
Oracle® Big Data Discovery

Data Processing Guide

Version 1.1.3 • May 2016

Copyright and disclaimer
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Table of Contents

Copyright and disclaimer ..2

Preface..5
About this guide ..5
Audience..5
Conventions ...5
Contacting Oracle Customer Support ...6

Chapter 1: Introduction ..7
BDD integration with Hadoop ..7
Data Processing workflow for loading new data..9
Support for Kerberos authentication in Hadoop ...13
Preparing your data for ingest ...15

Chapter 2: Data Processing Workflows ...17
Overview of workflows...17
Working with Hive tables ...18
Sampling and attribute handling ..20
Data type discovery...21
Studio creation of Hive tables..25
Creation of a search interface ...25

Chapter 3: Data Processing Configuration...27
Date format configuration...27
Spark configuration ...28
Adding Hadoop nodes ...31
Adding a SerDe JAR to DP workflows ...33

Chapter 4: DP Command Line Interface Utility35
DP CLI overview ...35
DP CLI configuration ..37
DP CLI flags ..42
Using whitelists and blacklists ...45
DP CLI cron job..46
DP CLI workflow examples ...47
Changing Hive table properties ..49

Chapter 5: Updating Data Sets...51
About data set updates ..51
Obtaining data set keys ..52
Refresh updates ...52

Refresh flag syntax ...54
Running a Refresh update ..54

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Table of Contents 4

Incremental updates ..56
Incremental flag syntax ..59
Running an Incremental update ..61

Creating cron jobs for updates ...62

Chapter 6: Data Processing Logging ...63
DP logging overview ..63
DP logging properties file...64

DP log entry format ...67
DP log levels..68

Example of logs during a workflow ..70

Chapter 7: Data Enrichment Modules ...74
About the Data Enrichment modules...74
Entity extractor ..75
Noun Group extractor ...76
TF.IDF Term extractor ...77
Sentiment Analysis (document level) ..78
Sentiment Analysis (sub-document level) ...79
Address GeoTagger ..79
IP Address GeoTagger ..82
Reverse GeoTagger ..83
Tag Stripper ..84
Phonetic Hash...84
Language Detection ..85
Updating models ...85

Updating Sentiment Analysis models ..86
Updating TF.IDF models ...87
Updating GeoTagger models ..88

Chapter 8: Dgraph Data Model ...91
About the data model ...91
Data records ..91
Attributes ..91

Assignments on attributes ..92
Attribute data types ...92

Supported languages..93

Chapter 9: Dgraph HDFS Agent ..96
About the Dgraph HDFS Agent ..96
Importing records from HDFS for ingest ..96
Exporting data from Studio..97
Dgraph HDFS Agent logging ..98

Log entry format ..100
Logging properties file ..102

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Preface
Oracle Big Data Discovery is a set of end-to-end visual analytic capabilities that leverage the power of Hadoop
to transform raw data into business insight in minutes, without the need to learn complex products or rely only
on highly skilled resources.

About this guide
This guide describes the Data Processing component of Big Data Discovery (BDD). This guide provides a
"behind the scenes" view of Big Data Discovery processes and logic used for various tasks within Data
Processing, such as sampling and loading of data.

The Data Processing workflow is launched either from Studio, in which case it runs automatically, or you can
control it through the command line interface (DP CLI). In either case, when the workflow runs, it manifests
itself in various parts of the user interface, such as Explore, and Transform in Studio. For example, new
source data sets become available for your discovery, in Explore. Or, you can make changes to the project
data sets in Transform. Behind all these actions, lie the processes in Big Data Discovery known as Data
Processing workflows. This guide describes these processes in detail.

The guide assumes that you are familiar with the Hadoop environment and services, and that you have
already installed Big Data Discovery and used Studio for basic data exploration and analysis.

Audience
This guide is intended for Hadoop IT administrators, Hadoop data developers, and ETL data engineers and
data architects who are responsible for loading source data into Big Data Discovery.

This guide is specifically targeted for Hadoop developers and administrators who want to know more about
data processing steps in Big Data Discovery, and to understand what changes take place when these
processes run within Hadoop. The guide covers all aspects of data processing, from initial data discovery,
sampling and data enrichments, to data transformations that can be launched at later stages of data analysis
in BDD.

Conventions
The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code segments within a paragraph.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Preface 6

Typeface Meaning

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Variable.

File Path This formatting is used for file names and paths.

Symbol conventions

The following table describes symbol conventions used in this document.

Symbol Description Example Meaning

> The right angle bracket, File > New > Project From the File menu,
or greater-than sign, choose New, then from
indicates menu item the New submenu,
selections in a graphic choose Project.
user interface.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$ORACLE_HOME Indicates the absolute path to your Oracle Middleware home directory,
where BDD and WebLogic Server are installed.

$BDD_HOME Indicates the absolute path to your Oracle Big Data Discovery home
directory, $ORACLE_HOME/BDD-<version>.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home directory. For
example, if your domain is named bdd-<version>_domain, then
$DOMAIN_HOME is $ORACLE_HOME/user_projects/domains/bdd-
<version>_domain.

$DGRAPH_HOME Indicates the absolute path to your Dgraph home directory,
$BDD_HOME/dgraph.

Contacting Oracle Customer Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support.
This includes important information regarding Oracle software, implementation questions, product and solution
help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

https://support.oracle.com

Chapter 1

Introduction

This section provides a high-level introduction to the Data Processing component of Big Data Discovery.

BDD integration with Hadoop

Data Processing workflow for loading new data

Support for Kerberos authentication in Hadoop

Preparing your data for ingest

BDD integration with Hadoop
This topic discusses how BDD fits into the Hadoop environment.

Hadoop is a platform for storing, accessing, and analyzing all kinds of data: structured, unstructured, and data
from the Internet Of Things. Hadoop is broadly adopted by IT organizations, especially those that have high
volumes of data.

As a data scientist, you often must practice two kinds of analytics work:

• In operational analytics, you may work on model fitting and its analysis. For this, you may write code for
machine-learning models, and issue queries to these models at scale, with real-time incoming updates to
the data. Such work involves relying on the Hadoop ecosystem. Big Data Discovery allows you to work
without leaving the Hadoop environment that the rest of your work takes place in. BDD supports an
enterprise-quality business intelligence experience directly on Hadoop data, with high numbers of
concurrent requests and low latency of returned results.

• In investigative analytics, you may use interactive statistical environments, such as R to answer ad-hoc,
exploratory questions and gain insights. BDD also lets you export your data from BDD back into Hadoop,
for further investigative analysis with other tools within your Hadoop deployment.

By coupling tightly with Hadoop, Oracle Big Data Discovery achieves data discovery for any data, at
significantly-large scale, with high query-processing performance.

About Hadoop distributions

Big Data Discovery works with very large amounts of data which may already be stored within HDFS. A
Hadoop distribution is a prerequisite for the product, and it is critical for the functionality provided by the
product.

Big Data Discovery supports:

• CLoudera Distribution for Hadoop (CDH). Cloudera CDH is a complete, tested, and popular distribution
of Apache Hadoop and related projects. CDH is 100% Apache-licensed open source and offers unified
batch processing, interactive SQL and interactive search, and role-based access controls. CDH delivers

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 8

the core elements of Hadoop — scalable storage and distributed computing — along with additional
components, such as a user interface, plus necessary enterprise capabilities, such as security.

• HortonWorks Data Platform (HDP). HDP is a data platform for multi-workload data processing across an
array of processing methods, supported by key capabilities required of an enterprise data platform,
including data governance, security and operations.

BDD uses the HDFS, Hive, Spark, and YARN components packaged with a specific Hadoop distribution (CDH
or HDP). For detailed information on version support and packages, see the Installation and Deployment
Guide.

BDD inside the Hadoop Infrastructure

Big Data Discovery brings itself to the data that is natively available in Hadoop.

BDD maintains a list of all of a company’s data sources found in Hive and registered in HCatalog. When new
data arrives, BDD lists it in Studio's Catalog, decorates it with profiling and enrichment metadata, and, when
you take this data for further exploration, takes a sample of it. It also lets you explore the source data further
by providing an automatically-generated list of powerful visualizations that illustrate the most interesting
characteristics of this data. This helps you cut down on time spent for identifying useful source data sets, and
on data set preparation time; it increases the amount of time your team spends on analytics leading to insights
and new ideas.

BDD is embedded into your data infrastructure, as part of Hadoop ecosystem. This provides operational
simplicity:

• Nodes in the BDD cluster deployment can share hardware infrastructure with the existing Hadoop cluster
at your site. Note that the existing Hadoop cluster at your site may still be larger than a subset of Hadoop
nodes on which data-processing-centric components of BDD are deployed.

• Automatic indexing, data profiling, and enrichments take place when your source Hive tables are
discovered by BDD. This eliminates the need for a traditional approach of cleaning and loading data into
the system, prior to analyzing it.

• BDD performs distributed query evaluation at a high scale, letting you interact with data while analyzing it.

A Studio component of BDD also takes advantage of being part of Hadoop ecosystem:

• It brings you insights without having to work for them — this is achieved by data discovery, sampling,
profiling, and enrichments.

• It lets you create links between data sets.

• It utilizes its access to Hadoop as an additional processing engine for data analysis.

Benefits of integration of BDD with Hadoop ecosystem

Big Data Discovery is deployed directly on a subset of nodes in the pre-existing Hadoop cluster where you
store the data you want to explore, prepare, and analyze.

By analyzing the data in the Hadoop cluster itself, BDD eliminates the cost of moving data around an
enterprise’s systems — a cost that becomes prohibitive when enterprises begin dealing with hundreds of
Terabytes of data. Furthermore, a tight integration of BDD with HDFS allows profiling, enriching, and indexing
data as soon as the data enters the Hadoop cluster in the original file format. By the time you want to see a
data set, BDD has already prepared it for exploration and analysis. BDD leverages the resource management
capabilities in Hadoop to let you run mixed-workload clusters that provide optimal performance and value.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 9

Finally, direct integration of BDD with the Hadoop ecosystem streamlines the transition between the data
preparation done in BDD and the advanced data analysis done in tools such as Oracle R Advanced Analytics
for Hadoop (ORAAH), or other 3rd party tools. BDD lets you export a cleaned, sampled data set as a Hive
table, making it immediately available for users to analyze in ORAAH. BDD can also export data as a file and
register it in Hadoop, so that it is ready for future custom analysis.

Data Processing workflow for loading new data
When the Data Processing component runs, it performs a series of steps; these steps are called a data
processing workflow. Many workflows exist, for loading initial data, updating data, or for cleaning up unused
data sets. This topic discusses the workflow that runs inside Data Processing component of BDD when new
data is loaded.

Loading new data is a data processing workflow that includes:

• Discovery of source data in Hive tables

• Loading and creating a sample of a data set

• Running a select set of enrichments on this data set

• Profiling the data

• Transforming the data set

• Exporting data from Big Data Discovery into Hadoop

More information on these stages is included in this topic after the diagram.

Note: The Data Processing workflow shown in this topic is for loading data; it is one of many possible
workflows. This workflow does not show updating data that has already been loaded. For information
on running Refresh and Incremental update operations, see Updating Data Sets on page 50.

You launch the data processing workflow for loading new data either from Studio (by creating a Hive table), or
by running the Data Processing CLI (Command Line Interface) utility. As a Hadoop system administrator, you
can control some steps in this workflow, while other steps run automatically in Hadoop.

The following diagram illustrates how the data processing workflow for loading new data fits within Big Data
Discovery:

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 10

The steps in this diagram are:

1. The workflow for data loading starts either from Studio or the Data Processing CLI.

2. The Spark job is launched on Hadoop nodes that have Data Processing portion of Big Data Discovery
installed on them.

3. The counting, sampling, discovery and transformations take place and are processed on CDH nodes. The
information is written to HDFS and sent back.

4. The data processing workflow launches the process of loading the records and their schema into the
Dgraph, for each discovered source data set.

To summarize, during an initial data load, the Data Processing component of Big Data Discovery counts data
in Hive tables, and optionally performs data set sampling. It then runs an initial data profiling, and applies
some enrichments. These stages are discussed in this topic.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 11

Sampling of a data set

If you work with a sampled subset of the records from large tables discovered in HDFS, you are using sample
data as a proxy for the full tables. This lets you:

• Avoid latency and increase the interactivity of data analysis, in Big Data Discovery

• Analyze the data as if using the full set.

Data Processing does not always perform sampling; Sampling occurs only if a source data set contains more
records than the default sample size used during BDD deployment. The default sample size used during
deployment is 1 million records. When you subsequently run data processing workflow yourself, using the
Command Line Interface (DP CLI), you can override the default sample size and specify your own.

Note: If the number of records in the source data set is less than the value specified for the sample
size, then no sampling takes place and Data Processing loads the source data in full.

Samples in BDD are taken as follows:

• Data Processing takes a random sample of the data, using either the default size sample, or the size you
specify.

• Based on the number of rows in the source data and the number of rows requested for the sample, BDD
passes through the source data and, for each record, includes it in the sample with a certain (equal)
probability. As a result, Data Processing creates a simple random sampling of records, in which:

• Each element has the same probability of being chosen

• Each subset of the same size has an equal probability of being chosen.

These requirements, combined with the large absolute size of the data sample, mean that samples taken by
Big Data Discovery allow for making reliable generalizations on the entire corpus of data.

Profiling of a data set

Profiling is a process that determines the characteristics (columns) in the Hive tables, for each source Hive
table discovered by the Data Processing in Big Data Discovery during data load.

Profiling is carried out by the data processing workflow for loading data and results in the creation of metadata
information about a data set, including:

• Attribute value distributions

• Attribute type

• Topics

• Classification

For example, a specific data set can be recognized as a collection of structured data, social data, or
geographic data.

Using Explore in Studio, you can then look deeper into the distribution of attribute values or types. Later,
using Transform, you can change some of these metadata. For example, you can replace null attribute
values with actual values, or fix other inconsistencies.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 12

Enrichments

Enrichments are derived from a data set's additional information such as terms, locations, the language used,
sentiment, and views. Big Data Discovery determines which enrichments are useful for each discovered data
set, and automatically runs them on samples of the data. As a result of automatically applied enrichments,
additional derived metadata (columns) are added to the data set, such as geographic data, a suggestion of the
detected language, or positive or negative sentiment.

The data sets with this additional information appear in Catalog in Studio. This provides initial insight into
each discovered data set, and lets you decide if the data set is a useful candidate for further exploration and
analysis.

In addition to automatically-applied enrichments, you can also apply enrichments using Transform in Studio,
for a project data set. From Transform, you can configure parameters for each type of enrichment. In this
case, an enrichment is simply another type of available transformation.

Some enrichments allow you to add additional derived meaning to your data sets, while others allow you to
address invalid or inconsistent values.

Transformations

Transformations are changes to a data set. Transformations allow you to perform actions such as:

• Changing data types

• Changing capitalization of values

• Removing attributes or records

• Splitting columns

• Grouping or binning values

• Extracting information from values

Transformations can be thought of as a substitute for an ETL process of cleaning your data before or during
the data loading process. Transformations can be used to overwrite an existing attribute, or create new
attributes. Some transformations are enrichments, and as such, are applied automatically when data is
loaded.

Most transformations are available directly as specific options in Transform in Studio. Once the data is
loaded, you can use a list of predefined Transform functions, to create a transformation script.

Exporting data from Big Data Discovery into HDFS

You can export the results of your analysis from Big Data Discovery into HDFS/Hive; this is known as
exporting to HDFS.

From the perspective of Big Data Discovery, the process is about exporting the files from Big Data Discovery
into HDFS/Hive. From the perspective of HDFS, you are importing the results of your work from Big Data
Discovery into HDFS. In Big Data Discovery, the Dgraph HDFS Agent is responsible for exporting to HDFS
and importing from it.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 13

Support for Kerberos authentication in Hadoop
Data Processing components can be configured to run in a cluster that has enabled Kerberos authentication.

The Kerberos Network Authentication Service version 5, defined in RFC 1510, provides a means of verifying
the identities of principals in a Hadoop environment. Hadoop uses Kerberos to create secure communications
among its various components and clients. Kerberos is an authentication mechanism, in which users and
services that users want to access rely on the Kerberos server to authenticate each to the other. The Kerberos
server is called the Key Distribution Center (KDC). At a high level, it has three parts:

• A database of the users and services (known as principals) and their respective Kerberos passwords

• An authentication server (AS) which performs the initial authentication and issues a Ticket Granting Ticket
(TGT)

• A Ticket Granting Server (TGS) that issues subsequent service tickets based on the initial TGT

The principal gets service tickets from the TGS. Service tickets are what allow a principal to access various
Hadoop services.

To ensure that Data Processing workflows can run on a secure Hadoop cluster, these three BDD components
are enabled for Kerberos support:

• Dgraph HDFS Agent

• Data Processing workflows (whether initiated by Studio or the DP CLI)

• Studio

All three BDD components share one principal and keytab. Note that there is no authorization support (that is,
these components do not verify permissions for users).

The BDD components are enabled for Kerberos support at installation time, via the ENABLE_KERBEROS
parameter in the bdd.conf file. The bdd.conf file also has parameters for specifying the name of the
Kerberos principal, as well as paths to the Kerberos keytab file and the Kerberos configuration file. For details
on these parameters, see the Installation and Deployment Guide.

Note: If you use Sentry for authorization in your Hadoop cluster, you must configure it to grant BDD
access to your Hive tables.

Kerberos support in DP workflows

Support for Kerberos authentication ensures that Data Processing workflows can run on a secure Hadoop
cluster. The support for Kerberos includes the DP CLI, via the Kerberos properties in the edp.properties
configuration file.

The spark-submit script in Spark's bin directory is used to launch DP applications on a cluster, as follows:

1. Prior to the call to spark-submit, DP logs in using the local keytab. spark-submit grabs our
credentials during job submission to authenticate with YARN and Spark.

2. Spark gets the HDFS delegation tokens for the name nodes listed in the
spark.yarn.access.namenodes property and the workflow is able to access HDFS.

3. When the workflow starts, DP logs in using the cluster keytab.

4. When the DP Hive Client is initialized, a SASL client is used along with the Kerberos credentials on the
node to authenticate with the Hive Metastore. Once authenticated, the DP Hive Client can communicate
with the Hive Metastore.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 14

When a Hive JDBC connection is used, the credentials are used to authenticate with Hive, and thus be able to
use the service.

Kerberos support in Dgraph HDFS Agent

In BDD, the Dgraph HDFS Agent is a client for Hadoop HDFS because it reads and writes HDFS files from
and to HDFS. For Kerberos support, the Dgraph HDFS Agent will be started with three Kerberos flags:

• The --principal flag specifies the name of the principal.

• The --keytab flag specifies the path to the principal's keytab.

• The --krb5conf flag specifies the path to the krb5.conf configuration file.

The values for the flag arguments are set by the installation script.

When started, the Dgraph HDFS Agent logs in with the specified principal and keytab. If the login is
successful, the Dgraph HDFS Agent passed Kerberos authentication and starts up successfully. Otherwise,
HDFS Agent cannot be started.

Kerberos support in Studio

Studio also has support for running the following jobs in a Hadoop Kerberos environment:

• Transforming data sets

• Uploading files

• Export data

The Kerberos login is configured via the following properties in portal-ext.properties:

• kerberos.principal

• kerberos.keytab

• kerberos.krb5.location

The values for these properties are inserted during the installation procedure.

Kerberos support for bdd-admin commands
In addition to support for the components listed above, the following bdd-admin script commands work in a
Kerberos-enabled environment:

• get-logs command

• backup command

• restore command

For details on those commands, see the Administrator's Guide.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Introduction 15

Preparing your data for ingest
Although not required, it is recommended that you clean your source data so that it is in a state that makes
Data Processing workflows run smoother and prevents ingest errors.

Data Processing does not have a component that manipulates the source data as it is being ingested. For
example, Data Processing cannot remove invalid characters (that are stored in the Hive table) as they are
being ingested. Therefore, you should use Hive or third-party tools to clean your source data.

After a data set is created, you can manipulate the contents of the data set by using the Transform functions
in Studio.

Removing invalid XML characters

During the ingest procedure that is run by Data Processing, it is possible for a record to contain invalid data,
which will be detected by the Dgraph during the ingest operation. Typically, the invalid data will consist of
invalid XML characters. A valid character for ingest must be a character according to production 2 of the XML
1.0 specification.

If an invalid XML character is detected, it is replaced with an escaped version. In the escaped version, the
invalid character is represented as a decimal number surrounded by two hash characters (##) and a semi-
colon (;). For example, a control character whose 32-bit value is decimal 15 would be represented as

##15;

Version 1.1.3 • May 2016

The record with the replaced character would then be ingested.

Fixing date formats

Ingested date values come from one (or more) Hive table columns:

• Columns configured as DATE data types.

• Columns configured as TIMESTAMP data types.

• Columns configured as STRING data types but having date values. The date formats that are supported
via this data type discovery method are listed in the dateFormats.txt file. For details on this file, see
Date format configuration on page 27.

Make sure that dates in STRING columns are well-formed and conform to a format in the dateFormats.txt
file, or else they will be ingested as string values, not as Dgraph mdex:dateTime data types.

In addition, make sure that the dates in a STRING column are valid dates. For example, the date Mon, Apr
07, 1925 is invalid because April 7, 1925 is a Tuesday, not a Monday. Therefore, this invalid date would
cause the column to be detected as a STRING column, not a DATE column.

Uploading Excel and CSV files

In Studio, you can create a new data set by uploading data from an Excel or CSV file. The data upload for
these file types is always done as STRING data types.

For this reason, you should make sure that the file's column data are of consistent data types. For example, if
a column is supposed to store integers, check that the column does not have non-integer data. Likewise,
check that date input conforms to the formats in the dateFormats.txt file.

Note that BDD cannot load multimedia or binary files (other than Excel).

Oracle® Big Data Discovery: Data Processing Guide

Introduction 16

Non-splittable input data handling for Hive tables

Hive tables supports the use of input data that has been compressed using non-splittable compression at the
individual file level. However, Oracle discourages using a non-splittable input format for Hive tables that will be
processed by BDD. The reason is that when the non-splittable compressed input files are used, the suggested
input data split size specified by the DP configuration will not be honored by Spark (and Hadoop), as there is
no clear split point on those inputs. In this situation, Spark (and Hadoop) will read and treat each compressed
file as a single partition, which will result in a large amount of resources being consumed during the workflow.

