
Oracle® Fusion Middleware
Oracle API Gateway Policy Developer Guide
11g Release 2 (11.1.2.4.0)

March 2015

Oracle API Gateway Policy Developer Guide, 11g Release 2 (11.1.2.4.0)

Copyright © 1999, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

13 March 2015

Contents
1. What's new ..1

New topics ..1
Updated topics ...1

1. Get started ..
1. Policy development with Policy Studio ...2

Overview ..2
API Gateway instances and groups ..2
Topology view ...2

API Gateway groups ...2
API Gateway instances ..3

Filters ...3
Policies ..3
Message attributes ...4
Selectors ..6
Faults and errors ..6
Policy shortcuts ..7
Alerts ...7
Policy containers ..8
Policy contexts ...8
Listeners ..8
Remote hosts ..8
Servlet applications ...9
Service virtualization ...9

2. Start the API Gateway tools .. 10
Overview .. 10
Before you begin .. 10
Launch API Gateway Manager .. 10
Start Policy Studio .. 10

3. Configure the sample policies .. 12
Overview .. 12
Enable the sample services interface .. 12
Configure a different sample services interface ... 13
StockQuote demo service .. 13
Remote host settings .. 14

4. Conversion sample policy ... 16
Overview .. 16
REST to SOAP policy .. 16
Run the conversion sample .. 17

sr command .. 17
API Gateway Explorer ... 17

5. Security sample policies ... 18
Overview .. 18
Signature verification ... 18
Run the signature verification sample ... 18

sr command .. 18
API Gateway Explorer ... 19

Encryption and decryption .. 19
Run the encryption and decryption sample .. 20

sr command .. 20
API Gateway Explorer ... 21

6. Throttling sample policy .. 22
Overview .. 22

iii

Throttling policy .. 22
Run the throttling sample ... 22

sr command .. 22
API Gateway Explorer ... 23

7. Virtualized service sample policy .. 24
Overview .. 24
Virtualized service policies ... 24

Content-based routing policies .. 26
Response transformation policy ... 27

Run the virtualized service sample ... 28
sr command .. 28
API Gateway Explorer ... 28

8. Stress test with send request (sr) ... 29
Overview .. 29
Basic sr examples .. 29
Advanced sr examples .. 30
sr arguments ... 30

Further information ... 31
9. Send a request with API Gateway Explorer .. 32

Overview .. 32
Create a request in API Gateway Explorer ... 32
Further information ... 33

2. Manage policies ...
1. Configure policies manually ... 34

Overview .. 34
Configuration ... 34

2. Configure global policies ... 36
Overview .. 36
Global policy roles .. 36
Select a global policy .. 37
Configure global policies in a policy shortcut chain .. 38
Configure global policies for a service ... 40
Show global policies ... 40

3. Configure policy assemblies .. 42
Overview .. 42
Configure a policy assembly ... 42
Apply a policy assembly ... 43

3. Web services ..
1. Register and secure web services .. 44

Overview .. 44
WSDL and XML schema cache ... 44
WSDLs from a UDDI registry .. 44
Policy Studio filters ... 44

2. Configure policies from WSDL files ... 45
Overview .. 45
API Gateway as the web service initiator ... 45
API Gateway as the web service recipient ... 46
Import WSDL summary ... 46
Import a WSDL file ... 47
Configure a security policy ... 48
Configure recipient security settings ... 48
Configure initiator security settings ... 49
Configure recipient policy filters ... 49
Configure initiator policy filters ... 50
Edit the recipient or initiator WS-Policy .. 52
Configure a recipient WCF WS-Policy ... 53
Remove security tokens ... 54

Oracle® Fusion Middleware

iv

3. Manage web services .. 57
Overview .. 57
Manage web services and groups .. 57
Register a web service .. 57
Results of registering a web service ... 57
Export a web service ... 59
Update a web service .. 59
Change the operations exposed by a web service ... 60
Delete a web service ... 60
Use scripts to manage web services ... 61
Publish the WSDL .. 61

4. Manage WSDL and XML schema documents ... 63
Overview .. 63
Structure of the global cache .. 63
View cached WSDL or XML schema documents ... 64
Add XML schemas to the cache .. 65
Add WSDL documents to the cache ... 66
Update cached WSDL or XML schema documents .. 66
Delete cached WSDL or XML schema documents ... 67
XML schema and WSDL document validation .. 67
XML schema and WSDL document limitations .. 68
Version and duplicate management ... 69
Validate messages against XML schemas ... 69
Test a WSDL for WS-I compliance ... 69

5. Expose a web service as a REST API ... 71
Overview .. 71
Summary of steps .. 71
Virtualize a SOAP web service .. 71
Define a REST API ... 73
Route REST requests through the virtualized SOAP service .. 75

Create a request processing policy .. 75
Set the request policy on the REST API method ... 79
Create a response processing policy .. 79
Set the response policy on the REST API method ... 80

Test the REST to SOAP mapping .. 80
6. Connect to a UDDI registry ... 82

Overview .. 82
Configure a registry connection ... 82
Secure a connection to a UDDI registry ... 83

Configure Policy Studio to trust a registry certificate ... 83
Configure mutual SSL authentication .. 84

7. Retrieve WSDL files from a UDDI registry .. 85
Overview .. 85
UDDI concepts .. 85
UDDI definitions ... 85

Example tModel mapping for WSDL portType .. 87
Configure a registry connection ... 87
WSDL search .. 87
Quick search ... 88
Name search ... 88

UDDI v3 name searches .. 89
Advanced search ... 89
Advanced options ... 90
Publish ... 92

Add a businessEntity ... 92
Add a tModel ... 93

8. Publish WSDL files to a UDDI registry ... 94
Overview .. 94

Oracle® Fusion Middleware

v

Find WSDL files ... 94
Publish WSDL files ... 94
Step 1: Enter virtualized service address and WSDL URL for publishing in UDDI registry 94
Step 2: View WSDL to UDDI mapping result .. 95
Step 3: Select a registry for publishing .. 96
Step 4: Select a duplicate publishing approach ... 96
Step 5: Create or search for business ... 97
Step 6: Publish WSDL ... 97

4. Messaging ..
1. Configure messaging services ... 99

Overview .. 99
Prerequisites ... 99
Configure API Gateway messaging using the JMS wizard ... 99
Configure global JMS services in external connections ... 100
Configure embedded Apache ActiveMQ in API Gateway settings ... 100
Monitor messaging using API Gateway Manager .. 100

2. Configure a JMS service ... 101
Overview .. 101
General configuration .. 101
Apache ActiveMQ and Standard JMS settings .. 101
IBM WebSphere MQ settings .. 102
Settings for all service types ... 102
Configure advanced settings ... 102

JMS service settings ... 102
SSL settings .. 103

Next steps .. 103
3. Configure a JMS session .. 104

Overview .. 104
JMS session configuration .. 104

Add JMS session only ... 104
Common configuration .. 104

Monitoring options .. 105
Next steps .. 105

4. Configure a JMS consumer ... 106
Overview .. 106
JMS Message source .. 106
JMS consumer type .. 106
Message processing ... 107
Logging settings ... 107

Transaction Audit Logging Level .. 107
Transaction Audit Payload Logging .. 107

5. Send to JMS .. 109
Overview .. 109
Request settings .. 109
Response settings .. 111

6. Read from JMS .. 113
Overview .. 113
Message source ... 113
JMS consumer type .. 113
Message processing ... 114

5. Manage deployments ..
1. Manage API Gateway deployments .. 115

Overview .. 115
Connect to a server in Policy Studio ... 115
Edit a server configuration in Policy Studio .. 115
Manage deployments in API Gateway Manager .. 116
Compare and merge configurations in Policy Studio .. 116

Oracle® Fusion Middleware

vi

Manage Admin users in API Gateway Manager .. 116
Configure policies in Policy Studio ... 116

2. Deploy API Gateway configuration .. 117
Overview .. 117
Create a package in Policy Studio .. 117
Configure package properties in Policy Studio .. 117
Deploy packages in Policy Studio .. 118
Deploy a factory configuration in Policy Studio .. 119
Deploy currently loaded configuration in Policy Studio .. 119
Push configuration to a group in Policy Studio .. 119
View deployment results in Policy Studio ... 119
Deploy on the command line ... 120
Deploy packages in API Gateway Manager ... 120

3. Compare and merge API Gateway configurations .. 121
Overview .. 121
Compare and merge configurations .. 121
Comparison results ... 121
Filter differences .. 123
Select differences for merging ... 123

4. Manage Admin users ... 124
Overview .. 124
Admin user privileges .. 124
Admin user roles .. 124
Add a new Admin user .. 125
Remove an Admin user ... 125
Reset an Admin user password ... 125
Manage Admin user roles .. 126

6. General configuration ...
1. Manage connection details .. 127

Overview .. 127
Connect to a URL ... 127
Connect to a file ... 127
Unlock a server connection .. 128

2. Global configuration ... 129
Overview .. 129
API Gateway settings .. 129
Web service repository .. 129
API Gateway instances .. 130
Policies .. 130
Certificates and keys ... 130
API Gateway user store ... 131
System alerts .. 131
External connections ... 131
Caches .. 132
Black list and White list .. 132
WSDL and XML schema document bundles .. 132
Scripts ... 133
Stylesheets ... 133
References ... 133

