

[1] Oracle® Fusion Middleware
Securing WebLogic Web Services for Oracle WebLogic Server
12.1.3

12c (12.1.3)

E42030-02

August 2015

Documentation for security software developers that
describes how to secure WebLogic web services for Oracle
WebLogic Server 12.1.3, including configuring transport- and
message-level security.

Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E42030-02

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

What's New in This Guide .. ix

New and Changed Features for 12c (12.1.3) .. ix

1 Overview of Web Services Security

1.1 Overview of Web Services Security ... 1-1
1.2 What Type of Security Should You Configure? ... 1-1
1.3 Thread Safety... 1-2

2 Configuring Message-Level Security

2.1 Overview of Message-Level Security... 2-2
2.1.1 Web Services Security Supported Standards... 2-2
2.1.1.1 Web Services Trust and Secure Conversation.. 2-2
2.1.1.2 Web Services SecurityPolicy 1.2 ... 2-3
2.2 Main Use Cases of Message-Level Security .. 2-3
2.3 Using Policy Files for Message-Level Security Configuration ... 2-4
2.3.1 Using Policy Files With JAX-WS ... 2-5
2.3.2 WS-Policy Namespace .. 2-5
2.3.3 WS-SecurityPolicy Namespace.. 2-5
2.3.4 Version-Independent Policy Supported... 2-5
2.3.5 Use the SHA-256 Secure Hash Algorithm ... 2-6
2.3.5.1 Update the Predefined SHA-1 Policies to SHA-256 .. 2-7
2.4 Configuring Simple Message-Level Security.. 2-9
2.4.1 Configuring Simple Message-Level Security: Main Steps.. 2-10
2.4.2 Ensuring That WebLogic Server Can Validate the Client's Certificate..................... 2-12
2.4.3 Updating the JWS File with @Policy and @Policies Annotations.............................. 2-12
2.4.3.1 Setting the uri Attribute... 2-12
2.4.3.2 Setting Additional Attributes .. 2-13
2.4.3.3 Example of Using the @Policy and @Policies JWS Annotations...................... 2-14
2.4.3.4 Loading a Policy From the CLASSPATH .. 2-15
2.4.4 Using Key Pairs Other Than the Out-Of-The-Box SSL Pair 2-15
2.5 Updating a Client Application to Invoke a Message-Secured Web Service 2-17

iv

2.5.1 Invoking a Web Service From a Client Running in a WebLogic Server Instance ... 2-20
2.6 Example of Adding Security to a JAX-WS Web Service .. 2-21
2.7 Creating and Using a Custom Policy File .. 2-29
2.8 Configuring the WS-Trust Client... 2-30
2.8.1 Supported Token Types... 2-31
2.8.2 Configuring WS-Trust Client Properties... 2-31
2.8.2.1 Obtaining the URI of the Secure Token Service .. 2-32
2.8.2.2 Configuring STS URI for WS-SecureConversation: Standalone Client 2-32
2.8.2.3 Configuring STS URI for SAML: Standalone Client .. 2-33
2.8.2.4 Configuring STS URI Using WLST: Client On Server Side................................. 2-33
2.8.2.5 Configuring STS URI Using Console: Client On Server Side.............................. 2-34
2.8.2.6 Configuring STS Security Policy: Standalone Client.. 2-34
2.8.2.7 Configuring STS Security Policy Using WLST: Client On Server Side.............. 2-35
2.8.2.8 Configuring STS Security Policy: Using the Console... 2-36
2.8.2.9 Configuring the STS SOAP and WS-Trust Version: Standalone Client 2-36
2.8.2.10 Configuring the SAML STS Server Certificate: Standalone Client..................... 2-37
2.8.3 Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS.......................... 2-37
2.8.4 Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message

Protections ... 2-41
2.9 Configuring and Using Security Contexts and Derived Keys .. 2-47
2.9.1 Specification Backward Compatibility .. 2-48
2.9.2 WS-SecureConversation and Clusters ... 2-48
2.9.3 Updating a Client Application to Negotiate Security Contexts................................. 2-48
2.10 Associating Policy Files at Runtime Using the Administration Console 2-50
2.11 Using Security Assertion Markup Language (SAML) Tokens For Identity.................... 2-51
2.11.1 SAML Token Overview ... 2-51
2.11.2 Using SAML Tokens for Identity: Main Steps.. 2-52
2.11.3 Specifying the SAML Confirmation Method.. 2-53
2.11.3.1 Specifying the SAML Confirmation Method (Proprietary Policy Only)........... 2-54
2.11.4 Sample of SAML 1.1 Bearer Token Over HTTPS ... 2-57
2.11.5 Configuring SAML Attributes in a Web Service.. 2-57
2.11.5.1 Using SAML Attributes: Available Interfaces and Classes 2-57
2.11.5.2 Using SAML Attributes: Main Steps .. 2-59
2.11.5.3 SAML Attributes Example ... 2-59
2.12 Associating a Web Service with a Security Configuration Other Than the Default 2-70
2.13 Valid Class Names and Token Types for Credential Provider ... 2-71
2.14 Using System Properties to Debug Message-Level Security ... 2-71
2.15 Using a Client-Side Security Policy File ... 2-72
2.15.1 Associating a Policy File with a Client Application: Main Steps............................... 2-72
2.15.2 Updating clientgen to Generate Methods That Load Policy Files............................. 2-73
2.15.3 Updating a Client Application To Load Policy Files (JAX-RPC Only)..................... 2-73
2.16 Using WS-SecurityPolicy 1.2 Policy Files ... 2-75
2.16.1 Transport-Level Policies .. 2-76
2.16.2 Protection Assertion Policies... 2-77
2.16.3 WS-Security 1.0 Username and X509 Token Policies .. 2-78
2.16.4 WS-Security 1.1 Username and X509 Token Policies .. 2-78
2.16.5 WS-SecureConversation Policies.. 2-80
2.16.6 SAML Token Profile Policies .. 2-83

v

2.17 Choosing a Policy... 2-85
2.18 Unsupported WS-SecurityPolicy 1.2 Assertions ... 2-85
2.19 Using the Optional Policy Assertion... 2-87
2.20 Configuring Element-Level Security... 2-88
2.20.1 Define and Use a Custom Element-Level Policy File .. 2-88
2.20.1.1 Adding the Policy Annotation to JWS File .. 2-90
2.20.2 Implementation Notes ... 2-91
2.21 Smart Policy Selection ... 2-91
2.21.1 Example of Security Policy With Policy Alternatives ... 2-92
2.21.2 Configuring Smart Policy Selection ... 2-94
2.21.2.1 How the Policy Preference is Determined ... 2-94
2.21.2.2 Configuring Smart Policy Selection in the Console.. 2-95
2.21.2.3 Understanding Body Encryption in Smart Policy .. 2-95
2.21.2.4 Smart Policy Selection for a Standalone Client ... 2-96
2.21.3 Multiple Transport Assertions.. 2-96
2.22 Example of Adding Security to MTOM Web Service... 2-96
2.22.1 Files Used by This Example .. 2-97
2.22.2 SecurityMtomService.java ... 2-98
2.22.3 MtomClient.java.. 2-99
2.22.4 configWss.py Script File .. 2-102
2.22.5 Build.xml File .. 2-105
2.22.6 Building and Running the Example... 2-107
2.22.7 Deployed WSDL for SecurityMtomService .. 2-108
2.23 Example of Adding Security to Reliable Messaging Web Service.................................. 2-112
2.23.1 Overview of Secure and Reliable SOAP Messaging.. 2-112
2.23.2 Overview of the Example .. 2-113
2.23.2.1 How the Example Sets Up WebLogic Security ... 2-113
2.23.3 Files Used by This Example .. 2-114
2.23.4 Revised ReliableEchoServiceImpl.java.. 2-115
2.23.5 Revised configWss.py .. 2-115
2.23.6 Revised configWss_Service.py ... 2-116
2.23.7 Building and Running the Example... 2-117
2.24 Securing Web Services Atomic Transactions... 2-117
2.25 Proprietary Web Services Security Policy Files (JAX-RPC Only) 2-119
2.25.1 Abstract and Concrete Policy Files... 2-120
2.25.2 Auth.xml .. 2-121
2.25.3 Sign.xml.. 2-121
2.25.4 Encrypt.xml ... 2-122
2.25.5 Wssc-dk.xml .. 2-123
2.25.6 Wssc-sct.xml .. 2-124

3 Configuring Transport-Level Security

3.1 Configuring Transport-Level Security Through Policy .. 3-1
3.2 Available Transport-Level Policies .. 3-2
3.3 Prerequisite: Configure SSL... 3-3
3.3.1 OPSS Keystore Service Supported .. 3-4
3.3.2 Configuring SSL: Main Steps ... 3-4

vi

3.3.3 Configuring Two-Way SSL for a Client Application.. 3-5
3.4 Configuring Transport-Level Security Through Policy: Main Steps................................... 3-6
3.5 Example of Configuring Transport Security for JAX-WS ... 3-7
3.5.1 One-Way SSL (HTTPS and HTTP Basic Authentication Example).............................. 3-7
3.6 Persisting the State of a Request over SSL (JAX-WS Only) ... 3-12
3.6.1 Example of Getting SSLSocketFactory From System Properties 3-12
3.7 Configuring Transport-Level Security Via UserDataConstraint: Main Steps

(JAX-RPC Only).. 3-13
3.8 Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only) 3-14

4 Configuring Access Control Security (JAX-RPC Only)

4.1 Configuring Access Control Security: Main Steps ... 4-1
4.2 Updating the JWS File With the Security-Related Annotations... 4-3
4.3 Updating the JWS File With the @RunAs Annotation .. 4-5
4.4 Setting the Username and Password When Creating the Service Object 4-5

A Using Oracle Web Services Manager Security Policies

A.1 Overview of OWSM Security Policies .. A-1
A.1.1 Which OWSM Policies Are Supported for Java EE Web Services? A-2
A.1.2 When Should You Use OWSM Security Policies? ... A-2
A.1.3 Interoperability Between WebLogic Web Service Policies and OWSM Policies....... A-6
A.2 Attaching OWSM Security Policies to JAX-WS Web Services .. A-7
A.2.1 Attaching OWSM Security Policies Using the Administration Console A-8
A.2.2 Refreshing the Cache After Attaching Policies .. A-10
A.3 Attaching OWSM Security Policies to JAX-WS Web Service Clients............................... A-11
A.4 Disabling a Globally Attached OWSM Policy ... A-12
A.5 Configuring Policies .. A-13
A.6 Overriding the Policy Configuration for the Web Service Client A-13
A.7 Monitoring and Testing the Web Service ... A-13

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

ix

What's New in This Guide

The following topics introduce the new and changed features of WebLogic web
services security for WebLogic Server 12.1.3 and provides pointers to additional
information.

New and Changed Features for 12c (12.1.3)
Oracle Fusion Middleware 12c (12.1.3) includes the following new and changed
features for this document.

■ Support for SHA-256 secure hash algorithm. For more information, see "Use the
SHA-256 Secure Hash Algorithm" on page 2-6.

■ Annotation support for attaching Oracle Web Services Manager (OWSM) security
policies is now available for WebLogic web service clients, as well as WebLogic
web services. Supported annotations include:

– weblogic.wsee.jws.jaxws.owsm.Property annotation to override
configuration properties when attaching an OWSM policy.

– weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation to attach an
array of OWSM polices.

– weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation to attach an
OWSM policy.

For more information, see "Attaching OWSM Security Policies to JAX-WS Web
Service Clients" on page A-10.

x

1

Overview of Web Services Security 1-1

1Overview of Web Services Security

[2] The chapter describes how to configure security for WebLogic web services for
WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Overview of Web Services Security

■ What Type of Security Should You Configure?

■ Thread Safety

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Overview of Web Services Security
To secure your WebLogic web service, you configure one or more of three different
types of security.

1.2 What Type of Security Should You Configure?
Message-level security includes all the security benefits of SSL, but with additional
flexibility and features. Message-level security is end-to-end, which means that a
SOAP message is secure even when the transmission involves one or more
intermediaries. The SOAP message itself is digitally signed and encrypted, rather than
just the connection. And finally, you can specify that only individual parts or elements
of the message be signed, encrypted, or required.Transport-level security, however,
secures only the connection itself. This means that if there is an intermediary between
the client and WebLogic Server, such as a router or message queue, the intermediary
gets the SOAP message in plain text. When the intermediary sends the message to a
second receiver, the second receiver does not know who the original sender was.
Additionally, the encryption used by SSL is "all or nothing": either the entire SOAP
message is encrypted or it is not encrypted at all. There is no way to specify that only

Table 1–1 Web Services Security

Security Type Description

Message-level security Data in a SOAP message is digitally signed or encrypted. May also
include identity tokens for authentication. See Chapter 2,
"Configuring Message-Level Security".

Transport-level security SSL is used to secure the connection between a client application and
the web service. See Chapter 3, "Configuring Transport-Level
Security".

Access control security Specifies which roles are allowed to access web services. See
Chapter 4, "Configuring Access Control Security (JAX-RPC Only)".

Thread Safety

1-2 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

selected parts of the SOAP message be encrypted. Message-level security can also
include identity tokens for authentication.

Transport-level security secures the connection between the client application and
WebLogic Server with Secure Sockets Layer (SSL). SSL provides secure connections by
allowing two applications connecting over a network to authenticate the other's
identity and by encrypting the data exchanged between the applications.
Authentication allows a server, and optionally a client, to verify the identity of the
application on the other end of a network connection. A client certificate (two-way
SSL) can be used to authenticate the user.

Encryption makes data transmitted over the network intelligible only to the intended
recipient.

Transport-level security includes HTTP BASIC authentication as well as SSL.

Access control security answers the question "who can do what?" First you specify the
security roles that are allowed to access a web service; a security role is a privilege
granted to users or groups based on specific conditions. Then, when a client
application attempts to invoke a web service operation, the client authenticates itself to
WebLogic Server, and if the client has the authorization, it is allowed to continue with
the invocation. Access control security secures only WebLogic Server resources. That
is, if you configure only access control security, the connection between the client
application and WebLogic Server is not secure and the SOAP message is in plain text.

1.3 Thread Safety
JAX-RPC clients and JAX-WS clients are not thread safe.

The generated JAX-RPC client stubs are thread-safe by default. However, as soon as
you enable SSL, the client stubs are no longer thread-safe.

See "Are JAX-WS client proxies thread safe?" for more information and workarounds
regarding JAX-WS thread safety.

2

Configuring Message-Level Security 2-1

2Configuring Message-Level Security

[3] The chapter describes how to configure message-level security for your WebLogic web
service for WebLogic Server 12.1.3 using Java API for XML Web Services (JAX-WS)
and Java API for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Section 2.1, "Overview of Message-Level Security"

■ Section 2.2, "Main Use Cases of Message-Level Security"

■ Section 2.3, "Using Policy Files for Message-Level Security Configuration"

■ Section 2.4, "Configuring Simple Message-Level Security"

■ Section 2.5, "Updating a Client Application to Invoke a Message-Secured Web
Service"

■ Section 2.6, "Example of Adding Security to a JAX-WS Web Service"

■ Section 2.7, "Creating and Using a Custom Policy File"

■ Section 2.8, "Configuring the WS-Trust Client"

■ Section 2.9, "Configuring and Using Security Contexts and Derived Keys"

■ Section 2.10, "Associating Policy Files at Runtime Using the Administration
Console"

■ Section 2.11, "Using Security Assertion Markup Language (SAML) Tokens For
Identity"

■ Section 2.12, "Associating a Web Service with a Security Configuration Other Than
the Default"

■ Section 2.13, "Valid Class Names and Token Types for Credential Provider"

■ Section 2.14, "Using System Properties to Debug Message-Level Security"

■ Section 2.15, "Using a Client-Side Security Policy File"

■ Section 2.16, "Using WS-SecurityPolicy 1.2 Policy Files"

■ Section 2.17, "Choosing a Policy"

■ Section 2.18, "Unsupported WS-SecurityPolicy 1.2 Assertions"

■ Section 2.19, "Using the Optional Policy Assertion"

■ Section 2.20, "Configuring Element-Level Security"

■ Section 2.21, "Smart Policy Selection"

■ Section 2.21.3, "Multiple Transport Assertions"

Overview of Message-Level Security

2-2 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ Section 2.23, "Example of Adding Security to Reliable Messaging Web Service"

■ Section 2.24, "Securing Web Services Atomic Transactions"

■ Section 2.25, "Proprietary Web Services Security Policy Files (JAX-RPC Only)"

2.1 Overview of Message-Level Security
Message-level security specifies whether the SOAP messages between a client
application and the web service invoked by the client should be digitally signed or
encrypted, or both. It also can specify a shared security context between the web
service and client in the event that they exchange multiple SOAP messages. You can
use message-level security to assure:

■ Confidentiality, by encrypting message parts

■ Integrity, by digital signatures

■ Authentication, by requiring username, X.509, or SAML tokens

See Section 2.4, "Configuring Simple Message-Level Security" for the basic steps you
must perform to configure simple message-level security. This section discusses
configuration of the web services runtime environment, as well as configuration of
message-level security for a particular web service and how to code a client
application to invoke the service.

You can also configure message-level security for a web service at runtime, after a web
service has been deployed. See Section 2.10, "Associating Policy Files at Runtime Using
the Administration Console" for details.

2.1.1 Web Services Security Supported Standards

WebLogic web services implement the following OASIS Standard 1.1 Web Services
Security (WS-Security 1.1 (http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wss) specifications, dated February 1, 2006:

■ WS-Security 1.0 and 1.1

■ Username Token Profile 1.0 and 1.1

■ X.509 Token Profile 1.0 and 1.1

■ SAML Token Profile 1.0 and 1.1

These specifications provide security token propagation, message integrity, and
message confidentiality. These mechanisms can be used independently (such as
passing a username token for user authentication) or together (such as digitally
signing and encrypting a SOAP message and specifying that a user must use X.509
certificates for authentication).

2.1.1.1 Web Services Trust and Secure Conversation
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web
Services Secure Conversation (WS-SecureConversation 1.3) specifications, which

Note: You cannot digitally sign or encrypt a SOAP attachment.

Note: Standards Supported by WebLogic Web Services is the definitive
source of web service standards supported in this release.

Main Use Cases of Message-Level Security

Configuring Message-Level Security 2-3

together provide secure communication between web services and their clients (either
other web services or standalone Java client applications).

The WS-Trust specification defines extensions that provide a framework for requesting
and issuing security tokens, and to broker trust relationships.

The WS-SecureConversation specification defines mechanisms for establishing and
sharing security contexts, and deriving keys from security contexts, to enable the
exchange of multiple messages. Together, the security context and derived keys
potentially increase the overall performance and security of the subsequent exchanges.

2.1.1.2 Web Services SecurityPolicy 1.2
The WS-Policy specification defines a framework for allowing web services to express
their constraints and requirements. Such constraints and requirements are expressed
as policy assertions.

WS-SecurityPolicy defines a set of security policy assertions for use with the
WS-Policy framework to describe how messages are to be secured in the context of
WSS: SOAP Message Security, WS-Trust and WS-SecureConversation.

You configure message-level security for a web service by attaching one or more policy
files that contain security policy statements, as specified by the WS-SecurityPolicy
specification. See Section 2.3, "Using Policy Files for Message-Level Security
Configuration" for detailed information about how the web services runtime
environment uses security policy files.

For information about the elements of the Web Services SecurityPolicy 1.2 that are not
supported in this release of WebLogic Server, see Section 2.18, "Unsupported
WS-SecurityPolicy 1.2 Assertions".

2.2 Main Use Cases of Message-Level Security
The implementation of the Web Services Security: SOAP Message Security specification
supports the following use cases:

■ Use X.509 certificates to sign and encrypt a SOAP message, starting from the client
application that invokes the message-secured web service, to the WebLogic Server
instance that is hosting the web service and back to the client application.

■ Specify the SOAP message targets that are signed, encrypted, or required: the
body, specific SOAP headers, or specific elements.

■ Include a token (username, SAML, or X.509) in the SOAP message for
authentication.

■ Specify that a web service and its client (either another web service or a standalone
application) establish and share a security context when exchanging multiple
messages using WS-SecureConversation (WSSC).

■ Derive keys for each key usage in a secure context, once the context has been
established and is being shared between a web service and its client. This means
that a particular SOAP message uses two derived keys, one for signing and
another for encrypting, and each SOAP message uses a different pair of derived
keys from other SOAP messages. Because each SOAP message uses its own pair of
derived keys, the message exchange between the client and web service is
extremely secure.

Using Policy Files for Message-Level Security Configuration

2-4 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.3 Using Policy Files for Message-Level Security Configuration
You specify the details of message-level security for a WebLogic web service with one
or more security policy files. The WS-SecurityPolicy specification provides a general
purpose model and XML syntax to describe and communicate the security policies of a
web service.

The security policy files used for message-level security are XML files that describe
whether and how the SOAP messages resulting from an invoke of an operation should
be digitally signed or encrypted. They can also specify that a client application
authenticate itself using a username, SAML, or X.509 token.

You use the @Policy and @Policies JWS annotations in your JWS file to associate
policy files with your web service. You can associate any number of policy files with a
web service, although it is up to you to ensure that the assertions do not contradict
each other. You can specify a policy file at both the class- and method level of your
JWS file.

This section describes the following topics:

■ Section 2.3.1, "Using Policy Files With JAX-WS"

■ Section 2.3.2, "WS-Policy Namespace"

■ Section 2.3.3, "WS-SecurityPolicy Namespace"

■ Section 2.3.4, "Version-Independent Policy Supported"

■ Section 2.3.5, "Use the SHA-256 Secure Hash Algorithm"

Note: Previous releases of WebLogic Server, released before the
formulation of the WS-SecurityPolicy specification, used security
policy files written under the WS-Policy specification, using a
proprietary schema for security policy. This proprietary schema for
security policy is deprecated, and it is recommended that you use the
WS-SecurityPolicy 1.2 format.

This release of WebLogic Server supports either security policy files
that conform to the WS-SecurityPolicy 1.2 specification or the web
services security policy schema first included in WebLogic Server 9,
but not both in the same web service. The formats are mutually
incompatible.

For information about the predefined WS-SecurityPolicy 1.2 security
policy files, see Section 2.16, "Using WS-SecurityPolicy 1.2 Policy
Files".

Note: If you specify a transport-level security policy for your web
service, it must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Using Policy Files for Message-Level Security Configuration

Configuring Message-Level Security 2-5

2.3.1 Using Policy Files With JAX-WS
For maximum portability, Oracle recommends that you use WS-Policy 1.2 and OASIS
WS-SecurityPolicy 1.2 with JAX-WS.

2.3.2 WS-Policy Namespace
WebLogic Server supports WS-Policy 1.2 with the following namespace:

http://schemas.xmlsoap.org/ws/2004/09/policy

2.3.3 WS-SecurityPolicy Namespace
The following OASIS WS-SX TC Web Services SecurityPolicy namespace is supported:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

In addition to this new version of the namespace, WebLogic Server continues to
support the following Web Services SecurityPolicy namespace:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

In most of the cases, the policy assertions are identical for either namespaces, with the
following exceptions.

■ Trust10 and Trust13 assertion. Both Trust10 and Trust13 assertions are supported.

■ SC10SecurityContextToken and SC13SecurityContextToken, as described in
Section 2.9.1, "Specification Backward Compatibility".

■ Derived Key using different WSSC versions (200502, 1.3).

2.3.4 Version-Independent Policy Supported
This version of WebLogic Server supports version-independent policy. You can
combine protocol-specific policies such as WS-SecurityPolicy and
WS-ReliableMessaging policy that are based on different versions of the WS-Policy
specification. At runtime, the merged policy file then contains two or more different
namespaces.

There are three versions of WS-SecurityPolicy in this release of WebLogic Server:

■ (1) WS-SecurityPolicy 1.2 OASIS standard.

■ (2) WS-SecurityPolicy 1.2, as included in WebLogic Server 10.0.

■ (3) Proprietary format WebLogic Server 9.x-style policies (deprecated).

You can mix and match any version of WS-Policy with (1), (2), or a combination of (1)
and (2). However, you cannot mix and match (3) with (1) or (2) and with different
versions of WS-Policy.

The version match possibilities are shown in Table 2–1.

Note: WebLogic Server also supports WS-Policy 1.5 (now a W3C
standard) with the following namespace:
http://www.w3.org/ns/ws-policy

Using Policy Files for Message-Level Security Configuration

2-6 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

If the client program wants to know what version of the policy or security policy is
used, use the versioning API to return the namespace and versioning information.

2.3.5 Use the SHA-256 Secure Hash Algorithm
The WebLogic Server web service security policies support both the SHA-1 and much
stronger SHA-2 (SHA-256) secure hash algorithms for hashing digital signatures.

The predefined web service security policies select which specific algorithm they use
in the <sp:AlgorithmSuite> element.

WebLogic Server includes policies such as
Wssp1.2-2007-Wss1.1-X509-Basic256Sha256.xml that specifically use the SHA-256
secure hash algorithm, as shown in Table 2–2.

If an SHA-256 version of a policy you want to use exists, use it instead of the older
SHA-1 version.

Table 2–1 Version-Independent Matrix

Security Policy Versions WS-Policy 1.5 WS-Policy 1.2
WS-Policy 1.5 AND
WS-Policy 1.2

WS-SecurityPolicy 1.2 OASIS
standard

Y Y Y

WS-SecurityPolicy 1.2
(WebLogic Server 10.0)

Y Y Y

WS-SecurityPolicy 1.2 OASIS
standard AND
WS-SecurityPolicy 1.2
(WebLogic Server 10.0)

Y Y Y

WebLogic Server 9.x-style Y Y N

WebLogic Server 9.x-style
AND WS-SecurityPolicy 1.2
OASIS standard or
WS-SecurityPolicy 1.2
(WebLogic Server 10.0)

N N N

Note: SHA-1 Secure Hash Algorithm is not supported in FIPS mode.
See "Enabling FIPS Mode" in Administering Security for Oracle WebLogic
Server for more information.

Note: To maximum security, Oracle recommends the use of SHA-256
instead of SHA-1, where possible.

If you already use the older SHA-1 version of a policy, Oracle
recommends that you update your web service to use the SHA-256
version.

Table 2–2 Use the SHA-256 Policies

Instead of this SHA-1
policy ...Use this SHA-256 policy

Wssp1.2-2007-Https-Userna
meToken-Plain.xml

Wssp1.2-2007-Https-UsernameToken-Plain-Basic256Sha256.xml

Using Policy Files for Message-Level Security Configuration

Configuring Message-Level Security 2-7

2.3.5.1 Update the Predefined SHA-1 Policies to SHA-256
The predefined policies listed in this section use SHA-1 for hashing digital signatures.
This hashing algorithm might not meet your current or future security needs, as
outlined in the NIST Special Publication 800-131A, "Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths".

If you use any of these policies, Oracle recommends that you:

1. Use the predefined policy as a template to create a custom policy. See Section 2.7,
"Creating and Using a Custom Policy File" for information on creating a custom
policy file.

The policy files are located in WL_HOME/server/lib/weblogic-classes.jar.
Within weblogic-classes.jar, the policy files are located in
/weblogic/wsee/policy/runtime.

2. Edit the custom policy to change the algorithm suite to SHA-256. To do this,
change the algorithm suite inside the policy.

From:

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>

To:

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Sha256/>
</wsp:Policy>
</sp:AlgorithmSuite>

3. Use the custom policy in your web service.

4. Edit the client-side policy to match. The client and web service must use the same
hashing algorithm; <AlgorithmSuite> must be the same on both sides. Otherwise,
the web service rejects the request message sent from the client.

Wssp1.2-2007-Wss1.1-X509-
Basic256.xml

Wssp1.2-2007-Wss1.1-X509-Basic256Sha256.xml

Wssp1.2-2007-Wss1.1-Usern
ameToken-Plain-X509-Basic
256.xml

Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-Basic256Sha2
56.xml

Wssp1.2-2007-Wssc1.4-Boot
strap-Wss1.0-UsernameToke
n-Plain-X509-Basic256.xml

Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-
X509-Basic256Sha256.xml

Wssp1.2-2007-Saml1.1-Send
erVouches-Wss1.1.xml

Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1-Basic256Sha256.x
ml

Wssp1.2-2007-Saml2.0-Send
erVouches-Wss1.1.xml

Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-Basic256Sha256.x
ml

Wssp1.2-2007-Saml2.0-Beare
r-Https.xml

Wssp1.2-2007-Saml2.0-Bearer-Https-Basic256Sha256.xml

Table 2–2 (Cont.) Use the SHA-256 Policies

Instead of this SHA-1
policy ...Use this SHA-256 policy

Using Policy Files for Message-Level Security Configuration

2-8 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

SAML Policies
The following predefined policies use the SHA-1 algorithm. Change them as
described in this section to instead use SHA-256.

■ Wssp1.2-2007-Saml1.1-Bearer-Wss1.1.xml

■ Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.0.xml

■ Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.1-Asymmetric.xml

■ Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.1-IssuedToken.xml

■ Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml

■ Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml

■ Wssp1.2-2007-Saml2.0-Bearer-Wss1.1.xml

■ Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-Asymmetric.xml

■ Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-IssuedToken.xml

■ Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

■ Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-Asymmetric.xml

Wss1.0 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described
in this section to instead use SHA-256.

■ Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

■ Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

■ Wssp1.2-2007-Wss1.0-X509-Basic256.xml

■ Wssp1.2-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

■ Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

■ Wssp1.2-Wss1.0-X509-Basic256.xml

■ Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.xml

■ Wssp1.2-Wss1.0-X509-SignRequest-EncryptResponse.xml

Wss1.1 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described
in this section to instead use SHA-256.

■ Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml

■ Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Digest-DK.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Digest-EncryptedKey.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Digest-X509-Basic256.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Plain-DK.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey.xml

■ Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-Basic256.xml

■ Wssp1.2-2007-Wss1.1-X509-Basic256.xml

■ Wssp1.2-Wss1.1-DK.xml

Configuring Simple Message-Level Security

Configuring Message-Level Security 2-9

■ Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

■ Wssp1.2-Wss1.1-EncryptedKey.xml

■ Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

■ Wssp1.2-Wss1.1-UsernameToken-DK.xml

■ Wssp1.2-Wss1.1-X509-Basic256.xml

■ Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml

■ Wssp1.2-Wss1.1-X509-SignRequest-EncryptResponse.xml

Secure Conversation Policies
The following predefined policies use the SHA-1 algorithm. Change them as described
in this section to instead use SHA-256.

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Https.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Https-BasicAuth.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Https-Saml1.1-Bearer.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Https-UNT.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml

■ Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1-Saml1.1-Bearer.xml

■ Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-Saml1.1-SenderVouches.xml

■ Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

■ Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml1.1-SenderVouches.xml

■ Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml

■ Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-EncryptedKey.xml

■ Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

2.4 Configuring Simple Message-Level Security
This section describes how to configure simple message-level security for the web
services security runtime, a particular WebLogic web service, and a client application
that invokes an operation of the web service. In this document, simple message-level
security is defined as follows:

■ The message-secured web service uses the predefined WS-SecurityPolicy files to
specify its security requirements, rather than a user-created WS-SecurityPolicy file.
See Section 2.3, "Using Policy Files for Message-Level Security Configuration" for a
description of these files.

■ The web service makes its associated security policy files publicly available by
attaching them to its deployed WSDL, which is also publicly visible.

■ The web services runtime uses the out-of-the-box private key and X.509 certificate
pairs, store in the default keystores, for its encryption and digital signatures, rather
than its own key pairs. These out-of-the-box pairs are also used by the core
WebLogic Server security subsystem for SSL and are provided for demonstration
and testing purposes. For this reason Oracle highly recommends you use your

Configuring Simple Message-Level Security

2-10 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

own keystore and key pair in production. To use key pairs other than
out-of-the-box pairs, see Section 2.4.4, "Using Key Pairs Other Than the
Out-Of-The-Box SSL Pair".

■ The client invoking the web service uses a username token to authenticate itself,
rather than an X.509 token.

■ The client invoking the web service is a stand-alone Java application, rather than a
module running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as
additional web services security uses cases that build on the simple message-level
security use case.

It is assumed in the following procedure that you have already created a JWS file that
implements a WebLogic web service and you want to update it so that the SOAP
messages are digitally signed and encrypted. It is also assumed that you use Ant build
scripts to iteratively develop your web service and that you have a working build.xml
file that you can update with new information. Finally, it is assumed that you have a
client application that invokes the non-secured web service. If these assumptions are
not true, see:

■ Developing JAX-WS Web Services for Oracle WebLogic Server

■ Developing JAX-RPC Web Services for Oracle WebLogic Server

2.4.1 Configuring Simple Message-Level Security: Main Steps
To configure simple message-level security for a WebLogic web service:

1. Update your JWS file, adding WebLogic-specific @Policy and @Policies JWS
annotations to specify the predefined policy files that are attached to either the
entire web service or to particular operations.

See Section 2.4.3, "Updating the JWS File with @Policy and @Policies Annotations",
which describes how to specify any policy file.

2. Recompile and redeploy your web service as part of the normal iterative
development process.

Note: If you plan to deploy the web service to a cluster in which
different WebLogic Server instances are running on different
computers, you must use a keystore and key pair other than the
out-of-the-box ones, even for testing purposes. The reason is that the
key pairs in the default WebLogic Server keystore, DemoIdentity.jks,
are not guaranteed to be the same across WebLogic Servers running
on different machines.

If you were to use the default keystore, the WSDL of the deployed
web service would specify the public key from one of these keystores,
but the invoke of the service might actually be handled by a server
running on a different computer, and in this case the server's private
key would not match the published public key and the invoke would
fail. This problem only occurs if you use the default keystore and key
pairs in a cluster, and is easily resolved by using your own keystore
and key pairs.

Configuring Simple Message-Level Security

Configuring Message-Level Security 2-11

See "Developing WebLogic Web Services" in Developing JAX-WS Web Services for
Oracle WebLogic Server and "Developing WebLogic Web Services" in Developing
JAX-RPC Web Services for Oracle WebLogic Server.

3. Create a keystore used by the client application. Oracle recommends that you
create one client keystore per application user.

You can use the Cert Gen utility or keytool utility
(http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.h
tml) to perform this step. For development purposes, the keytool utility is the
easiest way to get started.

See "Obtaining Private Keys, Digital Signatures, and Trusted Certificate
Authorities" in Administering Security for Oracle WebLogic Server.

4. Create a private key and digital certificate pair, and load it into the client keystore.
The same pair will be used to both digitally sign the client's SOAP request and
encrypt the SOAP responses from WebLogic Server.

Make sure that the certificate's key usage allows both encryption and digital
signatures. Also see Section 2.4.2, "Ensuring That WebLogic Server Can Validate
the Client's Certificate" for information about how WebLogic Server ensures that
the client's certificate is valid.

You can use the Keytool utility
(http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.h
tml) to perform this step.

See "Obtaining Private Keys, Digital Signatures, and Trusted Certificate
Authorities" in Administering Security for Oracle WebLogic Server.

5. Using the WebLogic Server Administration Console, create users for
authentication in your security realm.

See Securing Resources Using Roles and Policies for Oracle WebLogic Server.

6. Update your client application by adding the Java code to invoke the
message-secured web service.

See Section 2.15, "Using a Client-Side Security Policy File".

7. Recompile your client application.

See Developing JAX-WS Web Services for Oracle WebLogic Server and Developing
JAX-RPC Web Services for Oracle WebLogic Server for general information.

See the following sections for information about additional web service security uses
cases that build on the basic message-level security use case:

■ Section 2.4.4, "Using Key Pairs Other Than the Out-Of-The-Box SSL Pair"

■ Section 2.7, "Creating and Using a Custom Policy File"

■ Section 2.9, "Configuring and Using Security Contexts and Derived Keys"

■ Section 2.10, "Associating Policy Files at Runtime Using the Administration
Console"

■ Section 2.11, "Using Security Assertion Markup Language (SAML) Tokens For
Identity"

Note: Oracle requires a key length of 1024 bits or larger.

