Oracle® Agile Product Lifecycle Management for Process
Hierarchy Denormalization Guide

Feature Pack 4.0
E61840-01

April 2015

ORACLE

Copyrights and Trademarks

Agile Product Lifecycle Management for Process
Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Contents
PREFACEttt 5
AUIBINCE ...ttt et e st st e e et e s a e e sae e sae e sae e s n e s n e e r e n e neesnees 5
Variability Of INSLAllatioNS ...cccoo e e e e e e e e e e et e e e e e e e e annraaaeaaaeas 5
Documentation ACCESSIDIITY....ccccuviiiieiiie e e e e e e te e e e re e e e e anees 5
F Yool Ty ol O] =Tl LI U o] o Yo o A UUPRPRRS 5
Yo a NN Tl V=YL =1 o 11 L USRS 5
CHAPTER 1—HIERARCHY DENORMALIZATION INTRODUCTIONcoiiiiiiiiiiiiiiiiie e 6
UL o Lo TP PPPPPPPRPPPRPPIRS 6
L0 1YL L= PP 6
CHAPTER 2—INSTALLATION ... a e e e e e e e e e 7
=] o[=1 4 (0] o KOO OO PP PPT T OPPIPPPP 7
D] o R IR = U o T RSP 7
FiN oY o] [Tor= 1 aToT oI a1y =11 = 1 4 o] o PR 8
Performance Estimation for Initial DEnormalizationcccoeireiininieiiniic e 8
CHAPTER 3—CONFIGURATION ... 10
CHAPTER 4—EXTENDING HIERARCHY DENORMALIZATIONcooiiiiiiie 12
7=l =T ot {0 12
DENOIMANIZEIS ...ttt s e e 12
Relationship ContexXt DefiNItioNSc.uiiiiiiiee et e e e e e e e e e e e are e e s enaee e e ennes 14
Den0rmMalization PrOCESSOrcicuiiiiiiiiiiicterttee ettt s e sr e s e 15
Supported Relationships that are Denormalized in GSMcooiiiiiiiiiiiiieecee e 18
Supported Relationships that are Denormalized in SCRMcooviiiiiiiiiiieeiiiiee e 20

CHAPTER 5—UNDERSTANDING THE HIERARCHY DENORMALIZATION DATA MODEL .21

Denormalization Results under Nested-Set Modeloocuviiiiiiiiiciiiie e 23
CHAPTER 6—EXTENSIBILITY REFERENCES........ccoiii e 25
IMPIEMENtAtioN EXAMPIE......iii et e e s te e e e s be e e e s ate e e e snreeeenanees 26

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle
Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

= Which applications your organization has purchased and installed

= Configuration settings that may turn features off or on

= Customization specific to your organization

= Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

© 2015 Oracle Corporation

http://edelivery.oracle.com/

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 1—Hierarchy Denormalization Introduction

Purpose
This guide describes how to install, configure, and use the Hierarchy Denormalization solution pack.

Solution packs are designed to be pluggable modules that can be added to the Agile PLM for Process
application suite without modifying the existing release code base.

Overview

Oracle Agile PLM for Process stores objects, such as specifications, along with the relationships to each
other, in a normalized database schema, making inserts, updates and deletes highly efficient while
minimizing its size. The challenges with having a normalized schema are that it can make custom SQL
gueries complex and possibly not optimal for bulk data retrieval. For example, to construct a report that
returns the entire hierarchy of a trade specification, would require a deep understanding of many
relationship tables and would be extremely difficult to do in SQL alone, due to the varying number of
possible layers in the hierarchy. A hierarchy of a specification is defined as that specification plus all
descendant specifications as well as other related objects. For example these objects would be
considered part of a trade hierarchy:

= The main trade specification

= All lower level trade specifications

= The material specification directly associated to the trade specification
= The formula to create the above material

= Allinputs and outputs to the above formula

= All formulas that create the above inputs

= Allinputs and outputs to the above formulas

= Etc..

By continuing to drill down into the formula and intermediate formulas that comprise a trade
specification, you will have what we are referring to as the Trade Hierarchy. This hierarchy is not limited
to the relationships defined above but covers many of the relationships that are defined in PLM for
Process.

Hierarchy Denormalization provides a solution to this data access problem by storing the object
relationship information in a single table, allowing for simple and performant hierarchy retrieval.

Many solutions can use this table to provide functionality such as hierarchical navigation and reporting.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 2—Installation
Note: A prerequisite for installing Hierarchy Denormalization is Oracle Agile PLM for Process 6.2.

Preparation

1. Unzip the contents of Feature Pack 4.0.

2. Unzip the contents of the Utilities\DenormServices\HierarchyDenorm\HierarchyDenorm.zip file and

note the location.

Database Setup

1. Create a backup of the PLM for Process database.

2. Apply the database scripts.

a. SQL Server

b. Oracle

Open a command prompt and navigate to the directory where you unzipped the
solution pack.

Change directories (cd) to the Database directory.

Apply the scripts using the following calls to the ApplyScripts.exe utility:

ApplyScripts -c "server=<database_server>;uid=<user>;
password=<password>;database=<database>" -f HierarchyDenorm.xml

After the ApplyScripts call, you can confirm that the database scripts have been
applied successfully when the system prompts you with the following message:
"Complete — with no errors".

Open a command prompt and navigate to the directory where you unzipped the
solution pack.

Change directories (cd) to the Database directory.

Apply the scripts using the following calls to the ApplyScripts.exe utility:

ApplyScripts -c "User Id=<user>;Password=<password>; Data
Source=<datasource>" -dbvendor="orcl" -f HierarchyDenorm-orcl.xml

After the ApplyScripts call, you can confirm that the database scripts have been
applied successfully when the system prompts you with the following message:
"Complete — with no errors".

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Application Installation

1. Runthe HierarchyDenormSetup.exe file from the location where you unzipped the solution pack
and follow the onscreen instructions to install the necessary files to your specified PLM for Process
directory.

A backup folder called “SolutionPackBackup” is created during the installation to facilitate the
uninstall process. Inside of that folder, a new folder called “HierarchyDenorm” is created to hold the
files that were changed during the installation.

