
Business Processes and
Rules: Siebel Enterprise
Application Integration
Siebel Innovation Pack 2015
May 2015

Copyright © 2005, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

■ 3

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

5

Contents

Business Processes and Rules: Siebel Enterprise Application Integration 1

Chapter 1: What’s New in This Release

Chapter 2: Defining Workflows for Siebel EAI
Sample Integration Workflows 11

Import Account (File) 11
Export Account (File) 13
Import Employee (MQSeries) 14
Export Employee (MQSeries) 17

Testing the Workflow Integration Process 19
Exporting the Workflow Process to an XML File 19
Importing the XML File Into Siebel Tools 20
Running the Workflow Process Simulator 20

Chapter 3: Creating and Using Dispatch Rules
Overview of EAI Dispatch Service 23

EAI Dispatch Service Rule Hierarchy 24
EAI Dispatch Service Methods 25
Search Expression Grammar 26

Output Transformation 26

EAI Dispatch Service 28
Inbound Requests 28
Outbound Requests 30

Implementing EAI Dispatch Service 30
Creating a Workflow 31
Defining Rule Sets 32
Defining Rules 32
Defining Transforms 32
Invoking a Workflow Process From an EAI Dispatch Service 33

Testing Your EAI Dispatch Service Using Argument Tracing 34

Differences Between EAI Dispatch Service and Workflow 34

ProcessAggregateRequest Method 35

EAI Dispatch Service Scenarios 36

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Contents ■

6

Outbound Scenario 36
Inbound Scenario 37
Outbound Scenarios Using ProcessAggregateRequest 38

Examples of Search Expression Grammar 40

Examples of Dispatch Output Property Sets 42

Chapter 4: Data Mapping Using the Siebel Data Mapper
Siebel Data Mapper Overview 46

EAI Data Mapping Engine 46
EAI Data Mapping Engine Methods 47
Using the EAI Data Mapping Engine 48

The Siebel Data Mapper 48
Integration Object Maps 49
Integration Component Maps 49
Integration Field Maps 50

Creating Data Maps 50
Define Integration Objects 50
Determining Required Maps 51
Creating New Data Maps 51
Creating Integration Component Maps 52
Creating Integration Field Maps 53
Validating the Data Map 53

Examples of Workflow Processes 53
Outbound Workflow Process 53
Inbound Workflow Process 56
About Executing Workflows 57

EAI Data Mapping Engine Expressions 58

Addressing Fields in Components 60

Data Mapping Scenario 60

Chapter 5: Data Mapping Using Scripts
Overview 63

EAI Data Transformation 64

DTE Business Service Method Arguments 66

Map Functions 67

Data Transformation Functions 69

Contents ■

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

7

Siebel Message Objects and Methods 70
Integration Message Objects 70
CSSEAIIntMsgIn 70
CSSEAIIntMsgOut 73
Integration Object Objects 75
CSSEAIIntObjIn 75
CSSEAIIntObjOut 77
Primary Integration Component Objects 78
CSSEAIPrimaryIntCompIn 78
CSSEAIPrimaryIntCompOut 81
Integration Component Objects 84
CSSEAIIntCompIn 84
CSSEAIIntCompOut 87

MIME Message Objects and Methods 90
CSSEAIMimeMsgIn 90
CSSEAIMimeMsgOut 93

Attachments and Content Identifiers in MIME Messages 95

XML Property Set Functions 96
Top-Level Property Set Functions 96
XML Element Accessors 98
Examples 103

EAI Value Maps 104
EAIGetValueMap Function 105
EAILookupSiebel Search Function 105
EAILookupExternal Search Function 105
CSSEAIValueMap Translate Method 106
EAIGetValueMap unmappedKeyHandler Argument 106
EAIGetValueMap() Method 107

Exception Handling Considerations 108
Error Codes and Error Symbols 109
Data Transformation Error Processing 109
Exception Handling Functions 110

Sample Siebel eScript 111

Index

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Contents ■

8

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

9

1 What’s New in This Release

What’s New in Business Processes and Rules: Siebel Enterprise
Application Integration, Siebel Innovation Pack 2015
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

NOTE: Siebel Innovation Pack 2015 is a continuation of the Siebel 8.1/8.2 release.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

What’s New in This Release ■

10

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

11

2 Defining Workflows for Siebel
EAI

This chapter explains workflow integration processes and how to use them to develop your
integration projects. The chapter depends on several sample workflows that are included in the
Siebel Business Applications. It contains the following topics:

■ “Sample Integration Workflows” on page 11

■ “Testing the Workflow Integration Process” on page 19

NOTE: In version 8.0 and higher of Siebel Business Applications, workflow processes are created in
Siebel Tools. However, the sample workflows in this chapter are found in the Administration -
Business Process screen, then the Workflow Processes view in the Siebel client.

For information on creating workflow processes, see Siebel Business Process Framework: Workflow
Guide.

Sample Integration Workflows
Siebel EAI includes several sample workflows that illustrate how you can receive, process, and send
integration messages. This chapter includes four of those samples, along with brief descriptions that
are intended to help you understand the workflow elements specific to Siebel EAI.

NOTE: One of the methods of invoking a workflow process is through a workflow policy. To invoke
a workflow process that includes steps that call EAI adapters from a workflow policy, you must create
a workflow policy action using the Run Workflow Process workflow policy program. The workflow
policy action will invoke the Workflow Process Manager component. For information on creating
workflow policies, see Siebel Business Process Framework: Workflow Guide.

The sample workflows explained in this chapter include:

■ “Import Account (File)” on page 11

■ “Export Account (File)” on page 13

■ “Import Employee (MQSeries)” on page 14

■ “Export Employee (MQSeries)” on page 17

Import Account (File)
This is a sample workflow process that reads an XML file (c:\account.xml) and imports the account
information into the Siebel environment using the EAI XML Read from File business service. The EAI
XML Read from File business service converts the data and the EAI Siebel Adapter updates the Siebel
database.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

12

To review the Import Account (File) sample workflow process
1 Navigate to Administration - Business Process, then Workflow Processes.

2 Query for Import Account (File).

3 With the Import Account (File) workflow process selected, click the Process Properties tab in the
bottom applet to review the process properties for this workflow process.

Workflow process properties are global to the entire workflow. For example, as shown in the
following table, the Import Account (File) workflow has several properties. The Account Message
is defined to identify the output of the Read File step (a parsed version of the XML Account
Message) as a hierarchical structure. The Error Message, Error Code, Object Id, and Siebel
Operation Object Id properties are included in the workflow by default.

4 Click the Process Designer tab in the bottom applet to review the process design for this workflow
process.

5 Double-click the Read File step to review its method and arguments.

This step uses the Read Siebel Message method of the EAI XML Read from File business service
to convert XML from a file into an integration object hierarchy, with the following input argument.

Note how the path and file name are specified as a string in the Value field of the Input
Arguments applet.

Also note the following output property for this step.

Name Data Type In/Out

Account Message Hierarchy In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Siebel Operation Object Id String In/Out

Input Arguments Type Value

File Names Literal c:\account.xml

Property Name Type Output Argument

Account Message Output Argument Siebel Message

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

13

6 Double-click the Update Account step to review its method and arguments.

This step uses the EAI Siebel Adapter business service with the Insert or Update method to read
the Siebel Message and update or insert the Account object in the Siebel Database. The EAI
Siebel Adapter uses the information in the XML file and the following input argument to
accomplish this task.

Because the Insert or Update method is specified on the EAI Siebel Adapter business service,
this step checks the Siebel Database to see if the Account object defined in the XML file already
exists in the database. If the account exists, then it updates the account in the database with
the account instance from the XML file; otherwise, it inserts the account into the database.

Export Account (File)
This sample workflow process exports an account to a file in an XML format. This workflow uses the
EAI Siebel Adapter and the EAI XML Write to File business service to query the data and then convert
the data from the Siebel business object to an XML document.

To review the Export Account (File) sample workflow process
1 Navigate to Administration - Business Process, then Workflow Processes.

2 Query for Export Account (File).

3 With the Export Account (File) workflow process selected, click the Process Properties tab to
review the process properties for this workflow process.

Workflow process properties are global to the entire workflow. For example, as shown in the
following table, the Export Account (File) workflow has several properties. The Output Message
property is defined to identify the outbound account as a hierarchical structure. The Object Id
property is included in each workflow by default.

4 Click the Process Designer tab in the bottom applet to review the process design for this workflow
process.

Arguments Type Property Name Property Data Type

Siebel Message Process Property Account Message Hierarchy

Name Data Type In/Out

Object Id String In/Out

Output Message Hierarchy In/Out

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

14

5 Double-click the Get Account step to review its method and arguments.

This step uses the EAI Siebel Adapter business service to query an account from your Siebel
Database. The EAI Siebel Adapter uses the following input arguments.

Note that Output Integration Object Name of Sample Account is part of the query criteria. The
Sample Account integration object describes the structure of the Account business object and
was created using the Integration Object Builder. The other part of the query criteria is the
Object Id, which is a process property that includes the account number 1-6 defined as a process
property before.

Also note the following output property for this step.

The output from this step is Output Message. Output Message is a process property that will
include the Siebel Message, which contains data for the account. The format is specified by the
Sample Account integration object.

6 Double-click the Write to File step to review its method and arguments.

This step invokes the EAI XML Write to File business service with the Write Siebel Message
method. The EAI XML Write to File uses the following input arguments.

The EAI XML Write to File business service converts the hierarchical message to XML and writes
the resulting document to the file named in the File Name argument.

Import Employee (MQSeries)
This is a sample workflow process that receives an XML string from an IBM MQSeries queue and
updates the Employee instance in the Siebel Database.

Input Arguments Type Value
Property
Name

Property Data
Type

Output Integration
Object Name

Literal Sample Account - -

Object Id Process Property - Object Id String

Property Name Type Output Argument

Output Message Output Argument Siebel Message

Input
Arguments Type Value Property Name

Property Data
Type

File Name Literal c:\account.xml - -

Siebel Message Process Property - Output Message Hierarchy

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

15

To review the Import Employee (MQSeries) sample workflow process
1 Navigate to Administration - Business Process, then Workflow Processes.

2 Query for Import Employee (MQSeries).

3 With the Import Employee (MQSeries) process selected, click the Process Properties tab to review
its process properties.

Workflow process properties are global to the entire workflow. For example, as shown in the
following table, the Import Employee (MQSeries) workflow has several properties. The Employee
Message contains the object as an integration object hierarchy, when converted. The object must
be in that format before it can be inserted or updated in the Siebel environment. The Employee
XML property defines the MQSeries message as XML recognizable by Siebel applications. The
Error Code, Error Message, Object Id, and Siebel Operation Object Id properties are included in
the workflow by default.

4 Click the Process Designer tab in the bottom applet to review the process design for this workflow
process.

NOTE: When using the MQSeries Receiver, remember that the MQ Receiver task will read the
message from the queue and pass it into your workflow process in the <Value> field. This means
your workflow process does not need to read the message from the MQSeries Queue. To get the
XML string that has been read, you need to create a process property and set its default value
as follows: Name=MyXMLStringProperty and Default=<Value>. You should use this process
property as the input to the EAI XML Converter business service.

Name Data Type

Employee Message Hierarchy In/Out

Employee XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Siebel Operation Object Id String In/Out

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

16

5 Double-click the Receive step to review its method and arguments.

This step uses the Receive method of the EAI MQSeries Server Transport to get the inbound
message from the Employee physical queue named in the Physical Queue Name argument. This
step uses the following input arguments.

As shown in the following table, the output from this step is put into the Employee XML process
property with the assumption that the inbound message is already in XML format.

6 Double-click the Convert to Internal step to review its method and arguments.

This step uses the XML to Property Set method of the EAI XML Converter to convert the inbound
message to the Siebel business object format. The step uses the following input argument.

The output from this step is passed in the Employee Message output argument as described in
the following table.

7 Double-click the Update Employee step to review its method and arguments.

This step uses the EAI Siebel Adapter business service with the Insert or Update method and the
following input argument to update the database.

The EAI Siebel Adapter checks the Siebel Database for an Employee record that matches the
current instance of Employee in the Employee Message property. If an Employee record matching
the current instance does not exist in the database, the EAI Siebel Adapter inserts the record
into the database; otherwise, it updates the existing record with the instance.

Input Arguments Type Value

Physical Queue Name Literal Employee

Queue Manager Name Literal Siebel

Property Name Type Output Argument

Employee XML Output Argument Message Text

Input Arguments Type Property Name Property Data Type

XML Document Process Property Employee XML Binary

Property Name Type Output Argument

Employee Message Output Argument Siebel Message

Input Arguments Type Property Name Property Data Type

Siebel Message Process Property Employee Message Hierarchy

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

17

Export Employee (MQSeries)
This is a sample workflow process that sends an XML string for an employee to an IBM MQSeries
queue.

To review the Export Employee (MQSeries) sample workflow process
1 Navigate to Administration - Business Process, then Workflow Processes.

2 Query for Export Employee (MQSeries).

3 With the Export Employee (MQSeries) workflow process selected, click the Process Properties tab
to review the process properties defined for this workflow process.

Workflow process properties are global to the entire workflow. For example, as shown in the
following table, the Export Employee (MQSeries) workflow has multiple properties. The Employee
Message contains the object as an integration object hierarchy, before conversion. The Employee
XML property specifies the Siebel object that has been converted to XML. The Error Code, Error
Message, Object Id, and Siebel Operation Object Id properties are included in each workflow by
default.

Note that the Object Id process property is set to 1-548 in the Default String column. This string
identifies an actual employee record in the Siebel Database by its Row Id. You can set this
workflow to use the active employee record instead of specifying a hard-coded employee
number. You can accomplish this by creating a button that invokes this workflow from the
Administration - User, then the Employees view, or you can pass the value of the Object Id into
the workflow process as an input argument.

4 Click the Process Designer tab in the bottom applet to review the process design for this workflow
process.

Name Data Type In/Out Default String

Employee Message Hierarchy In/Out -

Employee XML Binary In/Out -

Error Code String In/Out -

Error Message String In/Out -

Object Id String In/Out 1-548

Siebel Operation Object Id String In/Out -

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Sample Integration Workflows

18

5 Double-click the Get Employee step to review its method and arguments.

This step uses the Query method of the EAI Siebel Adapter business service, with the following
input arguments to get an instance of an Employee record from the Siebel Database. The Sample
Employee integration object describes the structure of the Employee business object and was
created using the Integration Object Builder wizard. The other part of the query criteria is the
Object Id, which is a process property containing value 1-548.

The output from this step is passed in the Employee Message output argument as described in
the following table.

6 Double-click the Convert to XML step to review its method and arguments.

This step uses the Property Set to XML method of the EAI XML Converter business service to
convert the outbound Siebel Message to XML. The converter stores the outbound Siebel Message
in the Employee XML output argument with the following input argument.

The output from this step is passed in to the Employee XML output argument as shown in the
following table.

Input Arguments Type Value
Property
Name

Property Data
Type

Output Integration
Object Name

Literal Sample
Employee

- -

Object Id Process Property - Object Id String

Property Name Type Output Argument

Employee Message Output Argument Siebel Message

Input Arguments Type Property Name Property Data Type

Siebel Message Process Property Employee Message Hierarchy

Property Name Type Value Output Argument

Employee XML Output Argument - XML Document

Defining Workflows for Siebel EAI ■ Testing the Workflow Integration Process

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

19

7 Double-click the Send step to review its method and arguments.

This step invokes the EAI MQSeries Server Transport business service with the Send method to
put the XML message onto the MQSeries queue, Employee. The message is represented by the
Message Text argument, as shown in the following table.

The Queue Manager that handles the request is called Siebel. The XML message is put onto the
Employee queue, where it remains until another application retrieves it from the queue.

Testing the Workflow Integration
Process
When you have finished defining your integration workflow process, you can use the Workflow
Process Simulator to test its behavior.

The Workflow Process Simulator, included in the Workflow Process Manager, allows you to validate
your processes before deploying them in production environments.

When you simulate an integration process that performs some external action—for example, the
Export Account (File) workflow writes an XML file to a disk location—you can verify the end result by
checking if the output object exists, or if a predetermined event has occurred.

NOTE: You can also enable detailed client logging and use the /s option for creating SQL spool
scripts. This option provides more detailed information when running the integration workflow
process in the Workflow Process Simulator. For details, see Siebel Remote and Replication Manager
Administration Guide.

To test the workflow processes described in this chapter using the Workflow Process Simulator, you
must export them to an XML file from the Workflow Processes view in the Siebel client, and then
import the XML file into the Workflow Processes list in Siebel Tools. The Workflow Process Simulator
runs from Siebel Tools.

Exporting the Workflow Process to an XML File
You export the workflow process from the Workflow Processes view in the Siebel client. In this
example, Export Account (File) is exported.

Input Arguments Type Value
Property
Name

Property
Data Type

Message Text Process Property - Employee XML String

Physical Queue Name Literal Employee - -

Queue Manager Name Literal Siebel - -

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Testing the Workflow Integration Process

20

To export a workflow process to an XML file
1 Navigate to Administration - Business Process, then Workflow Processes.

2 Query for Export Account (File).

3 From the pull-down menu, choose Export Workflow.

4 Choose a location to save the XML file.

The workflow process XML file, in this example Export Account (File).xml, is created.

Importing the XML File Into Siebel Tools
You import the workflow process XML file into the Workflow Processes list in Siebel Tools.

To import the XML file into Siebel Tools
1 In the Object Explorer in Siebel Tools, select Workflow Process.

2 Right-click inside the Workflow Processes list in the Object List Editor, then choose Import
Workflow Process.

3 Browse for the workflow process XML file, then click Open.

The workflow process is imported into Siebel Tools.

Running the Workflow Process Simulator
You run the Workflow Process Simulator from the Workflow Process list in Siebel Tools.

To simulate a workflow process
1 In Siebel Tools, choose Toolbars, then the Simulate view to activate the Simulator.

2 In the Object Explorer in Siebel Tools, select Workflow Process.

3 Query for Export Account* in the Object List Editor.

4 Right-click on Export Account (File), then choose Simulate Workflow Process.

The Workflow Process Designer appears, with the border of the Start shape red to indicate that
it is the active element.

5 Click Start Simulation in the Simulate toolbar.

A new instance of the Siebel Debugger starts and then runs the Simulator.

6 Click Simulate Next to activate the next step.

As you step through the process, the border of each active shape turns red in turn, unless the
simulator encounters an error, in which case it displays an error message alert.

7 Click Complete Simulation to pause.

Defining Workflows for Siebel EAI ■ Testing the Workflow Integration Process

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

21

8 Click Stop Simulation to stop.

For more information about running the Workflow Process Simulator, reviewing process values, and
using Workflow Process Manager and Workflow Batch Manager, see Siebel Business Process
Framework: Workflow Guide.