3. Policy Studio preferences ... 134
Overview .. 134
Environmentalization ... 134
Policy colors .. 134
Prompt for credentials ... 134
Management services ... 135
Proxy settings .. 135
Runtime dependencies .. 135

Oracle® Fusion Middleware

vii

SSL settings .. 135
Status bar ... 136
Topology screen .. 136
Trace level .. 137
WS-I settings ... 137
XML settings ... 137

4. Policy Studio viewing options ... 139
Overview .. 139
Filter the tree ... 139
Configure viewing options .. 139
Configure the policy filter palette .. 139

5. Oracle Security Service Module settings (10g) .. 140
Overview .. 140
Prerequisites ... 140
Settings .. 141
Name authority definition settings .. 142
Further information ... 142

6. Kerberos configuration ... 143
Overview .. 143
Kerberos configuration file—krb5.conf .. 143
Advanced settings .. 143
Native GSS library .. 144

7. Tivoli integration ... 145
Overview .. 145
Integration architecture .. 145
Prerequisites ... 146

Tivoli API .. 146
Install Tivoli runtime .. 147
Tivoli configuration files ... 147
Create a Tivoli object space .. 148

Global Tivoli configuration .. 149
Tivoli connections ... 149
Tivoli repositories ... 150

Tivoli authorization .. 151
Tivoli authentication .. 151
Tivoli attribute retrieval .. 152

8. Export API Gateway configuration .. 153
Overview .. 153
What is exported .. 153
Export configuration items .. 153
Export all API Gateway configuration .. 154

9. Import API Gateway configuration .. 155
Overview .. 155
Import configuration .. 155
View differences ... 155
What is imported .. 156
Import configuration from a previous version .. 156

7. API Gateway instances ...
1. Configure API Gateway instances .. 158

Overview .. 158
Add remote hosts ... 158
Add HTTP services ... 158
Add SMTP services .. 158
Add file transfer services .. 158
Add policy execution scheduling .. 158
Configure JMS messaging system ... 158
Add Amazon SQS queue listener ... 159

Oracle® Fusion Middleware

viii

Add FTP poller ... 159
Add directory scanner ... 159
Add POP client .. 159
Configure TIBCO .. 159
API Gateway settings .. 159
Cryptographic acceleration ... 159

2. Configure HTTP services .. 160
Overview .. 160
HTTP services groups ... 160

HTTP interfaces and relative paths .. 160
Example HTTP service group ... 161
Default HTTP service groups .. 161
Add an HTTP service group .. 161

HTTP and HTTPS interfaces .. 162
Configure Network settings ... 162
Configure Traffic Monitor settings .. 162
Configure Advanced settings .. 162

HTTPS interfaces only ... 164
Configure Network settings ... 164
Configure Mutual Authentication settings ... 164
Configure Advanced SSL settings .. 164

Management services ... 166
Change the management services port ... 168

3. Configure relative paths .. 169
Overview .. 169
Configure a relative path .. 169
Policies settings ... 169
Logging settings ... 170

Logging Level .. 170
Payload Level .. 170
Access Log ... 170

HTTP method settings ... 171
Advanced settings .. 171
CORS settings ... 171
Nested relative paths .. 172

Add a nested relative path .. 172
How to access message attributes from parent resolvers .. 173
Order of resolution .. 173
Example nested path resolution ... 174

Static content providers ... 174
Static file providers ... 175
Servlet applications ... 175
Web service resolvers ... 177

4. Configure virtual hosts ... 179
Overview .. 179
Configure virtual hosts for HTTP services .. 179

Configure child resolvers .. 180
5. Configure SMTP services ... 181

Overview .. 181
Add an SMTP service .. 181
Add an SMTP interface .. 182
Configure policy handlers for SMTP commands .. 182
Add an HELO/EHLO policy handler .. 182
Add an AUTH policy handler ... 183
Add a MAIL policy handler .. 184
Add a RCPT policy handler .. 185
Add a DATA policy handler ... 186
SMTP authentication ... 187

Oracle® Fusion Middleware

ix

SMTP Content-Transfer-Encoding ... 187
Deployment example .. 188

6. Configure a file transfer service .. 192
Overview .. 192
General settings ... 192
File upload settings ... 193
Secure services settings .. 194
Command settings .. 194
Access control settings .. 195
Message settings ... 195
Directory settings ... 196
Logging settings ... 196
Traffic monitor settings .. 197

7. Policy execution scheduling .. 198
Overview .. 198
Cron expressions ... 198
Add schedule .. 200
Add policy execution scheduler ... 200

8. Configure Amazon SQS queue listener .. 201
Overview .. 201
General settings ... 201

AWS settings ... 201
Poll settings .. 201
Response settings .. 202

Configure AWS client settings ... 202
Connection settings .. 202
Proxy settings .. 203
Advanced settings .. 203

Further information ... 203
9. Configure an FTP poller ... 204

Overview .. 204
General settings ... 204
Scan settings ... 204
Connection type settings .. 205

FTP and FTPS connections .. 206
FTPS connections .. 206
SFTP connections .. 206

10. Configure directory scanner ... 207
Overview .. 207
General settings ... 207
Input settings ... 207
Processing settings ... 208
On completion settings .. 209
Traffic monitor settings .. 209

11. Packet sniffers .. 210
Overview .. 210
Configuration ... 210

12. Configure remote host settings ... 212
Overview .. 212
General settings ... 212
Address and load balancing settings .. 213
Advanced settings .. 214
Configure watchdogs .. 215
Configure an incoming remote host .. 216

13. Configure WebSocket connections .. 217
WebSocket protocol overview ... 217
Configure a WebSocket connection .. 217

WebSocket configuration settings .. 218

Oracle® Fusion Middleware

x

Monitor a WebSocket connection ... 221
14. Configure HTTP watchdog .. 222

Overview .. 222
Configuration ... 222

15. Configure conditions for HTTP interfaces ... 223
Overview .. 223
Configure Requires Endpoint condition ... 223
Configure Requires Link condition .. 224

16. Configure a POP client ... 225
Overview .. 225
Configuration ... 225

17. TIBCO integration .. 226
Overview .. 226
TIBCO Rendezvous integration ... 226

18. Cryptographic acceleration .. 227
Overview .. 227
General configuration .. 227
Conversations for crypto engines ... 228

19. Cryptographic acceleration conversation: request-response ... 229
Conversations for crypto engines ... 229

20. TIBCO Rendezvous listener .. 230
Overview .. 230
Configuration ... 230

8. External connections ..
1. External connections ... 231

Overview .. 231
Authentication repository profiles ... 231
Client credentials .. 231
Connection sets ... 232
Database connections ... 232
ICAP servers ... 232
JMS services ... 232
Kerberos connections .. 233
LDAP connections .. 233
Proxy servers .. 233
RADIUS clients .. 233
SiteMinder .. 233
SMTP servers .. 234
SOA Security Manager .. 234
Syslog servers ... 234
TIBCO ... 234
Tivoli .. 234
URL connection sets ... 234
XKMS connections ... 235

2. Authentication repository .. 236
Overview .. 236
Axway PassPort repositories .. 236
CA SiteMinder repositories ... 236
Database repositories ... 237
Entrust GetAccess repositories ... 239
Local repositories ... 240
LDAP repositories .. 240

Authentication with LDAP ... 240
Create an LDAP repository ... 241

Oracle Access Manager repositories .. 243
Oracle Entitlements Server 10g repositories ... 244
RADIUS repositories ... 244

Oracle® Fusion Middleware

xi

RSA Access Manager repositories ... 245
Tivoli repositories ... 246

3. Axway PassPort authentication repository .. 247
Overview .. 247
Configuration ... 247
Axway PassPort repository registration ... 248

Troubleshooting registration issues .. 248
Retrigger registration manually .. 249

4. Configure client credentials ... 251
Overview .. 251
Configure API key client credential profiles .. 251

Add API keys ... 251
Add API key providers ... 252

Configure HTTP basic/digest client credential profiles .. 252
Configure Kerberos client credential profiles .. 253

5. Configure Sentinel servers .. 255
Sentinel server overview .. 255
General settings ... 255
Further information ... 255

6. Configure database connections .. 256
Overview .. 256
Prerequisites ... 256
Configure the database connection .. 256
Database connection pool settings ... 257
Connection validation .. 258
Test the connection .. 258

7. Configure database query ... 259
Overview .. 259
Configuration ... 259

8. Configure ICAP servers .. 261
Overview .. 261
General settings ... 261
Server settings ... 261
Security settings ... 261
Advanced settings .. 262
Further information ... 262

9. Configure Kerberos clients .. 263
Overview .. 263
Kerberos endpoint settings ... 263

Ticket Granting Ticket Source ... 263
Kerberos Principal .. 264
Secret Key .. 264

