
Oracle® Big Data Discovery

EQL Reference

Version 1.1.3 • May 2016

Copyright and disclaimer
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Table of Contents

Copyright and disclaimer ..2

Preface..6
About this guide ..6
Audience..6
Conventions ...6
Contacting Oracle Customer Support ...7

Chapter 1: Introduction to the Endeca Query Language8
EQL overview ..8
Important concepts and terms ..8
EQL and SQL: a comparison ...9
Query overview ..10
How queries are processed ...11
EQL reserved keywords..12

Chapter 2: Statements and Clauses ..14
DEFINE clause ..14
RETURN clause ...15
LET clause ...15
SELECT clause..17
AS clause ..19
FROM clause ...20
JOIN clause ..21
WHERE clause ..25
HAVING clause..26
ORDER BY clause ...27
PAGE clause ...30

Chapter 3: Aggregation...32
GROUP/GROUP BY clauses ..32
MEMBERS extension ...34
GROUPING SETS expression ...37
ROLLUP extension ...38
CUBE extension ...39
GROUPING function ..40
COUNT function ...41
COUNT_APPROX..43
COUNTDISTINCT function ...43
APPROXCOUNTDISTINCT function...44
Multi-level aggregation...45
Per-aggregation filters ...46

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Table of Contents 4

Chapter 4: Expressions...47
Supported data types..47
Operator precedence rules..49
Handling of literals and values ...50

Character handling ...50
Handling of upper- and lower-case ..51
Handling NULL attribute values ..52
Handling of NaN, inf, and -inf results ..53
Integer type promotion...54
Handling of precision for doubles ...55

Functions and operators ...56
Numeric functions ..56
Aggregation functions ...59
Geocode functions..62
Date and time functions ..62

Manipulating current date and time..64
Constructing date and time values ..64
Time zone manipulation..66
Using EXTRACT to extract a portion of a dateTime value67
Using TRUNC to round down dateTime values68
Using arithmetic operations on date and time values69

String functions ..70
Arithmetic operators ..71
Boolean operators..71

Using EQL results to compose follow-on queries..73
Using LOOKUP expressions for inter-statement references73
ARB ..75
BETWEEN ...77
CASE ...77
COALESCE ..78
CORRELATION ...79
HAS_REFINEMENTS ...79
IN..80
PERCENTILE ...81
RECORD_IN_FAST_SAMPLE...82

Chapter 5: Sets and Multi-assign Data ..84
About sets..84
Aggregate functions...86

SET function ..86
SET_INTERSECTIONS function ...88
SET_UNIONS function ..90

Row functions ...91
ADD_ELEMENT function...92
CARDINALITY function ..93
COUNTDISTINCTMEMBERS function ...93

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Table of Contents 5

DIFFERENCE function ..94
FOREACH function ...96
INTERSECTION function...99
IS_EMPTY and IS_NOT_EMPTY functions.......................................100
IS_MEMBER_OF function ...103
SINGLETON function ..104
SUBSET function ...105
TRUNCATE_SET function ...106
UNION function...107

Set constructor ...107
Quantifiers ..109
Grouping by sets..111

Chapter 6: EQL Use Cases ...113
Re-normalization ..113
Grouping by range buckets ..114
Manipulating records in a dynamically computed range value115
Grouping data into quartiles ..115
Combining multiple sparse fields into one ..117
Joining data from different types of records...117
Linear regressions in EQL ...118
Using an IN filter for pie chart segmentation ..119
Running sum...119
Query by age ..120
Calculating percent change between most recent month and previous month..................120

Chapter 7: EQL Best Practices ...122
Controlling input size ...122
Filtering as early as possible ...123
Controlling join size ..124
Additional tips ..124

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Preface
Oracle Big Data Discovery is a set of end-to-end visual analytic capabilities that leverage the power of Hadoop
to transform raw data into business insight in minutes, without the need to learn complex products or rely only
on highly skilled resources.

About this guide
This guide describes how to write queries in the Endeca Query Language, or EQL.

Audience
This guide is intended for data developers who need to create EQL queries.

Conventions
The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code segments within a paragraph.

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Variable.

File Path This formatting is used for file names and paths.

Symbol conventions

The following table describes symbol conventions used in this document.

Symbol Description Example Meaning

> The right angle bracket, File > New > Project From the File menu,
or greater-than sign, choose New, then from
indicates menu item the New submenu,
selections in a graphic choose Project.
user interface.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Preface 7

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$ORACLE_HOME Indicates the absolute path to your Oracle Middleware home directory,
where BDD and WebLogic Server are installed.

$BDD_HOME Indicates the absolute path to your Oracle Big Data Discovery home
directory, $ORACLE_HOME/BDD-<version>.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home directory. For
example, if your domain is named bdd-<version>_domain, then
$DOMAIN_HOME is $ORACLE_HOME/user_projects/domains/bdd-
<version>_domain.

$DGRAPH_HOME Indicates the absolute path to your Dgraph home directory,
$BDD_HOME/dgraph.

Contacting Oracle Customer Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support.
This includes important information regarding Oracle software, implementation questions, product and solution
help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

https://support.oracle.com

Chapter 1

Introduction to the Endeca Query Language

This section introduces the Endeca Query Language (EQL) and walks you through the query processing
model.

EQL overview

Important concepts and terms

EQL and SQL: a comparison

Query overview

How queries are processed

EQL reserved keywords

EQL overview
EQL is a SQL-like language designed specifically to query and manipulate data from the Dgraph.

EQL enables Dgraph–based applications to examine aggregate information such as trends, statistics,
analytical visualizations, comparisons, and more.

An EQL query contains one or more statements, each of which can group, join, and analyze records, either
those stored in the server or those produced by other statements. Multiple statements within a single query
can return results back to the application, allowing complex analyses to be done within a single query.

Important concepts and terms
In order to work with EQL, you need to understand the following concepts.

• Attribute: An attribute is the basic unit of a record schema. Attributes describe records in the Dgraph.
From the point of view of assignments on records, an attribute can be either:

• Single-assign attribute: An attribute for which a record may have only one value. For example,
because a book has only one price, the Price attribute would be single-assign. Single-assign attributes
are of the atomic data type (such as mdex:string and mdex:double).

• Multi-assign attribute: An attribute for which a record may have more than one value. For example,
because a book may have more than one author, the Author attribute would be multi-assign. Multi-
assign attributes are of the set data type (such as mdex:string-set and mdex:double-set).
They are represented in EQL by sets (see Sets and Multi-assign Data on page 83).

• Record: The fundamental unit of data in the Dgraph. Records are assigned attribute values. An
assignment indicates that a record has a value for an attribute. A record typically has assignments from
multiple attributes. Records in collections can include multiple assignments to the same attribute, as can
records in EQL results.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Introduction to the Endeca Query Language 9

• Collection: The full body of Dgraph application records is contained in one or more collections (called
data sets in Studio). Thus, Dgraph data is collection-based rather than table-based. By using a FROM
clause in your statement, you can specify a named state (which in turn references a collection) to serve as
the record source for your query. Alternatively, the FROM clause can specify a previously-defined
statement as the record source. Note that a FROM clause is mandatory in an EQL statement.

• Statement: A unit of EQL that computes related or independent analytics results. In EQL, a statement
starts with DEFINE or RETURN and ends with a semi-colon if it is between statements (the semi-colon is
optional on the last statement). The statement also includes a mandatory SELECT clause and, optionally,
some other clause(s).

• Result: Query results are a collection of statement results; statement results are a collection of records.

• Intermediate results: Results from RETURN statements can also be used as intermediate results for
further processing by other statements.

• Returned results: Set of matching values returned by the query or statement.

• Query: A request sent to the Dgraph Gateway (and ultimately to the Dgraph). In general, a query consists
of multiple statements.

EQL and SQL: a comparison
EQL is, in many ways, similar to SQL, but has some marked differences as well.

This topic identifies EQL concepts that may be familiar to users familiar with SQL, as well as the unique
features of EQL:

• Tables with a single schema vs collections of records with more than one schema. SQL is designed
around tables of records — all records in a table have the same schema. EQL is designed around one or
more collections of records with heterogeneous schemas.

• EQL Query vs SQL Query. An EQL statement requires a DEFINE or RETURN clause, which, like a SQL
common table expression (or CTE), defines a temporary result set. The following differences apply,
however:

• EQL does not support a schema declaration.

• In EQL, the scope of a CTE is the entire query, not just the immediately following statement.

• In EQL, a RETURN is both a CTE and a normal statement (one that produces results).

• EQL does not support recursion. That is, a statement cannot refer to itself using a FROM clause, either
directly or indirectly.

• EQL does not contain an update operation.

• Clauses. In EQL, SELECT, FROM, WHERE, HAVING, GROUP BY, and ORDER BY are all like SQL, with the
following caveats:

• In SELECT statements, AS aliasing is optional when selecting an attribute verbatim; statements using
expressions require an AS alias. Aliasing is optional in SQL.

• In EQL, GROUP BY implies SELECT. That is, grouping attributes are always included in statement
results, whether or not they are explicitly selected.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Introduction to the Endeca Query Language 10

• Grouping by a multi-assign attribute can cause a single record to participate in multiple groups. With
the use of the MEMBERS extension in a GROUP BY clause, a single record can participate in multiple
groups.

• WHERE can be applied to an aggregation expression.

• In SQL, use of aggregation implies grouping. In EQL, grouping is always explicit.

• Other language comparisons:

• PAGE works in the same way as many common vendor extensions to SQL.

• In EQL, a JOIN expression's Boolean join condition must be contained within parentheses. This is not
necessary in SQL.

• EQL supports SELECT statements only. It does not support other DML statements, such as INSERT
or DELETE, nor does it support DDL, DCL, or TCL statements.

• EQL supports a different set of data types, expressions, and functions than described by the SQL
standard.

Query overview
An EQL query contains one or more semicolon-delimited statements with at least one RETURN clause.

Any number of statements from the query can return results, while others are defined only as generating
intermediate results.

Each statement must contain at least three clauses: a DEFINE or a RETURN clause, a SELECT clause, and a
FROM clause. In addition, the statement may contain other, optional clauses.

Most clauses can contain expressions. Expressions are typically combinations of one or more functions,
attributes, constants, or operators. Most expressions are simple combinations of functions and attributes. EQL
provides functions for working with numeric, string, dateTime, duration, Boolean, and geocode attribute types.

Input records, output records, and records used in aggregation can be filtered in EQL. EQL supports filtering
on arbitrary, Boolean expressions.

Syntax conventions used in this guide

The syntax descriptions in this guide use the following conventions:

Convention Meaning Example

Square Optional FROM <statementKey> [alias]
brackets []

Asterisk * May be [, JOIN statement [alias] ON <Boolean expression>]*
repeated

Ellipsis ... Additional, DEFINE <recordSetName> AS ...
unspecified
content

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Introduction to the Endeca Query Language 11

Convention Meaning Example

Angle brackets Variable name HAVING <Boolean expression>
< >

Commenting in EQL

You can comment your EQL code using the following notation:

DEFINE Example AS SELECT /* This is a comment */

Version 1.1.3 • May 2016

You can also comment out lines or sections as shown in the following example:

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
FROM SaleState
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

/*
RETURN Others AS SELECT
SUM(Sale) AS Sales
FROM SaleState
WHERE NOT [Customer] IN Top5
GROUP
*/

...

Note that EQL comments cannot be nested.

How queries are processed
This topic walks you through the steps involved in EQL query processing.

Note: This abstract processing model is provided for educational purposes and is not meant to reflect
actual query evaluation.

Prior to processing each statement, EQL computes source records for that statement. When the records come
from a single statement or from a collection, the source records are the result records of the statement or the
appropriately filtered collection records, respectively. When the records come from a JOIN, there is a source
record for every pair of records from the left and right sides for which the join condition evaluates to true on
that pair of records. Before processing, statements are re-ordered, if necessary, so that statements are
processed before other statements that depend on them.

EQL then processes queries in the following order. Each step is performed within each statement in a query,
and each statement is done in order:

1. It filters source records (both statement and per-aggregate) according to the WHERE clauses.

2. For each source record, it computes SELECT clauses that are used in the GROUP BY clause (as well as
GROUP BYs not from SELECT clauses) and arguments to aggregations.

3. It maps source records to result records and computes aggregations.

4. It finishes computing SELECT clauses.

Oracle® Big Data Discovery: EQL Reference

Introduction to the Endeca Query Language 12

5. It filters result records according to the HAVING clause.

6. It orders result records.

7. It applies paging to the results.

EQL reserved keywords
EQL reserves certain keywords for its exclusive use.

Reserved keywords

Reserved keywords cannot be used in EQL statements as identifiers, unless they are delimited by double
quotation marks. For example, this EQL snippet uses the YEAR and MONTH reserved keywords as delimited
identifiers:

DEFINE Input AS SELECT
DimDate_CalendarYear AS "Year",
DimDate_MonthNumberOfYear AS "Month",
...

Version 1.1.3 • May 2016

However, as a rule of thumb it is recommended that you do not name any identifier with a name that is the
same as a reserved word.

The reserved keywords are:

AND, AS, ASC, BETWEEN, BY, CASE, COUNT, CROSS, CUBE, CURRENT, CURRENT_DATE,
CURRENT_TIMESTAMP, DATE, DAY_OF_MONTH, DAY_OF_WEEK, DAY_OF_YEAR, DEFINE, DESC, ELSE,
EMPTY, END, EVERY, FALSE, FOLLOWING, FOREACH, FROM, FULL, GROUP, GROUPING, HAVING,
HOUR, IN, INNER, IS, JOIN, JULIAN_DAY_NUMBER, LEFT, LET, MEMBERS, MINUTE, MONTH, NOT,
NULL, ON, OR, ORDER, OVER, PAGE, PARTITION, PERCENT, PRECEDING, QUARTER, RANGE, RETURN,
RIGHT, ROLLUP, SATISFIES, SECOND, SELECT, SETS, SOME, SYSDATE, SYSTIMESTAMP, THEN,
TRUE, UNBOUNDED, UNPAGED, VALUE, WEEK, WHEN, WHERE, WITH, YEAR

Keep in mind that many function names (such as SUM and STRING_JOIN) are not keywords and, therefore,
could be used as identifiers. However, as a best practice, you should also avoid using function names as
identifiers.

Reserved punctuation symbols

• , (comma)

• ; (semicolon)

• . (dot)

• / (division)

• + (plus)

• - (minus)

• * (star)

• < (less than)

• > (greater than)

• <= (less than or equal)

Oracle® Big Data Discovery: EQL Reference

Introduction to the Endeca Query Language 13

• => (greater than or equal)

• = (equal)

• <> (not equal)

• ((left parenthesis)

•) (right parenthesis)

• { (left brace)

• } (right brace)

• [(left bracket)

•] (right bracket)

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Chapter 2

Statements and Clauses

This section describes the types of clauses used in EQL statements.

For information on the GROUP and GROUP BY clauses, see Aggregation on page 31.

DEFINE clause

RETURN clause

LET clause

SELECT clause

AS clause

FROM clause

JOIN clause

WHERE clause

HAVING clause

ORDER BY clause

PAGE clause

DEFINE clause
DEFINE is used to generate an intermediate result that will not be included in the query result.

All EQL statements begin with either DEFINE or RETURN.

You can use multiple DEFINE clauses to make results available to other statements. Typically, DEFINE
clauses are used to look up values, compare attribute values to each other, and normalize data.

The DEFINE syntax is:

DEFINE <recordSetName> AS ...

Version 1.1.3 • May 2016

Note that the statement name cannot be the same as the state name or as any other statement.

In the following example, the RegionTotals record set is used in a subsequent calculation:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState
GROUP BY Region;

RETURN ProductPct AS
SELECT 100*SUM(Amount) / RegionTotals[Region].Total AS PctTotal
FROM RegionTotals
GROUP BY Region, Product Type

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 15

RETURN clause
RETURN indicates that the statement result should be included in the query result.

All EQL statements begin with either DEFINE or RETURN.

RETURN provides the key for accessing EQL results from the Dgraph query result. This is important when
more than one statement is submitted with the query.

The RETURN syntax is:

RETURN <statementName> AS ...

Version 1.1.3 • May 2016

Note that the statement name cannot be the same as the state name or as any other statement.

The following statement returns for each size the number of different values for the Color attribute:

RETURN Result AS
SELECT COUNTDISTINCT(Color) AS Total
FROM ProductState
GROUP BY Size

WITH UNPAGED COUNT modifer
A RETURN clause can include an optional WITH UNPAGED COUNT modifier that computes the unpaged (total)
record count for the statement and returns the count as in a NumRecords element in the results metadata.
The syntax is:

RETURN <statementName> WITH UNPAGED COUNT AS ...

Assume, for example, this query:

RETURN Results WITH UNPAGED COUNT AS
SELECT

WineType AS types,
Flavors AS tastes

FROM winestate

If 50 records are returned, the metadata in the results would include this element:

NumRecords="50"

It would then be the responsibility of the application to parse this element and print number for the
application's UI. Note that NumRecords will still be 50 if you add, say PAGE(0,10) to the statement.

Note the following about this parameter:

• WITH UNPAGED COUNT can be used in a statement with a PAGE clause.

• WITH UNPAGED COUNT is ignored if used in a DEFINE statement.

LET clause
The LET clause defines attributes that may be used elsewhere in the statement but do not necessarily appear
in the statement's result.

The primary intent of LET is to make it easier to group by the value of a computed attribute (and especially to
group by the MEMBERS of a computed attribute). However, LET can be used in any statement, grouping or not,
to define temporary values of use elsewhere in the statement.

The syntax is:

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 16

LET <expression> [AS <attribute>][, <expression> [AS <attribute>]]*

Version 1.1.3 • May 2016

LET may appear in any statement, immediately before the SELECT clause, as in this example:

RETURN Results AS
LET

x + y AS intermediateSum
SELECT

MIN(x) AS min_x,
intermediateSum + z AS finalSum

FROM WineState
GROUP BY finalSum

The output of the Results statement contains only two attributes, min_x and finalSum. The LET-bound
attribute intermediateSum does not appear in the output.

If present, LET must appear immediately before the SELECT clauses (as in the example above) and it must be
followed by one or more attribute definitions, separated by commas. These attribute definitions look and act
exactly like those that appear after SELECT. In particular, if the expression on the left-hand side of the
definition is a bare attribute reference (optionally with data-source qualifier), then the AS clause of the
definition is optional. That is, you may write:

LET x,
State.y AS y,
3 as z

which is equivalent to:

LET x AS x,
State.y AS y,
3 as z

LET attributes are computed immediately after the statement WHERE clause (if used) and before any of the
SELECT attributes are computed.

Because LET attributes are computed before grouping, aggregators like AVG and SUM are illegal in LET
clauses, and EQL signals an error if any appear in that context.

LET scoping
An attribute defined with LET is in scope:

• for all following LET definitions in the same statement

• for all SELECT definitions in the same statement

• for the GROUP BY clause, including MEMBERS, in the same statement.

In addition, if a LET attribute is used as a grouping key, then it also appears in the statement's results and is
available for use in ORDER BY and HAVING clauses. If the attribute is not a grouping key, then it is not in scope
for ORDER BY or HAVING.

This example illustrates the LET scoping rules:

RETURN results AS
LET
(FOREACH d IN orderDates RETURN (EXTRACT(d, YEAR))) AS orderYears

SELECT
MAX(totalCost) AS maxCost

FROM OrderHistory
GROUP BY orderYears
HAVING 2014 IN orderYears

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 17

The example assumes that the data-source OrderHistory defines an attribute orderDates of type
mdex:dateTime-set. The definition of the orderYears attribute extracts the year from each date in
orderDates and then re-assembles these years into a set. The statement groups its results by the set of order
years, computing the maximum cost for each, and returning rows for those orders that have at least one date
in 2014 in orderDates. Because orderYears is a group key, the output table has two attributes (maxCost and
orderYears), and orderYears is available for use in the HAVING clause.

As an alternative, consider this example:

RETURN results AS
LET
(FOREACH d IN orderDates RETURN (EXTRACT(d, YEAR))) AS orderYears

SELECT
MAX(totalCost) AS maxCost

FROM OrderHistory
GROUP BY MEMBERS(orderYears) AS yr

Version 1.1.3 • May 2016

This statement is the same as the previous example, except that this statement groups not by orderYears but
rather by its members. Therefore, orderYears is not a group key, but is merely used to compute the group
key yr. Therefore, orderYears does not appear in the statement's output, and it cannot appear in either
HAVING or ORDER BY clauses. (The statement's output contains two attributes, yr and maxCost.)

To summarize the rules given above: in a non-grouping statement, LET attributes never appear in the output,
and they are never visible in HAVING and ORDER BY clauses.

SELECT clause
The SELECT clause defines the list of attributes on the records produced by the statement.

Its syntax is as follows:

SELECT <expression> AS <attributeKey>[, <expression> AS <key>]*

For example:

SELECT Sum(Amount) AS TotalSales

The attribute definitions can refer to previously-defined attributes, as shown in the following example:

SELECT Sum(Amount) AS TotalSales, TotalSales / 4 AS QuarterAvg

Note: If an attribute defined in a SELECT clause is used in the statement's GROUP clause, then the
expression can only refer to source attributes and other attributes used in the GROUP clause. It must
not contain aggregations.

Using SELECT *
SELECT * selects all the attributes at once from a given record source. The rules for using SELECT * are:

• You can use SELECT * over a collection. The statement's FROM clause specifies a named state (which in
turn references a collection name). Keep in mind that retrieving all records from a very large collection can
take some time.

• You cannot use the AS clause with a SELECT * statement. For example, this returns an error:

SELECT * AS allRecs

• You cannot use SELECT * in a grouping statement.

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 18

• SELECT * expansion will include grouping keys that are defined by a LET clause in the source statement.

For example, assume this simple query:

DEFINE ResellerInfo AS
SELECT
DimReseller_ResellerName,
DimGeography_StateProvinceName,
DimReseller_Phone

FROM SaleState;

RETURN Resellers as
SELECT *
FROM ResellerInfo

Version 1.1.3 • May 2016

The query first generates an intermediate result (named ResellerInfo) from data in three attributes, and then
uses SELECT * to select all the attributes from ResellerInfo.

The sample query selects all the attributes from a given collection:

RETURN Results as
SELECT *
FROM WineState

In the query, the WineState state references the Wines collection, which means that all of that collection's
records are returned.

You can also use SELECT * with a JOIN clause, as shown in this example:

DEFINE Reseller AS
SELECT
DimReseller_ResellerKey,
DimReseller_ResellerName,
DimReseller_AnnualSales

FROM SaleState;

DEFINE Orders AS
SELECT
FactSales_ResellerKey,
FactSales_SalesAmount

FROM SaleState;

RETURN TopResellers AS
SELECT
R.*, O.FactSales_SalesAmount

FROM Reseller R JOIN Orders O on (R.DimReseller_ResellerKey = O.FactSales_ResellerKey)
WHERE O.FactSales_SalesAmount > 10000

In the example, the expression R.* (in the RETURN TopResellers statement) expands to include all the
attributes selected in the DEFINE Reseller statement.

Note that you should be aware of the behavior of SELECT * clauses in regard to attributes with the same
name in statements. That is, assuming this SELECT clause:

SELECT Amt, *

If * includes an attribute named Amt, then the SELECT will trigger the EQL error: "Attribute "Amt" is defined
more than once."

Likewise in a join:

SELECT * FROM a JOIN b ON (...)

If a and b both contain an attribute with the same name, then the query triggers the same EQL error as above.
It will list one of the attributes that the two sides of the join share. Note that the error message will reference
the statement name with the problem.

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 19

AS clause
The AS clause allows you to give an alias name to EQL attributes and results.

The alias name can be given to an attribute, attribute list, expression result, or query result set. The aliased
name is temporary, as it does not persist across different EQL queries.

Alias names must be NCName-compliant (for example, they cannot contain spaces). The NCName format is
defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at this URL:
http://www.w3.org/TR/REC-xml-names/.

Note: Attribute names are not required to be aliased, as the names are already NCName-compliant.
However, you can alias attribute names if you wish (for example, for better human readability of a
query that uses long attribute names).

AS is used in:

• DEFINE statements, to name a record set that will later be referenced by another statement (such as a
SELECT or FROM clause).

• RETURN statements, to name the EQL results. This name is typically shown at the presentation level.

• SELECT statements, to name attributes, attribute lists, or expression results. This name is also typically
shown at the presentation level.

Assume this DEFINE example:

DEFINE EmployeeTotals AS
SELECT
DimEmployee_FullName AS Name,
SUM(FactSales_SalesAmount) AS Total

FROM SaleState
GROUP BY DimEmployee_EmployeeKey, ProductSubcategoryName;

Version 1.1.3 • May 2016

In the example, EmployeeTotals is an alias for the results produced by the SELECT and GROUP BY
statements, while Name is an alias for the DimEmployee_FullName attribute, and Total is an alias for the
results of the SUM expression.

Using AS expressions to calculate derived attributes

EQL statements typically use expressions to compute one or more derived attributes. Each aggregation
operation can declare an arbitrary set of named expressions, sometimes referred to as derived attributes,
using SELECT AS syntax. These expressions represent aggregate analytic functions that are computed for
each aggregated record in the statement result.

Important: Derived attribute names must be NCName-compliant. They cannot contain spaces or
special characters. For example, the following statement would not be valid:

RETURN price AS SELECT AVG(Price) AS "Average Price"

The space would have to be removed:

RETURN price AS SELECT AVG(Price) AS AveragePrice

Oracle® Big Data Discovery: EQL Reference

http://www.w3.org/TR/REC-xml-names/

Statements and Clauses 20

FROM clause
You must include a FROM clause in your statement to specify a record source.

A FROM clause is mandatory in a statement and specifies the source of records for an EQL statement, such as
from a state name or from a previously-defined statement.

The FROM syntax is:

FROM <recSource> [alias]

Version 1.1.3 • May 2016

where <recSource> can be:

• The name of previously-defined statement (whether that statement is a DEFINE or a RETURN).

• A state name. Note that FROM does not directly support collection names, but does in essence because
the state includes a collection name.

• A JOIN or a CROSS JOIN.

If you omit the FROM clause in your query, the EQL parser returns an error.

Previously-defined statement

You can use the result of a different statement as your record source. In the following example, the first
statement (named RepQuarters) computes the total number of sales transactions for each quarter and sales
representative. To then compute the average number of transactions per sales rep, a subsequent statement
(named Quarters) groups those results by quarter:

DEFINE RepQuarters AS
SELECT COUNT(TransId) AS NumTrans
FROM SaleState
GROUP BY SalesRep, Quarter;

RETURN Quarters AS
SELECT AVG(NumTrans) AS AvgTransPerRep
FROM RepQuarters
GROUP BY Quarter

The RepQuarters statement generates a list of records. Each record contains the attributes { SalesRep,
Quarter, NumTrans }. For example:

{ J. Smith, 11Q1, 10 }
{ J. Smith, 11Q2, 3 }
{ F. Jackson, 10Q4, 10 }
...

The Quarters statement then uses the results of the RepQuarters statement to generate a list with the
attributes { Quarter, AvgTransPerRep }. For example:

{ 10Q4, 10 }
{ 11Q1, 4.5 }
{ 11Q2, 6 }
...

State name
State names can be specified in EQL FROM clauses with this syntax:

FROM <statename>[_FILTERED | _UNFILTERED | _ALL]

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 21

where:

• statename_FILTERED represents the state with all filters applied (i.e., all the filters that are in the state of
the query).

• statename (i.e., using just the state name without a filtering qualifier) is a synonym for
statename_FILTERED.

• statename_UNFILTERED represents the state with only the security filter applied.

• statename_ALL is a synonym for statename_UNFILTERED.