2. Restart RemotingContainer Service.

Performance Estimation for Initial Denormalization

Hierarchy Denormalization is a background process running on the Remoting Container, which processes
updates as needed. After the initial startup of the Remoting Container after installation, all the
hierarchies must be denormalized. The amount of time to perform this is dependent on some factors
such as hardware performance, number of specifications, depth of hierarchies and Hierarcy
Denormalization configuration settings.

For an approximation of how long it will take to complete the initial processing, tests were performed
on three data sets. Below are the test details and results.

Testing server (Virtual Machine) information:

= APP server: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Windows 2008 R2 (64-bit) with 11S7
= DB server A: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Oracle 11g Release 2 for Windows (64-bit)
= DB server B: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Oracle 11g Release 2 for Linux

The following is a snapshot of the configuration file “HierarchyDenormConfig.xml” used.

<HierarchyDenormConfigs
<Settings>
<l-- The interval of the denorm scanning. (unit: seconds) -->
<PollingIntervalInSeconds_Detector»>9@</PollingIntervallnSeconds_Detectors
<PollingIntervalInSeconds_Processor»1</PollingIntervallnSeconds_Processors

<!-- The denorm process will stop when CurrentlLevel reaches the value. --»

<DenormMaxLevel>12</DenormMaxLevels>

<!-- Overwrite current branch’s MaxLevel when the processor meets a node which was created by BreakdownComponent resolver. -->
<DenormMaxLevel BreakdownComponent>3</DenormMaxLevel BreakdownComponents

<!-- Overwrite current branch’s MaxLevel when the processor meets a node which was created by AlternateOutput resclver. --»
<DenormMaxLevel AlternateQutput>2</DenormMaxLevel Alternatelutput>

<!-- Determinate which type of sub-relationships should be resolved. (TargetOnly, HostOnly, Both) -->
<DenormMode_AssociatedSpec>TargetOnly</DenormMode_AssociatedSpecs
<!-- Determinate how many valid requests will be resclved in a denormalization period. --»

<DenormMode_RequestBatchCount>20@</DenormMode_RequestBatchCount:>

<!-- Determinate how many types of logs should be written. (ErrorOnly, WithWarning, WithwWarningAndInfo) --»
<Logginglevel>WithWarningAndInfo</Logginglevels
<!-- The listed spec types would always skip writing any denorm warning no matter what Logginglevel is. (Separated by comma) -->

<LoggingWhitelist SkipWarning>5816,1084,2147,1009,2280,2121,1806,20876, 1010, 6508, 6581, 5802,5081,5012,5019</Loggingwhitelist_SkipWarning>
</Settings>

Four database samples with legacy data have been selected for the estimation. Their involved object
types were listed in the below table.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Scope Object Spec Type Table Name

GSM PrintedPackaging 2121 FinishedPackagingSpec
Menu 6500 FoodServiceMenultem
Formulation 5816 formulationSpecification
Material 1004 MaterialSpec
Trade 2147 gsmBaseTradeSpec
Product 6501 FoodServiceProduct
Delivered Material Packing 1010 PackingSpec
Label 1006 LabelingSpec
Packaging 1009 PackagingSpec
Equipment 2280 gsmEquipmentSpecification
Packing Configuration 2076 PackingConfigurationSpec
Activity 2283 SpecActivitySpecification

SCRM Company 5002 scrmCompany
Facility 5001 scrmFacility
SourcingApproval 5012 scrmSourcingApproval
NonSpecSourcingApproval 5019 scrmSourcingApprovalNonSpec

= Sample A - Oracle for Windows
Total: ~ 26,000 requests
Duration: ~ 173 minutes
Average: ~ 2.5 requests/second
= Sample B - Oracle for Linux
Total: ~ 26,000 requests
Duration: ~ 172 minutes
Average: ~ 2.5 requests/second
= |ndicators on Oracle platform:
RemotingContainer CPU usage:
Average: 6%
Peak: 12%
Valley: less than 1%
RemotingContainer Memory usage:

150MB ~ 350MB

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 3—Configuration

By default Hierarchy Denormalization will execute without the need to update the configuration settings.

The configuration settings can be used to change how often the denormalization process runs as well as
what will be denormalized. To understand when data will be denormalized, it’s helpful to understand
the processes involved.

Hierarchy Denormalization is designed as two endless processing services: Denormalization Detector
and Denormalization Processor service. The Detector service checks whether the hierarchy was changed
after the last time Denormalization Processor was executed. If changes were detected, it will create
denormalization requests. The Processor service will orchestrate the execution of denormalizers which
does the actual denormalization work. Both the Detector and Processor service are designed to be
triggered in a configurable frequency as shown in the table below. This table also shows the
configuration for controlling what is denormalized.

The following are the configurable properties located in the “HierarchyDenormConfig/Settings” section

|”

of the configuration file located at “<PLM for Process>\config\Extensions\HierarchyDenormConfig.xm

Property Name Acceptable Default Value Description
values
PollingIntervallnSeconds_Detector Number in | 90 Interval of detector service
seconds running frequency.
PollingIntervallnSeconds_Processor Number in | 100 Interval of processor
seconds service running frequency.
DenormMaxLevel Number 12 Denormalized hierarchy

tree max depth limitation.

DenormMaxLevel_BreakdownComponent Number 3 Denormalized hierarchy
branch max depth
limitation specific for a
Breakdown Component.

If current branch has a
node whose relationship
context is
“BreakdownComponent”
it would perform a level-
limited denormalization.
The default value indicates
the parent will at most
have 3-levels children.

© 2015 Oracle Corporation

10

Property Name

DenormMaxLevel_AlternateOutput

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Acceptable
values

Number

Default Value

Description

Denormalized hierarchy
branch max depth
limitation specific for an
Alternate Output.

If current branch has a
node whose relationship
context is
“AlternateOutput” it
would perform a level-
limited denormalization.
The default value indicates
the parent will at most
have 2-levels children.

