
Siebel VB Language 
Reference
Siebel Innovation Pack 2015
May 2015



 

Copyright © 2005, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions 
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in 
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, 
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any 
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing 
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed 
on the hardware, and/or documentation, shall be subject to license terms and license restrictions 
applicable to the programs. No other rights are granted to the U.S. Government. 

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and 
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any 
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be 
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use 
of third-party content, products, or services, except as set forth in an applicable agreement between you 
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website 
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle 
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.



Siebel VB Language Reference Siebel Innovation Pack 2015 3

Contents

Siebel VB Language Reference 1

Chapter 1: What’s New in This Release

Chapter 2: About Siebel Visual Basic
Overview of Siebel Visual Basic 13

About Functions and Methods 14

Siebel VB and Other Versions of Visual Basic Programming Languages 15
Differences Between Siebel VB and Earlier Versions of Visual Basic 15
Differences Between Siebel VB and Visual Basic 17

Chapter 3: Using Siebel VB
Guidelines for Using Siebel VB 19

Pass Values Through Reference 19
Give Each Argument a Name 20
Other Guidelines 22

About Data Types 22
Overview of Data Types 22
Arrays 23
Numeric Data Types That Siebel VB Uses 25
Records 26
Strings 26
Variants 26
Type Characters 27
How Siebel VB Converts Data Types 28
Comments 29

About Expressions 29

About Object Handling 31

Declaring Procedures and Variables 33
Declaring a Procedure 33
Declaring Variables 35

About Formatting Strings 39
Numeric Formats 39
Date and Time Formats 43
Other Formatting Options 46



Siebel VB Language Reference Siebel Innovation Pack 2015

Contents ■ 

4 

About Error Handling 47
Overview of Error Handling 47
Handling Errors That Siebel VB Returns  48
Handling Custom Errors 49
Handling Errors That a Siebel VB Method Returns 51
Error Code and Error Text for Siebel VB Errors 52

Chapter 4: Methods Reference for Siebel VB
Overview of Siebel VB Language Reference 55

Disk and Directory Control Methods 56
Change Directory Method 56
Change Drive Method 57
Create Directory Method 58
Get Current Directory Method 59
Remove Directory Method 60

File Control Methods 61
Close All Files Method 62
Close File Method 63
Copy File Method 64
Delete File Method 65
Get File Attributes Method 66
Get File Date Method 67
Get File Length Method 68
Get File Length 2 Method 69
Get File Mode Method 70
Get File Names Method 71
Get Free File Number Method 72
Lock File Method 73
Open File Method 75
Rename File Method 77
Set File Attributes Method 78
Unlock File Method 79

File Input and Output Methods 80
End of File Method 80
Get Characters From File Method 82
Get File Contents Method 82
Get File Offset Method 85
Get File Position Method 86
Get Line From File Method 87
Parse File Contents Method 88
Print Spaces Method 90



Contents ■

Siebel VB Language Reference Siebel Innovation Pack 2015 5

Print Data to File Method 91
Set File Position Method 92
Set File Width Method 93
Set Print Position Method 94
Write Data to File Method 94
Write Variable to File Method 96

Code Setup and Control Methods 97
Call Application Method 97
Call Subroutine Method 98
Create Subroutine Method 100
Create Function Method 102
Declare Custom Data Type Method 104
Declare Procedure Method 105
Declare Symbolic Constant Method 107
Get Environment Setting Method 107
Remove Object Method 108
Send Keystrokes Method 109
Use Clipboard Methods 113

Code Control Statements 114
Do Loop Statement 114
Exit Statement 115
For Next Statement 116
Go To Statement 118
If Then Else Statement 119
Go To Label Statement 120
Me Statement 121
Rem Statement 122
Select Case Statement 123
Stop Statement 124
While Wend Statement 125

Variable Manipulation Methods 126
Assign Expression to Variable Statement 127
Declare Variable Statement 128
Declare Global Variable Statement 129
Declare Static Variable Statement 132
Modify Variable Statement 132
Force Explicit Declaration Statement 133
Get Variant Type Method 134
Set Variable Data Type Statement 136
Set Variant Variable to Null Method 137

String Methods 138



Siebel VB Language Reference Siebel Innovation Pack 2015

Contents ■ 

6 

Compare Strings Method 139
Compare Strings Operator 140
Convert Number to String Method 141
Convert String to Lowercase Method 142
Convert String to Uppercase Method 143
Copy String Method 143
Get a String of Spaces Method 144
Get ANSI String Method 145
Get First Number From String Method 146
Get Left String Method 147
Get Repeated Character String Method 147
Get Right String Method 148
Get String Length Method 149
Get Substring Method 150
Get Substring Position Method 151
Remove Spaces From String Method 153
Replace String Method 154
Right-Justify String Method 155
Set String Comparison Method 156
Set String Format Method 157
Trim Spaces From String Method 159
Trim Trailing Spaces From String Method 159

Array Methods 160
Declare Array Method 160
Erase Array Method 162
Get Array Lower Boundary Method 163
Get Array Upper Boundary Method 164
Set Array Lower Boundary Method 164

Mathematical Methods 165
Overview of Mathematical Methods 166
Exponential Method 167
Get Absolute Value Method 168
Get ANSI Integer Method 168
Get Arctangent Method 169
Get Cosine Method 170
Get Hexadecimal Method 170
Get Integer Method 171
Get Rounded Integer Method 172
Get Logarithm Method 173
Get Octal Method 174
Get Number Sign Method 175
Get Random Number Method 175



Contents ■

Siebel VB Language Reference Siebel Innovation Pack 2015 7

Get Sine Method 176
Get Square Root Method 177
Get Tangent Method 177
Randomize Method 178

Date and Time Methods 179
Convert Number to Date Method 180
Convert Serial Number to Date Method 181
Convert String to Date Method 182
Convert String to Time Method 183
Extract Day From Date-Time Value Method 184
Extract Hour From Date-Time Value Method 185
Extract Minute From Date-Time Value Method 185
Extract Month From Date-Time Value Method 186
Extract Second From Date-Time Value Method 187
Extract Weekday From Date-Time Value Method 188
Extract Year From Date-Time Value Method 188
Get Current Date Method 189
Get Current Date and Time Method 189
Get Current Time Method 190
Get Current Seconds Method 191
Get Serial Time Method 192
Set Date Method 193
Set Time Method 194

ODBC Methods 195
Overview of ODBC Methods 196
ODBC Close Connection Method 196
ODBC Get Errors Method 197
ODBC Get Query Results Method 199
ODBC Get Schema Method 201
ODBC Open Connection Method 203
ODBC Run Query Method 205
ODBC Run Query and Get Results Method 206
ODBC Save Results to File Method 208

Object Querying Methods 209
Compare Object Expressions Operator 209
Is Expression a Date Method 210
Is Object Of Class Method 211
Is Optional Argument Missing Method 211
Is Variable Null Method 212
Is Variable Numeric Method 213
Is Variable Set Method 214



Siebel VB Language Reference Siebel Innovation Pack 2015

Contents ■ 

8 

Financial Methods 215
Overview of Financial Methods 215
Calculate Future Value Method 217
Calculate Interest Method 217
Calculate Interest Rate Method 218
Calculate Internal Rate of Return Method 219
Calculate Net Present Value Method 220
Calculate Payment Method 220
Calculate Principal Method 221
Calculate Present Value Method 221

Conversion Methods 222
Convert Expression to Currency Method 223
Convert Expression to Double-Precision Method 224
Convert Expression to Integer Method 224
Convert Expression to Long Method 225
Convert Expression to Single-Precision Method 226
Convert Expression to String Method 227
Convert Expression to Variant Method 227

COM Methods 228
Assign COM Object Statement 228
COM Object Class 230
Create COM Object Method 231
Get COM Object Method 233
Initialize COM Object Method 235

Error Handling Methods 235
Get Error Code Method 236
Get Error Code Line Method 236
Get Error Message Method 237
On Error Method 238
Resume Statement 239
Set Error Code Method 240
Simulate Error Method 241

Chapter 5: Quick Reference for Siebel VB Methods
Disk and Directory Control Quick Reference 243
File Control Quick Reference 244
File Input and Output Quick Reference 245
Code Setup and Control Quick Reference 246
Code Control Statements Quick Reference 246
Variable Manipulation Quick Reference 247
Strings Quick Reference 248



Contents ■

Siebel VB Language Reference Siebel Innovation Pack 2015 9

Arrays Quick Reference 249
Math Operations Quick Reference 249
Date and Time Quick Reference 250
ODBC Quick Reference 251
Object Querying Quick Reference 252
Financials Quick Reference 252
Conversions Quick Reference 253
COM Object Quick Reference 254
Error Handling Quick Reference 254

Index



Siebel VB Language Reference Siebel Innovation Pack 2015

Contents ■ 

10 



Siebel VB Language Reference Siebel Innovation Pack 2015 11

1 What’s New in This Release

What’s New in Siebel VB Language Reference, Siebel Innovation Pack 
2015
No new features have been added to this guide for this release. This guide has been updated to 
reflect only product name changes.

NOTE: Siebel Innovation Pack 2015 is a continuation of the Siebel 8.1/8.2 release.

What’s New in Siebel VB Language Reference, Siebel Innovation Pack 
2014
No new features have been added to this guide for this release. This guide has been updated to 
reflect only product name changes.

Siebel Innovation Pack 2014 is a continuation of the Siebel 8.1/8.2 release.



Siebel VB Language Reference Siebel Innovation Pack 2015

What’s New in This Release ■ 

12 



Siebel VB Language Reference Siebel Innovation Pack 2015 13

2 About Siebel Visual Basic

This chapter describes Oracle’s Siebel Visual Basic. It includes the following topics:

■ Overview of Siebel Visual Basic on page 13

■ About Functions and Methods on page 14

Overview of Siebel Visual Basic
Siebel VB (Visual Basic) is a programming language that provides the following capabilities:

■ A fully functional procedural programming language

■ An application interface that provides bidirectional access to Siebel business objects

■ An editing environment that you can use to create and maintain custom Siebel VB code

■ A debugger that you can use to help detect errors in your Siebel VB code

■ A compiler that you can use to compile your custom Siebel VB code

■ A run-time engine that is similar to a Visual Basic interpreter that you can use to process custom 
Siebel VB code

You can use Siebel VB to create scripts that automate a variety of daily tasks.

Siebel VB does not support the following items:

■ Functionality developed through custom programming

■ Automatic upgrades of custom code with the Siebel Application Upgrader

■ Development of a separate, standalone application with Siebel VB

■ Accessing server management functionality. To configure this functionality, you must use the 
user interface of the server management software or the command line.

■ Development or deployment in a UNIX environment.

If you customize the Siebel Sales Enterprise application, then you must use caution. This 
customization must be done only by a trained technical professional.

Improper application configuration can adversely effect the reliability and performance of your Siebel 
application. You must thoroughly test any customization you develop before you implement your 
customization in a production environment.

Siebel VB and Unicode
Siebel VB supports Unicode except for functions that do the following:

■ Perform a file input operation or a file output operation 



Siebel VB Language Reference Siebel Innovation Pack 2015

About Siebel Visual Basic ■ Overview of Siebel Visual Basic

14 

■ Accesses an external DLL that is dependent on character encoding and is not compliant with 
Unicode.

Typographic Conventions That This Book Uses
Table 1 describes the typographic conventions that this book uses.

For more information, see the following items:

■ Creating script that runs on UNIX and that uses a Siebel object manager, see Siebel Events 
Management Guide.

■ Creating, modifying, and deleting Siebel VB scripts that you use in Siebel Tools, see Siebel Object 
Interfaces Reference.

About Functions and Methods
A Siebel VB function is an independent section of code that does the following:

1 Receives information

Table 1. Typographic Conventions That This Book Uses

Item That This Book Represents Convention

Statements and functions. Initial uppercase letters. For example: 

Abs Len(variable)

Arguments for statements or 
functions.

Letters that are in lowercase and that are italicized. A capital 
letter that occurs in a position other than the first letter can 
identify multiple English words. For example:

■ variable

■ rate

■ prompt

■ stringVar

Optional arguments or characters. Square brackets. For example:

■ [caption]

■ [type]

■ [$]

Required choice for an argument 
from a list of choices.

A list in curly brackets. An OR operator ( | ) separates the 
possible choices. For example:

{Goto label | Resume Next | Goto 0}



About Siebel Visual Basic ■ Siebel VB and Other Versions of Visual Basic Programming
Languages

Siebel VB Language Reference Siebel Innovation Pack 2015 15

2 Performs some action on this information

3 Returns a value to the item that called it

It begins with the following statement:

Function functionname 

It ends with the following statement:

End Function 

You can use the same format that you use with a variable to name a custom function. You can use 
any valid variable name as a function name. It is recommended that you use a name that describes 
the work that the function performs.

You can write code that calls a function repeatedly from various objects or script. It is similar to a 
subroutine. To call a function, you must know what information the function requires as input and 
what information it provides as output. This book describes the predefined functions that come with 
Siebel VB. You can use these functions any time you use the Siebel VB interpreter.

You can use a function anywhere you can use a variable. To use a function, you do the following:

■ To declare it, you can use the function keyword.

■ To determine the data that Siebel VB must pass to the function, you include the function operator. 
To include this operator, you can use a pair of parentheses immediately after the function name. 
For example, TheApplication.RaiseErrorText().

A Siebel VB method is a function that is part of an object or class. It can include a predefined 
procedure that you can use to call a function. 

A Siebel VB statement is a complete instruction.

For more information, see Siebel eScript Language Reference.

Siebel VB and Other Versions of Visual 
Basic Programming Languages
This topic compares Siebel VB to other versions of the Visual Basic programming language.

Differences Between Siebel VB and Earlier Versions of 
Visual Basic
Siebel VB is similar to a high level language, such as the C programming language or Pascal. This 
topic describes some of the differences you might notice between older versions of Visual Basic and 
Siebel VB.



Siebel VB Language Reference Siebel Innovation Pack 2015

About Siebel Visual Basic ■ Siebel VB and Other Versions of Visual Basic Programming 
Languages

16 

Line Numbers and Labels
Older versions of Visual Basic require numbers at the beginning of every line. More recent versions 
do not support or require line numbers. Use of line numbers causes error messages.

You can use a label to reference a line of code. A label can be any combination of text and numbers. 
Typically it is a single word followed by a colon, and placed at the beginning of a line of code. The 
Go To statement uses these labels.

Subroutines and Modularity
Because Siebel VB is a modular language, it divides code into subroutines and functions. To perform 
actions, the subroutines and functions you write use Siebel VB statements and functions.

How Declaring a Variable Affects Variable Scope
Table 2 describes how you declare a variable affects variable scope.

Data Types
Siebel VB is a typed language. It includes multiple data types, such as strings, numbers, variants, 
and arrays.

A variable that you define as a variant can store any type of data. For example, the same variable 
can hold integers or strings, depending on the code.

Objects allow you to manipulate complex data that an application supplies, such as Microsoft 
Windows forms, or COM objects.

For more information, see “About Data Types” on page 22.

Table 2. How You Declare a Variable Affects Variable Scope

Scope Where the Variable Is Declared

Local Declared in a subroutine or function. Only the subroutine or function that declares the 
variable can access this local variable.

Module Declared in the general declarations section. Any subroutine, function, or event that is 
attached to the object in the script window that displays this variable can access this 
modular variable.

Global Declared in one of the following items:

■ Application_Start event 

■ Application.PreInvokeMethod method

You can write code that accesses a global variable throughout the Siebel application. 
For more information, see Siebel Technical Note #217 on My Oracle Support.



About Siebel Visual Basic ■ Siebel VB and Other Versions of Visual Basic Programming
Languages

Siebel VB Language Reference Siebel Innovation Pack 2015 17

Financial Methods
Siebel VB includes financial methods that you can use to configure Siebel CRM to do a calculation. 
For example, to calculate a loan payment, an internal rate of return, or a future value according to 
a cash flow. For more information, see “Financial Methods” on page 215.

Date and Time Methods
Date and time methods can compare a file date to the current date, set the current date and time, 
time events, and do scheduling. For more information, see “Date and Time Methods” on page 179.

Methods to Access Other Applications
Microsoft Windows uses the Common Object Model (COM) standard to allow an application to access 
the functionality of another application. An object might be the end product of a software application. 
For example, a document from a word processing application. The Object data type allows Siebel VB 
to access another software application through these objects, and then modifies them. For more 
information, see “COM Methods” on page 228.

Environment Control
Siebel VB can call another software application and send keystrokes to the application. It can also 
run code and return values in the operating system environment table. 

Differences Between Siebel VB and Visual Basic
Siebel VB, Microsoft Visual Basic, and Visual Basic for Applications (VBA) use functions and 
statements that are similar to one another, but each of these languages possess some unique 
capabilities.

User Interface and Control Objects
Siebel VB does not include any Visual Basic user interface control objects, such as a Button Control. 
A Visual Basic property such as BorderStyle is not part of Siebel VB. Siebel VB allows you to reference 
user interface controls in Siebel CRM and set and get their values. you can use Siebel Tools to 
manage a Siebel CRM user interface. You must not use the Input statement in Visual Basic as a way 
to get keyboard input.

Boolean Data Type
Siebel VB does not include a Boolean data type. It considers 0 to be FALSE and any other numeric 
value to be TRUE. You can write code that uses only a numeric value as a Boolean value. A 
comparison expression always returns 0 for FALSE and -1 (negative one) for TRUE. You can use the 
following values in an integer variable to simulate a Boolean data type:

■ To represent TRUE. A value of 1 or any number that is not zero.

■ To represent FALSE. A value of 0.



Siebel VB Language Reference Siebel Innovation Pack 2015

About Siebel Visual Basic ■ Siebel VB and Other Versions of Visual Basic Programming 
Languages

18 

If you must call a field from a script, and if this field is a DTYPE_BOOL type field, then you must 
declare it as a string.



Siebel VB Language Reference Siebel Innovation Pack 2015 19

3 Using Siebel VB

This chapter describes how to use Siebel VB. It includes the following topics:

■ Guidelines for Using Siebel VB on page 19

■ About Data Types on page 22

■ About Expressions on page 29

■ About Object Handling on page 31

■ Declaring Procedures and Variables on page 33

■ About Formatting Strings on page 39

■ About Error Handling on page 47

For information about the format that Siebel VB uses, see the topic that describes the format of the 
object interface method in Siebel Object Interfaces Reference.

Guidelines for Using Siebel VB
This topic describes guidelines that you can use when you program with Siebel VB. It includes the 
following topics:

■ “Pass Values Through Reference” on page 19

■ “Give Each Argument a Name” on page 20

■ “Other Guidelines” on page 22

Pass Values Through Reference
Where possible, it is recommended that you pass a value through a reference and not through a 
variable. Passing a value through a variable is less efficient then passing the same value through a 
reference. You must write code that passes a value through a variable unless it cannot pass the same 
value through a reference.

Passing a Value Through a Reference
Siebel CRM can pass a variable to a subroutine or a function through a reference. Each method 
determines if it can receive a value from a variable or a reference. A subroutine or function can 
modify this value.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ Guidelines for Using Siebel VB

20 

Passing a Value Through a Variable
Siebel CRM can pass a value to a function through a variable. After processing is complete, the 
variable retains the value that it contained before Siebel CRM passed it, even though the subroutine 
or function might modify the passed value.

If you configure Siebel CRM to pass a variable to a method that modifies the corresponding 
argument, and if you must retain the value that this variable contains, then you must enclose the 
variable in parentheses in the Call Subroutine statement. This format instructs Siebel VB to pass a 
copy of the variable. This technique is known as passing a value through a variable. For more 
information, see “Call Subroutine Method” on page 98.

If Siebel CRM passes a variable to a function, and if an argument for this function expects to receive 
a value through a reference, then this variable must match the exact type of the argument. This 
requirement does not apply to an expression or a variant.

If you configure Siebel CRM to call an external DLL, then you can configure the ByVal keyword to 
pass an argument through a value. You specify this configuration in the Declare Procedure statement 
or in the Call Subroutine statement. If you specify the ByVal keyword in the declaration, then the 
ByVal keyword is optional in the call. If you use the ByVal keyword, then it must precede the value. 
If you do not specify the ByVal keyword in the declaration, and if you specify the data type in the 
declaration, then you cannot use the ByVal keyword in the call. 

For more information, see “Declare Procedure Method” on page 105.

Give Each Argument a Name
If you use a function that includes an argument, then you can provide a value for this argument. To 
do this, you list it in the order where it occurs in the format for the function. For example, assume 
you define the following function:

myfunction(id, action, value)

In this example, the myfunction function requires the following arguments:

■ id

■ action

■ value

If you call this function, then you specify these arguments in the order that they occur. If a function 
includes multiple arguments, then it is recommended that you name each argument. This technique 
helps to make sure that Siebel CRM assigns each value that you specify to the correct argument.

If you give each argument a name, then you are not required to remember the order where the 
arguments occur. For example, the following format is correct even though the order varies from the 
order that the format specifies:

myfunction action:="get", value:=0, id:=1

Consider the following code:

Sub mysub(aa, bb, optional cc, optional dd)



Using Siebel VB ■ Guidelines for Using Siebel VB

Siebel VB Language Reference Siebel Innovation Pack 2015 21

The following calls to this code are equivalent to each other:

call mysub(1, 2, , 4)
mysub aa := 1, bb := 2, dd := 4
call mysub(aa := 1, dd:= 4, bb := 2)
mysub 1, 2, dd:= 4

Format That You Can Use to Name an Argument
To name an argument, you use the following format:

argname:= argvalue

where:

■ argname is the name of the argument that you specify in the Function statement or the Sub 
statement. For more information, see “Create Function Method” on page 102 and “Create 
Subroutine Method” on page 100.

■ argvalue is the value that Siebel CRM assigns to the argument when your code calls it.

For example:

myfunction id:=1, action:="get", value:=0

Naming an Argument With More Complex Formats
With some formats, you must use a comma as a placeholder for each optional argument that you do 
not specify. If you name the arguments, then you can specify only the arguments that your code 
must use and their values. For example, consider the following code:

myfunction(id, action, value, Optional counter)

In this situation, you can use one of the following formats:

myfunction id:="1", action:="get", value:="0"

myfunction value:="0", counter:="10", action:="get", id:="1"

You cannot omit a required argument.

Where You Can Name an Argument
You can name an argument in the following situations:

■ Functions you define with the Function statement

■ Subroutines you define with the Sub statement

■ Code that you declare with the Declare Procedure statement

■ Some predefined functions and statements

■ Some externally registered DLL functions and methods



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Data Types

22 

Other Guidelines
It is recommended that you apply the following guidelines when you use Siebel VB. For information 
about each of them, see the topic about guidelines for using Siebel VB and Siebel eScript in Siebel 
Object Interfaces Reference:

■ Declare your variables

■ Use a standard naming convention

■ Use a self-reference to identify the current object

■ Avoid nested If statements

■ Use a four-digit year

■ Apply multiple object interface methods to a single object

■ Write code that handles run-time errors

About Data Types
This topic describes the data types that Siebel VB uses. It includes the following topics:

■ “Overview of Data Types” on page 22

■ “Arrays” on page 23

■ “Numeric Data Types That Siebel VB Uses” on page 25

■ “Records” on page 26

■ “Strings” on page 26

■ “Variants” on page 26

■ “Type Characters” on page 27

■ “How Siebel VB Converts Data Types” on page 28

■ “Comments” on page 29

Overview of Data Types
Siebel VB is a strongly typed language. A variable can contain data only of the declared type. It 
supports numeric, string, record, and array data that is standard with the Visual Basic programming 
language. It supports the following data types:

■ Array

■ Double-precision, floating-point number

■ Double-precision integer

■ Integer

■ Object



Using Siebel VB ■ About Data Types

Siebel VB Language Reference Siebel Innovation Pack 2015 23

■ Record

■ Single-precision, floating-point number

■ String

■ Variant

You can do one of the following to declare a variable:

■ You can use a type character to implicitly declare a variable the first time your code references 
it. If you do not use a type character, then Siebel VB uses a default type of Variant.

■ You can use the Declare Variable statement to explicitly declare the variable type. For more 
information, see “Declare Variable Statement” on page 128.

Arrays
To create an array, you specify one or more subscripts when you declare the array or when the 
Declare Array method redimensions the array. A subscript specifies the beginning and ending index 
for each dimension. If you specify only an ending index, then the beginning index depends on the 
Set Array Lower Boundary method. To reference an array element, you enclose each index value in 
parentheses after the array name. For example, the following format describes an array that includes 
three dimensions:

arrayName(i,j,k)

You can use an array with the following data types:

■ Number

■ String

■ Variant

■ Record

■ Object

Siebel VB does not support the following items:

■ An array of arrays

■ Dialog box records 

■ Dialog box objects

For more information, see the following topics:

■ “Declare Variable Statement” on page 128

■ “Array Methods” on page 160

■ “Declare Array Method” on page 160

For examples that use arrays, see the following topics:

■ “Is Variable Set Method” on page 214

■ “Is Variable Null Method” on page 212



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Data Types

24 

■ “Calculate Net Present Value Method” on page 220

■ “Set Variant Variable to Null Method” on page 137

■ “Set Array Lower Boundary Method” on page 164

■ “Get Variant Type Method” on page 134.

Dynamic Arrays
If you declare a dynamic array, then you do not specify a subscript range for the array elements. You 
can use the Declare Array method to set the subscript range. You can write code that sets the number 
of elements in a dynamic array according to other conditions that your code specifies. For example, 
you might use an array to store a set of values that the user enters, but you might not know in 
advance how many values the user will enter. In this situation, you can do one of the following:

■ Dimension the array without specifying a subscript range, and then run a Declare Array method 
each time the user enters a new value.

■ Write code that prompts the user to enter the number of values, and then run one Declare Array 
method to set the size of the array.

If you use the Declare Array method to modify the size of an array, and if you must preserve the 
contents of this array, then make sure you include the following Preserve argument in the Declare 
Array method:

Redim Preserve ArrayName(n)

If you use a Declare Variable statement to declare a dynamic array, then it can include no more than 
eight dimensions. You must use the Declare Array method to create a dynamic array that includes 
more than eight dimensions. This method allows you to declare an array that includes up to 60 
dimensions. For more information, see “Declare Variable Statement” on page 128 and “Declare Array 
Method” on page 160.

You cannot use the Declare Array method to modify the number of dimensions of a dynamic array if 
the array already has dimensions. It can modify only the upper and lower boundaries of the 
dimensions of the array. For information about methods that can determine the current boundaries 
of an array, see “Get Array Lower Boundary Method” on page 163 and “Get Array Upper Boundary 
Method” on page 164.

Example of a Dynamic Array
The following example code uses a dynamic array named varray to hold the cash flow values that 
the user enters:

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext as String
Dim x as Integer
Dim netpv as Double
cflowper=2
ReDim varray(cflowper)



Using Siebel VB ■ About Data Types

Siebel VB Language Reference Siebel Innovation Pack 2015 25

For x= 1 to cflowper
varray(x)=500
Next x
aprate=10
If aprate>1 then

aprate=aprate/100
End If
netpv=NPV(aprate,varray())
msgtext="The net present value is: "
msgtext=msgtext & Format(netpv, "Currency")
TheApplication.raiseErrorText msgtext

End Sub 

Numeric Data Types That Siebel VB Uses
Table 3 describes the numeric data types that Siebel VB uses.

A numeric value is always signed.

You can write code that expresses an integer constant in the following ways:

■ Decimal. You can use the decimal representation to express a decimal constant.

■ Octal. You precede the constant with &O or with &o to express an octal value. For example, 
&o177.

■ Hexadecimal. You precede the constant with &H or with &h to express a hexadecimal value. For 
example, &H8001.

For more information, see “Boolean Data Type” on page 17.

Table 3. Numeric Data Types That Siebel VB Uses

Type Description Smallest Value Largest Value

Integer 2 byte integer Negative 32,768. Positive 32,767.

Long 4 byte integer Negative 2,147,483,648. Positive 2,147,483,647.

Single-
Precision

4 byte floating-
point number

Negative 3.402823e+38
0.0,
1.401298e-45.

Negative 1.401298e-45,
3.402823466e+38.

Double-
Precision

8 byte floating-
point number

Negative 
1.797693134862315d+308,
0.0,
2.2250738585072014d-308.

Negative 
4.94065645841247d-308,
1.797693134862315d+308.

Currency 8 byte number 
with a fixed 
decimal point

Negative 
922,337,203,685,477.5808.

Positive 
922,337,203,685,477.5807.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Data Types

26 

Records
A record is a data structure that includes one or more elements. Each of these elements includes a 
value. You must define a type first, and then declare the variable using that type. You must not 
include a type character as the suffix in the variable name. A record element uses dot notation. For 
example:

record.element

where:

■ record is the record name.

■ element is a member of this record. A record can contain elements that are themselves records.

Strings
A Siebel VB string can be one of the following:

■ Fixed. You specify the length when you define the string. You cannot write code that modifies 
the length after it defines the string. A fixed string cannot be of 0 length. 

■ Dynamic. You do not specify a length. A dynamic string can vary in length from 0 to 32,767 
characters. 

There are no restrictions on the characters that a string can include. For example, a string can include 
a character whose ANSI value is 0. 

You can cut and paste a character or you can use the Chr function to include a character from a 
character set. You can use characters only from the current character set. For more information, see 
“Get ANSI String Method” on page 145.

If you configure Siebel CRM to exchange data with another application, then you must consider how 
this application handles terminating characters. Some applications create and expect only a carriage 
return. To stop output text, Siebel VB uses a carriage return and a line feed (CRLF). It expects CRLF 
characters in input text unless this input is specifically configured for some input functions.

Variants
To define a variable that contains any type of data, you can write code that uses the variant data 
type. To identify the type of data that the variable currently contains, Siebel VB stores a tag with the 
variant data. To examine this tag, you can use the VarType function.



Using Siebel VB ■ About Data Types

Siebel VB Language Reference Siebel Innovation Pack 2015 27

Table 4 describes the types of values that a variant can contain.

If you define a variant that contains no data, then Siebel VB defaults the type to Empty. It does the 
following:

■ Converts an empty variant to zero when it uses this variant in a numeric expression 

■ Converts an empty variant to an empty string when it uses this variant in a string expression 

You can use the IsEmpty statement to determine if a variant is empty. For more information, see “Is 
Variable Set Method” on page 214.

A null variant does not include data. It only represents a result that is not valid or that is ambiguous. 
You can use the IsNull statement to determine if a variant contains a null value. Null indicates that 
a variant is not set. For more information, see “Is Variable Null Method” on page 212.

Type Characters
Siebel VB can use a special character as the suffix of the name of a function, variable, or constant. 
This character identifies the data type of the variable or function. It is a declaration. 

Table 4. Types of Values That a Variant Can Contain

Type Size of Data Smallest Value Largest Value

0 Empty 0 Not applicable. Not applicable.

1 Null 0 Not applicable. Not applicable.

2 Integer 2 bytes, short Negative 32768. Positive 32767.

3 Long 4 bytes, long Negative 2.147E9. Positive 2.147E9.

4 Single 4 bytes, float Negative 3.402E38. Negative 1.401E-45.

Positive 1.401E-45. Positive 3.402E38.

5 Double 8 bytes, double Negative 1.797E308. Negative 4.94E-324.

Positive 4.94E-324. Positive 1.797E308.

6 Currency 8 bytes, fixed Negative 9.223E14. Positive 9.223E14.

7 Date 8 bytes, double Jan 1, 100 to Dec 31, 9999. Not applicable.

8 String up to 2 gigabytes Length is limited by the amount 
of random access memory, up 
to 2 gigabytes.

Not applicable.

9 Object Not applicable. Not applicable. Not applicable.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Data Types

28 

Table 5 lists the characters you can use as a suffix.

How Siebel VB Converts Data Types
This topic describes the conversions that occur between the data types that Siebel VB supports. It 
does not support any other conversions. It does not automatically do conversions between numeric 
and string data:

■ You can use the Val statement to convert a string to numeric data. For more information, see 
“Get First Number From String Method” on page 146.

■ You can use the Str statement to convert numeric data to a string. For more information, see 
“Convert Number to String Method” on page 141.

Numeric Conversion
If Siebel VB converts data from a larger number type to a smaller number type, then a run-time 
numeric overflow might occur. This situation indicates that the value of the larger type is too large 
for the target data type. Imprecision is not a run-time error. For example, when converting from 
double to single, or from float to a larger or a smaller type. Converting a long number to an integer 
is an example of converting a larger type to a smaller type.

String Conversion
If Siebel VB converts data from a fixed string to a dynamic string, then it creates a dynamic string 
that includes the same length and contents as the fixed string. If it converts a dynamic string to a 
fixed string, then it does the following work:

■ If the dynamic string is shorter than the fixed string, then it extends the fixed string with spaces. 

■ If the dynamic string is longer than the fixed string, then it truncates the fixed string.

A string conversion does not cause run-time errors.

Table 5. Characters You Can Use as a Suffix

Data Type Suffix

Dynamic String $

Integer %

Long Integer &

Single-precision floating-point !

Double-precision floating-point #

Currency, exact fixed point @



Using Siebel VB ■ About Expressions

Siebel VB Language Reference Siebel Innovation Pack 2015 29

Variant Conversion
Siebel VB can convert data between any data type and a variant. It can convert a variant string to a 
number. If the variant string does not contain a valid representation of the number, then a type 
mismatch error occurs.

Comments
An apostrophe precedes a comment. It can occur on a separate line in the code or immediately after 
a statement or function on the same line. For example:

' This comment is on its own line

Dim i as Integer ' This comment is on the code line

You can also use a Rem Statement to make a comment. For example:

Rem This is a comment line.

Siebel VB does not include a block comment feature.

About Expressions
An expression is a collection of two or more terms that perform a mathematical or logical operation. 
The terms are typically variables or functions that you use with an operator to evaluate to a string 
or numeric result. You can use an expression to perform a calculation, manipulate a variable, or 
concatenate a string.

Siebel VB evaluates an expression according to precedence order. You can use parentheses to 
override the default precedence order. The following operators are listed in order of highest 
precedence to lowest precedence:

1 “Numeric Operators” on page 29

2 “String Operators” on page 30

3 “Comparison Operators” on page 30

4 “Logical Operators” on page 31

Numeric Operators
Table 6 describes numeric operators.

Table 6. Numeric Operators

Operator Description

^ (caret) Exponentiation.

- (minus) or + (plus) Unary minus and plus.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Expressions

30 

String Operators
Table 7 describes string operators.

Comparison Operators
Table 8 describes comparison operators. For a number, Siebel VB increases the operands to the least 
common type:

■ Integer is preferable to Long.

■ Long is preferable to Single.

■ Single is preferable to Double. 

For a string, the comparison is case-sensitive and is according to the collating sequence that the 
language specifies in the Microsoft Windows Control Panel. The result is 0 for FALSE and negative 1 
for TRUE.

* (asterisk) or / (forward slash) Numeric multiplication or division. For division, the result is a 
Double.

\ (backward slash) Integer division. The operands can be Integer or Long.

Mod Modulus or Remainder. The operands can be Integer or Long.

- (minus) or + (plus) Numeric addition and subtraction. You can also use the + (plus) 
operator for string concatenation.

Table 7. String Operators

Operator Description

& (ampersand) String concatenation

+ (plus) String concatenation

Table 8. Comparison Operators

Operator Description

> Greater than.

< Less than.

= Equal to.

<= Less than or equal to.

Table 6. Numeric Operators

Operator Description



Using Siebel VB ■ About Object Handling

Siebel VB Language Reference Siebel Innovation Pack 2015 31

Logical Operators
Table 9 describes logical operators. Siebel VB performs a bitwise operation for each operator.

About Object Handling
An object is a reusable block of code. You can write code that instantiates an object or that does 
something. Each software application includes a set of properties and methods that modify the 
characteristics of an object.

A property affects how an object behaves. For example:

■ Width is a property of a range of cells in a spreadsheet. 

■ Color is a property of a graph.

■ Margin is a property of a word processing document.

A method causes an application to perform an action on an object. For example: 

■ Calculate for a spreadsheet

■ Snap to Grid for a graph

■ Auto-Save for a document

You can write Siebel VB that accesses a Siebel object and that modifies the properties and methods 
of this object. To access an object that is part of the Siebel application, you can run Siebel VB code 
that is external to the Siebel application.

>= Greater than or equal to.

<> Not equal to.

Table 9. Logical Operators

Operator Type Description

NOT Unary Not Operand can be Integer or Long.

AND And Operands can be Integer or Long.

OR Inclusive Or Operands can be Integer or Long.

XOR Exclusive Or Operands can be Integer or Long.

EQV Equivalence Operands can be Integer or Long. (A EQV B) is 
the same as (NOT (A XOR B)).

IMP Implication Operands can be Integer or Long. (A IMP B) is 
the same as ((NOT A) OR B). 

Table 8. Comparison Operators

Operator Description



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Object Handling

32 

To use a non-Siebel object in Siebel VB code, you must first assign it to an object variable. Assigning 
it instantiates it. To manipulate the object, you then reference the object name with or without 
properties and methods.

Example of Declaring an Object As a Siebel CRM Object Type
Figure 1 includes an example that configures Siebel VB to access a Siebel object. You can declare an 
object as a Siebel CRM object type.

Explanation of Callouts
To declare an object as a Siebel CRM object type, you do the following work:

1 You create an object variable to access the code. This example uses as BusComp to declare the 
object. It does not use as Object. This example instantiates the business component (BusComp) 
Siebel object type. You could declare it as an object, but if you use the methods associated with 
the object type, then you must declare it as the appropriate object type.

2 You can use methods and properties to manipulate the objects.

3 Set oBC to nothing. It is recommended that you always set an object to nothing when your code 
instantiates it.

You can use similar code to access other types of objects that are compliant with COM. You can use 
the software application that creates the object to modify properties and methods of the objects. For 
an example, see “Date and Time Methods” on page 179.

Creating an Object Variable to Access an Object
The Declare Variable statement creates an object variable named oBC and assigns a picklist business 
component to this variable. The Assign COM Object statement uses a get method to assign the 
business component to the oBC variable. Note the following:

■ If you instantiate an application, then you can use the GetObject method or the CreateObject 
method. 

Figure 1. Example of Declaring an Object as a Siebel CRM Object Type



Using Siebel VB ■ Declaring Procedures and Variables

Siebel VB Language Reference Siebel Innovation Pack 2015 33

■ If the application is already open on the Microsoft Windows desktop, then you use GetObject. 

■ If the application is not open, then you can use CreateObject.

For more information, see the following topics:

■ “Declare Variable Statement” on page 128

■ “Date and Time Methods” on page 179

■ “Get COM Object Method” on page 233

Using Methods and Properties to Manipulate an Object
You can use the following format to access an object, property, or method:

appvariable.object.property
appvariable.object.method

For example, the GetPickListBusComp method of the BusComp object of the Siebel application is 
assigned to the oBC object variable. It returns the following value:

me.GetPickListBusComp(“Sales Stage”)

Declaring Procedures and Variables
This topic describes information about declaring procedures and variables.

Declaring a Procedure
This topic includes information about how to use the Declare Procedure statement to declare a 
procedure in a module or in a dynamic link library (DLL). For more information about this statement 
and the format and arguments that you can use with it, see “Declare Procedure Method” on page 105.

Specifying the Data Type
You do one of the following to specify the data type for the value that a method returns:

■ End the method name with a type character. 

■ Use the following clause:

As funcType

Note the following:

■ If you do not specify a type, then the method that the Declare Procedure statement declares 
defaults to the data type variant.

■ To use a record argument, you use an As clause and a type that is already defined with the Type 
statement.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ Declaring Procedures and Variables

34 

■ To use an array argument, you use empty parentheses after the argument. You do not specify 
an array dimension in the Declare Procedure statement.

Sequence Determines How You Must Declare Code
Siebel Tools compiles custom methods in alphabetical order. If you reference code in the current code 
before you define it, then you must use a declaration. For example, assume you create the following 
subroutines in the general declarations section:

Sub A
' Calling B
B
End Sub

Sub B
theApplication.RaiseErrorText "Sub B called"
End Sub

In this situation, compilation fails with the following message:

Unknown function: B

If you add the following statement before Sub A, then the code compiles and runs properly:

Declare Sub B

Calling External DLL Code
You can use the Pascal calling convention to write code that calls external DLL code. Siebel VB pushes 
the arguments on the stack from left to right. It uses the Far reference to pass these arguments, by 
default. You can write code that uses the following keywords when it calls external DLL code:

■ ByVal. Passes a value through a variable. Note the following:

■ You must specify ByVal before you specify the argument that it modifies. 

■ If you apply ByVal to a numeric data type, then Siebel VB passes the argument through a 
variable, not through a reference.

■ If you apply ByVal to a string data type, then Siebel VB passes the byFar pointer to the string 
data. It uses the byFar pointer to pass a string to a string descriptor, by default.

For more information, see “Pass Values Through Reference” on page 19.