Configuring Simple Message-Level Security

2-12 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ Section 2.5.1, "Invoking a Web Service From a Client Running in a WebLogic
Server Instance"

■ Section 2.12, "Associating a Web Service with a Security Configuration Other Than
the Default"

See Section 2.14, "Using System Properties to Debug Message-Level Security" for
information on debugging problems with your message-secured web service.

2.4.2 Ensuring That WebLogic Server Can Validate the Client's Certificate
You must ensure that WebLogic Server is able to validate the X.509 certificate that the
client uses to digitally sign its SOAP request, and that WebLogic Server in turn uses to
encrypt its SOAP responses to the client. Do one of the following:

■ Ensure that the client application obtains a digital certificate that WebLogic Server
automatically trusts, because it has been issued by a trusted certificate authority.

■ Create a certificate registry that lists all the individual certificates trusted by
WebLogic Server, and then ensure that the client uses one of these registered
certificates.

For more information, see "SSL Certificate Validation" in Administering Security for
Oracle WebLogic Server.

2.4.3 Updating the JWS File with @Policy and @Policies Annotations
Use the @Policy and @Policies annotations in your JWS file to specify that the web
service has one or more policy files attached to it. You can use these annotations at
either the class or method level.

See Section 2.4.3.4, "Loading a Policy From the CLASSPATH" for an additional policy
option.

The @Policies annotation simply groups two or more @Policy annotations together.
Use the @Policies annotation if you want to attach two or more policy files to the
class or method. If you want to attach just one policy file, you can use @Policy on its
own.

The @Policy annotation specifies a single policy file, where it is located, whether the
policy applies to the request or response SOAP message (or both), and whether to
attach the policy file to the public WSDL of the service.

2.4.3.1 Setting the uri Attribute
Use the uri attribute to specify the location of the policy file, as described below:

■ To specify one of the predefined security policy files that are installed with
WebLogic Server, use the policy: prefix and the name of one of the policy files, as
shown in the following example:

@Policy(uri="policy:Wssp1.2-2007-Https-BasicAuth.xml")

Note: If you specify a transport-level security policy for your web
service, it must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Configuring Simple Message-Level Security

Configuring Message-Level Security 2-13

If you use the predefined policy files, you do not have to create one yourself or
package it in an accessible location. For this reason, Oracle recommends that you
use the predefined policy files whenever you can.

See Section 2.3, "Using Policy Files for Message-Level Security Configuration" for
information on the various types of message-level security provided by the
predefined policy files.

■ To specify a user-created policy file, specify the path (relative to the location of the
JWS file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory
of the one that contains the JWS file.

■ You can also specify a policy file that is located in a shared Java EE library; this
method is useful if you want to share the file amongst multiple web services
packaged in different Java EE archives.

To specify a policy file in a shared Java EE library, use the policy prefix and then
the name of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See "Creating Shared Java EE Libraries and Optional Packages" in Developing
Applications for Oracle WebLogic Server for information on creating shared libraries
and setting up your environment so the web service can find the shared policy
files.

2.4.3.2 Setting Additional Attributes
You can also set the following attributes of the @Policy annotation:

■ direction specifies whether the policy file should be applied to the request
(inbound) SOAP message, the response (outbound) SOAP message, or both. The
default value if you do not specify this attribute is both. The direction attribute
accepts the following values:

– Policy.Direction.both

– Policy.Direction.inbound

– Policy.Direction.outbound

■ attachToWsdl specifies whether the policy file should be attached to the WSDL file
that describes the public contract of the web service. The default value of this
attribute is false.

2.4.3.3 Example of Using the @Policy and @Policies JWS Annotations
The following example shows how to use the @Policy and @Policies JWS
annotations, with the relevant sections shown in bold:

Note: In this case, it is assumed that the policy file is in the
META-INF/policies or WEB-INF/policies directory of the shared Java
EE library. Be sure, when you package the library, that you put the
policy file in this directory.

Configuring Simple Message-Level Security

2-14 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

Example 2–1 Using @Policy and @Policies Annotations

package wssp12.wss10;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Policy;
import weblogic.jws.Policies;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.Oneway;

/**
 * This web service demonstrates how to use WS-SecurityPolicy 1.2
 * to enable message-level security specified in WS-Security 1.0.
 *
 * The service authenticates the client with a username token.
 * Both the request and response messages are signed and encrypted with X509
 certificates.
 *
*/
@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")
public class UsernameTokenPlainX509SignAndEncrypt {

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml")})
 public String echo(String s) {

 return s;
 }

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-Sign-Wsa-Headers.xml")})
 public String echoWithWsa(String s) {
 return s;
 }

 @WebMethod
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
 direction=Policy.Direction.inbound)
 @Oneway
 public void echoOneway(String s) {
 System.out.println("s = " + s);
 }

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wss1.0-X509-Basic256.xml",
direction=Policy.Direction.inbound),
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
direction=Policy.Direction.inbound)
 })
 @Oneway
 public void echoOnewayX509(String s) {

Configuring Simple Message-Level Security

Configuring Message-Level Security 2-15

 System.out.println("X509SignEncrypt.echoOneway: " + s);
 }
}

The following section of the example is the binding policy for the web service,
specifying the policy:

@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")

In the example, security policy files are attached to the web service at the method
level. The specified policy files are those predefined with WebLogic Server, which
means that the developers do not need to create their own files or package them in the
corresponding archive.

The Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic
system headers of both the request and response SOAP message be digitally signed.
The Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the
request and response SOAP messages be encrypted.

2.4.3.4 Loading a Policy From the CLASSPATH
This release of WebLogic Server includes a 'load policy as resource from CLASSPATH'
feature. This feature allows you to copy a policy file to the root directory of your Web
application and then reference it directly by its name (for example, mypolicy.xml')
from an @POLICY annotation in your JWS file.

To enable this feature, start WebLogic Server with
-Dweblogic.wsee.policy.LoadFromClassPathEnabled=true

If you enable this feature, be aware of the following caveat: If you were to then move
the policy file to the WEB-INF/policies directory, the same 'mypolicy.xml' reference in
the @POLICY annotation will no longer work. You would need to add the policy
prefix to the @POLICY annotation; for example, 'policy:mypolicy.xml'.

2.4.4 Using Key Pairs Other Than the Out-Of-The-Box SSL Pair
In the simple message-level configuration procedure, documented in Section 2.4,
"Configuring Simple Message-Level Security", it is assumed that the web services
runtime uses the private key and X.509 certificate pair that is provided out-of-the-box
with WebLogic Server; this same key pair is also used by the core security subsystem
for SSL and is provided mostly for demonstration and testing purposes. In production
environments, the web services runtime typically uses its own two private key and
digital certificate pairs, one for signing and one for encrypting SOAP messages.

The following procedure describes the additional steps you must take to enable this
use case.

1. Obtain two private key and digital certificate pairs to be used by the web services
runtime. One of the pairs is used for digitally signing the SOAP message and the
other for encrypting it.

Although not required, Oracle recommends that you obtain two pairs that will be
used only by WebLogic web services. You must also ensure that both of the
certificate's key usage matches what you are configuring them to do. For example,
if you are specifying that a certificate be used for encryption, be sure that the
certificate's key usage is specified as for encryption or is undefined. Otherwise, the
web services security runtime will reject the certificate.

Configuring Simple Message-Level Security

2-16 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

You can use the Cert Gen utility or the keytool utility
(http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.h
tml) to perform this step. For development purposes, the keytool utility is the
easiest way to get started.

See "Obtaining Private Keys, Digital Signatures, and Trusted Certificate
Authorities" in Administering Security for Oracle WebLogic Server.

2. Create, if one does not currently exist, a custom identity keystore for WebLogic
Server and load the private key and digital certificate pairs you obtained in the
preceding step into the identity keystore.

If you have already configured WebLogic Server for SSL, then you have already
created an identity keystore that you can also use in this step.

You can use WebLogic's ImportPrivateKey utility and the keytool utility
(http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.h
tml) to perform this step. For development purposes, the keytool utility is the
easiest way to get started.

See "Creating a Keystore" and "Creating a Keystore Using ImportPrivateKey" in
Administering Security for Oracle WebLogic Server.

3. Using the WebLogic Server Administration Console, configure WebLogic Server to
locate the keystore you created in the preceding step. If you are using a keystore
that has already been configured for WebLogic Server, you do not need to perform
this step.

See "Configuring Keystores for Production" in Administering Security for Oracle
WebLogic Server.

4. Using the WebLogic Server Administration Console, create the default web service
security configuration, which must be named default_wss. The default web
service security configuration is used by all web services in the domain unless they
have been explicitly programmed to use a different configuration.

See "Create a Web Service Security Configuration" in the Oracle WebLogic Server
Administration Console Online Help.

5. Update the default web services security configuration you created in the
preceding step to use one of the private key and digital certificate pairs for
digitally signing SOAP messages.

See "Specify the key pair used to sign SOAP messages" in Oracle WebLogic Server
Administration Console Online Help. In the procedure, when you create the
properties used to identify the keystore and key pair, enter the exact value for the
Name of each property (such as IntegrityKeyStore,
IntegrityKeyStorePassword, and so on), but enter the value that identifies your
own previously-created keystore and key pair in the Value fields.

6. Similarly, update the default web services security configuration you created in a
preceding step to use the second private key and digital certificate pair for
encrypting SOAP messages.

See "Specify the key pair used to encrypt SOAP messages" in Oracle WebLogic
Server Administration Console Online Help. In the procedure, when you create the
properties used to identify the keystore and key pair, enter the exact value for the
Name of each property (such as ConfidentialityKeyStore.

Note: Oracle requires that the key length be 1024 bits or larger.

Updating a Client Application to Invoke a Message-Secured Web Service

Configuring Message-Level Security 2-17

ConfidentialityKeyStorePassword, and so on), but enter the value that identifies
your own previously-created keystore and key pair in the Value fields.

2.5 Updating a Client Application to Invoke a Message-Secured Web
Service

When you update your Java code to invoke a message-secured web service, you must
load a private key and digital certificate pair from the client's keystore and pass this
information, along with a username and password for user authentication if so
required by the security policy, to the secure WebLogic web service being invoked.

If the security policy file of the web service specifies that the SOAP request must be
encrypted, then the web services client runtime automatically gets the server's
certificate from the policy file that is attached to the WSDL of the service, and uses it
for the encryption. If, however, the policy file is not attached to the WSDL, or the entire
WSDL itself is not available, then the client application must use a client-side copy of
the policy file; for details, see Section 2.15, "Using a Client-Side Security Policy File".

Example 2–2 shows a Java client application under JAX-RPC that invokes the
message-secured WebLogic web service described by the JWS file in Section 4.2,
"Updating the JWS File With the Security-Related Annotations". The client application
takes five arguments:

■ Client username for client authentication

■ Client password for client authentication

■ Client private key file

■ Client digital certificate

■ WSDL of the deployed web service

The security-specific code in the sample client application is shown in bold (and
described after the example):

Example 2–2 Client Application Invoking a Message-Secured Web Service Under
JAX-RPC

package examples.webservices.security_jws.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
/**
 * Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class SecureHelloWorldClient {
 public static void main(String[] args) throws Throwable {
 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];
 //client private key file
 String keyFile = args[2];
 //client certificate

Updating a Client Application to Invoke a Message-Secured Web Service

2-18 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 String clientCertFile = args[3];
 String wsdl = args[4];
 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl +
"?WSDL");
 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();
 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();
 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile,
keyFile);
 credProviders.add(cp);
 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);
 Stub stub = (Stub)port;
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 return true;
 }
 });
 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}
The main points to note about the preceding code are:

■ Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;

■ Import the following WebLogic web services security APIs to create the needed
client-side credential providers, as specified by the policy files that are associated
with the web service:

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

■ Use the ClientBSTCredentialProvider WebLogic API to create a binary security
token credential provider from the client's certificate and private key:

 CredentialProvider cp =
 new ClientBSTCredentialProvider(clientCertFile, keyFile);

■ Use the ClientUNTCredentialProvider WebLogic API to create a username token
from the client's username and password, which are also known by WebLogic
Server:

cp = new ClientUNTCredentialProvider(username, password);

■ Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List
object that contains the binary security and username tokens to the JAX-RPC Stub:

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders)

For JAX-WS, you might code this as follows:

import javax.xml.ws.BindingProvider;

Updating a Client Application to Invoke a Message-Secured Web Service

Configuring Message-Level Security 2-19

:
Map<String, Object> requestContext = ((BindingProvider)
port).getRequestContext();
requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

■ Use the weblogic.security.SSL.TrustManager WebLogic security API to verify
that the certificate used to encrypt the SOAP request is valid. The web services
client runtime gets this certificate from the deployed WSDL of the web service,
which in production situations is not automatically trusted, so the client
application must ensure that it is okay before it uses it to encrypt the SOAP
request:

stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 return true;
 }
 });

For JAX-WS, you might code this as follows:

requestContext.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
int validateErr) {
 return true;
 }
 });

This example shows the TrustManager API on the client side. The web service
application must implement proper verification code to ensure security.

Example 2–3 shows the same Java client application under JAX-WS that invokes the
message-secured web service. The JAX-WS specific code in the sample client
application is shown in bold.

Example 2–3 Client Application Invoking a Message-Secured Web Service under
JAX-WS

package examples.webservices.security_jaxws.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import javax.xml.ws.BindingProvider;
import java.util.List;
import java.util.Map;
import java.util.ArrayList;
import java.security.cert.X509Certificate;/**
 * Copyright © 1996, 2010, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class SecureHelloWorldJaxwsClient {
 public static void main(String[] args) throws Throwable {
 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];
 //client private key file
 String keyFile = args[2];

Updating a Client Application to Invoke a Message-Secured Web Service

2-20 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 //client certificate
 String clientCertFile = args[3];
 String wsdl = args[4];
 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl +
"?WSDL");
 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();
 //create credential provider and set it to the request context
 List credProviders = new ArrayList();
 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile,
keyFile);
 credProviders.add(cp);
 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);
 Map<String, Object> requestContext = ((BindingProvider)
port).getRequestContext();
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);
 requestContext.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;
 }
 });
 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}

2.5.1 Invoking a Web Service From a Client Running in a WebLogic Server Instance
In the simple web services configuration procedure, described in Section 2.4,
"Configuring Simple Message-Level Security", it is assumed that a stand-alone client
application invokes the message-secured web service. Sometimes, however, the client
is itself running in a WebLogic Server instance, as part of an EJB, a servlet, or another
web service. In this case, you can use the core WebLogic Server security framework to
configure the credential providers and trust manager so that your EJB, servlet, or JWS
code contains only the simple invoke of the secured operation and no other
security-related API usage.

The following procedure describes the high level steps you must perform to make use
of the core WebLogic Server security framework in this use case.

1. In your EJB, servlet, or JWS code, invoke the web service operation as if it were not
configured for message-level security. Specifically, do not create a
CredentialProvider object that contains username or X.509 tokens, and do not
use the TrustManager core security API to validate the certificate from the
WebLogic Server hosting the secure web service. The reason you should not use
these APIs in your client code is that the web services runtime will perform this
work for you.

2. Using the WebLogic Server Administration Console, configure the required
credential mapping providers of the core security of the WebLogic Server instance
that hosts your client application. The list of required credential mapper providers
depends on the policy file that is attached to the web service you are invoking.
Typically, you must configure the credential mapper providers for both
username/password and X.509 certificates. See Section 2.13, "Valid Class Names

Example of Adding Security to a JAX-WS Web Service

Configuring Message-Level Security 2-21

and Token Types for Credential Provider" for the possible values.

3. Using the WebLogic Server Administration Console, create the actual credential
mappings in the credential mapping providers you configured in the preceding
step. You must map the user principal, associated with the client running in the
server, to the credentials that are valid for the web service you are invoking. See
"Configuring a WebLogic Credential Mapping Provider" in Administering Security
for Oracle WebLogic Server.

4. Using the WebLogic Server Administration Console, configure the core WebLogic
Server security framework to trust the X.509 certificate of the invoked web service.
See "Configuring the Certificate Lookup and Validation Framework" in
Administering Security for Oracle WebLogic Server.

You are not required to configure the core WebLogic Server security framework, as
described in this procedure, if your client application does not want to use the
out-of-the-box credential provider and trust manager. Rather, you can override all of
this configuration by using the same APIs in your EJB, servlet, and JWS code as in the
stand-alone Java code described in Section 2.15, "Using a Client-Side Security Policy
File". However, using the core security framework standardizes the WebLogic Server
configuration and simplifies the Java code of the client application that invokes the
web service.

2.6 Example of Adding Security to a JAX-WS Web Service
This section provides a simple example of adding security to a JAX-WS web service.
The example attaches four policies:

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

■ Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

■ Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml

The examples include extensive inline comments in the code.

Example 2–4 shows the web service code.

Example 2–4 Web Service SignEncrypt.java

package signencrypt;

import java.io.File;

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.jws.security.WssConfiguration;

Note: WebLogic Server includes a credential mapping provider for
username/passwords and X.509. However, only username/password
is configured by default.

Note: This web service implements attachToWsdl=false, and therefore
the web service client needs to load a client-side version of the policy,
as shown in Example 2–5.

Example of Adding Security to a JAX-WS Web Service

2-22 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.soap.MTOM;

import com.sun.xml.ws.developer.SchemaValidation;

/**
 *
 * Webservice which accepts a SOAP Message which is Signed And
 * Encrypted Uses the WS-Policy 1.2
 */

@WebService(name = "SignEncrypt", portName = "SignEncryptPort", serviceName =
"SignEncrypt", targetNamespace = "http://signencrypt")
@BindingType(value = "http://schemas.xmlsoap.org/wsdl/soap/http")
// Domain Level WebserviceSecurity Configuration
@WssConfiguration(value = "Basic-UNT")
@MTOM()
//@SchemaValidation

public class SignEncrypt {

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri =
"policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public String echoString(String input) {
 String result = "[SignEncrypt.echoString]: " + input;
 System.out.println(result);
 return result;
 }

Example of Adding Security to a JAX-WS Web Service

Configuring Message-Level Security 2-23

 @WebMethod()
 public String echoStringWithoutSecurity(String input) {
 String result = "[SignEncrypt.echoString]: " + input;
 System.out.println(result);
 return result;
 }

 @WebMethod()
 public byte[] echoStringAsByteArray(String data) {
 System.out.println("echoByteArray data: " + data);
 byte[] output = data.getBytes();
 System.out.println("Output Length : " + output.length + " Output: " +
output.toString());
 return data.getBytes();
 }

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri =
"policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public byte[] echoByteArrayWithSecurity(byte[] inputData) {
 System.out.println("echoByteArrayWithSecurity data: " + inputData.length + "
bytes");
 return inputData;
 }

 @WebMethod()
 public byte[] echoByteArray(byte[] inputData) {
 System.out.println("echoByteArray data: " + inputData);
 return inputData;
 }

 @WebMethod()
 public DataHandler getDataHandler(String fileName) {

 DataHandler handler = null;

Example of Adding Security to a JAX-WS Web Service

2-24 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " +
file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

 }

 @WebMethod()
 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri =
"policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */
 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 public DataHandler getDataHandlerWithSecurity(String fileName) {

 DataHandler handler = null;
 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " +
file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

Example of Adding Security to a JAX-WS Web Service

Configuring Message-Level Security 2-25

 }

}
As noted, the web service implements attachToWsdl=false, and therefore the web
service client needs to load a client-side version of the policy. Example 2–5 shows an
example of using the weblogic.jws.jaxws.ClientPolicyFeature class to load client-side
policies.

The example includes extensive inline comments.

Example 2–5 SOAClient.java

package signencrypt.client;
import weblogic.jws.jaxws.ClientPolicyFeature;
import weblogic.jws.jaxws.policy.InputStreamPolicySource;
import weblogic.security.SSL.TrustManager;
import weblogic.wsee.policy.runtime.BuiltinPolicyFinder;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.wsee.security.util.CertUtils;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import soa.client.Bpelprocess1ClientEp;
import soa.client.BPELProcess1;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceFeature;
import javax.xml.ws.soap.MTOMFeature;

public class SOAClient {

 private final static boolean debug = true;

 private final static String endpointURL =
 "http://....com:8001/soa-infra/services/default/soa/bpelprocess1_client_ep";
 private final static String certsDir = "C:/webservices/server/keystores";

 private final static String serverKeyStoreName = "default-keystore.jks";
 private final static String serverKeyStorePass = "...";
 private final static String serverCertAlias = "alice";

Example of Adding Security to a JAX-WS Web Service

2-26 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 private final static String serverKeyPass = "...";

 private final static String username = "weblogic";
 private final static String password = "...";

 private final static String fileName =
 "C:/webservices/farallon/owsm-interop/mtom.JPG";

 private final static String outputFileName =
 "C:/webservices/farallon/owsm-interop/output.jpg";

 private final static String[] clientPolicyFileNames =
 {

"./policy/Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
 "./policy/Wssp1.2-2007-SignBody.xml",
 "./policy/Wssp1.2-2007-EncryptBody.xml" };

 private BPELProcess1 port = null;

 /**
 * Create the Stub/Port and set the Stub/Port with Client Side Security Policy
 * Feature and MTOM Feature.
 * @throws Exception
 */

 private void createStubWithClientPolicy() throws Exception {

 URL url = new URL(endpointURL + "?WSDL");

 QName serviceName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1",
 "bpelprocess1_client_ep");

 Bpelprocess1ClientEp service = new Bpelprocess1ClientEp(url, serviceName);

 QName operationName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1",
"process");

 ClientPolicyFeature policyFeature = new ClientPolicyFeature();

 // Set the Client Side Policy on the operation with QName <operationName>

policyFeature.setEffectivePolicyForOperation(operationName, new
InputStreamPolicySource(getPolicyInputStreamArray(clientPolicyFileNames)
));
 MTOMFeature mtomFeature = new MTOMFeature();

 WebServiceFeature[] features = { policyFeature, mtomFeature };
 // WebServiceFeature[] features = { mtomFeature };
 //WebServiceFeature[] features = {policyFeature};

 port = service.getBPELProcess1Pt(features);
 }

 /**
 * Setup the Client Port/Stub used to invoke the webservice with Security
 *
 * @throws Exception

Example of Adding Security to a JAX-WS Web Service

Configuring Message-Level Security 2-27

 */
 private void setUp() throws Exception {
 createStubWithClientPolicy();
 /**
 * Get the Server Public Certificate to Encrypt the Symmetric Key or the
 * SOAP Message
 */
 /**
 * Get the Server Public Certificate to Verify the Signature of the
 * Symmetric Key or the SOAP Message
 */
 X509Certificate serverCert =
 (X509Certificate) CertUtils.getCertificate(
 certsDir + "/" + serverKeyStoreName, serverKeyStorePass,
 serverCertAlias, "JKS").get(0);
 List<CredentialProvider> credProviders =
 new ArrayList<CredentialProvider>();
 /*
 * Set up UserNameToken
 */
 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes()));
 Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
 /*
 * For Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml
 * there is no need to specify the client side public certificate and
 * private key as this is a symmetric key use case. serverCert is used to
 * encrypt the Symmetric Key/Keys
 */
 rc.put(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT, serverCert);
 rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 rc.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 System.out.println("Validating Server Certificate");
 return true;
 }
 });

 }
 /**
 * Returns an array of InputStreams of the policy files
 *
 * @param policyNames
 * @return array of InputStreams of Policy's
 * @throws FileNotFoundException
 */
 private InputStream[] getPolicyInputStreamArray(String[] policyNames)
 throws FileNotFoundException {
 InputStream[] inpStreams = new InputStream[policyNames.length];
 for (int k = 0; k < policyNames.length; k++) {
 System.out.println("policy name: " + policyNames[k]);
 inpStreams[k] = getPolicyInputStream(policyNames[k]);
 }
 return inpStreams;
 }
 /**
 * Returns an InputStream of the policy file
 *

Example of Adding Security to a JAX-WS Web Service

2-28 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 * @param myPolicyName
 * @return
 * @throws FileNotFoundException
 */
 private InputStream getPolicyInputStream(String myPolicyName)
 throws FileNotFoundException {
 return new FileInputStream(myPolicyName);
 }
 /**
 * Invoke the webservice at endpointURL
 *
 (http://....:9003/soa-infra/services/default/soa/bpelprocess1_client_ep)
 *
 * @throws Exception
 */
 private void invokeProcess() throws Exception {
 InputStream inputstream = null;
 OutputStream outputstream = null;
 try {

 File file = new File(fileName);
 File outputFile = new File(outputFileName);

 inputstream = new BufferedInputStream(new FileInputStream(file));
 int bytesAvailable = -1;
 int counter = 0;
 int bytesRead = 0;
 int fileSize = (int) file.length();

 byte[] fileInBytes = new byte[fileSize];

 bytesRead = inputstream.read(fileInBytes);
 System.out.println("bytesRead: " + bytesRead + ", fileSize: " + fileSize + "
fileInBytes: " + fileInBytes.length);

 byte[] result = port.process(fileInBytes);
 /*byte[] input = "Hello".getBytes();
 System.out.println("input length : "+ input.length);

 byte[] result = port.process(input);*/
 if (!outputFile.exists()) {
 outputFile.createNewFile();
 }

 outputstream = new BufferedOutputStream(new FileOutputStream(outputFile));

 if (result != null) {
 System.out.println("Result Length: " + result.length);
 } else {
 System.out.println("result is null");
 }
 outputstream.write(result);

 // System.out.println(result);
 } catch (Exception e) {
 System.out.println("Error Creating Data Handler: " + e.getMessage());
 } finally {

 if (inputstream != null) {
 inputstream.close();

Creating and Using a Custom Policy File

Configuring Message-Level Security 2-29

 }

 if (outputstream != null) {
 outputstream.close();
 }
 }
 }
 public static void main(String[] args) {
 try {
 SOAClient client = new SOAClient();
 client.setUp();
 //client.createStubWithClientPolicy();
 client.invokeProcess();
 } catch (Exception e) {
 System.out.println("Error calling SOA Webservice: " + e.getMessage());
 if (debug) {
 e.printStackTrace();
 }
 }
 }
}

2.7 Creating and Using a Custom Policy File
Although WebLogic Server includes a number of predefined web services security
policy files that typically satisfy the security needs of most programmers, you can also
create and use your own WS-SecurityPolicy file if you need additional configuration.
See Section 2.3, "Using Policy Files for Message-Level Security Configuration" for
general information about security policy files and how they are used for
message-level security configuration.

When you create a custom policy file, you can separate out the three main security
categories (authentication, encryption, and signing) into three separate policy files, as
do the predefined files, or create a single policy file that contains all three categories.
You can also create a custom policy file that changes just one category (such as
authentication) and use the predefined files for the other categories
(Wssp1.2-2007-SignBody.xml, Wssp1.2-SignBody.xml and
Wssp1.2-2007-EncryptBody, Wssp1.2-EncryptBody). In other words, you can mix and
match the number and content of the policy files that you associate with a web service.
In this case, however, you must always ensure yourself that the multiple files do not
contradict each other.

Your custom policy file needs to comply with the standard format and assertions
defined in WS-SecurityPolicy 1.2. Note, however, that this release of WebLogic Server
does not completely implement WS-SecurityPolicy 1.2. For more information, see
Section 2.18, "Unsupported WS-SecurityPolicy 1.2 Assertions". The root element of
your WS-SecurityPolicy file must be <Policy>.

The following namespace declaration is recommended in this release:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

Note: Use of element-level security always requires one or more
custom policy files to specify the particular element path and name to
be secured.

Configuring the WS-Trust Client

2-30 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

WLS also supports other namespaces for Security Policy. For example, the following
two namespaces are also supported:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
>
. . .
</wsp:Policy>

or

<wsp:Policy
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

You can also use the predefined WS-SecurityPolicy files as templates to create your
own custom files.

2.8 Configuring the WS-Trust Client
WebLogic Server implements a WS-Trust client that retrieves security tokens from a
Security Token Service (STS) for use in Web Services Security. This WS-Trust client is
used internally by the client side WebLogic Server web service runtime.

You can configure the WS-Trust client as follows:

■ Through properties on the web service client stub for a standalone web service
client.

■ Through MBean properties for a web service client running on the server.

In releases prior to 10g Release 3 (10.3) of WebLogic Server, the WS-Trust client could
use only security tokens from an STS that was co-located with a web service and
hosted by WebLogic Server. However, the STS now need only be accessible to the
WS-Trust client; it does not need to be co-located.

The WS-Trust client in prior releases supported only WS-SecureConversation tokens. It
now also supports SAML tokens.

2.8.1 Supported Token Types
Web Service Secure Conversation Language (WS-SecureConversation) and SAML
tokens are supported. The tokens have the following namespace and URI:

■ For WS-SecureConversation 1.3:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

■ For WS-SecureConversation 1.2:

http://schemas.xmlsoap.org/ws/2005/02/sc
http://schemas.xmlsoap.org/ws/2005/02/sc/sct

Configuring the WS-Trust Client

Configuring Message-Level Security 2-31

■ For SAML 1.1:

urn:oasis:names:tc:SAML:1.0:assertion

Supported confirmation method are sender-vouches, holder-of-key, and bearer.
Symmetric holder-of-key is not supported.

■ For SAML 2.0:

urn:oasis:names:tc:SAML:2.0:assertion

Supported confirmation methods are sender-vouches, holder-of-key and bearer.
Symmetric holder-of-key is not supported.

2.8.2 Configuring WS-Trust Client Properties
You set some of the configuration properties specifically for the WS-Trust client; others
are determined through configuration information generally present for a web service
client. For example, the type of token retrieved is determined by the security policy of
the web service that the web service client is invoking.

The properties that you can explicitly set and the token type they apply to are as
follows.

■ STS URI (WS-SecureConversation and SAML)

■ STS security policy (SAML)

■ STS SOAP version (SAML)

■ STS WS-Trust version (SAML)

■ STS Server Certificate (SAML)

This section describes the following topics:

■ "Obtaining the URI of the Secure Token Service" on page 2-31

■ "Configuring STS URI for WS-SecureConversation: Standalone Client" on
page 2-32

■ "Configuring STS URI for SAML: Standalone Client" on page 2-32

■ "Configuring STS URI Using WLST: Client On Server Side" on page 2-33

■ "Configuring STS URI Using Console: Client On Server Side" on page 2-34

■ "Configuring STS Security Policy: Standalone Client" on page 2-34

■ "Configuring STS Security Policy Using WLST: Client On Server Side" on
page 2-35

■ "Configuring STS Security Policy: Using the Console" on page 2-35

■ "Configuring the STS SOAP and WS-Trust Version: Standalone Client" on
page 2-36

■ "Configuring the SAML STS Server Certificate: Standalone Client" on page 2-36

2.8.2.1 Obtaining the URI of the Secure Token Service
There are three sources from which the WS-Trust client can obtain the URI of the
secure token service (STS). The order of precedence is as follows:

■ The URI for the STS, as contained in the sp:Issuer/wsa:Address element of the
token assertion in the web service's security policy.

Configuring the WS-Trust Client

2-32 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ A configured STS URI.

■ The co-located STS URI. This is the default if there is no other source
(WS-SecureConversation only).

2.8.2.2 Configuring STS URI for WS-SecureConversation: Standalone Client
For WS-SecureConversation, if the STS is co-located with the service there is no need
to configure the STS URI. However, when the STS and the service do not share the
same port, for example the service uses an HTTP port and the STS uses an HTTPs port,
you need to configure the STS URI.

The following code example demonstrates setting the STS URI on a client stub under
JAX-RPC. The example assumes that the location of the STS URI is already known to
the client.

String wsdl = "http://myserver/wsscsecuredservice?wsdl";
WsscSecuredService service = new WsscSecuredService_Impl(wsdl);
WsscSecured port = service.getWsscSecuredSoapPort();
Stub stub = (Stub) port;
String sts = "https://myserver/wsscsecuredservice";
stub._setProperty(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_WSSC, sts);

The following code example demonstrates setting the STS URI on a client stub under
JAX-WS.

String wsdl = "http://myserver/wsscsecuredservice?wsdl";
WsscSecuredService service = new WsscSecuredService_Impl(wsdl);
String sts = "https://myserver/wsscsecuredservice";
WsscSecured port = service.getWsscSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_WSSC, sts)

2.8.2.3 Configuring STS URI for SAML: Standalone Client
When the STS is used for retrieving the SAML token, the STS is not co-located with
the service and there is no default STS URI. You must configure the STS URI in this
case.

Note: The URI for the STS, as contained in the
sp:IssuedToken/sp:Issuer/wsa:Address element of the token assertion in
the web service's security policy is supported on the STS URI only for
getting the SAML token, and is not supported for getting the Secure
Conversation token in this release.

For example, the following assertion for STS URI is not supported for
obtaining the Secure Conversation token (SCT):

<sp:IssuedToken
IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/20
0702/IncludeToken/AlwaysToRecipient">
<sp:Issuer>
<a:Address>http://example.com/STS</a:Address>
</sp:Issuer>
. . .
</sp:IssuedToken>

Configuring the WS-Trust Client

Configuring Message-Level Security 2-33

The following code example demonstrates setting the STS URI for SAML on a client
stub under JAX-RPC. The example assumes that the location of the STS URI is already
known to the client.

String wsdl = "http://myserver/wssecuredservice?wsdl";
WssecuredService service = new WsSecuredService_Impl(wsdl);
WsSecured port = service.getWsSecuredSoapPort();
Stub stub = (Stub) port;
String sts = "https://stsserver/standaloneSTS/saml/STS";
stub._setProperty(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_SAML, sts);

The following code example demonstrates setting the STS URI for SAML on a client
stub under JAX-WS.

String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
String sts = "https://stsserver/standaloneSTS/saml/STS";
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_SAML, sts)

2.8.2.4 Configuring STS URI Using WLST: Client On Server Side
Example 2–6 demonstrates using the WebLogic Scripting Tool (WLST) to create a
credential provider for the WS-Trust client and then configuring the STS URI, as
indicated by bold text.

The provider class name can be one of the following:

■ weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider

■ weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

■ weblogic.wsee.security.saml.SAMLTrustCredentialProvider

Example 2–6 Configuring STS URI Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
url="t3://"+ host connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')
#Create credential provider for SCT Trust Client
wtm = defaultWss.createWebserviceCredentialProvider('trust_client_sct_cp')
wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider')

wtm.setTokenType('sct_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue("https://" + sslhost + "/standaloneSTS/wssc13/STS")
save()
activate(block="true")
disconnect()
exit()

Configuring the WS-Trust Client

2-34 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.8.2.5 Configuring STS URI Using Console: Client On Server Side
Configuring the STS URI through the WebLogic Server Administration Console allows
the decision about which URI to use to be made at runtime, and not during the web
service development cycle.

Follow these steps to configure the STS URI through the Console:

1. Create a web services security configuration, as described in the Oracle WebLogic
Server Administration Console Online Help. This creates an empty configuration.

2. Edit the web services security configuration to create a credential provider, as
described in the Oracle WebLogic Server Administration Console Online Help:

■ On the Create Credential Provider tab, enter the following:

– A provider name, which is your name for this MBean instance.

– The provider class name, which can be

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider
or

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider
or

weblogic.wsee.security.saml.SAMLTrustCredentialProvider

– The token type, which is a short name to identify the token. For example,
sct or saml.

3. Select Next.

4. Enter the name/value pairs for the STS URI.

5. Select Finish.

6. On the Security Configuration General tab, set the value of the Default Credential
Provider STS URI.

The Default Credential Provider STS URL is the default STS endpoint URL for all
WS-Trust enabled credential providers of this web service security configuration.

