
[1] Oracle® Fusion Middleware
Understanding Oracle WebLogic Server

12c (12.2.1)

E55181-02

March 2016

This document provides an overview of Oracle WebLogic
Server 12.2.1 features and describes how you can use them to
create enterprise-ready solutions.

Oracle Fusion Middleware Understanding Oracle WebLogic Server, 12c (12.2.1)

E55181-02

Copyright © 2012, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction

1.1 Product Overview... 1-1
1.2 Programming Models... 1-2
1.3 High Availability .. 1-3
1.4 Diagnostic Framework ... 1-4
1.5 Security ... 1-4
1.6 Client Options.. 1-4
1.7 Integration with Oracle WebLogic Suite ... 1-4
1.8 Integration with Other Systems.. 1-5
1.9 Integration with Web Servers ... 1-5
1.10 WebLogic Server API Examples and Sample Application ... 1-5
1.11 Upgrade.. 1-6

2 System Administration

2.1 Overview of WebLogic Server System Administration .. 2-1
2.2 Choosing the Appropriate Technology for Your Administrative Tasks 2-2
2.3 Summary of System Administration Tools and APIs ... 2-4
2.4 Roadmap for Administering the WebLogic Server System.. 2-7

3 Overview of Administration Consoles

3.1 Using the WebLogic Server Administration Console.. 3-1
3.1.1 About the WebLogic Server Administration Console.. 3-1
3.1.1.1 WebLogic Server Administration Console Online Help 3-2
3.1.1.2 Console Errors .. 3-2
3.1.2 Starting the WebLogic Server Administration Console .. 3-2
3.1.2.1 Enabling the WebLogic Server Administration Console 3-3
3.1.3 Elements of the WebLogic Server Administration Console .. 3-3
3.1.3.1 Change Center .. 3-4
3.1.3.2 Domain Structure .. 3-4
3.1.3.3 How do I... .. 3-4
3.1.3.4 Tool Bar .. 3-5
iii

3.1.3.5 Breadcrumb Navigation ... 3-5
3.1.3.6 System Status .. 3-5
3.1.4 Using the Change Center ... 3-6
3.1.4.1 Undoing Changes ... 3-6
3.1.4.2 Releasing the Configuration Lock ... 3-6
3.1.4.3 How Change Management Works .. 3-7
3.1.4.4 Dynamic and Non-Dynamic Changes .. 3-7
3.1.4.5 Viewing Changes ... 3-7
3.2 Using Fusion Middleware Control .. 3-7
3.2.1 Fusion Middleware Control Online Help .. 3-8

4 WebLogic Server Domains

4.1 Understanding Domains.. 4-1
4.2 Organizing Domains .. 4-1
4.3 Contents of a Domain... 4-3
4.3.1 Administration Server... 4-3
4.3.2 Managed Servers and Managed Server Clusters .. 4-3
4.3.3 Managed Coherence Servers and Coherence Clusters... 4-4
4.3.4 Resources and Services ... 4-4
4.4 Roadmap for Understanding WebLogic Server Domains .. 4-5

5 WebLogic Server Clustering

5.1 Overview of WebLogic Server Clusters... 5-1
5.2 Relationship Between Clusters and Domains... 5-1
5.3 Relationship Between Coherence and WebLogic Server Clusters....................................... 5-2
5.4 Benefits of Clustering ... 5-2
5.5 Key Capabilities of Clusters .. 5-3
5.6 Objects That Can Be Clustered.. 5-3
5.7 Objects That Cannot Be Clustered.. 5-3
5.8 Overview of Dynamic Clusters... 5-3
5.9 Roadmap for Clustering in WebLogic Server... 5-4

6 Developing Applications in WebLogic Server

6.1 WebLogic Server and the Java EE Platform.. 6-1
6.2 Overview of Java EE Applications and Modules... 6-2
6.3 Roadmap for Developing Applications in WebLogic Server ... 6-3

7 Deploying Applications in WebLogic Server

7.1 Overview of the Deployment Process.. 7-1
7.2 Java EE 7 Deployment Implementation .. 7-1
7.3 Fast Track Deployment Guide .. 7-2
7.3.1 Java EE Deployment.. 7-3
7.3.1.1 Auto-Deployment... 7-3
7.3.1.2 Deploying Multiple Applications .. 7-3
7.3.2 System Administrator Tools .. 7-3
7.3.3 JSP/HTML Deployment ... 7-4
iv

7.3.4 Coherence Deployment .. 7-4
7.4 Roadmap for Deploying Applications in WebLogic Server ... 7-4

8 WebLogic Server Data Sources

8.1 Understanding JDBC Data Sources.. 8-1
8.2 Understanding Generic Data Sources.. 8-1
8.3 Understanding GridLink Data Sources ... 8-2
8.4 Understanding JDBC Multi Data Sources ... 8-2
8.5 Understanding Proxy Data Sources .. 8-2
8.6 Understanding Universal Connection Pool Data Sources .. 8-2
8.7 Roadmap for WebLogic Server Data Sources... 8-3

9 WebLogic Server Messaging

9.1 Overview of JMS and WebLogic Server .. 9-1
9.2 Java Message Service .. 9-1
9.2.1 WebLogic JMS Architecture and Environment... 9-1
9.3 Roadmap for WebLogic Server Messaging... 9-3

10 Understanding WebLogic Server Security

10.1 Java EE 7 Security Feature Support in WebLogic Server ... 10-1
10.2 Overview of the WebLogic Server Security Service ... 10-2
10.3 WebLogic Server Security Service Architecture.. 10-3
10.3.1 WebLogic Security Framework .. 10-3
10.3.2 Single Sign-on with the WebLogic Server Security Framework................................ 10-4
10.3.3 SAML Token Profile Support in WebLogic Web Services.. 10-4
10.3.4 The Security Service Provider Interfaces (SSPIs) ... 10-4
10.3.5 WebLogic Security Providers.. 10-5
10.4 Managing WebLogic Server Security.. 10-5
10.4.1 Security Realms... 10-5
10.4.2 Security Policies .. 10-5
10.5 Oracle Platform Security Services (OPSS) .. 10-5
10.6 Security for Coherence .. 10-6
10.7 Roadmap for Securing WebLogic Server ... 10-7

11 WebLogic Server Web Services

11.1 Overview of Web Services.. 11-1
11.2 Anatomy of a Web Service ... 11-1
11.3 Web Service Standards.. 11-2
11.4 Roadmap for Web Services... 11-3

12 Enterprise JavaBeans (EJBs)

12.1 Understanding EJBs... 12-1
12.1.1 EJB Documentation in WebLogic Server... 12-1
12.1.2 Additional EJB Information .. 12-2
12.1.3 Session EJBs Implement Business Logic.. 12-2
v

12.1.3.1 Stateful Session Beans ... 12-2
12.1.3.2 Stateless Session Beans.. 12-2
12.1.3.3 Singleton Session Beans.. 12-3
12.1.4 Message-Driven Beans Implement Loosely Coupled Business Logic 12-3
12.2 EJB Anatomy and Environment .. 12-3
12.2.1 EJB Components ... 12-4
12.2.2 The EJB Container... 12-4
12.2.3 Embeddable EJB Container ... 12-5
12.2.4 EJB Metadata Annotations .. 12-5
12.2.5 Optional EJB Deployment Descriptors.. 12-5
12.3 EJBs Clients and Communications .. 12-6
12.3.1 Accessing EJBs... 12-6
12.3.2 EJB Communications.. 12-6
12.4 Securing EJBs .. 12-7
12.5 Roadmap for EJBs in WebLogic Server .. 12-8

13 Monitoring, Diagnosing, and Troubleshooting

13.1 WebLogic Server Diagnostics Framework ... 13-1
13.2 Logging Services .. 13-2
13.3 SNMP Support ... 13-3
13.4 Custom JMX Applications .. 13-3
13.5 Java EE Management APIs ... 13-3
13.6 Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server....... 13-4

14 Sample Applications and Code Examples

14.1 Overview... 14-1
14.1.1 Installing the WebLogic Server Code Examples .. 14-1
14.1.2 Starting the WebLogic Server Samples Domain .. 14-2
14.1.3 Running the WebLogic Server Code Examples ... 14-2
14.2 Conventions .. 14-2
14.3 Java EE 6 Examples.. 14-3
14.4 Java EE 7 Examples.. 14-4
14.5 Additional API Examples ... 14-4
14.6 Avitek Medical Records .. 14-5
14.7 Derby Open-Source Database .. 14-5

15 WebLogic Server Compatibility

15.1 Java EE 7 Compatibility .. 15-1
15.2 Generated Classes Compatibility .. 15-1
15.3 Compatibility Within a Domain .. 15-1
15.3.1 About WebLogic Server Version Numbers .. 15-2
15.3.2 WebLogic Version Compatibility ... 15-2
15.3.3 Hardware, Operating System, and JVM Platform Compatibility 15-3
15.3.4 Node Manager Compatibility ... 15-4
15.4 Persistent Data Compatibility .. 15-4
15.5 API Compatibility .. 15-4
vi

15.6 Protocol Compatibility .. 15-4
vii

viii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Understanding Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
ix

x

1

1Introduction

[2] This chapter provides an overview of Oracle WebLogic Server features and describes
how you can use them to create enterprise ready-solutions.

This chapter includes the following sections:

■ Section 1.1, "Product Overview"

■ Section 1.2, "Programming Models"

■ Section 1.3, "High Availability"

■ Section 1.4, "Diagnostic Framework"

■ Section 1.5, "Security"

■ Section 1.6, "Client Options"

■ Section 1.7, "Integration with Oracle WebLogic Suite"

■ Section 1.8, "Integration with Other Systems"

■ Section 1.9, "Integration with Web Servers"

■ Section 1.10, "WebLogic Server API Examples and Sample Application"

■ Section 1.11, "Upgrade"

1.1 Product Overview
Oracle WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise
Edition (Java EE) Version 7.0 application server. The WebLogic Server infrastructure
supports the deployment of many types of distributed applications and is an ideal
foundation for building applications based on Service Oriented Architectures (SOA).
SOA is a design methodology aimed at maximizing the reuse of application services.
See http://www.oracle.com/technology/tech/soa/index.html.

The WebLogic Server complete implementation of the Java EE 7.0 specification
provides a standard set of APIs for creating distributed Java applications that can
access a wide variety of services, such as databases, messaging services, and
connections to external enterprise systems. End-user clients access these applications
using Web browser clients or Java clients. See Section 1.2, "Programming Models."

In addition to the Java EE implementation, WebLogic Server enables enterprises to
deploy mission-critical applications in a robust, secure, highly available, and scalable
environment. These features allow enterprises to configure clusters of WebLogic
Server instances to distribute load, and provide extra capacity in case of hardware or
other failures. New diagnostic tools allow system administrators to monitor and tune
the performance of deployed applications and the WebLogic Server environment itself.
Introduction 1-1

Programming Models
You can also configure WebLogic Server to monitor and tune application throughput
automatically without human intervention. Extensive security features protect access
to services, keep enterprise data secure, and prevent malicious attacks.

Figure 1–1 shows how WebLogic Server fits into the overall Oracle Fusion Middleware
stack.

Figure 1–1 Oracle Fusion Middleware Overview

1.2 Programming Models
WebLogic Server provides complete support for the Java EE 7.0 specification at
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html.
For more information, see the following WebLogic Server programming guides:

■ Web Applications provide the basic Java EE mechanism for deployment of
dynamic Web pages based on the Java EE standards of servlets and JavaServer
Pages (JSP). Web applications are also used to serve static Web content such as
HTML pages and image files.

■ Web Services provide a shared set of functions that are available to other systems
on a network and can be used as a component of distributed Web-based
applications.

■ XML capabilities include data exchange, and a means to store content independent
of its presentation, and more.

■ Java Messaging Service (JMS) enables applications to communicate with one
another through the exchange of messages. A message is a request, report, and/or
event that contains information needed to coordinate communication between
different applications.

■ Java Database Connectivity (JDBC) provides pooled access to DBMS resources.

■ Resource Adapters provide connectivity to Enterprise Information Systems
(EISes).

■ Enterprise JavaBeans (EJB) provide Java objects to encapsulate data and business
logic.
1-2 Understanding Oracle WebLogic Server

High Availability
■ Remote Method Invocation (RMI) is the Java standard for distributed object
computing, allowing applications to invoke methods on a remote object locally.

■ Security APIs allow you to integrate authentication and authorization into your
Java EE applications. You can also use the Security Provider APIs to create your
own custom security providers.

■ WebLogic Tuxedo Connectivity (WTC) provides interoperability between
WebLogic Server applications and Tuxedo services. WTC allows WebLogic Server
clients to invoke Tuxedo services and Tuxedo clients to invoke EJBs in response to
a service request.

■ Coherence provides distributed caching and data grid capabilities for WebLogic
Server applications.

■ Overview of WebLogic Server Application Development describes developer tools
and best practices for coding WebLogic Server applications.

1.3 High Availability
The following WebLogic Server features and tools support the deployment of
highly-available and scalable applications:

■ WebLogic Server clusters provide scalability and reliability for your applications
by distributing the work load among multiple instances of WebLogic Server.
Incoming requests can be routed to a WebLogic Server instance in the cluster
based on the volume of work being processed. In case of hardware or other
failures, session state is available to other cluster nodes that can resume the work
of the failed node. In addition, you can implement clusters so that services may be
hosted on a single machine with options to migrate the service to another node in
the event of failure.

In addition to replicating HTTP session state across servers within a cluster,
WebLogic Server can also replicate HTTP session state across multiple clusters,
thereby expanding availability and fault tolerance in multiple geographic regions,
power grids, and Internet service providers.

■ Coherence clusters provide scalability and fault tolerance by distributing data
across any number of cluster members ensuring that data is always available and
easily accessed by any application hosted in WebLogic Server.

In addition, Web applications can choose to use a Coherence data grid for storing
and replicating HTTP session state to improve scalability, fault tolerance, and
performance.

■ Work Managers prioritize work based on rules you define and by monitoring
actual run time performance statistics. This information is then used to optimize
the performance of your application. Work Managers may be applied globally to a
WebLogic Server domain or to a specific application or component.

■ Overload protection gives WebLogic Server the ability to detect, avoid, and
recover from overload conditions.

■ Network channels facilitate the effective use of network resources by segregating
network traffic into channels based on the type of traffic.

■ Simplified JMS Cluster Configuration allows applications to easily scale WebLogic
JMS services such as JMS Servers, SAF Agents, and persistent stores. Cluster
targeted JMS servers and persistent stores allow targeting the JMS service artifacts
directly to the cluster and eliminate the need to configure artifacts individually for
every server in a cluster.
Introduction 1-3

Diagnostic Framework
WebLogic Server supports additional high availability features for JMS services by
configuring Distribution Policy, Migration Policy, and other options for the
associated persistent store.

■ WebLogic Server persistent store is a built-in, high-performance storage solution
for WebLogic Server subsystems and services that require persistence. For
example, it can store persistent JMS messages or temporarily store messages sent
using the Store-and-Forward feature. The persistent store supports persistence to a
file-based store or to a JDBC-enabled database.

■ Store-and-forward services enable WebLogic Server to deliver messages reliably
between applications that are distributed across WebLogic Server instances. If the
message destination is not available at the moment the messages are sent, either
because of network problems or system failures, then the messages are saved on a
local server instance and are forwarded to the remote destination once it becomes
available.

■ Enterprise-ready deployment tools facilitate deployment and migration of
applications from the development phase to a production environment.

■ Production redeployment enables enterprises to deploy a new version of their
application without interrupting work in progress on the older version.

1.4 Diagnostic Framework
The WebLogic Diagnostic Framework is a monitoring and diagnostic service that lets
you create, collect, analyze, archive, and access diagnostic data generated by a running
server and its deployed applications. This data provides insight into the runtime
performance of WebLogic Server instances and deployed applications and lets you
isolate and diagnose faults and performance bottlenecks when they occur.

1.5 Security
The WebLogic Server security architecture provides a comprehensive, flexible security
infrastructure designed to address the security challenges of making applications
available on the Web. WebLogic security can be used standalone to secure WebLogic
Server applications or as part of an enterprise-wide, security management system that
represents a best-in-breed security management solution. See "Overview of the
WebLogic Security Service."

1.6 Client Options
In addition to support for browser-based Web application clients, WebLogic Server
also supports a variety of client types for creating rich GUI applications or simple
command-line utilities. These client types include: RMI-IIOP, T3, Java SE clients, Java
EE thin clients, CORBA/IDL clients, and C++ clients that communicate with BEA
Tuxedo. See Developing Stand-alone Clients for Oracle WebLogic Server.

1.7 Integration with Oracle WebLogic Suite
WebLogic Server provides the core application server runtime within the integrated
Oracle WebLogic Suite Java infrastructure. This integrated infrastructure enhances
application performance, improves application availability, and enables predictable
and reliable application scalability with high quality of service. WebLogic Suite
includes highly productive development tools based on Oracle JDeveloper and Oracle
Enterprise pack for Eclipse, and fully integrated management for large-scale
1-4 Understanding Oracle WebLogic Server

WebLogic Server API Examples and Sample Application
administration and operations with Oracle Enterprise Manager. Taken together, the
development, runtime and management capabilities of WebLogic Suite provide the
foundation for implementing mission-critical enterprise applications.

WebLogic Suite contains the following server-side components:

■ Oracle WebLogic Server

■ Oracle Coherence

Oracle Coherence enables organizations to predictably scale mission-critical
applications by providing fast and reliable access to frequently used data. By
automatically and dynamically partitioning data in memory across multiple
servers, Oracle Coherence enables continuous data availability and transactional
integrity, even in the event of a server failure.

WebLogic Server includes a Coherence container that simplifies the management
and deployment of Coherence clusters and Coherence-based applications.

■ Oracle TopLink

Oracle TopLink builds high-performance applications that store persistent
object-oriented data in a relational database. It successfully transforms
object-oriented data into either relational data or Extensible Markup Language
(XML) elements.

Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

Oracle TopLink includes support for EJB 3.0 in Java EE and Java SE environments,
as well as support for EJB 2.n container-managed persistence (CMP). You can
integrate Oracle TopLink with a variety of application servers, including Oracle
WebLogic Server, OC4J, SunAS, JBoss, and IBM WebSphere.

1.8 Integration with Other Systems
WebLogic Server provides a variety of tools to integrate your applications with
disparate systems. These tools include Web Services, Resource Adapters, the JMS .NET
client, the JMS C client, tooling for integrating JMS providers options, Advanced
Queuing, and RMI.

1.9 Integration with Web Servers
Plug-ins are provided with your WebLogic Server installation that allow WebLogic
Server to operate with Web servers from Apache and Microsoft. Typically, these Web
servers serve static HTML content while requests for dynamic Web content such as
JSPs are directed to the WebLogic Server environment.

1.10 WebLogic Server API Examples and Sample Application
Code examples demonstrating Java EE APIs and other WebLogic Server features are
provided with your WebLogic Server installation. To work with these examples, select
the custom installation option when installing WebLogic Server, and select to install
the Server Examples. To access the code examples, launch the startWebLogicEx.cmd or
startWebLogicEx.sh script from ORACLE_HOME/user_projects/domains/wl_server,
where ORACLE_HOME is the directory you specified as the Oracle Home when you
Introduction 1-5

Upgrade
installed Oracle WebLogic. As they become available, you can also download
additional examples.

Along with the code examples, two versions of a complete sample application, called
Avitek Medical Records (or MedRec), are installed when you install the examples, as
described above.

The original MedRec (which was included in previous versions of WebLogic Server) is
a WebLogic Server sample application suite that concisely demonstrates all aspects of
the Java EE platform. MedRec is designed as an educational tool for all levels of Java
EE developers. It showcases the use of each Java EE component and illustrates best
practice design patterns for component interaction and client development. MedRec
also illustrates best practices for developing applications on WebLogic Server.

The Spring version of MedRec, called MedRec-Spring is MedRec recast using the
Spring Framework. If you are developing Spring applications on WebLogic Server, you
should review the MedRec-Spring sample application. In order to illustrate how
Spring can take advantage of the enterprise features of WebLogic Server, MedRec was
rearchitected to replace core Java EE components with their Spring counterparts. The
functionality in the original version of MedRec is reimplemented using Spring in
MedRec-Spring. Refer to the MedRec-Spring sample for details.

To launch MedRec, run startWebLogic.cmd or startWebLogic.sh script from ORACLE_
HOME/user_projects/domains/medrec, where ORACLE_HOME is the directory you
specified as the Oracle Home when you installed Oracle WebLogic Server.