■ Any. Passes a value of any datatype. If you use Any for an argument, then Siebel VB does not 
examine the type of this argument. It does examine the type of any other argument that you do 
not specify as type Any. It uses the Far reference to pass the argument unless you specify the 
ByVal keyword. If you specify the ByVal keyword, then it does one of the following:

■ Numeric data. Places the value on the stack. 

■ String data. Sets the pointer to the string. 

The external DLL code must determine the type and size of the value.



Using Siebel VB ■ Declaring Procedures and Variables

Siebel VB Language Reference Siebel Innovation Pack 2015 35

If Siebel VB uses ByVal to pass a null string, then the external code receives a nonNULL character of 
0. To send a NULL pointer, you must declare the argument as ByVal As Any, and then call the code 
with an argument of 0.

Declaring Variables
This topic includes information about using the Declare Variable statement to declare a variable. For 
more information about this statement and the format and arguments that you can use with it, see 
“Declare Variable Statement” on page 128.

It is recommended that you place procedure-level Declare Variable statements at the beginning of 
the procedure.

For information about explicitly declaring a variable, see “Force Explicit Declaration Statement” on 
page 133.

Determining Variable Scope
You can write code that shares a variable across modules. The following locations where you declare 
a variable determines the scope of the variable:

■ Declare in a procedure. The variable is local to this procedure. 

■ Declare outside a procedure. The variable is local to the module.

If you declare a variable that has the same name as a module variable, then you cannot access the 
module variable. For more information, see “Declare Global Variable Statement” on page 129.

Specifying the Type When You Declare a Variable
You can specify one of the following types when you declare a variable:

■ Arrays

■ Numbers

■ Records

■ Strings

■ Variants

■ Objects

If you do not specify a data type, then Siebel VB assigns the variant data type to this variable. 

If you do not include the As clause, then you can specify the type argument. To specify this 
argument, you use a type character as a suffix of the variableName argument. You can use both type 
specification techniques in a single Declare Variable statement. You cannot use them simultaneously 
on the same variable.

You can write code that omits the type character when your code references the variable. The type 
suffix is not part of the variable name.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ Declaring Procedures and Variables

36 

For more information, see “About Data Types” on page 22.

Declaring an Array Variable
The following data types are available for an array:

■ Numbers

■ Strings

■ Variants

■ Records

You cannot write code that uses the Declare Variable statement to declare an array of arrays or an 
array of objects.

You include a subscript list as part of the variableName argument to declare an array variable. You 
can use one of the following formats:

Dim variable([[startSubcript To] endSubscript, ...]) As typeName

Dim variable_with_suffix([[startSubcript To] endSubscript, ... ])

Table 10 describes the startSubscript and endSubscript arguments.

Specifying Arguments When Declaring an Array
The startSubscript argument is optional. If you do not specify it, then Siebel VB uses zero as the 
default value. For example, the following statement creates an array named counter that includes 
elements 0 through 25, for a total of 26 elements. You can use the Set Array Lower Boundary 
statement to modify the default value:

Dim counter (25) as Integer

The values in the startSubscript argument and the endSubscript argument are valid subscripts for 
the array.

Size Limits of an Array 
You can specify no more than 60 arrays in a parent array. The maximum total number of elements 
cannot exceed 65,536. For example, the following code is valid because 60 multiplied by 1092 is 
65,520, which is less than 65,536: 

Table 10. Start Subscript and End Subscript Arguments

Argument Description

startSubscript The index number of the first array element, followed by the following 
keyword: 

To

endSubscript The index number of the last element of the array.



Using Siebel VB ■ Declaring Procedures and Variables

Siebel VB Language Reference Siebel Innovation Pack 2015 37

Dim count(1 To 60, 1 To 1092)

The following code is not valid because 60 multiplied by 1093 is 65,580, which is more than 65,536:

Dim count(1 To 60, 1 To 1093) 

Each subscript declares one array that resides in the parent array. If you do not specify the 
subscriptRange argument, then Siebel VB declares the array as a dynamic array. In this situation, 
you must use the Declare Array method to specify the dimensions of the array before your code can 
use it. 

Declaring a Number Variable
Can use the As clause and one of the following numeric types to declare a numeric variable:

■ Currency

■ Integer

■ Long

■ Single

■ Double 

You can also include a type character as a suffix to the variable name to declare a numeric variable. 
Siebel VB sets a numeric variable to 0.

Declaring a Record Variable
You can use the As clause and specify a value in the typeName argument to declare a record variable. 
To define this type, you must use the Type statement before you can specify it in the typeName 
argument. You use the following format:

Dim variableName As typeName

A record includes a collection of data elements that are fields. Each field can be a numeric, string, 
variant, or previously defined record type. For more information on accessing fields in a record, see 
“Create Function Method” on page 102.

Declaring a String Variable
Siebel VB supports the following types of strings:

■ Fixed-length. Declared with a specific length between 1 and 32767. You cannot write code that 
modifies a fixed-length variable after you declare it. When you create a fixed-length string, Siebel 
VB fills it with zeros. To declare a fixed-length string, you use the following format:

Dim variableName As String * length

■ Dynamic. Does not include a declared length. It can vary in length from 0 to 32,767. The initial 
length for a dynamic string is 0. You can use one of the following formats to declare a dynamic 
string:



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ Declaring Procedures and Variables

38 

Dim variableName$ 
Dim variableName As String

Declaring a Variant Variable
You declare a variable as a variant in the following situations:

■ If the type of the variable is not known.

■ If Siebel CRM might modify the variable type when the code runs. For example, a variant is useful 
for holding input from a user when valid input can include text or numbers.

You use one of the following formats to declare a variant variable:

Dim variableName
Dim variableName As Variant

Siebel VB initializes a variant variable to the Empty variant type. 

For more information, see “Variants” on page 26.

Declaring an Object Variable
To declare an object variable, you use the As clause and specify a class in the typeName argument. 
An object variable can reference an object. It can use dot notation to access members and methods 
of this object. For example:

Dim COMObject As Object
Set COMObject = CreateObject("spoly.cpoly")
COMObject.reset

You can declare an object as New for some classes. For example:

Dim variableName As New className
variableName.methodName

A Set statement is not required in this situation. Siebel VB allocates a new object when it uses this 
variable.

You cannot use the New operator with the Basic Object class. 

Caution About Declaring Multiple Variables on One Line
CAUTION: You can declare multiple variables on one line. However, if you do not include the type 
for each variable, then Siebel VB applies the type of the last variable to all the variables that you 
declare on this line.

For example, the following code declares all of the following variables as strings:

Dim Acct, CustName, Addr As String



Using Siebel VB ■ About Formatting Strings

Siebel VB Language Reference Siebel Innovation Pack 2015 39

Shared Keyword Allows Backward Compatibility
Siebel VB includes the shared keyword to support backward compatibility with older versions of 
Visual Basic. You cannot use it in a Declare Variable statement in a procedure. If you use the Shared 
keyword in a Declare Variable statement in a procedure, then it has no effect.

About Formatting Strings
This topic includes information about how to use the Set String Format method to format an output 
string. It includes the following topics:

■ “Numeric Formats” on page 39

■ “Date and Time Formats” on page 43

■ “Other Formatting Options” on page 46

For more information, see “Set String Format Method” on page 157.

Numeric Formats
This topic describes numeric formats that you can use with the Set String Format method.

Predefined Numeric Formats
Table 11 describes the predefined numeric formats that you can use.

Table 11. Predefined Numeric Formats

Format Description 

General Number Displays the number without a thousand separator.

Fixed Displays the number with at least one digit to the left and at least two digits to 
the right of the decimal separator.

Standard Displays the number with a thousand separator and two digits to the right of 
decimal separator.

Scientific Displays the number using standard scientific notation.

Currency Displays the number using a currency symbol as defined in the International 
section of the Control Panel. Uses a thousand separator and displays two digits 
to the right of decimal separator. Encloses negative value in parentheses.

Percent Multiplies the number by 100 and displays it with a percentage symbol (%) 
appended to the right. Displays two digits to the right of the decimal separator.

True or False Displays FALSE for 0, or TRUE for any other number.

Yes or No Displays No for 0, or Yes for any other number.

On or Off Displays Off for 0, or On for any other number.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Formatting Strings

40 

Custom Numeric Formats
You can use one or more digit characters to create a simple custom numeric format. You can use the 
following digit characters:

■ 0 (zero). Displays a corresponding digit in the output. 

■ (#) number sign. If the digit is significant, then it displays it in the output. A significant digit 
is a digit that resides in the middle of the number or is not zero.

Table 12 includes examples of using zero and the number (#) sign.

You can use a decimal separator as an option.

A comma instructs Siebel VB to place a comma between every three digits that occur to the left of 
the decimal separator.

Table 13 includes examples of using a comma.

Siebel VB uses the current international settings for your computer to determine the character to 
display for a comma or a period. For example, some locales use a period as the decimal separator. 
Other locales use a comma.

Scaling Numbers
You can do one of the following to scale a number:

Table 12. Examples of Using Zero and the Number (#) Sign

Number Format Result

1234.56 # 1235

1234.56 #.## 1234.56

1234.56 #.# 1234.6

1234.56 ######.## 1234.56

1234.56 00000.000 01234.560

0.12345 #.## .12

0.12345 0.## 0.12

Table 13. Examples of Using a Comma

Number Format Result

1234567.8901 #,#.## 1,234,567.89

1234567.8901 #,#.#### 1,234,567.8901



Using Siebel VB ■ About Formatting Strings

Siebel VB Language Reference Siebel Innovation Pack 2015 41

■ Insert one or more commas before the decimal separator. Each comma that precedes the decimal 
separator divides the number by 1000. if you do not specify a decimal separator, then this 
configuration applies to all digits. Siebel CRM does not include a comma in the output string.

■ Include a percentage symbol (%) in the format argument. A percentage symbol multiplies the 
number by 100. Siebel CRM includes the percentage symbol in the output string in the same 
position where it occurs in the format argument.

Table 14 includes examples of using a comma or a percentage symbol to scale numbers.

Inserting Characters In Number Formats
To insert a character in a number in the output string, you enclose the character in double quotes in 
the format argument. You can also insert a set of characters. Siebel VB inserts the following 
characters in the output string in a location that matches the position in the format argument:

- + $ ( space 

You can precede the character with a backslash (\) to insert a single character.

Table 15 includes examples of using double quotes and backslahes to insert characters.

You can use the Get ANSI String method to insert a quotation mark (") in a format argument. The 
character code for a quotation mark is 34. For more information, see “Get ANSI String Method” on 
page 145.

Scientific Notation Formats
You can include one of the following exponent strings in the format argument to format a number in 
scientific notation:

Table 14. Examples of Using a Comma or Percentage Symbol to Scale Numbers

Number Format Result

1234567.8901 #,.## 1234.57

1234567.8901 #,,.#### 1.2346

1234567.8901 #,#,.## 1,234.57

0.1234 #0.00% 12.34%

Table 15. Examples of Using Double Quotes and Backslahes to Insert Characters

Number Format Result

1234567.89 $#,0.00 $1,234,567.89

1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89

1234 \ = \>#,#\<\ =  = >1,234< = 



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Formatting Strings

42 

■ E-

■ E +

■ e-

■ e + 

Siebel VB displays this notation in the following ways:

■ An uppercase e. An uppercase e displays in the output. 

■ A lowercase e. A lowercase e displays in the output. 

■ A minus sign that follows an uppercase e. A minus sign precedes any negative exponent that 
displays in the output.

■ A plus sign. A sign always precedes the exponent in the output.

You precede the exponent string with one or more digit characters. The number of digit characters 
that following the exponent string determines the number of exponent digits that occur in the output. 

Table 16 includes examples of using exponential notation.

Using Sections In a Numeric Format
A numeric format can include up to four sections. A semicolon (;) separates each section. The format 
varies depending on the number of sections you specify:

■ One section. This section applies to every value. 

■ Two sections:

■ The first section applies to positive values and zeros. 

■ The second section applies to negative values. 

■ Three sections:

■ The first section applies to positive values. 

■ The second section applies to negative values. 

■ The third section applies to zeros. 

If you include semicolons with nothing between them, then Siebel VB uses the format of the 
first section to print the undefined section. 

Table 16. Examples of Using Exponential Notation

Number Format Result

1234567.89 ###.##E-00 123.46E04

1234567.89 ###.##e + # 123.46e + 4

0.12345 0.00E-00 1.23E-01



Using Siebel VB ■ About Formatting Strings

Siebel VB Language Reference Siebel Innovation Pack 2015 43

■ Four sections. Same as three sections, except the fourth section applies to Null values. If you 
do not include the fourth section, and if the input expression results in a NULL value, then Siebel 
VB returns an empty string.

Table 17 includes examples of using sections.

Date and Time Formats
This topic describes date and time formats that you can use with the Set String Format method. For 
more information, see “Set String Format Method” on page 157.

Predefined Date and Time Formats
Table 18 describes predefined date and time formats that you can use.

Table 17. Examples of Using Sections

Number Format Result

1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89

-1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)

0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero

0.0 #,0.00;(#,0.00);;"NA" 0.00

Null #,0.00;(#,0.00);"Zero";"NA" NA

Null "The value is: " 0.00

Table 18. Predefined Date and Time Formats

Format Description

General Date Note the following:

■ If the number includes an integer part and a fractional part, then it displays 
date and time information. For example, 11/8/2011 1:23:45 PM. 

■ If the number includes only an integer part, then it displays this integer as a 
date.

■ If the number includes only a fractional part, then it displays this fractional 
part as time.

Long Date Displays a long date. The International section of the Control Panel defines a long 
date.

Medium Date Displays the date using the month abbreviation without the day of the week. For 
example, 08-Nov-2011.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Formatting Strings

44 

Custom Date Formats
You can use a series of tokens in the format argument to define a custom format for a date. Siebel 
VB replaces each token in the output string with an appropriate corresponding value.

Table 19 describes the tokens that you can use. 

Short Date Displays a short date. The International section of the Control Panel defines a 
short date.

Long Time Displays a long time. The International section of the Control Panel defines a long 
time. It includes hours, minutes, and seconds.

Medium Time Does not display seconds. It displays hours in a 12 hour format and uses the AM 
and PM designator.

Short Time Does not display seconds. It uses a 24 hour format and does not use the AM and 
PM designator.

Table 19. Tokens You Can Use

Token Output

c The equivalent of the format ddddd ttttt.

ddddd The current date, including the day, month, and year according to the current Short 
Date setting of the computer. The following format is the default Short Date setting 
for the United States:

m/d/yy

dddddd The current date, including the day, month, and year according to the current Long 
Date setting of the computer. The following format is the default Long Date setting 
for the United States:

mmmm dd, yyyy

ttttt The current time, including the hour, minute, and second using the current time 
settings of the computer. The following format is the default time setting for the 
United States:

h:mm:ss AM/PM

Table 18. Predefined Date and Time Formats

Format Description



Using Siebel VB ■ About Formatting Strings

Siebel VB Language Reference Siebel Innovation Pack 2015 45

Specifying Individual Parts of a Custom Date Format
Table 20 describes the tokens that you can use to specify individual parts of a custom date format.

Table 20. Tokens You Can Use to Specify Individual Parts of a Custom Date Format

Token Output

d The day of the month as a one or two digit number in the range of 1 through 31.

dd The day of the month as a two digit number in the range of 1 through 31.

ddd The day of the week as a three letter abbreviation in the range of Sun through Sat.

dddd The day of the week without abbreviation in the range of Sunday through Saturday.

w The day of the week as a number, where Sunday is 1 and Saturday is 7.

ww The week of the year as a number in the range of 1 through 53, where the first week 
of January is always week 1.

m The month of the year or the minute of the hour as a one or two digit number:

■ If the preceding token is an hour, then the minute is the output.

■ If the preceding token is not an hour, then the month is output.

mm The month or the year or the minute of the hour as a two digit number:

■ If the preceding token is an hour, then the minute is the output.

■ If the preceding token is not an hour, then the month is output.

mmm The month of the year as a three letter abbreviation in the range of Jan through Dec.

mmmm The month of the year without abbreviation in the range of January through December.

q The quarter of the year as a number in the range of 1 through 4.

y The day of the year as a number in the range of 1 through 366.

yy The year as a two digit number in the range of 00 through 99.

yyyy The year as a three digit or a four digit number in the range of 100 through 9999.

h The hour as a one digit or a two digit number in the range of 0 through 23.

hh The hour as a two digit number in the range of 00 through 23.

n The minute as a one digit or a two digit number in the range of 0 through 59.

nn The minute as a two digit number in the range of 00 through 59.

s The second as a one digit or a two digit number in the range of 0 through 59.

ss The second as a two digit number in the range of 00 through 59.



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Formatting Strings

46 

Using a 12 Hour Format
Table 21 describes the tokens that you can use that use a 12 hour format. Siebel VB uses a 24 hour 
format, by default.

Other Formatting Options
This topic describes other formatting options that you can use with the Set String Format method.

Changing Formatting Sequence
Siebel VB formats characters from left to right, by default. To format characters from right to left, 
you can include an exclamation point (!) in the format argument.

Changing Case
Siebel VB does not modify the case of characters that it formats, by default. To instruct Siebel VB to 
modify the case of a character, you can use the following characters:

Table 21.  Tokens That Use a 12 Hour Format

Token Output

AM/PM This token displays the following formats:

■ An uppercase AM with any hour that occurs before noon.

■ An uppercase PM with any hour that occurs between noon and 11:59 PM.

am/pm This token displays the following formats:

■ A lowercase am with any hour that occurs before noon.

■ A lowercase pm with any hour that occurs between noon and 11:59 PM.

A/P This token displays the following formats:

■ An uppercase A with any hour that occurs before noon.

■ An uppercase P with any hour that occurs between noon and 11:59 PM.

a/p This token displays the following formats:

■ A lowercase a with any hour that occurs before noon.

■ A lowercase p with any hour that occurs between noon and 11:59 PM.

AMPM This token displays the following formats:

■ The contents of the 1159 string (s1159) in the WIN.INI file with any hour that 
occurs before noon.

■ The contents of the 2359 string (s2359) with any hour that occurs between noon 
and 11:59 PM. Note that ampm is equivalent to AMPM.



Using Siebel VB ■ About Error Handling

Siebel VB Language Reference Siebel Innovation Pack 2015 47

■ < (Less than). Converts output characters to lowercase. 

■ > (Greater than). Converts output characters to uppercase.

Handling Spaces That Occur in the Input String
Table 22 describes characters that you can use to handle spaces that occur in the input string.

About Error Handling
This topic describes error handling. It includes the following topics:

■ “Overview of Error Handling” on page 47

■ “Handling Errors That Siebel VB Returns” on page 48

■ “Handling Custom Errors” on page 49

■ “Handling Errors That a Siebel VB Method Returns” on page 51

■ “Error Code and Error Text for Siebel VB Errors” on page 52

Overview of Error Handling
Siebel VB includes the following error handling statements and functions:

■ Err

■ Error

■ On Error

Siebel VB returns a code for many of the run-time errors that you might encounter. For more 
information, see “Error Code and Error Text for Siebel VB Errors” on page 52.

Table 22. Characters You Can Use to Handle Spaces That Occur in the Input String

Character Description

@ Siebel VB displays a character or a space according to the following logic:

■ If a character resides in the string in the position where the @ occurs in the 
format string, then it displays this character in this position

■ If no character resides in the string in the position where the @ occurs in the 
format string, then it displays a space in this position

& Siebel VB displays a character or nothing according to the following logic:

■ If a character resides in the string in the position where the & occurs in the 
format string, then it displays this character in this position

■ If no character resides in the string in the position where the & occurs in the 
format string, then it displays nothing



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Error Handling

48 

You can write code that uses the On Error statement in the following ways:

■ Add code that handles the error immediately before a line of code where an error might occur. 
For example, after a File Open statement.

■ Label a separate section of the code only for error handling and instruct Siebel VB to proceed to 
this label if an error occurs. 

Handling Errors That Siebel VB Returns 
This topic describe how to write code that handles the errors that Siebel VB returns.

Using the Body of the Code to Handle Siebel VB Errors
To handle errors in the body of code, you place the code that handles the error immediately before 
the line of code that could cause an error. 

Figure 2 includes an example that handles errors in the body of the code.

Explanation of Callouts
The example that handles errors in the body of the code includes the following items:

1 The On Error statement identifies the line of code to run if an error occurs.

2 The If statement handles the error. It uses the Err statement to identify the error that Siebel VB 
returns.

3 The Resume Next argument instructs Siebel VB to proceed to the next line of code after it handles 
the error.

Figure 2. Example That Handles Errors In the Body of the Code



Using Siebel VB ■ About Error Handling

Siebel VB Language Reference Siebel Innovation Pack 2015 49

Using an Error Handler to Handle Siebel VB Errors
Figure 3 includes an example that uses an error handler to handle errors.

Explanation of Callouts
The example that uses an error handler to handle errors includes the following items:

1 The On Error statement identifies the line of code that Siebel CRM runs if an error occurs. The 
code segment is part of the main code and it uses the Err statement to determine the error code 
that Siebel VB returns.

2 You precede the code with an Exit statement to make sure that it does not accidentally proceed 
to the error handler.

Handling Custom Errors
You can create a custom set of error codes to handle errors that are specific to your code. For 
example, you can create your own set of error codes if your Siebel VB code creates rules for file input 
but the user does not follow these rules. You can configure Siebel VB to create an error and reply 
appropriately using the same statements and functions that you use for error codes that Siebel VB 
returns.

Figure 3. Example That Handles Errors With an Error Handler



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Error Handling

50 

Using the Body of the Code to Handle Custom Errors 
Figure 4 includes an example that uses the body of the code to handle a custom error.

Explanation of Callouts
The example that uses the body of the code to handle a custom error includes the following items:

1 Place the code that handles the error immediately before the line of code that could cause an 
error.

2 You use the Error statement to set the custom error to a value of 30000.

Figure 4. Example That Handles Custom Errors In the Body of the Code



Using Siebel VB ■ About Error Handling

Siebel VB Language Reference Siebel Innovation Pack 2015 51

Using a Label to Handle Custom Errors 
Figure 5 includes an example that uses a label to handle a custom error.

Explanation of Callouts
The example that uses a label to handle a custom error includes the following items:

1 Place the code that handles the error immediately before the line of code that could cause an 
error.

2 Use a labeled section of code to handle the custom error.

Handling Errors That a Siebel VB Method Returns 
You must configure Siebel CRM to handle an error that a Siebel VB method returns differently from 
how you configure it to handle an error that a Visual Basic function or statement returns. You can 
use the following code to handle an error that a Siebel VB method creates. This code displays the 
text of the error message:

DisplayError:
If ErrCode <> 0 Then

ErrText = GetLastErrText
TheApplication.RaiseErrorText ErrText
Exit Sub

End If 

Figure 5. Example That Handles Custom Errors With a Label



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Error Handling

52 

Note the following:

■ A Siebel VB method uses numeric error codes in the range of 4000 through 4999. 

■ DisplayError is a label and is the target of a Go To statement that exists elsewhere in the code.

■ The GetLastErrText method is available only through an interface that is external to Siebel Tools. 
You can use it in Microsoft Visual Basic but not in Siebel VB.

For more information, see Siebel Object Interfaces Reference.

Error Code and Error Text for Siebel VB Errors
Table 23 lists the run-time errors that Siebel VB returns. The On Error statement can handle these 
errors. The Err function can query the error code and the Error function can query the error text. For 
more information, see the following topics:

■ “Open File Method” on page 75

■ “Get Error Code Method” on page 236

■ “Get Error Code Line Method” on page 236

Table 23. Run-Time Errors That Siebel VB Returns

Error Code Error Text

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range

10 Duplicate definition

11 Division by zero

13 Type Mismatch

14 Out of string space

19 No Resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

52 Bad file name or number

53 File not found

54 Bad file mode



Using Siebel VB ■ About Error Handling

Siebel VB Language Reference Siebel Innovation Pack 2015 53

55 File already open

58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable set to Nothing

93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer is larger than 64K

902 Operating system error

903 External procedure not found

904 Global variable type mismatch

905 User-defined type mismatch

906 External procedure interface mismatch

907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

Table 23. Run-Time Errors That Siebel VB Returns

Error Code Error Text



Siebel VB Language Reference Siebel Innovation Pack 2015

Using Siebel VB ■ About Error Handling

54 



Siebel VB Language Reference Siebel Innovation Pack 2015 55

4 Methods Reference for Siebel VB

This chapter describes reference information for Siebel VB methods. It includes the following topics:

■ Overview of Siebel VB Language Reference on page 55

■ Disk and Directory Control Methods on page 56

■ File Control Methods on page 61

■ File Input and Output Methods on page 80

■ Code Setup and Control Methods on page 97

■ Code Control Statements on page 114

■ Variable Manipulation Methods on page 126

■ String Methods on page 138

■ Array Methods on page 160

■ Mathematical Methods on page 165

■ Date and Time Methods on page 179

■ ODBC Methods on page 195

■ Object Querying Methods on page 209

■ Financial Methods on page 215

■ Conversion Methods on page 222

■ COM Methods on page 228

■ Error Handling Methods on page 235

Overview of Siebel VB Language 
Reference
A Siebel VB method can access a component of the Siebel software architecture, such as applets and 
business components. You must preface a Siebel VB method with the name of the architecture 
component that it references. For example:

BusComp.GetFieldValue(fieldName)

where:

■ BusComp is the name of the architecture component

■ GetFieldValue is the name of the Siebel VB method



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Disk and Directory Control Methods

56 

A Microsoft VB command does not reference a specific component of the Siebel software architecture. 
All the statements and methods that this chapter describes are Microsoft VB constructs except for 
the ODBC methods. For more information, see “ODBC Methods” on page 195.

For more information, see “About Functions and Methods” on page 14.

Usage of the Dollar Sign
Some methods include the dollar sign ($) in the method name. This dollar sign is optional:

■ If you include it, then the return type is string.

■ If you do not include it, then the return type is string variant.

This situation is true unless noted differently in the description for each method in this chapter. 

For more information, see “Variants” on page 26.

Methods, Functions, and Statements Described in Siebel Object 
Interfaces Reference
Siebel Object Interfaces Reference describes a number of methods, functions, and statements that 
you can use with Siebel VB that this chapter does not describe. For more information about each of 
these methods, see the Siebel VB Quick Reference chapter in Siebel Object Interfaces Reference.

Disk and Directory Control Methods
This topic describes methods that you can use to control the disk and directories. It includes the 
following topics:

■ “Change Directory Method” on page 56

■ “Change Drive Method” on page 57

■ “Create Directory Method” on page 58

■ “Get Current Directory Method” on page 59

■ “Remove Directory Method” on page 60

Change Directory Method
The Change Directory method changes the default directory of a drive. It does not return a value. It 
does the following depending on how you use the arguments:

■ Include the drive argument. It changes the default directory on the current drive. 

■ Include the first backslash in [\]directory\. It uses the path from the root directory.

■ Do not include the first backslash in [\]directory\. It changes to a directory that resides in 
the current directory.



Methods Reference for Siebel VB ■ Disk and Directory Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 57

The Change Directory method does not change the default drive. You can use the Change Drive 
method to change the default drive.

Format
ChDir [drive][[\]directory\]directory

The following table describes the arguments that you can use with this method.

Example
The following example changes the current directory to C:\Windows:

Sub Button_Click
Dim newdir as String
newdir = "c:\Windows"
If CurDir <> newdir then

ChDir newdir
End If

End Sub

Change Drive Method
The Change Drive method changes the default drive. It does not return a value. The drive that it 
changes to the default drive must exist, and this drive must reside in the range that the LASTDRIVE 
statement in the config.sys file specifies.

You can use a colon as part of the name of the drive but it is not required. 

Argument Description

drive The name of the drive that contains the desired default directory. You can use one 
of the following values:

■ A letter

■ A string expression that identifies the drive name

A colon is not required.

[\]directory\ The path. You can use one of the following values:

■ Path to the directory that this method sets as the default directory.

■ A string expression that identifies the path.

You can use this argument in the following situations:

■ The directory is not in the current directory of the specified drive

■ You do not specify a drive and the directory is not in the default drive 

directory The name of the directory that this method sets for the default directory, or a 
string expression that identifies this name.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Disk and Directory Control Methods

58 

You can use the Change Directory method to change the current directory on a drive.

Format
ChDrive drive

The following table describes the arguments that you can use with this method.

Example
The following example changes the default drive to A:

Sub Button_Click
Dim newdrive as String
newdrive = "A"
If Left(CurDir,2) <> newdrive then

ChDrive newdrive
End If

End Sub

Create Directory Method
The Create Directory method creates a new directory. It does not return a value.

Format
MkDir [drive:][\directory\]directory 

Argument Description

drive A string expression that identifies the drive that this method makes the default 
drive. This method changes the drive according to one of the following values that 
you provide in the drive argument:

■ Null string (""). The default drive remains the same. 

■ A string. It uses the first letter only. 

■ You do not include the drive argument. It displays an error message. 



Methods Reference for Siebel VB ■ Disk and Directory Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 59

The following table describes the arguments that you can use with this method.

Example
The following example creates a new temporary directory in the C:\ directory, and then deletes it:

Sub Button_Click
Dim path as String
On Error Resume Next
path = CurDir(C)
If path <> "C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err = 75 then
Else

RmDir "C:\TEMP01"
End If

End Sub

Get Current Directory Method
The Get Current Directory method returns the default directory of a drive. If you specify a null ("") 
drive argument, or if you do not include the drive argument, then it returns the path for the default 
drive.

The drive that this method examines must exist, and it must reside in the range that the LASTDRIVE 
statement in the config.sys file specifies. 

You can use a colon as part of the name of the drive but it is not required. 

Argument Description

drive Optional. The name of the drive where this method creates the directory. You can 
use a letter or a string expression that identifies the drive name.

If you do not include the drive argument, then this method creates the new 
directory on the current drive. 

If you include the drive argument, then you must include the colon (:).

\directory\ The path to the directory where this method creates the new directory, or a string 
expression that identifies this path.

You can use this argument only if the Create Directory method must not create 
the directory in the following locations:

■ On the current directory of the drive that the drive argument identifies

■ On the default drive if you do not include the drive argument

directory The name of the directory that this method creates, or a string expression that 
identifies this directory name.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Disk and Directory Control Methods

60 

You can use the Change Drive method to change the current drive. You can use the Change Directory 
method to change the current directory.

Format
CurDir[$][(drive)]

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example changes the current directory to C:\Windows:

Sub Button_Click
Dim newdir as String
newdir = "c:\Windows"
If CurDir <> newdir then

ChDir newdir
End If

End Sub

Remove Directory Method
The Remove Directory method removes a directory. It does not return a value. Note the following:

■ The directory that it removes must be empty, except for the working directory or parent 
directory.

■ It cannot remove the default directory. To remove the default directory, you must first make 
another directory current on the drive.

Format
RmDir [drive:][\directory\]directory

Argument Description

drive The letter of the drive to search.



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 61

The following table describes the arguments that you can use with this method.

Example
The following example makes a new temporary directory in the C:\ directory, and then deletes it:

Sub Button_Click
Dim path as String
On Error Resume Next
path = CurDir(C)
If path <> "C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err = 75 then
Else

RmDir "C:\TEMP01"
End If

End Sub

File Control Methods
This topic describes methods that you can use to control files. It includes the following topics:

■ “Close All Files Method” on page 62

■ “Close File Method” on page 63

■ “Copy File Method” on page 64

■ “Delete File Method” on page 65

■ “Get File Attributes Method” on page 66

■ “Get File Date Method” on page 67

■ “Get File Length Method” on page 68

■ “Get File Length 2 Method” on page 69

■ “Get File Mode Method” on page 70

Argument Description

drive Optional. The name of the drive that contains the directory that this method 
removes. You can use a letter or a string expression that identifies the drive name.

\directory\ The path to the directory that this method removes.

You can use this argument only if the Remove Directory method must not remove 
the directory from the following locations:

■ On the current directory of the drive that the drive argument identifies

■ On the default drive if you do not include the drive argument

directory The name of the directory that this method removes.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

62 

■ “Get File Names Method” on page 71

■ “Get Free File Number Method” on page 72

■ “Lock File Method” on page 73

■ “Open File Method” on page 75

■ “Rename File Method” on page 77

■ “Set File Attributes Method” on page 78

■ “Unlock File Method” on page 79

Close All Files Method
The Close All Files method closes every open file and writes to disk any data that currently resides 
in the operating system buffers. It does not return a value.

Format
Reset

This method does not include any arguments.

Example
The following example creates a file, puts the numbers 1 through 10 in this file, and then attempts 
to get past the end of the file. The On Error statement handles the error and Siebel VB continues to 
the Debugger code. This code uses the Reset statement to close the file before it exits:

Sub Button_Click
' Put the numbers 1-10 into a file

Dim x as Integer
Dim y as Integer
On Error Goto Debugger
Open "c:\temp001" as #1 Len = 2
For x = 1 to 10

Put #1,x, x
Next x
Close #1
msgtext = "The contents of the file is:" & Chr(10)
Open "C:\TEMP001" as #1 Len = 2
For x = 1 to 10

Get #1,x, y
msgtext = msgtext & Chr(10) & y

Next x
done:

Close #1
Kill "c:\temp001"
Exit Sub



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 63

Debugger:
TheApplication.RaiseErrorText "Error " & Err & " occurred. Closing open file."
Reset

Resume done
End Sub

Close File Method
The Close File method closes a file and stops any input or output operations to this file. It does not 
return a value. When it runs, Siebel VB writes the final output buffer to the operating system buffer 
for this file. It frees the buffer space that is associated with the closed file. You can use the Close All 
Files method to cause the operating system to move the data in the buffers to disk. For more 
information, see “Close All Files Method” on page 62.

Format
Close [[#]filenumber [, [#]filenumber ... ]]

The following table describes the arguments that you can use with this method.

Example
The following example opens a file for random access, gets the contents of one variable, and then 
closes the file. The CreateFile subroutine creates the c:\temp001 file that the main subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1
Reset

End Sub

Argument Description

filenumber The file number that the Open statement uses to open the file. It identifies the file 
to close.

The value in the filenumber argument is the number that the Open statement assigns 
to the file. A pound sign (#) can precede this argument. If you do not include this 
argument, then the Close statement closes every open file. 

When a Close statement runs, the association of a file with filenumber is ended, and 
Siebel VB can reopen this file with the same or a different file number.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

64 

Sub Button1_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline & newline
Do Until recno = 11

Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1
Reset
Kill "c:\temp001"

End Sub

Copy File Method
The Copy File method copies a file. It does not return a value. You cannot use the following wildcards 
in any of the arguments:

■ * (asterisk) 

■ ? (question mark)

The Copy File method cannot copy the file that the source argument identifies in the following 
situations:

■ If Siebel VB opens this file for anything other than read access

■ If other code has already opened and is using the file

Format
FileCopy [path1]source, [path2]target

The following table describes the arguments that you can use with this method.

Argument Description

path1 The path of the file to copy. If the value in the source argument does not reside in 
the current directory, then this argument is optional.

source The name and, if necessary, the path of the file to copy.

path2 The path to a directory. This method copies the file to this directory. If you require 
that this method not copy the file to the current directory, then the path2 argument 
is optional.

target A name. This method copies the file to this name.



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 65

Example
The following example copies one file to another file:

Sub Button_Click
Dim oldfile, newfile
On Error Resume Next
oldfile = "c:\temp\trace.txt"
newfile = "c:\temp\newtrace.txt"
FileCopy oldfile,newfile
If Err <> 0 then

msgtext = "Error during copy. Rerun program."
Else

msgtext = "Copy successful."
End If

End Sub

Delete File Method
The Delete File method deletes a file. It does not return a value. It only deletes files. It does not 
delete directories. You can use the Delete Directory method to delete a directory.

Format
Kill pathname

The following table describes the arguments that you can use with this method.

Example
The following example does the following work:

1 Prompts a user for an account number.

2 Opens a file.

3 Searches the file for the account number.

4 Displays the matching letter for that number.

The CreateFile subroutine creates the c:\temp001 file that the main subroutine uses. The first 
subroutine uses the Kill statement to delete the file after Siebel CRM finishes processing:

Argument Description

pathname A string expression that identifies a valid DOS file specification. It can include 
paths and the following wildcards:

■ * (asterisk) 

■ ? (question mark)



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

66 

(general) (declarations)
Option Explicit
Declare Sub CreateFile
Global x as Integer
Global y(100) as String

Sub CreateFile
' Put the numbers 1-10 and letters A-J into a file

Dim startletter
Open "c:\temp001" for Output as #1
startletter = 65
For x = 1 to 10

y(x) = Chr(startletter)
startletter = startletter + 1

Next x
For x = 1 to 10

Write #1, x,y(x)
Next x

Close #1
End Sub

Sub Button_Click
Dim acctno as Integer
Dim msgtext
Call CreateFile

i: acctno = 6
If acctno<1 Or acctno>10 then

Goto i:
End if
x = 1
Open "c:\temp001" for Input as #1
Do Until x = acctno

Input #1, x,y(x)
Loop

msgtext = "The letter for account number " & x & " is: _
" & y(x)

Close #1
kill "c:\temp001"

End Sub

Get File Attributes Method
The Get File Attributes method returns the attributes of a file, directory, or a volume label.

Format
GetAttr(pathname)



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 67

The following table describes the arguments that you can use with this method.

Returns
The following table describes the values that the Get File Attributes method returns.

Related Topics
“Get File Mode Method” on page 70
“Set File Attributes Method” on page 78

Get File Date Method
The Get File Date method returns the last modification date and time of a file.

Format
FileDateTime(pathname)

Argument Description

pathname A string or string expression that evaluates to the name of the file, directory, or 
volume label to query. It cannot include the following wildcards:

■ * (asterisk) 

■ ? (question mark)

Value Description

0 Normal file.

1 Read-only file.

2 Hidden file.

4 System file.

8 Volume label.

16 Directory.

32 Archive. The file has changed since the last backup occurred.

If it returns any other value, then the return value represents the sum of the return 
values of the attributes that are set. For example, a return value of 6 represents a 
hidden system file, where 6 is 2 + 4.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

68 

The following table describes the arguments that you can use with this method.

Get File Length Method
The Get File Length method returns the length in bytes of an open file. The file must already be open 
to use this method.

Format
Lof(filenumber)

The following table describes the arguments that you can use with this method.

Example
The following example opens a file and prints the contents of this file to the screen:

Sub Button_Click
Dim fname As String,fchar() As String
Dim x As Integer, msgtext As String, newline As String
newline = Chr(10)
fname = "d:\temp\trace.txt"
On Error Resume Next
Open fname for Input as #1
If Err <> 0 then

Exit Sub
End If
msgtext = "The contents of " & fname & " is: " _

& newline & newline
Redim fchar(Lof(1))
 For x = 1 to Lof(1)

 fchar(x) = Input(1,#1)
 msgtext = msgtext & fchar(x)

Next x
Close #1

End Sub

Argument Description

pathname A string or string expression that evaluates to the name of the file to query. It can 
contain path and disk information. It cannot include the following wildcards:

■ * (asterisk) 

■ ? (question mark)

Argument Description

filenumber The file number that the Open statement uses to open the file.



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 69

Related Topics
“Erase Array Method” on page 162

Get File Length 2 Method
The Get File Length 2 method returns the length of a file. If the file is open, then it returns the length 
of the file before it was opened. The file can be closed or open to use this method.

Format
FileLen(pathname)

The following table describes the arguments that you can use with this method.

Example
The following example returns the length of a file:

Sub Button_Click
Dim length as Long
Dim userfile as String
Dim msgtext
On Error Resume Next
msgtext = "Enter a file name:"
userfile = "trace.txt"
length = FileLen(userfile)
If Err <> 0 then

msgtext = "Error occurred. Rerun program."
Else

msgtext = "The length of " & userfile & " is: " & length
End If

End Sub

Argument Description

pathname A string or string expression that evaluates to the name of the file to query. It 
cannot include the following wildcards:

■ * (asterisk) 

■ ? (question mark)



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

70 

Get File Mode Method
The Get File Mode method returns the file mode or the operating system handle for an open file. The 
following table describes this return value.

Format
FileAttr(filenumber, returntype)

The following table describes the arguments that you can use with this method.

Example
The following example does one of the following:

■ If the open file is in input mode or output mode, then it closes this open file. 

■ If the open file is in append mode, then it writes a range of numbers to this file. 

The CreateFile subroutine creates the file and leaves it open:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x

End Sub

Sub Button_Click
Dim filemode as Integer
Dim attrib as Integer
Call CreateFile

Value of Returntype Argument Description of the Return Value

1 The file mode of the open file:

■ 1. Input mode.

■ 2. Output mode.

■ 8. Append mode.

2 The operating system handle of the open file.

Argument Description

filenumber The file number that the Open statement uses to open the file.

returntype An integer that identifies the type of information to return.



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 71

attrib = 1
filemode = FileAttr(1,attrib)
If filemode = 1 or 2 then

Close #1
Else

For x = 11 to 15
Write #1, x

Next x
Close #1

End If
Kill "c:\temp001"

End Sub

Get File Names Method
The Get File Names method is a standard Visual Basic method that returns the first file name it finds 
that matches the value in the pathname argument and that possesses the attributes that you specify 
in the attributes argument. If it does not find a file, then it returns a null string ("").

