Oracle® Agile Product Lifecycle Management for Process
Custom Section Denormalization Guide

Feature Pack 4.0
E61832-01

April 2015

ORACLE

Copyrights and Trademarks

Agile Product Lifecycle Management for Process
Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Contents
P REF A CE et e e e e e e et e e e e e e e e eaa e aaae 6
7 0L [=] o Tl T PPV PTOUSRRON 6
Variability Of INStAllatioNS ...cccoo e e e e e e e e et e e e e e e e e anaraaaeaaaeas 6
Documentation ACCESSIDIlItY......cocc i e e e e e a e e e e s 6
F Yool T ol O =Tl LI U o] o Yo o AP UPUPRS 6
Yo NN TSl V=T F=1 o111 SRS 6
CHAPTER 1—0OVERVIEW ...ttt e ettt e e e e eenaanes 7
CHAPTER 2—DENORMALIZATION PROCESS ...t 8
1. CS Denorm CoNfIGUIAtioNcccccuiiiiiiiiiie ettt e e e e e et ae e e e st e e e e abeee e e sabree e e aneeeeennnens 8
2. TAbIE CrEAtION ettt sttt b e s bt e s ae e ettt eneenre e 8
3. Data Denormalizationc.coceeieiiieiieeeeeeree e s st n e nnees 8
Near Real-Time Denormalization (New in 6.1.1 with Extensibility Pack 3.0)c.cccccvevveerceeecieeniees 9
BatCh DenormMalizatioN........coiiuiiiiiieeiee ettt ettt e et e st e s eate e sbe e s bee e s areeseneeesareeeas 9
CHAPTER 3—CUSTOM SECTION TABLE DENORMALIZATION APPROACHES................ 11
1. Direct-Map Approach: Custom Sections Map Directly to a Tablecccccevveieeiivcieee e 11
Limitation: Extended Attribute Data Types Must Match for All Rows in a Columnccccevveeennee. 12
2. Pivot Approach: Custom Sections Pivot onto Table.........cooociiiiiiiiiie i 13
Limitation: Extended Attribute Data Types Must Match for All Columns in @ ROWcccccevveeenneee. 14
Limitation: Repeatable Rows Cannot be Included for Denormalization for a Pivot Approach 15
CHAPTER 4—BASE DATA TYPES ... ettt 16
EXteNded AttriDULE Base TYPES. . uuiiiiiiiiie ettt crie e e srtee e st e e e et e e e sate e e s s sate e e s sbtaeeesbteeeesstaeessseeeesnnsens 16
TEXE BASEA VAlUES ..ottt sttt ettt e s e e st e it e s bt e e bt e e s abeesbbeesabeesabeeesabeesneeenaneas 16
Numeric Data and Base Unit of MEasure ValUes..........ccouieieeriiieniieiiee ittt et 17
Qualitative LOOKUP LIMItation.......cccueieieiiiie ettt e et e et e e et e e e et e e e e entaeeeennsaeeeennnanans 18
eQuestionNaire LIMItationc.eeiiiiiiiii e s 18
CHAPTER 5—APPLICATION SUPPORT FOR DENORMALIZATIONcooiiiiiiiiiiiieceeie 19
(00T o] 1= {U T 1 4 o NPT 19
Custom Section Data AdMIN SCrEENS.........uiiiiii i st sme e sre e eee 19
Validate BUTLON ..ottt st st st st e r e s s et er e r e nne e 23
(2 0e) VYA [o M @o] (U0 Yo T 2T o 10T« RSP SP 23

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Changes to Denormalization Metadata.......cceeeeciiiiiiie et e e e e e re e e e e e e e eanes 26
SECUNIEY ROIBS .ttt e e e e e et et e e e e e e et aaeeeeee e s e asbbaaeeeeeesanssssasaeeesesanssssneeaassnannnns 26
LI POTT/EXPOIT 1ecuveeteeitee ettt ettt et e et et et e eteeeteeeabeebeebeenbeestsessseeaseeabeenseeseesteesasesaseenbeenteessenssenanas 26
(00T o} =0T LA (oY N =] 1 oY= RSP 27
CHAPTER G—INSTALLATION ...ttt e et e et e e e e e eeneee 28
Ta I = 1T Y= a LI Yol T o SRR 28
Enabling Custom Section Denorm in the Application........cccceeecieii i e 28
USEBI ACCESS ittt e e e s r e e e e st r e e e s s et e e e e e e s a e e e e e s s s e ntne 28
o AU N o] o A T=d Ul d o] o PR TR 29
Near Real Time Denorm configuration and installationcccccieeieiiiii e, 29
CHAPTER 7—EXECUTION ...ttt ettt ettt e e e e e e eeattb e e e e aaaeennne 32
o C=Tol UL A To] Y] o1 £ PP PPPPPPPPPPPRt 32
Table Creation Script (DENORM_GEN_DDL)...ccccuiiieiiiiiieeciieeeeciteee et e setve e e seaveeessaaeeesenaeeeeennaee s 32
Data Denormalization Script (DENORM_PROC_MAPPING)......cccciiuiieeeiiieeecciieeeesriee e ecee e eveee e 35
IMIONTTOTING STATUS oottt ettt e et e e s st bt e e e e e e s s s asbbeeeeeeessansstbbaaeeessnsansssneaes 39
Near Real TimMe DENOIMM STATUSuiiiiieriiie ettt ettt ettt st et e et e e sbe e e sabeesabeeesnteesareeenneeas 39

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle
Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

= Which applications your organization has purchased and installed

= Configuration settings that may turn features off or on

= Customization specific to your organization

= Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

© 2015 Oracle Corporation

http://edelivery.oracle.com/

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 1—Overview

Custom Section Denormalization (CS Denorm) is a feature that provides the ability to convert the
internal data storage of a Custom Section into data structures that are easier to understand and report
against while providing improved query performance.

The CS Denorm process allows clients to select which Custom Sections (and which rows and columns) to
denormalize and indicate how the target database tables should be set up. The CS Denorm process then
reads this information, pulls the relevant Custom Section data from specifications (or other business
objects), and populates that data into a single, simplified database table created solely for that Custom
Section.

This approach provides customers with the following benefits:

= |mprove Performance: the denormalized data will be accessible via far fewer joins.
a. Without Denormalization, querying for Custom Section data can involve over 20
database tables just for the Custom Section data.
b. Using CS Denorm, simply querying the single new table provides most of that same data
needed.
= Lower Cost & Improve Delivery Time: Since the denormalized data for a Custom Section is
stored in a single table, the SQL needed is very easy to write. This will improve the time it takes
to access the data and make the solution easier to maintain.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 2—Denormalization Process
There are three main steps to the CS Denorm solution: Configuration, Table Creation, and

Denormalization.