2.8.2.6 Configuring STS Security Policy: Standalone Client
The following code example demonstrates setting the STS security policy on a client
stub, under JAX-RPC, as indicated in bold.

import weblogic.wsee.message.WlMessageContext;
. . .
String wsdl = "http://myserver/samlsecuredservice?wsdl";
SamlSecuredService service = new SamlSecuredService_Impl(wsdl);
SamlSecured port = service.getSamlSecuredSoapPort();
Stub stub = (Stub) port;
InputStream policy = loadPolicy();
stub._setProperty(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

The following code example demonstrates setting the STS security policy on a client
stub, under JAX-WS, as indicated in bold.

import weblogic.wsee.message.WlMessageContext;
. . .
String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;

Configuring the WS-Trust Client

Configuring Message-Level Security 2-35

Map context = provider.getRequestContext();
InputStream policy = loadPolicy();
context._setProperty(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

2.8.2.7 Configuring STS Security Policy Using WLST: Client On Server Side
Example 2–7 demonstrates using WLST to create a credential provider for the default
web services security configuration, and then configuring the STS security policy, as
indicated by bold text. The value for the StsPolicy property must be either a policy
included in WebLogic Server (see Section 2.16, "Using WS-SecurityPolicy 1.2 Policy
Files") or a custom policy file in a Java EE library (see Section 2.7, "Creating and Using
a Custom Policy File").

Example 2–7 Configuring STS Security Policy Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
samlstsurl = sys.argv[6]
url="t3://"+ host
print "Connect to the running adminSever"
connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')

#Create credential provider for SAML Trust Client

wtm = defaultWss.createWebserviceCredentialProvider('trust_client_saml_cp')
wtm.setClassName('weblogic.wsee.security.saml.SAMLTrustCredentialProvider')
wtm.setTokenType('saml_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue(samlstsurl)
cpm = wtm.createConfigurationProperty('StsPolicy')
cpm.setValue("Wssp1.2-2007-Https-UsernameToken-Plain")
save()
activate(block="true")
disconnect()
exit()

2.8.2.8 Configuring STS Security Policy: Using the Console
Perform the following steps to configure the STS security policy using the console:

1. Create a web services security configuration, as described in the Oracle WebLogic
Server Administration Console Online Help. This creates an empty configuration.

2. Edit the web services security configuration to create a credential provider, as
described in the Oracle WebLogic Server Administration Console Online Help:

■ On the Create Credential Provider tab, enter the following:

– A provider name, which is your name for this MBean instance.

– The provider class name, which can be

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider
or

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider
or

Configuring the WS-Trust Client

2-36 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

weblogic.wsee.security.saml.SAMLTrustCredentialProvider

– The token type, which is a short name to identify the token. For example,
sct or saml.

3. Select Next.

4. Enter the name/value pairs for the STS policy.

5. Select Finish.

2.8.2.9 Configuring the STS SOAP and WS-Trust Version: Standalone Client
For a SAML STS, you need to configure the WS-Trust version only if it is not the
default (WS-Trust 1.3). The supported values for WSEESecurityConstants.TRUST_
VERSION are as follows:

■ http://docs.oasis-open.org/ws-sx/ws-trust/200512 (WS-Trust 1.3)

■ http://schemas.xmlsoap.org/ws/2005/02/trust

You also need to configure the SOAP version if it is different from the SOAP version of
the target web service for which you generated the standalone client. (See Interface
SOAPConstants
(http://docs.oracle.com/javase/6/docs/api/javax/xml/soap/SOAPConstants.htm
l) for the definitions of the constants.) The supported values for
WSEESecurityConstants.TRUST_SOAP_VERSION are as follows:

■ javax.xml.soap.SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE (as per
http://schemas.xmlsoap.org/soap/envelope/)

■ javax.xml.soap.SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE (as per
http://www.w3.org/2003/05/soap-envelope)

Example 2–8 shows an example of setting the WS-Trust and SOAP versions.

Example 2–8 Setting the WS-Trust and SOAP Versions

// set WS-Trust version
stub._setProperty(WSEESecurityConstants.TRUST_VERSION,
"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
// set SOAP version
stub._setProperty(WSEESecurityConstants.TRUST_SOAP_VERSION, SOAPConstants.URI_NS_
SOAP_1_1_ENVELOPE);

2.8.2.10 Configuring the SAML STS Server Certificate: Standalone Client
For a SAML STS, you need to configure the STS server X.509 certificate if you use a
message-level policy to protect the request and response between the STS server and
the WS-Trust client. (If you use a transport-level policy, you do not need to configure
the STS server certificate.)

Example 2–9 shows an example of setting the STS server certificate under JAX-RPC,
assuming the location of the STS sever certificate is known.

Example 2–9 Setting STS Server Certificate under JAX-RPC

// import
import weblogic.wsee.security.util.CertUtils;
import java.security.cert.X509Certificate;
import weblogic.wsee.jaxrpc.WLStub;
. . .

Configuring the WS-Trust Client

Configuring Message-Level Security 2-37

// get X509 Certificate
String stsCertLocation = "../../cert/WssIP.cer";
X509Certificate stsCert = CertUtils.getCertificate(stsCertLocation);
// set STS Server Cert
stub._setProperty(WLStub.STS_ENCRYPT_CERT,stsCert);

Example 2–10 shows the same example of setting the STS server certificate under
JAX-WS. The JAX-WS specific code in the example is shown in bold.

Example 2–10 Setting STS Server Certificate under JAX-WS

// import
import weblogic.wsee.security.util.CertUtils;
import java.security.cert.X509Certificate;
import weblogic.wsee.jaxrpc.WLStub;
. . .

// get X509 Certificate
String stsCertLocation = "../../cert/WssIP.cer";
X509Certificate stsCert = CertUtils.getCertificate(stsCertLocation);
// set STS Server Cert
context.put(WLStub.STS_ENCRYPT_CERT,stsCert);

2.8.3 Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
You can configure a client application to use WS-Trust to retrieve the SAML 2.0 bearer
token from STS, and then use the SAML token for authentication on the bootstrap
message on secure conversation.

In this scenario, transport-level message protection is used for WS-Trust message
exchange between a client and the SAML STS, as well as the bootstrap message on
secure conversation. A public key and private key are not required for this standalone
client.

The policy for the service side is similar to the predefined WS-Policy file
Wssp1.2-2007-Wssc1.3-Bootstrap-Https-UNT.xml, except the following
<sp:SupportingTokens> is used in the policy instead:

<sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/Include
Token/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
</sp:SupportingTokens>

The policy that is used to protect the WS-Trust message between the WS-Trust client
and the remote STS server is a copy of the packaged security policy file
Wssp1.2-2007-Https-UsernameToken-Plain.xml, which uses username token for
authentication in transport-level message protection.

Configuring the WS-Trust Client

2-38 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

When invoking the web service from the client, it is similar to a standard client
application that invokes a message-secured web service, as described in "Using a
Client-Side Security Policy File" on page 2-71. The major difference is that you need to
configure two STS endpoints: one for the retrieved SAML token, and another for
getting the Security Context Token (SCT) for Secure Conversation.

Example 2–11 shows a simple example of a client application invoking a web service
under JAX-WS that is retrieving a SAML token via WS-Trust. It is associated with a
security policy that enables secure conversations by using HTTPS transport-level
protection. The sections in bold are relevant to security contexts and are described
after the example:

Example 2–11 Client Application Using WS-Trust and WS-SecureConversation with
HTTPS

package examples.webservices.samlwsschttps.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;
import java.security.cert.X509Certificate;
import javax.xml.ws.*;
import javax.xml.namespace.*;
import javax.net.ssl.HttpsURLConnection;
import java.net.URL;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class TravelAgencyClient {

 public static final String STS_POLICY = "StsHttpsUntPolicy.xml";
 static {
 HttpsURLConnection.setDefaultHostnameVerifier(new MyHostnameVerifier());
 try {
 String defaultTrustStore = new
File(TravelAgencyClient.class.getResource("/cacerts").getFile()).getCanonicalPath(
);
 System.out.println("Default trustStore:\t" + defaultTrustStore);
 System.setProperty("javax.net.ssl.trustStore", defaultTrustStore);
 } catch (IOException e) {
 System.out.printf("can't find default trusted keystore");
 }

Note: When using transport-level security policy to protect the
bootstrap message of secure conversation, the WS-Trust messages
exchanged between the WS-Trust client and the remote STS must also
use transport-level security policy to protect the WS-Trust messages.

Configuring the WS-Trust Client

Configuring Message-Level Security 2-39

 }

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String wsscStsURL = System.getProperty("wsscStsURL");
 System.out.println("WSSC StS URL \t" + wsscStsURL);
 String samlStsURL = System.getProperty("samlStsURL");
 System.out.println("StS URL \t" + samlStsURL);
 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);

 String hotelResult = client.callWsscHotelService("Travel Agency client to
Hotel Service", wsscStsURL,hotelWsdlURL, samlStsURL);
 System.out.println("Hotel Service return value: -->"+hotelResult);
 }

 public String callWsscHotelService(String hello,
 String wsscStsURL,
 String hotelWsdlURL,
 String samlStsURL) throws Exception{

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider)port;
 this.configurePort(provider, wsscStsURL, samlStsURL);

 try {
 // for securie conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1) ;
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!", ex);
 }
 }

 private void configurePort(BindingProvider provider, String wsscStsURL, String
samlStsURL) throws Exception {

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
 if (null != wsscStsURL) {
 context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);
 }
 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);
 context.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;
 }
 });

Configuring the WS-Trust Client

2-40 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER, new
MyHostnameVerifier());
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }
 private static CredentialProvider getClientUNTCredentialProvider() throws
Exception {
 String username = System.getProperty("target.username", "Alice");
 String password = System.getProperty("target.password", "Password1");
 return new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes());
 }
 private InputStream getPolicy(String policyName) {
 String resName = '/' + this.getClass().getPackage().getName().replace('.',
'/') + '/' + policyName;
 InputStream stsPolicy = this.getClass().getResourceAsStream(resName);
 if(stsPolicy == null) {
 throw new RuntimeException("STS policy is not correctly set!");
 }
 return stsPolicy;
 }
 public static class MyHostnameVerifier implements javax.net.ssl.HostnameVerifier
{
 public boolean verify(String hostname, javax.net.ssl.SSLSession session) {
 return(true);
 }
 }
}

Note the following points in this example:

■ Configure the policy for message protection between the remote STS and WS-Trust
client:

 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

■ The bootstrap is protected by transport-level policy, and you need to set the STS
endpoint address for secure conversation:

context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);

■ Set the STS endpoint address for SAML STS:

 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);

■ For transport-level protection, you need to configure the hostname verifier:

context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER,
new MyHostnameVerifier());

■ Set the SAML Trust Credential Provider to handle the remote SAML token
retrieval:

credProviders.add(new SAMLTrustCredentialProvider());

Configuring the WS-Trust Client

Configuring Message-Level Security 2-41

■ Set the client user name token provider to use the client's user name and password
to exchange the SAML token via the WS-Trust call:

credProviders.add(getClientUNTCredentialProvider());

2.8.4 Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message
Protections

Similar to Example 2–11, you can configure a client application to use WS-Trust to
retrieve the SAML 2.0 bearer token from STS, and then use the SAML token for
authentication on the bootstrap message on secure conversation. However, instead of
using HTTPS transport-level message protection, it uses WS-Security 1.1 message-level
protection, and HTTPS configuration is not required.

In this scenario, the STS server's X.509 certificate is used to protect the WS-Trust
message exchange between the client and the SAML STS, and the server's X.509
certificate is used to protect the bootstrap message on secure conversation. A public
key and private key are not required for this standalone client.

The policy for the service side is similar to the packaged WS-Policy file
Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml, except that it uses a SAML 2.0 token
for authentication in the bootstrap message instead of the client's X.509 certificate. That
is, it uses a <sp:SignedSupportingTokens> assertion with a SAML token inside the
policy instead of using a <sp:SignedEndorsingSupportingTokens> assertion.

The entire secure conversation policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/Include
Token/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:BootstrapPolicy>
 <wsp:Policy>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header
Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/Include
Token/Never">
 <wsp:Policy>

Configuring the WS-Trust Client

2-42 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 <sp:RequireDerivedKeys/>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:Policy>
 </sp:BootstrapPolicy>
 </wsp:Policy>
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>

Configuring the WS-Trust Client

Configuring Message-Level Security 2-43

 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp:Policy>
 </sp:Trust13>
</wsp:Policy>

The policy that is used to protect the WS-Trust message between the WS-Trust client
and the remote STS server is a copy of packaged security policy
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey.xml, which uses the
username token for authentication and WS-Security 1.1 message-level security.

The entire security policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/Include
Token/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken

Configuring the WS-Trust Client

2-44 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/Include
Token/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedEncryptedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:SignedParts>
 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
</wsp:Policy>

When invoking a web service from the WS-Trust client, the configurations are mostly
similar to the previous example. The major differences are:

■ You need to configure two encryption certificates: one is the certificate of the STS
for SAML token retrieval, and the other is the certificate for the server.

■ Configuring the service STS endpoint address for secure conversation is not
required. When the bootstrap message is not protected by transport-level security,
by default the STS endpoint address is the same as the service endpoint address
for security conversation.

■ The SSL configuration is not required.

Example 2–12 shows a simple example of a client application invoking a web service
under JAX-WS that is retrieving a SAML token via WS-Trust. It is associated with a
security policy that enables secure conversations by using WS-Security 1.1
message-level security. The sections in bold are relevant to security contexts and are
described after the example:

Example 2–12 Client Application Using WS-Trust and WS-SecureConversation without
HTTPS

package examples.webservices.samlwssc.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;

Note: When using message-level security policy to protect the
bootstrap message of secure conversation, the WS-Trust messages
exchanged between the WS-Trust client and the remote STS must also
use message-level security policy to protect the WS-Trust messages.
Mixing transport- and message-level security policy is not supported.

Configuring the WS-Trust Client

Configuring Message-Level Security 2-45

import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;

. . .

public class TravelAgency1Client {

 public static final String STS_POLICY = "StsWss11UntPolicy.xml";

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String stsURL = System.getProperty("stsURL");
 System.out.println("StS URL \t" + stsURL);

 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);
 String hotelResult = client.callWsscHotelService("Travel Agency client to
Hotel Service", stsURL, hotelWsdlURL);
 System.out.println("Hotel Service return value: -->" + hotelResult);
 }

 public String callWsscHotelService(String hello,
 String stsurl,
 String hotelWsdlURL) throws Exception {

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider) port;
 this.configurePort(provider, stsurl);

 try {
 // for secure conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1);
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!",
ex);
 }
 }

 private void configurePort(BindingProvider provider, String stsurl) throws
Exception {

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

Configuring and Using Security Contexts and Derived Keys

2-46 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, stsurl);
 context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());
 context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());
 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE, WLStub.POLICY_
COMPATIBILITY_MSFT);
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }

. . .

 private static X509Certificate getServerCert() throws Exception {
 String defaultServerCert = new File(
TravelAgency1Client.class.getResource("/Bob.cer").getFile()).getCanonicalPath();
 String certName = System.getProperty("target.serverCert",
 defaultServerCert);
 X509Certificate cert = CertUtils.getCertificate(certName);
 return cert;
 }
}

Note the following points in this example:

■ Configure the STS Server certificate for message protection between the remote
STS and WS-Trust client:

context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());

■ Configure the STS Server certificate for message protection of the bootstrap
message of secure conversation:

context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());

■ Optionally, if the service is a Microsoft .NET WCF service, then set the
WLStub.POLICY_COMPATIBILITY_PREFERENCE flag to WLStub.POLICY_
COMPATIBILITY_MSFT for interoperability:

context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE, WLStub.POLICY_
COMPATIBILITY_MSFT);

2.9 Configuring and Using Security Contexts and Derived Keys
Oracle provides the following predefined WS-SecurityPolicy files to configure security
contexts and derived keys:

■ WS-SecureConversation 1.2 (2005/2) specification:

– Wssp1.2-Wssc200502-Bootstrap-Https.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

■ WS-SecureConversation 1.3 versions of the WS-SecureConversation 1.2 (2005/2)
policy files:

Configuring and Using Security Contexts and Derived Keys

Configuring Message-Level Security 2-47

– Wssp1.2-Wssc1.3-Bootstrap-Https.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

■ Additional WS-SecureConversation 1.3 policy files:

– Wssp1.2-Wssc1.3-Bootstrap-Https-BasicAuth.xml

– Wssp1.2-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

■ WS-SecureConversation 1.4 policies:

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-Basic256.x
ml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-Basic256Sh
a256.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-Saml1.1-SenderVouches.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml1.1-SenderVouches.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-EncryptedKey.x
ml

It is recommended that you use the predefined files if you want to configure security
contexts, because these security policy files provide most of the required functionality
and typical default values. See Section 2.16.5, "WS-SecureConversation Policies" for
more information about these files.

Code or configure your application to use the policy through policy annotations,
policy attached to the application's WSDL, or runtime policy configuration.

2.9.1 Specification Backward Compatibility
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web
Services Secure Conversation (WS-SecureConversation 1.3) specifications. Take note of
the following differences from the WS-SecureConversation version of 02/2005:

■ The Web Services Secure Conversation (WS-SecureConversation 1.3) specification
requires a token service to return wst:RequestedSecurityToken to the initiating
party in response to a wst:RequestSecurityToken. One or more
wst:RequestSecurityTokenResponse elements are contained within a single
wst:RequestSecurityTokenResponseCollection.

This differs from the previous version of the specification, in which
wst:RequestSecurityTokenResponse was returned by the token service.

The token service can return wst:RequestSecurityTokenResponse if the service
policy specifies the SC10SecurityContextToken, as described in the next bullet
item.

Note: If you are deploying a web service that uses shared security
contexts to a cluster, then you are required to also configure
cross-cluster session state replication. For details, see "Failover and
Replication in a Cluster" in Administering Clusters for Oracle WebLogic
Server.

Configuring and Using Security Contexts and Derived Keys

2-48 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ The WS-SecurityPolicy 1.2 Errata document describes the following change to
SecureConversationToken Assertion:

<sp:SC10SecurityContextToken />

changes to

<sp:SC13SecurityContextToken />

sp:SC10SecurityContextToken continues to be supported only when used with the
WS-SecureConversation version of 02/2005.

2.9.2 WS-SecureConversation and Clusters
WS-SecureConversation is pinned to a particular WebLogic Server instance in the
cluster. If a SecureConversation request lands in the wrong server, it is automatically
rerouted to the correct server. If the server instance hosting the
WS-SecureConversation fails, the SecureConversation will not be available until the
server instance is brought up again.

2.9.3 Updating a Client Application to Negotiate Security Contexts
A client application that negotiates security contexts when invoking a web service is
similar to a standard client application that invokes a message-secured web service, as
described in Section 2.15, "Using a Client-Side Security Policy File". The only real
difference is that you can use the weblogic.wsee.security.wssc.utils.WSSCClientUtil API to
explicitly cancel the secure context token.

You can configure the SCT expiration value by setting SCT lifetime property. The SCT
expiration value is then used to time out the SCT. When the timeout is reached, the
web services runtime on the client side automatically renews the SCT. The web
services runtime automatically cancels the unused secure context token when the
timeout is reached.

Example 2–13 shows a simple example of a client application invoking a web service
under JAX-RPC that is associated with a predefined security policy file that enables
secure conversations; the sections in bold that are relevant to security contexts are
discussed after the example:

Example 2–13 Client Application Using WS-SecureConversation

package examples.webservices.wssc.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import weblogic.wsee.security.util.CertUtils;
import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;

Note: WebLogic Server provides the WSSCCLientUtil API for your
convenience only; the web services runtime automatically cancels the
secure context token when the configured timeout is reached. Use the
API only if you want to have more control over when the token is
cancelled.

Configuring and Using Security Contexts and Derived Keys

Configuring Message-Level Security 2-49

import java.security.cert.X509Certificate;

/**
 * Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class WSSecureConvClient {
 public static void main(String[] args) throws Throwable {

 String clientKeyStore = args[0];
 String clientKeyStorePass = args[1];
 String clientKeyAlias = args[2];
 String clientKeyPass = args[3];
 String serverCert = args[4];
 String wsdl = args[5];

 WSSecureConvService service = new WSSecureConvService_Impl(wsdl);
 WSSecureConvPortType port = service.getWSSecureConvServicePort();

 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();

 //use x509 to secure wssc handshake
 credProviders.add(new ClientBSTCredentialProvider(clientKeyStore,
clientKeyStorePass, clientKeyAlias, clientKeyPass));

 Stub stub = (Stub)port;

 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));
 stub._setProperty(WlMessageContext.SCT_LIFETIME_PROPERTY, new Long(2 * 60 *
60 * 1000L));
// set to 2 hrs (Default is 30 minutes.)

 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 //need to validate if the server cert can be trusted
 return true;
 }
 }
);

 System.out.println (port.sayHelloWithWSSC("Hello World, once"));
 System.out.println (port.sayHelloWithWSSC("Hello World, twice"));
 System.out.println (port.sayHelloWithWSSC("Hello World, thrice"));

 //cancel SecureContextToken after done with invocation
 WSSCClientUtil.terminateWssc(stub);
 System.out.println("WSSC terminated!");

 }
}
The points to notice in the preceding example are:

■ Import the WebLogic API used to explicitly terminate the secure context token:

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;

Associating Policy Files at Runtime Using the Administration Console

2-50 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ Set a property on the JAX-RPC stub that specifies that the client application must
encrypt its request to WebLogic Server with the given WebLogic Server's public
key:

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));

■ Set a property on the JAX-RPC stub that specifies the Security Context Token
(SCT) timeout value:

stub._setProperty(WlMessageContext.SCT_LIFETIME_PROPERTY, new Long(2 * 60 * 60
* 1000L));

■ Use the terminateWssc() method of the WSSClientUtil class to terminate the
secure context token:

WSSCClientUtil.terminateWssc(stub);

2.10 Associating Policy Files at Runtime Using the Administration
Console

The simple message-level configuration procedure, documented in Section 2.4,
"Configuring Simple Message-Level Security", describes how to use the @Policy and
@Policies JWS annotations in the JWS file that implements your web service to
specify one or more policy files that are associated with your service. This of course
implies that you must already know, at the time you program your web service, which
policy files you want to associate with your web service and its operations. This might
not always be possible, which is why you can also associate policy files at runtime,
after the web service has been deployed, using the WebLogic Server Administration
Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and
associate policy files only at runtime using the WebLogic Server Administration
Console, or you can specify some policy files using the annotations and then associate
additional ones at runtime.

At runtime, the WebLogic Server Administration Console allows you to associate as
many policy files as you want with a web service and its operations, even if the policy
assertions in the files contradict each other or contradict the assertions in policy files
associated with the JWS annotations. It is up to you to ensure that multiple associated
policy files work together. If any contradictions do exist, WebLogic Server returns a
runtime error when a client application invokes the web service operation.

To use the Console to associate one or more WS-Policy files to a web service, the
WS-Policy XML files must be located in either the META-INF/policies or
WEB-INF/policies directory of the EJB JAR file (for EJB implemented web services) or
WAR file (for Java class implemented web services), respectively.

See "Attach a WS-Policy file to a Web Service" in the Oracle WebLogic Server
Administration Console Online Help for detailed instructions on using the WebLogic
Server Administration Console to associate a policy file at runtime.

Note: Setting the SCT lifetime value is optional. The default value is
set to 30 minutes. Setting a shorter SCT lifetime value is more secure,
but requires renewing the SCT more frequently. Setting a longer SCT
lifetime requires renewing the SCT less frequently, and it stays in
memory longer if not explicitly terminated.

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-51

2.11 Using Security Assertion Markup Language (SAML) Tokens For
Identity

This section describes using SAML tokens for identity. The following topics are
described:

■ Section 2.11.1, "SAML Token Overview"

■ Section 2.11.2, "Using SAML Tokens for Identity: Main Steps"

■ Section 2.11.3, "Specifying the SAML Confirmation Method"

■ Section 2.11.4, "Sample of SAML 1.1 Bearer Token Over HTTPS"

■ Section 2.11.5, "Configuring SAML Attributes in a Web Service"

2.11.1 SAML Token Overview
The SAML Token Profile 1.1
(http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf)
is part of the core set of WS-Security standards, and specifies how SAML assertions
can be used for web services security. WebLogic Server supports SAML Token Profile
1.1, including support for SAML 2.0 and SAML 1.1 assertions. SAML Token Profile 1.1
is backwards compatible with SAML Token Profile 1.0.

In the simple web services configuration procedure, described in Section 2.4,
"Configuring Simple Message-Level Security", it is assumed that users use username
tokens to authenticate themselves. Because WebLogic Server implements the SAML
Token Profile 1.1
(http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf)
of the Web Services Security specification, users can also use SAML tokens in the
SOAP messages to authenticate themselves when invoking a web service operation, as
described in this section.

Use of SAML tokens works server-to-server. This means that the client application is
running inside of a WebLogic Server instance and then invokes a web service running
in another WebLogic Server instance using SAML for identity. Because the client
application is itself a web service, the web services security runtime takes care of all
the SAML processing.

In addition to this server-to-server usage, you can also use SAML tokens from a
standalone client via WS-Trust, as described in Section 2.8, "Configuring the WS-Trust
Client".

Note: SAML Token Profile 1.1 is supported only through
WS-SecurityPolicy.

Previous releases of WebLogic Server, released before the formulation
of the WS-SecurityPolicy specification, used security policy files
written under the WS-Policy specification, using a proprietary schema
for security policy. These earlier security policy files support SAML
Token Profile 1.0 and SAML 1.1 only.

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-52 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.11.2 Using SAML Tokens for Identity: Main Steps
To use SAML tokens for identity:

1. Make sure that the SAML providers you need are configured and add the
appropriate partner entries. This step configures the core WebLogic Server security
subsystem. For details, see the following sections in Administering Security for
Oracle WebLogic Server:

■ Configuring a SAML Identity Assertion Provider

■ Configuring a SAML Credential Mapping Provider

2. If you will be using policies that involve signatures related to SAML assertions (for
example, SAML Holder-of-Key policies) where a key referenced by the assertion is
used to sign the message, or Sender-Vouches policies where the sender's key is
used to sign the message, you need to configure keys and certificates for signing
and verification.

For the Holder-of-Key scenarios, the signature from the client certificate is to prove
that the client has possession of the private key that the SAML token references.
For the Sender Vouches scenarios, the signature from the client certificate is to
guarantee that the message with the SAML token is generated by the sender.

Note: It is assumed in this section that you understand the basics of
SAML and how it relates to core security in WebLogic Server. For
general information, see "Security Assertion Markup Language
(SAML)" in Understanding Security for Oracle WebLogic Server.

It is also assumed in the following procedure that you have followed
the steps in Section 2.4, "Configuring Simple Message-Level Security"
and now want to enable the additional use case of using SAML
tokens, rather than username tokens, for identity.

Note: You will need to configure both SAML 1.1 and SAML 2.0
security providers if you want to enable both versions of SAML for
use with the SAML Token Profile.

When configuring SAML 2.0 partner entries, you must use the
endpoint URL of the target web service as the name of the partner for
both WSSIdPPartner and WSSSPPartner entries. Specify the URL as
HTTPS if SSL will be used.

Note: These keys and certificates are not used to create or verify
signatures on the assertions themselves. Creating and verifying
signatures on assertions is done using keys and certificates configured
on the SAML security providers.

If you are using SAML Bearer policies, protection is provided by SSL
and the PKI Credential Mapping provider is not needed.

If you are using SAML tokens from a standalone client via WS-TRUST,
the tokens are passed in via the web service client stub, not via the PKI
Credential Mapping provider.

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-53

a. Configure a PKI Credential Mapping provider on the sending side, and
populate it with the keys and certificates to be used for signing.
setKeypairCredential creates a keypair mapping between the
principalName, resourceid and credential action and the keystore alias and
the corresponding password.

pkiCM.setKeypairCredential(
type=<remote>, protocol=http,
remoteHost=hostname, remotePort=portnumber, path=/ContextPath/ServicePath,
username, Boolean('true'), None,
alias, passphrase)

The first (String) parameter is used to construct a Resource object that
represents the endpoint of the target web service. The userName parameter is
the user on whose behalf the signed web service message will be generated.
The alias and passphrase parameters are the alias and passphrase used to
retrieve the key/certificate from the keystore configured for the PKI
Credential Mapping provider. The actual key and certificate should be loaded
into the keystore before creating the KeypairCredential.

b. Add the same certificates to the Certificate Registry on the receiving side, so
they can be validated by the web service security runtime:

reg.registerCertificate(certalias, certfile)

2.11.3 Specifying the SAML Confirmation Method
The WS-SecurityPolicy implies, but does not explicitly specify, the confirmation
method for SAML assertions. Consider the following general guidelines:

■ For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside the
<sp:AsymmerticBinding> assertion, then the Holder of Key confirmation method
is used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:EndorsingSupportingTokens> assertion, then the Holder of Key confirmation
method is used.

See Table 2–11 for examples of predefined policies that use Holder of Key
confirmation.

■ For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside
<sp:SignedSupportingTokens>, then the Sender Vouches confirmation method is
used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and the <sp:X509Token> is used in the
<sp:EndorsingSupportingTokens> assertion, then the Sender Vouches
confirmation method is used.

For Transport Binding, two-way SSL with client certification is required for the
Sender Vouches confirmation method. Use transport-level security as described in
Chapter 3, "Configuring Transport-Level Security" in this case.

See Table 2–11 for examples of predefined policies that use Sender Vouches
confirmation.

■ For transport-level security, if the SamlToken assertion is inside
<sp:SupportingTokens>, then the Bearer confirmation method is used. Use
transport-level security as described in Chapter 3, "Configuring Transport-Level
Security" in this case.

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-54 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and there is no
<sp:EndorsingSupportingTokens> assertion, then the Bearer confirmation
method is used.

See Table 2–11 for examples of predefined policies that use Bearer confirmation.

2.11.3.1 Specifying the SAML Confirmation Method (Proprietary Policy Only)
This section describes how to specify the SAML confirmation method in a policy file
that uses the proprietary schema for security policy.

When you configure a web service to require SAML tokens for identity, you can
specify one of the following confirmation methods:

■ sender-vouches

■ holder-of-key

■ bearer

See "SAML Token Profile Support in WebLogic web services", as well as the Web
Services Security: SAML Token Profile
(http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf)
specification itself, for details about these confirmation methods.

1. Use a security policy file that specifies that SAML should be used for identity. The
exact syntax depends on the type of confirmation method you want to configure
(sender-vouches, holder-of-key).

To specify the sender-vouches confirmation method:

a. Create a <SecurityToken> child element of the <Identity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token
usage.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify sender-vouches.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
ty-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-
profile-1.0#SAMLAssertionID">

Note: SAML V1.1 and V2.0 assertions use
<saml:SubjectConfirmation> and <saml2:SubjectConfimation>
elements, respectively, to specify the confirmation method; the
confirmation method is not directly specified in the policy file.

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-55

 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

To specify the holder-of-key confirmation method:

a. Create a <SecurityToken> child element of the
<Integrity><SupportedTokens> elements and set the TokenType attribute to a
value that indicates SAML token usage.

The reason you put the SAML token in the <Integrity> assertion for the
holder-of-key confirmation method is that the web service runtime must
prove the integrity of the message, which is not required by sender-vouches.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify holder-of-key.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
ty-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-
profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

c. By default, the WebLogic web services runtime always validates the X.509
certificate specified in the <KeyInfo> assertion of any associated WS-Policy
file. To disable this validation when using SAML holder-of-key assertions, you
must configure the web service security configuration associated with the web

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-56 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

service by setting a property on the SAML token handler. See "Disable X.509
certificate validation when using SAML holder_of_key assertions" in Oracle
WebLogic Server Administration Console Online Help for information on how to
do this using the WebLogic Server Administration Console.

See Section 2.7, "Creating and Using a Custom Policy File" for additional
information about creating your own security policy file. See "Web Services
Security Policy Assertion Reference" in WebLogic Web Services Reference for
Oracle WebLogic Server for reference information about the assertions.

2. Update the appropriate @Policy annotations in the JWS file that implements the
web service to point to the security policy file from the preceding step. For
example, if you want invokes of all the operations of a web service to SAML for
identity, specify the @Policy annotation at the class-level.

You can mix and match the policy files that you associate with a web service, as
long as they do not contradict each other and as long as you do not combine
OASIS WS-SecurityPolicy 1.2 files with security policy files written under Oracle's
security policy schema.

For example, you can create a simple MyAuth.xml file that contains only the
<Identity> security assertion to specify use of SAML for identity and then
associate it with the web service together with the predefined
Wssp1.2-2007-EncryptBody.xml and Wssp1.2-2007-SignBody.xml files. It is,
however, up to you to ensure that multiple associated policy files do not contradict
each other; if they do, you will either receive a runtime error or the web service
might not behave as you expect.

3. Recompile and redeploy your web service as part of the normal iterative
development process.

See "Developing WebLogic Web Services" in Developing JAX-RPC Web Services for
Oracle WebLogic Server.

4. Create a client application that runs in a WebLogic Server instance to invoke the
main web service using SAML as identity. See Section 2.5.1, "Invoking a Web
Service From a Client Running in a WebLogic Server Instance" for details.

2.11.4 Sample of SAML 1.1 Bearer Token Over HTTPS
This release of WebLogic Server includes a SAML 1.1 Bearer example with a
standalone client. This example is available in the WebLogic Server installation in
WLS_HOME\samples\server\examples\src\examples\webservices\saml\bearer11ssl.

This is an example of SAML 1.1 Bearer with a standalone client. It demonstrates the
minimum configuration and setup with WS-Trust to use a SAML assertion for
authentication of a web service application. The example contains two WebLogic
Server instances, which host the FlightService web service and STSHttpsUNT.java
used as a Security Token Service (STS), respectively.

The client TravelAgencyClient does not have a public/private key pair and gets the
SAML token from the STS for authentication, with transport level message protection.

2.11.5 Configuring SAML Attributes in a Web Service
A SAML assertion is a piece of data produced by a SAML authority regarding either
an act of authentication performed on a subject, attribute information about the
subject, or authorization data applying to the subject with respect to a specified
resource.

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-57

The SAML specification (see http://www.oasis-open.org) allows additional,
unspecified information about a particular subject to be exchanged between SAML
partners as attribute statements in an assertion. A SAML attribute assertion is
therefore a particular type of SAML assertion that conveys site-determined
information about attributes of a Subject.

Attribute data is of type String.

Attributes are often name/value pairs (for example name=position, value=team lead),
with multiple values being possible, but there is no requirement that they follow this
model.

SAML attributes can be examined on the target partner service, and they can be used
as extra information for authentication or authorization.

Use of SAML attributes works server-to-server. This means that the client application
providing the attributes is running inside of a WebLogic Server instance. It then
invokes a web service running in the same or other WebLogic Server instance to
consume the attributes. Because the client application is itself a web service, the web
services security runtime takes care of all the SAML processing.

2.11.5.1 Using SAML Attributes: Available Interfaces and Classes
You can use the classes and interfaces listed in Table 2–3 to implement SAML
attributes. For more information, see Java API Reference for Oracle WebLogic Server.

Of the classes and interfaces listed in Table 2–3, the SAMLAttributeData interface
deserves additional mention. The SAMLAttributeData interface supports both SAML
1.1 or SAML 2.0 attributes. It has the methods shown in Table 2–4.