Format
Dir[$] [(pathname[, attributes])]

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Usage for the Attributes Argument
You can use the integer values for the attributes argument described in the following table to return 
a specific type of file.

You can add values to choose multiple attributes. For example, to return normal files, hidden files, 
and system files, you set the attributes argument to 6, where 6 equals 0 plus 2 plus 4. 

Argument Description

pathname A string or string expression that evaluates to a path or file name.

attributes An integer expression that specifies the file attributes to choose.

Value in Attributes Argument File Type

0 (default) Normal files with no attributes set.

2 Normal and hidden files.

4 Normal and system files.

8 Volume label only.

16 Normal files and directories.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

72 

If you set the attributes argument to 8, then this method returns one of the following values:

■ The volume label of the drive that you specify in the pathname argument.

■ The current drive if you do not specify a drive in the pathname argument. 

Usage for the Pathname Argument
The pathname argument can include a drive specification and the following wildcard characters:

■ ? (question mark)

■ * (asterisk)

Siebel VB interprets a null string ("") in the pathname argument as the current directory. This value 
is equivalent to a period (.). You can use the Get File Names method again to get more matching file 
names, but this time do not include the pathname argument or the attributes argument. 

Example
The following example lists all the files that reside on drive A:

Sub Button_Click
Dim msgReturn
Dim directory, count
Dim x, msgtext
Dim A()
count = 1

ReDim A(100)
directory = Dir ("A:\*.*")
Do While directory <> ""

A(count) = directory
Count = count + 1
directory = Dir

loop
msgtext = "Contents of drive A:\ is:" & Chr(10) & Chr(10)
For x = 1 to count

msgtext = msgtext & A(x) & Chr(10)
Next x

End Sub

Get Free File Number Method
The Get Free File Number method returns the lowest unused file number. It does not include 
arguments. You can use it if you must supply a file number and must make sure that this file number 
is not already in use. You can use the return value in a subsequent Open statement.

Format
FreeFile



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 73

Example
The following example opens a file and assigns to it the next file number that is available:

Sub Button_Click
Dim filenumber As Integer
Dim filename As String
filenumber = FreeFile
filename = "d:\temp\trace.txt"
On Error Resume Next
Open filename For Input As filenumber
If Err <> 0 then

Exit Sub
End If
Close #filenumber

End Sub

Related Topics
“Open File Method” on page 75

Lock File Method
The Lock File method controls access to an open file. It does not return a value. 

Format
Lock [#]filenumber[, [start] [To end]]

The following table describes the arguments that you can use with this method.

Specifying the Start Argument and End Argument
The Lock File method locks the file according to the following modes:

■ Binary mode. The start argument and the end argument identify byte offsets. 

■ Random mode. The start argument and the end argument identify record numbers:

■ If you include the start but not the end, then it locks only the record or byte that the start 
argument identifies. 

■ If you include the end but not the start, then it locks records or bytes from the record number 
or offset 1 to the end.

Argument Description

filenumber The file number that the Open statement uses to open the file.

start A long integer that identifies the number of the first record or byte offset to lock or 
unlock.

end A long integer that identifies the number of the last record or byte offset to lock or 
unlock.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

74 

■ Input mode, output mode, or append mode. It locks the entire file. It ignores the start 
argument and the end argument.

Removing Locks
You must use the Lock File method and the Unlock File method in pairs to remove a lock, and the 
arguments that you use with these methods must be identical. For more information, see “Unlock File 
Method” on page 79.

You must configure Siebel VB to remove a lock on an open file before it closes the file. If you do not 
do this, then unpredictable results might occur.

Example
In the following example, if the file is already in use, then this code locks the file that other users on 
a network share. The CreateFile subroutine creates the file that the main subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the letters A-J into the file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, Chr(x + 64)
Next x
Close #1

End Sub

Sub Button_Click
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess = 70
msgstop = 16
Call CreateFile
On Error Resume Next
btngrp = 1
icongrp = 64
defgrp = 0
answer = 1
If answer = 1 then

Open "c:\temp001" for Input as #1
If Err = noaccess then

‘File Locked -Aborted
Else

Lock #1
Line Input #1, acctname



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 75

Unlock #1
End If
Close #1

End If
Kill "C:\TEMP001"

End Sub

Open File Method
The Open File method opens a file for input or output. It does not return a value. Siebel CRM opens 
the file in the default character encoding that the local operating system uses. This method does not 
support Unicode.

Format
Open filename [For mode] [Access access] [lock] As [#]filenumber [Len = reclen]

The following table describes the arguments that you can use with this method.

Argument Description

filename A string or string expression that identifies the name of the file to open. If this 
file does not exist, then this method creates it if opened in one of the following 
modes:

■ Append

■ Binary

■ Output

■ Random Modes

This file must be open before Siebel VB can perform any input or output operation 
on it.

mode A keyword that identifies the purpose for which this method opens the file. If you 
do not include the mode argument, then this method defaults the mode to 
random.

access A keyword that identifies the method to access the file. If you do not include the 
access argument for random or binary modes, then the Open File method 
attempts to access the file in the following order: 

1 Read Write

2 Write

3 Read



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

76 

Usage
The following table describes the keywords that you can use with this method.

Example
The following example opens a file for random access, gets the contents of the file, and then closes 
the file. The CreateFile subroutine creates the c:\temp001 file that the main subroutine uses:

lock A keyword that designates the access method that other processes can use to 
open this file. If you do not include the lock argument, then other processes can 
open the file that the filename argument identifies. Other processes cannot 
perform any file operation on the file while the original process still has the file 
open.

filenumber An integer that identifies the file while it is open. You can use the Get Free File 
Number method to find the next available value that you can use in the 
filenumber argument. For more information, see “Get Free File Number Method” 
on page 72.

reclen In a random or binary file, the length of the records. This method ignores the 
reclen argument for the following modes:

■ Input

■ Output

■ Append

Type of Keyword Keyword Description

Mode Input Reads data from the file sequentially.

Output Puts data into the file sequentially.

Append Adds data to the file sequentially.

Random Gets data from the file by random access.

Binary Gets binary data from the file.

Access Read Reads data only from the file.

Write Writes data only to the file.

Read Write Reads or writes data to the file.

Lock Shared Read or write is available on the file.

Lock Read Only read is available.

Lock Write Only write is available.

Lock Read Write No read or write is available.

Argument Description



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 77

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file

Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline
Do Until recno = 11

Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

Rename File Method
The Rename File method renames a file or copies a file from one directory to another directory. It 
does not return a value. The file that this method renames must be closed. Siebel VB creates an error 
message in the following situations:

■ The file that the oldfilename argument identifies is open.

■ The file that the newfilename argument identifies already exists.

If you use the Rename File method with a Siebel application, and if you do not include the path2 
argument, then it places a copy of the original file in the following directory under the new name:

c:\siebel\bin

Format
Name [path1\]oldfilename As [path2\]newfilename



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Control Methods

78 

The following table describes the arguments that you can use with this method.

Example
The following example creates the c:\temp001 file, renames this file to c:\temp002, and then deletes 
these files. It calls the CreateFile subroutine to create the c:\temp001 file:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter
Open "C:\TEMP001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Call CreateFile
On Error Resume Next
Name "C:\TEMP001" As "C:\TEMP002"
Kill "TEMP001"

Kill "TEMP002"
End Sub

Set File Attributes Method
The Set File Attributes method sets the file attributes for a specified file. It does not return a value.

You cannot use a wildcard in the pathname argument. If the file is open, you can modify the file 
attributes, but only if it is opened for Read access. 

Argument Description

path1 A string expression that contains the path to the current file location. If the file 
is not in the current directory of the current drive, then you must include this 
argument.

oldfilename A string expression that contains the name of the file that this method renames.

path2 A string expression that contains the path to the location where the renamed 
file must reside. If you do not include this argument, then this method saves 
the file in the current directory of the current drive.

newfilename A string expression that contains the new name for the file.



Methods Reference for Siebel VB ■ File Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 79

Format
SetAttr pathname, attributes 

The following table describes the arguments that you can use with this method.

Usage
The following table describes the attributes you can modify.

Example
For an example, see “Select Case Statement” on page 123.

Unlock File Method
The Unlock File method controls access to an open file. It does not return a value.

You must use the Lock File method and the Unlock File method in pairs to unlock a file, and the 
arguments that you use with these methods must be identical. For more information, see “Specifying 
the Start Argument and End Argument” on page 73.

You must remove a lock before you close the file. For more information, see “Removing Locks” on 
page 74.

Format
Unlock [#]filenumber[, {record | [start] To end} ]

Argument Description

pathname A string or string expression that evaluates to the name of the file.

attributes An integer expression that contains the new attributes of the file.

Value Description

0 Normal file.

1 Read-only file.

2 Hidden file.

4 System file.

32 Archive. File has changed since the last backup.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

80 

The following table describes the arguments that you can use with this method.

Example
For an example of the Unlock statement, see “Lock File Method” on page 73.

File Input and Output Methods
This topic describes methods that you can use to manipulate file data. It includes the following 
topics:

■ “End of File Method” on page 80

■ “Get Characters From File Method” on page 82

■ “Get File Contents Method” on page 82

■ “Get File Offset Method” on page 85

■ “Get File Position Method” on page 86

■ “Get Line From File Method” on page 87

■ “Parse File Contents Method” on page 88

■ “Print Spaces Method” on page 90

■ “Print Data to File Method” on page 91

■ “Set File Position Method” on page 92

■ “Set File Width Method” on page 93

■ “Set Print Position Method” on page 94

■ “Write Data to File Method” on page 94

■ “Write Variable to File Method” on page 96

End of File Method
The End of File method determines if the end of an open file has been reached. It returns one of the 
following values:

■ -1. The end of the file has been reached.

Argument Description

filenumber The file number that the Open statement uses to open the file. For more 
information, see “Open File Method” on page 75. 

record An integer that identifies the first record to unlock.

start A long integer that identifies the first record or byte offset to unlock.

end A long integer that identifies the last record or byte offset to unlock.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 81

■ 0. The end of the file has not been reached.

Format
Eof(filenumber)

The following table describes the arguments that you can use with this method.

Example
The following example uses the End of File method to read records from a random file. It keeps the 
Get statement from attempting to read beyond the end of the file. The CreateFile subroutine creates 
the C:\TEMP001 file that the main subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMP001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim acctno
Dim msgtext as String
newline = Chr(10)
Call CreateFile
Open "C:\temp001" For Input As #1
msgtext = "The account numbers are:" & newline
Do While Not Eof(1)

Input #1,acctno
msgtext = msgtext & newline & acctno & newline

Loop
Close #1
Kill "C:\TEMP001"

End Sub

For another example, see “Get Free File Number Method” on page 72:

Argument Description

filenumber The file number you use in the Open statement to open the file. For information 
about assigning a number to a file when it is opened, see “Open File Method” on 
page 75.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

82 

Get Characters From File Method
The Get Characters From File method returns a string that contains the characters that it reads from 
a file. It advances the file pointer according to the number of characters it reads. Unlike the Parse 
File Contents method, the Get Characters From File method returns every character it reads, 
including carriage returns, line feeds, and leading spaces.

The input buffer can hold a maximum of 32K characters. If the Get Characters From File method 
must get an amount of data that exceeds this maximum, then you must call it multiple times, 
processing 32K characters each time you call it.

Format
Input[$](number, [#]filenumber)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Get File Contents Method
The Get File Contents method reads the content of a file opened in random or binary mode, and then 
places this content in a variable. It does not return a value.

Format
Get [#]filenumber, [recnumber], varName

Argument Description

number An integer that identifies the number of bytes to read from the file.

filenumber A number that identifies the open file to use.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 83

The following table describes the arguments that you can use with this method.

Usage with Random Mode
For Random mode, the Get File Contents method reads content from the file in chunks whose size is 
equal to the size specified in the Len clause of the Open statement. It does one of the following, 
depending on the size of the variable that the varName argument identifies:

■ The variable is smaller than the record length. It discards the additional content. 

■ The variable is larger than the record length. It creates an error.

The Get File Contents method handles content differently depending on the following type of 
variable:

■ Variable length string variable. it reads two bytes of content that identifies the length of the 
string, and then copies the contents into the variable that the varName argument identifies.

■ Variant variable. It reads two bytes of content that identifies the type of the variant, and then 
it copies the body of the variant into the varName argument. A variant that includes a string 
includes the following information:

a Two bytes of data type information.

b Two bytes of length data.

c The body of the string.

■ Custom variable. It reads the content as if each member were read separately. No padding 
occurs between elements.

Argument Description

filenumber The file number that the Open statement uses to open the file. For information 
about how Siebel VB numbers a file when it opens a file, see “Open File Method” 
on page 75.

recnumber An expression of type long. It contains a value that depends on one of the 
following modes:

■ Random mode. The record number at which to start reading.

■ Binary mode. The byte offset at which to start reading.

The recnumber argument is in the range of 1 through 2,147,483,647. If you do 
not include this argument, then this method uses the next record or byte.

You must include the commas before and after the recnumber argument even if 
you do not include the recnumber argument.

varName The name of a variable. This method reads file data into this variable. It can be 
any variable type except for the following:

■ Object.

■ Array. You can use a single array element.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

84 

Usage with Binary Mode
Usage with a file opened in Binary mode is the same as usage with a file opened in Random mode 
except for the following differences:

■ The Get File Contents method reads variables from the disk without record padding.

■ For a variable length string that is not part of a custom type, the Get File Contents method does 
not precede this variable with a two-byte string length. Instead, it reads the number of bytes as 
equal to the length of the variable that the varName identifies.

Example
The following example opens a file for random access, gets the contents of this file, and then closes 
the file. The createfile subroutine creates the c:\temp001 file that the main subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button1_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline
Do Until recno = 11

Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

Related Topics
“Create Function Method” on page 102



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 85

Get File Offset Method
The Get File Offset method determines the current offset of a file. It returns a value depending on 
the following mode that it uses to open the file:

■ Random file. It returns the number of the last record read or written.

■ File opened in append, input, or output mode. It returns the current byte offset divided by 
128.

■ File opened in binary mode. It returns the offset of the last byte read or written.

The offset starts at 0 in a random file or binary file. A position starts at 1. For more information, see 
“Get File Position Method” on page 86.

Format
Loc(filenumber)

The following table describes the arguments that you can use with this method.

Example
The following example creates a file of account numbers that the user enters. When the user finishes, 
it displays the offset of the file of the last entry that the user made:

Sub Button_Click
Dim filepos as Integer
Dim acctno() as Integer
Dim x as Integer
x = 0 
Open "c:\TEMP001" for Random as #1
Do

x = x + 1
Redim Preserve acctno(x)
acctno(x) = 234
If acctno(x) = 0 then

Exit Do
End If
Put #1,, acctno(x)

Loop
filepos = Loc(1)
Close #1

Kill "C:\TEMP001"
End Sub

Argument Description

filenumber The file number that the Open statement uses to open the file.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

86 

Get File Position Method
The Get File Position method returns the current position of an open file depending on the following 
mode that it uses to open the file:

■ Random mode. It returns the number of the next record to be read or written. 

■ Other modes It returns the file offset of the next operation. 

The first byte in the file is at offset 1, the second byte is at offset 2, and so on. The return value is 
a long number.

Format
Seek(filenumber)

The following table describes the arguments that you can use with this method.

Example
The following example reads the contents of a sequential file line by line to a carriage return, and 
then displays the results. The CreateFile subroutine creates the c:\temp001 file that the main 
subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 10 to 100 step 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The test scores are: " & newline
Do Until x = Lof(1)

Argument Description

filenumber The file number that the Open statement uses to open the file. For more 
information, see “Open File Method” on page 75.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 87

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & newline & testscore 

Loop
Close #1

Kill "c:\temp001"
End Sub

Get Line From File Method
The Get Line From File method reads a line from a sequential file, and then saves it in a string 
variable. It does not return a value. You can use it to read lines of text from a text file where a 
carriage return separates each data element. You can use a read method to read data from a file that 
includes values and commas that separate each of these values.

Format A
Line Input [#] filenumber, varName

Format B
Line Input [prompt,] varName

Arguments
The following table describes the arguments that you can use with this method.

Argument Description

filenumber This method does the following depending on if you include the filenumber 
argument:

■ Include filenumber argument. It uses the file number that the Open 
statement uses to open the file. 

■ Do not include filenumber argument. It reads the line from the keyboard.

varName A string variable. This method saves a line of data or user input into this variable.

prompt A string literal that prompts the user for keyboard input. If you do not include the 
prompt argument, then this method displays a question mark (?) as the prompt.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

88 

Example
The following example reads the contents of a sequential file line by line up to a carriage return, and 
then displays the result. The CreateFile subroutine creates the C:\temp001 file that the main 
subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The contents of c:\temp001 is: " & newline
Do Until x = Lof(1)

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & testscore & newline

Loop
Close #1

Kill "c:\temp001"
End Sub

Parse File Contents Method
The Parse File Contents method reads data from a sequential file, and then saves this data to 
different variables. It does not return a value.

Format 
Input [#]filenumber, variable[, variable]...



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 89

The following table describes the arguments that you can use with this method.

Example
The following example does the following work:

1 Prompts a user for an account number.

2 Opens a file.

3 Searches the file for the account number.

4 Displays the matching letter for that number.

This example uses the Input statement to increase the value of x and at the same time to get the 
letter associated with each value. The CreateFile subroutine creates the c:\temp001 file that the 
main subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Global x as Integer
Global y(100) as String

Sub CreateFile
' Put the numbers 1-10 and letters A-J into a file

Dim startletter
Open "c:\temp001" for Output as #1
startletter = 65
For x = 1 to 10

y(x) = Chr(startletter)
startletter = startletter + 1

Next x
For x = 1 to 10

Write #1, x,y(x)
Next x
Close #1

End Sub

Sub Button2_Click
Dim acctno as Integer
Dim msgtext
Call CreateFile

start: acctno = 2
If acctno<1 Or acctno>10 then

Goto start:
End if
x = 1

Argument Description

filenumber The file number that the Open statement uses to open the file.

variable One or more variables to contain the values that this method reads from the file. 
A comma separates each variable.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

90 

Open "c:\temp001" for Input as #1
Do Until x = acctno

Input #1, x,y(x)
Loop

msgtext = "The letter for account number " & x & " is: " _
& y(x)

Close #1
Kill "C:\TEMP001"

End Sub

Print Spaces Method
The Print Spaces method prints a number of spaces. It returns a string of spaces in the target of a 
Print statement. You can use it only in a Print statement. To determine the number of spaces to print, 
it uses different rules according to the following values:

■ The value in the number argument is less than the total line width. It prints the number 
spaces according to the value of the number argument.

■ The value in the number argument is greater than the total line width. It prints the 
number of spaces according to the modulus of the following calculation:

Value in the argument that the Print Spaces method receives divided by the length of the 
string to print.

The modulus in this context is the remainder of a calculation rounded to an integer.

■ X is less is than the value of the number argument or number Mod width, where x is the 
difference between the current print position and the output line width. It skips to the next line 
and prints the value of the number argument minus x spaces.

You can use the Set File Width statement to set the width of a print line. For more information, see 
“Set File Width Method” on page 93.

Format
Spc(number)

The following table describes the arguments that you can use with this method.

Example
The following example prints five spaces and the following string to a file:

ABCD

This example divides 15 by 10 with a remainder of 5 to determine the five spaces:

Argument Description

number An integer or integer expression that specifies the number of spaces to print.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 91

Sub Button_Click
Dim str1 as String
Dim x as String * 10
str1 = "ABCD"
Open "C:\temp001" For Output As #1
Width #1, 10
Print #1, Spc(15); str1
Close #1
Open "C:\TEMP001" as #1 Len = 12
Get #1, 1,x
Close #1
Kill "C:\temp001"

End Sub

Print Data to File Method
The Print Data to File method prints data to an open file. It does not return a value. You can use the 
following methods in a Print statement:

■ Print Spaces method. Inserts a given number of spaces. For more information, see “Print 
Spaces Method” on page 90.

■ Set Print Position method. Moves the print position to a desired column. For more information, 
see “Set Print Position Method” on page 94.

The Print statement supports only elementary Visual Basic data types. For more information on 
parsing this statement, see “Get Characters From File Method” on page 82.

Format
Print [#][filenumber,] expressionList [{;|, }]

The following table describes the arguments that you can use with this method.

Usage for the Expression List
You can use one of the following characters to separate each value in the expressionList argument: 

Argument Description

filenumber The file number that the Open statement uses to open the file. The Print Data to 
File method prints data to this file. For more information, see “Open File Method” 
on page 75.

expressionList A list of values that this method prints. It prints these values in the form of 
literals or expressions. It determines where output for the next Print statement 
to the same output file must begin. 

If you do not include the expressionList argument, then this method writes a 
blank line to the file.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

92 

■ Semicolon (;). The next value must occur immediately after the preceding value without 
intervening white space. 

■ Comma (,). The next value must occur at the next print zone. A new print zone begins every 14 
spaces.

If you do not specify a semicolon or a comma, then the Print Data to File method creates a CR-LF 
(carriage return - line feed) pair and the next Print statement prints on the next line.

Set File Position Method
The Set File Position method sets the position of the next read or write operation in an open file. It 
does not return a value. If you write to a file after reading beyond the end of the file, then this 
method increases the file length. If a read operation attempts to specify a negative or zero position, 
then Visual Basic returns an error message.

Format
Seek [#]filenumber, position

The following table describes the arguments that you can use with this method.

Example
The following example reads the contents of a sequential file line by line to a carriage return, and 
then displays the results. The CreateFile subroutine creates the c:\temp001 file that the main 
subroutine uses:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 10 to 100 step 10

Write #1, x

Argument Description

filenumber The file number that the Open statement uses to open the file. For more information, 
see “Open File Method” on page 75.

position An expression of type long that identifies the position depending on the following 
mode that this method uses to open the file:

■ Random mode. The position of a record number. 

■ Other modes. The position of the byte offset. 

The position is in the range of 1 through 2,147,483,647. The first byte or record in 
the file is at position 1, the second is at position 2, and so on.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 93

Next x
Close #1

End Sub

Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The test scores are: " & newline
Do Until x = Lof(1)

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & newline & testscore 

Loop
Close #1

Kill "c:\temp001"
End Sub

Set File Width Method
The Set File Width method sets the output line width for an open file. It does not return a value.

Format
Width [#]filenumber, width

The following table describes the arguments that you can use with this method.

Example
For an example, see “Print Spaces Method” on page 90

Argument Description

filenumber The file number that the Open statement uses to open the file. For more information, 
see “Open File Method” on page 75.

width An integer expression that specifies the width of the output line. A value of zero (0) 
specifies that no line length limit exists. The default value is zero (0).



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

94 

Set Print Position Method
The Set Print Position method sets the current print position. It does not return a value. You can use 
it only in a Print statement. Position number 1 is the leftmost print position. This method sets the 
new print position according to one of the following values of the position:

■ The value in the position argument is less than the total line width. It sets the new print 
position to the value in the position argument.

■ The value in the position argument is greater than the total line width. It sets the new 
print position according to the following calculation:

The remainder of the input position argument divided by the length of the string

■ The current print position is greater than the position or the position Mod width. It skips 
to the next line and sets the print position to the value in the position argument or to the value 
in the position Mod width.

You can use the Set File Width statement to set the width of a print line. For more information, see 
“Set File Width Method” on page 93.

Format
Tab(position)

The following table describes the arguments that you can use with this method.

Example
The following example prints the octal values for the numbers from 1 through 25. It uses the Set 
Print Position method to insert five character spaces between the values:

Sub Button_Click
Dim x As Integer
Dim y As String
For x = 1 to 25

y = Oct$(x)
Print x Tab(10) y

Next x
End Sub

Write Data to File Method
The Write Data to File method writes data to an open sequential file. It does not return a value. You 
must open the file in output mode or in append mode. If you do not include the expressionList 
argument, then it writes a blank line to the file. For more information, see “Lock File Method” on 
page 73.

Argument Description

position The position at which Siebel VB begins to print.



Methods Reference for Siebel VB ■ File Input and Output Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 95

The Write statement places quotes around the string that it writes to the file.

Format
Write [#]filenumber[, expressionList]

The following table describes the arguments that you can use with this method.

Example
The following example writes a variable to a file according to a comparison of the last saved time of 
the file and the current time:

Sub Button_Click
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, I
tempfile = "C:\TEMP001"
Open tempfile For Output As #1
filetime = FileDateTime(tempfile)
x = 1
I = 1
acctno(x) = 0
Do

curtime = Time
acctno(x) = 88
If acctno(x) = 99 then

If x = 1 then Exit Sub
For I = 1 to x-1

Write #1, acctno(I)
Next I
Exit Do

ElseIf (Minute(filetime) + 2)< = Minute(curtime) then
For I = I to x-1

Write #1, acctno(I)
Next I

End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "Contents of C:\TEMP001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)

Argument Description

filenumber The file number that the Open statement uses to open the file. For more 
information, see “Open File Method” on page 75.

expressionList One or more values to write to the file.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ File Input and Output Methods

96 

msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "C:\TEMP001"
End Sub

Related Topics
“Set Print Position Method” on page 94

Write Variable to File Method
The Write Variable to File method writes a variable to a file opened in random mode or binary mode. 
It does not return a value. Usage for this method with random mode and binary mode is the same 
usage for these modes with the Get File Contents method. For more information, see “Usage with 
Random Mode” on page 83 and “Usage with Binary Mode” on page 84.

The Put statement uses the default character encoding of the local operating system. It does not 
write to the file in Unicode format.

Format
Put [#]filenumber, [recnumber], varName

The following table describes the arguments that you can use with this method.

Argument Description

filenumber The file number that the Open statement uses to open the file. For more information, 
see “Open File Method” on page 75.

recnumber An expression of type long. It contains a value that depends on one of the following 
modes:

■ Random mode. The record number at which to start reading.

■ Binary mode. The byte offset at which to start reading.

The recnumber argument is in the range of 1 through 2,147,483,647. If you do not 
include this argument, then this method uses the next record or byte.

You must include the commas before and after the recnumber argument even if you 
do not include the recnumber argument.

varName The name of the variable that contains the data to write. It can be any variable type 
except for the following types:

■ Object.

■ Application data.

■ Array. You can use a single array element.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 97

Example
The following example opens a file for random access, puts the values 1 through 10 in this file, prints 
the contents of the file, and then closes it:

Sub Button_Click
' Put the numbers 1-10 into a file

Dim x As Integer, y As Integer
Open "C:\TEMP001" as #1
For x = 1 to 10

Put #1,x, x
Next x
msgtext = "The contents of the file is:" & Chr(10)
For x = 1 to 10

Get #1,x, y
msgtext = msgtext & y & Chr(10)

Next x
Close #1

Kill "C:\TEMP001"
End Sub

Code Setup and Control Methods
This topic describes items that you can use to setup and control Siebel VB code. It includes the 
following topics:

■ “Call Application Method” on page 97

■ “Call Subroutine Method” on page 98

■ “Create Subroutine Method” on page 100

■ “Create Function Method” on page 102

■ “Declare Custom Data Type Method” on page 104

■ “Declare Procedure Method” on page 105

■ “Declare Symbolic Constant Method” on page 107

■ “Get Environment Setting Method” on page 107

■ “Remove Object Method” on page 108

■ “Send Keystrokes Method” on page 109

■ “Use Clipboard Methods” on page 113

Call Application Method
The Call Application method starts a Microsoft Windows application. It returns the task ID of this 
application, which is a unique number that identifies the running code.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

98 

The pathname argument can contain the name of any valid BAT, COM, EXE, or PIF file. You can 
include arguments and command line switches. If the pathname argument does not contain a valid 
executable file name, or if the Shell statement cannot start the code, then this method creates an 
error message.

Format
Shell(pathname, [windowStyle])

The following table describes the arguments that you can use with this method.

Example
The following example opens Microsoft Excel when the user clicks a button:

Sub Button1_Click
Dim i as long
i = Shell("C:\Program Files\Microsoft
Office\Office\EXCEL.EXE",1)

End Sub

For other examples, see “Get Right String Method” on page 148 and “Send Keystrokes Method” on 
page 109.

For more information, see “Send Keystrokes Method” on page 109.

Call Subroutine Method
The Call Subroutine method is a control structure that directs flow to a subroutine or function. It 
returns one of the following values:

■ If it calls a function, then it returns the output of the function. 

■ if it calls a subroutine, then it returns nothing.

Argument Description

pathname A string or string expression that evaluates to the name of the code to run.

windowStyle One of the following integers that specifies how to display the window:

■ 1. Normal window with focus.

■ 2. Minimized window with focus.

■ 3. Maximized window with focus.

■ 4. Normal window without focus.

■ 7. Minimized window without focus.

If you do not include the windowStyle argument, then Siebel VB uses the default 
value of 1.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 99

You can use this method to call a subroutine or function that is written in Visual Basic or to call C 
code in a DLL. A Declare Procedure method must describe this C code and it must be implicit in the 
application. You must make sure the DLL is present on every Siebel Server. For more information, 
see “Declare Procedure Method” on page 105.

If you use the Call Subroutine method, then it is recommended that you use the following guidelines:

■ “Pass Values Through Reference” on page 19

■ “Give Each Argument a Name” on page 20

Format A
Call subroutine_name [(argument_list)]

Format B
subroutine_name argument_list

where:

■ subroutine_name is the name of the subroutine or function. Siebel VB passes control to this 
subroutine or function.

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example does the following:

1 Calls a subroutine named CreateFile to open a file. 

2 Writes the numbers 1 through 10 in this file. 

3 The calling code examines the file mode, and then closes the file if the mode is 1 or 2:

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x

End Sub

Argument Description

argument_list The arguments that Siebel VB passes to the subroutine or function.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

100 

Sub Button1_Click
Dim filemode as Integer
Dim attrib as Integer
Call CreateFile
attrib = 1
filemode = FileAttr(1,attrib)
If filemode = 1 or filemode = 2 then

Close #1
End If
Kill "c:\temp001"

End Sub

Related Topics
“Declare Procedure Method” on page 105

Create Subroutine Method
The Create Subroutine method is a control structure that defines a subroutine. It does not return a 
value. It returns flow to the caller when Siebel VB encounters the End Sub statement or an Exit Sub 
statement.

Format
[Static] [Private] Sub name [([Optional] argument [As type], ...)]
End Sub

The following table describes the arguments that you can use with this method.

Usage
Note the following:

■ For important caution information, see “Caution About Writing a Custom Function or Subroutine” 
on page 103.

■ A call to a subroutine stands alone as a separate statement. For more information, see “Call 
Subroutine Method” on page 98). 

■ Siebel VB supports recursion.

Argument Description

name The name of the subroutine.

argument A list of argument names that includes commas that separate each name. For more 
information, see “Specifying Arguments” on page 101.

type The data type of the argument.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 101

■ A Visual Basic procedure passes values through reference. This means that if a procedure assigns 
a value to an argument, then it modifies the variable that the caller passes. You must use this 
feature with caution. For more information, see “Pass Values Through Reference” on page 19.

■ You must use the Create Function method rather than the Create Subroutine method to define a 
procedure that includes a return value. For more information, see “Create Function Method” on 
page 102.

Usage for the Static Keyword and Private Keyword
The Static keyword specifies that any variable you declare in this method retains a value as long as 
the code runs. This situation applies regardless of how you declare variables in this method.

The Private keyword specifies that other functions and subroutines in other modules cannot access 
the subroutine that you define with this method. Only procedures defined in the same module can 
access a private function.

Specifying Arguments
Note the following:

■ To specify multiple arguments, you can use a list of variable names where a comma separates 
each name. 

■ To specify the data type of an argument, you can use a type character or the As clause.

■ To declare a record argument, you use the As clause and a value in the type argument. You must 
have already used the Type statement to define this value in the type argument. 

■ To declare an array argument, you can use empty parentheses after the argument. You do not 
specify array dimensions in the Create Subroutine method. You must use a consistent number of 
dimensions for every reference to an array argument that occurs in the body of the Create 
Subroutine code.

Declaring Optional Arguments
If you declare an optional argument, then you can omit the value for this argument when Siebel VB 
calls the method that contains this argument. Note the following:

■ You can only declare a variant argument as optional. 

■ Any optional arguments must occur after the required arguments in the Create Subroutine 
method.

■ You can use the IsMissing method to determine if an optional argument is omitted. For more 
information, see “Is Optional Argument Missing Method” on page 211. For more information on 
using named arguments, see “Comments” on page 29 and “Call Subroutine Method” on page 98.

Example
The following example is a subroutine that uses the Create Subroutine method:



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

102 

Sub Button1_Click
‘Hello, World.

End Sub

Related Topics
“Declare Variable Statement” on page 128
“Create Function Method” on page 102
“Declare Global Variable Statement” on page 129
“Force Explicit Declaration Statement” on page 133
“Declare Global Variable Statement” on page 129

Create Function Method
The Create Function method creates a function. It returns to the caller when it encounters an End 
Function statement or an Exit Function statement. It returns the value that the expression argument 
calculates.

Format
[Static] [Private] Function name([[Optional ]argument 
[As type]][, ... ]) [As funcType]

name = expression
End Function

The following table describes the arguments that you can use with this method.

Usage
For information about the static and private keywords, see “Usage for the Static Keyword and Private 
Keyword” on page 101.

A Visual Basic procedure passes values through reference. This means that if a procedure assigns a 
value to an argument, then it modifies the variable that the caller passes. You must use this feature 
with caution. For more information, see “Pass Values Through Reference” on page 19.

For information about declaring optional arguments, see “Declaring Optional Arguments” on page 101.

Argument Description

name The name of the function.

argument The argument to pass to the function when Siebel VB calls it. For more 
information, see “Specifying Arguments” on page 101.

type The data type of the argument.

funcType The data type of the value that the function returns.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 103

Specifying the Type
Specifying the type character when you use the Create Function method is optional. A function can 
create and return a single value of a type that you specify. The data type of the value in the name 
argument determines the type of the return value. You can do one of the following to specify the data 
type:

■ Use a type character as part of the name. 

■ Use the As funcType clause.

If you do not use one of these formats, then Siebel VB uses the default data type, which is variant. 

Specifying the Return Value
You use the following format to specify the return value for the function name:

name = expression

where: 

■ name is the name of the function

■ expression evaluates to a return value 

If you do not include this code, then Siebel VB returns one of the following values:

■ 0 for a numeric function

■ null string ("") for a string function 

■ An Empty variable type for a return type of variant. For more information, see “Variants” on 
page 26.

You can use the Sub statement to define a procedure that does not include a return value.

Caution About Writing a Custom Function or Subroutine
If you create more than one function or subroutine in the general declarations section, then you must 
make sure that any other custom function or subroutine that you create that calls this function or 
subroutine occurs before the procedure that calls it. Otherwise, you cannot compile your procedures.

CAUTION: You cannot create a custom function or custom subroutine in a method or event that 
displays in Siebel Tools. You can create a custom function or custom subroutine in the general 
declarations section in the script of a method. If your function or subroutine must be available 
throughout the code, then you can use a PreInvokeMethod method or an external DLL file to store 
them in a central location. For more information, see doc ID 476501.1 on My Oracle Support.

Example
The following example declares a function that the subroutine calls. The function performs a 
calculation on the value sent to it. This calculation modifies the value of the variable:

(general) (declarations)
Option Explicit
Declare Function Calculate(i as Single) As Single



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

104 

Function Calculate(i As Single)
i = i * 3 + 2
Calculate = i

End Function

Sub Button_Click
Dim x as String
Dim y As Single
x = 34
y = val(x)
Call Calculate(y)

End Sub

For other examples, see “Declare Procedure Method” on page 105, and “Example 2” on page 119.

Related Topics
“Call Subroutine Method” on page 98
“Create Subroutine Method” on page 100
“Declare Variable Statement” on page 128
“Declare Global Variable Statement” on page 129
“Force Explicit Declaration Statement” on page 133
“Is Optional Argument Missing Method” on page 211

Declare Custom Data Type Method
The Declare Custom Data Type method declares a custom data type. It does not return a value. For 
more information, see “About Data Types” on page 22.

Format
Type userType

field1 As type1
field2 As type2

...
End Type

The following table describes the arguments that you can use with this method.

Usage
You can use the following format to access the fields of a record:

recordName.fieldName

Argument Description

userType The name of the custom data type.

field1, field2 Each argument specifies the name of a field in the custom type.

type1, type2 Each argument specifies the data type of the field.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 105

You can use the following format to access the fields of an array of records:

arrayName(index).fieldName

You cannot specify an array in the field argument. Arrays of records are allowed.

You cannot use the Type statement in a procedure definition. You must use it in the general 
declarations section. For example, see “Set Array Lower Boundary Method” on page 164. 

Siebel VB cannot pass a custom type to a COM function or subroutine.

To declare a record variable, you can use the Declare Custom Data Type method in a Declare Variable 
method. Siebel VB does not allocate memory when you define a custom type. It only allocates 
memory if you use a Declare Variable method to declare a custom type. If you declare a variable of 
a custom type, then you are instantiating the type. For more information, see “Declare Variable 
Statement” on page 128.

Example
The following example includes a Type statement and a Dim statement. You must define a record 
type before you can declare a record variable. The subroutine references a field in the record:

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub Button_Click
Dim myrecord As Testrecord
Dim msgText As String

i:
myrecord.custncustomame = "Chris Smith"
If myrecord.custname = "" then

Exit Sub
End If

End Sub

Related Topics
“Set Variable Data Type Statement” on page 136
“Declare Variable Statement” on page 128

Declare Procedure Method
The Declare Procedure method declares a procedure in a module or in a dynamic link library (DLL). 
The value it returns depends on one of the following formats that you use:

■ Format A. It does not return a value.

■ Format B. A value of the funcType type. You can use this value in an expression.

For more information about the format and arguments that you can use with this method, see 
“Declaring a Procedure” on page 33.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

106 

Format A
Declare Sub name [(argument [As type])]

Format B
Declare Function name [(argument [As type])] [As funcType]

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example declares a function that the main subroutine subsequently calls. This function 
only sets the return value to 1:

(general) (declarations)
Option Explicit
Declare Function SVB_exfunction()

Function SVB_exfunction()
SVB_exfunction = 1

End Function

Sub Button_Click
Dim y as Integer
Call SVB_exfunction
y = SVB_exfunction

End Sub

For other examples of functions, see “Create Function Method” on page 102 and “Go To Statement” on 
page 118.

Related Topics
“Create Function Method” on page 102
“Declare Symbolic Constant Method” on page 107
“Declare Variable Statement” on page 128
“Declare Global Variable Statement” on page 129
“Set Variable Data Type Statement” on page 136

Argument Description

name The name of the subroutine or function that this method declares.

argument The argument that this method passes. A comma separates each argument.

type The data type of the arguments.

funcType The data type of the return value.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 107

Declare Symbolic Constant Method
The Declare Symbolic Constant method declares a symbolic constant. It does not return a value. 

Format
[Global] Const constantName [As type] = expression [, constantName [As type] = 
expression] …

The following table describes the arguments that you can use with this method.

Usage
To specify the type of the constant, you can use one of the following characters as a suffix of the 
constantName argument:

■ # (pound sign). Specifies a number. 

■ $ (dollar sign). Specifies a string. 

You can use this technique instead of using the As clause. 

If you do not specify a type character, then the Declare Symbolic Constant method derives the type 
of the value that you specify in the constantName argument from the type of the expression.

To specify a global constant, you must declare it in the general declarations section of the module 
where you must access this global variable.

Example
For an example, see “Convert Expression to Long Method” on page 225.

Get Environment Setting Method
The Get Environment Setting method returns the string setting that is assigned to an environment 
variable for a keyword in the environment table of the operating system. If it cannot find the value 
that you specify, then it returns a null string.

Format A
Environ[$](environment-string)

The return value for format A is the string that is associated with the keyword.

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56. 

Argument Description

constantName The variable name to contain a constant value.

type The data type of the constant. This type is Number or String.

expression Any expression that evaluates to a constant number.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

108 

Format B
Environ[$](numeric_expression)

The return value for format B is a string that uses the following format:

KEYWORD=value

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example lists the strings from the operating system environment table:

Sub Button_Click
Dim str1(100)
Dim msgtext
Dim count, x
Dim newline
newline = Chr(10)
x = 1
str1(x) = Environ(x)
Do While Environ(x) <> ""

str1(x) = Environ(x)
x = x + 1
str1(x) = Environ(x)

Loop
msgtext = "The Environment Strings are:" & newline & newline
count = x
For x = 1 to count

msgtext = msgtext & str1(x) & newline
Next x

End Sub

Remove Object Method
You can use the Remove Object method to remove from memory an object that Siebel VB instantiates 
in memory. If an object variable does not reference an object, then it contains a value of Nothing. 
The Remove Object method does not return a value.

Argument Description

environment-string The name of a keyword in the operating system. You must enter the 
value for this argument in uppercase. If you do not, then this method 
returns a null string ("").

numeric_expression An integer for the position of the string in the environment table. For 
example, 1st, 2nd, 3rd, and so on. This method rounds the numeric 
expression to a whole number, if necessary.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 109

Format
Set objectName = Nothing

The following table describes the arguments that you can use with this method.