1. CS Denorm Configuration

The Data Administration user interface for Custom Sections allows users to specify if the Custom Section
should be denormalized, which rows and columns should be included, the Denormalization approach,
and other details. See Application Support for more details.

| De-normakization Process
Denorm Hod

De-normalization Status: De-n

B | Custom Section

CS Denorm Meta Tables

 Rowi TMC -Qualtatve - (3 | Numeric-BrixUOM (3 RMBoolean - B ARere
stinct Range

Data Admin User

» Row2 ve0rc13Lookap B |Numerc-NoUOM (B v6OrcSBookesn- (B AfterPxp
“ Defaut Faise

2. Table Creation

A database script reads the configuration data specified in the Data Admin screens and dynamically
generates SQL code to create a single database table for each Custom Section flagged for
denormalization. This is a manual process in which a database administrator runs the stored procedure
and saves the result output as a script to generate the new Custom Section tables.

SQL script

]
]
New Denorm
Custom Section Tables

DBA SQL script

3. Data Denormalization
The Denormalization process runs on a regular basis to pull the custom section data from GSM
Specifications, Sourcing Approvals, etc, and populates that data into the tables created for

denormalization.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Denorm Custom Section
meta tables data tables

NV

Denorm CS
D B

1 - The data from the denormalization metadata tables is combined with the various Custom Section and Extended Attribute
tables in PLMA4P and is then pushed into the single table created for the given Custom Section

Near Real-Time Denormalization (New in 6.1.1 with Extensibility Pack 3.0)

When a business object (such as a GSM specification) is saved, the Near Real-Time Denormalization
(NRTD) process will determine if any of the custom sections flagged for denormalization on that item
have been added, deleted, or modified. If so, a custom section denormalization request is added to a
queue, which is then processed by a service on the Remoting Container application. This service will
trigger denormalization for each request in the queue, which processes only the relevant custom
sections on that specific business object. Since the denormalization is only occurring for small sets of
data, the NRTD Service can run on an ongoing basis, keeping the denormalized data very closely in synch
with the live data.

The frequency of the NRTD Service can be configured, along with options for logging, email notifications
if any errors occur, and more.

Batch Denormalization

Prior to the Near Real Time Denormalization, denormalization was processed in a scheduled batch
manner; all denormalized custom sections for all business objects that have been updated since the last
batch denormalization were processed together. While this process should no longer be required if using
NRTD, there may be one-off instances where clients still wish to use this. As such, it is still available for
use.

A stored procedure (DENORM_PROC_MAPPING) is available that processes each custom section
set up for denormalization and pushes the relevant data from any objects that have been
modified since the last run into the target tables. At times, this may redenormalize custom
section data that has not changed, since the only way this process knows if a custom section has
been possibly updated is if the specification (or other owning object) has been updated/saved,
since the last denorm run. Log entries may optionally be written to a database table to record
the execution results of each batch denormalization run.

Running the scheduled batch denormalization may be required if custom section data has
already been added to items before the denormalization was set up. Therefore, this process can

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

be triggered to immediately execute upon completion of the Table Generation process, by setting
the table generation stored procedure’s @RUN_DENORM_IMMEDIATELY parameter to 1.

Additional Details can be found in the Data Denormalization Scripts section below

© 2015 Oracle Corporation

10

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 3—Custom Section Table Denormalization Approaches

When designing each custom section and configuring it for denormalization, users must determine how
the denormalized table should be created. This decision may ultimately affect the way the custom
section is set up. There are two different ways that a custom section can be denormalized: Direct-map
and Pivot.

1. Direct-Map Approach: Custom Sections Map Directly to a Table

This approach converts a given custom section into a table structure that mimics the view of a custom
section in the Ul of the application, where columns in the Ul correspond to columns in the table, and
row data in the Ul correspond to entries in the table.

Assuming the following custom section template #10001:

Columni Column2 Column3
Row1l Numeric EA+UOM Range EA+NoUOM Text EA
Row?2 Numeric EA+UOM Range EA+NoUOM Text EA

And assuming it appears on a specification (PKID: 1004-32-232ef) like so:

Columnil Column2 Column3

Row1l 5g Min: 2.5 Hello
Target: 5

Max: 7.5

Row2 10g Min: 25 World
Target: 50

Max: 75

A table named DENORM_CS 10001 will be created with the following structure:

Column Position Type Nullable?
fkOwner 1 CHAR (40) NO
ROW_NAME 2 VARCHAR(500) NO
Column1 3 FLOAT YES

© 2015 Oracle Corporation

11

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Column Position Type Nullable?
Columnl_UOM 4 VARCHAR(32) YES
Column2_Min 5 FLOAT YES
Column2_Target 6 FLOAT YES
Column2_Max 7 FLOAT YES
Column3 8 varchar(500) YES

The custom section appearing on the specification will be represented by the following two lines in the
newly created denorm table:

fkOwner ROW_NAME Columnil Columnil_ Column2_ Column2_ Column2_ Column3
uom Min Target Max
1004-32- Row1l 5 g 2.5 5 7.5 Hello
232ef...
1004-32- Row2 10 g 25 50 75 World
232ef...

Note that the name of the rows and columns for the denormalized table can be configured in the Data
Admin Ul.

Limitation: Extended Attribute Data Types Must Match for All Rows in a Column

Custom sections allow customers to setup a different extended attribute (EA) types in each cell. This
means a column could have different data types as you go further down in the column. A custom section
that contains different EA type base data types in the same column cannot be de-normalized using this
approach as the resulting table would have a column of unknown type.

Given the following custom section #1002:

Columni
Rowl Numeric
EA+NoUOM
Row?2 Text EA

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

A table named DENORM_CS_10002 cannot be created as the data type of Column1 is unknown:

Column Position Type Nullable?
fkOwner 1 CHAR (40) NO
ROW_NAME 2 NVARCHAR(500) | NO
Columnl 3 NVARCHAR(max) | YES

OR FLOAT

NOTE: Some different extended attributes types have the same base data type; for instance, a Text and
a Qualitative extended attribute both have a base type of String, and therefore can be denormalized
together. See Base Data Types section below. The Data Admin user interface will inform users when
there are data type conflicts.

2. Pivot Approach: Custom Sections Pivot onto Table
This approach “pivots” a given custom section into a table structure where each row turns into a column
and each column is represented by a row.

Assuming the following custom section template #10003:

Columni Column2 Column3

Rowl Text EA Text EA Text EA

Row2 Numeric EA+UOM Numeric EA+UOM Numeric EA+UOM

And assuming it appears on a specification (PKID: 1004-32-232ee) like so:

Columnl Column2 Column3

Rowl Hi Hello Hiyas

Row2 10g 15mg 20 kg

A table named DENORM_CS_10003 will be created with the following structure:

Column Position Type Nullable?
fkOwner 1 CHAR (40) NO
COLUMN_NAME | 2 NVARCHAR(500) | NO

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Column Position Type Nullable?
Row1l 3 NVARCHAR(max) | YES
Row2 4 FLOAT YES
Row2_UOM 5 VARCHAR(32) YES

The data on the custom section will be represented thus:

fkOwner COLUMN_NAME | Rowl | Row2 | Row2_UOM
1004-32-232ee Columnil Hi 10 g
1004-32-232ee Column2 Hello 15 mg
1004-32-232ee Column3 Hiyas 20 kg

Limitation: Extended Attribute Data Types Must Match for All Columns in a Row
A custom section that contains different EA types in the same row cannot be de-normalized using this
approach as the resulting table would have a column of unknown type.