If you must non-splittable compression, you should use block-based compression, where the data is divided
into smaller blocks first and then the data is compressed within each block. More information is available at:
https://cwiki.apache.org/confluence/display/Hive/CompressedStorage

In summary, you are encouraged to use splittable compression, such as BZip2. For information on choosing a
data compression format, see: http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-
x/topics/admin_data_compression_performance.html

Anti-Virus and Malware

Oracle strongly encourages you to use anti-virus products prior to uploading files into Big Data Discovery. The
Data Processing component of BDD either finds Hive tables that are already present and then loads them, or
lets you load data from new Hive tables, using DP CLI. In either case, use anti-virus software to ensure the
quality of the data that is being loaded.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

https://cwiki.apache.org/confluence/display/Hive/CompressedStorage
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-3-x/topics/admin_data_compression_performance.html

Chapter 2

Data Processing Workflows

This section describes how Data Processing discovers data in Hive tables and prepares it for ingest into the
Dgraph.

Overview of workflows

Working with Hive tables

Sampling and attribute handling

Data type discovery

Studio creation of Hive tables

Creation of a search interface

Overview of workflows
This topic provides an overview of Data Processing workflows.

A Data Processing (DP) workflow is the process of extracting data and metadata from a Hive table and
ingesting it as a data set in the Dgraph. The extracted data is turned into Dgraph records while the metadata
provides the schema for the records, including the Dgraph attributes that define the BDD data set. Data
Processing workflows are launched from Studio or by running the DP CLI (command line interface) utility.

Once data sets are ingested into the Dgraph, Studio users can view the data sets and query the records in
them. Studio users can also modify (transform) the data set and even delete it.

A Data Processing job is run by a Spark worker. Data Processing runs asynchronously — it puts a Spark job
on the queue for each Hive table. When the first Spark job on the first Hive table is finished, the second Spark
job (for the second Hive table) is started, and so on.

Note that although a BDD data set can be deleted by a Studio user, the Data Processing component of BDD
software can never delete a Hive table. Therefore, it is up to the Hive administrator to delete obsolete Hive
tables.

DataSet Inventory

The DataSet Inventory (DSI) is an internal structure that lets Data Processing keep track of the available data
sets. Each data set in the DSI includes metadata that describes the characteristics of that data set. For
example, when a data set is first created, the names of the source Hive table and the source Hive database
are stored in the metadata for that data set. The metadata also includes the schemas of the data sets.

The DataSet Inventory contains an ingestStatus attribute for each data set, which indicates whether the
data set has been completely provisioned (and therefore is ready to be added to a Studio project). The flag is
set by the Dgraph HDFS Agent to denote the completion of an ingest.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 18

Language setting for attributes
During a normal Data Processing workflow, the default language setting for all attributes is unknown (which
means a DP workflow does not use a language code for any specific language). Both Studio and the DP
Command Line Interface utility can be configured with a specific language code to be used for a workflow.

Working with Hive tables
Hive tables contain the data for the Data Processing workflows.

When processed, each Hive table results in the creation of a BDD data set, and that data set contains records
from the Hive table. Note that a Hive table must contain at least one record in order for it to be processed.
That is, Data Processing does not create a data set for an empty table.

Starting workflows

A Data Processing workflow can be started in one of two ways:

• A user in Studio invokes an operation that creates a new Hive table. After the Hive table is created, Studio
starts the Data Processing process on that table.

• The DP CLI (Command Line Interface) utility is run.

The DP CLI, when run either manually or from a cron job, invokes the BDD Hive Table Detector, which can
find a Hive table that does not already exist in the DataSet Inventory. A Data Processing workflow is then run
on the table. For details on running the DP CLI, see DP Command Line Interface Utility on page 34.

New Hive table workflow and diagram

Both Studio and the DP CLI can be configured to launch a Data Processing workflow that does not use the
Data Enrichment modules. The following high-level diagram shows a workflow in which the Data Enrichment
modules are run:

The steps in the workflow are:

1. The workflow is started for a single Hive table by Studio or by the DP CLI.

2. The job is started and the workflow is assigned to a Spark worker. Data is loaded from the Hive table's
data files. The total number of rows in the table is counted, the data sampled, and a primary key is added.
The number of processed (sampled) records is specified in the Studio or DP CLI configuration.

3. The data from step 2 is written to an Avro file in HDFS. This file will remain in HDFS as long as the
associated data set exists.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 19

4. The data set schema and metadata are discovered. This includes discovering the data type of each
column, such as long, geocode, and so on. (The DataSet Inventory is also updated with the discovered
metadata. If the DataSet Inventory did not exist, it is created at this point.)

5. The Data Enrichment modules are run. A list of recommended enrichments is generated based on the
results of the discovery process. The data is enriched using the recommended enrichments. If running
enrichments is disabled in the configuration, then this step is skipped.

6. The data set is created in the Dgraph, using settings from steps 4 and 5. The DataSet Inventory is also
updated to include metadata for the new data set.

7. The data set is provisioned (that is, HDFS files are written for ingest) and the Dgraph HDFS Agent is
notified to pick up the HDFS files, which are sent to the Bulk Load Interface for ingesting into the Dgraph.

8. After provisioning has finished, the Dgraph HDFS Agent updates the ingestStatus attribute of the
DataSet Inventory with the final status of the provisioning (ingest) operation.

Handling of updated Hive tables

Existing BDD data sets are not automatically updated if their Hive source tables are updated. For example,
assume that a data set has been created from a specific Hive table. If that Hive table is updated with new
data, the associated BDD data set is not automatically changed. This means that now the BDD data set is not
in synch with its Hive source table.

To update the data set from the updated Hive table, you must run the DP CLI with either the --refreshData
flag or the --incrementalUpdate flag. For details, see Updating Data Sets on page 50.

Handling of deleted Hive tables

BDD will never delete a Hive table, even if the associated BDD data set has been deleted from Studio.
However, it is possible for a Hive administrator to delete a Hive table, even if a BDD data set has been
created from that table. In this case, the BDD data set is not automatically deleted and will still be viewable in
Studio. (A data set whose Hive source table was deleted is called an orphaned data set.)

The next time that the DP CLI runs, it detects the orphaned data set and runs a Data Processing job that
deletes the data set.

Handling of empty Hive tables

Data Processing does not process empty Hive tables. Instead, the Spark driver throws an
EmptyHiveTableException when running against an empty Hive table. This causes the Data Processing
job to not create a data set for the table. Note that the command may appear to have successfully finished,
but the absence of the data set means the job ultimately failed.

Handling of Hive tables created with header/footer information

Data Processing does not support processing Hive tables that are based on files (such as CSV files)
containing header/footer rows. In this case, the DP workflow will ignore the header and footer set on the Hive
table using the skip.header.line.count and skip.footer.line.count properties. If a workflow on
such a table does happen to succeed, the header/footer rows will get added to the resulting BDD data set as
records, instead of being omitted.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 20

Deletion of Studio projects

When a Studio user deletes a project, Data Processing is called and it will delete the transformed data sets in
the project. However, it will not delete the data sets which have not been transformed.

Sampling and attribute handling
When creating a new data set, you can specify the maximum number of records that the Data Processing
workflow should process from the Hive table.

The number of sampled records from a Hive table is set by the Studio or DP CLI configuration:

• In Studio, the bdd.maxRecordsToProcess parameter in the Data Processing Settings panel on
Studio's Control Panel.

• In DP CLI, the maxRecordsForNewDataSet configuration parameter or the --maxRecords flag.

If the settings of these parameters are greater than the number of records in the Hive table, then all the Hive
records are processed. In this case, the data set will be considered a full data set.

Discovery for attributes

The Data Processing discovery phase discovers the data set metadata in order to suggest a Dgraph attribute
schema. For detailed information on the Dgraph schema, see Dgraph Data Model on page 90.

Record and value search settings for string attributes

When the DP data type discoverer determines that an attribute should be a string attributes, the settings for
the record search and value search for the attribute are configured as follows:

• The attribute is configured as value-searchable if the average string length is equal or less than 200
characters.

• The attribute is configured as record searchable if the average string length is greater than 200
characters.

In both cases, "average string length" refers to the average string length of the values for that column.

You can override this behavior by using the --disableSearch flag with the DP CLI. With this flag, the
record search and value search settings for string attributes are set to false, regardless of the average String
length of the attribute values. Note the following about using the --disableSearch flag:

• The flag can used only for provisioning workflows (when a new data set is created from a Hive table) and
for refresh update workflows (when the DP CLI --refreshData flag is used). The flag cannot be used
with any other type of workflow (for example, workflows that use the --incrementalUpdate flag are not
supported with the --disableSearch flag).

• A disable search workflow can be run only with the DP CLI. This functionality is not available in Studio.

Effect of NULL values on column conversion

When a Hive table is being sampled, a Dgraph attribute is created for each column. The data type of the
Dgraph attribute depends on how Data Processing interprets the values in the Hive column. For example, if
the Hive column is of type String but it contains Boolean values only, the Dgraph attribute is of type

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 21

mdex:boolean. NULL values are basically ignored in the Data Processing calculation that determines the
data type of the Dgraph attribute.

Handling of Hive column names that are invalid Avro names

Data Processing uses Avro files to store data that should be ingested into the Dgraph (via the Dgraph HDFS
Agent). In Avro, attribute names must start with an alphabetic or underscore character (that is, [A-Za-z_]), and
the rest of the name can contain only alphanumeric characters and underscores (that is, [A-Za-z0-9_]).

Hive column names, however, can contain almost any Unicode characters, including characters that are not
allowed in Avro attribute names. This format was introduced in Hive 0.13.0.

Because Data Processing uses Avro files to do ingest, this limits the names of Dgraph attributes to the same
rules as Avro. This means that the following changes are made to column names when they are stored as
Avro attributes:

• Any non-ASCII alphanumeric characters (in Hive column names) are changed to _ (the underscore).

• If the leading character is disallowed, that character is changed to an underscore and then the name is
prefixed with "A_". As a result, the name would actually begin with "A__" (an A followed by two
underscores).

• If the resulting name is a duplicate of an already-process column name, a number is appended to the
attribute name to make it unique. This could happen especially with non-English column names.

For example:

Hive column name: @first-name

Changed name: A__first_name

Version 1.1.3 • May 2016

In this example, the leading character (@) is not a valid Avro character and is, therefore, converted to an
underscore (the name is also prefixed with "A_"). The hyphen is replaced with an underscore and the other
characters are unchanged.

Attribute names for non-English tables would probably have quite a few underscore replacements and there
could be duplicate names. Therefore, a non-English attribute name may look like this: A_______2

Data type discovery
When Data Processing retrieves data from a Hive table, the Hive data types are mapped to Dgraph data types
when the data is ingested into the Dgraph.

The discovery phase of a workflow means that Data Processing discovers the data set metadata in order to
determine the Dgraph attribute schema. Once Data Processing can ascertain what the data type is of a given
Hive table column, it can map that Hive column data type to a Dgraph attribute data type.

Hive-to-Dgraph data conversions
When a Hive table is created, a data type is specified for each column (such as BOOLEAN or DOUBLE). During
a Data Processing workflow, a Dgraph attribute is created for each Hive column. The Dgraph data type for the
created attribute is based on the Hive column data type. For more information on the data model, including
information about what are Dgraph records, and what are Dgraph attributes, see the section Dgraph Data
Model on page 90.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Workflows 22

This table lists the mappings for supported Hive data types to Dgraph data types. If a Hive data type is not
listed, it is not supported by Data Processing and the data in that column will not be provisioned.

Hive Data Type Hive Description Dgraph Data Type Conversion

ARRAY<data_type> Array of values of a Hive data type (such mdex:data_type-set
as, ARRAY<STRING>)

where data_type is a Dgraph
data type in this column. These -
set data types are for multi-
assign attributes (such as
mdex:string-set).

BIGINT 8-byte signed integer. mdex:long

BOOLEAN Choice of TRUE or FALSE. mdex:boolean

CHAR Character string with a fixed length mdex:string
(maximum length is 255)

DATE Represents a particular year/month/day, mdex:dateTime
in the form:

YYYY-MM-DD

Date types do not have a time-of-day
component. The range of values
supported is 0000-01-01 to 9999-12-31.

DECIMAL Numeric with a precision of 38 digits. mdex:double

DOUBLE 8-byte (double precision) floating point mdex:double
number.

FLOAT 4-byte (single precision) floating point mdex:double
number.

INT 4-byte signed integer. mdex:long

SMALLINT 2-byte signed integer. mdex:long

STRING String values with a maximum of 32,767 mdex:string
bytes.

Note that a String column can be
mapped as a Dgraph non-string
data type if 100% of the values are
actually in another data format,
such as long, dateTime, and so
on.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 23

Hive Data Type Hive Description Dgraph Data Type Conversion

TIMESTAMP Represents a point in time, with an mdex:dateTime
optional nanosecond precision. Allowed
date values range from 1400-01-01 to
9999-12-31.

TINYINT 1-byte signed integer. mdex:long

VARCHAR Character string with a length specifier mdex:string
(between 1 and 65355)

Data type discovery for Hive string columns
If a Hive column is configured with a data type other than STRING, Data Processing assumes that the formats
of the record values in that column are valid. In this case, a Dgraph attributes derived from the column
automatically use the mapped Dgraph data type listed in the table above.

String columns, however, often store data that really is non-string data (for example, integers can be stored as
strings). When it analyzes the content of Hive table string columns, Data Processing makes a determination
as to what type of data is actually stored in each column, using this algorithm:

• If 100% of the column values are of a certain type, then the column values are ingested into the Dgraph
as their Dgraph data type equivalents (see the table above).

• If the data types in the column are mixed (such as integers and dates), then the Dgraph data type for that
column is string (mdex:string). The only exception to this rule is if the column has a mixture of integers
and doubles (or floats); in this case, the data type maps to mdex:double (because an integer can be
ingested as a double but not vice-versa).

For example, if the Data Processing discoverer concludes that a given string column actually stores geocodes
(because 100% of the column values are proper geocodes), then those geocode values are ingested as
Dgraph mdex:geocode data types. If however, 95% of the column values are geocodes but the other 5% are
another data type, then the data type for the column defaults to the Dgraph mdex:string data type. Note,
however, that double values that are in scientific notation (such as "1.4E-4") are evaluated as strings, not as
doubles.

To take another example, if 100% of a Hive string column consists of integer values, then the values are
ingested as Dgraph mdex:long data types. Any valid integer format is accepted, such as "10", "-10", "010",
and "+10".

Space-padded values

Hive values that are padded with spaces are treated as follows:

• All integers with spaces are converted to strings (mdex:string)

• Doubles with spaces are converted to strings (mdex:string)

• Booleans with spaces are converted to strings (mdex:string)

• Geocodes are not affected even if they are padded with spaces.

• All date/time/timestamps are not affected even if they are padded with spaces.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Workflows 24

Supported geocode formats

The following Hive geocode formats are supported during the discovery phase and are mapped to the Dgraph
mdex:geocode data type:

Latitude Longitude
Latitude, Longitude
(Latitude Longitude)
(Latitude, Longitude)

Version 1.1.3 • May 2016

For example:

40.55467767 -54.235
40.55467767, -54.235
(40.55467767 -54.235)
(40.55467767, -54.235)

Note that the comma-delimited format requires a space after the comma.

If Data Processing discovers any of these geocode formats in the column data, the value is ingested into the
Dgraph as a geocode (mdex:geocode) attribute.

Supported date formats
Dates that are stored in Hive tables as DATE values are assumed to be valid dates for ingest. These DATE
values are ingested as Dgraph mdex:dateTime data types.

For a date that is stored in a Hive table as a string, Data Processing checks it against a list of supported date
formats. If the string date matches one of the supported date formats, then it is ingested as an
mdex:dateTime data type. The date formats that are supported by Data Processing are listed in the
dateFormats.txt file. Details on this file are provided in the topic Date format configuration on page 27.

In addition, Data Processing verifies that each date in a string column is a valid date. If a date is not valid,
then the column is considered a string column, not a date column.

As an example of how a Hive column date is converted to a Dgraph date, a Hive date value of:

2013-10-23 01:23:24.1234567

will be converted to a Dgraph dateTime value of:

2013-10-23T05:23:24.123Z

The date will be ingested as a Dgraph mdex:dateTime data type.

Support of timestamps
Hive TIMESTAMP values are assumed to be valid dates and are ingested as Dgraph mdex:dateTime data
types. Therefore, their format is not checked against the formats in the dateFormats.txt file.

When shown in Studio, Hive TIMESTAMP values will be formatted as "yyyy-MM-dd" or "yyyy-MM-dd
HH:mm:ss" (depending on if the values in that column have times).

Note that if all values in a Hive timestamp column are not in the same format, then the time part in the Dgraph
record becomes zero. For example, assume that a Hive column contains the following values:

2013-10-23 01:23:24
2012-09-22 02:24:25

Because both timestamps are in the same format, the corresponding values created in the Dgraph records
are:

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Workflows 25

2013-10-23T01:23:24.000Z
2012-09-22T02:24:25.000Z

Version 1.1.3 • May 2016

Now suppose a third row is inserted into that Hive table without the time part. The Hive column now has:

2013-10-23 01:23:24
2012-09-22 02:24:25
2007-07-23

In this case, the time part of the Dgraph records (the mdex:dateTime value) becomes zero:

2013-10-23T00:00:00.000Z
2012-09-22T00:00:00.000Z
2007-07-23T00:00:00.000Z

The reason is that if there are different date formats in the input data, then the Data Processing discoverer
selects the more general format that matches all of the values, and as a result, the values that have more
specific time information may end up losing some information.

To take another example, the pattern "yyyy-MM-dd" can parse both "2001-01-01" and "2001-01-01 12:30:23".
However, a pattern like "yyyy-MM-dd hh:mm:ss" will throw an error when applied on the short string "2001-01-
01". Therefore, the discoverer picks the best (longest possible) choice of "yyyy-MM-dd" that can match both
"2001-01-01" and "2001-01-01 12:30:23". Because the picked pattern does not have time in it, there will be
loss of precision.

Studio creation of Hive tables
Hive tables can be created from Studio.

The Studio user can create a Hive table by:

• Uploading data from an Excel or CSV file.

• Importing a JDBC data source.

• Exporting data from a Studio component.

• Transforming data in a data set and then creating a new data set from the transformed data.

After the Hive table is created, Studio starts a Data Processing workflow on the table. For details on these
Studio operations, see the Data Exploration and Analysis Guide.

A Studio-created Hive table will have the skipAutoProvisioning property added at creation time. This
property prevents the table from being processed again by the BDD Hive Table Detector.

Another table property will be dataSetDisplayName, which stores the display name for the data set. The
display name is a user-friendly name that is visible in the Studio UI.

Creation of a search interface
A search interface is created for each data set.

A search interface controls record search behavior for groups of one or more string attributes from the same
data set. Each data set will have one search interface. Each string attribute that has been configured to be
record-searchable is added as a member of the search interface.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Workflows 26

Snippeting

Snippeting is also enabled for each search interface attribute, with a value of 10 for the snippet size. This
means that a snippet can contain a maximum of 10 words.

When the Studio user performs a record search query, Big Data Discovery returns an excerpt from a record.
This is called snippeting. A snippet contains the search terms that the user provided, along with a portion of
the term’s surrounding content to provide context. With the added context, users can more quickly choose the
individual records they are interested in.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Chapter 3

Data Processing Configuration

This section describes configuration for date formats and configuration for Spark. It also discusses how to add
a new Hadoop node to the deployment and how to add a SerDe JAR to the Data Processing workflows.

Date format configuration

Spark configuration

Adding Hadoop nodes

Adding a SerDe JAR to DP workflows

Date format configuration
The dateFormats.txt file provides a list of date formats supported by Data Processing workflows. This
topic lists the defaults used in this file. You can add or remove a date format from this file if you use the
formats supported by it.

If a date in the Hive table is stored with a DATE data type, then it is assumed to be a valid date format and is
not checked against the date formats in the dateFormats.txt file. Hive TIMESTAMP values are also
assumed to be valid dates, and are also not checked against the dateFormats.txt formats.

However, if a date is stored in the Hive table within a column of type STRING, then Data Processing uses the
dateFormats.txt to check if this date format is supported.

Both dates and timestamps are then ingested into the Big Data Discovery as Dgraph mdex:dateTime data
types.

Default date formats
The default date formats that are supported and listed in the dateFormats.txt file are:

d/M/yy
d-M-yy
d.M.yy
M/d/yy
M-d-yy
M.d.yy
yy/M/d
yy-M-d
yy.M.d
MMM d, yyyy
EEE, MMM d, yyyy
yyyy-MM-dd HH:mm:ss
yyyy-MM-dd h:mm:ss a
yyyy-MM-dd'T'HH-mm-ssZ
yyyy-MM-dd'T'HH:mm:ss'Z'
yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
yyyy-MM-dd HH:mm:ss.SSS
yyyy-MM-dd'T'HH:mm:ss.SSS
EEE d MMM yyyy HH:mm:ss Z

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Data Processing Configuration 28

H:mm
h:mm a
H:mm:ss
h:mm:ss a
HH:mm:ss.SSS'Z'
d/M/yy HH:mm:ss
d/M/yy h:mm:ss a
d-M-yy HH:mm:ss
d-M-yy h:mm:ss a
d.M.yy HH:mm:ss
d.M.yy h:mm:ss a
M/d/yy HH:mm:ss
M/d/yy h:mm:ss a
M-d-yy HH:mm:ss
M-d-yy h:mm:ss a
M.d.yy HH:mm:ss
M.d.yy h:mm:ss a
yy/M/d HH:mm:ss
yy/M/d h:mm:ss a
yy.M.d HH:mm:ss
yy.M.d h:mm:ss a

Version 1.1.3 • May 2016

For details on interpreting these formats, see
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Modifying the dateFormats file

You can remove a date format from the file. If you remove a data format, Data Processing workflows will no
longer support it.

You can also add date formats, as long as they conform to the formats in the SimpleDateFormat class. This
class is described in the Web page accessed by the URL link listed above. Note that US is used as the locale.

Spark configuration
Data Processing uses a Spark configuration file, sparkContext.properties. This topic describes how
Data Processing obtains the settings for this file and includes a sample of the file. It also describes options
you can adjust in this file to tweak the amount of memory required to successfully complete a Data Processing
workflow.

Data Processing workflows are run by Spark workers. When a Spark worker is started for a Data Processing
job, it has a set of default configuration settings that can be overridden or added to by the
sparkContext.properties file.

The Spark configuration is very granular and needs to be adapted to the size of the cluster and also the data.
In addition, the timeout and failure behavior may have to be altered. Spark offers an excellent set of
configurable options for these purposes that you can use to configure Spark for the needs of your installation.
For this reason, the sparkContext.properties is provided so that you can fine tune the performance of
the Spark workers.

