way as you configure any generic data source (using WLST, the
WebLogic Server Administration Console, or the Configuration Wizard), with the
following exceptions:

■ initial-capacity="0"

This prevents pool creation failure for inactive pools at WLS startup, and enables
WLS to create the generic data source even if it can’t connect to the service on the
node. Without setting this option to 0, generic data source creation will fail and the
server may fail to boot normally.

In the WebLogic Server Administration Console, edit the generic data source after
creating it, and set Initial Capacity to 0.

■ Oracle JDBC Thin (or Thin XA) driver. For example:

For non-XA:

driver-name="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=RAC1)(PORT=1521)))(CONNECT_DATA=(SERVICE_
NAME=Service_1)(INSTANCE_NAME=DB_02)))"

If configuring via the WebLogic Server Administration Console, select Oracles’s
Driver (Thin) for RAC Service-Instance connections from the Database Driver
drop-down and specify the service in the Service Name field.

For XA:

driver-name="oracle.jdbc.xa.client.OracleXADataSource"
url="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=RAC1)(PORT=1521)))(CONNECT_DATA=(SERVICE_

Note: Line breaks added for readability.

Configuring Connections to Services on Oracle RAC Nodes

Using Multi Data Sources with Oracle RAC C-17

NAME=Service1)(INSTANCE_NAME=DBase1)))"

If configuring via the WebLogic Server Administration Console, select Oracle’s
Driver (Thin XA) for RAC Service-Instance connections from the Database
Driver drop-down and specify the service in the Service Name field.

■ When specifying max-capacity (Maximum Capacity in the WebLogic Server
Administration Console) for the connection pool, you need to consider the
connection capacity of each of the Oracle RAC nodes in your configuration, and
the total number of connections from all generic data sources. See Section C.8.3,
"Connection Pool Capacity Planning," for more information.

Selecting the Appropriate Multi Data Source Algorithm

For service connection scenarios, Oracle recommends that you configure your multi
data source with the Load Balancing algorithm. If the multi data source is configured
with the Load Balancing algorithm, its connection pools are used in a round robin
fashion. In this case, workload is load-balanced across all of the Oracle RAC nodes on
which the associated service is currently active.

If the multi data source is configured with the Failover algorithm, the first generic data
source is used to connect to the service on its associated Oracle RAC node, until a
connection attempt fails for any reason (for example, the Oracle RAC node becomes
unavailable or there are no more connections available in the generic data source). At
that point, the second generic data source is used to connect to the service on its
associated Oracle RAC node, and so on. In this case, the Oracle RAC node to which the
first generic data source is connected will experience more use than the remaining
nodes on which the service is running.

C.8.2 Service Connection Configurations
You can design your configuration to provide:

■ Section C.8.2.1, "Workload Management"

■ Section C.8.2.2, "Load Balancing"

C.8.2.1 Workload Management
In a workload management configuration, each multi data source has one generic data
source configured for a given service on each Oracle RAC node, regardless of whether
the service you are connecting to is active or inactive on a given Oracle RAC node.
This lets you quickly start an inactive service on a node and create connections to that
service should another node become unavailable due to unplanned downtime or
scheduled maintenance. It also lets you quickly increase or decrease the available
capacity for a given service based on workload demands.

When you start the service on a node, the associated generic data source detects that
the service is now active, and the generic data source will then start making
connections to that node as needed. When you stop a service on a given node, the
associated generic data source can no longer make connections to that node, and will
become inactive until the service is restarted on that node.

Notes: The SERVICE_NAME must be the same for all generic data
sources in a given multi data source.

Specify a different HOST NAME and/or port for each generic data
source in a given multi data source.

Configuring Connections to Services on Oracle RAC Nodes

C-18 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

The WLS generic data source performs connection testing. This lets the generic data
source adjust to changes in the topology of the Oracle RAC configuration. The generic
data source performs polling to see if its associated service is active or inactive. The
connection test fails if the service is no longer available on the Oracle RAC node.

Figure C–4 Workload Management using Multi Data Sources

In this example, Service 1 is active on Oracle RAC Nodes 1, 2, and 3, while Service 2 is
inactive on those nodes. Service 2 is active on Oracle RAC Nodes 4 and 5, while
Service 1 is inactive on those nodes.

If Oracle RAC Node 1 becomes unavailable for any reason, you can start Service 1 on
Oracle RAC Node 4. WebLogic Server will detect that the service is running on Node
4, and will begin making connections from the associated backup generic data source
to Node 4 as needed.

C.8.2.2 Load Balancing
In a load balancing configuration, there are multiple services running concurrently on
each Oracle RAC node. Each WLS multi data source has an active connection pool
configured to connect to a given service on each of the nodes. In this scenario, you
would configure each multi data source to use the Load Balancing algorithm.

Configuring Connections to Services on Oracle RAC Nodes

Using Multi Data Sources with Oracle RAC C-19

Figure C–5 Load Balancing with Multi Data Sources

In this example, Service 1 and Service 2 are each actively running on all of the
available Oracle RAC nodes. As a result, all of the connection pools in each multi data
source will actively make connections in a round-robin fashion, balancing workload
among the five nodes.

C.8.3 Connection Pool Capacity Planning
It is important to note the Maximum Capacity value you specify for a generic data
source can cause the connection capacity to a given Oracle RAC node to be exceeded.
You must consider the following factors when determining how to set this value for
each of your generic data sources:

■ The maximum number of simultaneous connections that a Oracle RAC node can
support. This is based on the available memory on a given Oracle RAC node and
the amount of memory consumed by each service connection (which can vary for
each service). Memory consumption by each connection is a major limitation on
the amount of work that can be generated from the WLS servers. Exceeding the
amount of available memory by creating too many connections from your WLS
generic data sources to a given Oracle RAC node can result in degraded
performance on the Oracle RAC node, or could lead to failed connections.

Available memory for a node should be based on the PGA target attribute (per
session memory).

Configuring Connections to Services on Oracle RAC Nodes

C-20 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

■ The maximum number of generic data sources that can potentially create
connections to a given Oracle RAC node, and the number of WebLogic server
instances to which each generic data source/multi data source is targeted. For
example, if you have one generic data source that is targeted to three WLS servers,
that generic data source counts as three generic data sources, as each server uses
its own instance of the generic data source. This is the case whether the servers are
part of a cluster or are independent server instances.