Table 2–3 SAML Attribute Classes and Interfaces

Interface or Class Description

weblogic.wsee.security.s
aml.SAML2CredentialProvi
der

Credential Provider for SAML 2.0 assertions.

weblogic.wsee.security.s
aml.SAMLCredentialProvid
er

Credential Provider for SAML 1.1 assertions.

weblogic.wsee.security.s
aml.SAMLAttributeStateme
ntData

This interface represents the attributes in a single attribute
statement. For SAML 1.1 and 2.0.

weblogic.wsee.security.s
aml.SAMLAttributeStateme
ntDataImpl()

This class represents the attributes in a single attribute
statement. For SAML 1.1 and 2.0.

weblogic.wsee.security.s
aml.SAMLAttributeData

SAML attribute Info interface that can be either SAML 1.1 or
SAML 2.0 attribute.

weblogic.wsee.security.s
aml.SAMLAttributeDataImp
l()

Class that implements
weblogic.wsee.security.saml.SAMLAttributeData.

weblogic.wsee.security.s
aml.SAMLAttributeStateme
ntDataHelper

Helper function to get the SAMLAttributeStatementData object

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-58 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.11.5.2 Using SAML Attributes: Main Steps
The SAML2CredentialProvider and SAMLCredentialProvider classes provide
mechanisms to add attributes into SAML assertions via the web service context.

On the SAML partner, you then use the
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData method to
map attributes from incoming SAML assertions based on the web service context.

To do this:

■ The SAML2CredentialProvider or SAMLCredentialProvider (on the SAML
Identity Provider site) determines the attributes to use and how to package them.

Implement both the SAMLAttributeStatementData and SAMLAttributeData
interfaces to package the attributes.

■ The SAML partner uses the WebServiceContext to get the attributes, and
determines what to do with them.

Use the SAMLAttributeStatementDataHelper class to get the
SAMLAttributeStatementData object, from which you get the SAMLAttributeData
object.

Table 2–4 SAMLAttributeData Methods

Method Description

getAttributeName() Get the attribute name.

getAttributeNameFormat() Get the attribute name format (for SAML 2.0 only).

getAttributeFriendlyName
()

Get the Attribute friendly name.

getAttributeValues() Get the collection of attribute values.

isSAML20() Check if this is a SAML 2.0 attribute. Return true if it is a SAML
2.0 attribute, false otherwise

setAttributeName(String
attributeName)

Set the attribute name.

setAttributeNameFormat(S
tring
attributeNameFormat)

Set the attribute name format.

setAttributeFriendlyName
(String
attributeFriendlyName)

Set the attribute friendly name.

setAttributeValues(Colle
ction<String>
attributeValues)

Set the collection of attribute values.

addAttributeValue(String
attributeValue)

Add one attribute value.

getAttributeNameSpace() Get the namespace of the attribute. This is for SAML 1.1 only.

setAttributeNameSpace(St
ring attributeNameSpace)

Set the namespace of the attribute. This is for SAML 1.1 only.

getSAML2AttributeInfo() Get a SAML 2.0 attribute info object from this object.

getSAMLAttributeInfo() Get a SAML 1.1 attribute info object from this object.

isEmpty() Check if this attribute data element does not have values.

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-59

2.11.5.3 SAML Attributes Example
This section describes a simple application that implements SAML attributes for
SAML 2.0. This example is available in the WebLogic Server installation in WLS_
HOME\samples\server\examples\src\examples\webservices\saml\saml20sv.

Example 2–14 shows an example of a web service (the "client") running on a WebLogic
Server instance.

This web service adds four attributes to the WebServiceContext. The first attribute has
no value; the second uses a static value. The values for attributes three and four are
computed based on the authenticated Subject.

Example 2–14 Web Service That Adds Attributes to the WebServiceContext

@WebService(serviceName = "ProxyService", name = "IProxy", targetNamespace =
"http://www.oracle.com/2008/12/interop")
 public class ProxyService{

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello,
 @WebParam(name = "partenerWsdlURL") String
partenerWsdlURL){
 try{
 PartnerService service =
 new PartnerService(new URL(partenerWsdlURL),
 new
QName("http://www.oracle.com/2008/12/interop", "PartnerService"));

 IPartner port = service.getIPartnerPort();
 BindingProvider provider = (BindingProvider) port;
 Map context = provider.getRequestContext();
 context.put(WLStub.SAML_ATTRIBUTE_ONLY, "True");

 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 String result = port.echo(hello);
 return result+" I'm ProxyService Echo!\n";

 } catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new MySAMLCredentialProvider1());

 return credProviders;
 }

 /**
 * This Credential Provider is for SAML 2.0 Sender Vouches
 */

 private static class MySAMLCredentialProvider1 extends SAML2CredentialProvider
{

 public SAMLAttributeStatementData getSAMLAttributeData(Subject subject) {

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-60 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 System.out.println(" Providing SAML Attributes from
MySAMLCredentialProvider1 for Subject =" + subject);
 // There are four types of attributes in this test

 SAMLAttributeStatementData attributes = new
SAMLAttributeStatementDataImpl();

 String xmlns = "www.oracle.com/webservices/saml/test";
 // 1. The attribute without value

 SAMLAttributeData attribute1 = new SAMLAttributeDataImpl();
 attribute1.setAttributeName("test.no.value.attribute");
 // Friendly name is optional. It is set in this example.
 attribute1.setAttributeFriendlyName("Type 1 - No Value");
 attribute1.setAttributeNameSpace(xmlns);
 attributes.addAttributeInfo(attribute1);

 // 2. Static attribute that has static value

 SAMLAttributeData attribute2 = new SAMLAttributeDataImpl();
 attribute2.setAttributeName("test.static.attribute");
 attribute2.setAttributeFriendlyName("Type 2 - Static Attribute");
 attribute2.setAttributeNameSpace(xmlns);
 attribute2.addAttributeValue("static.attribute.value");
 attributes.addAttributeInfo(attribute2);

 // 3. Subjust dependent attributes

 SAMLAttributeData attribute3 = new SAMLAttributeDataImpl();
 attribute3.setAttributeName("test.subject.dependent.attribute");
 attribute3.setAttributeFriendlyName("Type 3 - Subject Dependent
Attribute");
 attribute3.setAttributeNameSpace(xmlns);
 if (hasUser("Alice", subject)) {
 attribute3.addAttributeValue("Alice A");
 } else if (hasUser("Bob", subject)) {
 attribute3.addAttributeValue("Bob B");
 } else {
 attribute3.addAttributeValue("Hacker X");
 }
 attributes.addAttributeInfo(attribute3);

 // 4. Multiple value attributes

 SAMLAttributeData attribute4 = new SAMLAttributeDataImpl();
 attribute4.setAttributeName("test.multi.value.attribute");
 attribute4.setAttributeFriendlyName("Type 4 - Multi-Value Attribute");
 attribute4.setAttributeNameSpace(xmlns);
 if (hasUser("Alice", subject)) {
 attribute4.addAttributeValue("Team Lead");
 attribute4.addAttributeValue("Programmer");
 } else if (hasUser("Bob", subject)) {
 attribute4.addAttributeValue("System Admin");
 attribute4.addAttributeValue("QA");
 } else {
 attribute4.addAttributeValue("Hacker");
 attribute4.addAttributeValue("meber of unkown");
 }
 attributes.addAttributeInfo(attribute4);

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-61

 return attributes;
 }

 private static boolean hasUser(String user, Subject subject) {
 if (null == user || null == subject) {
 return false;
 }
 Set principals = subject.getPrincipals();
 if (null == principals || principals.isEmpty()) {
 return false;
 }
 for (Iterator it = principals.iterator(); it.hasNext();) {
 Object obj = it.next();
 if (obj instanceof Principal) {
 Principal p = (Principal) obj;
 // System.out.println("principal =[" + p + "]");
 if (user.equals(p.getName())) {
 return true;
 }
 } else if (obj instanceof WLSPrincipal) {
 WLSPrincipal principal = (WLSPrincipal) obj;
 // System.out.println("principal =[" + principal + "]");
 if (user.equals(principal.getName())) {
 return true;
 }
 }
 }
 return false;
 }

 }

}

This example invokes the SAMLAttributeStatementDataImpl() class to get an
SAMLAttributeStatementData object, and then invokes SAMLAttributeDataImpl() to
get a SAML2AttributeStatementInfo object.

The SAMLAttributeData class supports both SAML 2.0 and 1.1, and in this example
uses SAML 2.0. SAMLAttributeDataImpl() is shown in Example 2–15.

Example 2–15 SAMLAttributeDataImpl Implementation

package weblogic.wsee.security.saml;

import com.bea.security.saml2.providers.SAML2AttributeInfo;
import weblogic.security.providers.saml.SAMLAttributeInfo;

import java.util.Collection;
import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;

/**
 *
 */
public class SAMLAttributeDataImpl implements SAMLAttributeData {
 public static final String SAML_2_0_ATTRNAME_FORMAT_BASIC =
SAML2AttributeInfo.ATTR_NAME_FORMAT_BASIC;

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-62 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 /**
 * the name of the attribute
 */
 private String attributeName;

 private String attributeNameSpace;
 /**
 * the name format of the attribute for SAML 2.0. Defaults to basic.
 */
 private String attributeNameFormat = SAML_2_0_ATTRNAME_FORMAT_BASIC;
 /**
 * the friendly name of the attribute, this is for SAML 2.0 only.
 */
 private String attributeFriendlyName;
 /**
 * the values of the attribute.
 */
 private Collection<String> attributeValues;
 /**
 * is a SAML 2.0 attribute info
 */
 private boolean isSAML20;

 public SAMLAttributeDataImpl() {

 }

 public SAMLAttributeDataImpl(String attributeName, Collection<String>
attributeValues) {
 this.attributeName = attributeName;
 this.attributeValues = attributeValues;
 }

 public SAMLAttributeDataImpl(String attributeName, String
 attributeNameFormat, String attributeFriendlyName, String namespace,
 Collection<String> attributeValues) {
 this.attributeName = attributeName;
 this.attributeNameFormat = attributeNameFormat;
 this.attributeFriendlyName = attributeFriendlyName;
 this.attributeValues = attributeValues;
 this.attributeNameSpace = namespace;
 }

 public SAMLAttributeDataImpl(SAML2AttributeInfo saml2AttributeInfo) {
 if (null == saml2AttributeInfo) {
 throw new IllegalArgumentException("Null SAML2AttributeInfo found ");
 }
 this.attributeName = saml2AttributeInfo.getAttributeName();
 this.attributeNameFormat = saml2AttributeInfo.getAttributeNameFormat();
 this.attributeFriendlyName =
saml2AttributeInfo.getAttributeFriendlyName();
 this.attributeValues = saml2AttributeInfo.getAttributeValues();
 this.isSAML20 = true;
 }

 public SAMLAttributeDataImpl(SAMLAttributeInfo samlAttributeInfo) {
 if (null == samlAttributeInfo) {
 throw new IllegalArgumentException("Null SAMLAttributeInfo found ");
 }
 this.attributeName = samlAttributeInfo.getAttributeName();

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-63

 this.attributeNameSpace = samlAttributeInfo.getAttributeNamespace();
 this.attributeValues = samlAttributeInfo.getAttributeValues();
 this.isSAML20 = false;
 }

 /**
 * get the attribute name
 *
 * @return string of the attribute name
 */
 public String getAttributeName() {
 return attributeName;
 }

 /**
 * set the attribute name
 *
 * @param attributeName string of the attribute name
 */
 public void setAttributeName(String attributeName) {
 if (null == attributeName) {
 throw new IllegalArgumentException("attributeName cannot be null");
 }
 this.attributeName = attributeName;
 }

 /**
 * get the attribute name format for SAML 2.0 only
 *
 * @return String of the attribute name format,
default is SAML_2_0_ATTRNAME_FORMAT_BASIC for SAML 2.0. Null for SAML 1.1.
 */
 public String getAttributeNameFormat() {
 return attributeNameFormat;
 }
 /**
 * set et the attribute name format
 *
 * @param attributeNameFormat String of the attribute name format
 */
 public void setAttributeNameFormat(String attributeNameFormat) {
 this.attributeNameFormat = attributeNameFormat;
 }
 /**
 * get the Attribute Friendly Name
 *
 * @return String of the Attribute Friendly Name
 */
 public String getAttributeFriendlyName() {
 return attributeFriendlyName;
 }
 /**
 * set the Attribute Friendly Name
 *
 * @param attributeFriendlyName the Attribute Friendly Name
 */
 public void setAttributeFriendlyName(String attributeFriendlyName) {
 this.attributeFriendlyName = attributeFriendlyName;
 }
 /**

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-64 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 * get the Attribute Value
 *
 * @return collection of attribute values
 */
 public Collection<String> getAttributeValues() {
 return attributeValues;
 }
 /**
 * set collection of attribute values
 *
 * @param attributeValues collection of attribute values to be set
 */
 public void setAttributeValues(Collection<String> attributeValues) {
 this.attributeValues = attributeValues;
 }
 /**
 * add one attribute value
 *
 * @param attributeValue String of attribute value to be added
 */
 public void addAttributeValue(String attributeValue) {
 if (this.attributeValues == null) {
 this.attributeValues = new ArrayList();
 }
 if (null == attributeValue) {
 this.attributeValues.add("");
 } else {
 this.attributeValues.add(attributeValue);
 }
 }
 /**
 * add attribute values
 *
 * @param newAttributeValues collection of attribute values to be added
 */
 public void addAttributeValues(Collection<String> newAttributeValues) {
 if (this.attributeValues == null || this.attributeValues.isEmpty()) {
 this.setAttributeValues(newAttributeValues);
 return;
 }
 if (null == newAttributeValues || newAttributeValues.isEmpty()) {
 this.attributeValues.add("");
 return;
 }
 Iterator iter = newAttributeValues.iterator();
 while (iter.hasNext()) {
 this.attributeValues.add((String) iter.next());
 }
 }
 /**
 * get the namespace of the Attribute. This is for SAML 1.1 only.
 *
 * @return string of attribute namespace
 */
 public String getAttributeNameSpace() {
 return attributeNameSpace;
 }
 /**
 * set attributeNameSpace. This is for SAML 1.1 only.
 *

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-65

 * @param attributeNameSpace attributeNameSpace to be set
 */
 public void setAttributeNameSpace(String attributeNameSpace) {
 this.attributeNameSpace = attributeNameSpace;
 }
 /**
 * set this data object to SAML 2.0 attribute object
 * @param saml20 true if it is a SAML 2.0 attribute data
 */
 public void setSAML20(boolean saml20) {
 this.isSAML20 = saml20;
 }
 /**
 * check if this is a SAML 2.0 Attributes
 *
 * @return true if it is a SAML 2.0 attribute, false otherwise
 */
 public boolean isSAML20() {
 return isSAML20;
 }
 /**
 * get a SAML2AttributeInfo object from this object
 *
 * @return SAML2AttributeInfo for SAML 2.0
 */
 public SAML2AttributeInfo getSAML2AttributeInfo() {
 SAML2AttributeInfo sai = new SAML2AttributeInfo();
 sai.setAttributeFriendlyName(this.attributeFriendlyName);
 sai.setAttributeName(this.attributeName);
 if (null == this.attributeNameFormat || this.attributeNameFormat.length()
==0) {
 sai.setAttributeNameFormat(SAML_2_0_ATTRNAME_FORMAT_BASIC);
 } else {
 sai.setAttributeNameFormat(this.attributeNameFormat);
 }
 sai.addAttributeValues(this.attributeValues);
 return sai;
 }
 /**
 * get a SAMLAttributeInfo object from this object
 *
 * @return SAMLAttributeInfo for SAML 1.1
 */
 public SAMLAttributeInfo getSAMLAttributeInfo() {
 SAMLAttributeInfo sai = new SAMLAttributeInfo();
 if (null == this.attributeNameSpace) {
 sai.setAttributeName(this.attributeName, "");
 } else {
 sai.setAttributeName(this.attributeName, this.attributeNameSpace);
 }
 sai.setAttributeValues(this.attributeValues);
 return sai;
 }
 /**
 * This method will add all attribute values into the first SAMLAttributeData
 object, and return a single SAMLAttributeData object.
 * Please note that the attribute name will not be verified in this method.
 *
 * @param attributeList SAMLAttributeData objects to be merged
 * @return a single SAMLAttributeData object

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-66 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 */
 static public SAMLAttributeData consolation(List<SAMLAttributeData>
 attributeList) {
 if (null == attributeList || attributeList.size() == 0) {
 return null;
 }
 if (attributeList.size() == 1) {
 attributeList.get(0);
 }
 SAMLAttributeData data = attributeList.get(0);
 for (int i=1; i < attributeList.size(); i++) {
 data.addAttributeValues(attributeList.get(i).getAttributeValues());
 }
 return data;
 }
 /**
 * Check if this attribute data element does not have vlaues
 * @return true if the data is empty, no values; false otherwise
 */
 public boolean isEmpty() {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return true;
 }
 if (this.attributeValues.size() == 1) {
 Object a[] = this.attributeValues.toArray();
 if ("".equals(a[0])) {
 return true;
 }
 }
 return false;
 }
 /**
 * Return a String for the array of value String, concatenated with "; "
 * @return a string for all values
 */
 public String valuesToString(String existing) {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return existing;
 }
 Object a[] = this.attributeValues.toArray();
 if (this.attributeValues.size() == 1) {
 if (a[0] == null) {
 return existing;
 }
 if (existing == null) {
 return (String) a[0];
 } else {
 return existing + "; " + (String) a[0];
 }
 }
 StringBuffer sb = new StringBuffer();
 if (existing != null) {
 sb.append(existing);
 }
 for (int i=0; i < a.length; i++) {
 sb.append("; ");
 if (a[i] != null) {
 sb.append((String) a[i]);
 }
 }

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-67

 return sb.toString();
 }
 public String toString() {
 StringBuffer sb = new StringBuffer();
 sb.append("Name=" + this.attributeName);
 if (isSAML20()) {
 if (null != this.attributeFriendlyName) {
 sb.append(" FriendlyName=" + this.attributeFriendlyName);
 }
 } else {
 if (null != this.attributeNameSpace) {
 sb.append(" Namespace=" + this.attributeNameSpace);
 }
 }
 String value = this.valuesToString(null);
 if (null != value) {
 sb.append(" Value=" + value);
 }
 return sb.toString();
 }
}

Example 2–16 shows the PartnerService code that determines if the web service
context has attributes, and then gets them. This example relies on the
SAMLAttributeStatementDataHelper class, which is shown in Example 2–17.

The predefined policy used in this example,
Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml, is described in Table 2–11.

Example 2–16 Web Service That Gets Attributes From the WebServiceContext

package jaxws.interop.saml;

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.wsee.util.AccessException;
import weblogic.wsee.security.saml.SAMLAttributeStatementData;
import weblogic.wsee.security.saml.SAMLAttributeStatementDataHelper;
import weblogic.wsee.security.saml.SAMLAttributeData;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;

/**
 * ID Propagation using SAML 2.0 token [sender-vouches] with message protection
(WSS 11) .
 *
 * This example will work for canned policy like:
 * - Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml
 */

@Policies(
 {
 @Policy(uri = "policy:Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"),

Using Security Assertion Markup Language (SAML) Tokens For Identity

2-68 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml")
 }
)
@WebService(serviceName = "PartnerService", name = "IPartner", targetNamespace =
"http://www.oracle.com/2008/12/interop")
public class PartnerService{
 @Resource
 WebServiceContext ctx;

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello){
 try {
 this.checkSamlAttributesFromRequestMesasge();
 return hello+"! I'm PartnerService for SAML 2.0 SenderVouches WSS1.1!\n";
 }catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

 private void checkSamlAttributesFromRequestMesasge() throws AccessException {

 SAMLAttributeStatementData attributes =
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData(ctx);
 if (null == attributes) {
 throw new AccessException("No SAML Attributes Data found");
 }

 SAMLAttributeData testData =
attributes.getAttributeInfo("test.no.value.attribute");
 if (null == testData) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.no.value.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.static.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.static.attribute\"");
 }
 if
(!attributes.hasAttributeValue("test.static.attribute","static.attribute.value"))
{
 throw new AccessException("Missing or wrong SAML Attribute Value of
\"static.attribute.value\" for attribute \"test.static.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.subject.dependent.attribute","Alice
A")) {
 throw new AccessException("Missing or wrong SAML Attribute Value of
\"Alice A\" for attribute - \"test.multi.value.attribute\" ");
 }
 if
(!attributes.hasAttributeValue("test.multi.value.attribute","Programmer")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on
\"Programmer\" for attribute \"test.multi.value.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.multi.value.attribute","Team

Using Security Assertion Markup Language (SAML) Tokens For Identity

Configuring Message-Level Security 2-69

Lead")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on
\"Team Lead\" for attribute \"test.multi.value.attribute\" ");
 }
 }
}
Example 2–17 shows the SAMLAttributeStatementDataHelper class, which is a helper
function that gets the SAMLAttributeStatementData object.

Example 2–17 SAMLAttributeStatementDataHelper Helper Function

package weblogic.wsee.security.saml;

import weblogic.wsee.jaxws.framework.jaxrpc.SOAPMessageContext;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.jws.JwsContext;
import weblogic.xml.crypto.wss.WSSecurityContext;
import com.sun.xml.ws.api.message.Message;
import com.sun.xml.ws.api.message.Packet;
import com.sun.xml.ws.api.server.WSWebServiceContext;

import javax.xml.ws.WebServiceContext;
import javax.xml.rpc.handler.MessageContext;

/**
 * Helper function to get the SAMLAttributeStatementData object
 */
public class SAMLAttributeStatementDataHelper {

 public static SAMLAttributeStatementData
getSAMLAttributeStatementData(WebServiceContext context) {

 final Packet request = ((WSWebServiceContext) context).getRequestPacket();

 WSSecurityContext securityCtx = (WSSecurityContext)
request.invocationProperties
.get(WSSecurityContext.WS_SECURITY_CONTEXT);
 SAMLAttributeStatementData samlAttributes = null;
 if ((securityCtx != null) && (securityCtx.getMessageContext() != null)) {
 samlAttributes = (SAMLAttributeStatementData)
securityCtx.getMessageContext().getProperty(WLStub.SAML_ATTRIBUTES);
 }
 return samlAttributes;
 }

 public static SAMLAttributeStatementData
getSAMLAttributeStatementData(JwsContext context) {

 MessageContext msgCtx = context.getMessageContext(); // this is for
JAX-RPC
 SAMLAttributeStatementData attributes = (SAMLAttributeStatementData)
msgCtx.getProperty(WLStub.SAML_ATTRIBUTES);

 return attributes;
 }

}

Associating a Web Service with a Security Configuration Other Than the Default

2-70 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.12 Associating a Web Service with a Security Configuration Other Than
the Default

Many use cases previously discussed require you to use the WebLogic Server
Administration Console to create the default web service security configuration called
default_wss. After you create this configuration, it is applied to all web services that
either do not use the @weblogic.jws.security.WssConfiguration JWS annotation or
specify the annotation with no attribute.

There are some cases, however, in which you might want to associate a web service
with a security configuration other than the default; such use cases include specifying
different timestamp values for different services.

To associate a web service with a security configuration other than the default:

1. "Create a Web Service Security Configuration" in the Oracle WebLogic Server
Administration Console Online Help with a name that is not default_wss.

2. Update your JWS file, adding the @WssConfiguration annotation to specify the
name of this security configuration. See "weblogic.jws.security.WssConfiguration"
in the WebLogic Web Services Reference for Oracle WebLogic Server for additional
information and an example.

3. Recompile and redeploy your web service as part of the normal iterative
development process.

See "Invoking Web Services" in Developing JAX-WS Web Services for Oracle WebLogic
Server and "Developing WebLogic Web Services" in Developing JAX-RPC Web
Services for Oracle WebLogic Server.

2.13 Valid Class Names and Token Types for Credential Provider
When you create a security configuration, you need to supply the class name of the
credential provider for this configuration. The valid class names and token types you
can use are as follows:

■ weblogic.wsee.security.bst.ClientBSTCredentialProvider. The token type is
x509.

■ weblogic.wsee.security.unt.ClientUNTCredentialProvider. The token type is
ut.

■ weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider. The
token type is sct.

Note: If you are going to package additional web services in the
same Web application, and these web services also use the
@WssConfiguration annotation, then you must specify the same
security configuration for each web service. See
"weblogic.jws.security.WssConfiguration" in the WebLogic Web Services
Reference for Oracle WebLogic Server for more details.

Note: All web services security configurations are required to specify
the same password digest use. Inconsistent password digest use in
different web service security configurations will result in a runtime
error.

Using a Client-Side Security Policy File

Configuring Message-Level Security 2-71

■ weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider. The
token type is sct.

■ weblogic.wsee.security.saml.SAMLTrustCredentialProvider. The token type is
saml.

2.14 Using System Properties to Debug Message-Level Security
The following table lists the system properties you can set to debug problems with
your message-secured web service.

2.15 Using a Client-Side Security Policy File
The section Section 2.3, "Using Policy Files for Message-Level Security Configuration"
describes how a WebLogic web service can be associated with one or more security
policy files that describe the message-level security of the web service. These policy
files are XML files that describe how a SOAP message should be digitally signed or
encrypted and what sort of user authentication is required from a client that invokes
the web service. Typically, the policy file associated with a web service is attached to
its WSDL, which the web services client runtime reads to determine whether and how
to digitally sign and encrypt the SOAP message request from an operation invoke
from the client application.

Sometimes, however, a web service might not attach the policy file to its deployed
WSDL or the web service might be configured to not expose its WSDL at all. In these
cases, the web services client runtime cannot determine from the service itself the
security that must be enabled for the SOAP message request. Rather, it must load a
client-side copy of the policy file. This section describes how to update a client
application to load a local copy of a policy file.

Example 2–5 shows an example of using a client-side policy file from a JAX-WS web
service.

The client-side policy file is typically exactly the same as the one associated with a
deployed web service. If the two files are different, and there is a conflict in the
security assertions contained in the files, then the invoke of the web service operation
returns an error.

You can specify that the client-side policy file be associated with the SOAP message
request, response, or both. Additionally, you can specify that the policy file be
associated with the entire web service, or just one of its operations.

Table 2–5 System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbose Boolean Prints information about digital
signature processing.

weblogic.xml.crypto.encrypt.verb
ose

Boolean Prints information about
encryption processing.

weblogic.xml.crypto.keyinfo.verb
ose

Boolean Prints information about key
resolution processing.

weblogic.xml.crypto.wss.verbose Boolean Prints information about web
service security token and token
reference processing.

Using a Client-Side Security Policy File

2-72 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.15.1 Associating a Policy File with a Client Application: Main Steps
The following procedure describes the high-level steps to associate a security policy
file with the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web
service, and that you want to update it by associating a client-side policy file. It is also
assumed that you have set up an Ant-based development environment and that you
have a working build.xml file that includes a target for running the clientgen Ant
task.

See "Invoking Web Services" in Developing JAX-WS Web Services for Oracle WebLogic
Server and "Invoking a Web Service from a Stand-alone Client: Main Steps" in
Developing JAX-RPC Web Services for Oracle WebLogic Server.

1. Create the client-side security policy files and save them in a location accessible by
the client application. Typically, the security policy files are the same as those
configured for the web service you are invoking, but because the server-side files
are not exposed to the client runtime, the client application must load its own local
copies.

See Section 2.7, "Creating and Using a Custom Policy File" for information about
creating security policy files.

2. Update the build.xml file that builds your client application.

3. Update your Java client application to load the client-side policy files

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client
When you next run the client application, it will load local copies of the policy files
that the web service client runtime uses to enable security for the SOAP request
message.

2.15.2 Updating clientgen to Generate Methods That Load Policy Files
For JAX-RPC, set the generatePolicyMethods attribute of the clientgen Ant task to
true to specify that the Ant task should generate additional getXXX() methods in the
implementation of the JAX-RPC Service interface for loading client-side copies of
policy files when you get a port, as shown in the following example:

 <clientgen
 wsdl="http://ariel:7001/policy/ClientPolicyService?WSDL"
 destDir="${clientclass-dir}"
 generatePolicyMethods="true"
 packageName="examples.webservices.client_policy.client"/>

See Section 2.15.3, "Updating a Client Application To Load Policy Files (JAX-RPC
Only)" for a description of the additional methods that are generated and how to use
them in a client application.

Note: If you have a web services operation that already have a
security policy (for example, one that was set in the WSDL file that
was stored when generating the client from the server policy), then
when you use this procedure to programmatically set the client-side
security policy, all previously-existing policies will be removed.

Using a Client-Side Security Policy File

Configuring Message-Level Security 2-73

JAX-WS Usage
For JAX-WS, you use the weblogic.jws.jaxws.ClientPolicyFeature class to override
the effective policy defined for a service. weblogic.jws.jaxws.ClientPolicyFeature
extends javax.xml.ws.WebServiceFeature.

2.15.3 Updating a Client Application To Load Policy Files (JAX-RPC Only)
When you set generatePolicyMethods="true" for clientgen, the Ant task generates
additional methods in the implementation of the JAX-RPC Service interface that you
can use to load policy files, where XXX refers to the name of the web service.

You can use either an Array or Set of policy files to associate multiple files to a web
service. If you want to associate just a single policy file, create a single-member Array
or Set.

■ getXXXPort(String operationName, java.util.Set<java.io.InputStream>
inbound, java.util.Set<java.io.InputStream> outbound)

Loads two different sets of client-side policy files from InputStreams and
associates the first set to the SOAP request and the second set to the SOAP
response. Applies to a specific operation, as specified by the first parameter.

■ getXXXPort(String operationName, java.io.InputStream[] inbound,
java.io.InputStream[] outbound)

Loads two different arrays of client-side policy files from InputStreams and
associates the first array to the SOAP request and the second array to the SOAP
response. Applies to a specific operation, as specified by the first parameter.

■ getXXXPort(java.util.Set<java.io.InputStream> inbound,
java.util.Set<java.io.InputStream> outbound)

Loads two different sets of client-side policy files from InputStreams and
associates the first set to the SOAP request and the second set to the SOAP
response. Applies to all operations of the web service.

■ getXXXPort(java.io.InputStream[] inbound, java.io.InputStream[]
outbound)

Loads two different arrays of client-side policy files from InputStreams and
associates the first array to the SOAP request and the second array to the SOAP
response. Applies to all operations of the web service.

Use these methods, rather than the normal getXXXPort() method with no parameters,
for getting a web service port and specifying at the same time that invokes of all, or the
specified, operation using that port have an associated policy file or files.

■ getXXXPort(java.io.InputStream policyInputStream);

Loads a single client-side policy file from an InputStream and applies it to both the
SOAP request (inbound) and response (outbound) messages.

■ getXXXPort(java.io.InputStream policyInputStream, boolean inbound,
boolean outbound);

Note: The following methods from a previous release of WebLogic
Server have been deprecated; if you want to associate a single
client-side policy file, specify a single-member Array or Set and use
the corresponding method described above.

Using a Client-Side Security Policy File

2-74 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

Loads a single client-side policy file from an InputStream and applies it to either
the SOAP request or response messages, depending on the Boolean value of the
second and third parameters.

Example 2–18 shows an example of using these policy methods in a simple client
application; the code in bold is described after the example.

Example 2–18 Loading Policies in a Client Application

package examples.webservices.client_policy.client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
import java.io.FileInputStream;
import java.io.IOException;
/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the ClientPolicyService web service.
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException, IOException {
 FileInputStream [] inbound_policy_array = new FileInputStream[2];
 inbound_policy_array[0] = new FileInputStream(args[1]);
 inbound_policy_array[1] = new FileInputStream(args[2]);
 FileInputStream [] outbound_policy_array = new FileInputStream[2];
 outbound_policy_array[0] = new FileInputStream(args[1]);
 outbound_policy_array[1] = new FileInputStream(args[2]);
 ClientPolicyService service = new ClientPolicyService_Impl(args[0] +
"?WSDL");
 // standard way to get the web service port
 ClientPolicyPortType normal_port = service.getClientPolicyPort();
 // specify an array of policy files for the request and response
 // of a particular operation
 ClientPolicyPortType array_of_policy_port =
service.getClientPolicyPort("sayHello",
inbound_policy_array, outbound_policy_array);
 try {
 String result = null;
 result = normal_port.sayHello("Hi there!");
 result = array_of_policy_port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

The second and third argument to the client application are the two policy files from
which the application makes an array of FileInputStreams (inbound_policy_array
and outbound_policy_array). The normal_port uses the standard parameterless
method for getting a port; the array_of_policy_port, however, uses one of the policy
methods to specify that an invoke of the sayHello operation using the port has
multiple policy files (specified with an Array of FileInputStream) associated with
both the inbound and outbound SOAP request and response:

ClientPolicyPortType array_of_policy_port =

Using WS-SecurityPolicy 1.2 Policy Files

Configuring Message-Level Security 2-75

 service.getClientPolicyPort("sayHello", inbound_policy_array, outbound_policy_
array);

2.16 Using WS-SecurityPolicy 1.2 Policy Files
WebLogic Server includes a number of WS-SecurityPolicy files you can use in most
web services applications. The policy files are located in WL_
HOME/server/lib/weblogic-classes.jar. Within weblogic-classes.jar, the policy
files are located in /weblogic/wsee/policy/runtime.

There are two sets of these policies. In most of the cases, they perform identical
functions, but the policy uses different namespace.

The first set has a prefix of "Wssp1.2-2007-". These security policy files conform to the
OASIS WS-SecurityPolicy 1.2 specification and have the following namespace:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 >

The second set carries over from WebLogic Server version 10.0 and has the prefix
"Wssp1.2-":

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
 >

Oracle recommends that you use the new policy namespace, as those are official
namespaces from OASIS standards and they will perform better when interoperating
with other vendors. The old policies having the prefix of "Wssp1.2-" are mainly for
users who want to interoperate with existing applications that already use this version
of the policies.

The following sections describe the available WS-SecurityPolicy 1.2 policy files:

■ Section 2.16.1, "Transport-Level Policies"

■ Section 2.16.2, "Protection Assertion Policies"

■ Section 2.16.3, "WS-Security 1.0 Username and X509 Token Policies"

■ Section 2.16.4, "WS-Security 1.1 Username and X509 Token Policies"

■ Section 2.16.5, "WS-SecureConversation Policies"

■ Section 2.16.6, "SAML Token Profile Policies"

In addition, see Section 2.17, "Choosing a Policy" and Section 2.21.2, "Configuring
Smart Policy Selection" for information about how to choose the best security policy
approach for your web services implementation and for information about
WS-SecurityPolicy 1.2 elements that are not supported in this release of WebLogic
Server.

2.16.1 Transport-Level Policies
These policies require use of the https protocol to access WSDL and invoke web
services operations:

Using WS-SecurityPolicy 1.2 Policy Files

2-76 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.16.2 Protection Assertion Policies
Protection assertions are used to identify what is being protected and the level of
protection provided. Protection assertion policies cannot be used alone; they should be
used only in combination with X.509 Token Policies. For example, you might use
Wssp1.2-2007-Wss1.1-X509-Basic256.xml together with
Wssp1.2-2007-SignBody.xml. The following policy files provide for the protection of
message parts by signing or encryption:

Note: If you specify a transport-level security policy for your web
service, it must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Table 2–6 Transport Level Policies

Policy File Description

Wssp1.2-2007-Https.xml One way SSL.

Wssp1.2-2007-Https-Basi
cAuth.xml

One way SSL with Basic Authentication. A 401 challenge
occurs if the Authorization header is not present in the request.

Wssp1.2-2007-Https-User
nameToken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-2007-Https-User
nameToken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-User
nameToken-Plain-Basic25
6Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but
uses a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-BasicAut
h.xml

One way SSL with Basic Authentication. A 401 challenge
occurs if the Authorization header is not present in the request.

Wssp1.2-Https-Usernam
eToken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-Usernam
eToken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-ClientCer
tReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Table 2–7 Protection Assertion Policies

Policy File Description

Wssp1.2-2007-SignBody.x
ml

All message body parts are signed.

Wssp1.2-2007-EncryptBo
dy.xml

All message body parts are encrypted.

Wssp1.2-2007-Sign-Wsa-
Headers.xml

WS-Addressing headers are signed.