The sparkContext.properties file is located in the $CLI_HOME/edp_cli/config directory. As
shipped, the file is empty. However, you can add any Spark configuration property to the file. The properties
that you specify will override all previously-set Spark settings. The documentation for the Spark properties is
at: https://spark.apache.org/docs/latest/configuration.html

Keep in mind that the sparkContext.properties file can be empty. If the file is empty, a Data Processing
workflow will still run correctly because the Spark worker will have a sufficient set of configuration properties to
do its job.

Oracle® Big Data Discovery: Data Processing Guide

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://spark.apache.org/docs/latest/configuration.html

Data Processing Configuration 29

Note: Do not delete the sparkContext.properties file. Although it can be empty, a check is
made for its existence and the Data Processing workflow will not run if the file is missing.

Spark default configuration

When started, a Spark worker gets its configuration settings in a three-tiered manner, in this order:

1. From the Cloudera CDH default settings.

2. From the Data Processing configuration settings, which can either override the Cloudera settings, and/or
provide additional settings. For example, the sparkExecutorMemory property (in the DP CLI
configuration) can override the CDH spark.executor.memory property.

3. From the property settings in the sparkContext.properties file, which can either override any
previous settings and/or provide additional settings.

If the sparkContext.properties file is empty, then the final configuration for the Spark worker is obtained
from Steps 1 and 2.

Sample Spark configuration
The following is a sample sparkContext.properties configuration file:

###
Spark additional runtime properties
###
spark.broadcast.compress=true
spark.rdd.compress=false
spark.io.compression.codec=org.apache.spark.io.LZFCompressionCodec
spark.io.compression.snappy.block.size=32768
spark.closure.serializer=org.apache.spark.serializer.JavaSerializer
spark.serializer.objectStreamReset=10000
spark.kryo.referenceTracking=true
spark.kryoserializer.buffer.mb=2
spark.broadcast.factory=org.apache.spark.broadcast.HttpBroadcastFactory
spark.broadcast.blockSize=4096
spark.files.overwrite=false
spark.files.fetchTimeout=false
spark.storage.memoryFraction=0.6
spark.tachyonStore.baseDir=System.getProperty("java.io.tmpdir")
spark.storage.memoryMapThreshold=8192
spark.cleaner.ttl=(infinite)

Version 1.1.3 • May 2016

Configuring fail fast behavior for transforms

When a transform is committed, the ApplyTransformToDataSetWorkflow will not retry on failure. This workflow
cannot safely be re-run after failure because the state of the data set may be out of sync with the state of the
HDFS sample files. This non-retry behavior works only on CDH 5.4 environments.

For CDH 5.3 and HDP 2.x, users can modify the yarn.resourcemanager.am.max-attempts setting on
their cluster to prevent retries of any YARN job. If users do not do this, it may look like the workflow
succeeded, but will fail on future transforms because of the inconsistent sample data files. Users do not have
to set this property unless they want the fail fast behavior.

Enabling Spark event logging

You can enable Spark event logging with this file. At runtime, Spark internally compiles the DP workflow into
multiple stages (a stage is usually defined by a set of Spark Transformation and bounded by Spark Action).

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Configuration 30

The stages can be matched to the DP operations. The Spark event log includes the detailed timing information
on a stage and all the tasks within the stage.

The following Spark properties are used for Spark event logging:

• spark.eventLog.enabled (which set to true) enables the logging of Spark events.

• spark.eventLog.dir specifies the base directory in which Spark events are logged.

• spark.yarn.historyServer.address specifies the address of the Spark history server (i.e.,
host.com:18080). The address should not contain a scheme (http://).

For example:

spark.eventLog.enabled=true
spark.eventLog.dir=hdfs://busj40CDH3-ns/user/spark/applicationHistory
spark.yarn.historyServer.address=busj40bda13.example.com:18088

Version 1.1.3 • May 2016

Note that enabling Spark event logging should be done by Oracle Support personnel when trouble-shooting
problems. Enabling Spark event logging under normal circumstances is not recommended as it can have an
adverse performance impact on workflows.

Spark worker OutOfMemoryError
If insufficient memory is allocated to a Spark worker, an OutOfMemoryError may occur and the Data
Processing workflow may terminate with an error message similar to this example:

java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:2271)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1876)
at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1785)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1188)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
at org.apache.spark.serializer.SerializationStream$class.writeAll(Serializer.scala:102)
at org.apache.spark.serializer.JavaSerializationStream.writeAll(JavaSerializer.scala:30)
at org.apache.spark.storage.BlockManager.dataSerializeStream(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.dataSerialize(BlockManager.scala:1005)
at org.apache.spark.storage.MemoryStore.putValues(MemoryStore.scala:79)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:663)
at org.apache.spark.storage.BlockManager.put(BlockManager.scala:574)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:108)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
at org.apache.spark.scheduler.Task.run(Task.scala:51)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

The amount of memory required to successfully complete a Data Processing workflow depends on database
considerations such as:

• The total number of records in each Hive table.

• The average size of each Hive table record.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Configuration 31

It also depends on the DP CLI configuration settings, such as:

• maxRecordsForNewDataSet

• runEnrichment

• sparkExecutorMemory

If OutOfMemoryError instances occur, you can adjust the DP CLI default values, as well as specify
sparkContext.properties configurations, to suit the provisioning needs of your deployment.

For example, Data Processing allows you to specify a sparkExecutorMemory setting, which is used to
define the amount of memory to use per executor process. (This corresponds to the
spark.executor.memory parameter in the Spark configuration.) The Spark
spark.storage.memoryFraction parameter is another important option to use if the Spark Executors are
having memory issues.

You should also check the "Tuning Spark" topic: http://spark.apache.org/docs/latest/tuning.html

Note on differentiating job queuing and cluster locking

Sites that have a small and busy cluster may encounter problems with Spark jobs not running with a message
similar to the following example:

[DataProcessing] [WARN] [] [org.apache.spark.Logging$class] [tid:Timer-0] [userID:yarn]
Initial job has not accepted any resources
; check your cluster UI to ensure that workers are registered
and have sufficient memory

Version 1.1.3 • May 2016

The cause may be due to normal YARN job queuing rather than cluster locking. (Cluster locking is when a
cluster is deadlocked by submitting many applications at once, and having all cluster resources taken up by
the ApplicationManagers.) The appearance of the normal YARN job queuing is very similar to cluster locking,
especially when there is a large YARN job taking excess time to run. You can use Cloudera Manager (for
CDH jobs) or Ambari (for HDP jobs) to check on the status of jobs.

The following information may help differentiate between job queuing and suspected cluster locking: Jobs are
in normal queuing state unless there are multiple jobs in in a RUNNING state, and you observe "Initial job has
not accepted any resources" in the logs of all these jobs. As long as there is one job making progress where
you usually see "Starting task X.X in stage X.X", those jobs are actually in normal queuing state. Also, when
checking Spark RUNNING jobs through ResourceManager UI, you should browse beyond the first page or
use the Search box in the UI, so that no RUNNING applications are left out.

If your Hadoop cluster has a Hadoop version earlier than 2.6.0., it is recommended that the explicit setting is
used to limit the ApplicationMaster share:

<queueMaxAMShareDefault>0.5</queueMaxAMShareDefault>

This property limits the fraction of the queue's fair share that can be used to run Application Masters.

Adding Hadoop nodes
This topic describes how you can add a YARN NodeManager node after deployment of BDD.

The Data Processing modules are installed on all available YARN NodeManager nodes during the BDD
installation process. However, you can add more nodes after deployment. The nodes to be added must be of
the same type (CDH or HDP) and version as the existing nodes.

Oracle® Big Data Discovery: Data Processing Guide

http://spark.apache.org/docs/latest/tuning.html

Data Processing Configuration 32

The pre-requisites to this task are that BDD must be installed and the new node must have been added to the
Hadoop cluster. The node must be running the following Hadoop components:

• YARN

• Spark on YARN

• HDFS

• Hive

Consult the CDH or HDP documentation for details on how to add the node to the CDH or HDP cluster.

You will be copying files and directories from an existing YARN NodeManager node to the new YARN
NodeManager node. The locations of some of the files are specified in the edp.properties file, which is
located in the $BDD_HOME/dataprocessing/edp_cli/config directory. The properties with the
information are:

• sparkYarnJar

• bddHadoopFatJar

• edpJarDir

• extraJars

• oltHome

• krb5ConfPath

• clusterKerberosKeytabPath

For more information on these properties, see DP CLI configuration on page 37.

To add a YARN NodeManager node to an existing BDD deployment:

1. For all types of BDD deployments (both Kerberized and non-Kerberized), copy the entire
$ORACLE_HOME and /opt/bdd directories from an existing YARN NodeManager node to the new
YARN NodeManager node and make sure their permissions are the same.

For example, the $ORACLE_HOME directory should have +x permission and the
$BDD_HOME/logs/edp should have 777 permissions.

2. For all deployments, copy the files and directories specified in the sparkYarnJar,
bddHadoopFatJar, edpJarDir, and extraJars properties to the new node at the same location.

Note that the file and directory owner and permission must be the same as on other nodes.

3. For all deployments, copy the files and directories specified in the oltHome property to the new node
at the same location.

Note that the file and directory owner and permission must be the same as on other nodes.

4. For Kerberized clusters only, copy the files specified in the krb5ConfPath, and
clusterKerberosKeytabPath properties to the new node at the same location.

Note that the file and directory owner and permission must be the same as on other nodes.

5. Update the YARN_NODE_MANAGER_SERVERS value in the bdd.conf on each BDD node so the
uninstall.sh utility is aware of the new YARN NodeManager.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Configuration 33

6. If the new node has other functions in the cluster, you should re-download and replace the Hadoop
configuration files on Studio. On the Studio machine:

(a) In a text editor, open the $BDD_HOME/dataprocessing/edp_cli/data_processing_CLI
script and get the directory setting of the HADOOP_CONF_DIR property.

(b) Change to that directory.

(c) Download and replace the files in this directory with the files from the Hadoop cluster.

After the new node is added to the BDD deployment, it can be used by the Data Processing workflows of
BDD.

Adding a SerDe JAR to DP workflows
This topic describes the process of adding a custom Serializer-Deserializer (SerDe) to the Data Processing
(DP) classpath.

When customers create a Hive table, they can specify a Serializer-Deserializer (SerDe) class of their choice.
For example, consider the last portion of this statement:

CREATE TABLE samples_table(
id INT,
city STRING,
country STRING,
region STRING,
population INT)

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde';

Version 1.1.3 • May 2016

If that SerDes JAR is not packaged with the Data Processing package that is part of the Big Data Discovery,
then a Data Processing run is unable to read the Hive table, which prevents the importing of the data into the
Dgraph. To solve this problem, you can integrate your custom SerDe into the Data Processing workflow.

This procedure assumes this pre-requisite:

• Before integrating the SerDe JAR with Data Processing, the SerDe JAR should be present on the Hadoop
cluster's HiveServer2 node and configured via the Hive Auxiliary Jars Directory property in the Hive
service. To check this, you can verify that, for a table created with this SerDe, a SELECT * query on the
table does not issue an error. This query should be verified to work from Hue and the Hive CLI to ensure
the SerDe was added properly.

To integrate a custom SerDe JAR into the Data Processing workflow:

1. Copy the SerDe JAR into the same location on each cluster node.

Note that this location can be the same one as used when adding the SerDe Jar to the HiveServer2
node.

2. Edit the DP CLI edp.properties file and add the path to the SerDe JAR to the extraJars
property. This property should be a colon-separated list of paths to JARs. This will allow DP jobs from
the CLI to pick up the SerDe JAR.

By default, the edp.properties file is in the $BDD_HOME/dataprocessing/edp_cli/config
directory.

You should also update the DP_ADDITIONAL_JARS property in the installation version of the
bdd.conf file with the path, in case you ever re-install BDD.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Configuration 34

3. For Studio, edit the $DOMAIN_HOME/config/studio/portal-ext.properties file and add the
path to the SerDe Jar to the dp.settings.extra.jars property. This property should be a colon-
separated list of paths to JARs. This will allow DP jobs from Studio to pick up the SerDe JAR.

As a result, the SerDe JAR is added in the Data Processing classpath. This means that the SerDe class will
be used in all Data Processing workflows, whether they are initiated automatically by Studio or by running the
Data Processing CLI.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Chapter 4

DP Command Line Interface Utility

This section provides information on configuring and using the Data Processing Command Line Interface
utility.

DP CLI overview

DP CLI configuration

DP CLI flags

Using whitelists and blacklists

DP CLI cron job

DP CLI workflow examples

Changing Hive table properties

DP CLI overview
The DP CLI (Command Line Interface) shell utility is used to launch Data Processing workflows, either
manually or via a cron job.

The Data Processing workflow can be run on an individual Hive table, all tables within a Hive database, or all
tables within Hive. The tables must be of the auto-provisioned type (as explained further in this topic).

The DP CLI starts workflows that are run by Spark workers. The results of the DP CLI workflow are the same
as if the tables were processed by a Studio-generated Data Processing workflow.

Two important use cases for the DP CLI are:

• Ingesting data from your Hive tables immediately after installing the Big Data Discovery (BDD) product.
When you first install BDD, your existing Hive tables are not processed. Therefore, you must use the DP
CLI to launch a first-time Data Processing operation on your tables.

• Invoking the BDD Hive Table Detector, which in turn can start Data Processing workflows for new or
deleted Hive tables.

The DP CLI can be run either manually or from a cron job. The BDD installer creates a cron job as part of the
installation procedure if the ENABLE_HIVE_TABLE_DETECTOR property is set to TRUE in the bdd.conf file.

DP CLI permissions

The DP CLI script is installed with ownership permission for the person who ran the installer. These
permissions can be changed by the owner to allow anyone else to run the script.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 36

Skipped and auto-provisioned Hive tables

From the point of view of Data Processing, there are two types of Hive tables: skipped tables and auto-
provisioned tables. The table type depends on the presence of a special table property,
skipAutoProvisioning. The skipAutoProvisioning property (when set to true) tells the BDD Hive
Table Detector to skip the table for processing.

Skipped tables are Hive tables that have the skipAutoProvisioning table property present and set to
true. Thus, a Data Processing workflow will never be launched for a skipped table (unless the DP CLI is run
manually with the --table flag set to the table). This property is set in two instances:

• The table was created from Studio, in which case the skipAutoProvisioning property is always set at
table creation time.

• The table was created by a Hive administrator and a corresponding BDD data set was provisioned from
that table. Later, that data set was deleted from Studio. When a data set (from an admin-created table) is
deleted, Studio modifies the underlying Hive table by adding the skipAutoProvisioning table
property.

For information on changing the value of the skipAutoProvisioning property, see Changing Hive table
properties on page 49.

Auto-provisioned tables are Hive tables that were created by the Hive administrator and do not have a
skipAutoProvisioning property. These tables can be provisioned by a Data Processing workflow that is
launched by the BDD Hive Table Detector.

Note: Keep in mind that when a BDD data set is deleted, its source Hive table is not deleted from the
Hive database. This applies to data sets that were generated from either Studio-created tables or
admin-created tables. The skipAutoProvisioning property ensures that the table will not be re-
provisioned when its corresponding data set is deleted (otherwise, the deleted data set would re-
appear when the table was re-processed).

BDD Hive Table Detector

The BDD Hive Table Detector is a process that automatically keeps a Hive database in sync with the BDD
data sets. The BDD Hive Table Detector has two major functions:

• Automatically checks all Hive tables within a Hive database:

• For each auto-provisioned table that does not have a corresponding BDD data set, the BDD Hive
Table Detector launches a new data provisioning workflow (unless the table is skipped via the
blacklist).

• For all skipped tables, such as, Studio-created tables, the BDD Hive Table Detector never provisions
them, even if they do not have a corresponding BDD data set.

• Automatically launches the data set clean-up process if it detects that a BDD data set does not have an
associated Hive table. (That is, an orphaned BDD data set is automatically deleted if its source Hive table
no longer exists.) Typically, this scenario occurs when a Hive table (either admin-created or Studio-
created) has been deleted by a Hive administrator.

The BDD Hive Table Detector detects empty tables, and does not launch workflows for those tables.

The BDD Hive Table Detector is invoked with the DP CLI, which has command flags to control the behavior of
the script. For example, you can select the Hive tables you want to be processed. The --whitelist flag of
the CLI specifies a file listing the Hive tables that should be processed, while the --blacklist flag controls
a file with Hive tables that should be filtered out during processing.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 37

Logging

The DP CLI logs detailed information about its workflow into the log file defined in the
$CLI_HOME/config/logging.properties file. This file is documented in DP logging properties file on
page 64.

The implementation of the BDD Hive Table Detector is based on the DP CLI, so it uses the same logging
properties as the DP CLI script. It also produces verbose outputs (on some classes) to stdout/stderr.

DP CLI configuration
The DP CLI has a configuration file, edp.properties, that sets its default properties.

By default, the edp.properties file is located in the $BDD_HOME/dataprocessing/edp_cli/config
directory.

Some of the default values for the properties are populated from the bdd.conf installation configuration file.
After installation, you can change the CLI configuration parameters by opening the edp.properties file with
a text editor.

Data Processing defaults

The properties that set the Data Processing defaults are:

Data Processing Property Description

maxRecordsForNewDataSet The maximum number of records to be processed for each new data
set (that is, the number of sampled records from the source Hive
table). In effect, this sets the maximum number of records in a BDD
data set. The default is set by the MAX_RECORDS property in the
bdd.conf file. The CLI --maxRecords flag can override this
setting.

runEnrichment Specifies whether to run the Data Enrichment modules. The default
is set by the ENABLE_ENRICHMENTS property in the bdd.conf file.

You can override this setting by using the CLI --runEnrichment
flag. The CLI --excludePlugins flag can also be used to exclude
some of the Data Enrichment modules.

defaultLanguage The language for all attributes in the created data set. The default is
set by the LANGUAGE property in the bdd.conf file. For the
supported language codes, see Supported languages on page 93.

edpDataDir Specifies the location of the HDFS directory where data ingest and
transform operations are processed. The default location is the
/user/bdd/edp/data directory.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 38

Data Processing Property Description

datasetAccessType Sets the access type for the data set, which determines which
Studio users can access the data set in the Studio UI. This property
takes one of these case-insensitive values:

• public means that all Studio users can access the data set.
This is the default.

• private means that only designated Studio users and groups
can access the data set. The users and groups are specified in
attributes set in the data set's entry in the DataSet Inventory.

Dgraph Gateway connectivity settings

These properties are used to control access to the Dgraph Gateway that is managing the Dgraph nodes:

Dgraph Gateway Property Description

endecaServerHost The name of the host on which the Dgraph Gateway is running.
The default name is specified in the bdd.conf configuration file.

endecaServerPort The port on which Dgraph Gateway is listening. The default is
7003.

endecaServerContextRoot The context root of the Dgraph Gateway when running on Managed
Servers within the WebLogic Server. The value should be set to:
/endeca-server

Kerberos credentials
The DP CLI is enabled for Kerberos support at installation time, if the ENABLE_KERBEROS property in the
bdd.conf file is set to TRUE. The bdd.conf file also has parameters for specifying the name of the
Kerberos principal, as well as paths to the Kerberos keytab file and the Kerberos configuration file. The
installation script populates the data_processing_CLI script with the properties in the following table.

Kerberos Property Description

isKerberized Specifies whether Kerberos support should be enabled. The default
value is set by the ENABLE_KERBEROS property in the bdd.conf
file.

localKerberosPrincipal The name of the Kerberos principal. The default name is set by the
KERBEROS_PRINCIPAL property in the bdd.conf file.

localKerberosKeytabPath Path to the Kerberos keytab file on the WebLogic Admin Server. The
default path is set by the KERBEROS_KEYTAB_PATH property in the
bdd.conf file.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 39

Kerberos Property Description

clusterKerberosPrincipal The name of the Kerberos principal. The default name is set by the
KERBEROS_PRINCIPAL property in the bdd.conf file.

clusterKerberosKeytabPath Path to the Kerberos keytab file on the WebLogic Admin Server. The
default path is set by the KERBEROS_KEYTAB_PATH property in the
bdd.conf file.

krb5ConfPath Path to the krb5.conf configuration file. This file contains
configuration information needed by the Kerberos V5 library. This
includes information describing the default Kerberos realm, and the
location of the Kerberos key distribution centers for known realms.

The default path is set by the KRB5_CONF_PATH property in the
bdd.conf file. However, you can specify a local, custom location for
the krb5.conf file.

For further details on these parameters, see the Installation and Deployment Guide

Hadoop connectivity settings

The parameters that define connections to Hadoop environment processes and resources are:

Hadoop Parameter Description

hiveServerHost Name of the host on which the Hive server is running. The default
value is set at the BDD installation time.

hiveServerPort Port on which the Hive server is listening. The default value is set
at the BDD installation time.

clusterOltHome Path to the OLT directory on the Spark worker node. The default
location is the /opt/bdd/edp-<version>/olt directory.

oltHome Both clusterOltHome and this parameter are required, and both
must be set to the same value.

Spark environment settings

These parameters define settings for interactions with Spark workers:

Spark Properties Description

sparkMasterUrl Specifies the master URL of the Spark cluster. In Spark-on-YARN
mode, the ResourceManager's address is picked up from the
Hadoop configuration by simply specifying yarn-cluster for this
parameter. The default value is set at the BDD installation time.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 40

Spark Properties Description

sparkDynamicAllocation Indicates if Data Processing will dynamically compute the executor
resources or use static executor resource configuration:

• If set to false, the values of the static resource parameters
(sparkDriverMemory, sparkDriverCores,
sparkExecutorMemory, sparkExecutorCores, and
sparkExecutors) are required and are used.

• If set to true, the values for the executor resources are
dynamically compute. This means that the static resource
parameters are not required and will be ignored even if
specified.

The default is set by the SPARK_DYNAMIC_ALLOCATION property
in the bdd.conf file.

sparkDriverMemory Amount of memory to use for each Spark driver process, in the
same format as JVM memory strings (such as 512m, 2g, 10g, and
so on). The default is set by the SPARK_DRIVER_MEMORY
property in the bdd.conf file.

sparkDriverCores Maximum number of CPU cores to use by the Spark driver. The
default is set by the SPARK_DRIVER_CORES property in the
bdd.conf file.

sparkExecutorMemory Amount of memory to use for each Spark executor process, in the
same format as JVM memory strings (such as 512m, 2g, 10g, and
so on). The default is set by the SPARK_EXECUTOR_MEMORY
property in the bdd.conf file.