To launch MedRec-Spring, run the startWebLogic.cmd or startWebLogic.sh script
from ORACLE_HOME/user_projects/domains/medrec-spring, where ORACLE_HOME is the
directory you specified as the Oracle Home when you installed Oracle WebLogic
Server.

1.11 Upgrade
Tools and documentation are provided to help you migrate applications implemented
on earlier versions of WebLogic Server to the current WebLogic Server environment.
See the Upgrading Oracle WebLogic Server.
1-6 Understanding Oracle WebLogic Server

2

2System Administration

[3] This chapter provides an overview of system administration for the WebLogic Server
component of your development and production environments.

This chapter includes the following sections:

■ Section 2.1, "Overview of WebLogic Server System Administration"

■ Section 2.2, "Choosing the Appropriate Technology for Your Administrative Tasks"

■ Section 2.3, "Summary of System Administration Tools and APIs"

■ Section 2.4, "Roadmap for Administering the WebLogic Server System"

2.1 Overview of WebLogic Server System Administration
System administration of WebLogic Server includes a wide range of tasks: creating
WebLogic Server domains, deploying applications, migrating domains from
development environments to production environments, monitoring and managing
the performance of the runtime system, configuring and managing security for
applications and system resources, and diagnosing and troubleshooting problems.

WebLogic Server provides several tools for system administrators to help with these
tasks, including the browser-based WebLogic Server Administration Console, the
WebLogic Scripting Tool (WLST), a scripting language for automation of WebLogic
system administration tasks based on Jython, SNMP, the Configuration Wizard, and
command-line utilities.

Because the WebLogic Server management system is based on Java EE and other
standards, it integrates with systems that are frequently used to manage other
software and hardware components. In addition, WebLogic Server implements the
Java EE Java Management Extension (JMX) specification, which allows programmatic
access to the WebLogic Server management system. Using this API, you can create
custom administration utilities or automate frequent tasks using Java classes.

The following sections provide an overview of system administration for the
WebLogic Server component of your development or production environments:

■ Section 2.2, "Choosing the Appropriate Technology for Your Administrative Tasks"

■ Section 2.3, "Summary of System Administration Tools and APIs"

For information about installing WebLogic Server, see the Installing and Configuring
Oracle WebLogic Server and Coherence.

For information about using Fusion Middleware administration tools, such as the
Oracle Enterprise Manager Fusion Middleware Control, Oracle Fusion Middleware
command-line tools, and the Fusion Middleware Control MBean Browser, see
System Administration 2-1

Choosing the Appropriate Technology for Your Administrative Tasks
"Overview of Oracle Fusion Middleware Administration Tools" in Administering Oracle
Fusion Middleware.

2.2 Choosing the Appropriate Technology for Your Administrative Tasks
Table 2–1 describes common system administration tasks and associated technologies.

Table 2–1 Choosing the Appropriate Management Technology

To do this... Use this technology...

Create domains The Configuration Wizard guides you through the process of creating or
extending a domain for your target environment. See Creating
WebLogic Domains Using the Configuration Wizard.

To automate the creation of domains, use the WebLogic Scripting Tool,
which is a command-line scripting interface based on Jython. See
"Creating Domains Using WLST Offline" in Understanding the WebLogic
Scripting Tool.

Or create domain configuration XML files that conform to the WebLogic
Server schema. See "Domain Configuration Files" in Understanding
Domain Configuration for Oracle WebLogic Server.

Migrate domains
from development
environments to
production
environments

Domain Template Builder's pack command archives a snapshot of a
domain into a JAR file. The unpack command expands the archive and
creates the necessary start scripts and certain security and configuration
files. See Creating Templates and Domains Using the Pack and Unpack
Commands.

Track changes in a
domain's
configuration

In environments that you allow configuration changes to active
domains, WebLogic Server automatically maintains a versioned archive
of configuration files. See "Configuration File Archiving" in
Understanding Domain Configuration for Oracle WebLogic Server.

To receive real-time notifications that a domain's configuration has been
modified, enable the configuration auditing feature. See "Configuring
the WebLogic Auditing Provider" in Administering Security for Oracle
WebLogic Server 12c (12.2.1).

For tightly controlled production environments, configure the run-time
domain to be read-only (see "Restricting Configuration Changes" in
Understanding Domain Configuration for Oracle WebLogic Server). You can
change the read-only setting if you need to roll in changes that have
been tested and approved in a staging environment, or you can modify
and test your staging environment, and then use a Web server to
re-route requests from your production environment to the staging
environment.

Configure
connections to
databases or other
systems

Within individual applications, you can define your own data sources or
database connections using JDBC, or connect to external systems using
resource adapters. When you deploy such an application, WebLogic
Server creates the data sources and connections for you. See:

■ "Configuring WebLogic JDBC Resources" in Administering JDBC
Data Sources for Oracle WebLogic Server

■ "Understanding Resource Adapters" in Developing Resource Adapters
for Oracle WebLogic Server

If you have not defined your own data sources or connections within an
application, you can use the WebLogic Server Administration Console
or the WebLogic Scripting Tool to create the resources. See Oracle
WebLogic Server Administration Console Online Help or "Using the
WebLogic Scripting Tool" in Understanding the WebLogic Scripting Tool.
2-2 Understanding Oracle WebLogic Server

Choosing the Appropriate Technology for Your Administrative Tasks
Manage the server
life cycle

The Node Manager is a utility for remote control of Administration
Servers and Managed Servers. It runs separately from WebLogic Server
and lets you start up and shut down Administration Servers and
Managed Servers. While use of Node Manager is optional, it provides
additional life cycle benefits if your WebLogic Server environment hosts
applications with high availability requirements. See "Using Node
Manager to Control Servers" in the Administering Node Manager for
Oracle WebLogic Server.

To start Administration Servers or Managed Servers without using
Node Manager, use the WebLogic Scripting Tool or scripts that
WebLogic Server installs. See "Starting and Stopping Servers" in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

Configure
Coherence Clusters

The WebLogic Server Administration Console provides a graphical user
interface for configuring and managing Coherence clusters; configuring
and managing cluster members; and deploying Coherence applications.
See the Administration Console Help.

If you prefer a command-line interface, use the WebLogic Scripting Tool.
See "Using the WebLogic Scripting Tool" in Understanding the WebLogic
Scripting Tool.

Modify or add
services to an active
domain

The WebLogic Server Administration Console provides a graphical user
interface for modifying or adding services to an active domain. See the
Administration Console Help. You can also modify or add services to an
active domain using Fusion Middleware Control. See the Oracle Fusion
Middleware Control Help for WebLogic Server.

If you prefer a command-line interface, use the WebLogic Scripting Tool
in interactive mode. See "Using the WebLogic Scripting Tool" in
Understanding the WebLogic Scripting Tool.

Monitor application
server services and
resources

Monitor the performance of services such as the EJB container, servlet
container, and JDBC data sources from the WebLogic Server
Administration Console or through Fusion Middleware Control.

Configure policy expressions and actions in the WebLogic Diagnostics
Framework to automatically notify administrators of monitoring data
events or integrate automated systems through JMX or JMS. See
"Configuring Policies and Actions" in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

If you use SNMP in your operations center, you can enable WebLogic
Server to send SNMP notifications for run-time events that you define.
See Monitoring Oracle WebLogic Server with SNMP.

Deploy applications The WebLogic Server Administration Console provides a series of
Web-based deployment assistants that guide you through the
deployment process. See Administration Console Help. You can also
deploy applications through Fusion Middleware Control. See Oracle
Fusion Middleware Control Help for WebLogic Server.

To automate the deployment of applications, use the WebLogic Scripting
Tool. See "Deployment Commands" in WLST Command Reference for
WebLogic Server. You can also use the deployment API to write Java
programs that deploy applications. See Deploying Applications with the
WebLogic Deployment API.

For information about additional deployment utilities and APIs, see
"Deployment Tools" in Deploying Applications to Oracle WebLogic Server.

Table 2–1 (Cont.) Choosing the Appropriate Management Technology

To do this... Use this technology...
System Administration 2-3

Summary of System Administration Tools and APIs
2.3 Summary of System Administration Tools and APIs
WebLogic Server includes several of its own standards-based, extensible utilities that
you can use to create, manage, and monitor domains, or you can use WebLogic
Server's management APIs to create custom management utilities.

Table 2–2 describes the utilities that are included with WebLogic Server.

Modify applications
in an active domain

To modify the configuration of a deployed application, use a text editor
or IDE to modify the deployment descriptor. Then either redeploy the
application or use the deployment API to upload the modified
deployment descriptor and cause the application container to re-read
the deployment descriptor.

See Deploying Applications to Oracle WebLogic Server.

Monitor activity
within applications

Determine which data points you want to monitor and then instrument
one or more beans to expose this data through JMX. See Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

Alternatively, use the WebLogic Server Diagnostics Service to insert
instrumentation code into a running application and monitor its
methods or monitor transactions that involve the application. Use this
technology to discover the cause of problems that cannot otherwise be
discovered by scanning the available monitoring metrics. If you
determine that the problem is within your application, you can prevent
the problem from recurring by using JMX to expose attributes that
indicate the application's health state is degrading. See Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

Optimize the
performance of your
application and
maintain service
level agreements.

Work Managers configure how your application prioritizes the
execution of its work. Based on rules you define and by monitoring
actual run-time performance, WebLogic Server can optimize the
performance of your application and maintain service level agreements.

See "Using Work Managers to Optimize Scheduled Work" in
Administering Server Environments for Oracle WebLogic Server.

Configure and
secure
administration
communications

You can separate administration traffic from application traffic in your
domain by enabling the administration port. In production
environments, separating the two forms of traffic ensures that critical
administration operations (starting and stopping servers, changing a
server's configuration, and deploying applications) do not compete with
high-volume application traffic on the same network connection.

The administration port only accepts communications that use SSL, and
therefore secures your administrative requests. See "Administration Port
and Administrative Channel" in Administering Server Environments for
Oracle WebLogic Server.

Configure logging
and view log files

Many WebLogic Server operations generate logs of their activity. Each
server has its own log as well as a standard HTTP access log. These log
files can be configured and used in a variety of ways to monitor the
health and activity of your servers and applications.

By default, WebLogic Server uses the standard JDK logging APIs to
filter and write the messages to log files. See "Understanding WebLogic
Logging Services" in Configuring Log Files and Filtering Log Messages for
Oracle WebLogic Server.

Table 2–1 (Cont.) Choosing the Appropriate Management Technology

To do this... Use this technology...
2-4 Understanding Oracle WebLogic Server

Summary of System Administration Tools and APIs
Table 2–2 Management Utilities

Utility Description

WebLogic Server
Administration
Console

The WebLogic Server Administration Console is a Web application
hosted by the Administration Server. Use it to manage and monitor an
active domain. The management capabilities include:

■ Configuring active domains

■ Stopping and starting servers

■ Monitoring server health and performance

■ Monitoring application performance

■ Viewing server logs

■ Control (start, stop, and restart) managed Coherence servers

■ Create and configure Coherence clusters

Through the WebLogic Server Administration Console, system
administrators can easily perform all WebLogic Server management
tasks without having to learn the JMX API or the underlying
management architecture. The Administration Server persists changes
to attributes in the config.xml file for the domain you are managing.

See:

■ "Overview of Administration Consoles"

■ WebLogic Server Administration Console Online Help (The online
help is also available from the WebLogic Server Administration
Console by clicking on the Help link located in the tool bar at the
top of the Console.)

Fusion Middleware
Control

WebLogic Server can also be managed through Fusion Middleware
Control. Fusion Middleware Control provides management support for
all Fusion Middleware components, including WebLogic Server. Use
Fusion Middleware Control to manage WebLogic Server when using
other Fusion Middleware products in addition to WebLogic Server.

WebLogic Server support includes the following subsets of
functionality:

■ Manage WebLogic Server clusters, server instances, and domains

■ Deploy and redeploy applications and manage application
deployments

■ Create and configure JDBC data sources

■ Manage WebLogic Server messaging (JMS)

■ Create and configure users and groups

■ Create and configure server templates

See:

■ Administering Oracle WebLogic Server with Fusion Middleware Control

■ Fusion Middleware Control Help for WebLogic Server

Enterprise Manager
Cloud Control

Some components of WebLogic Server can also be managed through the
Cloud Control component of Enterprise Manager. See Oracle Cloud
Control Help for WebLogic Server.
System Administration 2-5

Summary of System Administration Tools and APIs
Table 2–3 describes APIs that you can use to create your own management utilities.

WebLogic Scripting
Tool

The WebLogic Scripting Tool (WLST) is a command-line scripting
interface that you use to manage and monitor active or inactive
WebLogic Server domains. The WLST scripting environment is based
on the Java scripting interpreter Jython. In addition to WebLogic
scripting functions, you can use common features of interpreted
languages, including local variables, conditional variables, and flow
control statements. You can extend the WebLogic scripting language by
following the Jython language syntax. See http://www.jython.org.

See Understanding the WebLogic Scripting Tool.

Configuration
Wizard

The Configuration Wizard creates the appropriate directory structure
for a WebLogic Server domain, a config.xml file, and scripts you can
use to start the servers in your domain. The wizard uses templates to
create domains, and you can customize these templates to duplicate
your own domains.

You can also use the Configuration Wizard to add or remove services
from an existing, inactive domain.

You can run the Configuration Wizard through a graphical user
interface (GUI) or in a text-based command-line environment. This
command-line environment is called console mode—do not confuse this
mode with the WebLogic Server Administration Console. You can also
create user-defined domain configuration templates for use by the
Configuration Wizard.

See Creating WebLogic Domains Using the Configuration Wizard.

Configuration
Template Builder

The Configuration Template Builder provides the capability to easily
create your own domain templates, to enable, for example, the
definition and propagation of a standard domain across a development
project, or to enable the distribution of a domain along with an
application that has been developed to run on that domain. The
templates you create with the Configuration Template Builder are used
as input to the Configuration Wizard as the basis for creating a domain
that is customized for your target environment. See Creating Domain
Templates Using the Domain Template Builder.

Apache Ant tasks You can use two Ant tasks provided with WebLogic Server to help you
perform common configuration tasks in a development environment.
Ant is a Java-based build tool similar to Make. The configuration tasks
let you start and stop WebLogic Server instances as well as create and
configure WebLogic Server domains. When combined with other
WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains.

See "Using Ant Tasks to Configure a WebLogic Server Domain" in
Developing Applications for Oracle WebLogic Server.

SNMP Agents WebLogic Server includes the ability to communicate with
enterprise-wide management systems using Simple Network
Management Protocol (SNMP). WebLogic Server SNMP agents let you
integrate management of WebLogic Servers into an SNMP-compliant
management system that gives you a single view of the various
software and hardware resources of a complex, distributed system.

See Monitoring Oracle WebLogic Server with SNMP.

Table 2–2 (Cont.) Management Utilities

Utility Description
2-6 Understanding Oracle WebLogic Server

Roadmap for Administering the WebLogic Server System
Table 2–3 Management APIs

API Description

JMX Java Management Extensions (JMX) is the Java EE solution for
monitoring and managing resources on a network. Like SNMP and
other management standards, JMX is a public specification and many
vendors of commonly used monitoring products support it.

The WebLogic Server Administration Console, WebLogic Scripting Tool,
and other WebLogic Server utilities use the JMX APIs.

See Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

Java EE
Management API

The Java EE Management APIs (JSR-77) enable a software developer to
create a single Java program that can discover and browse resources,
such as JDBC connection pools and deployed applications, on any Java
EE Web application server. The APIs are part of the Java EE
Management Specification, which requires all Java EE Web application
servers to describe their resources in a standard data model.

See Developing Java EE Management Applications for Oracle WebLogic
Server.

Deployment API The WebLogic Server deployment API implements and extends the
JSR-88 deployment specification. All WebLogic Server deployment
tools, such as the WebLogic Server Administration Console and
wldeploy Ant task, use the deployment API to configure, deploy, and
redeploy applications in a domain. You can use the deployment API to
build your own WebLogic Server deployment tools, or to integrate
WebLogic Server configuration and deployment operations with an
existing JSR-88-compliant tool.

See Deploying Applications with the WebLogic Deployment API.

WebLogic
Diagnostic Service
APIs

The WebLogic Diagnostic Service includes a set of standardized APIs
that enable dynamic access and control of diagnostic data, as well as
improved monitoring that provides visibility into the server. The
interfaces are standardized to facilitate future enhancement and
integration of third-party tools, while maintaining the integrity of the
server code base. The service is well suited to the server and the server's
stack product components and targets operations and administrative
staff as primary users.

See Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

Logging APIs By default, WebLogic Server uses the standard JDK logging APIs to
filter and write the messages to log files. See Understanding WebLogic
Logging Services in Configuring Log Files and Filtering Log Messages for
Oracle WebLogic Server.

2.4 Roadmap for Administering the WebLogic Server System

Table 2–4 Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information

Understanding WebLogic
Server system
administration

■ Overview of WebLogic Server domains

■ Overview of WebLogic Server clusters

■ Overview of WebLogic security

■ "Overview of Administration Consoles"

■ Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server

■ Tuning Performance of Oracle WebLogic Server
System Administration 2-7

Roadmap for Administering the WebLogic Server System
Installing or upgrading
WebLogic Server

■ Installing and Configuring Oracle WebLogic Server and
Coherence

■ Creating WebLogic Domains Using the Configuration Wizard

■ Oracle Fusion Middleware Supported System
Configurations

■ What's New in Oracle WebLogic Server 12.2.1

■ Release Notes for Oracle WebLogic Server

■ "WebLogic Server Compatibility"

■ Upgrading Oracle WebLogic Server

Configuring a server
environment

■ "Summary of System Administration Tools and APIs"

■ Managing configuration changes

■ Oracle WebLogic Server Administration Console Online Help

■ Understanding the WebLogic Scripting Tool

■ Creating Domain Templates Using the Domain Template Builder

Learning about server
startup and shutdown

■ Overview of starting and stopping servers

■ Understanding the life cycle of WebLogic Server instances

■ Server startup command-line reference

■ Quick Reference for starting and stopping servers

Starting or stopping a
WebLogic Server instance

■ Using shell scripts

■ Using the Administration Console

■ Using the WebLogic Scripting Tool (WLST)

■ Using Node Manager to control remote servers

■ Using the Quick Reference

Configuring Coherence
clusters

■ Configuring and Managing Coherence Clusters

■ Developing Coherence Applications

■ Securing Coherence in WebLogic Server

Configuring security ■ Overview of WebLogic Server security

■ Administering Security for Oracle WebLogic Server 12c (12.2.1)

■ Securing a Production Environment for Oracle WebLogic Server

■ Securing Resources Using Roles and Policies for Oracle WebLogic
Server

Managing server and
network communications

■ Configuring network resources

■ Configuring Web Server functionality

■ Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1

Configuring system
resources

■ Administering JDBC Data Sources for Oracle WebLogic Server

■ Administering JMS Resources for Oracle WebLogic Server

■ Configuring WebLogic transactions

■ Configuring the WebLogic Tuxedo Connector

■ Configuring the persistent store

Table 2–4 (Cont.) Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information
2-8 Understanding Oracle WebLogic Server

Roadmap for Administering the WebLogic Server System
Configuring and deploying
applications

■ Deploying Applications to Oracle WebLogic Server

■ Configuring Web applications

■ Configuring XML resources

■ Configuring resource adapters

■ Understanding WebLogic Web Services for Oracle WebLogic
Server

Monitoring your domain ■ Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server

■ Monitoring Oracle WebLogic Server with SNMP

■ Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server

■ Developing Java EE Management Applications for Oracle
WebLogic Server

■ Using the Monitoring Dashboard

Configuring server
environments for high
availability

■ Understanding cluster architectures

■ Setting up WebLogic Server clusters

■ Using session replication across clusters

■ Using Work Managers to prioritize application execution

■ Avoiding and managing overload

Understanding the
WebLogic persistent store

■ Using the WebLogic persistent store

■ Configuring custom persistent stores

■ Tuning the WebLogic persistent store

Troubleshooting ■ Viewing the WebLogic Server Error Message Catalog

■ Tuning Performance of Oracle WebLogic Server

■ Troubleshooting common problems with clustering

■ Administering Node Manager for Oracle WebLogic Server

Reference ■ Administration Console Accessibility Notes for Oracle WebLogic
Server

■ Command Reference for Oracle WebLogic Server

■ SNMP MIB for Oracle WebLogic Server

■ WLST Command Reference for WebLogic Server

■ MBean Reference for Oracle WebLogic Server

Table 2–4 (Cont.) Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information
System Administration 2-9

Roadmap for Administering the WebLogic Server System
2-10 Understanding Oracle WebLogic Server

3

3Overview of Administration Consoles

[4] This chapter introduces and describes the WebLogic Server Administration Console
and Fusion Middleware Control.