Wssp1.2-SignBody.xml All message body parts are signed.

Using WS-SecurityPolicy 1.2 Policy Files

Configuring Message-Level Security 2-77

2.16.3 WS-Security 1.0 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of
WS-Security 1.0:

Wssp1.2-EncryptBody.x
ml

All message body parts are encrypted.

Wssp1.2-Sign-Wsa-Head
ers.xml

WS-Addressing headers are signed.

Wssp1.2-2007-SignAndE
ncryptWSATHeaders.xm
l

WS-AtomicTransaction headers are signed and encrypted.

Wssp1.2-2007-Wsp1.5-Sig
nAndEncryptWSATHead
ers.xml

WS-AtomicTransaction headers are signed and encrypted. Web
Services Policy 1.5 is used.

Table 2–8 WS-Security 1.0 Policies

Policy File Description

Wssp1.2-2007-Wss1.0-X5
09-Basic256.xml

Mutual Authentication with X.509 Certificates. The message is
signed and encrypted on both request and response. The algorithm
of Basic256 should be used for both sides.

Wssp1.2-2007-Wss1.0-Us
ernameToken-Digest-X50
9-Basic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Wssp1.2-2007-Wss1.0-Us
ernameToken-Plain-X509
-Basic256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted
with server's public key. The client also signs the request body and
includes its public certificate, protected by the signature in the
message. The server signs the response body with its private key
and sends its public certificate in the message. Both request and
response messages include signed time stamps. The encryption
method is Basic256.

Wssp1.2-Wss1.0-Userna
meToken-Plain-X509-Basi
c256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted
with server's public key. The client also signs the request body and
includes its public certificate, protected by the signature in the
message. The server signs the response body with its private key
and sends its public certificate in the message. Both request and
response messages include signed time stamps. The encryption
method is Basic256.

Wssp1.2-Wss1.0-Userna
meToken-Plain-X509-Trip
leDesRsa15.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted
with server's public key. The client also signs the request body and
includes its public certificate, protected by the signature in the
message. The server signs the response body with its private key
and sends its public certificate in the message. Both request and
response messages include signed time stamps. The encryption
method is TripleDes.

Wssp1.2-Wss1.0-Userna
meToken-Digest-X509-Ba
sic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Table 2–7 (Cont.) Protection Assertion Policies

Policy File Description

Using WS-SecurityPolicy 1.2 Policy Files

2-78 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.16.4 WS-Security 1.1 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of
WS-Security 1.1:

Wssp1.2-Wss1.0-Userna
meToken-Digest-X509-Tri
pleDesRsa15.xml

Username token with digested password is sent in the request for
authentication. The encryption method is TripleDes.

Wssp1.2-Wss1.0-X509-Ba
sic256.xml

Mutual Authentication with X.509 Certificates. The message is
signed and encrypted on both request and response. The algorithm
of Basic256 should be used for both sides.

Wssp1.2-Wss1.0-X509-Tri
pleDesRsa15.xml

Mutual Authentication with X.509 Certificates and message is
signed and encrypted on both request and response. The algorithm
of TripleDes should be used for both sides

Wssp1.2-Wss1.0-X509-En
cryptRequest-SignRespo
nse.xml

This policy is used where only the server has X.509v3 certificates
(and public-private key pairs). The request is encrypted and the
response is signed.

Table 2–9 WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-2007-Wss1.1-X5
09-Basic256.xml

WSS 1.1 X509 with asymmetric binding.

Wssp1.2-2007-Wss1.1-X5
09-Basic256Sha256.xml

Same as Wssp1.2-2007-Wss1.1-X509-Basic256.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-X50
9-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication
with digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-X509
-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication
with plain-text Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-X509
-Basic256Sha256.xml

Same as
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-Basic256.xml
but uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-En
cryptedKey-X509-Signed
Endorsing.xml

WSS 1.1 X509 with symmetric binding and protected by signed
endorsing supporting token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-Enc
ryptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with
digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-Encr
yptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with
plain-text Username Token.

Wssp1.2-2007-Wss1.1-DK
-X509-SignedEndorsing.x
ml

WSS 1.1 X509 with derived key symmetric binding and
protected by signed endorsing supporting token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-DK.
xml

WSS 1.1 X509 with derived key symmetric binding and
authentication with digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-DK.x
ml

WSS 1.1 X509 with derived key symmetric binding and
authentication with plain-text Username Token.

Table 2–8 (Cont.) WS-Security 1.0 Policies

Policy File Description

Using WS-SecurityPolicy 1.2 Policy Files

Configuring Message-Level Security 2-79

2.16.5 WS-SecureConversation Policies
The policies in Table 2–10 implement WS-SecureConversation 1.3, 1.4, and
WS-SecureConversation 2005/2.

If you specify a WS-SecureConversation policy for your web service, it must be at the
class level.

Wssp1.2-Wss1.1-X509-Ba
sic256.xml

This policy is similar to policy
Wssp1.2-Wss1.0-X509-Basic256.xml except it uses additional
WS-Security 1.1 features, including Signature Confirmation
and Thumbprint key reference.

Wssp1.2-Wss1.1-Encrypt
edKey.xml

This is a symmetric binding policy that uses the WS-Security
1.1 Encrypted Key feature for both signature and encryption. It
also uses WS-Security 1.1 features, including Signature
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-Userna
meToken-DK.xml

WSS 1.1 X509 with derived key symmetric binding and
authentication with plain-text Username Token.

Wssp1.2-Wss1.1-Encrypt
edKey-X509-SignedEndo
rsing.xml

This policy has all of the features defined in policy
Wssp1.2-Wss1.1-EncryptedKey.xml, and in addition it uses
sender's key to endorse the message signature. The endorsing
key is also signed with the message signature.

Wssp1.2-Wss1.1-DK.xml This policy has all of features defined in policy
Wssp1.2-Wss1.1-EncryptedKey.xml, except that instead of
using an encrypted key, the request is signed using
DerivedKeyToken1, then encrypted using a
DerivedKeyToken2. Response is signed using
DerivedKeyToken3, and encrypted using DerivedKeyToken4.

Wssp1.2-Wss1.1-DK-X50
9-Endorsing.xml

This policy has all features defined in policy
Wssp1.2-Wss1.1-DK.xml, and in addition it uses the sender's
key to endorse the message signature.

Wssp1.2-Wss1.1-X509-En
cryptRequest-SignRespo
nse.xml

This policy is similar to policy
Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.xml,
except that it uses additional WSS 1.1 features, including
Signature Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-X509-Sig
nRequest-EncryptRespon
se.xml

This policy is the reverse of policy
Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml: the
request is signed and the response is encrypted.

Wssp1.2-wss11_x509_
token_with_message_
protection_owsm_
policy.xml

This policy endorses with the sender's X509 certificate, and the
message signature is protected. It requires the use of the
Basic128 algorithm suite (AES128 for encryption) instead of the
Basic256 algorithm suite (AES256).

Note: As described in Developing JAX-WS Web Services for Oracle
WebLogic Server, if you are using a template to configure your domain,
the Advanced JAX-WS template (wls_webservice_jaxws) is required
for any JAX-WS web service that uses WS-SecureConversation.

Table 2–9 (Cont.) WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Using WS-SecurityPolicy 1.2 Policy Files

2-80 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

Table 2–10 WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-BasicAut
h.xml

One way SSL with Basic Authentication. Timestamp is
included. The algorithm suite is Basic256. The signature is
encrypted.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-ClientCer
tReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-UNT.xml

SSL Username token authentication.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in
https transport. The application messages are signed and
encrypted with DerivedKeys. The signature is also encrypted.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both
signed and encrypted. The WS-Addressing headers are signed.
Timestamp is included and signed. The signature is encrypted.
The algorithm suite is Basic256.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both
signed and encrypted. The WS-Addressing headers are signed.
Signature and encryption use derived keys from an encrypted
key.

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.0-Userna
meToken-Plain-X509-Basi
c256.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0 X509 with asymmetric binding and
authentication with plain-text Username Token, similar to the
Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xm.
policy

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the
handshake are both signed and encrypted. The application
messages are signed and encrypted with derived keys from a
secure conversation token encrypted key. The WS-Addressing
headers are signed. The policy use WS-Policy 1.5 namespace
"http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.0-Userna
meToken-Plain-X509-Basi
c256Sha256.xml

Same as
Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain
-X509-Basic256.xml, but uses a stronger hash algorithm of
Sha-256.

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.0-Saml1.1-
SenderVouches.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0 X509 with asymmetric binding and
authentication with SAML 1.1 Sender Vouches Token, similar
to the Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml
policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the
handshake are both signed and encrypted. The application
messages are signed and encrypted with derived keys from a
secure conversation token encrypted key. The WS-Addressing
headers are signed. The policy use WS-Policy 1.5 namespace
"http://www.w3.org/ns/ws-policy".

Using WS-SecurityPolicy 1.2 Policy Files

Configuring Message-Level Security 2-81

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.1-Saml1.1-
SenderVouches.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1 X509 with asymmetric binding and
authentication with SAML 1.1 Sender Vouches Token, which is
similar to the
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the
handshake are both signed and encrypted. The application
messages are signed and encrypted with derived keys from a
secure conversation token encrypted key. The WS-Addressing
headers are signed. The policy use WS-Policy 1.5 namespace
"http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.1-Saml2.0-
Bearer.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1 X509 with asymmetric binding and
authentication with SAML 2.0 Bearer Token.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the
handshake are both signed and encrypted. The application
messages are signed and encrypted with derived keys from a
secure conversation token encrypted key. The WS-Addressing
headers are signed. The policy use WS-Policy 1.5 namespace
"http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-B
ootstrap-Wss1.1-Userna
meToken-Plain-Encrypte
dKey.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1 X509 with asymmetric binding and
authentication with plain-text Username Token, which is
similar to the
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey.xml
policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the
handshake are both signed and encrypted. The application
messages are signed and encrypted with derived keys from a
secure conversation token encrypted key. The WS-Addressing
headers are signed. The policy use WS-Policy 1.5 namespace
"http://www.w3.org/ns/ws-policy".

Wssp1.2-Wssc1.3-Bootstr
ap-Https-BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is
included. The algorithm suite is Basic256. The signature is
encrypted.

Wssp1.2-Wssc1.3-Bootstr
ap-Https-ClientCertReq.x
ml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Wssp1.2-Wssc1.3-Bootstr
ap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in
https transport. The application messages are signed and
encrypted with DerivedKeys. The signature is also encrypted.

Wssp1.2-Wssc1.3-Bootstr
ap-Wss1.0.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both
signed and encrypted. The WS-Addressing headers are signed.
Timestamp is included and signed. The signature is encrypted.
The algorithm suite is Basic256.

Table 2–10 (Cont.) WS-SecureConversation Policies

Policy File Description

Using WS-SecurityPolicy 1.2 Policy Files

2-82 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.16.6 SAML Token Profile Policies
The policies shown in Table 2–1 implement WS-Security SAML Token Profile 1.0 and
1.1.

Wssp1.2-Wssc1.3-Bootstr
ap-Wss1.1.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both
signed and encrypted. The WS-Addressing headers are signed.
Signature and encryption use derived keys from an encrypted
key.

Wssp1.2-Wssc200502-Bo
otstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponse messages) occurs in https
transport. The application messages are signed and encrypted
with DerivedKeys.

Wssp1.2-Wssc200502-Bo
otstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and RequestSecurityTokenResponse
messages are both signed and encrypted. The WS-Addressing
headers are signed. Timestamp is included and signed. The
algorithm suite is Basic128.

Wssp1.2-Wssc200502-Bo
otstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and RequestSecurityTokenResponse
messages are both signed and encrypted. The WS-Addressing
headers are signed. Signature and encryption use derived keys
from an encrypted key.

Note: WebLogic Server Version 10.3 supported SAML Holder of Key
for the inbound request only. As of WebLogic Server Version
10.3MP1 and later, both the request and response messages are
protected.

Table 2–11 WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-2007-Saml1.1-Be
arer-Https.xml

One-way SSL uses SAML 1.1 token with Bearer confirmation
method for Authentication.

WebLogic Server supports the SAML 1.1 Bearer confirmation
method at the transport level, using
Wssp1.2-2007-Saml2.0-Bearer-Https.xml.

If you specify a transport-level security policy for your web
service, it must be at the class level. In addition, the
transport-level security policy must apply to both the inbound
and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Wssp1.2-2007-Saml1.1-Se
nderVouches-Wss1.0.xml

The message is signed and encrypted on both request and
response with WSS1.0 asymmetric binding. SAML 1.1 token is
sent in the request for authentication with Sender Vouches
confirmation method, signed by the X509 token.

Table 2–10 (Cont.) WS-SecureConversation Policies

Policy File Description

Using WS-SecurityPolicy 1.2 Policy Files

Configuring Message-Level Security 2-83

Wssp1.2-2007-Saml1.1-Se
nderVouches-Wss1.1.xml

The message is signed and encrypted on both request and
response with WSS1.1 X509 symmetric binding. SAML 1.1
token is sent in the request for authentication with Sender
Vouches confirmation method, signed by the X509 token.

Wssp1.2-2007-Saml1.1-Se
nderVouches-Wss1.1-Basi
c256Sha256.xml

Same as Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml but
uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Saml2.0-Se
nderVouches-Wss1.1.xml

The message is signed and encrypted on both request and
response with WSS1.1 X509 symmetric binding. SAML 2.0
token is sent in the request for authentication with Sender
Vouches confirmation method, signed by the X509 token.

Wssp1.2-2007-Saml2.0-Se
nderVouches-Wss1.1-Basi
c256Sha256.xml

Same as Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml
but uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Saml2.0-Se
nderVouches-Wss1.1-Asy
mmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional
WS-Security 1.1 features, including Signature Confirmation
and Thumbprint key reference. SAML 2.0 token is sent in the
request for authentication with Sender Vouches confirmation
method, signed by the X509 token.

Wssp1.2-2007-Saml1.1-H
olderOfKey-Wss1.0.xml

The message is signed and encrypted on both request and
response with WSS1.0 asymmetric binding. SAML 1.1 token is
sent in the request for authentication with Holder of Key
confirmation method, in which the key inside the SAML Token
is used for the signature.

Wssp1.2-2007-Saml1.1-H
olderOfKey-Wss1.1-Asy
mmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional
WS-Security 1.1 features, including Signature Confirmation
and Thumbprint key reference. SAML 1.1 token is sent in the
request for authentication with Holder of Key confirmation
method, in which the key inside the SAML Token is used for
the signature.

Wssp1.2-2007-Saml2.0-H
olderOfKey-Wss1.1-Asy
mmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional
WS-Security 1.1 features, including Signature Confirmation
and Thumbprint key reference. SAML 2.0 token is sent in the
request for authentication with Holder of Key confirmation
method, in which the key inside the SAML Token is used for
the signature.

Wssp1.2-2007-Saml2.0-Be
arer-Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation
method for Authentication.

WebLogic Server supports the SAML 2.0 Bearer confirmation
method at the transport level, using
Wssp1.2-2007-Saml2.0-Bearer-Https.xml.

To interoperate with other products that do not support SAML
2.0, for the SAML-over-HTTPS scenario, the sender vouches
confirmation method is recommended.

Use the Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml policy
for this purpose, instead of using SAML 1.1 Bearer.

If you specify a transport-level security policy for your web
service, it must be at the class level. In addition, the
transport-level security policy must apply to both the inbound
and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Table 2–11 (Cont.) WS-Security SAML Token Profile Policies

Policy File Description

Choosing a Policy

2-84 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.17 Choosing a Policy
WebLogic Server's implementation of WS-SecurityPolicy 1.2 makes a wide variety of
security policy alternatives available to you. When choosing a security policy for your
web service, you should consider your requirements in these areas:

■ Performance

■ Security

■ Interoperability

■ Credential availability (X.509 certificate, username token, clear or digest
password)

Whenever possible, Oracle recommends that you:

■ Use a policy packaged in WebLogic Server rather than creating a custom policy.

■ Use a WS-SecurityPolicy 1.2 policy rather than a WebLogic Server 9.x style policy,
unless you require features that are not yet supported by WS-SecurityPolicy 1.2
policies.

■ Use transport-level policies (Wssp1.2-2007-Https-*.xml) only where
message-level security is not required.

■ Use WS-Security 1.0 policies if you require interoperability with that specification.
Use one of the following, depending on your authentication requirements and
credential availability:

– Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

– Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

– Wssp1.2-2007-Wss1.0-X509-Basic256.xml

■ Use WS-Security 1.1 policies if you have strong security requirements. Use one of
the following:

– Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

■ Use a WS-SecureConversation policy where WS-ReliableMessaging plus security
are required:

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

Wssp1.2-2007-Saml2.0-Be
arer-Https-Basic256Sha25
6.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-wss11_saml_
token_with_message_
protection_owsm_
policy.xml

This policy endorses with the sender's X509 certificate, and
message signature is protected. It requires the use of the
Basic128 algorithm suite (AES128 for encryption) instead of the
Basic256 algorithm suite (AES256).

Table 2–11 (Cont.) WS-Security SAML Token Profile Policies

Policy File Description

Unsupported WS-SecurityPolicy 1.2 Assertions

Configuring Message-Level Security 2-85

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

2.18 Unsupported WS-SecurityPolicy 1.2 Assertions
The WS-SecurityPolicy 1.2 assertions in Table 2–1 are not supported in this release of
WebLogic Server.

Note: New WS-SecurityPolicy 1.3 assertions are also not supported
in this release.

Table 2–12 Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificati
on Assertion Remarks

5.1.1 TokenInclusion includeTokenPolicy=Once is not
supported.

5.4.1 UsernameToken Only <sp:UsernameToken11> and
Password Derived Keys are not supported
in this release. Other Username Tokens
assertions are supported.

5.4.2 IssuedToken WS-Trust Policy assertion is not supported
in this release.

5.4.4 KerberosToken Not supported in this release.

5.4.5 SpnegoContextToken Not supported in this release.

5.4.9 RelToken Not supported in this release.

5.4.11 KeyValueToken Not supported in this release.

6.5 Token Protection Token Protection in cases where
includeTokenPolicy="Never", or in cases
where the Token is not in the Message, is
not supported in this release.

7.1 AlgorithmSuite /sp:AlgorithmSuite/wsp:Policy/sp:XPathF
ilter20 assertion,
/sp:AlgorithmSuite/wsp:Policy/sp:XPath1
0 assertion and
/sp:AlgorithmSuite/wsp:Policy/sp:SoapN
ormalization10 are not supported in this
release.

8.1 SupportingTokens Not supported in this release:

../sp:SignedParts assertion,

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

Using the Optional Policy Assertion

2-86 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.19 Using the Optional Policy Assertion
WebLogic Server supports the Optional WS-Policy assertion. Consider the use of
Optional in the following example:

<sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="…/IncludeToken/AlwaysToRecipient" wsp:Optional="true" >
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
</sp:SignedEncryptedSupportingTokens>

In the example, specifying the Username Token for authorization is optional. The
client can continue if it cannot generate the Username Token because the user is
anonymous or when there is no security context.

8.2

8.3

8.4

8.5

SignedSupportingTokens

EndorsingSupportingTokens

SignedEndorsingSupportingT
okens

SignedEncryptedSupportingT
okens

Not supported in this release:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

../sp:SignedEncryptedSupportingTokens
assertion

The runtime will not be able to endorse the
supporting token in cases where the token
is not in the Message (such as for
includeTokenPolicy=Never/Once).

8.6 EncryptedSupportingTokens UserName Token is the only
EncryptionSupportingTokens supported in
this release.

Other type of tokens are not supported.

8.7 EndorsingEncryptedSupporti
ngTokens

Not supported in this release.

8.8 SignedEndorsingEncryptedS
upportingTokens

Not supported in this release.

9.1 WSS10 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are
not supported in this release.

9.2 WSS11 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are
not supported in this release.

10.1 Trust13 Assertion MustSupportClientChallenge,
MustSupportServerChallenge are not
supported in this release. This assertion is
supported only in WS-SecureConversation
policy.

Table 2–12 (Cont.) Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificati
on Assertion Remarks

Configuring Element-Level Security

Configuring Message-Level Security 2-87

During the Security Policy enforcement process, the message is not rejected if the
missing element has the Policy assertion with the attribute of wsp:Optional="true".

The following security policy assertions are now supported by the Optional policy
assertion:

■ Username Token

■ SAML Token

■ Signature parts or signature elements

■ Encryption parts or encryption elements

■ Derive Key Token

2.20 Configuring Element-Level Security
WebLogic Server supports the element-level assertions defined in WS-SecurityPolicy
1.2. These assertions allow you to apply a signature or encryption to selected elements
within the SOAP request or response message, enabling you to target only the specific
data in the message that requires security and thereby reduce the computational
requirements.

In addition, the assertion RequiredElements allows you to ensure that the message
contains a specific header element.

The following element-level assertions are available:

■ EncryptedElements
(http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securityp
olicy-1.2-spec-os.html#_Toc161826516)

■ ContentEncryptedElements
(http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securityp
olicy-1.2-spec-os.html#_Toc161826517)

■ SignedElements
(http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securityp
olicy-1.2-spec-os.html#_Toc161826513)

■ RequiredElements
(http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securityp
olicy-1.2-spec-os.html#_Toc161826518)

In order to specify an element-level assertion, you must identify the particular request
element or response element to which it applies.

You use XPath expressions in policy files to identify these elements, via either XPath
Version 1.0 (http://www.w3.org/TR/xpath) or XPath Filter Version 2.0
(http://www.w3.org/TR/xmldsig-filter2/) syntax. The examples in this section use
the default syntax, XPath Version 1.0.

Because each of these assertions identifies one or more particular elements in web
service message, you must use custom security policy files for all element-level
security assertions. These custom policy files are typically combined with predefined
security policy files, with the predefined files defining the way that signing or
encryption is performed, and the custom policy files identifying the particular
elements that are to be signed or encrypted.

Configuring Element-Level Security

2-88 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.20.1 Define and Use a Custom Element-Level Policy File
The first step is to determine the XPath expression that identifies the target element. To
do this, you need to understand the format of the SOAP messages used by your web
service, either through direct inspection or via analysis of the service's WSDL and
XML Schema.

How you determine the format of the SOAP message, and therefore the required
XPath expression, is heavily dependent on the tools you have available and is outside
the scope of this document. For example, you might do the following:

1. Run the web service without element-level security.

2. Turn on SOAP tracing.

3. Inspect the SOAP message in the logs.

4. Produce the XPath expression from the SOAP message.

Or, you might have a software tool that allows you to produce a sample SOAP request
for a given WSDL, and then use it to generate the XPath expression.

Consider the example of a web service that has a "submitOrderRequest" operation that
will receive a SOAP request of the form shown in Example 2–19.

The sections in bold will be later used to construct the custom element-level policy.

Example 2–19 submitOrderRequest SOAP Request

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <ns1:submitOrderRequest
 xmlns:ns1="http://www.oracle.com/OrderService">
 <ns1:OrderRequest>
 <ns1:orderNumber>4815162342</ns1:orderNumber>
 <ns1:creditCard>
 <ns1:cctype>MasterCard</ns1:cctype>
 <ns1:expires>12-01-2020</ns1:expires>
 <ns1:ccn>1234-567890-4444</ns1:ccn>
 </ns1:creditCard>
 </ns1:OrderRequest>
 </ns1:submitOrderRequest>
 </env:Body>
</env:Envelope>

Assume that you require that the <ns1:creditCard> element and its child elements be
encrypted. To do this, you use the information obtained from the bold sections of
Example 2–19 to create a custom security policy file, perhaps called
EncryptCreditCard.xml.

Consider the example shown in Example 2–20.

Example 2–20 EncryptCreditCard.xml Custom Policy File

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <sp:EncryptedElements xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <sp:XPath xmlns:myns="http://www.oracle.com/OrderService">
/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/myns:cred

Configuring Element-Level Security

Configuring Message-Level Security 2-89

itCard
 </sp:XPath>
 </sp:EncryptedElements>
</wsp:Policy>

As described in the WS-SecurityPolicy 1.2 Specification
(http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypoli
cy-1.2-spec-os.html#_Toc161826516), the /sp:EncryptedElements/sp:XPath
element contains a string specifying an XPath expression that identifies the nodes to be
confidentiality protected. The XPath expression is evaluated against the S:Envelope
element node of the message. Multiple instances of this element may appear within
this assertion and should be treated as separate references.

Note the following:

■ The root element must be <wsp:Policy> with the prefix (in this case wsp) mapping
to the full WS-Policy namespace.

■ The assertion (in this case EncryptedElements) must also be namespace-qualified
with the full WS-SecurityPolicy 1.2 namespace, as indicated by the "sp" prefix.

■ The creditCard element in the SOAP message is namespace-qualified (via the ns1
prefix), and has parent elements: OrderRequest, submitOrderRequest, Body, and
Envelope. Each of these elements is namespace-qualified.

The XPath query (beginning with /soapenv:Envelope…) matches the location of
the creditCard element:

/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/myns:c
reditCard

■ The namespace prefixes in the SOAP message need not match the prefixes in the
custom security policy file. It is important only that the full namespaces to which
the prefixes map are the same in both the message and policy assertion.

■ WebLogic Server handles the mapping of SOAP 1.1 and SOAP 1.2 namespaces,
and WS-Addressing 2004/08 and WS-Addressing 1.0 namespaces.

2.20.1.1 Adding the Policy Annotation to JWS File
After you have created your custom policy, add a Policy annotation to your JWS file so
that the ElementEncryption policy is used for submitOrder web service requests, as
shown in Example 2–21.

Example 2–21 Adding Policy Annotation for Custom Policy File

@WebMethod
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plan-X509-Basic256.xml"),
 @Policy(uri="../policies/EncryptCreditCard.xml",
 direction=Policy.Direction.inbound)})

public String submitOrderRequest (OrderRequest orderRequest) {
 return orderService.processOrder(orderRequest);
}

Because the creditCard element is present in the SOAP request, but not the response,
the code fragment configures the EncryptedElements custom policy only in the
"inbound" direction.

To specify a user-created policy file, specify the path (relative to the location of the JWS
file) along with its name, as shown in the following example:

Smart Policy Selection

2-90 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of the
one that contains the JWS file.

You can also specify a policy file that is located in a shared Java EE library; this method
is useful if you want to share the file amongst multiple web services packaged in
different Java EE archives.

To specify a policy file in a shared Java EE library, use the policy prefix and then the
name of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See "Creating Shared Java EE Libraries and Optional Packages" in Developing
Applications for Oracle WebLogic Server for information on creating shared libraries and
setting up your environment so the web service can find the shared policy files.

2.20.2 Implementation Notes
Keep the following considerations in mind when implementing element-level security:

■ You can include multiple element-level assertions in a policy; all are executed.

■ You can include multiple <sp:XPath> expressions in a single assertions; all are
executed.

■ The EncryptedElements assertion causes the identified element and all of its
children to be encrypted.

■ The ContentEncryptedElements assertion does not encrypt the identified element,
but does encrypt all of its children.

■ The RequiredElements assertion may be used to test for the presence of a top-level
element in the SOAP header. If the element is not found, a SOAP Fault will be
raised.

RequiredElements assertions cannot be used to test for elements in the SOAP
Body.

2.21 Smart Policy Selection
Multiple policy alternatives for any given web service are supported, which provides
the service with significant flexibility.

Consider that a web service might support any of the following:

■ Different versions of the standard. For example, the web service might allow
WSRM 1.0 and WSRM 1.1, WSS1.0 and WSS 1.1, WSSC 1.1 and WWSSC 1.2, SAML
1.1 or SAML 2.0.

■ Different credentials for authentication. For example, the web service might allow
either username token, X509, or SAML token for authentication.

Note: In this case, it is assumed that the policy file is in the
META-INF/policies or WEB-INF/policies directory of the shared Java
EE library. Be sure, when you package the library, that you put the
policy file in this directory.

Smart Policy Selection

Configuring Message-Level Security 2-91

■ Different security requirements for internal and external clients. For example,
external authentication might require a SAML token, while internal employee
authentication requires only a username token for authentication.

The web services client can also handle multiple policy alternatives. The same client
can interoperate with different services that have different policy or policy
alternatives.

For example, the same client can talk to one service that requires SAML 1.1 Token
Profile 1.0 for authentication, while another service requires SAML 2.0 Token Profile
1.1 for authentication.

2.21.1 Example of Security Policy With Policy Alternatives
Example 2–22 shows an example of a security policy that supports both WS-Security
1.0 and WS-Security 1.1.

Example 2–22 Policy Defining Multiple Alternatives

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Include
Token/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Include
Token/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>

Note: Within the <wsp:ExactlyOne> element, each policy alternative
is encapsulated within a <wsp:All> element.

Smart Policy Selection

2-92 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Include
Token/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Include
Token/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>

Smart Policy Selection

Configuring Message-Level Security 2-93

 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.21.2 Configuring Smart Policy Selection
You can configure multiple policy alternatives for a single web service by creating a
custom policy, as shown in Example 2–22. You then configure the web service client to
make a policy selection preference.

In this release of WebLogic Server, you can configure the policy selection preferences
for the web service client by using the WebLogic Server Administration Console, and
via stubs.

The following preferences are supported:

■ Security

■ Performance

■ Compatibility

2.21.2.1 How the Policy Preference is Determined
The web services runtime uses your policy selection preference to examine the policy
alternatives and select the best choice.

If there are multiple policy choices, the system uses the configured preference list, the
availability of the credential, and setting of the optional function to determine the best
selection policy.

If multiple policy alternatives exist for a client, the following selection rules are used:

■ If the preference is not set, the first policy alternative will be picked, except if the
policy alternative is defined as wsp:optional=true.

■ If the preference is set to security first, then the policy that has the most security
features is selected.

■ If the preference is set to compatibility/interop first, then the policy that has the
lowest version is selected.

■ If the preference is set to performance first, then the policy with the fewest security
features is selected.

For the optional policy assertions, the following selection rules are used:

■ If the default policy selection preference is set, then the optional attribute on any
assertion is ignored.

Smart Policy Selection

2-94 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ If the Compatibility or Performance preference is set, then any assertion with an
optional attribute is ignored; therefore the assertion is ignored.

■ If the security policy selection preference is set, optional assertions are included
and alternative assertions are never generated.

2.21.2.2 Configuring Smart Policy Selection in the Console
Perform the following steps to configure smart policy selection in the Console:

1. If you do not already have a functional web services security configuration, create
a web services security configuration as described in the Oracle WebLogic Server
Administration Console Online Help.

2. Edit the web services security configuration. On the General tab, set the Policy
Selection Preference. The following values are supported:

■ None (default)

■ Security then Compatibility then Performance (SCP)

■ Security then Performance then Compatibility (SPC)

■ Compatibility then Security then Performance (CSP)

■ Compatibility then Performance then Security (CPS)

■ Performance then Compatibility then Security (PCS)

■ Performance then Security then Compatibility (PSC

3. Save and activate your changes.

2.21.2.3 Understanding Body Encryption in Smart Policy
In smart policy selection scenarios, whether or not the Body will be encrypted (for
example, <sp:EncryptedParts> <sp:Body /></sp:EncryptedParts>) depends on the
following policy selection preference rules:

■ Default -- The first policy alternative will be used for the determination. If the
encrypted body assertion is in the first policy alternative, the body is encrypted. If
the encrypted body assertion is not in the first policy alternative, the body is not
encrypted.

■ SCP, SPC -- encrypted

■ PCS, PSC -- not encrypted

■ CPS -- not encrypted

■ CSP -- encrypted

Consider the following two examples. In Example 2–23, the encrypted body assertion
is in the first policy alternative. Therefore, in the default preference case the body is
encrypted. For policy selection preferences other than the default, the other preference
rules apply.

Example 2–23 Body Assertion in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts>

Smart Policy Selection

Configuring Message-Level Security 2-95

<sp:Body/>
</sp:EncryptedParts>
<sp:EncryptedParts/>
</wsp:ExactlyOne>
</wsp:Policy>

By contrast, in Example 2–24, the encrypted body assertion is not in the first policy
alternative. Therefore, in the default preference case the body is not encrypted. For
policy selection preferences other than the default, the other preference rules apply.

Example 2–24 Body Assertion Not in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts/>
<sp:EncryptedParts>
<sp:Body/>
</sp:EncryptedParts>
</wsp:ExactlyOne>
</wsp:Policy>

2.21.2.4 Smart Policy Selection for a Standalone Client
You can set the policy selection preference via the stub property.

The following example sets the stub property for security, compatibility, and
performance preferences for JAX-RPC:

stub._setProperty(WLStub.POLICY_SELECTION_PREFERENCE,

WLStub.PREFERENCE_SECURITY_COMPATIBILITY_PERFORMANCE);

For JAX-WS, consider the following example:

BindingProvider bindingProvider = (BindingProvider) port;
Map<String,Object> rc =
(Map<String,Object>)bindingProvider.getRequestContext();
rc.put(WLStub.POLICY_SELECTION_PREFERENCE,
WLStub.PREFERENCE_COMPATIBILITY_PERFORMANCE_SECURITY);

If the policy selection preference is not set, then the default preference (None) is used.

2.21.3 Multiple Transport Assertions
If there are multiple available transport-level assertions in your security policies,
WebLogic Server uses the policy that requires https. If more than one policy alternative
requires https, WebLogic Server randomly picks one of them. You should therefore
avoid using multiple policy alternatives that contain mixed transport-level policy
assertions.

Example of Adding Security to MTOM Web Service

2-96 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.22 Example of Adding Security to MTOM Web Service

As described in Optimizing Binary Data Transmission Using MTOM/XOP, SOAP
Message Transmission Optimization Mechanism/XML-binary Optimized Packaging
(MTOM/XOP) defines a method for optimizing the transmission of XML data of type
xs:base64Binary or xs:hexBinary in SOAP messages.

This section describes a combination of two examples that are optionally included
with WebLogic Server:

■ EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wss1.1

■ EXAMPLES_HOME\wl_server\examples\src\examples\webservices\mtom

These existing examples include functional code and extensive instructions.html
files that describes their use and function, how to build them, and so forth. This
section does not repeat that information, but instead concentrates on the changes made
to these examples, and the reasons for the changes. For more information about the
WebLogic Server code examples, see "Sample Applications and Code Examples" in
Understanding Oracle WebLogic Server.

2.22.1 Files Used by This Example
The example uses the files shown in Table 2–1. The contents of the source files are
shown in subsequent sections.

Note: The example shows adding security to a JAX-RPC web service.
In this release, MTOM with WS-Security is supported for both
JAX-WS and JAX-RPC.

Table 2–13 Files Used in MTOM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the
example.

configWss.py WLST script that configures a web service security
configuration. This file is copied without change from
EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wss1.1

MtomClient.java Standalone client application that invokes the MTOM web
service. This file uses the JAX-RPC Stubs generated by
clientgen, based on the WSDL of the web service.

SecurityMtomService.jav
a

JWS file that implements the MTOM web service. The JWS file
uses the @Policy annotation to specify the WS-Policy files that
are associated with the web service.

clientkeyStore.jks Client-side key store, used to create a client-side
BinarySecurityToken credential provider.

This file is copied without change from EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wss1.1\certs

serverkeyStore.jks Server-side key store, used to create a Server-side
BinarySecurityToken credential provider.

This file is copied without change from EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wss1.1\certs

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-97

2.22.2 SecurityMtomService.java
The SecurityMtomService.java JWS file is the same as that in EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\mtom\MtomService.java, with the
additional Policy annotations shown in bold.