This setting must be less than or equal to Spark's Total Java
Heap Sizes of Worker's Executors in Bytes
(executor_total_max_heapsize) property in Cloudera
Manager. You can access this property in Cloudera Manager by
selecting Clusters > Spark (Standalone), then clicking the
Configuration tab. This property is in the Worker Default Group
category (using the classic view).

sparkExecutorCores Maximum number of CPU cores to use for each Spark executor.
The default is set by the SPARK_EXECUTOR_CORES property in
the bdd.conf file.

sparkExecutors Total number of Spark executors to launch. The default is set by
the SPARK_EXECUTORS property in the bdd.conf file.

yarnQueue The YARN queue to which the Data Processing job is submitted.
The default value is set by the YARN_QUEUE property in the
bdd.conf file.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 41

Spark Properties Description

maxSplitSizeMB The maximum partition size for Spark inputs, in MB. This controls
the size of the blocks of data handled by Data Processing jobs.
This property overrides the HDFS block size used in Hadoop.

Partition size directly affects Data Processing performance —
when partitions are smaller, more jobs run in parallel and cluster
resources are used more efficiently. This improves both speed
and stability.

The default is set by the MAX_INPUT_SPLIT_SIZE property in
the bdd.conf file (which is 32, unless changed by the user). The
32MB is amount should be sufficient for most clusters, with a few
exceptions:

• If your Hadoop cluster has a very large processing capacity
and most of your data sets are small (around 1GB), you can
decrease this value.

• In rare cases, when data enrichments are enabled the
enriched data set in a partition can become too large for its
YARN container to handle. If this occurs, you can decrease
this value to reduce the amount of memory each partition
requires.

If this property is empty, the DP CLI logs an error at start-up and
uses a default value of 32MB.

Jar location settings

These properties specify the paths for jars uses by workflows:

Jar Property Description

sparkYarnJar Path to JAR files used by Spark-on-YARN. The default path is set
by the SPARK_ON_YARN_JAR property in the bdd.conf file. For
CDH 5.4 installations, EdpOdlAppender.jar is appended to the
path.

bddHadoopFatJar Path to the location of the Hadoop Shared Library (file name of
bddHadoopFatJar.jar) on the cluster. The path is set by the
installer.

Note that the data_processing_CLI script has a
BDD_HADOOP_FATJAR property that specifies the location of the
Hadoop Shared Library on the local file system of the DP CLI
client.

edpJarDir Path to the directory where the Data Processing JAR files for Spark
workers are located on the cluster. The default location is the
/opt/bdd/edp-<version>/lib directory.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 42

Jar Property Description

extraJars Path to any extra JAR files to be used by customers, such as the
path to a custom SerDe JAR. The default path is set by the
DP_ADDITIONAL_JARS property in the bdd.conf file.

Kryo serialization settings

These properties define the use of Kryo serialization:

Kryo Property Description

kryoMode Specifies whether to enable (true) or disable (false) Kryo for
serialization. The default is set by the kryoMode property in the
bdd.conf file. Note that false is the recommended setting for
Data Processing workflows.

kryoBufferMemSizeMB Maximum object size (in MBs) to allow within Kryo. (The library
needs to create a buffer at least as large as the largest single
object you will serialize). The default is set by the
kryoBufferMemSizeMB property in the bdd.conf file. Increase
this setting if you get a buffer limit exceeded exception
inside Kryo. Note that there will be one buffer per core on each
worker.

JAVA_HOME setting
In addition to setting the CLI configuration properties, make sure that the JAVA_HOME environment variable is
set to the directory containing the specific version of Java that will be called when you run the Data
Processing CLI.

DP CLI flags
The DP CLI has a number of runtime flags that control its behavior.

You can list these flags if you use the --help flag. Each flag has a full name that begins with two dashes
(such as --maxRecords) and an abbreviated version with one dash (such as -m).

The --devHelp flag displays flags that are intended for use by Oracle internal developers and support
personnel. These flags are therefore not documented in this guide.

Note: All flag names are case sensitive.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 43

The CLI flags are:

CLI Flag Description

-a, --all Runs data processing on all Hive tables in all
Hive databases.

-bl, --blackList <blFile> Specifies the file name for the blacklist used to
filter out Hive tables. The tables in this list are
ignored and not provisioned. Must be used with
the --database flag.

-clean, --cleanAbortedJobs Cleans up artifacts left over from incomplete
workflows.

-d, --database <dbName> Runs Data Processing using the specified Hive
database. If a Hive table is not specified, runs
on all Hive tables in the Hive database (note
that tables with the skipAutoProvisioning
property set to true will not be provisioned).

For Refresh and Incremental updates, can be
used to override the default database in the
data set's metadata.

-devHelp, --devHelp Displays usage information for flags intended to
be used by Oracle support personnel.

-disableSearch, --disableSearch Turns off Dgraph indexing for search. This
means that DP Discovery disables record
search and value search on all the attributes,
irrespective of the average String length of the
values. This flag can be used only for
provisioning workflows (for new data sets
created from Hive tables) and for refresh
workflows (with the --refreshData flag).
This flag cannot be used in conjunction with the
--incrementalUpdate flag.

-e, --runEnrichment Runs the Data Enrichment modules (except for
the modules that never automatically run during
the sampling phase). Overrides the
runEnrichment property in the
edp.properties configuration file.

You can also exclude some modules with the
CLI --excludePlugins flag.

-ep, --excludePlugins <exList> Specifies a list of Data Enrichment modules to
exclude when Data Enrichments are run.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 44

CLI Flag Description

-h, --help Displays usage information for flags intended to
be used by customers.

-incremental, --incrementalUpdate <dsKey> Performs an incremental update on a BDD data
<filter> set from the original Hive table, using a filter

predicate to select the new records. Optionally,
can use the --table and --database flags.

-m, --maxRecords <num> Sets the maximum number of records to
process for a new data set. Overrides the CLI
maxRecordsForNewDataSet property in the
edp.properties configuration file.

-mwt, --maxWaitTime <secs> Specifies the maximum waiting time (in
seconds) for each table processing to
complete. The next table is processed after this
interval or as soon as the data ingesting is
completed.

This flag controls the pace of the table
processing, and prevents Hadoop and Spark
cluster nodes, as well as the Dgraph cluster
nodes from being flooded with a large number
of simultaneous requests.

-ping, --pingCheck Ping checks the status of components that
Data Processing needs.

-refresh, --refreshData <dsKey> Performs a full data refresh on a BDD data set
from the original Hive table. Optionally, you can
use the --table and --database flags.

-t, --table <tableName> Runs data processing on the specified Hive
table. If a Hive database is not specified,
assumes the default database. Note that the
table is skipped in these cases: it does not
exist, is empty, or has the table property
skipAutoProvisioning set to true.

For Refresh and Incremental updates, can be
used to override the default source table in the
data set's metadata.

--UpgradeDatesetInventory <toVersion> Upgrades the DataSet Inventory to the latest
version. Use this option only when upgrading
your BDD installation to the current version.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 45

CLI Flag Description

--UpgradeSampleFiles <toVersion> Upgrades the sample files (produced as a
result of a previous workflow) to the latest
version. Use this option only when upgrading
your BDD installation to the current version.

-v, --versionNumber Prints the version number of the current
iteration of the Data Processing component
within Big Data Discovery.

-wl, --whiteList <wlFile> Specifies the file name for the whitelist used to
select qualified Hive tables for processing.
Each table on this list is processed by the Data
Processing component and is ingested into the
Dgraph as a BDD data set. Must be used with
the --database flag.

Using whitelists and blacklists
A whitelist specifies which Hive tables should be processed in Big Data Discovery, while a blacklist specifies
which Hive tables should be ignored during data processing.

Default lists are provided in the DP CLI package:

• cli_whitelist.txt is the default whitelist name. The default whitelist is empty, as it does not select
any Hive tables.

• cli_blacklist.txt is the default blacklist name. The default blacklist has one .+ regex which matches
all Hive table names (therefore all Hive tables are blacklisted and will not be imported).

Both files include commented-out samples of regular expressions that you can use as patterns for your tables.

To specify the whitelist, use this syntax:

--whiteList cli_whitelist.txt

Version 1.1.3 • May 2016

To specify the blacklist, use this syntax:

--blackList cli_blacklist.txt

Both lists are optional when running the DP CLI. However, you use the --database flag if you want to use
one or both of the lists.

If you manually run the DP CLI with the --table flag to process a specific table, the whitelist and blacklist
validations will not be applied.

List syntax
The --whiteList and the --blackList flags take a corresponding text file as their argument. Each text
file contains one or more regular expressions (regex). There should be one line per regex pattern in the file.
The patterns are only used to match Hive table names (that is, the match is successful as long as there is one
matched pattern found).

Oracle® Big Data Discovery: Data Processing Guide

DP Command Line Interface Utility 46

The default whitelist and blacklist contain commented-out sample regular expressions that you can use as
patterns for your tables. You must edit the whitelist file to include at least one regular expression that specifies
the tables to be ingested. The blacklist by default excludes all tables with the .+ regex, which means you have
to edit the blacklist if you want to exclude only specific tables.

For example, suppose you wanted to process any table whose name started with bdd, such as bdd_sales.
The whitelist would have this regex entry:

^

bdd.*

Version 1.1.3 • May 2016

You could then run the DP CLI with the whitelist, and not specify the blacklist.

List processing

The pattern matcher in Data Processing workflow uses this algorithm:

1. The whitelist is parsed first. If the whitelist is not empty, then a list of Hive tables to process is generated.
If the whitelist is empty, then no Hive tables are ingested.

2. If the blacklist is present, the blacklist pattern matching is performed. Otherwise, blacklist matching is
ignored.

To summarize, the whitelist is parsed first, which generates a list of Hive tables to process, and the blacklist is
parsed second, which generates a list of skipped Hive table names. Typically, the names from the blacklist
names modify those generated by the whitelist. If the same name appears in both lists, then that table is not
processed, that is, the blacklist can, in effect, remove names from the whitelist.

Example

To illustrate how these lists work, assume that you have 10 Hive tables with sales-related information. Those
10 tables have a _bdd suffix in their names, such as claims_bdd. To include them in data processing, you
create a whitelist.txt file with this regex entry:
^

.*_bdd$

If you then want to process all *_bdd tables except for the claims_bdd table, you create a blacklist.txt
file with this entry:

claims_bdd

When you run the DP CLI with both the --whiteList and --blackList flags, all the *_bdd tables will be
processed except for the claims_bdd table.

DP CLI cron job
You can specify that the BDD installer create a cron job to run the DP CLI.

By default, the BDD installer does not create a cron job for the DP CLI. To create the cron job, set the
ENABLE_HIVE_TABLE_DETECTOR parameter to TRUE in the BDD installer's bdd.conf configuration file.

Oracle® Big Data Discovery: Data Processing Guide

DP Command Line Interface Utility 47

The following parameters in the bdd.conf configuration file control the creation of the cron job:

Configuration Parameter Description

ENABLE_HIVE_TABLE_DETECTOR When set to TRUE, creates a cron job, which automatically
runs on the server defined by DETECTOR_SERVER. The
default is FALSE.

DETECTOR_SERVER Specifies the server on which the DP CLI will run.

DETECTOR_HIVE_DATABASE The name of the Hive database that the DP CLI will run
against.

DETECTOR_MAXIMUM_WAIT_TIME The maximum amount of time (in seconds) that the Hive
Table Detector waits between update jobs.

DETECTOR_SCHEDULE A Cron format schedule that specifies how often the DP CLI
runs. The value must be enclosed in quotes. The default
value is:

"0 0 * * *"

The default means the Hive Table Detector runs at
midnight, every day of every month.

If the cron job is created, the default cron job definition settings (as set in the crontab file) are as follows:

0 0 * * * /usr/bin/flock -x -w 120 /localdisk/Oracle/Middleware/BDD-1.1/dataprocessing/edp_cli/work
/detector.lock
-c "cd /localdisk/Oracle/Middleware/BDD-1.1.0.11.27/dataprocessing/edp_cli && .

/data_processing_CLI -d default
-wl /localdisk/Oracle/Middleware/BDD-1.1/dataprocessing/edp_cli/config/cli_whitelist.txt
-bl /localdisk/Oracle/Middleware/BDD-1.1/dataprocessing/edp_cli/config

/cli_blacklist.txt -mwt 1800 >>
/localdisk/Oracle/Middleware/BDD-1.1.0.11.27/dataprocessing/edp_cli/work/detector.log 2>&1"

Version 1.1.3 • May 2016

You can modify these settings (such as the time schedule). In addition, be sure to monitor the size of the
detector.log file.

DP CLI workflow examples
This topic shows some workflow examples using the DP CLI.

Excluding specific Data Enrichment modules
The --excludePlugins flag (abbreviated as -ep) specifies a list of Data Enrichment modules to exclude
when enrichments are run. This flag should be used only enrichments are being run as part of the workflows
(for example, with the --excludePlugins flag).

The syntax is:

./data_processing_CLI --excludePlugins <excludeList>

Oracle® Big Data Discovery: Data Processing Guide

DP Command Line Interface Utility 48

where excludeList is a space-separated string of one or more of these Data Enrichment canonical module
names:

• address_geo_tagger (for the Address GeoTagger)

• ip_geo_extractor (for the IP Address GeoTagger)

• reverse_geo_tagger (for the Reverse GeoTagger)

• tfidf_term_extractor (for the TF.IDF Term extractor)

• doc_level_sentiment_analysis (for the document-level Sentiment Analysis module)

• language_detection (for the Language Detection module)

For example:

./data_processing_CLI --table masstowns --runEnrichment --excludePlugins reverse_geo_tagger

Version 1.1.3 • May 2016

For details on the Data Enrichment modules, see Data Enrichment Modules on page 73.

Cleaning up aborted jobs
The --cleanAbortedJobs flag (abbreviated as -clean) cleans up artifacts left over from incomplete Data
Processing workflows:

./data_processing_CLI --cleanAbortedJobs

A successful result should be similar to this example:

...
[2015-07-13T10:18:13.683-04:00] [DataProcessing] [INFO] [] [org.apache.spark.Logging$class]
[tid:main] [userID:fcalvill]

client token: N/A
diagnostics: N/A
ApplicationMaster host: web12.example.com
ApplicationMaster RPC port: 0
queue: root.fcalvill
start time: 1436797065603
final status: SUCCEEDED
tracking URL: http://web12.example.com:8088/proxy/application_1434142292832_0016/A
user: fcalvill

Clean aborted job completed.
data_processing_CLI finished with state SUCCESS

Note that the name of the workflow on the YARN All Applications page is:

EDP: CleanAbortedJobsConfig{}

Ping checking the DP components
The --pingCheck flag (abbreviated as -ping) ping checks the status of components that Data Processing
needs:

./data_processing_CLI --pingCheck

A successful result should be similar to this example:

...
[2015-07-14T14:52:32.270-04:00] [DataProcessing] [INFO] []
[com.oracle.endeca.pdi.logging.ProvisioningLogger]
[tid:main] [userID:fcalvill] Ping check time elapsed: 7 ms
data_processing_CLI finished with state SUCCESS

Oracle® Big Data Discovery: Data Processing Guide

DP Command Line Interface Utility 49

Changing Hive table properties
This topic describes how to change the value of the skipAutoProvisioning property in a Hive table.

When a Hive table has a skipAutoProvisioning property set to true, the BDD Hive Table Detector will
skip the table for data processing. For details, see Skipped and auto-provisioned Hive tables on page 36.

You can change the value of skipAutoProvisioning property by issuing an SQL ALTER TABLE statement
via the Cloudera Manager's Query Editor or as a Hive command.

To change the value of the skipAutoProvisioning property in a Hive table:

1. From the Cloudera Manager home page, click Hue.

2. From the Hue home page, click Hue Web UI.

3. From the Hue Web UI page, click Metastore Manager. As a result, you should see your Hive tables in
the default database, as in this example:

4. Verify that the table has the skipAutoProvisioning property:

(a) Select the table you want to change and click View. The default Columns tab shows the table's
columns.

(b) Click the Properties tab.

(c) In the Table Parameters section, locate the skipAutoProvisioning property and (if it exists)
verify that its value is set to "true".

5. From the Metastore Manager page, click Query Editors>Hive.

The Query Editor page is displayed.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

DP Command Line Interface Utility 50

6. In the Query Editor, enter an ALTER TABLE statement similar to the following example (which is
altering the warrantyclaims table) and click Execute.

7. From the Metastore Manager page, repeat Step 4 to verify that the value of the
skipAutoProvisioning property has been changed..

An alternative to using the UI is to issue the ALTER TABLE statement as a Hive command:

hive -e "ALTER TABLE warrantyclaims SET TBLPROPERTIES('skipAutoProvisioning'='FALSE');"

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Chapter 5

Updating Data Sets

This section describes how to run update operations on BDD data sets.

About data set updates

Obtaining data set keys

Refresh updates

Incremental updates

Creating cron jobs for updates

About data set updates
You can update data sets by running Refresh updates and Incremental updates with the DP CLI.

When first created, a BDD data set may be sampled, which means that the BDD data set has fewer records
than its source Hive table. In addition, more records can be added to the source Hive table, and these new
records will not be added to the data set by default.

Two DP CLI operations are available that enable the BDD administrator to synchronize a data set with its
source Hive table:

• The --refreshData flag (abbreviated as -refresh) performs a full data refresh on a BDD data set
from the original Hive table. This means that the data set will have all records from the source Hive table.
If the data set had previously been sampled, it will now be a full data set. And as records get added to the
Hive table, the Refresh update operation can keep the data set synchronized with its source Hive table.

• The --incrementalUpdate flag (abbreviated as -incremental) performs an incremental update on a
BDD data set from the original Hive table, using a filter predicate to select the new records. Note that this
operation can be run only after the data set has been configured for Incremental updates.

Note that the equivalent of a DP CLI Refresh update can done in Studio via the Load Full Data Set feature.
However, Incremental Data updates can be performed only via the DP CLI, as Studio does not support this
feature.

Re-pointing a data set

if you created a data set by uploading source data into Studio and want to run Refresh and Incremental
updates, you should change the source data set to point to a new Hive table. (Note that this change is not
required if the data set is based on a table created directly in Hive.) For information on this re-pointing
operation, see the topic on converting a project to a BDD application in the Data Exploration and Analysis
Guide.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Updating Data Sets 52

Obtaining data set keys
The data set key specifies the data set to be updated.

The data set key is needed as an argument to the DP CLI flags for the Refresh and Incremental update
operations.

You can obtain the data set key from the Project Settings>Data Set Manager page in Studio.

The Data Set Manager page looks like this cropped example for the WarrantyClaims data set:

The Data Set Key property has the value you use for a Refresh or Incremental update.

Refresh updates
A Refresh update replaces the schema and all the records in a project data set with the schema and records
in the source Hive table.

The DP CLI --refreshData flag (abbreviated as -refresh) performs a full data refresh on a BDD data set
from the original Hive table. The data set should be a project data set (that is, must added to a Studio project).

Running a Refresh update produces the following results:

• All records stored in the Hive table are loaded for that data set. This includes any table updates performed
by a Hive administrator.

• If the data set was sampled, it is increased to the full size of the data set. That is, it is now a full data set.

• If the data set contains a transformation script, that script will be run against the full data set, so that all
transformations apply to the full data set in the project.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Updating Data Sets 53

• If the --disableSearch flag is also used, record search and value search will be disabled for the data
set.

Loading the full data set affects only the data set in a specific project; it does not affect the data set as it
displays in the Studio Catalog.

Note that the equivalent of a DP CLI Refresh update can be done in Studio via the Load Full Data Set feature
(although you cannot specify a different source table as with the DP CLI).

Schema changes

There are no restrictions on how the schema of the data set is changed due to changes in the schema and/or
data of the source Hive table. This non-restriction is because the Refresh update operation uses a kill-and-fill
strategy, in which the entire contents of the data set are removed and replaced with those in the Hive table.

Transformation scripts in Refresh updates

If the data set has an associated Transformation script, then the script will run against the newly-ingested
attributes and data. However, some of the schema changes may prevent some of the steps of the script from
running. For example:

• Existing columns in Hive table may be deleted. As a result, any Transformation script step that references
the deleted attributes will be skipped.

• New columns can be added to the Hive table and they will result in new attributes in the data set. The
Transformation script will not run on these new attributes as the script would not reference them.

• Added data to a Hive column may result in the attribute having a different data type (such as String
instead of a previous Long). The Transformation script may or may not run on the changed attribute.

The following diagram illustrates the effects of a schema change on the Transformation script:

If the data set does not have an associated Transformation script and the Hive table schema has changed,
then the data set is updated with the new schema and data.

Refresh flag syntax

Running a Refresh update

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Updating Data Sets 54

Refresh flag syntax
This topic describes the syntax of the --refreshData flag.

The DP CLI flag syntax for a Refresh update operation has one of the following syntaxes:

./data_processing_CLI --refreshData <dsKey>

Version 1.1.3 • May 2016

or

./data_processing_CLI --refreshData <dsKey> --table <tableName>

or

./data_processing_CLI --refreshData <dsKey> --table <tableName> --database <dbName>

where:

• --refreshData (abbreviated as -refresh) is mandatory and specifies the data set key of the data set
to be updated.

• --table (abbreviated as -t) is optional and specifies a Hive table to be used for the source data. This
flag allows you to override the source Hive table that was used to create the original data set (the name of
the original Hive table is stored in the data set's metadata).

• --database (abbreviated as -d) is optional and specifies the database of the Hive table specified with
the --table flag. This flag allows you to override the database that was used to create the original data
set). The --database flag can be used only if the --table flag is also used.

The dsKey value is available in the Data Set Key property in Studio. For details, see Obtaining data set keys
on page 52.

Use of the --table and --database flags

When a data set is first created, the names of the source Hive table and the source Hive database are stored
in the DSI (DataSet Inventory) metadata for that data set. The --table flag allows you to override the default
source Hive table, while the --database flag can override the database set in the data set's metadata.

Note that these two flags are ephemeral. That is, they are used only for the specific run of the operation and
do not update the metadata of the data set.

If these flags are not specified, then the Hive table and Hive database that are used are the ones in the data
set's metadata.

Use these flags when you want to temporarily replace the data in a data set with that from another Hive table.
If the data change is permanent, it is recommended that you create a new data set from desired Hive table.
This will also allow you to create a Transformation script that is exactly tailored to the new data set.

Running a Refresh update

This topic describes how to run a Refresh update operation.