DenormMode_AssociatedSpec

“TargetOnly”;
“HostOnly”;
llBOthlI

“TargetOnly”

Determines which type of
sub-relationships should
be resolved.

DenormMode_RequestBatchCount

Number

200

Determinate how many
valid requests will be
resolved in a
denormalization period.

LogginglLevel

“ErrorOnly”;
“WithWarning
“WithWarning
AndInfo”

“ErrorOnly”

Determinate how many
types of logs should be
written.

LoggingWhiteList_SkipWarning

TypelD string
separated by
comma

“5816,1004,21
47,1009,2280,
2121,1006,20
76,1010,6500,
6501,5002,50
01,5012,5019”

The listed spec types
would always skip writing
any denormalization
warning no matter what
LogginglLevel is.

© 2015 Oracle Corporation

11

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 4—Extending Hierarchy Denormalization

Hierarchy Denormalization is designed as a pluggable architecture that enables customers to extend the
out of the box functionality by adding other relationships to the denormalized table. The two
components necessary to make this possible are Detectors and Denormalizors. Detectors are
components that determine what and when a relationship should be denormalized. Denormalizors are
components that do the actual work of populating the denormalized table. These are both pluggable
components written in C#.

A full reference of how to extend Hierarchy Denormalization can be found below in the Extensibility
References section.

Detectors

The purpose of detectors is to find objects that have been modified since the denormalizers last ran. To
determine this it compares last updated dates of the objects to the last run dates of the denormalizers.
Each object type will have a specific detector that is responsible for performing this operation.

Detector settings were organized in “HierarchyDenormConfig/Detectors” section of the “<PLM for

I”

Process>\config\Extensions\HierarchyDenormConfig.xml” file. It can accept a sequence of “Detector”

nodes within the section.

Each “detector” should have an “objectURL” and “id” attribute. The value of “id” attribute should be
unique across the section. “objectURL" is configured as the full class name of the detector producing
factory.

The user can either add new detectors or customize the existing ones. (See more at Extensibility
References). Example of Detector settings:

<Detectors configChildKey="id">

<Detector
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Detectors.RequestArchiveDe
tector,HDGSMLib" id="RequestArchiveDetector"/>

<Detector
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Detectors.ActivityDetector
,HDGSMLib" id="ActivityDetector"/>

</Detectors>

Denormalizers
The purpose of denormalizers is to actually populate the denormalized table.

Denormalizer settings were organized in “HierarchyDenormConfig/Denormalizers” section of the “<PLM
for Process>\config\Extensions\HierarchyDenormConfig.xml” file. It can accept a sequence of
“Denormalizer” nodes within the section.

© 2015 Oracle Corporation

12

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Each “Denormalizer” should have an “objectURL”,“type” and “dataTable” attribute. The “type” attribute
will represent the type id defined in PLM for Process. “objectURL” is configured as the full class name of
the denormalizer producing factory. And “dataTable” determinates the table in which the corresponding
denormalization results should be saved. Note the available data tables must have been pre-defined in
installer scripts. Currently, this solution pack supports the following spec type and repository mappings:

ClassName Type DataTable/Repository
IngredientSpecification 1004 DENORM_HD_HIERARCHY_GSM
LabelingSpecification 1006 DENORM_HD_HIERARCHY_GSM
PackagingSpecification 1009 DENORM_HD_HIERARCHY_GSM
PackingSpecification 1010 DENORM_HD_HIERARCHY_GSM
PackingConfigurationSpecification 2076 DENORM_HD_HIERARCHY_GSM
FinishedPackagingSpecification 2121 DENORM_HD_HIERARCHY_GSM
GSMTradeSpecDO 2147 DENORM_HD_HIERARCHY_GSM
EquipmentSpecification 2280 DENORM_HD_HIERARCHY_GSM
FormulationSpecification 5816 DENORM_HD_HIERARCHY_GSM
FoodServiceMenultemDO 6500 DENORM_HD_HIERARCHY_GSM
FoodServiceProductDO 6501 DENORM_HD_HIERARCHY_GSM
SCRMFacilityDO 5001 DENORM_HD_HIERARCHY_SCRM
SCRMCompanyDO 5002 DENORM_HD_HIERARCHY_SCRM
SourcingApproval 5012 DENORM_HD_HIERARCHY_SCRM
SourcingApprovalNonSpec 5019 DENORM_HD_HIERARCHY_SCRM

For example, when a formulation specification, type 5816 is denormalized, the resulting denormalized
data will be stored in the “DENORM_HD_HIERARCHY_GSM” table.

For each “Denormalizer”, the relationships that should be denormalized should also be defined. The
relationships also have attributes of “objectURL” and “id”. An expected “RelationshipContext” should be
bound with a relationship resolver by adding its unique name to the end of the “objectURL” (Refer to
“Relationship Context Definitions”).

Customers can create new denormalizers or customize the existing ones. (See more at Extensibility
References).

Example of Denormalizer settings:

<Denormalizer
objectURL="Class:0racle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Denormalizers.FormulationD
enormalizer,HDGSMLib" type="5816" dataTable="DENORM_HD_HIERARCHY_GSM">
<Relationships configChildKey="id">

<Relationship
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.Co
mActivities,HDGSMLib$PrimaryActivity" id="ComActivities"/>

<Relationship
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.Co

© 2015 Oracle Corporation

13

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

mMasterSpec,HDGSMLib$ExplicitMaster" id="ComMasterSpec"/>

</Relationships>
</Denormalizer>

Relationship Context Definitions

Specifications can be related to each other in different ways. For instance a formulation can have an
input BOM item or it can have an alternate BOM item. If that formulation was part of a trade
specification then the relationship between the trade and the BOM items would also have certain
relationship types. Hierarchy Denormalization captures these relationships types in 2 columns in the
DENORM_HD_HIERARCHY_XXXX table, one for the Parent and one for the Ancestor,
“fkParentRelationshipContext” and “fkAncestorRelationshipContext”. These fields are foreign keys to
the “DENORM_HD_RELATIONSHIP_CTX” table and “DENORM_HD_RELATIONSHIP_CTX_ML” table, which
both store the readable relationship type, the latter stores the multilingual types. These tables should
not be modified.

