
1 - Batch Server Administration Guide

Batch Server Administration Guide

Oracle Utilities Smart Grid Gateway

Version 2.1.0.3 (OUAF 4.2.0.3)

E63090-01

May 2015

2 - Batch Server Administration Guide

Batch Server Administration Guide, Oracle Utilities Smart Grid Gateway, Version 2.1.0.3 (OUAF 4.2.0.3)

E63090-01

Copyright © 2007-2015 Oracle. All rights reserved.

Primary Authors: Oracle Tax And Utilities Global Business Unit

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a

license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and

industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain

interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please

report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license

agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United

States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.

Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the

applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial

Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It

shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of

such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the

Programs.

Oracle, JD Edwards, PeopleSoft and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be

trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible

for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If

you choose to purchase any products or services from a third party, the relationship is directly between you and the third party.

Oracle is not responsible for:

(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including

delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any

loss or damage of any sort that you may incur from dealing with any third party.

3 - Batch Server Administration Guide

Table of Contents

Preface .. 5

Introduction ... 5
Updates to this documentation ... 5
Other Documentation .. 5

Batch Architecture .. 6

Background processing and the Architecture .. 7

Concepts .. 8

Process Types .. 8
Process What’s Ready Processes ... 8
Extract Processes ... 8
Ad-hoc Processes ... 8
Monitor Processes .. 8
Conversion Processes ... 9
Object Validation Processes ... 9
To Do Processes .. 9
Archive and Purge Processes ... 10
Configuration Lab Processes .. 10
Interface Processes .. 10

Batch Controls .. 10
Viewing Batch Controls Using the Application Viewer .. 13
Adding your own batch controls .. 14

Standard parameters ... 15
Explanation of Timeout and Commit Interval .. 16
Explanation of Thread Limit and Thread Number .. 17
Explanation of Restart and Rerun .. 18

Timed Batch Processes .. 18
Common Configuration Files ... 19

e0Batch.properties .. 20
spl.properties – Product configuration settings .. 21
hibernate.properties – Database connectivity properties .. 22
log4j.properties – Logging Configuration... 25
coherence-cache-config.xml ... 25
tangasol-coherence-override.xml ... 25

Configuration Process .. 28
Submission Methods ... 29

Monitoring Background Processes ... 30

Batch Run Tree ... 30
Using SQL Queries to monitor background processes .. 31
Monitoring using JMX classes ... 32

Jconsole ... 32
Mbeans ... 32
BatchCluster MBean... 33
Threadpools Mbean .. 34
Members MBean ... 35
ClusterNode Mbean .. 36
BatchThread Mbeans ... 37
Adding Custom JMX Information .. 39
Cancelling Batch Processes Using JMX ... 39
jmxbatchclient[.sh] – JMX batch command line ... 40

4 - Batch Server Administration Guide

Online Submission ... 42

Using Online Submission ... 43
Online Batch Daemon .. 47

Guidelines for using the Batch Server/Batch Scheduler Daemon ... 49
Logging using the Batch Server/Scheduler Daemon .. 50
Configuring JMX with the Batch Server/Scheduler Daemon .. 50

submitbatch – Command based daemon .. 50

External Scheduler Submission ... 52

Concepts .. 52
threadpoolworker[.sh] Utility ... 52

threadpoolworker and F1_TSPACE_ENTRY ... 54
threadpoolworker.properties configuration file ... 55
Multi-cast or Uni-cast .. 56
Well Known Addresses .. 56
threadpoolworker[.sh] command line options ... 57
tpwlog4j.properties .. 59
Automatic Log Rotation .. 60
Return Codes .. 60

submitjob[.sh] ... 60
submitbatch.properties Configuration File ... 60
submitbatchlog4j.properties Configuration File .. 61
Job Specific parameters files .. 62
submitjob[.sh] Command-Line Options ... 63
Property Override Order .. 67
Port number of RMI Registry (-i) ... 67
Soft Parameters (-x) vs (-X) .. 68
Environment Variable substitution at runtime ... 68
Return Codes .. 68

bedit - Batch Configuration Editor .. 69
Concepts .. 69
bedit[.sh] Command-Line Options .. 70
Cluster (Coherence) Configuration .. 71
Threadpoolworker Configuration .. 73
Submitter Configuration ... 76

Miscellaneous Operations .. 79

Forcing a process to not attempt restart ... 79
Error Processing .. 79
Marking a process complete from the command line ... 80
Sending emails at the conclusion of batch processs.. 80
Template Overrides .. 82

Batch Configuration User Exits ... 83
Properties File User Exits .. 87
Specifying custom log file names ... 88

Turning off L2 Cache ... 89

Batch Configuration Edit Parameters ... 90

Cluster Properties .. 90
Threadpool Properties ... 91
SubmitJob Properties .. 92

5 - Batch Server Administration Guide

Preface

Introduction

Welcome to the Oracle Utilities Smart Grid Gateway Batch Server Administration Guide.

This guide outlines the concepts applicable to operating and configuration of the batch

component of the product on its platforms in association with the operations and

configuration steps outlined in the Oracle Utilities Smart Grid Gateway Server

Administration Guide. It is highly recommended that readers of this guide familiarize

themselves with that guide before reading this guide.

Note: All examples and screen captures are used for publishing purposes only and may vary from the

actual values seen at your site.

Note: This document covers Oracle Utilities Application Framework V4.2.0.3.

Note: The Batch component of the may not be applicable to all products. Refer to the provided product

user and framework documentation for clarification.

Note: For publishing purposes, Oracle Utilities Smart Grid Gateway will be referred to as "product".

Updates to this documentation

This documentation is provided with the version of the product indicated. Additional and

updated information about the operations and configuration of the product is available from

the Knowledge Base section of My Oracle Support (http://support.oracle.com). Please refer to

My Oracle Support for more information.

This document is regularly updated and should be re-downloaded on a regular basis. The

Service Pack that applies to this document is indicated on the initial page of this document

after the product version number.

Other Documentation

This document is part of the product technical documentation. There are groups of manuals

that should also be read for additional specific advice and information:

 Oracle Utilities Smart Grid Gateway Installation Guide

 Oracle Utilities Smart Grid Gateway Quick Installation Guide

 Oracle Utilities Smart Grid Gateway DBA Guide

These documents are available from http://edelivery.oracle.com

http://support.oracle.com/
http://edelivery.oracle.com/

6 - Batch Server Administration Guide

Batch Architecture

The product is known for its online (or foreground) processing (a.k.a. online processing) but

one of the major features of the product is its set of background processes. Background

processing is a major part of the product with numerous background processes supplied as

standard.

The easiest way to understand the concept behind background processing is to think that

background processing is like a super efficient user that operates on a batch of objects. That is

why background processing is commonly called Batch.

Note: For publishing purpose the term "batch" will be used to denote background processing in this

document.

Online typically operates on one object at a time, initiated by an online user or a Web Service

call, where batch can operate on one or more objects (also known as a set of objects) at a time,

initiated using a number of technologies.

The main reasoning behind the super efficient user is that each background process consists of

a driver object that identifies the set of valid objects to process and then processes each object

through the same business objects that the online uses. For example, the BILLING driver

determines which accounts are eligible to be billed according to business calendar and then

passes each account to the rate object to produce a bill. Contrast this with online bill

generation, where the user identifies the account manually, and then that single account is

passed to the same rate object to be billed. The background process can call more than one

object during the duration of the background process.

For the batch process, all of the database access and object access (including access to

business objects, algorithms, user exits (server side only) etc is done through the Oracle

Utilities Application Framework.

O
n

lin
e

U
se

r
o

r
W

eb

Se
rv

ic
e

In
it

ia
ti

n
g

te
ch

n
o

lo
gy

Application Service
(Single Object)

Batch Job Driver
(Set Processing)

Object

Object Object

Object

Object Object

Fo
re

gr
o

u
n

d
 P

ro
ce

ss
in

g
B

ac
kg

ro
u

n
d

 P
ro

ce
ss

in
g

7 - Batch Server Administration Guide

Background processing and the Architecture

The Background Processing component is run within the Oracle Utilities Application

Framework and is associated typically with the Business Application Server. It is not

associated the Web Application Server and does not require the Web Application Server to

be active to operate. The only component other than product that the background processing

component requires is the database server (or tier).

Depending on the initiation method employed the background processing component uses a

standalone copy of the Oracle Utilities Application Framework to perform access to the

database and business objects and its own copy of the same business objects used by the

Business Application Server.

Essentially the background processing has its own resources (Java Virtual machines (JVMs),

connection pools) independent of the rest of the architecture and can therefore be run on the

same hardware as the rest of the architecture or on dedicated hardware.

8 - Batch Server Administration Guide

Concepts

Before you attempt to configure or operate the product, there are important concepts that

you should understand. These concepts are addressed in this document as a basis for the

other documents in the Technical Documentation set.

Process Types

The product ships with a set of predefined background processes that are grouped into

process types.

Process What’s Ready Processes

Some background processes create and update records that are ready for processing. The

definition of ready differs for every process. Processes of this type tend to use a business date

in their determination of what's ready. For example, the bill cycle process creates bills for all

bill cycles whose bill window is open (i.e., where the business date is between the bill cycle's

start and end date). If the requester of the process does not supply a specific business date,

the system assumes that the current system date should be used. If you need to use a date

other than the current date, supply the desired date when you request the batch process.

Extract Processes

Some background processes extract a batch of information (to be interfaced OUT of the

system). Processes of this type extract records marked with a specific batch number. If the

requester of the process does not supply a specific batch number, the system assumes that

the latest batch number should be extracted. If you need to re-extract an historical batch, you

can supply the respective batch number when you request the batch process.

To rerun extracts it may be possible to simply rerun using a rerun number (if rerun number

re-runable) or by running the staging process that is associated with the extract then running

the extract again. Refer to individual processes for more details.

Note: Default file formats for all supplied extracts are documented in the relevant business process

documentation supplied with the product.

Note: The FILE-PATH and FILE-DIR additional parameters used in all extract processes are

limited to two hundred and fifty-four (254) characters each fully expanded.

Ad-hoc Processes

There is a specific background process that doesn't fit into the any other categories. This

process backs out bills that were created during the bill cycle process. You must supply

specific parameters to this process in order to tell it which batch of bills to remove.

Monitor Processes

This is a new type of process where an object, which has a status, needs to have some

processing done at a particular status, in the background. The monitor process detects a

9 - Batch Server Administration Guide

specific condition that can be triggered by data, status or combinations of data and status

values. Once that condition has been reached the batch process automatically executes the

instructions that have been configured on the batch process parameters and the object

definition itself.

Conversion Processes

Note: Not all Oracle Utilities Application Framework based products include conversion. Refer to the

relevant product documentation to check the validity of this group of processes.

A number of processes are available when converting or migrating data from external

applications into the product. These processes may or may not be used as part of an

implementation depending on your conversion strategy.

Refer to the Conversion Toolkit Utilities documentation for further information about

conversion.

Object Validation Processes

Note: Not all Oracle Utilities Application Framework based products include object validation

processes. Refer to the relevant product documentation to check the validity of this group of processes.

A number of processes are available to perform general validation for conversion or upgrade

purposes. Each of the major objects in the database must be validated using the respective

object validation program.

We strongly recommend validating each object in the following steps:

• Execute each object's validation program in random-sample mode to highlight

pervasive errors. When you execute a validation in random-sample mode, you are

actually telling it to validate every X records (where X is a parameter that you supply to

the batch process).

• View errors highlighted by validation programs using the Conversion Error Summary

transaction.

• Correct the errors using SQL. Note, you can use the base package's transactions (e.g.,

Person Maintenance, Premise Maintenance, etc.) to correct an error if the error isn't so

egregious that it prevents the object from being displayed on the browser.

• After all pervasive errors have been corrected; re-execute each object's validation

program in all-instances mode to highlight elusive, one-off errors.

In addition to validating your objects after conversion or an upgrade, the validation

programs have another use. For example, you may want to experiment with changing the

validation of a person and want to determine the impact of this new validation on your

existing persons. You could change the validation and then run the person validation object -

it will produce errors for each person that fails the new validation.

Refer to the Conversion Toolkit Utilities documentation for further information about

conversion.

To Do Processes

To Do processes are processes that feed off all the other processes in the system and create,

10 - Batch Server Administration Guide

update or delete To Do as defined in the system tables for the product. The number of

records created will depend on the values in the system tables and the number of records

satisfying those criteria.

If the To Do functionality is not used at this site then the To Do batch processes are not

required to be run and should be removed from the schedules.

Refer to the Defining General Options and To Do Business Process documentation for further

details.

Archive and Purge Processes

Note: Not all Oracle Utilities Application Framework based products include archiving. Refer to the

relevant product documentation to check the validity of this group of processes.

During the life of a product implementation at your site the data in the database will build

up. Historical records will remain in the product until they are archived and/or purged.

There are a set of background processes that execute the necessary components of the

archiving engine to archive and/or purge data from an environment. They are usually

scheduled in accordance with business requirements. Configuration of the archive engine

must be performed before executing these processes.

Refer to the Archiving Engine documentation for further information.

Configuration Lab Processes

Note: Not all Oracle Utilities Application Framework based products include archiving. Refer to the

relevant product documentation to check the validity of this group of processes.

To migrate or synchronize data between environments a set of processes must be executed to

initiate components of the Configuration Lab component of the product. These background

processes are run only when synchronizing or comparing/apply changes between two

environments.

Refer to the Configuration Lab Utilities documentation for further information.

Interface Processes

Some of the processes implemented by the product are in fact interfaces that may need to be

updated during an implementation. Refer to the individual process register in the IT

Supplemental Background Process Register for details of each process.

Batch Controls

In the product the concept of Batch controls are implemented to act as control points for a

background process and have the following purposes:

• For those processes that extract information, the product batch control record defines

the next batch number to be assigned to new records that are eligible for extraction. For

example, the batch control record associated with the process that extracts bill print

information defines the next batch number to be assigned to recently completed bill

routings. When this bill print extract process next runs, it extracts all bill routings

marked with the current batch number (and increments the next batch number).

11 - Batch Server Administration Guide

• Each background process' batch control record organizes audit information about the

historical execution of the background process. The system uses this information to

control the restart of failed processes. You can use this information to view error

messages associated with failed runs.

• Many processes have been designed to run in parallel in order to speed execution. For

example, the Payment Process can be executed so that payments are processed in

multiple "threads" (and multiple threads can execute at the same time). Batch control

records associated with this type of process organize audit information about each

thread in every execution. The system uses this information to control the restart of

failed threads.

An example of the batch control dialog is shown in the figure below:

The parameters on the batch control object are:

Parameter Usage

Batch code Code that is the unique identifier of the background process

Description Short description for Batch process. Used for Batch Run Tree

Detailed Description Details of the execution of the batch process.

Batch Control Type Whether this batch process is timed or not timed (see Timed

Batch Processes for more details of this functionality).

Time Interval The number of seconds between timed batch processes. This field

only appears for and is only applicable to Batch Control Type of

Timed only (see Timed Batch Processes for more details of this

functionality).

Timer Active Whether the timer is active for this timed batch process or not.

This field only appears for and is only applicable to Batch Control

12 - Batch Server Administration Guide

Parameter Usage

Type of Timed only (see Timed Batch Processes for more details

of this functionality).

Userid Default userid used for security for this batch process. This field

only appears for and is only applicable to Batch Control Type of

Timed only (see Timed Batch Processes for more details of this

functionality).

Batch Language Default language for messages for this batch process. This field

only appears for and is only applicable to Batch Control Type of

Timed only (see Timed Batch Processes for more details of this

functionality).

Email Address Default notification email or email group when batch process

completes, is cancelled or errors. This field is optional and

requires. This field only appears for and is only applicable to

Batch Control Type of Timed only (see Timed Batch Processes for

more details of this functionality).

Batch Category Category of batch process (see Process Types for valid values).

Program Type What technology (programming language) the program is

written in. Currently only Java and COBOL1 are supported.

Program Name Name of the program or java class to execute for batch

Last Update Timestamp The Last date and time the batch control was updated. Used for

update purposes.

Last Update Instance The Last Update number the batch control was updated. Used for

update purposes.

Next Batch Nbr The rerun number allocated to this batch control to be used by

the next execution (if the batch process supports rerun numbers).

This value is maintained regardless of whether it is actually used

by the batch run for implementation use.

Accumulate All

Instances

Accumulate statistics at the batch process level as well as the

individual thread level

Thread Count Default maximum number of Threads to be used by this batch

process. This parameter is actively used for Timed batch processs

only (see Timed Batch Processes for more details of this

functionality). For Non-timed batch processes this Thread Count is

used for documentation purposes only. Refer to Explanation of

Thread Limit and Thread Number for an explanation of the

concept of threading.

Override Nbr Of

Records to Commit

Default override commit interval to be used by all executions of

this batch process. This parameter is actively used for Timed

1 COBOL is only supported on selected products for backward compatibility.

13 - Batch Server Administration Guide

Parameter Usage

batch processs only (see Timed Batch Processes for more details

of this functionality). For Non-timed batch processes this Commit

Interval is used for documentation purposes only. Refer to

Explanation of Timeout and Commit Interval for an explanation

of the concept of commit interval.

Trace Program Start Default value of trace flag to track start of execution to be used by

all executions of this batch process. Used for development and

debug purposes only.

Trace Program Exit Default value of trace flag to track end of execution to be used by

all executions of this batch process. Used for development and

debug purposes only.

Trace SQL Default value of trace flag to track all SQL statement issued by

the batch process to be used by all executions of this batch

process. Used for development and debug purposes only.

Trace Output Default value of trace flag to track internal debug information to

be used by all executions of this batch process. Used for

development and debug purposes only.

Batch Parameters The list of valid parameters for this batch process including the

names of the parameters, description, whether the parameter is

mandatory or not and what is the default values. These values

are maintained by the developers only.

Note: The system is delivered with all necessary batch controls for the supplied base background

processes.

Viewing Batch Controls Using the Application Viewer

While the Batch Controls can be viewed using the online system it is possible to view batch

control information from the Application Viewer application supplied with your product. It

can be accessed from the menu Admin → A → Application Viewer → Batch Control. A sample

of the output that can be seen is shown on the following diagram:

14 - Batch Server Administration Guide

This information is only available in the AppViewer application if the F1-AVBT background

process has been executed or the genappviewitems[.sh] command is executed.