NOTE: Use the Workflow Process Simulator only for testing purposes. Do not use the Workflow
Process Simulator to load data.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Defining Workflows for Siebel EAI ■ Testing the Workflow Integration Process

22

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

23

3 Creating and Using Dispatch
Rules

This chapter gives an overview on the EAI Dispatch Service, transforming output, and implementing
a new dispatch service. It contains the following topics:

■ “Overview of EAI Dispatch Service” on page 23

■ “Output Transformation” on page 26

■ “EAI Dispatch Service” on page 28

■ “Implementing EAI Dispatch Service” on page 30

■ “Testing Your EAI Dispatch Service Using Argument Tracing” on page 34

■ “Differences Between EAI Dispatch Service and Workflow” on page 34

■ “ProcessAggregateRequest Method” on page 35

■ “EAI Dispatch Service Scenarios” on page 36

■ “Examples of Search Expression Grammar” on page 40

■ “Examples of Dispatch Output Property Sets” on page 42

Overview of EAI Dispatch Service
The EAI Dispatch Service is a rule-based dispatching business service that invokes business services
based on the properties of its input property set. The EAI Dispatch Service can execute
transformations on an input property set before dispatching it to the target business service. Such
transformations can be useful for setting business service arguments or workflow process properties.
They can also be used to do limited hierarchy manipulation such as discarding the envelope of an
XML document. Figure 1 illustrates the EAI Dispatch Service process.

Figure 1. EAI Dispatch Service Process

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Overview of EAI Dispatch Service

24

Although the EAI Dispatch Service is a utility to invoke one business service from another business
service based on specified rules, one of its primary uses is to accomplish inbound and outbound
integration. The EAI Dispatch Service can be the first business service of the inbound integration to
decide which business service should process an incoming document. It can also be the last step of
the outbound integration to send the outgoing document to the right transport. The EAI Dispatch
Service is similar to the branching in Siebel Workflow. To determine whether to use Siebel Workflow
or the EAI Dispatch Service, see “Differences Between EAI Dispatch Service and Workflow” on page 34.

EAI Dispatch Service Rule Hierarchy
The EAI Dispatch Service has a three-layer rules hierarchy as illustrated in Figure 2.

Rule Sets
Rule Sets are sets of rules that you define in a particular sequence. EAI Dispatch Service parses the
input document using these rules in sequence until it finds a rule that matches the input.

Rules
Rules are individual entities in a rule set. Each rule consists of data transformations, search
expression grammar, and zero or more rule transforms. You define rules by using search expression
grammar to establish how you want an input message to be routed. For details, see “Search
Expression Grammar” on page 26.

Figure 2. EAI Dispatch Service Rule Hierarchy

Creating and Using Dispatch Rules ■ Overview of EAI Dispatch Service

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

25

Data Transformation
A transform specifies how the intermediate output is going to be generated before it is dispatched
to the service and the method you specified in the rule. For details, see “Output Transformation” on
page 26.

EAI Dispatch Service Methods
EAI Dispatch Service uses the methods described in Table 1.

The EAI Dispatch Service executes the following at run time:

■ Matches the input with a dispatch rule.

■ Evaluates the transforms.

■ Dispatches the output to a business service if the method is set to Dispatch.

Table 1. EAI Dispatch Service Methods

Method Description

Dispatch This method parses the input against the rules and dispatches it to the
appropriate business service and business service method for further
processing.

Lookup This method returns the intermediate output generation as specified
by the rule output properties without dispatching it to any business
service. You use this method for debugging purposes, as well as
manipulating property sets within business service or workflow.

ProcessAggregateRequest This method allows multiple invocations of business services in a
single request. The output for each request will be combined into a
single Siebel property set or XML document. The input to this method
is an XML document. For details, see “ProcessAggregateRequest
Method” on page 35.

Purge The Purge method clears any data that has been cached by the EAI
Dispatch Service and does not take in any input arguments.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Output Transformation

26

Search Expression Grammar
Search expression grammar is used by the EAI Dispatch Service to parse incoming messages and
determine the course of action. Search expression grammar is based on the XPath standard. Table 2
presents the definitions you use to construct a search expression.

NOTE: See “Examples of Search Expression Grammar” on page 40 for additional information and
examples.

Output Transformation
Before dispatching the incoming hierarchy to the business service, EAI Dispatch Service can be used
to perform some transformations to the hierarchy to make it appropriate for the target business
service. A transform specifies how the intermediate output, in the memory, is going to be generated
before it is dispatched to the service and the method you specified in the rule.

If you do not define any transforms, the EAI Dispatch Service will send the input directly to the
business service. However, if you define transforms, the EAI Dispatch Service will create
intermediate output based on the values of the transforms before sending the input to the business
service you have defined in your rule.

Transforms are specified using one or more of the following targets in permissible combination.

RootHierarchy
This target creates a new output root hierarchy based on the source expression. The source
expression specifies a node in the input hierarchy. The hierarchy rooted at this node is copied as the
target root hierarchy. You can use the root hierarchy for minor modifications, such as adding a
property, to the input hierarchy.

Only one root hierarchy transform can be specified because this transform always creates a new
hierarchy. The root hierarchy transform is always executed before any other transforms in the
combination.

NOTE: For the following targets, if an output hierarchy does not exist at the time of invoking the
target, an output hierarchy is first created with just an empty root node before the target is applied.

Table 2. Definitions for Constructing Search Expressions

Symbols Description

/ A forward slash indicates a new level in the hierarchy. The first slash indicates the root
of the hierarchy.

@ An at symbol indicates the attribute.

* An asterisk indicates no specific criteria and that everything matches in the input.
Asterisks cannot be used with attributes.

Name This is the literal value for which the EAI Dispatch Service searches the document.

Creating and Using Dispatch Rules ■ Output Transformation

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

27

ChildHierarchy
This target creates a new hierarchy as a child of the current output root hierarchy, based on the
source expression. The source expression specifies a node in the input hierarchy. The hierarchy
rooted at this node is copied as a new child hierarchy. You can use the child hierarchy for adding
service arguments to an incoming document before dispatching to workflow or business service.

Type
This target sets the Type field to Source Expression in the root node of output hierarchy.

Value
This target sets the Value field to Source Expression in the root node of output hierarchy.

Property
This target creates or overwrites a property with name Property Name and value Source Expression
in the root node of output hierarchy. You can use property to add business service arguments or
workflow process properties.

As described in Table 3, for certain targets, in addition to the dispatch grammar, literal values can be
used for the Source Expression property to retrieve the data from the input message.

NOTE: You can combine one or more of the preceding transforms to achieve the desired
transformation. The combination should not include more than one Root Hierarchy transform, Type
transform, or Value transforms. However, it can include multiple Property transforms, as long as the
names of the properties are different. Also if you do not want to transform the input data, but need
to add an entry in transform—for example the process name of the dispatching workflow, you have
to add another entry to the transform with Target: RootHierarchy, Source Expression: /*, and no
Property Name. If you do not have a RootHierarchy transform, an empty PropertySet will be created
and the called dispatching service will receive an invalid hierarchy data.

Table 3. Literal Values for Source Expression.

Target Source Expression Property Name

Property Dispatch grammar or a literal value enclosed in quotes to
search for a value

Name of the
Property

ChildHierarchy Grammar to search for the hierarchy N/A

RootHierarchy Grammar to search for the hierarchy N/A

Type Dispatch grammar or Literal value enclosed in quotes to
search for a value

N/A

Value Literal value enclosed in quotes N/A

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ EAI Dispatch Service

28

EAI Dispatch Service
You can use the EAI Dispatch Service to:

■ Respond to a request from an external system. This can be a request to query data or a request
to insert data into the Siebel Database. See “Inbound Requests” on page 28.

■ Send data to an external system based on an event in Siebel applications. See “Outbound
Requests” on page 30.

The EAI Dispatch Service works with the hierarchy in the property set, which may be in some cases
different from the hierarchy in your document. When dispatching XML documents, you should use
the XML Hierarchy Converter because it generates a hierarchy matching the hierarchy in the XML
document.

NOTE: For details on the XML Hierarchy Converter, see XML Reference: Siebel Enterprise Application
Integration.

Use the business service argument tracing facility provided by the EAI Dispatch Service to
understand the input property set hierarchy. This facility dumps the input and the output of the EAI
Dispatch Service as XML. For details, see “Testing Your EAI Dispatch Service Using Argument Tracing”
on page 34.

Inbound Requests
The steps for creating an inbound or an outbound EAI Dispatch Service are very similar, as illustrated
in the following figures.

Creating and Using Dispatch Rules ■ EAI Dispatch Service

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

29

Figure 3 illustrates the high-level architecture of an inbound EAI Dispatch Service.

Figure 3. Inbound EAI Dispatch Service

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Implementing EAI Dispatch Service

30

Outbound Requests
The steps for creating an outbound EAI Dispatch Service are the same as the steps for an inbound
EAI Dispatch Service with some differences in the workflow. Figure 4 illustrates the high-level
architecture of an outbound Dispatch Service. For details on how to create an outbound workflow,
see “Outbound Scenario” on page 36.

Implementing EAI Dispatch Service
The following checklist lists the steps you need to take to implement a new EAI Dispatch Service.
These steps are the same whether an external system is requesting data from a Siebel application,
or inserting data into a Siebel application, or when a Siebel application sends a request to an external
system.

Figure 4. Outbound EAI Dispatch Service

Checklist

❑ Create a workflow to be called by the EAI Dispatch Service.

For details, see “Creating a Workflow” on page 31.

Creating and Using Dispatch Rules ■ Implementing EAI Dispatch Service

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

31

Creating a Workflow
Design a workflow process to be called by EAI Dispatch Service upon receiving a request from an
external system.

NOTE: For details on how to use Workflow Process Manager, see Siebel Business Process
Framework: Workflow Guide.

To design a workflow to receive a request from an external system
1 In Siebel Tools, set up a workflow process to include the following steps: Start, EAI Data Mapping

Engine, EAI Siebel Adapter, End.

2 Create process properties to pass incoming data from the EAI Dispatch Service.

Because you have to pass data (as a hierarchy) from the EAI Dispatch Service to the workflow,
you need to create a process property of type Hierarchy to receive this data. The name of the
property should match the root tag of the hierarchy you are passing. If you use XML Hierarchy
Converter with the EAI Dispatch Service, then you use the property XMLHierarchy.

Also, you may want to pass other parameters, such as what data map to use, from the EAI
Dispatch Service. Create process properties of type String to receive such parameters. The name
of the property should match the Property Name used in your dispatch transform.

❑ Define a Rule Set.

For details, see “Defining Rule Sets” on page 32.

❑ Define Rules.

For details, see “Defining Rules” on page 32.

❑ Define Transforms.

For details, see “Defining Transforms” on page 32.

❑ Set up the EAI Dispatch Service to invoke the workflow.

For details, see “Creating a Workflow” on page 31.

❑ Test your EAI Dispatch Service.

For details, see “Testing Your EAI Dispatch Service Using Argument Tracing” on page 34.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Implementing EAI Dispatch Service

32

Defining Rule Sets
Rule sets are used by the EAI Dispatch Service to search the incoming data for specific criteria.

To define a rule set
1 Navigate to Administration - Integration, then the EAI Dispatch Service View.

2 Click New on the Rule Sets list applet to create a new rule set.

3 Give this rule set a meaningful name such as AribaAccountToSiebel.

4 Save the rule set.

Defining Rules

To define rules
1 Click New on the Rules list applet on the EAI Dispatch Service View.

2 Provide the following fields for this record:

■ Sequence. Enter a sequence number. This determines the sequence in which the application
evaluates the rules.

■ Search Expression. Actual logic behind what the rule is looking for in the input. Define the
Search Expression using Dispatch Rule Grammar. For details, see “Search Expression
Grammar” on page 26.

■ Property Value (Optional). Populate this field with the value for the property that the input
is to be matched with.

■ Dispatch Service. The business service that you want to dispatch the input to. You leave
this blank if you intend to use the Lookup method.

■ Dispatch Method. Pick a method for the business service you defined in the Dispatch
Service field.

3 Save your rules.

The system validates search expression grammar. If you have not set your rules properly, you
will receive an error message. See Table 5 on page 41 for examples of valid search expressions.

Defining Transforms

To define transforms
1 Click New on the Transforms list applet on the EAI Dispatch Service View to create a new

transform.

Creating and Using Dispatch Rules ■ Implementing EAI Dispatch Service

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

33

2 Provide the following fields for the new record:

■ Target. Defines how the intermediate output is going to be generated before it is dispatched
to the service and the method you specified in the rule. For details, see “Output
Transformation” on page 26.

■ Source Expression. The source expression is used to assign a value to the target. You can
either use a search expression pointing to a node in the input hierarchy or a literal value
enclosed in quotes. For details, see “Search Expression Grammar” on page 26.

■ Property Name. The name of the property to be set. This value is only used when the Target
is set to Property. For the other Target types this field is inactive.

NOTE: See “EAI Dispatch Service Scenarios” on page 36 and “Examples of Search Expression
Grammar” on page 40 for more details on these parameters.

3 Save your transform.

This saves and validates your transform.

Invoking a Workflow Process From an EAI Dispatch
Service
Once you created your workflow, you need to set up your EAI Dispatch Service to invoke it.

To invoke a workflow process with an EAI Dispatch Service
1 Navigate to Administration - Integration, then the EAI Dispatch Service View.

2 Select the target rule set.

3 Select the rule that invokes the workflow process.

4 For the selected rule set the following values:

■ Dispatch Service. Workflow Process Manager

■ Dispatch Method. Execute Process

5 For the selected rule insert a new record in the Transforms applet and fill in the following values:

■ Target. Property. You can select the Property value from a list of values.

■ Source Expression. Name of the workflow process to run. Make sure you include double
quotes around the name, for example, "my workflow process".

■ Property Name. Process Name. You can select the Property Name value from a list applet.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Testing Your EAI Dispatch Service Using Argument
Tracing

34

Testing Your EAI Dispatch Service Using
Argument Tracing
You should use the Business Service Simulator to test your EAI Dispatch Service before using it in
your production environment. You can use argument tracing to write the input and the output of the
EAI Dispatch Service as XML.

NOTE: For details on how to use the Business Service Simulator, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

To use the EAI dispatch service argument tracing
1 Set the server parameter EnableServiceArgTracing to true.

2 Set the appropriate event level for EAIDispatchSvcArgTrc on your server component:

■ Event level 3. Leads to input arguments being written out when errors occur.

■ Event level 4. Leads to both input and output being written out.

If arguments are written out, there will be a trace log entry indicating the filename in the log
directory. The filenames will have the following form:

service name_input or output_args_a big number.dmp

For example:

EAIDispatchService_input_args_270613751.dmp

NOTE: To open the file in a XML editor, you can rename the extension to XML.

Differences Between EAI Dispatch
Service and Workflow
Although the EAI Dispatch Service is very similar to Siebel Workflow in initiating a task based on a
condition, there are some limitations in Siebel Workflow that you can overcome using the EAI
Dispatch Service. Siebel Workflow operates on business components as opposed to property sets, so
Siebel Workflow can only branch based on fields in a business component. Furthermore, with Siebel
Workflow you cannot route incoming documents based on property sets, because the workflow
decision points cannot search inside of arbitrary property sets.

Creating and Using Dispatch Rules ■ ProcessAggregateRequest Method

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

35

Table 4 provides some guidance to help you determine the best method for your business
requirements.

ProcessAggregateRequest Method
The ProcessAggregateRequest method allows you to perform multiple invocations of business
services in a single request. The method bundles the output for each request into a single Siebel
property set or XML document.

When using the ProcessAggregateRequest method with the EAI Dispatch Service business service,
you need to define an input argument called AggregatedServiceRequest, with type Hierarchy for the
EAI Dispatch Service to use to store the incoming data.

The following example is the input argument for this method, using XML to represent the
PropertySet.

....

<PropertySet>

<AggregatedServiceRequest>

Table 4. Siebel EAI Dispatch Methods and Workflow

Requirements

EAI
Dispatch
Service Workflow Notes

Need to route the
incoming document
based on its structure or
content

✓ The EAI Dispatch Service can route
incoming documents based on property
sets, whereas workflow can only branch
based on fields in a business component.

Multiple dispatch targets ✓ The EAI Dispatch Service is a better choice
because writing a workflow to include
every branch can be unwieldy, but you can
have many EAI Dispatch Service rules.

Need to change input
property set before
dispatching

✓ The EAI Dispatch Service is the better
choice since it has more powerful mapping
capabilities than workflow.

Need more complex
processing on the input
message before
dispatching

✓ The EAI Dispatch Service can branch based
on the content of the input document,
whereas workflow can branch based on
business service.

Workflow options are
sufficient for your
requirements

✓ In this case, Siebel Workflow is the best
choice.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ EAI Dispatch Service Scenarios

36

This is the input/output method argument for the ProcessAggregatedRequest method. The EAI
Dispatch Service with ProcessAggregateRequest Method looks for this XML tag within the XML
document to determine where it needs to start reading the document.

<BusinessServiceWrapper

wrapper around the business service. The name of the wrapper has no effect on the EAI Dispatch
Service.

BusinessServiceName=...

XML tag for business service

BusinessServiceMethod=...>

XML tag for business service method

<ArgumentWrapper

wrapper around the business service arguments. The name of the wrapper has no effect on the EAI
Dispatch Service.

XMLTagArgument1=...

XML tag for the first argument. Replace this tag with the correct XML tag for the argument your
business service method is using.

XMLTagArgument2=...

XML tag for the second argument. Replace this tag with the correct XML tag for the argument your
business service method is using.

.../>

</BusinessServiceWrapper>

NOTE: For examples, see “Outbound Scenarios Using ProcessAggregateRequest” on page 38.

EAI Dispatch Service Scenarios
The following business scenarios explains how you might accomplish commonly performed tasks
using the EAI Dispatch Service.

Outbound Scenario
For this scenario, you want to dispatch a service request as soon as it is created. The scenario
assumes that:

■ You are only interested in service requests logged against EAI.

■ You know how to design a workflow that gets triggered as a new service request is created.

NOTE: There are number of different ways to trigger a workflow process. For details, see Siebel
Business Process Framework: Workflow Guide.

Creating and Using Dispatch Rules ■ EAI Dispatch Service Scenarios

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

37

■ You want the other non-EAI service requests to be sent to an MQSeries.

Figure 5 illustrates this scenario.

To create this scenario
1 Create a rule set with a search expression to check if the Service Request Area is set to EAI.

2 Create a workflow that is triggered when the criterion defined in Step 1 is matched.

Your workflow should contain the following steps:

■ Start

■ EAI Dispatch Service

■ End

Inbound Scenario
For this scenario, you want to receive an XML document from an external system through MQ, HTTP,
MSMQ, or other means and have the EAI Dispatch Service write to an error file if certain criteria are
not met, as illustrated in Figure 6. The scenario assumes that:

■ You are only interested in the message if it contains an OrderReport element; otherwise, you
want an error written to the error log.

Figure 5. Dispatching Service Request

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ EAI Dispatch Service Scenarios

38

■ You know how to create a workflow.

To create this scenario
1 Create a rule set with a rule that searches the message for the OrderReport element.