■ The maximum number of services that may be actively running on a given Oracle
RAC node, and the memory consumed on the node by each connection to each
service.

■ The expected relative workload for each service on a given node. For example, the
expected workload of Service1 may be double that of the expected workload of
Service2.

Regardless of whether or not a service is always active on a node, you should
allocate resources for that service in the event you have to start it on the node.

■ Always use the worst-case scenario when setting the Maximum Capacity value
for your generic data sources. For example, assume that all available services will
be actively running on the Oracle RAC node associated with each generic data
source.

The following example explains how you could go about determining each generic
data source’s Maximum Capacity value. Keep in mind that this is a very simple
example intended to illustrate the issue conceptually, and that real-world situations are
much more complicated. In general, it is best to under-configure your generic data
sources with a low Maximum Capacity value, monitor your Oracle RAC nodes for
memory usage and performance, then adjust the Maximum Capacity values upward
until you are approaching the maximum capacity of the associated Oracle RAC nodes.

Example

Suppose you have the following basic configuration:

■ Five Oracle RAC nodes, each with 16 GB of memory.

■ Two services actively running on each Oracle RAC node. Service1 uses 10MB per
connection, Service2 uses 20MB per connection.

■ Workload for each service is the same, that is, each service will generate an
equivalent number of connections on a given Oracle RAC node.

■ Two WebLogic Server clusters. Cluster1 has five servers. Cluster2 has four servers.

■ For a given Oracle RAC node, one generic data source is targeted to Cluster1 and
is configured to connect to Service1.

■ For a given Oracle RAC node, one generic data source is targeted to Cluster 2 and
is configured to connect to Service2.

Because Service2 uses twice as much memory per connection as Service1, you should
allocate approximately 10GB of the node’s memory for Service 2 and approximately
5GB for Service1.

Because Cluster1 has five WLS servers, there will be five generic data sources making
connection requests to this Oracle RAC node. This gives you 1GB of memory available
for connections from a given generic data source (5GB/5). Each connection requires
10MB of memory, so the Maximum Capacity value for each generic data source
targeted to Cluster1 should be 100 or lower.

Configuring Connections to Services on Oracle RAC Nodes

Using Multi Data Sources with Oracle RAC C-21

Because Cluster 2 has four WLS servers, there will be four generic data sources making
connection requests to this Oracle RAC node. This gives you 2.5GB of memory
available for connections from a given generic data source (10GB/4). Each connection
requires 20MB, so the Maximum Capacity value for each generic data source targeted
to Cluster2 should be 125 or lower.

If Service 2 generates more workload than Service1, you would have to adjust these
values appropriately (increase the Maximum Capacity value for the generic data
source connecting to Service2, decrease the value for the generic data source
connecting to Service1). As long as:

(Max. connections to Service1 x memory used per connection) + (Max.
connections to Service2 x memory used per connection) < Available memory

you can avoid the potential for performance degradation or connection failures.

Alternatively, in a simple configuration, such as is shown in Figure C–6, the Maximum
Capacity value you specify for each of your generic data sources can be loosely
determined using the following formula:

Maximum connection pool capacity = Maximum number of connections to Oracle RAC
nodes/(Number of WebLogic Server instances x Nmber of generic data sources
targeted to each instance x Number of active Oracle RAC services configured x
Number of Oracle RAC Nodes)

where:

Maximum number of connections to Oracle RAC nodes is determined by total memory
available on all nodes divided by the memory consumed by each connection.

Number of WebLogic Server instances is the number of server instances to which the
generic data sources are targeted. If the generic data sources is targeted to a WLS
cluster, this is the number of servers in the cluster.

In the example in Figure C–6:

■ assume that a maximum of 4000 total connections can be made to the group of
Oracle RAC nodes, based on 8GB of available memory per Oracle RAC node, and
10MB of memory used per connection.

■ there are a total of five server instances to which the generic data sources are
targeted

■ there are five generic data sources targeted to each server instance

■ there are two services running on each Oracle RAC node, and

■ there are five Oracle RAC nodes.

In this configuration, the Maximum Capacity value you would enter for each of your
generic data sources would be:

Maximum connection pool capacity = 4000/(5 server instances x 5 generic data
sources x 2 services x 5 Oracle RAC nodes)

which would give you a Maximum Capacity value of 16 for each of your generic data
sources.

Using SCAN Addresses with Multi Data Sources

C-22 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Figure C–6 Example multi data source Connection Configuration

Keep in mind that this formula is just a general guideline for configuring your generic
data sources, as many configurations will be too complex for you to use such a simple
calculation.

When calculating the Maximum Capacity value you should use, always consider the
worst-case scenario that you will have in your overall configuration. It is best to
under-configure this value for normal operation than to have it over-configured when
a worst-case situation develops. You can always monitor your Oracle RAC nodes to
determine if it is safe to increase the Maximum Capacity value for any of your generic
data sources.

C.9 Using SCAN Addresses with Multi Data Sources
Single Client Access Name (SCAN) is not recommended for use with multi data
sources. This can be a problem if your configuration is set up to use SCAN (for
example, you can't use non-scan addresses if the database listener is set up to use
SCAN).

SCAN has two purposes:

■ Provide connect time listener failover

■ Provide connection load-balancing

Connection load-balancing cannot be used with a multi data source because the multi
data source must be in control of handling the connection load balancing and failover.

XA Considerations and Limitations when using multi Data Sources with Oracle RAC

Using Multi Data Sources with Oracle RAC C-23

To turn off this capability, use a URL with an INSTANCE_NAME attribute. Each of the
generic datasources in the multi data source should point to a different instance. When
the multi data source recognizes that an instance is down on the first generic
datasource, it guides connections to the instance on the first generic datasource that is
not down. When SCAN used with an INSTANCE_NAME attribute, the multi data source
provides load-balancing, failover of connections, and continues to provide a more
reliable way to get to a listener.

If you need to configure SCAN address for a multi data source, configure each generic
data source member with a URL that has a different INSTANCE_NAME value. For
example:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=scanname)(PORT=scanport))(CONNECT_
DATA=(SERVICE_NAME=myservice)(INSTANCE_NAME=myinstance)))

C.10 XA Considerations and Limitations when using multi Data Sources
with Oracle RAC

When using XA (global transactions) with multi data sources for Oracle RAC, consider
the following requirements and limitations.