This procedure assumes that:

• A data set has been created, either from Studio or with the DP CLI.

• The data set has been added to a Studio project.

Oracle® Big Data Discovery: Data Processing Guide

Updating Data Sets 55

To run a Refresh update on a data set:

1. Obtain the data set key of the data set you want to refresh:

(a) In Studio, go to Project Settings>Data Set Manager.

(b) In the Data Set Manager, select the data set and expand the options next to its name.

(c) Get the value from the Data Set Key field.

2. From a Linux command prompt, change to the $BDD_HOME/dataprocessing/edp_cli directory.

3. Run the DP CLI with the --refreshData flag and the data set key. For example:

./data_processing_CLI --refreshData default_edp_171506f0-e2d6-4ed1-8f5e-052a1fad721a_10135

Version 1.1.3 • May 2016

If the operation was successful, the DP CLI prints these messages at the end of the stdout output:

...
client token: N/A
diagnostics: N/A
ApplicationMaster host: web2014.example.com
ApplicationMaster RPC port: 0
queue: root.fcalvill
start time: 1437157181086
final status: SUCCEEDED
tracking URL: http://web2014.example.com:8088/proxy/application_1436970078353_0020/A
user: fcalvill

Refreshing existing collection: default_edp_171506f0-e2d6-4ed1-8f5e-052a1fad721a_10135
Collection key for new record: refreshed_edp_34cdbff2-2e5f-4c09-9388-2b9f5ae3148e
data_processing_CLI finished with state SUCCESS

The YARN Application Overview page should have a State of "FINISHED" and a FinalStatus of
"SUCCESSFUL". The Name field will have an entry similar to this example:

EDP: DatasetRefreshConfig{hiveDatabase=, hiveTable=,
collectionToRefresh=edp_cli_edp_479776cd-2d93-4de0-bfc0-196b7f16b2b5_10121,
newCollectionName=refreshed_edp_0f49f22d-7344-4448-b82f-3c70bfad6314, op=REFRESH_DATASET}

Note the following about the Name information:

• hiveDatabase and hiveTable are blank because the --database and --table flags were not used.
In this case, the Refresh update operation uses the same Hive table and database that were used when
the data set was first created.

• collectionToRefresh is the data set key used for the command. This name is the same as the
Refreshing existing collection field in the stdout listed above.

• newCollectionName is an internal name for the refreshed data set. This name will not appear in the
Studio UI (the data set key value will continue to be used as it is a persistent name). This name is also the
same as the Collection key for new record field in the stdout listed above.

You can also check the Dgraph HDFS Agent log for the status of the Dgraph ingest operation.

Note that future Refresh updates on this data set will continue to use the same data set key. You will also use
this key if you set up a Refresh update cron job for this data set.

Oracle® Big Data Discovery: Data Processing Guide

Updating Data Sets 56

Incremental updates
An Incremental update adds new records to a project data set from a source Hive table.

The DP CLI --incrementalUpdate flag (abbreviated as -incremental) performs a partial update of a
project data set by selecting adding new and modified records. The data set should be a project data set that
is a full data set (i.e., is not a sample data set) and has been configured for incremental updates.

The Incremental update operation fetches a subset of the records in the source Hive table. The subset is
determined by using a filtering predicate that specifies the Hive table column that holds the records and the
value of the records to fetch. The records in the subset batch are ingested as follows:

• If a record is brand new (does not exist in the data set), it is added to the data set.

• If a record already exists in the data set but its content has been changed, it replaces the record in the
data set.

The record identifier determines if a record already exists or is new.

Schema changes and disabling search

Unlike a Refresh update, an Incremental update has these limitations:

• An Incremental update cannot make schema changes to the data set. This means that no attributes in the
data set will be deleted or added.

• An Incremental update cannot use the --disableSearch flag. This means that the searchability of the
data set cannot be changed.

Transformation scripts in Incremental updates

If the data set has an associated Transformation script, then the script will run against the new records and
can transform them (if a transform step applies). Existing records in the data set are not affected.

Record identifier configuration

A data set must be configured for Incremental updates before you can run an Incremental update against it.
This procedure must be done from the Project Settings>Data Set Manager page in Studio.

The data set must be configured with a record identifier for determining the delta between records in the Hive
table and records in the project data set. If columns have been added or removed from the Hive table, you
should run a Refresh update to incorporate those column changes in the data set.

When selecting the attributes that uniquely identify a record, the uniqueness score should be as close as
possible to 100%. If the record identifier is not 100% unique, the total record count decreases by the number
of records that have duplicate or missing identifiers. In this example, the Key Uniqueness field shows a 100%
figure:

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Updating Data Sets 57

After the data set is configured, its entry in the Data Set Manager page looks like this example:

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Updating Data Sets 58

Note that the Record Identifiers field now lists the attributes that were selected in the Configure for Updates
dialogue.

The configure-for-updates procedure is fully documented in the Data Exploration and Analysis Guide.

Error for non-configured data sets

If the data set is not a full data set or is not configured for Increment updates, the Incremental update fails with
an error similar to this:

...
[2015-07-21T10:23:05.653-04:00] [DataProcessing] [ERROR] []
[com.oracle.endeca.pdi.logging.ProvisioningLogger]

[tid:Driver] [userID:yarn] Error running EDP
java.lang.RuntimeException: Cannot run incremental update on either non-full (sampled) dataset
or dataset for which record identifiers were not provided.

at
com.oracle.endeca.pdi.workflow.IncrementalUpdateWorkflow.runWorkflow(IncrementalUpdateWorkflow.java:1
49)

at
com.oracle.endeca.pdi.workflow.IncrementalUpdateWorkflow.runWorkflow(IncrementalUpdateWorkflow.java:1
09)

at com.oracle.endeca.pdi.EdpMain.runIncrementalUpdate(EdpMain.java:190)
at com.oracle.endeca.pdi.EdpMain.runEdp(EdpMain.java:111)

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Updating Data Sets 59

at com.oracle.endeca.pdi.EdpMain.main(EdpMain.java:61)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:427)

...

Version 1.1.3 • May 2016

If this error occurs, configure the data set for Incremental updates and re-run the update operation.

Incremental flag syntax

Running an Incremental update

Incremental flag syntax
This topic describes the syntax of the --incrementalUpdate flag.

The DP CLI flag syntax for an Incremental update operation is one of the following:

./data_processing_CLI --incrementalUpdate <dsKey> <filter>

or

./data_processing_CLI --incrementalUpdate <dsKey> <filter> --table <tableName>

or

./data_processing_CLI --incrementalUpdate <dsKey> <filter> --table <tableName> --database <dbName>

where:

• --incrementalUpdate (abbreviated as -inremental) is mandatory and specifies the data set key
(dsKey) of the data set to be updated. filter is a filter predicate that limits the records to be selected from
the Hive table.

• --table (abbreviated as -t) is optional and specifies a Hive table to be used for the source data. This
flag allows you to override the source Hive table that was used to create the original data set (the name of
the original Hive table is stored in the data set's metadata).

• --database (abbreviated as -d) is optional and specifies the database of the Hive table specified with
the --table flag. This flag allows you to override the database that was used to create the original data
set). The --database flag can be used only if the --table flag is also used.

The dsKey value is available in the Data Set Key property in Studio. For details, see Obtaining data set keys
on page 52.

Filter predicate format

A filter predicate is mandatory and is one simple Boolean expression (not compounded), with this format:

"columnName operator filterValue"

where:

• columnName is the name of a column in the source Hive table.

• operator is one of the following comparison operators:

• =

• <>

Oracle® Big Data Discovery: Data Processing Guide

Updating Data Sets 60

• >

• >=

• <

• <=

• filterValue is a primitive value. Only primitive data types are supported, which are: integers (TINYINT,
SMALLINT, INT, and BIGINT), floating point numbers (FLOAT and DOUBLE), Booleans (BOOLEAN), and
strings (STRING). Note that expressions (such as "amount+1") are not supported.

You should enclose the entire filter predicate in either double quotes or single quotes. If you need to use
quotes within the filter predicate, use the other quotation format. For example, if you use double quotes to
enclose the filter predicate, then use single quotes within the predicate itself.

If columnName is configured as a DATE or TIMESTAMP data type, you can use the unix_timestamp date
function, with one of these syntaxes:

columnName operator unix_timestamp(dateValue)

columnName operator unix_timestamp(dateValue, dateFormat)

Version 1.1.3 • May 2016

If dateFormat is not specified, then the DP CLI uses one of two default data formats:

// date-time format:
yyyy-MM-dd HH:mm:ss

// time-only format:
HH:mm:ss

The date-time format is used for columns that map to Dgraph mdex:dateTime attributes, while the time-only
format is used for columns that map to Dgraph mdex:time attributes.

If dateFormat is specified, use a pattern described here:
http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Examples

Example 1: If the Hive "birthyear" column contains a year of birth for a person, then the command can be:

./data_processing_CLI --incrementalUpdate edp_cli_edp_f35ddabb-f011 "birthyear > 1970"

In the example, only the records of persons born after 1970 are processed.

Example 2: Using the unix_timestamp function with a supplied date-time format:

./data_processing_CLI --incrementalUpdate edp_cli_edp_f35ddabb-f011-427f-b4ff-a2e6e3f3f016_12266
"factsales_shipdatekey_date >= unix_timestamp('2006-01-01 00:00:00', 'yyy-MM-dd HH:mm:ss')"

Example 3: Another example of using the unix_timestamp function with a supplied date-time format:

./data_processing_CLI --incrementalUpdate edp_cli_edp_a4d38974-3bab-4ced-8166-9b0f46a59d2c_10163
"creation_date >= unix_timestamp('2015-06-01 20:00:00', 'yyyy-MM-dd HH:mm:ss')"

Example 4: An invalid example of using the unix_timestamp function with a date that does not contain a
time:

./data_processing_CLI --incrementalUpdate edp_cli_edp_a4d38974-3bab-4ced-8166-9b0f46a59d2c_10163
"claim_date >= unix_timestamp('2000-01-01')"

The error will be:

Oracle® Big Data Discovery: Data Processing Guide

http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Updating Data Sets 61

16:41:29.375 main ERROR: Failed to parse date
/ time value '2000-01-01' using the format 'yyyy-MM-dd HH:mm:ss'

Version 1.1.3 • May 2016

Running an Incremental update

This topic describes how to run an Incremental update operation.

This procedure assumes that the data set has been configured for updates (that is, a record identifier has
been configured).

Note that the example in the procedure does not use the --table and --database flags, which means that
the command will run against the original Hive table from which the data set was created.

To run an Incremental update on a data set:

1. Obtain the data set key of the data set you want to incrementally update:

(a) In Studio, go to Project Settings>Data Set Manager.

(b) In the Data Set Manager, select the data set and expand the options next to its name.

(c) Get the value from the Data Set Key field.

2. From a Linux command prompt, change to the $BDD_HOME/dataprocessing/edp_cli directory.

3. Run the DP CLI with the --incrementalUpdate flag, the data set key, and the filter predicate. For
example:

.
/data_processing_CLI --incrementalUpdate
edp_cli_edp_a4d38974-3bab-4ced-8166-9b0f46a59d2c_10163 "yearest > 1850"

If the operation was successful, the DP CLI prints these messages at the end of the stdout output:

...
client token: N/A
diagnostics: N/A
ApplicationMaster host: web2014.example.com
ApplicationMaster RPC port: 0
queue: root.fcalvill
start time: 1437415956086
final status: SUCCEEDED
tracking URL: http://web2014.example.com:8088/proxy/application_1436970078353_0041/A
user: fcalvill

data_processing_CLI finished with state SUCCESS

Note that the tracking URL field shows an HTTP link to the Application Page (in Cloudera Manager or
Ambari) for this workflow. The YARN Application Overview page should have a State of "FINISHED" and a
FinalStatus of "SUCCESSFUL". The Name field will have an entry similar to this example:

EDP: IncrementalUpdateConfig{collectionName
=edp_cli_edp_a4d38974-3bab-4ced-8166-9b0f46a59d2c_10163, whereClause=yearest > 1850}

Note the following about the Name information:

• IncrementalUpdateConfig is the name of the type of Incremental workflow.

• whereClause lists the filter predicate used in the command.

You can also check the Dgraph HDFS Agent log for the status of the Dgraph ingest operation.

If the Incremental update determines that there are no records that fit the filter predicate criteria, the DP CLI
exits gracefully with a message that no records are to be updated.

Oracle® Big Data Discovery: Data Processing Guide

Updating Data Sets 62

Note that future Incremental updates on this data set will continue to use the same data set key. You will also
use this key if you set up a Incremental update cron job for this data set.

Creating cron jobs for updates
You can create cron jobs to run your Refresh and Incremental updates.

You can use the Linux crontab command to create cron jobs for your Refresh and Incremental updates. A
cron job will run the DP CLI (with one of the update flags) at a specific date and time.

The crontab file will have one or more cron jobs. Each job should take up a single line. The job command
syntax is:

schedule path/to/command

Version 1.1.3 • May 2016

The command begins with a five-field schedule of when the command will run. A simple version of the time
fields in is:

minute hour dayOfMonth month dayOfWeek

where:

• minute is 0-59.

• hour is 0-23 (0 = midnight).

• dayOfMonth is 1-31 or * for every day of the month.

• month is 1-12 or * for every month.

• dayOfWeek is 0-6 (0 - Sunday) or * for every day of the week.

path/to/command is the path (including the command name) of the DP CLI update to run, including the
appropriate flag and argument.

An example would be:

0 0 2 * * /localdisk/Oracle/Middleware/BDD-1.1/dataprocessing/edp_cli
/data_processing_CLI --refresh edp_f94606d2

The job would run every day at 2am.

To set up a cron job for updates:

1. From the Linux command line, use the crontab command with the e flag to open the crontab file
for editing:

crontab -e

2. Enter the job command line, as in the above example.

3. Save the file.

You can also use the Hive Table Detector cron job as a template, as it uses the Linux flock command and
generates a log file. For details, see DP CLI cron job on page 46.

Oracle® Big Data Discovery: Data Processing Guide

Chapter 6

Data Processing Logging

This section describes logging for the Data Processing component of Big Data Discovery.

DP logging overview

DP logging properties file

Example of logs during a workflow

DP logging overview
This topic provides an overview of the Data Processing logging files.

Location of the log files

Each run of Data Processing produces one or more log files on each machine that is involved in the Data
Processing job. The log files are in these locations:

• On the client machine, the location of the log files is set by the log4j.appender.edpMain.Path
property in the DP log4j.properties configuration file. The default location is the
$BDD_HOME/logs/edp directory. These log files apply to workflows initiated by both Studio and the DP
CLI. When the DP component starts, it also writes a start-up log here.

• On the client machine, Studio workflows are also logged in the
$BDD_DOMAIN/servers/<serverName>/logs/bdd-studio.log file.

• On the Hadoop nodes, logs are generated by the Spark-on-YARN processes.

Local log files
The Data Processing log files (in the $BDD_HOME/logs/edp directory) are named edpLog*.log. The
naming pattern is set in the logging.properties configuration.

The default naming pattern for each log file is

edp_%timestamp_%unique.log

Version 1.1.3 • May 2016

where:

• %timestamp provides a timestamp in the format: yyyyMMddHHmmssSSS

• %unique provides a uniquified string

For example:

edp_20150728100110505_0bb9c1a2-ce73-4909-9de0-a10ec83bfd8b.log

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 64

The log4j.appender.edpMain.MaxSegmentSize property sets the maximum size of a log file, which is
100MB by default. Logs that reach the maximum size roll over to the next log file. The maximum amount of
disk space used by the main log file and the logging rollover files is about 1GB by default.

YARN logs

When a client (Studio or the DP CLI) launches a Data Processing workflow, a Spark job is created to run the
actual Data Processing job. This job is run by an arbitrary node in the CDH or HDP cluster (node is chosen by
YARN). To find the Data Processing logs, you can use Cloudera Manager (for CDH jobs) or Ambari (for HDP
jobs).

To access the YARN logs:

1. Use the appropriate Web UI:

• From the Cloudera Manager home page, click YARN (MR2 Included).

• From the Ambari home page, click YARN.

2. In the YARN menu, click the ResourceManager Web UI quick link.

3. The All Applications page lists the status of all submitted jobs. Click on the ID field to list job information.
Note that failed jobs will exceptions in the Diagnostics field.

4. To show log information, click on the appropriate log in the Logs field at the bottom of the Applications
page.

DP logging properties file
Data Processing has a default Log4j configuration file that sets its logging properties.

The file is named log4j.properties and is located in the
$BDD_HOME/dataprocessing/edp_cli/config directory.

The default version of the file looks like the following example:

##
Global properties
##

log4j.rootLogger = INFO, console, edpMain

##
Handler specific properties.
##

log4j.appender.console = org.apache.log4j.ConsoleAppender

##
EdpODPFormatterAppender is a custom log4j appender that gives two new optional
variables that can be added to the log4j.appender.*.Path property and are
filled in at runtime:
%timestamp - provides a timestamp in the format: yyyyMMddHHmmssSSS
%unique - provides a uniquified string
##

log4j.appender.edpMain = com.oracle.endeca.pdi.logging.EdpODLFormatterAppender
log4j.appender.edpMain.ComponentId = DataProcessing
log4j.appender.edpMain.Path = /localdisk/Oracle/Middleware/BDD-1.1.0.13.38/logs/edp
/edp_%timestamp_%unique.log
log4j.appender.edpMain.Format = ODL-Text

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 65

log4j.appender.edpMain.MaxSegmentSize = 100000000
log4j.appender.edpMain.MaxSize = 1000000000
log4j.appender.edpMain.Encoding = UTF-8

##
Formatter specific properties.
##

log4j.appender.console.layout = org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern
= [%d{yyyy-MM-dd'T'HH:mm:ss.SSSXXX}] [DataProcessing] [%p] [] [%C] [tid:%t] [userID:${user.name}]
%m%n

##
Facility specific properties.
##

These loggers from dependency libraries are explicity set to different logging levels.
They are known to be very noisy and obsure other log statements.
log4j.logger.org.eclipse.jetty = WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper = INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter = INFO

Version 1.1.3 • May 2016

The file has the following properties:

Logging property Description

log4j.rootLogger The level of the root logger is defined as
INFO and attaches the console and
edpMain handlers to it.

log4j.appender.console Defines console as a Log4j
ConsoleAppender.

log4j.appender.edpMain Defines edpMain as
EdpODPFormatterAppender (a custom
Log4j appender).

log4j.appender.edpMain.ComponentId Sets DataProcessing as the name of
the component that generates the log
messages.

log4j.appender.edpMain.Path Sets the path for the log files to the
$BDD_HOME/logs/edp directory. Each
log file is named:

edp_%timestamp_%unique.log

See the comments in the log file for the
definitions of the %timestamp and
%unique variables.

log4j.appender.edpMain.Format Sets ODL-Text as the formatted string as
specified by the conversion pattern.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 66

Logging property Description

log4j.appender.edpMain.MaxSegmentSize Sets the maximum size (in bytes) of a log
file. When the file reaches this size, a
rollover file is created. The default is
100000000 (about 100 MB).

log4j.appender.edpMain.MaxSize Sets the maximum amount of disk space to
be used by the main log file and the
logging rollover files. The default is
1000000000 (about 1GB).

log4j.appender.edpMain.Encoding Sets character encoding for the log file.
The default UTF-8 value prints out UTF-8
characters in the file.

log4j.appender.console.layout Sets the PatternLayout class for the
console layout.

log4j.appender.console.layout.ConversionPatter Defines the log entry conversion pattern
n as:

• %d is the date of the logging event, in
the specified format.

• %p outputs the priority of the logging
event.

• %c outputs the category of the logging
event.

• %L outputs the line number from
where the logging request was issued.

• %m outputs the application-supplied
message associated with the logging
event while %n is the platform-
dependent line separator character.

For other conversion characters, see:
https://logging.apache.org/log4j/1.2/apidocs
/org/apache/log4j/PatternLayout.html

Sets the default logging level for the Spark
log4j.logger.org.eclipse.jetty

and Jetty loggers.
log4j.logger.org.apache.spark.repl.SparkIMain$
exprTyper

log4j.logger.org.apache.spark.repl.SparkILoop$
SparkILoopInterpreter

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Data Processing Logging 67

Logging levels

The logging level specifies the amount of information that is logged. The levels (in descending order) are:

• SEVERE — Indicates a serious failure. In general, SEVERE messages describe events that are of
considerable importance and which will prevent normal program execution.

• WARNING — Indicates a potential problem. In general, WARNING messages describe events that will be of
interest to end users or system managers, or which indicate potential problems.

• INFO — A message level for informational messages. The INFO level should only be used for reasonably
significant messages that will make sense to end users and system administrators.

• CONFIG — A message level for static configuration messages. CONFIG messages are intended to provide
a variety of static configuration information, and to assist in debugging problems that may be associated
with particular configurations.

• FINE — A message level providing tracing information. All options, FINE, FINER, and FINEST, are
intended for relatively detailed tracing. Of these levels, FINE should be used for the lowest volume (and
most important) tracing messages.

• FINER — Indicates a fairly detailed tracing message.

• FINEST — Indicates a highly detailed tracing message. FINEST should be used for the most voluminous
detailed output.

• ALL — Enables logging of all messages.

These levels allow you to monitor events of interest at the appropriate granularity without being overwhelmed
by messages that are not relevant. When you are initially setting up your application in a development
environment, you might want to use the FINEST level to get all messages, and change to a less verbose level
in production.

DP log entry format

DP log levels

DP log entry format

This topic describes the format of Data Processing log entries, including their message types and log levels.

The following is an example of a NOTIFICATION message resulting from the part of the workflow where DP
connects to the Hive Metastore:

[2015-07-28T11:45:08.502-04:00] [DataProcessing] [NOTIFICATION] [] [hive.metastore]
[host: web09.example.com] [nwaddr: 10.152.105.219] [tid: Driver] [userId: yarn]
[ecid: 0000KvLLfZE7ADkpSw4Eyc1LhuE0000002,0] Connected to metastore.

Version 1.1.3 • May 2016

The format of the DP log fields (using the above example) and their descriptions are as follows:

Log entry field Description Example

Timestamp The date and time when the message was [2015-07-28T11:45:08.502-04:00]
generated. This reflects the local time zone.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 68

Log entry field Description Example

Component ID The ID of the component that originated the [DataProcessing]
message. "DataProcessing" is hard-coded
for the DP component.

Message Type The type of message (log level): [NOTIFICATION]

• INCIDENT_ERROR

• ERROR

• WARNING

• NOTIFICATION

• TRACE

• UNKNOWN

Message ID The message ID that uniquely identifies the []
message within the component. The ID may
be null.