As an example, assume this simple Conversation Service query that uses the EQLQuery type:

<Request>
<Language>en</Language>
<State>

<Name>WineState</Name>
<CollectionName>Wines</CollectionName>
<DataSourceFilter Id="DataFltr">
<filterString>WineType <> 'Red'</filterString>

</DataSourceFilter>
<SelectionFilter Id="SecFltr">
<filterString>Price > 25</filterString>

</SelectionFilter>
</State>
<EQLConfig Id="WineRecs">

<EQLQueryString>
RETURN results AS
SELECT Price AS prices
FROM WineState
GROUP BY prices

</EQLQueryString>
</EQLConfig>

</Request>

Version 1.1.3 • May 2016

The query works as follows:

1. The DataSourceFilter filter (which is the security filter) first removes any record that has a
WineType=Red assignment. In our small data set, only 11 records pass the filter. (Note that WineType
must be single-assign or the query will fail.)

2. The SelectionFilter filter then selects any record whose Price assignment is $25 or more. 7 more
records are filtered out (from the previous 11 records), leaving 4 records.

3. The FROM clause in the EQL statement references the state named WineState.

Thus, because the FROM clause in the EQL statement references the state named WineState, both filters from
the state are applied and the 4 records are returned.

JOIN clause
JOIN clauses allow records from multiple statements and/or named states to be combined, based on a
relationship between certain attributes in these statements.

JOIN clauses, which conform to a subset of the SQL standard, do a join with the specified join condition. The
join condition may be an arbitrary Boolean expression referring to the attributes in the FROM statement. The
expression must be enclosed in parentheses.

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 22

The JOIN clause always modifies a FROM clause. Two named sources (one or both of which can be named
states) can be indicated in the FROM clause. Fields must be dot-qualified to indicate which source they come
from, except in queries from a single table.

Self-join is supported. Statement aliasing is required for self-join.

Both input tables must result from DEFINE or RETURN statements (that is, from intermediate results).

Any number of joins can be performed in a single statement.

The syntax of JOIN is as follows:

FROM <statement1> [alias]
[INNER,CROSS,LEFT,RIGHT,FULL] JOIN <statement2> [alias]
ON (Boolean-expression) [JOIN <statementN> [alias] ON (Boolean-expression)]*

Version 1.1.3 • May 2016

where statement is either a statement or a named state. Note that you can put multiple JOIN clauses under a
FROM clause, but there must be exactly one FROM clause in any statement.

Types of joins

EQL supports the following types of joins:

• INNER JOIN: INNER JOIN joins records on the left and right sides, then filters the result records by the
join condition. That means that only rows for which the join condition is TRUE are included. If you do not
specify the join type, JOIN defaults to INNER JOIN. Note that the INNER keyword can be used only with
JOIN, and EQL will throw an error if it is used with the other join types.

• LEFT JOIN, RIGHT JOIN, and FULL JOIN: LEFT JOIN, RIGHT JOIN, and FULL JOIN (collectively called
outer joins) extend the result of an INNER JOIN with records from a side for which no record on the other
side matched the join condition. When such an additional record is included from one side, the record in
the join result contains NULLs for all attributes from the other side. LEFT JOIN includes all such rows from
the left side, RIGHT JOIN includes all such rows from the right side, and FULL JOIN includes all such
rows from either side.

• CROSS JOIN: The result of CROSS JOIN is the Cartesian product of the left and right sides. Each result
record has the assignments from both of the corresponding records from the two sides.

Keep in mind that if not used correctly, joins can cause the Dgraph to grow beyond available RAM because
they can easily create very large results. For example, a CROSS JOIN of a result with 100 records and a result
with 200 records would contain 20,000 records. Two best practices are to avoid CROSS JOIN if possible and
to be careful with ON conditions so that the number of results are reasonable.

INNER JOIN example
The following INNER JOIN example finds employees whose sales in a particular subcategory account for
more than 10% of that subcategory's total:

DEFINE EmployeeTotals AS
SELECT

ARB(DimEmployee_FullName) AS Name,
SUM(FactSales_SalesAmount) AS Total

FROM SaleState
GROUP BY DimEmployee_EmployeeKey, ProductSubcategoryName;

DEFINE SubcategoryTotals AS
SELECT

SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY ProductSubcategoryName;

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 23

RETURN Stars AS
SELECT

EmployeeTotals.Name AS Name,
EmployeeTotals.ProductSubcategoryName AS Subcategory,
100 * EmployeeTotals.Total / SubcategoryTotals.Total AS Pct

FROM EmployeeTotals
INNER JOIN SubcategoryTotals
ON (EmployeeTotals.ProductSubcategoryName = SubcategoryTotals.ProductSubcategoryName)

HAVING Pct > 10

Version 1.1.3 • May 2016

Self-join example
The following self-join using INNER JOIN computes cumulative daily sales totals per employee:

DEFINE Days AS
SELECT

FactSales_OrderDateKey AS DateKey,
DimEmployee_EmployeeKey AS EmployeeKey,
ARB(DimEmployee_FullName) AS EmployeeName,
SUM(FactSales_SalesAmount) AS DailyTotal

FROM SaleState
GROUP BY DateKey, EmployeeKey;

RETURN CumulativeDays AS
SELECT

SUM(PreviousDays.DailyTotal) AS CumulativeTotal,
Day.DateKey AS DateKey,
Day.EmployeeKey AS EmployeeKey,
ARB(Day.EmployeeName) AS EmployeeName

FROM Days Day
JOIN Days PreviousDays
ON (PreviousDays.DateKey <= Day.DateKey)

GROUP BY DateKey, EmployeeKey

LEFT JOIN examples
The following LEFT JOIN example computes the top 5 subcategories along with an Other bucket, for use in a
pie chart:

DEFINE Totals AS
SELECT

SUM(FactSales_SalesAmount) AS Total
FROM SaleState
GROUP BY ProductSubcategoryName;

DEFINE Top5 AS
SELECT

ARB(Total) AS Total
FROM Totals
GROUP BY ProductSubcategoryName
ORDER BY Total DESC PAGE(0,5);

RETURN Chart AS
SELECT

COALESCE(Top5.ProductSubcategoryName, 'Other') AS Subcategory,
SUM(Totals.Total) AS Total

FROM Totals
LEFT JOIN Top5
ON (Totals.ProductSubcategoryName = Top5.ProductSubcategoryName)

GROUP BY Subcategory

The following LEFT JOIN computes metrics for each product in a particular region, ensuring all products
appear in the list even if they have never been sold in that region:

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 24

DEFINE Product AS
SELECT

ProductAlternateKey AS Key,
ARB(ProductName) AS Name

FROM SaleState
GROUP BY Key;

DEFINE RegionTrans AS
SELECT

ProductAlternateKey AS ProductKey,
FactSales_SalesAmount AS Amount

FROM SaleState
WHERE DimSalesTerritory_SalesTerritoryRegion='United Kingdom';

RETURN Results AS
SELECT

Product.Key AS ProductKey,
ARB(Product.Name) AS ProductName,
COALESCE(SUM(RegionTrans.Amount), 0) AS SalesTotal,
COUNT(RegionTrans.Amount) AS TransactionCount

FROM Product
LEFT JOIN RegionTrans
ON (Product.Key = RegionTrans.ProductKey)

GROUP BY ProductKey

Version 1.1.3 • May 2016

FULL JOIN example
The following FULL JOIN computes the top 10 employees' sales totals for the top 10 products, ensuring that
each employee and each product appears in the result:

DEFINE TopEmployees AS
SELECT

DimEmployee_EmployeeKey AS Key,
ARB(DimEmployee_FullName) AS Name,
SUM(FactSales_SalesAmount) AS SalesTotal

FROM SaleState
GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE TopProducts AS
SELECT

ProductAlternateKey AS Key,
ARB(ProductName) AS Name,
SUM(FactSales_SalesAmount) AS SalesTotal

FROM SaleState
GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE EmployeeProductTotals AS
SELECT

DimEmployee_EmployeeKey AS EmployeeKey,
ProductAlternateKey AS ProductKey,
SUM(FactSales_SalesAmount) AS SalesTotal

FROM SaleState
GROUP BY EmployeeKey, ProductKey
HAVING [EmployeeKey] IN TopEmployees AND [ProductKey] IN TopProducts;

RETURN Results AS
SELECT

TopEmployees.Key AS EmployeeKey,
TopEmployees.Name AS EmployeeName,
TopEmployees.SalesTotal AS EmployeeTotal,
TopProducts.Key AS ProductKey,
TopProducts.Name AS ProductName,

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 25

TopProducts.SalesTotal AS ProductTotal,
EmployeeProductTotals.SalesTotal AS EmployeeProductTotal

FROM EmployeeProductTotals
FULL JOIN TopEmployees
ON (EmployeeProductTotals.EmployeeKey = TopEmployees.Key)
FULL JOIN TopProducts
ON (EmployeeProductTotals.ProductKey = TopProducts.Key)

Version 1.1.3 • May 2016

CROSS JOIN example
The following CROSS JOIN example finds the percentage of total sales each product subcategory represents:

DEFINE GlobalTotal AS
SELECT

SUM(FactSales_SalesAmount) AS GlobalTotal
FROM SaleState
GROUP;

DEFINE SubcategoryTotals AS
SELECT

SUM(FactSales_SalesAmount) AS SubcategoryTotal
FROM SaleState
GROUP BY ProductSubcategoryName;

RETURN SubcategoryContributions AS
SELECT

SubcategoryTotals.ProductSubcategoryName AS Subcategory,
SubcategoryTotals.SubcategoryTotal / GlobalTotal.GlobalTotal AS Contribution

FROM SubcategoryTotals
CROSS JOIN GlobalTotal

WHERE clause
The WHERE clause is used to filter input records for an expression.

EQL provides two filtering options: WHERE and HAVING. The syntax of the WHERE clause is as follows:

WHERE <BooleanExpression>

The WHERE clause must appear immediately after the FROM clause.

You can use the WHERE clause with any Boolean expression, such as:

• Numeric and string value comparison: {= , <>, <, <=, >, >=}

• Set operations: such as SUBSET and IS_MEMBER_OF

• Null value evaluation: <attribute> IS {NULL, NOT NULL} (for atomic values) and <attribute> IS
{EMPTY, NOT EMPTY} (for sets)

• Grouping keys of the source statement: <attribute-list> IN <source-statement>. The number
and type of these keys must match the number and type of keys used in the statement referenced by the
IN clause. For more information, see IN on page 80.

Aliased attributes (from the SELECT clause) cannot be used in the WHERE clause, because WHERE looks for an
attribute in the source. Thus, this example:

RETURN results AS
SELECT
FactSales_RecordSpec AS id,
FactSales_ProductKey AS keys

FROM SaleState
WHERE id > 5

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 26

ORDER BY keys

Version 1.1.3 • May 2016

is invalid and returns the error message:

In statement "results": In WHERE clause: The state "Sales" does not have an attribute named "id"

If an aggregation function is used with a WHERE clause, then the Boolean expression must be enclosed within
parentheses. The aggregation functions are listed in the topic Aggregation functions on page 59.

In this example, the amounts are only calculated for sales in the West region. Then, within those results, only
sales representatives who generated at least $10,000 are returned:

RETURN Reps AS
SELECT
SUM(Amount) AS SalesTotal

FROM SaleState
WHERE Region = 'West'
GROUP BY SalesRep
HAVING SalesTotal > 10000

In the next example, a single statement contains two expressions. The first expression computes the total for
all of the records and the second expression computes the total for one specific sales representative:

RETURN QuarterTotals AS
SELECT
SUM(Amount) As SalesTotal,
SUM(Amount) WHERE (SalesRep = 'Juan Smith') AS JuanTotal

FROM SaleState
GROUP BY Quarter

This would return both the total overall sales and the total sales for Juan Smith for each quarter. Note that the
Boolean expression in the WHERE clause is in parentheses because it is used with an aggregation function
(SUM in this case).

The second example also shows how use a per-aggregate WHERE clause:

SUM(Amount) WHERE (SalesRep = 'Juan Smith') AS JuanTotal

For more information on per-aggregate WHERE filters, see Per-aggregation filters on page 46.

HAVING clause
The HAVING clause is used to filter output records.

The syntax of the HAVING clause is as follows:

HAVING <BooleanExpression>

You can use the HAVING clause with any Boolean expression, such as:

• Numeric and string value comparison: {= , <>, <, <=, >, >=}

• Null value evaluation: <attribute> IS {NULL, NOT NULL, EMPTY, NOT EMPTY}

• Set operations: such as SUBSET and IS_MEMBER_OF

• Grouping keys of the source statement: <attribute-list> IN <source-statement>

In the following example, the results include only sales representatives who generated at least $10,000:

RETURN Reps AS
SELECT SUM(Amount) AS SalesTotal
FROM SaleState
GROUP BY SalesRep

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 27

HAVING SalesTotal > 10000

Version 1.1.3 • May 2016

Note that HAVING clauses may refer only to attributes defined in the same statement (such as aliased
attributes defined by a SELECT clause). For example, this is an invalid statement:

// Invalid because "Price" is not defined in the statement (i.e., Price is a collection attribute).
Return results AS
SELECT SUM(Price) AS TotalPrices
FROM SaleState
GROUP BY WineType
HAVING Price > 100

The invalid statement example would return this error message:

In statement "results": In HAVING clause: Local statement attribute "Price" is not in scope

To correct the error, replace the local statement attribute (Price) with an attribute defined in the statement
(TotalPrices):

// Valid because "TotalPrices" is defined in the statement.
Return results AS
SELECT SUM(Price) AS TotalPrices
FROM SaleState
GROUP BY WineType
HAVING TotalPrices > 100

ORDER BY clause
The ORDER BY clause is used to control the order of result records.

You can sort result records by specifying attribute names or an arbitrary expression.

The ORDER BY syntax is as follows:

ORDER BY <Attr|Exp> [ASC|DESC] [,<Attr|Exp> [ASC|DESC]]*

where Attr|Exp is either an attribute name or an arbitrary expression. The attribute can be either a single-
assign or multi-assign attribute.

Optionally, you can specify whether to sort in ascending (ASC) or descending (DESC) order. You can use any
combination of values and sort orders. The absence of a direction implies ASC.

An ORDER BY clause has the following behavior:

• NULL values will always sort after non-NULL values for a given attribute, and NaN (not-a-number) values
will always sort after values other than NaN and NULL, regardless of the direction of the sort.

• An arbitrary but stable order is used when sorting by sets (multi-assign attributes).

• Tied ranges (or all records in the absence of an ORDER BY clause) are ordered in an arbitrary but stable
way: the same query will always return its results in the same order, as long as it is querying against the
same version of the data.

• Data updates add or remove records from the order, but will not change the order of unmodified records.

In this example, the Price single-assign attribute is totaled and then grouped by the single-assign WineType
attribute. The resulting records are sorted by the total amount in descending order:

RETURN Results AS
SELECT SUM(Price) AS Total
FROM WineState
GROUP BY WineType

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 28

ORDER BY Total DESC

Version 1.1.3 • May 2016

The result of this statement from a small set of twenty-five records might be:

Total WineType

142.34	Red
97.97	White
52.90	Chardonnay
46.98	Brut
25.99	Merlot
21.99	Bordeaux
16.99	Blanc de Noirs
14.99	Pinot Noir
	Zinfandel

The Zinfandel bucket is sorted last because it has a NULL value for Price. Note that if the sort order were ASC,
Zinfandel would still be last in the result.

String sorting

String values are sorted in Unicode code point order.

Geocode sorting
When sorting by geocode values, the order is arbitrary but stable, but not otherwise specified. To establish a
more meaningful sort order when using geocode data, compute the distance from some point, and then sort
by the distance. For example:

ORDER BY LATITUDE(location), LONGITUDE(location)

Expression sorting
An ORDER BY clause allows you to use an arbitrary expression to sort the resulting records. The expressions
in the ORDER BY clause will only be able to refer to attributes of the local statement, except through lookup
expressions, as shown in these simple statements:

/* Invalid statement */
DEFINE T1 AS
SELECT ... AS foo
FROM SaleState;

RETURN T2 AS
SELECT ... AS bar
FROM T1
ORDER BY T1.foo /* not allowed */

/* Valid statement */
DEFINE T1 AS
SELECT ... AS foo
FROM SaleState;

RETURN T2 AS
SELECT ... AS bar
FROM T1
ORDER BY T1[].foo /* allowed */

In addition, the expression cannot contain aggregation functions. For example:

RETURN T AS
SELECT ... AS bar

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 29

FROM T1
ORDER BY SUM(bar) /* not allowed because of SUM aggregation function */

RETURN T AS
SELECT ... AS bar
FROM T1
ORDER BY ABS(bar) /* allowed */

Version 1.1.3 • May 2016

Sorting by sets

As mentioned above, an arbitrary but stable order is used when sorting by sets (multi-assign attributes).

In this example, the Price single-assign attribute is converted to a set and then grouped by the single-assign
WineType attribute. The resulting records are sorted by the set in descending order:

RETURN Results AS
SELECT SET(Price) AS PriceSet
FROM WineState
GROUP BY WineType
ORDER BY PriceSet DESC

The result of this statement from a small set of 25 records might be:

PriceSet WineType
--
{ 14.99 }	Pinot Noir
{ 12.99, 13.95, 17.5, 18.99, 19.99, 21.99, 9.99 }	Red
{ 25.99}	Merlot
{ 22.99, 23.99 }	Brut
{ 21.99 }	Bordeaux
{ 20.99, 32.99, 43.99 }	White
{ 16.99 }	Blanc de Noirs
{ 17.95, 34.95 }	Chardonnay
	Zinfandel
--

In this descending order, the Zinfandel bucket is sorted last because it does not have a Price assignment (and
thus returns an empty set).

Stability of ORDER BY

EQL guarantees that the results of a statement are stable across queries. This means that:

• If no updates are performed, then the same statement will return results in the same order on repeated
queries, even if no ORDER BY clause is specified, or there are ties in the order specified in the ORDER BY
clause.

• If updates are performed, then only changes that explicitly impact the order will impact the order; the order
will not be otherwise affected. The order can be impacted by changes such as deleting or inserting
records that contribute to the result on or prior to the returned page, or modifying a value that is used for
grouping or ordering.

For example, on a statement with no ORDER BY clause, queries that use PAGE(0, 10), then PAGE(10, 10),
then PAGE(20, 10) will, with no updates, return successive groups of 10 records from the same arbitrary but
stable result.

For an example with updates, on a statement with ORDER BY Num PAGE(3, 4), an initial query returns
records {5, 6, 7, 8}. An update then inserts a record with 4 (before the specified page), deletes the record with

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 30

6 (on the specified page), and inserts a record with 9 (after the specified page). The results of the same query,
after the update, would be {4, 5, 7, 8}. This is because:

• The insertion of 4 shifts all subsequent results down by one. Offsetting by 3 records includes the new
record.

• The removal of 6 shifts all subsequent results up by one.

• The insertion of 9 does not impact any of the records prior to or included in this result.

Note that ORDER BY only impacts the result of a RETURN clause, or the effect of a PAGE clause. ORDER BY on
a DEFINE with no PAGE clause has no effect.

PAGE clause
The PAGE clause specifies a subset of records to return.

By default, a statement returns all of the result records. In some cases, however, it is useful to request only a
subset of the results. In these cases, you can use the PAGE (<offset>, <count>) clause to specify how
many result records to return:

• The <offset> argument is an integer that determines the number of records to skip. An offset of 0 will
return the first result record; an offset of 8 will return the ninth.

• The <count> argument is an integer that determines the number of records to return.

Note that if <offset> is greater than the total number of available records, an empty table is returned.
However, if <offset> + <count> is greater than the total number of available records, it returns as many
records as it can.

The following example groups records by the SalesRep attribute, and returns result records 11-20:

DEFINE Reps AS
FROM ResellerState
GROUP BY SalesRep
PAGE (10,10)

Version 1.1.3 • May 2016

PAGE applies to intermediate results; a statement FROM a statement with PAGE(0, 10) will have at most 10
source records.

Top-K
You can use the PAGE clause in conjunction with the ORDER BY clause in order to create Top-K queries. The
following example returns the top 10 sales representatives by total sales:

DEFINE Reps AS
SELECT SUM(Amount) AS Total
FROM ResellerState
GROUP BY SalesRep
ORDER BY Total DESC
PAGE (0,10)

Percentile
The PAGE clause supports a PERCENT modifier. When PERCENT is specified, fractional offset and size are
allowed, as in the example PAGE(33.3, 0.5) PERCENT. This specified the portion of the data set to skip and
the portion to return.

Oracle® Big Data Discovery: EQL Reference

Statements and Clauses 31

The number of records skipped equals round(offset * COUNT / 100).

The number of records returned equals round((offset + size) * COUNT / 100) - round(offset *
COUNT / 100).

DEFINE ModelYear AS
SELECT SUM(Cost) AS Cost
FROM ProductState
GROUP BY Model, Year
ORDER BY Cost DESC
PAGE(0, 10) PERCENT

Version 1.1.3 • May 2016

The PERCENT keyword will not repeat records at non-overlapping offsets, but the number of results for a given
page size may not be uniform across the same query.

For example, if COUNT = 6:

PAGE clause Resulting behavior is the same as

PAGE (0, 25) PERCENT PAGE (0, 2)

PAGE (25, 25) PERCENT PAGE (2, 1)

PAGE (50, 25) PERCENT PAGE (3, 2)

PAGE (75, 25) PERCENT PAGE (5, 1)

Oracle® Big Data Discovery: EQL Reference

Chapter 3

Aggregation

In EQL, aggregation operations bucket a set of records into a resulting set of aggregated records.

GROUP/GROUP BY clauses

MEMBERS extension

GROUPING SETS expression

ROLLUP extension

CUBE extension

GROUPING function

COUNT function

COUNT_APPROX

COUNTDISTINCT function

APPROXCOUNTDISTINCT function

Multi-level aggregation

Per-aggregation filters

GROUP/GROUP BY clauses
The GROUP and GROUP BY clauses specify how to map source records to result records in order to group
statement output.

Some of the ways to use these clauses in a query are:

• Omitting the GROUP clause maps each source record to its own result record.

• GROUP maps all source records to a single result record.

• GROUP BY <attributeList> maps source records to result records by the combination of values in the
listed attributes.

You can also use other grouping functions (such as MEMBERS, CUBE, or GROUPING SETS) with the GROUP and
GROUP BY clauses. Details on these functions are given later in this section.

BNF grammar for grouping
The BNF grammar representation for GROUP and the family of group functions is:

GroupClause ::= GROUP | GROUP BY GroupByList | GROUP BY GroupAll
GroupByList ::= GroupByElement | GroupByList , GroupByElement
GroupByElement ::= GroupBySingle | GroupingSets | CubeRollup

Version 1.1.3 • May 2016Oracle® Big Data Discovery: EQL Reference

Aggregation 33

GroupingSets ::= GROUPING SETS (GroupingSetList)
GroupingSetList ::= GroupingSetElement | GroupingSetList , GroupingSetElement
GroupingSetElement ::= GroupBySingle | GroupByComposite | CubeRollup | GroupAll

CubeRollup ::= {CUBE | ROLLUP} (CubeRollupList)
CubeRollupList ::= CubeRollupElement | CubeRollupList , CubeRollupElement
CubeRollupElement ::= GroupBySingle | GroupByComposite

GroupBySingle ::= Identifier | GroupByMembers
GroupByComposite ::= (GroupByCompositeList)
GroupByCompositeList ::= GroupBySingle | GroupByCompositeList, GroupBySingle
GroupByMembers ::= MEMBERS (Identifier | Identifier.Identifier) AS Identifier

GroupAll ::= ()

Version 1.1.3 • May 2016

Note that the use of GroupAll results in the following being all equivalent:

GROUP = GROUP BY() = GROUP BY GROUPING SETS(())

Specifying only GROUP
You can use a GROUP clause to aggregate results into a single bucket. As the BNF grammar shows, the
GROUP clause does not take an argument.

For example, the following statement uses the SUM statement to return a single sum across a set of records:

RETURN ReviewCount AS
SELECT SUM(NumReviews) AS NumberOfReviews
FROM ProductState
GROUP

This statement returns one record for NumberOfReviews. The value is the sum of the values for the
NumReviews attribute.

Specifying GROUP BY
You can use GROUP BY to aggregate results into buckets with common values for the grouping keys. The
GROUP BY syntax is:

GROUP BY attributeList

where attributeList is a single attribute, a comma-separated list of multiple attributes, GROUPING SETS, CUBE,
ROLLUP, or () to specify an empty group. The empty group generates a total.

Grouping is allowed on source and locally-defined attributes.

Note: If you group by a locally-defined attribute, that attribute cannot refer to non-grouping attributes
and cannot contain any aggregates. However, IN expressions and lookup expressions are valid in this
context.

All grouping attributes are part of the result records. In any grouping attribute, NULL values (for single-assign
attributes) or empty sets (for multi-assign attributes) are treated like any other value, which means the source
record is mapped to result records. For information about user-defined NULL-value handling in EQL, see
COALESCE on page 78.

For example, suppose we have sales transaction data with records consisting of the following attributes:

{ TransId, ProductType, Amount, Year, Quarter, Region,
SalesRep, Customer }

For example:

Oracle® Big Data Discovery: EQL Reference

Aggregation 34

{ TransId = 1, ProductType = "Widget", Amount = 100.00,
Year = 2011, Quarter = "11Q1", Region = "East",
SalesRep = "J. Smith", Customer = "Customer1" }

Version 1.1.3 • May 2016

If an EQL statement uses Region and Year as GROUP BY attributes, the statement results contain an
aggregated record for each valid, non-empty combination of Region and Year. In EQL, this example is
expressed as:

DEFINE RegionsByYear AS
GROUP BY Region, Year

resulting in the aggregates of the form { Region, Year }, for example:

{ "East", "2010" }
{ "West", "2011" }
{ "East", "2011" }

Note that using duplicated columns in GROUP BY clauses is allowed. This means that the following two queries
are treated as equivalent:

RETURN Results AS
SELECT SUM(PROMO_COST) AS PR_Cost
FROM SaleState
GROUP BY PROMO_NAME

RETURN Results AS
SELECT SUM(PROMO_COST) AS PR_Cost
FROM SaleState
GROUP BY PROMO_NAME, PROMO_NAME

Using a GROUP BY that is an output of a SELECT expression
A GROUP BY key can be the output of a SELECT expression, as long as that expression itself does not contain
an aggregation function.

For example, the following syntax is a correct usage of GROUP BY:

SELECT COALESCE(Person, 'Unknown Person') AS Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error, because Sales2 contains an aggregation function
(SUM):

SELECT SUM(Sales) AS Sales2, ... GROUP BY Sales2

MEMBERS extension
MEMBERS is an extension to GROUP BY that allows grouping by the members of a set.

MEMBERS lets you group by multi-assign attributes. Keep in mind that when grouping by a multi-assign
attribute, all rows are preserved (including those with no assignments for the attribute).

MEMBERS syntax
MEMBERS appears in the GROUP BY clause, using this syntax:

GROUP BY MEMBERS(<set>) AS <alias> [,MEMBERS(<set2>) AS <alias2>]*

Oracle® Big Data Discovery: EQL Reference

Aggregation 35

where:

• set is a set of any set data type (such as mdex:string-set or mdex:long-set) and must be an
attribute reference. For example, set can be a multi-assign string attribute from a given collection.

If LET is not used, then MEMBERS can only refer to attributes from the source statements or from a
collection (i.e., cannot be locally defined). If LET is used, then MEMBERS can refer to attributes defined in
the same statement, as long as those attributes are defined in a LET clause, not a SELECT clause.

• alias is an aliased name, which must be NCName-compliant. In statement results, the aliased name has
the same data type as the elements of the set.