■ Section C.10.1, "Oracle RAC XA Requirements when using multi Data Sources"

■ Section C.10.2, "Known Limitations When Using Oracle RAC with multi Data
Sources"

■ Section C.10.3, "Known Issue Occurring After Database Server Crash"

C.10.1 Oracle RAC XA Requirements when using multi Data Sources
Oracle RAC has the following requirements when using multi data sources with global
transactions.

■ Section C.10.1.1, "Use Multi Data Sources"

■ Section C.10.1.2, "A Global Transaction Must Be Initiated, Prepared, and
Concluded in the Same Instance of the Oracle RAC Cluster"

■ Section C.10.1.3, "Transaction IDs Must Be Unique Within the Oracle RAC Cluster"

C.10.1.1 Use Multi Data Sources
Always use a multi data source when using XA transactions with multi data sources
for Oracle RAC.

C.10.1.2 A Global Transaction Must Be Initiated, Prepared, and Concluded in the
Same Instance of the Oracle RAC Cluster
Global transactions must be initiated, prepared, and concluded in the same instance of
the Oracle RAC cluster. WebLogic Server generic data sources manage this for you
when you set KeepXAConnTillTxComplete="true" in the generic data source
configuration.

Note: If you add a node, you need to manually add a generic data
source member and add it to the multi data source.

XA Considerations and Limitations when using multi Data Sources with Oracle RAC

C-24 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

C.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster
When using global transactions, transaction IDs (XIDs) must be unique within the
Oracle RAC cluster. However, neither the Oracle Thin driver nor an Oracle RAC
instance can determine if an XID is unique within the Oracle RAC cluster. Transactions
with the same XID can execute SQL code on different instances of the Oracle RAC
cluster without any exception.

C.10.2 Known Limitations When Using Oracle RAC with multi Data Sources
The following sections describe known issues and limitations when using XA and
multi data sources with Oracle RAC:

■ Section C.10.2.1, "Potential for Data Deadlocks in Some Failure Scenarios"

■ Section C.10.2.2, "Potential for Transactions Completed Out of Sequence"

C.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios
There is a window of time in which transaction IDs are not available across the Oracle
RAC cluster. Because of this known limitation, after some failure conditions, some
incomplete transactions cannot be properly completed, which can result in deadlocks
in the database. To prevent these failure conditions from arising, WebLogic Server
provides two configuration attributes that enable XA call retry for Oracle RAC:
XARetryDurationSeconds and XARetryIntervalSeconds. For more information about
these configuration options, see Section C.5.3.2, "Delays During Failover."

C.10.2.2 Potential for Transactions Completed Out of Sequence
When using the Oracle DataBase Control, the order of transaction processing is not
guaranteed. For example, if you implement a web service that uses DataBase Control
do the following transaction sequence:

1. Create a table

2. Insert record 1

3. Insert record 2

4. Insert record 3

5. Select records

If the primary node goes down momentarily after the table is created, it is possible that
transactions submitted to the database are performed out of sequence.

C.10.3 Known Issue Occurring After Database Server Crash
If, while a transaction is being processed, the database server instance crashes after the
PREPARE operation is complete but before the results of that operation have been
written to the transaction log, a COMMIT call from a client for that transaction may hang
for several minutes and possibly until the TCP timeout period has expired. The
window of time in which this might occur is small and the problem occurs rarely.
There is no workaround for the issue at this time.

Note: Some of these limitations are also described in Oracle's bug numbers
3428146 and 395790. Contact Oracle for more information about these issues.

JDBC Store Recovery with Oracle RAC

Using Multi Data Sources with Oracle RAC C-25

C.11 JDBC Store Recovery with Oracle RAC
If you are using a JDBC Store with Oracle RAC, there are features and limitations to
consider that concern Oracle RAC node failover. See the following sections:

■ Configuring a JDBC Store for Use with Oracle RAC

■ Automatic Retry for JMS Connections

For a list of the major services that use the JDBC store, see "Monitoring Store
Connections" in Administering Server Environments for Oracle WebLogic Server.

C.11.1 Configuring a JDBC Store for Use with Oracle RAC
The way that a JDBC Store works limits the options you have for configuring one for
use with Oracle RAC. You cannot configure a JDBC store to use a generic data source
that is configured to support global transactions. The JDBC store must use a generic
data source that uses a non-XA JDBC driver. For more information about this
configuration option, see Section C.7, "Using Multi Data Sources without Global
Transactions."

A JDBC Store holds on to a connection until that connection fails, at which point it
moves on to the next connection and repeats the process. Therefore you cannot
implement load balancing with a JDBC Store, including using a load balancing multi
data source. You should configure a multi data source for a JDBC store to use the
Failover algorithm.

In short, for a JDBC store:

■ Use a non-XA driver

■ Configure the multi data source for Failover mode.

C.11.2 Automatic Retry for JMS Connections
JMS has a limited connection retry mechanism which enables it to silently react to the
failure of the Oracle RAC node that hosts its database connection. If the database has
experienced either a minor network 'hiccup' or a Oracle RAC database has failed over
to another node, the second connection attempt (the retry) will succeed to the next
Oracle RAC node.

The time within which this retry is attempted and the number of retries attempted are
limited to minimize the negative effects that an extended connection retry time could
cause. If the database connection remains unavailable for a long period of time, the
delay can impede the ability of JMS to properly continue its processing (for example,
to maintain proper message ordering). Also, the transaction manager could declare the
JMS resource of a transaction to be dead if there is not enough processing progress
made within this time period, or out-of memory conditions could arise. There are
system-level tuning guidelines that can help minimize the Oracle RAC failover time
frame which is critical to the success of the automatic retry.