Advanced settings .. 265
10. Configure Kerberos principals .. 267

Overview .. 267
Configuration ... 267

11. Configure Kerberos services .. 269
Overview .. 269
Kerberos endpoint settings ... 269
Advanced settings .. 270

12. Kerberos Keytab concepts .. 271
Overview .. 271
Configuration ... 271

13. Configure LDAP directories ... 273
Overview .. 273
General configuration .. 273
Authentication configuration .. 273
Test the LDAP connection .. 274

Oracle® Fusion Middleware

xii

Additional JNDI properties .. 275
14. Configure proxy servers .. 276

Overview .. 276
Configuration ... 276

15. Configure RADIUS clients ... 277
Overview .. 277
Configuration ... 277

16. Configure SiteMinder/SOA Security Manager connections ... 278
Overview .. 278
Prerequisites ... 278
SiteMinder and SOA Security Manager connection settings .. 278
SOA Security Manager connection settings ... 279

17. Configure SMTP servers ... 281
Overview .. 281
Configuration ... 281

18. Configure TIBCO Rendezvous daemons .. 282
Overview .. 282
Configuration ... 282

19. Configure XKMS connections .. 284
Overview .. 284
Configuration ... 284

9. Resources and libraries ..
1. Manage API Gateway users .. 285

Overview .. 285
API Gateway users ... 285
Add API Gateway users ... 285
API Gateway user attributes ... 285
API Gateway user groups .. 286
Add API Gateway user groups .. 286
Update API Gateway users or groups ... 286

2. Manage certificates and keys .. 287
Overview .. 287
View certificates and keys .. 287

Certificate management options .. 288
Configure an X.509 certificate ... 288

Create a certificate ... 288
Import certificates ... 289

Configure a private key .. 289
Private key stored locally ... 290
Private key provided by OpenSSL engine .. 290
Private key stored on external HSM ... 291

Configure HSMs and certificate realms ... 291
Manage HSMs with keystoreadmin .. 291
Step 1—Register an HSM provider .. 292
Step 2—Create a certificate realm and associated keystore .. 292
Step 3—Start the API Gateway when using an HSM .. 293

Configure SSH key pairs .. 294
Add a key pair ... 294
Manage OpenSSH keys .. 295

Configure PGP key pairs .. 295
Add a PGP key pair .. 295
Manage PGP keys .. 296

Global import and export options ... 296
Import and export certificates and keys ... 296
Manage certificates in Java keystores ... 296

Further information ... 297
3. Global caches .. 298

Oracle® Fusion Middleware

xiii

Overview .. 298
Local caches ... 298
Distributed caches .. 299
Distributed cache settings .. 300
Example of caching response messages ... 301

4. Cross-Origin Resource Sharing .. 304
Overview .. 304

CORS request headers ... 304
CORS response headers ... 305

Add a CORS profile .. 305
General .. 305
Origins ... 305
Allowed Headers .. 305
Exposed Headers ... 306
Credentials Support .. 306
Preflight Results Cache ... 306

Configure CORS for HTTP services ... 306
Configure CORS for relative paths ... 307

10. Amazon Web Services filters ...
1. Send to Amazon SQS .. 308

Overview .. 308
General settings ... 308

AWS settings ... 308
Send message settings ... 308
Advanced settings .. 309
Further information ... 309

2. Upload to Amazon S3 .. 310
Overview .. 310
General settings ... 310

AWS settings ... 310
S3 settings .. 310

Further information ... 311
11. Attribute filters ...

1. Compare attribute ... 312
Overview .. 312
Configuration ... 312

2. Extract REST request attributes ... 313
Overview .. 313

HTTP GET requests ... 313
HTTP POST requests ... 313

Configuration ... 313
3. Extract WSS header .. 315

Overview .. 315
Timestamp validity .. 315

Configuration ... 315
4. Extract WSS timestamp .. 316

Overview .. 316
Configuration ... 316

5. Extract WSS UsernameToken element .. 317
Overview .. 317
Configuration ... 317

6. Get cookie ... 318
Overview .. 318
Configuration ... 318
Attribute storage ... 318

7. Insert SAML attribute assertion .. 320
Overview .. 320

Oracle® Fusion Middleware

xiv

General settings ... 320
Assertion Details .. 321
Assertion Location .. 321
Subject Confirmation Method .. 322
Advanced settings .. 324

8. Retrieve attributes from JSON message .. 326
Overview .. 326
Configuration ... 326
JSON Path examples .. 326

9. Retrieve attribute from directory server .. 330
Overview .. 330
General settings ... 330
Database settings ... 330
Advanced settings .. 331

10. Retrieve attribute from HTTP header ... 333
Overview .. 333
Configuration ... 333

11. Retrieve attribute from SAML attribute assertion .. 334
Overview .. 334
Details ... 334
Trusted Issuers .. 335
Subject configuration ... 335
Lookup Attributes ... 335

12. Retrieve attribute from SAML PDP .. 337
Overview .. 337
Request configuration ... 337
Response configuration ... 339

13. Retrieve attribute from Tivoli .. 340
Overview .. 340
Configuration ... 340

14. Retrieve attribute from message ... 341
Overview .. 341
Configuration ... 341

15. Retrieve attribute from database ... 342
Overview .. 342
General settings ... 342
Database settings ... 342
Advanced settings .. 342

16. Retrieve attribute from user store .. 345
Overview .. 345
General settings ... 345
Database settings ... 345
Advanced settings .. 345

12. Authentication filters ...
1. Attribute authentication ... 346

Overview .. 346
Configuration ... 346

2. API key authentication ... 347
Overview .. 347
General settings ... 347
API key settings ... 347
Advanced settings .. 348

3. Check session .. 350
Overview .. 350
Configuration ... 350

4. Create session ... 351
Overview .. 351

Oracle® Fusion Middleware

xv

Configuration ... 351
5. End session ... 352

Overview .. 352
Configuration ... 352

6. CA SOA Security Manager authentication .. 353
Overview .. 353
Prerequisites ... 353

Add third-party binaries to API Gateway .. 353
Add third-party binaries to Policy Studio .. 353

Configuration ... 353
Message details settings .. 354

XmlToolkit.properties file .. 354
Configure the user name and password digest token age restriction 355

7. HTML form-based authentication .. 356
Overview .. 356
General settings ... 356
Session settings ... 356

8. HTTP basic authentication .. 358
Overview .. 358
General settings ... 358

Invalid attempts .. 359
9. HTTP digest authentication ... 360

Overview .. 360
General settings ... 360

Invalid attempts .. 360
10. HTTP header authentication .. 362

Overview .. 362
Configuration ... 362

11. IP address authentication .. 363
Overview .. 363
Configuration ... 363
Configure subnet masks .. 363

Example 1: Specify a range of IP addresses .. 363
Example 2: Specify an exact IP address .. 364

12. Insert SAML authentication assertion ... 366
Overview .. 366
General settings ... 366
Assertion details settings ... 367
Assertion location settings .. 367
Subject confirmation method settings ... 368
Advanced settings .. 370

13. Insert timestamp ... 372
Overview .. 372
Configuration ... 372

14. Insert WS-Security UsernameToken .. 373
Overview .. 373
General settings ... 373

Credential details ... 373
Advanced options ... 374

15. Kerberos client authentication .. 375
Overview .. 375
General settings ... 375
Kerberos client settings ... 375
Kerberos token profile settings .. 376

16. Kerberos service authentication .. 377
Overview .. 377
General settings ... 377
Kerberos standard settings ... 377

Oracle® Fusion Middleware

xvi

Message level settings .. 378
Transport level settings .. 378
Advanced SPNEGO settings .. 378

17. SAML authentication .. 379
Overview .. 379
General settings ... 380
Details settings .. 380
Trusted issuer settings .. 380

18. SAML PDP authentication ... 381
Overview .. 381
General settings ... 381
Request settings .. 381

SAML subject settings ... 381
Subject confirmation settings .. 382

Response settings .. 383
19. SSL authentication .. 384

Overview .. 384
Configuration ... 384

20. STS client authentication .. 385
Overview .. 385
Example request .. 385
General settings ... 386
Request settings .. 386

Issue: POP Key ... 386
Issue: On Behalf Of Token ... 388
Issue: Token Scope and Lifetime ... 389
Validate: Target ... 390

Policies settings ... 390
Routing settings ... 390
Response settings .. 391
Advanced settings .. 391

21. WS-Security UsernameToken authentication .. 393
Overview .. 393
General settings ... 393

Actor Details .. 393
Token Validation .. 394
Nonce Settings .. 394
Token Validation via Repository .. 394
Advanced ... 395

13. Authorization filters ...
1. RSA Access Manager authorization .. 396

Overview .. 396
Prerequisites ... 396

Add third-party binaries to API Gateway .. 396
Add third-party binaries to Policy Studio .. 396

General settings ... 396
Connection details .. 396
Authorization details .. 397

2. Attribute authorization .. 399
Overview .. 399
Configuration ... 399

3. Axway PassPort authorization ... 400
Overview .. 400

Axway CSD ... 400
Configuration ... 400

4. CA SOA Security Manager authorization .. 401
Overview .. 401

Oracle® Fusion Middleware

xvii

Prerequisites ... 401
Add third-party binaries to API Gateway .. 401
Add third-party binaries to Policy Studio .. 401