As the syntax shows, EQL supports grouping by the members of multiple sets simultaneously. To do this,
simply include multiple MEMBERS clauses in a GROUP list.

The MEMBERS form is available in grouping sets, with surface syntax like:

GROUP BY ROLLUP(a, b, MEMBERS(c) AS cValue, d)

Version 1.1.3 • May 2016

Note that grouping by the members of a set is available in any statement, not just those over a collection
(because EQL preserves all values in a set across statement boundaries).

MEMBERS data type error message
If an attempt is made to use a single-assign attribute as an argument to MEMBERS, an error message is
returned similar to this example:

Argument to MEMBERS has type mdex:double; only set types are permitted.

In this error example, MEMBERS was used with a single-assign double attribute (mdex:double), instead of a
multi-assign double attribute (mdex:double-set).

MEMBERS examples

Assume a small data set of 25 records, with each record having zero, one, or two assignments from the Body
multi-assign attribute. WineID is a single-assign attribute and is the key for the Wine collection. This sample
query is made:

RETURN Results AS
SELECT
SET(WineID) AS IDs

FROM WineState
GROUP BY MEMBERS(Body) AS bodyType

The result of this statement might be:

IDs bodyType

{ 14, 15 }	Supple
{ 22, 25 }	Firm
{ 19 }	Fresh
{ 11, 19, 22, 23, 24, 25, 4, 6, 8 }	Robust
{ 10, 11, 12, 13, 16, 18, 3, 4, 5, 7, 9 }	Tannins
{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }	Silky
{ 1, 17, 2, 20, 21 }	

In the results, note that several records contribute to multiple buckets, because they have two Body
assignments. The last five records in the result have no assignments for the Body attribute, but they are not
discarded during the grouping and are thus listed with bodyType being NULL. (Note that using WineID allows
you to look at the values in the IDs sets to determine exactly which input rows contributed to which output

Oracle® Big Data Discovery: EQL Reference

Aggregation 36

rows. For example, Record 4 contributes to both Robust and Tannins; Record 14 only contributes to Supple;
and Record 16 contributes to Tannins and Silky.)

This second example shows how to group by the members of multiple sets simultaneously. The Body and
Score multi-assign attributes are used in the query, as is the WineType single-assign attribute:

RETURN Results AS
SELECT
SET(WineID) as IDs

FROM WineState
WHERE WineType = 'White'
GROUP BY MEMBERS(Body) AS bodyType, MEMBERS(Score) AS scoreValue

Version 1.1.3 • May 2016

The result of this query might be:

IDs bodyType scoreValue

{ 25 }	Firm	82
{ 25 }	Firm	84
{ 19 }	Fresh	88
{ 25 }	Robust	82
{ 25 }	Robust	84
{ 19 }	Robust	88
{ 20 }		71
{ 20 }		75
{ 21 }		87
{ 21 }		89

Note that the record with WineID=25 contributes to four buckets, corresponding to the cross product of { Firm,
Robust } and { 82, 84 }. Records 20 and 21 have assignments for the Score attribute but have no assignments
for the Body attribute, and are listed with bodyType being NULL and scoreValue having values.

Note on MEMBERS interaction with GROUPING SETS
You should be aware that grouping by set members may interact with GROUPING SETS (including CUBE and
ROLLUP) to produce results that at first glance may seem unexpected.

For example, first we make a query that groups only by the ROLLUP extension:

RETURN Results AS
SELECT
SUM(Price) AS totalPrice

FROM WineState
GROUP BY ROLLUP(WineType)

The result with our data set is:

WineType totalPrice

Blanc de Noirs	16.99
Brut	46.98
Zinfandel	
Merlot	25.99
Bordeaux	21.99
Chardonnay	52.90
White	97.97
Pinot Noir	14.99
Red	142.34
	420.15

We get one row for each WineType, and one summary row at the bottom, which includes records from all of
the WineType values. Because SUM is associative, the expected behavior is that the totalPrice summary row

Oracle® Big Data Discovery: EQL Reference

Aggregation 37

will be equal to the sum of the totalPrice values for all other rows, and in fact the 420.15 result meets that
expectation. (Note that the total for White wines is 97.97.)

Then we make a similar query, but selecting only the White wines and grouping with MEMBERS and ROLLUP:

RETURN Results AS
SELECT
SUM(Price) AS totalPrice

FROM WineState
WHERE WineType = 'White'
GROUP BY ROLLUP(WineType, MEMBERS(Body) AS bodyType)

Version 1.1.3 • May 2016

The result from this second query is:

WineType bodyType totalPrice

White	Firm	43.99
White	Fresh	20.99
White	Robust	64.98
White		32.99
White		97.97
		97.97

The results show that the correspondence between the summary row and the individual rows is not as
expected. One might expect the totalPrice for the 'White' summary row (that is, the row where WineType is
White and bodyType is null) to be the sum of the total prices for the (White, Firm), (White, Fresh), and (White,
Robust) rows above it.

However, if you add the total prices for the first four rows, you get 162.95, rather than the expected value of
97.97. This discrepancy arises because, when you group by the members of a set, a row can contribute to
multiple buckets. In particular, Record 19 has two Body assignments (Fresh and Robust) and therefore
contributes to both the (White, Fresh) and (White, Robust) rows, and so its price is in effect double-counted.

EQL effectively computes the 'White' summary row, however, by grouping by WineType (which is a single-
assign attribute), so each input row counts exactly once.

GROUPING SETS expression
A GROUPING SETS expression allows you to selectively specify the set of groups that you want to create
within a GROUP BY clause.

GROUPING SETS specifies multiple groupings of data in one query. Only the specified groups are aggregated,
instead of the full set of aggregations that are generated by CUBE or ROLLUP. GROUPING SETS can contain a
single element or a list of elements. GROUPING SETS can specify groupings equivalent to those returned by
ROLLUP or CUBE.

GROUPING SETS syntax
The GROUPING SETS syntax is:

GROUPING SETS(groupingSetList)

where groupingSetList is a single attribute, a comma-separated list of multiple attributes, CUBE, ROLLUP, or ()
to specify an empty group. The empty group generates a total. Note that nested grouping sets are not allowed.

For example:

GROUP BY GROUPING SETS(a, (b), (c, d), ())

Oracle® Big Data Discovery: EQL Reference

Aggregation 38

Multiple grouping sets expressions can exist in the same query.

GROUP BY a, GROUPING SETS(b, c), GROUPING SETS((d, e))

Version 1.1.3 • May 2016

is equivalent to:

GROUP BY GROUPING SETS((a, b, d, e),(a, c, d, e))

Keep in mind that the use of () to specify an empty group means that the following are all equivalent:

GROUP = GROUP BY() = GROUP BY GROUPING SETS(())

How duplicate attributes in a grouping set are handled

Specifying duplicate attributes in a given grouping set will not raise an error, but only one instance of the
attribute will be used because duplicate grouping set instances are discarded. For example, these two queries
are equivalent:

GROUP BY GROUPING SETS ((x), (x))
GROUP BY GROUPING SETS ((x)))

GROUPING SETS example
DEFINE ResellerSales AS
SELECT SUM(DimReseller_AnnualSales) AS TotalSales,
ARB(DimReseller_ResellerName) AS RepNames,
DimReseller_OrderMonth AS OrderMonth

FROM ResellerState
GROUP BY OrderMonth;

RETURN MonthlySales AS
SELECT AVG(TotalSales) AS AvgSalesPerRep
FROM ResellerSales
GROUP BY TotalSales, GROUPING SETS(RepNames), GROUPING SETS(OrderMonth)

ROLLUP extension
ROLLUP is an extension to GROUP BY that enables calculation of multiple levels of subtotals across a specified
group of attributes. It also calculates a grand total.

ROLLUP (like CUBE) is syntactic sugar for GROUPING SETS:

ROLLUP(a, b, c) = GROUPING SETS((a,b,c), (a,b), (a), ())

The action of ROLLUP is that it creates subtotals that roll up from the most detailed level to a grand total,
following a grouping list specified in the ROLLUP clause. ROLLUP takes as its argument an ordered list of
attributes and works as follows:

1. It calculates the standard aggregate values specified in the GROUP BY clause.

2. It creates progressively higher-level subtotals, moving from right to left through the list of attributes.

3. It creates a grand total.

4. Finally, ROLLUP creates subtotals at n+1 levels, where n is the number of attributes.

For instance, if a query specifies ROLLUP on attributes of time, region, and department (n=3), the
result set will include rows at four aggregation levels.

In summary, ROLLUP is intended for use in tasks involving subtotals.

Oracle® Big Data Discovery: EQL Reference

Aggregation 39

ROLLUP syntax
ROLLUP appears in the GROUP BY clause, using this syntax:

GROUP BY ROLLUP(attributeList)

Version 1.1.3 • May 2016

where attributeList is either a single attribute or a comma-separated list of multiple attributes. The attributes
may be single-assign or multi-assign attributes. ROLLUP can be used on collections.

ROLLUP example
DEFINE Resellers AS SELECT
DimReseller_AnnualSales AS Sales,
DimGeography_CountryRegionName AS Countries,
DimGeography_StateProvinceName AS States,
DimReseller_OrderMonth AS OrderMonth

FROM ResellerState
WHERE DimReseller_OrderMonth IS NOT NULL;

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY ROLLUP(Countries, States, OrderMonth)

Partial ROLLUP

You can also roll up so that only some of the subtotals are included. This partial rollup uses this syntax:

GROUP BY expr1, ROLLUP(expr2, expr3)

In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels. That is, at level (expr1,
expr2, expr3), (expr1, expr2), and (expr1).

Using the above example, the GROUP BY clause for partial ROLLUP would look like this:

DEFINE Resellers AS SELECT
...

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY Countries, ROLLUP(States, OrderMonth)

CUBE extension
CUBE takes a specified set of attributes and creates subtotals for all of their possible combinations.

If n attributes are specified for a CUBE, there will be 2 to the n combinations of subtotals returned.

CUBE (like ROLLUP) is syntactic sugar for GROUPING SETS:

CUBE(a, b, c) = GROUPING SETS((a,b,c), (a,b), (a,c), (b,c), (a), (b), (c), ())

CUBE syntax
CUBE appears in the GROUP BY clause, using this syntax:

GROUP BY CUBE(attributeList)

Oracle® Big Data Discovery: EQL Reference

Aggregation 40

where attributeList is either one attribute or a comma-separated list of multiple attributes. The attributes may
be single-assign or multi-assign attributes. CUBE can be used on collections.

CUBE example
This example is very similar to the ROLLUP example, except that it uses CUBE:

DEFINE Resellers AS SELECT
DimReseller_AnnualSales AS Sales,
DimGeography_CountryRegionName AS Countries,
DimGeography_StateProvinceName AS States,
DimReseller_OrderMonth AS OrderMonth

FROM ResellerState
WHERE DimReseller_OrderMonth IS NOT NULL;

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY CUBE(Countries, States, OrderMonth)

Version 1.1.3 • May 2016

Partial CUBE
Partial CUBE is similar to partial ROLLUP in that you can limit it to certain attributes and precede it with
attributes outside the CUBE operator. In this case, subtotals of all possible combinations are limited to the
attributes within the cube list (in parentheses), and they are combined with the preceding items in the GROUP
BY list.

The syntax for partial CUBE is:

GROUP BY expr1, CUBE(expr2, expr3)

This syntax example calculates 2^2 (i.e., 4) subtotals:

• (expr1, expr2, expr3)

• (expr1, expr2)

• (expr1, expr3)

• (expr1)

Using the above example, the GROUP BY clause for partial CUBE would look like this:

DEFINE Resellers AS SELECT
...

RETURN ResellerSales AS
SELECT SUM(Sales) AS TotalSales
FROM Resellers
GROUP BY Countries, CUBE(States, OrderMonth)

GROUPING function
The GROUPING helper function indicates whether a specified attribute expression in a GROUP BY list is
aggregated.

GROUPING is a helping function for GROUPING SETS, CUBE, and ROLLUP. Note that GROUPING cannot be
used in a WHERE clause, join condition, inside an aggregate function, or in the definition of a grouping attribute.

Oracle® Big Data Discovery: EQL Reference

Aggregation 41

The use of ROLLUP and CUBE can result in two challenging problems:

• How can you programmatically determine which result set rows are subtotals, and how do you find the
exact level of aggregation for a given subtotal? You often need to use subtotals in calculations such as
percent-of-totals, so you need an easy way to determine which rows are the subtotals.

• What happens if query results contain both stored NULL values and NULL values created by a ROLLUP or
CUBE? How can you differentiate between the two?

The GROUPING function can handle these problems.

GROUPING is used to distinguish the NULL values that are returned by ROLLUP, CUBE, or GROUPING SETS
from standard null values. The NULL returned as the result of a ROLLUP, CUBE, or GROUPING SETS operation
is a special use of NULL. This acts as a column placeholder in the result set and means all values.

GROUPING returns TRUE when it encounters a NULL value created by a ROLLUP, CUBE, or GROUPING SETS
operation. That is, if the NULL indicates the row is a subtotal, GROUPING returns TRUE. Any other type of
value, including a stored NULL, returns FALSE.

GROUPING thus lets you programmatically determine which result set rows are subtotals, and helps you find
the exact level of aggregation for a given subtotal.

GROUPING syntax
The GROUPING syntax is:

GROUPING(attribute)

Version 1.1.3 • May 2016

where attribute is a single attribute.

GROUPING example
DEFINE r AS SELECT
DimReseller_AnnualRevenue AS Revenue,
DimReseller_AnnualSales AS Sales,
DimReseller_OrderMonth AS OrderMonth

FROM SaleState;

RETURN results AS SELECT
COUNT(1) AS COUNT,
GROUPING(Revenue) AS grouping_Revenue,
GROUPING(Sales) AS grouping_Sales,
GROUPING(OrderMonth) AS grouping_OrderMonth

FROM r
GROUP BY
GROUPING SETS (
ROLLUP(

(Revenue),
(Sales),
(OrderMonth)

)
)

COUNT function
The COUNT function returns the number of records that have a value for an attribute.

The COUNT function counts the number of records that have non-NULL values in a field for each GROUP BY
result. COUNT can be used with both multi-assign attributes (sets) and single-assign attributes.

Oracle® Big Data Discovery: EQL Reference

Aggregation 42

For multi-assign attributes, the COUNT function counts all non-NULL sets in the group. Note that because sets
are never NULL but can be empty, COUNT will also count a record with an empty set (that is, an empty set is
returned for any record that does not have an assignment for the specified multi-assign attribute). See the
second example below for how to ignore empty sets from the results.

The syntax of the COUNT function is:

COUNT(<attribute>)

Version 1.1.3 • May 2016

where attribute is either a multi-assign or single-assign attribute.

COUNT examples

The following records include the single-assign Size attribute and the multi-assign Color attribute:

Record 1: Size=small, Color=red, Color=white
Record 2: Size=small, Color=blue, Color=green
Record 3: Size=small, Color=black
Record 4: Size=small

The following statement returns the number of records for each size that have a value for the Color attribute:

RETURN Result AS
SELECT COUNT(Color) AS Total
FROM ProductState
GROUP BY Size

The statement result is:

Record 1: Size=small, Total=4

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 4, because Records 1-3 have Color assignments (and thus return non-
empty sets) and Record 4 does not have a Color assignment (and an empty set is returned).

If you are using COUNT with a multi-assign attribute and want to exclude empty sets, use a per-aggregate
WHERE clause with the IS NOT EMPTY function, as in this example:

RETURN result AS
SELECT COUNT(Color) WHERE (Color IS NOT EMPTY) AS Total
FROM ProductState
GROUP BY Size

This statement result is:

Record 1: Size=small, Total=3

because the empty set for Record 4 is not counted.

COUNT(1) format
The COUNT(1) syntax returns a count of all records (including those with NULL values) in a specific collection.
For example, you can get the number of data records in your Sales collection as follows:

RETURN Results AS
SELECT COUNT(1) AS recordCount
FROM SalesState
GROUP

The statement result should be an integer that represents the total number of data records.

Oracle® Big Data Discovery: EQL Reference

Aggregation 43

COUNT_APPROX
COUNT_APPROX returns the most frequent refinements.

COUNT_APPROX is similar to the COUNT function except that it is allowed to produce imprecise results in
certain circumstances. Like COUNT, the COUNT_APPROX function counts the number of records that have non-
NULL values in a field for each GROUP BY result.

The syntax of the COUNT_APPROX function is:

COUNT_APPROX(<attribute>)

Version 1.1.3 • May 2016

where attribute is either a multi-assign or single-assign attribute. You can also use the COUNT_APPROX(1)
format.

The COUNT_APPROX function uses a FrequentK pattern-matching algorithm that calculates a set of
refinements. Specifically, it reports the most frequent values. By using the PAGE function, you can indicate the
frequency range (as illustrated in the example below).

COUNT_APPROX works best when the distribution is skewed so that a small set of values appear very
frequently. However, if the FrequentK pattern matching fails to produce any results, then COUNT_APPROX falls
back to using the same implementation as the COUNT function (which does not use the FrequentK algorithm).
When running in the FrequentK pattern-matching mode, COUNT_APPROX may return imprecise results;
however, its accuracy is precise if it falls back to COUNT mode.

COUNT_APPROX example

In this example, COUNTRY is a single-assign attribute containing country names:

RETURN Results AS
SELECT
COUNT_APPROX(COUNTRY) AS Approx
FROM SalesData
WHERE COUNTRY IS NOT NULL
GROUP BY COUNTRY
ORDER BY Approx DESC
PAGE(0, 10)

The result of this statement might be:

Approx COUNTRY

81970	USA
1590	GERMANY
1353	JAPAN
667	KOREA
598	ENGLAND
585	ITALY
546	CANADA
242	GUAM
203	COLOMBIA
176	SPAIN

COUNTDISTINCT function
The COUNTDISTINCT function counts the number of distinct values for an attribute.

The COUNTDISTINCT function returns the number of unique values in a field for each GROUP BY result.
COUNTDISTINCT can be used for both single-assign and multi-assigned attributes.

Oracle® Big Data Discovery: EQL Reference

Aggregation 44

Note that because sets are never NULL but can be empty, COUNTDISTINCT will also evaluate a record with
an empty set (that is, an empty set is returned for any record that does not have an assignment for the
specified multi-assign attribute). See the second example below for how to ignore empty sets from the results.

The syntax of the COUNTDISTINCT function is:

COUNTDISTINCT(<attribute>)

Version 1.1.3 • May 2016

where attribute is either a multi-assign or single-assign attribute.

COUNTDISTINCT example

The following records include the single-assign Size attribute and the multi-assign Color attribute:

Record 1: Size=small, Color=red
Record 2: Size=small, Color=blue
Record 3: Size=small, Color=red
Record 4: Size=small

The following statement returns for each size the number of different values for the Color attribute:

RETURN Result AS
SELECT COUNTDISTINCT (Color) as Total
FROM ProductState
GROUP BY Size

The statement result is:

Record 1: Size=small, Total=3

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 3 because there are two non-empty sets with unique values for the Color
attribute (red and blue), and an empty set is returned for Record 4.

If you are using COUNTDISTINCT with a multi-assign attribute and want to exclude empty sets, use a WHERE
clause with the IS NOT EMPTY function, as in this example:

RETURN Result AS
SELECT COUNTDISTINCT(Color) WHERE (Color IS NOT EMPTY) AS Total
FROM ProductState
GROUP BY Size

This statement result is:

Record 1: Size=small, Total=2

because the empty set for Record 4 is not counted.

APPROXCOUNTDISTINCT function
The APPROXCOUNTDISTINCT function counts the number of distinct values for an attribute.

APPROXCOUNTDISTINCT is similar to the COUNTDISTINCT function except that it is allowed to produce an
approximation for the number of distinct values in certain circumstances. The APPROXCOUNTDISTINCT
function returns the number of unique values in a field for each GROUP BY result. APPROXCOUNTDISTINCT
can be used for both single-assign and multi-assigned attributes.

The APPROXCOUNTDISTINCT function uses the HyperLogLog algorithm to calculate the a set of refinements.
If the number of distinct values is low, then the results will be accurate; if the number of distinct values is high,
the results will be an approximation.

Oracle® Big Data Discovery: EQL Reference

Aggregation 45

APPROXCOUNTDISTINCT will also evaluate a record with an empty set (that is, an empty set is returned for
any record that does not have an assignment for the specified multi-assign attribute).

APPROXCOUNTDISTINCT syntax
The syntax of the APPROXCOUNTDISTINCT function is:

APPROXCOUNTDISTINCT(<attribute>)

Version 1.1.3 • May 2016

where attribute is either a multi-assign or single-assign attribute.

APPROXCOUNTDISTINCT example

Assume the following nine records that are of WineType=Red (where WineType is a single-assign attribute).
Each record includes one or two assignments for the multi-assign Body attribute:

Body WineID

{ Silky, Tannins } 3
{ Robust, Tannins } 4
{ Silky, Tannins } 5
{ Robust } 6
{ Robust } 8
{ Silky, Tannins } 9
{ Silky, Tannins } 12
{ Silky, Tannins } 16
{ Silky, Tannins } 18

The following statement returns the number of different values for the Body attribute in the WineType=Red
records:

RETURN Result AS
SELECT APPROXCOUNTDISTINCT (Body) AS Total
FROM WineState
WHERE WineType = 'Red'
GROUP BY WineType

The statement result is:

Total=3, WineType=Red

For this group, the value of Total is 3 because there are three non-empty sets with unique values for the Body
attribute:

• One set for Records 3, 5, 9, 12, 16, and 18, each of which has the "Silky" and "Tannins" assignments for
Body.

• One set for Records 6 and 8, each of which has the "Robust" assignment for Body.

• One set for Record 4, which has the "Robust" and "Tannins" assignments for Body.

Thus, there are three sets of distinct values for the Body attribute, when grouped by the WineType attribute.

Multi-level aggregation
You can perform multi-level aggregation in EQL.

This example computes the average number of transactions per sales representative grouped by Quarter and
Region.

Oracle® Big Data Discovery: EQL Reference

Aggregation 46

This query represents a multi-level aggregation. First, transactions must be grouped into sales representatives
to get per-representative transaction counts. Then these representative counts must be aggregated into
averages by quarter and region.

DEFINE DealCount AS
SELECT COUNT(TransId) AS NumDeals
FROM SaleState
GROUP BY SalesRep, Quarter, Region ;

RETURN AvgDeals AS
SELECT AVG(NumDeals) AS AvgDealsPerRep
FROM DealCount
GROUP BY Quarter, Region

Version 1.1.3 • May 2016

Per-aggregation filters
Each aggregation can have its own filtering WHERE clause. Aggregation function filters filter the inputs to an
aggregation expression. They are useful for working with sparse or heterogeneous data. Only records that
satisfy the filter contribute to the calculation of the aggregation function.

Per-aggregate WHERE filters are indeed applied pre-aggregation. The reason is that if it is delayed until post-
aggregation, the implementation may not necessarily have access to all of the columns that it needs.

The per-aggregation syntax is:

AggregateFunction(Expression) WHERE (Filter)

For example:

RETURN NetSales AS
SELECT
SUM(Amount) WHERE (Type='Sale') AS SalesTotal,
SUM(Amount) WHERE (Type='Return') AS ReturnTotal,
ARB(SalesTotal – ReturnTotal) AS Total

FROM SaleState
GROUP BY Year, Month, Category

This is the same as:

SUM(CASE WHEN Type='Sale' THEN Amount END) AS SalesTotal,
SUM(CASE WHEN type='Return' THEN Amount END) AS ReturnTotal
...

Note: These WHERE clauses also operate on records, not assignments, just like the statement-level
WHERE clause. A source record will contribute to an aggregation if it passes the statement-level WHERE
clause and the aggregation's WHERE clause.

Oracle® Big Data Discovery: EQL Reference

Chapter 4

Expressions

Expressions are typically combinations of one or more functions, attributes, constants, or operators. Most
expressions are simple combinations of functions and attributes.

Supported data types

Operator precedence rules

Handling of literals and values

Functions and operators

Using EQL results to compose follow-on queries

Using LOOKUP expressions for inter-statement references

ARB

BETWEEN

CASE

COALESCE

CORRELATION

HAS_REFINEMENTS

IN

PERCENTILE

RECORD_IN_FAST_SAMPLE

Supported data types
This topic describes the format of data types supported by EQL.

EQL data type Description

mdex:boolean Represents a Boolean value (TRUE or FALSE). Used for atomic values
(from single-assign Boolean attributes).

mdex:boolean-set Represents a Boolean value (TRUE or FALSE). Used for sets (from multi-
assign Boolean attributes).

mdex:dateTime Represents a date and time to a resolution of milliseconds. Used for
atomic values (from single-assign dateTime attributes).

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 48

EQL data type Description

mdex:dateTime-set Represents a date and time to a resolution of milliseconds. Used for sets
(from multi-assign dateTime attributes).

mdex:double Represents a floating point number. Used for atomic values (from single-
assign double attributes).

mdex:double-set Represents a floating point number. Used for sets (from multi-assign
double attributes).

mdex:duration Represents a length of time with a resolution of milliseconds. Used for
atomic values (from single-assign duration attributes).

mdex:duration-set Represents a length of time with a resolution of milliseconds. Used for
sets (from multi-assign duration attributes).

mdex:geocode Represents a latitude and longitude pair. Used for atomic values (from
single-assign geocode attributes).

mdex:geocode-set Represents a latitude and longitude pair. Used for sets (from multi-assign
geocode attributes).

mdex:long Represents a 64-bit integer. Used for atomic values (from single-assign
32-bit integer attributes and single-assign 64-bit long attributes).

Note that while Dgraph records support both 32-bit integers (mdex:int
data type) and 64-bit integers (mdex:long data type), EQL only
supports 64-bit integers (i.e., mdex:long data type). This means that if
you query an attribute that has a 32-bit integer value, it will appear as a
long (64-bit value) in EQL results.

mdex:long-set Represents a 64-bit integer. Used for sets (from multi-assign 32-bit
integer attributes multi-assign and 64-bit long attributes). See note for
mdex:long data type.

mdex:string Represents character strings. Used for atomic values (from single-assign
string attributes).

mdex:string-set Represents character strings. Used for sets (from multi-assign string
attributes).

mdex:time Represents the time of day to a resolution of milliseconds. Used for
atomic values (from single-assign time attributes).

mdex:time-set Represents the time of day to a resolution of milliseconds. Used for sets
(from multi-assign time attributes).

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 49

Operator precedence rules
EQL enforces the following precedence rules for operators.

The rules are listed in descending order:

1. Parentheses (as well as brackets in lookup expressions and IN expressions). Note that you can freely add
parentheses any time you want to impose an alternative precedence or to make precedence clearer.

2. * /

3. + -

4. = <> < > <= >=

5. IS (IS NULL, IS NOT NULL, IS EMPTY, IS NOT EMPTY)

6. IN

7. BETWEEN

8. NOT

9. AND

10. OR

Except for IN, the binary operators are left-associative, as are all of the JOIN operators. IN (for set
membership) is not associative (for example, writing x IN y IN z results in a syntax error.)

Comparisons with sets

When comparing values against sets (multi-assign data), you must use the appropriate set functions and
expressions.

For example, if Price is a single-assign double attribute, then this syntax is correct:

RETURN Results AS
SELECT Price AS prices
FROM ProductsState
WHERE Price > 20

Version 1.1.3 • May 2016

However, if Score is a multi-assign integer attribute, then this syntax will fail:

RETURN Results AS
SELECT Score AS ratings
FROM ProductsState
WHERE Score > 80

The error message will be:

In statement "Results": in WHERE clause: The comparison operators are not defined on arguments
of types mdex:long-set and mdex:long

The error message means that Score is a set (an mdex:long-set data type) and therefore cannot be
compared to an integer (80, which is an mdex:long data type).