The tight loop on the automatic retry is particularly important when JMS processing
occurs with transactions. If an I/O failure occurs in the JDBC Store, the store record is
in an unknown state which will put the message itself in an unknown state. To prevent
the message from being committed in this unknown state, JMS will mark the
transaction associated with the message as a "failedTransaction." Any future attempts
by the transaction manager to finishing committing the message will cause JMS to
throw a javax.transaction.xa.XAException with an errorCode set to
XAException.XAER_RMERR. This exception is an indication to the transaction manager
that a transient error has occurred in the resource manager (JMS) and that the

JDBC Store Recovery with Oracle RAC

C-26 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

transaction manager should retry commit processing. The retry logic provides a
second attempt to establish the connection before JMS communicates any failure to the
upper layer which would translate into an RMERR. If the RMERR is generated, then the
only way to recover the message and complete the transaction is to either restart
WebLogic Server or configure Automatic Service Migration (ASM) restart-in-place
option for Singleton Services. Otherwise, when the I/O fails, the transaction is marked
in a way that cannot be recovered until the JMS server is restarted.

The automatic connection retry logic is currently governed by an option on WebLogic
Server as follows:

-Dweblogic.store.jdbc.IORetryDelayMillis=x

Where x is the number of milliseconds to elapse before the connection to the database
is retried. The default value is 1000 milliseconds. This value is restricted to the range 0
to 15000 milliseconds, and the retry is only be attempted once. If a failure occurs on the
second attempt, an exception is propagated up the call stack and a manual restart is
required to recover the messages associated with the failed transaction.

Note: In the event that an automatic retry attempt is not successful, you must
restart WebLogic Server. Automatic Service Migration (ASM)
restart-in-place option for Singleton Services can be used to trigger an
automatic restart of failed JMS Services.

The automatic retry delay only applies to the connection retry mechanism.
There is no configurable retry delay available for JDBC Store I/O failures.

D

Using Connect-Time Failover with Oracle RAC (Deprecated) D-1

DUsing Connect-Time Failover with Oracle RAC
(Deprecated)

[22] This appendix provides information on how WebLogic Server 12.1.3 provides
Connect-Time Failover (deprecated) for legacy applications that use data sources
configured to use connect-time failover and load balancing.

This chapter includes the following sections:

■ Section D.1, "Using Connect-Time Failover without Global Transactions"

■ Section D.2, "Attributes of a Connect-Time Failover Configuration without Global
Transactions"

■ Section D.3, "Sample Configuration Code"

D.1 Using Connect-Time Failover without Global Transactions
To connect WebLogic Server to multiple Oracle RAC nodes using data sources
configured for connect-time failover and load balancing, configure a JDBC data source
for each Oracle RAC instance in your Oracle RAC cluster with the Oracle Thin driver,
as described in the sections that follow. Figure D–1 shows an overview of the system.

Note: New applications should an Active GridLink data source,
which provides the same capabilities. See Section 5.1, "What is an
Active GridLink Data Source" and "Implicit Connection Caching" in
the Database JDBC Developer's Guide.

Using Connect-Time Failover without Global Transactions

D-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Figure D–1 Data Source Configuration with Oracle Thin Driver Connect-Time Failover

You can use the WebLogic Server Administration Console or any other means that you
prefer to configure your domain, such as the WebLogic Scripting Tool (WLST) or a
JMX program.

When connections are created in the data source, the Oracle Thin driver determines
which Oracle RAC instance to use. When an application gets a connection, it looks up
a data source on the JNDI tree and requests a connection from the data source. The
data source delivers one of the available connections from the pool of connections in
the data source.

The following sections describe a configuration that uses Oracle RAC's connect-time
failover features to handle connection failures. With this configuration, in some failure
cases, the failover time is as long as the TCP timeout, which can be several minutes,
depending on your environment.

Sample Configuration Code

Using Connect-Time Failover with Oracle RAC (Deprecated) D-3

D.2 Attributes of a Connect-Time Failover Configuration without Global
Transactions

To use this configuration, create JDBC data sources in your WebLogic domain with the
following attributes.

■ Oracle JDBC Thin driver configured for connect-time failover. For example:

<url>jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=
 (PROTOCOL=TCP)(HOST=host1)(PORT=1521))(ADDRESS=(PROTOCOL=TCP)
 (HOST=host2)(PORT=1521))(FAILOVER=on)(LOAD_BALANCE=off))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=snrac)))</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>

■ ConnectionReserveTimeoutSeconds="120"

– Enables application requests for a connection to wait 120 seconds for a
connection to become available.

■ TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a
connection from the data source. See Section 4.4.1, "Test Connections on
Reserve to Enable Fail-Over" for more details about this attribute.

– Required to enable failover to another Oracle RAC node.

■ TestTableName="name_of_small_table" The name of the table used to test a
physical database connection. For more details about this attribute, see
Section 17.2, "Connection Testing Options for a Data Source."

D.3 Sample Configuration Code
Sample configuration code is shown below.

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
 <name>oracleRACNonXAPool</name>
 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
 HOST=host1)(PORT=1521))(ADDRESS=(PROTOCOL=TCP)
 (HOST=host2)(PORT=152))(FAILOVER=on)
 (LOAD_BALANCE=off))(CONNECT_DATA=(SERVER=DEDICATED)
 (SERVICE_NAME=snrac)))</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <property>
 <name>user</name>
 <value>wlsqa</value>
 </property>
 </properties>
 <password-encrypted>{3DES}aP/xScCS8uI=</password-encrypted>
 </jdbc-driver-params>

Note: Line breaks added for readability.

Sample Configuration Code

D-4 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

 <jdbc-connection-pool-params>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <profile-type>4</profile-type>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <jndi-name>oracleRACJndiName</jndi-name>
 <global-transactions-protocol>OnePhaseCommit
 </global-transactions-protocol>
 </jdbc-data-source-params>
</jdbc-data-source>

E

Using Fast Connection Failover with Oracle RAC E-1

EUsing Fast Connection Failover with Oracle
RAC

[23] This appendix provides information on how to use WebLogic Server 12.1.3 with Oracle
Fast Connection Failover.

WebLogic Server supports Fast Connection Failover, an Oracle feature which provides
an application-independent method to implement Oracle RAC event notifications,
such as detection and cleanup of invalid connections, load balancing of available
connections, and work redistribution on active Oracle RAC instances.

For more information, see "Fast Connection Failover" at
http://download-east.oracle.com/docs/cd/B19306_
01/java.102/b14355/fstconfo.htm#CIHJBFFC in the Oracle® Database JDBC Developer's
Guide and Reference.