Configuration ... 401
5. Certificate attribute authorization .. 403

Overview .. 403
Configuration ... 403

6. Entrust GetAccess authorization .. 405
Overview .. 405
General settings ... 405
GetAccess WS-Trust STS settings ... 405
GetAccess SAML PDP settings ... 405

7. Insert SAML authorization assertion .. 407
Overview .. 407
General settings ... 407
Assertion details settings ... 407
Assertion location settings .. 408
Subject confirmation method settings ... 409

Asymmetric Key ... 410
Symmetric Key .. 410
Key Info .. 411

Advanced settings .. 411
8. LDAP attribute authorization .. 413

Overview .. 413
General configuration .. 413
Advanced configuration ... 415

9. SAML authorization ... 416
Overview .. 416
General settings ... 416
Details settings .. 416
Trusted issuer settings .. 417
Optional settings .. 417

10. SAML PDP authorization .. 418
Overview .. 418
General settings ... 418
Request settings .. 418

SAML subject settings ... 418
Subject confirmation settings .. 418

Response settings .. 420
11. Tivoli authorization ... 421

Overview .. 421
Add a Tivoli client ... 421
Add users and web services to Tivoli .. 421
Configuration ... 422

12. XACML PEP authorization .. 424
Overview .. 424

Further information ... 424
Example XACML request ... 424
General settings ... 425
XACML settings ... 425

Add Attributes .. 426
Routing settings ... 428
Advanced settings .. 428

14. CA SiteMinder filters ...
1. SiteMinder certificate authentication .. 430

Overview .. 430
Prerequisites ... 430

Oracle® Fusion Middleware

xviii

Add third-party binaries to API Gateway .. 430
Add third-party binaries to Policy Studio .. 430

Configuration ... 430
2. SiteMinder session validation .. 432

Overview .. 432
Prerequisites ... 432
Configuration ... 432

3. SiteMinder logout .. 434
Overview .. 434
Prerequisites ... 434
Configuration ... 434

4. SiteMinder authorization ... 435
Overview .. 435
Prerequisites ... 435
Configuration ... 435

15. Certificate filters ..
1. Static CRL certificate validation .. 436

Overview .. 436
Example CRL-based validation policy ... 436
Configuration ... 437

2. Dynamic CRL certificate validation .. 438
Overview .. 438
Example CRL-based validation policy ... 438
Configuration ... 438

3. CRL LDAP validation ... 439
Overview .. 439
Configuration ... 439

4. CRL responder ... 440
Overview .. 440
Configuration ... 440

5. Create thumbprint from certificate ... 441
Overview .. 441
Configuration ... 441

6. Certificate validity .. 442
Overview .. 442
Configuration ... 442

7. Find certificate .. 443
Overview .. 443
Configuration ... 443

8. Extract certificate attributes ... 444
Overview .. 444
Generated message attributes .. 444
Configuration ... 446

9. Certificate chain check ... 447
Overview .. 447
Configuration ... 447

10. OCSP client ... 448
Overview .. 448
General settings ... 448
Message settings ... 448
Routing settings ... 449
Advanced settings .. 449
Integration with Axway Validation Authority .. 450

11. Validate certificate store .. 451
Overview .. 451
Configuration ... 451
Deployment example .. 451

Oracle® Fusion Middleware

xix

12. XKMS certificate validation .. 454
Overview .. 454
Configuration ... 454

16. Cache filters ...
1. Cache attribute ... 455

Overview .. 455
Configuration ... 455

2. Create key ... 456
Overview .. 456
Configuration ... 456

3. Check if attribute is cached ... 457
Overview .. 457
Configuration ... 457

4. Remove cached attribute .. 458
Overview .. 458
Configuration ... 458

17. Content filters ..
1. Scan with ClamAV anti-virus ... 459

Overview .. 459
Configuration ... 459

2. Content type filtering .. 460
Overview .. 460
Allow or deny content types .. 460
Configure MIME/DIME types ... 460

3. Content validation ... 461
Overview .. 461
Manual XPath configuration .. 461
XPath wizard ... 462

4. HTTP header validation .. 463
Overview .. 463
Configure HTTP header regular expressions .. 463
Configure threatening content regular expressions .. 464
Regular expression format ... 465

5. Send to ICAP ... 466
Overview .. 466
Configuration ... 466
Example policies .. 466
Further information ... 467

6. Scan with McAfee anti-virus .. 468
Overview .. 468
Prerequisites ... 468

Add McAfee binaries to API Gateway ... 468
Add McAfee binaries to Policy Studio ... 468

Configuration ... 468
Custom options .. 469
Message status .. 470
Load McAfee updates ... 470

7. Message size filtering .. 472
Overview .. 472
Configuration ... 472

8. Query string validation ... 473
Overview .. 473
Request query string ... 473
Configure query string attribute regular expressions .. 473
Configure threatening content regular expressions .. 475
Regular expression format ... 475

9. Schema validation ... 476

Oracle® Fusion Middleware

xx

Overview .. 476
General settings ... 476
Selecting the schema .. 476
Selecting which part of the message to match .. 476
Advanced settings .. 477
Reporting schema validation errors .. 479

10. JSON schema validation ... 481
Overview .. 481
Configuration ... 481
Generate a JSON schema using Jython .. 482

11. Scan with Sophos anti-virus ... 484
Overview .. 484
Prerequisites ... 484
General settings ... 484
Sophos configuration settings ... 484

12. Threatening content ... 486
Overview .. 486
Scanning settings ... 486
MIME type settings ... 486
Regular expression format ... 486

13. Throttling ... 488
Overview .. 488
Rate limit settings ... 488
Advanced settings .. 489
Use multiple throttling filters .. 490

14. Validate selector expression .. 491
Overview .. 491
Configure selector-based regular expressions .. 491

Configure a Regular Expression .. 491
Threatening content regular expressions ... 492

15. Validate REST request ... 493
Overview .. 493
General settings ... 493
Adding REST request parameter restrictions .. 494
URI path templates ... 496

16. Validate timestamp .. 497
Overview .. 497
Configuration ... 497

17. Verify the WS-Policy security header layout .. 499
Overview .. 499
Configuration ... 499

18. XML complexity .. 500
Overview .. 500
Configuration ... 500

18. Conversion filters ..
1. Add HTTP header ... 501

Overview .. 501
Configuration ... 501

2. Add XML node ... 502
Overview .. 502
Configuration ... 502

Where to insert new nodes ... 502
Node source .. 502
New node details .. 503
Attribute node details .. 503

Examples ... 503
Replace an attribute value .. 503

Oracle® Fusion Middleware

xxi

Add an attribute ... 504
Add an element .. 504
Replace an element .. 504

3. Transform with Contivo .. 505
Overview .. 505
Configuration ... 505

4. Convert multipart or compound body type message ... 506
Overview .. 506
Configuration ... 506

5. Create cookie ... 507
Overview .. 507
Configuration ... 507

Cookie details .. 507
6. Create REST request ... 508

Overview .. 508
Configuration ... 508

7. Extract MTOM content ... 509
Overview .. 509
Configuration ... 510

8. Insert MTOM attachment .. 511
Overview .. 511
Configuration ... 512

9. Add node to JSON document .. 513
Overview .. 513
Configuration ... 513
Examples ... 514

Add a JSON node .. 514
Add an item to an array ... 515
Add a field replacing others .. 517

10. Remove node from JSON document ... 520
Overview .. 520
Configuration ... 520
Examples ... 520

Remove a node ... 520
Remove all items in an array ... 521

11. Convert JSON to XML .. 523
Overview .. 523
Configuration ... 523
Examples ... 523

Multiple root elements ... 523
Insert processing instructions into the output XML ... 524

12. Load contents of a file .. 526
Overview .. 526
Configuration ... 526

Input settings ... 526
Processing settings ... 526
On completion settings .. 527

13. Remove HTTP header .. 528
Overview .. 528
Configuration ... 528

14. Remove XML node .. 529
Overview .. 529
Configuration ... 529

15. Remove attachments ... 530
Overview .. 530
Configuration ... 530

16. Restore message .. 531
Overview .. 531

Oracle® Fusion Middleware

xxii

Configuration ... 531
17. Set HTTP verb .. 532

Overview .. 532
Configuration ... 532

18. Set message .. 533
Overview .. 533
Configuration ... 533
Example of using selectors in the message body .. 533

19. Store message ... 535
Overview .. 535
Configuration ... 535

20. Convert XML to JSON .. 536
Overview .. 536
Configuration ... 536

21. Transform with XSLT ... 538
Overview .. 538
Configuration ... 538

Stylesheet location settings .. 538
Stylesheet parameter settings ... 538
Advanced settings .. 539

19. Encryption filters ...
1. Generate key ... 540

Overview .. 540
Configuration ... 540

2. PGP decrypt and verify .. 541
Overview .. 541
Configuration ... 541

3. PGP encrypt and sign .. 543
Overview .. 543
General settings ... 543
Encrypt and sign settings ... 543
Advanced settings .. 545