2 Create a workflow that contains the following steps:

■ Start

■ EAI Data Mapping Engine

■ EAI Siebel Adapter

■ End

3 Create an EAI Dispatch Service that triggers your workflow, once the criteria in Step 1 are
matched.

Outbound Scenarios Using ProcessAggregateRequest
The ProcessAggregateRequest method allows you to have multiple invocation of one or more
methods in one or more business services using a single request. The following examples illustrate
the use of this method to query account and employee information.

Querying the Account Integration Object
The following example shows how you can invoke multiple business services and setting arguments
for each of the services. This is done using simple arguments for the services and by having the
aggregate request invoke the QueryPage method of the EAI Siebel Adapter twice, with different
searchspecs.

Figure 6. EAI Dispatching Service Request

Creating and Using Dispatch Rules ■ EAI Dispatch Service Scenarios

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

39

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>

<AggregatedServiceRequest>
<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="QueryPage">

<Argument Wrapper
PageSize="4"
StartRowNum="0"
OutputIntObjectName="Sample Account" SearchSpec="[Account.Name] LIKE 'Aa*'"/>

</BusinessServiceWrapper>
<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="QueryPage">

<ArgumentWrapper
PageSize="4"
StartRowNum="0"
OutputIntObjectName="Sample Account" SearchSpec="[Account.Name] LIKE 'Bb*'"/>

</BusinessServiceRequest>
</AggregatedServiceRequest>

</PropertySet>

Querying the Employee Integration Object
The following example shows how you can set complex type business service method arguments.
The aggregate request invokes the EAI Siebel Adapter twice, and, instead of using searchspec, uses
query by example by passing in a SiebelMessage.

NOTE: All simple arguments are attributes of the ArgumentWrapper element, and the complex
argument is a child element.

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
<AggregatedServiceRequest>

<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="Query">
<ArgumentWrapper>
<SiebelMessage

MessageType="Integration Object"
IntObjectName="Sample Employee"
IntObjectFormat="Siebel Hierarchical">
<ListOfSampleEmployee>

<Employee EMailAddr="firstname.lastname@oracle.com" />
</ListOfSampleEmployee>

</SiebelMessage>
</ArgumentWrapper>
</BusinessServiceWrapper>
<BusinessServiceWrapper

BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="Query">
<ArgumentWrapper>

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Examples of Search Expression Grammar

40

<SiebelMessage
MessageType="Integration Object"
IntObjectName="Sample Employee"
IntObjectFormat="Siebel Hierarchical">
<ListOfSampleEmployee>

<Employee FirstName="John" LastName="Doe"/>
</ListOfSampleEmployee>

</SiebelMessage>
</ArgumentWrapper>

</BusinessServiceWrapper>
</AggregatedServiceRequest>
</PropertySet>

Examples of Search Expression
Grammar
In the following example, assume that the XML document is a typical document your system receives
and that you want to set some rules for the EAI Dispatch Service to use to parse this document.

<?xml version="1.0" encoding="UTF-8" ?>

- <cXML payloadID="3223232@ariba.acme.com" timestamp="1999-03-12T18:39:09-08:00"
xml:lang="en-US">

- <Header>
- <From>

- <Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
- <Credential domain="AribaNetworkUserId" type="marketplace">

<Identity>bigadmin@marketplace.org</Identity>
</Credential>
- <Credential domain="BT">

<Identity>2323</Identity>
</Credential>

</From>
- <To>

- <Credential domain="DUNS">
<Identity>942888711</Identity>

</Credential>
</To>
- <Sender>

- <Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba.com Network V1.0</UserAgent>

</Sender>
</Header>

- <Request deploymentMode="test">
-<OrderRequest>

- <OrderRequestHeader orderID="DO1234" orderDate="1999-03-12" type="new">

Creating and Using Dispatch Rules ■ Examples of Search Expression Grammar

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

41

- <Total>
<Money currency="USD">12.34</Money>

</Total>
- <ShipTo>

.......

.......

Table 5 provides some valid search expression examples.

Following are examples of invalid rules:

Rule
/*/*@DeploymentMode/Request/SiebelMessage

Description
This is not a valid rule. A search for a property value must be specified at the very end. A correct
form would be the following, which will have a different result.

/*/Request/*@DeploymentMode

Rule
/*@PayLoadID@TimeStamp

Description
This also is not a valid rule. It is not possible to specify more than one property name. The correct
form would use two different rules to represent this:

/*@PayLoadID

and

Table 5. Dispatch Rule Grammar

Search Expression Description

/*/Header Go to the second level and look at the type value of each property
set and check whether it is of value Header.

/*/*@DeploymentMode Go to the second level and look at the properties of each property
set and check whether any of them has the name (not the value)
of DeploymentMode.

/*/*/
Request@DeploymentMode

Go to the third level and look at each property set for type of value
Request and property of name DeploymentMode.

/cXML/*/OrderRequest Search at the top level for type of value cXML and then upon
matching, find a grandchild (not child) of type of value
OrderRequest.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Examples of Dispatch Output Property Sets

42

/*@TimeStamp

Examples of Dispatch Output Property
Sets
This example shows different output property sets generated by EAI Dispatch Service based on the
hierarchy input shown in Figure 7 and certain Target and Source Expression as shown in Table 6.

Table 6 presents the intermediate output based on the value of the Target.

Figure 7. A Hierarchy Input

Table 6. Output Property Generated by EAI Dispatch Service

Target
Source
Expression Property Name Output Property Set

RootHierarchy /* N/A

RootHierarchy /*/B N/A

RootHierarchy /*/*@C1 N/A

Creating and Using Dispatch Rules ■ Examples of Dispatch Output Property Sets

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

43

ChildHierarchy /* N/A

ChildHierarchy /*/*/D N/A

Type "abc" N/A

Type /*/B N/A

Type /*/*@B1 N/A

Value "abc" N/A

Property "Any
Expression"

Briefing

Property /*/*/*@D1 Briefing

Table 6. Output Property Generated by EAI Dispatch Service

Target
Source
Expression Property Name Output Property Set

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Creating and Using Dispatch Rules ■ Examples of Dispatch Output Property Sets

44

You can also combine different Targets to search the input message as shown on Table 7.

Table 7. Complex Output Property Generated by EAI Dispatch Service

Target
Source
Expression

Property
Name Output Property

RootHierarchy

ChildHierarchy

ChildHierarchy

Type

Property

Property

/*

/*/*/D

/*/*@C1

"demo"

"this"

"that"

N/A

N/A

N/A

N/A

A1

f

ChildHierarchy

ChildHierarchy

Type

Property

Property

/*/*/D

/*/*@C1

"demo"

"this"

"that"

N/A

N/A

N/A

A1

f

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

45

4 Data Mapping Using the Siebel
Data Mapper

This chapter describes the process of using the Siebel Data Mapper to convert your external data to
the Siebel format and your Siebel data to your external data specifications. It contains the following
topics:

■ “Siebel Data Mapper Overview” on page 46

■ “EAI Data Mapping Engine” on page 46

■ “The Siebel Data Mapper” on page 48

■ “Creating Data Maps” on page 50

■ “Examples of Workflow Processes” on page 53

■ “About Executing Workflows” on page 57

■ “EAI Data Mapping Engine Expressions” on page 58

■ “Addressing Fields in Components” on page 60

■ “Data Mapping Scenario” on page 60

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Siebel Data Mapper Overview

46

Siebel Data Mapper Overview
The Siebel Data Mapper provides you with a declarative interface to specify maps for both inbound
and outbound data transformation. The maps you set up using the Siebel Data Mapper call the EAI
Data Mapping Engine to complete the data transformation. Using the Siebel Data Mapper can often
reduce or even eliminate the number of scripts you need to write. Figure 8 illustrates the Siebel Data
Mapper architecture.

For data mapping within Siebel Business Applications, Siebel applications now support two data
mapping solutions, the Siebel Data Mapper and Siebel eScript Data Mapping. The Siebel Data Mapper
has a declarative interface and requires no programming skills. The Siebel eScript Data Mapping uses
scripts programmed in eScript as data maps. Because the Siebel Data Mapper is based on a
declarative interface, it does not have the flexibility that script-based data mapping has. Use Siebel
Data Mapper for most of your integration needs, except for complex mapping situations requiring
aggregation, joins, or programmatic flow control.

EAI Data Mapping Engine
To use the EAI Data Mapping Engine, you must enable the following component groups:

Figure 8. Siebel Data Mapper Architecture

Data Mapping Using the Siebel Data Mapper ■ EAI Data Mapping Engine

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

47

■ Siebel Workflow

■ Siebel EAI

NOTE: The display name of the EAI Data Transformation Engine business service in Siebel Tools is
EAI Data Mapping Engine. Throughout this guide, it is referred to by both names interchangeably.

EAI Data Mapping Engine Methods
The EAI Data Mapping Engine business service has two methods: Execute and Purge.

Execute
Use the Execute method when your integration requires data transformation. Input and output
arguments for the Execute method are shown in Table 8 and Table 9.

Purge
This method is only for development mode. Use the Purge method to purge the database of an
existing map. Use this method when you have made a change to a map and you would like to run
Execute after these changes. This method does not require any input or output arguments.

Table 8. Input Arguments for Execute Method

Input Argument Description

Map Name Name of your data map.

Output Integration Object Name (Optional) The target integration object in your map. If you
use this argument you have to match it with the
data map.

Siebel Message The instance of your source integration object.

Map Arguments (Optional) Used as an argument when you call your map
from a workflow.

Table 9. Output Argument for the Execute Method

Property Name Description

Name of the property The output integration object in Siebel Message format.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ The Siebel Data Mapper

48

Using the EAI Data Mapping Engine
The following checklist outlines the main steps required to use the EAI Data Mapping Engine.

The Siebel Data Mapper
The Siebel Data Mapper maps one integration object, source, to another integration object, target.
Integration objects contain one or more integration components, which in turn contain one or more
integration fields. For details on integration objects, see Integration Platform Technologies: Siebel
Enterprise Application Integration.

Figure 9 illustrates the Siebel Data Mapping Engine architecture.

Checklist

❑ Create integration objects.

For details, see “Define Integration Objects” on page 50.

❑ Create data maps.

For details, see “Creating New Data Maps” on page 51.

❑ Validate data maps.

For details, see “Validating the Data Map” on page 53.

Figure 9. The EAI Data Mapping Engine Architecture

Data Mapping Using the Siebel Data Mapper ■ The Siebel Data Mapper

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

49

A data map defines the relationship between source and target object format. The map controls the
transformation process. Transformation maps are stored in the Siebel Database as explained in
Table 10.

Integration Object Maps
An integration object map is the top-level data map specifying mapping from one integration object
to another. An integration object map contains one or more integration component maps and can
optionally contain integration map arguments.

Integration Map Arguments
Data maps can be parameterized using integration map arguments. Map arguments can be
referenced in any expression, including the integration field map expression, source search
expression, precondition expression, and postcondition expression. For example, you may want to
have a field map that creates an Order Number in the target object by prefixing the Order Number
in the source object with a constant.

You may want to use this map for orders coming from multiple partners and use a different prefix
for each partner. To achieve this with a single data map, you can define an argument Prefix in the
Integration Map Argument List, and use this argument Prefix in the field map source expression:
[&Prefix]+[Order Number]. Then in the input method arguments in EAI Data Mapping Engine
business service, you can specify any value for Prefix.

Integration Component Maps
Integration component maps specify how integration components in the source object get mapped
to integration objects in the target object. For every occurrence of the source component in the
source integration object instance, an instance of the target component is created in the target
object instance. An integration component map contains one or more integration field maps. For
details on integration component maps, see “Creating Integration Component Maps” on page 52.

Table 10. Maps and Data Table Relationship

Map Type Siebel Data Table

Integration Object maps S_INT_OBJMAP

Integration Object Component maps S_INT_COMPMAP

Integration Object Field maps S_INT_FLDMAP

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Creating Data Maps

50

Integration Field Maps
Integration field maps specify how fields in the source integration object are mapped to fields in the
target integration component. An integration field map target is always a field in the target
component of the parent component. An integration field map source can be a constant, a reference
to a map argument, a field in the source component, or other legally addressable components such
as ancestors of the source component. It can also be a Siebel Query Language expression using one
or more of the preceding elements.

NOTE: For details on integration field maps, see “Creating Integration Field Maps” on page 53. For
details on addressing fields in components other than the source component, see “Addressing Fields
in Components” on page 60. For details on Source Expression, see “Source Expression” on page 58.

Creating Data Maps
The following checklist provides the high-level steps for creating data maps.

Define Integration Objects
Before you create a data map, you need to verify that valid integration objects exist for the source
and the target data you want to map. For details on creating and validating integration objects, see
Integration Platform Technologies: Siebel Enterprise Application Integration.

Checklist

❑ Define and validate integration objects and determine the required
maps.

For details, see “Define Integration Objects.”

❑ List components and fields within the Siebel object to use.

For details, see “Define Integration Objects.”

❑ Create a map between the two integration objects.

For details, see “Creating New Data Maps” on page 51.

❑ Create maps between the components of the objects you mapped.

For details, see “Creating Integration Component Maps” on page 52.

❑ Create maps between individual fields within the components you
mapped.

For details, see “Creating Integration Field Maps” on page 53.

❑ Validate the data maps.

For details, see “Validating the Data Map” on page 53.

Data Mapping Using the Siebel Data Mapper ■ Creating Data Maps

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

51

Determining Required Maps
The Integration Object Browser lists the existing integration object maps. Use this browser to
determine which maps you need to create.

To determine which maps to create
1 Navigate to Administration - Integration, then Data Maps.

2 In the Data Maps list, query for the integration objects you want to map.

Creating New Data Maps
Once you determine what objects you need to map, use the Data Map form to create data maps. See
“Define Integration Objects” on page 50.

To create a new data map
1 Navigate to Administration - Integration, then Data Maps.

2 In the Integration Object Map list, click New to create a new map.

3 Provide the necessary fields:

■ Name. Enter a name for the map you are creating.

■ Source Object Name. From the list of values, select the source integration object you want
to create the data mapping for.

■ Target Object Name. From the list of values, select the target integration object into which
you want the data to be transferred.

Creating Maps Using Auto-Map
Once you have created your integration object map, you can use the Auto-Map button to have the
Siebel application create the necessary mappings between the underlying components. The root
components are always mapped by Auto-Map, whether or not they have the same name. Once the
root components are mapped, the Auto-Map recursively walks through every component and their
fields to map them. If the components have the same name, the Auto-Map continues to map their
fields and their children components. However, if the components have different names, the Auto-
Map ignores the current components, their fields, and their children components, and moves on to
map the next component. In cases where only the field names are different, the Auto-Map only
ignores that one field and continues with its recursive mapping.

NOTE: You can also use the Auto-Map on an existing mapping when you modify the integration
object. The Auto-Map does not overwrite your manual mappings.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Creating Data Maps

52

Defining Arguments for a Data Map (Optional)
After you create a data map, you can define the arguments for your map. You can then use these
arguments when you call the map within workflow. To define arguments, use the Integration Map
Argument list on the Integration Object Map form.

To define integration map arguments
1 Create a new record in the Integration Map Argument list.

2 Provide the following fields:

■ Name. Enter a name for the argument.

■ Data Type. From the list of values, select the Siebel Data Type for the argument.

■ Display Name. Enter the name that you want displayed.

Creating Integration Component Maps
Once you have defined a data map (see “Creating New Data Maps” on page 51), you need to set up
the mapping between the components and the fields within the objects you have mapped. You do
this using the Data Map Editor form. The Integration Object Editor list displays existing object maps
and provides views in which you can define maps for components and for fields. You use the
Integration Component Map view to create integration component maps.

To define integration component maps
1 Navigate to Administration - Integration, then Data Map Editor.

2 In the Integration Object Map list, select the map for which you want to define integration
component maps.

3 Create a new record in the Integration Component Map list.

4 Provide the following fields.

■ Name. Name of the map you are creating.

■ Source Component Name. The component where you are getting the data.

■ Target Component Name. The component where you want to store the data.

■ Source Search Specification (optional). The search criteria based on which the records
are filtered. See “Source Search Specification” on page 58 for details.

■ Parent Component Map Name (optional). The parent component field is used when there
is a mapping to two target components that share multiple parent components. You can
exclude data from one of these child objects by choosing a parent component.

■ Precondition (optional). See “Preconditions” on page 59 for details.

■ Postcondition (optional). See “Postconditions” on page 59 for details.

Data Mapping Using the Siebel Data Mapper ■ Examples of Workflow Processes

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

53

Creating Integration Field Maps
You define the integration field map between your source and target fields using the Integration Field
Map form.

To define a integration field map
1 Create a new record in the Integration Field Map list.

2 Provide the following fields:

■ Target Field Name. Name of the field in the Target Component where the value will be
assigned.

■ Source Expression. An expression that is used to calculate a value for the Destination Field.
See “Source Expression” on page 58 for details.

Validating the Data Map
Once you have created your data map, you need to validate your data map.

To validate your data map
1 Navigate to Administration - Integration, then Data Maps.

2 Select your data map.

3 Click Validate to validate your data map.

4 Take the necessary actions to fix the problems with your map or the associated integration
objects.

Examples of Workflow Processes
Depending on whether you are preparing for an outbound or an inbound data exchange, you need
to design different workflow processes as described in the following two procedures.

Outbound Workflow Process
To execute the map for an outbound process create a workflow process to query the database, purge
the data map, execute the data map, and then write the XML into a file. The following examples
illustrate integration between contact and employee business objects.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Examples of Workflow Processes

54

To create an outbound workflow process
1 In Siebel Tools, create a workflow process consisting of Start, End, and four business service

steps. Set up each business service according to the task it needs to accomplish.

NOTE: Use the EAI Data Mapping Engine Purge step only in a development environment.

2 Define the following process properties:

3 The Read DTE from File step uses the EAI Siebel Adapter business service with the Query
method, to query the information from the database. The business service uses the following
input and output arguments.

NOTE: For more information on using the EAI Siebel Adapter, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

4 The second business service step purges the map using the EAI Data Transformation Engine
business service (display name is EAI Data Mapping Engine) with the Purge method. This step is
only for development mode so that the latest map is picked for the process and should not be
used in a production environment. This step does not require any input or output arguments.

Input Argument Type

Employee Message Hierarchy

IntObjName Hierarchy

Process Instance Id String

Error Code String

Error Message String

Object Id String

Siebel Operation Object Id String

Input Argument Type Value

Output Integration Object Name literal An Employee

Search Specification Literal [Employee.Last Name] LIKE "Peterson"

Property Name Type Output Argument

Employee Message Output Argument Siebel Message

Data Mapping Using the Siebel Data Mapper ■ Examples of Workflow Processes

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

55

5 The third business service step uses the EAI Data Transformation Engine business service with
the Execute method to execute the data map. The business service uses the following input and
output arguments.

6 The Siebel Query step uses the EAI XML Write to File business service with the Write Siebel
Message method to write the XML into a file. The business service uses the following input and
output arguments.

The output argument for this step is optional and can be defined as follows.

You can use this argument to put the Siebel Message into a Hierarchy type process property.