Adding your own batch controls

In any implementation Batch Controls may need to be added for new custom processes. This

needs to be done in a manner so that they are consistent with the base product as well as be

supported for upgrades. The following guidelines can assist in ensuring that Batch Controls

are implemented correctly:

• Every custom process should have its own batch control. While it is possible to share

batch controls, there may be concurrency and restart issues if the multiple processes are

executed at the same time.

• Every instance of a particular process needs to have its own batch control. If you need

to run an interface multiple times, once for each supplier for example, then a batch

control records needs to be assigned to each instance so that they can be tracked and

managed individually. This is also important because in an environment running

multiple instances of a process, there is a far more likely chance the instances will be

executing at the same time according to your schedule (see point above).

• All custom batch controls should be prefixed by CM to avoid conflicts with possible

future processes introduced into the batch schedule. If this rule is not obeyed then there

is a risk that when an upgrade is introduced it may cause concurrency and restart

issues.

• Avoid using batch controls with any special characters (i.e. characters other than letters

and numbers) as it may cause intermittent or operational errors. Avoid embedded

blanks and characters such as !@#$%^|\?><,.~`"’{}[]&*()/:;.

15 - Batch Server Administration Guide

Standard parameters

To standardize all the batch processes, the product uses a number of common standard

parameters to uniformly provide functionality across all processes. The table below lists all

the standard parameters:

Parameter Usage

Batch code Code is the unique identifier of the background process

Batch thread number Thread number is only used for background processes that can

be run in multiple parallel threads. It contains the relative thread

number of the process. For example, if the billing process has

been set up to run in 20 parallel threads, each of the 20 instances

receives its relative thread number (1 through 20).

Batch thread count Thread count is only used for background processes that can be

run in multiple parallel threads. It contains the total number of

parallel threads that have been scheduled. For example, if the

billing process has been set up to run in 20 parallel threads, each

of the 20 instances receives a thread count of 20.

Batch rerun number Rerun number is only used for background processes that

download information that belongs to given run number. It

should only be supplied if you need to download an historical

run (rather than the latest run).

Batch business date Business date is only used for background processes that use the

current date in their processing. For example, billing using the

business date to determine which bill cycles should be

downloaded. If this parameter is left blank, the system date is

used.

Commit Interval Override maximum records between commits. This parameter

represents the number of transactions that are committed in each

unit of work. This parameter is optional and overrides the

background process's Standard Commit between records (each

background process's Standard Commit between records is

documented in the product documentation). You would reduce

these values, for example, if you were submitting a batch process

during the day and you wanted more frequent commits to release

held resources. You might want to increase these values when a

background process is executed at night (or weekends) and you

have a lot of memory on your servers.

Timeout Override maximum minutes between cursor re-initiation (also

known as Cursor Reinitialization). This parameter is optional and

override each background process's Standard Commit Records

and Standard Cursor Re-Initiation Minutes (each background

process's Standard Commit Records / Standard Cursor Re-

Initiation Minutes is documented in individual process registers

16 - Batch Server Administration Guide

Parameter Usage

in the product documentation). You would reduce these values,

for example, if you were submitting a batch process during the

day and you wanted more frequent commits to release held

resources (or more frequent cursor initiations). You might want

to increase these values when a background process is executed

at night (or weekends) and you have a lot of memory on your

servers.

Note: The Maximum minutes between cursor re-initiation is for Oracle

implementations only and only applies to COBOL based processes.

User ID This is the userid that is used to access objects. It must be defined

to the security component of the product.

Password This parameter is not applicable (it is provided for backward

compatibility).

Language This is the language code used to retrieve messages and format

output from background processes.

Traces Trace program at start (Y/N), trace program exit (Y/N), trace SQL

(Y/N) and trace output.

If trace program start is set to Y, a message is displayed

whenever a program is started.

If trace program at exit is set to Y, a message is displayed

whenever a program is exited.

If trace SQL is set to Y, a message is displayed whenever an SQL

statement is executed.

If trace out is set to Y, message are output from the program at

execution points.

This facility should only be used in testing and benchmarking.

Explanation of Timeout and Commit Interval

Note: Timeout only applies to COBOL based background processes.

The Timeout and Commit interval parameters are tuneable parameters to affect the impact of

the background processes on the other processes running and prevent internal database

errors. In most cases using the defaults will satisfy your site requirements. It is also

important to understand their impact to ascertain whether any change is required.

During processing of any background process a main object is used to drive the process. For

example in Payment the main object is Payment Event. The Payment process loops through

the payment event objects as it processes. For other processes it is other objects that are

considered the main object. This main object type is used to determine when a transaction is

complete.

For both Timeout and Commit interval this is important as:

• When a certain number of main objects have been processed then a database commit is

17 - Batch Server Administration Guide

issued to the database. This number is the Commit Interval. The larger the commit

interval the larger the amount of work that the database has to keep track of between

commit points.

• The Timeout parameter is used to minimize issues in Oracle where the unit of work is

so large it causes a Snapshot too old. Oracle stores undo information on the Rollback

Segment and the read consistent information for the current open cursor is no longer

available. This is primarily caused when Oracle recycles the Rollback Segment storage

regularly. The product is prevented by reinitializing the cursor on a regular basis to

prevent an error. When this timeout, known as the Cursor Reinitialization, is exceeded

then at the end of the current transaction a commit will be issued.

• At any time in a process a commit for objects processed may be caused by the reaching

the Commit Interval or the time limit set on Timeout, whichever comes first.

Explanation of Thread Limit and Thread Number

One of the features of the Oracle Utilities Application Framework is the ability to run

background processes using multiple threads.

The threading concept in the product is simple. Each thread takes a predetermined slice of

the data to work on. The last thread checks if all other threads are finished and updates the

status of the batch control records. For example, if you have 10 threads, then each thread

takes 1/10th of the work. As each thread is executing it processes its workload and then

completes, the last thread executing is responsible for updating the overall process status to

indicate completion.

Implementing threading means you have to execute a number of batch processes with an

ascending thread number up to the thread limit. For example, if you have a batch process

with 10 threads, you must run 10 batch processes each with a unique thread number

between 1 and 10 to complete the batch process. Threads can be located on the same machine

or different machines. For example, you can run threads 1 to 5 on one machine and threads 6

– 10 on another.

Note: If there is limited data skew in the data then the threads should finish around the same time. If

there is some data skew then some threads may finish later than others.

To implement multi-threading when you submit a process:

• Specify a thread limit greater than 1 as a parameter.

• Execute a process for every thread with a sequential thread number up to an including

the thread limit. There are a couple of implementation guidelines with threading:

• Make sure the number of threads is not excessive. You do not want to flood the CPU’s.

• You must submit a process per thread. In some submission methods this is done

automatically and in some it is done manually.

• Threading will increase throughout BUT it will cause higher than usual resource usage

(CPU, Disk etc) as well as higher contention. Excessive threading can in fact cause

performance degradation in online as well as background processing. Therefore the

number of threads should not be excessive.

Almost all background processes within the product support multiple threads (the only

processes typically single streamed are extracts and data loads as they involve sequential

18 - Batch Server Administration Guide

files).

Explanation of Restart and Rerun

The product allows all background processes to be restarted or rerun as required. During the

execution of the background process, restart information per thread is stored within

framework, like a checkpoint. This checkpoint is performed at the last commit point as

dictated by the Commit Interval and/or Timeout value (Time out only applied to Oracle

implementations only). When a commit is performed, the last commit point is recorded for

the execution. If a thread of a background process fails, the database automatically rolls back

to the last commit point. The thread can then be restarted from that point automatically or

from the start of the data. To indicate the restart, the thread is executed with the same

parameters as the original.

Additionally, processes are re-runable. Re-run able means that a specific run number can be

re-run as required or a process at a specific date. Using a rerun number or a previously used

business date are all that is required to rerun a process.

Note: Not all background processes use Run number as a run indicator. Refer to the online

documentation for which batch processes are re-runable.

Timed Batch Processes

Note: This facility is ideal with Monitor batch processes.

Traditionally when you consider batch you picture processes that process large amounts of

records in a longer amount of time than an online transaction. They have a start time and an

end time and execute a limited amount of times a day.

The Oracle Utilities Application Framework supports the traditional approach but also

supports the ability to run batch processes continuously in the background. For example,

you may have a background process run continuously to monitor behaviour on a particular

object (i.e. the monitor processes). Therefore the concept of timed (continuous) and non-

timed (traditional) batch processes was introduced.

The idea is that the site configures whether a batch process is timed or not on the batch

control record definition. By default all batch processes will be defined as non-timed for

backward compatibility. The site then configures the batch processes it deems to run

continuously as timed. At this point additional information is required:

 Timer Interval – The time, in seconds, between executions of the batch process. If the

current execution of the timed job exceeds this tolerance, a new instance of the job

will not be submitted until the job completes.

 Timer Active – Whether the timed batch process is active in timed mode or not. This

enables the timed batch process to be switched off if necessary. Timer Active is active

when this value is set to Yes and inactive when set to No.

 Userid – Default userid to be used for the timed batch process.

 Batch Language – Default language for the timed batch process.

 Email Address – Email address or group to email when there is an issue with the

batch process.

19 - Batch Server Administration Guide

Note: The Email adapter must be enabled for this functionality to be enabled.

The figure below illustrates the additional entries:

Additionally the following additional attributes should be specified for timed batch

processes:

 Thread Count

 Override Nbr of Records to Commit (optional)

Once the Batch Control Type is defined the submission method then implements the logic to

keep the background process continuously:

 For sites using the online submission facility with the online daemon, the batch

controls which are timed are executed automatically once the daemon starts and is

routed to a defined batch server. If the daemon or batch server crashes then the batch

process will fail and automatically restart upon restart of the daemon or batch server.

 For sites using the external scheduler, the timed batch process will commence the

first time the batch process is initiated. If the threadpoolworker or submitjob

fails, for any reason, and there is no clustering configured then the batch process

must be restarted manually (or using a scheduler) to initiate the continuous process

once again.

To stop the continuous batch process at any time the following techniques can be used:

 Set the Timer Active flag to No on the Batch Control record for the batch process. At

the next Timer Interval, the timed batch process will stop and complete. Remember to

change the Timer Active back to Yes again to re-instate the batch process as a

continuous process.

 Cancel the batch process using the JMX interface (JMX console or jmxbatchclient)

 Kill the submitjob process that initiated the batch process. This should be the last

resort.

Common Configuration Files

As with the online component of the Oracle Utilities Application Framework there are a

number of configuration files that control the performance and behaviour of the batch

component. It is recommended that you familiarize yourself with the Server Administration

Guide for additional advice in relation to the configuration discussed.

The batch component houses the configuration files differently to the online and web

services component. The online and web services are housed within a J2EE Web Application

Server and therefore the configuration files are located according to the J2EE standards.

In the batch component the configuration are housed in directories as the batch component is

a J2EE Web Application Server. Therefore, during the configuration process, the

configuration files used by the batch component, are built using templates using the

initialSetup utility. This utility deposits the configuration files in the

$SPLEBASE\splapp\standalone\config directory (or

20 - Batch Server Administration Guide

%SPLEBASE%/splapp/standalone/config directory in Windows).

The figure below summarizes the directory structure and the relevant configuration files:

The following configuration files (along with their templates) are listed below:

Configuration File Contents Template

e0Batch.properties General environment

settings

e0Batch.properties.template

hibernate.properties Database connectivity hibernate.properties.batch.template

log4j.properties Logging settings log4j.properties.standalone.template

spl.properties Application behaviour spl.properties.standalone.template

submitbatch.properties submitjob default

settings

submitbatch.properties.template

submitbatchlog4j.properties submitjob logging

settings

submitbatchlog4j.properties.template

threadpoolworker.properties threadpoolworker
configuration

threadpoolworker.properties.template

tpwlog4j.properties threadpoolworker
logging settings

tpwlog4j.properties.template

coherence-cache-config.xml Cache settings for

cluster

coherence-cache-config.xml.template

tangasol-coherence-

override.xml
Override setting for

cluster

tangasol-coherence-

override.xml.template

The subsequent subsections will outline the contents of the configuration files.

e0Batch.properties

The e0Batch.properties configuration file defines the environmental settings for the

batch component. Typically this configuration file is generated and never altered.

The configuration contains two settings:

Parameter Context

splapp

standalone

config

hibernate.properties
log4j.properties
spl.properties
e0Batch.properties
tpwlog4j.properties
threadpoolworker.properties
submitbatch.properties
submitbatchlog4j.properties
tangasol-coherence-override.xml
coherence-cache-config.xml

21 - Batch Server Administration Guide

Parameter Context

SPLOUTPUT Location of the output directory for logs and temporary files.

standalone.dir Home location of the batch component. This is a relative path to the

location of this configuration file.

For example:

standalone.dir=../../splapp/standalone

SPLOUTPUT=/spl/sploutput/DEMO

Note: This configuration file should not be altered unless instructed to by Oracle Support.

spl.properties – Product configuration settings

The spl.properties configuration file is the configuration file that contains product

behavior settings for the batch component. This configuration file also exists in the online

and web application server so a common configuration standard was adopted.

For the batch component the spl.properties uses the following settings:

Parameter Context

com.oracle.XPath.flushTimeout The time, in seconds, when the Xpath

cache is automatically cleared. A zero (0)

value indicates never auto-flush cache and

a positive value indicates the number of

seconds.

com.oracle.XPath.LRUSize Maximum number of XPath queries to

hold in cache across all threads. A zero (0)

value indicates no caching, minus one (-1)

value indicates unlimited or other positive

values indicate number of queries stored

in cache. Cache is managed on a Least

Reused basis.

com.splwg.batch.cluster.jvmName (Optional) Unique Name for JVM. Name

must not include embedded blanks.

com.splwg.schema.newValidations.F1 Internal use only

spl.runtime.cobol.cobrcall If COBOL is used, whether remote calls

are supported. (true or false). Defaults to

false.

spl.runtime.cobol.encoding If COBOL is used, the character set

supported by the Business Application

Server

spl.runtime.cobol.sql.cache.maxTotalEntries Number of SQL statement entries stored

in the cache. Defaults to 1000.

spl.runtime.cobol.sql.cursoredCache.maxRows If COBOL used, number of cursors cached.

22 - Batch Server Administration Guide

Parameter Context

Defaults to 10.

spl.runtime.cobol.sql.disableQueryCache If COBOL used, whether the query cache

is disabled. Defaults to false.

spl.runtime.cobol.sql.fetchSize If COBOL used, size of fetch buffers for

SQL statements. Defaults to 150.

spl.runtime.environ.init.dir Location of the base configuration files.

spl.runtime.environ.SPLEBASE Location of SPLEBASE

spl.runtime.options.isFCFenabled Whether Oracle RAC Fast Connection

Failover support is enabled. This value is

set to true when ONSCONFIG is specified.

spl.runtime.options.onsserver ONS Configuration string used for Oracle

RAC Support. This value is set to the value

of ONSCONFIG.

spl.runtime.oracle.statementCacheSize The SQL cache size allocation for SQL

statements. Defaults to 300.

spl.runtime.service.extraInstallationServices Name of Application service used for

installation defaults.

spl.runtime.sql.highValue High Value used for processing

spl.runtime.utf8Database Whether the database supports the UTF8

characterset. (true or false).

spl.tools.loaded.applications List of applications installed. Values are

typically base,xxx,cm where xxx is the

product code.

hibernate.properties – Database connectivity properties

Note: Unlike the online and web services layer, it is not possible to use JNDI based JDBC connections.

Batch must use UCP for connection pooling.

Opening a connection to a database is generally much less expensive than executing an SQL

statement. A connection pool is used to minimize the number of connections opened

between application and database. It serves as a librarian, checking out connections to

application code as needed. Much like a library, your application code needs to be strict

about returning connections to the pool when complete, for if it does not do so, your

application will run out of available connections. Hence, the need for having a connection

pooling mechanism such as Hibernate using Universal Connection Pool (UCP) connection

pooling.

Hibernate is a powerful Object Relational Mapping (ORM) technology that makes it easy to

work with relational databases. Hibernate makes it seem as if the database contains plain

Java objects, without having to worry about how to get them out of (or back into) database

tables. Coupled with the UCP connection pooling, it provides a comprehensive connectivity

23 - Batch Server Administration Guide

tool for the java (or COBOL, if used) to operate effectively against the database.

The product uses the Hibernate and UCP libraries to create a connection pool and connect

the java (or COBOL, if used) objects to the database to store, update, delete and retrieve data.

It is used for all the database access for online as well as batch.

Refer to http://www.hibernate.org and

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/ucp.html for more

information on the technology aspects of Hibernate and UCP.

The product has a configuration file for the database connectivity and pooling called the

hibernate.properties configuration file. This file contains the configuration settings for the

database connections and the connection pool to be used by any of the SQL statements

accessing the database.

The configuration settings contained in the hibernate.properties file are summarized in the

following table:

Setting Usage

hibernate.cache.use_second_level_cache May be used to completely disable the

second level cache, which is enabled by

default for classes which specifies a cache

mapping. Defaults to false

hibernate.cglib.use_reflection_optimizer Enables use of CGLIB instead of runtime

reflection (System-level property).

Reflection can sometimes be useful when

troubleshooting, note that Hibernate always

requires CGLIB even if you turn off the

optimizer. Tends to make Hibernate load

faster if value is false. Defaults to false.

hibernate.connection.databaseName Database name used for SQL Server

hibernate.connection.driver_class This is the JDBC driver class used by

Hibernate.

hibernate.connection.password This is the user IDused to connect to the

database. This value is sourced from the

DBPASS parameter from the ENVIRON.INI.