Example 2–25 SecurityMtomService.java

package examples.webservices.security_mtom;
import weblogic.jws.Binding;
import weblogic.jws.Policy;
import weblogic.jws.Policies;
import weblogic.jws.Context;
import weblogic.jws.WLDeployment;
import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.mtom.api.MtomPolicyInfo;
import weblogic.wsee.mtom.api.MtomPolicyInfoFactory;
import weblogic.wsee.policy.framework.PolicyException;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.rmi.RemoteException;

/**
 * Sample to MTOM with JAX-RPC
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
@WebService
@Binding(Binding.Type.SOAP12)
//enable WSS + MTOM for this web service by adding the following canned policy
files
@Policies({
 @Policy(uri = "policy:Mtom.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml"),
@Policy(uri = "policy:Wssp1.2-Wss1.1-EncryptedKey.xml")
})
public class SecurityMtomService {

 public SecurityMtomService() {

 }

 /**
 * Input is sent as XOP'ed binary octet stream
 *
 * @param bytes input bytes
 * @return A simple String
 */

testServerCertTempCert.
der

Server-side certificate, used to create a client-side
BinarySecurityToken credential provider.

This file is copied without change from EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wss1.1\certs

Table 2–13 (Cont.) Files Used in MTOM/Security Example

File Description

Example of Adding Security to MTOM Web Service

2-98 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

 /**
 * Output is sent as as XOP'ed binary octet stream
 *
 * @param s a simple String
 * @return byte[]
 */
 @WebMethod
 public byte[] echoStringAsBinary(String s) {
 return s.getBytes();
 }

 /**
 * input byte[] is sent as as XOP'ed binary octet stream
 *
 * @param array input byte[] array
 * @return String[]
 */
 @WebMethod
 public String[] echoBinaryArrayAsStringArray(byte[] array) {
 String[] strings = new String[1];
 strings[0] = new String(array);
 return strings;
 }
}

You can specify the @Policy annotation at both the class- and method- level. In this
example, the annotation is used at the class-level to specify the predefined WS-Policy
files, which means all public operations of the web service are associated with the
specified WS-Policy files.

You use the @Policies annotation to group together multiple @Policy annotations. You
can specify this annotation at both the class- and method-level. In this example, the
annotation is used at the class-level to group the four @Policy annotations that specify
the predefined WS-Policy files:

■ The predefined WS-Policy file Mtom.xml enables MTOM encoding.

■ As described in Section 2.16.2, "Protection Assertion Policies", the
Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic
system headers of both the request and response SOAP message be digitally
signed.

■ The Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the
request and response SOAP messages be encrypted.

■ The Wssp1.2-Wss1.1-EncryptedKey.xml symmetric binding policy uses the
WS-Security 1.1 Encrypted Key feature. The client application invoking the web
service must use the encrypted key to encrypt and sign, and the server must send
Signature Confirmation.

2.22.3 MtomClient.java
MtomClient.java is a standalone client application that invokes the
SecurityMtomService web service. It uses the JAX-RPC stubs generated by clientgen,
based on the WSDL of the web service. The MtomClient code is shown in

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-99

Example 2–26.

Example 2–26 MtomClient.java

package examples.webservices.security_mtom.client;

import java.rmi.RemoteException;

import java.security.cert.X509Certificate;
import java.util.ArrayList;
import java.util.List;
import javax.xml.rpc.Stub;

import weblogic.security.SSL.TrustManager;

// Import classes to create the Binary and Username tokens
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

// Import classes for creating the client-side credential provider
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.security.util.CertUtils;

/**
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class MtomClient {
 private static final String FOO = "FOO";
 private static SecurityMtomService port;

 public MtomClient(String args[]) throws Exception {
 //client keystore file
 String clientKeyStore = args[0];
 String clientKeyStorePass = args[1];
 String clientKeyAlias = args[2];
 String clientKeyPass = args[3];

 //server certificate
 String serverCertFile = args[4];
 String wsdl = args[5];

 SecurityMtomServiceService service = new SecurityMtomServiceService_
Impl(wsdl);
 port = service.getSecurityMtomServiceSoapPort();

X509Certificate serverCert = (X509Certificate)
CertUtils.getCertificate(serverCertFile);

 //create emtpy list of credential providers
 List credProviders = new ArrayList();

 //Create client-side BinarySecurityToken credential provider that uses
 // X.509 for identity, based on certificate and keys parameters
 CredentialProvider cp = new ClientBSTCredentialProvider(clientKeyStore,
 clientKeyStorePass, clientKeyAlias, clientKeyPass, "JKS", serverCert);
 credProviders.add(cp);

 Stub stub = (Stub) port;

Example of Adding Security to MTOM Web Service

2-100 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 // Set stub property to point to list of credential providers
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 // setup the TrustManager.
 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr) {
 //Typically in a real-life application, Java code that actually
 //verifies the certificate goes here; for sake of simplicity, this
 //example assumes the certificate is valid and simply returns true.

 return true;
 }
 });
 }

 public static void main(String[] args) throws Exception {
 MtomClient client = new MtomClient(args);
 client.invokeEchoBinaryAsString();
 client.invokeEchoStringAsBinary();
 client.invokeEchoBinaryArrayAsStringArray();
 }

 public void invokeEchoBinaryArrayAsStringArray() throws RemoteException {
 System.out.println("sending a String '" + FOO + "' as a byte array.");
 String result =
port.echoBinaryArrayAsStringArray(FOO.getBytes()).getJavaLangstring()[0];
 System.out.println("echoing '" + result + "' as a String array.");
 }

 public void invokeEchoStringAsBinary() throws RemoteException {
 System.out.println("sending a String '" + FOO + "'");
 String result = new String(port.echoStringAsBinary(FOO));
 System.out.println("echoing '" + result + "' as a byte array.");
 }

 public void invokeEchoBinaryAsString() throws RemoteException {
 System.out.println("sending a String '" + FOO + "' as a byte array.");
 String result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("echoing '" + result + "' as a String.");
 }
}

The client application takes six arguments:

■ Client keystore

■ Client keystore password

■ Client key alias

■ Client key password

■ The server certificate file

■ WSDL of the deployed web service

The client application uses the following WebLogic web services security APIs to
create the needed client-side credential providers, as specified by the WS-Policy files
that are associated with the web service:

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-101

■ weblogic.wsee.security.bst.ClientBSTCredentialProvider to create a binary security
token credential provider, using the certificate and private key.

■ weblogic.xml.crypto.wss.WSSecurityContext to specify the list of credential
providers to the JAX-RPC stub.

■ weblogic.xml.crypto.wss.provider.CredentialProvider, which is the main
credential provider class.

When you write this client application, you need to consult the WS-Policy files
associated with a web service to determine the types and number of credential
providers that must be set in the JAX-RPC stub. Typically, if the WS-Policy file
specifies that SOAP messages must be signed or encrypted, using X.509 for identity,
then you must create a ClientBSTCredentialProvider. (If it specifies that the user
provides a username token for identity, then the application must create a
ClientUNTCredentialProvider.)

The example creates a client BST credential provider for the indicated keystore,
certificate alias, and server certificate. The certificate passed for the parameter
serverCert is used to encrypt the message body contents and to verify the received
signature. Any KeyInfo received as part of the in-bound signature (for example,
certificate thumbprint) must correctly identify the same server certificate.

The web services client runtime also consults this WSDL so it can correctly create the
security headers in the SOAP request when an operation is invoked.

Finally, the client application must use the weblogic.security.SSL.TrustManager
WebLogic security API to verify that the certificate used to encrypt the SOAP request
is valid. The client runtime gets this certificate (serverCert in the example) from the
deployed WSDL of the web service, which in real-life situations is not automatically
trusted, so the client application must ensure that it is okay before it uses it to encrypt
the SOAP request.

2.22.4 configWss.py Script File
The SecurityMtomService web service does not explicitly invoke any WebLogic Server
API to handle the requirements imposed by any associated policy files, nor does this
web service have to understand which, if any, security providers, tokens, or other such
mechanisms are involved.

The script file configWss.py uses WLST to create and configure the default web
service security configuration, default_wss, for the active security realm. (The default
web service security configuration is used by all web services in the domain unless
they have been explicitly programmed to use a different configuration.) Further, this
script makes sure that x509 tokens are supported, creates the needed security
providers, and so forth.

Note: The client-side certificate and private key used in this example
have been created for simple testing purposes, and therefore are
always trusted by WebLogic Server. For this reason, there is no
additional server-side security configuration needed to run this
example. In real life, however, the client application would use a
certificate from a real certificate authority, such as Verisign. In this
case, administrators would need to use the WebLogic Server
Administration Console to add this certificate to the list that is trusted
by WebLogic Server.

Example of Adding Security to MTOM Web Service

2-102 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

Example 2–27 shows the configWss.py file. The build.xml file provides the command
input. Sections of particular interest are shown in bold.

Example 2–27 configWss.py

userName = sys.argv[1]
passWord = sys.argv[2]
url="t3://"+sys.argv[3]+":"+sys.argv[4]

print "Connect to the running adminSever"

connect(userName, passWord, url)

edit()
startEdit()

#Enable assert x509 in SecurityConfiguration
rlm = cmo.getSecurityConfiguration().getDefaultRealm()
ia = rlm.lookupAuthenticationProvider("DefaultIdentityAsserter")
activeTypesValue = list(ia.getActiveTypes())
existed = "X.509" in activeTypesValue
if existed == 1:
 print 'assert x509 is aleady enabled'
else:
 activeTypesValue.append("X.509")
ia.setActiveTypes(array(activeTypesValue,java.lang.String))
ia.setDefaultUserNameMapperAttributeType('CN');
ia.setUseDefaultUserNameMapper(Boolean('true'));

#Create default WebServcieSecurity
securityName='default_wss'
defaultWss=cmo.lookupWebserviceSecurity(securityName)
if defaultWss == None:
 print 'creating new webservice security bean for: ' + securityName
 defaultWss = cmo.createWebserviceSecurity(securityName)
else:
 print 'found exsiting bean for: ' + securityName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v200502.dk.
 DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found exsiting bean for: DK ' + cpName

#Create credential provider for x.509
cpName='default_x509_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

Note: Long lines in this script have been formatted for readability.

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-103

if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.bst.
 ServerBSTCredentialProvider')
 wtm.setTokenType('x509')
else:
 print 'found exsiting bean for: x.509 ' + cpName

#Custom keystore for xml encryption
cpName='ConfidentialityKeyStore'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyStoreName=sys.argv[5]
cpm.setValue(keyStoreName)

cpName='ConfidentialityKeyStorePassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
KeyStorePasswd=sys.argv[6]
cpm.setEncryptedValue(KeyStorePasswd)

cpName='ConfidentialityKeyAlias'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyAlias=sys.argv[7]
cpm.setValue(keyAlias)

cpName='ConfidentialityKeyPassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty('ConfidentialityKeyPassword')
cpm.setEncryptValueRequired(Boolean('true'))
keyPass=sys.argv[8]
cpm.setEncryptedValue(keyPass)

#Custom keystore for xml digital signature
cpName='IntegrityKeyStore'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyStoreName=sys.argv[5]
cpm.setValue(keyStoreName)

cpName='IntegrityKeyStorePassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
KeyStorePasswd=sys.argv[6]
cpm.setEncryptedValue(KeyStorePasswd)

cpName='IntegrityKeyAlias'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyAlias=sys.argv[7]

Example of Adding Security to MTOM Web Service

2-104 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

cpm.setValue(keyAlias)

cpName='IntegrityKeyPassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
keyPass=sys.argv[8]
cpm.setEncryptedValue(keyPass)

#Create token handler for x509 token
#cpName='default_x509_handler'
th=defaultWss.lookupWebserviceTokenHandler(cpName)
if th == None:
 th = defaultWss.createWebserviceTokenHandler(cpName)
 th.setClassName('weblogic.xml.crypto.wss.BinarySecurityTokenHandler')
 th.setTokenType('x509')
 cpm = th.createConfigurationProperty('UseX509ForIdentity')
 cpm.setValue('true')

save()
activate(block="true")
disconnect()
exit()

2.22.5 Build.xml File
The build.xml file has the targets shown in Table 2–1.

The complete build.xml file is shown in Example 2–28.

Example 2–28 build.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="webservices.security_mtom" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property file="../../../examples.properties"/>

 <property name="client.dir"
value="${client.classes.dir}/webservicesSecurityMtom_Client" />

Table 2–14 build.xml targets

Target Description

client Target that builds the Security MTOM web service
client.

config.server.security Target that configures the web service security.

deploy Target that deploys the web service.

server Target that builds the Security MTOM web service.

clean Deletes temporary directories.

build Depends on server, client, and clean.

run Target that runs the Security MTOM web service
client.

all Default target. Depends on build, deploy.

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-105

 <property name="package.dir" value="examples/webservices/security_mtom"/>
 <property name="package" value="examples.webservices.security_mtom"/>
 <property name="ws.file" value="SecurityMtomService" />
 <property name="ear.dir"
value="${examples.build.dir}/webservicesSecurityMtomEar" />
 <property name="cert.dir" value="${basedir}/certs" />
 <property name="certs.dir" value="${basedir}/certs" />

 <!--client keystore-->
 <property name="client-keystore-name" value="clientKeyStore.jks"/>
 <property name="client-keystore-pass" value="keystorepw"/>
 <property name="client-cert" value="ClientCert"/>
 <property name="client-key" value="ClientKey"/>
 <property name="client-key-pass" value="ClientKeyPass"/>
 <property name="client-cert-alias" value="testClientCert"/>

 <!--server keystore-->
 <property name="server-keystore-name" value="serverKeyStore.jks"/>
 <property name="server-keystore-pass" value="keystorepw"/>
 <property name="server-cert" value="ServerCert"/>
 <property name="server-key" value="ServerKey"/>
 <property name="server-key-pass" value="ServerKeyPass"/>
 <property name="server-cert-alias" value="testServerCert"/>

 <path id="client.class.path">
 <pathelement path="${client.dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <!-- Web Service WLS Ant task definitions -->
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="all" depends="build, deploy"/>

 <target name="build" depends="clean,server,client"/>

 <target name="clean">
 <delete dir="${ear.dir}"/>
 <delete dir="${client.dir}"/>
 </target>

 <!-- Target that builds the MTOM Web Service -->
 <target name="server" description="Target that builds the MTOM Web Service">
 <jwsc
 srcdir="${examples.src.dir}/${package.dir}"
 sourcepath="${examples.src.dir}"
 destdir="${ear.dir}"
 classpath="${java.class.path}"
 fork="true"
 keepGenerated="true"
 deprecation="${deprecation}"
 debug="${debug}">
 <jws file="SecurityMtomService.java" explode="true"/>
 </jwsc>
 </target>

 <!-- Target that builds the MTOM Web Service client -->

Example of Adding Security to MTOM Web Service

2-106 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 <target name="client" description="Target that builds the source Web Service">
 <mkdir dir="${client.dir}/${package.dir}/client/"/>
 <clientgen
 wsdl="${ear.dir}/${ws.file}/WEB-INF/${ws.file}Service.wsdl"
 destDir="${client.dir}"
 classpath="${java.class.path}"
 packageName="${package}.client"/>
 <copy file="MtomClient.java" todir="${client.dir}/${package.dir}/client/"/>
 <javac
 srcdir="${client.dir}" destdir="${client.dir}"
 classpath="${java.class.path}"
 includes="${package.dir}/client/**/*.java"/>
 </target>

 <!-- Target that deploys the MTOM Web Service -->
 <target name="deploy" description="Target that deploys the reliable destination
Web Service">
 <wldeploy
 action="deploy"
 source="${ear.dir}"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"
 failonerror="${failondeploy}"/>
 </target>

 <!-- Target that runs the MTOM Web Service client -->
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.security_mtom.client.MtomClient"
 failonerror="true" >
 <jvmarg line="-Dweblogic.wsee.verbose=*"/>
 <classpath refid="client.class.path"/>
 <arg line="
 ${basedir}/certs/${client-keystore-name}
 ${client-keystore-pass}
 ${client-cert-alias}
 ${client-key-pass}
 ${basedir}/certs/testServerCertTempCert.der

http://${wls.hostname}:${wls.port}/SecurityMtomService/SecurityMtomService?WSDL"
/>
 </java>
 </target>

 <!-- Target the configure the web service security -->
 <target name="config.server.security" description="Target the configure the web
service security">
 <copy todir="${examples.domain.dir}" overwrite="true">
 <fileset dir="${certs.dir}" includes="${server-keystore-name}"/>
 </copy>

 <java classname="weblogic.WLST" fork="true" failonerror="true">
 <arg line="configWss.py ${wls.username} ${wls.password} ${wls.hostname}
${wls.port}
 ${server-keystore-name} ${server-keystore-pass} ${server-cert-alias}
${server-key-pass}" />
 </java>

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-107

 </target>

</project>

2.22.6 Building and Running the Example
Follow these steps to build and run the example:

1. Start the Examples server.

2. Set up your environment, as described in the EXAMPLES_HOME\wl_
server\examples\src\examples\examples.html instructions file, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. For more information about the WebLogic Server code
examples, see "Sample Applications and Code Examples" in Understanding Oracle
WebLogic Server.

ORACLE_HOME\user_projects\domains\wl_server>setExamplesEnv.cmd

3. Change to the EXAMPLES_HOME\wl_server\examples\src\examples\webservices
directory and create a new subdirectory called security_mtom.

4. Cut and paste the contents of the build.xml, configWss.py, MtomClient.java, and
SecurityMtomService.java sections to files with the same names in the EXAMPLES_
HOME\wl_server\examples\src\examples\webservices\security_mtom directory.

5. Copy all of the files (clientKeyStore.jks, serverKeyStore.jks, and
testServerCertTempCert.der) from

EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wss1.1\certs

to a new certs subdirectory

EXAMPLES_HOME\wl_server\examples\src\examples\webservices\security_
mtom\certs

6. Change to the EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\security_mtom directory.

7. Execute the following command:

prompt> ant config.server.security

8. Restart Weblogic Server.

9. Build, deploy and run the example:

prompt> ant build deploy run

2.22.7 Deployed WSDL for SecurityMtomService
The deployed WSDL for the SecurityMtomService web service is available at the
following URL:

 http://host:port/SecurityMtomService/SecurityMtomService?WSDL

The complete WSDL is shown in Example 2–29.

Example 2–29 Deployed WSDL for SecurityMtomService

<?xml version="1.0" encoding="UTF-8" ?>
 <s1:definitions name="SecurityMtomServiceServiceDefinitions"
targetNamespace="http://examples/webservices/security_mtom" xmlns=""

Example of Adding Security to MTOM Web Service

2-108 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utili
ty-1.0.xsd"
xmlns:s1="http://schemas.xmlsoap.org/wsdl/"
xmlns:s2="http://examples/webservices/security_mtom"
xmlns:s3="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:UsingPolicy s1:Required="true" />
 <wsp:Policy s0:Id="Mtom.xml">
 <wsoma:OptimizedMimeSerialization
xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-Wss1.1-EncryptedKey.xml">
 <sp:SymmetricBinding
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Include
Token/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference />
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:OnlySignEntireHeadersAndBody />
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier />
 <sp:MustSupportRefIssuerSerial />
 <sp:MustSupportRefThumbprint />
 <sp:MustSupportRefEncryptedKey />
 <sp:RequireSignatureConfirmation />
 </wsp:Policy>
 </sp:Wss11>
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-2007-EncryptBody.xml">
 <sp:EncryptedParts
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body />
 </sp:EncryptedParts>
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-2007-SignBody.xml">
 <sp:SignedParts

Example of Adding Security to MTOM Web Service

Configuring Message-Level Security 2-109

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body />
 </sp:SignedParts>
 </wsp:Policy>
 <s1:types>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="java:examples.webservices.security_mtom"
xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:s1="http://examples/webservices/security_mtom"
xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="ArrayOfJavaLangstring_literal">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="JavaLangstring"
nillable="true" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ArrayOfJavaLangstring_literal"
type="java:ArrayOfJavaLangstring_literal"
xmlns:java="java:examples.webservices.security_mtom" />
 <xs:element name="base64Binary_literal" type="xs:base64Binary" />
 </xs:schema>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://examples/webservices/security_mtom"
xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:s1="http://examples/webservices/security_mtom"
xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:import namespace="java:examples.webservices.security_mtom" />
 <xs:element name="echoBinaryAsString">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="bytes" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryAsStringResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryArrayAsStringArray">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="array" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryArrayAsStringArrayResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="java:ArrayOfJavaLangstring_literal"
xmlns:java="java:examples.webservices.security_mtom" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Example of Adding Security to MTOM Web Service

2-110 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 <xs:element name="echoStringAsBinary">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="s" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoStringAsBinaryResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </s1:types>
 <s1:message name="echoBinaryAsString">
 <s1:part element="s2:echoBinaryAsString" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryAsStringResponse">
 <s1:part element="s2:echoBinaryAsStringResponse" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryArrayAsStringArray">
 <s1:part element="s2:echoBinaryArrayAsStringArray" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryArrayAsStringArrayResponse">
 <s1:part element="s2:echoBinaryArrayAsStringArrayResponse" name="parameters" />
 </s1:message>
 <s1:message name="echoStringAsBinary">
 <s1:part element="s2:echoStringAsBinary" name="parameters" />
 </s1:message>
 <s1:message name="echoStringAsBinaryResponse">
 <s1:part element="s2:echoStringAsBinaryResponse" name="parameters" />
 </s1:message>
 <s1:portType name="SecurityMtomService"
wsp:PolicyURIs="#Wssp1.2-2007-SignBody.xml #Wssp1.2-2007-EncryptBody.xml
#Wssp1.2-Wss1.1-EncryptedKey.xml">
 <s1:operation name="echoBinaryAsString" parameterOrder="parameters">
 <s1:input message="s2:echoBinaryAsString" />
 <s1:output message="s2:echoBinaryAsStringResponse" />
 </s1:operation>
 <s1:operation name="echoBinaryArrayAsStringArray" parameterOrder="parameters">
 <s1:input message="s2:echoBinaryArrayAsStringArray" />
 <s1:output message="s2:echoBinaryArrayAsStringArrayResponse" />
 </s1:operation>
 <s1:operation name="echoStringAsBinary" parameterOrder="parameters">
 <s1:input message="s2:echoStringAsBinary" />
 <s1:output message="s2:echoStringAsBinaryResponse" />
 </s1:operation>
 </s1:portType>
 <s1:binding name="SecurityMtomServiceServiceSoapBinding"
type="s2:SecurityMtomService">
 <s3:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:PolicyReference URI="#Mtom.xml" />
 </wsp:Policy>
 <s1:operation name="echoBinaryAsString">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />

Example of Adding Security to Reliable Messaging Web Service

Configuring Message-Level Security 2-111

 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 <s1:operation name="echoBinaryArrayAsStringArray">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />
 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 <s1:operation name="echoStringAsBinary">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />
 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 </s1:binding>
 <s1:service name="SecurityMtomServiceService">
 <s1:port binding="s2:SecurityMtomServiceServiceSoapBinding"
name="SecurityMtomServiceSoapPort">
 <s3:address
location="http://localhost:7001/SecurityMtomService/SecurityMtomService" />
 </s1:port>
 </s1:service>
 </s1:definitions>

2.23 Example of Adding Security to Reliable Messaging Web Service
This section describes an update to an example that is optionally included with
WebLogic Server:

■ EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security

This section shows how to update the example to use the most recent version of the
policy file. Oracle recommends that you use the new policy namespace, as shown in
the revised example, as those are official namespaces from OASIS standards and they
will perform better when interoperating with other vendors.

2.23.1 Overview of Secure and Reliable SOAP Messaging
Reliable SOAP messaging is a framework whereby an application running in one
WebLogic Server instance can reliably invoke a web service running on another
WebLogic Server instance. Reliable is defined as the ability to guarantee message
delivery between the two web services.

WebLogic web services conform to the WS-ReliableMessaging 1.1 specification, which
describes how two web services running on different WebLogic Server application
servers can communicate reliably in the presence of failures in software components,
systems, or networks. In particular, the specification describes an interoperable
protocol in which a message sent from a source endpoint (client web service) to a
destination endpoint (web service whose operations can be invoked reliably) is
guaranteed either to be delivered, according to one or more delivery assurances, or to

Example of Adding Security to Reliable Messaging Web Service

2-112 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

raise an error. The WS-ReliableMessaging specification defines an interoperable way to
provide security by composing WS-ReliableMessaging with WS-SecureConversation
and associating a reliable sequence with a secure session. At sequence creation time,
the sending side needs to present a Security Token Reference to point to a Security
Context Token that will be used to identify the owner of the sequence. All subsequent
sequence messages and protocol messages in both directions will need to demonstrate
proof-of-possession of the referenced key.

WebLogic reliable SOAP messaging works only between two web services. This means
that you can invoke a WebLogic web service reliably only from another web service,
and not from a standalone client application. This example shows how to create both
types of web services (source and destination). The WsrmSecurityClient.java class is
a standalone Java application that then invokes the source web service.

2.23.2 Overview of the Example
The existing example shows how to provide security functionality on top of reliability
for web services messaging by creating two WebLogic web services:

■ web service whose operations can be invoked using reliable and secure SOAP
messaging (destination endpoint). The destination ReliableEchoService web
service has two operations that can be invoked reliably and in a secure way: echo
and echoOneway.

■ Client web service that invokes an operation of the first web service in a reliable
and secure way (source endpoint). The source ReliableEchoClientService web
service has one operation for invoking the echo and echoOneway operations of the
ReliableEchoService web service reliably and in a secure way within one
conversation: echo.

The existing example includes functional code and an extensive instructions.html
file that describes its use and function, how to build it, and so forth This section does
not repeat that information, but instead concentrates on the changes made to the
example, and the reasons for the changes.

2.23.2.1 How the Example Sets Up WebLogic Security
The configWSS.py WLST script sets up security for the WebLogic Server instance that
hosts the source and destination web service. The security requirements are dictated
by the WS-SecurityPolicy files associated with the destination web service.

The Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml policy imposes the following
requirements:

■ WS-SecureConversation handshake is protected by WS-Security 1.0.

■ The application messages are signed and encrypted with DerivedKeys.

■ The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages (part of the
WS-SecureConversation handshake) are both signed and encrypted.

■ The WS-Addressing headers are signed.

■ Timestamp is included and signed.

■ The signature is encrypted.

■ The algorithm suite is Basic256.

In response, the configWSS.py WLST script performs the following functions:

■ Enables X.509 tokens for the default IdentityAsserter in the default security realm.

Example of Adding Security to Reliable Messaging Web Service

Configuring Message-Level Security 2-113

■ Creates the default web service security configuration.

■ Configures a credential provider for the Security Context Token.

■ Configures a credential provider for Derived Key.

■ Configures a BinarySecurityTokenHandler token handler for X.509 tokens.

■ Configures a ServerBSTCredentialProvider credential provider for X.509 tokens.

■ Configures keystores for confidentiality and integrity.

■ Configures the PKI credential mapper. This maps the initiator and target resource
to a key pair or public certificate

In addition, the configWSSRuntime.py WLST script also performs the following
function:

■ Sets up the PKI credential mapper (configured by configWSS.py) to invoke the
destination web service.

2.23.3 Files Used by This Example
The example uses the files shown in Table 2–1. The contents of revised source files are
shown in subsequent sections.

Table 2–15 Files Used in WSRM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the
example.

ReliableEchoClientServic
eImpl.java

JWS file that implements the source web service that reliably
invokes the echoOneWay and echo operation of the
ReliableEchoService web service in a secure way. This JWS file
uses the @ServiceClient annotation to specify the web service it
invokes reliably.

ReliableEchoServiceImpl.
java

JWS file that implements the reliable destination web service.
This JWS file uses the @Policy annotation to specify a
WS-Policy file that contains reliable SOAP messaging
assertions.

ws_rm_configuration.py WLST script that configures a SAF Agent, FileStore, JMS Server,
and JMS queue, which are required for reliable SOAP
messaging. Execute this script for the WebLogic Server instance
that hosts the reliable destination web service. The
out-of-the-box Examples server has already been configured
for the source web service that invokes an operation reliably.

configWss.py WLST script that configures a credential provider for Security
Context Token, a credential provider for Derived Key, a
credential provider for x.509, KeyStores for Confidentiality and
Integrity, and PKI Cred Mapper that are required for secure
SOAP messaging. Execute this script for the WebLogic Server
instance that hosts the source and destination web service.
Remember to restart the WebLogic server after executing this
script

Example of Adding Security to Reliable Messaging Web Service

2-114 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2.23.4 Revised ReliableEchoServiceImpl.java
The ReliableEchoServiceImpl.java JWS file is the same as that in EXAMPLES_
HOME\wl_server\examples\src\examples\webservices\wsrm_
security\ReliableEchoServiceImpl.java, with the revised Policy annotation shown
in bold.

Example 2–30 ReliableEchoServiceImpl.java

@WebService(name = "ReliableEchoPort",
 serviceName = "ReliableEchoService")
@WLHttpTransport(contextPath = "WsrmSecurity", serviceUri = "ReliableEchoService")
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml"),
 @Policy(uri="policy:Reliability1.1_SequenceSTR")}
)

You can specify the @Policy annotation at both the class- and method- level. In this
example, the annotation is used at the class-level to specify the predefined WS-Policy
files, which means all public operations of the web service are associated with the
specified WS-Policy files.

2.23.5 Revised configWss.py
The ReliableEchoServiceImpl web service does not explicitly invoke any WebLogic
Server API to handle the requirements imposed by any associated policy files, nor
does this web service have to understand which, if any, security providers, tokens, or
other such mechanisms are involved.

The script file configWss.py uses WLST to create and configure the default web
service security configuration, default_wss, for the active security realm. (The default
web service security configuration is used by all web services in the domain unless
they have been explicitly programmed to use a different configuration.) Further, this

configWss_Service.py WLST script that configures a credential provider for Security
Context Token, a credential provider for Derived Key, a
credential provider for x.509, KeyStores for Confidentiality and
Integrity that are required by the server host the destination
web service for secure SOAP messaging. Execute this script for
the WebLogic Server instance that hosts the destination web
service when the source and destination web service are hosted
in two servers. Remember to restart the Weblogic server after
executing this script.

configWssRuntime.py WLST script that configures a KeyPair Credential for invoking
the destination web service.

certs/testServerCertTem
pCert.der

Server-side certificate, used create client-side
BinarySecurityToken credential provider.

certs/clientKeyStore.jks Client-side key store, used to create client-side
BinarySecurityToken credential provider.

certs/serverKeyStore.jks Server-side key store, used to create Server-side
BinarySecurityToken credential provider.

WsrmSecurityClient.java Standalone Java client application that invokes the source
WebLogic web service, that in turn invokes an operation of the
ReliableEchoService web service in a reliable and secure way.

Table 2–15 (Cont.) Files Used in WSRM/Security Example

File Description

Example of Adding Security to Reliable Messaging Web Service

Configuring Message-Level Security 2-115

script makes sure that x509 tokens are supported, creates the needed security
providers, and so forth.

The configWss.py file is the same as that in EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wsrm_security\configWss.py, with
the changes shown in bold. The build.xml file provides the command input.

Example 2–31 configWss.py

:
#Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.
 ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.
 dk.DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found exsiting bean for: DK ' + cpName
:

2.23.6 Revised configWss_Service.py
The configWss_Service.py script is similar to configWss.py, but it is used only when
the source and destination web service are hosted in two servers.

The configWss_Service.py file is the same as that in EXAMPLES_HOME\wl_
server\examples\src\examples\webservices\wsrm_security\configWss_
Service.py, with the changes shown in bold. The build.xml file provides the
command input.

Example 2–32 configWss_Service.py

:

Note: Long lines in this script have been formatted for readability.

Note: Long lines in this script have been formatted for readability.

Securing Web Services Atomic Transactions

2-116 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 #Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.
 v13.sct.ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.dk.
 DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found existing bean for: DK ' + cpName
:

2.23.7 Building and Running the Example
After you have changed the example to use the new policy namespace, follow the
steps in the EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_
security\instructions.html file to build and run the example.

There are no changes needed to these steps.

2.24 Securing Web Services Atomic Transactions
When using web services atomic transactions, as described in "Using Web Services
Atomic Transactions" in Developing JAX-WS Web Services for Oracle WebLogic Server, it is
recommended that you secure the application message headers that contain the
coordination context and IssuedTokens using one of the following predefined policies:

■ Wssp1.2-2007-SignAndEncryptWSATHeaders.xml—Specifies that the
WS-AtomicTransaction headers are signed and encrypted.

■ Wssp1.2-2007-Wsp1.5-SignAndEncryptWSATHeaders.xml—Specifies that the
WS-AtomicTransaction headers are signed and encrypted. Web Services Policy 1.5
is used.

Securing Web Services Atomic Transactions

Configuring Message-Level Security 2-117

You can attach policies using one of the following methods:

■ At design time, using the @Policy and @Policies annotations, as described in
Section 2.6, "Example of Adding Security to a JAX-WS Web Service".

■ At deployment time, using the WebLogic Server Administration Console, as
described in Section 2.10, "Associating Policy Files at Runtime Using the
Administration Console".

The following example shows how to secure a web services atomic transaction
programmatically, using the @Policy and @Policies annotations. Relevant code is
shown in bold.

package jaxws.interop.rsp;
...
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.jws.Policy;
import weblogic.jws.Policies;
...
@WebService(
 portName = "FlightServiceBindings_Basic",
 serviceName = "FlightService",
 targetNamespace = "http://wsinterop.org/samples",
 wsdlLocation = "/wsdls/FlightService.wsdl",
 endpointInterface = "jaxws.interop.rsp.IFlightService"
)
@BindingType("http://schemas.xmlsoap.org/wsdl/soap/http")
@javax.xml.ws.soap.Addressing
public class FlightServiceImpl implements IFlightService {
...
 @Transactional(value = Transactional.TransactionFlowType.SUPPORTS,
 version = Transactional.Version.WSAT12)
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignAndEncryptWSATHeaders.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-X509-Basic256.xml"
 })
 public FlightReservationResponse reserveFlight(FlightReservationRequest request) {
 //replace with your impl here
 FlightReserverationEnitity entity = new FlightReserverationEnitity();
 entity.setAirlineID(request.getAirlineID());
 entity.setFlightNumber(request.getFlightNumber());
 entity.setFlightType(request.getFlightType());
 boolean successful = saveRequest(entity);
 FlightReservationResponse response = new FlightReservationResponse();

Note: Because header encryption is available as part of the
WS-Security 1.1 standard, it is highly recommended that you use only
WS-Security 1.1 binding policies in conjunction with the policies listed
above to secure the application request messages. WS-Security 1.1
binding policies contain <sp:Wss11> assertion in the policy and
-Wss1.1 in the predefined policy name. If WS-Security 1.0 policies are
used, WebLogic Server encrypts the header into WS-Security 1.0
non-standard format.

Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-118 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 if (!successful) {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 } else if (request.getFlightNumber() == null ||
 request.getFlightNumber().trim().endsWith("LAS")) {
 successful = false;
 response.setConfirmationNumber("OF" + "- No flight available for " +
 request.getAirlineID());
 } else {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 }
 response.setSuccess(successful);
 return response;
 }

2.25 Proprietary Web Services Security Policy Files (JAX-RPC Only)
Previous releases of WebLogic Server, released before the formulation of the
WS-SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for security policy.

This section describes the set of predefined web services security policy schema files
included in WebLogic Server. These policy files are all abstract; see Section 2.25.1,
"Abstract and Concrete Policy Files" for details.

The policy assertions used in these security policy files to configure message-level
security for a WebLogic web service are based on the assertions described in the
December 18, 2002 version of the Web Services Security Policy Language
(WS-SecurityPolicy) specification. This means that although the exact syntax and
usage of the assertions in WebLogic Server are different, they are similar in meaning to
those described in the specification. The assertions are not based on later updates of
the specification.

The predefined web services security policy files are:

■ Section 2.25.2, "Auth.xml" specifies that the client must authenticate itself. Can be
used on its own, or together with Sign.xml and Encrypt.xml.