7 Use the Workflow Process Simulator to test your workflow process.

NOTE: For details on creating a workflow process and using the Workflow Process Simulator to
test your workflow process, see Siebel Business Process Framework: Workflow Guide.

Input
Argument Type Value Property Name

Property Data
Type

Map Name Literal Outbound DDTE
Map

- -

Output
Integration
Object Name

Literal My DTE - -

Siebel Message Process Property - Employee
Message

Hierarchy

Property Name Type Output Argument

IntObjName Output Argument Siebel Message

Input
Argument Type Value Property Name

Property Data
Type

File Name Literal c:\emp.xml - -

Siebel Message Process Property - IntObjName Hierarchy

Property Name Type Value Output Argument

IntObjName Output Argument - Siebel Message

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Examples of Workflow Processes

56

Inbound Workflow Process
To execute the map for an inbound process you need to create a workflow process to read the data
from a file, purge the data map, execute the data map, and then write the XML into a file.

To create an inbound workflow process
1 In Siebel Tools, create a workflow process consisting of Start, End and four business service

steps. Set up each business service according to the task it needs to accomplish.

NOTE: The EAI Data Mapping Engine Purge step should only be used in a development
environment.

2 Define the following process properties:

3 The Read DTE from File step uses the EAI XML Read from File business service with the Read
Siebel Message method, to read the information from a file. The business service uses the
following input and output arguments.

Name Data Type

Contact Message Hierarchy

DTE Message Hierarchy

Process Instance Id String

Error Code String

Error Message String

Object Id String

Siebel Operation Object Id String

Input Argument Type Value

File Name Literal c:\emp.xml

Property Name Type Output Argument

DTE Message Output Argument Siebel Message

Data Mapping Using the Siebel Data Mapper ■ Examples of Workflow Processes

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

57

4 The second business service step purges the map using the EAI Data Transformation Engine
business service (display name is EAI Data Mapping Engine) with the Purge method. This step is
only for development mode so that the latest map is picked for the process and should not be
used in a production environment. This step does not require any input or output arguments.

5 The third business service step uses the EAI Data Transformation Engine business service with
the Execute method, to execute the data map. The business service uses the following input and
output arguments.

6 The Upsert Contact step uses the EAI Siebel Adapter business service with Insert or Update
method to write the data into the database. This business service uses the following input
argument.

This step does not have any output arguments.

NOTE: For more information on using the EAI Siebel Adapter, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

7 Use the Workflow Process Simulator to test your workflow process.

NOTE: For details on creating a workflow process and using the Workflow Process Simulator to
test your workflow process, see Siebel Business Process Framework: Workflow Guide.

About Executing Workflows
Once you have designed and tested your workflows, you can run them in your production
environment using Workflow Process Manager Server.

NOTE: For details on how to activate and execute a workflow, see Siebel Business Process
Framework: Workflow Guide.

Input
Argument Type Value Property Name

Property Data
Type

Map Name Literal Inbound DDTE
Map

- -

Output
Integration
Object Name

Literal A Contact - -

Siebel Message Process Property - DTE Message Hierarchy

Property Name Type Output Argument

Contact Message Output Argument Siebel Message

Input Argument Type Property Name Property Data Type

Siebel Message Process Property Contact Message Hierarchy

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ EAI Data Mapping Engine Expressions

58

EAI Data Mapping Engine Expressions
The EAI Data Mapping Engine uses four categories of expressions:

■ Source expressions

■ Source search specifications

■ Preconditions

■ Postconditions

These expressions support Siebel Query Language expressions. These expressions can address fields
in the source component, map arguments, and constants. In addition to fields in the source
component, fields in certain other components in the source integration object can be addressed. For
details, see “Addressing Fields in Components” on page 60. These expressions are just like Siebel
Query Language support invocations of predefined functions and custom business services.

NOTE: For details on the Siebel Query Language, see Siebel Tools Online Help.

Source Expression
Source Expression is a required field for every integration field map. The source expression can be
a literal or, based on scripting if you need to parse data or query the database for a specific value.
The source expression is associated with an instance of the input integration component named in
the integration component map, which is the parent of the integration field map that contains the
source expression. An example of a source expression is:

[First Name] + " " + [Last Name]

This expression concatenates the First Name and the Last Name and separates them with a space to
be moved into a target field such as Full Name.

NOTE: Only a subset of Siebel Query Language Expressions that do not require context of a business
component, is supported by EAI Data Mapping Engine. You can not use the following Siebel Query
Language Expressions that require context of a business component in the Source Expression:
BCName(), Count(mvlink), IsPrimary(), Min (mvfield), Max(mvfield), ParentBCName(),
ParentFieldValue(field_name), Sum(mvfield), GetXAVal(), GetXAValAsNum(), GetXAValAsInt(),
GetXAValAsDate(), and XAIsClass().

Source Search Specification
Source Search Specification is a Boolean expression that is used to determine if a given component
instance satisfies given criteria. It may only appear in an integration object map or a integration
component map together with an integration component name. Defining a source search
specification is optional, and if you do not define it, then it does not apply any criteria and returns
True.

If a field in the current integration component has the same name as a field in a parent component,
then you can only address the parent component field by using dot ('.') notation. An example of a
source search specification is:

[Role] = "Billing"

Data Mapping Using the Siebel Data Mapper ■ EAI Data Mapping Engine Expressions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

59

The expression returns True only if the current input integration component has the value Billing in
the Role field.

NOTE: If a source search specification is not provided, then every input integration component
whose type matches the input component of the integration component map is processed.

Preconditions
You can use preconditions to make sure that a field of the input object has a certain value or
otherwise terminate the process. An error is generated if the field in the input object has any other
value, or no value. Preconditions are evaluated immediately before their containing integration
component map is executed. If the condition is true then the process continues. If the condition is
false then the whole transformation is aborted and EAI Data Mapping Engine returns an error to the
caller. An example of a precondition is:

[Role]=”Billing” Or [Role]=”Shipping”

This precondition makes sure that the field Role of the input object either has a value Billing or a
value Shipping before it proceeds with the process of data transformation.

The precondition is only applied to the input components that are selected by the source search
specification. The input components that fail to match the source search specification will not be
checked against the precondition.

A precondition expression may address any field in the current input component, and any of its
parent components. It can also address any service call parameter that has been declared as a map
argument.

NOTE: The default value for the precondition is True. If the precondition is omitted from an
integration component map then no constraint is enforced.

Postconditions
Postconditions are evaluated and applied to the newly created objects when you execute the
containing integration component map. If the result of the postcondition is true then the process
continues. If the result is false, the whole transformation is aborted and EAI Data Mapping Engine
returns an error. Here is an example of a postcondition:

[Object Id]<>”” Or ([First Name]<>”” And [Last Name]<>””)

This postcondition checks the output component for a value in the Object Id or in the First Name and
the Last Name.

NOTE: Because there is no search specification for output components, the postcondition is applied
only once for every output component instantiated because it executes its containing integration
component map.

The type of the expression may be any type that can be assigned to the Destination Field type either
directly or after applying standard conversions to the result of the expression.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Addressing Fields in Components

60

Addressing Fields in Components
You may want to address fields in components other than the source component. This is because
your target component may depend on more than one component in the source object. In such
cases, you cannot use different component maps with different source components, and the same
target component, because each component map creates a different instance of the target
component. Data Mapping Engine expressions allow you to use the dot notation to address fields,
other than the source component, in source integration object components—for example,
[Component Name.Field Name].

NOTE: The picklist for the source expression in the Data Mapper View does not list fields in
components other than the source component. Such fields should be typed in using the dot notation.

Addressing fields in other components is legal only if the cardinality of the component is less than or
equal to one relative to the source component—that is, only if the component can be uniquely
identified from the context of the source component without using any qualifiers other than the
component name. If a field in a component that is not legally addressable is used in the source
expression then it leads to a runtime error to the effect that such a field does not exist. Any
component that is an ancestor of the source component in the integration object hierarchy has a
relative cardinality of 1 which means it can always be uniquely identified from the source component.
Therefore, fields in ancestor components can always be legally addressed.

Sibling components can be uniquely identified from the context of the source component only if they
do not occur multiple times—that is have a cardinality of less than or equal to 1. Only such siblings
can be legally addressed. Therefore, it is not legal to address repeated sibling components.
Components that are descendants of a sibling component can be legally addressed only if there is
no repeated component in the hierarchical path from the sibling component to the component.

Further, components that are descendants of a sibling of some ancestor of a source component can
be legally addressed only if there is no multiply-occurring component in the hierarchical path from
the sibling-of-ancestor-of-source component to the component.

Data Mapping Scenario
The following scenarios concern an IT developer named Chris Conway, who works for a computing
company, PCS Computing. One of his responsibilities is creating and maintaining the data mappings
between Siebel and the other applications in use at PCS. He is assigned to create mapping between
Siebel applications and the external application they need to integrate with.

Mapping Between Siebel and an External Application
Chris is in charge of integrating PCS’s Siebel implementation with a custom in-house application. The
purpose is to exchange customer information between the two systems.

After weighing various options, Chris decides to use the Siebel Data Mapper instead of scripts to
perform the data mapping. He creates the internal integration object using the Siebel Integration
Object Wizard in Siebel Tools. He also creates an external integration object using the external
application’s DTD.

Data Mapping Using the Siebel Data Mapper ■ Data Mapping Scenario

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

61

When Chris is ready to map the two integration objects, he navigates to the Data Mapper and creates
a new entry by supplying the name of the map and associating the internal integration object with
the external integration object, as explained in “Creating New Data Maps” on page 51. He then uses
the Map Editor form to create object, component, and field maps, as explained in “Creating
Integration Component Maps” on page 52.

When he finishes creating the map, Chris creates a workflow process in Siebel Tools to define the
integration flow. For one of the workflow steps, he defines an invocation of the Siebel Data Mapper.
He supplies the appropriate parameters, including the name of the map, and saves his work.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using the Siebel Data Mapper ■ Data Mapping Scenario

62

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

63

5 Data Mapping Using Scripts

This chapter describes the process of using the Siebel eScript Data Mapping to convert your external
data to the Siebel format and your Siebel data to your external data specifications. It contains the
following topics:

■ “Overview” on page 63

■ “EAI Data Transformation” on page 64

■ “DTE Business Service Method Arguments” on page 66

■ “Map Functions” on page 67

■ “Data Transformation Functions” on page 69

■ “Siebel Message Objects and Methods” on page 70

■ “MIME Message Objects and Methods” on page 90

■ “Attachments and Content Identifiers in MIME Messages” on page 95

■ “XML Property Set Functions” on page 96

■ “EAI Value Maps” on page 104

■ “Exception Handling Considerations” on page 108

■ “Sample Siebel eScript” on page 111

Overview
You can accomplish your data transformation requirements in Siebel Business applications by using
the Data Transformation Function or Siebel Data Mapper, as illustrated in Figure 10.

Figure 10. Data Transformation Options

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ EAI Data Transformation

64

For customers who want to do data mapping within Siebel applications, Siebel applications now
support two data mapping solutions—Siebel Data Mapper and Siebel eScript Data Mapping. Siebel
Data Mapper has a declarative interface and requires no programming skills. Siebel eScript Data
Mapping uses scripts programmed in eScript as data maps.

Data maps defined using Siebel Data Mapper are easy to maintain and upgrade. These maps also
perform better than eScript Data Maps. Because Siebel Data Mapper is based on a declarative
interface, it does not have the full flexibility and power that the data mapping using eScript has.
Siebel Data Mapper should suffice for most integration needs except some complex mapping
situations requiring aggregation, joins, or programmatic flow control.

The following checklist outlines the main steps required to accomplish your data transformation
requirements using the Data Transformation Functions.

EAI Data Transformation
The Siebel Data Transformation Functions are a framework for building data transformation maps.
Data transformation maps act as import and export filters, preparing data from an external system
for entry into Siebel applications and preparing data in Siebel applications for export.

Data transformation maps are created as business services using Siebel eScript. You invoke them as
part of an EAI workflow process.

A data transformation map reads data from an input structure and transfers it to an output structure,
transforming it along the way. The map developer creates a custom eScript function to do the
transformation. The Data Transformation Functions provide a convenient way to read the input data
and generate results. They also provide a framework for invoking your map functions, handling
errors, and accessing other EAI resources.

Setting Up a Data Transformation Map
You create your data transformation map in Siebel Tools in a business service, then you compile it
into an .srf file. You can organize your maps in many different ways. Each business service you create
can contain one or more maps. You can, in fact, use several business services to organize a large
number of maps into logical groups.

Checklist

❑ Define integration objects in Siebel Tools—one to represent Siebel
objects and another to represent external data.

For details, see Integration Platform Technologies: Siebel Enterprise
Application Integration.

❑ Set up the Data Transformation Map.

For details, see “Setting Up a Data Transformation Map” on page 64.

❑ Write the Siebel eScript code to perform the data transformation.

For details, see “To write a script for the DTE business service” on
page 65.

Data Mapping Using Scripts ■ EAI Data Transformation

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

65

To define a data transformation business service in Siebel Tools
1 In Siebel Tools, create a new business service associated with a locked project.

2 Choose the CSSEAIDTEScriptService class for the business service.

3 Double-click the Business Services Methods folder and add the method Execute.

4 Select the Business Service Method Arg folder and add the arguments for the Execute method.
For a list of arguments and their description, see “DTE Business Service Method Arguments” on
page 66. The arguments to include are:

■ MapName

■ An input argument. Select one of SiebelMessage, XMLHierarchy, or MIMEHierarchy as the
argument name, based on the type of input.

■ An output argument. Required if the output object is a different type than the input
argument. Select one of SiebelMessage, XMLHierarchy, or MIMEHierarchy as the argument
name.

NOTE: If the input and output types are the same then the same argument entry is used for
both.

■ OutputType

■ InputType(Optional). This is required only when passing the business service input property
set to the map function without interpretation. This is done by specifying the InputType as
ServiceArguments.

NOTE: Most transform maps use SiebelMessage for both the input and output arguments. This
is for mapping one integration object to another. For details, see “DTE Business Service Method
Arguments” on page 66.

Once you have created the business service you need to write the Siebel eScript code to perform the
data transformation.

To write a script for the DTE business service
1 In Siebel Tools, select the business service you want to contain the transformation map.

2 Right-click, then choose Edit Server Scripts

3 Choose eScripts as the scripting language if you are prompted to select a scripting language.

4 In the (declarations) procedure of the (general) object, add the line:

#include "eaisiebel.js"

5 In the Service_PreInvokeMethod function of the service, change the function to the following:

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ DTE Business Service Method Arguments

66

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{
return EAIExecuteMap (MethodName, Inputs, Outputs);

}

Your data transformation map is run as a business service invoked from a workflow process.
Business service scripts have a standard entry point, Service_PreInvokeMethod. Although the
script environment provides you with a boilerplate function by this name, you need to modify it,
as described in the preceding steps, to include the call to the EAIExecuteMap function.

a The MethodName must be Execute and is used by Siebel Workflow. The name of your function
is the name you supply for the MapName argument to the Execute method.

b Inputs is the input message from workflow containing service arguments—for example,
MapName and Output Integration Object Name—and the integration message to be
transformed. Outputs is the argument used to return data—for example, Siebel Message.
MapName specifies the map function to be executed and must be the name of one of the
functions you defined in the business service.

For examples of DTE business services, select the Business Service object in Siebel Tools,
and then query for CSSEAIDTEScriptService in the Class field in the Object List Editor.

DTE Business Service Method Arguments
Table 11 presents the arguments for the Execute method of the DTE business services.

You can set the following arguments in Siebel Tools:

Table 11. DTE Business Service Method Arguments

Name & Display
Name

Data
Type Type Optional

Storage
Type PickField PickList

MapName

Map Name

String Input No Property - -

InputType

Input Type

String Input No Property Value EAI Message
Type PickList

OutputType

Output Type

String Input No Property Value EAI Message
Type PickList

SiebelMessage

Siebel Message

Hierarchy Input/
Output

Yes Hierarchy - -

MIMEHierarchy

MIME Hierarchy

Hierarchy Input/
Output

Yes Hierarchy - -

XMLHierarchy

XML Hierarchy

Hierarchy Input/
Output

Yes Hierarchy - -

Data Mapping Using Scripts ■ Map Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

67

■ MapName. The name of the eScript function to call to perform the transformation.

■ InputType. The type of input object to pass to the transformation function. The value will be
one of SiebelMessage, MIMEHierarchy, XMLHierarchy, or ServiceArguments. This argument is
required only when you use ServiceArguments as the value. When ServiceArguments is used the
business service, PropertySet is passed to the map function without interpretation.

■ OutputType. The type of the output object to pass to the transformation function. The types are
the same as the ones for Input Type.

■ SiebelMessage. You use this argument when the input or output object or both are
SiebelMessage. SiebelMessage is used when converting to or from an integration object, and is
the correct choice when mapping one integration object to another. Your map function is passed
two objects of type CSSEAIIntMsgIn and CSSEAIIntMsgOut. These objects are for the
SiebelMessage that is the input to the transformation and the SiebelMessage that is produced by
the transformation, respectively.

■ MIMEHierarchy. You use this argument if either the input or output object or both are
MIMEHierarchy. MIMEHierarchy is used when converting to or from MIME Hierarchy objects. Your
map function is passed two object types; CSSEAIMimeMsgIn for the MIMEHierarchy that is the
input to the transformation and CSSEAIMimeMsgOut for the MIMEHierarchy that is produced by
the transformation. MIME Hierarchy objects are defined by the EAI MIME Doc Converter business
service. For details on the EAI MIME Doc Converter, see Integration Platform Technologies:
Siebel Enterprise Application Integration.

■ XMLHierarchy. You use this argument if either the input or output object or both are
XMLHierarchy. XMLHierarchy is used when converting to or from XML Hierarchy objects. Your
map function is passed an object of type XML Property Set for both input and output
XMLHierarchy. XML Hierarchy objects are defined by the XML Hierarchy Converter business
service. For details on XML Hierarchy Converter, see XML Reference: Siebel Enterprise
Application Integration.

Map Functions
A map function has the following signature:

function MapFnName (objectIn, objectOut)

The function name signified by MapFnName is the name of your transformation function. It is the
value passed as the MapName argument to the business service. The Input Type and Output Type
business service arguments determine the types of the objectIn and objectOut arguments and
default to the type Integration Message. You should name these arguments according to type. For
example, to use the default values, you would specify a function that transforms one integration
object to another as:

function MapFnName (intMsgIn, intMsgOut)

If you define a function that transforms an XML property set to an integration object, you might
specify it as:

function MapFnName (xmlPropSetIn, intMsgOut)

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Map Functions

68

The arguments to these functions are contained within the input and output arguments to the
business service’s Service_PreInvokeMethod function. The EAIExecuteMap function—called by
Service_PreInvokeMethod—interprets the arguments and passes them to MapFnName. MapFnName
reads from the input object and writes to the output object using the appropriate API for each type
of object.