This chapter includes the following sections:

■ Section 3.1, "Using the WebLogic Server Administration Console"

■ Section 3.2, "Using Fusion Middleware Control"

3.1 Using the WebLogic Server Administration Console
The section introduces the WebLogic Server Administration Console.

It includes the following sections:

■ Section 3.1.1, "About the WebLogic Server Administration Console"

■ Section 3.1.2, "Starting the WebLogic Server Administration Console"

■ Section 3.1.3, "Elements of the WebLogic Server Administration Console"

■ Section 3.1.4, "Using the Change Center"

3.1.1 About the WebLogic Server Administration Console
The WebLogic Server Administration Console is a Web browser-based, graphical user
interface that you use to manage a WebLogic Server domain. A WebLogic Server
domain is a logically related group of WebLogic Server resources that you manage as a
unit. A domain includes one or more WebLogic Servers and may also include
WebLogic Server clusters. Clusters are groups of WebLogic Servers instances that work
together to provide scalability and high-availability for applications. You deploy and
manage your applications as part of a domain.

One instance of WebLogic Server in each domain is configured as an Administration
Server. The Administration Server provides a central point for managing a WebLogic
Server domain. All other WebLogic Server instances in a domain are called Managed
Servers. In a domain with only a single WebLogic Server instance, that server
functions both as Administration Server and Managed Server. The Administration
Server hosts the WebLogic Server Administration Console, which is a Web application
accessible from any supported Web browser with network access to the
Administration Server. Managed Servers host applications.

Use the WebLogic Server Administration Console to:

■ Configure, start, and stop WebLogic Server instances

■ Configure WebLogic Server clusters
Overview of Administration Consoles 3-1

Using the WebLogic Server Administration Console
■ Configure WebLogic Server services, such as database connectivity (JDBC) and
messaging (JMS)

■ Configure security parameters, including managing users, groups, and roles

■ Configure and deploy your applications

■ Monitor server and application performance

■ View server and domain log files

■ View application deployment descriptors

■ Edit selected run-time application deployment descriptor elements

■ Control (start, stop, and restart) managed Coherence servers

■ Create and configure Coherence clusters

3.1.1.1 WebLogic Server Administration Console Online Help
The WebLogic Server Administration Console includes a complete help system. It has
two parts:

■ How do I...?, which documents procedures for tasks you can perform through
using the WebLogic Server Administration Console.

■ WebLogic Server Administration Console Reference, which provides reference
information for each page in the WebLogic Server Administration Console,
including descriptions of the attributes you can set using the WebLogic Server
Administration Console.

You can access the WebLogic Server Administration Console online help either
through the WebLogic Server Administration Console itself, or in Oracle WebLogic
Server Administration Console Online Help.

3.1.1.2 Console Errors
Messages (including information, warning, and error messages) can be generated and
logged in the course of using the WebLogic Server Administration Console. You can
view WebLogic Server logs from the Diagnostics > Log Files page of the WebLogic
Server Administration Console.

3.1.2 Starting the WebLogic Server Administration Console
This section contains instructions for starting the WebLogic Server Administration
Console.

To use the WebLogic Server Administration Console, use one of the supported Web
browsers for your environment. See "Supported Configurations" in What's New in
Oracle WebLogic Server 12.2.1. If your Web browser is not a supported browser, you
may experience functional or formatting problems when using the WebLogic Server
Administration Console.

To start the WebLogic Server Administration Console:

1. Start an Administration Server.

2. Open one of the supported Web browsers to the following URL:

http://hostname:port/console

where hostname is the DNS name or IP address of the Administration Server and
port is the listen port on which the Administration Server is listening for requests
3-2 Understanding Oracle WebLogic Server

Using the WebLogic Server Administration Console
(port 7001 by default). If you have configured a domain-wide administration port,
use that port number. If you configured the Administration Server to use Secure
Socket Layer (SSL) you must add s after http as follows:

https://hostname:port/console

Note: A domain-wide administration port always uses SSL.

3. When the login page appears, enter the user name and the password you used to
start the Administration Server (you may have specified this user name and
password during the installation process) or enter a user name that belongs to one
of the following security groups: Administrators, Operators, Deployers, or
Monitors. These groups provide various levels of access to system administration
functions in the WebLogic Server Administration Console.

Using the security system, you can add or delete users to one of these groups to
provide controlled access to the Console.

Note: If you have your browser configured to send HTTP requests to
a proxy server, then you may need to configure your browser to not
send Administration Server HTTP requests to the proxy. If the
Administration Server is on the same machine as the browser, then
ensure that requests sent to localhost or 127.0.0.1 are not sent to the
proxy.

3.1.2.1 Enabling the WebLogic Server Administration Console
By default, the WebLogic Server Administration Console is enabled. If you disable it,
you can re-enable it using the WebLogic Scripting Tool (WLST). Start the
Administration Server, then invoke WLST and use the following commands:

Example 3–1 Using WLST to Re-enable the Console

connect("username","password")
edit()
startEdit()
cmo.setConsoleEnabled(true)
save()
activate()
The following attribute(s) have been changed on MBeans which require server re-start.
MBean Changed : com.bea:Name=mydomain,Type=Domain Attributes changed :
ConsoleEnabled
Activation completed
disconnect()
exit()

For information about using WLST, see Understanding the WebLogic Scripting Tool.

3.1.3 Elements of the WebLogic Server Administration Console
The WebLogic Server Administration Console user interface includes the following
panels:
Overview of Administration Consoles 3-3

Using the WebLogic Server Administration Console
3.1.3.1 Change Center
This is the starting point for using the WebLogic Server Administration Console to
make changes in WebLogic Server. See Section 3.1.4, "Using the Change Center."

Figure 3–1 Change Center

3.1.3.2 Domain Structure
This panel contains a tree structure you can use to navigate to pages in the WebLogic
Server Administration Console. Select any of the nodes in the Domain Structure tree to
view that page. Click a + (plus) icon in the Domain Structure to expand a node and a -
(minus) icon to collapse the node.

Figure 3–2 Domain Structure

3.1.3.3 How do I...
This panel includes links to online help tasks that are relevant to the current Console
page.

Figure 3–3 How do I...
3-4 Understanding Oracle WebLogic Server

Using the WebLogic Server Administration Console
3.1.3.4 Tool Bar
The tool bar at the top of the Console includes the following elements:

Tool Bar Element Description

Welcome message Indicates user name with which you have logged into the Console.

Connected to: The IP address and port you used to connect to the Console.

Home A link to the top page of the Console.

Log Out Click to log out of the Console.

Preferences A link to a page where you can change some Console behavior.

Record Starts recording your configuration actions as a series of WebLogic
Scripting Tool (WLST) commands. Writes the commands to a separate
file that you can replay in WLST.

See "Record WLST Scripts" in Oracle WebLogic Server Administration
Console Online Help.

Help A link to the WebLogic Server Administration Console Online Help.

Search A text field in which you can enter a string to find any WebLogic Server
Configuration MBeans that contain the string you specified in their
name.

Figure 3–4 Tool Bar

3.1.3.5 Breadcrumb Navigation
A series of links that show the path you have taken through the WebLogic Server
Administration Console's pages. You can click on any of the links to return to a
previously-visited page.

Figure 3–5 Breadcrumb Navigation

3.1.3.6 System Status
The System Status panel reports on the number of information, error, and warning
messages that have been logged. You can view these messages in the server log files,
which you can access from the WebLogic Server Administration Console at
Diagnostics > Log Files.

Figure 3–6 System Status
Overview of Administration Consoles 3-5

Using the WebLogic Server Administration Console
3.1.4 Using the Change Center
The starting point for using the WebLogic Server Administration Console to make
changes in your WebLogic Server domain is the Change Center. The Change Center
provides a way to lock a domain configuration so you can make changes to the
configuration while preventing other accounts from making changes during your edit
session. See Section 3.1.4.3, "How Change Management Works."

The domain configuration locking feature is always enabled in production domains. It
can be enabled or disabled in development domains. It is disabled by default when
you create a new development domain. See "Enable and disable the domain
configuration lock" in Oracle WebLogic Server Administration Console Online Help.

To change a production domain's configuration, you must:

1. Locate the Change Center in the upper left of the WebLogic Server Administration
Console screen.

2. Click the Lock & Edit button to lock the configuration edit hierarchy for the
domain.

3. Make the changes you desire on the relevant page of the Console. Click Save on
each page where you make a change.

4. When you have finished making all the desired changes, click Activate Changes in
the Change Center.

As you make configuration changes using the WebLogic Server Administration
Console, you click Save (or in some cases Finish) on the appropriate pages. This does
not cause the changes to take effect immediately. The changes take effect when you
click Activate Changes in the Change Center. At that point, the configuration changes
are distributed to each of the servers in the domain. If the changes are acceptable to
each of the servers, then they take effect. If any server cannot accept a change, then all
of the changes are rolled back from all of the servers in the domain. The changes are
left in a pending state; you can then either edit the pending changes to resolve the
problem or revert the pending changes.

3.1.4.1 Undoing Changes
You can revert any pending (saved, but not yet activated) changes by clicking Undo
All Changes in the Change Center. You can revert any individual change by going to
the appropriate page in the WebLogic Server Administration Console and restoring
the attribute to its previous value.

3.1.4.2 Releasing the Configuration Lock
You release the configuration lock as follows:

■ Before you make changes, click Release Configuration in the Change Center to
release the lock explicitly.

■ After you save changes, click Activate Changes or Undo All Changes in the
Change Center to release the lock implicitly.

Stopping the Administration Server does not release the configuration lock. When the
Administration Server starts again, the configuration lock is in the same state it was in
when the Administration Server was shut down, and any pending changes are
preserved.
3-6 Understanding Oracle WebLogic Server

Using Fusion Middleware Control
3.1.4.3 How Change Management Works
To provide a secure, predictable means for distributing configuration changes in a
domain, WebLogic Server imposes a change management process that loosely
resembles a database transaction. The configuration of a domain is represented on the
file system by a set of XML configuration files, centralized in the config.xml file, and
at run time by a hierarchy of Configuration MBeans. When you edit the domain
configuration, you edit a separate hierarchy of Configuration MBeans that resides on
the Administration Server. To start the edit process, you obtain a lock on the edit
hierarchy to prevent other people from making changes. When you finish making
changes, you save the changes to the edit hierarchy. The changes do not take effect,
however, until you activate them, distributing them to all server instances in the
domain. When you activate changes, each server determines whether it can accept the
change. If all servers are able to accept the change, they update their working
configuration hierarchy and the change is completed.

For more information about change management, see "Managing Configuration
Changes" in Understanding Domain Configuration for Oracle WebLogic Server.

3.1.4.4 Dynamic and Non-Dynamic Changes
Some changes you make in the WebLogic Server Administration Console take place
immediately when you activate them. Other changes require you to restart the server
or module affected by the change. These latter changes are called non-dynamic changes.
Non-dynamic changes are indicated in the WebLogic Server Administration Console
with this warning icon:

Changes to dynamic configuration attributes become available once they are activated,
without restarting the affected server or system restart. These changes are made
available to the server and run-time hierarchies once they are activated. Changes to
non-dynamic configuration attributes require that the affected servers or system
resources be restarted before they become effective.

If a change is made to a non-dynamic configuration setting, no changes to dynamic
configuration settings will take effect until after restart. This is to assure that a batch of
updates having a combination of dynamic and non-dynamic attribute edits will not be
partially activated.

Note that WebLogic Server's change management process applies to changes in
domain and server configuration data, not to security or application data.

3.1.4.5 Viewing Changes
You can view any changes that you have saved, but not yet activated, by clicking the
View Changes and Restarts link in the Change Center. The View Changes and Restarts
link presents two tabs, Change List and Restart Checklist:

■ The Change List page presents all changes that have been saved, but not yet
activated.

■ The Restart Checklist lists all servers for which non-dynamic changes have been
activated, but which require restarts before the changes become effective.

3.2 Using Fusion Middleware Control
WebLogic Server can also be managed through Fusion Middleware Control. Fusion
Middleware Control provides management support for all Fusion Middleware
Overview of Administration Consoles 3-7

Using Fusion Middleware Control
components, including WebLogic Server. Use Fusion Middleware Control to manage
WebLogic Server when using other Fusion Middleware products in addition to
WebLogic Server.

3.2.1 Fusion Middleware Control Online Help
Fusion Middleware Control includes a complete help system. It has two parts:

■ How do I...?, which documents procedures for tasks you can perform using Fusion
Middleware Control.

■ Help For This Page, which provides reference information for each page,
including descriptions of the attributes.

To access the Fusion Middleware Control help, select Help from the user profile menu
at the top of the page. You can then select either How Do I? or Help For This Page.

For more information on using Fusion Middleware Control, see "Getting Started Using
Oracle Enterprise Manager Fusion Middleware Control" in Administering Oracle Fusion
Middleware.

For more information on managing WebLogic Server using Fusion Middleware
Control, see the Oracle Fusion Middleware Control Help for WebLogic Server and
Administering Oracle WebLogic Server with Fusion Middleware Control.
3-8 Understanding Oracle WebLogic Server

4

4WebLogic Server Domains

[5] This chapter describes WebLogic Server domains, logically related groups of Oracle
WebLogic Server resources.

This chapter includes the following sections:

■ Section 4.1, "Understanding Domains"

■ Section 4.2, "Organizing Domains"

■ Section 4.3, "Contents of a Domain"

■ Section 4.4, "Roadmap for Understanding WebLogic Server Domains"

4.1 Understanding Domains
An Oracle WebLogic Server administration domain is a logically related group of
Oracle WebLogic Server resources. Domains include a special Oracle WebLogic Server
instance called the Administration Server, which is the central point from which you
configure and manage all resources in the domain. Usually, you configure a domain to
include additional Oracle WebLogic Server instances called Managed Servers. You
deploy Web applications, EJBs, Web services, and other resources onto the Managed
Servers and use the Administration Server for configuration and management
purposes only.

4.2 Organizing Domains
You can use a single Oracle WebLogic Server installation to create and run multiple
domains, or you can use multiple installations to run a single domain. See Figure 4–1.
WebLogic Server Domains 4-1

Organizing Domains
Figure 4–1 Oracle WebLogic Server Installations and Domains

How you organize your Oracle WebLogic Server installations into domains depends
on your business needs. You can define multiple domains based on different system
administrators' responsibilities, application boundaries, or geographical locations of
the machines on which servers run. Conversely, you might decide to use a single
domain to centralize all Oracle WebLogic Server administration activities.

Depending on your particular business needs and system administration practices,
you might decide to organize your domains based on criteria such as:

■ Logical divisions of applications. For example, you might have one domain
devoted to end-user functions such as shopping carts and another domain
devoted to back-end accounting applications.

■ Physical location. You might establish separate domains for different locations or
branches of your business. Each physical location requires its own Oracle
WebLogic Server installation.

■ Size. You might find that domains organized in small units can be managed more
efficiently, perhaps by different system administrators. Contrarily, you might find
that maintaining a single domain or a small number of domains makes it easier to
maintain a consistent configuration.

You can create a simple domain that consists of a single server instance. This single
instance acts as an Administration Server and hosts the applications that you are
developing. Although a single server domain is typically used for development and
test environments, this domain type is fully supported for production use and may be
appropriate for light-load applications. The wl_server domain that you can install
with Oracle WebLogic Server is an example of this type of domain.
4-2 Understanding Oracle WebLogic Server

Contents of a Domain
4.3 Contents of a Domain
Figure 4–2 shows a production environment that contains an Administration Server,
three stand-alone Managed Servers, and a cluster of three Managed Servers.

Although the scope and purpose of a domain can vary significantly, most Oracle
WebLogic Server domains contain the components described in this section.

Figure 4–2 Contents of a Domain

4.3.1 Administration Server
The Administration Server operates as the central control entity for the configuration
of the entire domain. It maintains the domain's configuration documents and
distributes changes in the configuration documents to Managed Servers. You can also
use the Administration Server as a central location from which to monitor all resources
in a domain.

To interact with the Administration Server, you can use any of the administration tools
listed in "Section 2.3, "Summary of System Administration Tools and APIs". " See
"System Administration" for information about modifying the domain's configuration.

Each Oracle WebLogic Server domain must have one server instance that acts as the
Administration Server.

For more information about the Administration Server and its role in the Oracle
WebLogic Server JMX management system, see "System Administration".

4.3.2 Managed Servers and Managed Server Clusters
Managed Servers host business applications, application components, Web services,
and their associated resources. To optimize performance, Managed Servers maintain a
read-only copy of the domain's configuration document. When a Managed Server
starts up, it connects to the domain's Administration Server to synchronize its
configuration document with the document that the Administration Server maintains.

For production environments that require increased application performance,
throughput, or high availability, you can configure two or more Managed Servers to
operate as a cluster. A cluster is a collection of multiple Oracle WebLogic Server
instances running simultaneously and working together to provide increased
scalability and reliability. In a cluster, most resources and services are deployed
WebLogic Server Domains 4-3

Contents of a Domain
identically to each Managed Server (as opposed to a single Managed Server), enabling
failover and load balancing. A single domain can contain multiple Oracle WebLogic
Server clusters, as well as multiple Managed Servers that are not configured as
clusters. The key difference between clustered and non-clustered Managed Servers is
support for failover and load balancing. These features are available only in a cluster
of Managed Servers. For more information about the benefits and capabilities of an
Oracle WebLogic Server cluster, see "Understanding WebLogic Server Clustering" in
Administering Clusters for Oracle WebLogic Server.

4.3.3 Managed Coherence Servers and Coherence Clusters
Managed Coherence Servers provide in-memory distributed caching for applications.
A Managed Server that is configured to be a Coherence cluster member is a Managed
Coherence Server. Coherence is integrated within WebLogic server as a container
subsystem. The use of a container aligns the lifecycle of a Coherence member with the
lifecycle of a Managed Server: starting or stopping a server JVM starts and stops a
Coherence cluster member.

A domain can contain a single Coherence cluster that can be associated with Multiple
WebLogic Server clusters. Managed Coherence servers that are part of a WebLogic
Server cluster inherit their Coherence settings from the WebLogic Server cluster.
WebLogic Server clusters are typically used to setup Coherence tiers that organize
Managed Coherence servers based on their role in the Coherence cluster.

For details on configuring and managing Coherence clusters, see Administering Clusters
for Oracle WebLogic Server.

4.3.4 Resources and Services
In addition to the Administration Server and Managed Servers, a domain also contains
the resources and services that Managed Servers and deployed applications require.

Managed Servers can use the following resources:

■ Machine definitions that identify a particular, physical piece of hardware. A
machine definition is used to associate a computer with the Managed Servers it
hosts. This information is used by Node Manager in restarting a failed Managed
Server, and by a clustered Managed Server in selecting the best location for storing
replicated session data. For more information about Node Manager, see "Node
Manager Overview" in the Administering Node Manager for Oracle WebLogic Server.

■ Network channels that define default ports, protocols, and protocol settings that a
Managed Server uses to communicate with clients. After creating a network
channel, you can assign it to any number of Managed Servers and clusters in the
domain. For more information, see "Configuring Network Resources" in
Administering Server Environments for Oracle WebLogic Server.

■ Virtual hosting, which defines a set of host names to which Oracle WebLogic
Server instances (servers) or clusters respond. When you use virtual hosting, you
use DNS to specify one or more host names that map to the IP address of a server
or cluster. You also specify which Web applications are served by each virtual host.

Applications can use the following resources and services:

■ Security providers, which are modular components that handle specific aspects of
security, such as authentication and authorization.

■ Resource adapters, which are system libraries specific to Enterprise Information
Systems (EIS) and provide connectivity to an EIS.
4-4 Understanding Oracle WebLogic Server

Roadmap for Understanding WebLogic Server Domains
■ Diagnostics and monitoring services.

■ JDBC data sources, which enable applications to connect to databases.

■ Mail sessions.

■ XML entity caches and registry of XML parsers and transformer factories.

■ Messaging services such as JMS servers and store-and-forward services.

■ Persistent store, which is a physical repository for storing data, such as persistent
JMS messages. It can be either a JDBC-accessible database or a disk-based file.

■ Startup classes, which are Java programs that you create to provide custom,
system-wide services for your applications.

■ Work Managers, which determine how an application prioritizes the execution of
its work based on rules you define and by monitoring actual run-time
performance. You can create Work Mangers for entire Oracle WebLogic Server
domains or for specific application components.