Example:

SELECT PARENT.Context,ANCESTOR.Context,H.* FROM DENORM_HD_HIERARCHY_XXXX H

LEFT JOIN DENORM_HD_RELATIONSHIP_CTX PARENT ON
H.fkParentRelationshipContext=PARENT.PKID

LEFT JOIN DENORM_HD_RELATIONSHIP_CTX ANCESTOR ON
H.fkParentRelationshipContext=ANCESTOR.PKID

WHERE H.fkAncestor='<AncestorPKID>'

Column Data type Description

PKID Number Identifier

Context Varchar Relationship context unique name

MaxLevelLimit Number Indicate the max allowable level under current relationship type
IsAlternate Bool IsAlternate flag

And Table “DENORM_HD_RELATIONSHIP_CTX_ML” is the corresponding translations. Link it for multi-
language support.

Column Data type Description
PKID Number Relationship context identifier
LanglID Number Language ID.
0: English
Context Varchar Relationship context translation.

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Denormalization Processor

The processor is a background service running in RemotingContainer. The responsibility of this process is
to orchestrate the execution of the denormalizers. Each denormalizer is responsible for updating one
level of the hierarchy, so the generation of the complete hierarchy will take many denormalizers.

For example, this is an expected tree:

Trade
01

Primary Primary

Trade
02

Material

01

@

Formulation

Context Breakdown Primary

Formulation Material Trade
01 02 03

.

For example, in order to denormalize the above hierarchy, a denormalizer would be executed for each
node, according to spec type. The sequence of execution would be similar to the below diagram.

Level 1
Trade Denormalizer

Level 2
Material Denormalizer

Level 2
Trade Denormalizer

Level 3
Trade Denormalizer

Level 3
Material Denormalizer

Level 3
Formulation Denermalizer

© 2015 Oracle Corporation

15

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Each denormalizer contains multiple child processes called relationship-resolvers, which are responsible
for updating the relationships specific to an object type. For instance if a formulation specification
contains a master specification, primary Inputs and an alternate output, within the Formulation
Denormalizer, three relationship-resolvers will be executed; the Master Specification relationship-
resolver will update the relationships to the master specification, the Primary Input relationship-resolver
will update the relationships to the primary inputs and so on.

Customers wanting to add new types of relationships to the denormalized output can add their own
relationship resolvers with the runtime context parameters given by the relationship resolver interface.

The input parameter of denormalizer is taking the denormalization context transferred from the
previous denormalizer. It includes the parent PKID, the relationship context, some referenced resource
entries, and so on. These data ensures the denormalizer finish its work as designed.

Similarly, the output parameter is taking the specific denormalization context that should be transferred
to the next denormalizer. Actually, a parent output parameter can be rapidly converted to a child input

parameter directly.

This is depicted in the below diagram.

© 2015 Oracle Corporation

16

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Denormalizer Input Parameter

Formulation Denormalizer

MasterSpec Primaryinput AlternateOutput
Relationship Relationship Relationship
Resolver Resolver Resolver

Relationship

Go to next-level Denorm

Stop here

Denormalizer Output Parameter

Finally, every denormalizer and its related relationship-resolvers
configuration node for the above FormulationDenormalizer is:
<Denormalizer type="5816"

objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm
enormalizer,HDGSMLib" dataTable="DENORM_HD_ HIERARCHY_GSM">

<Relationships configChildKey="id">

<Relationship id="ComMasterSpec"
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm
mMasterSpec,HDGSMLib$ExplicitMaster"/>

<Relationship id="FrmInput"
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm
mInput,HDGSMLib$Input"/>

<Relationship id="FrmAlternateOutput"
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm
mAlternateOutput,HDGSMLib$AlternateOutput"/>

<Relationship .. />

</Relationships>

© 2015 Oracle Corporation

are configurable. The corresponding

.HDGSMLib.Denormalizers.FormulationD

.HDGSMLib.DescendentRelationships.Co

.HDGSMLib.DescendentRelationships.Fr

.HDGSMLib.DescendentRelationships.Fr

17

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

</Denormalizer>

You can find the full official mappings in the configuration file located in the following path “<PLM for

Process>\config\Extensions\HierarchyDenormConfig.xm

I”

Attention: Each relationship-resolver ObjectURL is taking an additional parameter separated by “$”

character. That means this relationship-resolver is binding with a “Relationship Context” so that the

resolver’s outputs can also take the context as its “ParentRelationshipContext” property. Please refer to

Relationship Context Definitions section.

Supported Relationships that are Denormalized in GSM

Object

(Parent)

Related Object
(Child)

Relationship

Resolver Name in HDGSMLib

Trade Trade Specifications Primary TrdNextLowerlLevelltems
Primary Packaging Primary TrdPackagingMaterials
Specifications
Alternate Packaging Alternate TrdAlternatePackaging
Specifications
Material Primary TrdRelatedMaterial
Formulation that produces FormulationContext MatFormulationContext
associated Material
Breakdown Materials of the BreakdownComponent ComBreakdown
associated Material
Nutrient Profiles Primary ComNutrientProfile
Sourcing Approval Primary ComSourcingApproval
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec

Formulation | Materials Input, Output FrmInput, FrmOutput
Alternate Materials Alternate, AlternateOutput FrmAlternatelnput,

FrmAlternateOutput
Packaging Input FrmInput
Alternate Packaging Alternate FrmAlternatelnput
Formulation context FormulationContext, MatFormulationContext,
AlternateFormulationContext | MatAlternateFormulationContext

Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec

Menu Product/Menu Primary MenuMenultemBuild
Packaging Primary MenuPackagingMaterial
Alternate Pkg Alternate MenuAlternatePackaging

Global/Regional Standard

© 2015 Oracle Corporation

18

Object Related Object

(Parent) (Child)