Given the following custom section #1002:

Columnl Column2

Rowl Numeric EA+NoUOM Text EA

A table named DENORM_CS_10002 cannot be created as the data type of Row1 is unknown:

Column Position Type Nullable?
fkOwner 1 CHAR (40) NO
COLUMN_NAME | 2 NVARCHAR(500) | NO
Row1l 3 NVARCHAR(max) | YES

OR FLOAT?

NOTE: Some different extended attributes types have the same base data type; for instance, a Text and
a Qualitative extended attribute both have a base type of String, and therefore can be denormalized
together. The Data Admin user interface will inform users when there are data type conflicts.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Limitation: Repeatable Rows Cannot be Included for Denormalization for a Pivot

Approach
A custom section that contains repeatable rows cannot be de-normalized using the pivot approach.

When pivoting, a row turns into a column in the created database table; since all columns must be
defined to generate the CREATE TABLE syntax, repeatable rows would break that schema.

© 2015 Oracle Corporation

15

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 4—Base Data Types
This section describes how the custom section data is denormalized for different extended attribute
types and values

Extended Attribute Base Types
The following extended attribute types are considered to have the same base data type and therefore
can exist in the same denormalized column:

TEXT NUMERIC BOOLEAN
Free Text Numeric Boolean
Qualitative Calculated Numeric Calculated Boolean

Qualitative Lookup

Calculated Text

Long Free Text

Multi-lingual Free Text

Long Multi-lingual Free Text

All other extended attribute types are considered to have a unique base data type and therefore cannot
be combined in the same denormalization column.

Text Based Values

Text, Calculated Text, Long Free Text, Multi-lingual Free Text, Long Multi-lingual Free Text, Qualitative,
and Qualitative Lookup extended attributes are denormalized using the English only values. Multi-select
values are listed as one record, in comma delimited format.

© 2015 Oracle Corporation

16

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Numeric Data and Base Unit of Measure Values
When executing the CS Denorm process, there is an option to include a conversion to the base Unit of
Measure for an extended attribute. When adding numeric data for a custom section in the user

interface, users may choose different UOM values.

Given the following example in the Ul:

Columnil
Rowl 05g
Row2 1000 mg

There are two ways of denormalizing the data:

1) Excluding base UOM values — this would result in a table similar to the Ul, in which the UOM
column would keep the Ul values:
Columnl | Columnl_UOM
Rowl | 05 g
Row2 | 1000 mg
2) Including the base UOM values — this would result in a table like above, but also adds columns
for Base UOM support:
Columnl | Columnl_UOM | Columnl_BASE | Columnl_UOM_BASE
Row1l | 0.5 g .5 g
Row2 | 1000 mg 1 g

Likewise, Quantitative Range and Quantitative Tolerance extended attributes also can include Base
UOM information for their Min, Max, and Target values.

See the Execution section for details.

© 2015 Oracle Corporation

17

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Qualitative Lookup Limitation

When configuring a Qualitative Lookup in Data Admin, an internal PLM4P category, such as Allergens,
can be selected. However, the Custom Section Denorm process currently only supports denormalization
of the following internal lookup categories:

= Countries
= Additives
= Allergens
= |ntolerances
Alternatively, external lookup categories, as available via custom lookups are fully supported.

eQuestionnaire Limitation

The CS Denorm process does not include custom section data from questionnaires in EQ. Once a
guestionnaire is imported into a GSM specification, however, the custom section data from the
specification does get included.

© 2015 Oracle Corporation

18

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 5—Application Support for Denormalization

Configuration
Use the following Feature Configuration entry to enable the CS Denorm features:

Portal.DataAdmin.CustomSection.De-normalizationProcess.Enabled

Setting this configuration entry value to true will display the new denormalization sections in Data
Admin. At least one row and one column will need to be marked for denormalization in the custom
section.

The following feature configuration is used to enable the Near Real Time Denormalization process:
Common.CustomData.NearRealTimeDenormRequest.CustomSections.Enabled

Setting this configuration value to true will begin generating denormalization requests when objects
with denormalized customs sections are updated.

Custom Section Data Admin Screens

The Data Administration of custom sections allows users to specify which custom sections they want
denormalized, which rows and columns should be included, the denormalization approach, and the
names of the database table, columns, and row values that will be used when the tables are created.

A section titled “De-normalization Process” is visible in the custom section data administration screens if
the feature configuration is enabled.

~| De-normalization Process
Denorm Model: Eyample €S Denorm + | Add Mew |

Section Alias: gy nnle £S5 Denorm

Include In De-normalization: [

De-normalization TYP€: pirectMap * Show/Hide Data Types
De-normalization Status: Wil Be Induded in the Denorm Process When Activated (0)

Denorm Model

A Denorm Model represents how the custom section should be denormalized. Multiple denorm models
can be defined, with each model resulting in a different database table, with different columns and rows
selected for denormalization. The drop down field allows you to switch between the defined denorm
models, if any. Denorm models are named by the Section Alias field below.

Once a valid denorm model has been created and validated, additional denorm models can be created
by clicking the Add New button. Clicking Add New will create a new denorm model, clearing the rest of
the fields from the form so that the new table details can be specified.

© 2015 Oracle Corporation

19

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Section Alias

This field determines the table name that will be used for the denormalized custom section table. The
value must be unique across all custom sections, and must be no longer than a configurable number of
characters (default is 30). The configuration setting, AliasMaxLength, is in the
ExtendedAttributeSectionBuilderService configuration node in the CustomerSettings.config file. See
the Configuration Settings section for details.

Section Alias rules

The section alias value must adhere to database vendor specific rules. For instance, Oracle DB
requires table names to be 30 characters or less, while SQL Server does not have such a
restriction; certain reserved words cannot be used; etc.

Note that while table names for an Oracle database must be 30 characters or fewer, the CS
Denorm process actually creates a version of the table to process the denorm data, which is
named “STG_<table alias>”. Therefore, when using an Oracle database, be sure to restrict the
Section Alias to 26 characters or fewer. This may be done in two ways: (1) Setting the
AliasMaxLength configuration value. However, this would also enforce the alias length
restriction on row and column aliases. (2) Adding a Custom Validation for the length of the

section alias value.

Custom validation using the Validation Framework can be added to enforce any desired
restrictions. See the Validation section.

Users should take care to avoid name collisions with existing PLM4P internal tables. The table
generation stored procedure will indicate if a conflict exists.

Clicking the Section Alias link will copy the custom section name into the field, replace any spaces with
underscores (*_’) and trim the name to the configurable max length.

Include In De-normalization
This checkbox marks a custom section to be included in the denormalization process, once the custom
section is made Active.

Un-checking an already denormalized Custom Section

If a custom section has already been denormalized, and this checkbox is unchecked, then the
generated denormalized custom section table will no longer be included in the Data
Denormalization process. Additionally, the next time the Table Creation process is performed
this denormalized custom section table will be deleted from the database.