For example:

If Not objectVar Is Nothing then
objectVar.Close

Set objectVar = Nothing
End If

Example
The following example adds an activity record when the user adds a contact record in a Siebel 
application. It presumes that the Contact business component is the parent business component. It 
instantiates the Action business component, and then uses the Remove Object method to remove 
this instance from memory after it finishes processing the business component data:

Sub BusComp_WriteRecord

Dim oBCact as BusComp
Set oBCact = theApplication.ActiveBusObject.GetBusComp("Action")

With oBCact
.NewRecord NewAfter
.SetFieldValue "Type", "Event"
.SetFieldValue "Description", "ADDED THRU SVB"
.SetFieldValue "Done", Format(Now(),"mm/dd/yyyy hh:mm:ss")
.SetFieldValue "Status", "Done"
.WriteRecord

End With

set oBCact = Nothing
End Sub

For other examples that use the Remove Object method, see “Date and Time Methods” on page 179 
and “Get COM Object Method” on page 233.

Send Keystrokes Method
The Send Keystrokes method sends keystrokes to an active Microsoft Windows application. It does 
not return a value. It can send a keystroke only to the currently active application. You can use the 
AppActivate statement to activate an application. You cannot use this method to send keys to an 
application that does not run in Microsoft Windows.

Argument Description

objectName The name of the object variable to set to Nothing.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

110 

Format
SendKeys string[, wait]

The following table describes the arguments that you can use with this method.

Specifying Alphanumeric Characters
To specify an alphanumeric character, you enter it in the string argument. For example, to send the 
character a, you use a as the value in the string argument. You can combine multiple characters in 
one string. For example, if the string argument contains abc, then Siebel VB sends the following 
values to the application:

a, b, and c

Specifying Control Keys
To specify that the user must press the SHIFT, ALT, or CTRL key simultaneously with a character, you 
prefix the character with one of the following values:

■ +. Specifies SHIFT.

■ %. Specifies ALT.

■ ^. Specifies CTRL.

You can use parentheses to specify that the user must press the SHIFT, ALT, or CTRL key with a group 
of characters. For example, %(abc) is equivalent to %a%b%c. 

Control Keys That the Send Keystrokes Method Interprets
The following table describes some keys that the Send Keystrokes method interprets. To specify one 
of these characters as a literal value, you must enclose the character in curly brackets ({}).

Argument Description

string A string or string expression that contains the characters to send. Each character 
in the string argument represents a keystroke.

wait Specifies to wait until Siebel VB processes every key before it continues to the next 
code line. It can include one of the following values:

■ -1. Wait.

■ 0. Do not wait. This is the default value.

Key Description 

+ SHIFT key.

% ALT key.

^ CTRL key.

( ) Apply a shift state to the characters that the parentheses enclose.



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 111

For example, if the string argument contains {%}, then the Send Keystrokes method sends the literal 
value of the percentage symbol (%).

You can use the following format to send a bracket:

■ Left bracket. You use {{}.

■ Right bracket. You use {}}.

Repeating the Same Key
To send the same key multiple times, you can enclose the character in curly brackets ({}), add a 
space, and then specify the number of keys to send. For example, the following code sends 20 X 
characters:

{X 20}

Sending Nonprintable Keys
The following table describes how you can to send a nonprintable key. You can use a special keyword 
and enclose it in curly brackets ({}).

~ Newline. Note the following:

■ Tilde (~). Represents the ENTER key on an alphanumeric keypad.

■ {Enter}. Represents the ENTER key on a numeric keypad.

{ } Makes the enclosed characters literals.

[ ] Square brackets do not possess a special meaning for the Send Keystrokes 
method, but they might possess a special meaning for other applications.

Nonprintable Key Format 

BACKSPACE {BACKSPACE} or {BKSP} or {BS}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

CLEAR {CLEAR}

DELETE {DELETE} or {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER (on numeric keypad) {ENTER}

ESC {ESCAPE} or {ESC}

HELP {HELP}

HOME {HOME}

Key Description 



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Setup and Control Methods

112 

Combining Keywords
You can use the following characters to combine some keywords:

■ Plus sign (+)

■ Percentage symbol (%) 

■ Caret (^)

For example, %{TAB} is ALT+TAB. 

You can send multiple keywords. For example, the following code sends 25 up arrows:

{UP 25}

Example
The following example starts the Microsoft Windows Phone Dialer application and dials a phone 
number that the user enters:

Sub Button_Click
Dim phonenumber, msgtext
Dim x
phonenumber = 650-555-1212
x = Shell ("Terminal.exe",-1)
SendKeys "%N" & phonenumber & "{Enter}", -1

End Sub

Related Topics
“Call Application Method” on page 97

INSERT {INSERT}

LEFT ARROW {LEFT}

NUM LOCK {NUMLOCK}

PAGE DOWN {PGDN}

PAGE UP {PGUP}

RIGHT ARROW {RIGHT}

SCROLL LOCK {SCROLLLOCK}

TAB {TAB}

UP ARROW {UP}

Function key (F1 through 
F15)

You enclose the name of the function key in curly brackets ({}). For 
example, to send F5, you use the following format:

{F5}

Nonprintable Key Format 



Methods Reference for Siebel VB ■ Code Setup and Control Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 113

Use Clipboard Methods
The Use Clipboard methods are standard Visual Basic methods that allow you to use the Microsoft 
Windows clipboard as an object. They do not return a value. You can use the Microsoft Windows 
Clipboard to transfer text to and from other applications that support this clipboard.

Format
Clipboard.Clear
Clipboard.GetText()
Clipboard.SetText string
Clipboard.GetFormat()

The following table describes the arguments that you can use with these methods.

The following table describes the statements that you can use the clipboard.

The following table describes the arguments that you can use with these methods.

If code or if a cut or copy operation places data that is of the same format as the data that currently 
resides in the clipboard, then the current data on the clipboard is lost.

Example
The following example places the following text string on the clipboard:

Hello, world:

Sub Button_Click
Dim mytext as String
mytext = "Hello, world."
Clipboard.Settext mytext

End Sub

Argument Description

string A string or string expression that contains the text to send to the clipboard.

Statement Description

Clear Clears the contents of the clipboard.

GetText Returns a text string from the clipboard.

SetText Puts a text string in the clipboard.

GetFormat Returns one of the following values:

■ Not zero. The format of the item on the clipboard is text.

■ Zero (0). The format of the item on the clipboard is not text.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

114 

Code Control Statements
This topic describes statements that you can use to control the flow of Siebel VB code. It includes 
the following topics:

■ “Do Loop Statement” on page 114

■ “Exit Statement” on page 115

■ “For Next Statement” on page 116

■ “Go To Statement” on page 118

■ “If Then Else Statement” on page 119

■ “Go To Label Statement” on page 120

■ “Me Statement” on page 121

■ “Rem Statement” on page 122

■ “Select Case Statement” on page 123

■ “Stop Statement” on page 124

■ “While Wend Statement” on page 125

Do Loop Statement
The Do Loop statement is a control structure that repeats a series of code lines as long as an 
expression is TRUE. It does not return a value. 

If an Exit Do statement runs, then control flows to the statement that resides immediately after the 
Loop statement. If you use an Exit Do statement in a nested loop, then it moves control out of the 
immediate loop.

Format A
Do [{ While|Until } condition]
statement_block

[Exit Do]
statement_block

Loop

Format B
Do
statement_block

[Exit Do]
statement_block

Loop [{ While|Until } condition]



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 115

Arguments
The following table describes the arguments that you can use with this method.

Example
For examples, see “Get File Names Method” on page 71, “Erase Array Method” on page 162, and “Get 
Error Code Method” on page 236.

Exit Statement
The Exit statement is a control structure that stops statements that reside in a loop or transfers 
control to a calling procedure. It does not return a value.

You can include an Exit Do statement in a Do Loop statement. You can use an Exit For statement in 
a For Next statement. When the Exit statement runs, control transfers to the statement that occurs 
after the Loop statement or the Next statement. When used in a nested loop, an Exit statement 
moves control out of the immediately enclosing loop.

Note the following:

■ You can use the Exit statement in the Create Function method. For more information, see “Create 
Function Method” on page 102.

■ You can use the Exit Sub statement in the Create Subroutine method. For more information, see 
“Create Subroutine Method” on page 100.

Format
Exit {Do | For | Function | Sub}

Example
The following example uses the On Error statement to handle run-time errors. If an error exists, then 
the code continues at the Debugger label. This example uses the Exit statement to skip the 
debugging code when no error exists:

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger
msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
' ....etc....
Close #1

done:

Argument Description

condition Any expression that evaluates to TRUE (not zero) or FALSE (0).

statement_block Code lines to repeat while or until the value you specify in the condition 
argument is TRUE (not zero).



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

116 

Exit Sub
Debugger:

msgtext = "Error " & Err & ": " & Error$
Resume done

End Sub

For Next Statement
The For Next statement is a control structure that repeats a series of code lines a fixed number of 
times. It does not return a value.

Format
For counter = start To end [Step increment]

statement_block

[Exit For]

statement_block

Next [counter]

The following table describes the arguments that you can use with this method.

 

How Siebel VB Handles a For Next Statement
Siebel VB compares the sign of start and the sign of end to the sign of increment, and then does one 
of the following:

■ If the signs are the same, and if end does not equal start, then it starts the For Next loop. 

■ If the signs are not the same, then it skips the loop entirely.

Siebel VB does the following when it runs a For Next loop:

1 Runs the code lines that occur after the For statement until it encounters the Next statement. 

2 Adds the Step amount to the counter.

3 Compares the value in the counter argument to the value in the end argument. 

4 Does one of the following:

Argument Description

counter A numeric variable for the loop counter.

start The initial value of the counter.

end The ending value of the counter.

increment The amount by which Siebel VB modifies the counter each time the loop 
runs. The default value is 1.

statement_block The Visual Basic functions, statements, or methods to run.



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 117

■ If the beginning and ending values are the same. It runs the loop one time, regardless 
of the Step value. 

■ If the beginning and ending values are not same. It uses the Step value to control the 
loop as follows:

Usage
The values in the start argument and the end argument must be consistent with the value in the 
increment argument:

■ If end is greater than start, then increment must be positive. 

■ If end is less than start, then increment must be negative. 

You must not modify the value of the counter while the loop runs. Changing this value makes the 
code more difficult to maintain and debug.

You can use the Exit For statement as an alternative exit from a For Next loop.

Nesting a For Next Loop
You can nest a For Next loop in another For Next loop:

■ You must specify a unique variable name for the counter in each nested loop. 

■ You must make sure the Next statement of the inner loop occurs before the Next statement of 
the outer loop.

To merge Next statements that are multiple and consecutive, you must make sure the innermost 
counter occurs first and the outermost counter occurs last. For example:

For i = 1 To 10
statement_block
For j = 1 To 5

statement_block
Next j, i

Step Value Description

Positive Siebel VB does one of the following, depending on the value of the 
counter:

■ The counter is less than or equal to the value in the end 
argument. It adds the Step value to counter. Control returns to the 
statement after the For statement and the process repeats. 

■ The counter is greater than the value in the end argument. It 
exits the loop, and then resumes running code with the statement that 
occurs immediately after the Next statement.

Negative Siebel VB repeats the loop until the counter is less than the value in the 
end argument.

Zero Siebel VB repeats the loop indefinitely.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

118 

If you do not include the variable in a Next statement, then this Next statement matches the most 
recent For statement. If a Next statement occurs prior to the corresponding For statement for this 
Next statement, then Siebel VB returns an error message.

Example
For an example, see “Convert Expression to Single-Precision Method” on page 226.

Go To Statement
The Go To statement is a control structure that directs flow to a label. It does not return a value. The 
value of the label argument uses the same format as any other Visual Basic name. A reserved word 
is not a valid label. You cannot use a Go To statement to transfer control out of the current function 
or subroutine. It is recommended that you avoid using a Go To statement. For more information, see 
“Example 2” on page 119.

Format
GoTo label

The following table describes the arguments that you can use with this method.

Example 1
The following example displays the date for one week from the date that the user enters. If the date 
is not valid, then the Go To statement directs flow to the beginning of the start statement:

Sub Button_Click
Dim str1 as String
Dim nextweek
Dim msgtext

start: 
str1 = "5/20/2001"
answer = IsDate(str1)
If answer = -1 then

str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from the date entered is "
msgtext = msgtext & Format(nextweek,"dddddd")

Else
GoTo start
End If

End Sub

Argument Description

label A name that begins in the first column of a line of code and ends in a colon (:).



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 119

Example 2
It is recommended that you avoid using a Go To statement. When possible, you must use another 
technique. For example, “Example 1” on page 118 could use an If statement that occurs in a separate 
function that the main code calls. If the test fails, then Siebel VB can call the initial code again. For 
example:

(general) (declarations)
Option Explicit
' Variables must be declared in this section so that they 
' can be used by both procedures.
Dim str1 As String, nextweek, MsgText As String
Declare Function CheckResponse(Answer) As String

Function CheckResponse(Answer) As String
str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
CheckResponse = "One week from the date entered is " & _

Format(nextweek, "dddddd")
End Function

Sub Button1_Click
Dim Answer as String
str1 = "2/5/2001"
Answer = IsDate(str1)
If Answer <> -1 Then

‘Invalid date or format. Try again. 
Button1_Click

Else
Answer = CheckResponse(Answer)
End If 

End Sub

If Then Else Statement
The If Then Else statement is a control structure that runs a block of code according to one or more 
expressions. It does not return a value.

Format A
If condition Then then_statement [Else else_statement]

Format B
If condition Then

statement_block
[ElseIf expression Then
statement_block ]...
[Else
statement_block ]

End If



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

120 

If you require multiple statements in the Then clause or in the Else clause, then you must use Format 
B.

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example examines the time and the day of the week and returns a message: 

Sub Button_Click
Dim h, m, m2, w
h = hour(now)
If h > 18 then

m = "Good evening, "
Elseif h >12 then

m = "Good afternoon, "
Else

m = "Good morning, "
End If

w = weekday(now)
If w = 1 or w = 7 

Then m2 = "the office is closed." 
Else m2 = "please hold for company operator."
End If

End Sub

Go To Label Statement
The Go To Label statement is a control structure that directs flow to a label in the current procedure 
according to the value of a numeric expression. It does not return a value.

If the value in the number argument evaluates to:

■ Zero or to a number that is greater than the number of labels that occur after the Go To Label 
statement, then Siebel VB runs the code at the next statement. 

■ Less than 0 or greater than 255, then Siebel VB creates the following error:

Illegal function call

Argument Description

condition Any expression that evaluates to TRUE (not zero) or FALSE (zero).

then_statement Any valid single expression.

else_statement Any valid single expression.

expression Any expression that evaluates to TRUE (not zero) or FALSE (zero).

statement_block Zero or valid expressions where a colon (:) or a different code line separates 
each expression.



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 121

Format
On number GoTo label1[, label2, ... ]

The following table describes the arguments that you can use with this method.

Me Statement
The Me statement is standard Visual Basic shorthand that refers to the currently used object. It does 
not return a value. A Siebel VB module can be attached to an application object. If this application 
object encounters a some events, then Siebel VB might call a subroutine. For example, if the user 
clicks a button, then the Me statement runs Visual Basic code or a statement calls a method on an 
application object.

A subroutine in this situation can use the Me variable to reference the object that starts the event. 
For example, the button click. You can use the Me statement the same way that you use any other 
object variable except that you can use the Assign COM Object statement to set Me.

Format A
With Me

.methodname() statement
End With

Format B
Me.methodname() statement

Arguments
The following table describes the arguments that you can use with this method.

 

Example
For an example, see “Modify Variable Statement” on page 132.

Argument Description

number Any numeric expression that evaluates to a positive number.

label1, label2, ... A label in the current procedure. Siebel VB directs flow to this procedure.

Argument Description

methodname The name of the method that Siebel VB uses with the object.

statement The statement argument includes one of the following items:

■ The code that Siebel VB runs

■ The arguments to the method



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

122 

Related Topics
“Date and Time Methods” on page 179
“Get COM Object Method” on page 233
“Initialize COM Object Method” on page 235
“Remove Object Method” on page 108
“COM Object Class” on page 230
“Is Object Of Class Method” on page 211

Rem Statement
The Rem statement identifies a line of code as a comment in Visual Basic code. It does not return a 
value. A code line that begins with a single quote (') also identifies a comment. 

Format
Rem comment

Example
The following example code is attached to a button on the Account Form applet that counts the 
number of corresponding child contact records:

Sub Button1_Click

Dim i as Integer
Dim icount as Integer
Dim oBC as BusComp

Rem Test this from the Account Contacts View
Rem This code presumes that Account is the parent BusComp
Rem BusObject returns the business object 
Rem associated with a control or applet.

Rem GetBusComp here returns a reference 
Rem to the BC that is in the UI context.

set oBC = me.BusObject.GetBusComp("Contact")

Rem FirstRecord positions you at the 
Rem first record in the business component.
Rem FirstRecord, NextRecord, and so forth, do not return Booleans.
Rem Siebel VB does not have a Boolean data type.

i = oBC.FirstRecord Rem Returns 0 if fails, 1 if succeeds
if i <> 1 then

else
icount = 0
Rem This is a sample of using a while statement to loop.
Rem NextRecord returns 1 if it succesfully 
Rem moved to the next record in the BC



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 123

While i = 1
icount = icount + 1
i = oBC.NextRecord Rem Returns 1 if successful

wend
oBC.FirstRecord
end if

End Sub

Select Case Statement
The Select Case statement is a control structure that runs one or more statements, depending on 
the value of an expression. It does not return a value. 

Format
Select Case testexpression

Case expressionList
[statement_block]

[Case expressionList 
[statement_block] ]

.

.
[Case Else

[statement_block]
End Select

The following table describes the arguments that you can use with this method.

Usage
If the value in the testexpression argument is equal to the value in the expressionList argument, 
then Siebel VB runs the statement_block that occurs immediately after the Case clause. When Siebel 
VB encounters the next Case clause, the code flows to the statement that occurs immediately after 
the End Select statement.

The expressionList can include a list of expressions. A comma separates each expression in this list. 
It can include one of the following forms:

expression

expression To expression

Argument Description

testexpression Any expression that contains a variable.

expressionList One or more expressions that contain a possible value for the testexpression 
argument.

statement_block One or more lines of code to run if the value in the testexpression argument 
equals a value in the expressionList argument.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Code Control Statements

124 

Is comparison_operator expression

The type of each expression must be compatible with the type of the testexpression. 

Each statement_block can contain any number of statements on any number of lines.

Using the Is Keyword
If you use the To keyword to specify a range of values, then the smaller value must occur first. The 
comparison_operator that you use with the Is keyword must contain one of the following: 

■ < (less than)

■ > (greater than)

■ = (equal)

■ < = (less than or equal)

■ > = (great than or equal)

■ <> (not equal)

If the Case is one end of a range, then you must use the Is operator. For example:

Case Is < 100

Stop Statement
The Stop statement is a control structure that stops code from running. It does not return a value. 
It does not include arguments. You can include a Stop statement anywhere in Siebel VB code. A Stop 
statement does not close files or clear variables.

Format
Stop

Example
The following example stops code from running when the user clicks a button:

Sub Button_Click
Dim str1
str1 = Y
If str1 = "Y" or str1 = "y" then

Stop
End If

End Sub



Methods Reference for Siebel VB ■ Code Control Statements

Siebel VB Language Reference Siebel Innovation Pack 2015 125

While Wend Statement
The While Wend statement is a control structure that controls a repetitive action. It does not return 
a value. Siebel VB includes the While statement so that it is compatible with older versions of Visual 
Basic. If possible, it is recommended that you use the Do Loop statement instead. For more 
information, see “Do Loop Statement” on page 114.

Format
While condition

statement_block
Wend

The following table describes the arguments that you can use with this method.

Example
The following example opens a series of files and looks for the following string in each file:

*Overdue*

This example uses the While Wend statement to loop through the c:\temP00? files. The CreateFiles 
subroutine creates these files:

(general) (declarations)
Option Explicit
Declare Sub CreateFiles

Sub CreateFiles
Dim odue as String
Dim ontime as String
Dim x
Open "c:\temp001" for OUTPUT as #1
odue = "*Overdue*"
ontime = "*On-Time*"
For x = 1 to 3

Write #1, odue
Next x

For x = 4 to 6
Write #1, ontime

Next x
Close #1
Open "c:\temp002" for Output as #1
Write #1, odue
Close #1

End Sub

Argument Description

condition A condition where Siebel VB runs the statements in a statement_block.

statement_block A series of statements that Siebel VB runs while the value in the condition 
argument is TRUE.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

126 

Sub Button_Click
Dim custfile as String
Dim aline as String
Dim pattern as String
Dim count as Integer
Call CreateFiles
Chdir "c:\"
custfile = Dir$("temP00?") 
pattern = "*" + "Overdue" + "*"
While custfile <> ""

Open custfile for input as #1
On Error goto atEOF
Do

 Line Input #1, aline
 If aline Like pattern Then

 count = count + 1
 End If

Loop
nxtfile:

On Error GoTo 0
Close #1
custfile = Dir$

Wend
Kill "c:\temp001"
Kill "c:\temp002"
Exit Sub

atEOF:
Resume nxtfile

End Sub

Variable Manipulation Methods
This topic describes statements and methods that setup and control variables. It includes the 
following topics:

■ “Assign Expression to Variable Statement” on page 127

■ “Declare Variable Statement” on page 128

■ “Declare Global Variable Statement” on page 129

■ “Declare Static Variable Statement” on page 132

■ “Modify Variable Statement” on page 132

■ “Force Explicit Declaration Statement” on page 133

■ “Get Variant Type Method” on page 134

■ “Set Variable Data Type Statement” on page 136

■ “Set Variant Variable to Null Method” on page 137



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 127

Assign Expression to Variable Statement
The Assign Expression to Variable statement is a predefined VB statement that assigns an expression 
to a Visual Basic variable. It does not return a value. You can use it to assign a value or expression 
to a variable that is of one of the following data types:

■ Numeric

■ String

■ Variant

■ Record

If you use this statement to assign a value to a numeric variable or to a string variable, then Siebel 
VB applies the standard conversion rules.

You can use this statement to assign a value to a field in a record or to assign a value to an element 
in an array.

The Let keyword is optional. Let is different from Set because Set assigns a variable to a COM object. 
For example:

■ Set o1 = o2. Sets the object reference.

■ Let o1 = o2. Sets the value of the default member.

Format
[Let] variable = expression

The following table describes the arguments that you can use with this method.

Example
The following example uses the Assign Expression to Variable statement for the sum variable. It 
calculates an average of 10 golf scores:

Sub Button_Click
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum = 34
For x = 1 to 10

score = 76
sum = sum + score

Next x
msgtext = "Your average is: " & CInt(sum/(x-1))

End Sub

Argument Description

variable The variable where Siebel VB assigns a value.

expression The expression that contains the value that Siebel VB assigns.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

128 

Related Topics
“Declare Symbolic Constant Method” on page 107

Declare Variable Statement
The Declare Variable statement declares a variable. It does not return a value. For more information 
about the format and arguments you can use this statement, see “Declaring Variables” on page 35.

Dim is an abbreviation for Declare in Memory. You must begin the value in the VariableName 
argument with a letter. It must contain only letters, numbers, and underscores. You can use square 
brackets to separate a name. You can use any character between the square brackets except for 
more square brackets. For example:

Dim my_1st_variable As String
Dim [one long and strange! variable name] As String

Format
Dim [Shared] variableName [As[ New] type] [, variableName [As[ New] type]] ...

The following table describes the arguments that you can use with this method.

Example
The following example includes a Dim statement for each of the possible data types:

' Must define a record type before you can declare a record 
' variable

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub Button_Click
Dim counter As Integer
Dim fixedstring As String * 25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()
'...(code here)...

End Sub

Argument Description

variableName The name of the variable to declare.

type The data type of the variable.



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 129

Related Topics
“Create Function Method” on page 102
“Declare Array Method” on page 160
“Set Array Lower Boundary Method” on page 164

Declare Global Variable Statement
The Declare Global Variable statement declares a global variable. It does not return a value. You must 
declare a global variable in every module from which Siebel VB must access that variable. You declare 
a global variable in the general declarations section of the module. 

Format
Global variableName [As type] [,variableName [As type]] ...

The following table describes the arguments that you can use with this method.

Usage
If you do not include the As clause, then you can add a type character as a suffix to the variableName 
argument. You can simultaneously use the two different type specification methods in a single Global 
statement, but you cannot use these methods simultaneously on the same variable.

Regardless of how you declare a global variable, you can choose to include or not include the type 
character when you reference the variable from another section of code. Siebel VB does not consider 
the type suffix as part of the variable name.

Formats That You Can Use to Specify the Type of a Global Variable 
Visual Basic is a strongly typed language. You must assign a data type to a variable or Siebel VB 
assigns a type of variant. 

Argument Description

variableName The variable name.

type The data type of the variable.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

130 

Table 24 describes the data types you can use to specify the type of a global variable. Declaring a 
global variable is the same as declaring a variable, except where noted in the Format column in 
Table 24. The Reference column includes a link to the description for declaring a variable.

Example 
The following example includes two subroutines that share the total and acctno variables, and the 
grecord record:

Table 24. Formats That You Can Use to Specify the Type of a Global Variable

Type Format Reference

Array You use the following format to declare a global 
record:

Global variable([ subscriptRange, ... ]) 
[As typeName]

where:

■ subscriptRange uses the following format:

[startSubscript To] endSubscript

“Declaring an Array Variable” on 
page 36

Number Not applicable. “Declaring a Number Variable” 
on page 37

Record You use the following format to declare a global 
record:

Global variableName As typeName

You cannot use the Declare Global Variable statement 
to declare a dialog record.

“Declaring a Record Variable” on 
page 37

String You use the following format to declare a global 
string:

Global variableName As String * length

You use one of the following formats to declare a 
dynamic string:

Global variableName$

Global variableName As String

“Declaring a String Variable” on 
page 37

Variant You use one of the following formats to declare a 
global variant:

Global variableName

GlobalvariableName As Variant

“Declaring a Variant Variable” on 
page 38



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 131

(general)(declarations)
Option Explicit
Type acctrecord

acctno As Integer
End Type

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord
Declare Sub CreateFile

Sub CreateFile
Dim x
x = 1
grecord.acctno = 2345
Open "c:\temp001" For Output as #1
Do While grecord.acctno <> 0

grecord.acctno = 0
If grecord.acctno <> 0 then

Print #1, grecord.acctno
x = x + 1

End If
Loop
total = x-1
Close #1

End Sub

Sub Button_Click
Dim msgtext
Dim newline as String
newline = Chr$(10)
Call CreateFile
Open "c:\temp001" For Input as #1
msgtext = "The new account numbers are: " & newline
For x = 1 to total

Input #1, grecord.acctno
msgtext = msgtext & newline & grecord.acctno

Next x
Close #1

Kill "c:\temp001"
End Sub

Related Topics
“Create Function Method” on page 102
“Declare Symbolic Constant Method” on page 107
“Declare Array Method” on page 160
“Set Array Lower Boundary Method” on page 164



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

132 

Declare Static Variable Statement
The Declare Static Variable statement declares a variable and allocates storage space for this 
variable. It does not return a value.

A variable that you declare with the Static statement retains a value as long as the code runs. The 
format you use is exactly the same as the format you use with the Declare Variable statement. For 
more information, see “Declare Variable Statement” on page 128.

To make a procedure variable static, you can use the Static keyword in the definition of this 
procedure. For more information, see “Create Function Method” on page 102 and “Create Subroutine 
Method” on page 100.

Format
Static variableName [As type] [,variableName [As type]] …

The following table describes the arguments that you can use with this method.

Related Topics
“Declare Array Method” on page 160
“Set Array Lower Boundary Method” on page 164

Modify Variable Statement
The Modify Variable statement runs a series of statements on a variable. It does not return a value. 
The value you specify in the variable argument can be an object or a custom type. You can nest With 
statements.

Format
With variable

statement_block
End With

The following table describes the arguments that you can use with this method.

Argument Description

variableName The name of the variable to declare as static.

type The data type of the variable. If you do not include the type argument, then 
Siebel VB uses the variant type.

Argument Description

variable The variable that Siebel VB modifies in the statement_block.

statement_block The statements that Siebel VB runs on the variable.



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 133

Example
The following example uses a Siebel VB method to modify the values that an object contains if Siebel 
CRM modifies a field value. The Modify Variable statement references this object: 

Sub BusComp_SetFieldValue(FieldName As String)

Select Case FieldName
Case "Account Status"
If Me.GetFieldValue(FieldName) = "Inactive" Then

Dim oBCact as BusComp
Dim sMessage as String
Set oBCact = me.BusObject.GetBusComp("Action")
sMessage = “ADDED THRU SVB: Account Status made Inactive"

With oBCact
.NewRecord NewAfter
.SetFieldValue "Type", "Event"
.SetFieldValue "Description", sMessage
.SetFieldValue "Done", _

Format(Now(),"mm/dd/yyyy hh:mm:ss")
.SetFieldValue "Status", "Done"
.WriteRecord

End With

set oBCact = Nothing
End If
End Select

End Sub

For another example, see “Remove Object Method” on page 108.

Force Explicit Declaration Statement
The Force Explicit Declaration statement forces you to explicitly declare every variable in a module. 
It does not return a value.

Format
Option Explicit

Usage
Visual Basic declares any variables that does not occur in one of the following statements, by default:

■ Dim

■ Global

■ ReDim

■ Static



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

134 

If you include the Force Explicit Declaration statement in your code, then Siebel VB creates the 
following error every time it encounters a variable that is not declared:

Variable Not Declared 

Using the Force Explicit Declaration statement makes debugging code easier because it forces you 
to declare each variable before you use it. It is recommended that you declare variables at the 
beginning of the project, module, or procedure where these variables possess scope. Declaring 
variables in this way simplifies locating their definitions when reading through code. 

You must include the Force Explicit Declaration statement in the general declarations section. For 
more information, see “Set Array Lower Boundary Method” on page 164.

Example
The following example specifies that variables must be explicitly declared. This technique prevents 
mistyped variable names:

Option Explicit
Sub Button_Click

Dim counter As Integer
Dim fixedstring As String * 25
Dim varstring As String
'...(code here)...

End Sub

Related Topics
“Create Subroutine Method” on page 100
“Create Function Method” on page 102
“Declare Symbolic Constant Method” on page 107
“Declare Array Method” on page 160

Get Variant Type Method
The Get Variant Type method returns a number that represents the type of data stored in a variant 
variable. For more information, see “Variants” on page 26. 

Format
VarType(varName)

The following table describes the arguments that you can use with this method.

Example
The following example returns the variant type of the myarray variant variable:

Argument Description

varName The name of a variant variable.



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 135

Sub Button_Click
Dim x
Dim myarray(8)
Dim retval
Dim retstr
myarray(1) = Null
myarray(2) = 0
myarray(3) = 39000
myarray(4) = CSng(10^20)
myarray(5) = 10^300
myarray(6) = CCur(10.25)
myarray(7) = Now
myarray(8) = "Five"
For x = 0 to 8

retval = Vartype(myarray(x))
Select Case retval

Case 0
retstr = " (Empty)"

Case 1
retstr = " (Null)"

Case 2
retstr = " (Integer)"

Case 3
retstr = " (Long)"

Case 4
retstr = " (Single)"

Case 5
retstr = " (Double)"

Case 6
retstr = " (Currency)"

Case 7
retstr = " (Date)"

Case 8
retstr = " (String)"

End Select
If retval = 1 then

myarray(x) = "[null]"
ElseIf retval = 0 then

myarray(x) = "[empty]"
End If
Next x

End Sub

Related Topics
“Is Expression a Date Method” on page 210
“Is Variable Null Method” on page 212
“Is Variable Numeric Method” on page 213
“Is Variable Set Method” on page 214



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Variable Manipulation Methods

136 

Set Variable Data Type Statement
The Set Variable Data Type statement sets the default data type for one or more variables. 

Format
DefCur varTypeLetters
DefInt varTypeLetters
DefLng varTypeLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypeLetters

The following table describes the arguments that you can use with this method.

Usage
The VarTypeLetters argument can be one of the following:

■ Single letter

■ List of letters that includes a comma to separate each letter

■ Range of letters 

For example, if you specify a-d, then Siebel VB uses letters a, b, c, and d. 

The case of the letters is not important, even in a letter range. Siebel VB considers the a-z letter 
range as all alpha characters, including international characters.

The Deftype statement affects only the code where you specify it. It must precede any variable 
definition in the code.

To override the Deftype statement, you can use the Global statement or the Declare Variable 
statement to declare a variable, and then use an As clause or a type character.

For more information, see “Variants” on page 26.

Example
The following example determines the average of bowling scores that the user enters. Because the 
average variable begins with A, this example defines it as a single-precision, floating point number. 
It defines the other variables as integers:

DefInt c,s,t
DefSng a
Sub Button_Click

Dim count
Dim total
Dim score

Argument Description

varTypeLetter The first letter of a variable name.



Methods Reference for Siebel VB ■ Variable Manipulation Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 137

Dim average
Dim msgtext
For count = 0 to 4

score = 180
total = total + score

Next count
average = total/count
msgtext = "Your average is: " &average

End Sub

Related Topics
“Create Function Method” on page 102
“Declare Procedure Method” on page 105

Set Variant Variable to Null Method
The Set Variant Variable to Null method sets a variant variable to a value of Null. It returns a variant 
that is set to NULL. Note that Visual Basic sets a variant to the empty value, which is different from 
the Null value.

Format
variableName = Null

The Set Variant Variable to Null method does not include arguments.

Example
The following example calculates the average of ten test score values. If any score is negative, then 
it sets this value to Null. Before this example calculates the average, the IsNull statement reduces 
the total count of scores to only those scores that are positive values:

Sub Button_Click
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count = 10
total = 0
For x = 1 to count

tscore = 88
If tscore < 0 then

arrayvar(x) = Null
Else

arrayvar(x) = tscore
total = total + arrayvar(x)

End If
Next x
Do While x <> 0



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

138 

x = x - 1
If IsNull(arrayvar(x)) = -1 then

count = count - 1
End If

Loop
msgtext = " The average (excluding negative values) is: " 

msgtext = msgtext & Chr(10) & Format (total/count, "##.##")
End Sub

Related Topics
“Is Variable Null Method” on page 212
“Is Variable Set Method” on page 214
“Get Variant Type Method” on page 134

String Methods
This topic describes string methods. It includes the following topics:

■ “Compare Strings Method” on page 139

■ “Compare Strings Operator” on page 140

■ “Convert Number to String Method” on page 141

■ “Convert String to Lowercase Method” on page 142

■ “Convert String to Uppercase Method” on page 143

■ “Copy String Method” on page 143

■ “Get a String of Spaces Method” on page 144

■ “Get ANSI String Method” on page 145

■ “Get First Number From String Method” on page 146

■ “Get Left String Method” on page 147

■ “Get Repeated Character String Method” on page 147

■ “Get Right String Method” on page 148

■ “Get String Length Method” on page 149

■ “Get Substring Method” on page 150

■ “Get Substring Position Method” on page 151

■ “Remove Spaces From String Method” on page 153

■ “Replace String Method” on page 154

■ “Right-Justify String Method” on page 155

■ “Set String Comparison Method” on page 156

■ “Set String Format Method” on page 157



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 139

■ “Trim Spaces From String Method” on page 159

■ “Trim Trailing Spaces From String Method” on page 159

Compare Strings Method
The Compare Strings method compares two strings. It returns one of the following integers. This 
integer describes the result of the comparison:

■ -1 (negative one). string1 is less than string2.

■ 0 (zero). string1 equals string2.

■ >1 (greater than one). string1 is greater than string2.

■ Null. string1 equals Null or string2 equals Null.

This method passes the values in the string1 argument and string2 argument as a variant. It 
supports any type of expression. It automatically converts a number to a string.

Format
StrComp(string1, string2[, compare])

The following table describes the arguments that you can use with this method.

Example
The following example compares a custom string to the Smith string:

Option Compare Text
Sub Button_Click

Dim lastname as String
Dim smith as String

Argument Description

string1 An expression that contains the first string to compare.

string2 An expression that contains the second string to compare.

compare An integer that specifies if the comparison is case-sensitive. You use one of the 
following values:

0. Case-sensitive. It performs a case-sensitive comparison according to the ANSI 
character set sequence.

1. Not case-sensitive. It performs a comparison that is not case-sensitive according 
to the relative order of characters. The country code setting for your computer 
determines this order. 

If you do not include the compare argument, then this method uses the module-level 
default. The Set String Comparison method sets this default. For more information, 
see “Set String Comparison Method” on page 156.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

140 

Dim x as Integer
smith = "Smith"
lastname = "smith"
x = StrComp(lastname,smith,1)
If x = 0 then

‘You typed Smith or smith
End If

End Sub

Compare Strings Operator
The Compare Strings operator is a standard Visual Basic operator that compares the contents of two 
strings. It returns one of the following values:

■ -1 (TRUE). The string does match the pattern. 

■ 0 (FALSE). The string does not match the pattern.

If the string argument or if the pattern argument is NULL, then it returns NULL.

The Compare Strings operator performs a comparison according to the current configuration of the 
Set String Comparison method. For more information, see “Set String Comparison Method” on 
page 156.

For more information about operators, see “About Expressions” on page 29.

Format
string LIKE pattern

The following table describes the arguments that you can use with this method.

Usage
The following table describes characters that you can use in the pattern argument.

Argument Description

string Any string or string expression.

pattern Any string expression to compare to the value of the string argument.

Character Character That the Compare Strings Operator Compares

? A single character.

* A set of zero or more characters.

# A single digit character in the range of 0 through 9.

[chars] A single character in chars.

[!chars] A single character not in chars.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 141

A range or list can occur in a single set of square brackets. The Compare Strings operator matches 
ranges according to their ANSI values. In a range, the value in startchar must be less than the value 
in endchar.

Example
The following example determines if a letter is lowercase:

Sub Button_Click
Dim userstr as String
Dim revalue as Integer
Dim msgtext as String
Dim pattern
pattern = "[a-z]"
userstr = "E"
retvalue = userstr LIKE pattern
If retvalue = -1 then

msgtext = "The letter " & userstr & " is lowercase."
Else

msgtext = "Not a lowercase letter."
End If

End Sub

Convert Number to String Method
The Convert Number to String method converts a number to a string. It returns a string 
representation of this number. It uses the following precision in the returned string:

■ Single-precision for an integer or for a single-precision numeric expression. 

■ Double-precision for a long number or for a double-precision numeric expression.

■ Currency precision for currency. 

■ A variant returns the precision of the underlying variable type. For more information, see 
“Variants” on page 26.

Format
Str[$](number)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

[startchar–endchar] A single character in the range startchar through endchar.

[!startchar–endchar] A single character not in the range startchar through endchar.

Character Character That the Compare Strings Operator Compares



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

142 

The following table describes the arguments that you can use with this method.

Example
The following example prompts the user to enter two numbers. It adds these numbers, and then 
displays them as a concatenated string:

Sub Button_Click
Dim x as Integer
Dim y as Integer
Dim str1 as String
Dim value1 as Integer
x = 1
y = 2
str1 = "The sum of these numbers is: " & x+y
str1 = Str(x) & Str(y)

End Sub

Convert String to Lowercase Method
The Convert String to Lowercase method converts the contents of a string to lowercase, and then 
returns a lowercase copy of that string. It substitutes characters according to the country specified 
in the Microsoft Windows Control Panel. It accepts expressions of type string. It accepts any type of 
argument and converts the input value to a string.

If you must configure Siebel VB to compare text values but not case, then you can use the Convert 
String to Lowercase method and the Convert String to Uppercase method. For more information, see 
“Convert String to Uppercase Method” on page 143.

Format
LCase[$](string)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example converts to lowercase a string that the user enters:

Argument Description

number The number that this method converts to a string.

Argument Description

string A string or an expression that contains a string. If this value is NULL, then this 
method returns a Null variant. For more information, see “Variants” on page 26.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 143

Sub Button_Click
Dim userstr as String

userstr = "This Is A Test"
userstr = LCase$(userstr)

End Sub

Convert String to Uppercase Method
The Convert String to Uppercase method converts lowercase letters to uppercase letters. It returns 
a copy of this string. Note the following:

■ The conversion occurs according to the country specified in the Microsoft Windows Control Panel.

■ It accepts any type of argument and converts the input value to a string.

■ If the value that the string argument contains is NULL, then this method returns a Null variant. 
For more information, see “Variants” on page 26.

Format
UCase[$](string)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example converts a file name that the user enters to uppercase letters:

Option Base 1
Sub Button_Click

Dim filename as String
filename = "c:\temp\trace.txt"
filename = UCase(filename)

End Sub

Copy String Method
The Copy String method copies one string to another string or assigns a custom variable to another 
variable. It does not return a value. It copies values differently depending on the following:

■ The value in the string argument is shorter than the value in the string-expression 
argument. It copies the leftmost characters that the string-expression contains to the string 
that the string argument identifies. The number of characters it copies is equal to the length of 
the string argument. 