If the value is prefixed by "ENC" then the

password is encrypted.

hibernate.connection.provider_class The classname of a custom Connection

Provider which provides JDBC connections

to Hibernate. The product uses the UCP

Connection provider. Other providers are

not supported.

hibernate.connection.release_mode This parameter controls when a connection

is released to the pool. By default the value

is set to auto. If you wish to view the

module executing in the MODULE column on

the v$session table, then this value must

http://www.hibernate.org/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/ucp.html

24 - Batch Server Administration Guide

Setting Usage

be set to on_close. Using auto in this

example may lead to incorrect values in

MODULE.

hibernate.connection.url This is the connection string used to connect

to the database. The URL is built using the

protocol outlined by the JDBC driver and

uses the values from the ENVIRON.INI. It

will either contain the standard JDBC

connection string or the value of

DB_OVERRIDE_CONNECTION.

hibernate.connection.username This is the user ID used to connect to the

database. This value is sourced from the

DBUSER parameter from the ENVIRON.INI

hibernate.dialect This is the SQL dialect (database type) for

the database being used. Any valid

Hibernate dialect may be used. Refer to

http://www.hibernate.org/hib_docs/v3/api/

org/hibernate/dialect/package-

summary.html for a full list. This value is

sourced from the DIALECT parameter from

the ENVIRON.INI.

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2

batch updates by Hibernate. Defaults to 30

hibernate.jdbc.fetch_size Determines a hint to the JDBC driver on the

number of rows to return in any SQL

statement. Defaults to 100

hibernate.jmx_enabled Enable or disable JMX Mbeans for

monitoring.

hibernate.max_fetch_depth Sets a maximum "depth" for the outer join

fetch tree for single-ended associations

(one-to-one, many-to-one). A 0 disables

default outer join fetching. Defaults to 2

hibernate.query.factory_class Chooses the HQL parser implementation.

hibernate.query.substitutions Mapping from tokens in Hibernate queries

to SQL tokens (tokens might be function or

literal names, for example). The product

uses true 'Y', false 'N'

hibernate.show_sql Write all SQL statements to console.

Defaults to false.

hibernate.transaction.factory_class The classname of a Transaction Factory to

http://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html

25 - Batch Server Administration Guide

Setting Usage

use with Hibernate Transaction API.

hibernate.ucp.connection_wait_timeout Specifies how long, in seconds, an

application request waits to obtain a

connection if there are no longer any

connections in the pool

hibernate.ucp.inactive_connection_timeout Specifies how long, in seconds, an available

connection can remain idle before it is

closed and removed from the pool.

hibernate.ucp.max_idle_time Not used

hibernate.ucp.max_size Maximum Pool Size

hibernate.ucp.max_statements SQL Buffer size

hibernate.ucp.min_size Minimum Pool Size

For a more indepth description of these parameters and others not included with the product

see http://www.hibernate.org and http://www.oracle.com/technetwork/database/enterprise-

edition/downloads/ucp-112010-099129.html .

log4j.properties – Logging Configuration

Note: This log file should not be altered unless specified. The generated configuration file has all the

recommended settings for all sites.

The product uses the log4j Java classes to centralize all log formats into a standard format.

The details of the configuration settings and log4j itself are available at

http://logging.apache.org/log4j/ or http://en.wikipedia.org/wiki/Log4j. This log file is

primarily used for the daemon and THIN execution modes.

coherence-cache-config.xml

The coherence-cache-config.xml configuration file is used by the CLUSTERED mode

of execution to manage the Oracle Coherence based cache across the batch cluster. This file is

generally not altered at the implementation level as it is preconfigured to execute the batch

component of the product.

For details of the contents of this file refer to the Oracle Coherence Integration Guide.

tangasol-coherence-override.xml

Note: This configuration file replaces the tangasol parameters in various configuration files in

previous versions of the product.

The tangasol-coherence-override.xml file is used to specify cache parameters for

CLUSTERED mode batch.

The following settings apply to the settings provided by the configuration of CLUSTERED

mode:

http://www.hibernate.org/
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/ucp-112010-099129.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/ucp-112010-099129.html
http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15830/usehibernateascoh.htm#sthref55

26 - Batch Server Administration Guide

Parameter Context Source

address IP Address assigned to cluster.

Specifies the multicast IP address that a

Socket will listen or publish on. Valid

values are from 224.0.0.0 to

239.255.255.255. For non-multicast

implementations use the Well Known

Addresses (WKA) functionality.

Derived from
COHERENCE_CLUSTER_ADDRESS

in ENVIRON.INI.

cluster-name The cluster-name element contains the

name of the cluster. In order to join the

cluster all members must specify the

same cluster name. The name an be up

to 32 characters to define the name of

the cluster. This is required and must

be unique for each environment.

With DISTRIBUTED mode, the batch

JVMs for an environment are naturally

grouped because they register

themselves through database table

F1_TSPACE_ENTRY, but in

CLUSTERED mode the JVMs are joined

through a Coherence cache. The cache

may be across all environments, so a

unique cluster name, along with

address and port (see below), is

required to ensure that they are

appropriately grouped per

environment.

Environments are typically separated

by database and/or database user, so a

possible convention may be to use a

combination of database name and

owner Id as the cluster name, for

example FWDEMO.SPLADM.

Derived from

COHERENCE_CLUSTER_NAME in

ENVIRON.INI.

license-mode License Mode.

Specifies whether the batch clustering

facility is being used in a development

or production mode.

Valid values are prod (Production),

and dev (Development).

Derived from

COHERENCE_CLUSTER_MODE in

ENVIRON.INI.

port Port number assigned to cluster.

Specifies the multicast port that the

Socket will listen or publish on. Valid

Derived from

COHERENCE_CLUSTER_PORT in

ENVIRON.INI.

27 - Batch Server Administration Guide

Parameter Context Source

values are from 1 to 65535. For non-

multicast implementations use the Well

Known Addresses (WKA)

functionality.

For details of the contents of this file and additional parameters refer to the Oracle Coherence

Developers Guide and the external scheduler section of this document.

For example:

<coherence>

 <cluster-config>

 <member-identity>

 <cluster-name>FWDEMO.SPLADM</cluster-name>

 </member-identity>

 <multicast-listener>

 <address> 239.128.0.10</address>

 <port> 7810</port>

 </multicast-listener>

 <service-guardian>

 <service-failure-policy>logging</service-failure-policy>

 <timeout-milliseconds>86400000</timeout-milliseconds>

 </service-guardian>

 </cluster-config>

 <logging-config>

 <destination>log4j</destination>

 <severity-level>5</severity-level>

 </logging-config>

 <license-config>

 <license-mode>prod</license-mode>

 </license-config>

</coherence>

The example above assumes multi-cast use of the CLUSTERED mode, refer to Oracle

Coherence Developers Guide and the external scheduler section of this document for

alternative examples.

Note: If using Coherence Cluster Address and Coherence Cluster port then they form a multicast

address unique to the environment/cluster. All worker and submitter JVMs that want to join this

cluster must have the same cluster name, cluster address and cluster port.

The first worker JVM that starts for a particular combination of cluster/address/port establishes that

cluster. Other JVMs with this same combination will then join this cluster.

The framework guards against the submission of batch processes to the wrong cluster in two ways.

Firstly, if the address/port matches an existing cluster’s address/port, but the cluster name is different,

the JVM will exit with this error message:

This member could not join the cluster because of a configuration mismatch between this member and

the configuration being used by the rest of the cluster.

Secondly, if a JVM’s cluster name references an existing cluster, but the database to which the existing

http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/gs_config.htm#CEGJBDJD
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/gs_config.htm#CEGJBDJD
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/gs_config.htm#CEGJBDJD
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/gs_config.htm#CEGJBDJD

28 - Batch Server Administration Guide

cluster is connected is not the same as the joining JVM’s, it will exit with this message:

Error validating cluster membership. Terminating...

In either case it is a configuration issue that needs to be corrected.

Configuration Process

To configure the batch component during the installation process and post-installation then

the following process should be used:

• The configureEnv utility is used during installation time and can be used post

implementation to set parameters in the ENVIRON.INI.

Note: The configureEnv utility should be used to make any changes to the ENVIRON.INI.

Manual changes to this configuration file are not recommended.

• After the ENVIRON.INI has been set or altered, the settings must be reflected in the

relevant configuration files used by the batch component using the initialSetup utility.

The initialSetup utility takes the relevant templates, builds the configuration files and

deposits them in the $SPLEBASE\splapp\standalone\config directory (or

%SPLEBASE%/splapp/standalone/config directory in Windows).

The configuration files are now ready to be used for the batch component.

ENVIRON.INI

initialSetup -t

templates

configureEnv

cistab

tpwlog4j.properties

threadpoolworker.properties

submitbatch.properties

log4j.properties

tangasol-coherence-override.xml

hibernate.properties

Install Configure

etc splapp/standalone/config

e0Batch.properties

submitbatchlog4j.properties

log4j.properties

coherence-cache-config.xml

29 - Batch Server Administration Guide

Submission Methods

There are a number of ways of submitting batch processes within the Oracle Utilities

Application Framework. The various ways reflect the different uses for the product at a site.

The figure below summarizes the various submission methods:

• It is possible to submit the batch process in a basic interactive mode where the batch

object executed in a single JVM. This mode is known as THIN mode and is primarily

designed for developers to test their code in isolation from the rest of the system. The

mode is not efficient enough to be recommended for any activity other than developer

testing. Refer to Interactive Submission section for details on how to use this method.

• The product browser user interface allows the registration and execution of batch

processes within the JVM used online. This mode allows part of the resources of online

be devoted to registering and executing of batch processes. This method is primarily

designed for use for testing purposes. Refer to the Online Submission section for

details on how to use this method.

• Typically at a site, a batch scheduling tool is used to schedule and manage all of the

background tasks required at a site. This can include running product batch processes

and any related maintenance process such as transferring interface files to and from

other systems, backup and other maintenance activities. This method is designed for

production use and has a number of variations to support flexible scheduling options.

Refer to the External Scheduler Submission section for details on how to use this

method.

Database Server

SPLBATCH[.sh]
submitjob[.sh] –P

Object

Thread

Command Line

THIN

Threadpool

threadpoolworker[.sh]
submitjob[.sh]

Object

Thread

External Scheduler

DISTRIBUTED/CLUSTERED

Business Application Server

Web Application Server

Thread

Thread Thread

DISTRIBUTED/CLUSTERED

Batch Daemon Business Application
Server

Object

Thread

Thread

30 - Batch Server Administration Guide

Monitoring Background Processes

When a background process is initiated the product records information about the progress

of the execution using a number of methods. These methods can be used to provide feedback

to the operations personnel on the health and progress of individual processes.

Batch Run Tree

Within the product browser interface there is an ability to monitor the status and outcomes

of individual processes. This can be useful for finding out what actually occurred if an error

condition occurred. To access the screen:

• Acquire a logon to the browser interface. It may be necessary to setup a special userid

that operators can use to access the online.

• Select the Batch → Batch Run Tree option from the side menu. A sample is displayed in

the figure below:

• A batch search window will appear to allow select of the individual execution of the

process. It is possible to search on batch number, batch Control Id or rerun number. A

sample is illustrated below.

• Select the appropriate batch run to monitor. This will then open a portal with the

appropriate run information (for example):

31 - Batch Server Administration Guide

• In the case of the sample the process ended successfully. Additionally the following

additional elements may be displayed:

 If the processed ended with any errors then the error message would be

indicated.

Note: Technical Errors (e.g. SQL Errors) are indicated using this method.

 Business errors that are generated as To Do's are indicated separately.

 If the program was restarted, each restart would be displayed in the tree

individually.

• To get more information about the error click on the error message on the tree.

The Batch Run tree is available to any valid user and is a method to communicate the

execution information to the relevant business representatives.

Using SQL Queries to monitor background processes

The Batch Run Tree displays information within the database that is collected by the Oracle

Utilities Application Framework for every background process execution, regardless of the

method used to initiating the process.

While it is possible to use the Batch Run Tree as a spot check on particular processes, it is

possible to create views on the underlying to extract the data for long term analysis of batch

performance. These views can be then used to analyse or extract the data for further

investigation.

The details of the views that can be created and types of analysis that can be performed are

located in the Batch Troubleshooting whitepaper in the Performance Troubleshooting series

KB Id: 560382.1 on My Oracle Support.

http://support.oracle.com/

32 - Batch Server Administration Guide

Monitoring using JMX classes

The product supports management and monitoring using Java Management eXtensions

(JMX) For example, a user may want to see exactly which processes are busy running in a

worker JVM at any particular point, and may want to be able to cancel runaway tasks. Refer

to the Java Management Extensions (JMX) Technology site for more information.

Java Management Extensions (JMX) is a technology that specifically addresses this

requirement to introspect information within the Oracle Utilities Application Framework.

By employing Management Beans (MBeans), the batch framework can implement

management interfaces for the various monitoring and management instrumentation points.

A remote client, such as Sun’s jconsole or other JMX consoles/browsers, can then

communicate with the active MBeans to query and modify the behavior of the batch node.

This section will outline the basic facilities available using JMX. Configuration of the JMX

capability is discussed within each submission method outlined in Submission Methods.

Jconsole

Jconsole is a GUI application provided with the Java JDK installed. It can be invoked with

the connection information configured with the product as a parameter, for example:

jconsole
service:jmx:rmi:///jndi/rmi://<host>:<port>/oracle/ouaf/batchConnector

The <server>, <port> and the "/oracle/ouaf/batchConnector" string correspond

with the property values specified for the batch node. These values are specified in

configuration files outlined in the relevant subsection of the "Submission Methods" section of

this document.

Refer to http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html for

more information on using jconsole.

Note: While jconsole is used in the examples shown in this document, other JMX consoles and JMX

browsers (JSR160) can be used.

Mbeans

The JMX interface exposes a number of MBeans to manage the Batch cluster from any node

on the cluster. The Mbeans expose a hierarchical set of information for the cluster. The JMX

API has a number of levels:

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

33 - Batch Server Administration Guide

The BatchCluster MBean holds attributes and operations at the cluster level. The MBean has

a series of Threadpools. Each Threadpool has one or more Members which represent the

nodes the threadpool is executing across. Nodes can be present for the same machine or

multiple machines (one node per instance).

BatchCluster MBean

Note: This API is only available for CLUSTERED mode.

The BatchCluster MBean contains the global information about the batch cluster. It

creates an entry with the name of the Batch Cluster as the identifier. This level is designed to

provide information and operations at a cluster level. When connecting to the JMX facility

from a JSR160 compliant facility the BatchCluster Mbean is always visible. For example:

The BatchCluster Mbean exposes a number of attributes:

Attribute Comments

Address Cluster address as specified in

COHERENCE_CLUSTER_ADDRESS in ENVIRON.INI

Name Name of Cluster as specified in COHERENCE_CLUSTER_NAME

in ENVIRON.INI.

Port Port number assigned to Cluster as specified in

oracle.ouaf.base

BatchCluster

CLUSTER_NAME

ThreadPools

ClusterNode

BatchThread_<name>

Members

34 - Batch Server Administration Guide

Attribute Comments

COHERENCE_CLUSTER_PORT in ENVIRON.INI.

The BatchCluster Mbean supports a number of operations:

Operation Comments

flushAllCaches Flush the data reuse cache across the batch cluster. Invoke

this operation to reload configuration data changes for

batch jobs.

registerClusterMBeans Register the Mbeans for lower level tracking. This needs to

be invoked to allow threadpool and batch thread level

tracking.

unregisterClusterMBeans Disable lower level tracking. This stops low level tracking.

Threadpools Mbean

Note: This information is only accessible once the registerClusterMbeans operation is

executed.

Note: This API is only available for CLUSTERED mode.

When the registerClusterMbeans operation has been executed, the API exposes lower

level information on the active threadpools in the cluster. Information about inactive

threadpools is not shown. Each threadpool has a tree structure in the API. When accessing

the API from a JSR160 compliant tool, the information for the threadpools are made

available. For example:

The ThreadPools Mbean exposes a number of attributes:

35 - Batch Server Administration Guide

Attribute Comments

Name Name of Threadpool

AvailableThreads Number of spare threads for batch processes. The value of

zero (0) indicates the threadpool is at capacity.

NumberOfMembers Number of members/hosts defined to the threadpool

There are no operations at the threadpool level.

Members MBean

Note: This information is only accessible once the registerClusterMbeans operation is

executed.

Note: This API is only available for CLUSTERED mode.

When a threadpool is executed each instance of the threadpool may have one or more

members. For example, if there are a number of instances of the threadpool on a machine or

across machines each instance is listed as a member. This allows low level control of the

nodes in a threadpool. When accessing the API from a JSR160 compliant tool, the

information and operations for each member for the threadpools are made available. For

example:

For each member the Members Mbean exposes a number of attributes:

Attribute Comments

HostName Name of Host hosting this threadpool instance

JVMName Name of JVM assigned at runtime

PID Unique OS Process Id for JVM

36 - Batch Server Administration Guide

Attribute Comments

MemberId Member Number. This number of unique across the cluster

and is used to track the member internally by the

framework.

Info Parameters used to start threadpool instance in free format.

For each member the Members Mbean exposes a number of operations:

Operation Comments

flushAllCaches Flush the cache for this instance

stopNode Stop this member. This allows members to be dropped off

after execution.

displayClusterCache Raw mode cluster information. Used for development only.

ClusterNode Mbean

Note: This API is only available for CLUSTERED mode.

When using the online submission deamon and online batch server in non-production a

ClusterNode Mbean is used. This tracks the DEFAULT threadpool which is configured as

part of the installation.

Note: This information is duplicated as a Threadpool Mbean instance but this Mbean is dedicated

to the DEFAULT pool if it is active. This Mbean is not affected by the registerClusterMbeans

operation.

When accessing the API from a JSR160 compliant tool, the information and operations for

each member for the DEFAULT threadpool are made available. For example:

The ClusterNode Mbean exposes a number of attributes:

Attribute Comments

JVMName Name of JVM assigned at runtime. This

Info Information string for Threadpool

PID OS Process Id for JVM

The ClusterNode Mbean exposes a number of operations:

Operation Comments

flushAllCaches Flush the cache across the batch cluster

37 - Batch Server Administration Guide

Operation Comments

stopNode Stop online batch threadpool.

displayClusterCache Raw mode cluster information. Used for development only.

BatchThread Mbeans

Mbeans associated with BatchThread are created once the getJobWork method for a Java

program has successfully completed. Each thread, as requested by the threadCount

parameter for the batch process, will have its own MBean. A BatchThread MBean for a

thread is alive for as long as it takes for the thread to complete, and automatically destroyed

when the thread ends.