© 2015 Oracle Corporation

20

Agile Product Lifecycle Management for Process — Custom Section Denormalization

De-normalization Type

Selects the type of denormalization used for this custom section:

Direct Map — The custom section is created as a table structure that mimics the view of a
custom section in the Ul of the application, where columns in the Ul are mapped as columns in
the database table. Using this approach requires that the base extended attribute data types
must match for all rows (marked for denorm) in a column (marked for denorm). For examples,
you cannot have a Numeric extended attribute in column 1, row 1, and a Date extended
attribute in column 1, row 2. In this scenario, the pivot de-normalization type may be used. See
the Custom Section Denormalization Approaches section for details.

Pivot — This approach "pivots" a given custom section into a table structure where each row
turns into a column and each column is represented by a row. Repeatable rows cannot be de-
normalized using the pivot approach. Using this approach requires that the base extended
attribute data types must match for all columns (marked for denorm) in a row (marked for
denorm). See the Custom Section Denormalization Approaches section for details. Note that this

option can be removed altogether or restricted to users in certain groups, by modifying the
configuration settings for the ExtendedAttributeSectionBuilderService configuration node in
the CustomerSettings.config file. See the Configuration Settings section for details.

None — Prevents this section from ever being denormalized. Once a section has been marked
with a denormalization approach of None, it cannot be changed. Note that this option is turned
off by default, but can be enabled for all users or restricted to users in certain groups, by
modifying the configuration settings for the ExtendedAttributeSectionBuilderService
configuration node in the CustomerSettings.config file. See the Configuration Settings section

for details.

To see the base data types of the custom section cells, click the Show/Hide Data Types link. This will
change the custom section grid to display a color-coded base data type for each cell, to help plan the

denormalization approach. Clicking the link again will restore the original view.

~| Custom Section

qe 9F Columni 9F Column2 9F Column3 9F Column 4 &~
+” Rowl [Text] & | [Mumeric] @ | [Boolean] &
2”7 Row2 [Text]) meric] @ | [Boolean] & | [Quantitative Tolerance]
2* Row3 [Text] 3 meric] 3 [Boolean] 3

De-normalization Status

This read-only field displays the custom section’s current denormalization process status. The numeric

value in the parenthesis corresponds to the metadata table DENORM_CS_TABLE status value for

reference purposes.

© 2015 Oracle Corporation

21

Agile Product Lifecycle Management for Process — Custom Section Denormalization

The User Interface uses the Include in De-normalization checkbox and the custom section’s status to
workflow the denormalization status. That is, the denormalization status depends on the custom section
status, as follows:

Denorm Custom Section . Denorm Status
Checkbox Status

status

Unchecked any status -1: Not for Denormalization ~ The Custom Section will not be
denormalized

Checked New 0: Not ready for Denorm meta data (alias, etc) is
denormalization stored, but the Custom Section is
ignored by the denorm scripts.
Once the Custom Section is made
Active, this status is promoted to a

1.
Checked Active, Archived, 1: Ready for Table A Denormalized table can now be
Inactive generation created for the Custom Section.

Once the table generation scripts
are executed, the status is moved
to 2: Ready for denormalization

Checked Active, Archived, 2: Ready for Custom Sections in this status will
Inactive denormalization now be picked up in the Data
Denormalization process

Denormalization Icons

Custom Section cells that are selected for de-normalization (for the given Denorm Model) will display
one of two new icons:

e The “Include in De-normalization” icon @ will be displayed if both the column and row for that
cell are marked as Include In Denorm, but their statuses are not Ready For Denormalization
(meaning those columns and rows have not been created in the new denorm table.)

e The “Denormalized” icon & will display when both the column and row have been created in
the denormalized table.

© 2015 Oracle Corporation T

Agile Product Lifecycle Management for Process — Custom Section Denormalization

~ | Custom Section

C' %F Column1 %F Column2 %F Column3
" Row1 TMC - Qualitative - [| Mumeric - Brix UOM [R!"«"I E-:u:ule_an - &
M5 Checkboxes Distinct [vedrc27
2" Row2 wa0rc13 Lookup & r_\!umeric -_Nn:n LIOM @& | ve0rc25Boolean - |3
.?.Ilergens AB [Mumeric_No_LWOM] I;lefault F._alse_

13 LoDKup | DeCeDibEEN TRISE

&llergens

" Row3 Free Text -Multiple (3 | Mumeric - Mass 3 | TestBoolean [T_E] [

Lime [fres text multi] [numeric_mass]

A legend at the bottom of the grid describes the icons to the user.
Note: The Extended Attribute’s Attribute ID value will be displayed in brackets after the EA name.

Clicking a cell with an extended attribute will launch a read-only popup displaying the extended
attribute information.

Validate Button

The Validate button performs validation of the custom section data and validation of the
denormalization data. This allows users to check the setup of their custom sections prior to saving.
Warning messages appear in the Warnings grid at the top of the page.

The Validate button also calls to the Validation Framework to see if there are any additional custom
validation rules to evaluate. Customers can add their own validation rules for custom sections and for
the custom section denorm information.

= Validation for custom section data uses rule of type “1020”, and is available for save and
validate events in the ValidationSettings.xml file.

= Validation for custom section denorm data uses rule of type “denorm1020”, and is available
for save and validate events in the ValidationSettings.xml file.

= See the Validation Training documentation for more details.

IMPORTANT:
Once a custom section has been denormalized, all changes to it are locked down. See the
Security Roles section for details.

Row and Column Popup
A section titled “De-normalization Process” is included in the Row and Column Header Information data
admin screens.

© 2015 Oracle Corporation

23

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Row Header Information Done || Cancel
~ | Summary
Name: poy 3
ID: 3

Status: Active -

Tags: 0_."

¥| Add this item when section is created

Create copies of this row

| De-normalization Process
Selected Denorm Modek RM_Denorm_Updated
Include In De-normalization: [

De-normalization Alias: Row 3 =

The Row and Column Popups include the following fields.

Denorm Model

Indicates the current Denorm Model that the column/row denormalization information is meant for.

Include In De-normalization

This checkbox marks the Row or Column to be included in the denormalization process, once the
Custom Section is made Active.

Un-checking an Already Denormalized Row or Column

If a custom section has already been denormalized, and this checkbox is unchecked, then this
row or column will no longer be included in the data denormalization process. The custom
section’s denormalization status is also workflowed back to Ready for Table Creation so that the
next time the table generation process executes, the denormalized table will be recreated
without this row or column.

De- normalization Alias

When the denormalization approach is Direct Map, the De-normalization alias for the Column pop is
restricted and must be no longer than a configurable number of characters (default is 30). When the
denormalization approach is Pivot, the De-normalization alias for the Row pop (which will get pivotted
to a database column) is restricted in the same way. The configuration setting, AliasMaxLength, is in the
ExtendedAttributeSectionBuilderService configuration node in the CustomerSettings.config file. See
the Configuration Settings section for details.