Argument Description

string A string or string expression.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

144 

■ The value in the string argument is longer than the value in the string-expression 
argument. It copies every character in the string-expression argument to the string that the 
string argument identifies, filling it from left to right. It replaces any leftover characters in the 
string argument with spaces.

You cannot use the Copy String method to assign variables of different custom types if one of these 
variables contains a variant or a variable-length string.

Format A
Lset string = string-expression

Format B
Lset variable1 = variable2

If you use format B, then the number of characters that this method copies is equal to the length of 
the shorter of variable1 and variable2.

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example places a user last name into a variable. If the name is longer than the size of 
lastname, then it truncates the user name:

Sub Button_Click
Dim lastname as String
Dim strlast as String * 8
lastname = "Smith"
Lset strlast = lastname
msgtext = "Your last name is: " & strlast

End Sub

Get a String of Spaces Method
The Get a String of Spaces method returns a string of spaces.

Argument Description

string A string variable or string expression to contain the copied characters.

string-
expression

A string variable or string expression that contains the string that this method 
copies.

variable1 A variable in a custom type to contain the copied variable.

variable2 A variable that contains a custom type to be copied.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 145

Format
Space[$](number)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
For an example, see “Get Octal Method” on page 174.

Get ANSI String Method
The Get ANSI String method returns the character string that corresponds to the ANSI code of the 
character that the charCode argument contains.

Format
Chr[$](charCode)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example displays the character equivalent for an ASCII code in the range of 65 through 
122:

Sub Button_Click
Dim numb as Integer
Dim msgtext as String
Dim out as Integer
out = 0
Do Until out

numb = 75
If Chr$(numb)> = "A" AND Chr$(numb)< = "Z" _

OR Chr$(numb)> = "a" AND Chr$(numb)< = "z" then
msgtext = "The letter for the number " & numb _

&" is: " & Chr$(numb)

Argument Description

number A numeric expression that specifies the number of spaces to return. This number can 
be any numeric data type, but this method rounds the number to an integer. This 
number must reside in the range of 0 through 32,767.

Argument Description

charCode An integer in the rage of 0 through 255 that identifies the ANSI code for a 
character.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

146 

out = 1
ElseIf numb = 0 then

Exit Sub  
Else

msgtext = "Does not convert to a character; try again."
End If

Loop
End Sub

Get First Number From String Method
The Get First Number From String method returns the numeric value of the first number that it finds 
in a string. If it finds no number, then it returns 0 (zero). It ignores any spaces that exist in the string.

Format
Val(string)

The following table describes the arguments that you can use with this method.

Example
The following example examines the value of the profit variable. If profit contains a negative number, 
then it displays 0 (zero). The Sgn statement determines if profit is positive, negative, or zero:

Sub Button_Click
Dim profit as Single
Dim expenses
Dim sales
expenses = 100000
sales = 20000
profit = Val(sales)-Val(expenses)
If Sgn(profit) = 1 then

‘Yeah! We turned a profit!
ElseIf Sgn(profit) = 0 then

‘Okay. We broke even.
Else

‘Uh, oh. We lost money.
End If

End Sub

Argument Description

string A string or string expression that contains a number.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 147

Get Left String Method
The Get Left String method returns a string copied from the beginning of another string. If the value 
in the length argument is greater than the length of the string that the string argument specifies, 
then it returns the entire string.

Format
Left[$](string, length)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example gets a user first name from the entire name:

Sub Button_Click
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace = Chr(32)
username = "Chris Smith"
count = InStr(username,charspace)

firstname = Left(username,count)
End Sub

Get Repeated Character String Method
The Get Repeated Character String method creates a string that consists of a repeated character. It 
returns this string.

Format A
String[$](number, character)

Argument Description

string A string or an expression that contains a string. This method returns a substring of 
the string that you specify. The substring begins at the first character of this string.

If this argument contains a NULL value, then this method returns a Null variant. For 
more information, see “Variants” on page 26.

This method accepts any type of string, including numeric values, and converts the 
input value to a string.

length An integer that specifies the number of characters to copy.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

148 

Format B
String[$] (number, stringExpression)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example places asterisks (*) in front of a string that it prints as a payment amount:

Sub Button_Click
Dim str1 as String
Dim size as Integer

i: str1 = 666655.23
If Instr(str1,".") = 0 then

str1 = str1 + ".00"
End If
If Len(str1)>10 then

Goto i
End If
size = 10-Len(str1)

'Print amount in a space on a check allotted for 10 characters
str1 = String(size,Asc("*")) & str1

End Sub

Get Right String Method
The Get Right String method returns a portion of a string beginning at the end of the string. Note 
the following:

■ It accepts any type of string, including numeric values, and converts the input value to a string.

■ If the value that the string argument contains is NULL, then it returns a Null variant. For more 
information, see “Variants” on page 26.

■ If the value in the length argument is greater than the length of the string, then it returns the 
entire string.

Argument Description

number The length of the string that this method returns. This number must reside 
in the range of 0 through 32,767.

character An integer or integer expression that contains the ANSI code of the character 
that this method uses. This argument must evaluate to an integer in the 
range of 0 through 255.

stringExpression A string argument. This method uses the first character of this argument as 
the repeated character.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 149

Format
Right[$](string, length)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example searches for the BMP extension in a file name that the user enters. If it does 
not find the file, then it activates the Paintbrush application. It uses the Option Compare Text 
statement to accept uppercase or lowercase letters for the file name extension. For more 
information, see “Set String Comparison Method” on page 156:

Option Compare Text
Sub Button_Click

Dim filename as String
Dim x
filename ="d:\temp\picture.BMP"
extension = Right(filename,3)
If extension = "BMP" then

x = Shell("PBRUSH.EXE",1)
Sendkeys "%FO" & filename & "{Enter}", 1

Else

End If
End Sub

Get String Length Method
The Get String Length method gets the length of one of the following:

■ The string that the string argument contains 

■ The string in the variable that the varName argument identifies

Format A
Len(string)

Format B
Len(varName)

Argument Description

string A string or string expression that contains the characters to copy.

length The number of characters to copy, beginning at the right-most position of the string 
and counting toward the left.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

150 

Arguments
The following table describes the arguments that you can use with this method.

Example
The following example returns the length of a name that the user enters, including spaces:

Sub Button_Click
Dim username as String
username = "Chris Smith"
count = Len(username)

End Sub

Get Substring Method
The Get Substring method returns a portion of a string, starting at a location in the string that you 
specify. It allows you to get a substring from a string. It accepts any type of string, including numeric 
values, and converts the input value to a string. To modify a portion of a string, see “Replace String 
Method” on page 154.

Format
Mid[$](string, start[, length])

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

Argument Description

string Includes a string or an expression that evaluates to a string. If you use the string 
argument, then this method returns the number of characters that the string 
contains. 

varName Identifies a variable that contains a string. If the varName argument:

■ Identifies a variant variable. This method returns as a string the number of 
bytes required to identify the value of this variable.

■ Identifies a variant variable that contains NULL. This method returns a Null 
variant.

■ Does not identify a variant variable. This method returns the length of the 
predefined data type or the custom type.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 151

The following table describes the arguments that you can use with this method.

Example
The following example returns the last name in a string that the user enters:

Sub Button_Click
Dim username as String
Dim position as Integer
username = "Chris Smith"
Do

position = InStr(username," ")
If position = 0 then

Exit Do
End If
position = position + 1
username = Mid(username,position)
Loop

End Sub

Get Substring Position Method
The Get Substring Position method returns the position of the first occurrence of a substring that 
resides in another string. It can also return the following values:

■ Returns a zero in the following situations:

■ The value in the start argument is greater than the length of the value in the string2 
argument.

■ The string1 argument contains a null string.

■ The string2 argument is not found.

■ If the string1 argument or the string2 argument contains a null variant, then it returns a null 
variant.

■ If the string2 argument contains a null string (""), then it returns the value of the start argument.

Argument Description

string A string or string expression that contains the string that this method copies. If this 
value is NULL, then this method returns a Null variant. 

Mid$ requires the string argument to be of type string or variant. For more 
information, see “Variants” on page 26.

start An integer that identifies the starting position in the string argument to begin 
copying characters. The position of the first character in a string is 1.

If the number in the start argument is larger than the number of positions that the 
string contains, then this method returns a null string ("").

length An integer that specifies the number of characters to copy. 



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

152 

Format A
InStr([start,] string1, string2)

Format B
InStr(start, string1, string2[, compare])

Arguments
Arguments can be of any type. This method converts them to strings.

The following table describes the arguments that you can use with this method.

Example
The following example creates a random string of characters, and then uses the Get Substring 
Position method to find the position of a single character in that string:

Sub Button_Click
Dim x as Integer
Dim y
Dim str1 as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim position as Integer
Dim msgtext, newline
upper = Asc("z")
lower = Asc("a")

Argument Description

start An integer that identifies a position in the string that the string1 argument 
identifies. This position is the starting position, with the first character in the string 
as 1. 

If you do not specify a value for the start argument, then this method starts at the 
beginning of the string.

string1 The string that includes the substring.

string2 The substring.

compare You can use one of the following values:

■ 0. Perform a search that is case-sensitive according to the ANSI character set 
sequence.

■ 1. Perform a search that is not case-sensitive according to the relative order of 
characters as determined by the country code setting for your computer.

If you do not include the compare argument, then this method uses the module 
level default that the Set String Comparison method sets. For more information, 
see “Set String Comparison Method” on page 156.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 153

newline = Chr(10)
Randomize
For x = 1 to 26

randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter

'Need to waste time here for fast processors
For y = 1 to 1000
Next y

Next x
str2 = "i"
position = InStr(str1,str2)
If position then

msgtext = "The position of " & str2 & " is: " _
& position & newline & "in string: " & str1

Else
msgtext = "The letter: " & str2 & " was not found in: " _

& newline
msgtext = msgtext & str1
End If

End Sub

Remove Spaces From String Method
The Remove Spaces From String method removes leading spaces from a string. It returns a copy of 
this string with the leading spaces removed. It accepts any type of string, including numeric values, 
and converts the input value to a string.

If the value that the string argument contains is NULL, then this method returns a Null variant. For 
more information, see “Variants” on page 26.

Format
LTrim[$](string)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example removes the leading spaces from a string:

Sub Button_Click
Dim userinput as String
Dim numsize
Dim str1 as String * 50
Dim strsize

Argument Description

string A string or string expression that contains the string that this method trims.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

154 

strsize = 50
userinput = "abdcGFTRes"
numsize = Len(userinput)
str1 = Space(strsize-numsize) & userinput
' Str1 has a variable number of leading spaces.
str1 = LTrim$(str1)

' Str1 now has no leading spaces.
End Sub

Replace String Method
The Replace String method replaces part or all of one string with another string. It returns the string 
that the stringVar argument contains.

Format
Mid (stringVar, start[, length]) = string

The following table describes the arguments that you can use with this method.

Usage
This method replaces characters starting at the start position to the end of the string in the following 
situations:

■ You do not include the length argument.

■ The string that the string argument contains is shorter than the value that the length argument 
contains. 

This method does the following:

■ If the start value is larger than the number of characters in stringVar, then it appends the string 
that the string argument contains to stringVar.

■ If length plus start is greater than the length of stringVar, then it replaces characters only up to 
the end of stringVar.

■ If the value in the start argument is greater than the number of characters that exist in stringVar, 
then it creates an error at runtime. 

The Replace String method never modifies the number of characters in the stringVar argument.

Argument Description

stringVar The string that this method modifies.

start An integer that identifies the position in stringVar at which to begin replacing 
characters. The position of the first character in a string is 1.

length An integer that identifies the number of characters to replace.

string The string that this method places into stringVar.



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 155

Example
The following example replaces the last name in a custom string with asterisks (*):

Sub Button_Click
Dim username as String
Dim position as Integer
Dim count as Integer
Dim uname as String
Dim replacement as String
username = "Chris Smith"
uname = username
replacement = "*"
Do

position = InStr(username," ")
If position = 0 then

Exit Do
End If
username = Mid(username,position + 1)
count = count + position

Loop
For x = 1 to Len(username)

count = count + 1
Mid(uname,count) = replacement
Next x

End Sub

Right-Justify String Method
The Right-Justify String method right-justifies one string in another string. It does not return a value. 
It justifies a string in the following ways:

■ Value in the string argument is longer than string-expression. It replaces the leftmost 
characters of the string with spaces.

■ Value in the string argument is shorter than string-expression. It copies only the leftmost 
characters of string-expression.

You cannot use it to assign variables of different custom types.

Format
Rset string = string-expression

The following table describes the arguments that you can use with this method.

Argument Description

string The string that receives the right-aligned characters.

string-expression The string that this method puts into the string that the string argument 
contains.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

156 

Example
The following example right-justifies an amount that the user enters in a field that is 15 characters 
long. It then pads the extra spaces with asterisks (*) and adds a dollar sign ($) and decimal places, 
if necessary:

Sub Button_Click

Dim amount as String * 15
Dim x as Integer
Dim msgtext as String
Dim replacement as String
Dim position as Integer

replacement = "*"
amount = 234.56
position = InStr(amount,".")
If position = 0 then

amount = Rtrim(amount) & ".00"
End If
Rset amount = "$" & Rtrim(amount)
length = 15-Len(Ltrim(amount))
For x = 1 to length

Mid(amount,x) = replacement
Next x

End Sub

Set String Comparison Method
The Set String Comparison method specifies the default method for string comparisons to case-
sensitive or not case-sensitive. It does not return a value. You must include this method in the 
general declarations section. Note the following:

■ A binary comparison is case-sensitive. It compares strings according to the ANSI character set. 
A lowercase letter is different from an uppercase letter.

■ A text comparison is not case-sensitive. It compares strings according to the relative order of 
characters. The country code setting for your computer determines this order.

Format
Option Compare {Binary | Text}

This statement does not include arguments.

Example
The following example compares the following strings:

■ Jane Smith

■ jane smith



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 157

If Set String Comparison is Text, then these strings are the same. If Set String Comparison is Binary, 
then these strings are not the same. Binary is the default value. To examine this difference, you can 
run the example, comment out the Set String Comparison method, and then run it again:

Option Compare Text
Sub Button_Click

Dim strg1 as String
Dim strg2 as String
Dim retvalue as Integer
strg1 = "JANE SMITH"
strg2 = "jane smith"

i:
retvalue = StrComp(strg1,strg2)
If retvalue = 0 then

‘The strings are identical
Else

‘The strings are not identical
Exit Sub
End If

End Sub

Set String Format Method
The Set String Format method returns an expression in a format that you specify. For details about 
how to use this method, see “About Formatting Strings” on page 39.

Format
Format[$](expression[, format])

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Argument Description

expression The value that this method formats. This argument can contain one of the following 
items:

■ Number

■ String

■ Variant

This method formats the value you enter as a number, date, time, or string 
depending on the format argument. To format a string, it transfers one character at 
a time from the value you enter in the expression argument to the output string.

format A string expression that identifies the format that this method uses. You must use 
quotation marks ("") to enclose the value in the format argument.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ String Methods

158 

Usage
The Set String Format method formats a numeric value as a number or date and time. If you specify 
a numeric expression, and if you do not include the format argument, or if the format argument is 
null, then this method converts the number to a string without any special formatting.

It can format a numeric value or a variant as a date. If it formats a numeric value as a date, then it 
interprets the value according to standard Visual Basic date encoding. The starting date is December 
30, 1899. It represents this date as zero. It represents subsequent dates as the number of days from 
the starting date.

If the format string does not match the Regional Settings, or if the Date in the Microsoft Windows 
setting is not set to the U.S. format, then the Set String Format method does not return the correct 
format.

Example 1
The following example includes tokens:

Sub Button1_Click
Dim msgtext As String
msgtext = Format("Section #AB-234", "<\[&&&&&&&&&&&&&&&\]") _
& Chr$(13) & Chr$(13) & Format("incoming", ">@@@@@@@@\!\!") _
& Chr$(13) & Chr$(13) _
& Format("Profits are expected to rise.", _
"!&&&&&&&&&&&&&&&&&")

End Sub

Example 2
The following example calculates the square root of 2 as a double-precision, floating point value, and 
then displays it in scientific notation: 

Sub Button1_Click
Dim value As Double
Dim msgtext As String
value = CDbl(Sqr(2))
msgtext = "The square root of 2 is " & Format(value, "Scientific")

End Sub

Example 3

The following example uses multiple tokens to format the result of the Now method, which returns 
the current date and time on the computer clock: 

Sub ClickMe_Click
dim msgtext As String
msgtext = Now & Chr$(13) & Chr$(13) _
& "Today is " & Format(Now, "dddd") & ", " _
& Format(Now, "mmmm") & " " & Format(Now, "dd") & ", " _
& Format(Now, "yyyy") & "." _
& Chr$(13) & "The time is " & Format(Now, "h:nn am/pm") _
& " and " & Format(Now, "s") & " seconds."

End Sub



Methods Reference for Siebel VB ■ String Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 159

For other examples, see the following topics:

■ “Convert Expression to Currency Method” on page 223

■ “Calculate Future Value Method” on page 217

■ “Go To Statement” on page 118

Trim Spaces From String Method
The Trim Spaces From String method removes leading and trailing spaces from a string. It returns a 
copy of this string with the leading and trailing spaces removed. Note the following:

■ It accepts expressions of type string.

■ It accepts any type of string, including numeric values, and converts the input value to a string.

■ If the value that the string argument contains is NULL, then this method returns a Null variant. 
For more information, see “Variants” on page 26.

Format
Trim[$](string)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
For an example, see “Get Substring Method” on page 150.

Trim Trailing Spaces From String Method
The Trim Trailing Spaces From String method copies a string, and then removes any trailing spaces 
that exist in that copy. It returns a string with all trailing spaces removed. Note the following:

■ It accepts any type of string, including numeric values, and converts the input value to a string. 

■ If the value that the string argument contains is NULL, then it returns a Null variant. For more 
information, see “Variants” on page 26.

Format
RTrim[$](string)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

Argument Description

string A literal or expression from which this method removes leading and trailing spaces.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Array Methods

160 

The following table describes the arguments that you can use with this method.

Example
For an example, see “Right-Justify String Method” on page 155.

Array Methods
This topic describes array methods. It includes the following topics:

■ “Declare Array Method” on page 160

■ “Erase Array Method” on page 162

■ “Get Array Lower Boundary Method” on page 163

■ “Get Array Upper Boundary Method” on page 164

■ “Set Array Lower Boundary Method” on page 164

For more information, see “Arrays” on page 23.

Declare Array Method
The Declare Array method allocates memory for a dynamic array to the dimensions that you specify. 
It does not return a value. You typically use the Dim statement to declare a dynamic array without 
specifying a size for it.

Format
ReDim [Preserve] arrayName (lower To upper) [As [New] type], …

The following table describes the arguments that you can use with this method.

Argument Description

string A string or string expression.

Argument Description

arrayName The name of the array to redimension.

lower The lower boundary of the array. If you do not specify this argument, then Siebel VB 
uses 0 as the default value of the lower boundary. You can use the Set Array Lower 
Boundary method to modify this default value.

upper The upper boundary of the array.

type The data type of the array elements.



Methods Reference for Siebel VB ■ Array Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 161

Usage
Note the following:

■ You can use the ReDim statement to declare an array in a procedure that has not previously been 
declared using the Dim statement or the Global statement. In this situation, you can declare no 
more than 60 dimensions.

■ As an option, you can use the Declare Array method to reset array elements. 

■ You cannot use the Declare Array method at the module level. You must use it in a procedure.

■ The Preserve option modifies the last dimension in the array while maintaining the contents of 
the array. If you do not specify the Preserve option, then Siebel VB resets the contents of the 
array. It sets numbers to zero (0). It sets strings and variants to null ("").

■ If you do not include the As clause, then to specify the variable type, you can use a type character 
as a name suffix. You can use this clause and suffix in a single Declare Array method. YOu cannot 
use this clause and suffix on the same variable.

■ You must not redimension an array in a procedure that has received a reference to an element 
in the array in an argument. The result of this configuration is not predictable.

■ A dynamic array that you create with the Dim statement can include no more than eight 
dimensions. If you require more than eight dimensions, then you must use the Declare Array 
method. For information about declaring a dynamic array, see “Dynamic Arrays” on page 24.

Example
The following example determines the net present value for a series of cash flows. The array variable 
that holds the cash flow amounts is initially a dynamic array that this example redimensions after 
the user enters the number of cash flow periods:

Sub Button_Click
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
Dim msgtext as string
cflowper = 2
ReDim varray(cflowper)
For x = 1 to cflowper

varray(x) = 4583
Next x
msgtext = "Enter discount rate:"
aprate = 3.25
If aprate > 1 then

aprate = aprate / 100
End If
netpv = NPV(aprate,varray())

msgtext = "The Net Present Value is: " (netpv, "Currency")
End Sub



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Array Methods

162 

Related Topics
“Declare Variable Statement” on page 128
“Declare Global Variable Statement” on page 129

Erase Array Method
The Erase Array method erases the contents of a fixed array or frees the storage associated with a 
dynamic array. It does not return a value. The following table describes how it erases the contents 
of different element types.

Format
Erase Array[, Array]

The following table describes the arguments that you can use with this method.

Example
The following example prompts the user for a list of item numbers to put into an array. If the user 
must start over, then it clears the array. For information about the Dim statement, see “Declare 
Variable Statement” on page 128:

Sub Button_Click
Dim msgtext
Dim inum(100) as Integer
Dim x, count
Dim newline
newline = Chr(10)
x = 1
count = x

Element Type Description

Numeric Sets each element to zero.

Variable-length string Sets each element to a zero-length string ("").

Fixed-length string Fills the string of each element with zeros.

Variant Sets each element to Empty.

Custom type Clears each member of each element as if each member is an array 
element. For example, it sets numeric members to zero, strings to "", 
and so on.

Object Sets each element to the following value:

Nothing

Argument Description

Array The name of the array to erase.



Methods Reference for Siebel VB ■ Array Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 163

inum(x) = 0
Do

inum(x) = x + 1
If inum(x) = 99 then

Erase inum()
x = 0

ElseIf inum(x) = 0 then
Exit Do

End If
x = x + 1

Loop
count = x-1
msgtext = "You entered the following numbers:" & newline
For x = 1 to count

TheApplication.TraceOn "c:\temp\trace.txt", "Allocation", "All"
TheApplication.Trace msgtext & inum(x) & newline
Next x

End Sub

Get Array Lower Boundary Method
The Get Array Lower Boundary method returns the lowest index number of the dimension that the 
dimension argument identifies. The numbering for each dimension of an array starts at 1. If you do 
not include the dimension argument, then it uses 1 is the default.

You can use the Get Array Lower Boundary method with the Get Array Upper Boundary method to 
determine the length of an array.

Format
LBound(arrayname [, dimension] )

The following table describes the arguments that you can use with this method.

Example
The following example resizes an array if the user enters more data than this array can hold. It uses 
the LBound statement and the UBound statement to determine the existing size of the array. It uses 
the ReDim statement to resize the array. The Option Base statement sets the default lower boundary 
of the array to 1:

Option Base 1

Sub Button_Click
Dim arrayvar() as Integer
Dim count as Integer

Argument Description

arrayname The name of the array to query.

dimension The dimension to query.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Array Methods

164 

Dim answer as String
Dim x, y as Integer
Dim total
total = 0
x = 1
count = 4
ReDim arrayvar(count)

start:
Do until x = count + 1
 arrayvar(x) = 98
 x = x + 1
Loop
x = LBound(arrayvar,1)
count = UBound(arrayvar,1)
For y = x to count

 total = total + arrayvar(y)
Next y

End Sub

Get Array Upper Boundary Method
The Get Array Upper Boundary method returns the upper boundary an array. You can use the Get 
Array Lower Boundary method with the Get Array Upper Boundary method to determine the length 
of an array.

The minimum value for the lower boundary of an array is 0. The maximum value for the upper 
boundary of an array is 65,536. 

Format
UBound(arrayName[,dimension])

The following table describes the arguments that you can use with this method.

Example
For an example, see Get Array Lower Boundary Method on page 163.

Set Array Lower Boundary Method
The Set Array Lower Boundary method specifies the default lower boundary to use for an array. It 
does not return a value. Note the following:

Argument Description

arrayName The name of the array to query.

dimension The array dimension whose upper boundary this method returns. If you do not 
include this argument, then Siebel VB uses 1 as the default value.



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 165

■ You can use this method to set the lower boundary before you use any array in your code. If you 
do not use this method, then Siebel VB uses 0 as the default value for the lower boundary.

■ You can use this method only one time for each module.

■ You cannot use this method in a procedure.

■ You must include this method in the general declarations section. For example:

Option Explicit
Option Base 1
Option Compare Text

Format
Option Base lowerBound

The following table describes the arguments that you can use with this method.

Example
For an example, see Get Array Lower Boundary Method on page 163.

Mathematical Methods
This topic describes mathematical methods. It includes the following topics:

■ “Exponential Method” on page 167

■ “Get Absolute Value Method” on page 168

■ “Get ANSI Integer Method” on page 168

■ “Get Arctangent Method” on page 169

■ “Get Cosine Method” on page 170

■ “Get Hexadecimal Method” on page 170

■ “Get Integer Method” on page 171

■ “Get Rounded Integer Method” on page 172

■ “Get Logarithm Method” on page 173

■ “Get Octal Method” on page 174

■ “Get Number Sign Method” on page 175

■ “Get Random Number Method” on page 175

■ “Get Sine Method” on page 176

■ “Get Square Root Method” on page 177

Argument Description

lowerBound The value 0 or 1 or an expression that evaluates to one of these values.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

166 

■ “Get Tangent Method” on page 177

■ “Randomize Method” on page 178

Overview of Mathematical Methods
This topic describes an overview of mathematical methods.

How Some Math Methods Handle the Data Type
Some math methods provide a different return value depending on the following data types of the 
variable that contains the return value:

■ Integer or currency. The return value is a single-precision number. 

■ A single-precision value. The return value is a single-precision number. 

■ Long or variant. The return value is a double-precision value.

■ A double-precision value. The return value is a double-precision value.

These methods are noted in this chapter, where appropriate.

Trigonometric Methods
Table 25 lists the trigonometric methods that are available in Siebel VB.

Table 25. Trigonometric Methods

Method Computation

ArcCoSecant ArcCoSec(x) = Atn(x/Sqr(x*x-1))+(Sgn(x)-1)*1.5708

ArcCosine ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708

ArcCoTangent ArcTan(x) = Atn(x)+1.5708

ArcSecant ArcSec(x) = Atn(x/Sqr(x*x-1))+Sgn(x-1)*1.5708

ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))

Hyperbolic ArcCoTangent HArcCoTan(x) = Log((x+1)/(x-1))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)

Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 167

Exponential Method
The Exponential method returns the value e raised to the power of the value that you specify in the 
number argument. The value e is the base of natural logarithms. The constant e is approximately 
2.718282. For information about how this method handles the data type, see “How Some Math 
Methods Handle the Data Type” on page 166.

Format
Exp(number)

The following table describes the arguments that you can use with this method.

Example
The following example estimates the value of a factorial of a number that the user enters:

Sub Button_Click
Dim x as Single
Dim msgtext, PI
Dim factorial as Double
PI = 3.14159

i: x = 55
If x< = 0 then

Exit Sub
ElseIf x>88 then

Goto i
End If
factorial = Sqr(2 * PI * x) * (x^x/Exp(x))
msgtext = "The estimated factorial is: " & Format _

(factorial, "Scientific")
End Sub

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2

Hyperbolic Cotangent HCotan(x) = (Exp(x)+Exp(-x))/ (Exp(x)-Exp(-x))

Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))

Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2

Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x))

Secant Sec(x) = 1/Cos(x)

Argument Description

number The exponent value of e.

Table 25. Trigonometric Methods

Method Computation



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

168 

About the Factorial
A factorial is the product of a number and each integer between it and the number 1. For example, 
5 factorial, or 5!, is the product of 5*4*3*2*1, or the value 120. An exclamation point (!) can specify 
a factorial.

Get Absolute Value Method
The Get Absolute Value method returns the absolute value of the value that the number argument 
contains. The data type of the return value matches the data type of the value in the number 
argument. This method does the following:

■ If the value is a string variant type, then it converts the return value to a double variant type. 

■ If the value is an empty variant type, then it converts the return value to a long variant type.

For more information, see “Variants” on page 26.

Format
Abs(number)

The following table describes the arguments that you can use with this method.

Example
The following example determines the difference between the oldacct variable and the newacct 
variable:

Sub Button_Click
Dim oldacct, newacct, count

oldacct = 1234566
newacct = 33345
count = Abs(oldacct - newacct)

End Sub

Get ANSI Integer Method
The Get ANSI Integer method returns an integer that corresponds to the ANSI code of the first 
character in the string that you specify. You can use the Get ANSI String method to modify an ANSI 
code to string characters. For more information, see “Get ANSI String Method” on page 145.

Format
Asc(string)

Argument Description

number Any valid numeric expression.



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 169

The following table describes the arguments that you can use with this method.

Example
The following example asks the user for a letter and returns the ANSI value for this letter:

Sub Button_Click
Dim userchar As String
Dim ascVal as Integer 
userchar = "Z"
ascVal = Asc(userchar)

End Sub

Get Arctangent Method
The Get Arctangent method returns the angle in radians of the arctangent of a number that you 
specify. It assumes the value in the number argument is the ratio of two sides of a right triangle: the 
side opposite the angle to find and the side adjacent to the angle. It returns a single-precision value 
for a ratio expressed as an integer, a currency, or a single-precision numeric expression. The return 
value is a double-precision value for any of the following numeric expressions:

■ Long

■ Variant

■ Double-precision

You can multiply a value by (180/PI) to convert radians to degrees. The value of PI is approximately 
3.14159.

Format
Atn(number)

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Example
The following example finds the roof angle necessary for a house that includes an attic ceiling height 
of 8 feet at the roof peak and a 16 foot span from the outside wall to the center of the house. The 
Get Arctangent method returns the angle in radians. It multiplies this value by 180/PI to convert it 
to degrees:

Sub Button_Click
Dim height As Single, span As Single, angle As Single
Dim PI As Single
PI = 3.14159

Argument Description

string A string expression that contains one or more characters.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

170 

height = 8
span = 16
angle = Atn(height/span) * (180/PI)

End Sub

Get Cosine Method
The Get Cosine method returns the cosine of an angle. The angle can be positive or negative. The 
return value is between negative 1 and 1. To convert degrees to radians, this method multiples the 
return value by (PI/180). The value of PI is approximately 3.14159.

Format
Cos(number)

The following table describes the arguments that you can use with this method.

Example
The following example finds the length of a roof, given the roof pitch, and the distance of the house 
from the house center to the outside wall of the house:

Sub Button_Click
Dim bwidth As Single, roof As Single, pitch As Single
Dim msgtext
Const PI = 3.14159
Const conversion = PI/180
pitch = 35
pitch = Cos(pitch * conversion)
bwidth = 75
roof = bwidth/pitch
msgtext = "The length of the roof is " & _

Format(roof, "##.##") & " feet."
End Sub

Get Hexadecimal Method
The Get Hexadecimal Method returns the hexadecimal representation of the value in the number 
argument. It returns this value in a string. If the value in the number argument:

■ Is an integer. The return string contains up to four hexadecimal digits. 

■ Is not an integer. This method converts the value to a long integer, and the string can contain 
up to eight hexadecimal digits.

You precede the hexadecimal value with the following characters to express a hexadecimal number:

Argument Description

number An angle in radians.



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 171

&H

For example, &H10 equals decimal 16 in hexadecimal notation.

Format
Hex[$](number)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Example
The following example returns the hex value for a number that the user enters:

Sub Button_Click
Dim usernum as Integer
Dim hexvalue as String
usernum = 23
hexvalue = Hex(usernum)

End Sub

Get Integer Method
The Get Integer method returns the integer part of a number:

■ For a positive number, it removes the fractional part of the expression and returns the integer 
part only.

■ For a negative number, it returns the largest integer that is less than or equal to the expression. 
For example:

■ Int (6.2) returns 6. 

■ Int(-6.2) returns negative 7.

Format
Int(number)

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Similarities Between the Get Integer Method and the Get Rounded Integer Method 
The Get Integer method performs the same work as the Get Rounded Integer method except it 
handles negative numbers differently. For example:

■ Int(-8.347) = -9

■ Fix(-8.347) = -8



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

172 

For more information, see “Get Rounded Integer Method” on page 172.

How The Get Integer Method Handles Variant Types
The return type matches the type of the numeric expression. This includes a variant expression that 
returns the same variant type as the input value except for the following items:

■ The string variant type returns as the double variant type. 

■ An empty variant type returns as a long variant type. 

For more information, see “Variants” on page 26.

Example
The following example uses the Get Integer method to create random numbers in the range of ASCII 
values for lowercase a through z. This ASCII range is 97 through 122. It converts the values to letters 
and displays them as a string:

Sub Button_Click
Dim x As Integer, y As Integer
Dim str1 As String, letter As String
Dim randomvalue As Double
Dim upper As Integer, lower As Integer
Dim msgtext, newline
upper = Asc("z")
lower = Asc("a")
newline = Chr(10)
Randomize
For x = 1 to 26

randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter

'Need to waste time here for fast processors
For y = 1 to 1500
Next y

Next x
msgtext = "The string is:" & newline

msgtext = msgtext & str1
End Sub

Get Rounded Integer Method
The Get Rounded Integer method removes the fractional part of a number. It returns the integer part 
of a number. For positive and negative numbers, it removes the fractional part of the expression and 
returns the integer part only. For example:

■ Fix (6.2) returns 6.

■ Fix (-6.2) returns negative 6.

For more information, see “This method uses the same arguments as the Get Absolute Value method. 
For more information, see “Get Absolute Value Method” on page 168.” on page 171.



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 173

Format
Fix(number)

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

How The Get Integer Method Handles Variant Types
The data type of the return value matches the data type of the numeric expression. This includes 
variant expressions unless the numeric expression is one of the following:

■ A string variant type that evaluates to a number. In this situation, the data type of the 
return value is a double variant type. 

■ An empty variant type. In this situation, the data type of the return value is a long variant type. 

For more information, see “Variants” on page 26.

Example
The following example returns the integer portion of a number that the user enters:

Sub Button_Click
Dim usernum
Dim intvalue
usernum = 77.54
intvalue = Fix(usernum)

End Sub

Get Logarithm Method
The Get Logarithm method returns the natural logarithm of a number. For information on how this 
method handles the data type, see “How Some Math Methods Handle the Data Type” on page 166.

Format
Log(number)

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Example
The following example uses the Get Logarithm method to determine which of the following numbers 
is larger:

■ 999^1000 (999 to the 1000th power)

■ 1000^999 (1000 to the 999th power):

Sub Button_Click
Dim x
Dim y



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

174 

x = 999
y = 1000
a = y * (Log(x))
b = x * (Log(y))
If a>b then

 "999^1000 is greater than 1000^999"
Else

 "1000^999 is greater than 999^1000"
End If

End Sub

You cannot use the exponent (^) operator for very large numbers, such as 999^1000.

Get Octal Method
The Get Octal method converts a number to an octal (base 8) number. It returns the octal 
representation of a number as a string. The following data type of the integer determines the octal 
digits that the string can contain:

■ Is an integer data type. The string can contain up to six octal digits.

■ Is not an integer data type. This method converts the expression to a long data type. The 
string can contain up to 11 octal digits.

To represent an octal number, you precede the octal value with the following code:

&O 

For example, the following code equals decimal 8 in octal notation:

&O10

Format
Oct[$](number)

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Example
The following example prints the octal values for the numbers 1 through 15:

Sub Button_Click
Dim x As Integer, y As Integer
Dim msgtext As String
Dim nofspaces As Integer
msgtext = "Octal numbers from 1 to 15:" & Chr(10)
For x = 1 to 15

nofspaces = 10
y = Oct(x)
If Len(x) = 2 then



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 175

nofspaces = nofspaces - 2
End If
msgtext = msgtext & Chr(10) & x & Space(nofspaces) & y 
Next x

End Sub

Get Number Sign Method
The Get Number Sign method returns a value that identifies the sign of a number. It returns a 
different value depending on the following value of the number:

■ Number is less than zero. It returns negative 1.

■ Number is equal to zero. It returns 0.

■ Number is greater than zero. It returns 1.

Format
Sgn(number)

This method uses the same arguments as the Get Absolute Value method. For more information, see 
“Get Absolute Value Method” on page 168.

Example
The following example examines the value of the profit variable. If this value is a negative number, 
then it displays 0 for profit:

Sub Button_Click
Dim profit as Single
Dim expenses
Dim sales
expenses = 100000
sales = 200000
profit = Val(sales)-Val(expenses)
If Sgn(profit) = 1 then

‘Yeah! We turned a profit!
ElseIf Sgn(profit) = 0 then

‘Okay. We broke even.
Else

‘Uh, oh. We lost money.
End If

End Sub

Get Random Number Method
The Get Random Number method returns a single-precision, pseudo-random number between 0 
and 1 depending on the following value that you specify in the number argument:



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

176 

■ Less than zero. Uses the number you specify as the seed for a pseudo-random number. It 
creates this number every time the Get Random Number method runs. 

■ Equal to zero. Uses the number most recently created.

■ Greater than zero or no value. Creates a sequence of pseudo-random numbers. Each run of 
the Get Random Number method uses the next number in the sequence. It creates the same 
sequence of random numbers when it runs unless the Randomize method resets the random 
number generator.

Because this method always uses the same algorithm and the same seed value to create a number, 
it creates a pseudo-random number rather than a true random number. The number it creates 
appears to be random unless it runs a very large number of iterations, at which point a pattern of 
numbers might emerge. For practical purposes, you can consider this pseudo-random number to 
fulfill the requirements you might have to create a random number.

Format
Rnd[(number)]

The following table describes the arguments that you can use with this method.

Example
For an example, see “Randomize Method” on page 178.

Get Sine Method
The Get Sine method returns the sine of an angle specified in radians. The return value is between 
-1 and 1. You specify the angle in radians as a positive or negative number. To convert degrees to 
radians, this method multiplies degrees by (PI/180). The value of PI is 3.14159.

For information on how this method handles the data type, see “How Some Math Methods Handle the 
Data Type” on page 166. 

Format
Sin(number)

The following table describes the arguments that you can use with this method.

Argument Description

number A numeric expression that describes how to create the random number.

Argument Description

number A numeric expression that contains a number that represents the size of an angle 
in radians.



Methods Reference for Siebel VB ■ Mathematical Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 177

Example
The following example finds the height of a building, given the length of the roof and the roof pitch:

Sub Button_Click
Dim height, rooflength, pitch, msgtext As String
Const PI = 3.14159
Const conversion = PI/180
pitch = 35
pitch = pitch * conversion
rooflength = 75
height = Sin(pitch) * rooflength
msgtext = "The height of the building is " 
msgtext = msgtext & Format(height, "##.##") & " feet."

End Sub

Get Square Root Method
The Get Square Root method returns the square root of a number. For information on how this 
method handles the data type, see “How Some Math Methods Handle the Data Type” on page 166.

Format
Sqr(number)

The following table describes the arguments that you can use with this method.

Example
For an example that calculates the square root of 2 as a double-precision floating-point value and 
displays it in scientific notation, see “Set String Format Method” on page 157.

Get Tangent Method
The Get Tangent method returns the tangent of an angle in radians. You specify the value in the 
number argument in radians. This value can be positive or negative. To convert degrees to radians, 
this method multiplies degrees by PI/180. The value of PI is 3.14159.

For information on how this method handles the data type, see “How Some Math Methods Handle the 
Data Type” on page 166.

Format
Tan(number)

Argument Description

number An expression that contains the number whose square root is to be found.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Mathematical Methods

178 

The following table describes the arguments that you can use with this method.

Example
The following example finds the height of the exterior wall of a building, given the roof pitch and the 
length of the building:

Sub Button_Click
Dim bldglen, wallht
Dim pitch
Dim msgtext
Const PI = 3.14159
Const conversion = PI/180
On Error Resume Next
pitch = 35
pitch = pitch * conversion
bldglen = 150
wallht = Tan(pitch) * (bldglen/2)

End Sub

Randomize Method
The Randomize method creates a starting value for the random number generator. It does not return 
a value. If you do not specify a value for the number argument, then it uses the Get Seconds method 
to reset the random number generator.

Format
Randomize [number]

The following table describes the arguments that you can use with this method.

Example
The following example uses the Randomize method and the Get Random Number method to create 
a random string of characters. The second For Next loop slows down processing in the first For Next 
loop so that the Timer method can seed the Randomize method with a new value each time the loop 
runs:

Sub Button_Click
Dim x As Integer, y As Integer
Dim str1 As String, str2 As String

Argument Description

number A numeric expression that contains the number of radians in the angle whose 
tangent this method returns.