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Relationship

Resolver Name in HDGSMLib

Alternate Standards AlternateStandards ComAlternateStandards
Nutrient Profile Primary ComNutrientProfile
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec
Product Breakdown Materials BreakdownComponent ComBreakdown
Global/Regional Standard - -
Alternate Starndards AlternateStandards ComAlternateStandards
Packing config Primary ComPackingConfigurationSpec
Sourcing Approval Primary ComSourcingApproval
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec
Material Breakdown Materials BreakdownComponent ComBreakdown
Substitute Material Substitute ComSubstituteMaterial
Packing config Primary ComPackingConfigurationSpec
Produced By Formulation Primary MatProducedBy
LIO Profile - -
Sourcing Approval Primary ComSourcingApproval
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec
Packaging Sub Components SubComponent PkgSubComponents
Packing Config Primary ComPackingConfigurationSpec
Equipment Primary PkgEquipmentSpec
Substitute Material Substitute ComSubstituteMaterial
Sourcing Approval Primary ComSourcingApproval
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec
Equipment Sub Components SubComponent EquSubComponent
Sourcing Approval Primary ComSourcingApproval
Associated Specs Associated ComAssociatedSpec
Activities PrimaryActivity ComActivities
Master Specs ExplicitMaster ComMasterSpec
Delivered Labeling Primary DmatLabelingSpec
Material Associated Specs Associated ComAssociatedSpec

© 2015 Oracle Corporation

19

Object Related Object

(Parent) (Child)

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Relationship

Resolver Name in HDGSMLib

Activities PrimaryActivity ComActivities
Packing Delivered Material Primary PcfgDeliveredMaterialPackingSpec
Config Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities
Labeling Associated Specs Associated ComAssociatedSpec

Activities

PrimaryActivity

ComActivities

Supported Relationships that are Denormalized in SCRM

Object Related Object

(Parent) (Child)

Relationship

Resolver Name in HDSCRMLib

Company Company Primary CompChildCompany
Facility Primary CompFacility

Facility Sourcing Approval Primary FacNonSAC, FacSAC

Sourcing Specification Primary SACSpec

Approval Facility Primary ComReceivingFacility

Zs;rovsacl‘urdng Facility Primary ComReceivingFacility

© 2015 Oracle Corporation

20

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 5—Understanding the Hierarchy Denormalization Data Model
All hierarchies will be stored in the denormalized table, with each node represented by one row. Each
row will contain information such as a reference to the parent object, level in the hierarchy and the type
of relationship. These nodes are tied together by a column, fkAncestor, - that references the relative top
node of the hierarchy. By using this column as the query criteria all the nodes for a specific hierarchy can

be returned.
For Example:

ZUJlllj Ho_Trade01 (5114918-001) [Draft]
:_..i' HD_Materiald2 - Step 1 Output 5114921-001 (5114921-001) [Draft]
:_..l(,_-;,-' HD_Formulation01 {(5114320-001) [Draft]

&5 HD_Materialnl (5114913-001) [Draft]

= ..i' HD_Materiald3 (51142922-001) [Draft]
{...§7 HD_Master02 (5114413-002) [Approved]

.4 HD_Materialo1 (5114919-001) [Draft]

Z L HD_Material3 (5114922-001) [Drafi]

Retrieve the single tree with this script:

select * from DENORM_HD_HIERARCHY_GSM

where fkAncestor='21475f5fc62c-1ccb-4067-80f8-41f5810806fb5" ;

And following is the sample data table from above script:

fkAncestor fkDescendent fkDescendentParent CurrentL fkParentRelationsh
evel ipContext

2 21475f5fc62c-1ccb-4067- 21475f5fc62c-1ccb-4067-80f8- 0 1
80f8-4f5810806fb5 4f5810806fb5

3 21475f5fc62c-1ccb-4067- 10044dd5a3b8-0bae-4c93- 21475f5fc62c-1ccb-4067-80f8- 1 6
80f8-4f5810806fb5 b711-ecaf8f7b4eba 4f5810806fb5

4 21475f5fc62c-1ccb-4067- 10044209f6dc-05d8-4c82- 10044dd5a3b8-0bae-4c93- 2 14
80f8-4f5810806fb5 9ell-a54a7bb443c5 b711-ecaf8f7b4eba

5 21475f5fc62c-1ccb-4067- 100499340adc-87ec-4fd2-adf6- | 10044dd5a3b8-Obae-4c93- 2 14
80f8-4f5810806fb5 7¢93718e5568 b711-ecaf8f7b4eba

6 21475f5fc62c-1ccb-4067- 581603d28db4-0ce2-4b13- 10044dd5a3b8-0bae-4c93- 2 13
80f8-4f5810806fb5 be70-ae22f6480079 b711-ecaf8f7b4eba

7 21475f5fc62c-1ccb-4067- 1005a6fd6f82-31a9-4ad2- 10044209f6dc-05d8-4c82-9e11- | 3 8
80f8-4f5810806fb5 92da-332c504b5f80 a54a7bb443c5

8 21475f5fc62c-1ccb-4067- 10044209f6dc-05d8-4c82- 581603d28db4-0ce2-4b13- 3 9
80f8-4f5810806fb5 9el1-a54a7bb443c5 be70-ae22f6480079

9 21475f5fc62c-1ccb-4067- 100499340adc-87ec-4fd2-adf6- | 581603d28db4-0ce2-4b13- 3 9
80f8-4f5810806fb5 7c93718e5568 be70-ae22f6480079

10 21475f5fc62c-1ccb-4067- 1005a6fd6f82-31a9-4ad2- 10044209f6dc-05d8-4c82-9e1l- | 4 8
80f8-4f5810806fb5 92da-332¢504b5f80 a54a7bb443c5

fkAncestorRelationshi ObjectT
pContext ype

fkObjectSubType

fkObjectSubTy
peEx

fkRelationshipldentifier

BoxLft

1 2147

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

6 1004 2210083d0660-b2a6-4256- 5826d5ba6106-6df9-4f97- 2 17
ad98-3d3dcc2d5d43 8dab-8c59a0ed48c3
6 1004 2210e2704850-c6el-4c3f- 101323a10b8c-45d8-4eb8- 3 6
8bd4-7e11bbe862b0 8dbf-9f09d138ae24
6 1004 2210e2704850-c6el-4c3f- 1013fa756721-35a9-4f34- 7 8
8bd4-7e11bbe862b0 9f68-4a1319b3be7b
6 5816 5826d5ba6106-6df9-4f97- 9 16
8dab-8c59a0ed48c3
6 1005 104058d05bf4-afbe-40ef- 4 5
bb7e-373aa23217b1
6 1004 2210e2704850-c6el-4c3f- 5817¢375fbf5-b990-42ba- 10 13
8bd4-7e11bbe862b0 8d7b-b10bfc917303
6 1004 2210e2704850-c6el-4c3f- 5817d503e570-aa02-4f60- 14 15
8bd4-7e11bbe862b0 9b58-e67bf550bb1la
6 1005 104058d05bf4-afbe-40ef- 11 12
bb7e-373aa23217b1

The structure definition of the table is shown in below. The current node’s primary key is stored in the

fkDescendent column.