Module ID The Java class that prints the message [hive.metastore]
entry.

Host name The name of the host where the message [host: web09.example.com]
originated.

Host address The network address of the host where the [nwaddr: 10.152.105.219]
message originated

Thread ID The ID of the thread that generated the [tid: Driver]
message.

User ID The name of the user whose execution [userId: yarn]
context generated the message.

ECID The Execution Context ID (ECID), which is [ecid:
a global unique identifier of the execution of 0000KvLLfZE7ADkpSw4Eyc1LhuE000000
a particular request in which the originating 2,0]
component participates. Note that

Message Text The text of the log message. Connected to metastore.

DP log levels
This topic describes the log levels that can be set in the DP log4j.properties file.

The Data Processing logger is configured with the type of information written to log files, by specifying the log
level. When you specify the type, the DP logger returns all messages of that type, as well as the messages

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Processing Logging 69

that have a higher severity. For example, if you set the message type to WARN, messages of type FATAL and
ERROR are also returned.

The DP log4j.properties file lists these four packages for which you can set a logging level:

• log4j.rootLogger

• log4j.logger.org.eclipse.jetty

• log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper

• log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter

There are two ways of changing a log level:

• Manually, by opening the properties file in a text editor and changing the level of any of the four packages.
With this method, you use a Java log level from the table below.

• Dynamically, by using the bdd-admin script with the set-log-levels command. With this method, you
use an ODL log level (from the table below) on the log4j.rootLogger package only.

This example shows how you can manually change a log level setting:

log4j.rootLogger = FATAL, console, edpMain

Version 1.1.3 • May 2016

In the example, the log level for the main logger is set to FATAL.

Logging levels

The log levels (in decreasing order of severity) are:

Java Log Level ODL Log Level Meaning

OFF N/A Has the highest possible rank and is used to turn off
logging.

FATAL INCIDENT_ERROR Indicates a serious problem that may be caused by
a bug in the product and that should be reported to
Oracle Support. In general, these messages
describe events that are of considerable importance
and which will prevent normal program execution.

ERROR ERROR Indicates a serious problem that requires immediate
attention from the administrator and is not caused
by a bug in the product.

WARN WARNING Indicates a potential problem that should be
reviewed by the administrator.

INFO NOTIFICATION A message level for informational messages. This
level typically indicates a major lifecycle event such
as the activation or deactivation of a primary sub-
component or feature. This is the default level.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 70

Java Log Level ODL Log Level Meaning

DEBUG TRACE Debug information for events that are meaningful to
administrators, such as public API entry or exit
points. You should not use this level in a production
environment, as performance for DP jobs will be
slower.

These levels allow you to monitor events of interest at the appropriate granularity without being overwhelmed
by messages that are not relevant. When you are initially setting up your application in a development
environment, you might want to use the DEBUG level to get most of the messages, and change to a less
verbose level in production.

Dynamically changing log levels
You can use the bdd-admin script with the set-log-levels command to change the log level of the
log4j.rootLogger package. The command takes one of the ODL levels and converts it to its Java-level
equivalent before writing it to the properties file. Note that this command cannot change the setting of the
other three packages. For example:

./bdd-admin.sh set-log-levels -l INCIDENT_ERROR -c dp

Version 1.1.3 • May 2016

At any time, you can use the bdd-admin script with the get-log-levels command to retrieve the setting of
the log4j.rootLogger package.

For usage information on both commands, see the Administrator's Guide.

Example of logs during a workflow
This example gives an overview of the various logs that are generated when you run a workflow with the DP
CLI.

The example assumes that the Hive administrator has created a table named masstowns (which contains
information about towns and cities in Massachusetts). The workflow will be run with the DP CLI, which is
described in DP Command Line Interface Utility on page 34.

The DP CLI command line is:

./data_processing_CLI --database default --table masstowns

The --table flag specifies the name of the Hive table, the --database flag states that the table in is the
Hive database named "default", and the --maxRecords flag sets the sample size to be a maximum of 1,000
records.

Command stdout

The DP CLI first prints out the configuration with which it is running:

...
EdpEnvConfig{endecaServer=http://web07.example.oracle.com:7003/endeca-server/, edpDataDir=/user/bdd
/edp/data,
...
ProvisionDataSetFromHiveConfig{hiveDatabaseName=default, hiveTableName=masstowns,
newCollectionName=edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d, runEnrichment=false,
maxRecordsForNewDataSet=1000000, languageOverride=en, operation=PROVISION_DATASET_FROM_HIVE,

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 71

transformScript=, accessType=public, autoEnrichPluginExcludes=[Ljava.lang.String;@459e1c7d}
...

Version 1.1.3 • May 2016

The operation field lists the operation type of the Data Processing workflow. In this example, the operation is
PROVISION_DATASET_FROM_HIVE, which means that it will create a new BDD data set from a Hive table.

If the workflow is successful, the stdout ends this way:

...
[2015-07-28T14:58:55.881-04:00] [DataProcessing] [INFO] [] [org.apache.spark.Logging$class]
[tid:main] [userID:fcalvill]

client token: N/A
diagnostics: N/A
ApplicationMaster host: busgg2014.us.oracle.com
ApplicationMaster RPC port: 0
queue: root.fcalvill
start time: 1438109897765
final status: SUCCEEDED
tracking URL: http://web07.example.com:8088/proxy/application_1437769147618_0007/A
user: fcalvill

New collection name = edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
data_processing_CLI finished with state SUCCESS

Note that the tracking URL field shows an HTTP link to the Application Page (in Cloudera Manager or
Ambari) for this workflow.

$BDD_HOME/logs/edp logs
In this example, the $BDD_HOME/logs/edp directory has three logs. The owner of one of them is the user ID
of the person who ran the DP CLI, while the owner of other two logs is the user yarn:

• The non-YARN log contains information similar to the stdout information. Note that it does contain entries
from the Spark executors.

• The YARN logs contain information that is similar to YARN logs in the next section.

YARN logs

If you use the YARN ResourceManager Web UI link, the All Applications page shows the Spark
applications that have run. In our example, the job ID and job name are:

ID: application_1437769147618_0007
Name: EDP: ProvisionDataSetFromHiveConfig{hiveDatabaseName=default, hiveTableName=masstowns,

newCollectionName=edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d}

The Name field shows these characteristics about the job:

• ProvisionDataSetFromHiveConfig is the type of DP workflow that was run.

• hiveDatabaseName lists the name of the Hive database (default in this example).

• hiveTableName lists the name of the Hive table that was provisioned (masstowns in this example).

• newCollectionName lists the name of the new data set. The name will appear in the Data Set Key
property for the data set in the Data Set Manager page in Studio.

Clicking on History in the Tracking UI field displays the job history. The information in the Application
Overview panel includes the name of the name of the user who ran the job, the final status of the job, and the
elapsed time of the job. FAILED jobs will have error information in the Diagnostics field.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 72

Clicking on logs in the Logs field displays the stdout and stderr output. The stderr output will be
especially useful for FAILED jobs. In addition, the stdout section has a link (named Click here for the full
log) that displays more detailed output information.

Dgraph HDFS Agent log

When the DP workflow finishes, the Dgraph HDFS Agent fetches the DP-created files and sends them to the
Dgraph for ingest. The log messages for the Dgraph HDFS Agent component for the ingest operation will be
similar to the following entries (note that only the messages are shown):

New import request received: Collection name: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
location: /user/bdd/edp/data/.dataIngestSwamp/edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
user name: fcalvill, requestOrigin: FROM_DATASET

Finished reading 333 records for Collection name: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
location: /user/bdd/edp/data/.dataIngestSwamp/edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
user name: fcalvill, requestOrigin: FROM_DATASET

fetchMoreRecords for collection: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
createBulkIngester edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
Starting ingest for: Collection name: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,

location: /user/bdd/edp/data/.dataIngestSwamp/edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
user name: fcalvill, requestOrigin: FROM_DATASET

sendRecordsToIngester 333
fetchMoreRecords for collection: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
closeBulkIngester
Ingest finished with 333 records committed and 0 records rejected. Status: INGEST_FINISHED.

Request info: Collection name: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
location: /user/bdd/edp/data/.dataIngestSwamp/edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d,
user name: fcalvill, requestOrigin: FROM_DATASET

Updating datasetInventory for collection: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
Requesting attributes [dpLockTimestamp] from collection system-bddDatasetInventory

with spec id='edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d'
Received attributes [dpLockTimestamp] from collection system-bddDatasetInventory

with spec id='edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d'
updateRecord for collection system-bddDatasetInventory record specifier id
='edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d'
Adding assignments: [ingestStatus = FINISHED,]
Removing assignments: []
updateRecord for collection: system-bddDatasetInventory, records affected: 1, records deleted: 0
Updating spelling dictionaries for collection edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
Finish updating spelling dictionaries for collection
edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d

Version 1.1.3 • May 2016

The ingest operation is complete when the final ingestStatus = FINISHED message is written to the log.

Dgraph out log
As a result of the ingest operation for the data set, the Dgraph out log (dgraph.out) will have these
bulk_ingest messages:

MessageParser constructor, parserCounter incremented, is now 1
Start ingest for collection: edp_cli_edp_cd2e1b2d-b072-4cb0-9359-549431655b0d
Starting a bulk ingest operation
batch 0 finish BatchUpdating status Success
Ending bulk ingest at client's request - finalizing changes
Bulk ingest completed: Added 333 records and rejected 0 records.
Ingest end - 0.051MB in 1.014sec = 0.051MB/sec

At this point, the data set records are in the Dgraph and the data set can be viewed in Studio.

Oracle® Big Data Discovery: Data Processing Guide

Data Processing Logging 73

Studio log

Similar to workflows run from the DP CLI, Studio-generated workflows also produce logs in the
$BDD_HOME/logs/edp directory, as well as YARN logs, Dgraph HDFS Agent logs, and Dgraph out logs.

In addition, Studio workflows are also logged in the $BDD_DOMAIN/servers/<serverName>/logs/bdd-
studio.log file.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Chapter 7

Data Enrichment Modules

This section describes the Data Enrichment modules of Big Data Discovery.

About the Data Enrichment modules

Entity extractor

Noun Group extractor

TF.IDF Term extractor

Sentiment Analysis (document level)

Sentiment Analysis (sub-document level)

Address GeoTagger

IP Address GeoTagger

Reverse GeoTagger

Tag Stripper

Phonetic Hash

Language Detection

Updating models

About the Data Enrichment modules
The Data Enrichment modules increase the usability of your data by discovering value in its content.

Bundled in the Data Enrichment package is a collection of modules along with the logic to associate these
modules with a column of data (for example, an address column can be detected and associated with a
GeoTagger module).

During the sampling phase of the Data Processing workflow, some of the Data Enrichment modules run
automatically while others do not. If you run a workflow with the DP CLI, you can use the --
excludePlugins flag to specify which modules should not be run.

After a data set has been created, you can run any module from Studio's Transform page.

Pre-screening of input

When Data Processing is running against a Hive table, the Data Enrichment modules that run automatically
obtain their input pre-screened by the sampling stage. For example, only an IP address is ever passed to the
IP Address GeoTagger module.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 75

Attributes that are ignored

All Data Enrichment modules ignore both the primary-key attribute of a record and any attribute whose data
type is inappropriate for that module. For example, the Entity extractor works only on string attributes, so that
numeric attributes are ignored. In addition, multi-assign attributes are ignored for auto-enrichment.

Sampling strategy for the modules

When Data Processing runs (for example, during a full data ingest), each module runs only under the following
conditions during the sampling phase:

• Entity: never runs automatically.

• TF-IDF: runs only if the text contains between 35 and 30,000 tokens.

• Sentiment Analysis (both document level and sub-document level) : never runs automatically

• Address GeoTagger: runs only on well-formed addresses. Note that the GeoTagger sub-modules
(City/Region/Sub-Region/Country) never run automatically.

• IP Address GeoTagger: runs only on IPV4 type addresses (does not run on private IP addresses and
does not run on automatically on IPV6 type addresses).

• Reverse GeoTagger: only runs on valid geocode formats.

• Boilerplate Removal: never runs automatically.

• Tag Stripper: never runs automatically.

• Phonetic Hash: never runs automatically.

• Language Detection: runs only if the input text is at least 30 words long. This module is enabled for tokens
in the range 30 to 30,000 tokens.

Note that when the Data Processing workflow finishes, you can manually run any of these modules from
Transform in Studio.

Supported languages

The supported languages are specific to each module. For details, see the topic for the module.

Output attribute names

The types and names of output attributes are specific to each module. For details on output attributes, see the
topic for the module.

Entity extractor
The Entity extractor module extracts the names of people, companies and places from the input text inside
records in source data.

The Entity extractor locates and classifies individual elements in text into the predefined categories, which are
PERSON, ORGANIZATION, and LOCATION.

The Entity extractor supports only English input text.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 76

Configuration options

This module does not automatically run during the sampling phase of a Data Processing workflow, but you
can launch it from Transform in Studio.

Output

For each predefined category, the output is a list of names which are ingested into the Dgraph as a multi-
assign string Dgraph attribute. The names of the output attributes are:

• <attribute>_entity_person

• <attribute>_entity_loc

• <attribute>_entity_org

In addition, the Transform API has a getEntities function that wraps the Name Entity extractor to return
single values from the input text.

Example

Assume the following input text:

While in New York City, Jim Davis bought 300 shares of Acme Corporation in 2012.

Version 1.1.3 • May 2016

The output would be:

location: New York City
organization: Acme Corporation
person: Jim Davis

Noun Group extractor
This plugin extracts noun groups from the input text.

The Noun Group extractor retrieves noun groups from a string attribute in each of the supported languages.
The extracted noun groups are sorted by C-value and (optionally) truncated to a useful number, which is
driven by the size of the original document and how many groups are extracted. One use of this plugin is in
tag cloud visualization to find the commonly occurring themes in the data.

A typical noun group consists of a determiner (the head of the phrase), a noun, and zero or more dependents
of various types. Some of these dependents are:

• noun adjuncts

• attribute adjectives

• adjective phrases

• participial phrases

• prepositional phrases

• relative clauses

• infinitive phrases

The allowability, form, and position of these elements depend on the syntax of the language being used.

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 77

Design

This plugin works by applying language-specific phrase grouping rules to an input text. A phrase grouping rule
consists of sequences of lexical tests that apply to the tokens in a sentence, identifying a grouping action. The
action of a grouping rule is a single part of speech with a weight value, which can be negative or positive
integers, followed by optional component labels and positions. The POS (part of speech) for noun groups will
use the noun POS. The components must either be head or mod, and the positions are zero-based index into
the pattern, excluding the left and right context (if exists).

Configuration options

There are no configuration options.

Note that this plugin is not run automatically during the Data Processing sampling phase (i.e., when a new or
modified Hive table is sampled).

Output

The output of this plugin is an ordered list of phrases (single- or multi-word) that are ingested into the Dgraph
as a multi-assign, string attribute.

The name of the output attributes is <colname>_ noun_groups.

In addition, the Transform API has the extractNounGroups function that is a wrapper around the Name Group
extractor to return noun group single values from the input text.

Example

The following sentence provides a high-level illustration of noun grouping:

The quick brown fox jumped over the lazy dog.

Version 1.1.3 • May 2016

From this sentence, the extractor would return two noun groups:

• The quick brown fox

• the lazy dog

Each noun group would be ingested into the Dgraph as a multi-assign string attribute.

TF.IDF Term extractor
This module extracts key words from the input text.

The TF.IDF Term module extracts key terms (salient terms) using a predictable, statistical algorithm. (TF is
"term frequency" while IDF is "inverse document frequency".)

The TF.IDF statistic is a common tool for the purpose of extracting key words from a document by not only
considering a single document but all documents from the corpus. For the TF.IDF algorithm, a word is
important for a specific document if it shows up relatively often within that document and rarely in other
documents of the corpus.

The number of output terms produced by this module is a function of the TF.IDF curve. By default, the module
stops returning terms when the score of a given term falls below ~68%.

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 78

The TF.IDF Term extractor supports these languages:

• English (UK/US)

• French

• German

• Italian

• Portuguese (Brazil)

• Spanish

Configuration options

During a Data Processing sampling operation, this module runs automatically on text that contains between 30
and 30,000 tokens. However, there are no configuration options for such an operation.

In Studio, the Transform API provides a language argument that specifies the language of the input text, to
improve accuracy.

Output

The output is an ordered list of single- or multi-word phrases which are ingested into the Dgraph as a multi-
assign string Dgraph attribute. The name of the output attribute is <attribute>_key_phrases.

Sentiment Analysis (document level)
The document-level Sentiment Analysis module analyzes a piece of text and determines whether the text has
a positive or negative sentiment.

It supports any sentiment-bearing text (that is, texts which are not too short, numeric, include only a street
address, or an IP address). This module works best if the input text is over 40 characters in length.

This module supports these languages:

• English (US and UK)

• French

• German

• Italian

• Spanish

Configuration options

This module never runs automatically during a Data Processing workflow.

In addition, the Transform API has a getSentiment function that wraps this module.

Output

The default output is a single text that is one of these values:

• POSITIVE

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 79

• NEGATIVE

Note that NULL is returned for any input which is either null or empty.

The output string is subsequently ingested into the Dgraph as a single-assign string Dgraph attribute. The
name of the output attribute is <attribute>_doc_sent.

Sentiment Analysis (sub-document level)
The sub-document-level Sentiment Analysis module returns a list of sentiment-bearing phrases which fall into
one of the two categories: positive or negative.

The SubDocument-level Sentiment Analysis module obtains the sentiment opinion at a sub-document level.
This module returns a list of sentiment-bearing phrases which fall into one of the two categories: positive or
negative. Note that this module uses the same Sentiment Analysis classes as the document-level Sentiment
Analysis module.

This module supports these languages:

• English (US and UK)

• French

• German

• Italian

• Spanish

Configuration options

Because this module never runs automatically during a Data Processing sampling operation, there are no
configuration options for such an operation.

Output

For each predefined category, the output is a list of names which are ingested into the Dgraph as a multi-
assign string Dgraph attribute. The names of the output attributes are:

• <attribute>_sub_sent_neg (for negative phrases)

• <attribute>_sub_sent_pos (for positive phrases)

Address GeoTagger
The Address GeoTagger returns geographical information for a valid global address.

The geographical information includes all of the possible administrative divisions for a specific address, as well
as the latitude and longitude information for that address. The Address GeoTagger only runs on valid,
unambiguous addresses which correspond to a city. In addition, the length of the input text must be less than
or equal to 350 characters.

For triggering on auto-enrichment, the Address GeoTagger requires two or more match points to exist. For a
postcode to match, it must be accompanied by a country.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 80

Some valid formats are:

• City + State

• City + State + Postcode

• City + Postcode

• Postcode + Country

• City + State + Country

• City + Country (if the country has multiple cities of that name, information is returned for the city with the
largest population)

For example, these inputs generate geographical information for the city of Boston, Massachusetts:

• Boston, MA (or Boston, Massachusetts)

• Boston, Massachusetts 02116

• 02116 US

• Boston, MA US

• Boston US

The final example ("Boston US") returns information for Boston, Massachusetts because even though there
are several cities and towns named "Boston" in the US, Boston, Massachusetts has the highest population of
all the cities named "Boston" in the US.

Note that for this module to run automatically, the minimum requirement is that the city plus either a state or a
postcode are specified.

Keep in mind that regardless of the input address, the geographical resolution does not get finer than the city
level. For example, this module will not resolve down to the street level if given a full address. In other words,
this full address input:

400 Oracle Parkway, Redwood City, CA 94065

Version 1.1.3 • May 2016

produces the same results as supplying only the city and state:

Redwood City, CA

GeoNames data

The information returned by this geocode tagger comes from the GeoNames geographical database, which is
included as part of the Data Enrichment package in Big Data Discovery.

Configuration options

This module is run (on well-formed addresses) during a Data Processing sampling operation. However, there
are no configuration options for such an operation.

Output

The output information includes the latitude and longitude, as well as all levels of administrative areas.

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 81

Depending on the country, the output attributes consist of these administrative divisions, as well as the
geocode of the address:

• <attribute>_geo_geocode — the latitude and longitude values of the address (such as "42.35843 -
71.05977").

• <attribute>_geo_city — corresponds to a city (such as "Boston").

• <attribute>_geo_country — the country code (such as "US").

• <attribute>_geo_postcode — corresponds to a postcode, such as a zip code in the US (such as
"02117").

• <attribute>_geo_region — corresponds to a geographical region, such as a state in the US (such as
"Massachusetts").

• <attribute>_geo_regionid — the ID of the region in the GeoNames database (such as "6254926"
for Massachusetts).

• <attribute>_geo_subregion — corresponds to a geographical sub-region, such as a county in the
US (such as "Suffolk County").

• <attribute>_geo_subregionid — the ID of the sub-region in the GeoNames database (such as
"4952349" for Suffolk County in Massachusetts).

All are output as single-assign string (mdex:string) attributes, except for Geocode which is a single-assign
geocode (mdex:geocode) attribute.

Note that if an invalid input is provided (such as a zip code that is not valid for a city and state), the output
may be NULL.

Examples

The following output might be returned for the "Boston, Massachusetts USA" address:

ext_geo_city Boston
ext_geo_country US
ext_geo_geocode 42.35843 -71.05977
ext_geo_postcode 02117
ext_geo_region Massachusetts
ext_geo_regionid 6254926
ext_geo_subregion Suffolk Country
ext_geo_subregionid 4952349

Version 1.1.3 • May 2016

This sample output is for the "London England" address:

ext_geo_city City of London
ext_geo_country GB
ext_geo_geocode 51.51279 -0.09184
ext_geo_postcode ec4r
ext_geo_region England
ext_geo_regionid 6269131
ext_geo_subregion Greater London
ext_geo_subregionid 2648110

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 82

IP Address GeoTagger
The IP Address GeoTagger returns geographical information for a valid IP address.

The IP Address GeoTagger is similar to the Address GeoTagger, except that it uses IP addresses as its input
text. This module is useful IP addresses are present in the source data and you want to generate geographical
information based on them. For example, if your log files contain IP addresses as a result of people coming to
your site, this module would be most useful for visualization where those Web visitors are coming from.

Note that when given a string that is not an IP address, the IP Address GeoTagger returns NULL.

GeoNames data

The information returned by this geocode tagger comes from the GeoNames geographical database, which is
included as part of the Data Enrichment package in Big Data Discovery.

Configuration options

There are no configuration options for a Data Processing sampling operation.