You therefore must re-write the query, as in this example:

RETURN Results AS
SELECT Score AS Ratings
FROM ProductsState
WHERE SOME x IN Score SATISFIES (x > 80)

Oracle® Big Data Discovery: EQL Reference

Expressions 50

This example uses an existential quantifier expression.

Handling of literals and values
This section discusses how characters, numeric values, and NULL values are used in EQL.

Character handling

Handling of upper- and lower-case

Handling NULL attribute values

Handling of NaN, inf, and -inf results

Integer type promotion

Handling of precision for doubles

Character handling

EQL accepts all Unicode characters.

<Literal> ::= <StringLiteral> | <NumericLiteral>

Version 1.1.3 • May 2016

Literal type Handling

String literals String literals must be surrounded by single quotation marks.

Embedded single quotes and backslashes must be escaped by
backslashes. Examples:

'jim'
'àlêx\'s house'

Numeric literals Numeric literals can be integers or floating point numbers.

Numeric literals cannot be surrounded by single quotation marks.

Numeric literals do not support exponential notation.

34
.34

Boolean literal
TRUE/FALSE

Boolean literals cannot be surrounded by single quotation marks.

Literals of structured types
Literals of structured types must use appropriate conversions, as shown

(such as Date, Time, or
in the following example:

Geocode)
RETURN Result AS
SELECT TO_GEOCODE(45.0, 37.0) AS Geocode,

TO_DATETIME('2012-11-21T08:22:00Z') AS Timestamp
...

Oracle® Big Data Discovery: EQL Reference

Expressions 51

Literal type Handling

Identifiers
Identifiers must be NCNames. The NCName format is defined in the
W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/.

An identifier must be enclosed in double quotation marks if:

• The identifier contains characters other than letters, digits, and
underscores. For example, if an attribute name contains a hyphen
(which is a valid NCName), then the attribute name must be
enclosed in double quotation marks in statements. Otherwise, the
hyphen will be treated as the subtraction operator by the EQL
parser.

• The identifier starts with a digit.

• The identifier uses the same name as an EQL reserved keyword.
For example, if an attribute is named WHERE or GROUP, then it must
be specified as "WHERE" or "GROUP".

If an identifier is in quotation marks, then you must use a backslash to
escape double quotation marks and backslashes.

Examples:

"Count"
"Sales.Amount"

Handling of upper- and lower-case

This topic discusses character case handling in EQL.

The following are case sensitive:

• Identifiers

• Literals

• Attribute references

Reserved words are case insensitive.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

http://www.w3.org/TR/REC-xml-names/

Expressions 52

Handling NULL attribute values

If an attribute value is missing for a record, then the attribute is referred to as being NULL. For example, if a
record does not contain an assignment for a Price attribute, EQL defines the Price value as NULL.

The following table outlines how EQL handles NULL values for each type of operation:

Type of operation How EQL handles NULL values

Arithmetic operations and non- The value of any operation on a NULL value is also defined as NULL.
aggregating functions

For example, if a record has a value of 4 for Quantity and a NULL value
for Price, then the value of Quantity + Price is considered to be
NULL.

Aggregating functions EQL ignores records with NULL values.

For example, if there are 10 records, and 2 of them have a NULL value
for a Price attribute, all aggregating operations ignore the 2 records, and
instead compute their value using only the other 8 records.

If all 10 records have a NULL Price, then most aggregations, such as
SUM(Price), also result in NULL values.

The exceptions are COUNT and COUNTDISTINCT, which return zero if all
the records have a NULL value (That is, the output of COUNT or
COUNTDISTINCT is never NULL). Note, however, that COUNT(1) does
count records with NULL values.

Boolean operators See Boolean operators on page 71.

Grouping expressions EQL does not ignore records that have a NULL value in any of the group
keys, and considers the record to be present in a group. Even all-NULL
groups are returned.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 53

Type of operation How EQL handles NULL values

Filters When doing a comparison against a specific value, the NULL value will
not match the specified filter, except for the IS NULL filter.

Note that:

• Filters used directly on collections have the same semantics as filters
on intermediate results.

• NOT(x=y) is always equivalent to x<>y for all filters.

For example, if record A has price 5, and record B has no price value,
then:

• WHERE price = 5 matches A

• WHERE NOT(price <> 5) matches A

• WHERE price <> 5 matches neither A nor B

• WHERE NOT(price = 5) matches neither A nor B

• WHERE price = 99 matches neither A nor B

• WHERE NOT(price <> 99) matches neither A nor B

• WHERE price <> 99 matches A

• WHERE NOT(price = 99) matches A

Sorting For any sort order specified, EQL returns:

1. Normal results

2. Records for a NaN value

3. Records with a NULL value

Note: There is no NULL keyword or literal. To create a NULL, use CASE, as in this example: CASE
WHEN False THEN 1 END.

Handling of NaN, inf, and -inf results
Operations in EQL adhere to the conventions for Not a Number (NaN), inf, and -inf defined by the IEEE
754 2008 standard for handling floating point numbers.

In cases when it has to perform operations involving floating point numbers, or operations involving division by
zero or NULL values, EQL expressions can return NaN, inf, and -inf results.

For example, NaN, inf, and -inf values could arise in your EQL calculations when:

• A zero divided by zero results in NaN

• A positive number divided by zero results in inf

• A negative number divided by zero results in -inf

For most operations, EQL treats NaN, inf, or -inf values the same way as any other value.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 54

However, you may find it useful to know how EQL defines the following special values:

Type of operation How EQL handles NaN, inf, and -inf

Arithmetic operations Arithmetic operations with NaN values result in NaN values.

Filters NaN values do not pass filters (except for <>).

Any other comparison involving a NaN value is false.

Sorting For any sort order specified, EQL returns:

1. Normal records

2. Records with a NaN value

3. Records with a NULL value

The following example shows how inf and -inf values are treated in ascending and descending sort orders:

ASC DESC
---- ----
-inf +inf
-4 3
0 0
3 -4
+inf -inf
NaN NaN
NULL NULL

Version 1.1.3 • May 2016

Integer type promotion

In some cases, EQL supports automatic value promotion of integers to doubles when there is no risk of loss of
information.

Promotion of integers to doubles occurs in the following contexts:

• Arguments to the COALESCE expression when called with a mix of integer and double.

• Arguments to the following operators when called with a mix of integer and double:

+ - * = <> < <= > >= BETWEEN

• Integer arguments to the following functions are always converted to double:

• / (division operator; note that duration arguments are not converted)

• CEIL

• CORRELATION

• COS

• EXP

• FLOOR

• IN

• LN

Oracle® Big Data Discovery: EQL Reference

Expressions 55

• LOOKUP

• LOG

• SIN

• MOD

• POWER

• SIN

• SQRT

• TAN

• TO_GEOCODE

• TRUNC

• When the clauses in a CASE expression return a mix of integer and double results, the integers are
promoted to double.

For example, in the expression 1 + 3.5, 1 is an integer and 3.5 is a double. The integer value is promoted to
a double, and the overall result is 4.5.

In contexts other than the above, automatic type promotion is not performed and an explicit conversion is
required. For example, if Quantity is an integer and SingleOrder is a Boolean, then an expression such as the
following is not allowed:

COALESCE(Quantity, SingleOrder)

Version 1.1.3 • May 2016

An explicit conversion from Boolean to integer such as the following is required:

COALESCE(Quantity, TO_INTEGER(SingleOrder))

Handling of precision for doubles

This topic provides information on the limits of precision in serialization of doubles in EQL results.

The nature of floating-point numbers is such that EQL cannot guarantee perfect precision when converting
from an internal double to a string representation of that double and back again. In particular, if a number has
more than 15 decimal digits, doing the double-to-string-to-double round trip will lose precision, and you will get
a different number than you started with. (That's total number of digits, not necessarily digits after the decimal
point.)

In principle, the number of decimal digits depends on a variety of implementation factors, but it is unlikely to
change in practice. (More technically: as long as EQL uses IEEE 754 64-bit floating-point numbers, that limit
will stay the same value.)

Therefore, if a client such as Studio takes a double from an EQL query's results and submits a new query
using that double in a refinement filter, the user should not expect to get anything useful back if the number
itself requires more than 15 decimal digits to represent. If that behavior is required, consider replacing the
refinement filter with an EQLl filter of the form:

x BETWEEN (dblVal - epsilon) AND (dblVal + epsilon)

where dblVal is the value from the previous query, and epsilon is some small positive number indicating the
tolerance with which the record must match.

Oracle® Big Data Discovery: EQL Reference

Expressions 56

Similarly, if a client wishes to use a double from EQL results as the end point of a range filter, the client should
probably adjust the range by some small tolerance amount.

Functions and operators
EQL contains a number of built-in functions that process data. It also supports arithmetic operators.

Important: With some exceptions, all the functions and operators mentioned in this chapter work only
on atomic data types. That is, they are not supported with sets. The exceptions are:

• ARB

• COUNT

• COUNT_APPROX

• COUNTDISTINCT

• APPROXCOUNTDISTINCT

• HAS_REFINEMENTS

For information on the set functions, see Sets and Multi-assign Data on page 83.

Numeric functions

Aggregation functions

Geocode functions

Date and time functions

String functions

Arithmetic operators

Boolean operators

Numeric functions

EQL supports the following numeric functions.

Function Description and Example

addition The addition operator (+).

SELECT NortheastSales + SoutheastSales AS EastTotalSales

subtraction The subtraction operator (-).

SELECT SalesRevenue - TotalCosts AS Profit

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 57

Function Description and Example

multiplication The multiplication operator (*).

SELECT Price * 0.7 AS SalePrice

division The division operator (/).

SELECT YearTotal / 4 AS QuarterAvg

ABS Returns the absolute value of n.

If n is 0 or a positive integer, returns n.

Otherwise, n is multiplied by -1.

SELECT ABS(-1) AS one

RESULT: one = 1

CEIL Returns the smallest integer value not less than n.

SELECT CEIL(123.45) AS x, CEIL(32) AS y, CEIL(-123.45) AS z

RESULT: x = 124, y = 32, z = -123

EXP Exponentiation, where the base is e.

Returns the value of e (the base of natural logarithms) raised to the power n.

SELECT EXP(1.0) AS baseE

RESULT: baseE = e^1.0 = 2.71828182845905

FLOOR Returns the largest integer value not greater than n.

SELECT FLOOR(123.45) AS x, FLOOR(32) AS y, FLOOR(-123.45) AS z

RESULT: x = 123, y = 32, z = -124

LN Natural logarithm. Computes the logarithm of its single argument, the base
of which is e.

SELECT LN(1.0) AS baseE

RESULT: baseE = e^1.0 = 0

LOG Logarithm. log(n, m) takes two arguments, where n is the base, and m is
the value you are taking the logarithm of.

Log(10,1000) = 3

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 58

Function Description and Example

MOD Modulo. Returns the remainder of n divided by m.

Mod(10,3) = 1

EQL uses the fmod floating point remainder, as defined in the C/POSIX
standard.

ROUND Returns a number rounded to the specified decimal place.

The unary (one argument) version takes only one argument (the number to
be rounded) and drops the decimal (non-integral) portion of the input. For
example:

ROUND(8.2) returns 8
ROUND(8.7) returns 9

The binary (two argument) version takes two arguments (the number to be
rounded and a positive or negative integer that allows you to set the number
of spaces at which the number is rounded). The binary version always
returns a double:

• Positive second arguments correspond to the number of places that
must be returned after the decimal point. For example:

ROUND(123.4567, 3) returns 123.457

• Negative second arguments correspond to the number of places that
must be returned before the decimal point. For example:

ROUND(123.4, -3) returns 0
ROUND(1234.56, -3) returns 1000

SIGN Returns the sign of the argument as -1, 0, or 1, depending on whether n is
negative, zero, or positive. The result is always a double.

SELECT SIGN(-12) AS x, SIGN(0) AS y, SIGN(12) AS z

RESULT: x = -1, y = 0, z = 1

SQRT Returns the nonnegative square root of n as an mdex:double type.

SELECT SQRT(9) AS x

RESULT: x = 3

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 59

Function Description and Example

TRUNC Returns the number n truncated to m decimal places. If m is 0, the result has
no decimal point or fractional part.

The unary (one argument) version drops the decimal (non-integral) portion of
the input. For example:

SELECT TRUNC(3.14159265) AS x

RESULT: x = 3

The binary (two argument) version allows you to set the number of spaces at
which the number is truncated. The binary version always returns a double.
For example:

SELECT TRUNC(3.14159265, 3) AS y

RESULT: y = 3.141

SIN The sine of n, where the angle of n is in radians.

SIN(3.14159/6) = 0.499999616987256

COS The cosine of n, where the angle of n is in radians.

COS(3.14159/3) = 0.500000766025195

TAN The tangent of n, where the angle of n is in radians.

TAN(3.14159/4) = 0.999998673205984

POWER Returns the value (as a double) of n raised to the power of m.

Power(2,8) = 256

TO_DURATION Casts a string representation of a timestamp into a number of milliseconds
so that it can be used as a duration.

TO_DOUBLE Casts a string representation of an integer as a double.

TO_INTEGER(boolean) Casts TRUE/FALSE to 1/0.

Aggregation functions

EQL supports the following aggregation functions.

Function Description

ARB Selects an arbitrary but consistent value from the set of values in a field.
Works on both multi-assign attributes (sets) and single-assign attributes.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 60

Function Description

AVG Computes the arithmetic mean value for a field.

CORRELATION Computes the correlation coefficient between two numeric fields.

COUNT Counts the number of records with valid non-NULL values in a field for
each GROUP BY result. Works on both multi-assign attributes (sets) and
single-assign attributes.

COUNT_APPROX Counts the most frequent refinements. Works on both multi-assign
attributes (sets) and single-assign attributes.

COUNTDISTINCT Counts the number of unique, valid non-NULL values in a field for each
GROUP BY result. Works on both multi-assign attributes (sets) and single-
assign attributes.

APPROXCOUNTDISTINCT Counts the number of unique, valid non-NULL values in a field for each
GROUP BY result. Works on both multi-assign attributes (sets) and single-
assign attributes.

HAS_REFINEMENTS Determines whether a specific attribute has non-implicit refinements.

MAX Finds the maximum value for a field.

MIN Finds the minimum value for a field.

MEDIAN Finds the median value for a field. (Note that PAGE PERCENT provides
overlapping functionality). If the argument is an integer, a double is always
returned.

Note that the EQL definition of MEDIAN is the same as the normal
statistical definition when EQL is computing the median of an even number
of numbers. That is, given an input relation containing {1,2,3,4}, the
following query:

RETURN results AS SELECT
MEDIAN(a) AS med

FROM SaleState
GROUP

produces the mean of the two elements in the middle of the sorted set, or
2.5.

PERCENTILE Computes the percentile for a field.

RECORD_IN_FAST_SAMPLE Returns a sample of the records in the named state.

STDDEV Computes the standard deviation for a field.

STRING_JOIN Creates a single string containing all the values of a string attribute.

SUM Computes the sum of field values.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 61

Function Description

VARIANCE Computes the variance (that is, the square of the standard deviation) for a
field.

MIN and MAX results ordering
The MIN and MAX functions work with int, double, dateTime, duration, Boolean, and string fields, as follows:

• For int and double values, MIN finds the numerically smallest integer or double, while MAX finds the largest
integer or double.

• For dateTime values, MIN finds the earliest date while MAX finds the latest date.

• For duration values, MIN finds the shortest time duration date while MAX finds the longest time duration.
Note that a negative duration is considered to be less than a positive duration.

• For Boolean values, both MIN and MAX consider FALSE to be less than TRUE (if the data set has both
values assigned). If the data set has only Boolean type assigned, then that value is returned by both
functions.

• For string values, both functions use the lexicographical ordering (for example, "89" < "9" < "90" < "ab" <
"xy"). In this example, MIN would return "89" while MAX would return "xy".

STRING_JOIN function
The STRING_JOIN function takes a string property and a delimiter and creates a single string containing all of
the property's values, separated by the delimiter. Its syntax is:

STRING_JOIN('delimiter', string_attribute)

Version 1.1.3 • May 2016

The delimiter is a string literal enclosed in single quotation marks.

The resulting strings are sorted in a lexicographical order within each group. NULL values are ignored in the
output, but values having the empty string are not.

For this sample query, assume that the R_NAME attribute is of type string and contains names of regions, while
the N_NAME attribute is also of type string and contains the names of nations:

RETURN results AS SELECT
STRING_JOIN(', ',R_NAME) AS Regions,
STRING_JOIN(',',N_NAME) AS Nations

FROM ProductState
GROUP

The query returns the region and country names delimited by commas:

Nations
ALGERIA, ARGENTINA, BRAZIL, CANADA, CHINA, EGYPT, ETHIOPIA, FRANCE, GERMANY, INDIA, INDONESIA, IRAN,
IRAQ, JAPAN, JORDAN, KENYA, MOROCCO, MOZAMBIQUE, PERU, ROMANIA, RUSSIA, SAUDI ARABIA, UNITED KINGDOM,
UNITED STATES, VIETNAM
Regions
AFRICA,AMERICA,ASIA,EUROPE,MIDDLE EAST

Note: The Regions delimiter includes a space while the Nations delimiter does not. That is, if you
want a space between the output terms, you must specify it in the delimiter.

Oracle® Big Data Discovery: EQL Reference

Expressions 62

Geocode functions

The geocode data type contains the longitude and latitude values that represent a geocode property.

Note that all distances are expressed in kilometers.

Function Description

LATITUDE(mdex:geocode) Returns the latitude of a geocode as a floating-point number.

LONGITUDE(mdex:geocode) Returns the longitude of a geocode as a floating-point number.

DISTANCE(mdex:geocode, Returns the distance (in kilometers) between the two geocodes,
mdex:geocode) using the haversine formula.

TO_GEOCODE(mdex:double, Creates a geocode from the given latitude and longitude.
mdex:double)

The following example enables the display of a map with a pin for each location where a claim has been filed:

RETURN Result AS
SELECT

LATITUDE(geo) AS Lat,
LONGITUDE(geo) AS Lon,
DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) AS DistanceFromCambridge

FROM ProductState
WHERE DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) BETWEEN 1 AND 10

Version 1.1.3 • May 2016

Note: All distances are expressed in kilometers.

Date and time functions
EQL provides functions for working with time, dateTime, and duration data types.

EQL supports normal arithmetic operations between these data types.

All aggregation functions can be applied on these types except for SUM, which cannot be applied to time or
dateTime types.

Note: In all cases, the internal representation of dates and times is on an abstract time line with no
time zone. On this time line, all days are assumed to have exactly 86400 seconds. The system does
not track, nor can it accommodate, leap seconds. This is equivalent to the SQL date, time, and
timestamp data types that specify WITHOUT TIMEZONE. ISO 8601 ("Data elements and interchange
formats - Information interchange - Representation of dates and times") recommends that, when
communicating dates and times without a time zone to other systems, they be represented using Zulu
time, which is a synonym for GMT. The Dgraph conforms to this recommendation.

Oracle® Big Data Discovery: EQL Reference

Expressions 63

The following table summarizes the supported date and time functions:

Function Return Data Type Purpose

CURRENT_TIMESTAMP dateTime Constants representing the current date and
time (at an arbitrary point during query

SYSTIMESTAMP dateTime
evaluation) in GMT and server time zone,
respectively.

CURRENT_DATE dateTime Constants representing current date (at an
arbitrary point during query evaluation) in GMT

SYSDATE dateTime
and server time zone, respectively.

TO_TIME time Constructs a timestamp representing time,
date, or duration, using an expression.

TO_DATETIME dateTime

TO_DURATION duration

EXTRACT integer Extracts a portion of a dateTime value, such
as the day of the week or month of the year.

TRUNC dateTime Rounds a dateTime value down to a coarser
granularity.

TO_TZ dateTime Returns the given timestamp in a different time
zone.

FROM_TZ dateTime

Note that using CURRENT_DATE, CURRENT_TIMESTAMP, SYSDATE, or SYSTIMESTAMP affects performance
because those functions are not cached. The other functions in the table are cached.

The following table summarizes supported operations:

Operation Return Data Type

time (+|-) duration time

dateTime (+|-) duration dateTime

time - time duration

dateTime - dateTime duration

duration (+|-) duration duration

duration (*|/) double duration

duration /duration double

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 64

Manipulating current date and time

EQL provides four constant keywords to obtain current date and time values. Values are obtained at an
arbitrary point during query evaluation.

GMT time and date are independent of any daylight savings rules, while System time and date are subject to
daylight savings rules.

Keyword Description

CURRENT_TIMESTAMP Obtains current date and time in GMT.

SYSTIMESTAMP Obtains current date and time in server time zone.

CURRENT_DATE Obtains current date in GMT.

SYSDATE Obtains system date in server time zone.

Note: CURRENT_DATE and SYSDATE return dateTime data types where time fields are reset to zero.

The following example retrieves the average duration of service:

RETURN Example AS
SELECT AVG(CURRENT_DATE - DimEmployee_HireDate) AS DurationOfService
FROM EmployeeState
GROUP

Version 1.1.3 • May 2016

Constructing date and time values

EQL provides functions to construct a timestamp representing time, date, or duration using an expression.

If the expression is a string, it must be in a certain format. If the format is invalid or the value is out of range, it
results in NULL.

Function Description Format

TO_TIME Constructs a
<TimeStringFormat> ::= hh:mm:ss[.sss]((+|-) hh:mm |Z)

timestamp
representing
time.

TO_DATETIME Constructs a See the section below for the syntax of this function's string interface,
timestamp date-only numeric interface, and date-time numeric interface.
representing
date and time.

Oracle® Big Data Discovery: EQL Reference

Expressions 65

Function Description Format

TO_DURATION Constructs a <DurationStringFormat> ::=
timestamp

[-]P[<Days>][T(<Hours>[<Minutes>}[<Seconds>]|
representing
duration. <Minutes>[<Seconds>]|

<Seconds>)]

<Days> ::= <Integer>D

<Hours> ::= <Integer>H

<Minutes> ::= <Integer>M

<Seconds> ::= <Integer>[.<Integer>]S

As stated in the Format column above, TO_TIME and TO_DATETIME accept time zone offset. However, EQL
does not store the offset value. Instead, it stores the value normalized to the GMT time zone.

The following table shows the output of several date and time expressions:

Expression Normalized value

TO_DATETIME('2012-03- 2012-03-21T14:00:00.000Z
21T16:00:00.000+02:00')

TO_DATETIME('2012-12-31T20:00:00.000- 2013-01-01T02:00:00.000Z
06:00')

TO_DATETIME('2012-06- 2012-06-15T20:00:00.000Z
15T20:00:00.000Z')

TO_TIME('23:00:00.000+03:00') 20:00:00.000Z

TO_TIME('15:00:00.000-10:00') 01:00:00.000Z

TO_DATETIME formats

The single-argument string interface for this function is:

TO_DATETIME(<DateTimeString>)

Version 1.1.3 • May 2016

where:

<DateTimeString> ::= [-]YYYY-MM-DDT<TimeStringFormat>

Three examples of the string interface are listed in the table above.

The numeric interface signatures are:

TO_DATETIME(<Year>, <Month>, <Day>)

TO_DATETIME(<Year>, <Month>, <Day>, <Hour>, <Minute>, <Second>, <Millisecond>)

where all arguments are integers.

Oracle® Big Data Discovery: EQL Reference

Expressions 66

In the first signature, time arguments will be filled with zeros. In both signatures, time zone will be assumed to
be UTC. If time zone information exists, duration (TO_DURATION) and time zone (TO_TZ) constructs can be
used, as shown below in the examples.

Examples of the numeric interface signatures are:

TO_DATETIME(2012, 9, 22)

TO_DATETIME(2012, 9, 22, 23, 15, 50, 500)

TO_DATETIME(2012, 9, 22, 23, 15, 50, 500) + TO_DURATION(1000)

TO_TZ(TO_DATETIME(2012, 9, 22, 23, 15, 50, 500), 'America/New_York')

Version 1.1.3 • May 2016

Time zone manipulation

EQL provides two functions to obtain the corresponding timestamp in different time zones.

EQL supports the standard IANA Time Zone database (https://www.iana.org/time-zones).

• TO_TZ. Takes a timestamp in GMT, looks up the GMT offset for the specified time zone at that time in
GMT, and returns a timestamp adjusted by that offset. If the specified time zone does not exist, the result
is NULL.

For example, TO_TZ(dateTime,'America/New_York') answers the question, "What time was it in
America/New_York when it was dateTime in GMT?"

• FROM_TZ. Takes a timestamp in the specified time zone, looks up the GMT offset for the specified time
zone at that time, and returns a timestamp adjusted by that offset. If the specified time zone does not
exist, the result is NULL.

For example, FROM_TZ(dateTime,'EST') answers the question, "What time was it in GMT when it was
dateTime in EST?"

The following table shows the results of several time zone expressions:

Expression Results

TO_TZ(TO_DATETIME('2012-07- 2012-07-05T12:00:00.000Z
05T16:00:00.000Z'), 'America/New_York')

TO_TZ(TO_DATETIME('2012-01- 2012-01-05T11:00:00.000Z
05T16:00:00.000Z'), 'America/New_York')

FROM_TZ(TO_DATETIME('2012-07- 2012-07-05T23:00:00.000Z
05T16:00:00.000Z'),
'America/Los_Angeles')

FROM_TZ(TO_DATETIME('2012-01- 2012-01-06T00:00:00.000Z
05T16:00:00.000Z'),
'America/Los_Angeles')

Oracle® Big Data Discovery: EQL Reference

https://www.iana.org/time-zones

Expressions 67

Using EXTRACT to extract a portion of a dateTime value

The EXTRACT function extracts a portion of a dateTime value, such as the day of the week or month of the
year. This can be useful in situations where the data must be filtered or grouped by a slice of its timestamps,
for example to compute the total sales that occurred on any Monday.

The syntax of the EXTRACT function is:

<ExtractExpr> ::= EXTRACT(<expr>,<DateTimeUnit>)
<DateTimeUnit> ::= SECOND | MINUTE | HOUR | DAY_OF_WEEK |

DAY_OF_MONTH | DAY_OF_YEAR | DATE | WEEK |
MONTH | QUARTER | YEAR | JULIAN_DAY_NUMBER

Version 1.1.3 • May 2016

Date Time Unit Range of Returned Notes
Values

SECOND (0 - 59)

MINUTE (0 - 59)

HOUR (0 - 23)

DAY_OF_WEEK (1 - 7) Returns the rank of the day within the week, where
Sunday is 1.

DAY_OF_MONTH (DATE) (1 - 31)

DAY_OF_YEAR (1 - 366)

WEEK (1 - 53) Returns the rank of the week in the year, where the
first week starts on the first day of the year.

MONTH (1 - 12)

QUARTER (1 - 4) Quarters start in January, April, July, and October.