Row and Column Alias Rules

Note that while column names for an Oracle database must be 30 characters or fewer, the CS
Denorm process actually can create additional columns for a given extended attribute type. For

© 2015 Oracle Corporation

24

Agile Product Lifecycle Management for Process — Custom Section Denormalization

instance, a numeric extended attribute that has a UOM will have an additional UOM column
added to the resulting table. The name of the column is the denorm alias name followed by one
of the following, depending on the EA Type:

<alias>_UOM — for Unit of Measure
<alias> TGT — Target

<alias>_MIN — Min

<alias>_MAX — Max

<alias>_TOL — Tolerance

When choosing to denormalized and include BaseUOM values, the denorm alias becomes even
longer:

<alias>_UOM_BASE — for Unit of Measure
<alias>_TGT_BASE — Target
<alias>_MIN_BASE — Min
<alias>_MAX_BASE — Max

Therefore, when using an Oracle database, be sure to restrict the Column or Row Alias to 26
characters or fewer, or 21 characters or fewer, if including BaseUOM values. This may be done
in two ways: (1) Setting the AliasMaxLength configuration value. However, this would also
enforce the alias length restriction on section, and row/column aliases, so this may be too
restrictive. (2) Adding a Custom Validation for the length of the row/column alias value.

Custom validation using the Validation Framework can be added to enforce any desired

restrictions. See the Validation section.

Clicking the De-normalization Alias link will copy the row or column name into the field. When the
denormalization approach is Direct Map, the copied column name will replace any spaces with
underscores (*_’) and trim the name to the configurable max length. When the denormalization
approach is Pivot, the copied Row name will replace any spaces with underscores (‘_’) and trim the
name to the configurable max length.

Pivot

Note that when using the Pivot denormalization approach, the name of the row will become the column
name used in the denormalized table, and vice versa.

© 2015 Oracle Corporation

25

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Changes to Denormalization Metadata

Once a custom section has had its denormalized table created and is in a status of Ready for
Denormalization, changes to it are locked down (See Security Roles below). If changes to the
denormalization configuration are made, the status of the custom section denormalization will be
reverted, and that custom section will stop being included in the denormalization process.

Changes to any of the following fields will revert the denormalization status:

= Section alias

= Row Alias

= Column Alias

= Denormalization Approach

= Unchecking the Include in Denorm checkbox

= Adding a new row or column for denormalization

Security Roles

Two new security roles have been added to support the custom section denormalization feature:

1. The user must have the role of [Custom_Section_Denorm_Enabler] to edit the custom
section’s “Include in De-normalization” checkbox.

2. Once a section has been activated (status of active, inactive, archived) and is flagged as Include
in De-normalization a user needs the role of [Denormalized_Custom_Section_Editor] to
make any edits to the custom section. If the user doesn’t have this role they will not see the
Edit action button. Instead they see the following information panel message. “This section
has been marked for inclusion in the de-normalization process. You do not have the proper
privileges to edit this Custom Section.”

Import/Export

The import and export process for custom section data includes any CS Denorm information configured.

When importing CS Denorm data, the Denorm status may be automatically adjusted for the Target
environment.

For example, if the Denorm status of a custom section is “Ready for denormalization (2)” in the
Source environment, it means that the denormalized table has been generated and the custom
section’s denormalized table is ready for denormalization data. In the Target environment,
however, this may not be the case (e.g., the Custom Section didn’t exist there, or is different
from the Source environment, and therefore the denormalized table hasn’t been created, etc.).

Therefore, the import process may revert the Denorm Status value back from Ready for
denormalization (2) to Ready for Table generation (1), and add a notification for that custom section to
the email message generated on import.

© 2015 Oracle Corporation

26

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Configuration Settings

Configuring de-normalization types is controlled in the CustomerSettings.config file, using the
ExtendedAttributeSectionBuilderService settings. Permission for each de-normalization approach type
can be set using the following options:
= All - All users have access to the de-normalization type
= None - No users have access to the de-normalization type
= A UGM Group PKID list, separated by a pipe character (‘|’) — only users in the specified group(s)
have access to the de-normalization type. For example:

<envvar name="DenormType NONE_Groups" value="20550b7c24le-ff3c-4cf8-b2bc-2a814195833¢|
2055c8000cde-5312-4ef8-910d-f60c4e849874 "/>

will only allow users in the groups identified by these PKIDs to select None.

Additionally, the maximum length for the Denorm aliases (for the section, columns, and rows) can be
declared here using the AliasMaxLength setting.

See the configuration example below.

<ExtendedAttributeSectionBuilderService configChildKey="name">
<envvar name="MaximumNumberOfRowsThroughCopy" value="250"/>
<envvar name="DenormType_PIVOT_Groups" value="All"/>
<envvar name="DenormType_NONE_Groups" value="None"/>
<envvar name="AliasMaxLength" value="30"/>

</ExtendedAttributeSectionBuilderService>

Note that the denormalization approach of Direct Map is always on, and therefore cannot be
configured.

Changes to the CustomerSettings.config file require an IIS reset.

© 2015 Oracle Corporation

27

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 6—Installation
Several database scripts are provided as part of the Feature Pack release. All of these scripts must be
executed in order to add the various stored procedures and functions to the database.

Installing the scripts

Locate the Scripts directory in the release package. There are two different folders: Oracle and
SqlServer. Open the folder that corresponds to the database provider you are using, then open the
Denormalization folder, and the CustomSectionMapping folder within.

=l I} Scripts
=l) Orade
=l |) Denormalization
=l [CustomSectionMapping
I3 1-D0L
I3 2 - UTILS
I 3 - DIRECTMAP
3 4-PIvOTMAP
I3 5 - EXECUTION
|Z) ExtendedData
=l I Sglserver
=l |2 Denormalization
=l [CustomSectionMapping
I3 1-DDL
) 2-uTiLs
I 3 - DIRECTMAP
) 4 - PIVOTMAP
I 5 - EXECUTION
#l) ExtendedData

All of the scripts in the CustomSectionMapping folder must be compiled, in the order of the folder
names.

See the Execution section for details on which scripts must be called to execute the denormalization
process.

Enabling Custom Section Denorm in the Application

User Access
Add the [Custom_Section_Denorm_Enabler] role to the relevant group(s) and assign that group to
the relevant user(s).

© 2015 Oracle Corporation

28

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Feature Configuration

Set the feature configuration setting,
Portal.DataAdmin.CustomSection.De-normalizationProcess.Enabled, to trueinthe
CustomerSettings.config file, in the FeatureConfig node:

<add key="Portal.DataAdmin.CustomSection.De-normalizationProcess.Enabled"” value="true"
configDescription="Enables the configuration of custom section denormalization" />

Changes to the CustomerSettings.config file require an lISReset.

Near Real Time Denorm configuration and installation
The installation instructions for Near Real Time Denorm follow.