E.1 JDBC Driver Configuration for use with Oracle Fast Connection
Failover

To enable Fast Connection Failover on a data source, set the following connection pool
properties:

■ In Driver Class Name—set the class name to
oracle.jdbc.pool.OracleDataSource.

■ In Properties—set the ONS configuration string to remotely subscribe the Oracle
RAC nodes to Oracle FAN/ONS events. For example:
ONSConfiguration=nodes=hostname1:port1,hostname2:port2

Note: Oracle's OracleDataSource class is not XA-capable, so the resulting
data source does not implement a XA connection pool.

JDBC Driver Configuration for use with Oracle Fast Connection Failover

E-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

F

Smart Upgrade Support for JDBC F-1

FSmart Upgrade Support for JDBC

[24] This appendix describes WebLogic Server SmartUpgrade Support for JDBC. WebLogic
Server SmartUpgrade is an Oracle JDeveloper extension and command-line utility that
analyzes the applications previously deployed on Oracle OC4J. It then offers advice
and performs actions that can help you successfully redeploy the applications on
Oracle WebLogic Server. You can analyze an application archive, or you can analyze an
application or project you have opened in Oracle JDeveloper. In addition,
SmartUpgrade can analyze the OC4J server where you deployed your applications
and provide advice on how to set up a similar configuration in Oracle WebLogic
Server 12.1.3.

F.1 Smart Upgrade Features
In addition to providing a comprehensive report with specific findings about each
application, SmartUpgrade can also automate some of the upgrade tasks. For JDBC,
the OC4J J2EE_HOME\home\config\data-sources.xml file and each data source
configuration file defined for an application (ear) can be upgraded to the
corresponding WebLogic Server JDBC data source definitions.

Smart upgrade supports the following feature conversions.

■ If an OC4J datasource is configured with a RAC service (long form) URL and
fastConnectionFailoverEnabled=true or ONSConfiguration is set, an Active
GridLink datasource is configured.

■ fastConnectionFailoverEnabled=true implies that fan-enabled is set to true.

■ ONSConfiguration (nodes and optional wallet information), for example,
nodes=racnode1:4200,racnode2:4200\nwalletfile=/mydir/Wallet\nwalletpass
word=mypasswd, is parsed to get the node list and the optional wallet information.
This information is then used to set the node-list, wallet directory, and wallet
password.

■ Remove-infected-connections is always be set to false to match the OC4J
behavior.

■ Wrap-types is always set to true to match the OC4J behavior.

■ Oracle-proxy-session is set to true if OC4J proxy-sessions is set to true.

■ The fatal-error-codes list is set if the OC4J fatal-error-codes and values are
available.

■ Min-capacity is set to OC4J min-connections, if available.

■ Identity-based-connection-pooling-enabled and use-database-credentials
is always set to true to match the OC4J behavior.

Smart Upgrade Features

F-2 Administering JDBC Data Sources for Oracle WebLogic Server 12.1.3

Smart Upgrade is not shipped with WebLogic Server but can be downloaded
separately from
http://www.oracle.com/technetwork/middleware/downloads/smartupgrade-08516
0.html.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 JDBC Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 JDBC Examples in the WebLogic Server Distribution

	1.5 New and Changed JDBC Data Source Features in This Release
	1.5.1 Oracle 12c Driver Support
	1.5.2 Derby Database Driver Support
	1.5.3 Encrypted Connection Properties
	1.5.4 Connection Labeling Enhancements to Avoid Connection Costs
	1.5.5 Connection Labeling with Packaged Applications
	1.5.6 oracle.jdbc.enableJavaNetFastPath Disabled
	1.5.7 Oracle Data Base Testing Using SQL ISVALID
	1.5.8 CountOfTestFailuresTillFlush and CountOfRefreshFailuresTillDisable
	1.5.9 securityCacheTimeoutSeconds Default Value
	1.5.10 JDBC 4.0 setPoolable(false) Removes Statement

	2 Configuring WebLogic JDBC Resources
	2.1 Understanding JDBC Resources in WebLogic Server
	2.2 Ownership of Configured JDBC Resources
	2.3 Data Source Configuration Files
	2.3.1 JDBC System Modules
	2.3.1.1 Generic Data Source Modules
	2.3.1.2 Active GridLink Data Source System Modules
	2.3.1.3 Multi Data Source System Modules

	2.3.2 JDBC Application Modules
	2.3.2.1 Standard Java EE Application Modules
	2.3.2.2 Proprietary JDBC Application Modules
	2.3.2.2.1 Including Drivers in EAR/WAR Files

	2.3.3 JDBC Module File Naming Requirements
	2.3.4 JDBC Modules in Versioned Applications
	2.3.5 JDBC Schema

	2.4 JMX and WLST Access for JDBC Resources
	2.4.1 JDBC MBeans for System Resources
	2.4.2 JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
	2.4.3 Using WLST to Create JDBC System Resources
	2.4.4 How to Modify and Monitor JDBC Resources
	2.4.5 Best Practices when Using WLST to Configure JDBC Resources

	2.5 Creating High-Availability JDBC Resources

	3 Configuring JDBC Data Sources
	3.1 Understanding JDBC Data Sources
	3.2 Types of WebLogic Server JDBC Data Sources
	3.3 Creating a JDBC Data Source
	3.3.1 JDBC Data Source Properties
	3.3.1.1 Data Source Names
	3.3.1.2 JNDI Names
	3.3.1.3 Selecting a Database Type
	3.3.1.4 Selecting a JDBC Driver

	3.3.2 Configure Transaction Options
	3.3.3 Configure Connection Properties
	3.3.3.1 Configuring Connection Properties for Oracle BI Server

	3.3.4 Test Connections
	3.3.5 Target the Data Source

	3.4 Configuring Generic Connection Pool Features
	3.4.1 Enabling JDBC Driver-Level Features
	3.4.2 Enabling Connection-based System Properties
	3.4.3 Enabling Connection-based Encrypted Properties
	3.4.4 Initializing Database Connections with SQL Code

	3.5 Advanced Connection Properties
	3.5.1 Define Fatal Error Codes
	3.5.2 Enabling Edition-Based Redefinition

	3.6 Configuring Oracle Parameters
	3.7 Configuring an ONS Client
	3.8 Tuning Generic Data Source Connection Pools
	3.9 Generic Data Source Handling for Oracle RAC Outages