Output

The output of this module consists of the following attributes:

• <attribute>_geo_geocode — the latitude and longitude values of the address (such as "40.71427 -
74.00597 ").

• <attribute>_geo_city — corresponds to a city (such as "New York City").

• <attribute>_geo_region — corresponds to a region, such as a state in the US (such as "New York").

• <attribute>_geo_regionid — the ID of the region in the GeoNames database (such as "5128638 "
for New York).

• <attribute>_geo_postcode — corresponds to a postcode, such as a zip code in the US (such as
"02117").

• <attribute>_geo_country — the country code (such as "US").

Example

The following output might be returned for the 148.86.25.54 IP address:

ext_geo_city New York City
ext_geo_country US
ext_geo_geocode 40.71427 -74.00597
ext_geo_postcode 10007
ext_geo_region New York
ext_geo_regionid 5128638

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 83

Reverse GeoTagger
The Reverse GeoTagger returns geographical information for a valid geocode latitude/longitude coordinates
that resolve to a metropolitan area.

The purpose of the Reverse GeoTagger is, based on a given latitude and longitude value, to find the closest
place (city, state, country, postcode, etc) with population greater than 5000 people. The location threshold for
this module is 100 nautical miles. When the given location exceeds this radius and the population threshold,
the result is NULL.

The syntax of the input is:

<double>separator<double>

Version 1.1.3 • May 2016

where:

• The first double is the latitude, within the range of -90 to 90 (inclusive).

• The second double is the longitude, within the range of -180 to 180 (inclusive).

• The separator is any of these characters: whitespace, colon, comma, pipe, or a combination of
whitespaces and one the other separator characters.

For example, this input:

42.35843 -71.05977

returns geographical information for the city of Boston, Massachusetts.

However, this input:

39.30 89.30

returns NULL because the location is in the middle of the Gobi Desert in China.

GeoNames data

The information returned by this geocode tagger comes from the GeoNames geographical database, which is
included as part of the Data Enrichment package in Big Data Discovery.

Configuration options

There are no configuration options for a Data Processing sampling operation.

In Studio, the Transform area includes functions that return only a specified piece of the geographical results,
such as only a city or only the postcode.

Output

The output of this module consists of these attribute names and values:

• <attribute>_geo_city — corresponds to a city (such as "Boston").

• <attribute>_geo_country — the country code (such as "US").

• <attribute>_geo_postcode — corresponds to a postcode, such as a zip code in the US (such as
"02117").

• <attribute>_geo_region — corresponds to a geographical region, such as a state in the US (such as
"Massachusetts").

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 84

• <attribute>_geo_regionid — the ID of the region in the GeoNames database (such as "6254926"
for Massachusetts).

• <attribute>_geo_subregion — corresponds to a geographical sub-region, such as a county in the
US (such as "Suffolk County").

• <attribute>_geo_subregionid — the ID of the sub-region in the GeoNames database (such as
"4952349" for Suffolk County in Massachusetts).

Tag Stripper
The Tag Stripper module removes any HTML, XML and XHTML markup from the input text.

Configuration options

This module never runs automatically during a Data Processing sampling operation.

When you run it from within Transform in Studio, the module takes only the input text as an argument.

Output

The output is a single text which is ingested into the Dgraph as a single-assign string Dgraph attribute. The
name of the output attribute is <attribute>_html_strip.

Phonetic Hash
The Phonetic Hash module returns a string attribute that contains the hash value of an input string.

A word's phonetic hash is based on its pronunciation, rather than its spelling. This module uses a phonetic
coding algorithm that transforms small text blocks (names, for example) into a spelling-independent hash
comprised of a combination of twelve consonant sounds. Thus, similar-sounding words tend to have the same
hash. For example, the term "purple" and its misspelled version of "pruple" have the same hash value (PRPL).

Phonetic hashing can used, for example, to normalize data sets in which a data column is noisy (for example,
misspellings of people's names).

This module works only with whitespace languages.

Configuration options

This module never runs automatically during a Data Processing sampling operation and therefore there are no
configuration options.

In Studio, you can run the module within Transform, but it does not take any arguments other than the input
string.

Output

The module returns the phonetic hash of a term in a single-assign Dgraph attribute named
<attribute>_phonetic_hash. The value of the attribute is useful only as a grouping condition.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 85

Language Detection
The Language Detection module can detect the language of input text.

The Language Detection module can accurately detect and report primary languages in a plain-text input,
even if it contains more than one language. The size of the input text must be between 35 and 30,000 words
for more than 80% of the values sampled.

The Language Detection module can detect all languages supported by the Dgraph. The module parses the
contents of the specified text field and determines a set of scores for the text. The supported language with
the highest score is reported as the language of the text.

If the input text of the specified field does not match a supported language, the module outputs "Unknown" as
the language value. If the value of the specified field is NULL, or consists only of white spaces or non-
alphabetic characters, the component also outputs "Unknown" as the language.

Configuration options

There are no configuration options for this module, both when it is run as part of a Data Processing sampling
operation and when you run it from Transform in Studio.

Output

If a valid language is detected, this module outputs a separate attribute with the ISO 639 language code, such
as "en" for English, "fr" for French, and so on. There are two special cases when NULL is returned:

• If the input is NULL, the output is NULL.

• If there is a valid input text but the module cannot decide on a language, then the output is NULL.

The name of the output attribute is <attribute>_lang.

Updating models
You can update three of the models used by Data Enrichment modules.

You can update these models:

• Sentiment Analysis model, used by the two Sentiment Analysis modules

• TF.IDF model

• GeoTagger model, used by the three GeoTaggers.

Each model is updated by running the bdd-admin script with the update-model command and the model
type argument. More information is available in the topics below.

Updating Sentiment Analysis models

Updating TF.IDF models

Updating GeoTagger models

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Data Enrichment Modules 86

Updating Sentiment Analysis models

This topic describes how to set up and update the two Sentiment Analysis models with new training data.

The training data sets for the Sentiment Analysis modules consist of two input files with these names:

• <lang>_pos.txt contains text with positive sentiment.

• <lang>_neg.txt contains text with negative sentiment.

<lang> is a supported country code: en (UK/US English), fr (French), de (German), it (Italian), or es
(Spanish).

The text files should have one sentence per line. You must train your sentiment model against examples of
the type of data that you are going to see when you use your model. For example, if you are trying to
determine the sentiment of tweets, you will need to obtain examples of tweet review entries. You can either
provide your own data or buy it. For a good model, you will need at least several hundred examples, if not
thousands.

Each language-specific set of training files must reside in a directory whose name corresponds to the
language of the files. The directory names are:

• american

• french

• german

• italian

• spanish

The suggested naming structure of the entire directory is:

/<root>/models/sentiment/<language>

Version 1.1.3 • May 2016

where <language> is one or more of the above names.

Create a <language> directory only if you intend to build models for that language. For example, you can have
these two language directories:

/share/models/sentiment/american
/share/models/sentiment/french

The american directory would have the en_pos.txt and en_neg.txt files, while the french directory
would have the fr_pos.txt and fr_neg.txt files.

To update the Sentiment Analysis model:

1. Create the directory structure (explained above) for the Sentiment Analysis training files, with a
separate sub-directory for each language version.

In our example, following directory will be used for the American English version of the training files:

/share/models/sentiment/american

2. Copy the en_pos.txt and en_neg.txt files into the /american directory.

3. Run the bdd-admin script with the update-model command, the sentiment model-type argument,
and the absolute path to the /sentiment directory:

./bdd-admin.sh update-model sentiment /share/models/sentiment

If successful, the command prints these messages:

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 87

[2015/08
/14 15:35:02 -0400] [web2014.example.com] Generating the sentiment model file using new model
file...Success!
[2015/08/14 15:35:55 -0400] [Admin Server] Publishing the sentiment model file...
[2015/08/14 15:36:07 -0400] [Admin Server] Successfully published the model file.

Version 1.1.3 • May 2016

The operation replaces the Sentiment Analysis model's current JAR on the YARN worker nodes with the new
one.

You can revert the model by running the command without the path argument:

./bdd-admin.sh update-model sentiment

This reverts the Sentiment Analysis model to the original, shipped version.

Updating TF.IDF models

This topic describes how to set up and update the TF.IDF model with new training data.

For the TF.IDF training data, you provide one or more language-specific <lang>_abstracts.zip files,
where <lang> is a supported country code:

• de (German)

• en (US English)

• es (Spanish)

• fr (French)

• gb (UK English)

• is (Icelandic)

• it (Italian)

• pt (Portuguese)

Each ZIP file contains a large number of language training model files that can be any text that's in the given
language. You can use a variety of corpora, such as these two widely-used versions:

• Brown corpus, available for download: http://www.nltk.org/nltk_data/packages/corpora/brown.zip

• text8 corpus, available for download at: https://cs.fit.edu/~mmahoney/compression/text8.zip

All the ZIP files must be in the same directory, which can have any name of your choosing. The example
below assumes this directory structure:

/share/models/tfidf/en_abstracts.zip

The following procedure assumes that you have downloaded a corpus ZIP file and renamed it to
en__abstracts.zip.

To update the TF.IDF model:

1. Create the directory structure (explained above) for the TF.IDF training files, with one directory for the
ZIP files.

2. Copy the en__abstracts.zip training file into the /share/models/tfidf directory.

3. Run the bdd-admin script with the update-model command, the tdidf model-type argument, and
the absolute path to the /tfidf directory:

Oracle® Big Data Discovery: Data Processing Guide

http://www.nltk.org/nltk_data/packages/corpora/brown.zip
https://cs.fit.edu/~mmahoney/compression/text8.zip

Data Enrichment Modules 88

./bdd-admin.sh update-model tfidf /share/models/tfidf

Version 1.1.3 • May 2016

If successful, the command prints these messages:

[2015/08
/17 11:21:42 -0400] [web2014.example.com] Generating the tfidf model file using new model
file...Success!
[2015/08/17 11:24:45 -0400] [Admin Server] Publishing the tfidf model file...
[2015/08/17 11:24:57 -0400] [Admin Server] Successfully published the model file.

The operation replaces the TF.IDF model's current JAR on the YARN worker nodes with the new one.

You can revert the model by running the command without the path argument:

./bdd-admin.sh update-model tfidf

This reverts the TF.IDF model to the original, shipped version.

Updating GeoTagger models

You can update the geographical data sources for the geonames model that is used by the GeoTagger
modules.

Before running the procedure below, you must build two scripts:

• geodb-download-world.sh is used to download the latest geonames data from the
http://www.geonames.org/ site.

• <country_code>_stripnames is a text file that is used by the geonames builder to strip out words
from the geonames data that otherwise could yield missing results from the GeoTaggers. The
<country_code> prefix is the two-character (ISO 3166-1 alpha-2) uppercase code for a country. For
example "US" for the United States, which results in a US_stripnames file name.

The geodb-download-world.sh script should look like this example:

#!/bin/bash

set -x

wget -V >/dev/null 2>&1 || { echo >&2 "I require 'wget' but it's not installed. Aborting."; exit 1
; }

rm allCountries_nozip.zip
rm allCountries.zip
wget http://download.geonames.org/export/dump/allCountries.zip
mv allCountries.zip allCountries_geonames.zip

rm allCountries.zip
rm allCountries_zip.zip
wget http://download.geonames.org/export/zip/allCountries.zip
mv allCountries.zip allCountries_postalCode.zip

rm admin1CodesASCII.txt
wget http://download.geonames.org/export/dump/admin1CodesASCII.txt

rm admin2Codes.txt
wget http://download.geonames.org/export/dump/admin2Codes.txt

rm countryInfo.txt
wget http://download.geonames.org/export/dump/countryInfo.txt

rm cities1000.zip
wget http://download.geonames.org/export/dump/cities1000.zip

Oracle® Big Data Discovery: Data Processing Guide

http://www.geonames.org/

Data Enrichment Modules 89

rm cities5000.zip
wget http://download.geonames.org/export/dump/cities5000.zip

rm GeoLite2-City.mmdb
wget http://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz
gunzip GeoLite2-City.mmdb.gz

Version 1.1.3 • May 2016

Note that the rm commands allow you to run the script without having to manually delete existing files.

The content of the <country_code>_stripnames file should resemble this US_stripnames example:

(historical)
township of
city of
town of
mobile home park
home park

village of
borough of
, city of
trailer park
election precinct
mining district
estates mobile home park

unorganized territory of
trailer court
census designated place
designated place
village mobile home park
mobile park
mobile estates

In the stripnames file, you should put verbatim patterns (not regular expressions) that will be stripped when
they match the beginning or the end of a city name. For example, adding the line:

city of

causes the geonames raw data for "city of Attleboro" to be represented in the GeoTagger model as "Attleboro"
because "city of" matched the prefix of the geonames raw data (this is because "city of" would cause a
mismatch for the GeoTaggers). Note that the stripnames file is not trimmed, which allows matching to include
the space character.

To update the GeoTagger model:

1. Create a directory for the GeoTagger files.

In our example, the following directory structure is used:

/share/models/geotagger

2. Copy the geodb-download-world.sh script and your <country_code>_stripnames file into the
/geotagger directory.

3. Run the geodb-download-world.sh script.

When the script finishes, the /geotagger directory should contain these new files:

• admin1CodesASCII.txt

• admin2Codes.txt

• allCountries_geonames.zip

• allCountries_postalCode.zip

• cities1000.zip

Oracle® Big Data Discovery: Data Processing Guide

Data Enrichment Modules 90

• cities5000.zip

• countryInfo.txt

• GeoLite2-City.mmdb

4. Run the bdd-admin script with the update-model command, the geonames model-type argument,
and the absolute path to the /geotagger directory:

./bdd-admin.sh update-model geonames /share/models/geotagger

Version 1.1.3 • May 2016

If successful, the command prints these messages:

[2015/08
/18 13:40:37 -0400] [web2014.example.com] Generating the geonames model file using new model
file...Success!
[2015/08/18 13:48:28 -0400] [Admin Server] Publishing the geonames model file...
[2015/08/18 13:48:42 -0400] [Admin Server] Successfully published the model file.

The operation replaces the GeoTagger model's current JAR on the YARN worker nodes with the new one.

You can revert the model by running the command without the path argument:

./bdd-admin.sh update-model geonames

This reverts the GeoTagger model to the original, shipped version.

Oracle® Big Data Discovery: Data Processing Guide

Chapter 8

Dgraph Data Model

This section introduces basic concepts associated with the schema of records in the Dgraph, and describes
how data is structured and configured in the Dgraph data model. When a Data Processing workflow runs, a
resulting data set is created in the Dgraph. The records in this data set, as well as their attributes, are
discussed in this section.

About the data model

Data records

Attributes

Supported languages

About the data model
The data model in the Dgraph consists of data sets, records, and attributes.

• Data sets contain records.

• Records are the fundamental units of data.

• Attributes are the fundamental units of the schema. For each attribute, a record may be assigned zero,
one, or more attribute values.

Data records
Records are the fundamental units of data in the Dgraph.

Dgraph records are processed from rows in a Hive table that have been sampled by a Data Processing
workflow in Big Data Discovery.

Source information that is consumed by the Dgraph, including application data and the data schema, is
represented by records. Data records in Big Data Discovery are the business records that you want to explore
and analyze using Studio. A specific record belongs to only one specific data set.

Attributes
An attribute is the basic unit of a record schema. Assignments from attributes (also known as key-value
pairs) describe records in the Dgraph.

For a data record, an assignment from an attribute provides information about that record. For example, for a
list of book records, an assignment from the Author attribute contains the author of the book record.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph Data Model 92

Each attribute is identified by a unique name within each data set. Because attribute names are scoped within
their own data sets, it is possible for two attributes to have the same name, as long as each belongs to a
different data set.

Each attribute on a data record is itself represented by a record that describes this attribute. Following the
book records example, there is a record that describes the Author attribute. A set of these records that
describe attributes forms a schema for your records. This set is known as system records. Each attribute in a
record in the schema controls an aspect of the attribute on a data record. For example, an attribute on any
data record can be searchable or not. This fact is described by an attribute in the schema record.

Assignments on attributes

Attribute data types

Assignments on attributes

Records are assigned values from attributes. An assignment indicates that a record has a value from an
attribute.

A record typically has assignments from multiple attributes. For each assigned attribute, the record may have
one or more values. An assignment on an attribute is known as a key-value pair (KVP).

Not all attributes will have an assignment for every record. For example, for a publisher that sells both books
and magazines, the ISBNnumber attribute would be assigned for book records, but not assigned (empty) for
most magazine records.

Attributes may be single-assign or multi-assign:

• A single-assign attribute is an attribute for which each record can have at most one value. For example,
for a list of books, the ISBN number would be a single-assign attribute. Each book only has one ISBN
number.

• A multi-assign attribute is an attribute for which a single record can have more than one value. For the
same list of books, because a single book may have multiple authors, the Author attribute would be a
multi-assign attribute.

At creation time, the Dgraph attribute is configured to be either single-assign or multi-assign.

Attribute data types

The attribute type identifies the type of data allowed for the attribute value (key-value pair).

The Dgraph supports the following attribute data types:

Attribute type Description

mdex:string XML-valid character strings.

mdex:int A 32-bit signed integer. Although the Dgraph supports mdex:int attributes, they are
not used by Data Processing workflows.

mdex:long A 64-bit signed integer. mdex:long values accepted by the Dgraph can be up to the
value of 9,223,372,036,854,775,807.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph Data Model 93

Attribute type Description

mdex:double A floating point value.

mdex:time Represents the hour and minutes of an instance of time, with the optional
specification of fractional seconds. The time value can be specified as a universal
(UTC) date time or as a local time plus a UTC time zone offset.

mdex:dateTime Represents the year, month, day, hour, minute, and seconds of a time point, with
the optional specification of fractional seconds. The dateTime value can be
specified as a universal (UTC) date time or as a local time plus a UTC time zone
offset.

mdex:duration Represents a duration of the days, hours, and minutes of an instance of time.
Although the Dgraph supports mdex:duration attributes, they are not used by Data
Processing workflows.

mdex:boolean A Boolean. Valid Boolean values are true (or 1, which is a synonym for true) and
false (or 0, which is a synonym for false).

mdex:geocode A latitude and longitude pair. The latitude and longitude are both double-precision
floating-point values, in units of degrees.

During a Data Processing workflow, the created Dgraph attributes are derived from the columns in a Hive
table. For information on the mapping of Hive column data types to Dgraph attribute data types, see Data type
discovery on page 21.

Supported languages
The Dgraph uses a language code to identify a language for a specific attribute.

Language codes must be specified as valid RFC-3066 language code identifiers. The supported languages
and their language code identifiers are:

Arabic: ar Danish: da Indonesian: id Norwegian Bokmal: Spanish, Latin
nb American: es_lam

Afrikaans: af Divehi: nl Italian: it Norwegian Spanish, Mexican:
Nynorsk: nn es_mx

Albanian: sq Dutch: nl Japanese: ja Oriya: or Swedish: sv

Amharic: am English, American: Kannada: kn Persian: fa Swahili: sw
en

Armenian: hy English, British: Kazakh, Cyrillic: kk Persian, Dari: prs Tagalog: tl
en_GB

Assamese: as Estonian: et Khmer: km Polish: pl Tamil: ta

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph Data Model 94

Azerbaijani: az Finnish: fi Korean: ko Portuguese: pt Thai: th

Bangla: bn French: fr Kyrgyz: ky Portuguese, Telugu: te
Brazilian: pt_BR

Basque: eu French, Canadian: Lao: lo Punjabi: pa Turkish: tr
fr_ca

Belarusian: be Galician: gl Latvian: lv Romanian: ro Turkmen: tk

Bosnian: bs Georgian: ka Lithuanian: lt Russian: ru Ukrainian: uk

Bulgarian: bg German: de Macedonian: mk Serbian, Cyrillic: Urdu: ur
sr_Cyrl

Catalan: ca Greek: el Malay: ms Serbian, Latin: Uzbek, Cyrillic: uz
sr_Latn

Chinese, simplified: Gujarati: gu Malayalam: ml Sinhala: si Uzbek, Latin:
zh_CN uz_latin

Chinese, traditional: Hebrew: he Maltese: mt Slovak: sk Valencian: vc
zh_TW

Croatian: hr Hungarian: hu Marathi: mr Slovenian: sl Vietnamese: vn

Czech: cs Icelandic: is Nepali: ne Spanish: es unknown (i.e., none
of the above
languages):
unknown

The language codes are case insensitive.

Note that an error is returned if you specify an invalid language code.

With the language codes, you can specify the language of the text to the Dgraph during a record search or
value search query, so that it can correctly perform language-specific operations.

How country locale codes are treated
A country locale code is a combination of a language code (such as es for Spanish) and a country code (such
as MX for Mexico or AR for Argentina). Thus, the es_MX country locale means Mexican Spanish while es_AR
is Argentinian Spanish.

If you specify a country locale code for a Language element, the software ignores the country code but
accepts the language code part. In other words, a country locale code is mapped to its language code and
only that part is used for tokenizing queries or generating search indexes. For example, specifying es_MX is
the same as specifying just es. The exceptions to this rule are the codes listed above (such as pt_BR).

Note, however, that if you create a Dgraph attribute and specify a country locale code in the Language field,
the attribute will be tagged with the country locale code, even though the country code will be ignored during
indexing and querying.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph Data Model 95

Language-specific dictionaries and indexes
The Dgraph has two spelling correction engines. If the Language property in an attribute is set to en, then
spelling correction will be handled through the English spelling engine (and its English spelling dictionary). If it
is set to any other value, then spelling correction will use the non-English spelling engine (and its language-
specific dictionaries). All dictionaries are generated from the data records in the Dgraph, and therefore require
that the attribute definitions be tagged with a language code.

All dictionary files are stored in the index directory.

Specifying a language for a data set

When creating a data set, you can specify the language for all attributes in that data set, as follows:

• Studio: When uploading a file in via the Data Set Creation Wizard, the Advanced Settings>Language
field in the Preview page lets you select a language.

• DP CLI: The defaultLanguage property in the edp.properties configuration file sets the language.

Note that you cannot set languages on a per-attribute basis.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Chapter 9

Dgraph HDFS Agent

This section describes the role of the Dgraph HDFS Agent in the exporting and ingesting of data.

About the Dgraph HDFS Agent

Importing records from HDFS for ingest

Exporting data from Studio

Dgraph HDFS Agent logging

About the Dgraph HDFS Agent
The Dgraph HDFS Agent acts as a data transport layer between the Dgraph and an HDFS environment.