1. StopllS.
Stop the Remoting Container.

3. Enable Real Time Denorm by enabling the feature configuration entries:
Add the following entries to the config\Custom\CustomerSettings.config file, in the
FeatureConfig node:

<add key="Common.CustomData.NearRealTimeDenormRequest.CustomSections.Enabled"
value="true" configDescription="Evaluates if denormalized Custom Section data has been
modified since load"/>

4. Add the following entry to the environmentvariables.config file, in the # Port Numbers section,
replacing 8112 with a valid open/unused port:

Prodika.CSDenormService.Port =8112

5. Customize Real Time Denorm process configuration :
The following configuration entries allow for customization of the Real Time Denormalization
process:

<add key="PollingIntervalinSeconds_CustomSectionRequests" value="90" />
The frequency (in seconds) that custom section denorm requests are processed.

<add key="IncludeBaseUOMColumnsIinCSDenorm" value="false" />

If the custom section denorm tables are generated with Base Unit of Measure columns, the
custom section denorm process should be set to include Base UOM columns - change this to
"true".

<add key="ErrorNotifyFromAddress" value="@@VAR:Prodika.From.EmailAddress@@" />
<add key="ErrorNotifyToAddress" value="@@VAR:Prodika.To.EmailAddress@@" />

Errors in Real Time Denorm process will generate an email containing error details, along with
additional useful information. These configuration settings are used to indicate the sender and
the recipient of these emails. The default setting will use the values entered in
environmentvariables.config, but can be modified here to use different values.

© 2015 Oracle Corporation

29

Agile Product Lifecycle Management for Process — Custom Section Denormalization

<add key="MaxLogFilesToKeep_CS" value="30"/>

The Real Time Denorm process will log basic informational messages, as well as error messages,
to a rolling file log in the Denorm_CustomSections directory within the default Logs directory. A
new log file will be generated each day. These configuration settings control the number of daily
log files that will be kept.

To completely disable file logging, set the MaxLogFilesToKeep_CS value to "0" (zero). Note that
errors will still be emailed and an entry in the ProdikaCommon Event Log will also be added.

<add key="DaysForProcessedCSRequestExpiration" value="15"/>
This setting is used to clean up (remove) old, successfully processed denormalization requests
(from denorm_ea_request and denorm_cs_request) after the configured number of days.

Set to zero to never remove the denorm request entries.

OPTIONAL CONFIGURATION:

To change any of the previous settings copy the following XML and add it to the
CustomerSettings.config file, in the CustomerSettings/Core node.

<DenormRequestProcessingServices>
<AppSettings configChildKey="key">
</AppSettings>

</DenormRequestProcessingServices>

Then copy the desired entries from above into the AppSettings node and modify the settings as
needed.

6. Enable Real Time Denorm processing for each object type.

Update the \config\Extensions\CustomPluginExtensions config file to enable Real Time Denorm
processing for each object type, inserting the following entries into the ValidatePlugins node

<Plugin name="NearRealTimeDenormRequestPlugin"
FactoryURL="Class:Xeno.Prodika.DenormServices.DenormChangePluginFactory,DenormServices"/>

<Plugin name="PostSaveSpecPlugin" inheritFromPluginName="NearRealTimeDenormRequestPlugin"
/> <!-- Enable Real Time Denorm Request processing for GSM Specs -->

<Plugin name="PostSavePQMItemPlugin"
inheritFromPluginName="NearRealTimeDenormRequestPlugin" /> <!-- Enable Real Time Denorm
Request processing for PQM Items -->

<Plugin name="PostSaveSCRMPlugin" inheritFromPluginName="NearRealTimeDenormRequestPlugin"
/> <!-- Enable Real Time Denorm Request processing for SCRM items -->

© 2015 Oracle Corporation

30

Agile Product Lifecycle Management for Process — Custom Section Denormalization

<Plugin name="PostSaveNPDProjectPlugin"
inheritFromPluginName="NearRealTimeDenormRequestPlugin" /> <!-- Enable Real Time Denorm
Request processing for NPD Projects -->

<Plugin name="PostSaveSmartIssuePlugin"
inheritFromPluginName="NearRealTimeDenormRequestPlugin” /> <!-- Enable Real Time Denorm
Request processing for Smart Issue Requests -->

7. Copy the DenormConfig.xml file to the \config\Extensions directory.

8. Add the following entry to EnvironmentSettings.config in the
EnvironmentSettings/RemotingContainer/RemoteServices node, making sure to set the isActive
attribute to true.

<Service name="Custom Section Near Real Time Denorm Service"
port="@@VAR:Prodika.CSDenormService.Port@@" isActive="true" />

9. Make a backup of the existing RemotingContainer.exe.config file in RemotingContainer\ and
then replace the current version with the one in this directory.

10. Copy the DenormServices.dll file from the SharedLibs directory and place it in the following
folders:

RemotingContainer\dependentAssemblies
web\gsm\bin

web\pgm\bin

web\scrm\bin

web\npd\bin

web\SupplierPQM\bin

11. Restart IIS.

12. Restart the Remoting Container.

To verify the service is running, you can check the Logs\(Denorm_CustomSections directory (if logging is
enabled), or the ProdikaCommon Event log (look for a “CustomSectionDenormRequestProcessorService
started”event). Once the Remoting Container is started, the denorm requests get processed after the
configured number of seconds specified in the configuration.

© 2015 Oracle Corporation

31

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Chapter 7—Execution

Once the database scripts have been added to the database, and the Feature Configuration entry has
been set to true, the application can be restarted and custom sections can be configured for
denormalization in the Ul, as described earlier.

When the custom section denormalization Ul configuration is completed and the custom section is
made Active, it can be assigned to GSM specification, SCRM sourcing approvals, etc. This custom section
data is now available for denormalization, and, at this point, the CS Denorm process can be run to yield
results.

Executing CS Denorm involves two functional processes: Table Creation and Data Denormalization. The

following section describes these processes by their related database stored procedures.

Execution Scripts
There are two main stored procedures that are used to execute the CS Denorm process:
DENORM_GEN_DDL and DENORM_PROC_MAPPING.

(These stored procedures, in turn, call several other included stored procedures and functions, which
are not detailed here as clients should not be calling them directly.)

Table Creation Script (DENORM_GEN_DDL)
Executing the DENORM_GEN_DDL stored procedure generates SQL code for creating the denormalized

tables for all custom section templates that have a status of “Ready for Table generation”. Note that
executing this stored procedure does not actually create any tables, but rather generates the SQL code
required to generate the tables.

The results of the DENORM_GEN_DDL should be saved and reviewed for any errors that may have been
raised. Prior to executing the results of the DENORM_GEN_DDL, the SQL produced should be parsed (in
SQL Server, the checkmark button next to the Execute button) or compiled.

The text returned by the stored procedure must be executed by someone that has CREATE TABLE and
DROP TABLE privileges in the target database.

Please note that this stored procedure does not create any indexes on the table being generated as
that is dependent on data (amount, type, variance, etc) and searching (frequency, type of operators,
etc) characteristics which are highly specific to a customer’s environment.

The stored procedure has an optional input parameter: a Boolean value indicating if the table
generation should include BASE_UOM columns.