■ Section 2.25.3, "Sign.xml" specifies that the SOAP messages are digitally signed.
Can be used on its own, or together with Auth.xml and Encrypt.xml.

■ Section 2.25.4, "Encrypt.xml" specifies that the SOAP messages are encrypted. Can
be used on its own, or together with Auth.xml and Sign.xml.

■ Section 2.25.5, "Wssc-dk.xml" specifies that the client and service share a security
context when multiple messages are exchanged and that derived keys are used for
encryption and digital signatures, as described by the WS-SecureConversation
specification.

Note: The security policy files written under the web services
security policy schema are deprecated in this release.

WS-SecurityPolicy 1.2 policy files and proprietary web services
security policy schema files are not mutually compatible; you cannot
define both types of policy file in the same web service. If you want to
use WS-Security 1.1 features, you must use the WS-SecurityPolicy 1.2
policy file format.

Proprietary Web Services Security Policy Files (JAX-RPC Only)

Configuring Message-Level Security 2-119

■ Section 2.25.6, "Wssc-sct.xml" specifies that the client and service share a security
context when multiple messages are exchanged, as described by the
WS-SecureConversation specification.

2.25.1 Abstract and Concrete Policy Files
The WebLogic web services runtime environment recognizes two slightly different
types of security policy files: abstract and concrete.

Abstract policy files do not explicitly specify the security tokens that are used for
authentication, encryption, and digital signatures, but rather, the web services runtime
environment determines the security tokens when the web service is deployed.
Specifically, this means the <Identity> and <Integrity> elements (or assertions) of
the policy files do not contain a <SupportedTokens><SecurityToken> child element,
and the <Confidentiality> element policy file does not contain a
<KeyInfo><SecurityToken> child element.

If your web service is associated with only the predefined policy files, then client
authentication requires username tokens. web services support only one type of token
for encryption and digital signatures (X.509), which means that in the case of the
<Integrity> and <Confidentiality> elements, concrete and abstract policy files end
up being essentially the same.

If your web service is associated with an abstract policy file and it is published as an
attachment to the WSDL (which is the default behavior), the static WSDL file packaged
in the web service archive file (JAR or WAR) will be slightly different than the dynamic
WSDL of the deployed web service. This is because the static WSDL, being abstract,
does not include specific <SecurityToken> elements, but the dynamic WSDL does
include these elements because the web services runtime has automatically filled them
in when it deployed the service. For this reason, in the code that creates the JAX-RPC
stub in your client application, ensure that you specify the dynamic WSDL or you will
get a runtime error when you try to invoke an operation: HelloService service =
new HelloService(Dynamic_WSDL);

You can specify either the static or dynamic WSDL to the clientgen Ant task in this
case. See "Browsing to the WSDL of the Web Service" in Developing JAX-RPC Web
Services for Oracle WebLogic Server for information on viewing the dynamic WSDL of a
deployed web service.

Note: This predefined policy file is meant to be used on its own and
not together with Auth.xml, Sign.xml, Encrypt.xml, or Wssc-sct.xml.
Also, Oracle recommends that you use this policy file, rather than
Wssc-sct.xml (Section 2.25.6, "Wssc-sct.xml"), if you want the client
and service to share a security context, due to its higher level of
security.

Note: This predefined policy file is meant to be used on its own and
not together with Auth.xml, Sign.xml, Encrypt.xml, or Wssc-dk.xml.
Also, Oracle provides this policy file to support the various use cases
of the WS-SecureConversation specification; however, Oracle
recommends that you use the Wssc-dk.xml (Section 2.25.5,
"Wssc-dk.xml") policy file, rather than Wssc-sct.xml (Section 2.25.6,
"Wssc-sct.xml"), if you want the client and service to share a security
context, due to its higher level of security.

Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-120 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

Concrete policy files explicitly specify the details of the security tokens at the time the
web service is programmed. Programmers create concrete security policy files when
they know, at the time they are programming the service, the details of the type of
authentication (such as using x509 or SAML tokens); whether multiple private key and
certificate pairs from the keystore are going to be used for encryption and digital
signatures; and so on.

2.25.2 Auth.xml
The WebLogic Server Auth.xml file, shown below, specifies that the client application
invoking the web service must authenticate itself with one of the tokens (username or
X.509) that support authentication.

Because the predefined web services security policy schema files are abstract, there is
no specific username or X.509 token assertions in the Auth.xml file at
development-time. Depending on how you have configured security for WebLogic
Server, either a username token, an X.509 token, or both will appear in the actual
runtime-version of the Auth.xml policy file associated with your web service.
Additionally, if the runtime-version of the policy file includes an X.509 token and it is
applied to a client invoke, then the entire body of the SOAP message is signed.

If you want to specify that only X.509, and never username tokens, be used for identity,
or want to specify that, when using X.509 for identity, only certain parts of the SOAP
message be signed, then you must create a custom security policy file.

Example 2–33 Auth.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >
 <wssp:Identity/>
</wsp:Policy>

2.25.3 Sign.xml
The WebLogic Server Sign.xml file specifies that the body and WebLogic-specific
system headers of the SOAP message be digitally signed. It also specifies that the
SOAP message include a Timestamp, which is digitally signed, and that the token
used for signing is also digitally signed. The token used for signing is included in the
SOAP message.

The following headers are signed when using the Sign.xml security policy file:

■ SequenceAcknowledgement

■ AckRequested

■ Sequence

■ Action

■ FaultTo

■ From

■ MessageID

■ RelatesTo

■ ReplyTo

Proprietary Web Services Security Policy Files (JAX-RPC Only)

Configuring Message-Level Security 2-121

■ To

■ SetCookie

■ Timestamp

The WebLogic Server Sign.xml file is shown below:

Example 2–34 Sign.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity>
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>
 <wssp:MessageAge/>
</wsp:Policy>

2.25.4 Encrypt.xml
The WebLogic Server Encrypt.xml file specifies that the entire body of the SOAP
message be encrypted. By default, the encryption token is not included in the SOAP
message.

Example 2–35 Encrypt.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >

Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-122 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

2.25.5 Wssc-dk.xml
Specifies that the client and web service share a security context, as described by the
WS-SecureConversation specification, and that a derived key token is used. This
ensures the highest form of security.

This policy file provides the following configuration:

■ A derived key token is used to sign all system SOAP headers, the timestamp
security SOAP header, and the SOAP body.

■ A derived key token is used to encrypt the body of the SOAP message. This token
is different from the one used for signing.

■ Each SOAP message uses its own pair of derived keys.

■ For both digital signatures and encryption, the key length is 16 (as opposed to the
default 32)

■ The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will
have to create a custom security policy file, described in later sections.

Example 2–36 Wssc-dk.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()

Note: If you specify this predefined security policy file, you should
not also specify any other predefined security policy file.

Proprietary Web Services Security Policy Files (JAX-RPC Only)

Configuring Message-Level Security 2-123

 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
 <wssp:Confidentiality SupportTrust10="true">
 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:KeyInfo>
 </wssp:Confidentiality>
 <wssp:MessageAge/>
</wsp:Policy>

2.25.6 Wssc-sct.xml
Specifies that the client and web service share a security context, as described by the
WS-SecureConversation specification. In this case, security context tokens are used to
encrypt and sign the SOAP messages, which differs from Wssc-dk.xml (Section 2.25.5,
"Wssc-dk.xml") in which derived key tokens are used. The Wssc-sct.xml policy file is
provided to support all the use cases of the specification; for utmost security, however,
Oracle recommends you always use Wssc-dk.xml (Section 2.25.5, "Wssc-dk.xml")
when specifying shared security contexts due to its higher level of security.

This security policy file provides the following configuration:

Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-124 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

■ A security context token is used to sign all system SOAP headers, the timestamp
security SOAP header, and the SOAP body.

■ A security context token is used to encrypt the body of the SOAP message.

■ The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will
have to create a custom security policy file, described in later sections.

Example 2–37 Wssc-sct.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
 <wssp:Confidentiality SupportTrust10="true">
 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>

Note: If you specify this predefined security policy file, you should
not also specify any other predefined security policy file.

Proprietary Web Services Security Policy Files (JAX-RPC Only)

Configuring Message-Level Security 2-125

 </wssp:Target>
 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:KeyInfo>
 </wssp:Confidentiality>
 <wssp:MessageAge />
</wsp:Policy>

Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-126 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

3

Configuring Transport-Level Security 3-1

3Configuring Transport-Level Security

[4] The chapter describes how to configure transport-level security for your WebLogic
web service for WebLogic Server 12.1.3 using Java API for XML Web Services
(JAX-WS) and Java API for XML-based RPC (JAX-RPC).

Transport-level security refers to securing the connection between a client application
and a web service with Secure Sockets Layer (SSL).

SSL provides secure connections by allowing two applications connecting over a
network to authenticate the other's identity and by encrypting the data exchanged
between the applications. Authentication allows a server, and optionally a client, to
verify the identity of the application on the other end of a network connection. A client
certificate (two-way SSL) can be used to authenticate the user.

See "Secure Sockets Layer (SSL)" in Understanding Security for Oracle WebLogic Server for
general information about SSL and the implementations included in WebLogic Server.

Transport-level security includes HTTP BASIC authentication as well as SSL.

This chapter includes the following sections:

■ Section 3.1, "Configuring Transport-Level Security Through Policy"

■ Section 3.2, "Available Transport-Level Policies"

■ Section 3.3, "Prerequisite: Configure SSL"

■ Section 3.4, "Configuring Transport-Level Security Through Policy: Main Steps"

■ Section 3.5, "Example of Configuring Transport Security for JAX-WS"

■ Section 3.6, "Persisting the State of a Request over SSL (JAX-WS Only)"

■ Section 3.7, "Configuring Transport-Level Security Via UserDataConstraint: Main
Steps (JAX-RPC Only)"

■ Section 3.8, "Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC
Only)"

3.1 Configuring Transport-Level Security Through Policy
WebLogic Server includes the predefined transport-level policy files described in
Section 3.2, "Available Transport-Level Policies", which typically satisfy the security
needs of most programmers and use cases.

You can also create and use your own WS-SecurityPolicy file if you need additional
configuration, as described in Section 2.7, "Creating and Using a Custom Policy File". If
you need to do this, you can use the predefined WS-SecurityPolicy files as templates to
create your own custom files. The policy .xml files are located in WL_

Available Transport-Level Policies

3-2 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

HOME/server/lib/weblogic.jar. Within weblogic.jar, the policy files are located in
/weblogic/wsee/policy/runtime.

For example, the Oracle-supplied Wssp1.2-2007-Saml2.0-Bearer-Https.xml policy
file includes the following assertion indicating that the policy requires one-way SSL, as
shown in Example 3–1.

Example 3–1 Specifying SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken/>
</wsp:Policy>
</sp:TransportToken>

If you needed to instead use two-way SSL, you could create a custom policy that adds
the RequireClientCertificate assertion, as shown in Example 3–2.

Example 3–2 Two-Way SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken >
<wsp:Policy>
<sp:RequireClientCertificate/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

The Wssp1.2-2007-Https-BasicAuth.xml policy file requires both SSL and HTTP
BASIC Authentication, as shown in Example 3–3.

Example 3–3 SSL and HTTP Basic Authentication in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken>
<wsp:Policy>
<sp:HttpBasicAuthentication/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

3.2 Available Transport-Level Policies
These policies require use of the https protocol to access the WSDL and invoke web
services operations:

Table 3–1 Transport Level Policies

Policy File Description

Wssp1.2-2007-Saml2.0-Be
arer-Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation
method for Authentication.

Prerequisite: Configure SSL

Configuring Transport-Level Security 3-3

3.3 Prerequisite: Configure SSL
Before you can use a transport-level policy to protect a web service, you must
configure SSL for the core WebLogic Server security subsystem.

The out-of-the-box private key and X.509 certificate pairs are provided for
demonstration and testing purposes. For this reason Oracle highly recommends you
use your own keystore and key pair in production.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client applications
and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see "Configuring SSL" in Administering Security for Oracle WebLogic Server.

Wssp1.2-2007-Saml2.0-Be
arer-Https-Basic256Sha25
6.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Saml1.1-Be
arer-Https.xml

One-way SSL uses SAML 1.1 token with Bearer confirmation
method for Authentication.

Wssp1.2-2007-Saml1.1-Be
arer-Https-Basic256Sha25
6.xml

Same as Wssp1.2-2007-Saml1.1-Bearer-Https.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Https.xml One way SSL.

Wssp1.2-2007-Https-Basi
cAuth.xml

One way SSL with Basic Authentication. A 401 challenge
occurs if the Authorization header is not present in the request.

Wssp1.2-2007-Https-Clie
ntCertReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Set Two Way Client Cert Behavior to "Client Certs Requested
But Not Enforced." See "Configure two-way SSL" in Oracle
WebLogic Server Administration Console Online Help for
information on how to do this.

Wssp1.2-2007-Https-User
nameToken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-2007-Https-User
nameToken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-User
nameToken-Plain-Basic25
6Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but
uses a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-BasicAut
h.xml

One way SSL with Basic Authentication. A 401 challenge
occurs if the Authorization header is not present in the request.

Wssp1.2-Https-Usernam
eToken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-Usernam
eToken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-ClientCer
tReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Table 3–1 (Cont.) Transport Level Policies

Policy File Description

Prerequisite: Configure SSL

3-4 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

If you configure two-way SSL for WebLogic Server, you must also configure SSL for
the client application, as described in Section 3.3.3, "Configuring Two-Way SSL for a
Client Application".

3.3.1 OPSS Keystore Service Supported
As described in "Configuring Oracle OPSS Keystore Service" in Administering Security
for Oracle WebLogic Server, the OPSS Keystore Service provides an alternate mechanism
to manage keys and certificates.

WebLogic web services policies that require Secure Sockets Layer (SSL) can use an
existing OPSS Keystore Service without additional configuration.

However, WebLogic web service policies that use keys and certificates for message
protection as described in Chapter 2, "Configuring Message-Level Security" cannot use
the OPSS Keystore Service. Specifically, do not configure the IntegrityKeyStore and
ConfidentialityKeyStore properties to use an OPSS Keystore Service.

Oracle recommends that you instead use OWSM message protection policies with the
OPSS Keystore Service, as described in Appendix A, "Using Oracle Web Services
Manager Security Policies".

3.3.2 Configuring SSL: Main Steps
This section summarizes the procedure described in Setting Up SSL: Main Steps. The
steps are described here for your convenience; see Setting Up SSL: Main Steps for
complete information.

To set up SSL:

1. Configure identity and trust, as described in Configuring Keystores:

a. Obtain digital certificates, private keys, and trusted CA certificates from the
CertGen utility, the keytool utility, or a reputable vendor such as Entrust or
Verisign. You can also use the digital certificates, private keys, and trusted CA
certificates provided by the WebLogic Server kit. The demonstration digital
certificates, private keys, and trusted CA certificates should be used in a
development environment only.

b. Store the private keys, digital certificates, and trusted CA certificates. Private
keys and trusted CA certificates are stored in a keystore.

c. Configure the identity and trust keystores for WebLogic Server in the
WebLogic Server Administration Console. See "Configure keystores" in the
Oracle WebLogic Server Administration Console Online Help.

2. Set SSL configuration options for the private key alias and password in the
WebLogic Server Administration Console.

Optionally, set configuration options that require the presentation of client
certificates (for two-way SSL). See "Configure two-way SSL" in the Oracle WebLogic
Server Administration Console Online Help.

Note: You can use the OPSS Keystore Service only if you have
installed the Oracle JRF template on the WebLogic Server system and
used this template to create the domain. The OPSS Keystore Service is
available only with the JRF template and is not available with the
default WebLogic Server configuration.

Prerequisite: Configure SSL

Configuring Transport-Level Security 3-5

3.3.3 Configuring Two-Way SSL for a Client Application

If you configured two-way SSL for WebLogic Server, the client application must
present a certificate to WebLogic Server, in addition to WebLogic Server presenting a
certificate to the client application as required by one-way SSL. You must also follow
these requirements:

■ Create a client-side keystore that contains the client's private key and X.509
certificate pair.

The SSL package of Java SE requires that the password of the client's private key
must be the same as the password of the client's keystore. For this reason, the
client keystore can include only one private key and X.509 certificate pair.

■ Configure the core WebLogic Server's security subsystem, mapping the client's
X.509 certificate in the client keystore to a user. See "Configuring a User Name
Mapper" in Administering Security for Oracle WebLogic Server.

■ Create a truststore which contains the certificates that the client trusts; the client
application uses this truststore to validate the certificate it receives from WebLogic
Server. Because of the Java SE password requirement described in the preceding
bullet item, this truststore must be different from the keystore that contains the key
pair that the client presents to the server.

You can use the Cert Gen utility or the keytool
(http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.h
tml) utility to perform this step. For development purposes, the keytool utility is
the easiest way to get started.

See "Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authorities" in Administering Security for Oracle WebLogic Server.

■ Set Two Way Client Cert Behavior to "Client Certs Requested But Not Enforced."
See "Configure two-way SSL" in Oracle WebLogic Server Administration Console
Online Help for information on how to do this.

■ When you run the client application that invokes the web service, specify the
following properties:

– -Djavax.net.ssl.trustStore=trustStore

– -Djavax.net.ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains
the list of trusted certificates (one of which should be the server's certificate)
and trustStorePassword specifies the truststore's password.

The preceding properties are in addition to the standard properties you must
set to specify the client-side keystore:

– -Djavax.net.ssl.keyStore=keyStore

– -Djavax.net.ssl.keyStorePassword=keyStorePassword

Note: web services using asynchronous or reliable messaging will
automatically use the server's SSL certificate when establishing a new
connection (back from the receiving service to the sending service) for
the purposes of sending asynchronous responses, acknowledgments,
and so forth.

Configuring Transport-Level Security Through Policy: Main Steps

3-6 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

3.4 Configuring Transport-Level Security Through Policy: Main Steps
To configure transport-level web services security via one or more policy files:

1. As outlined in Section 3.3, "Prerequisite: Configure SSL", configure SSL for the core
WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client
applications and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see "Configuring SSL" in Administering Security for Oracle WebLogic
Server.

2. Use @Policy or @Policies JWS annotations in your JWS file, or associate policy
files only at runtime using the WebLogic Server Administration Console, or
specify some policy files using the annotations and then associate additional ones
at runtime.

See Table 3–1 for a description of the available transport-level policies.

The following example attaches the policy at the class level:

@Policy(uri="policy:Wssp1.2-2007-Saml2.0-Bearer-Https.xml")
public class EchoService {

3. If you added @Policy or @Policies JWS annotations in your JWS file, compile and
redeploy your web service as part of the normal iterative development process.

4. When you run the client application that invokes the web service, specify certain
properties to indicate the SSL implementation that your application should use. In
particular:

■ To specify the Sun SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains
the list of trusted certificates (one of which should be the server's certificate).
To disable host name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

See Section 3.3.3, "Configuring Two-Way SSL for a Client Application" for
additional details about two-way SSL.

3.5 Example of Configuring Transport Security for JAX-WS
This section describes a simple example for configuring JAX-WS with Transport
Security from a standalone client for one-way SSL.

See the following documentation for additional prerequisite information:

Note: If you specify a transport-level security policy for your web
service, it must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Example of Configuring Transport Security for JAX-WS

Configuring Transport-Level Security 3-7

■ "Configuring SSL" in Administering Security for Oracle WebLogic Server

■ "Set up SSL" in the Oracle WebLogic Server Administration Console Online Help

■ "Configure KeyStores" in the Oracle WebLogic Server Administration Console Online
Help

3.5.1 One-Way SSL (HTTPS and HTTP Basic Authentication Example)
The web service Java source is shown in Example 3–4:

Example 3–4 Web Service One-Way SSL Example

package httpbasicauth
import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.Policy;

@WebService(name="HttpsBasicAuth", portName="HttpsBasicAuthSoapPort"
 targetNamespace="https://httpsbasicauth")

// Security Policy for Https and Http Basic Authentication
@Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml)

public class HttpsBasicAuth {

 public HttpsBasicAuth() {}

 WebMethod()
 public String echoString(String input) {

 return("[HttpsBasicAuth.echoString]: " + input);

 }

}

The standalone Java web service client code that uses "weblogic.net" as the Java
protocol handler is shown in Example 3–5:

Example 3–5 Web Service Client One-Way SSL Example With weblogic.net

package httpbasicauth.client

import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

Note: If you specify a transport-level security policy for your web
service, it must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

Example of Configuring Transport Security for JAX-WS

3-8 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

import javax.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

 try {
 // This ignores the host name verifcation for the Public Certificate used by
the Server

System.setProperty("weblogic.security.SSL.ignoreHostnameVerification","true");

 System.setProperty("java.protocol.handler.pkgs", "weblogic.net");
 System.setProperty("weblogic.security.TrustKeyStore","CustomTrust");
 System.setProperty("weblogic.security.CustomTrustKeyStoreFileName", "TRUST_
STORE_LOCATION");
 System.setProperty("weblogic.security.CustomTrustKeyStorePassPhrase","TRUST_
STORE_PASSWORD");
 System.setProperty("weblogic.security.CustomTrustKeyStoreType","JKS");

 URL url = new URL(endpoint+"?WSDL");
 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)
 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }
 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

Example of Configuring Transport Security for JAX-WS

Configuring Transport-Level Security 3-9

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}

The standalone Java web service client code that uses the default Java protocol handler
is shown in Example 3–6:

Example 3–6 Web Service Client One-Way SSL Example With java.net

package httpbasicauth.client

import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

 try {

 System.setProperty("java.protocol.handler.pkgs", "java.net");
 System.setProperty("javax.net.ssl.trustStore", TRUST_STORE_LOCATION);
 System.setProperty("javax.net.ssl.trustStorePassword", TRUST_STORE_
PASSWORD);

 URL url = new URL(ENDPOINT+"?WSDL");

Example of Configuring Transport Security for JAX-WS

3-10 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)
 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }

 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}
The related portion of the ant build file is shown in Example 3–7:

Example 3–7 Ant Build File

<property name="output.dir" value="../../build/httpsbasicauth" />
<property name="service.dir" value="${output.dir}/httpsbasicauthApp" />
<property name="output.dir.client" value="${output.dir}/client" />
<property name="clientclasses.dir" value="${output.dir}/client" />
<property name="service.name" value="HttpsBasicAuth" />
<property name="wsdl.name" value="HttpsBasicAuthService" />
<property name="packageName" value="httpsbasicauth.client" />

<path id="client.class.path">
 <pathelement path="${java.class.path}" />
 <pathelement path="${clientclasses.dir}" />
</path>

Persisting the State of a Request over SSL (JAX-WS Only)

Configuring Transport-Level Security 3-11

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask"/>

 <target name="jwsc">

 <jwsc srcdir="." destdir="${output.dir.server}" sourcepath="../" debug="true"
keepGenerated="true">

 <module name="HttpsBasicAuth" contextPath="httpsbasicauth">

 <jws file="HttpsBasicAuth.java" type="JAXWS" generateWsdl="true">
 <WLHttpTransport contextPath="httpsbasicauth"
serviceUri="httpsbasicauth"/>
 </jws>

 </jwsc>

 </target>

 <target name="client">

 <clientgen
wsdl="jar:file:${service.dir}/${service.name}.war!/WEB-INF/${wsdl.name}.wsdl"
 type="JAXWS"
 destDir="${clientclasses.dir}"
 packageName="${packageName}">

 </clientgen>

 <javac srcdir="${clientclasses.dir}"
 destdir="${clientclasses.dir}"
 includes="**/*.java"
 classpathref="client.class.path" />

 <javac srcdir="./"
 destdir="${clientclasses.dir}"
 includes="HttpsBasicAuthClient.java"
 classpathref="client.class.path" />

 </target>

 <target name="run">

 <java classname="httpsbasicauth.client.HttpsBasicAuthClient"
 classpathref="client.class.path"
 fork="true" />
 </target>

3.6 Persisting the State of a Request over SSL (JAX-WS Only)
JAX-RPC clients can use the SSLAdapter mechanism described in Section 3.8, "Using a
Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)" to persist the state of a
request over an SSL connection. In doing so, they persist the instance of the custom
SSLAdapter used to establish the connection.

Oracle WebLogic Server includes a two-way SSL client API for JAX-WS that you can
use to construct an SSLSocketFactory from system properties or from a new

Persisting the State of a Request over SSL (JAX-WS Only)

3-12 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

weblogic.wsee.jaxws.sslclient.PersistentSSLInfo class. The API can persist SSL info for
Reliable Messaging, callbacks, and so forth, and supports the following well-known
system properties:

■ weblogic.wsee.client.ssl.relaxedtrustmanager

■ weblogic.security.SSL.ignoreHostnameVerification

The following new classes are available. See the Javadoc for complete descriptions.

■ weblogic.wsee.jaxws.sslclient.SSLClientUtil. This class has the following methods:

– public static SSLSocketFactory getSSLSocketFactory(KeyManager[] kms,
TrustManager[] tms);

– public static SSLSocketFactory getSSLSocketFactory(PersistentSSLInfo sslInfo);

– public static SSLSocketFactory getSSLSocketFactoryFromSysProperties();

■ weblogic.wsee.jaxws.sslclient.PersistentSSLInfo, a Javabean for setting SSL info.

■ weblogic.wsee.jaxws.JAXWSProperties, includes a CLIENT_PERSISTENT_SSL_INFO
property.

3.6.1 Example of Getting SSLSocketFactory From System Properties
Example 3–8 shows an example of getting the SSLSocketFactory from system
properties and using them in the request context.

Example 3–8 Getting SSLSocketFactory From System Properties

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 System.setProperty("javax.net.ssl.keyStore", clientKeyStore);
 System.setProperty("javax.net.ssl.keyStorePassword", clientKeyStorePasswd);
 System.setProperty("javax.net.ssl.trustStore", trustKeystore);
 System.setProperty("javax.net.ssl.trustStorePasswd", trustKeystorePasswd);

 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactoryFromSysProperties());

Example 3–9 shows an example of getting SSLSocketFactory from persistent info
(PersistentSSLInfo), as well as directly setting a SSLSocketFactory if persistence is not
needed.

Example 3–9 Getting SSLSocketFactory from PersistentSSLInfo

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String clientKeyAlias = ...;
 String clientKeyPass = ...;

Note: The clientKeyStore and clientKeyStorePasswd have this
restriction: the SSL package of Java SE requires that the password of
the client's private key must be the same as the password of the
client's keystore. For this reason, the client keystore can include only
one private key and X.509 certificate pair.

Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only)

Configuring Transport-Level Security 3-13

 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 PersistentSSLInfo sslInfo = new PersistentSSLInfo();
 sslInfo.setKeystore(clientKeyStore);
 sslInfo.setKeystorePassword(clientKeyStorePasswd);
 sslInfo.setKeyAlias(clientKeyAlias);
 sslInfo.setKeyPassword(clientKeyPass);
 sslInfo.setTrustKeystore(trustKeystore);

 //user can print out the sslInfo for debug
 System.out.print(sslInfo.toString());

//Put sslInfo into requestContext for persistence, it might be required by JAX-WS
advance features, such as, RM, Callback
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.CLIENT_PERSISTENT_SSL_INFO, sslInfo);

 //Alternatively, you can directly set a SSLSocketFactory if persistence is
not necessary. Note: The following line should be omitted if sslInfo is set with
above line.
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactory(sslInfo));

sslInfo can set a key alias (clientKeyAlias) that points to a key in keystore (as an SSL
client-side key) in the event that the client keystore has multiple keys.

3.7 Configuring Transport-Level Security Via UserDataConstraint: Main
Steps (JAX-RPC Only)

The UserDataConstraint annotation requires that the web service be invoked using
the HTTPS transport.

To configure transport-level web services security via the UserDataConstraint
annotation in your JWS file:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client
applications and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see "Configuring SSL" in Administering Security for Oracle WebLogic
Server.

2. In the JWS file that implements your web service, add the
@weblogic.jws.security.UserDataConstraint annotation to require that the web
service be invoked using the HTTPS transport.

For details, see "weblogic.jws.security.UserDataConstraint" in the WebLogic Web
Services Reference for Oracle WebLogic Server.

3. Recompile and redeploy your web service as part of the normal iterative
development process.

See "Developing WebLogic Web Services" in Developing JAX-RPC Web Services for
Oracle WebLogic Server

Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

3-14 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

4. Update the build.xml file that invokes the clientgen Ant task to use a static
WSDL to generate the JAX-RPC stubs of the web service, rather than the dynamic
deployed WSDL of the service.

The reason clientgen cannot generate the stubs from the dynamic WSDL in this
case is that when you specify the @UserDataConstraint annotation, all client
applications are required to specify a truststore, including clientgen. However,
there is currently no way for clientgen to specify a truststore, thus the Ant task
must generate its client components from a static WSDL that describes the web
service in the same way as the dynamic WSDL.

5. When you run the client application that invokes the web service, specify certain
properties to indicate the SSL implementation that your application should use. In
particular:

■ To specify the Sun SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains
the list of trusted certificates (one of which should be the server's certificate).
To disable host name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

See Section 3.3.3, "Configuring Two-Way SSL for a Client Application" for
details about two-way SSL.

3.8 Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC
Only)

You can use a custom SSLAdapter implementation to provide client certificates and
other services needed to establish SSL connections between client and server when
using reliable messaging or buffering. The reliable messaging and buffering
subsystems persist the state of a request over an SSL connection. In doing so, they
persist the instance of the custom SSLAdapter used to establish the connection.

When the request is restored from persistence, the persistence facility must have access
to the custom SSLAdapter class in order to properly restore the custom SSLAdapter
object saved with the request. To allow for this, you must provide your custom
SSLAdapter class via the server's system CLASSPATH (and not within an application
deployed to the server).

The custom SSLAdapter must extend SSLAdapter, and is installed and enabled via the
following procedure:

1. Create an instance of
weblogic.wsee.connection.transport.https.HttpsTransportInfo.

2. Set the custom SSL adapter on that transport info by calling
HttpsTransportInfo.setSSLAdapter(SSLAdapter adapter).

Note: All objects placed into Stub and MessageContext properties
must be serializable and externalizable, and must have their
implementations available on the server system CLASSPATH. This
section describes the specific case of a custom SSLAdapter
implementation.

Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

Configuring Transport-Level Security 3-15

3. Set the transport info on the web services stub instance (stub of type
javax.xml.rpc.Stub) by calling

stub._setProperty(weblogic.wsee.connection.soap.SoapClientConnection.TRANSPORT_
INFO_PROPERTY,ti);

Where stub is the web services stub, and it is the HttpsTransportInfo you
configured.

If you do not follow this procedure and provide the custom SSLAdapter class on the
system CLASSPATH, a ClassNotFoundException exception is generated:

java.io.IOException: java.lang.ClassNotFoundException:
 examples.webservices.client.ServiceBase$TestSSLAdapter

Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

3-16 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

4

Configuring Access Control Security (JAX-RPC Only) 4-1

4Configuring Access Control Security (JAX-RPC
Only)

[5] The chapter describes how to configure access control security for your WebLogic web
service for WebLogic Server 12.1.3 using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Section 4.1, "Configuring Access Control Security: Main Steps"

■ Section 4.2, "Updating the JWS File With the Security-Related Annotations"

■ Section 4.3, "Updating the JWS File With the @RunAs Annotation"

■ Section 4.4, "Setting the Username and Password When Creating the Service
Object"

4.1 Configuring Access Control Security: Main Steps
Access control security refers to configuring the web service to control the users who
are allowed to access it, and then coding your client application to authenticate itself,
using HTTP/S or username tokens, to the web service when the client invokes one of
its operations.

You specify access control security for your web service by using one or more of the
following annotations in your JWS file:

■ weblogic.jws.security.RolesAllowed

■ weblogic.jws.security.SecurityRole

■ weblogic.jws.security.RolesReferenced

■ weblogic.jws.security.SecurityRoleRef

■ weblogic.jws.security.RunAs

The following procedure describes the high-level steps to use these annotations to
enable access control security; later sections in the chapter describe the steps in more
detail.

Note: The @weblogic.security.jws.SecurityRoles and
@weblogic.security.jws.SecurityIdentity JWS annotations were
deprecated as of WebLogic Server 9.1.

Configuring Access Control Security: Main Steps

4-2 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

1. Update your JWS file, adding the @weblogic.jws.security.RolesAllowed,
@weblogic.jws.security.SecurityRole,
@weblogic.jws.security.RolesReferenced, or
@weblogic.jws.security.SecurityRoleRef annotations as needed at the
appropriate level (class or operation).

See Section 4.2, "Updating the JWS File With the Security-Related Annotations".

2. Optionally specify that WebLogic Server internally run the web service using a
specific role, rather than the role assigned to the user who actually invokes the
web service, by adding the @weblogic.jws.security.RunAs JWS annotation.

See Section 4.3, "Updating the JWS File With the @RunAs Annotation".

3. Optionally specify that your web service can be, or is required to be, invoked
using HTTPS by adding the @weblogic.jws.security.UserDataConstraint JWS
annotation.

See Section 3.7, "Configuring Transport-Level Security Via UserDataConstraint:
Main Steps (JAX-RPC Only)" for details. This section also discusses how to update
your client application to use SSL.

4. Recompile and redeploy your web service as part of the normal iterative
development process.

See "Developing WebLogic Web Services" in Developing JAX-RPC Web Services for
Oracle WebLogic Server.

5. Using the WebLogic Server Administration Console, create valid WebLogic Server
users, if they do not already exist. If the mapping of users to roles is external, also
use the WebLogic Server Administration Console to create the roles specified by
the @SecurityRole annotation and map the users to the roles.

See "Users, Groups, and Security Roles" in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

6. Update your client application to use the HttpTransportInfo WebLogic API to
specify the appropriate user and password when creating the Service object.

See Section 4.4, "Setting the Username and Password When Creating the Service
Object".

Note: It is assumed in the following procedure that you have already
created a JWS file that implements a WebLogic web service and you
want to update it with access control security.

It is also assumed that you use Ant build scripts to iteratively develop
your web service and that you have a working build.xml file that you
can update with new information.

Finally, it is assumed that you have a client application that invokes
the non-secured web service. If these assumptions are not true, see
Developing JAX-RPC Web Services for Oracle WebLogic Server.

Note: The mapping of users to roles is defined externally if you do
not specify the mapToPrincipals attribute of the @SecurityRole
annotation in your JWS file to list all users who can invoke the web
service.

Updating the JWS File With the Security-Related Annotations

Configuring Access Control Security (JAX-RPC Only) 4-3

7. Update the clientgen Ant task in your build.xml file to specify the username and
password of a valid WebLogic user (in the case where your web service uses the
@RolesAllowed annotation) and the trust store that contains the list of trusted
certificates, including WebLogic Server's (in the case you specify
@UserDataConstraint).

You do this by adding the standard Ant <sysproperty> nested element to the
clientgen Ant task, and set the key attribute to the required Java property, as
shown in the following example.

<clientgen
 wsdl="http://example.com/myapp/myservice.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService" >
 <sysproperty key="javax.net.ssl.trustStore"
 value="/keystores/DemoTrust.jks"/>
 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"
 value="false"/>
 <sysproperty key="javax.xml.rpc.security.auth.username"
 value="juliet"/>
 <sysproperty key="javax.xml.rpc.security.auth.password"
 value="secret"/>
</clientgen>

8. Regenerate client-side components and recompile client Java code as usual.

4.2 Updating the JWS File With the Security-Related Annotations
Use the WebLogic-specific @weblogic.jws.security.RolesAllowed annotation in your
JWS file to specify an array of @weblogic.jws.security.SecurityRoles annotations
that list the roles that are allowed to invoke the web service. You can specify these two
annotations at either the class- or method-level. When set at the class-level, the roles
apply to all public operations. You can add additional roles to a particular operation
by specifying the annotation at the method level.