Column Data type Description

PKID Number Primary key

fkAncestor Char PKID of the top node of the hierarchy.

fkDescendent Char PKID of the object for the current node of the hierarchy.

fkDescendentParent Char PKID of the parent object of the current node.

CurrentLevel Number Level of the hierarchy for the current node. Top node is
0, first level down is 1 and so on.

fkParentRelationshipContext Number The relationship type between current node and its
parent node. (Refer to “Relationship Context
Definitions”)

fkAncestorRelationshipContext Number The relationship type between current node and the
ancestor node. (Refer to Relationship Context
Definitions).

ObjectType Number The 4 digit object type ID of current node.

fkObjectSubType Char The first item type ID for current node if it is a Trade, a
Material or a Packaging.

fkObjectSubTypeEx Char The second item type ID for current node if it is a
Material.

fkRelationshipldentifier Char This is the row PKID when a node exists as one row
within in a collection. For example when multiple
Materials exist within a Formula as BOM items, this
represents the ID that can be tied back to retrieve more

© 2015 Oracle Corporation

22

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Column Data type Description
row detail such as Quantitiy.

LastEdit Datetime Last edit date of the object represented by this node.

Remark Varchar (For internal use).

MaxLevel Number (For internal use). Indicate the max allowable level for
current node’s children.

ContextOwner Char (For internal use). Keep the formulation context from
parent denormalizer.

BoxLft Number Nested-set mode LEFT value. Help to identify the tree
branch.

BoxRgt Number Nested-set model RIGHT value. Help to identify the tree

branch.

Denormalization Results under Nested-Set Model
The nested-set model is a high efficient model for storing hierarchical data or trees. A metaphor used to

describe this model is that each parent node is a box, and all its children are also boxes inside the parent

box. For hierarchies greater than two levels there will be boxes inside of boxes. Each box will have 2

numbers, one for each side, box-left and box-right. These numbers facilitate the retrieval and

reconstruction of the hierarchy. The solution guarantees that each box will have two serial numbers

(Box-Left and Box-Right). They help to identify each node and facilitate thee retrieval of all parents or all

children nodes for a selected node. Example:

Trade
01
Primary
—

e \

(Material]

K 01 /

Fog‘;l:;:;cn Breakdown
f“% \/d_"m
/ \ f/ A
Formulation [Material |

I 01) 02
)
S~ N

The visual nested-set model of the picture is like below:

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Trade 01
Material 01 Trade 02
I Formulation 01 | Material 02 | Trade 03
O ® & ® ® i

And this is the corresponding data table:

Object Level BoxLft BoxRgt
Trade 01 0 1 12
Material 01 1 2 7
Formulation 01 2 3 4
Material 02 2 5 6
Trade 02 1 8 11
Trade 03 2 9 10

As above shown, those unique numbers (BoxLft and BoxRgt) could help to search or traverse the whole
result tree. Assuming there is a node named “X”. Here are some tips:

a) When “X.BoxRgt — X.BoxLft == 1”, it must be a leaf node.

b) If “{NODE}.BoxLft < X.BoxLft && {NODE}.BoxRgt > X.BoxRgt”, {NODE} must be X's parent.

c) If “{NODE}.BoxLft > X.BoxLft && {NODE}.BoxRgt < X.BoxRgt”, {NODE} must be X’s child.

d) With b) and c), it's convenient to get the direct parent, the direct children or the whole branch
members in the tree as well.

© 2015 Oracle Corporation 24

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Chapter 6—Extensibility References

Below is a complete implementation of how to extend Hierarchy Denormalization by identifying a new
relationship to denormalized, creating a Detector to determine when a relationship has changed and
create a request for processing and creating a Denormalizer which will process the request by adding
the appropriate data in the denormalization table.

In this example we will use the PQM lIssue relationship with its supplier and affected items (material
specification).

Primary
Primary
HD_EXT
HD_EXT _maherial
_company
[HD_EXT_issue (10000073 g
() rotions Ropr e Pending

Sammary [xt Data Relsted Items Supporting Doouments Audit Trail

~ Symmary Informastion
Tithe: HD_EXT isswe &
Descripbion: HD_EXT_msue &
Type: Problem Report
Status: Pendng
Isswe @ 0000073 Owsginator
Docurrence Date: Thursday, July 25, 2013 Expected Resalution Dabe:
Severity:
Resolution:
Worldlows [ssue - test
Product Limes:
Costomer

—

- S
G Supphers [Facltes 7
— =
Conspany Facility
y MD_EXT companyl (5013527)
(::-' Alected Itens -‘-:)
— -

System & Equivalent @ | Description Rew Found Failure Type Oty Rev Foced SKU [GTIN | Site Affected
& S0m065) HO_EXT_material [Draft] o1

= Cross Relerenoes
System Hame System 1D Egquivalent Externally Hanaged Stabus

P rescords: found

© 2015 Oracle Corporation T

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Implementation Example

1.

Create Visual Studio Project

Open Visual Studio 2010 (or above version) and create a class library.

For this example it is called “HDPQMLib” under .NET Framework 3.5. Normally, it’s strongly
recommended to create sub-directories for better organization.