The batch thread number, as indicated in the MBean name, will be the current thread’s

thread number.

• In the case of Java, these MBeans expose the running values for a thread. The

records/units processed, in-error and remaining, are provided as the thread runs and

updates the MBean internally.

• For a COBOL thread, if COBOL used, the values are not as detailed, since COBOL does

not work in terms of work units, but some valuable information can still be obtained

(e.g. elapsed time).

The Java BatchThread example below shows two threads running for batch process

ZZQABAT1. The MBean name contains the thread number and count, and they show to be

running in Java threads 39 and 35 respectively. The Java thread number is for uniqueness

only.

The MBeans that expose the batch processes are divided into categories. The name of the

MBean is constructed to indicate the type of batch process, the name of the batch process,

and the thread number and count. For sake of uniqueness, the name also includes the Java

thread number.

The name therefore is constructed as follows:

CCC_BBB_t_of_c.jjj

 Where:

CCC The type of MBean. This can be either BatchJob or BatchThread.

BBB The Batch code from the Batch Control.

t_of_c The batch thread number and count. For BatchJob types, this will just be

"0". For BatchThread types, the t is the thread number, and c the thread

count.

jjj The Java thread number, which will be unique within a batch node.

38 - Batch Server Administration Guide

Note: Refreshing this information will dynamically update the values.

Note: JMX information is only displayed at active runtime and calls process can happen very fast –

depending on the amount of data to be selected for the run – so the JMX console may not even detect

this MBean.

Note: The BatchThread MBean is accessible from the jmxbatchclient utility

The BatchThread Mbean exposes a number of attributes:

Attribute Comments

BatchNumber The current batch number.

CancelRequested True if the thread has been asked to stop running. See

CancelReqeustedBy.

CancelRequestedBy If CancelRequested=true, this will be a string indicating the

workstation from where the cancellation was requested.

This value will also be logged to the Batch Run Tree.

DateTimeStarted The date and time the batch process was started.

DistThreadPool The thread pool to which this batch process belongs.

ElapsedTime How long the batch process has been running.

ExecutionStrategyClass This indicates the commit strategy followed by the program

ProgramName The program name executed.

ProgramType The program type: Java or COBOL.

RecordsCommitted The number of record updates that have been committed to

the database. See note below.

RecordsInError The number of records so far in error. This is what will be

39 - Batch Server Administration Guide

Attribute Comments

logged to the Batch Run Tree. See note below.

RecordsProcessed The number of records processed so far. This is what will be

logged to the Batch Run Tree. See note below.

RunType The type of run: New Run, Restart or Rerun.

Status Current status of the thread. Valid values are: Initializing"

(very briefly in the beginning – prior to the call to

getJobWork in the application class); Getting Work means it

is currently in the process of selecting the work units for the

batch process; Got Work means it is has successfully selected

the work and is in the process of initiating the threads.

WorkUnitSize The total number of work units for this batch process. For

new and restarted runs, this will always contain the total

number of work units as selected in the getJobWork

method when the batch process was originally started.

WorkUnitSizeThisRun This is the number of work units for this particular run. For

a restarted run, this value will typically be less than the

above value; otherwise they will be the same.

WorkUnitsCommitted The number of work units that have had their work

committed.

WorkUnitsInError The work units that have been found to be in error so far.

WorkUnitsProcessed The work units that have been processed so far.

Note: The "Records…" numbers are what will be used to log to the Batch Run Tree, and they are

usually in step with the "WorkUnits…" values. The reason they are shown separately is because

some Java batch programs manually manipulate the record counts for the Batch Run Tree. The true

progress status of a thread is reflected in the "WorkUnits…" counts.

Adding Custom JMX Information

The JMX API allows individual background processes to add custom JMX properties to

expose additional information as necessary. This feature is designed to allow developers of

custom background processes to add additional information to the JMX facilities.

The custom background process can access the API using the following call:

addJMXInfo("<parameter>", "<value>");

Refer to the Oracle Utilities Software Development Kit for more information about this API.

Cancelling Batch Processes Using JMX

While JMX can be used to obtain monitoring information it is possible to cancel threads of

batch processes using the operations component of JMX. To cancel a thread the following

process must be performed:

40 - Batch Server Administration Guide

• Start the JMX console of your choice and connect to the relevant JMX port configured

for the batch.

• Select the thread and batch process to be cancelled from the JMX console.

• Select the Cancel operation from the operations component of the console. The console

may recognize the operations of the JMX classes and allow the actions to be processed.

For example, jconsole will generate cancelThread button. Issue the action.

Note: Depending on the JMX console used, a confirmation dialog may NOT be displayed and

cannot be undone once issued. Ensure that the correct thread for the batch process is selected. To

cancel a batch process, ALL threads must be cancelled.

• The batch process will be marked as cancelled and stopped. The IP address of the

requestor is logged in the Batch Run Tree for auditing purposes.

 jmxbatchclient[.sh] – JMX batch command line

While the JMX client interface provided allows real time information to be displayed in a

JMX browser, if a JMX browser is not used then the JMX interface may be interfaced using a

command line utility. This utility is useful to allow third party products (such as batch

schedulers) or other systems to control and monitor the state of the system.

This JMX batch command line allows the following to be performed:

• Identify what thread pools are defined in a threadpoolworker

• See what active batch processes or threads are currently running

• Be able to cancel a particular thread or a batch process

• Gracefully shutdown a threadpoolworker

• The command line utility is in the following format:

To execute the command line, the administrator must:

• Logon to the machine running the product (any tier where the product software exists).

• Attach to the environment using the splenviron[.sh] command. This sets the

appropriate environment settings for the script.

• Execute the JMX Batch command line utility:

jmxbatchclient[.sh] –j [URL] [options]

Where [options] are:

-c Specifies that active threads should be cancelled. Can be used with –f option

to cancel only batch processes matching the regular expression provided. For

example:

Note: Cancelled threads are marked with the date, time, userid and IP address of the

user who initiated the cancel command.

-d Display the details of the currently active threads.

-f If a large number of threads are currently active, a filter can be supplied to

41 - Batch Server Administration Guide

only display or cancel threads that match the regex based pattern.

For example the threadpool be filtered to show only the BAT1 with the option:

-f .*BAT1.* as follows:

jmxbatchclient.sh -j
service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector
-f .*BAT1.*

would yield:

Options: -j
service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector
-f .*BAT1.*

Connecting to
service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector

ActiveGridNode

threadPools=[MYSERVER:5,
LOCAL_THREAD_POOL:b9835d11f15fd71b:681ba91d:1200151a3c8:-
8000:0, SCHEDULER_DAEMON_THREAD_POOL:1]

BatchThread_ZZQABAT1_1_of_1.31

-h Display the available options and their descriptions.

-j JMX URL to perform the action against (Required).

This should match the

spl.runtime.management.connector.url.default property

specified in the threadpoolworker.properties.

-k Specifying this option will result in the cancellation of all currently running

threads and the stoppage of the threadpoolworker process.

Note: Active threads within a cancelled threadpoolworker are marked with the

date, time, userid and IP address of the user who initiated the kill command

-l By default, all logging information is displayed and logged using log4j.

Supplying this option will result in only select information being displayed to

the system output.

-s Display the summary of the currently active threads is a listing format.

42 - Batch Server Administration Guide

Online Submission

One of the most important useful testing/demonstration facilities of the product is the ability

to submit batch processes from the online component of the product. An authorized user can

submit any batch process using an online batch submission page.

The on-line batch submission page enables you to request a specific background process to

be run. When submitting a background process on-line, you may override standard system

parameters and you may be required to supply additional parameters for your specific

background process. After submitting your background process, you may use this page to

review the status of the submission.

Basically the following process is used to submit background processes using the online

submission method:

• The process to be executed is registered online as to be submitted (or queued). This

marks the process execution as Pending. When you request a batch process to be

submitted from on-line, the execution of the desired background process will result in

the creation of a batch run. Just as with background processes executed through your

scheduler, you may use the Batch Run Tree page to view the status of the run, the

status of each thread, the run-instances of each thread, and any messages that might

have occurred during the run.

Note: Your online submission record is assigned a status value so that you may know whether

your batch process has been submitted and whether or not it has ended; however, it will not

contain any information about the results of the background process itself. You must navigate

to the Batch Run Tree page to view this detail.

• A background process is scheduled (using a submitbatch script (run in cron) or using

the submission daemon) that will pickup any Pending background process executions

and execute them. When you save a record on the batch process submission page, the

batch process does not get submitted automatically. Rather, it saves a record in the

batch process table. A special background process will periodically check this table for

pending records and will execute the batch process. This background process will

update the status of the batch process submission record so that a user can determine

when their batch process is complete.

Note: At installation time, your system administrator will set up this special background process or

configure the scheduler daemon to periodically check for pending records in the batch process

submission table. Your administrator will define how often the system will look for pending records

in this table.

It should be noted that this special background process only submits one pending batch

process submission record at a time. It submits a batch process and waits for it to end before

submitting the next pending batch process.

Note: If you request a batch process to be run multi-threaded, the special background process will

submit the batch process as requested. It will wait for all threads to complete before marking the batch

process submission record as ended.

During execution the status of the execution in the batch run tree is updated as well as the

original submission screen. If you wish the system to inform you when the background

43 - Batch Server Administration Guide

process completes, you may supply your email address. The email you receive will contain

details related to the batch process’s output; similar to the batch process results you would

see from the batch run tree.

Note: This assumes that during the installation process, your system administrator configured the

system to enable email notification. Your administrator may also override the amount of detail

included in the email notification.

Using Online Submission

The process of submitting using the online method is as follows:

• Logon to the product environment using your browser. Use the appropriate URL.

• Navigate to Main → Batch → Batch Submission

• Find the batch control you wish to submit. You can use the Batch Code or the

Description of the batch process to find it. It is possible to submit any valid batch

process in the list.

• Fill in the prompts on the screen with the appropriate values.

44 - Batch Server Administration Guide

Prompt Comments

Batch Job Id The Batch Job ID is a system generated random number that

identifies a particular submission.

Batch Code To submit a batch process, choose the Batch Code for the

process you wish to submit.

Batch Thread

Number

Thread number is used to control whether a background

processes is run single threaded or in multiple parallel threads.

It contains the relative thread number of the process. For

example, if the process X has been set up to run in 20 parallel

threads, each of the 20 instances receives its relative thread

number (1 through 20).

Note: Not all processes may be run multi-threaded.

Many of the system background processes may be run multi-

threaded. When submitting a background process on-line, you

may also run a multi-threaded process or run a single thread of

a multi-threaded process. The fields Thread Count and Thread

Number on the batch submission page control the multi-

threaded process requests:

• To run a multi-threaded process, indicate the number of

threads in Thread Count and enter 0 in the Thread

Number. For example, to run the batch process XXX with

10 threads, enter Thread Count = 10 and Thread Number =

0. This will execute all 10 threads of batch process XXX.

• To run a single thread in a multi-threaded process, indicate

the number of threads in Thread Count and indicate the

Thread Number you would like to run. For example, to

run only thread 1 out of 10 threads for batch process XXX,

45 - Batch Server Administration Guide

Prompt Comments

enter Thread Count = 10 and Thread Number = 1. This will

execute thread 1 out of 10 for XXX.

• To run a process as a single thread, enter Thread Count = 1

and Thread Number = 1. This will execute the background

process single-threaded.

Note: When running a multi-threaded process, the completion of the

last of the threads will "mark" the batch process submission record as

ended.

Batch Thread

Count

Thread count is used to control whether a background

processes is run single threaded or in multiple parallel threads.

It contains the total number of threads that have been

scheduled. For example, if the billing process has been set up to

run in 20 parallel threads, each of the 20 instances receives a

thread count of 20.

Batch Rerun

Number

Rerun number is only used for background processes that

download information that belongs to given run number. It

should only be supplied if you need to download an historical

run (rather than the latest run).

Batch Business

Date

Business date is only used for background processes that use a

date in their processing. For example, billing using the business

date to determine which bill cycles should be downloaded. If

this parameter is left blank, the system date is used at the time

the background process is executed.

Override Nbr

Records To

Commit and

Override Max

Timeout Minutes

These parameters are optional and override each background

process’s Standard Commit Records and Standard Timeout

Minutes (each background process’s Standard Commit Records

/ Standard Timeout Minutes is documented in the list of system

background processes).

User ID Enter the user ID for the background process. This field defaults

to the id of the current user.

Language Code Language code is used to access language-specific control table

values. For example, error messages are presented in this

language code.

Email If you wish the system to notify you when the batch process is

complete, enter your Email ID. This field defaults to the email

address for the current user, if populated on the user record.

Note: SMTP support must be configured to operate.

Desired Execution

Date/Time

The Desired Execution Date/Time defaults to the current date

and time. Override this information if you wish the

background process to be executed at some future date and

time. If you wish to request a batch process to be submitted in

46 - Batch Server Administration Guide

Prompt Comments

the future, you may do so when creating your batch process

submission record by entering a future submission date. The

special background process, which looks for pending records in

the batch process submission table, will only submit batch

processs that do not have a future submission date.

Batch Job Status This indicates the current status of the batch process.

Program Name The Program Name associated with the batch control code is

displayed. This is used for tracking purposes

Trace Program

Start

Toggle this switch on if you wish a message to be written

whenever a program is started.

Trace Program Exit Toggle this switch on if you wish a message to be written

whenever a program is exited.

Trace SQL Turn on this switch if you wish a message to be written

whenever an SQL statement is executed.

Trace Output Turn on this switch if you wish a message to be displayed for

special information logged by the background process.

Note: The trace parameters are typically only used during QA and benchmarking.

Note: The information displayed when the trace output switch is turned on depends on each

background process. It is possible that a background process displays no special information for this

switch.

Note: The location of the output of this trace information is defined by your system administrator at

installation time.

• If additional parameters have been defined for this background process on the Batch

Control page, the Parameter Name, Description and an indicator of whether or not the

parameter is Required are displayed. Enter the desired Parameter Value for each

parameter.

Each of the batch processes has, as part of its run parameters, a preset constant that

determines how many errors that batch process may encounter before it is required to

abort the run. You can override this constant with an optional additional parameter

(MAX-ERRORS). The input value must be an integer that is greater than or equal to zero.

The maximum valid value for this parameter is 999,999,999,999,999.

• Press the Save key. Once you have entered all the desired values, Save the record in

order to include it in the queue for background processes.

• If you wish to duplicate an existing batch process submission record, including all its

parameter settings, display the submission record you wish to duplicate and use the

Duplicate and Queue button. This will create a new Batch Job Submission entry in

pending status. The new submission entry will be displayed.

• If you wish to cancel a Pending batch process submission record, use the Cancel

button. The button is disabled for all other status values.

Note: Saving a record on this page does not submit the batch process immediately. A special

47 - Batch Server Administration Guide

background process will run periodically to find pending records and submit them. Depending on

how often the special process checks for pending records and depending on how many other pending

records are in the ‘queue’, there may be a slight lag in submission time. If the desired execution

date/time is close to midnight, it is possible that your batch process will run on the day after you

submit it. If you have left the business date blank in this case, keep in mind that your business date

would be set to the day after you submit the batch process.

After saving the process in the batch submission screen the following process is performed:

• The execution of the process is registered within a batch run table in Pending status.

Prior to execution the user may cancel the batch process by pressing the cancel button.

This updates the process status to Canceled.

• At installation time, the product administrator sets up an additional process, the online

daemon (or submitbatch[.sh] cron utility see submitbatch) which polls the batch

run table every x minutes (where x is the parameter used on the command line).

• It processes each Pending process in sequence, using FIFO and at process start updates

the batch run table with a status of Started. This indicates the process is executing. The

user cannot cancel the process after it has been Started. At this time the batch run tree is

populated with the run information as it is executing, including restart information and

threading.

• If the process is successful or errored, the batch runs information with an Ended status.

You must check the Batch Run tree to see if has been successful.

This figure illustrates the process:

Online Batch Daemon

During the installation of the Business Application Server component of the product, it is

possible to configure part of the Business Application Server runtime to become a batch

daemon. This means that part of the JVM used by the Business Application Server can be

used as a daemon (or "listener") for processes submitted online.

If configured, the Business Application executes an internal process to poll for "Pending"

processes registered using the online submission screen. This batch daemon then executes

the batch process within the Business Application Server JVM. The daemon can be

configured to limit the impact on the online system by limiting the number of concurrent

48 - Batch Server Administration Guide

threads that can be executed. The following diagram illustrates this process:

At installation time the installer asks additional questions to disable/enable the batch

daemon:

…

 Batch Server Enabled: false

 Batch Threads Number: 5

 Batch Scheduler Daemon: false

…

The three settings used can be configured using the following guidelines:

• Batch Server Enabled – Enable batch to be run within the JVM.

• Batch Threads Number – Maximum number of threads to limit background processes

to within the JVM if Batch Server Enabled is set to Yes. This number of threads represents

the number of threads surrendered from the main JVM thread pool and allocated to

running batch exclusively. The default is 5.

• Batch Scheduler Daemon – Enable the daemon to check for pending batch processes in

the Batch Submission or inbuilt batch process scheduler2. If a pending batch process is

found it is passed to the Batch Server for execution.

The valid combinations of these settings are as follows:

2 The inbuilt batch process scheduler is NOT covered in this guide. Refer to the online documentation

provided with your product for details of this facility (if provided with your product).

Database Server

Business Application Server

Web Application Server

Batch Daemon Business Application Server

Object
Thread

Thread

Thread

Thread

49 - Batch Server Administration Guide

Batch Server Enabled Batch Scheduler Daemon Comments

Yes Yes Batch Daemon runs on this Business

Application Server and any batch

processes found by the daemon are

executed on this Server.

Yes No Batch Daemon does not run on this

Business Application Server but this

Business Application Server can

execute batch programs. It is

assumed that another business

application server has been

allocated as a batch scheduler

daemon.

No Yes Batch Daemon does run on this

Business Application Server but

Batch submission does not run on

this Business Application Server. It

is assumed that another business

application server has been

allocated as a batch server.