The @SecurityRole annotation has the following two attributes:

■ role is the name of the role that is allowed to invoke the web service.

■ mapToPrincipals is the list of users that map to the role. If you specify one or
more users with this attribute, you do not have to externally create the mapping
between users and roles, typically using the WebLogic Server Administration
Console. However, the mapping specified with this attribute applies only within
the context of the web service.

The @RolesAllowed annotation does not have any attributes.

You can also use the @weblogic.jws.security.RolesReferenced annotation to specify
an array of @weblogic.jws.security.SecurityRoleRef annotations that list references
to existing roles. For example, if the role manager is already allowed to invoke the web
service, you can specify that the mgr role be linked to the manager role and any user
mapped to mgr is also able to invoke the web service. You can specify these two
annotations only at the class-level.

Note: The example hard-codes the username and password;
prompting for both provides more security. You need the username
and password for @RolesAllowed, and trustStore if SSL must be used.

Updating the JWS File With the Security-Related Annotations

4-4 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

The @SecurityRoleRef annotation has the following two attributes:

■ role is the name of the role reference.

■ link is the name of the already-specified role that is allowed to invoke the web
service. The value of this attribute corresponds to the value of the role attribute of
a @SecurityRole annotation specified in the same JWS file.

The @RolesReferenced annotation does not have any attributes.

The following example shows how to use the annotations described in this section in a
JWS file, with the relevant sections shown in bold:

package examples.webservices.security_roles;
import javax.jws.WebMethod;
import javax.jws.WebService;
// WebLogic JWS annotations
import weblogic.jws.WLHttpTransport;
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRole;
import weblogic.jws.security.SecurityRoleRef;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="security",
 serviceUri="SecurityRolesService",
 portName="SecurityRolesPort")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
@RolesReferenced (
 @SecurityRoleRef (role="mgr", link="manager")
)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SecurityRolesImpl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

The example shows how to specify that only the manager, vp, and mgr roles are
allowed to invoke the web service. The mgr role is actually a reference to the manager
role. The users juliet and amanda are mapped to the manager role within the context
of the web service. Because no users are mapped to the vp role, it is assumed that the
mapping occurs externally, typically using the WebLogic Server Administration
Console to update the WebLogic Server security realm.

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for reference information on these annotations.

Setting the Username and Password When Creating the Service Object

Configuring Access Control Security (JAX-RPC Only) 4-5

4.3 Updating the JWS File With the @RunAs Annotation
Use the WebLogic-specific @weblogic.jws.security.RunAs annotation in your JWS
file to specify that the web service is always run as a particular role. This means that
regardless of the user who initially invokes the web service (and the role to which the
user is mapped), the service is internally executed as the specified role.

You can set the @RunAs annotation only at the class-level. The annotation has the
following attributes:

■ role is the role which the web service should run as.

■ mapToPrincipal is the principal user that maps to the role.

The following example shows how to use the @RunAs annotation in a JWS file, with the
relevant sections shown in bold:

package examples.webservices.security_roles;
import javax.jws.WebMethod;
import javax.jws.WebService;
// WebLogic JWS annotations
import weblogic.jws.WLHttpTransport;
import weblogic.jws.security.RunAs;
@WebService(name="SecurityRunAsPortType",
 serviceName="SecurityRunAsService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="security_runas",
 serviceUri="SecurityRunAsService",
 portName="SecurityRunAsPort")
@RunAs (role="manager", mapToPrincipal="juliet")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SecurityRunAsImpl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

4.4 Setting the Username and Password When Creating the Service
Object

When you use the @RolesAllowed JWS annotation to secure a web service, only the
specified roles are allowed to invoke the web service operations. This means that you
must specify the username and password of a user that maps to the role when creating
the Service object in your client application that invokes the protected web service.

WebLogic Server provides the HttpTransportInfo class for setting the username and
password and passing it to the Service constructor. The following example is based
on the standard way to invoke a web service from a standalone Java client (as
described in Invoking Web Services in Developing JAX-RPC Web Services for Oracle
WebLogic Server) but also shows how to use the HttpTransportInfo class to set the
username and password. The sections in bold are discussed after the example.

package examples.webservices.sec_wsdl.client;
import weblogic.wsee.connection.transport.http.HttpTransportInfo;
import java.rmi.RemoteException;

Setting the Username and Password When Creating the Service Object

4-6 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the SecWsdlService web service.
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException{
 HttpTransportInfo info = new HttpTransportInfo();
 info.setUsername("juliet".getBytes());
 info.setPassword("secret".getBytes());
 SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", info);
 SecWsdlPortType port = service.getSecWsdlPort();
 try {
 String result = null;
 result = port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

The main points to note in the preceding example are as follows:

■ Import the HttpTransportInfo class into your client application:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;
■ Use the setXXX() methods of the HttpTransportInfo class to set the username

and password:

HttpTransportInfo info = new HttpTransportInfo();
info.setUsername("juliet".getBytes());
info.setPassword("secret".getBytes());

In the example, it is assumed that the user juliet with password secret is a valid
WebLogic Server user and has been mapped to the role specified in the
@RolesAllowed JWS annotation of the web service.

If you are accessing a web service using a proxy, the Java code would be similar to:

HttpTransportInfo info = new HttpTransportInfo();
Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));
info.setProxy(p);
info.setProxyUsername(user.getBytes());
info.setProxyPassword(pass.getBytes());

■ Pass the info object that contains the username and password to the Service
constructor as the second argument, in addition to the standard WSDL first
argument:

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", info);

See "Invoking Web Services" in Developing JAX-RPC Web Services for Oracle WebLogic
Server for general information about invoking a non-secured web service.

A

Using Oracle Web Services Manager Security Policies A-1

AUsing Oracle Web Services Manager Security
Policies

[6] This appendix describes how to use Oracle Web Services Manager WS-Security
(OWSM security) policies with WebLogic JAX-WS web services for WebLogic Server
12.1.3.

This appendix includes the following sections:

■ Overview of OWSM Security Policies

■ Attaching OWSM Security Policies to JAX-WS Web Services

■ Attaching OWSM Security Policies to JAX-WS Web Service Clients

■ Disabling a Globally Attached OWSM Policy

■ Configuring Policies

■ Overriding the Policy Configuration for the Web Service Client

■ Monitoring and Testing the Web Service

A.1 Overview of OWSM Security Policies
Oracle Fusion Middleware installs a portability layer on top of WebLogic Server that
integrates OWSM security policies into the WebLogic Server environment. This
portability layer provides OWSM security policies that you can use to protect
WebLogic JAX-WS web services and clients.

You can use the OWSM security policies as an alternative to the WebLogic WS-Security
policies for enforcing security for web services. You can also create custom OWSM
security policies and use them with WebLogic web services.

The following sections provide more information about the OWSM policies that are
available and when you should use them.

■ Section A.1.1, "Which OWSM Policies Are Supported for Java EE Web Services?"

■ Section A.1.2, "When Should You Use OWSM Security Policies?"

■ Section A.1.3, "Interoperability Between WebLogic Web Service Policies and
OWSM Policies"

A.1.1 Which OWSM Policies Are Supported for Java EE Web Services?
Only a subset of OWSM policies are supported for Java EE web services. For more
information, see "Which OWSM Policies Are Supported for Java EE Web Services?" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Overview of OWSM Security Policies

A-2 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

A.1.2 When Should You Use OWSM Security Policies?
You might want to use OWSM security policies to protect JAX-WS web services if you
already use SOA, ADF, or Web Center applications elsewhere in your environment
and you want a consistent security environment.

You should secure a WebLogic JAX-WS web service with OWSM security policies to
have consistent and interoperable web service security when these web services are
used in conjunction with Oracle Fusion Middleware applications.

That is, you should secure WebLogic JAX-WS web services with OWSM security
policies for use with applications that interact with Oracle Fusion Middleware
applications, not with standalone WebLogic Server web service applications.

Consider the following scenarios:

■ If you develop WebLogic JAX-WS web services or clients that interact with SOA
Composite Services, ADF Components, or WebCenter Services, then you should
use the OWSM security policies.

■ If you develop only WebLogic native Java JAX-WS web services, then you should
use WebLogic WS-Security policies.

Table A–1 lists policy selection guidelines for using the OWSM policies. In this table:

■ weblogic.jws.Policy annotation applies to WebLogic web service policies

■ weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation applies to OWSM
policies

Table A–1 Policy Selection Guidelines

@Policy
@Security
Policy

Feature to be
Implemented Which Policies to Use

Yes No WSS 1.0 with multiple
must support key
reference methods

Wssp1.2-2007-Wss1.0-UsernameT
oken-Plain-X509-Basic256.xml

Wssp1.2-2007-Saml1.1-SenderVou
ches-Wss1.0.xml

Yes No Username Token digest
authentication

Wssp1.2-2007-Https-UsernameTok
en-Digest.xml

Wssp1.2-2007-Wss1.0-UsernameT
oken-Digest-X509-Basic256.xml

Wssp1.2-2007-Wss1.1-UsernameT
oken-Digest-X509-Basic256.xml

No Yes Kerberos Authentication oracle/wss11_kerberos_token_
client_policy

oracle/wss11_kerberos_token_
service_policy

oracle/wss11_kerberos_token_
with_message_protection_client_
policy

oracle/wss11_kerberos_token_
with_message_protection_
service_policy

oracle/wss11_kerberos_token_
with_message_protection_
basic128_client_policy

oracle/wss11_kerberos_token_
with_message_protection_
basic128_service_policy

Overview of OWSM Security Policies

Using Oracle Web Services Manager Security Policies A-3

Yes No WSS 1.1 Derived Key Wssp1.2-2007-Wss1.1-DK-X509-Si
gnedEndorsing.xml

Wssp1.2-2007-Wss1.1-UsernameT
oken-Plain-DK.xml

Yes No All SAML 2.0 scenarios oracle/http_saml20_token_
bearer_client_policy

oracle/http_saml20_token_
bearer_service_policy

oracle/http_saml20_token_
bearer_over_ssl_client_policy

oracle/http_saml20_token_
bearer_over_ssl_service_policy

oracle/wss_saml20_token_bearer_
over_ssl_client_policy

oracle/wss_saml20_token_bearer_
over_ssl_service_policy

oracle/wss_saml20_token_over_
ssl_client_policy

oracle/wss_saml20_token_over_
ssl_service_policy

oracle/wss10_saml20_token_
client_policy

oracle/wss10_saml20_token_
service_policy

oracle/wss10_saml20_token_
with_message_protection_client_
policy

oracle/wss10_saml20_token_
with_message_protection_
service_policy

oracle/wss11_saml20_token_
with_message_protection_client_
policy

oracle/wss11_saml20_token_
with_message_protection_
service_policy

Yes No Encrypt before signing Policy assertion
<sp:EncryptBeforeSigning/> in
both WSS10 or WSS11, Symmetric
Binding or Asymmetric Binding,
such as the following:

<wsp:Policy xmlns:wsp="..." >
 <sp:SymmetricBinding>
 <wsp:Policy>
 .. .

<sp:EncryptBeforeSigning/>
 . . .
 </wsp:Policy>
 </sp:SymmetricBinding>
 . . .
</wsp:Policy>

Table A–1 (Cont.) Policy Selection Guidelines

@Policy
@Security
Policy

Feature to be
Implemented Which Policies to Use

Overview of OWSM Security Policies

A-4 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

For non-security features, such as WS-RM and MTOM, use WebLogic web service
policies.

For specific policy instances, you can attach an OWSM policy to the web service client
or service, and an WebLogic web service policy to the WebLogic Java EE web service
or client, and they will interoperate. The specific interoperability scenarios are
described in "Interoperability with Oracle WebLogic Server 11g Web Service Security
Environments" in Interoperability Solutions Guide for Oracle Web Services Manager.

For these interoperability scenarios, you can use either OWSM or WebLogic web
service policies, depending on the following considerations:

■ If additional non-standard policy assertions in the OWSM policy are needed for
configuration, then use the @SecurityPolicy annotation.

Examples of these non-standard assertions might be as follows:

<oralgp:Logging
xmlns:oralgp="http://schemas.oracle.com/ws/2006/01/loggingpolicy" . . .
 orawsp:category="security/logging">
 . . .
</oralgp:Logging>

or

<orawsp:Config xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy" . .
.>
 <orawsp:PropertySet . . .>
 . . .
 </orawsp:PropertySet>
</orawsp:Config>

■ If the application will be used to interoperate with existing WebLogic web services
or Microsoft Windows Communication Foundation (WCF)/.NET 3.5 Framework
services, and the previously-mentioned non-standard policy assertions are not
required, then use the @Policy annotation with WebLogic web service policies.

A.1.3 Interoperability Between WebLogic Web Service Policies and OWSM Policies
A subset of WebLogic web service policies interoperate with OWSM policies.

Yes No Multiple policy
alternatives

Policy assertion such as the
following:

<wsp:Policy xmlns:wsp="..." >
 <wsp:ExactlyOne>
 <wsp:All>
 ... ALternative 1
...
 </wsp:All>
 <wsp:All>
 ... ALternative 2
...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Table A–1 (Cont.) Policy Selection Guidelines

@Policy
@Security
Policy

Feature to be
Implemented Which Policies to Use

Overview of OWSM Security Policies

Using Oracle Web Services Manager Security Policies A-5

That is, for specific policy instances, you can attach an OWSM policy to the web
service client or service, and a WebLogic web service policy to the WebLogic Java EE
web service or client, and they will interoperate.

The specific interoperability scenarios are described in "Interoperability with Oracle
WebLogic Server 11g Web Service Security Environments" in Interoperability Solutions
Guide for Oracle Web Services Manager.

WebLogic Server includes the policies shown in Table A–2 for interoperability with
OWSM.

Table A–2 Interoperability WebLogic WS-Security Policies

Policy Name Description

Wssp1.2-2007-Saml1.1-Hol
derOfKey-Wss1.0-Basic128
.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.0.xml, including
SAML token for authentication with holder of key confirmation
method, in which the key inside the SAML Token is used for the
signature. It requires using Basic128 algorithm suite (AES128 for
encryption) instead of Basic256 algorithm suite (AES256).

Wssp1.2-wss11_saml_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml, including a
SAML token for authentication with the sender vouches
confirmation method, signed and encrypted on both request and
response with WSS1.1 X509 symmetric binding.

It endorses with the sender's X509 certificate, and message
signature is protected. It requires the use of the Basic128
algorithm suite (AES128 for encryption) instead of the Basic256
algorithm suite (AES256).

Wssp1.2-wss10_saml_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml, including
SAML token for authentication with sender vouches
confirmation method, signed with the client's private key. It
requires using Basic128 algorithm suite (AES128 for encryption)
instead of Basic256 algorithm suite (AES256). It also uses the
direct key reference that includes public certificates.

Wssp1.2-2007-Saml1.1-Sen
derVouches-Https.xml

Two-way SSL that uses SAML 1.1 token with sender vouches
confirmation method for authentication. It requires client
certificates, and the recipient checks for the initiator's public
certificate.

Wssp1.2-wss10_x509_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Wss1.0-X509-Basic256.xml for mutual
authentication with X.509 Certificates. It requires using Basic128
algorithm suite (AES128 for encryption) instead of Basic256
algorithm suite (AES256). It also uses the direct key reference
that includes public certificates.

Wssp1.2-2007-Wss1.1-Encr
yptedKey-Basic128.xml

This policy provides similar security features to that of
Wssp1.2-Wss1.1-EncryptedKey.xml. The policy requires the
message to be encrypted and signed without X509 certificate
from the client side. It is used for anonymous authentication.

Wssp1.2-wss11_x509_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml. It
endorses with the sender's X509 certificate, and the message
signature is protected. It requires the use of the Basic128
algorithm suite (AES128 for encryption) instead of the Basic256
algorithm suite (AES256).

Attaching OWSM Security Policies to JAX-WS Web Services

A-6 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

A.2 Attaching OWSM Security Policies to JAX-WS Web Services
The OWSM WS-Security policy attachment model is similar to that of the WebLogic
web service policies. You can attach OWSM policies to WebLogic JAX-WS web services
using one of the following methods:

■ Policy annotations at design time, as described in "Attaching Policies to Java EE
Web Services and Clients Using Annotations" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ WebLogic Server Administration Console at runtime, as described in Section A.2.1,
"Attaching OWSM Security Policies Using the Administration Console."

■ Fusion Middleware Control or WLST at runtime, as described in the following
sections in Securing Web Services and Managing Policies with Oracle Web Services
Manager:

– "Attaching Policies Directly Using Fusion Middleware Control"

– "Attaching Policies Globally Using Fusion Middleware Control"

– "Attaching Policies Directly to Java EE Web Services Using WLST"

– "Attaching Policies Globally Using WLST"

You can attach only one type of security policy to a web service, either WebLogic web
service security policies or OWSM policies. You cannot attach both WebLogic web
service policies and OWSM policies to the same web service, through either the
annotation mechanism, the WebLogic Server Administration Console, Fusion
Middleware Control, or a combination of the three.

Wssp1.2-2007-Wss1.1-User
nameToken-Plain-Encrypte
dKey-Basic128.xml

This policy provides similar security features to that of
Wssp1.2-Wss1.1-UsernameToken-Plain-X509-Basic256.xml,
which has WSS 1.1 X509 with asymmetric binding and
authentication with plain-text Username Token. It requires using
Basic128 algorithm suite (AES128 for encryption) instead of
Basic256 algorithm suite (AES256).

Wssp1.2-wss10_username_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml,
including encrypted plain text password for authentication,
signed with the client's private key. It requires using Basic128
algorithm suite (AES128 for encryption) instead of Basic256
algorithm suite (AES256). It also uses the direct key reference
that includes public certificates.

Wssp1.2-2007-Saml1.1-Sen
derVouches-Wss1.1-Basic1
28.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml.

Wssp1.2-2007-Wss1.1-Encr
yptedKey-X509-Endorsing-
Basic128.xml

This policy provides similar security features to that of
Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml.

Wssp1.2-2007-Wss1.1-X509
-Basic128.xml

This policy provides similar security features to that of
Wssp1.2-2007-Wss1.0-X509-Basic256.xml.

Wssp1.2-wss11_saml20_
token_with_message_
protection_owsm_
policy.xml

This policy provides similar security features to that of
Wssp1.2-wss11_saml_token_with_message_protection_owsm_
policy.xml.

Table A–2 (Cont.) Interoperability WebLogic WS-Security Policies

Policy Name Description

Attaching OWSM Security Policies to JAX-WS Web Services

Using Oracle Web Services Manager Security Policies A-7

You can attach an OWSM security policy only to a JAX-WS web service; you cannot
attach this type of policy to a JAX-RPC web service.

The following sections describe how to use the WebLogic Server Administration
Console to attach OWSM security policies to JAX-WS web services:

■ Section A.2.1, "Attaching OWSM Security Policies Using the Administration
Console"

■ Section A.2.2, "Refreshing the Cache After Attaching Policies"

A.2.1 Attaching OWSM Security Policies Using the Administration Console
Attaching OWSM policies to a deployed web service at runtime using the WebLogic
Server Administration Console is similar to attaching WebLogic web service policies,
as described in Chapter 2, "Configuring Message-Level Security".

You can choose to not use @SecurityPolicy or @SecurityPolicies annotations in
your JWS file and attach policies only at runtime using the WebLogic Server
Administration Console. Or, you can attach a subset of policies using the annotations
and then attach additional policies at runtime. If you attach a policy file using the JWS
annotations, you can remove the policy at runtime using the WebLogic Server
Administration Console.

At runtime, the WebLogic Server Administration Console allows you to attach as
many policies as you want with a web service and its operations, even if the assertions
in the policies contradict each other or contradict the assertions in policies attached at
design time using the JWS annotations. It is up to you to ensure that multiple attached
policies work together. If any contradictions exist, WebLogic Server returns a runtime
error when a client application invokes the web service operation.

There is no policy validation. The following specific combinations are valid:

■ One management policy can be attached to a policy subject.

■ One security policy with subtype authentication can be attached to a subject.

■ One security policy with subtype message protection can be attached to a subject.

■ One security policy with subtype authorization can be attached to a subject.

■ If an authentication policy and an authorization policy are both attached to a
policy subject, the authentication policy must precede the authorization policy.

Perform the following steps to attach an OWSM security policy via the WebLogic
Server Administration Console:

1. Using the WebLogic Server Administration Console, create the default web service
security configuration, which must be named default_wss. The default web
service security configuration is used by all web services in the domain unless they
have been explicitly programmed to use a different configuration.

See "Create a Web Service Security Configuration" in the Oracle WebLogic Server
Administration Console Online Help.

Note: There may be either one or two security policies attached to a
policy subject. A security policy can contain an assertion that belongs
to the authentication or message protection subtype categories, or an
assertion that belongs to both subtype categories. The second security
policy contains an assertion that belongs to the authorization subtype.

Attaching OWSM Security Policies to JAX-WS Web Services

A-8 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

2. From the Summary of Deployments page, select the application for which you
want to secure a web service.

3. Click the plus sign (+) to expand the application. Select the web service you want
to secure.

4. Select the Configuration page.

5. Select the WS-Policy page.

6. Select the web service endpoint, as shown in Figure A–1. You can attach OWSM
security policies only at the class/port level.

Figure A–1 Service Endpoints for the Web Service

7. Select OWSM, as shown in Figure A–2.

Figure A–2 Selecting the OWSM Security Policy Type

8. If you had instead mistakenly selected a particular web service operation, note
that you are not presented with the policy choice screen, as shown in Figure A–3.
Click Cancel to start over.

Attaching OWSM Security Policies to JAX-WS Web Services

Using Oracle Web Services Manager Security Policies A-9

Figure A–3 WebLogic Server Policy Page

9. Select the OWSM security policies that you want to attach to this web service, and
use the control to move them into the Chosen Endpoint Policies box, as shown in
Figure A–4. Click Finish when done.

Figure A–4 Selecting From the Available OWSM Security Policies

10. Save the deployment plan.

11. If the change is not automatically activated as indicated in the WebLogic Server
change message, restart the deployed application to reflect the new deployment
plan.

A.2.2 Refreshing the Cache After Attaching Policies
WebLogic Server caches data for a deployed resource, and there is one cache per
session. You may need to clear this cache in order to see a policy attached to a web
service.

In typical use, the WebLogic Server Administration Console caches the last deployed
resource with which a user interacts. Any changes made to a cached deployment by an

Attaching OWSM Security Policies to JAX-WS Web Service Clients

A-10 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

external tool or API (such as Fusion Middleware Control,WLST, or the JMX API) will
not be reflected in the cached version.

Consider the following scenario.

1. Assume that you have a web service deployed to WebLogic Server and you
navigate to the configuration page of that web service in the WebLogic Server
Administration Console. The information for this deployed resource is now
cached.

2. If you attach an OWSM security policy to this web service using Fusion
Middleware Control, the change does not reflect in the WebLogic Server
Administration Console, even if you refresh the page.

To see the policy attachment, you need clear the cache. You can do this in two ways:

■ Navigate to another deployment (thus caching it) and then revisit the original
page.

■ Log out of the WebLogic Server Administration Console and back in again.

A.3 Attaching OWSM Security Policies to JAX-WS Web Service Clients
The following procedure describes the high-level steps to attach an OWSM security
policy to a web service client application at design time. For more information about
developing web service clients, see "Developing Basic JAX-WS Web Service Clients" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

1. Determine the OWSM security policies that you would like to attach to the client.
For more information, see "Which OWSM Policies Are Supported for Java EE Web
Services?" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2. Update your Java client application to attach OWSM security policies.

The following sections in Securing Web Services and Managing Policies with Oracle
Web Services Manager describe the methods you can use to attach OWSM security
policies to web service clients:

■ "Attaching OWSM Security Policies to Clients Using Feature Classes"

■ "Attaching Policies to Java EE Web Services and Clients Using Annotations"

Attaching OWSM policies using Feature classes takes precedence over
annotations.

3. Update the build.xml file that builds your client application.

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client

When you run the client application, it loads the policy files that the web service client
runtime uses to enable security for the SOAP request message.

Note: It is assumed that you have created the client application that
invokes a deployed web service, and that you want to update it by
attaching a client-side policy file. It is also assumed that you have set
up an Ant-based development environment and that you have a
working build.xml file that includes a target for running the
clientgen Ant task.

Configuring Policies

Using Oracle Web Services Manager Security Policies A-11

A.4 Disabling a Globally Attached OWSM Policy
No behavior policies provide the ability to effectively disable an OWSM policy
attached globally in a policy set. Table A–3 lists the no behavior policies that are
supported by Java EE web services and clients to disable a globally attached OWSM
security policy.

For more information about attaching OWSM security policies globally, see the
following sections in Securing Web Services and Managing Policies with Oracle Web
Services Manager:

■ "Attaching Policies Globally Using Fusion Middleware Control"

■ "Attaching Policies Globally Using WLST"

A.5 Configuring Policies
You must configure your web service "Securing Web Services" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

Table A–3 No Behavior Policies Supported by Java EE Web Services and Clients

No Behavior Policy Description

OWSM no behavior
policies

OWSM no behavior policies that are valid for Java EE web services and clients
include:

■ no_authentication_client_policy and no_authentication_service_policy

■ no_authorization_service_policy

■ no_messageprotection_client_policy and no_messageprotection_service_
policy

For more information, see "No Behavior Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Attach an OWSM no behavior policy directly to the Java EE web service or client
using the procedures defined in the following sections in Securing Web Services and
Managing Policies with Oracle Web Services Manager:

■ "Attaching Policies to Java EE Web Services and Clients at Design Time"

■ "Attaching Policies Directly Using Fusion Middleware Control"

■ "Attaching Policies Directly to Java EE Web Services and Clients Using WLST"

WebLogic no behavior
policy

The WebLogic no behavior policy, Wssp1.5-No-Op.xml, is defined as follows:

<?xml version="1.0"?>
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsp15:Policy/>
 </wsp15:All>
 </wsp15:Policy>

Attach the Wssp1.5-No-Op.xml no behavior policy to the Java EE web service or client
using the procedures defined in the following sections.

Web service:

■ Section 2.4, "Configuring Simple Message-Level Security"

■ Section 2.10, "Associating Policy Files at Runtime Using the Administration
Console"

Web service client:

■ Section 2.15, "Using a Client-Side Security Policy File"

Overriding the Policy Configuration for the Web Service Client

A-12 Securing WebLogic Web Services for Oracle WebLogic Server 12.1.3

A.6 Overriding the Policy Configuration for the Web Service Client
You can override the default configuration properties of an OWSM security policy
programmatically at design time using one of the following methods:

■ JAX-WS RequestContext, as described in "Overriding Client Policy Configuration
Properties at Design Time" in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

■ @Property annotation when attaching an OWSM security policy using the
@SecurityPolicy annotation, as described in "Attaching Policies to Java EE Web
Services and Clients Using Annotations" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

A.7 Monitoring and Testing the Web Service
You can use either the WebLogic Server Administration Console or Fusion
Middleware Control to monitor and test a WebLogic JAX-WS web service that is
protected with an OWSM security policy.

To monitor and test the web service from the WebLogic Server Administration
Console, perform the following steps:

1. From the Summary of Deployments page, select the application for which you
want to monitor or test the a web service.

2. To monitor the web service, from the settings page, select the Monitoring tab.

For more information about monitoring web services, see "Monitoring Web
Services" in Developing JAX-WS Web Services for Oracle WebLogic Server.

3. To test the web service, from the settings page, select the Testing tab.

For more information about testing web services, see "Testing Web Services" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

To monitor and test the web service using the Fusion Middleware Control, see
"Monitoring and Auditing Web Services" and "Testing Web Services" in Administering
Web Services.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)

	1 Overview of Web Services Security
	1.1 Overview of Web Services Security
	1.2 What Type of Security Should You Configure?
	1.3 Thread Safety

	2 Configuring Message-Level Security
	2.1 Overview of Message-Level Security
	2.1.1 Web Services Security Supported Standards
	2.1.1.1 Web Services Trust and Secure Conversation
	2.1.1.2 Web Services SecurityPolicy 1.2

	2.2 Main Use Cases of Message-Level Security
	2.3 Using Policy Files for Message-Level Security Configuration
	2.3.1 Using Policy Files With JAX-WS
	2.3.2 WS-Policy Namespace
	2.3.3 WS-SecurityPolicy Namespace
	2.3.4 Version-Independent Policy Supported
	2.3.5 Use the SHA-256 Secure Hash Algorithm
	2.3.5.1 Update the Predefined SHA-1 Policies to SHA-256

	2.4 Configuring Simple Message-Level Security
	2.4.1 Configuring Simple Message-Level Security: Main Steps
	2.4.2 Ensuring That WebLogic Server Can Validate the Client's Certificate
	2.4.3 Updating the JWS File with @Policy and @Policies Annotations
	2.4.3.1 Setting the uri Attribute
	2.4.3.2 Setting Additional Attributes
	2.4.3.3 Example of Using the @Policy and @Policies JWS Annotations
	2.4.3.4 Loading a Policy From the CLASSPATH

	2.4.4 Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

	2.5 Updating a Client Application to Invoke a Message-Secured Web Service
	2.5.1 Invoking a Web Service From a Client Running in a WebLogic Server Instance

	2.6 Example of Adding Security to a JAX-WS Web Service
	2.7 Creating and Using a Custom Policy File
	2.8 Configuring the WS-Trust Client
	2.8.1 Supported Token Types
	2.8.2 Configuring WS-Trust Client Properties
	2.8.2.1 Obtaining the URI of the Secure Token Service
	2.8.2.2 Configuring STS URI for WS-SecureConversation: Standalone Client
	2.8.2.3 Configuring STS URI for SAML: Standalone Client
	2.8.2.4 Configuring STS URI Using WLST: Client On Server Side
	2.8.2.5 Configuring STS URI Using Console: Client On Server Side
	2.8.2.6 Configuring STS Security Policy: Standalone Client
	2.8.2.7 Configuring STS Security Policy Using WLST: Client On Server Side
	2.8.2.8 Configuring STS Security Policy: Using the Console
	2.8.2.9 Configuring the STS SOAP and WS-Trust Version: Standalone Client
	2.8.2.10 Configuring the SAML STS Server Certificate: Standalone Client

	2.8.3 Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
	2.8.4 Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message Protections

	2.9 Configuring and Using Security Contexts and Derived Keys
	2.9.1 Specification Backward Compatibility
	2.9.2 WS-SecureConversation and Clusters
	2.9.3 Updating a Client Application to Negotiate Security Contexts

	2.10 Associating Policy Files at Runtime Using the Administration Console
	2.11 Using Security Assertion Markup Language (SAML) Tokens For Identity
	2.11.1 SAML Token Overview
	2.11.2 Using SAML Tokens for Identity: Main Steps
	2.11.3 Specifying the SAML Confirmation Method
	2.11.3.1 Specifying the SAML Confirmation Method (Proprietary Policy Only)

	2.11.4 Sample of SAML 1.1 Bearer Token Over HTTPS
	2.11.5 Configuring SAML Attributes in a Web Service
	2.11.5.1 Using SAML Attributes: Available Interfaces and Classes
	2.11.5.2 Using SAML Attributes: Main Steps
	2.11.5.3 SAML Attributes Example

	2.12 Associating a Web Service with a Security Configuration Other Than the Default
	2.13 Valid Class Names and Token Types for Credential Provider
	2.14 Using System Properties to Debug Message-Level Security
	2.15 Using a Client-Side Security Policy File
	2.15.1 Associating a Policy File with a Client Application: Main Steps
	2.15.2 Updating clientgen to Generate Methods That Load Policy Files
	2.15.3 Updating a Client Application To Load Policy Files (JAX-RPC Only)

	2.16 Using WS-SecurityPolicy 1.2 Policy Files
	2.16.1 Transport-Level Policies
	2.16.2 Protection Assertion Policies
	2.16.3 WS-Security 1.0 Username and X509 Token Policies
	2.16.4 WS-Security 1.1 Username and X509 Token Policies
	2.16.5 WS-SecureConversation Policies
	2.16.6 SAML Token Profile Policies

	2.17 Choosing a Policy
	2.18 Unsupported WS-SecurityPolicy 1.2 Assertions
	2.19 Using the Optional Policy Assertion
	2.20 Configuring Element-Level Security
	2.20.1 Define and Use a Custom Element-Level Policy File
	2.20.1.1 Adding the Policy Annotation to JWS File

	2.20.2 Implementation Notes

	2.21 Smart Policy Selection
	2.21.1 Example of Security Policy With Policy Alternatives
	2.21.2 Configuring Smart Policy Selection
	2.21.2.1 How the Policy Preference is Determined
	2.21.2.2 Configuring Smart Policy Selection in the Console
	2.21.2.3 Understanding Body Encryption in Smart Policy
	2.21.2.4 Smart Policy Selection for a Standalone Client

	2.21.3 Multiple Transport Assertions

	2.22 Example of Adding Security to MTOM Web Service
	2.22.1 Files Used by This Example
	2.22.2 SecurityMtomService.java
	2.22.3 MtomClient.java
	2.22.4 configWss.py Script File
	2.22.5 Build.xml File
	2.22.6 Building and Running the Example
	2.22.7 Deployed WSDL for SecurityMtomService

	2.23 Example of Adding Security to Reliable Messaging Web Service
	2.23.1 Overview of Secure and Reliable SOAP Messaging
	2.23.2 Overview of the Example
	2.23.2.1 How the Example Sets Up WebLogic Security

	2.23.3 Files Used by This Example
	2.23.4 Revised ReliableEchoServiceImpl.java
	2.23.5 Revised configWss.py
	2.23.6 Revised configWss_Service.py
	2.23.7 Building and Running the Example

	2.24 Securing Web Services Atomic Transactions
	2.25 Proprietary Web Services Security Policy Files (JAX-RPC Only)
	2.25.1 Abstract and Concrete Policy Files
	2.25.2 Auth.xml
	2.25.3 Sign.xml
	2.25.4 Encrypt.xml
	2.25.5 Wssc-dk.xml
	2.25.6 Wssc-sct.xml

	3 Configuring Transport-Level Security
	3.1 Configuring Transport-Level Security Through Policy
	3.2 Available Transport-Level Policies
	3.3 Prerequisite: Configure SSL
	3.3.1 OPSS Keystore Service Supported
	3.3.2 Configuring SSL: Main Steps
	3.3.3 Configuring Two-Way SSL for a Client Application

	3.4 Configuring Transport-Level Security Through Policy: Main Steps
	3.5 Example of Configuring Transport Security for JAX-WS
	3.5.1 One-Way SSL (HTTPS and HTTP Basic Authentication Example)

	3.6 Persisting the State of a Request over SSL (JAX-WS Only)
	3.6.1 Example of Getting SSLSocketFactory From System Properties

	3.7 Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only)
	3.8 Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

	4 Configuring Access Control Security (JAX-RPC Only)
	4.1 Configuring Access Control Security: Main Steps
	4.2 Updating the JWS File With the Security-Related Annotations
	4.3 Updating the JWS File With the @RunAs Annotation
	4.4 Setting the Username and Password When Creating the Service Object
	A.1 Overview of OWSM Security Policies
	A.1.1 Which OWSM Policies Are Supported for Java EE Web Services?
	A.1.2 When Should You Use OWSM Security Policies?
	A.1.3 Interoperability Between WebLogic Web Service Policies and OWSM Policies

	A.2 Attaching OWSM Security Policies to JAX-WS Web Services
	A.2.1 Attaching OWSM Security Policies Using the Administration Console
	A.2.2 Refreshing the Cache After Attaching Policies

	A.3 Attaching OWSM Security Policies to JAX-WS Web Service Clients
	A.4 Disabling a Globally Attached OWSM Policy
	A.5 Configuring Policies
	A.6 Overriding the Policy Configuration for the Web Service Client
	A.7 Monitoring and Testing the Web Service