■ Work Contexts, which enable applications to pass properties to a remote context
without including the properties in a remote call.

4.4 Roadmap for Understanding WebLogic Server Domains

Table 4–1 Roadmap for Understanding WebLogic Server Domains

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server domains

■ What to do if the Administration Server fails

■ Domain restrictions

■ Domain configuration files

■ Overview of change management

■ "System Administration"

Creating domains ■ Creating WebLogic Domains Using the Configuration Wizard

■ Overview of the Configuration Wizard

■ Extending WebLogic domains

■ Creating Templates and Domains Using the Pack and Unpack
Commands

■ Creating WebLogic domains using WLST offline

Configuring domains ■ Configuring existing WebLogic domains

■ Understanding Domain Configuration for Oracle WebLogic
Server

■ Managing configuration changes

Working with domain
templates

■ Creating Domain Templates Using the Domain Template
Builder

■ Creating and using a domain template (offline)

Examples ■ WLST offline sample scripts

In addition, sample scripts are provided that configure
WebLogic domain resources using WLST offline and online
on the Oracle Technology Network site.
WebLogic Server Domains 4-5

Roadmap for Understanding WebLogic Server Domains
Reference ■ Domain Template Reference

■ Domain configuration schema

■ Domain security schema

Table 4–1 (Cont.) Roadmap for Understanding WebLogic Server Domains

Major Task Subtasks and Additional Information
4-6 Understanding Oracle WebLogic Server

5

5WebLogic Server Clustering

[6] This chapter introduces WebLogic Server clusters, groups of WebLogic Server server
instances running simultaneously and working together to provide increased
scalability and reliability.

This chapter includes the following sections:

■ Section 5.1, "Overview of WebLogic Server Clusters"

■ Section 5.2, "Relationship Between Clusters and Domains"

■ Section 5.3, "Relationship Between Coherence and WebLogic Server Clusters"

■ Section 5.4, "Benefits of Clustering"

■ Section 5.5, "Key Capabilities of Clusters"

■ Section 5.6, "Objects That Can Be Clustered"

■ Section 5.7, "Objects That Cannot Be Clustered"

■ Section 5.8, "Overview of Dynamic Clusters"

■ Section 5.9, "Roadmap for Clustering in WebLogic Server"

5.1 Overview of WebLogic Server Clusters
A WebLogic Server cluster consists of multiple WebLogic Server server instances
running simultaneously and working together to provide increased scalability and
reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the
same version of WebLogic Server.

5.2 Relationship Between Clusters and Domains
A cluster is part of a particular WebLogic Server domain.

A domain is an interrelated set of WebLogic Server resources that are managed as a
unit. A domain includes one or more WebLogic Server instances, which can be
clustered, non-clustered, or a combination of clustered and non-clustered instances. A
domain can include multiple clusters. A domain also contains the application
components deployed in the domain, and the resources and services required by those
application components and the server instances in the domain. Examples of the
WebLogic Server Clustering 5-1

Relationship Between Coherence and WebLogic Server Clusters
resources and services used by applications and server instances include machine
definitions, optional network channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into
domains. For instance, you might choose to allocate resources to multiple domains
based on logical divisions of the hosted application, geographical considerations, or
the number or complexity of the resources under management. For additional
information about domains see Understanding Domain Configuration for Oracle WebLogic
Server.

In each domain, one WebLogic Server instance acts as the Administration Server—the
server instance which configures, manages, and monitors all other server instances
and resources in the domain. Each Administration Server manages one domain only. If
a domain contains multiple clusters, each cluster in the domain has the same
Administration Server. All server instances in a cluster must reside in the same
domain; you cannot "split" a cluster over multiple domains. Similarly, you cannot
share a configured resource or subsystem between domains.

Clustered WebLogic Server instances behave similarly to non-clustered instances,
except that they provide failover and load balancing. The process and tools used to
configure clustered WebLogic Server instances are the same as those used to configure
non-clustered instances. However, to achieve the load balancing and failover benefits
that clustering enables, you must adhere to certain guidelines for cluster configuration.

5.3 Relationship Between Coherence and WebLogic Server Clusters
Coherence clusters consist of multiple managed Coherence server instances that work
together to distribute data in-memory to increase application scalability, availability,
and performance. A client interacts with the data in a local cache and the distribution
and backup of the data is automatically performed across cluster members.

Coherence clusters are different than WebLogic Server clusters. They use different
clustering protocols and are configured separately. A WebLogic Server domain can
contain a single Coherence cluster. Multiple WebLogic Server clusters can be
associated with a Coherence cluster.

For details on configuring and managing Coherence clusters, see Administering Clusters
for Oracle WebLogic Server.

5.4 Benefits of Clustering
A WebLogic Server cluster provides these benefits:

■ Scalability

The capacity of an application deployed on a WebLogic Server cluster can be
increased dynamically to meet demand. You can add server instances to a cluster
without interruption of service—the application continues to run without impact
to clients and end users.

■ High-Availability

In a WebLogic Server cluster, application processing can continue when a server
instance fails. You "cluster" application components by deploying them on
multiple server instances in the cluster—so, if a server instance on which a
component is running fails, another server instance on which that component is
deployed can continue application processing.
5-2 Understanding Oracle WebLogic Server

Overview of Dynamic Clusters
5.5 Key Capabilities of Clusters
This section defines, in non-technical terms, the key clustering capabilities that enable
scalability and high availability.

■ Application Failover

Simply put, failover means that when an application component doing a
particular "job"—some set of processing tasks—becomes unavailable for any
reason, a copy of the failed object finishes the job.

■ Migration

WebLogic Server supports automatic and manual migration of a clustered server
instance from one machine to another. A Managed Server that can be migrated is
referred to as a migratable server. This feature is designed for environments with
requirements for high availability.

■ Load Balancing

Load balancing is the even distribution of jobs and associated communications
across the computing and networking resources in your environment.

5.6 Objects That Can Be Clustered
A clustered application or application component is one that is available on multiple
WebLogic Server instances in a cluster. If an object is clustered, failover and load
balancing for that object is available. Deploy objects homogeneously—to every server
instance in your cluster—to simplify cluster administration, maintenance, and
troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java
Beans (EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique set
of behaviors related to control, invocation, and how it functions within an application.
For this reason, the methods that WebLogic Server uses to support clustering—and
hence to provide load balancing and failover—can vary for different types of objects.
The following types of objects can be clustered in a WebLogic Server deployment:

■ Servlets

■ JSPs

■ EJBs

■ Remote Method Invocation (RMI) objects

■ Java Messaging Service (JMS) destinations

■ Coherence cluster and managed Coherence servers

■ Timer services

5.7 Objects That Cannot Be Clustered
The following APIs and internal services cannot be clustered in WebLogic Server:

■ File services including file shares

5.8 Overview of Dynamic Clusters
Dynamic clusters consist of server instances that can be dynamically scaled up to meet
the resource needs of your application. A dynamic cluster uses a single server
WebLogic Server Clustering 5-3

Roadmap for Clustering in WebLogic Server
template to define configuration for a specified number of generated (dynamic) server
instances.

When you create a dynamic cluster, the dynamic servers are preconfigured and
automatically generated for you, enabling you to easily scale up the number of server
instances in your dynamic cluster when you need additional server capacity. You can
simply start the dynamic servers without having to first manually configure and add
them to the cluster.

For more information about dynamic clusters, see "Dynamic Clusters" in Administering
Clusters for Oracle WebLogic Server.

5.9 Roadmap for Clustering in WebLogic Server

Table 5–1 Roadmap for Clustering in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about WebLogic Server clustering ■ Clustering servlets and JSPs

■ Clustering EJBs and RMI objects

■ JMS and clustering

■ Coherence clustering

■ Dynamic clusters

Configuring a cluster ■ Understanding cluster configuration

■ Communications in a cluster

■ Cluster architectures

■ Setting up WebLogic Server clusters

■ Clustering best practices

■ Setting up Coherence clusters

Configuring elasticity for a dynamic cluster ■ Performing on-demand scaling

■ Configuring elastic actions

■ Configuring calendar based scaling

■ Configuring policy based scaling

Learning more about load balancing and failover
in a cluster

■ Load balancing in a cluster

■ Failover and replication in a cluster

■ Configuring BIG-IP hardware with clusters

■ Configuring F5 load balancers for MAN/WAN failover

■ Configuring Radware load balancers for MAN/WAN
failover

Migrating servers and services in a cluster ■ Whole server migration

■ Service migration

Troubleshooting ■ Troubleshooting common problems

■ Troubleshooting multicast configuration

Reference ■ The WebLogic cluster API
5-4 Understanding Oracle WebLogic Server

6

6Developing Applications in WebLogic Server

[7] This chapter describes application development in WebLogic Server.

This chapter includes the following sections:

■ Section 6.1, "WebLogic Server and the Java EE Platform"

■ Section 6.2, "Overview of Java EE Applications and Modules"

■ Section 6.3, "Roadmap for Developing Applications in WebLogic Server"

6.1 WebLogic Server and the Java EE Platform
WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 7.0
technologies (see
http://www.oracle.com/technetwork/java/javaee/overview/index.html). Java EE
is the standard platform for developing multi-tier enterprise applications based on the
Java programming language. The technologies that make up Java EE were developed
collaboratively by several software vendors. For background information on Java EE 7
application development, refer to the Java EE 7 Tutorial at:
https://docs.oracle.com/javaee/7/tutorial/index.html.

An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older
versions of enterprise applications (Java EE 1.4 and earlier).

Starting in Java EE 5 and continuing in Java EE 7, the focus has been ease of
development. There is less code to write – much of the boilerplate code has been
removed, defaults are used whenever possible, and annotations are used extensively
to reduce the need for deployment descriptors.

■ EJB 3.2 provides simplified programming and packaging model changes. The
mandatory use of Java interfaces from previous versions has been removed,
allowing plain old Java objects to be annotated and used as EJB components. The
simplification is further enhanced through the ability to place EJB modules
directly inside of Web applications, removing the need to produce archives to store
the Web and EJB components and combine them together in an EAR file.

■ Java EE 7 includes simplified Web services support and the latest Web services
APIs, making it an ideal implementation platform for Service-Oriented
Architectures (SOA).
Developing Applications in WebLogic Server 6-1

Overview of Java EE Applications and Modules
■ Constructing Web applications is made easier with JavaServer Faces (JSF)
technology and the JSP Standard Tag Library (JSTL). Java EE 7 supports rich
thin-client technologies such as AJAX, for building applications for Web 2.0.

WebLogic Server Java EE applications are based on standardized, modular
components. WebLogic Server provides a complete set of services for those modules
and handles many details of application behavior automatically, without requiring
programming. Java EE defines module behaviors and packaging in a generic, portable
way, postponing run-time configuration until the module is actually deployed on an
application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web
services, enterprise applications, client applications, and connectors. Java EE does not
specify how an application is deployed on the target server—only how a standard
module or application is packaged. For each module type, the specifications define the
files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

For more information, refer to the Java EE specifications at:
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html.

6.2 Overview of Java EE Applications and Modules
A WebLogic Server Java EE application consists of one of the following modules or
applications running on WebLogic Server:

■ Web application modules—HTML pages, servlets, JavaServer Pages, and related
files. See "Web Application Modules" in Developing Applications for Oracle WebLogic
Server.

■ Enterprise Java Beans (EJB) modules—entity beans, session beans, and
message-driven beans. See "Enterprise JavaBean Modules" in Developing
Applications for Oracle WebLogic Server.

■ Connector modules—resource adapters. See "Connector Modules" in Developing
Applications for Oracle WebLogic Server.

■ Enterprise applications—Web application modules, EJB modules, resource
adapters and Web Services packaged into an application. See "Enterprise
Applications" in Developing Applications for Oracle WebLogic Server.

■ Web services—See "WebLogic Web Services" in Developing Applications for Oracle
WebLogic Server.

A WebLogic application can also include the following WebLogic-specific modules:

■ JDBC and JMS modules—See "JMS and JDBC Modules" in Developing Applications
for Oracle WebLogic Server.

■ Coherence Grid modules—See "Packaging Coherence Applications" in Developing
Oracle Coherence Applications for Oracle WebLogic Server.

■ WebLogic Diagnostic FrameWork (WLDF) modules—See "WebLogic Diagnostic
Framework Modules" in Developing Applications for Oracle WebLogic Server.
6-2 Understanding Oracle WebLogic Server

Roadmap for Developing Applications in WebLogic Server
6.3 Roadmap for Developing Applications in WebLogic Server

Table 6–1 Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
application development

■ XML deployment descriptors

■ Deployment plans

■ Best practices for developing WebLogic Server applications

■ Understanding application life cycle events

■ Understanding production redeployment

■ Understanding WebLogic Server application classloading

■ Overview of shared Java EE libraries and optional packages

Setting up your
development environment

■ Starting and stopping WebLogic Server

■ Use the "split development directory" to develop your
applications

Designing your application ■ Using shared Java EE libraries and optional packages to
share code among deployed applications

■ Programming JSF and JSTL applications

■ Using life cycle listeners

■ Using the HTTP publish-subscribe server

■ Using Coherence to cache data

■ Using Coherence to cache HTTP session data

■ Developing Applications with the WebLogic Security Service

■ Internationalize or localize your application

■ Using threads in WebLogic Server

■ Using WebSockets in WebLogic Server

■ Adding WebLogic Logging Services to Applications Deployed on
Oracle WebLogic Server

■ Developing Stand-alone Clients for Oracle WebLogic Server

■ Designing manageable applications

Building your application ■ Developing Applications for Oracle WebLogic Server

■ Deploying your "split development directory" application
on WebLogic Server

■ Using Ant tasks to compile Java code

Using development tools ■ Development software

■ Ant

■ Oracle WebLogic Server Administration Console Online Help

■ Command Reference for Oracle WebLogic Server

■ Creating WebLogic Domains Using the Configuration Wizard

■ EJBGen

■ Creating Domain Templates Using the Domain Template Builder

■ Understanding the WebLogic Scripting Tool

Moving your application to
a production environment

■ Preparing your application or module for deployment

■ Configuring your application for production deployment

■ Updating your deployed application (production
redeployment)
Developing Applications in WebLogic Server 6-3

Roadmap for Developing Applications in WebLogic Server
Application examples ■ "Java EE 7 Examples"

■ "Additional API Examples"

■ "Avitek Medical Records"

A complete and functional Java EE application including
source code. The MedRec (Spring) sample application
demonstrates Spring 3.0.x application development
practices.

Java EE API programming
guides

■ Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server

■ Developing Manageable Applications Using JMX for Oracle
WebLogic Server

■ Developing Security Providers for Oracle WebLogic Server

■ Developing and Administering Spring Applications for Oracle
WebLogic Server

■ Solution Guide for Oracle TopLink

■ Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server

■ Developing Java EE Management Applications for Oracle
WebLogic Server

■ Developing Enterprise JavaBeans for Oracle WebLogic Server

■ Developing JDBC Applications for Oracle WebLogic Server

■ Developing JMS Applications for Oracle WebLogic Server

■ Developing JNDI Applications for Oracle WebLogic Server

■ Developing JTA Applications for Oracle WebLogic Server

■ Developing Resource Adapters for Oracle WebLogic Server

■ Developing RMI Applications for Oracle WebLogic Server

■ Developing XML Applications for Oracle WebLogic Server

■ Developing Stand-alone Clients for Oracle WebLogic Server

■ Deploying Applications with the WebLogic Deployment API

■ Developing JCOM Applications for Oracle WebLogic Server

■ Developing JSP Tag Extensions for Oracle WebLogic Server

■ Developing Applications with the WebLogic Security Service

■ Developing JAX-WS Web Services for Oracle WebLogic Server

■ Developing CommonJ Applications for Oracle WebLogic Server

■ Adding WebLogic Logging Services to Applications Deployed on
Oracle WebLogic Server

■ Administering Clusters for Oracle WebLogic Server

■ Developing Oracle WebLogic Tuxedo Connector Applications for
Oracle WebLogic Server

Javadoc and API reference ■ Java Platform, Enterprise Edition (Java EE) Version 7.0

■ Java Platform, Standard Edition (Java SE) Version 7.0

■ JMS C API Reference for Oracle WebLogic Server

■ Java API Reference for Oracle WebLogic Server

■ Microsoft .NET Messaging API for Oracle WebLogic Server

Table 6–1 (Cont.) Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information
6-4 Understanding Oracle WebLogic Server

Roadmap for Developing Applications in WebLogic Server
General reference ■ XML deployment descriptors

■ WebLogic JSP cache, process, and repeat tags

■ WebLogic JSP form validation tags

■ Command Reference for Oracle WebLogic Server

■ MBean Reference for Oracle WebLogic Server

■ WebLogic Server Error Message Catalog

Table 6–1 (Cont.) Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information
Developing Applications in WebLogic Server 6-5

Roadmap for Developing Applications in WebLogic Server
6-6 Understanding Oracle WebLogic Server

7

7Deploying Applications in WebLogic Server

[8] This chapter describes application deployment in WebLogic Server.

This chapter includes the following sections:

■ Section 7.1, "Overview of the Deployment Process"

■ Section 7.2, "Java EE 7 Deployment Implementation"

■ Section 7.3, "Fast Track Deployment Guide"

■ Section 7.4, "Roadmap for Deploying Applications in WebLogic Server"

7.1 Overview of the Deployment Process
The term application deployment refers to the process of making an application or
module available for processing client requests in a WebLogic Server domain.
Application deployment generally involves the following tasks:

■ "Preparing Applications and Modules for Deployment"

■ "Configuring Applications for Production Deployment"

■ "Exporting an Application for Deployment to New Environments"

■ "Deploying Applications and Modules with weblogic.Deployer"

■ "Redeploying Applications in a Production Environment"

■ "Managing Deployed Applications"

7.2 Java EE 7 Deployment Implementation
WebLogic Server implements the Java EE 7 specification. Java EE 7 includes a
deployment specification, JSR-88, that describes a standard API used by deployment
tools and application server providers to configure and deploy applications to an
application server.

WebLogic Server implements both the JSR-88 Service Provider Interface (SPI) plug-in
and model plug-in to comply with the Java EE deployment specification. You can use a
basic Java EE deployment API deployment tool with the WebLogic Server plug-ins
(without using WebLogic Server extensions to the API) to configure, deploy, and
redeploy Java EE applications and modules to WebLogic Server. The WebLogic Server
configuration generated by a Java EE deployment API configuration process is stored
in a deployment plan and one or more generated WebLogic Server deployment
descriptor files, as shown in Figure 7–1.
Deploying Applications in WebLogic Server 7-1

Fast Track Deployment Guide
Figure 7–1 Configuring Applications with the Java EE Deployment API

WebLogic Server deployment descriptors are generated as needed to store WebLogic
Server configuration data.

The WebLogic Server deployment plan generated by a Java EE deployment API
deployment tool identifies the WebLogic Server deployment descriptors that were
generated for the application during the configuration session.

Although the Java EE deployment API provides a simple, standardized way to
configure applications and modules for use with a Java EE-compliant application
server, the specification does not address many deployment features that were
available in previous WebLogic Server releases. For this reason, WebLogic Server
provides important extensions to the Java EE deployment API specification to support
capabilities described in "WebLogic Server Deployment Features" in Deploying
Applications to Oracle WebLogic Server.

7.3 Fast Track Deployment Guide
This section provides basic instructions for quickly deploying Java EE applications and
modules, JSP and HTML files, and Coherence modules. It also provides pointers to
tools for system administrators. The deployment procedures on this page are
recommended for use in development environments only; the procedures are not
recommended for use in production environments. For additional information on
developing and deploying applications on WebLogic Server, see Developing
Applications for Oracle WebLogic Server and Deploying Applications to Oracle WebLogic
Server.
7-2 Understanding Oracle WebLogic Server

Fast Track Deployment Guide
Complete the Installing and Configuring Oracle WebLogic Server and Coherence before
using these Fast Track procedures.

7.3.1 Java EE Deployment
To deploy a Java EE application or module:

1. Make sure that the Java EE application or module does not require additional
resources such as named JDBC data sources or JMS queues. If the application
requires external resources, you must configure them in the target WebLogic
Server domain before deploying the application.

2. Copy the archive file or exploded archive directory for the Java EE application or
module into the /autodeploy directory of the examples server domain directory,
ORACLE_HOME/user_projects/domains/wl_server/autodeploy.

3. Start the Examples WebLogic Server instance.

4. Access the application using either a Java client or the configured URI for the
application.

7.3.1.1 Auto-Deployment
When running in development mode, WebLogic Server automatically deploys
applications copied into the /autodeploy subdirectory of the domain directory.
Auto-deployment is a simple and quick method of deploying an application for testing
or evaluation. See "Auto-Deploying Applications in Development Domains" in
Deploying Applications to Oracle WebLogic Server.