If you define a function to access input integration object, you might specify it as:

function myMapFn (ObjectIn, ObjectOut) {

inIntObj = ObjectIn.GetIntObj(); //Get Integration Object

//Iterate over all Integration Object Instances

while (inIntObj.NextInstance()) {

//Get the Primary Component which is called "Order Entry - Orders"

primaryIntComp = inIntObj.GetPrimaryIntComp("Order Entry - Orders");

//Iterate over all instances of Primary Component

while (primaryIntComp.NextRecord()) {

OrderId = primaryIntComp.GetFieldValue ("Id");

//Get component "Order Entry - Line Items" which is child of "Order Entry - Orders"

comp = primaryIntComp.GetIntComp ("Order Entry - Line Items");

//Process component similar to primary component

while (comp.NextRecord()) {

OrderItemId = comp. GetFieldValue ("Id");

And to define a function to create output integration object, you might specify it as:

function myMapFn (ObjectIn, ObjectOut) {

outIntObj = ObjectOut.CreateIntObj("Sample Order");

while (Need new integration object instances) {

outIntObj.NewInstance();

//Create Primary Component which is called "Order Entry - Orders"

primaryIntComp = outIntObj.CreatePrimaryIntComp("Order Entry - Orders");

while (Need new instances of primary int component) {

primaryIntComp.NewRecord();

primaryIntComp.SetFieldValue ("Id", OrdertemId);

//Create component Order Item which is child of Order

comp = primaryIntComp.CreateIntComp ("Order Entry - Order Items");

Data Mapping Using Scripts ■ Data Transformation Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

69

//Process component similar to primary component

while (need new instances of component) {

comp.NewRecord();

comp. SetFieldValue ("Id", OrdertemId);

EAIExecuteMap() Method
This method executes a user-defined data transformation function. Table 12 presents the parameters
for this method.

Syntax
EAIExecuteMap(methodName, inputPropSet, outputPropSet)

Returns
CancelOperation or ContinueOperation. The Service_PreInvokeMethod function should return the
value returned by the EAIExecuteMap.

Usage
See “Setting Up a Data Transformation Map” on page 64.

Data Transformation Functions
The data transformation API consists of global functions and classes that represent the different
parts of input and output data. The data transformation functions are implemented as Siebel eScript.
You must use Siebel eScript to create your data transformation maps.

Three different top-level data types are supported:

■ Siebel Messages. See “Siebel Message Objects and Methods” on page 70.

■ MIME Messages. See “MIME Message Objects and Methods” on page 90.

■ XML Property Sets. See “XML Property Set Functions” on page 96.

The data type is determined by the InputType and OutputType arguments, as described in “DTE
Business Service Method Arguments” on page 66.

Table 12. Parameters for EAIExecuteMap() Method

Parameter Description

methodName The business service method should be Execute.

inputPropSet Input message and service arguments.

outputPropSet Output message and service arguments.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

70

Siebel Messages are the most common data type. Siebel Messages are a hierarchical type
represented at the top level by an Integration Message message. See “Siebel Message Objects and
Methods” on page 70.

It is also possible to operate directly on the business service input and output property sets. This is
accomplished by specifying the InputType or OutputType as ServiceArguments. In this case the
business service property set arguments are passed directly to the map function. The standard
property set functions can be used to access them.

Siebel Message Objects and Methods
A Siebel Message is a message containing the data of individual integration object instances. It is
hierarchically structured and composed of several different types of objects.

The data transform API uses several different eScript classes to represent a Siebel Message:

■ An integration message. This represents the top-level message container. See “Integration
Message Objects” on page 70.

■ An integration object. See “Integration Object Objects” on page 75.

■ A primary integration component. See “Primary Integration Component Objects” on page 78.

■ Integration components. See “Integration Component Objects” on page 84.

Each of these parts of a Siebel Message has two classes: one for input and one for output. Each class
provides methods for specific purposes.

Integration Message Objects
The integration message is the top-level piece of a message. The workflow process passes the
integration message to the Data Mapping Engine as input. The Data Mapping Engine returns another
message as output. The integration message object provides access to workflow arguments,
integration message arguments, and the integration object that is contained in the message.

The following integration message objects are provided:

■ CSSEAIIntMsgIn

■ CSSEAIIntMsgOut

CSSEAIIntMsgIn
This object represents an integration message that is open for reading. The object provides
GetArgument and GetIntObj methods.

GetArgument() Method
This method gets the value of a business service argument. For example, this could get the name of
a map function in the business service. Table 13 presents the parameters for this method.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

71

Syntax
GetArgument(name [, defaultIfNull [, defaultIfEmpty]])

Returns
String or null.

Usage
Use this method to get the value of an argument passed to the business service. For example, if the
MapName argument passed to the business service is MapExtOrderToOrder, the call:

intMsgIn.GetArgument("MapName");

returns the name of the map, MapExtOrderToOrder, passed to the business service.

If the named argument does not exist, null is returned. If the named argument exists but the value
is the empty string, the empty string is returned. You can use the defaultIfNull and defaultIfEmpty
optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you specify
defaultIfEmpty, you must also specify the defaultIfNull argument.

GetIntObj() Method
This method returns an instance of the integration object and opens it for reading. Table 14 presents
the parameter for this method.

Syntax
GetIntObj(name)

Returns
CSSEAIIntObjIn Integration Object

Table 13. Parameters for GetArgument() Method

Parameter Description

name The name of a business service argument.

defaultIfNull Returned if a service argument of the specified name does not exist.

defaultIfEmpty Returned if the service argument is set to an empty string.

Table 14. Parameter for GetIntObj() Method

Parameter Description

name The name of an integration object in the active integration message.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

72

Usage
An integration object instance is always returned even if the integration object does not exist. Call
the returned object’s Exist method to test for this before calling other methods on the object. An
error is raised if an integration object is present but the name is not correct.

NOTE: Currently an integration message can contain only one integration object.

GetAttachmentCount() Method
This method returns the number of attachments in the input integration message.

Syntax
GetAttachmentcount()

Returns
The number of attachments in the input integration message.

GetAttachment() Method
This method returns the attachment specified by the index. Table 15 presents the parameter for this
method.

Syntax
GetAttachment(index)

Returns
The attachment (a PropertySet) specified by the index. The index is zero based. Returns null if index
is out of bounds.

GetAttachmentByCID() Method
This method retrieves an attachment based on the Content Identifier (CID). Table 16 presents the
parameter for this method.

Table 15. Parameters for GetAttachment() Method

Parameter Description

index The index of the attachment to return.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

73

Syntax
GetAttachmentByCID(cid)

Returns
The attachment (a PropertySet) specified by the CID. Returns null if there is no attachment with the
specified CID.

CSSEAIIntMsgOut
This object represents an output integration message that is open for writing. The object provides
CreateIntObj and SetArgument methods:

CreateIntObj() Method
This method creates a new integration object. Table 17 presents the parameter for this method.

Syntax
CreateIntObj(name)

Returns
CSSEAIIntObjOut Output Integration Object

Usage
An integration message can contain only one integration object, so multiple calls to this method on
one integration message raises an error. The name must agree with the business service argument
OutputIntObjName, if that argument is passed to the service.

SetArgument() Method
This method sets the value of a business service argument. Table 18 presents the parameters for this
method.

Table 16. Parameters for GetAttachmentByCID() Method

Parameter Description

cid The Content Identifier of the attachment.

Table 17. Parameter for CreateIntObj() Method

Parameter Description

name Creates a new integration object and adds it to the integration message.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

74

Syntax
SetArgument(name, value)

Returns
Not applicable

Usage
You can call the SetArgument method to establish the value of a given output argument for the
business service method invocation.

SetAttachmentSource() Method
This method establishes the source object to copy attachment objects from. The source object must
be a CSSEAIIntMsgIn, CSSEAIMimeMsgIn, or other object implementing the GetAttachmentByCID
method. Table 19 presents the parameter for this method.

Syntax
SetAttachmentSource(source)

CopyAttachment() Method
This method copies an attachment from the attachment source to the output integration object. The
attachment is referenced by the MIME Content Identifier (CID). The attachment source must be
established by calling CSSEAIIntMsgOut.SetAttachmentSource before calling this method. Table 20
presents the parameter for this method.

Table 18. Parameters for SetArgument() Method

Parameter Description

name The name of an argument in the active business service.

value The string value corresponding to the argument named by the name parameter.

Table 19. Parameters for SetAttachmentSource() Method

Parameter Description

source The attachment source.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

75

Syntax
CopyAttachment(cid)

Returns
The attachment copy is returned as a property set. This method returns null if the attachment source
does not contain an attachment with the specified CID.

Integration Object Objects
The integration object contains one or more integration components. The following integration object
objects are provided:

■ CSSEAIIntObjIn

■ CSSEAIIntObjOut

CSSEAIIntObjIn
This object represents an input integration object, open for reading, that is contained in the
integration message. The integration object has a name and contains zero or more instances of
actual integration objects. Integration object instances are accessed one at a time, similar to
accessing database records. Each instance has a primary integration component that contains data
and every subordinate integration components. This object provides the Exists, FirstInstance,
GetPrimaryIntComp, and NextInstance methods.

Exists() Method23
This method checks to see if the integration object is actually present in the input data. It takes no
parameters.

Syntax
Exists()

Returns
Boolean

Table 20. Parameters for CopyAttachment() Method

Parameter Description

cid MIME content identifier.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

76

Usage
Call Exists after retrieving the integration object from the integration message. If the integration
object was found and is open for reading, the Exists method returns true.

FirstInstance() Method
This method moves to the first integration object instance and sets it as the active instance.

Syntax
FirstInstance()

Returns
Boolean

Usage
The FirstInstance method returns true if the instance exists, false otherwise.

GetPrimaryIntComp() Method
This method returns the primary integration component of the active instance of the integration
object. Table 21 presents the parameter for this method.

Syntax
GetPrimaryIntComp(name)

Returns
CSSEAIPrimaryIntCompIn Input Primary Integration Component

Usage
Gets the primary integration component of the active instance of the integration object and opens it
for input.

This method always returns an input primary integration component object, even if the component
does not exist. Call the Exists method on the returned object to test for this condition. If there is no
active instance, a call to this method raises an error.

Table 21. Parameter for GetPrimaryIntComp() Method

Parameter Description

name The name of a primary integration component in the active integration object
instance.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

77

NextInstance() Method
This method moves a pointer to the next logical integration object instance in the active integration
message.

Syntax
NextInstance()

Returns
Boolean

Usage
Moves to the next integration object instance and makes it the active instance. This method returns
true if the instance exists, or false if there are no more instances. If neither the NextInstance or the
FirstInstance method has been called previously, the NextInstance method moves to the first
instance in the message.

CSSEAIIntObjOut
This object represents an output integration object, open for writing, that is contained in the
integration message. It provides CreatePrimaryIntComp and NewInstance methods as an interface
to the output integration object.

CreatePrimaryIntComp() Method
This method creates a new primary integration component. Table 22 presents the parameter for this
method.

Syntax
CreatePrimaryIntComp(name)

Returns
CSSEAIPrimaryIntCompOut Primary Integration Component, open for output

Table 22. Parameter for CreatePrimaryIntComp() Method

Parameter Description

name Assigned as the name of the Primary Integration Component.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

78

Usage
Use the Exists method to test for existence of the integration object instance, then create a new
integration object instance and set it as the active instance, using the NewInstance method. You
must perform these tasks before calling the CreatePrimaryIntComp() method.

NewInstance() Method
This method creates a new instance of an integration object and makes it the active instance.

Syntax
NewInstance()

Returns
Not applicable

Primary Integration Component Objects
A primary integration component represents the integration component contained within an
integration object instance. It has a name and contains records with data from actual integration
components. Each record may have fields and subordinate integration components.

The following primary integration component objects are provided:

■ CSSEAIPrimaryIntCompIn

■ CSSEAIPrimaryIntCompOut

CSSEAIPrimaryIntCompIn
This object represents the input primary integration component, open for reading. Your data
transformation maps can use this object’s methods to traverse integration components. This object
provides Exists, FirstRecord, GetFieldValue, GetIntComp, and NextRecord methods:

Exists() Method
This method checks to see if the primary integration component is actually present in the input data.
It takes no parameters.

Syntax
Exists()

Returns
Boolean

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

79

Usage
Call Exists after retrieving the primary integration component with the
CSSEAIIntObjIn.GetPrimaryIntComp method, and before invoking the primary integration
component’s other methods.

If the primary integration component was found and is open for reading, the Exists method returns
true.

FirstRecord() Method
This method moves a pointer to the first component record in the primary integration component.

Syntax
FirstRecord()

Returns
Boolean

Usage
Moves to the first integration component record and sets it as the active record. This method returns
true if the record exists, false if the integration component has no records.

GetFieldValue() Method
This method returns the value of the primary integration component field from the active record.
Table 23 presents the parameters for this method.

Syntax
GetFieldValue(name [, defaultIfNull [, defaultIfEmpty]])

Returns
String or null

Table 23. Parameters for GetFieldValue() Method

Parameter Description

name The name of a primary integration component field.

defaultIfNull Optional. Sets the default value if the field does not exist.

defaultIfEmpty Optional. Sets the default value if the field is set to an empty string.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

80

Usage
A null value is returned if the active record does not contain the field. Otherwise, a string containing
the value in the field is returned. If there is no active record, this method raises an error.

If the named argument does not exist, null is returned. If the named argument exists but the value
is the empty string, the empty string is returned. You can use the defaultIfNull and defaultIfEmpty
optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you specify
defaultIfEmpty, you must also specify the defaultIfNull argument.

GetIntComp() Method
This method returns the named integration component from the active record and opens it for input.
Table 24 presents the parameter for this method.

Syntax
GetIntComp(name)

Returns
CSSEAIIntCompIn Input Integration Component

Usage
This method always returns an input integration component object, even if the component does not
exist. Call the Exists method on the returned object to test for this condition. If there is no active
record, a call to this method raises an error.

NextRecord() Method
This method moves a pointer to the next logical record in the active integration component.

Syntax
NextRecord()

Returns
Boolean

Table 24. Parameter for GetIntComp() Method

Parameter Description

name The name of an integration component in the active record.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

81

Usage
Moves to the next record and makes it the active record. Returns true if the record exists, or false if
there are no more records. Moves to the first record if neither the NextRecord method nor the
FirstRecord method has been called previously.

CSSEAIPrimaryIntCompOut
This object represents the output primary integration component. You can use the object’s methods
to create output integration components and records and to copy input data records to output data
records. This object provides CopyFieldValue, CreateIntComp, NewRecord, SetCopySource, and
SetFieldValue methods.

CopyFieldValue() Method
This method sets the value of a field in the active record to the value of a field in the current source
record. Table 25 presents the parameters for this method.

Syntax
CopyFieldValue(targetName, sourceName [, defaultIfNull [, defaultIfEmpty]])

Returns
Not applicable

Usage
Use this method to copy a field from an input integration component to the output primary
integration component. You could achieve the same results by calling the GetFieldValue method on
the input component and the SetFieldValue on the output component; however, using
CopyFieldValue is easier.

You must call the SetCopySource method first to specify the source integration component.
CopyFieldValue uses the active records of the input and output components of the active integration
component.

Table 25. Parameters for CopyFieldValue() Method

Parameter Description

targetName Name of the field to set in the output integration component.

sourceName Name of the field to retrieve from the input integration component.

defaultIfNull Optional value that specifies what should be inserted into the target, if the
source field does not exist.

defaultIfEmpty Optional value that specifies what to use as a source value if the source field is
empty.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

82

If the integration component is not set with the SetCopySource method first, a call to the
CopyFieldValue method raises an error. An error also occurs if either input or output component does
not have an active record.

If you set the copy source using the following statement:

outIntComp.SetCopySource (inIntComp);

the following two statements are equivalent:

outIntComp.SetFieldValue("Fld-A", inIntComp.GetFieldValue("X"));

outIntComp.CopyFieldValue("Fld-A", "X");

Using the second convention is convenient if you are copying many fields between the same
components.

CreateIntComp() Method
This method creates a new integration component. Table 26 presents the parameters for this method.

Syntax
CreateIntComp(name [, createNow])

Returns
CSSEAIIntCompOut. Output Integration Component

Usage
Use this method to create a new integration component, open it for writing, and add it to the active
record of the integration component.

NOTE: This method raises an error if you call it without an active integration component record. Use
the NewRecord method to create a new record and set the active record.

NewRecord() Method
This method creates a new record in a primary integration component.

Table 26. Parameters for CreateIntComp() Method

Parameter Description

name The name of the new integration component.

createNow Defaults to true. This is an optional parameter. By default, the underlying data
object is created in the output data object at the time this method is called. To
change this behavior, specify the optional createNow argument as false. If you
specify createNow as false, the underlying data object is not created until you
make the first NewRecord call on the newly created integration component.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

83

Syntax
NewRecord()

Returns
Not applicable

Usage
This method adds a new primary integration component record and makes it the active record.

SetCopySource() Method
This method establishes the integration component from which a field value will be copied. Table 27
presents the parameter for this method.

Syntax
SetCopySource(IntComp)

Returns
Not applicable

Usage
Call this method before a call to the CopyFieldValue method.

SetFieldValue() Method
This method sets the value of the named field in the active integration component record. Table 28
presents the parameters for this method.

Table 27. Parameter for SetCopySource() Method

Parameter Description

IntComp The integration component object—either CSSEAIPrimaryIntCompIn or
CSSEAIIntCompIn.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

84

Syntax
SetFieldValue(name, value)

Returns
Not applicable

Usage
Both the name and value arguments should be strings.

The field is not set if the value is null. This method provides no return value.

This method raises an error if called while there is no active record.

NOTE: Siebel eScript automatically converts most types to strings as necessary.

Integration Component Objects
An integration component object represents integration components. The following integration
component objects are provided:

■ CSSEAIIntCompIn

■ CSSEAIIntCompOut

CSSEAIIntCompIn
This object represents the input integration component, open for reading. You can use the object’s
methods to traverse actual integration components and to retrieve data from those integration
components. This object provides Exists, FirstRecord, GetFieldValue, GetIntComp, and NextRecord
methods.

Exists() Method
This method checks to see if the integration component is actually present in the input data. It takes
no parameters.

Syntax
Exists()

Table 28. Parameters for SetFieldValue() Method

Parameter Description

name The name of a field in the active record of the primary integration component.

value The string value to be put into the field given in the name parameter.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

85

Returns
Boolean

Usage
Call Exists after retrieving the integration component from its parent object using the GetIntComp
method, and before invoking the integration component’s other methods.

If the integration component is found and is open for reading, the Exists method returns true.

FirstRecord() Method
This method moves a pointer to the first component record in the integration component.

Syntax
FirstRecord()

Returns
Boolean

Usage
Moves to the first integration component record and sets it as the active record. This method returns
true if the record exists, false if the integration component has no records.

GetFieldValue() Method
This method returns the value of the integration component field from the active record. Table 29
presents the parameters for this method.

Syntax
GetFieldValue(name [, defaultIfNull [, defaultIfEmpty]])

Returns
String or null

Table 29. Parameters for GetFieldValue() Method

Parameter Description

name The name of an integration component field.

defaultIfNull Optional. Value to return if the field does not exist.

defaultIfEmpty Optional. Value to return if the field is set to an empty string.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

86

Usage
A null value is returned if the active record does not contain the field. Otherwise, a string containing
the value in the field is returned. If there is no active record, this method raises an error.