	4 Configuring JDBC Multi Data Sources
	4.1 Multi Data Source Features
	4.1.1 Removing a Database Node
	4.1.2 Adding a Database Node

	4.2 Creating and Configuring Multi Data Sources
	4.3 Choosing the Multi Data Source Algorithm
	4.3.1 Failover
	4.3.2 Load Balancing

	4.4 Multi Data Source Fail-Over Limitations and Requirements
	4.4.1 Test Connections on Reserve to Enable Fail-Over
	4.4.2 No Fail-Over for In-Use Connections

	4.5 Multi Data Source Failover Enhancements
	4.5.1 Connection Request Routing Enhancements When a Generic Data Source Fails
	4.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi Data Source
	4.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data Source
	4.5.4 Controlling Multi Data Source Failover with a Callback
	4.5.4.1 Callback Handler Requirements
	4.5.4.2 Callback Handler Configuration
	4.5.4.3 How It Works—Failover

	4.5.5 Controlling Multi Data Source Failback with a Callback
	4.5.5.1 How It Works—Failback

	4.6 Deploying JDBC Multi Data Sources on Servers and Clusters

	5 Using Active GridLink Data Sources
	5.1 What is an Active GridLink Data Source
	5.1.1 Fast Connection Failover
	5.1.2 Runtime Connection Load Balancing
	5.1.3 AGL Support During Oracle RAC Outages
	5.1.3.1 Handling for Oracle RAC Outages Prior to Oracle RAC 11.2

	5.1.4 GridLink Affinity
	5.1.4.1 Session Affinity Policy
	5.1.4.2 XA Affinity Policy

	5.1.5 SCAN Addresses
	5.1.6 Secure Communication using Oracle Wallet with ONS Listener

	5.2 Creating an Active GridLink Data Source
	5.2.1 JDBC Data Source Properties
	5.2.1.1 Data Source Names
	5.2.1.2 JNDI Names
	5.2.1.3 Select a Driver

	5.2.2 Configure Transaction Options
	5.2.3 Configure Connection Properties
	5.2.3.1 Enter Connection Properties
	5.2.3.2 Enter a Complete URL
	5.2.3.2.1 Supported AGL Data Source URL Formats
	5.2.3.2.2 Recommendations for AGL Data Source URLs

	5.2.4 Test Connections
	5.2.5 Configure an ONS Client Configuration
	5.2.5.1 Secure ONS Client Communication

	5.2.6 Test ONS Client Configuration
	5.2.7 Target the Data Source

	5.3 Using Socket Direct Protocol
	5.3.1 Configuring Runtime Load Balancing using SDP

	5.4 Configuring AGL Connection Pool Features
	5.4.1 Enabling JDBC Driver-Level Features
	5.4.2 Enabling Connection-based System Properties
	5.4.3 Initializing Database Connections with SQL Code

	5.5 Configuring Oracle Parameters
	5.6 Configuring an ONS Client
	5.6.1 Enabling FAN Events
	5.6.2 Using a Wallet File

	5.7 Tuning Active GridLink Data Source Connection Pools
	5.8 Monitoring GridLink JDBC Resources
	5.8.1 Viewing Run-Time Statistics
	5.8.1.1 JDBCOracleDataSourceRuntimeMBean
	5.8.1.2 JDBCOracleDataSourceInstanceRuntimeMBean
	5.8.1.3 ONSDaemonRuntimeMBean

	5.8.2 Debug Active GridLink Data Sources
	5.8.2.1 JDBC Debugging Scopes
	5.8.2.2 UCP JDK Logging
	5.8.2.3 Enable Debugging Using the Command Line

	5.9 Using Active GridLink Data Sources without FAN Notification
	5.9.1 Understanding the ActiveGridlink Attribute

	5.10 Best Practices for Active GridLink Data Sources
	5.10.1 Catch and Handle Exceptions
	5.10.2 Connection Creation with Active Gridlink Data Sources

	5.11 Comparing AGL and Multi Data Sources
	5.12 Migrating from Multi Data Source to Active GridLink
	5.12.1 Application Changes to Migrate a Multi Data Source
	5.12.2 Configuration Changes to Migrate a Multi Data Source
	5.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink Data Source

	6 Advanced Configurations for Oracle Drivers and Databases
	6.1 Application Continuity
	6.1.1 How Application Continuity Works
	6.1.2 Requirements and Considerations
	6.1.3 Configuring Application Continuity
	6.1.3.1 Selecting the Driver for Application Continuity
	6.1.3.2 Using a Connection Callback
	6.1.3.2.1 Create an Initialization Callback
	6.1.3.2.2 Registering an Initialization Callback
	6.1.3.2.3 Unregister an Initialization Callback

	6.1.3.3 Setting the Replay Timeout
	6.1.3.4 Disabling Application Continuity for a Connection
	6.1.3.5 Configuring Logging for Application Continuity

	6.1.4 Limitations with Application Continuity with Oracle 12c Database

	6.2 Database Resident Connection Pooling
	6.2.1 Requirements and Considerations
	6.2.2 Configuring DRCP
	6.2.2.1 Configuring a Data Source for DRCP
	6.2.2.2 Configuring a Database for DRCP

	6.3 Global Database Services
	6.3.1 Requirements and Considerations
	6.3.2 Creating a GridLink DataSource for GDS Connectivity

	6.4 Container Database with Pluggable Databases
	6.4.1 Creating Service for PDB Access
	6.4.2 DRCP and CDB/PDB
	6.4.3 Setting the PDB using JDBC

	6.5 Limitations with Tenant Switching

	7 Connection Harvesting
	7.1 What is Connection Harvesting?
	7.2 Enable Connection Harvesting
	7.3 Marking Connections Harvestable
	7.4 Recover Harvested Connections

	8 Labeling Connections
	8.1 What is Connection Labeling?
	8.2 Implementing Labeling Callbacks
	8.3 Creating a Labeling Callback
	8.3.1 Example Labeling Callback

	8.4 Registering a Labeling Callback
	8.4.1 Removing a Labeling Callback
	8.4.2 Applying Connection Labels

	8.5 Reserving Labeled Connections
	8.6 Checking Unmatched labels
	8.7 Removing a Connection Label
	8.8 Using Initialization and Reinitialization Costs to Select Connections
	8.8.1 Considerations When Using Initialization and Reinitialization Costs