7.3.1.2 Deploying Multiple Applications
When you use the WebLogic Server Administration Console to deploy multiple
applications, upon installing the applications, they are listed in the Console's
Deployments page in the "distribute Initializing" state. After activating changes, they
are listed in the "Prepared" state. To deploy the applications, select the application
names on the Deployments page and click Start.

7.3.2 System Administrator Tools
System Administrators can use the following tools to get started:

■ WebLogic Server Administration Console

The WebLogic Server Administration Console is a browser-based Web application
that allows you to configure and monitor your WebLogic Server domain, server
instances, and running applications and their associated resources. You can also
use the WebLogic Server Administration Console to create new server instances
and clusters and tune application descriptors. For more information, see Oracle
WebLogic Server Administration Console Online Help.

After you log into the Console using the credentials you provided during
installation, click the Help button or How do I ...? links for additional information.

■ Configuration Wizard

Use the WebLogic Server Configuration Wizard to create new domains, and to
create templates for automating domain configuration. For more information, see
Creating WebLogic Domains Using the Configuration Wizard.
Deploying Applications in WebLogic Server 7-3

Roadmap for Deploying Applications in WebLogic Server
7.3.3 JSP/HTML Deployment
To deploy a simple JSP or HTML file:

1. Make sure your JSP file does not reference a tag library or other external
resources—such resources require additional deployment steps that are beyond
the scope of these Fast Track procedures. HTML files do not have this restriction.

2. Copy your JSP or HTML file into the EXAMPLES_HOME/examples/build/mainWebApp
directory, where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. By default, this directory is ORACLE__
HOME/wlserver/samples/server.

3. Start the Examples WebLogic Server instance.

4. In a Web browser, request the JSP or HTML file using the following URL:

http://localhost:port/myFile

where:

localhost is the host name of the machine running WebLogic Server.

port is the port number where WebLogic Server is listening for requests (7001 by
default).

myFile is the full name, including the .jsp or .html extension, of the JSP or HTML
file you copied in step 2.

The JSP or HTML file has been automatically deployed from a directory preconfigured
to target the Examples Server. mainWebApp is deployed by default and you can place
your own JSP and HTML files into the mainWebApp exploded directory in order to
quickly view or test them.

7.3.4 Coherence Deployment
WebLogic Server supports the deployment of Coherence applications that are
packaged as Grid ARchive (GAR) modules. GAR modules contain the artifacts that are
required for a Coherence application. GAR modules are deployed as standalone
modules, packaged within enterprise applications, and as shared libraries. For details
on packaging and deploying Coherence applications, see "Deploying Coherence
Applications" in Developing Oracle Coherence Applications for Oracle WebLogic Server.

7.4 Roadmap for Deploying Applications in WebLogic Server

Table 7–1 Roadmap for Deploying Applications in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
application deployment

■ Deployment terminology

■ Java EE 7 deployment implementation

■ WebLogic Server deployment features

■ Understanding the deployment configuration process

■ Overview of the export process

■ Best practices for deploying applications
7-4 Understanding Oracle WebLogic Server

Roadmap for Deploying Applications in WebLogic Server
Packaging applications ■ Preparing applications and modules for deployment

■ Archive file and exploded archive deployments

■ Using the wlpackage Ant task

■ Preparing Coherence applications for deployment

Using deployment tools ■ Overview of deployment tasks

■ weblogic.Deployer utility

■ WebLogic.Plan generator command-line reference

■ WebLogic Maven plug-in for deployment

■ wldeploy Ant task

Advanced topics ■ Overview of common deployment scenarios

■ Configuring applications for deployment

■ Redeploying a production application

■ Deploying Applications with the WebLogic Deployment API

■ Exporting an application for deployment to new
environments

■ Distributing an application to a production environment

■ Changing the deployment order

■ Taking an application offline

■ Managing deployed applications

Reference ■ Understanding the WebLogic deployment API

Table 7–1 (Cont.) Roadmap for Deploying Applications in WebLogic Server

Major Task Subtasks and Additional Information
Deploying Applications in WebLogic Server 7-5

Roadmap for Deploying Applications in WebLogic Server
7-6 Understanding Oracle WebLogic Server

8

8WebLogic Server Data Sources

[9] This chapter describes WebLogic Java Database Connectivity (JDBC) data sources.

This chapter includes the following sections:

■ Section 8.1, "Understanding JDBC Data Sources."

■ Section 8.2, "Understanding Generic Data Sources."

■ Section 8.3, "Understanding GridLink Data Sources."

■ Section 8.4, "Understanding JDBC Multi Data Sources."

■ Section 8.5, "Understanding Proxy Data Sources."

■ Section 8.6, "Understanding Universal Connection Pool Data Sources."

■ Section 8.7, "Roadmap for WebLogic Server Data Sources."

8.1 Understanding JDBC Data Sources
In WebLogic Server, you can configure database connectivity by configuring JDBC
data sources and multi data sources and then targeting or deploying the JDBC
resources to servers or clusters in your WebLogic domain.

Oracle WebLogic Server provides three types of data sources:

■ Generic Data Sources—Generic data sources and their connection pools provide
connection management processes that help keep your system running
efficiently.You can set options in the data source to suit your applications and your
environment.

■ GridLink Data Sources—An event-based data source that adaptively responds to
state changes in an Oracle RAC instance.

■ Multi data sources—An abstraction around a group of generic data sources that
provides load balancing or failover processing.

WebLogic Server also supports Java EE DataSources, which can be programmatically
defined for a more flexible and portable method of database connectivity. For more
information on Java EE DataSources, see "Using DataSource Resource Definitions" in
Developing JDBC Applications for Oracle WebLogic Server.

8.2 Understanding Generic Data Sources
Generic data sources provide database access and database connection management.
Each data source contains a pool of database connections that are created when the
data source is created and at server startup. Applications reserve a database
WebLogic Server Data Sources 8-1

Understanding GridLink Data Sources
connection from the data source by looking up the data source on the JNDI tree or in
the local application context and then calling getConnection(). When finished with
the connection, the application should call connection.close() as early as possible,
which returns the database connection to the pool for other applications to use.

8.3 Understanding GridLink Data Sources
A single GridLink data source provides connectivity between WebLogic Server and an
Oracle Database service, which may include multiple Oracle RAC clusters. It uses the
Oracle Notification Service (ONS) to adaptively respond to state changes in an Oracle
RAC instance. An Oracle Database service represents a workload with common
attributes that enables administrators to manage the workload as a single entity. You
scale the number of GridLink data sources as the number of services increases in the
data base, independent of the number of nodes in the cluster.

A GridLink data source includes the features of generic data sources plus the
following support for Oracle RAC:

■ Fast Connection Failover

■ Runtime Connection Load Balancing

■ Graceful Handling for Oracle RAC Outages

■ GridLink Affinity

■ SCAN Addresses

■ Secure Communication using Oracle Wallet

8.4 Understanding JDBC Multi Data Sources
A multi data source is an abstraction around a group of data sources that is bound to
the JDNDI tree or local application context just like data sources are bound to the JNDI
tree. Applications look up a multi data source on the JNDI tree or in the local
application context (java:comp/env) just as they do for data sources, and then request
a database connection. The multi data source determines which data source to use to
satisfy the request depending on the algorithm selected in the multi data source
configuration: load balancing or failover.

8.5 Understanding Proxy Data Sources
Proxy data sources provide the ability to switch between databases in a WebLogic
Server Multitenant environment. It simplifies the administration of multiple data
sources by providing a light-weight mechanism for accessing a data source associated
with a partition or tenant. Applications often need to quickly access a data source by
name without needing to know the naming conventions, context names (partitions or
tenants), and so on. The Proxy data source provides the access to the underlying data
sources. All of the significant processing happens in the data sources to which it
points. That is, the underlying data sources actually handle deployment, management,
security, and so on. For more information on Proxy data sources, see "Using Proxy
Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

8.6 Understanding Universal Connection Pool Data Sources
A Universal Connection Pool (UCP) data source is provided as an option for users
who wish to use Oracle Universal Connection Pooling (UCP) to connect to Oracle
8-2 Understanding Oracle WebLogic Server

Roadmap for WebLogic Server Data Sources
Databases. UCP provides an alternative connection pooling technology to Oracle
WebLogic Server connection pooling.

Note: Oracle generally recommends the use of Active GridLink data
source, Multi Data Source, or Generic data source, and Oracle
WebLogic Server connection pooling included in these data source
implementations to establish connectivity with Oracle Databases

The implementations of UCP data sources are loosely coupled, allowing the swapping
of the ucp.jar to support the use of new UCP features by the applications. UCP data
sources are not supported in an application-scoped/packaged or stand-alone module
environment. For information see in “Using Universal Connection Pool Data Sources”
in Administering JDBC Data Sources for Oracle WebLogic Server.

8.7 Roadmap for WebLogic Server Data Sources

Table 8–1 Roadmap for WebLogic Server Data Sources

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server data
source

■ Understanding JDBC resources in WebLogic Server

■ Data source configuration files

■ JMX and WLST access for JDBCA resources

■ Overview of clustered JDBC resources

■ Multi data source features

■ Using WebLogic JDBC in an application

Configuring JDBC ■ Configuring JDBC data sources

■ Using GridLink data sources

■ Configuring JDBC multi data sources

■ Advanced configuration for Oracle drivers

■ JDBC data source transaction options

■ Using roles and policies to secure JDBC data sources

Java EE DataSources ■ Using DataSource resource definitions

Managing JDBC ■ Managing data sources

■ Monitoring data sources

■ Monitoring GridLink JDBC resources

Performance and tuning ■ Tuning JDBC applications

■ Tuning data source connection pools

Using WebLogic Server with
Oracle RAC

■ Using WebLogic Server with Oracle RAC

■ Using multi data sources with Oracle RAC

■ Using connect-time failover with Oracle RAC

■ Using fast connection failover with Oracle RAC
WebLogic Server Data Sources 8-3

Roadmap for WebLogic Server Data Sources
Using JDBC drivers ■ Overview of third-party JDBC drivers

■ Derby

Derby is an all-Java DBMS product included in the
WebLogic Server distribution that is intended solely to
support demonstration of WebLogic Server examples.
Documentation is not shipped with the product; it is
available at
http://db.apache.org/derby/manuals/index.html. For
more information about Derby, see
http://db.apache.org/derby.

Table 8–1 (Cont.) Roadmap for WebLogic Server Data Sources

Major Task Subtasks and Additional Information
8-4 Understanding Oracle WebLogic Server

9

9WebLogic Server Messaging

[10] This chapter describes the Java Messaging System (JMS) in WebLogic Server.

This chapter includes the following sections:

■ Section 9.1, "Overview of JMS and WebLogic Server"

■ Section 9.2, "Java Message Service"

■ Section 9.3, "Roadmap for WebLogic Server Messaging"

9.1 Overview of JMS and WebLogic Server
The WebLogic Server implementation of JMS is an enterprise-class messaging system
that is tightly integrated into the WebLogic Server platform. It supports the JMS 2.0
specification, available at
http://www.oracle.com/technetwork/java/jms/index.html, and also provides
numerous WebLogic JMS Extensions that go beyond the standard JMS APIs.

9.2 Java Message Service
An enterprise messaging system enables applications to asynchronously communicate
with one another through the exchange of messages. A message is a request, report,
and/or event that contains information needed to coordinate communication between
different applications. A message provides a level of abstraction, allowing you to
separate the details about the destination system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems that is implemented by industry messaging providers. Specifically, JMS:

■ Enables Java applications that share a messaging system to exchange messages

■ Simplifies application development by providing a standard interface for creating,
sending, and receiving messages

WebLogic JMS supports both client and server applications; in addition to Java, it has
client libraries for C APIs and Microsoft .NET. WebLogic JMS accepts messages from
producer applications and delivers them to consumer applications. For more
information on JMS API programming with WebLogic Server, see Developing JMS
Applications for Oracle WebLogic Server. For information on JMS API programming for
WebLogic Server hosted consumer applications, see Developing Message-Driven Beans
for Oracle WebLogic Server.

9.2.1 WebLogic JMS Architecture and Environment
Figure 9–1 illustrates the WebLogic JMS architecture.
WebLogic Server Messaging 9-1

Java Message Service
Figure 9–1 WebLogic JMS Architecture

In Figure 9–1, A1 and B1 are connection factories, and B2 is a queue.

The major components of the WebLogic JMS architecture include:

■ JMS server: a managed message container for a set of JMS queues and topics.
Destination configuration is located in JMS XML modules that can target one or
more JMS servers, and a single logical destination can be distributed across
multiple JMS servers. A JMS server's primary responsibility for its targeted
destinations is to maintain information on what persistent store is used for any
persistent messages that arrive on the destinations, and to maintain the states of
durable subscribers created on the destinations. You can configure one or more
JMS servers per domain, multiple JMS servers may run on the same WebLogic
server, and a JMS server can manage one or more JMS modules. For more
information, see "Overview of JMS Server" in Administering JMS Resources for
Oracle WebLogic Server.

■ JMS connection hosts and connection factories: any WebLogic server in a cluster
can act as a JMS connection host for JMS applications. A JMS application gains
access to WebLogic JMS by (a) obtaining a connection factory reference from JNDI,
(b) obtaining a connection from this factory, and finally (c) using the connection to
send or receive messages. JMS messages flow from an application, through its
connection host, and then to any destination on a JMS server that is in the same
cluster as the connection host. An application can use either default connection
factories or custom connection factories that are configured using a JMS module.

■ JMS destinations: hold JMS messages and are hosted on JMS servers. WebLogic
JMS applications typically obtain JMS destination references via JNDI and then
send and receive messages to these destinations using their respective JMS
connections. A single logical WebLogic destination can be configured to be
distributed across multiple JMS servers within the same cluster. A WebLogic JMS
9-2 Understanding Oracle WebLogic Server

Roadmap for WebLogic Server Messaging
client can transparently communicate with any WebLogic JMS destination that is
hosted in the same cluster as the client's connection host.

■ JMS modules: contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by
XML documents that conform to the weblogic-jms.xsd schema. For more
information, see "What are JMS Configuration Resources?" in Administering JMS
Resources for Oracle WebLogic Server.

■ Client JMS applications: either produce messages to destinations or consume
messages from destinations.

■ JNDI (Java Naming and Directory Interface): provides a lookup facility for JMS
connection factories and destinations.

■ WebLogic persistent storage: a server instance's default store, a user-defined file
store, or a user-defined JDBC-accessible store for storing persistent message data.

9.3 Roadmap for WebLogic Server Messaging

Table 9–1 Roadmap for WebLogic Server Messaging

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server messaging

■ WebLogic JMS architecture and environment

■ JMS configuration resources

■ Overview of JMS servers

■ Overview of JMS modules

■ Environment-related system resources for WebLogic JMS

■ Understanding the messaging models

■ Understanding the JMS API

■ Value-added public JMS API extensions

Getting started with
WebLogic JMS

■ Overview of JMS programming

■ Best practices for JMS beginners and advanced users

■ Developing a basic JMS application

■ Overview of JMS resource configuration

■ Value-added WebLogic Server JMS features

■ Integrating remote and foreign JMS providers

■ "Sample Applications and Code Examples"

■ Troubleshooting WebLogic JMS

Using new WebLogic JMS
features

■ Developing advanced pub/sub applications

■ Interoperating with Oracle advanced queueing

■ Developing JMS .NET Client Applications for Oracle WebLogic
Server

Programming WebLogic
messaging

■ Developing JMS Applications for Oracle WebLogic Server

■ Developing advanced pub/sub applications

■ Developing Message-Driven Beans for Oracle WebLogic Server

Understanding clients for
WebLogic messaging

■ Understanding JMS clients

■ WebLogic Server client types and features
WebLogic Server Messaging 9-3

Roadmap for WebLogic Server Messaging
Configuring WebLogic
messaging

■ Best practices for JMS beginners and advanced users

■ Administering JMS Resources for Oracle WebLogic Server

■ Integrating remote and foreign JMS providers

■ Administering the Store-and-Forward Service for Oracle
WebLogic Server

■ Administering the WebLogic Messaging Bridge for Oracle
WebLogic Server

■ Administering the WebLogic Persistent Store

Using the WebLogic Server
Administration Console to
configure WebLogic
messaging

■ Configuring JMS servers

■ Configuring JMS system modules and resources

■ Configuring store-and-forward for JMS messages

■ Configuring and managing messaging bridges

Performance and tuning ■ Tuning WebLogic JMS

■ Tuning WebLogic JMS store-and-forward

■ Tuning WebLogic messaging bridge

■ Tuning message-driven beans

■ Tuning logging last resource

■ Tuning the WebLogic Persistent Store

Reference ■ Javadoc for WebLogic JMS extensions

■ MBean reference

■ JMS schema

■ Java Message Service Specification

■ JMS C API Reference for Oracle WebLogic Server

Table 9–1 (Cont.) Roadmap for WebLogic Server Messaging

Major Task Subtasks and Additional Information
9-4 Understanding Oracle WebLogic Server

10

10Understanding WebLogic Server Security

[11] This chapter introduces the WebLogic Server security service and methods for
securing your WebLogic Server environments.

This chapter includes the following sections:

■ Section 10.1, "Java EE 7 Security Feature Support in WebLogic Server"

■ Section 10.2, "Overview of the WebLogic Server Security Service"

■ Section 10.3, "WebLogic Server Security Service Architecture"

■ Section 10.4, "Managing WebLogic Server Security"

■ Section 10.5, "Oracle Platform Security Services (OPSS)"

■ Section 10.6, "Security for Coherence"

■ Section 10.7, "Roadmap for Securing WebLogic Server"

10.1 Java EE 7 Security Feature Support in WebLogic Server
WebLogic Server supports the following security features of Java EE 7:

■ Java Authorization Contract for Containers (JACC) 1.5

The JACC specification defines a contract between a Java EE application server
and an authorization policy provider. All Java EE containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the
Java EE authorization model. The specification defines the binding of container
access decisions to operations on instances of these permission classes. It defines
the semantics of policy providers that use the new permission classes to address
the authorization requirements of the Java EE platform, including the definition
and use of roles.

■ Java Authentication Service Provider Interface for Containers (JASPIC) 1.1

The JASPIC specification defines a service provider interface (SPI) by which
authentication providers that implement message authentication mechanisms may
be integrated in client or server message-processing containers or runtimes.
Authentication providers integrated through this interface operate on network
messages provided to them by their calling container. The authentication
providers transform outgoing messages so that the source of the message can be
authenticated by the receiving container, and the recipient of the message can be
authenticated by the message sender. Authentication providers authenticate
incoming messages and return to their calling container the identity established as
a result of the message authentication.
Understanding WebLogic Server Security 10-1

Overview of the WebLogic Server Security Service
10.2 Overview of the WebLogic Server Security Service
WebLogic Server includes a security architecture that provides a unique and secure
foundation for applications that are available via the Web. By taking advantage of the
security features in WebLogic Server, enterprises benefit from a comprehensive,
flexible security infrastructure designed to address the security challenges of making
applications available on the Web. WebLogic security can be used standalone to secure
WebLogic Server applications or as part of an enterprise-wide, security management
system that represents a best-in-breed, security management solution.

The key features of the WebLogic Security Service include:

■ A comprehensive and standards-based design.

■ End-to-end security for WebLogic Server-hosted applications, from the mainframe
to the Web browser.

■ Legacy security schemes that integrate with WebLogic Server security, allowing
companies to leverage existing investments.

■ Security tools that are integrated into a flexible, unified system to ease security
management across the enterprise.

■ Easy customization of application security to business requirements through
mapping of company business rules to security policies.

■ A consistent model for applying security policies to Java EE and
application-defined resources.

■ Easy updates to security policies. This release includes usability enhancements to
the process of creating security policies as well as additional expressions that
control access to WebLogic resources.

■ Easy adaptability for customized security solutions.

■ A modularized architecture, so that security infrastructures can change over time
to meet the requirements of a particular company.

■ Support for configuring multiple security providers, as part of a transition scheme
or upgrade path.

■ A separation between security details and application infrastructure, making
security easier to deploy, manage, maintain, and modify as requirements change.

■ Default WebLogic security providers that provide you with a working security
scheme out of the box. This release supports additional authentication stores such
as databases and gives the option to configure an external RDBMS system as a
datastore to be used by select security providers.

■ Customization of security schemes using custom security providers.

■ Unified management of security rules, security policies, and security providers
through the WebLogic Server Administration Console.