The Dgraph HDFS Agent plays two important roles:

• Takes part in the ingesting of records into the Dgraph. It does so by first reading records from HDFS that
have been output by a Data Processing workflow and then sending the records to the Dgraph's Bulk Load
interface.

• Takes part in the exporting of data from Studio back into HDFS. The exported data can be in the form of
either a local file or an HDFS Avro file that can be used to create a Hive table.

Importing records from HDFS for ingest
The Dgraph HDFS Agent plays a major part in the loading of data from a Data Processing workflow into the
Dgraph.

The Dgraph HDFS Agent's role in the ingest procedure is to read the output Avro files from the Data
Processing workflow, format them for ingest, and send them to the Dgraph.

Specifically, the high-level, general steps in the ingest process are:

1. A Data Processing workflow finishes by writing a set of records in Avro files in the output directory.

2. The Spark client then locates the Dgraph leader node and the Bulk Load port for the ingest, based on the
data set name. The Dgraph that will ingest the records must be a leader within the Dgraph cluster, within
the BDD deployment. The leader Dgraph node is elected and determined automatically by Big Data
Discovery.

3. The Dgraph HDFS Agent reads the Avro files and prepares them in a format that the Bulk Load interface
of the Dgraph can accept.

4. The Dgraph HDFS Agent sends the files to the Dgraph via the Bulk Load interface's port.

5. When a job is successfully completed, the files holding the initial data are deleted.

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph HDFS Agent 97

The ingest of data sets is done with a round-robin, multiplexing algorithm. The Dgraph HDFS Agent divides
the records from a given data set into batches. Each batch is processed as a complete ingest before the next
batch is processed. If two or more data sets are being processed, the round-robin algorithm alternates
between sending record batches from each source data set to the Dgraph. Therefore, although only one given
ingest operation is being processed by the Dgraph at any one time, this multiplexing scheme does allow all
active ingest operations to be scheduled in a fair fashion.

Note that if Data Processing writes a NULL or empty value to the HDFS Avro file, the Dgraph HDFS Agent
skips those values when constructing a record from the source data for the consumption by the Bulk Load
interface.

Post-ingest operations

After sending record files to the Dgraph for ingest, the Dgraph HDFS Agent also performs two post-ingest
operations:

• Updates the spelling dictionaries for the data set from the data corpus. This operation is performed after
every successful ingest. The operation also enables spelling correction for search queries against the data
set.

• Performs a full merge of all generations of the Dgraph index files.

A successful update spelling dictionaries operation writes these messages to the log:

Updating spelling dictionaries for collection <data-set-name>
...
Finish updating spelling dictionaries for collection <data-set-name>

Version 1.1.3 • May 2016

An unsuccessful operation would generate this error in the log:

Failed to update spelling dictionaries for collection <data-set-name>

The merge operation consists of two actions:

1. The Dgraph HDFS Agent sends a URL merge request to the Dgraph.

2. If it successfully receives the request, the Dgraph performs the merge.

The final results of the merge are logged to the Dgraph out log.

Exporting data from Studio
The Dgraph HDFS Agent is the conduit for exporting data from a Studio project.

From within a project in Studio, you can export data as a new Avro file (.avro extension), CSV file (.csv
extension), or text file (.txt extension). Files can be exported to either an external directory on your
computer, or to HDFS. For details on the operation, see the Data Exploration and Analysis Guide.

When a user exports a data set to a file in HDFS from Studio, the exported file's owner will always be the
owner of HDFS agent process (or the HDFS agent principal owner in a Kerberized cluster). That is, the
Dgraph HDFS Agent uses the username from the export request to create a FileSystem object. That way,
BDD can guarantee that a file will not be created if the user does not have permissions, and if the file it
created, it is owned by that user. The group is assign automatically by Hadoop.

As part of the export operation, the user specifies the delimiter to be used in the exported file:

• If the delimiter is a comma, the export process creates a .csv file.

Oracle® Big Data Discovery: Data Processing Guide

Dgraph HDFS Agent 98

• If the delimiter is anything except a comma, the export process creates a .txt file.

If you export to HDFS, you also have the option of creating a Hive table from the data. After the Hive table is
created, a Data Processing workflow is launched to create a new data set.

The following diagram illustrates the process of exporting data from Studio into HDFS:

In this diagram, the following actions take place:

1. From Transform in Studio, you can select to export the data into HDFS. This sends an internal request to
export the data to the Dgraph.

2. The Dgraph communicates with the Dgraph HDFS Agent, which launches the data exporting process and
writes the file to HDFS.

3. Optionally, you can choose to create a Hive table from the data. If you do so, the Hive table is created in
HDFS.

Errors that may occur during the export are entered into the Dgraph HDFS Agent's log.

Dgraph HDFS Agent logging
The Dgraph HDFS Agent writes its stdout/stderr output to a log file.

The Dgraph HDFS Agent --out flag specifies the file name and path of the Dgraph HDFS Agent's
stdout/stderr log file. This log file is used for both import (ingest) and export operations.

The name and location of the output log file is set at installation time via the AGENT_OUT_FILE parameter of
the bdd.conf configuration file. Typically, the log name is dgraphHDFSAgent.out and the location is the
$BDD_HOME/logs directory.

The Dgraph HDFS Agent log is especially important to check if you experience problems with loading records
at the end of a Data Processing workflow. Errors received from the Dgraph (such as rejected records) are
logged here.

Ingest operation messages

The following are sample messages for a successful ingest operation for the data set named default_edp_999.
(Note that a data set is called a collection in the Dgraph). The messages have been edited for readability:

...
New import request received: Collection name: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,

location: /user/bdd/edp/data/.dataIngestSwamp/default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,
user name: fcalvill, requestOrigin: FROM_DATASET

fetchMoreRecords for collection: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
Finished reading 9983 records for Collection name: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,

location: /user/bdd/edp/data/.dataIngestSwamp/default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,
user name: fcalvill, requestOrigin: FROM_DATASET

createBulkIngester default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
Starting ingest for: Collection name: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,

location: /user/bdd/edp/data/.dataIngestSwamp/default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,

Version 1.1.3 • May 2016Oracle® Big Data Discovery: Data Processing Guide

Dgraph HDFS Agent 99

user name: fcalvill, requestOrigin: FROM_DATASET
sendRecordsToIngester 9983
fetchMoreRecords for collection: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
closeBulkIngester
Ingest finished with 9983 records committed and 0 records rejected. Status: INGEST_FINISHED.

Request info: Collection name: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,
location: /user/bdd/edp/data/.dataIngestSwamp/default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70,
user name: fcalvill, requestOrigin: FROM_DATASET

Updating datasetInventory for collection: default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
Requesting attributes [dpLockTimestamp] from collection system-bddDatasetInventory with

spec id='default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70'
Received attributes [dpLockTimestamp] from collection system-bddDatasetInventory with

spec id='default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70'
updateRecord for collection system-bddDatasetInventory record specifier

id='default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70'
Adding assignments: [ingestStatus = FINISHED,]
Removing assignments: []
updateRecord for collection: system-bddDatasetInventory, records affected: 1, records deleted: 0
Updating spelling dictionaries for collection default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
Finish updating spelling dictionaries for collection default_edp_85d5e1ff-ca43-4e6d-a36c-94cb76532b70
...

Version 1.1.3 • May 2016

Some events in the sample log are:

1. The Data Processing workflow has written a set of Avro files in the
/user/bdd/edp/data/.dataIngestSwamp/default_edp_85d5e1ff-ca43-4e6d-a36c-
94cb76532b70 directory in HDFS.

2. The Dgraph HDFS Agent reads 9983 records from the HDFS directory.

3. The createBulkIngester operation is used to instantiate a Bulk Load ingester instance for the data
set.

4. The sendRecordsToIngester operation sends the 57,076 records to the Dgraph's ingester.

5. The Bulk Load instance is closed with the closeBulkIngester operation.

6. The Ingest finished message signals the end of the ingest operation. The message also lists the
number of successfully committed records and the number of rejected records.

7. The Dgraph HDFS Agent updates the ingestStatus attribute of the DataSet Inventory with the final
status of the ingest operation. The status should be FINISHED for a successful ingest or ERROR if an error
occurred. The numRecordsAffected=1 response indicates that the DataSet Inventory record update
was successful.

8. The spelling dictionaries for the data set are updated. The dictionaries will be used for spelling corrections
for record searches.

Rejected records

It is possible for a certain record to contain data which cannot be ingested or can even crash the Dgraph.
Typically, the invalid data will consist of invalid XML characters. In this case, the Dgraph cannot remove or
cleanse the invalid data, it can only skip the record with the invalid data. The interface rejects non-XML 1.0
characters upon ingest. That is, a valid character for ingest must be a character according to production 2 of
the XML 1.0 specification. If an invalid character is detected, the record with the invalid character is rejected
with this error message in the Dgraph HDFS Agent log:

Received error message from server: Record rejected: Character <c> is not legal in XML 1.0

A source record can also be rejected if it is too large. There is a limit of 128MB on the maximum size of a
source record. An attempt to ingest a source record larger than 128MB fails and an error is returned (with the
primary key of the rejected record), but the bulk load ingest process continues after that rejected record.

Oracle® Big Data Discovery: Data Processing Guide

Dgraph HDFS Agent 100

Logging for new and deleted attributes

The Dgraph HDFS Agent logs the names of attributes being created or deleted as result of transforms. For
example:

Finished reading 499 records for Collection name: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
Adding attributes to collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
[NumInStock]

Added attributes to collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
...
Deleting attributes from collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b
[OldPrice2]

Deleted attributes from collection: default_edp_2a0122f2-4d15-46bf-9669-21333442f10b

Version 1.1.3 • May 2016

In the example, the NumInStock attribute was added to the data set and the OldPrice2 attribute was deleted.

Log entry format

Logging properties file

Log entry format

This topic describes the format of Dgraph HDFS Agent log entries, including their message types and log
levels.

The following is an example of a NOTIFICATION message:

[2015-07-27T13:32:26.529-04:00] [DgraphHDFSAgent] [NOTIFICATION] []
[com.endeca.dgraph.hdfs.agent.importer.RecordsConsumer]
[host: web05.example.com] [nwaddr: 10.152.105.219] [tid: RecordsConsumer] [userId: fcalvill]
[ecid: 0000KvFouxK7ADkpSw4Eyc1LhZWv000006,0] fetchMoreRecords for collection:
default_edp_2a0122f2-4d15-46bf-9669-21333442f10b

The format of the Dgraph HDFS Agent log fields (using the above example) and their descriptions are as
follows:

Log entry field Description Example

Timestamp The date and time when the [2015-07-27T13:32:26.529-04:00]
message was generated. This
reflects the local time zone.

Component ID The ID of the component that [DgraphHDFSAgent]
originated the message.
"DgraphHDFSAgent" is hard-
coded for the Dgraph HDFS
Agent.

Oracle® Big Data Discovery: Data Processing Guide

Dgraph HDFS Agent 101

Log entry field Description Example

Message Type The type of message (log level): [NOTIFICATION]

• INCIDENT_ERROR

• ERROR

• WARNING

• NOTIFICATION

• TRACE

• UNKNOWN

Message ID The message ID that uniquely []
identifies the message within the
component. Currently is left
blank.

Module ID The Java class that prints the [com.endeca.dgraph.hdfs.agent.importer.Re
message entry. cordsConsumer]

Host name The name of the host where the [host: web05.example.com]
message originated.

Host address The network address of the host [nwaddr: 10.152.105.219]
where the message originated

Thread ID The ID of the thread that [tid: RecordsConsumer]
generated the message.

User ID The name of the user whose [userId: fcalvill]
execution context generated the
message.

ECID The Execution Context ID [0000KvFouxK7ADkpSw4Eyc1LhZWv000006,0]
(ECID), which is a global unique
identifier of the execution of a
particular request in which the
originating component
participates.

Message Text The text of the log message. fetchMoreRecords for collection:
default_edp_2a0122f2-4d15-46bf-9669-
21333442f10b

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Dgraph HDFS Agent 102

Logging properties file

The Dgraph HDFS Agent has a default Log4j configuration file that sets its logging properties.

The file is named log4j.properties and is located in the $DGRAPH_HOME/dgraph-hdfs-agent/lib
directory.

The log file is a rolling log file. The default version of the file is as follows:

log4j.rootLogger=INFO, ROLLINGFILE
#
Add ROLLINGFILE to rootLogger to get log file output
Log DEBUG level and above messages to a log file
log4j.appender.ROLLINGFILE=oracle.core.ojdl.log4j.OracleAppender
log4j.appender.ROLLINGFILE.ComponentId=DgraphHDFSAgent
log4j.appender.ROLLINGFILE.Path=${logfilename}
log4j.appender.ROLLINGFILE.Format=ODL-Text
log4j.appender.ROLLINGFILE.MaxSegmentSize=10485760
log4j.appender.ROLLINGFILE.MaxSize=1048576000
log4j.appender.ROLLINGFILE.Encoding=UTF-8
log4j.appender.ROLLINGFILE.layout = org.apache.log4j.PatternLayout
log4j.appender.ROLLINGFILE.layout.ConversionPattern
= %-d{yyyy-MM-dd HH:mm:ss} [%t:%r] - [%p] %m%n

Version 1.1.3 • May 2016

The file defines the ROLLINGFILE appenders for the root logger and also sets the log level for the file.

The file has the following properties:

Logging property Description

log4j.rootLogger The level of the root logger is defined as INFO and
attaches the ROLLINGFILE appender to it.

You can change the log level, but do not change
the ROLLINGFILE appender.

log4j.appender.ROLLINGFILE Sets the appender to be OracleAppender. This
defines the ODL (Oracle Diagnostics Logging)
format for the log entries.

Do not change this property.

log4j.appender.ROLLINGFILE.ComponentId Sets DgraphHDFSAgent as the name of the
component that generates the log messages.

Do not change this property.

log4j.appender.ROLLINGFILE.Path Sets the path for the log files. The
${logfilename} variable picks up the path from
the Dgraph HDFS Agent --out flag used at start-
up time.

Do not change this property.

log4j.appender.ROLLINGFILE.Format Sets ODL-Text as the formatted string as
specified by the conversion pattern.

Do not change this property.

Oracle® Big Data Discovery: Data Processing Guide

Dgraph HDFS Agent 103

Logging property Description

log4j.appender.ROLLINGFILE.MaxSegmentSize Sets the maximum size (in bytes) of the log file.
When the dgraphHDFSAgent.out file reaches
this size, a rollover file is created. The default is
10485760 (about 10 MB).

log4j.appender.ROLLINGFILE.MaxSize Sets the maximum amount of disk space to be
used by the dgraphHDFSAgent.out file and the
logging rollover files. The default is 1048576000
(about 1GB).

log4j.appender.ROLLINGFILE.Encoding Sets character encoding for the log file. The
default UTF-8 value prints out UTF-8 characters in
the file.

log4j.appender.ROLLINGFILE.layout Sets the org.apache.log4j.PatternLayout
class for the layout.

log4j.appender.ROLLINGFILE.layout.Convers Defines the log entry conversion pattern.
ionPattern

For the conversion characters, see:
https://logging.apache.org/log4j/1.2/apidocs/org/ap
ache/log4j/PatternLayout.html

Logging levels

You can change the log level by opening the properties file in a text editor and changing the level for the
log4j.rootLogger property to a Java log level from the table below. This example shows how you can
change the log level setting to ERROR:

log4j.rootLogger=ERROR

Version 1.1.3 • May 2016

When writing log messages, however, the logging system converts the Java level to an ODL equivalent level.
The table below The log levels (in decreasing order of severity) are:

Java Log Level ODL Log Level Meaning

OFF N/A Has the highest possible rank and is used to turn off
logging.

FATAL INCIDENT_ERROR Indicates a serious problem that may be caused by
a bug in the product and that should be reported to
Oracle Support. In general, these messages
describe events that are of considerable importance
and which will prevent normal program execution.

ERROR ERROR Indicates a serious problem that requires immediate
attention from the administrator and is not caused
by a bug in the product.

Oracle® Big Data Discovery: Data Processing Guide

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Dgraph HDFS Agent 104

Java Log Level ODL Log Level Meaning

WARN WARNING Indicates a potential problem that should be
reviewed by the administrator.

INFO NOTIFICATION A message level for informational messages. This
level typically indicates a major lifecycle event such
as the activation or deactivation of a primary sub-
component or feature. This is the default level.

DEBUG TRACE Debug information for events that are meaningful to
administrators, such as public API entry or exit
points.

These levels allow you to monitor events of interest at the appropriate granularity without being overwhelmed
by messages that are not relevant. When you are initially setting up your application in a development
environment, you might want to use the INFO level to get most of the messages, and change to a less
verbose level in production.

Rotation frequency

The log rotation frequency is set to daily (it is hard-coded, not configurable). This means that a new log file is
created either when the log file reaches a certain size (the MaxSegmentSize setting) or when a particular
time is reached (it is 00:00 UTC for Dgraph Gateway).

However, you can force rotate the logs by running the bdd-admin script with the rotate-logs command,
as in this example:

./bdd-admin.sh rotate-logs -c agent -n web009.us.example.com

Version 1.1.3 • May 2016

As a result of this example, the dgraphHDFSAgent.out log is renamed to dgraphHDFSAgent.out-
1438022767 and an empty dgraphHDFSAgent.out log is created.

For information on the rotate-logs command, see the Administrator's Guide.

Oracle® Big Data Discovery: Data Processing Guide

Index

Data Processing workflowsA
about 17

aborted workflow jobs, cleaning up 48 cleaning up aborted jobs 48
Address GeoTagger 79 excluding enrichments 47

Kerberos support 13assignments 92
logging 63

attributes processing Hive tables 18
data types 92 sampling 20
multi-assign 92

data set key for updates 52single-assign 92
data type conversions from Hive to Dgraph 21
date formats, supported 27B
dateTime attribute type 93black lists, CLI 45
Dgraphboolean attribute type 93

attributes 91
data model 91

C record assignments 92
supported languages 93Cleaning the source data 15

Dgraph HDFS AgentCLI, DP
about 96about 35
exporting data from Studio 97configuration 37
ingesting records 96cron job 46
Kerberos support 14flags 42
logging 98--incrementalUpdate flag 59
logging configuration 102--refreshData flag 54

running Incremental updates 61 disabling record and value search 20
running Refresh updates 54 double attribute type 93
white and black lists 45

configuration Edate formats 27
Dgraph HDFS Agent logging 102 enrichments 12
DP CLI 37 Entity extractor 75
DP logging 64
Spark worker 28

Fcron job
flags, CLI 42Hive Table Detector 46

Refresh and Incremental updates 62

G
D geocode attribute type 93

Data Enrichment modules GeoTagger model, updating 88
about 74
Entity extractor 75 Hexcluding from workflows 47
IP Address GeoTagger 82 Hadoop distributions, integration with 7
Language Detection 85 Hadoop integration with BDD 7
Noun Group extractor 76

Hive tablesPhonetic Hash 84
created from Studio 25Reverse GeoTagger 83
ingesting 18Sentiment Analysis, document 78

Sentiment Analysis, sub-document 79
Tag Stripper 84 I
TF.IDF Term extractor 77

Incremental updates
data model, Dgraph 91 about 56

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

Index 106

data set key 52 Reverse GeoTagger 83
--incrementalUpdate flag 59
running 61 S

Integration with Hadoop 7
sampling 11

IP Address GeoTagger 82
search interfaces for data sets 25
Sentiment Analysis model, updating 86K
Sentiment Analysis module

Kerberos support for BDD components 13 document level 78
sub-document level 79

L SerDe jar, adding 33
Language Detection module 85 single-assign attributes 92
languages, Dgraph supported 93 skipAutoProvisioning table property

about 36logging
changing 49Data Processing 63

Dgraph HDFS Agent 98 snippeting for search interfaces 26
logs created during workflow 70 Spark nodes

logging configuration file adding 32
Data Processing 64 configuration 28
Dgraph HDFS Agent 102 string attribute type 92

long attribute type 93 Studio
Hive tables created 25
Kerberos support 14M

models, building Data Enrichment 85
Tmulti-assign attributes 92

Tag Stripper module 84
TF.IDF Term extractorN

about 77
Noun Group extractor 76 updating model 87

time attribute type 93
P transformations 12

Phonetic Hash module 84 type discovery, on columns 11
ping check for DP components 48
profiling 11 U

updates, data set 51
R

Refresh updates W
about 52

white lists, CLI 45data set key 52
--refreshData flag 54
running 54

Oracle® Big Data Discovery: Data Processing Guide Version 1.1.3 • May 2016

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

	Chapter 1: Introduction
	BDD integration with Hadoop
	Data Processing workflow for loading new data
	Support for Kerberos authentication in Hadoop
	Preparing your data for ingest

	Chapter 2: Data Processing Workflows
	Overview of workflows
	Working with Hive tables
	Sampling and attribute handling
	Data type discovery
	Studio creation of Hive tables
	Creation of a search interface

	Chapter 3: Data Processing Configuration
	Date format configuration
	Spark configuration
	Adding Hadoop nodes
	Adding a SerDe JAR to DP workflows

	Chapter 4: DP Command Line Interface Utility
	DP CLI overview
	DP CLI configuration
	DP CLI flags
	Using whitelists and blacklists
	DP CLI cron job
	DP CLI workflow examples
	Changing Hive table properties

	Chapter 5: Updating Data Sets
	About data set updates
	Obtaining data set keys
	Refresh updates
	Refresh flag syntax
	Running a Refresh update

	Incremental updates
	Incremental flag syntax
	Running an Incremental update

	Creating cron jobs for updates

	Chapter 6: Data Processing Logging
	DP logging overview
	DP logging properties file
	DP log entry format
	DP log levels

	Example of logs during a workflow

	Chapter 7: Data Enrichment Modules
	About the Data Enrichment modules
	Entity extractor
	Noun Group extractor
	TF.IDF Term extractor
	Sentiment Analysis (document level)
	Sentiment Analysis (sub-document level)
	Address GeoTagger
	IP Address GeoTagger
	Reverse GeoTagger
	Tag Stripper
	Phonetic Hash
	Language Detection
	Updating models
	Updating Sentiment Analysis models
	Updating TF.IDF models
	Updating GeoTagger models

	Chapter 8: Dgraph Data Model
	About the data model
	Data records
	Attributes
	Assignments on attributes
	Attribute data types

	Supported languages

	Chapter 9: Dgraph HDFS Agent
	About the Dgraph HDFS Agent
	Importing records from HDFS for ingest
	Exporting data from Studio
	Dgraph HDFS Agent logging
	Log entry format
	Logging properties file

	Index