Argument Description

number An integer value that is in the range of negative 32768 through 32767.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 179

Dim letter As String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper = Asc("z")
lower = Asc("a")
newline = Chr(10)
Randomize
For x = 1 to 26

randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter
For y = 1 to 1500
Next y

Next x
msgtext = str1

End Sub

Date and Time Methods
This topic describes date and time methods. It includes the following topics:

■ “Convert Number to Date Method” on page 180

■ “Convert Serial Number to Date Method” on page 181

■ “Convert String to Date Method” on page 182

■ “Convert String to Time Method” on page 183

■ “Extract Day From Date-Time Value Method” on page 184

■ “Extract Hour From Date-Time Value Method” on page 185

■ “Extract Minute From Date-Time Value Method” on page 185

■ “Extract Month From Date-Time Value Method” on page 186

■ “Extract Second From Date-Time Value Method” on page 187

■ “Extract Weekday From Date-Time Value Method” on page 188

■ “Extract Year From Date-Time Value Method” on page 188

■ “Get Current Date Method” on page 189

■ “Get Current Date and Time Method” on page 189

■ “Get Current Time Method” on page 190

■ “Get Current Seconds Method” on page 191

■ “Get Serial Time Method” on page 192

■ “Set Date Method” on page 193

■ “Set Time Method” on page 194



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

180 

Convert Number to Date Method
The Convert Number to Date method converts an expression to the data type variant of type date. 
Note the following:

■ It returns a date variable type that represents a date from January 1, 100, through December 
31, 9999. A value of 2 represents January 1, 1900. 

■ It represents a time as fractional days.

■ It accepts string and numeric values.

■ It converts the time portion of a date expression in the following situations:

■ If you include a time portion as part of the expression.

■ If the time expression is the only argument.

To compare dates, you must make sure that you format these dates consistently with each other. 
You can use this method to convert both expressions before Siebel VB compares them.

For ways to display the desired result of a date conversion, see “Set String Format Method” on 
page 157.

For more information, see “Variants” on page 26.

Format
CVDate(expression)

The following table describes the arguments that you can use with this method.

How the Operating System Affects the Date Format
The date format depends on the format that the operating system uses. For example, if the operating 
system uses the mm/dd/yyyy format, then the input argument must use the mm/dd/yyyy format or 
the mm-dd-yyyy format. If you use an integer value, then to calculate this date Siebel eScript adds 
this integer as the number of days after the year 1900. In this situation, it returns a date in the mm/
dd/yyyy form.

Example
The following example displays the date for one week from a date that the user enters:

Sub Button_Click
Dim str1 as String

Dim nextweek
Dim msgtext as String

i: 
str1 = "2/5/2001"
answer = IsDate(str1)

Argument Description

expression Any expression that Siebel VB can evaluate to a number.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 181

If answer = -1 then
str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from the date entered is:
msgtext = msgtext & "Format(nextweek,"dddddd")

Else
Goto i

End If
End Sub

Convert Serial Number to Date Method
The Convert Serial Number to Date method converts a number to a date. It returns a date variable 
type that represents a date from January 1, 100, through December 31, 9999. For more information, 
see “Variants” on page 26.

To specify a relative date, you can use a numeric expression for any of the arguments. This 
expression evaluates to a number of days, months, or years before or after a specific date.

Format
DateSerial(year, month, day)

The following table describes the arguments that you can use with this method. As an option, you 
can use a numeric expression instead of an integer for each argument.

Example
The following example finds the day of the week for November 7 in the year 2009:

Sub Button_Click
Dim checkdate As Variant, daynumber As Variant
Dim msgtext As String, checkday as Variant
Const checkyear = 2009
Const checkmonth = 11
checkday = 7
checkdate = DateSerial(checkyear,checkmonth,checkday)
daynumber = Weekday(checkdate)
msgtext = "November 7, 2009 falls on a " & _

Format(daynumber, "dddd")
End Sub

Argument Description

year An integer that identifies a year in the range of 100 through 9999.

month An integer that identifies a month in the range of 1 through 12.

day An integer that identifies a day in the range of 1 through 31.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

182 

Convert String to Date Method
The Convert String to Date method converts a string to a date. It returns a date variable type that 
represents a date from January 1, 100, through December 31, 9999, where January 1, 1900, is 2. 
For more information, see “Variants” on page 26. Note the following:

■ It accepts multiple string representations for a date. 

■ It uses the international settings of the operating system to resolve a numeric date.

■ Because this method handles dates and not times, if it receives time information then it modifies 
this time to 12:00:00 AM, which is midnight of the date value.

For ways to display the desired result of a date conversion, see “Set String Format Method” on 
page 157.

Format
DateValue(date)

The following table describes the arguments that you can use with this method.

If the value that the date argument contains is not in a valid date format, then this method returns 
a Type Mismatch error.

Using the DateValue Statement With the GetFormattedFieldValue Statement
To avoid a locale conflict, it is recommended that you do not use the DateValue statement together 
with the GetFormattedFieldValue statement. Note the following:

■ The GetFormattedFieldValue statement formats a date according to the locale setting of the 
object manager. 

■ The DateValue statement expects a date string in a format according to the locale setting of the 
operating system. 

■ A Siebel Server can run multiple object managers with different language settings. For example, 
ENU, DEU, or FRA. However, the server operating system can only have one value selected for 
Regional Options, such as English (United States).

In this example, if a client connects to a DEU object manager on a Siebel Server where the Regional 
Options parameter is set to English (United States), then the GetFormattedFieldValue statement 
returns a string that contains a date that it formats for DEU, but the DateValue statement expects a 
string formatted for ENU. This situation results in the following error in Siebel VB:

Illegal Function Call

Argument Description

date Any numeric or string expression that can evaluate to a date and time or date 
value. This value can be of any type, including string.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 183

Example
The following example displays the date for one week from the date that the user enters:

Sub Button_Click
Dim str1 As String, answer As Integer, msgtext As String
Dim nextweek

i: 
str1 = "12/22/2000"
answer = IsDate(str1)
If answer = -1 then

str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from your date is: "
msgtext = msgtxt & Format(nextweek,"dddddd")

Else
msgtext = "Invalid date or format. Try again."
Goto i

End If
End Sub

Convert String to Time Method
The Convert String to Time method converts a string to time. It returns a variant of date variable 
type that represents a time in one of the following ranges:

■ The time 0:00:00 through 23:59:59

■ The time 12:00:00 A.M. through 11:59:59 P.M. 

For more information, see “Variants” on page 26.

Format
TimeValue(time)

The following table describes the arguments that you can use with this method.

Example
The following example writes a variable to a file according to a comparison of the last saved time 
and the current time. It dimensions the variables that it uses for the Convert String to Time method 
as double. It does this to make sure the calculations work correctly according to their values:

Sub Button_Click
Dim tempfile As String
Dim ftime As Variant
Dim filetime as Double
Dim curtime as Double

Argument Description

time Any numeric or string expression that can evaluate to a date and time or time value.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

184 

Dim minutes as Double
Dim acctno(100) as Integer
Dim x, I
tempfile = "C:\TEMP001"
Open tempfile For Output As 1
ftime = FileDateTime(tempfile)
filetime = TimeValue(ftime)
minutes = TimeValue("00:02:00")
x = 1
I = 1
acctno(x) = 0
Do

curtime = TimeValue(Time)
acctno(x) = 46
If acctno(x) = 99 then

For I = I to x-1
Write #1, acctno(I)

Next I
Exit Do

ElseIf filetime + minutes< = curtime then
For I = I to x

Write #1, acctno(I)
Next I

End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "You entered:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)
msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "C:\TEMP001"
End Sub

Extract Day From Date-Time Value Method
The Extract Day From Date-Time Value method returns the day component of a date and time value. 
The return value is an integer variable type in the range of 1 through 31. If the return value is null, 
then it returns a null variable type. For more information, see “Variants” on page 26.

Format
Day(date)

The argument that this method uses is the same as the argument that the Convert String to Date 
method uses. For more information, see “Convert String to Date Method” on page 182.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 185

Example
The following example finds the month in the range of 1 through 12 and the day in the range of 1 
through 31 for this Thursday:

Sub Button_Click
Dim x As Integer, Today As Variant, msgtext As String
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5
x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) & "/" & _ 

Day(Today + x)
End Sub

Extract Hour From Date-Time Value Method
The Extract Hour From Date-Time Value method returns the hour component of a date and time 
value. The return value is an integer variable type in the range of 0 through 23. Note the following:

■ If the return value is null, then this method returns a null variable type. For more information, 
see “Variants” on page 26.

■ The value in the time argument can be of any type, including string.

■ The value in the time argument is a double-precision value:

■ The numbers to the left of the decimal point denote the date.

■ The decimal value denotes the time from 0 to 0.99999. 

You can use the Convert String to Time method to get the correct value for a specific time.

Format
Hour(time)

The argument that this method uses is the same as the argument that the Convert String to Time 
method uses. For more information, see “Convert String to Time Method” on page 183.

If the value that the minute argument contains does not evaluate to a date and time or to a time 
value, then this method returns 0 (zero). For example:

■ The value 13:26 or the 1:45:12 PM returns a valid result. 

■ The value 1326 returns a 0.

Extract Minute From Date-Time Value Method
The Extract Minute From Date-Time Value method returns the minute component of a date and time 
value. The return value is an integer variable type in the range of 0 through 59. If the return value 
is null, then this method returns a null variable type. For more information, see “Variants” on page 26.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

186 

Format
Minute(time)

The argument that this method uses is the same as the argument that the Convert String to Time 
method uses. For more information, see “Convert String to Time Method” on page 183.

If the value that the time argument contains does not evaluate to a date and time or to a time value, 
then this method returns 0 (zero). For example:

■ The value 13:26 or the value 1:45:12 PM returns a valid results.

■ The value 1326 returns a 0.

Example
The following example gets the hour, minute, and second of the last modification date and time of a 
file:

Sub Button_Click
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String

i: msgtext = "Enter a filename:"
filename = "d:\temp\trace.txt"
If filename = "" then

Exit Sub
End If
On Error Resume Next
ftime = FileDateTime(filename)
If Err <> 0 then

Goto i:
End If
hr = Hour(ftime)
min = Minute(ftime)
sec = Second(ftime)

End Sub

Extract Month From Date-Time Value Method
The Extract Month From Date-Time Value method returns the month component of a date and time 
value. The return value is an integer variable type in the range of 1 through 12. If the return value 
is null, then this method returns a null variable type. For more information, see “Variants” on page 26.

Format
Month(date)

The argument that this method uses is the same as the argument that the Convert String to Date 
method uses. For more information, see “Convert String to Date Method” on page 182.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 187

If the value in the date argument does not evaluate to a date and time or to a time value, then this 
method returns 0 (zero). For example:

■ The value 11/20 or the value 11-20-2001 returns a valid results.

■ The value 1120 returns a 0.

Example
The following example finds the month in the range of 1 through 12 and the day in the range of 1 
through 31 for this Thursday:

Sub Button_Click
Dim x As Integer, Today As Variant
Dim msgtext
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5

x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) &"/" _

& Day(Today + x)
End Sub

Extract Second From Date-Time Value Method
The Extract Second From Date-Time Value method returns the seconds component of a date and time 
value. The return value is an integer variable type in the range of 0 through 59. If the return value 
is null, then this method returns a null variable type. For more information, see “Variants” on page 26.

Format
Second(time)

The argument that this method uses is the same as the argument that the Convert String to Time 
method uses. For more information, see “Convert String to Time Method” on page 183.

If the value in the time argument does not evaluate to a date and time or to a time value, then this 
method returns 0 (zero). For example:

■ The value 13:26:39 or the value 1:45:12 PM returns a valid results.

■ The value 1326 returns a 0.

Example
For an example, see “Extract Minute From Date-Time Value Method” on page 185.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

188 

Extract Weekday From Date-Time Value Method
The Extract Weekday From Date-Time Value method returns the day of the week of a date and time 
value. It returns this value as an integer in the range of 1 through 7, where 1 is Sunday and 7 is 
Saturday.

It accepts any expression, including strings, and attempts to convert the input value to a date value.

The return value is an integer variable type. If the return value is null, then this method returns a 
null variable type. For more information, see “Variants” on page 26.

Format
Weekday(date)

The argument that this method uses is the same as the argument that the Convert String to Date 
method uses. For more information, see “Convert String to Date Method” on page 182.

Example
The following example determines the day of the week when November 7 occurs in the year 2009:

Sub Button_Click
Dim checkdate
Dim daynumber
Dim msgtext
Dim checkday as Variant
Const checkyear = 2009
Const checkmonth = 11
Let checkday = 7
checkdate = DateSerial(checkyear,checkmonth,checkday)
daynumber = Weekday(checkdate)
msgtext = "November 7, 2009 falls on a " & _ 
Format(daynumber, "dddd")

End Sub

Extract Year From Date-Time Value Method
The Extract Year From Date-Time Value method returns the year component of a date and time value. 
It returns this value as an integer in the range of 100 through 9999. It accepts any type of date, 
including strings, and attempts to convert the input value to a date value.

The return value is an integer variable type. If the return value is null, then this method returns a 
null variable type. For more information, see “Variants” on page 26.

Format
Year(date)

The argument that this method uses is the same as the argument that the Convert String to Date 
method uses. For more information, see “Convert String to Date Method” on page 182.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 189

Example
The following example returns the year for today:

Sub Button_Click
Dim nowyear
nowyear = Year(Now)

End Sub

Get Current Date Method
The Get Current Date method returns a ten character string that includes the current date as 
determined by the computer clock.

Format
Date[$]

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

This method does not include arguments.

Example
The following example displays the date for one week from the current computer date:

Sub Button_Click
Dim nextweek
nextweek = CVar(Date) + 7

End Sub

Get Current Date and Time Method
The Get Current Date and Time method returns the current date and time as a date variable type 
according to the setting of the computer date and time. For more information, see “Variants” on 
page 26.

You can use the Set String Format method to specify the format that Siebel CRM uses to display the 
date and time.

Format
Now()

This method does not include arguments.

Example
The following example finds the month in the range of 1 through 12 and the day in the range of 1 
through 31 for this Thursday. For another example, see “Set String Format Method” on page 157:



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

190 

Sub Button_Click
Dim x As Integer, today As Variant
Dim msgtext As String
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5

x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) & "/" & _

Day(Today + x)
End Sub

Get Current Time Method
This method returns a string that contains the current time. It returns an eight character string of 
the following format: 

hh:mm:ss

where:

■ hh is the hour

■ mm is the minute

■ ss is the second

The hour uses a 24 hour clock in the range of 0 through 23.

Format
Time[$]

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

This method does not include arguments.

Example
The following example writes data to a file if it has not been saved in the last two minutes:

Sub Button_Click
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, I
tempfile = "c:\temp001"
Open tempfile For Output As #1
filetime = FileDateTime(tempfile)
x = 1
I = 1
acctno(x) = 0
Do



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 191

curtime = Time
acctno(x) = 44
If acctno(x) = 99 then

For I = 1 to x -1 
Write #1, acctno(I)

Next I
Exit Do

ElseIf (Minute(filetime) + 2)< = Minute(curtime) then
For I = I to x

Write #1, acctno(I)
Next I

End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "Contents of c:\temp001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)
msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

Get Current Seconds Method
The Get Current Seconds method returns the number of seconds that have elapsed since midnight. 
You can use the Get Current Seconds method and the Randomize statement to seed the random 
number generator. For more information, see “Randomize Method” on page 178.

Format
Timer

This method does not include arguments.

Example
The following example uses the Get Current Seconds method to find Megabucks numbers:

Sub Button_Click
Dim msgtext As String
Dim value(9) As Single
Dim nextvalue As Integer
Dim x As Integer
Dim y As Integer



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

192 

msgtext = "Your Megabucks numbers are: "
For x = 1 to 8

Do
value(x) = Timer
value(x) = value(x) * 100
value(x) = Str(value(x))
value(x) = Val(Right(value(x),2))

Loop Until value(x)>1 and value(x)<36
For y = 1 to 1500
Next y

Next x

For y = 1 to 8
For x = 1 to 8

If y <> x then
If value(y) = value(x) then

value(x) = value(x) + 1
End If

End If
Next x

Next y
For x = 1 to 8

msgtext = msgtext & value(x) & " "
Next x

End Sub

Get Serial Time Method
The Get Serial Time method returns a time as a variant of type 7 (date and time) for a specific hour, 
minute, and second.

To specify a relative time for each argument, you can use a numeric expression that identifies the 
number of hours, minutes, or seconds before or after a specific time.

Format
TimeSerial(hour, minute, second)

The following table describes the arguments that you can use with this method.

Argument Description

hour A numeric expression that contains a value in the range of 0 through 23 that 
identifies an hour.

minute A numeric expression that contains a value in the range of 0 through 59 that 
identifies a minute.

second A numeric expression that contains a value in the range of 0 through 59 that 
identifies a second.



Methods Reference for Siebel VB ■ Date and Time Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 193

Example
The following example displays the current time:

Sub Button_Click
Dim y As Variant
Dim msgtext As String
Dim nowhr As Integer
Dim nowmin As Integer
Dim nowsec As Integer
nowhr = Hour(Now)
nowmin = Minute(Now)
nowsec = Second(Now)
y = TimeSerial(nowhr,nowmin,nowsec)
msgtext = "The time is: " & y

End Sub

Set Date Method
The Set Date method sets the computer date. It does not return a value. Note the following:

■ If you do not include the dollar sign ($), then the expression can be a string that contains a valid 
date, a date variable type, or a string variable type. For more information, see “Variants” on 
page 26.

■ If the expression argument is not already a date variable type, then it attempts to convert this 
value to a valid date from January 1, 1980, through December 31, 2099. 

■ To identify the day, month, and year if a string contains three numbers that are separated by 
valid date separators, it uses the Short Date format in the International section of Microsoft 
Windows Control Panel. It recognizes month names in full or abbreviated form. 

Format
Date[$] = expression

The following table describes the arguments that you can use with this method.

Argument Description

expression A string in one of the following forms:

■ mm-dd-yy

■ mm-dd-yyyy

■ mm/dd/yy

■ mm/dd/yyyy



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Date and Time Methods

194 

The following table describes the value you must specify for each item in the expression.

Example
The following example modifies the computer date to a date that the user enters:

Sub Button_Click
Dim userdate
Dim answer

i: 
userdate = "2/5/2001"
If userdate = "" then

Exit Sub
End If
answer = IsDate(userdate)
If answer = -1 then

Date = userdate
Else

Goto i
End If

End Sub

Set Time Method
The Set Time method sets the computer time. It does not return a value. 

If the value in the expression argument is not already a date variable type, then this method 
attempts to convert it to a valid time. It recognizes the time separator characters defined in the 
International section of the Microsoft Windows Control Panel. For more information, see “Variants” 
on page 26.

Format
Time[$] = expression

The following table describes the arguments that you can use with this method.

Value Value You Must Specify

mm A month expressed as a two-digit number in the range of 01 through 12.

dd A day expressed as a two-digit number in the range of 01 through 31.

yy A year expressed as a two-digit number in the range of 00 through 99.

yyyy A year expressed as a four-digit number in the range of 1980 through 2099.

Argument Description

expression An expression that evaluates to a valid time.



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 195

Usage of the Dollar Sign
If you include the dollar sign ($), then the following items apply:

■ The value in the expression argument must evaluate to a string that uses one of the following 
forms:

■ hh. Sets the time to hh hours, 0 minutes, and 0 seconds.

■ hh:mm. Sets the time to hh hours, mm minutes, and 0 seconds.

■ hh:mm:ss. Sets the time to hh hours, mm minutes, and ss seconds.

■ It uses a 24 hour clock. For example, 6:00 P.M. is 18:00:00.

If you do not include the dollar sign ($), then the following items apply:

■ The expression argument can include a string that contains a valid date, or a date variable type 
of 8 (string).

■ It accepts 12 hour and 24 hour clocks.

Example
The following example modifies the time of the computer clock:

Sub Button_Click
Dim newtime As String
Dim answer As String
On Error Resume Next

i: 
newtime = "5:30"
answer = PM
If answer = "PM" or answer = "pm" then

newtime = newtime &"PM"
End If
Time = newtime
If Err <> 0 then

Err = 0
Goto i
End If

End Sub

ODBC Methods
This topic describes methods that you can use with ODBC (Open Database Connectivity). It includes 
the following topics:

■ “Overview of ODBC Methods” on page 196

■ “ODBC Close Connection Method” on page 196

■ “ODBC Get Errors Method” on page 197

■ “ODBC Get Query Results Method” on page 199

■ “ODBC Get Schema Method” on page 201



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

196 

■ “ODBC Open Connection Method” on page 203

■ “ODBC Run Query Method” on page 205

■ “ODBC Run Query and Get Results Method” on page 206

■ “ODBC Save Results to File Method” on page 208

Overview of ODBC Methods
ODBC methods in Siebel VB only support non-Unicode databases.

CAUTION: You must not use some methods to query a Siebel database. Instead, use the Siebel 
Object Interfaces to query data in a Siebel database. Use an ODBC method only to query non-Siebel 
data.

ODBC Close Connection Method
The ODBC Close Connection method is a Siebel VB method that disconnects from an ODBC data 
source connection that the ODBC Open method established. It returns a variant that includes one of 
the following values:

■ 0. Successful disconnect.

■ -1. Connection is not valid.

If you call the ODBC Close Connection method with an argument that is not valid, then it replies with 
the undocumented return code of -2 (negative two), which indicates a data source connection that 
is not valid. The following items are examples of arguments that are not valid:

■ An SQLClose(0) argument

■ A variable argument that does not contain an initial value

Format
SQLClose(connection)

The following table describes the arguments that you can use with this method.

Example
The following example opens the data source named SblTest, gets the names in the ODBC data 
sources, and then closes the connection:

Argument Description

connection A named argument that the ODBC Open method returns. It must be a long integer. 
For information about named arguments, see “Comments” on page 29 and “Call 
Subroutine Method” on page 98.



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 197

Sub Button_Click
' Declarations 

 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant

 
 prompt = 5

' Open the data source "SblTest"
 connection = SQLOpen("DSN = SblTest", outputStr, prompt: = 4)

 action1 = 1 ' Get the names of the ODBC data sources 
retcode = SQLGetSchema(connection: = connection,action: _
 = 1,qualifier: = qualifier, ref: = datasources())

' Close the data source connection
 retcode = SQLClose(connection)

End Sub

ODBC Get Errors Method
The ODBC Get Errors method is a Siebel VB method that gets detailed information about errors that 
occur during an ODBC method call. It returns errors for the last ODBC method and the last 
connection.

Format
SQLError(destination())

The following table describes the arguments that you can use with this method.

Argument Description

destination A two-dimensional array of type variant, where each row contains one error.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

198 

Usage
The ODBC Get Errors method returns detailed information for each detected error to the caller in the 
destination array. It fills each row of the destination array with information for one error. The 
following table describes how it fills elements of each row with data.

If no errors from a previous ODBC method call are present, then it returns a 0 (zero) in the array at 
the first element of the first row. If the array is not two dimensional or if it does not provide for the 
return of the preceding three elements, then it returns an error message in the array at the first 
element of the first row.

Example
The following example forces an error as a way to test the ODBC Get Errors method:

Sub Button_Click
' Declarations 

Dim connection As long
Dim prompt as integer
Dim retcode as long
Dim errors(1 To 10, 1 To 3) as Variant

' Open the data source
connection = SQLOpen("DSN = SVBTESTW;UID=DBA;PWD=SQL"

,outputStr, prompt: = 3)

' force an error to test SQLError choose a nonexistent table 
retcode = SQLExecQuery(connection: = connection, query: = "select * from notable 

")

' Retrieve the detailed error message information into the
' errors array
SQLError destination: = errors
errCounter = 1
while errors(errCounter,1) <>0

errCounter = errCounter + 1
wend

retcode = SQLClose(connection)

end sub

Element Description

 1 A character string that identifies the ODBC error class and subclass.

The ODBC Get Errors method might return information for more than one error in 
the destination array. A 0 (zero) in the first element of a row identifies the end of 
error information in the destination array.

 2 A numeric value that identifies the native error code of the data source.

 3 A text message that describes the error.



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 199

ODBC Get Query Results Method
The ODBC Get Query Results method is a Siebel VB method that gets the results of a pending query. 
It returns a variant that contains one of the following values:

■ The number of rows in the result set or the maxRows requested. Indicates success.

■ -1. Unable to get results, or no results pending.

■ 0. The query did not find any data.

It uses a default value of 0 for any argument that you do not include. This is true for all arguments 
except for the fetchFirst argument.

Format
SQLRetrieve(connection, destination()[, maxColumns][, maxRows]
[, columnNames][, rowNumbers][, fetchFirst])

The following table describes the arguments that you can use with this method.

Argument Description

connection The long integer that the ODBC Open Connection method returns.

destination A two-dimensional array of type variant. The first index of the array cannot exceed 
100.

maxColumns The number of columns that this method gets in the request. If this number 
specifies fewer columns than the result contains, then it discards the rightmost 
result columns until the result fits the size that you specify. 

maxRows The number of rows that this method gets in the request.

columnNames An integer. If the columnNames argument is not zero, then this method does the 
following work:

■ Sets the first row of the array to the column names according to how the 
database schema specifies them.

■ Returns the column names as the first row of the array that you identify in the 
ref argument.

rowNumbers An integer. If the rowNumbers argument is not zero, then that this method returns 
the row names as the first column of the array that you identify in the ref 
argument. It clears the user array before it gets the results.

fetchFirst A positive integer that causes the result set that this method repositions to the 
first row of the database. 

If the value in the fetchFirst argument is not zero, then it repositions to the first 
row. If the database does not support repositioning, then it returns a -1 (negative 
one) error is returned.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

200 

Usage
If you do not include the maxColumns argument or the maxRows argument, then the ODBC Get 
Query Results method does the following:

■ To determine the maximum number of columns and rows to get, it uses the size of the array that 
you specify in the destination argument. 

■ Attempts to return the entire result set. 

To get extra rows, you can set the fetchFirst argument to 0 and use the ODBC Get Query Results 
method again. 

Using the ODBC Get Query Results Multiple Times
In some situations, you can use the ODBC Get Query Results method multiple times until the return 
value is 0. For example, if the result set includes one of the following items:

■ More rows than the array can contain

■ More rows than the value specified in the maxRows argument

Example
The following example gets information from a data source:

Sub Button_Click
' Declarations

 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long

' open the connection
connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

' Run the query
query = "select * from customer" 
retcode = SQLExecQuery(connection,query)

' retrieve the first 50 rows with the first 6 columns of 
' each row into the array destination, omit row numbers and 
' put column names in the first row of the array

retcode = SQLRetrieve(connection: = connection, _
destination: = destination, columnNames: = 1, _
rowNumbers: = 0, maxRows: = 50, maxColumns: = 6, _
fetchFirst: = 0)

' Get the next 50 rows of from the result set
retcode = SQLRetrieve(connection: = connection, _

destination: = destination, columnNames: = 1, _
rowNumbers: = 0, maxRows: = 50, maxColumns: = 6)



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 201

' Close the connection
retcode = SQLClose(connection)

End Sub

ODBC Get Schema Method
The ODBC Get Schema method is a Siebel VB method that returns the following information:

■ Data sources available

■ Current user ID

■ Names of tables names

■ Types of table columns

■ Other data source and database information

Format
SQLGetSchema connection, action, qualifier, ref()

The following table describes the arguments that you can use with this method.

Values You Can Use In the Action Argument
Table 26 describes the values you can use in the action argument. If the ODBC Get Schema method 
cannot find the requested information or if the connection is not valid, then it returns a -1 (negative 
one).

Argument Description

connection A long integer that the ODBC Open method returns.

action An integer that specifies what information to return. Some database products and 
some ODBC drivers might not support every action.

qualifier A string.

ref An array of type variant that stores the results. It must be an array even if it includes 
only one dimension with one element.

You must make sure the destination array is properly dimensioned to support the 
action. If you do not do this, then this method returns an error.

Table 26. Values for the Action Argument

Value Description

1 Get a list of available data sources. The dimension of ref() is 1.

2 Get a list of databases on the current connection. Siebel VB does not support this value.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

202 

Example
The following example opens the data source named SblTest, gets the names in the ODBC data 
sources, and then closes the connection:

Sub Button_Click
'Declarations 

 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant

 
 prompt = 5
'Open the data source "SblTest"
 connection = SQLOpen("DSN=SblTest; UID=SADMIN; PWD=SADMIN", 

outputStr,prompt:=4)

 action1 = 1 ' Get the names of the ODBC data sources 
 retcode = SQLGetSchema(connection:= connection,action:= 1,qualifier:= 

qualifier, ref:= datasources())

3 Get a list of owners in a database on the current connection. Siebel VB does not support 
this value.

4 Get a list of tables on the specified connection. It returns every table. You cannot use the 
qualifier argument with value 4.

5 Get a list of columns in the table that the qualifier argument and the ref argument 
specifies. This table must include two dimensions. This method returns the column name 
and the ODBC data type.

6 Get the user ID of the current connection user.

7 Get the name of the current database.

8 Get the name of the data source of the current connection.

9 Get the name of the RDBMS that the data source uses. For example, DB2.

10 Get the server name of the data source.

11 Get the terminology that the data source uses to reference owners.

12 Get the terminology that the data source uses to reference a table.

13 Get the terminology that the data source uses to reference a qualifier.

14 Get the terminology that the data source uses to reference a procedure.

Table 26. Values for the Action Argument

Value Description



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 203

'Close the data source connection
 retcode = SQLClose(connection)

End Sub

ODBC Open Connection Method
The ODBC Open Connection method is a Siebel VB method that establishes a connection to an ODBC 
data source. It returns a long integer that identifies a unique connection ID that you can use with 
other ODBC methods. If you include the outputString argument, then it returns the completed 
connection string in the outputString argument. 

If it cannot establish a connection, then it returns an ODBC error with a negative numeric value. You 
can test for this value. For more information, see “ODBC Get Errors Method” on page 197.

Format
SQLOpen(connectString, [outputString][, prompt])

The following table describes the arguments that you can use with this method.

Argument Description

connectString A string or string variable that includes the following information:

■ Data source name

■ User ID

■ Password

■ Any other information that the driver requires to make a connection with 
the data source

The connectString argument typically uses the following format:

“DSN=dataSourceName;UID=loginID;PWD=password”

However, it must use the format that the ODBC driver requires. Some parts 
of this string might not be required. For more information on the string you 
use to access a Siebel application, see Siebel Technical Note #206 on My 
Oracle Support.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

204 

Example
The following example opens the data source named SblTest, gets the names in the ODBC data 
sources, and then closes the connection:

Sub Button_Click
Dim outputStr As String
Dim connection As Long
Dim prompt As Integer
Dim action As Integer
Dim qualifier As String
Dim datasources(1 To 50) As Variant
Dim retcode As Variant

prompt = 4
Set ret = TheApplication.NewPropertySet()

' Open the datasource "SblTest" with a user name of sa, _
password of sa
connection = _
SQLOpen("DSN=SblTest;UID=sa;PWD=sa",outputStr,prompt:=4) 
action = 1 ' Get the names of the ODBC data sources 

retcode = SQLGetSchema(connection:=connection, _
action:=1, _

 qualifier:=qualifier, _
ref:=datasources())

’ Close the data source connection
retcode = SQLClose(connection)

End Sub

outputString A string variable that holds the completed connection string.

prompt One of the following integers that specifies when to display the driver dialog 
box:

■ 1. Always display the driver dialog box.

■ 2. Display the driver dialog box only when the specification is not 
sufficient to make the connection.

■ 3. Display the driver dialog box only when the specification is not 
sufficient to make the connection. Dialog boxes that are not required are 
not available and cannot be modified.

■ 4. Do not display the driver dialog box. If the connection is not successful, 
then return an error.

If you do not include the prompt argument, then Siebel VB uses value 2.

Argument Description



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 205

ODBC Run Query Method
The ODBC Run Query method is a Siebel VB method that runs an SQL statement on a connection 
that the ODBC Open method establishes. It returns the number of columns in the result set for SQL 
SELECT statements as a variant. The value that it returns depends which of the following statements 
you use:

■ You use the SELECT statement with UPDATE, INSERT, or DELETE. It returns the number 
of rows that the statement affected.

■ You use any other SQL statement. It returns 0.

If it cannot run the query on the data source, or if the connection is not valid, then it returns a 
negative error code.

If there are any pending results on the connection, then it replaces the pending results with the new 
results. 

Format
SQLExecQuery(connection, query)

The following table describes the arguments that you can use with this method.

Example
The following example performs a query on the data source:

Sub Button_Click
' Declarations

 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long

 ' open the connection
 connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

 ' Run the query
 query = "select * from customer" 
 retcode = SQLExecQuery(connection,query)

 ' retrieve the first 50 rows with the first 6 columns of 
 ' each row into the array destination, omit row numbers and 
 ' put column names in the first row of the array

retcode = SQLRetrieve(connection: = connection, _
destination: = destination, columnNames: = 1,rowNumbers: _
= 0,maxRows: = 50, maxColumns: = 6,fetchFirst: = 0)

Argument Description

connection A long integer that the ODBC Open method returns.

query A string that contains a valid SQL statement.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

206 

 ' Get the next 50 rows of from the result set
 retcode = SQLRetrieve(connection: = connection, _

destination: = destination, columnNames: = 1,rowNumbers: _
= 0,maxRows: = 50, maxColumns: = 6)

 ' Close the connection
 retcode = SQLClose(connection)

End Sub

ODBC Run Query and Get Results Method
The ODBC Run Query And Get Results method is a Siebel VB method that opens a connection to a 
data source, runs an SQL statement, returns the result, and then closes the connection. It returns a 
variant that includes one of the following values:

■ Positive number. The request is successful. The number identifies the number of results that 
this method returned or the number of rows affected. Other SQL statements return 0.

■ Negative error code. An error occurred. It cannot complete the connection, the query is not 
valid, or another error condition occurred.

Format
SQLRequest(connectString, query, outputString[, prompt][, columnNames], ref())

The following table describes the arguments that you can use with this method.

Example
The following example uses the ODBC Run Query And Get Results method:

Argument Description

connectString A string or string variable that specifies the data source. For more information on 
the connect string, see “ODBC Open Connection Method” on page 203.

query An SQL query statement that this method runs.

outputString A string variable that holds the completed connection string.

prompt An integer that specifies when to display the driver dialog box. For more 
information about using the prompt argument, see “ODBC Open Connection 
Method” on page 203.

columnNames An integer. If columnNames is not zero, then it returns column names in the first 
row of the array that the ref argument identifies. If you do not include the 
columnNames argument, then the default value is 0.

ref An array of type variant that holds the results of the action you request. It must 
be an array even if it includes only one dimension with one element.



Methods Reference for Siebel VB ■ ODBC Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 207

Function WebApplet_PreInvokeMethod (MethodName As String) As Integer
If MethodName = "queryExtSys" Then

' The following opens the datasource SVBTESTW and
' runs the query specified by query and returns the
' results in destination.

Dim errors(1 To 10, 1 To 3) As Variant
Dim destination(1 To 50, 1 To 125)  As Variant
Dim prompt As Integer
Dim outputStr As String
Dim retCode As Integer

' In the event of a connection error, do not display a
' dialog box, return an error
prompt = 4

' SQL Statement to submit. In this example we'll perform a
' simple select
query = "SELECT * FROM authors"

' Invoke the SQLRequest function to submit the SQL, run the
' query and return a result set.
retCode = SQLRequest("DSN=SVBTESTW;UID=sa;PWD=sa", _

query, outputStr, prompt, 0, destination())

' If retCode < 0,  an error has occurred. Retrieve the first
’ error returned in the array and display to the user.
If retCode < 0 Then

SQLError destination := errors
errCounter = 1

While errors(errCounter,1) <> 0
TheApplication.RaiseErrorText "Error  " & _
"  ODBC error: " & destination(errCounter,1) & _
"  Numeric code = " & destination(errCounter,2) & _
"  Error Text = " & destination(errCounter,3)

errCounter = errCounter + 1
Wend

Else
' do some processing of the results

End If

WebApplet_PreInvokeMethod = CancelOperation
Else

WebApplet_PreInvokeMethod = ContinueOperation
End If

End Function



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ ODBC Methods

208 

ODBC Save Results to File Method
This Siebel VB method gets the results of a query and stores them in a file. It returns one of the 
following values:

■ Successful. It returns a variant that contains the number of rows that exist in the result set. 

■ Not successful. It returns -1 (negative one).

The arguments must be named arguments. For information about named arguments, see 
“Comments” on page 29 and “Call Subroutine Method” on page 98.

Format
SQLRetrieveToFile(connection, destination[, columnNames][, columnDelimiter])

The following table describes the arguments that you can use with this method.

Example
The following example opens a connection to a data source and saves information to a file:

Sub Button_Click
'Declarations

Dim connection As Long
Dim destination(1 To 50, 1 To 125) As Variant
Dim retcode As long

'open the connection

connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

' Run the query

Argument Description

connection The long integer that the ODBC Open Connection method returns.

destination A string or string variable that contains the file name and path to this file. This 
method stores the results in this file.

columnNames This argument can include one of the following values:

■ Not zero. The first row contains the column headers according to database 
schema requirements.

■ 0. Does not get the column headers.

The default value is 0.

columnDelimiter The string this method uses to separate each field in a row. If you do not include 
the columnDelimiter argument, then it uses a tab character to separate each 
field.



Methods Reference for Siebel VB ■ Object Querying Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 209

query = "select * from customer" 
retcode = SQLExecQuery(connection,query)

'Place the results of the previous query in the file 
'named by filename and put the column names in the file 
'as the first row.
'The field delimiter is %

filename = "c:\myfile.txt"
columnDelimiter = "%"
retcode = SQLRetrieveToFile(connection: = connection, _
destination: = filename, columnNames: = 1, _
columnDelimiter: = columnDelimiter)

retcode = SQLClose(connection)

End Sub

Object Querying Methods
This topic describes object querying methods. It includes the following topics:

■ “Compare Object Expressions Operator” on page 209

■ “Is Expression a Date Method” on page 210

■ “Is Object Of Class Method” on page 211

■ “Is Optional Argument Missing Method” on page 211

■ “Is Variable Null Method” on page 212

■ “Is Variable Numeric Method” on page 213

■ “Is Variable Set Method” on page 214

Compare Object Expressions Operator
The Compare Object Expressions operator compares two object expressions. It returns one of the 
following values:

■ -1 (negative one). The object expressions reference the same object. 

■ 0 (zero). The object expressions do not reference the same object. 

You can use this method to determine if an object variable is set to Nothing. For more information, 
see “Remove Object Method” on page 108.

Format
objectExpression Is objectExpression



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Object Querying Methods

210 

The following table describes the arguments that you can use with this method.

Example
For examples of using the Compare Object Expressions operator, see “Date and Time Methods” on 
page 179 and “Get COM Object Method” on page 233.

Is Expression a Date Method
The Is Expression a Date method determines if an expression evaluates to a date that Siebel VB 
allows. It returns one of the following values:

■ -1 (negative one). The expression is a date variable type or a string that Siebel VB can interpret 
as a date. 

■ 0 (zero). The expression is not a date variable type or a string that Siebel VB can interpret as 
a date.

For more information, see “Variants” on page 26.

Format
IsDate(expression)

The following table describes the arguments that you can use with this method.

Example
The following example adds a number to the current date value and determines if it is still a valid 
date. In this example, a valid date is in the range of January 1, 100, through December 31, 9999:

Sub Button_Click
Dim curdatevalue
Dim yrs
Dim msgtext
curdatevalue = DateValue(Date$)
yrs = 20
yrs = yrs * 365
curdatevalue = curdatevalue + yrs
If IsDate(curdatevalue) = -1 then

msgtext = Format(CVDate(curdatevalue))
Else

Argument Description

objectExpression Any valid object expression.

Argument Description

expression Any valid expression.



Methods Reference for Siebel VB ■ Object Querying Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 211

"The date is not valid."
End If

End Sub

Is Object Of Class Method
The Is Object Of Class method determines if an object is of a given class. It returns one of the 
following values:

■ -1 (negative one). The object is of the type that the className argument specifies.

■ 0 (zero). The object is not of the type that the className argument specifies.

You can use this method only in an If statement.

Format
If Typeof objectVariable Is className Then...

You must use this format. You cannot combine this method with a Boolean operator.

The following table describes the arguments that you can use with this method.

You use the following format to determine if an object does not belong to a class:

If Typeof objectVariable Is className Then

[Perform some action.]
Else

[Perform some action.]
End If

Is Optional Argument Missing Method
The Is Optional Argument Missing method determines if an optional argument for a procedure is 
missing. It returns one of the following values:

■ -1 (negative one). An optional argument is missing. 

■ 0 (zero). An optional argument is not missing.

Format
IsMissing(argname)

Argument Description

objectVariable The object to be examined.

className The class that Siebel CRM uses to compare the object.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Object Querying Methods

212 

The following table describes the arguments that you can use with this method.