4. SMIME decryption ... 546
Overview .. 546
Configuration ... 546

5. SMIME encryption ... 547
Overview .. 547
General settings ... 547
Recipient settings ... 547
Advanced settings .. 547

6. XML decryption .. 548
Overview .. 548
Configuration ... 548
Auto-generation using the XML decryption wizard ... 548

7. XML decryption settings ... 549
Overview .. 549
XML encryption overview ... 549
Nodes to decrypt .. 551
Decryption key ... 552
Options .. 552
Auto-generation using the XML decryption wizard ... 553

8. XML encryption .. 554
Overview .. 554
Configuration ... 554
Auto-generation using the XML encryption settings wizard .. 554

9. XML encryption settings ... 555
Overview .. 555

Oracle® Fusion Middleware

xxiii

XML encryption overview ... 555
Encryption key settings .. 557
Key info settings ... 558
Recipient settings ... 561
What to encrypt settings .. 563
Advanced settings .. 563
Auto-generation using the XML encryption settings wizard .. 564

10. XML encryption wizard ... 565
Overview .. 565
Configuration ... 565

20. Integrity filters ..
1. XML signature generation ... 566

Overview .. 566
General settings ... 566
Signing key settings .. 566

Asymmetric Key ... 566
Symmetric Key .. 566
Key Info .. 568

What to sign settings ... 571
Where to place signature settings .. 576
Advanced settings .. 577

Additional ... 577
Algorithm Suite .. 579
Options .. 579

2. XML signature verification ... 582
Overview .. 582
General settings ... 582
Signature verification settings ... 582
What must be signed settings ... 583
Advanced settings .. 583

3. Sign SMIME message .. 584
Overview .. 584
Configuration ... 584

4. Verify SMIME message .. 585
Overview .. 585
Configuration ... 585

21. Fault handler filters ...
1. Generic error handling ... 586

Overview .. 586
General settings ... 586
Generic error contents ... 586
Create customized generic errors .. 587

2. JSON error handling .. 588
Overview .. 588
General settings ... 588
JSON error contents ... 588
Create customized JSON errors .. 590

Use the Generic Error filter ... 590
Use the Set Message filter ... 590

3. SOAP fault handling .. 591
Overview .. 591
SOAP fault format settings ... 591
SOAP fault content settings .. 591
Create Customized SOAP faults .. 592

Use the Generic Error filter ... 592
Use the Set Message filter ... 592

22. Monitoring filters ...

Oracle® Fusion Middleware

xxiv

1. Configure system alerts .. 595
Overview .. 595
Configure an alert destination ... 595

Syslog (local or remote) ... 595
Windows Event Log .. 596
Check Point FireWall-1 (OPSEC) ... 596
SNMP Network Management System ... 597
Email recipient ... 597
Amazon SNS ... 598
Twitter .. 599

Configure an alert filter .. 600
General settings ... 600
Notifications settings ... 600
Tracking settings .. 602
Default message settings ... 602

2. Set transaction log level and log message .. 604
Overview .. 604
Configuration ... 604

3. Log message payload .. 606
Overview .. 606
Configuration ... 606

4. Service level agreement ... 607
Overview .. 607
Response time requirements .. 607
HTTP status requirements .. 608
Communications failure requirements ... 609
Select alerting system ... 610

5. Set service context .. 611
Overview .. 611
General settings ... 611

6. Send event to Sentinel ... 612
Overview .. 612
General settings ... 612

Settings tab ... 612
Tracking tab .. 613

Further information ... 613
7. Send cycle link event to Sentinel .. 614

Overview .. 614
General settings ... 614
Further information ... 615

23. Oracle Access Manager filters ...
1. Oracle Access Manager authorization ... 616

Overview .. 616
General settings ... 616
Request settings .. 616
OAM Access SDK settings ... 616

2. Oracle Access Manager certificate authentication .. 618
Overview .. 618
General settings ... 618
Resource settings ... 618
Session settings ... 618
OAM Access SDK settings ... 619

3. Oracle Access Manager SSO session logout .. 620
Overview .. 620
Configuration ... 620

4. Oracle Access Manager SSO token validation .. 621
Overview .. 621

Oracle® Fusion Middleware

xxv

Configuration ... 621
24. Oracle Entitlements Server filters ..

1. Oracle Entitlements Server 10g authorization .. 622
Overview .. 622
Configuration ... 622

Settings .. 622
Application Context ... 623

2. Get roles from Oracle Entitlements Server 10g .. 624
Overview .. 624
Configuration ... 624

Settings .. 624
Application Context ... 624

3. Oracle Entitlements Server 11g authorization .. 625
Overview .. 625
Configuration ... 625

25. Resolver filters ...
1. Operation name resolver .. 626

Overview .. 626
Configuration ... 626

2. Relative path resolver .. 627
Overview .. 627
Configuration ... 627
Regular expression format ... 627

3. SOAP action resolver ... 628
Overview .. 628
Configuration ... 628
Regular expression format ... 628

26. Routing filters ..
1. Getting started with routing configuration ... 629

Overview .. 629
Proxy or endpoint server .. 629
Service virtualization ... 629
Choosing the correct routing filters ... 629
Case 1: Proxy without service virtualization .. 630
Case 2: Proxy with service virtualization .. 631
Case 3: Endpoint without service virtualization ... 632
Case 4: Endpoint with service virtualization .. 633
Case 5: Simple redirect ... 634
Case 6: Routing on to an HTTP proxy ... 635
Summary .. 636

2. Call internal service ... 637
Overview .. 637
Configuration ... 637

3. Connection .. 638
Overview .. 638
General settings ... 638
SSL settings .. 638
Authentication settings .. 638
Additional settings .. 638

4. Connect to URL .. 639
Overview .. 639
General settings ... 639
Request settings .. 639
SSL settings .. 640

Trusted certificates ... 640
Client certificates .. 640

Authentication settings .. 640

Oracle® Fusion Middleware

xxvi

Additional settings .. 641
Retry settings .. 641
Failure settings .. 641
Proxy settings .. 642
Redirect settings .. 642
Header settings .. 643

5. Dynamic router ... 644
Overview .. 644
Configuration ... 644

6. Extract path parameters ... 645
Overview .. 645
Configuration ... 645
Required input and generated output .. 646
Possible outcomes ... 646

7. File download ... 647
Overview .. 647
General settings ... 647
File details .. 647
Connection type ... 647
FTP and FTPS connections .. 648
FTPS connections .. 648
SFTP connections .. 648

8. File upload ... 649
Overview .. 649
General settings ... 649
File details .. 649
Connection type ... 650
FTP and FTPS connections .. 650
FTPS connections .. 650
SFTP connections .. 651

9. HTTP redirect ... 652
Overview .. 652
Configuration ... 652

10. HTTP status code .. 653
Overview .. 653
Configuration ... 653

11. Insert WS-Addressing information ... 654
Overview .. 654
Configuration ... 654

12. Read WS-Addressing information ... 655
Overview .. 655
Configuration ... 655

13. Rewrite URL ... 656
Overview .. 656
Configuration ... 656

14. Save to file ... 657
Overview .. 657
Configuration ... 657

15. Route to SMTP ... 658
Overview .. 658
General settings ... 658
Message settings ... 658

16. Static router ... 659
Overview .. 659
Configuration ... 659

17. Route to TIBCO Rendezvous ... 660
Overview .. 660
Configuration ... 660

Oracle® Fusion Middleware

xxvii

18. Wait for response packets ... 661
Overview .. 661
Packet sniffer configuration .. 661
Sniffing response packets .. 662

27. Security services filters ..
1. Encrypt and decrypt web services .. 663

Overview .. 663
Configuration ... 663

2. DSS signature generation ... 664
Overview .. 664
Configuration ... 664

3. STS web service ... 665
Overview .. 665
Configuration ... 665

4. DSS signature verification ... 666
Overview .. 666
Configuration ... 666

28. Trust filters ...
1. Consume WS-Trust message .. 667

Overview .. 667
Configuration ... 667

Message types .. 667
Message consumption settings ... 667
Advanced settings .. 668

2. Create WS-Trust message .. 669
Overview .. 669
Configuration ... 669

Message types .. 669
General message creation settings .. 669
RST creation settings .. 670
RSTR creation settings .. 670
Advanced settings .. 670

29. Utility filters ..
1. Abort policy .. 672

Overview .. 672
Configuration ... 672

2. Check group membership ... 673
Overview .. 673
Configuration ... 673
Possible paths ... 673

3. Copy or modify attributes .. 674
Overview .. 674
Configuration ... 674

4. Evaluate selector .. 675
Overview .. 675
Configuration ... 675

5. Execute external process .. 676
Overview .. 676
Configuration ... 676

Command settings .. 676
Advanced settings .. 676

6. False filter ... 677
Overview .. 677
Configuration ... 677

7. HTTP parser .. 678
Overview .. 678
Configuration ... 678

Oracle® Fusion Middleware

xxviii

8. Insert BST ... 679
Overview .. 679
Configuration ... 679

9. Invoke policy per message body .. 680
Overview .. 680
Configuration ... 680

10. Locate XML nodes ... 681
Overview .. 681
Configuration ... 681

Node locations ... 681
XPath expressions .. 681
Message attribute ... 682
Message attribute in which to place list of nodes ... 682