No No Batch does not execute on this

Business Application Server and no

Batch Daemon has been allocated to

this

Guidelines for using the Batch Server/Batch Scheduler Daemon

This facility is not applicable to all environments and all situations at a site, the following

guidelines will assist in the appropriate use of the facility:

• If the environment is going to use the online submission (or inbuilt scheduler) then the

Batch Server and Batch Scheduler Daemon should be enabled for Business Application

Server allocated to the environment. If multiple Business Application Servers are

allocated to the same environment, then there should only be one server with the Batch

Server enabled set to Yes and only one server with the Batch Scheduler Daemon set to Yes

(they can be the same server or different servers). This setting is common for non-

production environments.

• If the environment is not going to use the online submission, then both Batch Server

Enabled and Batch Scheduler Daemon should set to No. This is a common setting for

Production as online submission is usually disabled in production.

• Online submission and scheduling (if the product includes the inbuilt scheduler) are

not recommended for use in Production environments.

50 - Batch Server Administration Guide

Logging using the Batch Server/Scheduler Daemon

The execution of any batch submission is also written to $SPLOUTOUT (or %SPLOUTPUT% on

Windows) in a log file named

<batch_cd>.<datetime>.THRD<threadnumber>.stdout and

<batch_cd>.<datetime>.THRD<threadnumber>.stderr where <batch_cd> is the

batch code submitted, <datetime> is the date and time of the execution (in format

YYYYMMDDHHMMSS.S format) and <threadnumber> is the thread number submitted.

Configuring JMX with the Batch Server/Scheduler Daemon

The executing threads Batch Server can be monitored using the JMX adapter by adding the

following lines to the $SPLEBASE/etc/conf/root/WEB-

INF/classes/spl.properties (or %SPLEBASE%\etc\conf\root\WEB-

INF\classes\spl.properties on Windows) file:

spl.runtime.management.rmi.port=<port>

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi
://<server>:<port>/spl/fw/jmxConnector

java.rmi.server.hostname=<server>

Where:

<server> Name of the host (or IP address) where the Business Application Server

is located.

<port> A unique port allocated for the JMX agent to broadcast on. This port

must be unique to the host it is located upon.

To implement the change the initialSetup[.sh] commands must be executed.

Additionally on platforms when a WAR/EAR file is used, the WAR/EAR file must be

redeployed. Refer to the Server Administration Guide for details.

submitbatch – Command based daemon

Note: This facility is documented for completeness only, it is recommended that the online

submission daemon be used in preference to this facility.

For backward compatibility purposes, there is a facility that can invoked on the command

line (or in cron, or similar, facility) to act as an alternative to the online scheduler daemon.

This facility will run a polling script that will detect a pending process and invoke the

interactive method (in background) to execute the process.

This can be configured using the following command line

submitbatch[.sh] [-e <env>] [-s <seconds>] [-h] [-k]

Where:

-s <seconds> Run as daemon and pause <seconds> seconds between loops

of checking whether there is more work to do. Without the –s it

runs one batch process and stops (recommended if used with

cron).

-k Stop the background batch processor

51 - Batch Server Administration Guide

-v Print out verbose messages

-e <env> Dummy parameter that is only used to make the process more

identifiable so 'ps -edf' can be used to determine which

submitbatch script belongs to which environment (<env>).

-h Print command line help.

52 - Batch Server Administration Guide

External Scheduler Submission

The Oracle Utilities Application Framework exposes a callable interface that allows

scheduling and execution of to be controlled by an external scheduling product. A number of

utilities threadpoolworker and submitjob have been include in the product to allow

external schedulers (or a command line) to establish a JVM to run background processes and

then submit background process to that JVM.

Note: The words "node" and "JVM" are interchangeable in this section.

Concepts

At a site implementing the product, the batch processes to be executed to support the

business as well as perform expected maintenance on the system needs to be scheduled,

managed and executed from a central point. In most sites, this is done by using a third party

batch process scheduler that controls the scheduling and execution of any batch processes

across a site.

To support the use of such a scheduler with any Oracle Utilities Application Framework

based product(s) a number of scripts and related configuration files have been provided to

allow the scheduler to execute the process batch processes.

The scripts and configuration files allows for three fundamental facilities that can be used by

external scheduling tools:

• The interface is command line based (it can also be invoked using a java based API see the

product javadocs within AppViewer for a description of the interface) which most external

scheduling tools support.

• The command based utilities return a standard return code to indicate the batch process

has been successful or has been unsuccessful. Actions dependent on return code within

the scheduler can then be configured.

• The logs within the utilities provided are in a common format that can be interrogated

by the external scheduler to provide finer grained actions (especially for unsuccessful

executions).

For additional advice about interfacing external schedulers with the product refer to the

Batch Best Practices whitepaper at KB Id 836362.1 on My Oracle Support.

threadpoolworker[.sh] Utility

This script starts a long-lived worker node (JVM) in a distributed batch grid environment.

Once successfully started, this process will accept submissions from lightweight submitter

nodes and execute the batch processes as requested by the submitters. A worker JVM may

also host a scheduler daemon, which, if activated inside a worker, will poll for batch process

submission requests from the web application that were done via the Batch Job Submission

transaction.

There are three modes to execute background processes using this facility CLUSTERED,

DISTRIBUTED and THIN.

• In THIN mode, the batch program is executed in a stand-alone JVM. This means that a

http://support.oracle.com/

53 - Batch Server Administration Guide

full application context is established before the application program is invoked, and

destroyed when the execution ends. If a batch process is submitted in multiple threads,

each thread requires its own context, in its own separate JVM. THIN mode is typically

used by developers to isolate their tests from other developers and is not recommended

for production use.

• In DISTRIBUTED mode, at least one worker JVM must be started and left running to

poll for work requests from submitter JVMs. Worker JVMs are also known as grid nodes,

because multiple workers can be started to load-balance batch. DISTRIBUTED mode is

the existing, classic way that customers have been running their batch processes in past

releases of the Oracle Utilities Application Framework. In this mode, one or more batch

workers are started and left to run as long-running, background tasks. Each worker

can be individually configured to process n number of threads concurrently, and this

can further be grouped into thread pools. The workers also have the option to host a

batch process scheduler daemon, whose role is to listen for and execute online batch

process submissions (via the Batch Job Submission page for example).

• In CLUSTERED mode, as with DISTRIBUTED at least one worker JVM must be started.

These worker JVM's may be standalone or clustered with appropriate batch. The

difference between CLUSTERED and DISTRIBUTED is that in a CLUSTERED setup,

worker and submitter JVMs (members) are more tightly joined in a Coherence based

cluster, resulting in better management of various events, such as workers abruptly

stopping (because of program crashes for example), batch processes getting cancelled,

etc. As long as at least one member is active in a cluster, batch processes can be

appropriately handled in the case of unexpected interruptions.

It is highly recommended that customers use the CLUSTERED mode.

The figure below summarizes the approaches of different execution modes:

If only THIN submissions are ever used, script threadpoolworker[.sh] does not have to

be executed. If this is the case, batch processes can be submitted in THIN mode from the

command-line using script submitjob[.sh].

JVM

Batch Thread

JVM (Threadpool)

Batch Thread

Framework
(Full)

Batch Thread

Batch Thread

Framework
(Batch Only)

THIN DISTRIBUTED/CLUSTERED

Batch Thread

…

54 - Batch Server Administration Guide

This script may be executed more than once if multiple workers are required. This may be

for performance or load-balancing purposes, or to simply provide separate thread pool

configurations in a distributed grid. Worker JVMs in a grid can be started on different

machines (even if the platforms differ), provided they all access the same database and

contain the runtime appropriate for the architecture. If the web application is also batch-

enabled, the worker hosted by the web application then becomes one node among the nodes

that were started as described above.

If multiple worker nodes, including the web application, are configured to host a scheduler

daemon, only one of those will be the active daemon. The others are dormant until the

active one becomes unavailable for some reason, for example if the JVM is killed, in which

case one of the dormant ones will automatically become active.

Note: A single product environment can be either CLUSTERED or DISTRIBUTED. Mixing JVMs

that start up in CLUSTERED and DISTRIBUTED mode will have unpredictable results.

threadpoolworker and F1_TSPACE_ENTRY

The DISTRIBUTED and CLUSTERED approaches use a database tuple space table

F1_TSPACE_ENTRY for operations and management. The role of this table varies differently

depending on the execution mode of the worker or submitter.

In DISTRIBUTED mode, whenever a threadpoolworker or submitjob starts an entry is

created in the F1_SPACE_ENTRY table. This is used by the threadpoolworker to advertise

that it is ready to accept work (known as a THREAD_OFFER) using a lease (to indicate when

it is to check back with F1_TSPACE_ENTRY). If the threadpoolworker finds work in the

F1_TSPACE_ENTRY it issues a GRID_WORK record grabbing the submitters work and

executes the indicated batch process. After the batch process has ended it issues a

WORK_ENDED against the submitter record in the F1_TSPACE_ENTRY table and updates

the threadpoolworker entry to THREAD_OFFER again to accept more work. The

submitter process creates an F1_TSPACE_ENTRY table of WORK_OWNER to indicate it

waiting to be executed and waits. When the threadpoolworker accepts the submitters

work it has marked the submitters records as GRID_WORK indicating it is processing the

task. At this time, the submitted polls regulars waiting for the WORK_ENDED message to

indicate the work has been completed.

The issues with this type of processing are when there are issues with the

threadpoolworker or submitter. If these processes fail, then the F1_TSPACE_ENTRY

does not adequately reflect the state of the processes. This may cause internal

synchronization issues in some cases. A common technique used by sites when this happens

is to clear the offending F1_TSPACE_ENTRY entries manually or truncating the table

altogether and reissue the work. The latter is dangerous if there is work still running in the

product.

The CLUSTERED mode was created to address this issue. It uses F1_TSPACE_ENTRY for

some persistence but each threadpoolworker in the cluster is aware of the other nodes

and the work that is allocated to it. Any node can be used in execution of processes and in

the case of submitter failure the node will communicate to the appropriate process to keep

the relevant parties informed. This also occurs when a threadpoolworker failure where

the other nodes inform the relevant parties involved of the failure.

55 - Batch Server Administration Guide

threadpoolworker.properties configuration file

To use the threadpoolworker utility a configuration file must be created to specify the

attributes of the JVM. The threadpoolworker.properties file should be placed in the

$SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows).

The properties file contains the default properties for threadpoolworker. The following

sample illustrates the values:

com.splwg.grid.distThreadPool.threads.DEFAULT=5

com.splwg.grid.distThreadPool.threads.LOCAL=0

com.splwg.batch.scheduler.daemon=true

spl.runtime.management.rmi.port=9090

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi
://{host}:{port}/spl/fw/jmxConnector

com.splwg.grid.executionMode=CLUSTERED

The following table describes the parameters:

Parameter Comments

com.splwg.grid.distThreadPool.threads.<poolname> Number of Threads for pool

<poolname>.

com.splwg.batch.scheduler.daemon Whether the node will act as a scheduler

daemon.

com.splwg.grid.executionMode Mode of the threadpoolworker. Valid

values are: THIN, DISTRIBUTED or
CLUSTERED

spl.runtime.management.rmi.port JMX RMI Port to use. If omitted, JMX is

disabled.

spl.runtime.management.connector.url.default Default JMX service. Required if rmi.port

is specified. In the example, above the

URL format is shown. Substitute {host}

for hostname of machine and {port} for

unique RMI port.

com.splwg.batch.submitter.maxExecutionAttempts This specifies how many times the

worker(s) in the grid should attempt

execution of the work submitted by this

submitter. If the application program

crashes and brings down the worker JVM

with it, this parameter is designed to

prevent any other worker nodes in the

grid from picking up this same bad work

request and thereby spreading the "poison

work" around the grid, crashing JVMs

along the way and ultimately bringing the

batch grid down completely. The default

is set to 1 and should be left like that

56 - Batch Server Administration Guide

Parameter Comments

unless there is a good reason to change it

This file should be modified for site-specific values. For example, the scheduler daemon

may not be required to be activated by default, in which case property

com.splwg.batch.scheduler.daemon should be changed to false (or removed entirely

to use the system default).

Multi-cast or Uni-cast

The CLUSTERED mode can use multi-cast or uni-cast to communicate across the

threadpoolworker nodes in a cluster. By default CLUSTERED mode uses a multicast

protocol to discover other nodes when forming a cluster. For information about multi-cast

and uni-cast see the following sites:

• Discussion of protocols -

http://wiki.tangosol.com/display/COH35UG/Network+Protocols

• Advanced Configuration of the multi-cast listener -

http://wiki.tangosol.com/display/COH35UG/multicast-listener

• Advanced Configuration of the uni-cast listener -

http://wiki.tangosol.com/display/COH32UG/unicast-listener

Well Known Addresses

The default option at installation is use of multicast, if multicast is not an option; the well-

known-addresses feature may be used. It requires manual edits of the tangosol-

coherence-override.xml configuration file.

The WKA properties specify one or more "well-known" nodes (JVMs) that are used to start a

cluster and are likely to be available for other nodes to join. These well-known nodes are

used by the other nodes to find their way into the cluster without the use of multicast. Note

that only one of these nodes is required to be up; they don’t all have to be up at the same

time.

The following example shows a WKA configuration.

tangosol-coherence-override.xml on server test1 and test2

<coherence>

 <cluster-config>

 <unicast-listener>

 <well-known-addresses>

 <socket-address id="1">

 <address>test1</address>

 <port>19000</port>

 </socket-address>

 <socket-address id="2">

 <address>test2</address>

 <port>38000</port>

 </socket-address>

 </well-known-addresses>

http://wiki.tangosol.com/display/COH35UG/Network+Protocols
http://wiki.tangosol.com/display/COH35UG/multicast-listener
http://wiki.tangosol.com/display/COH32UG/unicast-listener

57 - Batch Server Administration Guide

 </unicast-listener>

 <service-guardian>

 <service-failure-policy>logging</service-failure-policy>

 <timeout-milliseconds>86400000</timeout-milliseconds>

 </service-guardian>

 </cluster-config>

 <logging-config>

 <destination>log4j</destination>

 <severity-level>5</severity-level>

 </logging-config>

…

</coherence>

This example defines two threadpoolworker JVMs as WKA nodes:

• test1, port 19000

• test2, port 38000

With at least one of these two threadpoolworkers available, any other node that wants to

join the cluster will be able to, provided that node’s configuration specifies the same list of

WKAs.

This is illustrated with the submitbatch.properties example, which is what all

submitters will use. The wka properties reference the two WKA worker nodes, which allow

it to join the cluster.

For further details, refer to http://wiki.tangosol.com/display/COH35UG/unicast-listener.

Note: WKA and multicast may not be mixed within the same cluster.

threadpoolworker[.sh] command line options

Note: that the appropriate environment has to be attached to before this script can be executed (i.e.

splenviron[.sh] -e <environment> has to be run), unless the script is directly invoked

from the Windows explorer by double-clicking on it. In that case it will automatically attempt to

attach to the environment that owns the bin directory in which it is located and then prompt for

options.

The following options can be specified when executing script threadpoolworker.

threadpoolworker[.sh] [-d] [-e][-h][-i][-J][-p][-Q][-R][-s]

Where command line options are:

-d <Y|N> Whether the node is acting as a scheduler daemon.

Specify N for No and Y for Yes. If you are already

using a scheduler daemon in the online system or are

not using online submission then set this to N. Default

is N.

-e <DISTRIBUTED|CLUSTERED> Execution mode for this threadpool. If CLUSTERED is

the threadpool will join the cluster specified in the

threadpoolworker.properties file.

http://wiki.tangosol.com/display/COH35UG/unicast-listener

58 - Batch Server Administration Guide

-h Show command line help. List the available options

and their descriptions. It is formatted for a 121-

column width display. The information is not logged.

-i <RMI Port> Override port number for JMX. If specified with -R,

this number will be used only to substitute applicable

URL {port} references. This option will not add any

new RMI/JMX properties - it can only be used to

override existing ones. This option specifies the port

number to:

• Use when the framework starts an RMI Registry

and

• Substitute in all JMX Connector URL {port}

references.

-J Do not start JMX monitoring. For each property

prefixed by

spl.runtime.management.connector.url that

is defined with the default set of properties (e.g. in the

threadpoolworker.properties file), the

framework will start a JMX Connector for the

specified URL. This activates JMX monitoring inside

the worker node so that a client JMX console can be

used to monitor and manage active threads. If this

option is specified, the framework will not start any

JMX connectors.

-l2
<READ_ONLY|READ_WRITE|OFF>

Enable or disable batch caching. Default:

READ_WRITE. OFF and READ_ONLY are reserved for

specific processes

-l <label> Manage threadpools with <label>. Use with

BatchEdit.

-p <name=value,name=value,…> Thread pool(s) offered by this worker node. Consists

of one or more name=value pairs, where "name"

is the name of the pool and "value" the number of

threads offered in the pool. For example,

DEFAULT=5,ONLINE=3

-Q Preview the properties that would be active for this

run. Used for testing. Preview the properties that

would be in use for the run without actually running

the application. Specify other options along with this

option to show how they would merge with, override

or substitute the default properties. The information

is not logged.

-R Do not start a local RMI registry. If property

spl.runtime.management.rmi.port is defined

59 - Batch Server Administration Guide

as a default property (e.g. in the

threadpoolworker.properties file), the batch

framework will attempt to start an RMI registry on

the given port number. This option can be used to

suppress the automatic RMI registry startup. It may

be required if an externally started RMI registry is

already running.

Note: If this option is used, the RMI port number supplied

through the –i option is only used for substitution in the

JMX Connector URLs.

-s <space name> Space name for "hard partition" of workers. Default

is MAIN. Reserved for internal use only.

When threadpoolworker is invoked, the command-line options will alter its default

configuration. The default configuration options come from either internal system defaults

or the threadpoolworker.properties file described above.

The properties are overridden in the following order:

1. The threadpoolworker.properties supersedes the internal system defaults.

2. The command-line options supersede the defaults in

threadpoolworker.properties and the internal system defaults.