Example
The following example prints a list of uppercase characters. The user determines the quantity 
printed. If the user must print every character, then this example calls the myfunc function without 
any argument. The function uses the Is Optional Argument Missing method to determine to print 
every uppercase character or to print only the quantity that the user specifies:

Function myfunc(Optional arg1)
If IsMissing(arg1) = -1 then

arg1 = 26
End If
msgtext = "The letters are: " & Chr$(10)
For x = 1 to arg1

msgtext = msgtext & Chr$(x + 64) & Chr$(10)
Next x

End Function

Sub Button_Click
Dim arg1
arg1 = 0
If arg1 = 0 then

myfunc()
Else

myfunc(arg1)
End If

End Sub

Is Variable Null Method
The Is Variable Null method determines if a variant variable contains a Null value. It returns one of 
the following values:

■ -1 (negative one). The expression contains a Null value. 

■ 0 (zero). The expression does not contain a Null value.

A null variant does not contain data. It only identifies a result that is not valid or that is ambiguous. 
Null is not the same as Empty, which indicates that a variant is not yet set.

Format
IsNull(expression)

Argument Description

argname An optional argument for a subroutine, function, Siebel VB statement, or Siebel VB 
method.



Methods Reference for Siebel VB ■ Object Querying Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 213

The following table describes the arguments that you can use with this method.

Example
The following example asks for ten test score values and calculates the average. If any score is 
negative, then it sets the value to Null. This example uses the Is Variable Null method to reduce the 
total count of 10 scores to only the scores that contain a positive value before it calculates the 
average:

Sub Button_Click
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count = 10
total = 0
For x = 1 to count

tscore = 88
If tscore<0 then

arrayvar(x) = Null
Else

arrayvar(x) = tscore
total = total + arrayvar(x)

End If
Next x
Do While x <> 0

x = x - 1
If IsNull(arrayvar(x)) = -1 then

count = count-1
End If

Loop
msgtext = "The average (excluding negative values) is: "

msgtext = msgtext & Chr(10) & Format(total/count, "##.##")
End Sub

Is Variable Numeric Method
The Is Variable Numeric method determines if the value of a variable is numeric. It returns one of 
the following values:

■ -1 (negative one). The expression is a Numeric data type or is a string that Siebel VB can 
interpret as a number. 

■ 0 (zero). The expression is not a Numeric data type or is not a string that Siebel VB can interpret 
as a number.

Argument Description

expression Any expression that contains a variable of data type variant.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Object Querying Methods

214 

If numeric input is required, then you can use the Is Variable Numeric method to determine if the 
value that the user provides is a valid number before converting the input to a numeric data type.

For more information, see “Variants” on page 26.

Format
IsNumeric(expression)

The following table describes the arguments that you can use with this method.

Related Topics
“Get Variant Type Method” on page 134

Is Variable Set Method
The Is Variable Set method determines if a variable of data type variant is set. To indicate that it 
contains no data, every new variant defaults to an Empty type. This method returns one of the 
following values:

■ -1 (negative one). The variant is set. 

■ 0 (zero). The variant is not set.

If you use an empty variant in a numeric expression or in a null string ("") in a string expression, 
then Siebel VB converts this empty variant to zero. For more information, see “Variants” on page 26.

Format
IsEmpty(expression)

The following table describes the arguments that you can use with this method.

Example
The following example prompts the user for a series of test scores. It uses the Is Variable Set method 
to determine if Siebel CRM reached the maximum allowable limit. This method determines when to 
exit the Do Loop:

Sub Button_Click
Dim arrayvar(10)
Dim x as Integer
Dim tscore as Single

Argument Description

expression Any valid expression.

Argument Description

expression Any expression that identifies a variable of data type variant.



Methods Reference for Siebel VB ■ Financial Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 215

Dim total as Integer
x = 1
Do

tscore = 88
arrayvar(x) = tscore
x = x + 1

Loop Until IsEmpty(arrayvar(10)) <> -1
total = x-1
msgtext = "You entered: " & Chr(10)
For x = 1 to total

 msgtext = msgtext & Chr(10) & arrayvar(x)
Next x

End Sub

Financial Methods
This topic describes financial methods. It includes the following topics:

■ “Overview of Financial Methods” on page 215

■ “Calculate Future Value Method” on page 217

■ “Calculate Interest Method” on page 217

■ “Calculate Interest Rate Method” on page 218

■ “Calculate Internal Rate of Return Method” on page 219

■ “Calculate Net Present Value Method” on page 220

■ “Calculate Payment Method” on page 220

■ “Calculate Principal Method” on page 221

■ “Calculate Present Value Method” on page 221

Overview of Financial Methods
This topic includes an overview of financial methods.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Financial Methods

216 

Arguments You Can Use with Financial Methods
The following table describes arguments that you can use with financial methods. The topic for each 
method lists the arguments you can use with that method.

How Some Financial Methods Use the Rate Argument
Some financial methods assume that the value that the rate argument includes is constant over the 
life of the annuity.

Argument Description

due An integer that specifies when payments are due. You can use one of the following 
values:

■ 0. End of each period.

■ 1. Beginning of each period.

fv The future value of one of the following:

■ Final lump sum required in a savings plan

■ Final lump sum paid, which is 0 in a loan

guess An estimate of the rate returned. This value is typically in the range of 0.1 (10 
percent) through 0.15 (15 percent).

nper The total number of payment periods.

per The payment period, in the range of 1 through the value that the nper argument 
contains.

period The specific payment period, in the range 1 through the value that the nper 
argument contains.

pmt The constant periodic payment for each period.

pv The present value or the initial lump sum of one of the following:

■ Amount paid for an annuity

■ Amount received for a loan

rate The interest rate for each period. For more information, see “How Some Financial 
Methods Use the Rate Argument” on page 216.

valuearray An array that contains cash flow values. This argument must include at least one 
each of the following items:

■ A positive value that identifies a receipt

■ A negative value that identifies a payment

You must represent payments and receipts in the exact sequence that the method 
must use to calculate them. The value that the method returns varies according to 
the modification that occurs in the sequence of cash flows.



Methods Reference for Siebel VB ■ Financial Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 217

For example, if payments are on a monthly schedule, and if the annual percentage rate on the 
annuity or loan is 9%, then the rate is 0.0075 (.0075 equals .09 divided by 12).

Calculate Future Value Method
The Calculate Future Value method calculates, and then returns a number that identifies the future 
value of an investment, such as an annuity or a loan.

Format
FV(rate, nper, pmt, pv, due)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates the future value of an annuity, according to terms that the user 
specifies:

Sub Button_Click
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv = 100000
aprate = 6.75
If aprate >1 then

aprate = aprate/100
End If
periods = 60
payment = 10000
' Assume payments are made at end of month
due = 0
futurevalue = FV(aprate/12,periods,-payment,-annuitypv,due)
msgtext = "The future value is: " & Format(futurevalue, "Currency")

End Sub

Calculate Interest Method
The Calculate Interest method calculates, and then returns the interest portion of a payment for a 
given period of an annuity.

Format
IPmt(rate, period, nper, pv, fv, due)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Financial Methods

218 

Example
The following example calculates the interest portion of a loan payment amount for payments made 
in the last month of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% 
interest:

Sub Button_Click
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, intpaid
Dim msgtext
aprate = .095
payperiod = 12
periods = 120
loanpv = 25000
loanfv = 0
' Assume payments are made at end of month
due = 0
intpaid = IPmt(aprate/12,payperiod,periods, _
loanpv,loanfv,due)
msgtext = "For a loan of $25,000 @ 9.5% for 10 years," _ 
 & Chr(10)
msgtext = msgtext + "the interest paid in month 12 is: "_

& Format(intpaid, "Currency")
End Sub

Calculate Interest Rate Method
The Calculate Interest Rate method calculates, and then returns the interest rate for each period for 
an annuity or a loan. This method is iterative. It improves a guess over multiple iterations until the 
result is within 0.00001 percent. If it does not converge to a result in 20 iterations, then it displays 
a failure message.

Format
Rate(nper, pmt, pv, fv, due, guess)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates the interest rate on a 10 year, $25,000 annuity that pays $100 for 
each month:

Sub Button_Click
Dim aprate
Dim periods
Dim payment, annuitypv
Dim annuityfv, due
Dim guess
Dim msgtext as String



Methods Reference for Siebel VB ■ Financial Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 219

periods = 120
payment = 100
annuitypv = 0
annuityfv = 25000
guess = .1
' Assume payments are made at end of month
due = 0
aprate = Rate(periods,-payment,annuitypv,annuityfv, _ 
due, guess)
aprate = (aprate * 12)
msgtext = "The percentage rate for a 10-year $25,000 _
annuity"
msgtext = msgtext & "that pays $100/month has "
msgtext = msgtext & "a rate of: " & Format(aprate, _

"Percent")
End Sub

Calculate Internal Rate of Return Method
The Calculate Internal Rate of Return method calculates, and then returns the internal rate of return 
for a stream of periodic cash flows. This method is iterative. It improves a guess over multiple 
iterations until the result is within 0.00001 percent. If it does not converge to a result in 20 iterations, 
then it displays a failure message.

Format
IRR(valuearray( ), guess)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates an internal rate of return for a series of income and cost business 
transactions. It expresses this rate of return as an interest rate percentage. If the first value entered 
is a positive amount, then the IRR statement creates an Illegal Function Call error:

Sub Button_Click
Dim cashflows() as Double
Dim guess, count as Integer
Dim i as Integer
Dim intnl as Single
Dim msgtext as String
guess = .15
count = 2
ReDim cashflows(count + 1)
For i = 0 to count-1

cashflows(i) = 3000
Next i
intnl = IRR(cashflows(),guess)



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Financial Methods

220 

msgtext = "The IRR for your cash flow amounts is: " 
msgtext = msgtext & Format(intnl, "Percent")

End Sub

Calculate Net Present Value Method
The Calculate Net Present Value method calculates, and then returns the net present value of an 
investment according to a stream of periodic cash flows and a constant interest rate. This method 
does the following:

■ Returns the net present value in the valuearray argument according to the value that the rate 
argument contains.

■ Uses future cash flows as the basis for the net present value calculation. If the first cash flow 
occurs at the beginning of the first period, then you must add this cash flow value to the result 
that this method returns. You must not include this value in the valuearray argument.

The value that the rate argument contains is the decimal equivalent of the discount rate. For 
example, if the discount rate is 12%, then the rate is 0.12.

Format
NPV(rate, valuearray( ))

The rate argument for this method describes the discount rate for each period. For a description of 
the valuearray argument, see “Arguments You Can Use with Financial Methods” on page 216.

Calculate Payment Method
The Calculate Payment method calculates, and then returns a constant periodic payment amount for 
an annuity or a loan.

Format
Pmt(rate, nper, pv, fv, due)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates the monthly payment for a given loan:

Sub Button_Click
Dim aprate, totalpay
Dim loanpv, loanfv
Dim due, monthlypay
Dim yearlypay, msgtext
loanpv = 25000
aprate = 7.25
If aprate >1 then



Methods Reference for Siebel VB ■ Financial Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 221

aprate = aprate/100
End If
totalpay = 60
loanfv = 0

'Assume payments are made at end of month
due = 0
monthlypay = Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
msgtext = "The monthly payment is: " Format(monthlypay, "Currency")

End Sub

Calculate Principal Method
The Calculate Principal method calculates, and then returns the principal portion of the payment for 
a given period of an annuity.

Format
PPmt(rate, per, nper, pv, fv, due)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates the principal portion of a loan payment amount for payments made 
in the last month of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% 
interest:

Sub Button_Click
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, principal
Dim msgtext
aprate = 9.5/100
payperiod = 12
periods = 120
loanpv = 25000
loanfv = 0

' Assume payments are made at end of month
due = 0
principal = PPmt(aprate/12,payperiod,periods, _ 
-loanpv,loanfv,due)
msgtext = "Given a loan of $25,000 @ 9.5% for 10 years," 

msgtext = msgtext & Chr(10) & "the principal paid in month 12 is: "
End Sub

Calculate Present Value Method
The Calculate Present Value method calculates, and then returns the present value of a constant 
periodic stream of cash flows as in an annuity or a loan.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Conversion Methods

222 

Format
PV(rate, nper, pmt, fv, due)

For more information, see “Arguments You Can Use with Financial Methods” on page 216.

Example
The following example calculates the present value of a 10 year, $25,000 annuity that pays $1,000 
for each year at 9.5%:

Sub Button_Click
Dim aprate As Integer, periods As Integer
Dim payment As Double, annuityfv As Double
Dim due As Integer, presentvalue As Double
Dim msgtext
aprate = 9.5
periods = 120
payment = 1000
annuityfv = 25000

' Assume payments are made at end of month
due = 0
presentvalue = PV(aprate/12,periods,-payment, annuityfv,due)
msgtext = "The present value for a 10-year $25,000 annuity @ 9.5%"
msgtext = msgtext & " with a periodic payment of $1,000 is: "

msgtext = msgtext & Format(presentvalue, "Currency")
End Sub

Conversion Methods
This topic describes conversion methods. It includes the following topics:

■ “Convert Expression to Currency Method” on page 223

■ “Convert Expression to Double-Precision Method” on page 224

■ “Convert Expression to Integer Method” on page 224

■ “Convert Expression to Long Method” on page 225

■ “Convert Expression to Single-Precision Method” on page 226

■ “Convert Expression to String Method” on page 227

■ “Convert Expression to Variant Method” on page 227

Argument That You Can Use with Conversion Methods
The following table describes the arguments that you can use with conversion methods.

Argument Description

expression Any expression that evaluates to a number.



Methods Reference for Siebel VB ■ Conversion Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 223

Convert Expression to Currency Method
The Convert Expression to Currency method converts the value that the expression argument 
contains to a currency. It returns this currency. Note the following:

■ A number that does not fit in the currency data type causes an Overflow error. 

■ A string that cannot convert to a currency causes a Type Mismatch error. 

■ A variant that contains a null result causes an Illegal Use of Null error.

For more information, see “Overview of Data Types” on page 22.

Format
CCur(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example converts a yearly payment on a loan to a currency value with four decimal 
places. A subsequent Format statement formats the value to two decimal places before displaying it 
in a message box:

Sub Button_Click
Dim aprate, totalpay, loanpv

Dim loanfv, due, monthlypay
Dim yearlypay, msgtext
loanpv = 5000
aprate = 6.9
If aprate >1 then

aprate = aprate/100
End If
aprate = aprate/12
totalpay = 360
loanfv = 0

Rem Assume payments are made at end of month
due = 0
monthlypay = Pmt(aprate,totalpay,-loanpv,loanfv,due)
yearlypay = CCur(monthlypay * 12)
msgtext = "The yearly payment is: " & _

Format(yearlypay, "Currency")
End Sub

Related Topics
“Get ANSI String Method” on page 145
“Convert Number to Date Method” on page 180



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Conversion Methods

224 

Convert Expression to Double-Precision Method
The Convert Expression to Double-Precision method converts the value that the expression argument 
contains to a double-precision number. It returns this number. Note the following:

■ A string that cannot convert to a double-precision floating point number causes a Type Mismatch 
error. 

■ A variant that contains a null result causes an Illegal Use of Null error.

For more information, see “Numeric Data Types That Siebel VB Uses” on page 25.

Format
CDbl(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example calculates the square root of 2 as a double-precision, floating-point value and 
displays it in scientific notation:

Sub Button_Click
Dim value

Dim msgtext
value = CDbl(Sqr(2))
msgtext = "The square root of 2 is: " & Value

End Sub

Convert Expression to Integer Method
The Convert Expression to Integer method converts the value that the expression argument contains 
to an integer and rounds the result. It returns this result. Note the following:

■ After rounding, the result must reside in the range of negative 32767 to 32767. If it is not, then 
an error occurs.

■ A string that cannot convert to an integer causes a Type Mismatch error. 

■ A variant that contains a null result causes an Illegal Use of Null error.

For more information, see “Numeric Data Types That Siebel VB Uses” on page 25.

Format
CInt(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.



Methods Reference for Siebel VB ■ Conversion Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 225

Example
The following example calculates the average of ten golf scores:

Sub Button_Click
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum = 0
For x = 1 to 10

score = 7-
sum = sum + score

Next x
msgtext = "Your average is: " & _

Format(CInt(sum/ (x - 1)), "General Number")
End Sub

Convert Expression to Long Method
The Convert Expression to Long method converts the value that the expression argument contains 
to a long number. It returns this number. Note the following:

■ After rounding, the result must reside in the range of negative 32767 to 32767. If it is not, then 
an error occurs.

■ A string that cannot convert to a long number causes a Type Mismatch error. 

■ A variant that contains a null result causes an Illegal Use of Null error.

For more information, see “Numeric Data Types That Siebel VB Uses” on page 25.

Format
CLng(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example divides the national debt of the United States by the number of people who 
live in this country to find the amount of money each person must pay to retire this debt. It converts 
this number to a long integer, and then formats it as currency:

Sub Button_Click
Dim debt As Single
Dim msgtext
Const Populace = 311000000
debt = 14000000000000
msgtext = "The $/citizen is: " & _

Format(CLng(Debt/ Populace), "Currency")
End Sub



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Conversion Methods

226 

Convert Expression to Single-Precision Method
The Convert Expression to Single-Precision method converts the value that the expression argument 
contains to a single-precision, floating-point number. It returns this number. Note the following:

■ After rounding, the result must reside in the range that the single-precision data type allows. If 
it is not, then an error occurs.

■ A string that cannot convert to a single-precision number causes a Type Mismatch error. 

For more information, see “Numeric Data Types That Siebel VB Uses” on page 25.

Format
CSng(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example calculates the factorial of a number. For more information, see “About the 
Factorial” on page 168:

Sub Button_Click
Dim number as Integer
Dim factorial as Double
Dim msgtext As String
number = 25
If number <= 0 then

Exit Sub
End If

factorial = 1
For x = number to 2 step -1

factorial = factorial * x
Next x

'If number <= 35, then its factorial is small enough to 
' be stored as a single-precision number

If number< 35 then
factorial = CSng(factorial)

End If
msgtext = "The factorial of " & number & " is " & factorial

End Sub



Methods Reference for Siebel VB ■ Conversion Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 227

Convert Expression to String Method
The Convert Expression to String method converts an expression to a string. It returns one of the 
values described in the following table depending on the data type of the expression.

Format
CStr(expression)

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example uses the Convert Expression to String method to operate on a string that the 
user enters as a number:

Sub Button_Click
Dim var1, msgtext as String, code as Integer
var1 = 77

msgtext = Cstr(var1)
msgtext = Left(var1,1)
code = Asc(msgtext)

msgtext = "The first digit you entered was," & msgtext
msgtext = msgtext & ". Its ANSI code is " & code & "."

End Sub

Convert Expression to Variant Method
The Convert Expression to Variant method converts an expression to a variant. It returns this variant. 
It accepts any type of expression. It creates the same result that assigning the expression to a 
variant variable creates.

Format
CVar(expression)

Data Type of Expression Return Value

Date A string that contains a date.

Empty A zero-length string ("").

Error A string that contains the following information:

Error error number

Null A run-time error.

Other Numeric A string that contains the number.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ COM Methods

228 

For information about the arguments that you can use with this method, see “Argument That You Can 
Use with Conversion Methods” on page 222.

Example
The following example converts a single variable to a variant variable:

Sub Button_Click
Dim singleAnswer as Single
Dim variantAnswer as Variant
singleAnswer = 100.5
variantAnswer = CVar(singleAnswer )

end Sub

COM Methods
This topic describes COM methods. It includes the following topics:

■ “Assign COM Object Statement” on page 228

■ “COM Object Class” on page 230

■ “Create COM Object Method” on page 231

■ “Get COM Object Method” on page 233

■ “Initialize COM Object Method” on page 235

Assign COM Object Statement
The Assign COM Object statement assigns a COM object, such as an application, to a variable. In 
Siebel Tools, you can use it to create an instance of a Siebel object. It does not return a value. The 
Assign COM Object statement differs from the Let statement. The Let statement assigns an 
expression to a Siebel VB variable. For example:

■ Set o1 = o2. Sets the object reference.

■ Let o1 = o2. Sets the value of the default member.

Format
Set variableName = objectExpression



Methods Reference for Siebel VB ■ COM Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 229

The following table describes the arguments that you can use with this method.

Including the Set Keyword When You Assign an Object Variable
If you do not include the Set keyword when you assign an object variable, then Siebel VB attempts 
to copy the default member of one object to the default member of another object. This situation 
typically results in the following run-time error:

' Incorrect code - tries to copy default member!
COMObject = GetObject("","spoly.cpoly")

Example 1
The following example uses the Assign COM Object statement:

Dim COMObject As Object 
Set COMObject = CreateObject("spoly.cpoly")
COMObject.reset

Example 2
The following example creates an Opportunity business component outside the context of the user 
interface. The code prevents the user from deleting an account if there are opportunities associated 
with it. For more information about the Siebel VB methods and objects that this example uses, see 
Siebel Object Interfaces Reference:

Function BusComp_PreDeleteRecord As Integer

Dim iReturn as integer
Dim oBC as BusComp
Dim oBO as BusObject
Dim sAcctRowId as string
iReturn = ContinueOperation
sAcctRowId = me.GetFieldValue("Id")

set oBO = theApplication.GetBusObject("Opportunity")
set oBC = oBO.GetBusComp("Opportunity")

With oBC
.SetViewMode AllView
.ActivateField "Account Id"
.ClearToQuery

Argument Description

variableName An object variable or variant variable.

objectExpression An expression that evaluates to an object. This object is typically one of the 
following items:

■ Function

■ Object member

■ Nothing



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ COM Methods

230 

.SetSearchSpec "Account Id", sAcctRowId

.ExecuteQuery ForwardOnly
if (.FirstRecord) = 1 then

‘Opportunities exist for the Account - Delete is not allowed
iReturn = CancelOperation

end if
End With

BusComp_PreDeleteRecord = iReturn
Set oBC = Nothing

Set oBO = Nothing

End Function

COM Object Class
The COM Object class provides access to a COM object. It does not return a value. To create a new 
object, you use the Dim statement to dimension a variable, and then set the variable to the return 
value of CreateObject or GetObject. For example:

Dim COM As Object
Set COM = CreateObject("spoly.cpoly")

You can use one of the following formats to reference a method or property of the new object:

objectvar.property
objectvar.method

For example:

COM.reset

Format
Dim variableName As Object

The following table describes the arguments that you can use with this method.

Example
The following example uses the BusComp object class to declare the variables that Siebel VB uses 
to access the Account Contacts view in a Siebel application:

Sub Button1_Click
Dim i as integer
Dim icount as integer
Dim oBC as BusComp

Argument Description

variableName The name of the object variable to declare.



Methods Reference for Siebel VB ■ COM Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 231

' BusObject returns the business object associated with a 
' control or applet.
' GetBusComp returns a reference to a Siebel 
' business component that is in the UI context

set oBC = me.BusObject.GetBusComp("Contact")

i = oBC.FirstRecord ' returns 0 if fails, 1 if succeeds
if i <> 1 then

TheRaiseErrorText "Error accessing contact records for the account."
else

icount = 0
' NextRecord returns 1 if it successfully 
' moved to the next record in the BC
While i = 1

icount = icount + 1
i = oBC.NextRecord ' returns 1 if successful

wend
oBC.FirstRecord
end if

End Sub

Create COM Object Method
The Create COM Object method creates a new COM object. It does not return a value.

Format
CreateObject(application.objectname)

The following table describes the arguments that you can use with this method.

Usage
To create an object, you use the Dim statement to declare an object variable, and then set the 
variable equal to the new object. For example:

Dim excelObj As Object
Set excelObj = CreateObject("Excel.Application")

You can use one of the following formats to reference a method or property of the object:

objectvar.property
objectvar.method

For example:

Argument Description

application The name of the application.

objectname The name of the object that this method uses.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ COM Methods

232 

Dim cellVal as String
cellVal = excelObj.ActiveSheet.Cells(1,1).Value

You cannot display a modal or nonmodal form from a server application. A DLL that this method 
instantiates must be thread-safe.

To identify correct application and object names, see the documentation for your Web Client 
Automation Server application.

CAUTION: If a method passes the wrong number, order, or type of arguments to a COM object when 
it calls a COM object, then a 440 error message might occur.

Example 1
The following example uses the Create COM Object method to create a Microsoft Excel worksheet. It 
then edits and saves this worksheet:

Sub BtnExcel_Click
Dim oWorkSheet As Object
Dim sfileName As String
Set oWorkSheet = CreateObject("Excel.Sheet")
If oWorkSheet Is Nothing then

Exit Sub
End If

' Make Excel visible through the Application object.
oWorkSheet.Application.Visible = 1
' Place some text in the first cell of the sheet
oWorkSheet.ActiveSheet.Cells(1,1).Value = "Column A, Row 1"
' Save the sheet
sfileName = "C:\demo.xls"
oWorkSheet.SaveAs (fileName)
' Close Excel with the Quit method on the Application object
oWorkSheet.Application.Quit
' Clear the object from memory
Set oWorkSheet = Nothing

End Sub

Example 2
The following example uses the Create COM Object method to create a Microsoft Word document. It 
then edits and saves this document:

Sub BtnWrd_Click
Dim oWord As Object
Dim fileName As String
fileName = "C:\demo.doc"
Set oWord = CreateObject("Word.Application")
' Create a new document
oWord.Documents.Add
If oWord Is Nothing then 

Exit Sub
End If
' Make Word visible through the Application object



Methods Reference for Siebel VB ■ COM Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 233

oWord.Application.Visible = 1
' Add some text
oWord.Selection.TypeText "This is a demo."
' Save the document
oWord.ActiveDocument.SaveAs (fileName)
' Close Word with the Quit method on the Application object
oWord.Quit
' Clear the object from memory
Set oWord = Nothing

End Sub

Get COM Object Method
The Get COM Object method returns the COM object that the pathname argument or the class 
argument identifies. To assign a variable to an object for use in a Visual Basic procedure, you 
dimension a variable as an object, and then use the Get COM Object method with the Assign COM 
Object statement.

The examples in this topic reference the SiebelAppServer object, which you define as an object type 
in your external Visual Basic environment.

Format A
GetObject(pathname)

Format B
GetObject(pathname, class)

Format C
GetObject(, class)

Arguments
The following table describes the arguments that you can use with this method.

Usage for Format A
You can use format A to access a COM object that is stored in a file. For example, the following code 
dimensions a variable as an object and assigns the payables.xls object to this variable. The 
Payables.xls file is located in the My Documents directory:

Dim oFileObject As Object
Set oFileObject = GetObject("C:\My Documents\payables.xls")

Argument Description

pathname The full path and file name for the object to get.

class A string that contains the class of the object.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ COM Methods

234 

If the Siebel application supports accessing component objects in the file, then you can append an 
exclamation point and a component object name to the file name. For example:

Dim oComponentObject As Object 
Set oComponentObject = _

GetObject("C:\My Documents\payables.xls!R1C1: R13C9")

Usage for Format B
You can use format B to access a COM object of a particular class that is stored in a file. The class 
argument uses the following format:

appName.objectType 

where:

■ appName is the name of the application that provides the object 

■ objectType is the type or class of the object 

For example:

Dim oClassObject As Object
Set oClassObject = GetObject("C:\My _

Documents\payables.xls", "Excel.Sheet")

Usage for Format C
You can use format C to access the active COM object of a particular class. For example:

Dim oApplication As _
SiebelHTMLApplication

Set oApplication = _
GetObject(,"SiebelHTML.SiebelHTMLApplication.1")

If you use format C with a null string ("") in the pathname argument, then Siebel VB returns a new 
object instance of the class that you specify in the class argument. The preceding example gets an 
open instance of the Siebel application. The following example instantiates the Siebel application in 
memory, independent of the user interface:

Set oApplication = _
GetObject("","SiebelHTML.SiebelHTMLApplication.1")

Example
The following example opens an Excel worksheet and places the contents of the Name field of the 
active business component in this worksheet. The worksheet file must already exist: 

Sub Button1_Click
Dim ExcelSheet As Object
Set ExcelSheet = GetObject("C:\demo\test.xls")

'Make Excel visible through the Application object.
ExcelSheet.Application.Visible = 1



Methods Reference for Siebel VB ■ Error Handling Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 235

'Place some text in the first cell of the sheet.
ExcelSheet.ActiveSheet.Cells(1, 1).Value = _

theApplication.ActiveBusComp.GetFieldValue("Name")

'Save the sheet.
ExcelSheet.Save
'Close Excel with the Quit method on the Application object.

+ExcelSheet.Application.Quit
End Sub

Initialize COM Object Method
The Initialize COM Object method allocates and initializes a new COM object. It does not return a 
value.

In the Declare Variable statement, the New argument instructs Siebel VB to allocate and set a new 
COM object the first time it encounters the object that the objectVar argument identifies. If the code 
does not reference this object, then it does not allocate a new object.

The Initialize COM Object method does not create a COM object until the first time Siebel eScript 
uses this object. If Siebel eScript never uses this object, then this method does not create the object. 
The Create COM Object method creates the object as soon as you call this method. For more 
information, see “Create COM Object Method” on page 231.

If the objectVar argument contains Nothing, and if you declare an object variable, and if you 
reference this object again, then New allocates a second object. For more information, see “Remove 
Object Method” on page 108.

Format
Set objectVar = New className
Dim objectVar As New className

The following table describes the arguments that you can use with this method.

Error Handling Methods
This topic describes error handling methods. It includes the following topics:

■ “Get Error Code Method” on page 236

■ “Get Error Code Line Method” on page 236

■ “Get Error Message Method” on page 237

■ “On Error Method” on page 238

Argument Description

objectVar The COM object to allocate and initialize.

className The class to assign to the object.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Error Handling Methods

236 

■ “Resume Statement” on page 239

■ “Set Error Code Method” on page 240

■ “Simulate Error Method” on page 241

Get Error Code Method
The Get Error Code method returns the error code of the last Visual Basic error handled. You can use 
the Err statement or the Error statement to set the value for this method.

You cannot use the Get Error Code method to view a Siebel VB error. Instead, you use the appropriate 
method for the COM or ActiveX Siebel interface that you are using. For more information, see Siebel 
Object Interfaces Reference.

For more information, see “Error Code and Error Text for Siebel VB Errors” on page 52.

Format
Err

This method does not include arguments.

Example
For examples, see “Get Error Code Line Method” on page 236 and “Get Error Message Method” on 
page 237.

Get Error Code Line Method
The Get Error Code Line method returns a number that identifies the code line where an error 
occurred. If you use a Resume statement or an On Error statement after you use this method, then 
this method sets the return value to 0. To maintain the value of the line number, you must assign it 
to a variable. You can use the Error statement to set this return value.

Format
Erl

This method does not include arguments.

Example
The following example uses the Err statement to print the error number and the Erl statement to 
print the line number if an error occurs during an attempt to open a file. Siebel VB assigns line 
numbers, starting with 1. In this example the Sub Button_Click statement is line 1:

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger



Methods Reference for Siebel VB ■ Error Handling Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 237

msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
' ....etc....
Close #1

done:
Exit Sub

Debugger:
msgtext = "Error number " & Err & " occurred at line: " & Erl

Resume done
End Sub

Get Error Message Method
The Get Error Message method returns the error message that corresponds to an error code. If it 
does not find an error message that matches the error code, then it returns a null string (""). For 
more information, see “Error Code and Error Text for Siebel VB Errors” on page 52.

Format
Error[$] [(errornumber)]

For information about the dollar sign, see “Usage of the Dollar Sign” on page 56.

The following table describes the arguments that you can use with this method.

Example
The following example uses the Err statement to print the error number and the text of the error. If 
an error occurs during an attempt to open a file, then it uses the Error$ statement:

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger
msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
' ....etc....
Close #1

done:
Exit Sub

Debugger:

Argument Description

errornumber An integer in the range of 1 through 32,767 that identifies an error code. If you 
do not include this argument, then Siebel VB returns the error message of the 
run-time error that occurred most recently.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Error Handling Methods

238 

msgtext = "Error " & Err & ": " & Error$
Resume done

End Sub

On Error Method
The On Error method identifies the location of code that handles an error. It does not return a value. 
You can also use it to disable code that handles the error. If you do not use the On Error method, 
and if a run-time error occurs, then Siebel VB stops running code.

Format
On Error {GoTo label | Resume Next | GoTo 0}

The following table describes that parts of an On Error statement. You can include only one of these 
parts.

Usage
Note the following:

■ If an On Error GoTo label statement references an error handler, then that error handler is 
enabled.

■ If an error handler is enabled, and if a run-time error occurs, then Siebel VB gives control to the 
code that includes this error handler. The error handler remains active from the time the run-
time error is handled until code flow encounters a Resume statement in the error handler.

■ If another error occurs while the error handler is active, then Siebel VB searches for the error 
handler in the procedure that called the current procedure:

■ If it find this error handler, then it stops the current procedure and activates the error handler 
in the calling procedure.

■ If it does not find this error handler, then it searches for a handler that resides in the 
procedure that called the calling procedure, and so on. 

Because Siebel VB searches in the caller for an error handler, it ignores any On Error statements 
that exist in the original error handler.

Part Description

GoTo label Identifies the code that handles the error that starts at the label argument. If 
this label does not reside in the same procedure as the On Error statement, 
then Siebel VB creates an error message.

Resume Next Identifies the code to run after handling the error. It typically identifies the 
code that occurs immediately after the statement that caused the error. You 
can use the Err statement to get the error code of the run-time error at this 
point in the error handling.

GoTo 0 Disables any error handler that is enabled.



Methods Reference for Siebel VB ■ Error Handling Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 239

■ Running an End Sub or End Method statement while an error handler is active creates a No 
Resume error. You can use the Exit Sub or Exit Method statement to end the error condition and 
exit the current procedure.

Example
The following example prompts the user for a drive and directory name. It uses the On Error method 
to handle an entry that is not valid:

Sub Button_Click
Dim userdrive, userdir, msgtext

in1: 
userdrive = "c:"
On Error Resume Next
ChDrive userdrive
If Err = 68 then

Goto in1
End If

in2: 
On Error Goto Errhdlr1
userdir = "temp"
ChDir userdrive & userdir
userdir
Exit Sub

Errhdlr1:
Select Case Err

Case 75
msgtext = "Path is invalid."

Case 76
msgtext = "Path not found."

Case 70
msgtext = "Permission denied."

Case Else
msgtext = "Error " & Err & ": " & Error$ & "occurred."

End Select
Resume in2

End Sub

Resume Statement
The Resume statement stops the code that handles an error, and then passes control to the 
statement that immediately follows the statement where the error occurred. It does not return a 
value.

If you use Resume [0], then control passes to the statement where the error occurred.

The location of the error handler that handles the error determines where code resumes:

■ If the error is located in the same procedure as the error handler, then code flows to the 
statement that caused the error. 



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Error Handling Methods

240 

■ If the error is not located in the same procedure as the error handler, then code flows to the 
statement that last called the procedure that contains the error handler.

Format A
Resume Next

Format B
Resume label

Format C
Resume [0]

Arguments
The following table describes the arguments that you can use with this method.

Set Error Code Method
The Set Error Code method sets a run-time error code. It does not return a value. You can use it to 
send error information between procedures.

Format
Err = errornumber

The following table describes the arguments that you can use with this method.

Example
The following example creates an error code of 10000 and displays an error message if the user does 
not enter a customer name in reply to a prompt. It uses the Err statement to clear any previous error 
codes before it runs the loop for the first time. It also clears the error to allow the user to try again:

Sub Button_Click
Dim custname as String
On Error Resume Next
Do

Err = 0

Argument Description

label The label that identifies the code line to go to after handling an error.

Argument Description

errornumber An integer in the range of 1 through 32,767 that identifies an error code, or a 
0 if no error occurs.



Methods Reference for Siebel VB ■ Error Handling Methods

Siebel VB Language Reference Siebel Innovation Pack 2015 241

custname = "Acme Inc."
If custname = "" then

Error 10000
Else

Exit Do
End If
Select Case Err

Case 10000
TheApplication.RaiseErrorText "You must enter a customer name."

Case Else
TheApplication.RaiseErrorText "Undetermined error. Try again."

End Select
Loop Until custname <> ""

TheApplication.RaiseErrorText "The name is: " & custname
End Sub

For another example, see “Set Error Code Method” on page 240.

Simulate Error Method
The Simulate Error method simulates the occurrence of an error. Note the following:

■ If an Error statement runs, and if code to handle the error does not exist, then Siebel VB creates 
an error message and stops code from running. 

■ If an Error statement specifies an error code that Siebel VB does not use, then it displays the 
following error message:

User-defined error

Format
Error errornumber

The following table describes the arguments that you can use with this method.

Using a Custom Error Code
A custom error code must use a value that is greater than any value that Siebel VB uses for a 
predefined error code. To avoid using a predefined error code, it is recommended that the value you 
use for a custom error code start with 32,767. For subsequent custom error codes, you can work 
down from 32,767.

CAUTION: Do not use any error code in the range of 4000 through 4999. These are predefined codes 
for Siebel VB methods. For more information, see Siebel Object Interfaces Reference.

Argument Description

errornumber An integer in the range of 1 through 32,767 that identifies an error code. If Siebel 
VB already uses an error number that the errornumber argument identifies, then 
the Error statement simulates an occurrence of that error.



Siebel VB Language Reference Siebel Innovation Pack 2015

Methods Reference for Siebel VB ■ Error Handling Methods

242 



Siebel VB Language Reference Siebel Innovation Pack 2015 243

5 Quick Reference for Siebel VB 
Methods

This quick reference section lists Siebel VB methods. It includes the following topics:

■ Disk and Directory Control Quick Reference on page 243

■ File Control Quick Reference on page 244

■ File Input and Output Quick Reference on page 245

■ Code Setup and Control Quick Reference on page 246

■ Code Control Statements Quick Reference on page 246

■ Variable Manipulation Quick Reference on page 247

■ Strings Quick Reference on page 248

■ Arrays Quick Reference on page 249

■ Math Operations Quick Reference on page 249

■ Date and Time Quick Reference on page 250

■ ODBC Quick Reference on page 251

■ Object Querying Quick Reference on page 252

■ Financials Quick Reference on page 252

■ Conversions Quick Reference on page 253

■ COM Object Quick Reference on page 254

■ Error Handling Quick Reference on page 254

Disk and Directory Control Quick Reference
The following table lists methods that you can use to control disks and directories.

Statement Purpose Reference

ChDir Modifies the default directory for a 
drive.

“Change Directory Method” on page 56

ChDrive Modifies the default drive. “Change Drive Method” on page 57

CurDir Returns the current directory for a 
drive.

“Get Current Directory Method” on page 59

MkDir Creates a directory. “Create Directory Method” on page 58

RmDir Removes a directory. “Remove Directory Method” on page 60



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

244 

File Control Quick Reference
The following table lists methods that you can use to control files.

Statement Purpose Reference

Close Closes a file. “Close File Method” on page 63

Dir Returns a file name that matches a 
pattern.

“Get File Names Method” on page 71

FileAttr Returns the file mode or the operating 
system handle for an open file.

“Get File Mode Method” on page 70

FileCopy Copies a file. “Copy File Method” on page 64

FileDateTime Returns the last modification date and 
time of a file.

“Get File Date Method” on page 67

FileLen Returns the length of a file. “Get File Length 2 Method” on page 69

FreeFile Returns the next unused file number. “Get Free File Number Method” on 
page 72

GetAttr Returns attributes of a file, directory, or 
volume label.

“Get File Attributes Method” on page 66

Kill Deletes a file. “Delete File Method” on page 65

Lock Controls access to an open file. “Lock File Method” on page 73

Lof Returns the length of a file in bytes. “Get File Length Method” on page 68

Name Renames a file or copies a file from one 
directory to another directory.

“Rename File Method” on page 77

Open Opens a file. “Open File Method” on page 75

Reset Closes open files and writes to disk any 
data that currently resides in buffers.

“Close All Files Method” on page 62

SetAttr Sets attribute information for a file. “Set File Attributes Method” on page 78

Unlock Controls access to some or all of an open 
file by other processes.

“Unlock File Method” on page 79



Quick Reference for Siebel VB Methods ■

Siebel VB Language Reference Siebel Innovation Pack 2015 245

File Input and Output Quick Reference
The following table lists methods that you can use to manipulate data in a file.

Statement Purpose Reference

Eof Determines if the end of an open file has 
been reached. 

“End of File Method” on page 80

Get Reads the content of a file, and then 
places this content in a variable.

“Get File Contents Method” on page 82

Input Returns a string of characters from a file. “Get Characters From File Method” on 
page 82

Input 
filenumber, 
variable

Reads data from a file, and then saves 
this data to different variables.

“Parse File Contents Method” on page 88

Line Input Reads a line from a sequential file, and 
then saves it in a string variable. 

“Get Line From File Method” on page 87

Loc Returns the current offset of a file. “Get File Offset Method” on page 85

Print Prints data to a file or to the screen. “Print Data to File Method” on page 91

Put Writes a variable to a file. “Write Variable to File Method” on 
page 96

Seek 
filenumber

Returns the current position for a file. “Get File Position Method” on page 86

Seek 
filenumber, 
position

Sets the position of the next read or write 
operation in an open file.

“Set File Position Method” on page 92

Spc Prints a number of spaces. “Print Spaces Method” on page 90

Tab Sets the current print position. “Set Print Position Method” on page 94

Width Sets the output line width for an open 
file. 