	8.9 Using Connection Labeling with Packaged Applications
	8.9.1 Considerations When using Labelled Connections in Packaged Applications

	9 JDBC Data Source Transaction Options
	9.1 Enabling Support for Global Transactions with a Non-XA JDBC Driver
	9.2 Understanding the Logging Last Resource Transaction Option
	9.2.1 Advantages to Using the Logging Last Resource Optimization
	9.2.2 Enabling the Logging Last Resource Transaction Optimization
	9.2.3 Programming Considerations and Limitations for LLR Data Sources
	9.2.4 Administrative Considerations and Limitations for LLR Data Sources

	9.3 Understanding the Emulate Two-Phase Commit Transaction Option
	9.3.1 Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver
	9.3.1.1 Heuristic Completions and Data Inconsistency
	9.3.1.2 Cannot Recover Pending Transactions
	9.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-Server Configurations
	9.3.1.4 Multiple Non-XA Participants

	9.4 Local Transaction Completion when Closing a Connection

	10 Understanding Data Source Security
	10.1 Introduction to WebLogic Data Source Security Options
	10.2 WebLogic Data Source Security Options
	10.2.1 Security Credential Configuration Options
	10.2.2 Credential Mapping vs. Database Credentials
	10.2.3 Set Client Identifier on Connection
	10.2.4 Oracle Proxy Session
	10.2.5 Identity-based Connection Pooling

	10.3 Connections within Transactions
	10.4 WebLogic Data Source Resource Permissions
	10.5 Data Source Security Example
	10.6 Using Encrypted Connection Properties
	10.6.1 Best Practices for Ecrypting Connection Properties when Using the Administration Console
	10.6.2 WLST Examples to Encrypt Connection Properties
	10.6.2.1 Use WLST to Update an Existing Data Source with Encrypted Properties
	10.6.2.2 Use WLST to Create Encryped Properties

	10.7 Using SSL and Encrytption with Data Sources and Oracle Drivers
	10.7.1 Using SSL with Data Sources and Oracle Drivers
	10.7.1.1 Using SSL with Oracle Wallet
	10.7.1.2 Active GridLink ONS over SSL

	10.7.2 Using Data Encryption with Data Sources and Oracle Drivers

	11 Creating and Managing Oracle Wallet
	11.1 What is Oracle Wallet
	11.2 Where to Keep Your Wallet
	11.3 How to Create an External Password Store
	11.4 Defining a WebLogic Server Datasource using the Wallet
	11.4.1 Copy the Wallet Files
	11.4.2 Update the Datasource Configuration

	11.5 Using a TNS Alias instead of a DB Connect String

	12 Deploying Data Sources on Servers and Clusters
	12.1 Deploying Data Sources on Servers and Clusters
	12.2 Minimizing Server Startup Hang Caused By an Unresponsive Database

	13 Using WebLogic Server with Oracle RAC
	13.1 Overview of Oracle Real Application Clusters
	13.2 Software Requirements
	13.3 JDBC Driver Requirements
	13.4 Hardware Requirements
	13.4.1 WebLogic Server Cluster
	13.4.2 Oracle RAC Cluster
	13.4.3 Shared Storage

	13.5 Configuration Options in WebLogic Server with Oracle RAC
	13.5.1 Choosing a WebLogic Server Configuration for Use with Oracle RAC
	13.5.2 Validating Connections when using WebLogic Server with Oracle RAC
	13.5.3 Additional Considerations When Using WebLogic Server with Oracle RAC

	14 Using JDBC Drivers with WebLogic Server
	14.1 JDBC Driver Support
	14.2 JDBC Drivers Installed with WebLogic Server
	14.3 Using Third-Party JDBC Drivers
	14.4 Adding or Updating JDBC Drivers
	14.5 Globalization Support for the Oracle Thin Driver
	14.6 Using the Oracle Thin Driver in Debug Mode

	15 Monitoring WebLogic JDBC Resources
	15.1 Viewing Run-Time Statistics
	15.1.1 Data Source Statistics
	15.1.2 Prepared Statement Cache Statistics

	15.2 Profile Logging
	15.3 Collecting Profile Information
	15.3.1 Profile Types
	15.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)
	15.3.1.2 Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)
	15.3.1.3 Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)
	15.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)
	15.3.1.5 Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)
	15.3.1.6 Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
	15.3.1.7 Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)
	15.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)
	15.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)
	15.3.1.10 Example Profile Information Record Log

	15.3.2 Accessing Diagnostic Data
	15.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated)

	15.4 Debugging JDBC Data Sources
	15.4.1 Enabling Debugging
	15.4.1.1 Enable Debugging Using the Command Line
	15.4.1.2 Enable Debugging Using the WebLogic Server Administration Console
	15.4.1.3 Enable Debugging Using the WebLogic Scripting Tool
	15.4.1.4 Changes to the config.xml File

	15.4.2 JDBC Debugging Scopes
	15.4.3 Setting Debugging for UCP/ONS
	15.4.3.1 Debugging UCP
	15.4.3.2 Debugging ONS

	15.4.4 Request Dyeing

	16 Managing WebLogic JDBC Resources
	16.1 Testing Data Sources and Database Connections
	16.2 Managing the Statement Cache for a Data Source
	16.2.1 Clearing the Statement Cache for a Data Source
	16.2.2 Clearing the Statement Cache for a Single Connection

	16.3 Shrinking a Connection Pool
	16.4 Resetting a Connection Pool
	16.5 Suspending a Connection Pool
	16.6 Resuming a Connection Pool
	16.7 Shutting Down a Data Source
	16.8 Starting a Data Source
	16.9 Managing DBMS Network Failures

	17 Tuning Data Source Connection Pools
	17.1 Increasing Performance with the Statement Cache
	17.1.1 Statement Cache Algorithms
	17.1.1.1 LRU (Least Recently Used)
	17.1.1.2 Fixed

	17.1.2 Statement Cache Size
	17.1.3 Usage Restrictions for the Statement Cache
	17.1.3.1 Calling a Stored Statement After a Database Change May Cause Errors
	17.1.3.2 Using setNull In a Prepared Statement
	17.1.3.3 Statements in the Cache May Reserve Database Cursors
	17.1.3.4 Other Considerations When Using the Statement Cache