4 [HDPOMLib

& Properties

u-B References

B Denormalizers

B DescendentRelationships
B Detectors

b
b
b
b

Create Detector

Create a Detector for PQM Issue object so that the Denormalization service would know if an Issue

has been changed for any reason.

The “PQMIssueDetector” is responsibility to detect the edit event in the Ul and deliver the related

object PKID(s) to Denormalization request queue.

To add the item to the queue it is possible to use a SQL insert statement to write to the

“DENORM_HD_REQUEST” table directly or by using pre-defined HierarchyDenormRequest data

object.

Below is an example of the SQL solution.

namespace Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.Detectors
{
public class PQMIssueDetector : DetectorBase
1
private const string DETECTOR_SQL = @"insert into DENORM_HD_REQUEST (PKID, fkSpec)
select NEWID(), a.SpecPKID
from
(
select distinct fkaffectedObject SpecPKID
from {8}
where eventType in (1,2,4) and eventSource in ('PQM.Editor'})
and timestamp »= {1} and timestamp ¢ {2}
) a
H
[ContainsDynamicSQL]
public override void Process(DetectorCheckpoint c)
1
var sql = string.Format(DETECTOR_SQL, EnumMetaClassInfo.LlifecycleEventDO.TableName,
FormatDateTimeValue(c.LastRunDate), FormatDateTimeValue(c.Mow));
var 1 = executeNonQuery(sql);
}
}
}

The most critical point is the new Detector must inherit from
“Oracle.PLM4P.SolutionPack.HierarchyDenorm.DetectorService.DetectorBase” and implement the
“Process” method. The delivery work should be done in the designated method.

In this case, the Detector makes a scan on the “commonLifecycleEventLog” table in which many
events are captured and then inserts the appropriate PKIDs in the “DENORM_HD_REQUEST”
table.To help understand the “CommonlLifecycleEventLog” better, below are some of the details of
what this table captures.

© 2015 Oracle Corporation

26

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

Action Category eventType eventSource

GSM.CreateFromTemplate
GSM.Editor
GSM.Smartlssue
SCRM.Clone

GSM.Editor
GSM.GlobalSuccession
GSM.Workflow.Resolve
SCRM.Editor
SCRM.Features.Facility.CompanyChange
SCRM.Workflow.Resolve
GSM.Workflow.Resolve
GSM.Workflow.Transition
SCRM.Workflow.Resolve
GSM.Clone
GSM.CreateFromTemplate
GSM.Newlssue
GSM.Smartlssue
SCRM.Clone

Revision

GSM.Substitute

Create

Update

Workflow

Copy

Get Latest Revision
Substitute

AN D|ID[(PIPIP(WWIWININININININ|RP|RP[R|FR

Alternatively, the following code shows how to create a request by using the data object.

IHierarchyDenormRequest newRequest = new HierarchyDenormRegquest(“<Target object PKID>");

newRequest.Save();

3. Register the Detector
In order for the RemotingContainer to recognize the new Detector it must be registered properly. To
do this, open the “<PLM for Process>\config\Extensions\HierarchyDenormConfig.xml” file with any
text editor. Add the following node to the “/HierarchyDenormConfig/Detectors” section.

<Detector id="PQMIssueDetector"
objectURL="Class:YourCompany.HDPQMLib.Detectors.PQMIssueDetector,HDPQMLib" />

4. Create Denormalizer
Find the specification type ID for the main object, in this example it is the PQM Issue, 7002. This can
be done by querying the “ORClassMetalnfo” table.

select * from orclassmetainfo where classname = 'PQMIssueDO’

Normally, there is no need to create a new specific denormalizer for each object type. Use
“Oracle.PLMA4P.SolutionPack.HierarchyDenorm.ProcessorService.DenormalizerBase” instead if the
current target object doesn’t have to overwrite some denormalization runtime Context.

In current release version, only FormulationSpecification uses this feature. This screenshot helps to
explain the concept.

© 2015 Oracle Corporation T

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

v S114938-001: HD_Formalstion? - Agle PLM for Process: G5

E'Hde,'_,i";' Home Aophcatons * Profle and Preferences
HD_Formulation2 (5114938-001) Py
%’ [PRSI SR PN (Y ——— Drat
Sumemary | Formeulakion Process ExtData Relsted Specs €55 Supporting Documents References Approval[Asdit Trail
| Inpists
Step Material Qty GJL Yid %% Batch USDIIO0G EXT Cost
| | e pateraing - Step 1 Cutput 5119521 (g 0000l [y pooo 000 b w] 0000 uong | Seod 5
Cortext: | HD _Forsulatond | (51 14520-001) -
%
[5114921-001) ‘x\
\ 0.00000 b 0.00000 by 0.00000 CLDO000
Aadd Hew Cakulate *
+ Dutputs
Oultpiit Input Haterial Daatpilt Ty pe iy HMaterial GfL Mosture GAL Sobds GAL Wd B Formmiila
L w Step 1 Output 5114535001 = o Internal = = = = = =
0.00000 b 000000 b
= Sleps
Shep Nt Step Qty Step Yiekd
re—— 0.00000 b 0.00000 b &
Add iew

As a result, this configuration node should be added to “/HierarchyDenormConfig/Denormalizers”
section.
<Denormalizer type="7002"

objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.ProcessorService.DenormalizerBase,H
ierarchyDenormProcessorService" dataTable="DENORM_HD_HIERARCHY_PQM">

<Relationships configChildKey="id">
</Relationships>
</Denormalizer>
Please note the marked “dataTable” property here. This property determines the repository of the
data generated by this Denormalizer. The direct table name should be given there; however, the
user must ensure the target data table exists. If not, use following scripts to create a new repository

for the new customized denormalization.