A second optional input parameter @RUN_DENORM_IMMEDIATELY determines if the batch denorm
process should get called immediately after table generation. This is needed if there is custom section

© 2015 Oracle Corporation

32

Agile Product Lifecycle Management for Process — Custom Section Denormalization

data on business objects already, but that custom section was previously not selected for
denormalization — now that the custom section id being denormalized, that already existing data needs
to get pulled in. The default value of 1 will trigger the batch denorm automatically.

For example:

EXEC DENORM_GEN_DDL ©

Generates the SQL to create the denormalized tables but will not include columns for
BASE_UOM values. Immediate batch denormalization will be triggered, even without explicitly
including the second parameter

EXEC DENORM_GEN_DDL 1

Generates the SQL to create the denormalized tables and will include columns for BASE_ UOM
values

EXEC DENORM_GEN_DDL @, ©

Generates the SQL to create the denormalized tables, will not include columns for BASE_UOM
values, and will not trigger immediate batch denormalization.

**SQL Server Users — be sure to generate the results of this stored procedure to text (not grid) and increase the
setting for “Maximum number of characters displayed in each column” to 8192. This setting is found in the Tools >
Options popup window, under Query Results-> SQL Server -> Results to Text.

Tables Generated
The DENORM_GEN_DDL stored procedure produces SQL code that is used to create two tables for each
denormalized custom section:

1. The target denormalization table, as specified by the section alias field in the Ul

2. A copy of that target table with an “STG_" prefix. This “STG_" table is later used in the
denormalization process to store and process updated records prior to inserting those records into
the final target table.

Table Name Conflicts

The table name is evaluated to determine if it conflicts with any of the Agile PLM for Process internal
tables. If a conflict exists, the process terminates and an error is raised:

ERROR Denormalization Table Name <table name> is an Internal PLM4P
table, and is not allowed! Table skipped.

When this error occurs, the table generation process is terminated. Additionally, and error is logged to
the DENORM_LOG table with a value of “CS Denorm Table Generation ERROR” in the MODULE column.

© 2015 Oracle Corporation

33

Agile Product Lifecycle Management for Process — Custom Section Denormalization

See the DENORM_PROC_MAPPING Implementation Details section for more.

Customers can perform additional validations on the table names (or any property of the CS Denorm
custom section information), if desired, by using the Validation Framework. This would provide the user
configuring the custom section immediate feedback in the Ul.

Implementation Details

This section describes some of the technical details of the table generation process, in order to provide
some transparency and insight into the process. This level of detail is not required to run the CS Denorm
process, but may be useful to better understand performance characteristics or to troubleshoot the

process if any errors occur.
The table generation process works as follows:
Determines which custom sections to process

The DENORM_GEN_DDL stored procedure first retrieves all custom section entries with a status of 1
(Ready for table generation) from the DENORM_CS_TABLE table, and then produces SQL code to
generate CREATE TABLE commands for each Custom Section table, one at a time.

For each custom section table, it does the following:

Ensures the table name is not an Agile PLM4P Table (see the Table Name Conflicts section

above for details)

Performs a last stage validation
Evaluates the rows and columns for the current custom section to ensure the custom section
rows and columns are using data type consistency, as performed in the UL.

Constructs the CREATE TABLE SQL statements

The columns for direct map or rows for pivot (from the denorm_cs_column and denorm_cs_row
tables) are examined to create the CREATE TABLE SQL command, used to create the
denormalized custom section table and the individual columns. All rows and columns with a
denormalization status of Ready for Table Generation or Ready for Denormalization are
included. The CREATE TABLE command is preceded by a DROP TABLE which will be called if the
custom section table already exists.

If the INCLUDE_BASE_UOM input parameter is set to 1 (true), then the table creation scripts
also include columns for the base value(s) and base UOM entries.

Updates the denormalization status
The SQL code generated also includes statements to update the denormalization status of the
custom section, rows, and columns, to the status of Ready for Denormalization (2).

Prints the resulting SQL commands

© 2015 Oracle Corporation

34

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Once all custom sections that had a “Ready for Table Generation” denormalization status have
been processed, the table generation process concludes by dropping unnecessary tables.

Constructs DROP TABLE statements

Previously denormalized custom sections that are have generated their denormalization table
but are now marked with a Not for Denormalization (-1) status are included as DROP TABLE
commands.

Data Denormalization Script (DENORM_PROC_MAPPING)

Executing the DENORM_PROC_MAPPING stored procedure is not required when using Near Real-Time
Denorm process

Executing the DENORM_PROC_MAPPING stored procedure will perform the denormalization of custom
section data from the various internal PLM4P tables into the newly created denorm tables created by
the DENORM_GEN_DDL results. The stored procedure processes any custom section templates that
have a status of “Ready for Denormalization”, and includes all of that custom section’s rows and columns
that have that same denorm status.

The stored procedure will perform a “delta” denormalization, retaining the existing records and adding
any records that may have been updated since the last denormalization time.

The stored procedure has three optional input parameters:

1. debug_level —this parameter sets the level of debug statements that will be printed to the
screen when executing the stored procedure manually. The debug messages are not logged to a
file.

Valid values are:
0: (default) No debug statements are printed.

1: some minor debug statements are printed indicate general status messages.

2: very detailed debug statements are printed that includes the SQL that is being created and
executed to denormalize the data. This setting should only be used if unexpected errors occur
and their output will be helpful to Customer Support.

2. log_level —this parameter sets the level of logging statements that will be inserted into the
DENORM_LOG table.

Valid values are:
0: (default) No log entries are added.

1: will log each Custom Section being denormalized

2: same as 1, but adds a log message for any skipped custom sections. Custom sections in which
none of its owning objects (specification, sourcing approval, etc) have been updated since the
last denorm execution will be skipped.

© 2015 Oracle Corporation

35

Agile Product Lifecycle Management for Process — Custom Section Denormalization

The number of rows written to this table will depend on the number of custom sections being
denormalized, and the frequency of denormalization.

3. INCLUDE_BASE_UOM - this parameter indicates if the denormalization process should include
Base UOM values. This value must be the same one used in the DENORM_GEN_DDL stored
procedure, or errors will occur.

Valid values are:
0: (default) Base UOM data not is denormalized.

1: Base UOM data is denormalized.

For example:

EXEC DENORM_PROC_MAPPING 2,2,0

will run the CS Denormalization for all custom section templates (in a Ready for Denorm status), printing
out all debug statements, adding all logging statements to the DENORM_LOG table, and will ighore Base
UOM data.

The DENORM_PROC_MAPPING stored procedure can be run manually, or be scheduled to run on a
recurring basis using the Database server tools (such as SQL Server Agent for SQL Server).

Note that performance can be greatly improved by increasing the number of processors and RAM
available to the database server.

Performance considerations

Before setting up denormalization, DBAs must understand the runtime characteristics of their routine.
At a minimum, they need to understand how long the routine will run and what impact it will have on
users. Database server hardware makes a very significant impact on runtime performance of the CS
Denorm process.

Additionally, the first run of denormalization for a custom section will take the longest time, but
subsequent denormalization runs only pull in the changes since the last denormalization run.