11. Management services RBAC ... 683
Overview .. 683
Configuration ... 683

12. Pause processing .. 684
Overview .. 684
Configuration ... 684

13. Create policy shortcut ... 685
Overview .. 685
Configuration ... 685

14. Create policy shortcut chain ... 686
Overview .. 686
General settings ... 686
Add a policy shortcut ... 686
Edit a policy shortcut ... 686

15. Quote of the day ... 688
Overview .. 688
Configuration ... 688

16. Reflect message ... 689
Overview .. 689
Configuration ... 689

17. Reflect message and attributes .. 690
Overview .. 690
Configuration ... 690

18. Remove attribute ... 691
Overview .. 691
Configuration ... 691

19. Set attribute ... 692
Overview .. 692
Configuration ... 692

20. Set response status ... 693
Overview .. 693
Configuration ... 693

21. Replace string .. 694
Overview .. 694
Configuration ... 694

22. Switch on attribute value ... 695
Overview .. 695
Configuration ... 695
Add a switch case .. 695

23. Allow or block messages at specified times ... 697
Overview .. 697
General settings ... 697
Basic time settings .. 697
Advanced time settings .. 698

24. Trace filter ... 699

Oracle® Fusion Middleware

xxix

Overview .. 699
Configuration ... 699

25. True filter ... 700
Overview .. 700
Configuration ... 700

30. Web services filters ...
1. Web service filter .. 701

Overview .. 701
General settings ... 701
Routing settings ... 701
Validation settings .. 701
Configuring message interception points ... 702
WSDL settings ... 704
Monitoring options .. 705

2. Return WSDL ... 706
Overview .. 706
Configuration ... 706

3. Set web service context .. 707
Overview .. 707
General settings ... 707
Service WSDL settings .. 707
Monitoring settings ... 707

31. Extend filters ..
1. Advanced filter view ... 708

Overview .. 708
Configuration ... 708

Edit filter settings .. 708
Return to the default filter view .. 708

2. Select configuration values at runtime ... 710
Overview .. 710
Selector syntax .. 710

Access fields ... 710
Special selector keys .. 711
Resolve selectors ... 711

Example selector expressions ... 711
Message attribute ... 711
Environment variable .. 712
Key Property Store ... 712
Examples using reflection .. 712

Extract message attributes ... 713
3. Key Property Store .. 714

Overview .. 714
KPS tables and collections ... 714
Enter data in a KPS table ... 714

KPS data sources ... 715
Add a KPS collection ... 715
Edit a KPS collection ... 716

Add a file data store .. 716
Add a database data store ... 716

Add a KPS table ... 717
Define the KPS table structure .. 717
Define the KPS table structure .. 717

4. Scripting language filter .. 719
Overview .. 719
Write a script ... 719

Use local variables ... 719
Add your script JARs to the classpath ... 720

Oracle® Fusion Middleware

xxx

Add your script JARs to the API Gateway classpath .. 720
Add your script JARs to Policy Studio ... 720

Configure a script filter ... 720
Add a script to the library ... 720

32. Configure common settings ...
1. Certificate validation .. 722

Overview .. 722
Configuration ... 722

2. Compressed content encoding ... 723
Overview .. 723
Encoding of HTTP responses ... 723
Encoding of HTTP requests .. 723
Delimit the end of an HTTP message ... 723

HTTP requests .. 723
HTTP responses .. 724

Configure content encodings .. 724
Add content encodings .. 724
Configure no content encodings .. 725

Further information ... 725
3. Configure connection groups ... 726

Overview .. 726
Configure a connection group ... 726
Configure a connection .. 726

4. Configure cron expressions ... 727
Overview .. 727
Create a cron expression using the time tabs ... 727

Seconds ... 727
Minutes .. 727
Hours ... 728
Day ... 728
Month .. 729
Year .. 729

Enter a cron expression ... 730
Test the cron expression .. 730

Results ... 730
Further information ... 730

5. Signature location ... 731
Overview .. 731
Configuration ... 731

Use WS-Security actors ... 731
Use SOAP header .. 731
Use XPath expression ... 732

6. Configure a transparent proxy .. 734
Overview .. 734
Configure transparent proxy mode for incoming interfaces .. 734
Configure transparent proxy mode for outgoing calls .. 734
Configuration example ... 734

7. LDAP user search ... 737
Configure directory search ... 737

8. Configure URL groups ... 738
Overview .. 738
Configuration ... 738

9. What to sign ... 739
Overview .. 739
ID configuration .. 739
Node locations ... 741
XPath configuration .. 741

Oracle® Fusion Middleware

xxxi

XPath predicates .. 741
Message attribute ... 742

10. Configure XPath expressions ... 743
Overview .. 743
Manual configuration ... 743

Return a nodeset .. 744
XPath wizard ... 744

33. Reference ...
WS-Policy reference ... 746
1. License acknowledgments .. 749

Overview .. 749
Acknowledgments .. 749

Oracle® Fusion Middleware

xxxii

What's new
New topics

This release of the API Gateway Policy Developer Guide contains the following new topics:

• Register and secure web services
• Expose a web service as a REST API
• Configure messaging services
• Configure a JMS service
• Configure a JMS session
• Configure a JMS consumer
• Read from JMS
• ???
• Check session
• Create session
• End session
• End session

Updated topics

This release of the API Gateway Policy Developer Guide contains the following updated topics:

• Configure policies from WSDL files
• Manage web services
• Send to JMS
• Policy Studio preferences
• Manage certificates and keys
• Configure HTTP services
• Configure relative paths
• Configure SMTP services
• Configure a file transfer service
• Extract REST request attributes
• Web service filter

1

Policy development with Policy Studio
Overview

This topic explains some of the main components and concepts used in API Gateway policy development, and shows
examples of how they are displayed in the API Gateway management tools such as Policy Studio and API Gateway Ex-
plorer. For example, these include concepts such as filters, policies, message attributes, and listeners. For details on the
core API Gateway features and architecture, see the API Gateway Concepts Guide. For example, this includes concepts
such as API Gateway instances, groups, Node Manager, Admin Node Manager, and so on.

API Gateway instances and groups

You can use Policy Studio to configure and deploy API Gateway instances and groups. An API Gateway instance is an
API Gateway capable of running on a host. You can configure various features at the instance level (for example, HT-
TP(S) interfaces, file transfer services, JMS services, remote hosts, and so on).

An API Gateway group is a collection of one or more API Gateway instances that share the same configuration. For
more details, see the API Gateway Concepts Guide.

Topology view

When you connect to an Admin Node Manager session in Policy Studio, the API Gateway groups and API Gateway in-
stances are displayed in the Topology view.

You can quickly identify any problems with the topology by looking at the icons in the Group / API Gateway column, and
the server status in the Status column. The status of a group or API Gateway is also displayed in the status bar at the
bottom.

API Gateway groups

The possible status of an API Gateway group in the Topology view is:

• Consistent—a group displayed with a blue icon is consistent. API Gateways in the group have the same configura-
tion. The status bar displays the group name (for example, QuickStart Group).

• Inconsistent—a group displayed with a grey icon is inconsistent. API Gateways in the group do not have the same
configuration (for example, if a group node was down, or during the phased roll out of configuration in a production
environment). The status bar displays <GroupName> configuration is inconsistent.

• Unlocked—a group displayed without a padlock icon is unlocked. API Gateways in the group are available for edit-
ing. When a group is unlocked and consistent, the status bar displays the group name (for example, QuickStart
Group).

• Locked—a group displayed with a padlock icon is locked. API Gateways in the group are locked by a specific user,
and are not available for editing. The status bar displays <GroupName> [locked by <UserName>]. To lock a
group, right-click the group name, and select Lock Group Access. To unlock a group, right-click, and select Unlock

2

Group Access. Only admin users can unlock groups locked by other users.

Note
To get an inconsistent configuration back to a consistent state, you can push the configuration from one
API Gateway instance to the other instances in the group. For more information, see the section called
“Push configuration to a group in Policy Studio”.

API Gateway instances

The possible status of an API Gateway instance in the Topology view is:

• Running—an API Gateway displayed with a blue icon is running. The status column shows the status as Up. The
status bar displays <ServerName> is running.

• Not running—an API Gateway displayed with a red icon is not running. The status column shows the status as
Down. The status bar displays <ServerName> is not running.

The following example shows a topology where the group is inconsistent, and an API Gateway is not running:

Tip
You can customize the Topology view in the Policy Studio preferences. For more details, see Policy Studio
preferences.

Filters

A filter is an executable rule that performs a specific type of processing on a message. For example, the Message Size
filter rejects messages that are greater or less than a specified size. There are many categories of message filters avail-
able with the API Gateway, including authentication, authorization, content filtering, signing, and conversion. In the Policy
Studio, a filter is displayed as a block of business logic that forms part of an execution flow known as a policy. The next
section shows some example filters.

Policies

A policy is a network of message filters in which each filter is a modular unit that processes a message. A message can
traverse different paths through the policy, depending on which filters succeed or fail. For example, this enables you to
configure policies that route messages that pass a Schema Validation filter to a back-end system, and route messages
that pass a different Schema Validation filter to a different system. A policy can also contain other policies, which en-
ables you to build modular reusable policies.