“Set File Width Method” on page 93

Write Writes data to a sequential file. “Write Data to File Method” on page 94



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

246 

Code Setup and Control Quick Reference
The following table lists methods that you can use to perform setup tasks and to control the flow of 
logic in Siebel VB code.

Code Control Statements Quick Reference
The following table lists statements you can use to control the flow of logic in Siebel VB code.

Statement Purpose Reference

Shell Starts a Microsoft Windows 
application.

“Call Application Method” on page 97

Call Transfers control to a subroutine. “Call Subroutine Method” on page 98

Sub name Creates a subroutine. “Create Subroutine Method” on page 100

Function Creates a function. “Create Function Method” on page 102

Type userType Declares a custom data type. “Declare Custom Data Type Method” on 
page 104

Declare Sub
Declare 
Function

Declares a procedure or a function. “Declare Procedure Method” on page 105

Const 
constantName

Declares a symbolic constant. “Declare Symbolic Constant Method” on 
page 107

Environ Returns a string from the operating 
system environment

“Get Environment Setting Method” on 
page 107

Nothing Sets an object variable to not 
reference an object.

“Remove Object Method” on page 108

AppActivate Sends keystrokes to a Microsoft 
Windows application.

“Send Keystrokes Method” on page 109

Clipboard Accesses the Microsoft Windows 
clipboard.

“Use Clipboard Methods” on page 113

Statement Purpose Reference

_ Treats the next line as a continuation 
of the current line.

Not applicable.

Command Returns the command line specified 
when the MAIN sub runs.

Not applicable.

Do Loop Controls repetitive actions. “Do Loop Statement” on page 114

Exit Causes the current procedure or loop 
structure to return.

“Exit Statement” on page 115



Quick Reference for Siebel VB Methods ■

Siebel VB Language Reference Siebel Innovation Pack 2015 247

Variable Manipulation Quick Reference
The following table lists methods to manipulate variables.

For Next Loops a fixed number of times. “For Next Statement” on page 116

Go To Sends control to a statement. “Go To Statement” on page 118

Go To Label Branches to one of multiple labels 
depending on value.

“Go To Label Statement” on page 120

If...Then...
Else

Branches on a conditional value. “If Then Else Statement” on page 119

Me Gets the current object. “Me Statement” on page 121

Rem or ’ Treats the remainder of the line as a 
comment

“Rem Statement” on page 122

Select Case Runs one of a series of statement 
blocks.

“Select Case Statement” on page 123

Stop Stops code from running. “Stop Statement” on page 124

While Wend Controls repetitive actions. “While Wend Statement” on page 125

Statement Purpose Reference

Deftype Sets the default data type for one or 
more variables.

“Set Variable Data Type Statement” on 
page 136

Dim Declares a variable. “Declare Variable Statement” on page 128

Global Declares a global variable. “Declare Global Variable Statement” on 
page 129

Let Assigns a value to a variable. “Assign Expression to Variable Statement” 
on page 127

Null Sets a variant variable to a value of 
Null.

“Set Variant Variable to Null Method” on 
page 137

Option Explicit Forces you to explicitly declare every 
variable in a module.

“Force Explicit Declaration Statement” on 
page 133

Static Declares a variable and allocates 
storage space for this variable.

“Declare Static Variable Statement” on 
page 132

VarType Returns the type of data stored in a 
variant.

“Get Variant Type Method” on page 134

With Runs a series of statements on a 
variable.

“Modify Variable Statement” on page 132

Statement Purpose Reference



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

248 

Strings Quick Reference
The following table lists methods to manipulate strings.

Statement Purpose Reference

Chr Converts a character code to a string. “Get ANSI String Method” on page 145

Format Returns an expression in a format 
that you specify.

“Set String Format Method” on page 157

InStr Returns the position of one string in 
another string.

“Get Substring Position Method” on 
page 151

LCase Converts a string to lower case. “Convert String to Lowercase Method” on 
page 142

Left Returns a string copied from the 
beginning of another string.

“Get Left String Method” on page 147

Len Returns the length of a string or size 
of a variable.

“Get String Length Method” on page 149

Like Compares the contents of two 
strings.

“Compare Strings Operator” on page 140

Lset Copies one string to another string or 
assigns a custom variable to another 
variable.

“Copy String Method” on page 143

LTrim Removes leading spaces from a 
string.

“Remove Spaces From String Method” on 
page 153

Mid Returns a portion of a string. “Get Substring Method” on page 150

Mid = string Replaces part or all of one string with 
another string.

“Replace String Method” on page 154

Option 
Compare

Specifies the default method for 
string comparisons to case-sensitive 
or not case-sensitive.

“Set String Comparison Method” on 
page 156

Right Returns the right portion of a string. “Get Right String Method” on page 148

Rset Right-justifies one string in another 
string.

“Right-Justify String Method” on page 155

RTrim Removes trailing spaces from a 
string.

“Trim Trailing Spaces From String Method” 
on page 159

Space Returns a string of spaces. “Get a String of Spaces Method” on 
page 144

Str Returns the string representation of a 
number.

“Convert Number to String Method” on 
page 141

StrComp Compares two strings. “Compare Strings Method” on page 139



Quick Reference for Siebel VB Methods ■

Siebel VB Language Reference Siebel Innovation Pack 2015 249

Arrays Quick Reference
The following table lists methods for manipulating arrays.

Math Operations Quick Reference
The following table lists methods to perform mathematical operations.

String Returns a string that consists of a 
repeated character.

“Get Repeated Character String Method” 
on page 147

Trim Removes leading and trailing spaces 
from a string.

“Trim Spaces From String Method” on 
page 159

UCase Converts a string to upper case. “Convert String to Uppercase Method” on 
page 143

Val Returns the numeric value of the first 
number that it finds in a string.

“Get First Number From String Method” on 
page 146

Statement Purpose Reference

Erase Erases the contents of an array. “Erase Array Method” on page 162

LBound Gets the lower boundary of an 
array.

“Get Array Lower Boundary Method” on page 163

Option 
Base

Specifies the default lower 
boundary to use for an array.

“Set Array Lower Boundary Method” on page 164

ReDim Declares an array and reallocates 
memory.

“Declare Array Method” on page 160

UBound Gets the upper boundary of an 
array.

“Get Array Upper Boundary Method” on page 164

Statement Purpose Reference

Abs Returns the absolute value of a number. “Get Absolute Value Method” on page 168

Asc Returns an integer that corresponds to 
an ANSI character code.

“Get ANSI Integer Method” on page 168

Atn Returns the arctangent of a number. “Get Arctangent Method” on page 169

Cos Returns the cosine of an angle. “Get Cosine Method” on page 170

Exp Returns the value of e raised to a power. “Exponential Method” on page 167

Statement Purpose Reference



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

250 

Date and Time Quick Reference
The following table lists methods for date and time information.

Fix Removes the fractional part of a 
number.

“Get Rounded Integer Method” on page 172

Hex Returns the hexadecimal 
representation of a number.

“Get Hexadecimal Method” on page 170

Int Returns the integer part of a number. “Get Integer Method” on page 171

Log Returns the natural logarithm of a 
value.

“Get Logarithm Method” on page 173

Oct Returns the octal representation of a 
number.

“Get Octal Method” on page 174

Randomize Creates a starting value for the random 
number generator. 

“Randomize Method” on page 178

Rnd Returns a random number. “Get Random Number Method” on page 175

Sgn Returns a value that identifies the sign 
of a number.

“Get Number Sign Method” on page 175

Sin Returns the sine of an angle. “Get Sine Method” on page 176

Sqr Returns the square root of a number. “Get Square Root Method” on page 177

Tan Returns the tangent of an angle. “Get Tangent Method” on page 177

Statement Purpose Reference

Date Converts an expression to the data 
type variant of type date.

“Convert Number to Date Method” on 
page 180

Date = 
expression

Sets the computer date. “Set Date Method” on page 193

DateSerial Converts a number to a date. “Convert Serial Number to Date Method” on 
page 181

DateValue Converts a string to a date. “Convert String to Date Method” on 
page 182

Day Returns the day component of a date 
and time value. 

“Extract Day From Date-Time Value Method” 
on page 184

Hour Returns the hour of day component of 
a date and time value.

“Extract Hour From Date-Time Value 
Method” on page 185

Minute Returns the minute component of a 
date and time value.

“Extract Minute From Date-Time Value 
Method” on page 185

Statement Purpose Reference



Quick Reference for Siebel VB Methods ■

Siebel VB Language Reference Siebel Innovation Pack 2015 251

ODBC Quick Reference
The following table lists methods that you can use with ODBC.

Month Returns the month component of a 
date and time value.

“Extract Month From Date-Time Value 
Method” on page 186

Now Returns the current date and time. “Get Current Date and Time Method” on 
page 189

Second Returns the second component of a 
date and time value.

“Extract Second From Date-Time Value 
Method” on page 187

Time Returns the current time. “Get Current Time Method” on page 190

Time = 
expression

Sets the current time. “Set Time Method” on page 194

Timer Returns the number of seconds since 
midnight.

“Get Current Seconds Method” on page 191

TimeSerial Returns the time for a specific hour, 
minute, and second.

“Get Serial Time Method” on page 192

TimeValue Converts a string to time. “Convert String to Time Method” on 
page 183

Weekday Returns the day of the week for the 
specified date and time value.

“Extract Weekday From Date-Time Value 
Method” on page 188

Year Returns the year component of a date 
and time value.

“Extract Year From Date-Time Value Method” 
on page 188

Statement Purpose Reference

SQLClose Disconnects from an ODBC data source 
connection.

“ODBC Close Connection Method” on 
page 196

SQLError Returns a detailed error message for an 
error that occurs during an ODBC 
method call.

“ODBC Get Errors Method” on page 197

SQLExecQuery Runs an SQL statement. “ODBC Run Query Method” on page 205

SQLGetSchema Gets information about data sources, 
databases, users, owners, and so on.

“ODBC Get Schema Method” on 
page 201

SQLOpen Establishes a connection to an ODBC 
data source.

“ODBC Open Connection Method” on 
page 203

SQLRequest Makes a connection to a data source, 
runs an SQL statement, returns the 
results.

“ODBC Run Query and Get Results 
Method” on page 206

Statement Purpose Reference



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

252 

Object Querying Quick Reference
The following table lists methods that you can use to query an object.

Financials Quick Reference
The following table lists methods that you can use to calculate financial information.

SQLRetrieve Returns the results of a select 
statement that SQLExecQuery runs.

“ODBC Get Query Results Method” on 
page 199

SQLRetrieveToF
ile

Gets the results of an SQL query and 
stores them in a file.

“ODBC Save Results to File Method” on 
page 208

Statement Purpose Reference

If Typeof Determines if an object is of a given class. “Is Object Of Class Method” on 
page 211

IsDate Determines if an expression evaluates to a 
date that Oracle’s Siebel VB allows.

“Is Expression a Date Method” on 
page 210

IsEmpty Determines if a variant has been set. “Is Variable Set Method” on page 214

IsMissing Determines if an optional argument for a 
procedure is missing.

“Is Optional Argument Missing 
Method” on page 211

IsNull Determines if a variant contains a NULL 
value.

“Is Variable Null Method” on page 212

IsNumeric Determines if a value is a valid number. “Is Variable Numeric Method” on 
page 213

Statement Purpose Reference

FV Returns future value of a cash flow stream. “Calculate Future Value Method” on 
page 217

IPmt Returns interest payment for a given period. “Calculate Interest Method” on 
page 217

IRR Returns internal rate of return for a cash flow 
stream.

“Calculate Internal Rate of Return 
Method” on page 219

NPV Returns net present value of a cash flow 
stream.

“Calculate Net Present Value Method” 
on page 220

Pmt Returns a constant payment for each period 
for an annuity.

“Calculate Payment Method” on 
page 220

Statement Purpose Reference



Quick Reference for Siebel VB Methods ■

Siebel VB Language Reference Siebel Innovation Pack 2015 253

Conversions Quick Reference
The following table lists methods that you can use to convert a value.

PPmt Returns principal payment for a given period. “Calculate Principal Method” on 
page 221

PV Returns present value of a future stream of 
cash flows.

“Calculate Present Value Method” on 
page 221

Rate Returns interest rate for each period. “Calculate Interest Rate Method” on 
page 218

Statement Purpose Reference

CCur Converts a value to currency. “Convert Expression to Currency 
Method” on page 223

CDbl Converts a value to a double-precision 
floating point number.

“Convert Expression to Double-
Precision Method” on page 224

CInt Converts a value to an integer. “Convert Expression to Integer 
Method” on page 224

CLng Converts a value to a long number. “Convert Expression to Long Method” 
on page 225

CSng Converts a value to single-precision, 
floating point number.

“Convert Expression to Single-
Precision Method” on page 226

CStr Converts a value to a string. “Convert Expression to String Method” 
on page 227

CVar Converts a number or string to a variant. “Convert Expression to Variant 
Method” on page 227

CVDate Converts a value to a date. “Convert Number to Date Method” on 
page 180

Statement Purpose Reference



Siebel VB Language Reference Siebel Innovation Pack 2015

Quick Reference for Siebel VB Methods ■ 

254 

COM Object Quick Reference
The following table lists methods for COM objects.

Error Handling Quick Reference
The following table lists methods for error handling.

Statement Purpose Reference

CreateObject Creates a new COM object. “Create COM Object Method” on 
page 231

Dim As 
Object

A class that provides access to a COM 
object.

“COM Object Class” on page 230

GetObject Gets a COM object from a file or gets the 
active COM object for a COM class.

“Get COM Object Method” on page 233

New Allocates and initializes a new COM 
object.

“Initialize COM Object Method” on 
page 235

Set Assigns a COM object to a variable. “Assign COM Object Statement” on 
page 228

Statement Purpose Reference

Erl Returns a number that identifies the 
code line where an error occurred.

“Get Error Code Line Method” on page 236

Err Returns the error code of the last 
Visual Basic error handled. 

“Get Error Code Method” on page 236

Err = 
errornumber

Sets a run-time error code. “Set Error Code Method” on page 240

Error Returns the error message that 
corresponds to an error code.

“Get Error Message Method” on page 237

Error 
errornumber

Simulates the occurrence of an error. “Simulate Error Method” on page 241

On Error Identifies the location of code that 
handles an error. 

“On Error Method” on page 238

Resume Stops the code that handles an error. “Resume Statement” on page 239



Siebel VB Language Reference Siebel Innovation Pack 2015 255

Index

A
AND operator, about 31
angles

sine, calculating 176
Tan function, about using to calculate 

tangent 177
AppActivate, about 17
Application_PreInvokeMethod

write routines, about using to 103
arguments

IsMissing function, about using to query 
callers for a procedure 211

array data types, about and using ReDim 
statement 22, 23

arrays
LBound function, about using to return lower 

bound of subscript range 163
resizing when full of data 165
statements, table of 249
UBound function, about using to return upper 

bound subscript range 164
upper bound of the subscript range 164

B
Boolean data type, simulating 17

C
Call statement

arguments, used in procedures 21
example 99
syntax, returns, usage 98

calling procedure, transferring control 
to 115

cash flows, constant periodic stream 221
CCur function, syntax, returns, usage, and 

example 223
ChDir statement, syntax, returns, usage, and 

example 56
ChDrive statement, syntax, returns, usage, 

and example 57
CInt function, syntax, returns, usage, and 

example 224
Clipboard methods, syntax, returns, usage, 

and example 113
CLng function, syntax, returns, usage, and 

example 225

code, identifying as a comment 122
COM automation objects

creating 231
Object class, about using to provide access 

to 230
COM objects

file or application, associated with 233
new object, about using to initialize 235
Set statement, about assigning to a 

variable 228
COM-compliant objects, about accessing 32
comparison operators, numeric and string 

(table) 30
connections

queries on 199
storing queries in a file 208

Const statement, syntax, returns, usage, and 
example 107

control
subprogram or function, transferring to 98

control-based objects, differences between 
Siebel VB and Visual Basic 17

CreateObject function
example 232
syntax, returns, usage, and example 231

CSng function, syntax, returns, usage, and 
example 226

CStr function, syntax. returns, and 
example 227

CurDir function, syntax, returns, usage, and 
example 59

currency data type, converting to 223
current date, about using Date function to 

return string representing 189
current user ID, returning 201
CVar function, syntax, returns, usage, and 

example 227
CVDate function, syntax, returns, usage, and 

example 180

D
data source

SQLGetSchema function, about using to 
return information 201

SQLRequest function, about using to connect 
to 206

data types



Siebel VB Language Reference Siebel Innovation Pack 2015

Index ■ E

256 

about 22
arrays, about and using ReDim 

statement 22, 23
arrays, declaring for 36
currency, about using CCur function to 

convert expression 223
default, about specifying for one or more 

variables 136
five numeric types (table) 25
integer, about using Cln function to convert 

expression 224
long, about using CLng function to convert 

expression 225
record, about and example 26
Siebel VB and previous Basic versions, 

differences between 16
Siebel VB and Visual Basic, differences 

between 17
single, about using CSng function to convert 

expression 226
string, about fixed and dynamic 26
string, about using CStr function, about using 

to convert expression 227
type characters, about and table of suffix 

characters 27
variant of type, about using CVDate function 

to convert expression 180
variant, about using CVar function to convert 

expression 227
databases, query warning 201
data-time value, about using Year function 

to return year component 188
Date function, syntax, returns, usage, and 

example 189
Date statement

example 194
dates

formatting 43
IsDate function, about using to confirm 210
Now function, about using to return current 

date and time 189
DateSerial function, syntax, returns, usage, 

and example 181
date-time value

month component, about 186
Weekday function, about using to return day 

of the week 188
year component 188

DateValue function, syntax, returns, usage, 
and example 182

Day function, syntax, usage, and 
example 184

day, about using Weekday function to return 
day of the week 188

debugging, about using Option Explicit 
statement 133

Declare statement
syntax. returns, and usage 105

declaring variables, about using Option 
Explicit statement 133

default drive
changing 57
returning 59

default folder
changing 56
returning 59

Deftype statement, syntax. returns, usage, 
and example 136

Dim statement
arrays, about declaring 36
dynamic array, using to declare 25
fixed-length and dynamic strings 37
numeric variables, about declaring 37
object variables, about 38
record variables, about declaring 37
syntax, returns, and usage 128
variable, about using to declare type 22
variant example for each data type 128
variants, about declaring variables as 38

Dir function
syntax and returns 71
usage and example 71

disk control, statements (table) 243, 244
DLL (dynamic link library)

C procedures, calling 99
passed-in value 34
procedures, declaring 105
procedures, external 34
writing your own functions 101, 103

Do...Loop statement
syntax, returns, usage, and example 114

DTYPE_BOOL field, about calling in a 
script 17

dynamic link library
See DLL (dynamic link library)

dynamic strings
about and example 26
variable types 37

E
elapsed time, about using Timer function to 

return elapsed time 191
Environ function, syntax, returns, usage, and 

example 107
environmental control

Siebel VB and previous Basic differences 17
Eof function, syntax, returns, usage, and 



Index ■ F

Siebel VB Language Reference Siebel Innovation Pack 2015 257

example 80
EQV operator, about 31
Erl function, syntax, returns, usage, and 

example 236
Err function, syntax, returns, usage, and 

example 236
Error function, syntax, returns, usage, and 

example 237
error handling

error message, returning 237
error statements, table of 254
routine, halting 239
statements and functions, about 47

errors
ODBC function call, derived from 197

Exit statement, syntax, returns, usage, and 
example 115

expressions
about 29
comparison operators, numeric and string 

(table) 30
formatted string, converting to 157
Is operator, about using to compare 

expressions 209
Like operator, about using to compare 

contents 140
logical operators, table of 31
numeric operators, table of 29
string operators, table of 30

External DLL procedures 34

F
file control statements (table) 244
file input/output statements, table of 245
file mode, returning 70
file number, lowest unused 72
FileAttr function, syntax, returns, usage, and 

example 70
FileDateTime function, syntax, returns, and 

usage 67
FileLen function, syntax, returns, usage, and 

example 69
filename, returning 71
files

attributes, returning 66
closing an open file 70
disk and folder control, table of 243, 244
end, determining 80
file control, table of 244
input/output statements, table of 245
length, returning 69
Lof function, about using to return length 68

modification date and time 67
Seek position, about using to return current 

file position for open file 86
fixed strings, about and example 26
fixed-length string variables, declaring 37
folder control, statements (table) 243, 244
folders

attributes, returning 66
removing 60

For...Next statement
example 118
syntax, returns, and usage 116

Format function
dates and times, formatting 43
examples 158
predefined numeric formats, table of 158
scaling numbers 41
syntax, returns, and usage 157
user-defined numeric format, creating 39

formatting
dates and times 43
numbers 158

FreeFile function, syntax. returns, usage, 
and example 72

function procedure, defining 102
Function...End Function statement

example 103
syntax, returns, and usage 102

functions
Help syntax 14
Siebel VB and previous Basic version, 

differences between 17
FV function, syntax, returns, usage, and 

example 217

G
Get statement

example 84
GetAttr function syntax, returns, and 

usage 66
GetLastErrText method, availability of 52
GetObject function

example 234
syntax, returns, and usage 233

Global statement
example 130
syntax, returns, and usage 129

global variables
Global statement, about declaring 129

GoTo statement
good practice, and about using 118
syntax, returns, usage, and example 118



Siebel VB Language Reference Siebel Innovation Pack 2015

Index ■ H

258 

H
Hour function, syntax, returns, and 

usage 185

I
If...Then...Else statement, syntax, returns, 

usage, and example 119
IMP operator, about 31
Input function, syntax, returns, usage 82
InStr function

example 152
syntax, returns, usage 151

integer
data type, converting to 224

interest payments, about using IPmt 
function to calculate 217

interest rates, about using Rate function to 
calculate 218

investment, about using NPV function to 
return present value 220

IPmt function, syntax, returns, usage, and 
example 217

IRR function, syntax, returns, usage, and 
example 219

Is operator, syntax, returns, usage, and 
example 209

IsDate function, syntax, returns, usage, and 
example 210

IsEmpty function
syntax, returns, usage, and example 214

IsMissing function, syntax, returns, usage, 
and example 211

IsNull function, syntax, returns, usage, and 
example 212

IsNumeric function, syntax, returns, and 
usage 213

K
keystrokes, using SendKeys statement to 

send keystrokes to Windows 
application 109

L
labels, Siebel VB and previous Basic 

versions, differences between 16
LBound function, syntax, returns, usage, and 

example 163
LCase function, syntax, returns, usage, and 

example 142
Left function, syntax, returns, usage, and 

example 147
legal date, about using IsDate function to 

confirm 210
Len function, syntax, returns, usage, and 

example 149
Like operator

example 141
syntax, returns, and usage 140

line numbers, Siebel VB and previous Basic 
versions, differences between 16

loan payments, converting to a currency 
value 223

Loc function, syntax, returns, and 
example 85

Lof function, syntax, returns, usage, and 
example 68

Log function, syntax, returns, usage, and 
example 173

logarithms, about using Log function to 
return logarithm 173

logical operators, table of 31
long data type, converting to 225
looping

Do...Loop statement 114
For...Next statement 116
loop statements, terminating 115
While...Wend statement 125

LTrim function, syntax, returns, usage, and 
example 153

M
Me

syntax, returns, usage, and example 121
methods

accessing syntax 33
object, about causing action on 31

Microsoft Visual Basic, compared to Siebel 
VB 17

Mid function, syntax, returns, usage, and 
example 150

minute component, about Minute function to 
return date value 185

Minute function, syntax, returns, usage, and 
example 185

Month function, syntax, returns, usage, and 
example 186

N
negative numbers, about using Sgn function 

to return value 175
New operator, syntax, returns, and 

usage 235
non-Siebel VB errors, trapping user-defined 

errors 49
NOT operator, about 31



Index ■ O

Siebel VB Language Reference Siebel Innovation Pack 2015 259

Now function, syntax, returns, usage, and 
example 189

NPV function, syntax, returns, usage, and 
example 220

Null function, syntax, returns, usage, and 
example 137

numbers
Sgn function, about using to indicate 

negative/positive 175
Str function, about returning string 

representation of number 141
numeric comparison operators, table of 30
numeric data types, list 25
numeric expressions

formatting 158
numeric format, about creating user-defined 

numeric format 39
numeric operators, table of 29
numeric value of first number 146
numeric variables, Dim statement 37

O
Object class, syntax, returns, usage, and 

example 230
object handling

accessing syntax 33
object variables, about declaring 38
objects

COM-compliant, about accessing 32
Me, about using to refer to current 

object 121
Set Statement, about using to 

instantiate 228
Siebel object types, syntax for declaring 32
statements (table) 252
Typeof function, about using to return a 

value 211
Oct function, syntax, returns, usage, and 

example 174
octal (base 8) number, about using Oct 

function to convert number 174
ODBC

data source, connecting to 203
data source, disconnecting from 196
function call, about using SQLError function to 

retrieve data 197
On Error statement

body of code, trapping errors within 48
error handler, using 49
example 239
example using to trap run-time errors 115

On...Goto statement, syntax, returns, and 
usage 120

Open statement
example 76

operating system events, about processing 
with Windows 220

Option Base statement
example 165

Option Explicit statement
syntax, returns, usage, and example 133

OR operator, about 31

P
payments

Pmt function, about using to calculate 
constant periodic 220

PPmt function, about using to return principal 
portion of payment 221

Pmt function, syntax, returns, usage, and 
example 220

positive numbers, about using Sgn function 
to return a value 175

PPmt function, about using 221
present value, calculating 222
printing

Spc function, about printing a specified 
number of spaces 90

program execution, about using Stop 
statement to halt 124

properties
accessing syntax 33
objects, about handling 31

Put statement
example 97

PV function, syntax, returns, usage, and 
example 221

R
random numbers

Rmd function to return number, about 
using 175

Rate function, syntax, usage, and 
example 218

rate of return, about using IRR function to 
calculate 219

record
data types, about and example 26

record variable, about declaring 37
ReDim statement

example 161
redimensioning array, about 22, 23
setting subscript range, about 24

Rem statement, syntax, returns, usage, and 
example 122

repetitive action, about using While...Wend 



Siebel VB Language Reference Siebel Innovation Pack 2015

Index ■ S

260 

statement to control 125
Resume Next argument, using to trap 

errors 48
Resume statement, syntax and returns 239
Right function, syntax. returns, usage, and 

example 148
Rnd function, syntax, returns, usage, and 

example 175
RTrim function, syntax, returns, usage, and 

example 159
run-time error

error code, returning for last error 
trapped 236

S
Second function, syntax, returns, usage, and 

example 187
Seek

function, syntax, returns, usage, and 
example 86

Select Case statement
example 112
syntax, returns, and usage 123

SendKeys statement, syntax, returns, and 
usage 109

Set statement, syntax, returns, and 
usage 228

Sgn function, syntax, returns, and 
example 175

Siebel objects, about using Set Statement to 
instantiate 228

Siebel Visual Basic
Basic, difference between older versions 15
Err function, about using to view errors 236
Microsoft Visual Basic, compared to 17
trapping errors generated by methods 51
Visual Basic, user interface differences 17

Sin function, syntax, returns, usage, and 
example 176

sine, about using Sin function to 
calculate 176

single data type, converting to 226
Space function, syntax, returns, usage, and 

example 144
spaces

LTrim function, about using to return strings 
with spaces removed 153

Space function, about using to return string of 
spaces 144

Spc function, about printing a specified 
number of spaces 90

Spc function, syntax, returns, usage, and 
example 90

SQL statements, executing 205
SQLClose function

example 196
syntax, returns, and usage 196

SQLError function
example 198
syntax, returns, and usage 197

SQLExecQuery function
example 205
syntax, returns, and usage 205

SQLGetSchema function
example 202
syntax and returns 201
usage 201

SQLOpen function
example 204
syntax and returns 203

SQLRequest function
example 206
syntax and returns 206

SQLRetrieve function
example 200
syntax and returns 199
usage 200

SQLRetrieveToFile function
example 208
syntax, returns, and usage 208

Sqr function, syntax, returns, usage, and 
example 177

statements
Help syntax 14
Select Case statement, about using to execute 

one or more statements 123
With statement, about using to execute series 

of statements 132
Static statement, syntax, returns, and 

usage 132
Stop statement, syntax, returns, usage, and 

example 124
Str function, syntax, returns, usage, and 

example 141
StrComp function, syntax, returns, usage, 

and example 139
string comparison operators, table of 30
string conversions

about 28
statements, table of 253

string function
syntax, returns, usage, and example 147

string operators, table of 30
strings

data types, converting to 227
LCase function, about using to return 

lowercase copy of 142



Index ■ T

Siebel VB Language Reference Siebel Innovation Pack 2015 261

Left function, about copying string from 
another string 147

Len function, about using to return string 
length 149

Like operator, about using to compare 
contents 140

LTrim function about using to return string 
with spaces removed 153

Mid function, about using to identify a portion 
of 150

numeric value of first number 146
Right function, about using to return end 

portion of string 148
RTrim function, about using to copy and 

remove trailing spaces 159
Space function, about using to return string of 

spaces 144
StrComp function, about using to compare 

strings 139
string conversions, table of 253
String function, about to return string of 

repeated character 147
trailing spaces, removing 159
Trim function, about using to return copy after 

copying 159
UCase function, about using to return a copy 

after converting to lowercase to 
uppercase 143

Val function, about using to return numeric 
value of the first number 146

Sub...End Sub statement
example 101
syntax, returns, and usage 100

subprogram procedure, about using 
Sub...End Sub statement to 
define 100

symbolic constants, declaring 107

T
table columns, returning information 

about 201
table names, returning information 

about 201
Tan function, syntax, returns, usage, and 

example 177
tangent, about using Tan function to 

calculate tangent 177
time

formatting, table 43
Now function, about returning current date 

and time 189
Time function, about returning current 

time 190

TimeSerial function, about returning time as a 
variant 192

TimeValue function, about returning time 
value for a string 183

Time function, syntax, returns, usage, and 
example 190

time value
hour component 185
Minute function, about using to return minute 

component 185
Second function, about using to return second 

component (0 to 59) 187
Timer function, syntax, returns, usage, and 

example 191
TimeSerial function, syntax, returns, usage, 

and example 192
TimeValue function, syntax, returns, usage, 

and example 183
To keyword, about using to specify a range of 

values 124
trailing spaces, removing 159
trapping errors

body of code, trapping errors within 
(example) 48

code examples, about 48
error handler, using 49
line number, where error was trapped 236
run-time error code 236
Siebel VB methods, generated by 51
Siebel VB, returned by 48
user-defined errors 49

Trim function, syntax, returns, and 
usage 159

type characters, about and table of suffix 
characters 27

Type statement
example 105
syntax, returns, and usage 104

Typeof function, syntax, returns, and 
usage 211

U
UBound function, syntax, returns, usage, 

and example 164
UCase function, syntax, returns, usage, and 

example 143
Unicode, support of 13
user interface, differences between Siebel 

VB and Visual Basic 17

V
Val function, syntax, returns, usage, and 

example 146



Siebel VB Language Reference Siebel Innovation Pack 2015

Index ■ W

262 

variable scope, placement of variable 
declaration (table) 16

variables
Basic program, declaring for use in 128
default data type, specifying 136
IsNumeric function, about using to determine 

variable value 213
Option Explicit statement, about explicitly 

declaring variables in a module 133
passing by reference 19
Static statement, about using to declare 

variable and allocate storage 
space 132

variant data type
expression, converting to 227
expression, converting to type date 180

variants
conversions, about 28
IsEmpty function, about using to determine 

initialization 214
Null value, determining 212
Null value, setting 137

ValType function, about returning specified 
variant type 134

variables, declaring as 38
VarType function

syntax, returns, and example 134
Visual Basic, Siebel Visual user interface 

differences 17
volume labels, attributes 66

W
Weekday function, syntax, returns, usage, 

and example 188
With statement

syntax, returns, usage, and example 132

X
XOR operator, about 31

Y
Year function, syntax, returns, usage, and 

example 188


	Contents
	1 What’s New in This Release
	What’s New in Siebel VB Language Reference, Siebel Innovation Pack 2015
	What’s New in Siebel VB Language Reference, Siebel Innovation Pack 2014

	2 About Siebel Visual Basic
	Overview of Siebel Visual Basic
	Siebel VB and Unicode
	Typographic Conventions That This Book Uses
	About Functions and Methods

	Siebel VB and Other Versions of Visual Basic Programming Languages
	Differences Between Siebel VB and Earlier Versions of Visual Basic
	Line Numbers and Labels
	Subroutines and Modularity
	How Declaring a Variable Affects Variable Scope
	Data Types
	Financial Methods
	Date and Time Methods
	Methods to Access Other Applications
	Environment Control

	Differences Between Siebel VB and Visual Basic
	User Interface and Control Objects
	Boolean Data Type



	3 Using Siebel VB
	Guidelines for Using Siebel VB
	Pass Values Through Reference
	Passing a Value Through a Reference
	Passing a Value Through a Variable

	Give Each Argument a Name
	Format That You Can Use to Name an Argument
	Naming an Argument With More Complex Formats
	Where You Can Name an Argument

	Other Guidelines

	About Data Types
	Overview of Data Types
	Arrays
	Dynamic Arrays

	Numeric Data Types That Siebel VB Uses
	Records
	Strings
	Variants
	Type Characters
	How Siebel VB Converts Data Types
	Numeric Conversion
	String Conversion
	Variant Conversion

	Comments

	About Expressions
	Numeric Operators
	String Operators
	Comparison Operators
	Logical Operators

	About Object Handling
	Example of Declaring an Object As a Siebel CRM Object Type
	Creating an Object Variable to Access an Object
	Using Methods and Properties to Manipulate an Object

	Declaring Procedures and Variables
	Declaring a Procedure
	Specifying the Data Type
	Sequence Determines How You Must Declare Code
	Calling External DLL Code

	Declaring Variables
	Determining Variable Scope
	Specifying the Type When You Declare a Variable
	Declaring an Array Variable
	Declaring a Number Variable
	Declaring a Record Variable
	Declaring a String Variable
	Declaring a Variant Variable
	Declaring an Object Variable
	Caution About Declaring Multiple Variables on One Line
	Shared Keyword Allows Backward Compatibility


	About Formatting Strings
	Numeric Formats
	Predefined Numeric Formats
	Custom Numeric Formats
	Scaling Numbers
	Inserting Characters In Number Formats
	Scientific Notation Formats
	Using Sections In a Numeric Format

	Date and Time Formats
	Predefined Date and Time Formats
	Custom Date Formats
	Specifying Individual Parts of a Custom Date Format
	Using a 12 Hour Format

	Other Formatting Options
	Changing Formatting Sequence
	Changing Case
	Handling Spaces That Occur in the Input String


	About Error Handling
	Overview of Error Handling
	Handling Errors That Siebel VB Returns
	Using the Body of the Code to Handle Siebel VB Errors
	Using an Error Handler to Handle Siebel VB Errors

	Handling Custom Errors
	Using the Body of the Code to Handle Custom Errors
	Using a Label to Handle Custom Errors

	Handling Errors That a Siebel VB Method Returns
	Error Code and Error Text for Siebel VB Errors


	4 Methods Reference for Siebel VB
	Overview of Siebel VB Language Reference
	Usage of the Dollar Sign
	Methods, Functions, and Statements Described in Siebel Object Interfaces Reference

	Disk and Directory Control Methods
	Change Directory Method
	Change Drive Method
	Create Directory Method
	Get Current Directory Method
	Remove Directory Method

	File Control Methods
	Close All Files Method
	Close File Method
	Copy File Method
	Delete File Method
	Get File Attributes Method
	Get File Date Method
	Get File Length Method
	Get File Length 2 Method
	Get File Mode Method
	Get File Names Method
	Get Free File Number Method
	Lock File Method
	Open File Method
	Rename File Method
	Set File Attributes Method
	Unlock File Method

	File Input and Output Methods
	End of File Method
	Get Characters From File Method
	Get File Contents Method
	Get File Offset Method
	Get File Position Method
	Get Line From File Method
	Parse File Contents Method
	Print Spaces Method
	Print Data to File Method
	Set File Position Method
	Set File Width Method
	Set Print Position Method
	Write Data to File Method
	Write Variable to File Method

	Code Setup and Control Methods
	Call Application Method
	Call Subroutine Method
	Create Subroutine Method
	Create Function Method
	Declare Custom Data Type Method
	Declare Procedure Method
	Declare Symbolic Constant Method
	Get Environment Setting Method
	Remove Object Method
	Send Keystrokes Method
	Use Clipboard Methods

	Code Control Statements
	Do Loop Statement
	Exit Statement
	For Next Statement
	Go To Statement
	If Then Else Statement
	Go To Label Statement
	Me Statement
	Rem Statement
	Select Case Statement
	Stop Statement
	While Wend Statement

	Variable Manipulation Methods
	Assign Expression to Variable Statement
	Declare Variable Statement
	Declare Global Variable Statement
	Declare Static Variable Statement
	Modify Variable Statement
	Force Explicit Declaration Statement
	Get Variant Type Method
	Set Variable Data Type Statement
	Set Variant Variable to Null Method

	String Methods
	Compare Strings Method
	Compare Strings Operator
	Convert Number to String Method
	Convert String to Lowercase Method
	Convert String to Uppercase Method
	Copy String Method
	Get a String of Spaces Method
	Get ANSI String Method
	Get First Number From String Method
	Get Left String Method
	Get Repeated Character String Method
	Get Right String Method
	Get String Length Method
	Get Substring Method
	Get Substring Position Method
	Remove Spaces From String Method
	Replace String Method
	Right-Justify String Method
	Set String Comparison Method
	Set String Format Method
	Trim Spaces From String Method
	Trim Trailing Spaces From String Method

	Array Methods
	Declare Array Method
	Erase Array Method
	Get Array Lower Boundary Method
	Get Array Upper Boundary Method
	Set Array Lower Boundary Method

	Mathematical Methods
	Overview of Mathematical Methods
	How Some Math Methods Handle the Data Type
	Trigonometric Methods

	Exponential Method
	Get Absolute Value Method
	Get ANSI Integer Method
	Get Arctangent Method
	Get Cosine Method
	Get Hexadecimal Method
	Get Integer Method
	Get Rounded Integer Method
	Get Logarithm Method
	Get Octal Method
	Get Number Sign Method
	Get Random Number Method
	Get Sine Method
	Get Square Root Method
	Get Tangent Method
	Randomize Method

	Date and Time Methods
	Convert Number to Date Method
	Convert Serial Number to Date Method
	Convert String to Date Method
	Convert String to Time Method
	Extract Day From Date-Time Value Method
	Extract Hour From Date-Time Value Method
	Extract Minute From Date-Time Value Method
	Extract Month From Date-Time Value Method
	Extract Second From Date-Time Value Method
	Extract Weekday From Date-Time Value Method
	Extract Year From Date-Time Value Method
	Get Current Date Method
	Get Current Date and Time Method
	Get Current Time Method
	Get Current Seconds Method
	Get Serial Time Method
	Set Date Method
	Set Time Method

	ODBC Methods
	Overview of ODBC Methods
	ODBC Close Connection Method
	ODBC Get Errors Method
	ODBC Get Query Results Method
	ODBC Get Schema Method
	ODBC Open Connection Method
	ODBC Run Query Method
	ODBC Run Query and Get Results Method
	ODBC Save Results to File Method

	Object Querying Methods
	Compare Object Expressions Operator
	Is Expression a Date Method
	Is Object Of Class Method
	Is Optional Argument Missing Method
	Is Variable Null Method
	Is Variable Numeric Method
	Is Variable Set Method

	Financial Methods
	Overview of Financial Methods
	Arguments You Can Use with Financial Methods
	How Some Financial Methods Use the Rate Argument

	Calculate Future Value Method
	Calculate Interest Method
	Calculate Interest Rate Method
	Calculate Internal Rate of Return Method
	Calculate Net Present Value Method
	Calculate Payment Method
	Calculate Principal Method
	Calculate Present Value Method

	Conversion Methods
	Argument That You Can Use with Conversion Methods
	Convert Expression to Currency Method
	Convert Expression to Double-Precision Method
	Convert Expression to Integer Method
	Convert Expression to Long Method
	Convert Expression to Single-Precision Method
	Convert Expression to String Method
	Convert Expression to Variant Method

	COM Methods
	Assign COM Object Statement
	COM Object Class
	Create COM Object Method
	Get COM Object Method
	Initialize COM Object Method

	Error Handling Methods
	Get Error Code Method
	Get Error Code Line Method
	Get Error Message Method
	On Error Method
	Resume Statement
	Set Error Code Method
	Simulate Error Method


	5 Quick Reference for Siebel VB Methods
	Disk and Directory Control Quick Reference
	File Control Quick Reference
	File Input and Output Quick Reference
	Code Setup and Control Quick Reference
	Code Control Statements Quick Reference
	Variable Manipulation Quick Reference
	Strings Quick Reference
	Arrays Quick Reference
	Math Operations Quick Reference
	Date and Time Quick Reference
	ODBC Quick Reference
	Object Querying Quick Reference
	Financials Quick Reference
	Conversions Quick Reference
	COM Object Quick Reference
	Error Handling Quick Reference

	Index