Example 1

Assuming we have the above set of properties in threadpoolworker.properties and

script threadpoolworker is invoked as follows:

threadpoolworker[.sh] –d Y

This will replace the default "daemon" property to "N" (i.e. false) so that the properties now

look as follows:

com.splwg.grid.distThreadPool.threads.DEFAULT=5

com.splwg.grid.distThreadPool.threads.LOCAL=0

com.splwg.batch.scheduler.daemon=false

spl.runtime.management.rmi.port=9999

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi
://{host}:{port}/spl/fw/jmxConnector

tpwlog4j.properties

Note: This log file should not be altered unless specified. The generated configuration file has all the

recommended settings for all sites.

The threadpoolworker utility logs information to

$SPLOUTPUT/threadpoolworker.<datetime>.log (or

%SPLOUTPUT%\threadpoolworker.<datetime>.log) where <datetime> is the date

and time in YYYYMMDDHHMMSS format of the start of the node. This configuration file is

provided in the $SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows).

This is a standard log4j properties file, but declares two appenders specifically for

threadpoolworker:

60 - Batch Server Administration Guide

1. the console and

2. a file in the product’s $SPLOUTPUT (or % SPLOUTPUT% on Windows) directory.

This log4j configuration allows the worker’s output to be logged to the command prompt

window as well as a log file. This file should not be altered unless desired.

The product uses the log4j Java classes to centralize all log formats into a standard format.

The details of the configuration settings and log4j itself are available at

http://logging.apache.org/log4j/ or http://en.wikipedia.org/wiki/Log4j.

Automatic Log Rotation

By default the threadpoolworker.log file is appended to while the

threadpoolworker is active. If the threadpoolworker is long running and the log needs to

be automatically rotated on a daily basis the following changes should be applied to the

workersubmitterlog4j.properties file:

Replace:

...

F1 is set to be a FileAppender.

log4j.appender.F1=org.apache.log4j.FileAppender

…

 with

F1 is set to be a RollingFileAppender

log4j.appender.F1=org.apache.log4j.DailyRollingFileAppender

log4j.appender.F1.DatePattern='.'yyyy-MM-dd

Refer to http://logging.apache.org/log4j/1.2/index.html for additional options.

Return Codes

The following return codes apply to the processing using this method:

Return Code Usage

0 (zero) Successful

Non-zero Unsuccessful. See log files for more information.

submitjob[.sh]

The submitjob[.sh] utility provides a means for the scheduler to submit a batch process.

It can be invoked from a command prompt, Windows explorer (on Windows platforms) or a

3rd party scheduler. This script can be used to submit the batch process to an active

threadpoolworker process, or to run it in a full-context standalone JVM.

submitbatch.properties Configuration File

To use the submitjob[.sh] utility a configuration file must be created to specify the global

http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j
http://logging.apache.org/log4j/1.2/index.html

61 - Batch Server Administration Guide

attributes of all the batch processes. The submitbatch.properties file should be placed

in the $SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows).

The properties file contains the default properties for threadpoolworker. The following

sample illustrates the values:

com.splwg.grid.executionMode=DISTRIBUTED

com.splwg.batch.submitter.distThreadPool=DEFAULT

com.splwg.batch.submitter.promptForValues=false

com.splwg.batch.submitter.rerunNumber=0

com.splwg.batch.submitter.threadNumber=0

com.splwg.batch.submitter.threadCount=1

com.splwg.batch.submitter.maximumCommitRecords=200

com.splwg.batch.submitter.userId=AUSER

com.splwg.batch.submitter.languageCd=ENG

com.splwg.grid.executionMode=CLUSTERED

The following table describes the parameters:

Parameter Comments

com.splwg.batch.submitter.distThreadPool Name of pool to be used for batch process.

If threadpoolworker not used then

LOCAL must be specified.

com.splwg.batch.submitter.languageCd Default Language code used for messages.

Relevant language pack must be installed.

com.splwg.batch.submitter.maximumCommitRecords Default commit interval.

com.splwg.batch.submitter.promptForValues Whether interactive mode is to be used.

Specify true for Yes (development use

only) and false for No. Default is false.

com.splwg.batch.submitter.rerunNumber Default run number. Default 0

com.splwg.batch.submitter.threadCount Default thread limit. Default: 1

com.splwg.batch.submitter.threadNumber Default thread number. Default: 0

com.splwg.batch.submitter.userId Default userid used for all batch processes

com.splwg.grid.executionMode Mode of execution. Valid values: THIN,

DISTRIBUTED or CLUSTERED.

This file can be modified for site-specific values. For example, the user Id will need to be

changed from "AUSER", so property com.splwg.batch.submitter.userId should be

modified to specify the appropriate user id allocated to batch. The user id property could

also be removed so that there is no default, forcing every batch process submission to specify

its own user id.

submitbatchlog4j.properties Configuration File

The submitjoblog4j.properties configuration file defines the log format and logging

level used by the submitjob utility.

62 - Batch Server Administration Guide

The submitjob utility logs information to

$SPLOUTPUT/submitjob.<batch_cd>.<datetime>.log (or

%SPLOUTPUT%\submitjob.<batch_cd>.<datetime>.log) where <datetime> is the

date and time in YYYYMMDDHHMMSS format of the start of the node and <batch_cd> is

the batch code of the batch process.

The product uses the log4j Java classes to centralize all log formats into a standard format.

The details of the configuration settings and log4j itself are available at

http://logging.apache.org/log4j/ or http://en.wikipedia.org/wiki/Log4j.

Note: This configuration file should not be altered unless instructed by Oracle Support.

Job Specific parameters files

Note: Not ALL batch processes require a batch process specific parameter file. It is recommended that

ONLY batch processes that require any of the additional parameters listed below should have a batch

process specific parameter file.

For individual batch processes it is possible to create a specific file to handle the batch

process specific parameters. These parameters can override existing parameters or add

additional parameters.

To configure individual batch process specific parameters configuration file named

<batchcode>.properties or <batchcode>.properties.xml must existing in the

$SPLEBASE/scripts/cm directory (or %SPLEBASE%\scripts\cm directory on

Windows). In the vast majority of cases the standard text based properties file will be

adequate, but if UTF-8 formatted soft parameter values have to be specified (e.g. Cyrillic

characters), it is recommended the xml file format be used.

The format of the batch process specific parameter file is similar to the

submitbatch.properties file with the following additional parameters:

Parameter Comments

com.splwg.batch.submitter.batchCd Batch Code this batch process is associated

with.

com.splwg.batch.submitter.distThreadPool Name of pool to be used for batch process.

If threadpoolworker not used then LOCAL

must be specified.

com.splwg.batch.submitter.maximumTimeoutMinutes Specifies the number of minutes the

thread(s) can run between database

commits.

Only COBOL programs, if used, use this

value to avoid "snapshot too old" errors on

Oracle databases. Java batch classes

completely ignore this parameter.

com.splwg.batch.submitter.processDate Business Date. This may be omitted.

Typically, it is specified on the command

line.

Format: YYYY-MM-DD

http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j

63 - Batch Server Administration Guide

Parameter Comments

com.splwg.batch.submitter.softParameter.<parmname> For any program-specific parameters, use

this form of property specification. The

<parmname> denotes the name of the

parameter. For example, to specify a

"number of rows to skip" when submitting a

validation program:

com.splwg.batch.submitter.softParameter.SKIP-

ROWS=1000

Multiple soft parameters may be specified.

com.splwg.batch.submitter.traceProgramEnd Set this to true to see program end messages

in the log.

com.splwg.batch.submitter.traceProgramStart Set this to true to see program start

messages in the log.

com.splwg.batch.submitter.traceSQL Set this to true to see all SQL statements in

the log.

com.splwg.batch.submitter.traceStandardOut Set this to true to see program debug

messages in the log.

com.splwg.grid.executionMode Mode of execution. Valid values: THIN,

DISTRIBUTED or CLUSTERED.

A number of samples in $SPLEBASE/etc directory (or %SPLEBASE%\etc directory on

Windows) named SAMPLE.properties and SAMPLE.properties.xml are provided.

These should be copied and edited to provide site specific values.

Note: Environment variables may be substituted in the command line and the properties file.

Environment variable references must be surrounded by the ${…} construct. For example

${SPLOUTPUT} refers to the $SPLOUTPUT (or %SPLOUTPUT% on Windows) directory.

submitjob[.sh] Command-Line Options

Note: that the appropriate environment has to be attached to before this script can be executed (i.e.

splenviron[.sh] -e <environment> has to be run), unless the script is directly invoked

from the Windows explorer by double-clicking on it. In that case it will automatically attempt to

attach to the environment that owns the bin directory in which it is located and then prompt for

options.

The following options can be specified when executing utility submitjob[.sh]:

submitjob[.sh] [-B][-b][-c][-d][-e][-f][-g][-h][-i][-J][-l][-L][-m] [-n]
[-p][-P][-Q][-R][-r][-s][-t][-u][-x][-X]

where command line options are:

-B <COBOL program name> Batch "helper" COBOL program to perform

scheduling activity.

-b <batch code> Batch code of the batch process to submit. When

submitting a batch process, a batch code is

64 - Batch Server Administration Guide

always required. Either this option or –P may

be specified, not both.

If this option is specified, submitjob will use

the supplied batch code to look for a default

properties file for that batch code (e.g. VAL-

SA.properties or VAL-

SA.properties.xml as discussed above) and

use those properties if found.

-c <thread count> Concurrent number of threads in which to run

the process.

-d <date> Process / business date.

Format is YYYY-MM-DD

-e <DISTRIBUTED|THIN|CLUSTERED> Execution mode for this submission. If

execution mode THIN is selected, the JVM will

create a full application context and run the

batch process inside the JVM – i.e. it will not be

submitted to a thread pool for a worker JVM to

pick up and run.

If DISTRIBUTED or CLUSTERED is selected, the

batch process will be submitted to run in the

specified distributed thread pool (option –p). It

is also possible to have the submitter JVM be a

worker JVM and run the batch process (similar

to THIN mode, but in parallel threads). See

option –L.

-f <record count> Record commit frequency count.

-g <four Y|N switches> Positional tracing switches:

1. Program entry

2. Program exit

3. SQL statements

4. General program debugging info

For example, NNYN will trace all SQL statements.

Value of NNNN diables all tracing.

-h Show help information. Display the available

options and their descriptions. The information

is not logged.

-i <RMI port number> Port number of RMI Registry to start and/or

reference. If specified with -R, this number will

be used only to substitute applicable URL

{port} references. This option will not add any

new RMI/JMX properties - it can only be used to

override existing ones. See note below

65 - Batch Server Administration Guide

-J Do not start JMX connector. This option disables

JMX monitoring for this JVM. As far as

submitjob is concerned, options –i, -R and –

J are only applicable to batch processes

submitted in THIN mode, or DISTRIBUTED or

CLUSTERED mode to the LOCAL thread pool.

For each property prefixed by
spl.runtime.management.connector.url
that is defined with the default set of properties

(e.g. in the submitbatch.properties file),

the framework will start a JMX Connector for the

specified URL.

This activates JMX monitoring inside the worker

node so that a client JMX console can be used to

monitor and manage active threads. If this

option is specified, the framework will not start

any JMX connectors.

-l <ENG|FRA|etc.> Language code. Relevant language pack must be

installed.

-L Submit this batch to the LOCAL thread pool (i.e.

this JVM). Only applicable for DISTRIBUTED or

CLUSTERED mode. If specified, any default

thread pool property is ignored. This option and

-p are mutually exclusive.

By specifying option –L, the batch process is

submitted to the LOCAL thread pool that every

submitter JVM offers by default. This option is

only applicable in a DISTRIBUTED or

CLUSTERED mode execution (-e). This is

similar to submitting the batch process in THIN

mode (i.e. a worker JVM is not needed to run the

batch process), except thread pool LOCAL can

run multiple batch threads concurrently.

For example, the following command will run

batch process VAL-SA inside this submitter JVM

(LOCAL thread pool) in 8 threads concurrently:
submitjob[.sh] –b VAL-SA –c 8 –L –e
DISTRIBUTED

-m <number of minutes> Minutes between database commits to avoid

"snapshot too old" errors.

-n <email address> Send a notification email when a batch process

has ended to <email address>. See Sending emails

at the conclusion of batch processs for more

information.

66 - Batch Server Administration Guide

-p <threadpool name> Distributed thread pool in which to run the

batch process. This option and -L are mutually

exclusive.

-P Issue console prompts for the standard batch

process parameters. When submitting a batch

process, a batch code is always required. Either

this option or –b may be specified, not both. If –

P is specified, the submitter JVM will prompt for

the batch code and other run parameters. If a

batch-specific properties file exists for the batch

code entered at the prompt, it will NOT be used;

the only defaults in effect would be the ones

specified in submitbatch.properties.

-Q Preview the properties that would be in use for

the run without actually running the application.

Specify other options along with this option to

show how they would override or substitute the

default properties. The information is not

logged.

-R Do not start a local RMI registry. As far as

submitjob is concerned, options –i, -R and –

J are only applicable to batch processes

submitted in THIN mode, or DISTRIBUTED or

CLUSTERED mode to the LOCAL thread pool. If

property

spl.runtime.management.rmi.port is

defined as a default property (e.g. in the

submitbatch.properties file), the batch

framework will attempt to start an RMI registry

on the given port number.

This option can be used to suppress the

automatic RMI registry startup. It may be

required if an externally started RMI registry is

already running. Note that if this option is used,

the RMI port number supplied through the –i

option is only used for substitution in the JMX

Connector URLs.

-r <run number> Run number of batch process to rerun.

-s <space name> Space name for "hard partition" of workers.

Default is MAIN. Used for development only.

-t <thread number> Number of individual thread for this

submission. Specify 0 to automatically submit

all threads.

67 - Batch Server Administration Guide

-u <user id> Application user id used for batch process

-x <name=value,name=value,...> Name=value pairs of INDIVIDUAL soft

parameters expected by the batch program.

Value portion may be enclosed in quotes. These

parameters will be merged with any existing

(defaulted) soft parameters. This option and -X

are mutually exclusive.

-X <name=value,name=value,...> Name=value pairs of ALL soft parameters

expected by the batch program. Value portion

may be enclosed in quotes. These parameters

will replace all existing (defaulted) soft

parameters. This option and -x are mutually

exclusive.

Property Override Order

When submitjob.[sh] is invoked, it can accept a number of command-line options to

alter its default configuration. The default configuration options come from internal system

defaults, the submitbatch.properties file or the batch specific properties file as

described above.

The properties are overridden in the following order:

1. The submitbatch.properties supersedes the internal system defaults.

2. The batch-specific properties (e.g. VAL-LL.properties) supersede the

submitbatch.properties and the internal system defaults.

3. The command-line options supersede the defaults in submitbatch.properties,

the batch process-specific properties and the internal system defaults.

Port number of RMI Registry (-i)

As far as submitjob[.sh] is concerned, options –i, -R and –J are only applicable to

batch processes submitted in THIN mode, or (DISTRIBUTED|CLUSTERED) mode to the

LOCAL thread pool.

The –i option specifies the port number to:

• Use when the framework starts an RMI Registry and

• Substitute in all JMX Connector URL {port} references.

For example, given the following properties in threadpoolworker.properties

spl.runtime.management.rmi.port=9999

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi
://{host}:{port}/spl/fw/jmxConnect

or and this command-line

submitjob[.sh] –i 1099

will cause the value for property spl.runtime.management.rmi.port AND the "{port}"

string in the spl.runtime.management.connector.url.default property to be

substituted.

68 - Batch Server Administration Guide

Note: that in this case, the special substitution string "{host}" will also be replaced by the name of the

host machine. Therefore, assuming the host name is "localhost", the properties will therefore be

modified to look as follows:

spl.runtime.management.rmi.port=1099

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://
localhost:1099/spl/fw/jmxConnector

Soft Parameters (-x) vs (-X)

For batch processes that have multiple soft parameters, this option controls how the soft

parameter properties are managed. For example, assume the following soft parameter

properties are defined for batch process XXXX in its XXXX.properties file:

com.splwg.batch.submitter.softParameter.FILE-PATH=C:\data

com.splwg.batch.submitter.softParameter.FILE-NAME=default.dat

These soft parameters are therefore the defaults for this batch process if it is submitted with

no command-line options.

The following command will submit the batch process with a new FILE-NAME, but leave the

FILE-PATH as the default:

submitjob[.sh] –b XXXX –x FILE-NAME=newfile.dat

In other words, only the specified soft parameter (FILE-NAME) has been overridden.

It may be necessary in some cases to replace ALL the soft parameters with the ones specified,

particularly where there are many soft parameters and only one or two are required. This

command will submit the above batch process with a new FILE-NAME, but remove the

FILE-PATH property for this execution:

submitjob[.sh] –b XXXX –X FILE-NAME=newfile.dat

Environment Variable substitution at runtime

At runtime it is possible to substitute local variables by the individual thread parameters at

runtime. Three new local variables will be added that will be replaced at the thread level:

• {threadNumber} – will be replaced by the number of the executing thread

• {processDate} – will be replaced by process date

• {processDateTime} – will be replaced by process date time

These variables can be used in the soft paramaters. For example, if the process date is 01-31-

2009 1:30 PM and the current thread is thread number 1, specifying the parameter FILE-

NAME as:

-x FILE-NAME=MYOUTPUTFILE-{processDateTime}-{threadNumber}

Or

com.splwg.batch.submitter.softParameter.FILE-NAME= MYOUTPUTFILE-
{processDateTime}-{threadNumber}

would result in the FILE-NAME parameter being resolved to:

MYOUTPUTFILE-2009-01-31-13.30.00-1

Return Codes

The following return codes apply to the processing using this method:

69 - Batch Server Administration Guide

Return Code Usage

0 (zero) Successful

Non-zero Unsuccessful. See log files for more information.

 bedit - Batch Configuration Editor

Note: To use this facility the BATCHEDIT_ENABLED parameter must be set to true using the

configureEnv[.sh] utility and responding true to "Enable Batch Edit Functionality".

The bedit[.sh] utility, known as BatchEdit, provides an easier means of developing and

maintain batch cluster configuration files for CLUSTERED mode implementations.

BatchEdit is a Java program to edit the batch configuration files for threadpoolworker,

submitjob and Oracle Coherence. It utilizes templates to determine the variable names and

default values for each configuration file and provides a menu of options based upon those

templates. Whilst the configuration files are plain text properties or XML files and can be

edited using any text editor (such as vi or notepad), BatchEdit helps guide the configuration

by confining the properties to an appropriate set for the type of configuration, doing basic

validation of the settings and providing template-sensitive help.