If the named argument does not exist, null is returned. If the named argument exists but the value
is the empty string, the empty string is returned. You can use the defaultIfNull and defaultIfEmpty
arguments to change this behavior.

NOTE: The arguments defaultIfNull and defaultIfEmpty are optional. However, if you specify
defaultIfEmpty, you must also specify the defaultIfNull argument.

GetIntComp() Method
This method returns the integration component from the active record and opens it for input.
Table 30 presents the parameter for this method.

Syntax
GetIntComp(name)

Returns
CSSEAIIntCompIn Input Integration Component

Usage
This method always returns an input integration component object, even if the component does not
exist. Call the Exists method on the returned object to test for this condition.

NOTE: If there is no active record, a call to this method raises an error.

NextRecord() Method
This method moves a pointer to the next logical record in the active integration component.

Syntax
NextRecord()

Returns
Boolean

Table 30. Parameter for GetIntComp() Method

Parameter Description

name The name of an integration component in the active record.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

87

Usage
Moves to the next record and makes it the active record. Returns true if the record exists, or false if
there are no more records. Moves to the first record if neither the NextRecord method nor the
FirstRecord method has been called previously.

CSSEAIIntCompOut
This object represents the output integration object, open for writing. You can use this object’s
methods to create new output integration components and to copy or set actual data in the records
of the integration components. This object provides CopyFieldValue, CreateIntComp, NewRecord,
SetCopySource, and SetFieldValue methods.

CopyFieldValue() Method
This method sets the value of a field in the active record to the value of a field in the current source
record. Table 31 presents the parameters for this method.

Syntax
CopyFieldValue(targetName, sourceName [, defaultIfNull [, defaultIfEmpty]])

Returns
Not applicable

Usage
Use this method to copy a field from an input integration component to the output integration
component. You could achieve the same results by calling the GetFieldValue method on the input
component and the SetFieldValue on the output component; however, using CopyFieldValue is
easier.

You must call the SetCopySource method first to specify the source integration component.
CopyFieldValue uses the active records of the input and output components of the active integration
component.

Table 31. Parameters for CopyFieldValue() Method

Parameter Description

targetName Name of the field to set in the output integration component.

sourceName Name of the field to retrieve from the input integration component.

defaultIfNull Optional value that specifies what should be inserted into the target, if the
source field does not exist.

defaultIfEmpty Optional value that specifies what to use as a source value if the source field is
empty.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

88

If the integration component is not set with the SetCopySource method first, a call to the
CopyFieldValue method raises an error. An error also occurs if either input or output component does
not have an active record.

If you set the copy source using the following statement:

outIntComp.SetCopySource(inIntComp);

the following two statements are equivalent:

outIntComp.SetFieldValue("Fld-A", inIntComp.GetFieldValue("X"));

outIntComp.CopyFieldValue("Fld-A", "X");

Using the second convention is convenient if you are copying many fields between the same
components.

CreateIntComp() Method
This method creates a new integration component. Table 32 presents the parameters for this method.

Syntax
CreateIntComp(name [, createNow])

Returns
CSSEAIIntCompOut. Output Integration Component

Usage
Use this method to create a new integration component, open it for writing, and add it to the active
record of the integration component.

This method raises an error if you call it without an active integration component record. Use the
NewRecord method to create a new record and set the active record.

SetCopySource() Method
This method establishes the integration component from which a field value will be copied. Table 33
presents the parameter for this method.

Table 32. Parameters for CreateIntComp() Method

Parameter Description

name The name of the new integration component.

createNow Defaults to true. This is an optional parameter. By default, the underlying data
object is created in the output data object at the time this method is called. To
change this behavior, specify the optional createNow argument as false. If you
specify createNow as false, the underlying data object is not created until you
make the first NewRecord call on the newly created integration component.

Data Mapping Using Scripts ■ Siebel Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

89

Syntax
SetCopySource(IntComp)

Returns
Not applicable

Usage
Call this method before calling the CopyFieldValue method.

SetFieldValue() Method
This method sets the value of the named field in the active integration component record. Table 34
presents the parameters for this method.

Syntax
SetFieldValue(name, value)

Returns
Not applicable

Usage
Both the name and value arguments should be strings.

The field is not set if the value is null. This method provides no return value.

This method raises an error if called while there is no active record.

NOTE: Siebel eScript automatically converts most types to strings as necessary.

Table 33. Parameter for SetCopySource() Method

Parameter Description

IntComp The integration component object—either CSSEAIPrimaryIntCompIn or
CSSEAIIntCompIn.

Table 34. Parameters for SetFieldValue() Method

Parameter Description

name The name of a field in the active record of the integration component.

value The string value to be put into the field given in the name parameter.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ MIME Message Objects and Methods

90

MIME Message Objects and Methods
Siebel EAI represents MIME documents using a property set format. This is the format used by the
EAI MIME Doc Converter Business Service. The objects and methods described here provide access
to this property set format, and are intended for use in conjunction with transforming pieces of the
MIME message to and from Siebel Integration Messages.

NOTE: The EAI MIME Hierarchy Converter Business Service is the preferred method of converting
between the property set representation Siebel Messages.

The following MIME message objects are provided:

■ CSSEAIMimeMsgIn

■ CSSEAIMimeMsgOut

CSSEAIMimeMsgIn
This object represents an input MIME Message, open for reading. The MIME message is in the
property set format generated by the EAI MIME Doc Converter. The object consists of a series of
MIME parts forming the different pieces of the message.

This object provides GetArgument, GetPartCount, GetPart, GetPartByCID, GetAttachmentByCID, and
GetXMLRootPart methods.

GetArgument() Method
This method gets the value of a business service argument. For example, this could get the name of
a map function in the business service. Table 35 presents the parameters for this method.

Syntax
GetArgument(name [, defaultIfNull [, defaultIfEmpty]])

Returns
String or null

Table 35. Parameters for GetArgument() Method

Parameter Description

name The name of a business service argument.

defaultIfNull Returned if a service argument of the specified name does not exist.

defaultIfEmpty Returned if the service argument is set to an empty string.

Data Mapping Using Scripts ■ MIME Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

91

Usage
Use this method to get the value of an argument passed to the business service. For example, if the
MapName argument passed to the business service is MapExtOrderToOrder, the call:

intMsgIn.GetArgument("MapName");

returns the name of the map, MapExtOrderToOrder, passed to the business service.

If the named argument does not exist, null is returned. If the named argument exists but the value
is the empty string, the empty string is returned. You can use the defaultIfNull and defaultIfEmpty
optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you specify
defaultIfEmpty, you must also specify the defaultIfNull argument.

GetPartCount() Method
This method returns the number of parts in the MIME message. Table 36 presents the parameter for
this method.

Syntax
GetPartCount()

Returns
This method returns the number of parts in the MIME message.

GetPart() Method

Syntax
GetPart(index)

Returns
Property set. Returns the part, a property set, specified by the index. The index is zero based.
Returns null if the index is out of bounds.

GetPartByCID() Method
Retrieve a MIME part based on the MIME Content Identifier (CID). Table 37 presents the parameter
for this method.

Table 36. Parameters for GetPart() Method

Parameter Description

index Index of the MIME part to return.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ MIME Message Objects and Methods

92

Syntax
GetPartByCID(cid)

Returns
Returns null if there is no part with the specified CID.

GetAttachmentByCID() Method
The same functionality as CSSEAIMimeMsgIn.GetPartByCID. Supports using a CSSEAIMimeMsgIn as
an attachment source for copying attachments to output objects. Table 38 presents the parameter
for this method.

Syntax
GetAttachmentByCID(cid)

Returns
The attachment (a property set) specified by the CID. Returns null if there is no attachment with the
specified CID.

GetXMLRootPart() Method
Finds the first MIME part that is an XML message in property set format and returns the root element
of the XML document. The XML message must be in property set format as produced by the XML
Hierarchy Converter Business Service. An error is raised is the XML message is not found. The
method is intended for use with MIME messages that consist of an XML message and a series of
related attachments. The property set returned is consistent with what XPSGetRootElement returns,
and can be accessed with the XML Property Set functions. See “XML Property Set Functions” on
page 96.

Syntax
GetXMLRootPart()

Table 37. Parameters for GetPartByCID() Method

Parameter Description

cid MIME Content Identifier to retrieve.

Table 38. Parameters for GetAttachmentByCID() Method

Parameter Description

cid MIME Content Identifier to retrieve.

Data Mapping Using Scripts ■ MIME Message Objects and Methods

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

93

Returns
MIME body part representing an XML document.

CSSEAIMimeMsgOut
This object represents an output MIME message, open for writing. This object provides SetArgument,
CreateXMLPart, SetAttachmentSource, and CopyAttachment methods:

SetArgument() Method
This method sets the value of a business service argument. Table 39 presents the parameters for this
method.

Syntax
SetArgument(name, value)

Returns
Not applicable

Usage
You can call the SetArgument method to establish the value of a given output argument for the
business service method invocation.

CreateXMLPart() Method
This method is similar to XPSCreateRootElement. See “XPSCreateRootElement()” on page 97.
CreateXMLPart() Method creates an XML MIME part and adds it to the MIME document. The property
set representing the XML root element is returned. The property set returned can be populated using
the XML Property Set functions. See “XML Property Set Functions” on page 96. Table 40 on page 94
presents the parameter for this method.

Table 39. Parameters for SetArgument() Method

Parameter Description

name The name of an argument in the active business service.

value The string value corresponding to the argument named by the name parameter.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ MIME Message Objects and Methods

94

Syntax
CreateXMLPart(xmlRootTagName)

Returns
Property set

SetAttachmentSource() Method
This method establishes the source object from which to copy attachment objects. The source object
must be a CSSEAIIntMsgIn, CSSEAIMimeMsgIn, or other object implementing the
GetAttachmentByCID method. Table 41 presents the parameter for this method.

Syntax
SetAttachmentSource(source)

CopyAttachment() Method
This method copies an attachment from the attachment source to the output MIME message object.
The attachment is referenced by the MIME Content Identifier (CID). The attachment copy, a property
set, is returned. The attachment source must be established by calling
CSSEAIMimeMsgOut.SetAttachmentSource before calling this method. Table 42 presents the
parameter for this method.

Syntax
CopyAttachment(cid)

Table 40. Parameters for CreateXMLPart() Method

Parameter Description

xmlRootTagName The name you want to supply as the root element name in the XML
document.

Table 41. Parameters for SetAttachmentSource() Method

Parameter Description

source The attachment source.

Table 42. Parameters for CopyAttachment() Method

Parameter Description

cid MIME Content Identifier of the attachment to copy.

Data Mapping Using Scripts ■ Attachments and Content Identifiers in MIME Messages

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

95

Returns
Property set. This method returns null if the attachment source does not contain an attachment with
the specified CID.

Attachments and Content Identifiers in
MIME Messages
A MIME message contains one or more parts, each representing a separate piece of the message.
One common use of multipart MIME messages is to include attachments with a message.

NOTE: All the examples have to be typed single-spaced and without word wrap.

Each MIME body part has an optional Content Identifier (CID) used to identify it. The Content Id is
part of the MIME part header, for example:

--unique_boundary_123

Content-Type : image/jpeg

Content-ID : <001110.102215@abc.com>

Then the CID is 001110.102215@abc.com. The CID is usually referenced from another part of the
MIME message. A common scheme is to use an XML document as the main part of the MIME
message, and use Content Ids to reference the other attachments in the message. The following is
an example of a MIME message with attachment.

MIME-Version: 1.0

Content-Type: multipart/related;

 boundary="unique_boundary_123";

 type="application/xml"

Content-Transfer-Encoding: binary

--unique_boundary_123

Content-Type: application/xml; charset="UTF-8"

Content-Transfer-Encoding: binary

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Memo SYSTEM "Memo.dtd">

<Memo>

 <To>All Employees</To>

 <Subject>Map and Directions</Subject>

 <Body>Maps to company headquarters are attached.</Body>

 <ListOfAttachments>

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ XML Property Set Functions

96

 <Attachment>

 <URI>cid:001110.102203@oracle.com</URI>

 <Filename>largemap.jpg</Name>

 </Attachment>

 <Attachment>

 <URI>cid:001110.102211@oracle.com</URI>

 <Filename>detailmap.jpeg</Filename>

 </Attachment>

 </ListOfAttachment>

</Memo>

--unique_boundary_123

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <001110.102203@oracle.com>

 [... Raw JPEG Image ...]

--unique_boundary_123

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <001110.102211@oracle.com>

 [... Raw JPEG Image ...]

--unique_boundary_123-

XML Property Set Functions
Siebel EAI represents XML documents using the property set format. While Siebel EAI does not
always require using the property set format, this representation is used by EAI Business Services
such as the EAI XML Converter. The functions described in this section provide a simple interface for
manipulating XML documents using the property set format.

Top-Level Property Set Functions
These functions are used to manipulate the top-level property set passed to the Map function.

Data Mapping Using Scripts ■ XML Property Set Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

97

XPSGetRootElement()
This function returns the property set representing the root element of the XML document. If the root
element is not present, the system raises an error. Table 43 presents the parameter for this function.

Syntax
XPSGetRootElement(xmlPropSetIn)

Returns
Property set

Usage
Use this function to return the root element of an XML document.

XPSCreateRootElement()
This function creates the root element in an output XML document and returns the property set
representing it. The element tag in the XML document is set to the value of the tagName argument.
Table 44 presents the parameters for this function.

Syntax
XPSCreateRootElement(xmlPropSetOut, tagName)

Returns
Property set

Usage
Use this function to create the root element of an XML document that represents a property set.
Because the root element does not directly map to a component in the property set, you can give it
any representative name.

Table 43. Parameter for XPSGetRootElement() Method

Parameter Description

xmlPropSetIn The name of the property set representing the root element of the XML
document.

Table 44. Parameters for XPSCreateRootElement() Method

Parameter Description

xmlPropSetOut The output property set.

tagName The name you want to supply as the root element name in the XML document.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ XML Property Set Functions

98

As an example of how the “XPSGetRootElement()” and “XPSCreateRootElement()” functions work,
consider the following XML document:

<?xml version="1.0"?>
<!DOCTYPE LETTER SYSTEM "letter.dtd">
<letter>
<from>Mary Smith</from>
<to>Paul Jones</to>
<text>Hello!</text>

</letter>

The root element is <letter>. The property set for the <letter> element can be retrieved from the
input property set using EAIXPS_GetRootElement, or it can be created in the output property set
using EAIXPS_CreateRootElement.

A map function that converts a letter to a memo might start with the following code:

function ConvertLetterToMemo (xmlPropSetIn, xmlPropSetOut)
{
var xmlLetter = XPSGetRootElement (xmlPropSetIn);
var xmlMemo = XPSCreateRootElement (xmlPropSetOut, "memo");

... Code to fill in the 'memo' from the 'letter' ...
}

XML Element Accessors
These functions provide access to elements represented by property sets. Table 45 presents the
parameter for this function.

XPSGetTagName()
Retrieves the tag name of an XML element.

Syntax
XPSGetTagName (xmlPropSet)

Returns
String. If xmlPropSet is null, XPSGetTagName returns null.

Table 45. Parameter for XPSGetTagName() Method

Parameter Description

xmlPropSet The output property set.

Data Mapping Using Scripts ■ XML Property Set Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

99

XPSSetTagName()
This function sets the tag name of an XML element. Table 46 presents the parameters for this
function.

Syntax
XPSSetTagName (xmlPropSet, tagName)

Returns
String

XPSGetTextValue()
This function returns the text value of an XML element as a string. Table 47 presents the parameters
for this function.

Syntax
XPSGetTextValue (xmlPropSet [, defaultIfNull [, defaultIfEmpty]])

Returns
String or null

Usage
If xmlPropSet is null then null is returned. You can use the optional defaultIfNull and defaultIfEmpty
arguments to override null and empty string ("") return values. An element’s text value is the text
between an XML element's start and end tags, excluding child elements.

Table 46. Parameters for XPSSetTagName() Method

Parameter Description

xmlPropSet The property set.

tagName The name you want to supply as the current element name in the XML document.

Table 47. Parameters for XPSGetTextValue() Method

Parameter Description

xmlPropSet The output property set.

defaultIfNull Specify a value to override the null default value that results if xmlPropSet is
null.

defaultIfEmpty Specify a value to override an empty string ("") contained in xmlPropSet.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ XML Property Set Functions

100

XPSSetTextValue()
This function sets the text value of an XML element. Table 48 presents the parameters for this
function.

Syntax
XPSSetTextValue (xmlPropSet, text)

Returns
Not applicable

Usage
The text argument should be a string. An element’s text value is the text between the element’s start
and end tags, excluding child elements.

XPSGetAttribute()
This function retrieves an element’s attribute of the given name and returns it as a string. Table 49
presents the parameters for this function.

Syntax
XPSGetAttribute (xmlPropSet, name [, defaultIfNull [, defaultIfEmpty]])

Returns
String

Table 48. Parameters for XPSSetTextValue() Method

Parameter Description

xmlPropSet The property set.

text A string you want inserted between start and end tags of an XML element.

Table 49. Parameters for XPSGetAttribute() Method

Parameter Description

xmlPropSet The output property set.

name The name you want to supply as the root element name in the XML document.

defaultIfNull Specify a value to override the null default value that results if xmlPropSet is
null.

defaultIfEmpty Specify a value to override an empty string ("") contained in xmlPropSet.

Data Mapping Using Scripts ■ XML Property Set Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

101

Usage
A null value is returned if xmlPropSet is null or the element does not have the named attribute. The
optional defaultIfNull and defaultIfEmpty arguments can be used to override null and empty string
("") return values.

XPSSetAttribute()
This function sets an element attribute value. Table 50 presents the parameters for this function.

Syntax
XPSSetAttribute (xmlPropSet, name, value)

Returns
String

Usage
No action is taken if any of the arguments are null.

XPSGetChildCount()
This function returns the number of children of an element. Table 51 presents the parameter for this
function.

Syntax
XPSGetChildCount(xmlPropSet)

Returns
Number

Table 50. Parameters for XPSSetAttribute() Method

Parameter Description

xmlPropSet The output property set.

name Attribute name.

value String value you want to supply as the attribute value.

Table 51. Parameter for XPSGetChildCount() Method

Parameter Description

xmlPropSet The property set.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ XML Property Set Functions

102

Usage
All children of an element are also elements.

XPSGetChild()
This function returns the nth child element as specified by the index. Table 52 presents the
parameters for this function.

Syntax
XPSGetChild(xmlPropSet, index)

Returns
Property set

Usage
Child elements are specified using a zero-based index. A value of null is returned if the index is
invalid.

XPSFindChild()
This function returns the first child element with the tagName. Table 53 presents the parameters for
this function.

Syntax
XPSFindChild (xmlPropSet, tagName)

Returns
Property set.

Table 52. Parameters for XPSGetChild() Method

Parameter Description

xmlPropSet The property set.

index Number, starting at zero, of child elements of another element in an XML
document.