■ Support for standard Java EE security technologies such as the Java
Authentication and Authorization Service (JAAS), Java Secure Sockets Extensions
(JSSE), Java Cryptography Extensions (JCE), and Java Authorization Contract for
Containers (JACC).

■ A foundation for Web services security including support for Security Assertion
Markup Language (SAML) 1.1 and 2.0.

■ Capabilities which allow WebLogic Server to participate in single sign-on (SSO)
with Web sites, Web applications, and desktop clients
10-2 Understanding Oracle WebLogic Server

WebLogic Server Security Service Architecture
■ A framework for managing public keys which includes a certificate lookup,
verification, validation, and revocation as well as a certificate registry.

10.3 WebLogic Server Security Service Architecture
This section provides a description of the architecture of the WebLogic Security
Service. The architecture comprises three major components, which are discussed in
the following sections:

■ Section 10.3.1, "WebLogic Security Framework"

■ Section 10.3.2, "Single Sign-on with the WebLogic Server Security Framework"

■ Section 10.3.3, "SAML Token Profile Support in WebLogic Web Services"

■ Section 10.3.4, "The Security Service Provider Interfaces (SSPIs)"

■ Section 10.3.5, "WebLogic Security Providers"

10.3.1 WebLogic Security Framework
Figure 10–1 shows a high-level view of the WebLogic Security Framework. The
framework comprises interfaces, classes, and exceptions in the
weblogic.security.service package.

Figure 10–1 WebLogic Security Service Architecture

The primary function of the WebLogic Security Framework is to provide a simplified
application programming interface (API) that can be used by security and application
developers to define security services. Within that context, the WebLogic Security
Framework also acts as an intermediary between the WebLogic containers (Web and
EJB), the Resource containers, and the security providers.
Understanding WebLogic Server Security 10-3

WebLogic Server Security Service Architecture
10.3.2 Single Sign-on with the WebLogic Server Security Framework
Single Sign-On (SSO) is the ability to require a user to sign on to an application only
once and gain access to many different application components, even though these
components may have their own authentication schemes. Single sign-on enables users
to login securely to all their applications, Web sites and mainframe sessions with just
one identity. The Security Assertion Markup Language (SAML) and Windows
Integrated Authentication features provide Web-based single sign-on (SSO)
functionality for WebLogic Server applications.

10.3.3 SAML Token Profile Support in WebLogic Web Services
The WebLogic Web services and the WebLogic Security Framework support the
generation, consumption, and validation of SAML 1.1 and 2.0 assertions. When using
SAML assertions, a web service passes a SAML assertion and the accompanying proof
material to the WebLogic Security Framework.If the SAML assertion is valid and
trusted, the framework returns an authenticated Subject with a trusted principal back
to the web service. WebLogic Web services and the WebLogic Security Framework
support the following SAML assertions:

■ Sender-Vouches - The asserting party (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship with the
asserting party.

■ Holder-of-Key - The purpose of SAML token with "holder-of-key" subject
confirmation is to allow the subject to use an X.509 certificate that may not be
trusted by the receiver to protect the integrity of the request messages.

Conceptually, the asserting party inserts an X.509 public certificate (or other key
info) into a SAML assertion. (More correctly, the asserting party binds a key to a
subject.) In order to protect this embedded certificate, the SAML assertion itself
must be signed by the asserting entity. For WebLogic Server, the Web service client
signs the SAML assertion with its private key. That is, the signature on the
assertion is the signature of the SAML authority, and is not based on the certificate
contained in, or identified by, the assertion.

■ Bearer - The subject of the assertion is the bearer of the assertion, subject to
optional constraints on confirmation using attributes that may be included in the
<SubjectConfirmationData> element of the assertion.

10.3.4 The Security Service Provider Interfaces (SSPIs)
Security in WebLogic Server is based on a set of Security Service Provider Interfaces
(SSPIs). The SSPIs can be used by developers and third-party vendors to develop
security providers for the WebLogic Server environment. SSPIs are available for
Adjudication, Auditing, Authentication, Authorization, Credential Mapping, Identity
Assertion, Role Mapping, and Certificate Lookup and Validation.

The SSPIs allow customers to use custom security providers for securing WebLogic
Server resources. Customers can use the SSPIs to develop custom security providers or
they can purchase customer security providers from third-party vendors.

For more information on developing custom security providers, see Developing Security
Providers for Oracle WebLogic Server.
10-4 Understanding Oracle WebLogic Server

Oracle Platform Security Services (OPSS)
10.3.5 WebLogic Security Providers
Security providers are modules that "plug into" a WebLogic Server security realm to
provide security services to applications. They call into the WebLogic Security
Framework on behalf of applications.

If the security providers supplied with the WebLogic Server product do not fully meet
your security requirements, you can supplement or replace them with custom security
providers. You develop a custom security provider by:

■ Implementing the appropriate security service provider interfaces (SSPIs) from the
weblogic.security.spi package to create runtime classes for the security
provider.

■ Creating an MBean Definition File (MDF) and using the WebLogic MBeanMaker
utility to generate an MBean type, which is used to configure and manage the
security provider.

For more information, see Developing Security Providers for Oracle WebLogic Server.

10.4 Managing WebLogic Server Security
This section covers the following topics:

■ Section 10.4.1, "Security Realms"

■ Section 10.4.2, "Security Policies"

10.4.1 Security Realms
A security realm comprises mechanisms for protecting WebLogic resources. Each
security realm consists of a set of configured security providers, users, groups, security
roles, and security policies. A user must be defined in a security realm in order to
access any WebLogic resources belonging to that realm. When a user attempts to
access a particular WebLogic resource, WebLogic Server tries to authenticate and
authorize the user by checking the security role assigned to the user in the relevant
security realm and the security policy of the particular WebLogic resource.

10.4.2 Security Policies
Security policies replace access control lists (ACLs) and answer the question "Who has
access to a WebLogic resource?" A security policy is created when you define an
association between a WebLogic resource and one or more users, groups, or security
roles. You can optionally define date and time constraints for a security policy. A
WebLogic resource has no protection until you assign it a security policy.

You assign security policies to any of the defined WebLogic resources (for example, an
EJB resource or a JNDI resource) or to attributes or operations of a particular instance
of a WebLogic resource (an EJB method or a servlet within a Web application). If you
assign a security policy to a type of WebLogic resource, all new instances of that
resource inherit that security policy. Security policies assigned to individual resources
or attributes override security policies assigned to a type of WebLogic resource.

10.5 Oracle Platform Security Services (OPSS)
Oracle Platform Security Services (OPSS) provides enterprise product development
teams, systems integrators (SIs), and independent software vendors (ISVs) with a
standards-based, portable, integrated, enterprise-grade security framework for Java
Standard Edition (Java SE) and Java Enterprise Edition (Java EE) applications.
Understanding WebLogic Server Security 10-5

Security for Coherence
OPSS provides an abstraction layer in the form of standards-based application
programming interfaces (APIs) that insulates developers from security and identity
management implementation details. With OPSS, developers don't need to know the
details of cryptographic key management or interfaces with user repositories and
other identity management infrastructures. With OPSS, in-house developed
applications, third-party applications, and integrated applications all benefit from the
same uniform security, identity management, and audit services across the enterprise.

OPSS is not a component of WebLogic Server and is not available in a standalone
WebLogic Server installation. OPSS is available from the Oracle Fusion Middleware
infrastructure software, and may be used with WebLogic Server in domains that are
based upon, or extended with, the Oracle JRF template. For more information, see
Installing and Configuring the Oracle Fusion Middleware Infrastructure. For information
about the Oracle JRF domain template, see "Oracle JRF Template" in Domain Template
Reference.

10.6 Security for Coherence
Coherence is secured using both WebLogic Server security components and
Coherence-specific security components. The components include:

■ SSL for authentication between Coherence cluster members

■ SSL for authentication between extend clients (external to WebLogic Server) and a
Coherence cluster

■ WebLogic Server policies and roles for authorizing Coherence services and caches

■ Identity assertion between extend clients and Coherence clusters

For details on configuring Coherence security, see "Securing Coherence in WebLogic
Server" in the Oracle Coherence Security Guide.
10-6 Understanding Oracle WebLogic Server

Roadmap for Securing WebLogic Server
10.7 Roadmap for Securing WebLogic Server

Table 10–1 Roadmap for Securing WebLogic Server

Major Task Subtasks and Additional Information

Learning more about fundamental security
concepts

■ Auditing

■ Authentication

■ Security Assertion Markup Language (SAML)

■ Single sign-on (SSO)

■ Authorization

■ Identity and trust

■ Secure Sockets Layer (SSL)

■ WebLogic security framework

■ Single sign-on with the WebLogic Server security
framework

■ SAML token support in WebLogic Web services

■ Security Service Provider Interfaces (SSPIs)

■ WebLogic security providers

Administering WebLogic Server security ■ Security management concepts

■ Customizing the default security configuration

■ Migrating security data

■ Managing the embedded LDAP server

■ Managing the RDBMS security store

■ Configuring keystores

■ Configuring SSL

■ Configuring cross-domain security

■ Using compatibility security

■ Secure WebLogic resources using roles and policies

■ Exploring security options for cluster architectures

■ Configuring Security for Coherence

Authenticating users ■ Authenticating users defined in an LDAP server

■ Authenticating against an RDBMS system

■ Authenticating against a Windows NT domain

■ Authenticating a remote user

■ Using SAML

■ Configuring Single Sign-on (SSO)

■ Configuring single sign-on with Microsoft clients

■ Configuring single sign-on with Web browsers and
HTTP clients

■ Using Kerberos

■ Using multiple authentication providers

■ Configuring password composition rules

■ Managing users and groups

■ Using Java Authentication SPI for Containers (JASPIC)
Understanding WebLogic Server Security 10-7

Roadmap for Securing WebLogic Server
Configuring SSL ■ Setting up SSL: main steps

■ Configuring keystores

■ Creating a keystore: example

■ X.509 certificate revocation checking

Configuring authorization ■ Securing WebLogic resources using roles and policies

■ Configuring an authorization provider

■ Using multiple authorization providers

■ Using JAAS authorization

■ Configuring a role mapping provider

■ Using Java Authorization Contract Containers (JACC)

Learning more about security realms ■ Introduction to security realms

■ Users

■ Groups

■ Security roles

■ Security policies

■ Security providers

Programming applications for security ■ Programming security for WebLogic Server

■ Configuring resource adapter security

■ WebLogic Web service security topics

Best practices ■ Securing a production environment

Table 10–1 (Cont.) Roadmap for Securing WebLogic Server

Major Task Subtasks and Additional Information
10-8 Understanding Oracle WebLogic Server

11

11WebLogic Server Web Services

[12] This chapter offers an introduction to WebLogic Server Web services.

This chapter includes the following sections:

■ Section 11.1, "Overview of Web Services"

■ Section 11.2, "Anatomy of a Web Service"

■ Section 11.3, "Web Service Standards"

■ Section 11.4, "Roadmap for Web Services"

11.1 Overview of Web Services
A Web service is a self-contained application that can be described, published, and
invoked over a network, such as a corporate intranet or the Internet. Because you
access Web services using standard Web protocols such as Extensible Markup
Language (XML) and HTTP, the diverse and heterogeneous applications on the Web
(which typically already understand XML and HTTP) can access Web services and
communicate with each other automatically.

Major benefits of Web services include:

■ Interoperability among distributed applications that span diverse hardware and
software platforms

■ Easy, widespread access to applications through firewalls using Web protocols

■ A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications

11.2 Anatomy of a Web Service
Web services are characterized by three factors:

■ What they do (the business functionality they expose)

■ How they can be accessed (the set of published interfaces necessary to use the
exposed functionality)

■ Where they are (the Web site which exposes that functionality)

What the Web service can do (that is, the functionality it implements) is described in a
standard XML vocabulary called Web Services Description Language (WSDL). For
example, a banking Web service may implement functions to check an account, print a
statement, and deposit and withdraw funds. These functions are described in a WSDL
file that any consumer can invoke to access the banking Web service. As a result, a
WebLogic Server Web Services 11-1

Web Service Standards
consumer does not have to know anything more about a Web service than the WSDL
file that describes what it can do.

A Web service client (or consumer)--such as, a desktop application or a Java Platform,
Enterprise Edition portlet-- invokes a Web service by submitting a request in the form
of an XML document to the Web service. The Web service processes the request and
returns the result to the Web service client in an XML document.

The Web service client can send a request in the form of a Simple Object Access
Protocol (SOAP) message. SOAP is an XML messaging framework designed to allow
heterogeneous applications to exchange structured information in a distributed
environment. In turn, the Web service processes the request and returns the response
in a SOAP message.

You can also develop Representational State Transfer (REST) Web services, or
"RESTful" Web services. REST describes any simple interface that transmits data over a
standardized interface (such as HTTP) without an additional messaging layer, such as
SOAP. REST provides a set of design rules for creating stateless services that are
viewed as resources, or sources of specific information, and can be identified by their
unique URIs. A client accesses the resource using the URI, a standardized fixed set of
methods, and a representation of the resource is returned. The client is said to transfer
state with each new resource representation.

To secure the message exchange, the Web service may require credentials to access the
service, for example a username and a password, or encrypt the response.

11.3 Web Service Standards
Web services rely on a set of XML-based industry standards, including the following:

■ XML, a data format that allows uniform communication between Web services
consumers and Web services providers

■ XML Schema, a framework that describes XML vocabularies used in business
transactions

■ SOAP, a protocol for exchanging structured information in the implementation of
Web services

■ WSDL, an XML-based language providing a model for describing Web services

■ WS-Policy, a framework that provides a flexible and extensible grammar for
describing the capabilities, requirements, and general characteristics of Web
services using policies
11-2 Understanding Oracle WebLogic Server

Roadmap for Web Services
11.4 Roadmap for Web Services

Table 11–1 Roadmap for Web Services

Major Task Subtasks and Additional Information

Learning more about
WebLogic Web Services

■ Features and standards supported by WebLogic Web Services

■ Overview of WebLogic Web Services

■ Choose between JAX-WS and RESTful Web service

■ Overview of Web services security

Using the samples (for
WebLogic Web service
developers)

■ Sample application and code examples

■ JAX-WS Web service example

■ Examples of developing JAX-WS Web service clients

■ JAX-RPC Web service examples

■ JDeveloper Web service tutorials (search on "Web Services")

■ JDeveloper how-tos (search on "Web Services")

Developing Web services
using JAX-WS

■ Starting from Java

■ Starting from WSDL

■ Programming the JWS file

■ Using JAX binding

■ Invoking a Web service

■ Invoking a Web service asynchronously

■ Using Web services reliable messaging

■ Managing Web service persistence

■ Configuring message buffering for Web services

■ Managing Web services in a cluster

■ Using Web services atomic transactions

■ Publishing a Web service endpoint

■ Using callbacks

■ Optimizing binary data transmissions using MTOM/XOP

■ Using XML catalogs

■ Handling exceptions using SOAP

■ Creating and using SOAP message handlers

■ Programming RESTful Web services

■ Programming stateful JAX-WS Web services using HTTP session
WebLogic Server Web Services 11-3

Roadmap for Web Services
Developing RESTful Web
services

■ Standards to use for RESTful Web Service development on WebLogic Server

■ Learning about RESTful Web Service development

■ Defining the root resource class

■ Defining the relative URI of the root resource class

■ Customizing request and response message types

■ More advanced RESTful Web Service tasks

■ Creating and configuring a client instance

■ Creating a Web resource instance

■ Sending requests to the resource

■ Receiving a response from a resource

■ Learning more about monitoring RESTful Web Services

■ Monitoring RESTful Web Services using WLST

■ Updating the version of Jersey JAX-RS RI

■ Using server-sent events

Developing Web services
using JAX-RPC

■ Starting from Java

■ Starting from WSDL

■ Programming the JWS file

■ Understanding data binding

■ Invoking a Web service

■ Invoking a Web service asynchronously

■ Using Web services reliable messaging

■ Creating conversational Web services

■ Using the asynchronous features together

■ Creating buffered Web services

■ Using callbacks to notify client of events

■ Using JMS transport as the connection protocol

■ Creating and using SOAP message handlers

■ Using database Web services

Deploying and
administering WebLogic
Web services

■ Packaging and deploying RESTful Web services

■ Developing JAX-WS Web services

■ Developing JAX-RPC Web services

Securing WebLogic Web
services

■ Using WebLogic Web services security policies

Interoperability with
WebLogic Web services

■ Interoperability with Microsoft WCF/.NET

■ Interoperability between WebLogic Web services security and Oracle WSM
security

Table 11–1 (Cont.) Roadmap for Web Services

Major Task Subtasks and Additional Information
11-4 Understanding Oracle WebLogic Server

12

12Enterprise JavaBeans (EJBs)

[13] This chapter introduces Enterprise JavaBeans.

This chapter includes the following sections:

■ Section 12.1, "Understanding EJBs"

■ Section 12.2, "EJB Anatomy and Environment"

■ Section 12.3, "EJBs Clients and Communications"

■ Section 12.4, "Securing EJBs"

■ Section 12.5, "Roadmap for EJBs in WebLogic Server"

12.1 Understanding EJBs
Enterprise JavaBeans (EJB) 3.2 technology is the server-side component architecture for
the development and deployment of component-based business applications. EJB
technology enables rapid and simplified development of distributed, transactional,
secure, and portable applications based on Java EE 7 technology.

The EJB 3.2 specification provides simplified programming and packaging model
changes. The mandatory use of Java interfaces from previous versions has been
removed, allowing plain old Java objects to be annotated and used as EJB components.
The simplification is further enhanced through the ability to place EJB modules
directly inside of Web applications, removing the need to produce archives to store the
Web and EJB components and combine them together in an EAR file.

12.1.1 EJB Documentation in WebLogic Server
For more information about using EJBs with WebLogic Server, see:

■ For information about all the new features in EJB 3.2, see "Java EE 7 Support" in
What's New in Oracle WebLogic Server 12.2.1.

■ For instructions on how to program, package, and deploy 3.2 EJBs on WebLogic
Server, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

■ For instructions on how to organize and build WebLogic Server EJBs in a split
directory environment, see Developing Applications for Oracle WebLogic Server.

■ For more information on programming and packaging 2.x EJBs, see Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.
Enterprise JavaBeans (EJBs) 12-1

Understanding EJBs
12.1.2 Additional EJB Information
To learn more about EJB concepts, such as the benefits of enterprise beans, the types of
enterprise beans, and their life cycles, then visit the following Web sites:

■ Enterprise JavaBeans 3.2 Specification (JSR-345) at
https://jcp.org/aboutJava/communityprocess/final/jsr345/index.html

■ The "Enterprise Beans" section of the Java EE 7 Tutorial at
https://docs.oracle.com/javaee/7/tutorial/partentbeans.htm

■ Introducing the Java EE 6 Platform: Part 3 (EJB Technology, Even Easier to Use) at
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3
-139660.html#ejbeasy

12.1.3 Session EJBs Implement Business Logic
Session beans implement business logic. A session bean instance serves one client at a
time. There are three types of session beans: stateful, stateless, and singleton.

For detailed information about the types of session beans and when to use them, see
"What Is a Session Bean" in the "Enterprise Beans" chapter of the Java EE 7 Tutorial at
https://docs.oracle.com/javaee/7/tutorial/ejb-intro002.htm#GIPJG.

12.1.3.1 Stateful Session Beans
Stateful session beans maintain state information that reflects the interaction between
the bean and a particular client across methods and transactions. A stateful session
bean can manage interactions between a client and other enterprise beans, or manage
a workflow.

Example: A company Web site that allows employees to view and update personal
profile information could use a stateful session bean to call a variety of other beans to
provide the services required by a user, after the user clicks "View my Data" on a page:

■ Accept the login data from a JSP, and call another EJB whose job it is to validate
the login data.

■ Send confirmation of authorization to the JSP.

■ Call a bean that accesses profile information for the authorized user.

12.1.3.2 Stateless Session Beans
A stateless session bean does not store session or client state information between
invocations—the only state it might contain is not specific to a client, for instance, a
cached database connection or a reference to another EJB. At most, a stateless session
bean may store state for the duration of a method invocation. When a method
completes, state information is not retained.

Any instance of a stateless session bean can serve any client—any instance is
equivalent. Stateless session beans can provide better performance than stateful
session beans, because each stateless session bean instance can support multiple
clients, albeit one at a time. The client of a stateless session bean can be a web service
endpoint.