Concepts

The BatchEdit utility allows the configuration files be built with simple instructions rather

than editing files in the product an editor which can be error prone. The following concepts

apply to BatchEdit to achieve this:

 The BatchEdit utility uses a set of templates for each configuration file that have been

pre-optimized for production settings and best practices.

 The BatchEdit utility tracks user preferences to reduce editing effort. For example, if

your site uses a particular type of configuration, then this is applied whenever

appropriate. These preferences can be reset at anytime.

 The BatchEdit utility allows manipulation of configuration settings using simple

commands including adding new sections without the need for physical editing.

 The BatchEdit utility includes comprehensive help to assist in the manipulation of the

configuration files and explain each setting.

The preferences (located in $SPLEBASE/splapp/standalone/config) and templates

(located in $SPLEBASE/templates) are used by the BatchEdit utility to generate the

necessary configuration files as outlined in the figure below:

70 - Batch Server Administration Guide

bedit[.sh] Command-Line Options

Note: that the appropriate environment has to be attached to before this script can be executed (i.e.

splenviron[.sh] -e <environment> has to be run), unless the script is directly invoked

from the Windows explorer by double-clicking on it. In that case it will automatically attempt to

attach to the environment that owns the bin directory in which it is located and then prompt for

options.

The following options can be specified when executing utility bedit[.sh]:

bedit[.sh] [-h] [[-g] [-t <template>] [-b <batchcode>|-e <mode>|-l
<label>|-c|-s|-w] <file>] | [-A]

where command line options are:

-h Show command help. All other options specified are ignored.

--h Show extended command help. All other options specified are ignored.

-g Generate the configuration file from template and exit immediately.

The configuration file name may be specified explicitly or implicitly as

described under Mutually Exclusive Arguments below.

-t <template>

The template type to use if multiple templates are available.

Examples:

wka for Well-Known-Addresses;

mc for Multicast;

ss for single server.

This is optional. The default is determined from be.prefs,

be.properties or be.default.properties, in that order.

be.prefs

templates

bedit[.sh]

threadpoolworker
templates

coherence templates
submitbatch
templates

threadpoolworker
configuration

Oracle Coherence
configuration

submitjob
configuration

71 - Batch Server Administration Guide

Mutually Exclusive Arguments:

-b <batchcode> The batch code-specific properties to configure. This will create/edit a

file named job.<batchcode>.properties.

-e <mode> The submitter properties for execution mode THIN or LOCAL.

THIN - One thread for independent JVM. Used for development only.

LOCAL - Multi-threaded submission to threadpoolworker.

This will create/edit a file named
submitbatch.<mode>.properties

-l <label> The threadpoolworker label-specific properties to configure.

This will create/edit a file named

threadpoolworker.<label>.properties.

-c Edit the cluster configuration. Shortcut name for tangosol-
coherence-override.xml.properties

-s Edit the base (default) submitter configuration. Shortcut name for

submitbatch.properties.

-w Edit the base (default) threadpoolworker configuration . Shortcut name

for threadpoolworker.properties.

<file> The name of the property <file> to edit. This must be a valid batch

properties or Oracle Coherence XML configuration override file. May

be used instead of the shortcut forms above and must be the last

argument if specified.

Exclusive Arguments:

-A Generate ALL the base configuration files and exit. This effectively

invokes bedit[.sh] with -g for each of the files denoted by options

-c, -s and -t. Option -A must be the only option if specified

Examples:

bedit threadpoolworker.properties

bedit -c -t wka

bedit -w -l cache

Cluster (Coherence) Configuration

One of the most important aspects of the batch configuration is the configuration of the

cluster. The cluster configuration is essentially configuring Oracle Coherence with details of

the nodes in the cluster, the networking to be used within the nodes and tolerances between

those nodes for performance and communication.

To use the cluster configuration features of the BatchEdit utility use the following variations

on the command:

bedit[.sh] -c -t <type> Create to cluster of type

<type>. Also cane used to

switch types.

72 - Batch Server Administration Guide

bedit[.sh] -c Edit the existing cluster

bedit[.sh] tangosol-coherence-override.xml.properties Long form of previous option

The cluster type determines the templates and the settings. There are three cluster types

available:

mc Multi-cast based cluster (default) tangosol-coherence-override.mc.be

wka Unicast or Well Known Address based

cluster

tangosol-coherence-override.wka.be

ss Single server cluster. Useful for

demonstrations, training and other simple

one node environments. Cluster is

restricted to the local machine only.

tangosol-coherence-override.ss.be

Once the cluster configuration file is created the available properties for that configuration

are available and can be changed using the following commands:

set <propertyvalue> <value> Set the <propertyvalue> to <value>

save Save and apply the changes

add Add section (applies to wka to add a new wka host

to the cluster)

del delete section (applies to wka to delete wka host to

the cluster)

what Display the configuration filename that is being

changed

help <propertyvalue> Detailed help for <propertyvalue>

exit Exit the editor. If changes have been made a prompt

will ask the next action:

y - Apply changes

n - Reverse out all changes since last save

c - Cancel Exit action

Note: Refer to the Cluster Properties section for details of properties available.

For example:

set cluster SPLADM.DEMO

set address 127.0.0.1

set loglevel 0

$ bedit.sh -c -t ss

Current Settings

 cluster (SPLADM.DEMO)

 address (127.0.0.1)

 port (42020)

73 - Batch Server Administration Guide

 loglevel (5)

 mode (dev)

$ bedit.sh -c -t wka

Editing file /spl/OUAF/splapp/standalone/config/tangosol-coherence-

override.xml using template /spl/OUAF/etc/tangosol-coherence-override.

wka.be

Batch Configuration Editor 1.0 [tangosol-coherence-override.xml]

--

Current Settings

 cluster (SPLADM.DEMO)

 address (127.0.0.1)

 port (42020)

 loglevel (5)

 mode (dev)

 socket.1

 wkaaddress (127.0.0.1)

 wkaport (42020)

Guidelines for Cluster Management

The following guidelines apply for use of defining the cluster using this method:

 Use ss type clusters for single server environments such as demonstration, training

or development.

 For wka implementations each node in the cluster must defined as a socket with the

wkaaddress and wkaport as outlined in Well Known Addresses.

 For mc implementations the address must be in the multicast range outlined in Batch

Server Configuration Files.

Threadpoolworker Configuration

Once the cluster is defined the next important configuration process is to define the

threadpoolworkers to be used in that cluster. Threadpoolworkers are the JVM's that are

workers that actually execute the jobs that are submitted to the cluster.

ThreadpoolWorker Concepts

When implementing threadpoolworkers there are a number of key concepts to understand

and take into account:

 Each environment has one batch cluster.

 Batch clusters can be named (known as role) for monitoring purposes.

 More than one threadpoolworker can exist in a batch cluster.

 More than one threadpoolworker can exist per host.

 Threadpoolworkers have separate memory settings and thread limits to define their

74 - Batch Server Administration Guide

capacity in terms of number of simultaneous threads that can be run on that

threadpoolworker.

 Threadpoolworkers are named to improve management and clustering.

 Threadpoolworkers that are named the same will form a name cluster within that

cluster, even if the threadpoolworkers are on different hosts. For example, if you have

two threadpoolworkers named FRED with 5 threads each, then you can run 10

threads simultaneously within FRED.

 Threadpoolworkers can be started on multiple hosts within a batch cluster.

 Threadpoolworkers can be labelled for configuration purposes, this defines their

attributes when they are initiated.

 Threadpoolworkers are separated into two types:

 Cache (or storage enabled) threadpoolworkers - These are threadpoolworkers

that do not perform work but are available to consolidate cluster

communications or are used for administration purposes.

 Non-cache (or storage disabled) threadpoolworkers - These are

threadpoolworkers that perform work.

 For implementations with a batch cluster with large amounts of threads or large

amount of threadpoolworker, should create at least one cache node per host in the

batch cluster to reduce network traffic between nodes.

ThreadpoolWorker BatchEdit Command Options

To use the threadpool configuration features of the BatchEdit utility use the following

variations on the command:

bedit[.sh] -l <label> Create/Edit to threadpoolworker configuration

of label <label>. Also cane used to switch

types.

Two labels are supplied by default:

job - threadpoolworker optimized to run

batch jobs

cache - threadpoolworker optimized to run

caches

<other> - Generic threadpoolworker

bedit[.sh] -w Edit the base threadpool settings

bedit[.sh] threadpoolworker.properties Edit the threadpoolworker.properties

file.

Once the threadpool configuration file is created the available properties for that

configuration are available and can be changed using the following commands:

set [<poolname>] <propertyvalue>
<value>

Set the <propertyvalue> to <value>

Save Save and apply the changes

add <poolname> Add section for <poolname>

del <poolname> Delete section for <poolname>

75 - Batch Server Administration Guide

what Display the configuration filename that is

being changed

help <propertyvalue> Detailed help for <propertyvalue>

exit Exit the editor. If changes have been made a

prompt will ask the next action:

y - Apply changes

n - Reverse out all changes since last save

c - Cancel Exit action

Note: Refer to the Threadpool Properties section for details of properties available.

For example:

set minheap 1024m

set daemon false

set invocthds 4

$ bedit.sh -w

Batch Configuration Editor 1.0 [threadpoolworker.properties]

--

Current Settings

 minheap (1024m)

 maxheap (1024m)

 maxperm (256m)

 daemon (true)

 rmiport (6550)

 dkidisabled (false)

 storage (true)

 distthds (4)

 invocthds (4)

 role (OUAF_Base_TPW)

 pool.1

 poolname (DEFAULT)

 threads (5)

 pool.2

 poolname (LOCAL)

 threads (0)

$ bedit.sh -l cache

File
/spl/DEMO/splapp/standalone/config/threadpoolworker.cache.properties
does not exist - create? (y/n) y

Editing file /spl/DEMO/splapp/standalone/config/threadpoolworker.cache.

properties using template /oracle/OUAFDEMO/etc/threadpoolworker.cache.be

76 - Batch Server Administration Guide

Batch Configuration Editor 1.0 [threadpoolworker.cache.properties]

--

Current Settings

 poolname (cache)

 minheap (768m)

 maxheap (768m)

 maxperm (256m)

 distthds (4)

 invocthds (4)

 role (OUAF_Cache_TPW)

Submitter Configuration

To execute a job in a threadpoolwork uses the submitjob.[sh] utility to initiate and wait for

the job to end. The submitjob.[sh] command can accept options for the job on the command

line but also read a configuration file for the parameters.

To use the submitter configuration features of the BatchEdit utility use the following

variations on the command:

bedit[.sh] -s -e <mode> -b <batchcode> Create/Edit to submitter configuration of batch

job <batchcode> using execution mode

<mode>. Also cane used to switch types.

The following modes are supported:

LOCAL - Execute job in threadpoolworker.

THIN - Execute single threaded job in

submitter JVM rather than threadpoolworker.

Used for development purposes only.

bedit[.sh] submitbatch.properties Edit the submitbatch.properties file.

Once the submitter configuration file is created the available properties for that configuration

are available and can be changed using the following commands:

set <propertyvalue> <value> Set the <propertyvalue> to <value>

save Save and apply the changes

add soft Add section for <parameters>

del <soft.x> Delete section for <paremeters>

what Display the configuration filename that is being

changed

help <propertyvalue> Detailed help for <propertyvalue>

exit Exit the editor. If changes have been made a prompt

will ask the next action:

y - Apply changes

77 - Batch Server Administration Guide

n - Reverse out all changes since last save

c - Cancel Exit action

Note: Refer to the SubmitJob Properties section for details of properties available.

For example:

$ bedit.sh -s

Editing file /spl/DEMO/splapp/standalone/config/submitbatch.properties

using template /spl/DEMO/etc/submitbatch.be

Batch Configuration Editor 1.0 [submitbatch.properties]

Current Settings

 poolname (DEFAULT)

 threads (1)

 commit (200)

 user (AUSER)

 lang (ENG)

 storage (false)

 role ({batchCode})

$ bedit.sh -b BILLING

File /spl/DEMO/splapp/standalone/config/job.BILLING.properties does not
exist - create? (y/n) y

Editing file /spl/DEMO/splapp/standalone/config/job.BILLING.properties

using template /spl/DEMO/etc/job.be

Batch Configuration Editor 1.0 [job.BILLING.properties]

Current Settings

 poolname (DEFAULT)

 threads (1)

 commit (10)

 user (SYSUSER)

 lang (ENG)

 soft.1

 parm (maxErrors)

 value (500)

> set soft.1 value 0

78 - Batch Server Administration Guide

Batch Configuration Editor 1.0 [job.BILLING.properties]

Current Settings

 poolname (DEFAULT)

 threads (1)

 commit (10)

 user (SYSUSER)

 lang (ENG)

 soft.1

 parm (maxErrors)

 value (0)

79 - Batch Server Administration Guide

 Miscellaneous Operations

There are a number of common operations that are applicable to the background processing

component of the product.

Forcing a process to not attempt restart

In some cases it is necessary to force a background process to be complete within the product.

This tells the product not to attempt to restart the process but start afresh. For example, a

process may error and it may take a while to fix the error, instead of potentially holding up

other processes you can tell the system to assume it has completed so that the next execution

can start from the beginning and in fact reprocess the records.

To force the process to not to attempt a restart following the instructions to access the batch

status information and select the Run Control tab and select the Do not Attempt Restart field.

Remember to save the change using the Save button. A sample of this screen is illustrated

below:

Error Processing

When a background process detects an error, the error may or may not be related to a

specific object that is being processed. For example, if the program finds an error during

batch parameter validation, this error is not object-specific. However, if the program finds

an error while processing a specific bill, this error is object-specific. The system reports

errors in one of the following ways:

• Errors that are not object-specific are written to the error message log in the Batch Run

Tree.

• Some batch processes create entries in an exception table for certain object-specific errors.

For example, an error detected in the creation of a bill may be written to the bill

exception table. If an error is written to an exception table, it does not appear in the

batch run tree. For each exception table, there is an associated ToDo Entry Process that

creates a To Do Entry for each error to allow a user to correct the problem on-line.

• For some background processes, errors that do not result in the creation of an exception

record may instead generate a To Do entry directly. For these processes, if you wish

the system to directly create a To Do entry, you must configure the To Do type

appropriately. Refer to To Do entry for object-specific errors for information about

configuring the To Do type. If the background process detects an object specific error

AND you have configured the system to create a To Do entry, the error is not written to

80 - Batch Server Administration Guide

the batch run tree. If you have configured your To Do type to not create To Do entries

for certain errors, these errors are written to the batch run tree. Each process that may

be configured in this way is indicated in the following sections in the Error May

Generate To Do column. Note that not all tables below include this column. If the table

does not include the column, then the creation of a ToDo for an object-specific error is

not applicable for the types of processes documented in the table.

Some processes create exceptions and To Do entries. It is possible for a background process

to create entries in an exception table AND create To Do entries directly, depending on the

error. Consider batch billing; any conditions that cause a bill or bill segment to be created in

error status result in a record added to the bill exception table or the bill segment exception

table. However, any object-specific error that is not related to a specific bill or bill segment

or any error that prevents a bill or bill segment from being created may result in a To Do

entry for the object-specific error.

Marking a process complete from the command line

One of the situations that may occur in the product is that an executing process may

prematurely stop before completion. This situation occurs if:

• The process was manually stopped using the UNIX/Windows kill command at the OS

level. Operators may choose to kill a process if it appears to be having a detrimental

effect on the system.

• The application server that is running the process has a hardware fault that causes the

process to stop prematurely.

• The database server that is running has a software or hardware fault that severs the

connection to the database prematurely.

In all the above situations the status within the product does not reflect the current status of

the process as the background process was prevented from updating its batch control

records in time.

In most cases a simple rerun of the process with the same parameters may be performed,

after the situation that caused the fault has been remedied, to start the process from its last

consistency point. If there is a desire to ensure that the batch control information reflects the

status after a failure then the UPDERR process should be executed prior to any restart.

Sending emails at the conclusion of batch processs

It is possible to send a notification email when a batch process has ended. This notification

happens after the batch process has ended and all application-related commits/rollbacks

have taken place. It does not impact the batch process itself in the event of errors happening

during the notification process. The default email is a simple text email that contains the

batch control, date and time of the submission, run number, submission parameters, batch

process summary indicating records processed and in-error, as well as the thread details,

including logged messages (up to 100).

The email address can be configured a number of ways:

• Online submission – The email address can be specified on the batch submission screen.

• External submission - The email address is specified on the –n option of the

81 - Batch Server Administration Guide

submitjob[.sh] command.

The email address can be an individual person or a valid mail group (the latter requires

additional configuration in your email system).

To use email notification the email server must be configure using one of the following

options:

1. The mail server can be defined through the default XAI Sender (see XAI Options in

the XAI documentation)with the appropriate SMTP settings on the Context tab.

2. Alternatively the properties can be supplied in the form of JVM properties as follows:

Host whose mail services will be used

(Default value : localhost)

mail.host=<your mail server>

Return address to appear on emails

(Default value : username@host)

mail.from=<name@host>

Other possible items include:

mail.user=

mail.store.protocol=

mail.transport.protocol=

mail.smtp.host=

mail.smtp.user=

mail.debug=

Name Type Description

mail.debug boolean The initial debug mode. Default is false.

mail.from String The return email address of the current

user, used by the InternetAddress

method getLocalAddress.

mail.host String The default host name of the mail server for

both Stores and Transports. Used if the

mail.protocol.host property isn't set.

mail.mime.address.strict boolean The MimeMessage class uses the

InternetAddress method parseHeader to

parse headers in messages. This property

controls the strict flag passed to the

parseHeader method. The default is true.

mail.smtp.class String Specifies the fully qualified class name of

the provider for the specified protocol.

Used in cases where more than one

provider for a given protocol exists; this

property can be used to specify which

provider to use by default. The provider

must still be listed in a configuration file.

mail.smtp.host String The host name of the mail server for the

82 - Batch Server Administration Guide

Name Type Description

specified protocol. Overrides the

mail.host property.

mail.smtp.port int The port number of the mail server for the

specified protocol. If not specified the

protocol's default port number is used.

mail.smtp.user String The user name to use when connecting to

mail servers using the specified protocol.