Table 53. Parameters for XPSFindChild() Method

Parameter Description

xmlPropSet The property set.

tagName An XML element tag that signifies the first child element of another XML element.

Data Mapping Using Scripts ■ XML Property Set Functions

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

103

Usage
A value of null is returned if there is no child with the specified tag name.

XPSAddChild()
This function creates a new child element with the tagName and appends it to the list of xmlPropSet’s
children. Table 54 presents the parameters for this function.

Syntax
XPSAddChild (xmlPropSet, tagName [, textValue])

Returns
Property set

Examples
The following example converts a <letter> to a <memo>.

NOTE: The input letter in this example is slightly different from the previous example.

The input XML document is:

<letter
from="Mary Smith"
to="Paul Jones">
<text>Hello!</text>

</letter>

The conversion function converts this to a memo format, as follows:

<memo>
<type>Interoffice Memo</type>
<header>
<from>Mary Smith</from>
<to>Paul Jones</to>
</header>
<body>Hello!</body>

</memo>

The map function that performs this conversion is:

Table 54. Parameters for XPSAddChild() Method

Parameter Description

xmlPropSet The property set.

tagName The name you want to give to the new child element.

textValue Optional. Sets the text value of the new element.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ EAI Value Maps

104

function ConvertLetterToMemo (xmlPropSetIn, xmlPropSetOut)
{
var letter = XPSGetRootElement (xmlPropSetIn);
var memo = XPSCreateRootElement (xmlPropSetOut, "memo");
XPSAddChild (memo, "type", "Interoffice Memo");
var header = XPSAddChild (memo, "header");
XPSAddChild (header, "from", XPSGetAttribute (letter, "from"));
XPSAddChild (header, "to", XPSGetAttribute (letter, "to"));
XPSAddChild (memo, "body", XPSGetTextValue (XPSFindChild (letter, "text")));

}

EAI Value Maps
EAI Value Maps correlate Siebel data values with external data values.

If you are:

■ Sending and receiving data, you can create inbound and outbound maps for the same data

■ Receiving data only, you need only to define an inbound map

■ Sending data only, you need only to define an outbound map

Consider an example of how EAI Value Maps provide correlations between Siebel applications and
the SAP R/3 system. SAP country codes, which are represented as two-character codes, are different
from Siebel country codes, represented by the country name spelled out. An EAI Value Map provides
a lookup table that lists these two sets of data side by side.

The EAI Value Map entries are stored in the EAI Value Map table. You can view and administer this
table from the EAI Value Maps view in the Administration-Integration screens in the Siebel client.
The Siebel client groups the entries logically based on the Type and Direction columns.

Figure 11 shows the entries form two logical groupings, with entries for the Siebel inbound and Siebel
outbound entries.

Figure 11. EAI Value Maps for Country Codes

Data Mapping Using Scripts ■ EAI Value Maps

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

105

The Direction field determines the direction of the mapping and is either Siebel Outbound or Siebel
Inbound. In a Siebel Outbound mapping, the Siebel Value field is the lookup key; the External
System Value is the translation. In a Siebel Inbound mapping, the External System Value field is the
lookup key; the Siebel Value is the translation.

You can add, remove, or modify entries in the Type group on the EAI Lookup Map view in the Siebel
client. The EAI_LOOKUP_MAP_TYPE list of values defines type values. You can modify the list from
the Application Administration views in the Siebel client.

NOTE: You cannot change the values of the Direction field, which must be Siebel Outbound or Siebel
Inbound.

The data transformation methods include an interface to EAI Value Maps for translating the codes of
one database to another. You use the EAIGetValueMap function to obtain an interface to the
mappings of specific Type-Direction pairs. You use the interface object’s Translate method to find
specific keys in the Type-Direction map and retrieve the translated values.

EAIGetValueMap Function
You use the following statement in your Siebel eScript code to return a value map:

EAIGetValueMap (type, direction [,unmappedKeyHandler])

This object returns a value map for translating lookup keys using the Type-Direction combination.

■ The type argument is a string found in the Type field of the EAI Value Map table.

■ The direction argument must be either Siebel Inbound or Siebel Outbound string values.

A call to this function returns a CSSEAIValueMap object.

You can use the optional unmappedKeyHandler argument to control the behavior of the Translate
method when it gets keys that do not have mappings in the table. The unmappedKeyHandler
argument can be either a literal value or a function. If you pass a literal value, it is used as the default
value. Otherwise, if you pass a function, the method calls that function, then uses the value returned
by the function.

The unmappedKeyHandler defaults to an empty string ("").

EAILookupSiebel Search Function
This function returns an EAI Value Map, with inbound direction that has the external value matching
the value in the []. The general format for this function is as follows:

EAILookupSiebel ("EAI Value Type",[Source field that lookup will be based on]).

EAILookupExternal Search Function
This function returns an EAI Value Map, with outbound direction that has the Siebel value matching
the value in the []. The general format for this function is as follows:

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ EAI Value Maps

106

EAILookupExternal ("EAI Value Type",[Source field that lookup will be based on]).

CSSEAIValueMap Translate Method
The CSSEAIValueMap object has one method: Translate. The Translate method takes one argument,
as follows:

Translate (key)

The Translate method looks up the key value in the EAI Value Map and returns the translated value.
The EAIGetValueMap call establishes the set of mappings for the translation using the type and
direction arguments. The call looks for the key in either the Siebel Value column or in the External
System Value column, depending on the value of the type argument.

■ If the type is Siebel Outbound, the method returns the key found in the Siebel Value column. The
translated value is in the External System Value column.

■ If the type is Siebel Inbound, the method returns the key found in the External System Value
column. The translated value is in the Siebel Value column.

■ If key is null then the return value is null.

■ If key is an empty string, the lookup is performed.

If there is no mapping, an empty string is returned.

If a nonempty string does not have a mapping, the unmappedKeyHandler value specified in the call
to the EAIGetValueMap function is used to determine the translation.

EAIGetValueMap unmappedKeyHandler Argument
The unmappedKeyHandler provides a flexible mechanism for handling cases where keys are not
found in the EAI Value Map. In most situations, you can use literal values for defaults or you can use
one of several predefined handler functions. However, you can also provide your own handler
function.

The technique you use for handling unmapped values depends on the data being mapped.

Typical strategies include:

■ Use the empty string as the translation.

This is the default strategy. It clears the field if the data is being imported into your Siebel
application. To follow this approach, omit the unmappedKeyHandler argument or pass it as an
empty string. For example:

var langMap = EAIGetValueMap("SAP Language","Siebel Inbound","");

This example looks up a nonexistent language code and returns an empty string. For example:

var translatedValue= langMap.Translate ("ABC"); // returns an empty string

Data Mapping Using Scripts ■ EAI Value Maps

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

107

■ Use null as the translation.

This technique makes the result unspecified rather than empty. For data imported to Siebel
applications, this keeps the existing value from being overridden when performing updates. Use
null as the unmappedKeyHandler—for example:

var langMap = EAIGetValueMap("SAP Language","Siebel Inbound", null);

■ Use a literal string as the translation.

Specify the string as the unmappedKeyHandler. For example:

var langMap = EAIGetValueMap("SAP Language","Siebel Inbound", "Unknown
Language");

■ Raise an error.

This may be the best strategy if the Value Map should contain mappings for every key. You can
use the EAIValueMap_NoEntry_RaiseError function. For example:

var langMap = EAIGetValueMap ("SAP Language", "Siebel Inbound",
EAIValueMap_NoEntry_RaiseError);

■ Use the untranslated value.

The predefined function EAIValueMap_NoEntry_ReturnLookupKey implements this strategy. For
example:

var langMap = EAIGetValueMap ("SAP Language", "Siebel Inbound",
EAIValueMap_NoEntry_ReturnLookupKey);

Trying to look up a nonexistent language code (for example, ABC) will return the original key.
For example:

var translatedValue = langMap.Translate ("ABC"); // returns "ABC"

You can also write a custom handler function. You need to write a function taking three arguments:
key, type, and direction. The value your function returns is used as the translation. For example:

function MyUnmappedLangHandler (key, type, direction)
{
 return ("Unknown Language: " + key);
}

var langMap = EAIGetValueMap ("SAP Language", "Siebel Inbound",
MyUnmappedLangHandler);

// Lookup a nonexistent language code.

var translatedValue = langMap.Translate ("ABC"); // returns "Unknown Language: ABC"

EAIGetValueMap() Method
This method retrieves objects for the required Type-Direction mapping. Table 55 presents the
parameters for this method.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Exception Handling Considerations

108

Syntax
EAIGetValueMap(type, direction [, unmappedKeyHandler])

Returns
An object you can use to access the EAI Value Maps.

Usage
Use this method at the beginning of a script function to retrieve objects for the required Type-
Direction mapping. Then call the object’s Translate method to get the translation of a code from the
map table as needed within the function.

NOTE: Providing a Type-Direction pair that does not have an entry in the EAI Value Map raises an
error at the first call to the Translate method.

Exception Handling Considerations
There are three categories of errors you might encounter in the data transformation area of your
integration. These categories are:

■ Siebel errors. Errors signaled by the built-in facilities that execute a map; for example, run-
time Siebel eScript errors, business service invocation errors, BusComp errors, and errors in the
data transformation functions.

■ Siebel errors are fatal, terminating execution of the map immediately.

■ The business service returns an error code other than OK. No specific error code is
guaranteed, and they are not intended for workflow branching. Workflow processes can
branch on the indication of an error occurrence, but not on a specific code.

■ The CSSService error stack will contain useful error information. In particular, data
transformation function errors will generate error stacks describing the particular error.

■ User errors. Errors signaled in custom maps using the EAIRaiseErrorCode call. These are similar
to Siebel Framework errors, except that the map developer selects the error code and uses them
for workflow branching.

Table 55. Parameters for EAIGetValueMap() Method

Parameter Description

type Specifies the type of transformation map.

direction A string specifying the direction of the message. The possible values are:

"Siebel Inbound"

"Siebel Outbound"
unmappedKeyHandler Specifies the value to pass to the map for an unmapped key. Can be an

empty string, null, a literal, or the name of a predefined function.

Data Mapping Using Scripts ■ Exception Handling Considerations

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

109

■ User errors are fatal, terminating execution of the map immediately.

■ The service returns the error code specified in the call to EAIRaiseErrorCode. Your workflow
can branch on this code.

■ Available error codes are those in the Workflow generic error set.

■ You specify the entire error text for these generic errors in the call to EAIRaiseErrorCode.

■ You can use the function EAIRaiseError to raise an error without specifying a particular error
code.

■ Map status flags. The map developer can use the SetArgument method to set custom status
information in the output property set. For example, you can use the SetArgument method to
indicate that a required field is missing. This can be used for workflow branching, if desired. This
mechanism is independent of calls made to EAIRaiseError.

Error Codes and Error Symbols
All errors each have an error code, which is a unique integer. A subset of errors also each have an
error symbol. An error symbol is a text string that allows you to reference specific error codes in
Siebel Workflow and in Siebel eScript. Errors that do not have an error symbol cannot be used for
branch decisions and cannot be raised as user errors.

Error codes returned by a data transformation service may or may not have an associated error
symbol. User errors will have error symbols. Currently, errors generated by Data Transformation
Functions have error symbols. Errors occurring outside the data transformation framework often will
not have error symbols.

Data Transformation Error Processing
This section describes how the Data Transformation Functions handle errors, and how the top-level
error code returned by the data transformation business service invocation is determined.

■ Framework errors occurring outside the Data Transformation Context. These errors are
passed through without change to the CSSService script invocation mechanism. That mechanism
takes control and returns an error of its choice. For example, if your map invokes a BusComp
and the BusComp signals an error, an exception is thrown that will be ignored by the Data
Mapping Engine but passed to the CSSService script invocation mechanism, which sets up the
error state and returns an error from the business service invocation.

■ Framework errors generated by Data Transformation Functions. These are caught by an
exception handler that sets up the state in the output PropertySet and passes control to the
CSSEAIDTEScriptService class. CSSEAIDTEScriptService sets the error code on the business
service as in the state, transforming error symbols to error codes in the process. Error symbols
are specific to the failure.

■ User errors. These are processed the same way as errors generated by the Data Transformation
Functions, except that you specify the error symbols and error text in your maps.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Exception Handling Considerations

110

Exception Handling Functions
When writing your data transformation scripts, you can use the following functions to handle error
conditions:

■ EAIRaiseError

■ EAIRaiseErrorCode

■ EAIFormatMessage

NOTE: Before proceeding, read “Exception Handling Considerations” on page 108.

EAIRaiseError() Method
This method raises a fatal error and terminates the script. Table 56 presents the parameters for this
method.

Syntax
EAIRaiseError(msg [, formatParameters])

Usage
You can provide format parameters to format the message text. For details, see “EAIFormatMessage()
Method” on page 111.

EAIRaiseErrorCode() Method
This method raises a fatal error, terminates the script, and returns an error symbol that it receives
from the business service.

Syntax
EAIRaiseErrorCode(errorSymbol, msg)

Usage
You can use this function when you want to pass an error symbol to a workflow as an indication to
branch on an exception. If you are not branching on the specific error code in your workflow, use
EAIRaiseError instead.

Table 56. Parameters for EAIRaiseError() Method

Parameter Description

msg Error message text from the Data Mapping Engine.

formatParameters Optional string arguments inserted in the return value in the positions
specified by the positional arguments in the msg parameter. A maximum of
nine format parameters are allowed.

Data Mapping Using Scripts ■ Sample Siebel eScript

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

111

EAIFormatMessage() Method
This method formats strings that have position-independent arguments. Table 57 presents the
parameters for this method.

Syntax
EAIFormatMessage(msg [, formatParameters])

Returns
A string of the formatParameters argument values in the positions specified by the positional
arguments included in the msg parameter.

Usage
You can use this function to generate messages from strings that are translated and whose positions
have changed as a result of the translation.

Example
EAIFormatMessage("Data: '%2', '%3', '%1'", "A", "B", "C")

returns the string:

"Data: 'B', 'C', 'A'"

Sample Siebel eScript
This section provides a sample Siebel eScript map for transforming data from a Siebel Account to
SAP to retrieve an order list. The map is used to convert between Oracle’s Siebel Account object and
the equivalent SAP R/3 objects.

function GetSAPOrderStatus_SiebelToBAPI (inputMsg, outputMsg)
{
/* Input Objects' Integration Components:
 * Order Object (Order - Get SAP Order Status (Siebel))
 * Order
 *
 * Output Object's Integration Components:

Table 57. Parameters for EAIFormatMessage() Method

Parameter Description

msg A string that contains positional arguments. The substitution operation
replaces the percent sign followed by a digit with the corresponding format
parameter.

formatParameters Optional string arguments inserted in the return value in the positions
specified by the positional arguments in the msg parameter. A maximum of
nine format parameters are allowed.

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Sample Siebel eScript

112

 * BAPI Import (Order - Get SAP Order Status (BAPI Input))
 * Import Parameters
 */

/*
 * Set up EAI Lookup objects
 */

/*
 * Set up EAI Input Message objects
 */

 var iOrderObj; // Siebel Order instance
 var iOrderComp; // Order

/*
 * Set up EAI Output Message objects
 */

 var oGSObj; // BAPI instance
 var oGSImportComp; // Import Parameters

/*
 * Find and create top-level integration object
 */

iOrderObj = inputMsg.GetIntObj ("Order - Get SAP Order Status
(Siebel)");

oGSObj = outputMsg.CreateIntObj ("Order - Get SAP Order
Status
(BAPI Input)");

/*
 * Read int object instances from EAI message
 */

while (iOrderObj.NextInstance ())
{

/*
 * Create "Get Status" object
 */

oGSObj.NewInstance ();

/*
 * Read "Order" component
 */

iOrderComp = iOrderObj.GetPrimaryIntComp ("Order");

Data Mapping Using Scripts ■ Sample Siebel eScript

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

113

oGSImportComp = oGSObj.CreatePrimaryIntComp
("Import Parameters");

if (iOrderComp.NextRecord ())
{

/*
 * Write "Import Parameters" component
 */

oGSImportComp.NewRecord ();
oGSImportComp.SetCopySource (iOrderComp);
oGSImportComp.CopyFieldValue ("SALESDOCUMENT",

"Integration Id");
}

}
}

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Data Mapping Using Scripts ■ Sample Siebel eScript

114

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

115

Index

A
ancestor components, addressing 60
argument tracing 34
arguments 111

See also individual argument entries
positional 111
setting the values of 73, 93

attachments, MIME sample 95

B
business scenario, data mapping 60
Business Service Simulator 34
business services

See also EAI Siebel Adapter
arguments, setting value of 74, 93
data transformation, defining 64
EAI Dispatch Service, overview 23
EAI MIME Doc Converter 90
EAI MIME Hierarchy Converter 90
EAI XML Read from File 12, 56
errors in 108
mapping directly from 67
script entry point 66
transforms, role of 26

C
CancelOperation 69
child components, addressing 60
Child Hierarchy target 27
classes

See individual class (CSS) entries
Content ID, MIME messages 95
ContinueOperation 69
CopyAttachment method 94
CopyFieldValue method 81, 87
CreateIntComp method 77, 82, 88
CreateIntObj method 73
CreatePrimaryIntComp method 77
CSSEAIDTEScriptService class 65
CSSEAIIntCompIn 84
CSSEAIIntCompOut 87
CSSEAIIntMsgIn 70
CSSEAIIntMsgOut 70, 73
CSSEAIIntObjIn 75
CSSEAIIntObjOut 77
CSSEAIMimeMsgIn 90

CSSEAIMimeMsgOut 93
CSSEAIPrimaryIntCompIn 78
CSSEAIPrimaryIntCompOut

about 81
methods 81

CSSEAIValueMap object 105, 106
CSSEAIValueMap Translate method 106

D
data mapping

architecture diagram 48
business scenario 60
declarative and programmatic options,

compared 46
postconditions, use of 59
preconditions, use of 59

data mapping engine
See EAI Data Mapping Engine

data maps
arguments, defining 52
component mappings, defining 52
creating 51
creation process overview 50
EAI Value Maps 104
field mappings, defining 53
function of 64
inbound workflow, creating 56
integration object maps 49
integration object maps, viewing 51
map types and storage locations 49
outbound workflow, creating 54
performance consideration 46
role of 49
validating 53

data transformation
See also individual method entries
data transformation business service,

defining 65
declarative and programmatic options,

compared 46
and empty strings 106
errors 108
functions 64
functions, about 69
integration component objects 84
literal strings 107
null values 107

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Index ■ E

116

options diagram 63
output integration objects 87
process overview 64
raising errors 107
Siebel Data Mapper, about 46
transformation function 67
unspecified results 107
untranslated values 107
XML property to integration object 67

data types
conversion to strings 84
supported data types, listed 69

data, correlating between systems 104
debugging

See troubleshooting
declarative interface

See data transformation
defaultIfEmpty parameter 71, 81
defaultIfNull parameter 71, 81
Dispatch method 25
dispatch rule grammar

example 40
search expression symbols 26

dispatch service
See EAI Dispatch Service

DTE business service
methods and method arguments 66
script, creating 65

E
EAI Data Mapping Engine

architecture diagram 46, 48
component groups, required 46
Execute method 47
expression categories 58
inbound data map, executing 57
methods 47
multiple source components, addressing 60
outbound data map, executing 55
process overview 48
Purge method 47
purging a development map 54, 57