Running the Denorm process manually for a limited number of custom sections is recommended to
monitor the process initially.

Implementation Details
This section describes some of the technical details of the denormalization process, in order to
provide some transparency and insight into the process. This level of detail is not required to run
the CS Denorm process, but may be useful to better understand performance characteristics or
to troubleshoot the process if any errors occur.

The denormalization process works as follows:

Determines which custom sections to process

© 2015 Oracle Corporation

36

Agile Product Lifecycle Management for Process — Custom Section Denormalization

The DENORM_PROC_MAPPING stored procedure first retrieves all entries with a status of 2
(Ready for denormalization) from the DENORM_CS_TABLE table, and then denormalizes each
custom section table, one at a time.

For each custom section table, it does the following:
Removes any relevant denormalized Custom Section data

If custom section data for a business object has previously been denormalized, but that custom
section is then deleted from the business object, the CS Denorm process removes the relevant
records from the target table.

A log level of 2 will add an entry to the DENORM_LOG table indicating the number of records
removed for each custom section table.

A debug_level of 1, or greater, will print out the number of records removed for each custom
section table. This should only be set for debugging purposes.

Determines which business objects to process

= |f every business object (Specs, Sourcing Approvals, etc) that has this custom section has
not been modified* since the last time this section was denormalized, then this custom
section’s denormalization is skipped.
0 A log_level of 2 will add an entry to the DENORM_LOG table indicating that it
was skipped.
= QOtherwise, any business objects (which contain that custom section) that have been
modified* after the last denormalization will be evaluated.
0 Alog level of 1 or higher will add an entry to the DENORM_LOG table
indicating the denormalization process has started for this denormalized table.

Populates the temporary tables
A temporary table is created for each column grouping in the denormalized table:

e A column grouping is a series of columns related to the Extended Attributes in a
denormalized column (or denormalized row if using the Pivot denorm approach). For
instance, a column grouping containing Quantitative Range extended attributes will
correspond to columns for the Target, Min, Max, and UOM values (and Base values for
each, if using the Base UOM feature).

Data from the relevant business objects for the column grouping is then pulled into these
temporary tables. A significant process of the denormalization process can occurs at this stage.

e Adebug level of 2 will print out the SQL commands that generate and populate each
of these temporary tables. This should only be set for debugging purposes.

© 2015 Oracle Corporation

37

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Combines data from the temporary tables into the staging table

Once all temporary tables have been created and populated for a custom section, any old data is
deleted from the staging table. Next, data from the temporary tables is joined and copied into
the denormalized staging (“STG_<alias>") table.

e Adebug level of 2 will print out the SQL commands that generate and populate each
of these temporary tables. This should only be set for debugging purposes.

Processing time of this step will be based on the number of denormalized columns and the
amount of data.

The temporary tables are then deleted.
Copies Denormalized data into the final table

At this stage, the denormalization processing is complete, and the updates from the Staging
table are ready to be copied into the final denormalization table. First, however, data is deleted
from the final denormalization table for business objects that have been modified since the last
run time. Then the data from the Staging table is inserted into the final denormalization table.

= Alog level of 1 or higher will add an entry to the DENORM_LOG table indicating the
denormalization process has completed for this denormalized table, and includes the
number of records affected.

The next custom section that is ready for denormalization is then processed.

*Modification Dates: A modification to a business object may occur from various changes, some of which may
have nothing to do with the actual custom section data. However, the CS Denorm process considers any change to a
business object as one that requires the Custom Section denormalization to be regenerated.

© 2015 Oracle Corporation

38

Agile Product Lifecycle Management for Process — Custom Section Denormalization

Monitoring Status
The DENORM_LOG table is populated with logging messages from the table generation and the batch
denormalization process. This table can therefore be monitored for status.

= Each custom section being denormalized should log a “started” message, followed by a
“completed” message which contains the number of records it added.

= [fany errors occur, they are also logged, but the process continues (meaning the next custom
section will be processed), so you will still get a “completed” message.

= Additionally, the skipped sections can optionally be logged.

When an error is encountered during de-normalization of a custom section template, no changes for
that particular custom section template will be applied and a row will be written to the DENORM_LOG
table. Any errors that occur will be logged with a value of “CS Denorm ERROR” in the MODULE column,
and the error details in the MSG column.

Customers that require other notification channels (e.g., email) may enable them programmatically by
attaching an INSERT trigger to the DENORM_LOG table, as needed.

Near Real Time Denorm Status

The Real Time Denorm process will log basic informational messages, as well as error messages, to a
rolling log file in the Denorm_CustomSections directory within the default Logs directory. A new log file
will be generated each day.

The MaxLogFilesToKeep_CS configuration setting controls the number of daily log files that will be kept.
To disable this file logging you must set the MaxLogFilesToKeep_CS value to "0" (zero). Note that errors
will still be emailed and an entry in the ProdikaCommon Event Log will also be added. See the
readme.txt file in Utilities\DenormServices for more details.

© 2015 Oracle Corporation

39

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Section Denormalization

40

	Oracle® Agile Product Lifecycle Management for Process Custom Section Denormalization Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support

	Software Availability

	Chapter 1—Overview
	Chapter 2—Denormalization Process
	1. CS Denorm Configuration
	2. Table Creation
	3. Data Denormalization
	Near Real-Time Denormalization (New in 6.1.1 with Extensibility Pack 3.0)
	Batch Denormalization

	Chapter 3—Custom Section Table Denormalization Approaches
	1. Direct-Map Approach: Custom Sections Map Directly to a Table
	Limitation: Extended Attribute Data Types Must Match for All Rows in a Column

	2. Pivot Approach: Custom Sections Pivot onto Table
	Limitation: Extended Attribute Data Types Must Match for All Columns in a Row
	Limitation: Repeatable Rows Cannot be Included for Denormalization for a Pivot Approach

	Chapter 4—Base Data Types
	Extended Attribute Base Types
	Text Based Values
	Numeric Data and Base Unit of Measure Values
	Qualitative Lookup Limitation
	eQuestionnaire Limitation

	Chapter 5—Application Support for Denormalization
	Configuration
	Custom Section Data Admin Screens
	Denorm Model
	Section Alias
	Include In De-normalization
	De-normalization Type
	De-normalization Status
	Denormalization Icons
	Validate Button
	Row and Column Popup
	Denorm Model
	Include In De-normalization
	De- normalization Alias

	Changes to Denormalization Metadata
	Security Roles
	Import/Export
	Configuration Settings

	Chapter 6—Installation
	Installing the scripts
	Enabling Custom Section Denorm in the Application
	User Access
	Feature Configuration
	Near Real Time Denorm configuration and installation

	Chapter 7—Execution
	Execution Scripts
	Table Creation Script (DENORM_GEN_DDL)
	Tables Generated
	Table Name Conflicts
	Implementation Details

	Data Denormalization Script (DENORM_PROC_MAPPING)
	Performance considerations
	Implementation Details

	Monitoring Status
	Near Real Time Denorm Status