Example: An Internet application that allows visitors to click a "Contact Us" link and
send an email could use a stateless session bean to generate the email, based on the
"to" and "from" information gathered from the user by a JSP.
12-2 Understanding Oracle WebLogic Server

EJB Anatomy and Environment
12.1.3.3 Singleton Session Beans
Singleton session beans provide a formal programming construct that guarantees a
session bean will be instantiated once per application in a particular Java Virtual
Machine (JVM), and that it will exist for the life cycle of the application. With
singletons, you can easily share state between multiple instances of an enterprise bean
component or between multiple enterprise bean components in the application.

Singleton session beans offer similar functionality to stateless session beans but differ
from them in that there is only one singleton session bean per application, as opposed
to a pool of stateless session beans, any of which may respond to a client request. Like
stateless session beans, singleton session beans can implement web service endpoints.
Singleton session beans maintain their state between client invocations but are not
required to maintain their state across server crashes or shutdowns.

Example: An Internet application that provides a central counter service. A stateless
singleton bean can be called from a Java client, with the count being consistently
incremented by 1 as the client is invoked multiple times.

12.1.4 Message-Driven Beans Implement Loosely Coupled Business Logic
A message-driven bean implements loosely coupled or asynchronous business logic in
which the response to a request need not be immediate. A message-driven bean
receives messages from a JMS Queue or Topic, and performs business logic based on
the message contents. It is an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients,
although not simultaneously. It does not retain state for a specific client. All instances
of a message-driven bean are equivalent—the EJB container can assign a message to
any MDB instance. The container can pool these instances to allow streams of
messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean
instances and passing JMS messages to those instances as necessary. The container
creates bean instances at deployment time, adding and removing instances during
operation based on message traffic.

For detailed information, see Developing Message-Driven Beans for Oracle WebLogic
Server.

Example: In an on-line shopping application, where the process of taking an order
from a customer results in a process that issues a purchase order to a supplier, the
supplier ordering process could be implemented by a message-driven bean. While
taking the customer order always results in placing a supplier order, the steps are
loosely coupled because it is not necessary to generate the supplier order before
confirming the customer order. It is acceptable or beneficial for customer orders to
"stack up" before the associated supplier orders are issued.

12.2 EJB Anatomy and Environment
These sections briefly describe classes required for each bean type, the EJB run-time
environment, and the deployment descriptor files that govern a bean's run-time
behavior.

■ Section 12.2.1, "EJB Components"

■ Section 12.2.2, "The EJB Container"

■ Section 12.2.3, "Embeddable EJB Container"

■ Section 12.2.4, "EJB Metadata Annotations"
Enterprise JavaBeans (EJBs) 12-3

EJB Anatomy and Environment
■ Section 12.2.5, "Optional EJB Deployment Descriptors"

12.2.1 EJB Components
The composition of a bean varies by bean type. Table 12–1 defines the classes that
make up each type of EJB, and defines the purpose of the class type.

Note: The EJB 2.1 and earlier API required that Local and Remote
clients access the stateful or stateless session bean by means of the
session bean's local or remote home and the local or remote
component interfaces. These interfaces remain available for use with
EJB 3.x; however, the EJB 2.1 Remote and Local client view is not
supported for singleton session beans.

For more information see "Create EJB Classes and Interfaces" in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Table 12–1 Components of EJB 3.1

EJB
Component Description

Stateless
Session

Stateful
Session

Singl
eton
Sessi
on MDB

Remote
business
interface

The remote business interface exposes
business logic to remote clients—clients
running in a separate application from the
EJB. It defines the business methods a
remote client can call.

Yes Yes Yes No

Local
business
interface

The local business interface exposes
business logic to local clients—those
running in the same application as the EJB.
It defines the business methods a local
client can call.

Yes Yes Yes No

Local No-
interface

The no-interface view a variation of the
Local view that exposes the public
methods of the bean class without the use
of a separate business interface.

Yes Yes Yes Yes

Bean class The bean class implements business logic. Yes Yes Yes Yes

12.2.2 The EJB Container
An EJB container is a run-time container for beans that are deployed to an application
server. The container is automatically created when the application server starts up,
and serves as an interface between a bean and run-time services such as:

■ Life cycle management

■ Code generation

■ Security

■ Transaction management

■ Locking and concurrency control
12-4 Understanding Oracle WebLogic Server

EJB Anatomy and Environment
12.2.3 Embeddable EJB Container
Unlike traditional Java EE server-based execution, embeddable usage allows client
code and its corresponding enterprise beans to run within the same virtual machine
and class loader. This provides better support for testing, offline processing (for
example, batch jobs), and the use of the EJB programming model in desktop
applications.

Most of the services present in the enterprise bean container in a Java EE server are
available in the embedded enterprise bean container, including injection,
container-managed transactions, and security. Enterprise bean components execute
similarly in both embedded and Java EE environments, and therefore the same
enterprise bean can be easily reused in both standalone and networked applications.

For more information about the Embedded Enterprise Bean Container, see "Using an
Embedded EJB Container in Oracle WebLogic Server" in Developing Enterprise
JavaBeans for Oracle WebLogic Server.

12.2.4 EJB Metadata Annotations
The WebLogic Server EJB 3.1 programming model uses the Java EE 7 metadata
annotations feature in which you create an annotated EJB 3.1 bean file, and then use
the WebLogic compile tool weblogic.appc (or its Ant equivalent wlappc) to compile
the bean file into a Java class file and generate the associated EJB artifacts, such as the
required EJB interfaces and optional deployment descriptors.

For more information, see "Programming the Annotated EJB Class" in Developing
Enterprise JavaBeans for Oracle WebLogic Server.

12.2.5 Optional EJB Deployment Descriptors
As of EJB 3.0, you are no longer required to create the EJB deployment descriptor files
(such as ejb-jar.xml). However, you can still to use XML deployment descriptors if
you want. In the case of conflicts, the deployment descriptor value overrides the
annotation value.

If you are continuing to use deployment descriptors in your EJB implementation, refer
to "EJB Deployment Descriptors" in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

WebLogic Server EJB 2.x has three deployment descriptors:

■ ejb-jar.xml—The standard Java EE deployment descriptor. All beans must be
specified in an ejb-jar.xml. An ejb-jar.xml can specify multiple beans that will
be deployed together.

■ weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that
contains elements related to WebLogic Server features such as clustering, caching,
and transactions. This file is required if your beans take advantage of WebLogic
Server-specific features. Like ejb-jar.xml, weblogic-ejb-jar.xml can specify
multiple beans that will be deployed together.

■ weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that
contains elements related to container-managed persistence for entity beans.
Entity beans that use container-managed persistence must be specified in a
weblogic-cmp-jar.xml file.

For descriptions of the WebLogic Server EJB 2.x deployment descriptors, refer to
"Deployment Descriptor Schema and Document Type Definitions Reference" in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.
Enterprise JavaBeans (EJBs) 12-5

EJBs Clients and Communications
12.3 EJBs Clients and Communications
An EJB can be accessed by server-side or client-side objects such as servlets, Java client
applications, other EJBs, web services, and non-Java clients. Any client of an EJB,
whether in the same or a different application, accesses it in a similar fashion.
WebLogic Server automatically creates implementations of an EJB's home and business
interfaces that can function remotely, unless the bean has only a local interface.

12.3.1 Accessing EJBs
Clients access enterprise beans either through a no-interface view or through a
business interface. A no-interface view of an enterprise bean exposes the public
methods of the enterprise bean implementation class to clients. Clients using the
no-interface view of an enterprise bean may invoke any public methods in the
enterprise bean implementation class or any superclasses of the implementation class.
A business interface is a standard Java programming language interface that contains
the business methods of the enterprise bean.

The client of an enterprise bean obtains a reference to an instance of an enterprise bean
through either dependency injection, using Java programming language annotations,
or JNDI lookup, using the Java Naming and Directory Interface syntax to find the
enterprise bean instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference.
Clients that run within a Java EE server-managed environment, JavaServer Faces web
applications, JAX-RS web services, other enterprise beans, or Java EE application
clients, support dependency injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for
identifying Java EE components to simplify this explicit lookup. For more information
see, "Programming Access to EJB Clients" in Developing Enterprise JavaBeans for Oracle
WebLogic Server.

Because of network overhead, it is more efficient to access beans from a client on the
same machine than from a remote client, and even more efficient if the client is in the
same application.

For information on programming client access to an EJB, see "Accessing Enterprise
Beans" in the "Enterprise Beans" chapter of the Java EE 7 Tutorial at
https://docs.oracle.com/javaee/7/tutorial/ejb-intro004.htm#GIPJF.

12.3.2 EJB Communications
WebLogic Server EJBs use:

■ T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote
network protocol that implements the Remote Method Invocation (RMI) protocol.

■ RMI—To communicate with remote objects. RMI enables an application to obtain a
reference to an object located elsewhere in the network, and to invoke methods on
that object as though it were co-located with the client on the same JVM locally in
the client's virtual machine.

An EJB with a remote interface is an RMI object. An EJB's remote interface extends
java.rmi.remote. For more information on WebLogic RMI, see Developing RMI
Applications for Oracle WebLogic Server.

■ HTTP—An EJB can obtain an HTTP connection to a Web server external to the
WebLogic Server environment by using the java.net.URL resource connection
12-6 Understanding Oracle WebLogic Server

Securing EJBs
factory. For more information, see "Configuring EJBs to Send Requests to an URL"
in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

You can specify the attributes of the network connection an EJB uses by binding the
EJB to a WebLogic Server custom network channel. For more information, see
"Configuring Network Resources" in Administering Server Environments for Oracle
WebLogic Server.

12.4 Securing EJBs
By default, any user can invoke the public methods of an EJB. Therefore, if you want to
restrict access to the EJB, you can use security-related annotations to specify the roles
that are allowed to invoke all, or a subset, of the methods, which is explained in
"Securing Access to the EJB" in Developing Enterprise JavaBeans for Oracle WebLogic
Server.

In addition, you create security roles and map users to roles using the WebLogic
Server Administration Console to update your security realm. For details, see "Manage
Security Roles" in the Oracle WebLogic Server Administration Console Online Help.

For more information about security and EJBs:

■ "Security Fundamentals" in Understanding Security for Oracle WebLogic Server has
introductory information about authentication, authorization and other security
topics.

■ "Securing Enterprise JavaBeans (EJBs)" in Developing Applications with the WebLogic
Security Service provides instructions for configuring authentication and
authorization for EJBs.

■ Securing Resources Using Roles and Policies for Oracle WebLogic Server contains
instructions for on configuring authentication and authorization for your EJBs
using the WebLogic Server Administration Console.
Enterprise JavaBeans (EJBs) 12-7

Roadmap for EJBs in WebLogic Server
12.5 Roadmap for EJBs in WebLogic Server

Table 12–2 Roadmap for EJBs in WebLogic Server

Major Task Subtasks and Additional Information

Understanding EJB 3.1 ■ Changes between versions 3.0 and 3.1

■ New EJB 3.1 Features

■ WebLogic Server value-added EJB 3.0 features

Simple EJB examples ■ Example of a simple stateless EJB

■ Example of a simple stateful EJB

■ Example of an interceptor class

■ Packaged EJB 3.1 examples in WebLogic Server

■ Example of invoking an entity from a session bean

Iterative EJB developing ■ Overview of the EJB development process

■ Creating a source directory

■ Programming access to EJB clients

■ Programming and configuring transactions

■ Programming the EJB interface

■ Programming the EJB timer service

■ Programming the annotated EJB class

■ Programming optional interceptors

■ Compiling Java source code

■ Optionally creating and editing deployment descriptors

■ Packaging EJBs

■ Deploying EJBs

Programming the annotated EJB class ■ Overview of metadata annotations and EJB bean files

■ Programming the bean file: requirements and changes from 2.x

■ Programming the bean file: typical steps

■ Complete list of metadata annotations by function

Deployment guidelines for EJBs ■ Before you deploy an EJB

■ Understanding and performing deployment tasks

■ Deployment guidelines for EJBs

Using an embedded EJB container in
Oracle WebLogic Server

■ Overview of the embeddable EJB container

■ EJB 3.1 Lite functionality supported in the embedded EJB container

Configuring the Persistence Provider in
Oracle WebLogic Server

■ Overview of Oracle TopLink

■ Specifying a persistence provider

■ Using Oracle TopLink in Oracle WebLogic Server

■ Using a newer version of OpenJPA in Oracle WebLogic Server

■ Using JPA 2.1 with Oracle TopLink in WebLogic Server

Reference ■ EJB metadata annotations reference

Information about EJB 2.x ■ Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server
12-8 Understanding Oracle WebLogic Server

13

13Monitoring, Diagnosing, and Troubleshooting

[14] This chapter describes monitoring, diagnosing, and troubleshooting in WebLogic
Server.

This chapter includes the following sections:

■ Section 13.1, "WebLogic Server Diagnostics Framework"

■ Section 13.2, "Logging Services"

■ Section 13.3, "SNMP Support"

■ Section 13.4, "Custom JMX Applications"

■ Section 13.5, "Java EE Management APIs"

■ Section 13.6, "Roadmap for Monitoring, Diagnosing, and Troubleshooting in
WebLogic Server"

13.1 WebLogic Server Diagnostics Framework
The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within WebLogic
Server processes and participate in the standard server life cycle. Using WLDF, you
can create, collect, analyze, archive, and access diagnostic data generated by a running
server and the applications deployed within its containers. This data provides insight
into the run-time performance of servers and applications and enables you to isolate
and diagnose faults when they occur.

WLDF includes several components for collecting and analyzing data:

■ Integration with JavaHotSpot—If WebLogic Server is configured with Java
HotSpot VM, WebLogic Server events can optionally be propagated to the Java
Flight Recorder, a performance monitoring and profiling tool. WebLogic Server
provides specific integration points with Java Flight Recorder:

– WebLogic Server events are propagated to Java Flight Recorder for inclusion
in a common data set for runtime or post-incident analysis.

– The flight recording data is also included in WLDF diagnostic image captures,
enabling you to capture flight recording snapshots based on WLDF policies.
This full set of functionality enables you to capture and analyze run time
system information for both the JVM and the Fusion Middleware components
running on it, in a single view

■ Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can
be used for post-failure analysis. The diagnostic image capture includes Java Flight
Recorder data, if it is available, that can be viewed in Java Mission Control.
Monitoring, Diagnosing, and Troubleshooting 13-1

Logging Services
■ Built-in Diagnostic Modules—Provide a simple and easy-to-use mechanism for
performing basic health and performance monitoring of a WebLogic Server
instance. The built-in diagnostic modules collect data from key WebLogic Server
run-time MBeans that monitor the main components of a server instance, such as
the WebLogic Server run-time, JDBC, JMS, and Java EE containers hosting servlets
and EJBs.

■ Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

■ Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system. The WebLogic Server Administration Console includes a Request
Performance page, which shows real-time and historical views of method
performance information that has been captured through the WLDF
instrumentation capabilities, serving as a tool that can help identify performance
problems in applications.

■ Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

■ Policies and Actions—Provides the means for monitoring server and application
states and generating actions based on criteria set in the policies.

■ Monitoring Dashboard—The Monitoring Dashboard provides views and tools for
graphically presenting diagnostic data about servers and applications running on
them. The underlying functionality for generating, retrieving, and persisting
diagnostic data is provided by the WebLogic Diagnostics Framework. The
Monitoring Dashboard provides additional tools for presenting that data in charts
and graphs.

The diagnostic data displayed by the Monitoring Dashboard consists of runtime
MBean attributes with numeric or Boolean values that are useful to measure,
either as their current values or as their changes over time. These values, referred
to in the Monitoring Dashboard as metrics, originate from one or more runtime
MBean instances from one or more servers in the domain.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. Independent Software Vendors (ISVs) can use
these APIs to develop custom monitoring and diagnostic tools for integration with
WLDF.

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down
and restarting the server.

13.2 Logging Services
WebLogic logging services provide facilities for writing, viewing, filtering, and
listening for log messages. These log messages are generated by WebLogic Server
instances, subsystems, and Java EE applications that run on WebLogic Server or in
client JVMs. WebLogic Server subsystems use logging services to provide information
about events such as the deployment of new applications or the failure of one or more
subsystems. A server instance uses them to communicate its status and respond to
13-2 Understanding Oracle WebLogic Server

Java EE Management APIs
specific events. For example, you can use WebLogic logging services to report error
conditions or listen for log messages from a specific subsystem.

By default, WebLogic logging services use an implementation based on the Java
Logging APIs. In addition, WebLogic Server also provides the Server Logging Bridge,
which provides a lightweight mechanism for applications that currently use Java
Logging to have their log messages redirected to WebLogic logging services.
Applications can use the Server Logging Bridge with their existing configuration; no
code changes or programmatic use of the WebLogic Logging APIs is required.

13.3 SNMP Support
With SNMP, a manager sends a request for information about managed resources to an
agent. The agent gathers the requested data and returns a response. You can also
configure agents to issue unsolicited reports (notifications) to managers when they
detect predefined thresholds or conditions on a managed resource.

To request data about a specific managed resource, a manager must be able to
uniquely identify the resource. In SNMP, each type of managed resource is described
in a Management Information Base (MIB) as a managed object with a unique object
identifier (OID). Individual organizations define their specific managed objects in MIB
modules. Both manager and agent must have access to the same MIB module to
communicate about specific managed resources.

13.4 Custom JMX Applications
To integrate custom management systems with the WebLogic Server management
system, WebLogic Server provides standards-based interfaces that are fully compliant
with the Java Management Extensions (JMX) specification. Software vendors can use
these interfaces to monitor WebLogic Server MBeans, to change the configuration of a
WebLogic Server domain, and to monitor the distribution (activation) of those changes
to all server instances in the domain. While JMX clients can perform all WebLogic
Server management functions without using Oracle's proprietary classes, Oracle
recommends that remote JMX clients use WebLogic Server protocols (such as T3) to
connect to WebLogic Server instances.

13.5 Java EE Management APIs
The Java EE Management specification describes a standard data model for
monitoring and managing the run-time state of any Java EE Web application server
and its resources. It includes standard mappings of the model through a Java EE
Management EJB Component (MEJB).

The Java EE Management APIs enable a software developer to create a single Java
program that can discover and browse resources, such as JDBC connection pools and
deployed applications, on any Java EE Web application server. The APIs are part of the
Java EE Management Specification, which requires all Java EE Web application servers
to describe their resources in a standard data model.
Monitoring, Diagnosing, and Troubleshooting 13-3

Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server
13.6 Roadmap for Monitoring, Diagnosing, and Troubleshooting in
WebLogic Server

Table 13–1 Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about WLDF components ■ Data creation, collection, and instrumentation

■ Archive

■ Policy and action

■ Data accessor

■ Monitoring dashboard and request performance
pages

■ Diagnostic image capture

■ Understanding WLDF configuration

Learning more about WebLogic logging services ■ Use WebLogic logging services for your application
logging

■ Using message catalogs with WebLogic Server

■ Logging components and environment

■ Terminology

■ Overview of the logging process

■ Best practices for integrating Java logging with
WebLogic logging services

■ Server log files and domain log files

■ Server and subsystem logs

■ Log message format

■ Message attributes

■ Message severity

■ Viewing WebLogic logging services

■ Configuring WebLogic logging services

■ Filtering WebLogic Server log messages

■ Subscribing to messages

■ Using the Server Logging Bridge

Using the Monitoring Dashboard ■ About the monitoring dashboard interface

■ Understanding how metrics are collected and
presented

■ The parts of a chart
13-4 Understanding Oracle WebLogic Server

Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server
Using SNMP with WebLogic Server ■ WebLogic Server SNMP agents

■ Security for SNMP

■ MIB module for WebLogic Server

■ Monitoring custom MBeans

■ WebLogic Server notifications

■ SNMP proxies

■ WebLogic SNMP command-line utility

Creating JMX applications to manage WebLogic
Server

■ Developing custom management utilities with JMX

■ Developing manageable applications with JMX

■ Programming WebLogic deployment

Learning more about the Java EE Management APIs ■ JMO hierarchy

■ JMO object names

■ Optional features of JMOs

■ Accessing JMOs

■ Accessing the MEJB on WebLogic Server

■ WebLogic Server extensions

Table 13–1 (Cont.) Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server

Major Task Subtasks and Additional Information
Monitoring, Diagnosing, and Troubleshooting 13-5

Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server
13-6 Understanding Oracle WebLogic Server

14

14Sample Applications and Code Examples

[15] This chapter describes WebLogic Server code examples and sample applications that
offer several approaches to learning about and working with WebLogic Server. These
examples and sample applications are available through performing a custom
installation and selecting to install the Server Examples.