YEAR (-9999 - 9999)

JULIAN_DAY_NUMBER (0 - 5373484) Returns the integral number of whole days between
the timestamp and midnight, 24 November -4713.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The
following list shows the results of using the EXTRACT operator to extract each component of that value:

EXTRACT("TimeStamp", SECOND) = 12
EXTRACT("TimeStamp", MINUTE) = 35
EXTRACT("TimeStamp", HOUR) = 11
EXTRACT("TimeStamp", DATE) = 13
EXTRACT("TimeStamp", WEEK) = 41
EXTRACT("TimeStamp", MONTH) = 10
EXTRACT("TimeStamp", QUARTER) = 4
EXTRACT("TimeStamp", YEAR) = 2011
EXTRACT("TimeStamp", DAY_OF_WEEK) = 5
EXTRACT("TimeStamp", DAY_OF_MONTH) = 13
EXTRACT("TimeStamp", DAY_OF_YEAR) = 286
EXTRACT("TimeStamp", JULIAN_DAY_NUMBER) = 2455848

Oracle® Big Data Discovery: EQL Reference

Expressions 68

Here is a simple example of using this functionality. The following statement groups the total value of the
Amount attribute by quarter, and for each quarter computes the total sales that occurred on a Monday
(DAY_OF_WEEK=2):

RETURN Quarters AS
SELECT SUM(Amount) AS Total

ARB(TRUNC(TimeStamp, QUARTER)) AS Qtr
FROM SaleState
WHERE EXTRACT(TimeStamp,DAY_OF_WEEK) = 2
GROUP BY Qtr

Version 1.1.3 • May 2016

The following example allows you to sort claims in buckets by age:

DEFINE ClaimsWithAge AS
SELECT

ARB(FLOOR((EXTRACT(TO_TZ(CURRENT_TIMESTAMP,claim_tz),JULIAN_DAY_NUMBER)-
EXTRACT(TO_TZ(claim_ts,claim_tz),JULIAN_DAY_NUMBER))/7)) AS AgeInWeeks,

COUNT(1) AS Count
FROM SaleState
GROUP BY AgeInWeeks
HAVING AgeInWeeks < 2
ORDER BY AgeInWeeks;

RETURN Result AS
SELECT

CASE AgeInWeeks
WHEN 0 THEN 'Past 7 Days'
WHEN 1 THEN 'Prior 7 Days'

ELSE 'Other'
END

AS Label, Count
FROM ClaimsWithAge

Using TRUNC to round down dateTime values

The TRUNC function can be used to round a dateTime value down to a coarser granularity.

For example, this may be useful when you want to group your statement results data for each quarter using a
dateTime attribute.

The syntax of the TRUNC function is:

<TruncExpr> ::= TRUNC(<expr>,<DateTimeUnit>)
<dateTimeUnit> ::= SECOND | MINUTE | HOUR |

DATE | WEEK | MONTH | QUARTER | YEAR
DAY_OF_WEEK | DAY_OF_MONTH | DAY_OF_YEAR
JULIAN_DAY_NUMBER

Note: WEEK truncates to the nearest previous Sunday.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The list
below shows the results of using the TRUNC operator to round the TimeStamp value at each level of
granularity. The values are displayed here in a format that is easier to read—the actual values would use the
standard Endeca dateTime format.

TRUNC("TimeStamp", SECOND) = 10/13/2011 11:35:12.000
TRUNC("TimeStamp", MINUTE) = 10/13/2011 11:35:00.000
TRUNC("TimeStamp", HOUR) = 10/13/2011 11:00:00.000
TRUNC("TimeStamp", DATE) = 10/13/2011 00:00:00.000
TRUNC("TimeStamp", WEEK) = 10/09/2011 00:00:00.000
TRUNC("TimeStamp", MONTH) = 10/01/2011 00:00:00.000
TRUNC("TimeStamp", QUARTER) = 10/01/2011 00:00:00.000

Oracle® Big Data Discovery: EQL Reference

Expressions 69

TRUNC("TimeStamp", YEAR) = 01/01/2011 00:00:00.000
TRUNC("TimeStamp", DAY_OF_WEEK) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", DAY_OF_MONTH) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", DAY_OF_YEAR) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", JULIAN_DAY_NUMBER) = 10/13/2011 00:00:00:000

Version 1.1.3 • May 2016

Here is a simple example of using this functionality. In the following statement, the total value for the Amount
attribute is grouped by quarter. The quarter is obtained by using the TRUNC operation on the TimeStamp
attribute:

RETURN Quarters AS
SELECT SUM(Amount) AS Total,

ARB(TRUNC(TimeStamp, QUARTER)) AS Qtr
FROM SaleState
GROUP BY Qtr

Using arithmetic operations on date and time values

In addition to using the TRUNC and EXTRACT functions, you also can use normal arithmetic operations with
date and time values.

The following are the supported operations:

• Add or subtract a duration to or from a time or a dateTime to obtain a new time or dateTime.

• Subtract two times or dateTimes to obtain a duration.

• Add or subtract two durations to obtain a new duration.

• Multiply or divide a duration by a double number.

• Divide a duration by a duration.

The following table shows the results of several arithmetic operations on date and time values:

Expression Results

2012-10-05T00:00:00.000Z + P30D 2012-11-04T00:00:00.000Z

2012-10-05T00:00:00.000Z - PT01M 2012-10-04T23:59:00.000Z

23:00:00.000Z + PT02H 01:00:00.00

20:00:00.000Z - PT02S 19:59:58.000Z

2012-01-01T00:00:00.000Z - 2012-12- -P365DT0H0M0.000S
31T00:00:00.000Z

23:15:00.000Z - 20:12:30.500Z P0DT3H2M29.500S

P1500DT0H0M0.000S - P500DT0H0M0.000S P1000DT0H0M0.000S

P1DT0H30M0.500S * 2.5 P2DT13H15M1.250S

P1DT0H30M0.225S / 2 P0DT12H15M0.112S

P5DT12H00M0.000S / P1DT0H00M0.000S 5.5

Oracle® Big Data Discovery: EQL Reference

Expressions 70

String functions

EQL supports the following string functions.

Function Description

CONCAT Concatenates two or more string arguments into a single string.

SUBSTR Returns a part (substring) of a character expression.

TO_STRING Converts a value to a string.

CONCAT function
CONCAT is a row function that returns a string that is the result of concatenating two or more string values. Its
syntax is:

CONCAT(string1, string2 [, stringN])

Version 1.1.3 • May 2016

Each argument can be a literal string (within single quotation marks), an attribute of type string, or any
expression that produces a string.

This sample query uses three literal strings for the arguments:

RETURN results AS
SELECT
CONCAT('Jane ', 'Amanda ', 'Wilson') AS FullName

FROM EmployeeState
GROUP

This similar query uses two string-type attributes, plus a quoted space to separate the customer's first and last
names:

RETURN results AS
SELECT

ARB(CONCAT(CUST_FIRST_NAME, ' ', CUST_LAST_NAME)) AS CustomerName
FROM EmployeeState
GROUP

SUBSTR function
The SUBSTR function has two syntaxes:

SUBSTR(string, position)

SUBSTR(string, position, length)

where:

• string is the string to be parsed.

• position is a number that indicates where the substring starts (see below for details).

• length is a number that specifies the length of the substring that is to be extracted. If length is omitted,
EQL returns all characters to the end of string. If length is less than 1, EQL returns NULL.

Oracle® Big Data Discovery: EQL Reference

Expressions 71

The position argument is treated as follows:

• If position is 0, it is treated as 1.

• If position is positive, then it is counted from the beginning of string to find the first character.

• If position is negative, the EQL counts backward from the end of string.

• If position is greater than the length of string, EQL returns the empty string.

Note that position is not zero indexed. For example, in order to start with the fifth character, position must be
5.

TO_STRING function
The TO_STRING function takes an integer value and returns a string equivalent. Its syntax is:

TO_STRING(int)

Version 1.1.3 • May 2016

If the input value is NULL, the output value will also be NULL.

This sample query converts the value of the P_SIZE integer attribute to a string equivalent:

RETURN results AS
SELECT
ARB(TO_STRING(P_SIZE)) AS Sizes

FROM ProductState
GROUP

Arithmetic operators

EQL supports arithmetic operators for addition, subtraction, multiplication, and division.

The syntax is as follows:

<expr> {+, -, *, /} <expr>

Each arithmetic operator has a corresponding numeric function. For information on order of operations, see
Operator precedence rules on page 49.

Boolean operators
EQL supports the Boolean operators AND, OR, and NOT.

The results of Boolean operations (including the presence of NULL) is shown in the following tables:

Results of NOT operations:

Value of x Result of NOT x

TRUE FALSE

FALSE TRUE

NULL NULL

Oracle® Big Data Discovery: EQL Reference

Expressions 72

Results of AND operations:

Value of x Value of y Result of x AND y

TRUE TRUE TRUE

TRUE NULL NULL

TRUE FALSE FALSE

NULL TRUE NULL

NULL NULL NULL

NULL FALSE FALSE

FALSE TRUE FALSE

FALSE NULL FALSE

FALSE FALSE FALSE

Results of OR operations:

Value of x Value of y x OR y

TRUE TRUE TRUE

TRUE NULL TRUE

TRUE FALSE TRUE

NULL TRUE TRUE

NULL NULL NULL

NULL FALSE NULL

FALSE TRUE TRUE

FALSE NULL NULL

FALSE FALSE FALSE

For information on order of operations, see Operator precedence rules on page 49.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Expressions 73

Using EQL results to compose follow-on queries
You can select a value in an EQL result and use it to compose a follow-on query.

This enables users to interact with EQL results through a chart or a graph to compose follow-on queries. For
example, when viewing a chart of year-to-date sales by country, a user might select a specific country for drill-
down.

EQL is specifically designed to support this kind of follow-on query.

If, in the above example, the user selects the country United States, then the follow-on query should examine
only sales of products in the United States. To filter to these items, a WHERE clause like the following can be
added:

WHERE DimGeography_CountryRegionName = 'United States'

Version 1.1.3 • May 2016

For attributes with types other than string, a conversion is necessary to use the string representation of the
value returned by EQL. For an integer attribute, such as DimDate_CalendarYear, the string representation
of the value must be converted to an integer for filtering, as follows:

WHERE DimDate_CalendarYear = TO_INTEGER('2006').

EQL provides conversions for all non-string data types:

• TO_BOOLEAN()

• TO_DATETIME()

• TO_DOUBLE()

• TO_DURATION()

• TO_GEOCODE()

• TO_INTEGER()

• TO_TIME()

Each of these accepts the string representation of values produced by the Dgraph. Note that no conversion is
necessary for mdex:string attributes.

To determine which conversion function to use, EQL results are accompanied by attribute metadata that
describes the type of the attribute.

Using LOOKUP expressions for inter-statement references
In EQL, you can define statements and then refer to these statements from other statements via a LOOKUP
expression.

Multiple EQL sub-queries can be specified within the context of a single navigation query, each corresponding
to a different analytical view, or to a subtotal at a different granularity level. Expressions also can use values
from other computed statements. This is often useful when coarser subtotals are required for computing
analytics within a finer-grained bucket.

For example, when computing the percent contribution for each sales representative in a given year, you must
also calculate the overall total for the year. You can use a lookup table to create these types of queries.

Oracle® Big Data Discovery: EQL Reference

Expressions 74

Syntax for LOOKUP expressions
A LOOKUP expression is a simple form of join. It treats the result of a prior statement as a lookup table.

The syntax for a LOOKUP expression is:

<LookupExpr> ::= <statement-name>[<LookupList>].<attribute-name>

Version 1.1.3 • May 2016

The square bracket operators are literal and are used to identify the record set and grouping attribute, while
the dot operator is also literal and is used to identify the field.

The BNF for LookupList is

<LookupList> ::= <empty>
::= <SimpleExpr> [,<LookupList>]

In this BNF syntax, the square brackets indicate the optional use of a second LookupList.

The lookup list corresponds to the grouping attributes of the specified statement. The result is NULL if the
lookup list does not match target group key values, or the target column is NULL for a matching target group
key values.

Lookup attributes refer to GROUP BY clauses of the target statement, in order. Computed lookup of indexed
values is allowed, which means you can look up related information, such as total sales from the prior year, as
shown in the following example:

DEFINE YearTotals AS SELECT
SUM(SalesAmount) AS Total

FROM SaleState
GROUP BY Year;

RETURN AnnualCategoryPcts AS SELECT
SUM(SalesAmount) AS Total,
Total/YearTotals[Year].Total AS Pct

FROM SaleState
GROUP BY Year, Category;

RETURN YoY AS SELECT
YearTotals[Year].Total AS Total,
YearTotals[Year-1].Total AS Prior,
(Total-Prior)/Prior AS PctChange

FROM SaleState
GROUP BY Year

Using LOOKUP against states
LOOKUP expressions are supported where the target statement is referring to a named state, with the rule that
there must be exactly one expression inside the square brackets, which is matched against the target state's
primary key.

If you use multiple lookup keys against a state, EQL will return an error message similar to this example that
uses two lookup keys:

In the definition of attribute "x": The LOOKUP expression has 2 lookup value(s)
; a LOOKUP expression that refers
to state "Sales" must have exactly one lookup value, corresponding to the state's primary key
"SalesID"

Oracle® Big Data Discovery: EQL Reference

Expressions 75

Referencing a value from another statement

For example, suppose we want to compute the percentage of sales per ProductType per Region. One
aggregation computes totals grouped by Region, and a subsequent aggregation computes totals grouped by
Region and ProductType.

This second aggregation would use expressions that referred to the results from the Region aggregation. That
is, it would allow each Region and ProductType pair to compute the percentage of the full Region subtotal
represented by the ProductType in this Region:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState
GROUP BY Region;

RETURN ProductPcts AS
SELECT
100 * SUM(Amount) / RegionTotals[Region].Total AS PctTotal

FROM RegionTotals
GROUP BY Region, ProductType

Version 1.1.3 • May 2016

The first statement computes the total product sales for each region. The next statement then uses the
RegionTotals results to determine the percentage for each region, making use of the inter-statement reference
syntax.

• The bracket operator indicates to reference the RegionTotals result that has a group-by value equal to the
ProductPcts value for the Region attribute.

• The dot operator indicates to reference the Total field in the specified RegionTotals record.

Computing percentage of sales

This example computes for each quarter the percentage of sales for each product type.

This query requires calculating information in one statement in order to use it in another statement.

To compute the sales of a given product as a percentage of total sales for a given quarter, the quarterly totals
must be computed and stored. The calculations for quarter/product pairs can then retrieve the corresponding
quarterly total.

DEFINE QuarterTotals AS
SELECT SUM(Amount) AS Total
FROM SaleState
GROUP BY Quarter;

RETURN ProductPcts AS
SELECT
100 * SUM(Amount) / QuarterTotals[Quarter].Total AS PctTotal

FROM QuarterTotals
GROUP BY Quarter, ProductType

ARB
ARB selects an arbitrary but consistent value from the set of values in a field.

The syntax of the ARB function is:

ARB(<attribute>)

where attribute is a single-assign attribute or a set (multi-assign attribute).

Oracle® Big Data Discovery: EQL Reference

Expressions 76

ARB works as follows:

• For a single-assign attribute, ARB first discards all NULL values and then selects an arbitrary but
consistent value from the remaining non-NULL values. If the attribute has no non-NULL values, then
NULL is returned.

• For a multi-assign attribute, ARB looks at all of the rows in the group (including those with empty sets) and
selects the set value from one of the rows. In other words, empty sets and non-empty sets are treated
equally. This means that because the selection is arbitrary, the returned set value could be an empty set.
The ARB return type is the same as its argument type: if attribute x is an mdex:long-set, then so is
ARB(x). If the attribute has no non-NULL values, then the empty set is returned.

ARB examples

Single-assign Example: Price is a single-assign attribute:

RETURN results AS
SELECT ARB(Price) AS prices
FROM WineState
GROUP BY WineType
ORDER BY WineType

Version 1.1.3 • May 2016

The result for this example is:

WineType prices

Blanc de Noirs	16.99
Bordeaux:	21.99
Brut	22.99
Chardonnay:	17.95
Merlot:	25.99
Pinot Noir:	14.99
Red:	9.99
White:	20.99
Zinfandel:	

Some of the interesting result values from this data set are:

• There are three Bordeaux records: one has a Price assignment of 21.99 and the other two have no Price
assignments. Therefore, for the Bordeaux value, ARB discarded the two NULL values and returned the
21.99 value.

• There is one Zinfandel record and it does not have a Price assignment. Therefore, a NULL value is
returned.

Multi-assign Example: Body is a multi-assign attribute:

RETURN results AS
SELECT ARB(Body) AS bodies
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result for this example is:

WineType bodies
--
Blanc de Noirs	{ Firm, Robust }
Bordeaux:	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay:	{ }
Merlot:	{ }
Pinot Noir:	{ Supple }

Oracle® Big Data Discovery: EQL Reference

Expressions 77

Red:	{ Silky, Tannins }
White:	{ }
Zinfandel:	{ Robust, Tannins }
--

Version 1.1.3 • May 2016

Some interesting results from this attribute are:

• All nine Red records have at least one Body assignment. The returned value for Red is the {Silky,
Tannins} set, but, because it is arbitrary, the value could have been any of the other eight sets.

• Two of the White records have Body assignments (and therefore have non-empty sets) while the other
two records have no Body assignments (and therefore have empty sets). One of the White empty sets
was returned as the arbitrary value, but it just as well could have been one of the non-empty sets.

• Neither of the two Chardonnay records have Body assignments, and therefore the empty set was returned
for this group.

BETWEEN
The BETWEEN expression determines whether an attribute's value falls within a range of values.

BETWEEN is useful in conjunction with WHERE clauses.

The syntax for BETWEEN is:

<attribute> BETWEEN <startValue> AND <endValue>

where <attribute> is the single-assign attribute whose value will be tested.

BETWEEN is inclusive, which means that it returns TRUE if the value of <attribute> is greater than or equal to
the value of <startValue> and less than or equal to the value of <endValue>.

With one exception, <attribute> must be of the same data type as <startValue> and <endValue> (supported
data types are integer, double, dateTime, duration, time, string, and Boolean). The exception is that you can
use a mix of integer and double, because the integer is promoted to a double.

Note that if any of the BETWEEN arguments (<attribute>, <startValue>, or <endValue>) are NaN (Not a
Number) values, then the expression evaluates to FALSE.

The following is a simple example of BETWEEN:

RETURN Results AS
SELECT SUM(AMOUNT_SOLD) AS SalesTotal
FROM SaleState
WHERE AMOUNT_SOLD BETWEEN 10 AND 100
GROUP BY CUST_STATE_PROVINCE

CASE
CASE expressions allow conditional processing in EQL, allowing you to make decisions at query time.

The syntax of the CASE expression, which conforms to the SQL standard, is:

CASE
WHEN <Boolean-expression> THEN <expression>
[WHEN <Boolean-expression> THEN <expression>]*
[ELSE expression]

END

Oracle® Big Data Discovery: EQL Reference

Expressions 78

CASE expressions must include at least one WHEN expression. The first WHEN expression with a TRUE
condition is the one selected. NULL is not TRUE. The optional ELSE clause, if it appears, must appear at the
end of the CASE statement and is equivalent to WHEN TRUE THEN. If no condition matches, the result is NULL
or the empty set, depending on the data type of the THEN expressions.

In this example, division by non-positive integers is avoided:

CASE
WHEN y < 0 THEN x / (0 - y)
WHEN y > 0 THEN x / y
ELSE 0

END

Version 1.1.3 • May 2016

In this example, records are categorized as Recent or Old:

RETURN Result AS
SELECT
CASE
WHEN (Days < 7) THEN 'Recent'
ELSE ‘Old’

END AS Age
...

The following example groups all records by class and computes the following:

• The minimum DealerPrice of all records in class H.

• The minimum ListPrice of all records in class M.

• The minimum StandardCost of all other records (called class L).

RETURN CaseExample AS
SELECT

CASE
WHEN Class = 'H' THEN MIN(DealerPrice)
WHEN Class = 'M' THEN MIN(ListPrice)
ELSE MIN(StandardCost)

END
AS value
FROM SaleState
GROUP BY Class

COALESCE
The COALESCE expression allows for user-specified NULL-handling. It is often used to fill in missing values in
dirty data.

It has a function-like syntax, but can take unlimited arguments, for example:

COALESCE(a, b, c, x, y, z)

You can use the COALESCE expression to evaluate records for multiple values and return the first non-NULL
value encountered, in the order specified. The following requirements apply:

• You can specify two or more arguments to COALESCE.

• Arguments that you specify to COALESCE must all be of the same type, with the exception integers with
doubles (in this case, integers are promoted to doubles).

• COALESCE does not support multi-assign attributes.

In the following example, all records without a specified price are treated as zero in the computation:

Oracle® Big Data Discovery: EQL Reference

Expressions 79

AVG(COALESCE(Price, 0))

Version 1.1.3 • May 2016

COALESCE can also be used without aggregation, for example:

SELECT COALESCE(Price, 0) AS price_or_zero WHERE ...

CORRELATION
CORRELATION computes the correlation coefficient between two numeric attributes for all rows within a group.

The syntax of the CORRELATION function is:

CORRELATION(<arg1>, <arg2>)

where each argument is an arbitrary expression or a single-assign numeric (integer or double) attribute.
Integer inputs are first promoted to doubles. Note that CORRELATION is symmetric (that is, the same result is
returned regardless of which attribute is specified first).

CORRELATION ignores rows in which either argument is NULL and computes the correlation coefficient of the
remaining rows. If all rows in the group are NULL, then CORRELATION returns NULL.

The resulting Pearson product-moment correlation coefficient will be a value between +1 and −1 inclusive,
where 1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation. Note that there are
cases where the output will be NaN (a common case is when there is only a single data point).

CORRELATION example

In this simple example, WineRating is a single-assign integer attribute while Price is a single-assign double
attribute:

RETURN results AS
SELECT
CORRELATION(WineRating, Price) AS corr

FROM WineState
GROUP

The result might be a value of 0.886357407416268.

HAS_REFINEMENTS
HAS_REFINEMENTS computes whether a particular attribute has non-implicit refinements in the current
navigation state.

The syntax of the HAS_REFINEMENTS function is:

HAS_REFINEMENTS(<attribute>)

where attribute is an Endeca attribute (of any data type) in a collection.

In particular, HAS_REFINEMENTS determines if a specific attribute has the same value for every record in a
group. If so, then the attribute should be able to return actual refinement values.

Return values
If attribute is an atomic (single-assign) type, the HAS_REFINEMENTS return behavior is:

• If attribute is NULL for all rows in the group, HAS_REFINEMENTS returns NULL.

Oracle® Big Data Discovery: EQL Reference

Expressions 80

• If attribute the same (non-NULL) value for all rows in the group, HAS_REFINEMENTS returns FALSE.

• Otherwise (attribute is a mix of values, possibly but not necessarily including NULLs), HAS_REFINEMENTS
returns TRUE.

If attribute is a set (multi-assign) type, the HAS_REFINEMENTS return behavior is:

• If attribute is the same set for all rows in the group, HAS_REFINEMENTS returns FALSE. This includes the
in which attribute is the empty set for all rows in the group.

• Otherwise, HAS_REFINEMENTS returns TRUE.

Note that although HAS_REFINEMENTS tells you if a particular attribute has non-implicit refinements, it does
not tell you what they actually are nor does it actually return the refinement values.

HAS_REFINEMENTS example
In this example, HAS_REFINEMENTS is used to determine whether the ACCT_FIRM attribute has available
refinements:

RETURN Result AS
SELECT
HAS_REFINEMENTS(ACCT_FIRM) AS Refs

FROM CorpData
GROUP

Version 1.1.3 • May 2016

In this case, the query returns true, which means that the attribute has available non-implicit refinements.

Treating empty sets like NULLs
If you want HAS_REFINEMENTS to treat empty sets like NULLs, then you can add a per-aggregate WHERE
clause to the HAS_REFINEMENTS aggregator, as in this example (x is a multi-assign attribute):

RETURN Result AS
SELECT
HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY) AS Refs

FROM CorpData
GROUP

With this syntax, the HAS_REFINEMENTS return behavior is:

• If x is the empty set for every row in the group, then HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY)
is NULL.

• If x is the same non-empty set value for every row in the group, then HAS_REFINEMENTS(x) WHERE (x
IS NOT EMPTY) is FALSE.

• Otherwise, x is a mix of different sets (possibly but not necessarily including the empty set), and
HAS_REFINEMENTS(x) WHERE (x IS NOT EMPTY) is TRUE.

For more information on per-aggregate WHERE clauses, see Per-aggregation filters on page 46.

IN
IN expressions perform a membership test.

IN expressions address use cases where you want to identify a set of interest, and then filter to records with
attributes that are in or out of that set. They are useful in conjunction with HAVING and PAGE expressions.

Oracle® Big Data Discovery: EQL Reference

Expressions 81

IN expressions are supported where the target statement is referring to a named state, with the rule that there
must be exactly one expression inside the square brackets, which is matched against the target state's
primary key. Note that the expression will be evaluated against the filtered record set of the state, not the
unfiltered one.

IN syntax

The syntax where the target is a statement is as follows:

[expr1, expr2, …] IN StatementName

Version 1.1.3 • May 2016

The syntax where the target is a state is as follows:

[expr] IN StatementName

The reason for this state syntax is that states, like the collections they filter, always have a single key attribute,
and thus IN expressions that refer to them must have exactly one expression inside the square brackets.

Note that sets are supported by IN expressions. If one of the named statement’s group keys is a set, then the
corresponding expression in the square brackets must be a set of the same type.

IN example

The example below helps answer the questions, "Which products do my highest value customers buy?" and
"What is my total spend with suppliers from which I purchase my highest spend commodities?"

DEFINE HighValueCust AS SELECT
SUM(SalesAmount) AS Value

FROM SaleState
GROUP BY CustId
HAVING Value>10000 ;

RETURN Top_HVC_Products AS SELECT
COUNT(1) AS NumSales

FROM SaleState
WHERE [CustId] IN HighValueCust
GROUP BY ProductName
ORDER BY NumSales DESC
PAGE(0,10)

PERCENTILE
PERCENTILE computes a specified percentile of the values of an attribute for all records in the group.

The syntax of the PERCENTILE function is:

PERCENTILE(<attribute>, <numeric_literal>)

where:

• attribute is a single-assign, numeric attribute. The EQL data type for the attribute must be either
mdex:long or mdex:double.

• numeric_literal is the percentile to compute. The value must range between 0 (greater than or equal to 0)
and 100 (less than or equal to 100). You can specify the value as an integer (such as 50) or a double
(such as 50.5). For example, 75 will compute the 75th percentile of an expression. Note that a percentile
of 50 is identical to the median.

Oracle® Big Data Discovery: EQL Reference

Expressions 82

Note that if the percentile falls between two values, then EQL computes a weighted average. As an example,
suppose there are only two values, 10 and 20. If you ask for the 20th percentile, then the result will be 12,
because 12 is 20% of the way from 10 to 20.

PERCENTILE ignores rows in which its first argument is NULL. If the first argument is NULL for all rows in a
group, PERCENTILE returns NULL for that group.

PERCENTILE examples

In both examples, SalesAmount is a single-assign double attribute.

This example returns the 90th percentile of the SalesAmount values within the group:

RETURN Results AS
SELECT PERCENTILE(SalesAmount, 90) AS x90
FROM SalesState
GROUP

Version 1.1.3 • May 2016

The result for this example might be:

x90

571.18

This example returns the 25th, 50th, and 75th percentiles of the SalesAmount values within the group:

RETURN Results AS
SELECT
PERCENTILE(SalesAmount, 25) AS x25,
PERCENTILE(SalesAmount, 50) AS x50,
PERCENTILE(SalesAmount, 75) AS x75

GROUP

The result for this example might be:

x25 x50 x75

| 180.225 | 236.5 | 445.675 |

RECORD_IN_FAST_SAMPLE
RECORD_IN_FAST_SAMPLE is a row function that returns a Boolean indicating whether the current record is in
the sample of the records in the named state.

The syntax of the RECORD_IN_FAST_SAMPLE function is:

RECORD_IN_FAST_SAMPLE(<double_literal>)

where double_literal specifies the size of the requested sample, expressed as a fraction of the total number of
records. The sample size must be between 0.0 and 1.0 (inclusive). For example, a value of 0.1 would return
approximately 10% of the records in the state.