Overrides the mail.user property.

mail.store.protocol String Specifies the default message access

protocol. The Session method getStore()

returns a Store object that implements this

protocol. By default the first Store provider

in the configuration files is returned.

mail.transport.protocol String Specifies the default message access

protocol. The Session method

getTransport() returns a Transport

object that implements this protocol. By

default the first Transport provider in the

configuration files is returned.

mail.user String The default user name to use when

connecting to the mail server. Used if the

mail.protocol.user property isn't set.

These properties can be added to the threadpoolworker.properties file for the

standalone batch threadpoolworker, or the spl.properties file for an online

application server that hosts a batch worker.

Template Overrides

By default, some of the configuration files outlined in this document are generated from

product templates. The scripts provided with the product for use during installation,

patching and configuration regularly rebuild the configuration files from templates. This can

cause any manual changes to configuration files to be reset to the base templates, which may

mean loss of customizations if backups of the configuration files are not taken.

The Oracle Utilities Application Framework now features a facility where a site may

substitute their own templates, based upon the product templates. This allows sites to

customize their copies of the custom templates to suit their site standards and retain their

settings across upgrades and patches.

The process to use this facility is as follows:

• Make a copy of the template used for the relevant configuration file and prefix the copy

with cm.. Use the table below to identify the template used for the relevant

configuration file (templates are stored in the etc directory of the product environment):

83 - Batch Server Administration Guide

Configuration file Template Custom template name

spl.properties spl.properties.standalone.template cm.spl.properties.standalone.template

hibernate.properties hibernate.properties.template cm.hibernate.properties.template

log4j.properties log4j.properties.standalone.template cm.log4j.properties.standalone.template

e0batch.properties e0batch.properties.template cm.e0batch.properties.template

submitjob.sh submitjob.sh.template cm.submitjob.sh.setvars.include

submitjob.cmd submitjob.cmd.template cm.submitjob.cmd.setvars.include

threadpoolworker.cmd threadpoolworker.cmd.setvars.include cm.threadpoolworker.cmd.setvars.include

threadpoolworker.sh threadpoolworker.sh.setvars.include cm.threadpoolworker.sh.setvars.include

• Make the site specific changes necessary for your site. Remember to use the structure

and the environment variables in the template as a guide for the format.

• Save the template.

Once this is done, if the configuration files are ever generated manually or as part of a patch

then they will use the custom template instead of the base template.

Note: If this facility is used, then it is the site's responsibility to maintain the custom template in line

with the product template. If future fixes add additional facilities to base templates then those changes

must be manually applied to any custom templates. Check any custom templates against the base

templates on a regular basis

Batch Configuration User Exits

Whilst the product supports custom templates it is now possible to only supply fragments of

a customization rather than whole configuration templates, known as user exit include files.

This allows you to specify additional settings to be included in the templates provided in

stream when the product templates are used to generate the configuration files when using

the initialSetup command.

When initialSetup is executed the templates are applied with the following order of

preference:

 Base framework templates (no prefix). These templates should not be altered.

 If a product specific template exists (prefixed by the product code) then the product

template is used instead of the base Framework template for the configuration file.

These templates should not be altered.

 If a template is prefixed with "cm_" then this is a custom template to be used instead

of the product specific and base framework template.

These templates should live in $SPLEBASE/templates (or %SPLEBASE%\templates on

Windows).

Note: When creating custom templates please use the base framework and any related product

templates as the basis for the content of the custom template.

Whilst this facility is flexible it means that any updates to the base or product templates

MUST be reflected in any custom templates. A new option is to use user exits that are placed

strategically in the most common configuration files that need change. When

initialSetup is executed the existence of user exit files are checked (when an

84 - Batch Server Administration Guide

#ouaf_user_exit directive exists in the template) and the contents included in the

generated configuration file. The figure illustrates the process for a typical configuration

change:

As with the custom templates user exits have preferences depending on the ownership of the

user exit include file. Custom includes will override any product specific includes. There are

no base includes as they are already included in the template files. The figure below

illustrates the preferences for both templates and includes:

The table below outlines the currently available user exits in the available templates:

Template File User Exit Include file Position and Usage

e0batch.properties.template e0Batch.properties.exit.include Sets locations of files

and other locations for

…

spl.runtime.options.isFCFEnabled=true
spl.runtime.options.onsserver=nodes=…

spl.runtime.environ.setting=true
…

spl.runtime.environ.setting=true

…

#ifdef !ONSCONFIG=[NULL]
spl.runtime.options.isFCFEnabled=true
spl.runtime.options.onsserver=nodes=…
#endif

#ouaf_user_exit spl.properties.exit.include
…

spl.properties.template

spl.properties.exit

initialSetup -t

spl.properties

ENVIRON.INI

initialSetup -t

templates

cm Template

Product Template

FW Template

cm includes

Product includes

85 - Batch Server Administration Guide

Template File User Exit Include file Position and Usage

batch for

e0Batch.properties file.

hibernate.properties.batch.templ

ate

hibernate.properties.exit.include At end of file (common

hibernate.propertie

s entries)

 hibernate.properties.batch.exit.include At end of file (Batch

specific

hibernate.propertie

s entries)

log4j.properties.standalone.temp

late

log4j.properties.exit.include At end of file (common

log4j.properties
entries)

 log4j.properties.standalone.exit.include At end of file (common

log4j.properties

entries)

ouaf.jmx.access.file.template ouaf.jmx.access.file.exit.include Allows for additional

users to be specified for

JMX connections

ouaf.jmx.password.file.template ouaf.jmx.password.file.exit.include Allows for additional

passwords to be

specified for JMX users

splcobjrun.cmd.template splcobjrun.cmd.exit.include Allows for COBOL

execution parameters

(COBOL supported

products only) -

Windows

splcobjrun.sh.template splcobjrun.sh.exit.include Allows for COBOL

execution parameters

(COBOL supported

products only) –

Linux/UNIX

spl.properties.service.template spl.properties.exit.include At end of file (common

spl.properties
entries)

 spl.properties.service.exit.include At end of file for EJB

spl.properties

entries.

 spl.properties.service.timeouts.exit.inc

lude

User exit for service

timeouts.

spl.properties.template spl.properties.exit.include At end of file (common

spl.properties
entries)

 spl.properties.root.exit.include At end of file for Web

Application based

86 - Batch Server Administration Guide

Template File User Exit Include file Position and Usage

spl.properties

entries.

 spl.properties.timeouts.root.exit.includ

e

User exit for global

timeouts

spl.properties.standalone.templa

te

spl.properties.exit.include At end of file (common

spl.properties
entries)

 spl.properties.standalone.exit.include At end of file for Batch

Application based

spl.properties

entries.

 spl.properties.timeouts.standalone.exit.

include

Future use

submitbatch.properties.template submitbatch.properties.exit.include User exit for

submitbatch.properties

submitjob.sh.template submitjob.sh.setvars.include User exit for worker

submitter at start of

submitjob utility

 submitjob.sh.exit_1.include User exit for setting

variables prior to

execution within

submitjob utility

submitjob.cmd.template submitjob.cmd.setvars.include User exit for worker

submitter at start of

submitjob utility

(Windows).

 submitjob.cmd.exit_1.include User exit for setting

variables prior to

execution within

submitjob utility

(Windows).

submitbatchlog4j.properties.temp

late

submitbatchlog4j.properties.exit.include User exit for

submitbatchlog4j.prop

erties file

threadpoolworker.properties.temp

late

threadpoolworker.properties.exit.include User exit for

threadpoolworker.prop

erties file.

threadpoolworker.sh.template threadpoolworker.sh.exit_1.include User exit to set custom

threadpoolworker

utility settings.

 threadpoolworker.sh.setvars.include User exit to set variables

at start of

threadpoolworker

87 - Batch Server Administration Guide

Template File User Exit Include file Position and Usage

utility.

threadpoolworker.sh.template threadpoolworker.cmd.exit_1.include User exit to set custom

threadpoolworker

utility settings

(Windows).

 threadpoolworker.cmd.setvars.include User exit to set variables

at start of

threadpoolworker

utility (Windows).

To use these user exits create the user exit include file with the prefix "cm_" in the

$SPLEBASE/templates (or %SPLEBASE%\templates) directory. To reflect the user exits

in the configuration files you must execute the initialSetup utility. Refer to the Custom

JMS Configuration section for an example of this process.

Properties File User Exits

The product behavior is controlled at a technical level by the values in the properties files.

Whilst most of the settings are defaulted to their correct settings in the file, additional

parameters may be added to the properties files to add new behavior. User exits are used to

set these additional parameters in the properties files.

From the table above there are more than one user exit available in each properties file

template to use. This is designed to maximize the reusability of configuration settings. There

are a number of specialized user exits that may need to be used:

 Common Settings3 – The configuration files used by each channel of execution

(online, Web Services and batch) has a common user exit. This user exit is used to

house all the setting you want to implement regardless of the channel used. For

example the common setting user exits are:

Configuration File User Exits for common settings

hibernate.properties hibernate.properties.exit.include

log4j.properties log4j.properties.exit.include

spl.properties spl.properties.exit.include

 Batch specific Settings – To implement custom settings for batch there is a separate

user exit to hold those parameters for those channels. The specific user exits are:

Configuration File User Exits for common settings

hibernate.properties hibernate.properties.batch.exit.include

log4j.properties log4j.properties.standalone.exit.include

spl.properties spl.properties.standalone.exit.include

3 These settings are shared across all channels. Batch specific settings should be set in the Batch

Specific user exits.

88 - Batch Server Administration Guide

Specifying custom log file names

By default the submitjob and threadpoolworker utilities will create logs in a specific

location. For example:

User Exit Platform Default Location and Name

submitjob.sh Linux/Unix $SPLOUTPUT/submitjob.{batchCode}.{sysDateTime}.log

submitjob.cmd Windows %SPLOUTPUT%\submitjob.{batchCode}.{sysDateTime}.log

threadpoolworker.cmd Windows %SPLOUTPUT%\threadpoolworker.{sysDateTime}.log

threadpoolworker.sh Linux/Unix $SPLOUTPUT/threadpoolworker.{sysDateTime}.{pid}.log

Where:

{batchCode} Batch Control used for job

{sysDateTime} System Date and Time in YYYYMMDDHHmmSSSSS format

{pid} Process Id

If your implementation wishes to implement custom log file names then this may be

achieved using user exits which allow custom setting of the file name pattern. In the utilities

an environment variable is set to the name and location of the log file. The user exit may be

used to set this environment variable to an alternative. The user exit contains the script code

fragment used to set the log file environment file name.

The table below lists the user exit, environment variable name and the platform:

User Exit Platform User Exit Name Environment Variable

submitjob.sh Linux/Unix submitjob.sh.setvars.include SBJLOGID

submitjob.cmd Windows submitjob.cmd.setvars.include SBJLOGID

threadpoolworker.cmd Windows threadpoolworker.cmd.setvars.include TPWLOGID

threadpoolworker.sh Linux/Unix threadpoolworker.sh.setvars.include TPWLOGID

Additionally internal session variables are available for use in the user exits:

Variable submitjob
4
 threadpoolworker Comments

RUNOPTS Runtime Options

batchCode Batch Code

sysDateTime Run Date and Time

Note: Other environment variables in the session can be used and determined in the user exit script

code.

Note: When setting the log file name the location and file name MUST be valid for the security and

operating system used for the product. The directory should be writable by the OS user used to execute

the job.

4 These are set for the Java runtime.

89 - Batch Server Administration Guide

Turning off L2 Cache

Note: This facility should only be used where background processes specifically require it. Turning off

the cache in other circumstances will adversely affect performance.

By default, the threadpools use a batch cache to load common configuration data to avoid

excessive calls to the database. In some cases it is desirable to disable the caching for a

particular threadpool. To disable the cache on startup of the threadpool use the following

command:

threadpoolworker[.sh] –l2 OFF –p <threadpoolname>

where <threadpoolname> is the name of the threadpool to start with the caching disabled.

Once the threadpool is started then all jobs that require caching off can be executed in this

threadpool using the DIST-THD-POOL parameter (for online submission),

com.splwg.batch.submitter.distThreadPool parameter in the job specific

properties file or –p option on the submitjob command.

90 - Batch Server Administration Guide

Batch Configuration Edit Parameters

The Batch Edit utility allows configurations to build and maintain a batch configuration for

your site using a command line utility as opposed to manually manipulating configurations.

This section outlines the various settings available. It is recommended to use the help

facility within Batch Edit for more detailed advice.

Note: The Batch Edit functionality is disabled by default. Attempting to use this facility without

enabling it will result in the error message "ERROR: BatchEdit is not enabled - use

configureEnv to enable". To enable the facility use the configureEnv[.sh] -a utility

and set the "Enable Batch Functionality" to true in Advanced Environment Miscellaneous

Configuration section. The initialSetup[.sh] utility does not need to be executed to apply

this setting.

Note: Customers migrating to this facility should backup their current batch configuration.

Cluster Properties

The Batch Edit facility allows for configuration of the batch cluster using the -c option.

For example:

bedit[.sh] [-t [ss|mc|wka]] -c

or

bedit[.sh] tangasol-coherence-override.xml

The table below lists the available configuration properties and their scope. For more

detailed information it is recommended to use the help <propertyvalue> command

where <propertyvalue> corresponds to the parameter to get more information upon.

To set the values of these parameter use the set <propertyvalue> <value> command

where <propertyvalue> corresponds to the parameter to set.

Note: Remember to use the save command to commit the changes.

Property Scope Usage

address all Unicast/Multi-cast IPv4 address reserved for the cluster.

Typically corresponds to the

COHERENCE_CLUSTER_ADDRESS in the ENVIRON.INI. In

single server and wka mode this is set to 127.0.0.1.

cluster all Cluster name. Typically corresponds to the

COHERENCE_CLUSTER_NAME in the ENVIRON.INI. Cluster

names are typically associated with environment names.

loglevel all Level of logging required for debug purposes. Refer to the

help loglevel command for details of the supported

levels.

mode all Cluster mode to use for the cluster. Typically corresponds to

the COHERENCE_CLUSTER_MODE in the ENVIRON.INI.

port all Port number used by members to listen to. Typically

91 - Batch Server Administration Guide

Property Scope Usage

corresponds to the COHERENCE_CLUSTER_PORT in the

ENVIRON.INI. Port must be unique across machines. In a

single server cluster, the port must be unique to the host.

socket wka Socket or host in the cluster. This defines settings for each

node in the cluster using well known addresses. A socket must

exist for each machine in the cluster. Refer to the help

socket command for more information.

wkaaddress wka The IP address for the individual node in the cluster. Refer to

the help wka command for more information.

wkaport wka The Port number for the individual node in the cluster. This

can be same or different across the cluster. Refer to the help

wka command for more information.

Legend: all - applies to all modes, mc - applies to multi-cast implementations only, wka -

apples to uni-cast implementations only or ss - applies to single server implementations

only.

Threadpool Properties

The Batch Edit facility allows for configuration of the batch threadpools using the -l option.

For example:

bedit[.sh] -l <label>

or

bedit[.sh] -w

or

bedit[.sh] threadpoolworker.properties

The table below lists the available configuration properties. For more detailed information it

is recommended to use the help <propertyvalue> command where <propertyvalue>

corresponds to the parameter to get more information upon.

To set the values of these parameter use the set <propertyvalue> <value> command

where <propertyvalue> corresponds to the parameter to set.

Note: Remember to use the save command to commit the changes.

Property Usage

daemon Whether the online submission daemon is enabled or not. Valid values are

true or false. Used for environments where online submission is used

only.

disthds Defines the maximum number of threads used internally by the Oracle

Coherence cache services. Refer to the help distthds command for

more information.

dkdisabled Used to control deferred key inserts in particular products. Refer to the

product documentation and the help dkidisabled command for more

92 - Batch Server Administration Guide

Property Usage

information.

invocthds Defines the maximum number of threads used internally by the Oracle

Coherence invocation services. Refer to the help invocthds command

for more information.

maxheap Maximum heap size for JVM within each threadpool. Valid values

correspond to the java Xmx option.

maxperm Maximum heap size for JVM within each threadpool. Valid values

correspond to the java XXMaxPermSize option (if supported by the JVM

vendor).

minheap Minimum heap size for JVM within each threadpool. Valid values

correspond to the java Xms option.

pool Section for each threadpool defined within the cluster. A section exists for

each individual threadpool.

poolname Name of threadpool. Names such as default and cache are reserved.

rmiport Port used for JMX configuration for batch monitoring across threadpools.

role Informational name assigned to the threadpools for adding clarity in

monitoring.

storage Enables or disables local partition storage on the cluster. This setting is set

in conjunction with the use or non-use of cache servers. Refer to the help

storage command for more information.

threads Maximum number of concurrent batch threads supported per instance of

the threadpool named by poolname.

SubmitJob Properties

The Batch Edit facility allows for configuration of the batch submitter using the -b option.

For example:

bedit[.sh] -b <batchcode>

or

bedit[.sh] -s

or

bedit[.sh] submitbatch.properties

The table below lists the available configuration properties. For more detailed information it

is recommended to use the help <propertyvalue> command where <propertyvalue>

corresponds to the parameter to get more information upon.

To set the values of these parameter use the set <propertyvalue> <value> command

where <propertyvalue> corresponds to the parameter to set.

Note: Remember to use the save command to commit the changes.

93 - Batch Server Administration Guide

Property Usage

commit The commit interval (in objects) for this batch job

lang The default language code used for this batch job

parm Individual soft parameter name for this job. Valid values are available

from the batch control record for this batch job.

poolname The poolname to be used for this batch job (or the default)

role Default role for the submitter JVM. This is used for monitoring purposes.

This defaults to the batch job code {batchcode}.

soft Soft parameters section. One section per individual parameter.

storage Enables or disables local partition storage for this job. This setting is set in

conjunction with the use or non-use of cache servers. Refer to the help

storage command for more information.

threads Maximum Number of threads for this batch job

user The product user to use for authorization purposes for this batch job

value Value of the soft parameter designated by parm.