In the Policy Studio, the policy is displayed as a path through a set of filters. Each filter can have only one Success Path
and one Failure Path. You can use these success and failure paths to create sophisticated rules. For example, if the in-
coming data matches schema A, scan for attachments and route to service A, otherwise route to service B. You can con-
figure the colors used to display success paths and failure paths in the Policy Studio Preferences menu. You can also
specify to Show Link Labels (S or F).

Policy development with Policy Studio

3

The following shows an example policy that performs XML signature verification:

A policy must have a Start filter (in this case, Verify the Request XML Signature). Filters labeled End stop the execu-
tion of the policy (for example, the filter execution fails). A filter labeled Start/End indicates that the policy execution
starts there, and that the policy stops executing if this filter fails. A policy with a single filter labeled Start/End is also val-
id.

Message attributes

Each filter requires input data and produces output data. This data is stored in message attributes, and you can access
their values in API Gateway configuration using a selector syntax (for example, ${attribute.name}). You can also
use specific filters to create your own message attributes, and to set their values. The full list of message attributes flow-
ing through a policy is displayed when you right-click the Policy Studio canvas, and select Show All Attributes. You can
also hover your mouse over a filter to see its inputs and outputs. The Trace filter enables you to trace message attribute
values at runtime.

The message attribute white board refers to the list of attributes that are available to a particular filter at runtime of the
API Gateway during the processing of requests and responses. The following example shows the attributes displayed
when hovering over a Connect to URL filter at design time in Policy Studio:

Policy development with Policy Studio

4

If a filter requires an attribute as input that has not been generated in the previous execution steps, the filter is displayed
in a different color in the Policy Studio (default is red). You can configure the color used to display missing attributes in
the Policy Studio Preferences menu. Alternatively, you can also view all required attributes by right-clicking the canvas,
and selecting Show All Attributes.

A missing attribute may indicate a problem that you need to investigate (for example, in the chaining of filters or policies,
or that the policy can not run on its own). This is often the case for reusable filters, such as those displayed in the previ-
ous example.

At the policy level, you also can click the horizontal bar at the top of the Policy Studio canvas to show the list of all attrib-
utes required as input to the entire policy. If any attributes are generated by the policy, you can click a corresponding bar
at the bottom to see a list of generated attributes. The following example shows a required attribute:

Policy development with Policy Studio

5

Selectors

A selector is a special syntax that enables API Gateway configuration settings to be evaluated and expanded at runtime
based on metadata (for example, in message attributes, a Key Property Store (KPS), or environment variables). For ex-
ample, the following selector returns the value of a message attribute:

${http.request.clientaddr}

Selectors are powerful a feature for System Integrators (SIs) and Independent Software Vendors (ISVs) when extending
the API Gateway to integrate with other systems. For more details on selectors, see Select configuration values at
runtime.

Faults and errors

When a transaction fails, you can use a fault to return error information to the client application. The API Gateway
provides the SOAP Fault, JSON Error, and Generic Error filters. By default, the API Gateway returns a very basic fault
to the client when a message filter fails. You can add a specific fault filter to a policy to return more detailed error inform-
ation to the client. For example, the following screen shows an authentication policy that includes a SOAP Fault:

Policy development with Policy Studio

6

Policy shortcuts

A policy shortcut enables you to create a link from one policy to another policy. For example, you could create a policy
that inserts security tokens into a message, and another that adds HTTP headers. You can then create a third policy that
calls the other two policies using Policy Shortcut filters.

A policy shortcut chain enables you to run a series of policies in sequence without needing to create a policy containing
policy shortcuts. In this way, you can create modular policies to perform certain specific tasks, such as authentication,
content filtering, returning faults, or logging, and then link these policies together in a sequence using a policy shortcut
chain.

Alerts

The API Gateway can send alert messages for specified events to various alerting destinations. System alerts are usu-
ally sent when a filter fails, but they can also be used for notification purposes. For example, the API Gateway can send
system alerts to the following destinations:

• Email Recipient
• Check Point Firewall-1 (OPSEC)
• Local Sylsog

Policy development with Policy Studio

7

• Remote Sylsog
• SNMP Network Management System
• Twitter
• Windows Event Log

You can configure alert destinations, and then add an Alert filter to a policy, specifying the appropriate alert destination.

Policy containers

A policy container is used to group similar policies together (for example, all authentication or logging policies), or
policies that relate to a particular service. A number of useful policies are provided in the Policy Library container (for
example, policies that return faults, and policies that block threatening content). You can add your own policies to this
container, and add your own policy containers to suit your requirements.

Policy contexts

Policies can execute in a specified context. For example, you can set a context by associating a relative execution path
or listener with a policy. When a policy is called from another policy, the context is set to the calling policy name (for ex-
ample, Authenticate). In the Policy Studio, you can select a context from the Context drop-down list at the bottom of the
policy canvas. The Policy Studio then displays whether the attributes required for execution are available in that context.
The Context list includes all connected relative paths, listeners, Web services, SMTP services, and policy shortcuts that
use the selected policy. Click the View navigator node button to display the selected context.

Listeners

You can define different types of listeners and associate them with specific policies. For example, listeners include the
following types:

• HTTP/HTTPS
• Directory Scanner
• POP mail server connection
• JMS connection
• TIBCO Rendezvous connection

The API Gateway can be used to provide protocol mediation (for example, receiving a SOAP request over JMS, and
transforming it into a SOAP/HTTP request to a back-end service). For HTTP/HTTPS listeners, policies are linked to a rel-
ative path. Otherwise, policies are linked to the listener itself. You can associate a single policy with multiple listeners.

Remote hosts

You can define a remote host when you need more control of the connection settings to a particular server. The available
connection settings include the following:

• HTTP version
• IP addresses
• Timeouts
• Buffers
• Caches

For example, by default, the API Gateway uses HTTP 1.1. You can force it to use HTTP 1.0 using Remote Host settings.
You must also define a Remote Host if you want to track real-time metrics for a particular host.

Policy development with Policy Studio

8

Servlet applications

The API Gateway provides a Web server and servlet application server that can be used to host static content (for ex-
ample, documentation for your project), or servlets providing internal services. Static content or servlets can be accessed
from a policy using the Call Internal Service filter. This feature is not meant to replace an enterprise J2EE server, but
rather to enable you to write functionality using technology such as servlets.

Service virtualization

When you register an API service or Web service, and deploy it to the API Gateway, the API Gateway virtualizes the ser-
vice. Instead of connecting to the service directly, clients connect through the API Gateway. The API Gateway can then
apply policies to messages sent to the destination service (for example, to enable security, monitoring, and acceleration).

Policy development with Policy Studio

9

Start the API Gateway tools
Overview

This topic describes the prerequisites and preliminary steps. It explains how to start the API Gateway Manager adminis-
trator tool and the Policy Studio developer tool.

Before you begin

Before you start the API Gateway tools, do the following:

Install the API Gateway and Policy Studio
If you have not already done so, see the API Gateway Installation and Configuration Guide.

Configure a managed domain
If you have not already created a domain, you can use the managedomain script to configure a domain. You should also
ensure that the Admin Node Manager and an API Gateway instance are running.

Launch API Gateway Manager

To access the web-based API Gateway Manager administration tools, perform the following steps:

Note
You must ensure that the Admin Node Manager is running before you can access the web-based API
Gateway Manager tools.

1. Enter the following URL:

https://HOST:8090/

HOST refers to the host name or IP address of the machine on which the API Gateway is running (for example, ht-
tps://localhost:8090/).

2. Enter the administrator user name and password configured at installation time.
3. Click the appropriate button in the API Gateway Manager page in the browser. The Dashboard view is displayed by

default.

The API Gateway Manager includes the following main views:

• Dashboard: System health, traffic summary, and topology (domain, hosts, API Gateways, and groups).
• Traffic: Message log and performance statistics on the traffic processed by the API Gateway. For example, all HT-

TP, HTTPS, JMS, File Transfer, and Directory messages processed by the API Gateway.
• Monitoring: Real-time monitoring of all the traffic processed by the API Gateway. Includes statistics at the system

level and for services invoked and remote hosts connected to.
• Logs: API Gateway trace log, transaction log, and access log files.
• Events: API Gateway transaction log points, alerts, and SLA alerts.
• Settings: Enables you to configure dynamic API Gateway logging, user roles, and credentials.

Start Policy Studio

To start the Policy Studio tool used to create and manage policies, perform the following steps:

10

1. In your Policy Studio installation directory, enter the policystudio command.
2. In the Policy Studio, click a link to connect to the Admin Node Manager session.
3. In the Open Connection dialog, enter the administrator user name and password and click OK.
4. The API Gateway instance is displayed in the Topology view.
5. In the Topology view, double-click the API Gateway instance to load the configuration for the active API Gateway.
6. If Node Manager credential checking is enabled, enter the administrator user name and password in the Node Man-

ager credentials dialog, and click OK. To disable credential checking for future deployment or topology operations,
deselect the Always prompt for user credentials check box.