RECORD_IN_FAST_SAMPLE is intended to be a fast and convenient function for reducing the size of data sent
from the Dgraph to Studio (for example, when generating approximate visualizations like heat maps).
However, the function does not compute a truly random sample. That is, it is not the case that each record in
the collection has the same probability of being chosen, and it is not the case that each subset of k records
has the same probability of being chosen as every other subset of k records.

Oracle® Big Data Discovery: EQL Reference

Expressions 83

Restrictions on function use
The restrictions for using the RECORD_IN_FAST_SAMPLE function are:

• It may appear only as a per-statement WHERE condition.

• It may not appear inside a CASE expression or as an argument to another function.

• It is allowed only in statements that are FROM a single state. EQL will signal an error if
RECORD_IN_FAST_SAMPLE occurs in a statement FROM another statement, FROM a view, or FROM a
JOIN or CROSS.

Any violation of these restrictions will result in an EQL checking error.

This simple example illustrates the use of the function with the WHERE clause:

RETURN Results AS
SELECT TotalSales AS Sales
FROM SalesState
WHERE RECORD_IN_FAST_SAMPLE(0.1)

Version 1.1.3 • May 2016

RECORD_IN_FAST_SAMPLE may be used with any of the Boolean operators, as in this similar query:

RETURN Results AS
SELECT TotalSales AS Sales
FROM SalesState
WHERE TotalSales IS NOT NULL AND RECORD_IN_FAST_SAMPLE(0.1)

Note on sampling and joins

Although you may not sample the results of a join (see the third restriction above), you may join the results of
sampling. However, be aware that you may not get the desired results. For example, consider this query:

DEFINE s1 AS
SELECT ...
FROM State1
WHERE RECORD_IN_FAST_SAMPLE(0.1);

DEFINE s2 AS
SELECT ...
FROM State2
WHERE RECORD_IN_FAST_SAMPLE(0.1);

RETURN s3 AS
SELECT ..
FROM s1 JOIN s2 ON (...)

The results of s1 and s2 contain roughly 10% of the records from State1 and State2, respectively. However, in
general, the results of s3 will contain far fewer than 10% of the records it would have had if the previous
statements had not been sampled.

Oracle® Big Data Discovery: EQL Reference

Chapter 5

Sets and Multi-assign Data

EQL supports sets, in particular the use of sets to represent multi-assign attributes.

About sets

Aggregate functions

Row functions

Set constructor

Quantifiers

Grouping by sets

About sets
EQL represents multi-assign attributes from collections as sets.

A set consists of a group of elements, typically derived from the values of a multi-assign attribute. EQL sets
are intended to behave like mathematical sets: the order of the elements within a set is not specified (and, in
general, not observable). An empty set is a set that contains no elements.

All elements in a set must be of the same data type. If the elements in the set come from two multi-assign
attributes (for example, by using the INTERSECTION row function), then those two multi-assign attributes must
be of the same data type. Sets may not contain duplicate values and sets may not contain other sets.

Sets are constructed in an EQL statement as follows:

• From a reference to a multi-assign attribute. For example, using SELECT with a multi-assign attribute will
return the vales of that attribute in a set.

• From a single-assign attribute, as an argument to the SET function.

• From an expression that results in a set. For example, using a UNION function will return a set that is a
union of two input sets. Note that these set expressions require at least one set on which to operate.

• From a set constructor.

All of these methods are described in this section.

Note that sets are not persistent from one EQL query to another.

Set data types

The data types for sets are:

• mdex:boolean-set for multi-assign Boolean attributes

• mdex:dateTime-set for multi-assign dateTime attributes

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Sets and Multi-assign Data 85

• mdex:double-set for multi-assign double attributes

• mdex:duration-set for multi-assign duration attributes

• mdex:geocode-set for multi-assign geocode attributes

• mdex:long-set for multi-assign 32-bit integer and 64-bit long attributes

• mdex:string-set for multi-assign string attributes

• mdex:time-set for multi-assign time attributes

Sets are strictly typed. All of the elements of a specific set must have the same data type. For example, this
set:

{3, 4.0, 'five'}

Version 1.1.3 • May 2016

is invalid because it contains an integer, a double, and a string.

Sets and NULL

Sets may not contain NULL values. In addition, sets may not be NULL, but they may be empty. These
requirements apply to both multi-assign collection attributes and other expressions of set type.

If a collection record has no assignments for a multi-assign attribute, then in an EQL query, that attribute's
value for that record is the empty set.

The results of an EQL statement (whether DEFINE or RETURN) may contain sets. This means, for instance,
that you can define an entity (view) that provides all of the values of a multi-assign attribute to queries that use
that entity.

Note that the IS NULL and IS NOT NULL operations are not supported on sets. Instead, use the IS_EMPTY
and IS_NOT_EMPTY functions to determine whether a set is empty. Likewise, the IS_EMPTY and
IS_NOT_EMPTY functions cannot be used on atomic values (such as on a single-assign attribute).

Set equality

Set equality is the same as mathematical set equality: two sets are equal if and only if they contain exactly the
same elements, no more, no less. The order of the elements in the set is immaterial. Two empty sets are
equal.

Set equality and inequality are defined only on two sets of the same type. For example, you cannot compare
an mdex:long-set and an mdex:geocode-set for equality; doing so will result in an EQL type error.

You can use the = (equal) and <> (not equal) operators to test for equality between sets. Note that the < (less
than) and > (greater than) operators are not defined for sets.

Sets, functions, and operators

This chapter documents the aggregation and row functions that are used with sets.

In addition, sets can be used with the following functions that work on both sets and single-assign attributes,
and are documented elsewhere in this guide:

• ARB on sets looks at all of the rows (both empty sets and non-empty sets) in the group and selects the set
value from one of the rows. For details on this function, see ARB on page 75.

• COUNT counts all non-NULL sets (that is, all the sets in the group, including the empty ones). For details,
see COUNT function on page 41.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 86

• COUNT_APPROX also counts all non-NULL sets. For details, see COUNT_APPROX on page 43.

• COUNTDISTINCT counts all of the sets, including the empty ones. For details, see COUNTDISTINCT
function on page 43.

• APPROXCOUNTDISTINCT also counts all of the sets, including the empty ones. For details, see
APPROXCOUNTDISTINCT function on page 44.

• HAS_REFINEMENTS whether a particular attribute has non-implicit refinements in the current navigation
state. For details, see HAS_REFINEMENTS on page 79.

As mentioned above, you can use the = (equal) and <> (not equal) operators to test for equality between sets.
The other operators (such as the * multiplication operator) cannot be used on sets.

Aggregate functions
EQL provides three aggregators for working with sets.

The set aggregate functions can be used only in SELECT clauses.

SET function

SET_INTERSECTIONS function

SET_UNIONS function

SET function
The SET aggregation function takes a single-assign attribute and constructs a set of all of the (non-NULL)
values from that attribute.

Single-assign attributes have non-set data types (such as mdex:long). So the SET function takes a non-set
data type attribute and produces a set data type result (for example, mdex:long-set).

The SET function's behavior is as follows:

• All NULL values are discarded. This means that if there are two non-NULL values for an attribute and one
NULL value, then only the two non-NULL values are returned.

• If an attribute has no non-NULL values, then the empty set is returned.

• Duplicate values in an attribute are discarded. For example, if three records all have a WineType=Red
assignment and two of them have Price=14.95 assignments (the third having Price=21.95), then only two
Price values (one 14.95 and one 21.95) will be returned for the Red set.

• String values are case-sensitive. Therefore, the string value "Merlot" is distinct from the string value
"merlot", which means that they are not duplicate values.

• The order of the values within a set is unspecified and unobservable.

The resulting set will have a set data type (such as mdex:double-set). All subsequent operations on it must
follow the rules for sets.

The SET function is available in one-argument and two-argument versions, as described below. This function
can be used only in SELECT clauses.

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Sets and Multi-assign Data 87

SET one-argument version
The syntax of the one-argument version of the SET function is:

SET(<single-assign_attribute>)

Version 1.1.3 • May 2016

where the data type of the attribute must be a non-set data type (such as mdex:double for a single-assign
double attribute).

In this example, Price is a single-assign double attribute:

RETURN results AS
SELECT
SET(Price) AS prices

FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType prices

Blanc de Noirs	{ 16.99 }
Bordeaux	{ 21.99 }
Brut	{ 22.99, 23.99 }
Chardonnay	{ 17.95, 34.95 }
Merlot	{ 25.99 }
Pinot Noir	{ 14.99 }
Red	{ 12.99, 13.95, 17.5, 18.99, 21.99, 9.99 }
White	{ 20.99, 32.99, 43.99 }
Zinfandel	{ }

In the results, note that Zinfandel has an empty set because Zinfandel does not have a Price attribute
assignment.

SET two-argument version
For situations where the result of the SET aggregator can be extremely large (causing the Dgraph to consume
excessive memory), a two-argument form of the aggregator is provided to limit the set size.

The syntax of the two-argument version of the SET function is:

SET(<single-assign_attribute>, <max-size>)

where:

• single-assign_attribute is an attribute whose data type is a non-set data type (such as mdex:string for a
single-assign string attribute).

• max-size is an integer that specifies the maximum size of the set. If max-size is less than the number of
elements in the set, The Dgraph arbitrarily chooses which elements to discard; this choice is stable across
multiple executions of the query. If max-size is 0 (zero) or a negative number, SET always returns the
empty set.

Note that max-size must be an integer literal:

SET(Price, 3) is valid.

SET(Price, x) is not valid, even if x is an integer.

This sample query is the same as the one-argument example, except that the query limits the sets to a
maximum of two elements:

RETURN results AS

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 88

SELECT
SET(Price, 2) AS prices

FROM WineState
GROUP BY WineType
ORDER BY WineType

Version 1.1.3 • May 2016

The result of this statement might be:

WineType prices

Blanc de Noirs	{ 16.99 }
Bordeaux	{ 21.99 }
Brut	{ 22.99, 23.99 }
Chardonnay	{ 17.95, 34.95 }
Merlot	{ 25.99 }
Pinot Noir	{ 14.99 }
Red	{ 12.99, 9.99 }
White	{ 20.99, 32.99 }
Zinfandel	{ }

In the results, note that Red set now has two elements, while it had six elements with the one-argument SET
version. Likewise with the White set, which previously had three elements.

Data type errors
When working with the SET function, keep in mind that its resulting sets are of the set data types, such as a
mdex:double-set data type.

For example, assume that Price is a multi-assign double attribute. This incorrect example:

RETURN results AS
SELECT SET(Price) AS prices
FROM WineState
GROUP BY WineType
HAVING prices > 10

will throw this error:

In statement "results": In HAVING clause: Cannot compare mdex:double-set and mdex:long

The reason for the error is that the "prices" set is of type mdex:double-set and it is being compared to the
number 10 (which is an mdex:double type).

The query should therefore be corrected to something like this:

RETURN results AS
SELECT SET(Price) AS prices
FROM WineState
GROUP BY WineType
HAVING SOME x IN prices SATISFIES (x > 10)

In this example, the SATISFIES expression allows you to make a numerical comparison.

SET_INTERSECTIONS function
The SET_INTERSECTIONS aggregation function takes a multi-assign attribute and constructs a set that is the
intersection of all of the values from that attribute.

The syntax of the SET_INTERSECTIONS function is:

SET_INTERSECTIONS(<multi-assign_attribute>)

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 89

where the data type of the attribute must be a set data type (such as mdex:string-set for a multi-assign
string attribute).

This function can be used only in SELECT clauses.

SET_INTERSECTIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_INTERSECTIONS(Body) AS bodyIntersection
FROM WineState
GROUP BY WineType
ORDER BY WineType

Version 1.1.3 • May 2016

The result of this statement might be:

WineType bodyIntersection

Bordeaux	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merlot	{ }
Pinot Noir	{ Supple }
Red	{ }
White	{ }
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

WineType bodyIntersection

Bordeaux Assigned on three records, with each record having two Body assignments of
"Silky" and "Tannins". Therefore, there is an intersection among the three records
and a two-element set is returned.

Brut Assigned on two records, with each record having one Body assignment of
"Robust". Therefore, there is an intersection between the two records and a one-
element set is returned.

Chardonnay Assigned on two records, but neither record has a Body assignment. Therefore,
there is no intersection between the two records (because there are no values to
compare) and the empty set is returned.

Merlot Assigned on two records, with one record having one Body assignment of "Fruity"
and the other record having no Body assignment. Therefore, there is no
intersection between the two records and the empty set is returned.

Pinot Noir Assigned on only one record, which has one Body assignment of "Supple".
Therefore, there is an intersection on that record.

Red Assigned on eight records, with six records having two Body assignments of "Silky"
and "Tannins", one record with two Body assignments of "Robust" and "Tannins",
and the eighth record with one Body assignment of "Robust". Therefore, there is
no intersection among the eight records and the empty set is returned.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 90

WineType bodyIntersection

White Assigned on four records, with the first record having two Body assignments of
"Fresh" and "Robust", the second record with two Body assignments of "Firm" and
"Robust", and the third and fourth records with no Body assignments. Therefore,
there is no intersection among the four records and the empty set is returned.

Zinfandel Assigned on only one record with two Body assignments of "Robust" and
"Tannins". Therefore, there is an intersection on that record and a two-element set
is returned.

SET_UNIONS function
The SET_UNIONS aggregation function takes a multi-assign attribute and constructs a set that is the union of
all of the values from that attribute.

The syntax of the SET_UNIONS function is:

SET_UNIONS(<multi-assign_attribute>)

Version 1.1.3 • May 2016

where the data type of the attribute must be a set data type (such as mdex:string-set for a multi-assign
string attribute).

This function can be used only in SELECT clauses.

SET_UNIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_UNIONS(Body) AS bodyUnion
FROM WineState
GROUP BY WineType
ORDER BY WineType

The result of this statement might be:

WineType bodyUnion

Bordeaux	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merlot	{ Fruity }
Pinot Noir	{ Supple }
Red	{ Robust, Silky, Tannins }
White	{ Firm, Fresh, Robust }
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

WineType bodyUnion

Bordeaux Assigned on three records, with each record having two Body assignments
of"Silky" and "Tannins". Therefore, the union returns a two-element set of the two
assignments.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 91

WineType bodyUnion

Brut Assigned on two records, with each record having one Body assignment of
"Robust". Therefore, the union returns a one-element set with "Robust".

Chardonnay Assigned on two records, but neither record has a Body assignment. Therefore,
the union is empty.

Merlot Assigned on two records, with one record having one Body assignment of "Fruity"
and the other record having no Body assignment. Therefore, there is a union of the
single assignment on the one record.

Pinot Noir Assigned on only one record, which has one Body assignment of "Supple".
Therefore, there is a union on that record.

Red Assigned on eight records, with six records having two Body assignments of "Silky"
and "Tannins", one record with two Body assignments of "Robust" and "Tannins",
and the eighth record with one Body assignment of "Robust". Therefore, the
resulting union produces a three-element set of the three distinct assignments.

White Assigned on four records, with the first record having two Body assignments of
"Fresh" and "Robust", the second record with two Body assignments of "Firm" and
"Robust", and the third and fourth records with no Body assignments. Therefore,
there is a union of the "Firm", "Fresh", and "Robust" assignments.

Zinfandel Assigned on only one record with two Body assignments of "Robust" and
"Tannins". Therefore, there is a union on that record.

Row functions
EQL provides a number of row functions for working with sets.

The set row functions can be used anywhere that an arbitrary expression can be used. For example, they can
be used in SELECT clauses, WHERE clauses, ORDER BY clauses, and so on.

ADD_ELEMENT function

CARDINALITY function

COUNTDISTINCTMEMBERS function

DIFFERENCE function

FOREACH function

INTERSECTION function

IS_EMPTY and IS_NOT_EMPTY functions

IS_MEMBER_OF function

SINGLETON function

SUBSET function

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Sets and Multi-assign Data 92

TRUNCATE_SET function

UNION function

ADD_ELEMENT function
The ADD_ELEMENT row function adds an element to a set.

ADD_ELEMENT takes an atomic value and a set and returns that set with the atomic value added to it. The
atomic value must be of the same data type as the current elements in the set. The atomic value is not added
to the set if a duplicate value is already in the set. Note that the atomic value is not added to the set in the
Dgraph, but only to the new, temporary set that is created by the ADD_ELEMENT function.

The syntax of the ADD_ELEMENT function is:

ADD_ELEMENT(<atomic-value>, <set>)

Version 1.1.3 • May 2016

where:

• atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string set. It can also be a
single-assign attribute. atomic-value will be added to set. The type of the atomic value must match the
type of the set's elements.

• set is a set to which atomic-value will be added. The elements of set must have the same set data type as
atomic-value. For example, if atomic-value is a single-assign double attribute, then the elements of set
must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

ADD_ELEMENT(1, { 2, 3 }) = { 1, 2, 3 }
ADD_ELEMENT(1, { 1, 2 }) = { 1, 2 }
ADD_ELEMENT(NULL, { 1, 2 }) = { 1, 2 }
ADD_ELEMENT(1, { 'a', 'b' }) yields a checking error because the atomic value and the set elements
are not of the same data type

ADD_ELEMENT example

In this example, the number 100 is added to the Score integer set (which currently does not have a value of
100 in it):

RETURN results AS
SELECT

WineID AS idRec,
ADD_ELEMENT(100, Score) AS addAttrs

FROM WineState
WHERE WineID BETWEEN 10 AND 14
ORDER BY idRec

The result of this statement might be:

addAttrs idRec

{ 100, 83, 85, 86 }	10
{ 100, 82, 83 }	11
{ 100, 81, 89 }	12
{ 100, 73, 75 }	13
{ 100, 72, 74, 75 }	14

The results show that the number 100 was added to the sets. For example, the Score set of Record 12
previously had 81 and 89 as its elements, but now has 81, 89, and 100 as the element values.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 93

CARDINALITY function
The CARDINALITY row function takes a set and returns the number of elements in that set.

The syntax of the CARDINALITY function is:

CARDINALITY(<set>)

Version 1.1.3 • May 2016

where set is a set of any set data type (such as mdex:string-set or mdex:long-set). For example, set
can be a multi-assign double attribute.

CARDINALITY example

In this example, Body is a multi-assign string attribute and WineID is the primary key of the records:

RETURN results AS
SELECT

WineID AS id,
CARDINALITY(Body) AS numBody

FROM WineState
WHERE WineID < 7
ORDER BY id

The result of this statement might be:

id numBody

1	0
2	0
3	2
4	2
5	4
6	1

The numBody column shows the number of elements in the Body set for each record.

COUNTDISTINCTMEMBERS function
The COUNTDISTINCTMEMBERS function counts the number of elements in a set that has the union of all its
values.

COUNTDISTINCTMEMBERS is functionally equivalent to this statement:

CARDINALITY(SET_UNIONS(multi-assign-attribute))

That is, COUNTDISTINCTMEMBERS first constructs a set that is the union of all the values from a multi-assign
attribute and then returns the number of elements in that set.

COUNTDISTINCTMEMBERS syntax
The syntax of the COUNTDISTINCTMEMBERS function is:

COUNTDISTINCTMEMBERS(<multi-assign-attribute>)

where multi-assign-attribute is a multi-assign attribute.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 94

COUNTDISTINCTMEMBERS example

Assume the following nine records that are of WineType=Red (where WineType is a single-assign attribute).
Each record includes one or two assignments for the multi-assign Body attribute:

Body WineID

{ Silky, Tannins } 3
{ Robust, Tannins } 4
{ Silky, Tannins } 5
{ Robust } 6
{ Robust } 8
{ Silky, Tannins } 9
{ Silky, Tannins } 12
{ Silky, Tannins } 16
{ Silky, Tannins } 18

Version 1.1.3 • May 2016

The following statement returns the number of different values for the Body attribute in the WineType=Red
records:

RETURN Result AS
SELECT COUNTDISTINCTMEMBERS(Body) AS Total
FROM WineState
WHERE WineType = 'Red'
GROUP BY WineType

The statement result is:

Total=3, WineType=Red

For this group, the value of Total is 3 because there are three non-empty sets with unique values for the Body
attribute:

• One set for Records 3, 5, 9, 12, 16, and 18, each of which has the "Silky" and "Tannins" assignments for
Body.

• One set for Records 6 and 8, each of which has the "Robust" assignment for Body.

• One set for Record 4, which has the "Robust" and "Tannins" assignments for Body.

Thus, there are three sets of distinct values for the Body attribute, when grouped by the WineType attribute.

DIFFERENCE function
The DIFFERENCE row function takes two sets of the same data type and returns a set containing all of the
elements of the first set that do not appear in the second set.

The syntax of the DIFFERENCE function is:

DIFFERENCE(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can be a multi-assign
string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

Examples of some results are as follows ({ } indicates an empty set):

DIFFERENCE({ 1, 2, 3, 4, 5 }, { 1, 3, 5 }) = { 2, 4 }
DIFFERENCE({ }, { 1, 3, 5 }) = { }

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 95

DIFFERENCE({ 1, 2, 3 }, { }) = { 1, 2, 3 }
DIFFERENCE({ 1, 2 }, { 'a', 'b' }) yields a checking error because the two sets are not of the same
data type

Version 1.1.3 • May 2016

DIFFERENCE example

In the examples below, both Body and Flavors are multi-assign string attributes. Their values for five records
are:

Record 5: Body=Earthy, Silky, Tannins
Flavors=Blackberry, Earthy, Toast

Record 6: Body=Robust
Flavors=Berry, Plum, Zesty

Record 7: Body=Silky, Tannins
Flavors=Cherry, Pepper, Prune

Record 8: Body=Oak, Robust
Flavors=Cherry, Oak, Raspberry

Record 9: Body=Fruit, Strawberry, Silky, Tannins
Flavors=Fruit, Earthy, Strawberry

First, we want all the elements of the Body set that do not appear in the Flavors set:

RETURN results AS
SELECT

WineID AS idRec,
DIFFERENCE(Body, Flavors) AS diffAttrs

FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

diffAttrs idRec

{ Silky, Tannins }	5
{ Robust }	6
{ Silky, Tannins }	7
{ Robust }	8
{ Silky, Tannins }	9

Records 5, 7, and 9 have "Silky" and "Tannins" in the Body set, but these values do not appear in the Flavors
set. Likewise, Records 6 and 8 have "Robust" in the Body set, but that value does not appear in the Flavors
set.

We then reverse the difference comparison between the two sets. The statement is identical to the first
example, except that Flavors is the first argument rather than Body:

RETURN results AS
SELECT

WineID AS idRec,
DIFFERENCE(Flavors, Body) AS diffAttrs

FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

This time, the result of this statement will look different:

diffAttrs idRec

{ Blackberry, Toast }	5
{ Berry, Plum, Zesty }	6
{ Cherry, Pepper, Prune }	7
{ Cherry, Raspberry }	8
{ Earthy }	9

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 96

Version 1.1.3 • May 2016

To take Record 9 as an example of the output, "Earthy" is the only element from the first set (the Flavors set)
that does not appear in the second set (the Body set).

FOREACH function
The FOREACH function performs a computation on every member of a set or sets and assembles the results
into a set.

FOREACH may be used in any context within an EQL statement that accepts expressions: LET, SELECT, row
function or aggregator arguments, WHERE, HAVING, or ORDER BY. Because FOREACH always evaluates to a
set, the context must accept set-typed expressions, or EQL will signal a checking error.

Syntax
The syntax of the FOREACH function is:

FOREACH id_1 IN set_1[, id_n IN set_n] RETURN(expression)

where:

• id is an arbitrary identifier for the item to be computed. The identifier must use the NCName format.

• set is a set of any set data type.

• expression is an EQL expression. The expression must be enclosed within parentheses and the
RETURN keyword is required. The function must have only one RETURN regardless of the number of id
parameters are used.

At a minimum, you must specify one identifier/set pair (id IN set) and the RETURN expression.

Scope and Shadowing
FOREACH binds the id_1 through id_n identifiers within the RETURN expression; they are not in scope in the
universes set_1 through set_n. These bindings shadow any other bindings for id_1 through id_n that may be
in scope at the point of the FOREACH function.

As with the EVERY and SOME quantifiers, EQL does not allow references to these bound variables to be
qualified with data-source aliases. For example, in this statement:

RETURN results AS
SELECT
Source.x AS x,
FOREACH x IN {1, 2}, y in {3, 4} RETURN (results.x + Source.y) AS vals

FROM Source

EQL interprets the reference to results.x (in the FOREACH RETURN expression) as a reference to the x defined
by the SELECT clause (that is, as an alias for Source.x and not as a reference to the x bound by FOREACH).
Similarly, EQL interprets the reference Source.y as a reference to the attribute y in Source.

However, if you drop the statement qualifiers, as in the following:

RETURN results AS
SELECT
Source.x AS x,
FOREACH x IN {1, 2}, y in {3, 4} RETURN (x + y) AS vals

FROM Source

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 97

then EQL interprets x and y (in the FOREACH RETURN expression) as references to the FOREACH-bound
identifiers, even though x and y are already in scope from the earlier SELECT and from the data source.
Therefore, vals always has the value {4, 5, 6}.

Types
In the FOREACH syntax, set_1 through set_n must be a set data type (such as mdex:string-set); EQL
signals an error otherwise. The corresponding x_1 through x_n identifiers must have the type of the elements
of these sets. To illustrate, consider this example:

FOREACH x IN {1, 2}, y IN {'abc', 'def'} RETURN (x + y)

Version 1.1.3 • May 2016

Here, the first universe is a set of integers, and thus x has type integer within the RETURN expression.
Similarly, the second universe is a set of strings, so y has type string. As a result, the RETURN expression x +
y is thus ill-typed (and EQL signals an error accordingly).

If the RETURN expression has atomic type t, then the entire FOREACH expression has type "set of t".
Therefore, if the RETURN expression has type integer, then the containing FOREACH expression has type
integer set.

If, on the other hand, the RETURN expression has a set type, then the FOREACH expression has the same type
as the RETURN expression. (This corresponds to the case where FOREACH takes the union of the values of the
RETURN expression.) So, if the RETURN expression produces a set of string, then the FOREACH expression
does also.

FOREACH and aggregation
FOREACH expressions may appear in both pre-grouping and post-grouping computation (including WHERE,
HAVING, and ORDER BY clauses). They interact with aggregations in much the same way that quantifier
expressions (EVERY and SOME) do:

• FOREACH expressions can appear inside aggregator arguments:

RETURN results AS
SELECT
SET_UNIONS(FOREACH x IN e RETURN(b)) AS unions

FROM Source
GROUP

• An aggregator must not appear between a FOREACH and its bound variable. That is, the following is
invalid, and EQL signals an error accordingly:

FOREACH x IN e RETURN(SUM(x))

Operational details
To explain how FOREACH works, we start with a simple example:

FOREACH x IN {1, 2, 3} RETURN(x * 2 + 1)

This expression evaluates to the set {3, 5, 7}. This is because, notionally, EQL evaluates the RETURN
expression x * 2 + 1 once for each member of the set {1, 2, 3}, with x taking on each element of that set in
turn. Finally, EQL assembles the results of these evaluations into another set.

Because the universe and result are both sets, you cannot specify the order in which the traversal visits the
elements of the universe, or the order in which the result values appear in the final set.

You can also use FOREACH to iterate over multiple sets:

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 98

FOREACH x IN {1, 2, 3}, y IN {40, 50, 60} RETURN(x + y)

Version 1.1.3 • May 2016

This expression evaluates to the set {41, 42, 43, 51, 52, 53, 61, 62, 63}. Here, EQL evaluates the RETURN
expression x + y for all possible combinations of values x and y from the two sets:

x = 1, y = 40: x + y = 41
x = 2, y = 40: x + y = 42
x = 3, y = 40: x + y = 43
x = 1, y = 50: x + y = 51
...
x = 3, y = 60: x + y = 63

Because sets cannot contain duplicate values or NULLs, the result of a FOREACH expression may be smaller
than the universe (or the cross product of the universes), as illustrated by these two examples:

FOREACH x IN {-1, 1, 2} RETURN (ABS(x)) // returns {1, 2}
FOREACH x IN {'3', '4', 'y'} RETURN (TO_STRING(x)) // returns {3, 4}

In the first example, ABS(-1) = ABS(1) = 1, so the final set contains only two elements; the value 1 may not
appear twice. In the second example, TO_INTEGER('x') is NULL, so this value does not appear in the final
set.