-- SQL Server

IF EXISTS(SELECT 1 FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = 'DENORM_HD_ HIERARCHY_PQM')
DROP TABLE DENORM_HD_HIERARCHY_PQM

GO

CREATE TABLE DENORM_HD_ HIERARCHY_PQM(
PKID int NOT NULL,
fkAncestor char(40) NOT NULL,
fkDescendent char(40) NOT NULL,
fkDescendentParent char(40) NULL,
CurrentLevel int NOT NULL,
fkParentRelationshipContext int NOT NULL,
fkAncestorRelationshipContext int NOT NULL,

© 2015 Oracle Corporation

28

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

ObjectType int NOT NULL,
fkObjectSubType char(40) NULL,
fkObjectSubTypeEx char(40) NULL,
fkRelationshipIdentifier char(40) NULL,

LastEdit datetime NOT NULL CONSTRAINT DF_DENORM_HD_HIERARCHY_PQM_LastEdit DEFAULT
(getdate()),

Remark nvarchar(512) NULL,

MaxLevel int NOT NULL,

ContextOwner char(40) NULL,

BoxLft int NOT NULL,

BoxRgt int NOT NULL,

CONSTRAINT PK_DENORM_HD_HIERARCHY_PQM PRIMARY KEY CLUSTERED

(
PKID ASC
)
)
GO
-- Oracle

DECLARE cnt NUMBER;
BEGIN
cnt:=0;

Select count(*) into cnt from user_tables where table_name =
upper('DENORM_HD HIERARCHY PQM');

If(cnt>0) then
execute immediate ('DROP TABLE DENORM_HD_HIERARCHY_PQM');
End if;
execute immediate ('
CREATE TABLE DENORM_HD_HIERARCHY_PQM(
PKID number(10,0) NOT NULL,
fkAncestor char(40) NOT NULL,
fkDescendent char(40) NOT NULL,
fkDescendentParent char(40) NULL,
CurrentLevel number(10,0) NOT NULL,
fkParentRelationshipContext number(10,0) NOT NULL,
fkAncestorRelationshipContext number(10,0) NOT NULL,
ObjectType number(10,0) NOT NULL,
fkObjectSubType char(40) NULL,
fkObjectSubTypeEx char(40) NULL,
fkRelationshipIdentifier char(40) NULL,

© 2015 Oracle Corporation

29

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

LastEdit timestamp DEFAULT CURRENT_TIMESTAMP,
Remark nvarchar2(512) NULL,

MaxLevel number(10,0) NOT NULL,

ContextOwner char(40) NULL,

BoxLft number(10,0) NOT NULL,

BoxRgt number(10,0) NOT NULL,

CONSTRAINT PK_DENORM_HD_HIERARCHY_PQM PRIMARY KEY

(
PKID

)
END;

5. Create Relationship Resolvers
Next create two relationship resolvers for “Suppliers” and “Affecteditems”.
This will be similar to the Detector development. The user should create two classes named
“IssueAffectedltem” and “IssueSupplier” under the DescendentRelationships directory of the project.
Both of them must inherit from
“Oracle.PLM4P.SolutionPack.HierarchyDenorm.ProcessorService.DescendentRelationshipBase” and
implement the “GetDescendents” method. In the implementation of the method, with the input
parameter (packaging the denormalization context of current scenario), “IssueAffectedltem”
resolver should retrieve the Affectedltem relationship children of current PQM Issue whose PKID
was being assigned in “input.fkDescendentParent”. And “IssueSupplier” resolver should retrieve the
Supplier relationship children of current PQM Issue specification whose PKID was being assigned in
“input.fkDescendentParent” as well. In fact, the input parameter should have provided whatever
the task needs.
This is the demo code:

namespace Oracle.PLM4P.SoluticnPack.HierarchyDenorm.HDPQMLib.DescendentRelationships

{
public class IssueAffectedItem : DescendentRelaticnshipBase
{
public override ICcllecticn<IRelaticonshipOutputs GetDescendents({IRelationshipInput input)
{
var r = new ReferencedObjectPropertyCollectionRetriever(

input.fkDescendentParent,
"affectedItems",
"ItemInternalID”

IH

return r.Retrieve();

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

namespace Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.DescendentRelationships

public class IssueSupplier : DescendentRelationshipBase
public override ICocllection<IRelationshipOutput» GetDescendents(IRelaticnshipInput input)
var r = new ReferencedObjectPropertyCollectionRetriever(

input.fkDescendentParent,
"POMSummary . Suppliers™,
"ItemInternalID”

IH

return r.Retrieve();

}

The solution relies on the reflection feature provided by PLM for Process core. It will be helpful to
make a basic understanding of the PLM for Process objects.

Then the object property retrievers provided by this solution pack would help to get the direct PKIDs,
and then wrap them as an output for next phase. The actual code is not complex.

Register the Resolvers

The new resolvers should be registered in configuration.

Add the two nodes to “/HierarchyDenormConfig/Denormalizers/Denormalizer/Relationships”
section. Put them under the “7002” one.

<Relationship id="ComAffectedItem"
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.DescendentRelationships.Is
sueAffectedItem,HDPQMLib$PrimaryXApp"/>

<Relationship id="ComCompany"
objectURL="Class:0Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.DescendentRelationships.Is
sueSupplier,HDPQMLib$PrimaryXApp"/>

Meanwhile, the expected relationship context for current resolver will be assigned here. Refer to
Relationship Context Definitions for more detail about the additional parameter at the end of
“objectURL” value.

Create DLL

Finally, compile the new project to be a DLL file and put it to “<PLM for

Process>\RemotingContainer\dependentAssemblies”.

© 2015 Oracle Corporation

31

© 2015 Oracle Corporation

Agile Product Lifecycle Management for Process — Hierarchy Denormalization

32

	Oracle® Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support

	Software Availability

	Chapter 1—Hierarchy Denormalization Introduction
	Purpose
	Overview

	Chapter 2—Installation
	Preparation
	Database Setup
	Application Installation
	Performance Estimation for Initial Denormalization

	Chapter 3—Configuration
	Chapter 4—Extending Hierarchy Denormalization
	Detectors
	Denormalizers
	Relationship Context Definitions
	Denormalization Processor
	Supported Relationships that are Denormalized in GSM
	Supported Relationships that are Denormalized in SCRM

	Chapter 5—Understanding the Hierarchy Denormalization Data Model
	Denormalization Results under Nested-Set Model

	Chapter 6—Extensibility References
	Implementation Example