This chapter includes the following sections:

■ Section 14.1, "Overview"

■ Section 14.2, "Conventions"

■ Section 14.3, "Java EE 6 Examples"

■ Section 14.4, "Java EE 7 Examples"

■ Section 14.5, "Additional API Examples"

■ Section 14.6, "Avitek Medical Records"

■ Section 14.7, "Derby Open-Source Database"

14.1 Overview
This section provides an overview of installing and using the WebLogic Server code
examples.

This section contains the following topics:

■ Section 14.1.1, "Installing the WebLogic Server Code Examples"

■ Section 14.1.2, "Starting the WebLogic Server Samples Domain"

■ Section 14.1.3, "Running the WebLogic Server Code Examples"

14.1.1 Installing the WebLogic Server Code Examples
When performing an installation of WebLogic Server, select Complete with Examples
to obtain the WebLogic Server and Coherence examples. For more information about
installing WebLogic Server, see Installing and Configuring Oracle WebLogic Server and
Coherence. To set up the WebLogic Server samples domain, launch the Quickstart
Configuration Wizard when prompted after installation.

If you do not automatically launch the Quickstart Configuration Wizard from the
installation program, but instead choose to configure the code examples and sample
domains later, you can run the QuickStart Configuration Wizard manually. For more
information, see "Running the QuickStart Configuration Wizard" in Creating WebLogic
Domains Using the Configuration Wizard.
Sample Applications and Code Examples 14-1

Conventions
Note: When you install WebLogic Server complete with the
examples, the examples source code is placed in the EXAMPLES_HOME
directory. The default path is ORACLE_
HOME\wlserver\samples\server. From this directory, you can access
the source code and instruction files for the examples without having
to set up the samples domain.

14.1.2 Starting the WebLogic Server Samples Domain
Start the examples server using one of the following procedures. In these procedures,
DOMAIN_HOME represents the location where the samples domain is configured on your
machine; for example, C:\ORACLE_HOME\user_projects\domains.

On Windows: Use a command shell and navigate to the DOMAIN_HOME\wl_server
directory. Enter the following command:

startWebLogic.cmd

On UNIX Bourne Shell: Navigate to the DOMAIN_HOME/wl_server directory. Enter the
following command:

sh ./startWebLogic.sh

Note: By default, the examples server uses port 7001 to listen for
incoming connections. The MedRec server also uses the same listen
port by default, which means that you cannot run both domains at the
same time without changing one of the listen ports. If you want to run
both domains at the same time, use the Oracle WebLogic Server
Administration Console to change the listen port of the examples
server to something other than 7001, and then restart it. You can then
run the MedRec server using its default listen port at the same that
you run the examples server.

14.1.3 Running the WebLogic Server Code Examples
Review the instructions provided with the code examples for information about
building, deploying and running the code examples. When you start the WebLogic
Server samples domain, a browser is automatically launched that displays a Web page
from which you can browse the samples and obtain instructions for building,
deploying, and running them.

14.2 Conventions
The following conventions are used throughout the instructions for the WebLogic
Server code examples:

■ The instructions generally are for Windows command shells. If you are using a
UNIX or Linux-based shell, substitute / for \ in path names.

■ ORACLE_HOME represents the directory you specified as the Oracle Home when you
installed WebLogic Server; for example, C:\Oracle\Middleware\Oracle_Home.

■ WL_HOME represents the top-level installation directory for Oracle WebLogic Server.
The default path is ORACLE_HOME\wlserver. (However, you are not required to
install WebLogic Server in the Oracle Home directory.)
14-2 Understanding Oracle WebLogic Server

Java EE 6 Examples
■ EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. The default path is ORACLE_
HOME\wlserver\samples\server.

■ DOMAIN_HOME represents the directory in which the WebLogic Server sample
domains are configured. The default path is ORACLE_HOME\user_
projects\domains.

Source files for the code examples are separated from the domain configuration files,
just as they should be in a real-world scenario. They are installed in the EXAMPLES_HOME
directory.

The DOMAIN_HOME\wl_server directory contains the WebLogic Server examples
domain; it contains your applications and the XML configuration files that define how
your applications and Oracle WebLogic Server will behave, as well as startup and
environment scripts.

The EXAMPLES_HOME\examples\build directory contains client and server classes
required by the examples and Derby database.

The WL_HOME\common\derby directory contains Derby, a demonstration database that
the examples are configured to use. It also contains scripts that start and stop the
database. For more information about Derby, see http://db.apache.org/derby.

14.3 Java EE 6 Examples
Oracle WebLogic Server fully supports the Java Platform, Enterprise Edition (Java EE)
6 specification. The Java EE 6 examples demonstrate how to implement Java EE 6 APIs
and Oracle WebLogic Server-specific features. The examples are grouped in the
following categories:

■ Batch 1.0: Submit batch jobs and obtain information about submitted jobs using
the JobOperator interface, and use the batch parallelization model to run
partitioned job steps.

■ Bean Validation 1.1: Use the bean validation group constraint and method level
validation APIs.

■ CDI 1.1: Use CDI events and the @TransactionScoped and @Transactional
annotations.

■ Concurrency 1.1: Create dynamic proxy objects using the ContextService
interface, submit tasks using the ManagedExecutorService interface, submit
delayed or periodic tasks using the ManagedScheduledExecutorService interface,
and obtain a managed thread from the Java EE container using the
ManagedThreadFactory interface.

■ EJB 3.2: Use the new session bean lifecycle callback interceptor methods API and
also use a message-driven bean to implement a listener interface with no methods.

■ Expression Language 3.0: Use new EL features, including support for a standalone
environment, static field or method references, new operators, Lambda
expressions, and collection constructions and operations.

■ JAX-RS 2.0: Use asynchronous processing, filters and interceptors, and server-sent
events (SSE) Jersey support.

■ Java Connector Architecture 1.6: Develop a mail connector resource adapter and
deploy connector resources with annotations defined in Java Connector
Architecture 1.6.

■ JMS 2.0: Use JMS 2.0 in EJBs and servlets.
Sample Applications and Code Examples 14-3

Java EE 7 Examples
■ JPA 2.1: Use JPA criteria update and delete and stored procedures.

■ JSF 2.2: Use Java Server Faces (JSF) resource library contracts, file upload, faces
flows, and HTML5 features.

■ JSON-P: Use the Java API for JSON processing with JAX-RS.

■ Servlet 3.1: Use the HTTP protocol upgrade API, use non-blocking I/O for
asynchronous reads and writes, change a session ID, and handle uncovered HTTP
methods.

■ WebSocket: Process JSON-format data, using CDI and EJBs in WebSocket
endpoints, enable a server to echo text sent by a client, and enable fallback to
HTTP long polling as an alternative for WebSocket messaging.

14.4 Java EE 7 Examples
The Java EE 7 examples demonstrate how to implement Java EE 7 APIs and Oracle
WebLogic Server-specific features. The examples are grouped in the following
categories:

■ Bean Validation: Use bean validation with JPA entities, JPA from Java SE, and JSF
managed beans.

■ Context and Dependency Injection (CDI): Introduces CDI with type-safe
dependency injection, interceptors, and producers.

■ Data Source: Use the @DataSourceDefinition annotation.

■ EJB 3.1: Use asynchronous methods, a calendar-based timer, simplified
programming model and packaging in a WAR file, portable global JNDI names,
and singleton session beans.

■ Java EE Connector Architecture 1.7: Use the Java EE Connector Architecture to
connect two applications together using a stock trading application.

■ JPA 2.0: Use the JPA Criteria Query API and the @ElementCollection mapping
type.

■ JSF 2.0: Incorporate Ajax in Web applications, create bookmarkable Web
applications, and use Facelets and templating.

■ Servlet 3.0: Use annotations for servlets, filters, and listeners, handle file uploads
with multipart files, and use asynchronous servlet and request handling,
programmatic security, and servlet Web fragments.

14.5 Additional API Examples
These examples demonstrate how to implement additional Java EE APIs and Oracle
WebLogic Server-specific features. The examples are grouped in the following
categories:

■ Database Connectivity: Use DataSources, MultiDataSources, and Rowsets.

■ EJB: Create stateless, stateful, entity, and message-driven EJBs, and more.

■ Internationalization: Internationalize an application using simple message
catalogs.

■ Messaging: Use JMS topics, queues, and message-driven beans.

■ Resource Adapter: Use an entity EJB to interact with a Java EE Connector
Architecture resource adapter.
14-4 Understanding Oracle WebLogic Server

Derby Open-Source Database
■ Security: Use the Java Authentication and Authorization Service, SAML, and
outbound and two-way SSL.

■ Transactions: Use JTA to perform distributed transactions using the two phase
commit protocol across two XA resources.

■ Web Application: Create simple servlets and JSPs, use the HTTP Publish-Subscribe
server, and more.

■ Web Services: Create a variety of Web Services using JWS annotations.

■ XML: Use the STAX API and XMLBeans

■ Cluster: Cluster an EJB and use HTTP session state replication.

■ Coherence: Use the Coherence container to host Coherence applications

■ WebLogic Scripting Tool: Use the WebLogic Scripting Tool (WLST) to configure
and manage a running WebLogic Administration Server.

■ Split Development: Use the WebLogic split development directory structure to
build, package, and deploy Enterprise Applications.

■ Service Component Architecture: Use WebLogic SCA, a lightweight Spring 2.5 (or
higher) container, in a shopping cart application that demonstrates many of its key
features.

■ Spring: Use Spring-simplified configuration in a Spring-based Web application.

14.6 Avitek Medical Records
Avitek Medical Records (or "MedRec") is a comprehensive educational sample
application that demonstrates WebLogic Server and Java EE features, as well as best
practices. Avitek Medical Records is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME/user_
projects/domains/medrec directory, where ORACLE_HOME is the directory you specified
as the Oracle Home when you installed Oracle WebLogic Server.

The sample application, MedRec (Spring) demonstrates Spring Framework application
development practices.

14.7 Derby Open-Source Database
Derby is an open source relational database management system based on Java, JDBC,
and SQL standards. It is bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database. For more information
about Derby, see http://db.apache.org/derby.
Sample Applications and Code Examples 14-5

Derby Open-Source Database
14-6 Understanding Oracle WebLogic Server

15

15WebLogic Server Compatibility

[16] This chapter describes WebLogic Server compatibility.

Oracle attempts to support binary and source-level compatibility between WebLogic
Server 12c (12.2.1) and versions 10.3, 10.3.x, 12.1.1, 12.1.2, and 12.1.3 in the areas of
persistent data, generated classes, and API compatibility. In some cases, it is
impossible to avoid incompatibilities. Where incompatibilities arise, they are fully
documented in the Upgrading Oracle WebLogic Server.

This chapter includes the following sections:

■ Section 15.1, "Java EE 7 Compatibility"

■ Section 15.2, "Generated Classes Compatibility"

■ Section 15.3, "Compatibility Within a Domain"

■ Section 15.4, "Persistent Data Compatibility"

■ Section 15.5, "API Compatibility"

■ Section 15.6, "Protocol Compatibility"

15.1 Java EE 7 Compatibility
WebLogic Server 12c (12.2.1) is Java EE 7 compatible. This compatibility allows a Java
EE 7 compliant application to be developed on one operating system platform, and
deployed for production on another, without requiring Java EE 7 application code
changes. Oracle ensures this compatibility of Java EE 7 application portability within a
WebLogic Server release level.

15.2 Generated Classes Compatibility
With one exception, upgrading to WebLogic Server 12c (12.2.1) does not require you to
recompile applications in order to create new generated classes.

The current version of the EJBGen utility recognizes only JDK 5.0 or later metadata
annotation-style EJBGen tags and not the old Javadoc-style tags. This means that
source files that use the Javadoc-style tags must be upgraded to use the equivalent
annotation, and then recompiled using the updated version of EJBGen.

15.3 Compatibility Within a Domain
The following topics provide key information regarding compatibility within
WebLogic domains:

■ About WebLogic Server Version Numbers
WebLogic Server Compatibility 15-1

Compatibility Within a Domain
■ WebLogic Version Compatibility

■ Hardware, Operating System, and JVM Platform Compatibility

■ Node Manager Compatibility

15.3.1 About WebLogic Server Version Numbers
Within a WebLogic domain, the Administration Server, Managed Server instances, and
the domain itself each have a WebLogic Server version number. The version number
contains five decimal places; for example, WebLogic Server 12.2.1.0.0. The meaning of
each decimal place is described below:

■ The first two decimal places together describe the Major Version number, for
example "12.2" in 12.2.1.0.0. The WebLogic Server 12.2 Major Version release is also
branded as the WebLogic Server 12c Major Version release.

■ The first three decimal places together describe the Minor Version number, for
example "12.2.1" in 12.2.1.0.0. WebLogic Server 12.2.1 (or 12.2.1.0.0) was the first
Minor Version release of the WebLogic Server 12.2 Major Version release.
WebLogic Server 12.1.3 (or 12.1.3.0.0) is the third Minor Version release of the
WebLogic Server 12.1 Major Version release.

■ According to the version conventions, a Patch Set release for WebLogic Server
12.2.1.0.0 would increment the fourth decimal place, for example 12.2.1.1.0.
However, as of WebLogic Server 12.1.3, there are no specific plans for a Patch Set
release. This information is provided for definitional purposes only.

■ Patch Set Update releases are named uniquely by incrementing the fifth decimal
place, for example 12.2.1.0.1. This convention is used for Patch Set Update naming
purposes, for example naming downloads available on My Oracle Support.
However, the application of a Patch Set Update does not change the version
number of an existing WebLogic Server installation as referenced in the
oraInventory used by WebLogic Server 12.2.1 installers.

You can obtain the version number and Patch Set level of a WebLogic Server instance
or domain several different ways. For example:

■ For an Administration Server or Managed Server instance, you can view the
version message sent to stdout when the server is started. For example:

<Version: WebLogic Server 12.2.1.0.0 Thu Aug 13 16:15:36 PDT 2015 1698759>

■ For a domain, you can view the value of the <domain-version> element in the
domain configuration file, config.xml. For example:

<domain-version>12.2.1.0.0</domain-versio

15.3.2 WebLogic Version Compatibility
Within a WebLogic domain, the Administration Server, all Managed Server instances,
and the WebLogic domain must be at the same WebLogic Server Major and Minor
Version. This means that in WebLogic Server 12.2.1, the Administration Server,
Managed Servers, and the WebLogic domain must all be at version 12.2.1. Note the
following guidelines for maintaining consistency in Patch Set Update and Interim or
One-off Patch levels within a domain.
15-2 Understanding Oracle WebLogic Server

Compatibility Within a Domain
Note: Versions of WebLogic Server prior to 12.1.2 have slightly
different compatibility allowances regarding specific WebLogic Server
versions that are supported in a given domain. For information, see
Upgrading Oracle WebLogic Server.

■ In general, the best practice is for all server instances within a domain to be at the
same Patch Set Update (PSU) and Interim or One-off Patch level during
steady-state operation. However, there may be cases where server instances are
required to run at different PSUs and Interim or One-off Patch levels within a
domain. The primary examples include:

– When applying PSUs, Interim or One-off Patches in rolling fashion across
server instances in the domain. In such cases, the maintenance should be
applied to the Administration Server first, so that the Administration Server is
at the same PSU and Interim or One-off Patch level (or higher) than its
Managed Servers. For information, see "About Rolling Upgrade" in Upgrading
Oracle WebLogic Server.

– When there are specific requirements to run Managed Servers within a
domain at different PSU and Interim or One-off Patch levels in steady-state
operation. In such cases, the Administration Server should be at the highest
PSU level, so that the Administration Server is at the same PSU level or higher
than all of the Managed Servers. If Managed Servers within a domain are
running with different Interim or One-off Patches, it will not be possible to
apply a consistent set of Interim or One-off Patches to the Administration
Server. Because this maintenance complexity may be difficult to manage, the
general best practice is to use the same PSU and Interim or One-off Patch level
across all servers in the domain.

■ Server instances within a cluster or domain can run on any hardware and
operating systems as long as the hardware and operating systems are listed on the
Oracle Fusion Middleware Supported System Configurations page on Oracle
Technology Network. However, note that running clustered Managed Server
instances on different hardware and operating systems may impact load balancing
and performance. In general, the best practice is to run all Managed Servers within
a cluster on the same hardware and operating system.

■ If the WebLogic domain is part of an Oracle Enterprise Manager Cloud Control
installation, additional requirements exist regarding the combinations of
hardware, operating system, and JVMs, that may be configured in the domain. For
more information, see Oracle Enterprise Manager Cloud Control Administrator's
Guide.

For more information about WebLogic domains, see Understanding Domain
Configuration for Oracle WebLogic Server (note especially the section "Domain
Restrictions," which provides additional details about domain compatibility).

15.3.3 Hardware, Operating System, and JVM Platform Compatibility
WebLogic Server instances within a domain can run on any hardware, operating
system, and JVM platform as long as the hardware, operating systems, and JVMs are
supported for the current version of WebLogic Server. For details, see the Oracle
Fusion Middleware Supported System Configurations page on the Oracle Technology
Network.
WebLogic Server Compatibility 15-3

Persistent Data Compatibility
Important: Although this platform compatibility support extends to
Managed Server instances within a cluster, Oracle strongly
recommends that clusters be homogeneous with respect to the
underlying hardware, operating system, and JVM. Managed Server
instances running in the same cluster are assumed to be equivalent, so
running clustered server instances on mixed platforms may have a
negative impact on load balancing and performance. If you must
operate a cluster on a mixed platform, Oracle strongly recommends
that you understand the load balancing and performance
implications.

15.3.4 Node Manager Compatibility
As a best practice, Oracle recommends that the version of Node Manager used in a
WebLogic domain should match the version of the Administration Server.

If you are running a version of WebLogic Server prior to 12.1.2, see Upgrading Oracle
WebLogic Server for additional Node Manager compatibility information that may be
applicable to your environment. For more information about Node Manager
compatibility, see Administering Node Manager for Oracle WebLogic Server.

15.4 Persistent Data Compatibility
When moving from WebLogic Server 10.0 to 12c (12.2.1), there are changes required to
configuration files. Upgrade tooling in WebLogic Server 10.0 and later automatically
converts the configuration files for you.

15.5 API Compatibility
WebLogic Server 10.0, 10.3.x, 12.1.1, 12.1.2, and 12.1.3 applications deployed on
WebLogic Server 12c (12.2.1) will function without modification. Exceptions to this
rule include cases where APIs were deprecated in prior WebLogic Server releases and
removed, or where API behavior was changed in order to conform to a specification or
to fix incorrect behavior. In certain circumstances, a correction may cause your
application to behave differently.

15.6 Protocol Compatibility
Interoperability between WebLogic Server 12c (12.2.1) and WebLogic Server 10.0,
10.3.x, 12.1.1, 12.1.2, and 12.1.3 is supported in the following scenarios:

■ A WebLogic Server 10.0, 10.3.x, 12.1.1, 12.1.2, and 12.1.3 client can invoke
RMI-based applications hosted on a WebLogic Server 12c (12.2.1) server using
IIOP, T3, T3S, HTTP, and HTTPS. JMS applications can be invoked using T3, T3S,
HTTP, and HTTPS.

■ A WebLogic Server 12c (12.2.1) client can invoke RMI-based applications hosted
on a WebLogic Server 10.0, 10.3.x, 12.1.1, 12.1.2, and 12.1.3 server using IIOP, T3,
T3S, HTTP, and HTTPS. JMS applications can be invoked using T3, T3S, HTTP,
and HTTPS.

■ A WebLogic Proxy Plug-In can proxy to the latest patch set release of a 10.0, 10.3.x,
12.1.1, 12.1.2, and 12.1.3 server.

One important restriction is with regards to interoperability between WebLogic Server
12c (12.2.1) and an older release of WebLogic Server that uses Compatibility security.
15-4 Understanding Oracle WebLogic Server

Protocol Compatibility
WebLogic Server 12c (12.2.1) has removed support for Compatibility security in both
the server and client. To enable interoperability with a version of WebLogic Server that
uses Compatibility security, you can choose one of the following options:

■ Configure the network channel used for communicating with the older WebLogic
Server domain to use the IIOP protocol instead of T3. For information, see
"Configuring Network Resources" in Administering Server Environments for Oracle
WebLogic Server.

■ Use a WebLogic Server version 12.1.3 or prior client. For information, see
"Overview of Stand-alone Clients" in Developing Stand-alone Clients for Oracle
WebLogic Server.

■ Upgrade the domain of the older WebLogic Server release so that it no longer uses
Compatibility security.
WebLogic Server Compatibility 15-5

Protocol Compatibility
15-6 Understanding Oracle WebLogic Server