If the RETURN expression itself produces a set (rather than a single value), then FOREACH evaluates as
described above, but computes the union of all of the RETURN sets as the final result. For example:

FOREACH x in {3, 4, 5}, y IN {-1, 0, 2} RETURN ({x + y, x - y})

evaluates to the set {1, 2, 3, 4, 5, 6, 7}, as follows:

// Note: "body" is the RETURN expression
| x | y | body |

3	-1	{2,4}
3	0	{3}
3	2	{1,5}
4	-1	{3,5}
4	0	{4}
4	2	{2,6}
5	-1	{4,6}
5	0	{5}
5	2	{3,7}

Computing the union of all of the sets in the "body" column produces the final result.

An important corollary of the above description is that if any of the universe sets are empty, then the result set
is itself empty. For example, given two multi-assign attributes whose assigned values are:

| xs | ys |

{1,2}	{3}
{}	{4,5}
{6}	{}

then the statement:

RETURN results AS
SELECT
xs,
ys,
FOREACH x IN xs, y IN ys RETURN (x + y) AS zs

FROM InputState

produces the following results:

| xs | ys | zs |

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 99

{1,2}	{3}	{4,5}
{}	{4,5}	{}
{6}	{}	{}

Version 1.1.3 • May 2016

FOREACH Examples
Example 1: This is one of the simplest examples of a FOREACH expression, as only one multi-assign integer
attribute (Score) is used and the RETURN expression just returns the values of each Score set:

RETURN Results AS
SELECT

WineID AS id,
FOREACH x IN Score RETURN(x) AS ratings

FROM WineState
ORDER BY id

Example 2: This example uses two multi-assign string attributes (Body and Flavors) and concatenates the
members of the sets:

RETURN Results AS
SELECT

WineID AS id,
FOREACH x IN Body, y IN Flavors RETURN (CONCAT(x, ' ', y)) AS bodyflavor

FROM WineState
WHERE IS_NOT_EMPTY(Body) AND IS_NOT_EMPTY(Flavors)
ORDER BY id

Note that the WHERE clause uses two IS_NOT_EMPTY functions to prevent empty sets being selected.

Example 3: This example uses both LET and FOREACH, and also uses the EXTRACT function in the RETURN
expression:

RETURN Results AS
LET

(FOREACH d IN ShipDate RETURN (EXTRACT(d, YEAR))) AS yearSet
SELECT

SET(Price) AS prices
FROM WineState
GROUP BY MEMBERS(yearSet) AS shipyear

In the example, ShipDate is a multi-assign dateTime attribute. The attribute d is visible only within the
RETURN expression, and it shadows any other attribute by the same name within that expression. Note that,
because yearSet is defined in a LET clause rather than a SELECT clause, it will not appear in the statement's
results.

INTERSECTION function
The INTERSECTION row function takes two sets of the same data type and returns a set that is the
intersection of both input sets.

The syntax of the INTERSECTION function is:

INTERSECTION(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can be a multi-assign
string attribute.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 100

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

If an attempt is made to intersect two sets of different set data types, an error message is returned similar to
this example:

The function "INTERSECTION" is defined for the argument type(s) mdex:string-set, mdex:double-set

Version 1.1.3 • May 2016

In this error case, INTERSECTION was used with a multi-assign string attribute (mdex:string-set) and a
multi-assign double attribute (mdex:double-set) as inputs.

INTERSECTION example

In this example, both Body and Flavors are multi-assign string attributes and WineID is the primary key of the
records:

RETURN results AS
SELECT

WineID AS idRec,
INTERSECTION(Body, Flavors) AS intersectAttrs

FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

idRec intersectAttrs

5	{ Earthy }
6	{ }
7	{ }
8	{ Oak }
9	{ Fruit, Strawberry }

Records 5 and 8 have one-element result sets because there is one intersection between their Body and
Flavors assignments, while Record 9 has a two-element intersection. Records 6 and 7 return empty sets
because there is no intersection among their Body and Flavors assignments.

IS_EMPTY and IS_NOT_EMPTY functions
The IS_EMPTY and IS_NOT_EMPTY functions determine whether a set is or is not empty. The IS EMPTY and
IS NOT EMPTY functions provide alternative syntaxes for these functions.

Note: The IS NULL and IS NOT NULL operations are not supported on sets.

Sample data for the examples

The sample data used to illustrate these functions consists of a Body multi-assign string attribute and five
records:

Rec ID Body attribute

16	{ Silky, Tannins }
17	{ }
18	{ Silky, Tannins }
19	{ Fresh, Robust }
20	{ }
21	{ }

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 101

| 22 | { Firm, Robust } |

Version 1.1.3 • May 2016

Three of the records have no Body assignment (and therefore are empty sets), while the other three records
have two Body assignments.

Note that these functions are used in WHERE clauses in the examples. However, they can be used anywhere
that an arbitrary expression can be used, such as in SELECT and HAVING clauses.

IS_EMPTY function
The IS_EMPTY function takes a set and returns TRUE if that set is empty. The syntax of the IS_EMPTY
function is:

IS_EMPTY(<set>)

where set is a set of any set data type (such as mdex:string-set or mdex:long-set). For example, set
can be a multi-assign double attribute.

Examples of two results are as follows (note that { } indicates an empty set):

IS_EMPTY({ }) = TRUE
IS_EMPTY({ 1 }) = FALSE

In this example, the Body attribute is checked for emptiness:

RETURN results AS
SELECT

WineID AS idRec,
Body AS bodyAttr

FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (IS_EMPTY(Body))
ORDER BY idRec

The result of this statement would be:

idRec

| 17 |
| 20 |
21

In the result, only Records 17, 20, and 21 are returned because they have an empty Body set.

IS EMPTY function
The IS EMPTY function provides an alternative syntax to IS_EMPTY and also returns TRUE if that set is empty.

The syntax of the IS EMPTY function is:

<set> IS EMPTY

where set is a set of any set data type, such as a multi-assign double attribute.

The previous IS_EMPTY example can be re-written as follows:

RETURN results AS
SELECT

WineID AS idRec,
Body AS bodyAttr

FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (Body IS EMPTY)
ORDER BY idRec

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 102

The results of this example would the same as the previous IS_EMPTY example.

IS_NOT_EMPTY function
The IS_NOT_EMPTY function takes a set and returns TRUE if that set is not empty. The syntax of the
IS_NOT_EMPTY function is:

IS_NOT_EMPTY(<set>)

Version 1.1.3 • May 2016

where set is a set of any set data type. For example, set can be a multi-assign geocode attribute.

Examples of two results are as follows ({ } indicates an empty set):

IS_NOT_EMPTY({ }) = FALSE
IS_NOT_EMPTY({ 1 }) = TRUE

In this example, the Body attribute is checked for non-emptiness:

RETURN results AS
SELECT

WineID AS idRec,
Body AS bodyAttr

FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (IS_NOT_EMPTY(Body))
ORDER BY idRec

The result of this statement might be:

bodyAttr idRec

{ Silky, Tannins }	16
{ Silky, Tannins }	18
{ Fresh, Robust }	19
{ Firm, Robust }	22

In the result, Records 16, 18, 19, and 22 are returned because they have non-empty Body sets. However,
Records 17, 20, and 21 are not returned because there is no Body assignment for those records (and
therefore those sets would be empty).

IS NOT EMPTY function
The IS NOT EMPTY function provides an alternative syntax to IS_NOT_EMPTY and also returns TRUE if that
set is not empty.

The syntax of the IS NOT EMPTY function is:

<set> IS NOT EMPTY

where set is a set of any set data type, such as a multi-assign string attribute.

The previous IS_NOT_EMPTY example can be re-written as follows:

RETURN results AS
SELECT

WineID AS idRec,
Body AS bodyAttr

FROM WineState
WHERE (WineID BETWEEN 16 AND 22) AND (Body IS NOT EMPTY)
ORDER BY idRec

The results of this example would the same as the previous IS_NOT_EMPTY example.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 103

IS_MEMBER_OF function
The IS_MEMBER_OF row function takes an atomic value and a set, and returns a Boolean indicating whether
the atomic value occurs in the set.

The syntax of the IS_MEMBER_OF function is:

IS_MEMBER_OF(<atomic-value>, <set>)

Version 1.1.3 • May 2016

where:

• atomic-value is an atomic value, such as 50 (for an integer set) or 'test' (for a string set). It can also be a
single-assign attribute. atomic-value will be checked to see whether it occurs in set. The type of the atomic
value must match the type of the set's elements.

• set is a set in which its elements have the same set data type as atomic-value. For example, if atomic-
value is a single-assign string attribute, then the elements of set must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

IS_MEMBER_OF(1, { }) = FALSE
IS_MEMBER_OF(1, { 1, 2, 3 }) = TRUE
IS_MEMBER_OF(1, { 2, 3, 4 }) = FALSE
IS_MEMBER_OF(NULL, { }) = NULL
IS_MEMBER_OF(NULL, { 1, 2, 3 }) = NULL
IS_MEMBER_OF(1, { 'a', 'b', 'c' }) yields a checking error because the atomic value and the set
elements are not of the same data type

The IS_MEMBER_OF function is intended as a membership check function.

IS_MEMBER_OF examples

Example 1: In this example, the statement determines whether the number 82 (which is an integer) occurs in
the Score set (which has integer elements):

RETURN results AS
SELECT

WineID AS idRec,
IS_MEMBER_OF(82, Score) AS memberAttrs

FROM WineState
WHERE WineID BETWEEN 22 AND 25
ORDER BY idRec

The result of this statement might be:

idRec memberAttrs

22	false
23	true
24	false
25	true

The results show that the number 82 occurs in the Score set of Records 23 and 25, but not in Records 22 and
24.

Example 2: This example is similar to Example 1, except that it uses the Ranking single-assign integer
attribute as the first argument to the IS_MEMBER_OF function and the Score set (which has integer elements)
as the second argument:

RETURN results AS
SELECT

WineID AS idRec,
IS_MEMBER_OF(Ranking, Score) AS memberAttrs

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 104

FROM WineState
ORDER BY idRec

Version 1.1.3 • May 2016

Example 3: This example is similar to Example 2, except that it uses the IS_MEMBER_OF function in a WHERE
clause:

RETURN results AS
SELECT

WineID AS idRec,
Price AS prices

FROM WineState
WHERE IS_MEMBER_OF(Ranking, Score) AND Price IS NOT NULL
ORDER BY idRec

Using the IN expression
You can use the IN expression as an alternative to the IS_MEMBER_OF function for membership tests. To
illustrate this, Example 3 can be re-written as:

RETURN results AS
SELECT

WineID AS idRec,
Price AS prices

FROM WineState
WHERE Ranking IN Score AND Price IS NOT NULL
ORDER BY idRec

For details on the IN expression, see IN on page 80.

SINGLETON function
The SINGLETON function takes a single atomic value and returns a set containing only that value.

The syntax of the SINGLETON function is:

SINGLETON(<atomic-value>)

where atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string set. It can also be a
single-assign attribute. The resulting set will contain only atomic-value.

Examples of some results are as follows ({ } indicates an empty set):

SINGLETON(NULL) = { }
SINGLETON(1) = { 1 }
SINGLETON('a') = { 'a' }

SINGLETON example

In this example, WineType is a single-assign string attribute and WineID is the primary key of the records:

RETURN results AS
SELECT

WineID AS idRec,
SINGLETON(WineType) AS singleAttr

FROM WineState
WHERE WineID BETWEEN 10 AND 14
ORDER BY idRec

The result of this statement might be:

idRec singleAttr

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 105

10	{ Bordeaux }
11	{ Zinfandel }
12	{ Red }
13	{ Bordeaux }
14	{ Merlot }

Version 1.1.3 • May 2016

SUBSET function
The SUBSET row function takes two sets of the same data type and returns a Boolean true if (and only if) the
second set is a subset of the first set.

The syntax of the SUBSET function is:

SUBSET(<set1>, <set2>)

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can be a multi-assign
string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute). set2 will be checked to
see if it is completely contained within set1.

For example, assuming this statement:

SUBSET(A, B)

then the SUBSET result is true if (and only if) B is a subset of A.

Other examples of some results are as follows ({ } indicates an empty set):

SUBSET({ }, { }) = TRUE
SUBSET({ 1, 2, 3 }, { }) = TRUE
SUBSET({ 1, 2 }, { 1, 2 }) = TRUE
SUBSET({ 1, 2, 3 }, { 1, 2 }) = TRUE
SUBSET({ 1, 3, 5 }, { 1, 2 }) = FALSE
SUBSET({ 1, 2 }, { 'x', 'y', 'z' }) yields a checking error because the two sets are not of the same
data type

Note that the empty set is always a subset of every other set (including the empty set).

SUBSET example

In this example, both Flavors and Body are multi-assign string attributes, and WineID is the primary key of the
records:

RETURN results AS
SELECT

WineID AS id,
SUBSET(Body, Flavors) AS subAttrs

FROM WineState
WHERE WineID < 5
ORDER BY id

The result of this statement might be:

id subAttrs

1	true
2	true
3	false
4	false

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 106

Version 1.1.3 • May 2016

The results show that the Flavors set is a subset of the Body set in Records 1 and 2, but not in Records 3 and
4.

TRUNCATE_SET function
The TRUNCATE_SET row function takes a set and an integer, and returns a copy of the set with no more than
the specified number of elements in it.

The syntax of the TRUNCATE_SET function is:

TRUNCATE_SET(<set>, <max-size>)

where:

• set is a set of any set data type (such as mdex:string-set or mdex:long-set). For example, set can
be a multi-assign string attribute.

• max-size is an integer that specifies the maximum size of the truncated set. If max-size is less than the
number of elements in the set, the Dgraph arbitrarily chooses which elements to discard; this choice is
stable across multiple executions of the query. If max-size is 0 (zero) or a negative number, the empty set
is returned.

Examples of some results are as follows ({ } indicates an empty set):

TRUNCATE_SET({ }, 2) = { }
TRUNCATE_SET({ 'a', 'b' }, 2) = { 'a', 'b' }
TRUNCATE_SET({ 'a', 'b', 'c' }, 2) = { 'b', 'c' }
TRUNCATE_SET({ 1, 2 }, 20) = { 1, 2 }
TRUNCATE_SET({ 1, 2 }, -3) = { }

TRUNCATE_SET is useful when you want to ensure that final results of a set are of a reasonable and
manageable size for your front-end UI.

TRUNCATE_SET example

In this example, Flavors is a multi-assign string attribute and WineID is the primary key of the records:

RETURN results AS
SELECT

WineID AS id,
Flavors AS fullFlavors,
TRUNCATE_SET(fullFlavors, 1) AS truncFlavors

FROM WineState
WHERE WineID BETWEEN 15 AND 19
ORDER BY id

The result of this statement might be:

fullFlavors id truncFlavors

{ Blackberry, Oaky, Strawberry }	15	{ Blackberry }
{ Currant, Licorice, Tobacco }	16	{ Licorice }
{ Cedar, Cherry, Spice }	17	{ Cherry }
{ Black Cherry, Cedar, Fruit }	18	{ Black Cherry }
{ Herbal, Strawberry, Vanilla }	19	{ Herbal }

The fullFlavors set shows the full set of Flavors assignments on each of the five chosen records. The
fullFlavors set is then truncated to a one-element set.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 107

UNION function
The UNION row function takes two sets of the same data type and returns a set that is the union of both input
sets.

The syntax of the UNION function is:

UNION(<set1>, <set2>)

Version 1.1.3 • May 2016

where:

• set1 is a set of any set data type (such as mdex:string-set). For example, set1 can be a multi-assign
string attribute.

• set2 is a set of the same set data type as set1. For example, if set1 is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

If an attempt is made to union two sets of different set data types, an error message is returned similar to this
example:

The function "UNION" is not defined for the argument type(s) mdex:string-set, mdex:double-set

In this error case, UNION was used with a multi-assign string attribute (mdex:string-set) and a multi-
assign double attribute (mdex:double-set) as inputs.

UNION example

In this example, both Body and Flavors are multi-assign string attributes and WineID is the primary key of the
records:

RETURN results AS
SELECT

WineID AS idRec,
UNION(Body, Flavors) AS unionAttrs

FROM WineState
WHERE WineID BETWEEN 5 AND 9
ORDER BY idRec

The result of this statement might be:

idRec unionAttrs

5	{ Blackberry, Earthy, Silky, Tannins, Toast }
6	{ Berry, Plum, Robust, Zesty }
7	{ Cherry, Pepper, Prune, Silky, Tannins }
8	{ Cherry, Oak, Raspberry, Robust }
9	{ Earthy, Fruit, Strawberry, Silky, Tannins }

To take one set as an example, Record 5 has "Silky" and "Tannins" for its two Body assignments and
"Blackberry", "Earthy", and "Toast" for its three Flavors assignments. The resulting set is a union of all five
attribute values.

Set constructor
EQL allows users to write sets directly in queries.

The syntax of the set constructor is:

{<expr1> [,<expr2>]*}

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 108

where the curly braces enclose a comma-separated list of one or more expressions.

For example, this is an integer set:

{ 1, 4, 7, 10 }

Version 1.1.3 • May 2016

while this is a string set:

{ 'Red', 'White', 'Merlot', 'Chardonnay' }

Keep the following in mind when using set constructors:

• Set constructors may appear anywhere in a query where an expression is legal. (Because set
constructors have a set type, you will get an EQL checking error if you use a set constructor in a context
that expects an atomic value.)

• The individual elements of the set constructor may be arbitrary expressions, as long as they have the
correct type. For instance, you may write the following as long as x, y, and z are integers:

{ x, y + z, 3 }

• All of the expressions within the curly braces must have the same type. For example, you cannot mix
integers and strings.

• Empty set constructors are not allowed; there must be at least one expression within the curly braces.

Note that EQL promotes integers to doubles in a set constructor as needed. Therefore, writing {1, 2} results
in an mdex:long-set type while {1, 2.5} results in an mdex:double-set type.

Set constructor examples
In this first example, the SELECT clause constructs a string-type set (named selectWines) that contains 'Red'
and 'White' as its two elements. The selectWines set is then used in a HAVING clause to limit the returned
records to those have WineType assignments of either 'Red' or 'White'.

RETURN results AS
SELECT

{'Red', 'White'} AS selectWines,
WineID AS idRec,
WineType AS wines,
Body AS bodyAttr

FROM WineState
HAVING wines IN selectWines
ORDER BY idRec

This second example is similar to the first example, except that the set is used in a WHERE clause:

RETURN results AS
SELECT

WineID AS idRec,
WineType AS wines,
Body AS bodyAttr

FROM WineState
WHERE WineType IN {'Red', 'White'}
ORDER BY idRec

Both queries would return only records with a WineType of 'Red' or 'White'.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 109

Quantifiers
EQL provides existential and universal quantifiers for use with Boolean expressions against sets.

Both types of expressions can appear in any context that accepts a Boolean expression, such as SELECT
clauses, WHERE clauses, HAVING clauses, ORDER BY clauses, join conditions, and so on.

Existential quantifier
An existential quantifier uses the SOME keyword. In an existential quantifier, if any item in the set has a match
based on the comparison operator that is used, the returned value is TRUE.

The syntax of the existential quantifier is:

SOME id IN set SATISFIES (booleanExpr)

Version 1.1.3 • May 2016

where:

• id is an arbitrary identifier for the item to be compared. The identifier must use the NCName format.

• set is a set of any set data type.

• booleanExpr is any expression that produces a Boolean (or NULL).

The expression binds the identifier id within booleanExpr. This binding shadows any other attributes with the
same name inside the predicate. Note that this shadowing applies only to references to identifiers/attributes
that do not have a statement qualifier.

To evaluate an existential quantifier expression, EQL evaluates the predicate expression for every member of
the indicated set. Then, EQL computes the results of the quantifier based on these predicate values as
follows:

1. If set is empty, the quantifier is FALSE.

2. Otherwise, if booleanExpr is true for least one element of set, the quantifier is TRUE.

3. Otherwise, if booleanExpr is false for every id element of set, the quantifier is FALSE.

4. Otherwise (the values of booleanExpr are either false or NULL, with at least one NULL), the quantifier is
NULL.

Some results of this evaluation are:

• SOME x IN { } SATISFIES (x > 0) is FALSE.

• SOME x IN { -3, -2, 1 } SATISFIES (x > 0) is TRUE, because the predicate expression is true for x = 1.

• SOME x IN { 5, 7, 10 } SATISFIES (x > 0) is TRUE, because the predicate is true for x = 5.

• SOME x IN { 'foo', '3', '4' } SATISFIES (TO_INTEGER(x) > 0) is TRUE, because the predicate is true for x =
'3'.

• SOME x IN { 'foo', '-1', '-2' } SATISFIES (TO_INTEGER(x) > 0) is NULL. The predicate is false for x = '-1'
and x = '-2', but NULL for x = 'foo'.

In this existential quantifier example, Body is a multi-assign string attribute (one of whose assignments on
several records is 'Robust'):

RETURN results AS
SELECT

WineID AS idRec,
WineType AS wines,
Body AS bodyAttr

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 110

FROM WineState
WHERE SOME x IN Body SATISFIES (x = 'Robust')
ORDER BY idRec

Version 1.1.3 • May 2016

The result of this statement would be:

bodyAttr idRec wines

{ Robust, Tannins }	4	Red
{ Robust }	6	Red
{ Oak, Robust	8	Red
{ Robust, Tannins }	11	Zinfandel
{ Fresh, Robust }	19	White
{ Firm, Robust }	22	Blanc de Noirs
{ Robust }	23	Brut
{ Robust }	24	Brut
{ Firm, Robust }	25	White

Only the nine records that have the Body='Robust' assignment are returned.

Universal quantifier
A universal quantifier uses the EVERY keyword. In a universal quantifier, if every item in the set has a match
based on the comparison operator that is used, the returned value is TRUE.

The syntax of the universal quantifier is:

EVERY id IN set SATISFIES (booleanExpr)

where id, set, and booleanExpr have the same meanings as in the existential quantifier.

The expression binds the identifier id within booleanExpr. This binding shadows any other attributes with the
same name inside the predicate. Note that this shadowing applies only to references to identifiers/attributes
that do not have a statement qualifier.

Similar to an existential quantifier expression, for a universal quantifier expression EQL evaluates the
predicate expression for every member of the indicated set. Then, EQL computes the results of the quantifier
based on these predicate values as follows:

1. If set is empty, the quantifier is TRUE.

2. Otherwise, if booleanExpr is false for at least one element of set, the quantifier is FALSE.

3. Otherwise, if booleanExpr is true for every element of set, the quantifier is TRUE.

4. Otherwise (the values of booleanExpr are either true or NULL, with at least one NULL), the quantifier is
NULL.

Some results of this evaluation are:

• EVERY x IN { } SATISFIES (x > 0) is TRUE.

• EVERY x IN { -3, -2, 1 } SATISFIES (x > 0) is FALSE, because the predicate is false for x = -3.

• EVERY x IN { 5, 7, 10 } SATISFIES (x > 0) is TRUE, because the predicate is true for every value in the
set.

• EVERY x IN { 'foo', '3', '4' } SATISFIES (TO_INTEGER(x) > 0) is NULL. The predicate is true for x = '3' and
x = '4', but NULL for x = 'foo'.

• EVERY x IN { 'foo', '-1', '-2' } SATISFIES (TO_INTEGER(x) > 0) is FALSE, because the predicate is false
for x = '-1'.

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 111

This universal quantifier example is very similar to the existential quantifier example above:

RETURN results AS
SELECT

WineID AS idRec,
WineType AS wines,
Body AS bodyAttr

FROM WineState
WHERE (EVERY x IN Body SATISFIES (x = 'Robust')) AND (WineID IS NOT NULL)
ORDER BY idRec

Version 1.1.3 • May 2016

The result of this statement would be:

bodyAttr idRec wines

	1	Chardonnay
	2	Chardonnay
{ Robust }	6	Red
	17	Merlot
	20	White
	21	White
{ Robust }	23	Brut
{ Robust }	24	Brut

The only records that are returned are those that have only one Body='Robust' assignment (Records 6, 23,
and 24) and those that have no Body assignments (Records 1, 2, 17, 20, and 21).

In the query, note the use of the "WineID IS NOT NULL" expression in the WHERE clause. This prevents the
return of other records in the system for which the universal expression would normally be evaluated as TRUE
but which would return empty sets.

Grouping by sets
EQL provides support for grouping by sets.

Using GROUP BY
In the normal grouping syntax for the GROUP BY clause, EQL groups by set equality (that is, rows for which the
sets are equal are placed into the same group).

For example, assume a data set in which Body is a multi-assign attribute and every record has at least one
Body assignment except for Records 1, 2, 17, 20, and 21. This query is made against that data set:

RETURN results AS
SELECT
SET(WineID) AS IDs

FROM WineState
GROUP BY Body

The result of this statement might be:

Body IDs
--
	{ 1, 17, 2, 20, 21 }
{ Fresh, Robust }	{ 19 }
{ Supple }	{ 14, 15 }
{ Silky, Tannins }	{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }
{ Firm, Robust }	{ 22, 25 }
{ Robust }	{ 23, 24, 6, 8 }
{ Robust, Tannins }	{ 11, 4 }
--

Oracle® Big Data Discovery: EQL Reference

Sets and Multi-assign Data 112

Keep in mind that when using GROUP BY that EQL preserves rows in which the group key is the empty set or a
NULL value). Therefore, Records 1, 2, 17, 20, and 21 are returned even though they have no Body
assignments (because the empty set is returned for those records).

For more information on the GROUP BY clause, see Specifying GROUP BY on page 33.

Using GROUP BY MEMBERS
The MEMBERS extension to GROUP BY allows grouping by the members of a set. To illustrate the use of
MEMBERS, the previous example can be re-written as:

RETURN results AS
SELECT
SET(WineID) AS IDs

FROM WineState
GROUP BY MEMBERS(Body) AS BodyType

Version 1.1.3 • May 2016

The result might be:

BodyType IDs

Supple	{ 14, 15 }
Firm	{ 22, 25 }
Fresh	{ 19 }
Robust	{ 11, 19, 22, 23, 24, 25, 4, 6, 8 }
Tannins	{ 10, 11, 12, 13, 16, 18, 3, 4, 5, 7, 9 }
Silky	{ 10, 12, 13, 16, 18, 3, 5, 7, 9 }
	{ 1, 17, 2, 20, 21 }

Note that like the previous example, Records 1, 2, 17, 20, and 21 are returned.

For more information on MEMBERS, see MEMBERS extension on page 34.

Oracle® Big Data Discovery: EQL Reference

Chapter 6

EQL Use Cases

This section describes how to handle various business scenarios using EQL. The examples in this section are
not based on a single data schema.

Re-normalization

Grouping by range buckets

Manipulating records in a dynamically computed range value

Grouping data into quartiles

Combining multiple sparse fields into one

Joining data from different types of records

Linear regressions in EQL

Using an IN filter for pie chart segmentation

Running sum

Query by age

Calculating percent change between most recent month and previous month

Re-normalization
Re-normalization is important in denormalized data models in the Dgraph, as well as when analyzing multi-
value attributes.