EAI Data Transformation Engine business
service. See EAI Data Mapping Engine

EAI Dispatch Service
See also transforms; hierarchy, incoming;

hierarchy, output
architecture diagram, inbound dispatch

service 29
architecture diagram, outbound dispatch

service 30
argument tracing 34
compared to Siebel Workflow 34

hierarchy diagram 24
inbound dispatch workflow, creating 31
inbound dispatch, business scenario 37
input and output, debugging 34
methods used 25
outbound dispatch, business scenario 36
outbound property set, business scenario 42
overview 23
process diagram 23
process overview 30
property sets, about use of 34
rule set, creating 32
rules, defining 32
run-time tasks 25
Search Expression definitions 26

EAI MIME Doc Converter Business
Service 90

EAI MIME Hierarchy Converter Business
Service 90

EAI MQSeries Server Transport 16
sample 16

EAI Siebel Adapter
export example query 14, 18
importing account information, example 13
inbound data map, writing to database 57
outbound data maps 54

EAI Value Maps
about 104
accessing 107

EAI XML Converter, example 16
EAI XML Read from File business service 12,

56
EAI XML Write to File adapter, export

example 14
EAI XML Write to File business service 55
EAIDispatchSvcArgTrc 34
EAIExecuteMap 69
EAIExecuteMap function 66
EAIFormatMessage 111
EAIFormatMessage method 111
EAIGetValueMap 105, 106
EAIGetValueMap method 107
EAIRaiseError method 110
EAIRaiseErrorCode method 110
empty strings 106
EnableServiceArgTracing parameter 34
Error Code workflow process property 12
Error Message workflow process

property 12
error symbols 110
errors

capturing 110
categories of 108
EAIFormatMessage method 111

Index ■ F

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

117

raising 107
exception handling, in data transformation

scripts 108
Execute method 47, 55, 66
Exists method 78, 84
export example 14

F
fatal errors 110
fields

copying 83, 87
setting a value for 83
setting values of 89

fields, copying 81
FirstInstance method 76
FirstRecord method 79, 85
formatParameters parameter 111

G
GetArgument method 70, 90
GetAttachment method 72
GetAttachmentByCID method 72, 92
GetAttachmentCount method 72
GetFieldValue method 79, 85
GetIntComp method 80, 86
GetIntObj method 71
GetPart method 91
GetPartByCID method 91
GetPartCount method 91
GetPrimaryIntComp Method 76
GetXMLRootPart method 92

H
handlers, custom written 107
hierarchy diagram, EAI Dispatch Service 24
hierarchy, incoming

data, passing to workflow 31
routing methods, compared 35
transforms, role of 26

hierarchy, output
business service arguments, adding 27
Child Hierarchy target, about 27
Property Name target, about 27
root hierarchy target, about 26
Source Expression, setting Type field to 27
Source Expression, setting Value field to 27
workflow process properties, adding to 27

I
import example 12, 13
inbound dispatch

architecture diagram 29

business scenario 37
process overview 30
rule set, creating 32
rules, defining 32
workflow, creating 31

inbound message
converting to business object format,

example 16
receiving from MQSeries 16

#include file 65
input integration component, copying

fields 81
inputPropSet 69
Insert method 13
integration component

creating a new 82, 88
primary integration component, opening for

input 76
setting field value 89

integration component maps
about 49
defining 52
parent component field, addressing 58
postconditions, use of 59
preconditions, use of 59
Source Search Specifications, role of 58

integration field maps
defining 53
multiple source components, addressing 60
Source Expression example 58
validating 53

integration message objects 70
integration object maps

about 49
arguments, about 49
arguments, defining 52
creating 51
Source Search Specifications, role of 58
viewing 51

integration objects
about 75
creating a new instance of 78
CSSEAIIntObjIn 75
CSSEAIIntObjOut 77
new integration object, method 73
output 87
role in data mapping process 48
transforming from XML property set,

specification 67
integration process, testing 19

K
key values, translating 106

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Index ■ L

118

L
letter to memo conversion, code sample 103
letter, converting to memo (map

function) 98
Lookup method 25
lookup tables, accessing 107

M
map function, converting letter to memo 98
MapFn function 67
MapName argument 66
memo, converting from a letter, code

sample 103
message, inbound

business object format, converting
example 16

receiving from MQSeries Server Transport,
example 16

methodName 69
methods

CopyAttachment 94
CopyAttachmentCID 74
CopyFieldValue 81, 87
CreateIntComp 82, 88
CreateIntObj 73
CreatePrimaryIntComp 77
Dispatch method 25
EAIFormatMessage 111
EAIGetValueMap 107
EAIRaiseError 110
EAIRaiseErrorCode 110
Execute 66
Execute method 47, 55
Exists 78, 84
FirstInstance 76
FirstRecord 79, 85
GetArgument 70, 90
GetAttachment 72
GetAttachmentByCID 72, 92
GetAttachmentCount 72
GetFieldValue 79, 85
GetIntComp 80, 86
GetIntObj 71
GetPart 91
GetPartByCID 91
GetPartCount 91
GetPrimaryIntComp 76
GetXMLRootPart 92
Lookup method 25
NewInstance 78
NewRecord 82
NextInstance 77
NextRecord 80, 86

Purge method 47, 54, 57
Read Siebel Message method 56
SetArgument 73
SetAttachmentSource 74, 94
SetCopySource 83, 88
SetFieldValue 83, 89
Write Siebel Message method 55

MIME
about MIME messages 95
Content ID 95
CSSEAIMimeMsgIn, object and methods 90
CSSEAIMimeMsgOut, object and methods 93
messages and objects, about 90
MIMEHierarchy argument 67
sample message with attachment 95

MIMEHierarchy argument 67
MQSeries

export example 17
import example 15
process properties, exporting example 17

msg parameter 111

N
name parameter 71
NewInstance method 78
NewRecord method 82
NextInstance method 77
NextRecord method 80, 86
null value 80, 107

O
Object Id workflow process property 12
outbound dispatch

architecture diagram 30
business scenario 36
process overview 30
property set, business scenario 42

outbound Siebel Messages 18
output integration component, copying

fields 81
OutputIntObjectName output argument 73
outputPropSet 69

P
parameters

See individual parameter entries
positional arguments 111
postconditions 59
preconditions 59
primary integration component

checking existence of 78
creating new record 82
defined 78

Index ■ Q

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

119

field value, returning 79
getting for input 80

primary output integration component
methods 77

process properties
export in XML example 13
import using MQSeries queue, example 15
importing account information, example 12
inbound data map, creating 56
MQSeries, exporting example 17
outbound data maps 54
output hierarchy root node, adding to 27
passing data to workflow 31

Property Name target 27
property set format, functions for

manipulating 96
property sets

dispatch method comparison 35
root element in output XML, creating 97
root element of XML document, returning 97
Siebel Workflow, limitation in use of 34

Purge method 47, 54, 57

Q
Query method, EAI Siebel Adapter 18

R
Read Siebel Message method 56
Receive method, EAI MQSeries Server

Transport example 16
records, accessing next record 80
root hierarchy target 26
rules

invalid rules 41
rule sets, creating 32
rules, defining 32

S
scripts

See also Siebel eScript
for DTE business service 65
exception handling 108
terminating on error 110

search expression grammar
expressions, symbols used in 26
sample 40

Service_PreInvokeMethod function, data
transformation 65

ServiceArguments 67
SetAttachmentSource method 94
SetCopySource method 83, 88
SetFieldValue method 83, 89
Siebel Data Mapper

about 46
architecture diagram 48
business scenario 60
performance 46

Siebel Errors, in data transformation
scripts 108

Siebel eScript
See also scripts
data type conversion 84
including eaisiebel.js 65
role in data transformation functions 69

Siebel Inbound argument 106
Siebel Message argument 67
Siebel Messages

converting outbound to XML 18
CSSEAIIntCompIn, object and methods 84
CSSEAIIntCompOut, object and methods 87
CSSEAIIntMsgIn integration message

object 70
CSSEAIIntMsgIn object and methods 70
CSSEAIIntMsgOut object and methods 73
CSSEAIIntObjIn object and methods 75
CSSEAIIntObjOut object and methods 77
CSSEAIPrimaryIntCompIn object and

methods 78
CSSEAIPrimaryIntCompOut object and

methods 81
integration message objects, about 70
objects and methods, overview 70
outbound 18

Siebel Operation Object Id workflow process
property 12

Siebel Outbound argument 106
Siebel Tools, data transformation business

service, defining 65
Siebel Workflow. See Workflow
Source Expression

example 58
Property Name 27
Type field, setting to 27
Value field, setting to 27

Source Search Specification
postconditions, use of 59
preconditions, use of 59

sourceName parameter 81
strings, data transformation of 107

T
targetName parameter 81
targets

See transforms
testing, integration processes 19
transformation maps

Business Processes and Rules: Siebel Enterprise Application Integration
Siebel Innovation Pack 2015

Index ■ U

120

See data maps
transforms

business services 26
Child Hierarchy target 27
combining transforms 27
defining 32
overview 26
Property Name target 27
root hierarchy target 26
Type target 27
Value target 27

troubleshooting
argument tracing 34
dispatch service input and output,

debugging 34
Lookup method, role of 25

Type target 27

U
unmapped values 106
unmappedKeyHandler

about 105
uses of 106

untranslated values 107
Update method 13

V
Value target 27

W
Workflow

compared to EAI Dispatch Service 34
data maps, running 66
examples of workflow processes 11, 53
executing workflow processes, about 57
inbound data map, creating workflow 56
inbound dispatch, creating 31
integration processes, overview 11
outbound data map, creating workflow 54
passing incoming hierarchy to 31

workflow examples
account information, exporting in XML 13
account information, importing 12
exporting using MQSeries queue 17
importing using MQSeries queue 15
inbound workflow process 56

outbound workflow process 53
Workflow Process Simulator

about 19
testing inbound workflow 57
testing outbound workflow 55

Write Siebel Message method 55

X
XML

dispatch input and output, debugging 34
element accessor functions 98
exporting information, example 13
outbound data mapping, workflow

example 55
Search Expression example 40
top-level property set functions 96
transforming to integration object,

specification 67
XML functions

example 103
XPSAddChild 103
XPSCreateRootElement 97
XPSFindChild 102
XPSGetAttribute 100
XPSGetChild 102
XPSGetChildCount 101
XPSGetRootElement 97
XPSGetTagName 98
XPSGetTextValue 99
XPSSetAttribute 101
XPSSetTagName 99
XPSSetTextValue 100

XML Hierarchy argument 67
XPath standard 26
XPSAddChild function 103
XPSCreateRootElement function 97
XPSFindChild function 102
XPSGetAttribute function 100
XPSGetChild function 102
XPSGetChildCount function 101
XPSGetRootElement function 97
XPSGetTagName function 98
XPSGetTextValue function 99
XPSSetAttribute function 101
XPSSetTagName function 99
XPSSetTextValue function 100

	Contents
	1 What’s New in This Release
	What’s New in Business Processes and Rules: Siebel Enterprise Application Integration, Siebel Inn...

	2 Defining Workflows for Siebel EAI
	Sample Integration Workflows
	Import Account (File)
	Export Account (File)
	Import Employee (MQSeries)
	Export Employee (MQSeries)

	Testing the Workflow Integration Process
	Exporting the Workflow Process to an XML File
	Importing the XML File Into Siebel Tools
	Running the Workflow Process Simulator

	3 Creating and Using Dispatch Rules
	Overview of EAI Dispatch Service
	EAI Dispatch Service Rule Hierarchy
	Rule Sets
	Rules
	Data Transformation

	EAI Dispatch Service Methods
	Search Expression Grammar

	Output Transformation
	RootHierarchy
	ChildHierarchy
	Type
	Value
	Property

	EAI Dispatch Service
	Inbound Requests
	Outbound Requests

	Implementing EAI Dispatch Service
	Checklist
	Creating a Workflow
	Defining Rule Sets
	Defining Rules
	Defining Transforms
	Invoking a Workflow Process From an EAI Dispatch Service

	Testing Your EAI Dispatch Service Using Argument Tracing
	Differences Between EAI Dispatch Service and Workflow
	ProcessAggregateRequest Method
	EAI Dispatch Service Scenarios
	Outbound Scenario
	Inbound Scenario
	Outbound Scenarios Using ProcessAggregateRequest
	Querying the Account Integration Object
	Querying the Employee Integration Object

	Examples of Search Expression Grammar
	Rule
	Description
	Rule
	Description

	Examples of Dispatch Output Property Sets

	4 Data Mapping Using the Siebel Data Mapper
	Siebel Data Mapper Overview
	EAI Data Mapping Engine
	EAI Data Mapping Engine Methods
	Execute
	Purge

	Using the EAI Data Mapping Engine
	Checklist

	The Siebel Data Mapper
	Integration Object Maps
	Integration Map Arguments

	Integration Component Maps
	Integration Field Maps

	Creating Data Maps
	Checklist
	Define Integration Objects
	Determining Required Maps
	Creating New Data Maps
	Creating Maps Using Auto-Map
	Defining Arguments for a Data Map (Optional)

	Creating Integration Component Maps
	Creating Integration Field Maps
	Validating the Data Map

	Examples of Workflow Processes
	Outbound Workflow Process
	Inbound Workflow Process
	About Executing Workflows

	EAI Data Mapping Engine Expressions
	Source Expression
	Source Search Specification
	Preconditions
	Postconditions

	Addressing Fields in Components
	Data Mapping Scenario
	Mapping Between Siebel and an External Application

	5 Data Mapping Using Scripts
	Overview
	Checklist

	EAI Data Transformation
	Setting Up a Data Transformation Map

	DTE Business Service Method Arguments
	Map Functions
	EAIExecuteMap() Method
	Syntax
	Returns
	Usage

	Data Transformation Functions
	Siebel Message Objects and Methods
	Integration Message Objects
	CSSEAIIntMsgIn
	GetArgument() Method
	Syntax
	Returns
	Usage
	GetIntObj() Method
	Syntax
	Returns
	Usage
	GetAttachmentCount() Method
	Syntax
	Returns
	GetAttachment() Method
	Syntax
	Returns
	GetAttachmentByCID() Method
	Syntax
	Returns

	CSSEAIIntMsgOut
	CreateIntObj() Method
	Syntax
	Returns
	Usage
	SetArgument() Method
	Syntax
	Returns
	Usage
	SetAttachmentSource() Method
	Syntax
	CopyAttachment() Method
	Syntax
	Returns

	Integration Object Objects
	CSSEAIIntObjIn
	Exists() Method23
	Syntax
	Returns
	Usage
	FirstInstance() Method
	Syntax
	Returns
	Usage
	GetPrimaryIntComp() Method
	Syntax
	Returns
	Usage
	NextInstance() Method
	Syntax
	Returns
	Usage

	CSSEAIIntObjOut
	CreatePrimaryIntComp() Method
	Syntax
	Returns
	Usage
	NewInstance() Method
	Syntax
	Returns

	Primary Integration Component Objects
	CSSEAIPrimaryIntCompIn
	Exists() Method
	Syntax
	Returns
	Usage
	FirstRecord() Method
	Syntax
	Returns
	Usage
	GetFieldValue() Method
	Syntax
	Returns
	Usage
	GetIntComp() Method
	Syntax
	Returns
	Usage
	NextRecord() Method
	Syntax
	Returns
	Usage

	CSSEAIPrimaryIntCompOut
	CopyFieldValue() Method
	Syntax
	Returns
	Usage
	CreateIntComp() Method
	Syntax
	Returns
	Usage
	NewRecord() Method
	Syntax
	Returns
	Usage
	SetCopySource() Method
	Syntax
	Returns
	Usage
	SetFieldValue() Method
	Syntax
	Returns
	Usage

	Integration Component Objects
	CSSEAIIntCompIn
	Exists() Method
	Syntax
	Returns
	Usage
	FirstRecord() Method
	Syntax
	Returns
	Usage
	GetFieldValue() Method
	Syntax
	Returns
	Usage
	GetIntComp() Method
	Syntax
	Returns
	Usage
	NextRecord() Method
	Syntax
	Returns
	Usage

	CSSEAIIntCompOut
	CopyFieldValue() Method
	Syntax
	Returns
	Usage
	CreateIntComp() Method
	Syntax
	Returns
	Usage
	SetCopySource() Method
	Syntax
	Returns
	Usage
	SetFieldValue() Method
	Syntax
	Returns
	Usage

	MIME Message Objects and Methods
	CSSEAIMimeMsgIn
	GetArgument() Method
	Syntax
	Returns
	Usage
	GetPartCount() Method
	Syntax
	Returns
	GetPart() Method
	Syntax
	Returns
	GetPartByCID() Method
	Syntax
	Returns
	GetAttachmentByCID() Method
	Syntax
	Returns
	GetXMLRootPart() Method
	Syntax
	Returns

	CSSEAIMimeMsgOut
	SetArgument() Method
	Syntax
	Returns
	Usage
	CreateXMLPart() Method
	Syntax
	Returns
	SetAttachmentSource() Method
	Syntax
	CopyAttachment() Method
	Syntax
	Returns

	Attachments and Content Identifiers in MIME Messages
	XML Property Set Functions
	Top-Level Property Set Functions
	XPSGetRootElement()
	Syntax
	Returns
	Usage
	XPSCreateRootElement()
	Syntax
	Returns
	Usage

	XML Element Accessors
	XPSGetTagName()
	Syntax
	Returns
	XPSSetTagName()
	Syntax
	Returns
	XPSGetTextValue()
	Syntax
	Returns
	Usage
	XPSSetTextValue()
	Syntax
	Returns
	Usage
	XPSGetAttribute()
	Syntax
	Returns
	Usage
	XPSSetAttribute()
	Syntax
	Returns
	Usage
	XPSGetChildCount()
	Syntax
	Returns
	Usage
	XPSGetChild()
	Syntax
	Returns
	Usage
	XPSFindChild()
	Syntax
	Returns
	Usage
	XPSAddChild()
	Syntax
	Returns

	Examples

	EAI Value Maps
	EAIGetValueMap Function
	EAILookupSiebel Search Function
	EAILookupExternal Search Function
	CSSEAIValueMap Translate Method
	EAIGetValueMap unmappedKeyHandler Argument
	EAIGetValueMap() Method
	Syntax
	Returns
	Usage

	Exception Handling Considerations
	Error Codes and Error Symbols
	Data Transformation Error Processing
	Exception Handling Functions
	EAIRaiseError() Method
	Syntax
	Usage
	EAIRaiseErrorCode() Method
	Syntax
	Usage
	EAIFormatMessage() Method
	Syntax
	Returns
	Usage
	Example

	Sample Siebel eScript

	Index