	17.2 Connection Testing Options for a Data Source
	17.2.1 Database Connection Testing Semantics
	17.2.1.1 Connection Testing When Database Connections are Created
	17.2.1.2 Periodic Connection Testing
	17.2.1.3 Testing Reserved Connections
	17.2.1.4 Minimizing Connection Test Delay After Database Connectivity Loss
	17.2.1.5 Minimizing Connection Request Delays After Loss of DBMS Connectivity
	17.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

	17.2.2 Database Connection Testing Configuration Recommendations
	17.2.3 Database Connection Testing Using Default Test Table Name
	17.2.4 Database Connection Testing Options

	17.3 Enabling Connection Creation Retries
	17.4 Enabling Connection Requests to Wait for a Connection
	17.4.1 Connection Reserve Timeout
	17.4.2 Limiting the Number of Waiting Connection Requests

	17.5 Automatically Recovering Leaked Connections
	17.6 Avoiding Server Lockup with the Correct Number of Connections
	17.7 Limiting Statement Processing Time with Statement Timeout
	17.8 Using Pinned-To-Thread Property to Increase Performance
	17.8.1 Changes to Connection Pool Administration Operations When PinnedToThread is Enabled
	17.8.2 Additional Database Resource Costs When PinnedToThread is Enabled

	17.9 Using Unwrapped Data Type Objects
	17.9.1 How to Disable Wrapping
	17.9.1.1 Disable Wrapping using the Administration Console
	17.9.1.2 Disable Wrapping using WLST

	17.10 Tuning Maintenance Timers
	A.1 WebLogic JDBC Features for Oracle 12c Database
	A.1.1 JDBC 4.1 Support for JDK 7
	A.1.2 Application Continuity Support
	A.1.3 Database Resident Connection Pooling Support
	A.1.4 Container Database with Pluggable Databases
	A.1.5 Global Database Services Support
	A.1.6 Automatic ONS Listeners

	A.2 Summary of 12C Database Feature Support with WebLogic Server
	B.1 Packaging a JDBC Module with an Enterprise Application: Main Steps
	B.2 Creating Packaged JDBC Modules
	B.2.1 Creating a JDBC Data Source Module Using the Administration Console
	B.2.2 JDBC Packaged Module Requirements
	B.2.3 JDBC Application Module Limitations
	B.2.4 Creating a Generic Data Source Module
	B.2.5 Creating an Active GridLink Data Source Module
	B.2.6 Creating a Multi Data Source Module
	B.2.7 Encrypting Database Passwords in a JDBC Module
	B.2.7.1 Deploying JDBC Modules to New Domains

	B.2.8 Application Scoping for a Packaged JDBC Module

	B.3 Referencing a JDBC Module in Java EE Descriptor Files
	B.3.1 Packaged JDBC Module References in weblogic-application.xml
	B.3.2 Packaged JDBC Module References in Other Descriptors

	B.4 Packaging an Enterprise Application with a JDBC Module
	B.5 Deploying an Enterprise Application with a JDBC Module
	B.6 Getting a Database Connection from a Packaged JDBC Module
	C.1 Overview of Oracle Real Application Clusters
	C.1.1 Oracle RAC Scalability with WebLogic Server Multi Data Sources
	C.1.2 Oracle RAC Availability with WebLogic Server Multi Data Sources
	C.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

	C.2 Software Requirements
	C.3 JDBC Driver Requirements
	C.4 Hardware Requirements
	C.4.1 WebLogic Server Cluster
	C.4.2 Oracle RAC Cluster
	C.4.3 Shared Storage

	C.5 Configuring Multi Data Sources with Oracle RAC
	C.5.1 Choosing a Multi Data Source Configuration for Use with Oracle RAC
	C.5.2 Configuring Multi Data Sources for use with Oracle RAC
	C.5.2.1 Attributes of a Multi Data Source

	C.5.3 Configuration Considerations for Failover
	C.5.3.1 Multi Data Source-Managed Failover and Load Balancing
	C.5.3.2 Delays During Failover
	C.5.3.3 Failure Handling Walkthrough for Global Transactions

	C.5.4 Configuring the Listener Process for Each Oracle RAC Instance
	C.5.5 Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
	C.5.6 Additional Configuration Considerations

	C.6 Using Multi Data Sources with Global Transactions
	C.6.1 Rules for Data Sources within a Multi Data Source Using Global Transactions
	C.6.2 Required Attributes of Data Sources within a Multi Data Source Using Global Transactions
	C.6.3 Sample Configuration Code

	C.7 Using Multi Data Sources without Global Transactions
	C.7.1 Attributes of Data Sources within a Multi Data Source Not Using Global Transactions
	C.7.2 Sample Configuration Code

	C.8 Configuring Connections to Services on Oracle RAC Nodes
	C.8.1 Configuring a Data Source to Connect to a Service
	C.8.2 Service Connection Configurations
	C.8.2.1 Workload Management
	C.8.2.2 Load Balancing

	C.8.3 Connection Pool Capacity Planning

	C.9 Using SCAN Addresses with Multi Data Sources
	C.10 XA Considerations and Limitations when using multi Data Sources with Oracle RAC
	C.10.1 Oracle RAC XA Requirements when using multi Data Sources
	C.10.1.1 Use Multi Data Sources
	C.10.1.2 A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same Instance of the Oracle RAC Cluster
	C.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster

	C.10.2 Known Limitations When Using Oracle RAC with multi Data Sources
	C.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios
	C.10.2.2 Potential for Transactions Completed Out of Sequence

	C.10.3 Known Issue Occurring After Database Server Crash

	C.11 JDBC Store Recovery with Oracle RAC
	C.11.1 Configuring a JDBC Store for Use with Oracle RAC
	C.11.2 Automatic Retry for JMS Connections

	D.1 Using Connect-Time Failover without Global Transactions
	D.2 Attributes of a Connect-Time Failover Configuration without Global Transactions
	D.3 Sample Configuration Code
	E.1 JDBC Driver Configuration for use with Oracle Fast Connection Failover
	F.1 Smart Upgrade Features