In a sample data set, Employees source records were de-normalized onto Transactions, as shown in the
following example:

Attribute Value

DimEmployee_FullName Tsvi Michael Reiter

DimEmployee_HireDate 2005-07-01T04:00:00.000Z

DimEmployee_Title Sales Representative

FactSales_RecordSpec SO49122-2

FactSales_SalesAmount 939.588

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

EQL Use Cases 114

Incorrect

The following EQL code double-counts the tenure of Employees with multiple transactions:

RETURN AvgTenure AS
SELECT

AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure
FROM EmployeeState
GROUP BY DimEmployee_Title

Version 1.1.3 • May 2016

Correct
In this example, you re-normalize each Employee, and then operate over them using FROM:

DEFINE Employees AS
SELECT

ARB(DimEmployee_HireDate) AS DimEmployee_HireDate,
ARB(DimEmployee_Title) AS DimEmployee_Title

FROM EmployeeState
GROUP BY DimEmployee_EmployeeKey;

RETURN AvgTenure AS
SELECT

AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure
FROM Employees
GROUP BY DimEmployee_Title

Grouping by range buckets
To create value range buckets, divide the records by the bucket size, and then use FLOOR or CEIL if needed
to round to the nearest integer.

The following examples group sales into buckets by amount:

/**
* This groups results into buckets by amount,
* rounded to the nearest 1000.
*/

RETURN Results AS
SELECT

ROUND(FactSales_SalesAmount, -3) AS Bucket,
COUNT(1) AS CT

FROM SaleState
GROUP BY Bucket

/**
* This groups results into buckets by amount,
* truncated to the next-lower 1000.
*/

RETURN Results AS
SELECT

FLOOR(FactSales_SalesAmount/1000)*1000 AS Bucket,
COUNT(1) AS CT

FROM SaleState
GROUP BY Bucket

A similar effect can be achieved with ROUND, but the set of buckets is different:

• FLOOR(900/1000) = 0

• ROUND(900,-3) = 1000

In the following example, records are grouped into a fixed number of buckets:

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 115

DEFINE ValueRange AS SELECT
COUNT(1) AS CT

FROM SaleState
GROUP BY SalesAmount
HAVING SalesAmount > 1.0 AND SalesAmount < 10000.0;

RETURN Buckets AS SELECT
SUM(CT) AS CT,
FLOOR((SalesAmount - 1)/999.0) AS Bucket

FROM ValueRange
GROUP BY Bucket
ORDER BY Bucket

Version 1.1.3 • May 2016

Manipulating records in a dynamically computed range
value
The following scenario describes how to manipulate records in a dynamically computed range value.

In the following example:

• Use GROUP to calculate a range of interest.

• Use an empty lookup list to get the range of interest into the desired expression.

• Use subtraction and HAVING to enable filtering by a dynamic value (HAVING must be used because Diff is
not in scope in a WHERE clause on Result).

DEFINE CustomerTotals AS SELECT
SUM(SalesAmount) AS Total

FROM SaleState
GROUP BY CustomerKey ;

DEFINE Range AS SELECT
MAX(Total) AS MaxVal,
MIN(Total) AS MinVal,
((MaxVal - MinVal)/10) AS Decile,
MinVal + (Decile*9) AS Top10Pct

FROM CustomerTotals
GROUP ;

RETURN Result AS SELECT
SUM(SalesAmount) AS Total,
Total - Range[].Top10Pct AS Diff

FROM Range
GROUP BY CustomerKey
HAVING Diff > 0

Grouping data into quartiles
EQL allows you to group your data into quartiles.

The following example demonstrates how to group data into four roughly equal-sized buckets:

/* This finds quartiles in the range
* of ProductSubCategory, arranged by
* total sales. Adjust the grouping
* attribute and metric to your use case.
*/

DEFINE Input AS SELECT
ProductSubcategoryName AS Key,

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 116

SUM(FactSales_SalesAmount) AS Metric
FROM SaleState
GROUP BY Key
ORDER BY Metric;

DEFINE Quartile1Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(0, 25) PERCENT;

/* Using MAX(Metric) as the Quartile boundary isn't quite
* right: if the boundary falls between two records, the
* quartile is the average of the values on those two records.
* But this gives the right groupings.
*/

DEFINE Quartile1 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric /* ...or any other aggregate */

FROM Quartile1Records
GROUP;

DEFINE Quartile2Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(25, 25) PERCENT;

DEFINE Quartile2 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile2Records
GROUP;

DEFINE Quartile3Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(50, 25) PERCENT;

DEFINE Quartile3 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile3Records
GROUP;

DEFINE Quartile4Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(75, 25) PERCENT;

DEFINE Quartile4 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile4Records
GROUP;

/**
* The technical definition of "Quartile" is
* the values that segment the data into four
* roughly equal groups. Here, we return not
* just the Quartiles, but the metric aggregated
* over the records within the groups defined

Version 1.1.3 • May 2016Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 117

* by the Quartiles.
*/

RETURN Quartiles AS
SELECT

Quartile AS Quartile1,
Metric AS Quartile1Metric,
Quartile2[].Quartile AS Quartile2,
Quartile2[].Metric AS Quartile2Metric,
Quartile3[].Quartile AS Quartile3,
Quartile3[].Metric AS Quartile3Metric,
Quartile4[].Quartile AS Quartile4,
Quartile4[].Metric AS Quartile4Metric

FROM Quartile1;

Version 1.1.3 • May 2016

Combining multiple sparse fields into one
EQL allows you to combine multiple sparse fields into a single field.

In the example below, we use the AVG and COALESCE functions to combine the leasePayment and
loanPayment fields into a single avgPayment field.

ID Make Model Type leasePayment loanPayment

1 Audi A4 lease 380

2 Audi A4 loan 600

3 BMW 325 lease 420

4 BMW 325 loan 700

RETURN Result AS
SELECT
AVG(COALESCE(loanPayment,leasePayment)) AS avgPayment

FROM CombinedColumns
GROUP BY Make

Joining data from different types of records
You can use EQL to join data from different types of records.

Use lookups against unfiltered records to avoid eliminating all records of a secondary type when navigation
refinements are selected from an attribute only associated with the primary record type.

In the following example, the following types of records are joined:

Record type 1
RecordType: Review
Rating: 4
ProductId: Drill-X15
Text: This is a great product...

Record type 2
RecordType: Transaction

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 118

SalesAmount: 49.99
ProductId: Drill-X15
...

Version 1.1.3 • May 2016

The query is:

DEFINE Ratings AS SELECT
AVG(Rating) AS AvScore

FROM Reviews.UNFILTERED
WHERE RecordType = 'Review'
GROUP BY ProductId ;

RETURN TopProducts AS SELECT
SUM(SalesAmount) AS TotalSales,
Ratings[ProductId].AvScore AS AvScore

FROM Ratings
WHERE RecordType = 'Transaction'
GROUP BY ProductId
ORDER BY TotalSales DESC
PAGE(0,10)

Linear regressions in EQL
Using the syntax described in this topic, you can produce linear regressions in EQL.

Using the following data set:

ID X Y

1 60 3.1

2 61 3.6

3 62 3.8

4 63 4

5 65 4.1

The following simple formulation:

y = A + Bx

Can be expressed in EQL as:

RETURN Regression AS
SELECT

COUNT(ID) AS N,
SUM(X) AS sumX,
SUM(Y) AS sumY,
SUM(X*Y) AS sumXY,
SUM(X*X) AS sumX2,
((N*sumXY)-(sumX*sumY)) /
((N*sumX2)-(sumX*sumX)) AS B,

(sumY-(B*sumX))/N AS A
FROM DataState
GROUP

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 119

With the result:

N sumX sumY sumXY sumX2 B A

5 311.000000 18.600000 1159.700000 19359.000000 0.187838 -7.963514

Using the regression results
For y = A + Bx:

DEFINE Regression AS
SELECT

COUNT(ID) AS N,
SUM(X) AS sumX,
SUM(Y) AS sumY,
SUM(X*Y) AS sumXY,
SUM(X*X) AS sumX2,
((N*sumXY)-(sumX*sumY)) /
((N*sumX2)-(sumX*sumX)) AS B,
(sumY-(B*sumX))/N AS A

FROM DataState
GROUP

RETURN Results AS
SELECT

Y AS Y, X AS X, Regression[].A + Regression[].B * X AS Projection
...

Version 1.1.3 • May 2016

As a final step in the example above, you would need to PAGE or GROUP what could be a very large number of
results.

Using an IN filter for pie chart segmentation
This query shows how the IN filter can be used to populate a pie chart showing sales divided into six
segments: one segment for each of the five largest customers, and one segment showing the aggregate sales
for all other customers.

The first statement gathers the sales for the top five customers, and the second statement aggregates the
sales for all customers not in the top five:

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
FROM SaleState
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

RETURN Others AS SELECT
SUM(Sale) AS Sales
FROM SaleState
WHERE NOT [Customer] IN Top5
GROUP

Running sum
A running (or cumulative) sum calculation can be useful in warranty scenarios.

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 120

/* This selects the total sales in the 12 most recent months. */
DEFINE Input AS
SELECT

DimDate_CalendarYear AS CalYear,
DimDate_MonthNumberOfYear AS NumMonth,
SUM(FactSales_SalesAmount) AS TotalSales

FROM SaleState
GROUP BY CalYear, NumMonth
ORDER BY CalYear DESC, NumMonth DESC
PAGE(0, 12);

RETURN CumulativeSum AS SELECT
one.CalYear AS CalYear,
one.NumMonth AS NumMonth,
SUM(many.TotalSales) AS TotalSales

FROM Input one JOIN Input many
ON ((one.CalYear > many.CalYear) OR

(one.CalYear = many.CalYear AND
one.NumMonth >= many.NumMonth)

)
GROUP BY CalYear, NumMonth
ORDER BY CalYear, NumMonth

Version 1.1.3 • May 2016

In the example, the words "one" and "many" are statement aliases to clarify the roles in this many-to-one self-
join. Looking at the join condition, you can think of this as, for each (one) record, create multiple records
based on the (many) values that match the join condition.

Query by age
In this example, records are tagged with a Date attribute on initial ingest. No updates are necessary.

RETURN Result AS
SELECT
EXTRACT(CURRENT_DATE,

JULIAN_DAY_NUMBER) -
EXTRACT(Date, JULIAN_DAY_NUMBER)
AS AgeInDays

FROM SaleState
HAVING (AgeInDays < 30)

Calculating percent change between most recent month and
previous month
The following example finds the most recent month in the data that matches the current filters, and compares
it to the prior month, again in the data that matches the current filters.

/* This computes the percent change between the most
* recent month in the current nav state, compared to the prior
* month in the nav state. Note that, if there's only
* one month represented in the nav state, this will return NULL.
*/

DEFINE Input AS
SELECT

ARB(DimDate_CalendarYear) AS CalYear,
ARB(DimDate_MonthNumberOfYear) AS NumMonth,
DimDate_CalendarYear * 12 + DimDate_MonthNumberOfYear AS OrdinalMonth,
SUM(FactSales_SalesAmount) AS TotalSales

FROM SaleState
GROUP BY OrdinalMonth;

Oracle® Big Data Discovery: EQL Reference

EQL Use Cases 121

RETURN Result AS
SELECT

CalYear AS CalYear,
NumMonth AS NumMonth,
TotalSales AS TotalSales,
Input[OrdinalMonth - 1].TotalSales AS PriorMonthSales,
100 * (TotalSales - PriorMonthSales) / PriorMonthSales AS PercentChange

FROM Input
ORDER BY CalYear DESC, NumMonth DESC
PAGE(0, 1)

Version 1.1.3 • May 2016Oracle® Big Data Discovery: EQL Reference

Chapter 7

EQL Best Practices

This section discusses ways to maximize your EQL query performance.

Controlling input size

Filtering as early as possible

Controlling join size

Additional tips

Controlling input size
The size of the input for a statement can have a big impact on the evaluation time of the query.

The input for a statement is defined by the FROM clause. When possible, use an already completed result from
another statement instead of using collection records, to avoid inputting unnecessary records.

Consider the following queries. In the first query, the input to each statement is of a size on the order of the
navigation state. In the first two statements, Sums and Totals, the data is aggregated at two levels of
granularity. In the last statement, the data set is accessed again for the sole purpose of identifying the
month/year combinations that are present in the data. The computations of interest are derived from
previously-computed results:

DEFINE Sums AS SELECT
SUM(a) AS MonthlyTotal

FROM SaleState
GROUP BY month,year;

DEFINE Totals AS SELECT
SUM(a) AS YearlyTotal

FROM SaleState
GROUP BY year;

DEFINE Result AS SELECT
Sums[month,year].MonthlyTotal AS MonthlyTotal,
Sums[month,year].MonthlyTotal/Totals[year].YearlyTotal AS Fraction

FROM SaleState
GROUP BY month,year

Version 1.1.3 • May 2016

In the following rewrite of the query, the index is accessed only once. The first statement accesses the index
to compute the monthly totals. The second statement has been modified to compute yearly totals using the
results of the first statement. Assuming that there are many records per month, the savings could be multiple
orders of magnitude. Finally, the last statement has also been modified to use the results of the first
statement. The first statement has already identified all of the valid month/year combinations in the data set.
Rather than accessing the broader data set (possibly millions of records) just to identify the valid
combinations, the month/year pairs are read from the much smaller (probably several dozen records) previous
result:

DEFINE Sums AS SELECT
SUM(a) AS MonthlyTotal

Oracle® Big Data Discovery: EQL Reference

EQL Best Practices 123

FROM SalesState
GROUP BY month,year;

DEFINE Totals AS SELECT
SUM(MonthlyTotal) AS YearlyTotal

FROM Sums
GROUP year;

DEFINE Result AS SELECT
MonthlyTotal AS MonthlyTotal,
MonthlyTotal/Totals[year].YearlyTotal AS Fraction

FROM Sums

Version 1.1.3 • May 2016

Defining constants independent of data set size

A common practice is to define constants for a query through a single group, as shown in the first query
below. The input for this query is the entire navigation state, even though nothing from the input is used:

DEFINE Constants AS SELECT
500 AS DefaultQuota

FROM SaleState
GROUP

Since none of the input is actually needed, restrict the input to the smallest size possible with a very restrictive
filter, such as the one shown in this second example:

DEFINE Constants AS SELECT
500 AS DefaultQuota

FROM SaleState
WHERE FactSales_ProductKey IS NOT NULL
GROUP

In the example, FROM SalesState is the unique property key for the Sales collection.

Filtering as early as possible
Filtering out rows as soon as possible improves query latency because it reduces the amount of data that
must be tracked through the evaluator.

Consider the following two versions of a query. The first form of the query first groups records by g, passes
each group through the filter (b < 10), and then accumulates the records that remain. The input records are
not filtered, and the grouping operation must operate on all input records.

RETURN Result AS SELECT
SUM(a) WHERE (b < 10) AS sum_a_blt10

FROM SaleState
GROUP BY g

The second form of the query filters the input (with the WHERE clause) before the records are passed to the
grouping operation. Thus the grouping operation must group only those records of interest to the query. By
eliminating records that are not of interest sooner, evaluation will be faster.

RETURN Results AS SELECT
SUM(a) AS sum_a_blt10

FROM SaleState
WHERE (b < 10)
GROUP BY g

Another example of filtering records early is illustrated with the following pair of queries. Recall that a WHERE
clauses filters input records and a HAVING clause filters output records. The first query computes the sum for

Oracle® Big Data Discovery: EQL Reference

EQL Best Practices 124

all values of g and (after performing all of that computation) throws away all results that do not meet the
condition (g < 10).

RETURN Result AS SELECT
SUM(a) AS sum_a

FROM SaleState
GROUP BY g
HAVING g < 10

Version 1.1.3 • May 2016

The second query, on the other hand, first filters the input records to only those in the interesting groups. It
then aggregates only those interesting groups.

RETURN Result AS SELECT
SUM(a) AS sum_a

FROM SaleState
WHERE g < 10
GROUP BY g

Controlling join size
Joins can cause the Dgraph to grow beyond available RAM. Going beyond the scale capabilities will cause
very, very large materializations, intense memory pressure, and can result in an unresponsive Dgraph.

Additional tips
This topic contains additional tips for working effectively with EQL.

• String manipulations are unsupported in EQL. Therefore, ensure you prepare string values for query
purposes in the data ingest stage.

• Normalize information to avoid double counting or summing.

• Use a common case (upper case) for attribute string values when sharing attributes between data
sources.

• Name each DEFINE statement something meaningful so that others reading your work can make sense of
what your logic is.

• Use paging in DEFINE statements to reduce the number of records returned.

• When using CASE statements, bear in mind that all conditions and expressions are always evaluated,
even though only one is returned.

If an expression is repeated across multiple WHEN clauses of a CASE expression, it is best to factor the
computation of that expression into a separate SELECT, then reuse it.

Oracle® Big Data Discovery: EQL Reference

Index

WHERE 25A
COALESCE expression 78about queries 10
collectionsABS function 57

in FROM clause 20
ADD_ELEMENT function 92 record sources 9
addition operator 56 combining multiple sparse fields into one 117
aggregation commenting in EQL 11

function filters 46
CONCAT function 70functions 59
controlling input size 122multi-level 45

with APPROXCOUNTDISTINCT 44 controlling join size 124
with COUNT 41 CORRELATION function 79with COUNT_APPROX 43

COS function 59with COUNTDISTINCT 43
with COUNTDISTINCTMEMBERS 93 COUNT_APPROX function 43

APPROXCOUNTDISTINCT function 44 COUNTDISTINCT function 43
ARB function 75 COUNTDISTINCTMEMBERS function 93
arithmetic operators 71 COUNT function 41
AVG function 60 CROSS JOIN 21

CUBE extension 39
B cumulative sum 120

best practices CURRENT_DATE function 64
additional tips 124 CURRENT_TIMESTAMP function 64
controlling input size 122
defining constants 123
filtering as early as possible 123 D

BETWEEN operator 77 data types 47
Boolean date and time values 62

literal handling 50 constructing 64
operators 71 using arithmetic operations on 69

DAY_OF_MONTH function 67
C DAY_OF_WEEK function 67

calculate percent change over month 120 DAY_OF_YEAR function 67
CARDINALITY function 93 DEFINE clause 14
CASE expression 77 defining constants for best performance 123
case handling in EQL 51 DIFFERENCE function 94
CEIL function 57 DISTANCE function 62
characters in EQL 50 division operator 57
clauses double

DEFINE 14 data type 48
FROM 20 handling of precision 55
GROUP 32 promotion from integer 54
GROUP BY 32
HAVING 26 EJOIN 21

EQLLET 15
case handling 51ORDER BY 27
characters 50PAGE 30
commenting 11RETURN 15
concepts 8SELECT 17

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Index 126

handling of inf results 53 DAY_OF_WEEK 67
handling of NaN results 53 DAY_OF_YEAR 67
handling of NULL results 52 DISTANCE 62
inter-statement references 73 EXP 57
LOOKUP expressions 73 EXTRACT 67
multi-level aggregation example 45 FLOOR 57
overview 8 FROM_TZ 66
processing order 11 GROUPING 41
reserved keywords 12 HOUR 67
SQL comparison 9 JULIAN_DAY_NUMBER 67
syntax conventions 10 LATITUDE 62

LN 57evaluation time and input size 122
LOG 58

EVERY function 110 LONGITUDE 62
existential quantifier 109 MAX 60

MEDIAN 60EXP function 57
MIN 60expressions MINUTE 67CASE 77 MOD 58COALESCE 78 MONTH 67GROUPING SETS 37 numeric 56IN 80 PERCENTILE 81in ORDER BY 28 POWER 59LOOKUP 73 QUARTER 67

EXTRACT function 67 RECORD_IN_FAST_SAMPLE 82
ROUND 58
SECOND 67F
SIGN 58

filtering 10 SIN 59
geocode 62 SQRT 59
performance impact of 123 STDDEV 60

filters string 70
per-aggregation 46 STRING_JOIN 61
using results values as 73 SUBSTR 71

SUM 61FLOOR function 57
SYSDATE 64

follow-on queries 73 SYSTIMESTAMP 64
FOREACH function 96 TAN 59

TO_DATETIME 65FROM clause 20
TO_DOUBLE 59FROM_TZ function 66 TO_DURATION 59, 65

FULL JOIN 21 TO_GEOCODE 62
TO_INTEGER 59functions
TO_STRING 71ABS 57
TO_TIME 64aggregation 59
TO_TZ 66APPROXCOUNTDISTINCT 44
TRUNC 59, 68ARB 75
VARIANCE 61arithmetic operators 71
WEEK 67AVG 60
YEAR 67CEIL 57

CONCAT 70
CORRELATION 79 G
COS 59

geocodeCOUNT 41
data type 48COUNT_APPROX 43
filtering 62COUNTDISTINCT 43
sorting by 28COUNTDISTINCTMEMBERS 93

CURRENT_DATE 64 GROUP BY clause 32
CURRENT_TIMESTAMP 64 CUBE extension 39
date and time 62 MEMBERS extension 34
DAY_OF_MONTH 67 ROLLUP extension 38

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Index 127

GROUP clause 32 MIN function 60
grouping MINUTE function 67

by range buckets 114 MOD function 58
data into quartiles 115

MONTH function 67
GROUPING function 41

multi-level aggregation example 45
GROUPING SETS expression 37

multiplication operator 57

H N
HAS_REFINEMENTS 79

NaN, EQL handling of 53
HAVING clause 26

NULL values
HOUR function 67 and sets 85

EQL handling of 52
I numeric

functions 56identifier handling 51
literal handling 50

important concepts 8
IN expression 80 O
inf, EQL handling of 53

operations, date and time 62
INNER JOIN 21

operators
integer promotion to double 54 arithmetic 71
INTERSECTION function 99 Boolean 71

precedence order 49inter-statement references, EQL 73
ORDER BY clause 27IS_EMPTY function 101
order of processing in EQL 11IS_MEMBER_OF function 103
overview of queries 10IS_NOT_EMPTY function 102

PJ
PAGE clause 30JOIN clause 21

PERCENT modifier 30joining data from different types of records 117 Top-K queries 30
join size constraints 124 PERCENTILE function 81
JULIAN_DAY_NUMBER function 67 PERCENT modifier 31

pie chart segmentation with IN filters 119L
POWER function 59

LATITUDE function 62 precedence rules for operators 49
LEFT JOIN 21
LET clause 15 Q
linear regression in EQL 118 QUARTER function 67
literals 50 queries 10
LN function 57 query by age 120
LOG function 58 query processing order 11
LONGITUDE function 62
LOOKUP expression 73 R

RECORD_IN_FAST_SAMPLE function 82M
re-normalization 113

manipulating records in a dynamically computed reserved keywords 12range value 115
result values used as filters 73MAX function 60
RETURN clause 15MEDIAN function 60
RIGHT JOIN 21MEMBERS extension 34

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Index 128

ROLLUP extension 38 SUBSET function 105
ROUND function 58 SUBSTR function 71
running sum 120 subtraction operator 57

SUM function 61
S syntax conventions 10

SATISFIES function 109 SYSDATE function 64
SECOND function 67 SYSTIMESTAMP function 64
SELECT clause 17
SET function 86 T
set functions TAN function 59

ADD_ELEMENT 92 terminology, EQL 8
APPROXCOUNTDISTINCT 44

TO_DATETIME function 65ARB 75
TO_DOUBLE function 59CARDINALITY 93

COUNT 41 TO_DURATION function 59, 65
COUNT_APPROX 43 TO_GEOCODE function 62COUNTDISTINCT 43

TO_INTEGER function 59COUNTDISTINCTMEMBERS 93
DIFFERENCE 94 Top-K queries 30
EVERY 110 TO_STRING function 71
FOREACH 96

TO_TIME function 64INTERSECTION 99
IS_EMPTY 101 TO_TZ function 66
IS_MEMBER_OF 103 TRUNCATE_SET function 106
IS_NOT_EMPTY 102

TRUNC function 59, 68SET 86
SET_INTERSECTIONS 88
SET_UNIONS 90 U
SINGLETON 104 UNION function 107SOME 109

universal quantifier 110SUBSET 105
TRUNCATE_SET 106 use cases
UNION 107 calculate percent change over month 120

combining multiple sparse fields into 117SET_INTERSECTIONS function 88
grouping by range buckets 114sets grouping data into quartiles 115constructing from single-assign attributes 86 joining data from different types of 117constructor 107 linear regression 118data types 84 manipulating records in a dynamicallygrouping by 111 computed 115sort order 29 pie chart segmentation 119

SET_UNIONS function 90 query by age 120
re-normalization 113SIGN function 58
running sum 120SIN function 59

using arithmetic operations on date and timeSINGLETON function 104
values 69

SOME function 109
SQL comparison 9 V
SQRT function 59

VARIANCE function 61
state names in FROM clause 20
STDDEV function 60 W
string

WEEK function 67data type 48
WHERE clause 25literal handling 50

sort order 28 WITH UNPAGED COUNT modifier for RETURN 15
STRING_JOIN function 61
structured literal handling 51

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

Index 129

Y
YEAR function 67

Oracle® Big Data Discovery: EQL Reference Version 1.1.3 • May 2016

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the Endeca Query Language
	EQL overview
	Important concepts and terms
	EQL and SQL: a comparison
	Query overview
	How queries are processed
	EQL reserved keywords

	Chapter 2: Statements and Clauses
	DEFINE clause
	RETURN clause
	LET clause
	SELECT clause
	AS clause
	FROM clause
	JOIN clause
	WHERE clause
	HAVING clause
	ORDER BY clause
	PAGE clause

	Chapter 3: Aggregation
	GROUP/GROUP BY clauses
	MEMBERS extension
	GROUPING SETS expression
	ROLLUP extension
	CUBE extension
	GROUPING function
	COUNT function
	COUNT_APPROX
	COUNTDISTINCT function
	APPROXCOUNTDISTINCT function
	Multi-level aggregation
	Per-aggregation filters

	Chapter 4: Expressions
	Supported data types
	Operator precedence rules
	Handling of literals and values
	Character handling
	Handling of upper- and lower-case
	Handling NULL attribute values
	Handling of NaN, inf, and -inf results
	Integer type promotion
	Handling of precision for doubles

	Functions and operators
	Numeric functions
	Aggregation functions
	Geocode functions
	Date and time functions
	Manipulating current date and time
	Constructing date and time values
	Time zone manipulation
	Using EXTRACT to extract a portion of a dateTime value
	Using TRUNC to round down dateTime values
	Using arithmetic operations on date and time values

	String functions
	Arithmetic operators
	Boolean operators

	Using EQL results to compose follow-on queries
	Using LOOKUP expressions for inter-statement references
	ARB
	BETWEEN
	CASE
	COALESCE
	CORRELATION
	HAS_REFINEMENTS
	IN
	PERCENTILE
	RECORD_IN_FAST_SAMPLE

	Chapter 5: Sets and Multi-assign Data
	About sets
	Aggregate functions
	SET function
	SET_INTERSECTIONS function
	SET_UNIONS function

	Row functions
	ADD_ELEMENT function
	CARDINALITY function
	COUNTDISTINCTMEMBERS function
	DIFFERENCE function
	FOREACH function
	INTERSECTION function
	IS_EMPTY and IS_NOT_EMPTY functions
	IS_MEMBER_OF function
	SINGLETON function
	SUBSET function
	TRUNCATE_SET function
	UNION function

	Set constructor
	Quantifiers
	Grouping by sets

	Chapter 6: EQL Use Cases
	Re-normalization
	Grouping by range buckets
	Manipulating records in a dynamically computed range value
	Grouping data into quartiles
	Combining multiple sparse fields into one
	Joining data from different types of records
	Linear regressions in EQL
	Using an IN filter for pie chart segmentation
	Running sum
	Query by age
	Calculating percent change between most recent month and previous month

	Chapter 7: EQL Best Practices
	Controlling input size
	Filtering as early as possible
	Controlling join size
	Additional tips

	Index