7. If a passphrase has been set, enter it in the Enter Passphrase dialog, and click OK. Alternatively, if no passphrase
has been set, click OK.

Policy Studio enables you to perform the full range of API Gateway configuration and management tasks. This includes
tasks such as develop and assign policies, import services, optimize API Gateway configuration settings, and manage
API Gateway deployments. For more details on using the Policy Studio to manage API Gateway processes and configur-
ations, see Manage API Gateway deployments.

Start the API Gateway tools

11

Configure the sample policies
Overview

This topic introduces and explains how to set up the example policies available in the samples directory of your API
Gateway installation. These include the following:

• Conversion: exposes a SOAP service over REST.
• Security:

• verifies the digital signature on the request and creates a signature on the response.
• decrypts the request and encrypts part of the response.

• Throttling: limits the number of calls for a service.
• Virtualized Service: combines threat protection, content-based routing (target a server according to request con-

tents), and message transformation.

Tip
If you are new to the API Gateway, you should first read the following to get familiar with the main concepts
and basic steps:

• API Gateway Concepts Guide
• Policy development with Policy Studio
• Start the API Gateway tools

This guide assumes that you have already installed and started the API Gateway and Policy Studio. The API Gateway
Explorer client GUI testing tool is optional.

Enable the sample services interface

The HTTP interface for the sample policy services is disabled by default. To enable this interface in Policy Studio, per-
form the following steps:

1. In the navigation tree, select Listeners > API Gateway > Sample Services >
*:${env.PORT_SAMPLE_SERVICES}.

2. Right-click, and select Edit to display the Configure HTTP Interface dialog.
3. Select the Enable interface setting.
4. Click OK.

12

Alternatively, you can also enable this HTTP interface using the web-based API Gateway Manager tool running on ht-
tp://HOST:8090, where HOST is the machine on which the Node Manager is running.

1. Click the Settings button in the API Gateway Manager toolbar.
2. Select the HTTP interface node under Sample Services on the left.
3. Select the Interface Enabled setting on the right.
4. Click the Apply button.

Note
Settings made in the web-based API Gateway Manager tool are dynamic settings only, which are not per-
sisted.

Configure a different sample services interface

All sample policy services are defined in an HTTP services group named Sample Services. This group uses an HTTP
interface running on the port specified in the ${env.PORT_SAMPLE_SERVICES} environment variable. This external en-
vironment variable is set to 8081 by default. If you wish to use a different port, you must configure this variable in the
INSTALL_DIR/conf/envSettings.props file. For example, you could add the following entry:

env.PORT.SAMPLE.SERVICES=8082

For more details on setting external environment variables for API Gateway instances, see the API Gateway Deployment
and Promotion Guide.

StockQuote demo service

All sample policies use a demo service named StockQuote, which is implemented using a set of policies. This service
exposes two operations:

• getPrice: the policy for this operation uses a sample script to randomly calculate a quote value. Each call to get-
Price() returns a different value.

• update: returns an Accepted HTTP code (202).

Configure the sample policies

13

The StockQuote service is exposed on the following relative paths:

• /stockquote/instance1

• /stockquote/instance2

These relative paths are used in the virtualized service sample for content-based routing.

A Connect to URL filter with the following URL is used to invoke the StockQuote service from each of the sample
policies:

http://stockquote.com/stockquote/instance1

The first part of this URL uses a remote host definition of stockquote.com. Remote hosts are logical names that de-
couple the host name in a URL from the server (or group of servers) that handles the request.

Remote host settings

In the Policy Studio, the remote host configuration is displayed under the API Gateway instance name (API Gateway)
in the navigation tree, and is named stockquote.com:80. To view its settings, right-click, and select Edit to view the
Remote Host Settings dialog:

On the General tab, the remote host is set to:

• Use HTTP 1.1.
• Use port 80 by default.
• Include the ContentLength header in the request to the back-end server.
• In case of an SSL connection, verify the Distinguished Name (DN) in the certificate presented by the server against

the server’s host name.

Configure the sample policies

14

On the Addresses and Load Balancing tab, the remote host is set to send requests to local-
host:${env.PORT_SAMPLE_SERVICES}, which resolves to localhost:8081 by default. You could also specify sev-
eral servers in the Addresses to use instead of DNS lookuplist, and the API Gateway would load balance the requests
across servers in the same group using the specified algorithm.

For more details on these settings, see Configure remote host settings.

Configure the sample policies

15

Conversion sample policy
Overview

The conversion sample policy takes a REST-style request and converts it into a SOAP call. This topic describes the
REST to SOAP policy, and explains how to run this sample.

REST to SOAP policy

The REST to SOAP policy is as follows:

The REST to SOAP policy performs the following tasks:

1. Extracts the information from the request (a message attribute is created for each query string and/or HTTP header).
2. Creates a SOAP message using the Set Message filter.
3. Sends the request to the StockQuote demo service.
4. Extracts the value of the stock from the response using XPath.
5. Creates a plain text response.

16

6. Sets the HTTP status code to 200.

Run the conversion sample

You can call the sample service using the send request (sr) command or the API Gateway Explorer GUI:

sr command

Enter the following command:

sr http://HOSTNAME:8081/rest2soap?symbol=ABC

For more details, see the topic on Stress test with send request (sr).

API Gateway Explorer

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/rest2soap?symbol=ABC

2. Select GET as the verb.
3. Click the Run button.

For more details, see the topic on Send a request with API Gateway Explorer.

Conversion sample policy

17

Security sample policies
Overview

The security sample policies demonstrate digital signature verification and cryptographic operations (encryption and de-
cryption). This topic describes the sample policies, and explains how to run these samples.

Signature verification

The Signature Verification sample policy sends a digitally signed version of the StockQuote request to the API Gate-
way. The message carries the signature into the web service header. A sample certificate/key pair (Samples Test
Certificate) is used to sign the message and verify the signature. Signature verification is used for authentication
purposes, and therefore an HTTP 403 error code is returned if a problem occurs.

The Signature Verification policy is as follows:

The Signature Verification policy performs the following tasks:

1. The signature contained in the request is verified. The signature must be located in a WS Security block.
2. If the verification is successful, the StockQuote demo service is invoked.
3. The response body is signed and returned to the client.
4. If the verification fails, an HTTP 403 error code is returned to the client.

Run the signature verification sample

You can call the sample service using the send request (sr) command or the API Gateway Explorer GUI:

sr command

Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/Security/SignatureVerification/Request.xml
http://localhost:8081/signatureverification

For more details, see the topic on Stress test with send request (sr).

18

API Gateway Explorer

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://hostname:8081/signatureverification

2. Select POST as the Verb.
3. Click the Close button.
4. Select File > Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Security/SignatureVerification/Request.xml

5. Click the Send Request button.

For more details, see the topic on Send a request with API Gateway Explorer.

Encryption and decryption

This sample uses XML decryption on the request and applies encryption on the response. The sample policy includes a
Main policy, which chains together the calls that decrypt the request, the invocation of the back-end service, and the en-
cryption of the response.

The Main policy is as follows:

The Main policy performs the following tasks:

1. Decrypt Request is a policy shortcut, which invokes another policy that takes the inbound request and decrypts it.
2. The decrypted request is routed to the back-end service.
3. The Encrypt Response policy shortcut invokes a policy that encrypts the response from the back-end service.

The Decrypt policy is as follows:

Security sample policies

19

The Decrypt policy performs the following tasks:

1. The decryption settings are defined: what to decrypt and which key to use.
2. The XML decryption is executed based on the defined settings.

The Encrypt policy is as follows:

The Encrypt policy performs the following tasks:

1. The encryption settings are defined: what to encrypt, which symmetric key to use, which certificate to use, and how
to encrypt (algorithm and where to place the encryption information).

2. The XML encryption is executed based on the defined settings.

Run the encryption and decryption sample

You can call the sample service using the send request (sr) command or the API Gateway Explorer GUI:

sr command

Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/Security/Encryption/Request.xml
http://HOSTNAME:8081/encryption

For more details, see the topic on Stress test with send request (sr).

Security sample policies

20

API Gateway Explorer

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/encryption

2. Select POST as the Verb.
3. Click the Close button.
4. Select File > Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Security/Encryption/Request.xml

5. Click the Send Request button.

For more details, see the topic on Send a request with API Gateway Explorer.

Security sample policies

21

Throttling sample policy
Overview

The throttling sample policy is used to limit the number of calls for a service. This topic describes the Throttle policy, and
explains how to run this sample.

Throttling refers to restricting incoming connections and the number of messages to be processed. It can be applied to
XML, SOAP, REST, or any payload, request, or protocol. Traffic can be regulated for a single API Gateway or for a
cluster of API Gateways. You can apply traffic restrictions rules for a service, an operation, or even time of day. For ex-
ample, these restrictions can be applied depending on the service name, user identity, IP address, content from the pay-
load, protocol headers, and so on.

Throttling policy

The Throttle policy is as follows:

The Throttle policy performs the following tasks:

1. The first filter checks whether the limit has been reached. The limit is set to 3 requests per 15 sec. The caller’s IP
address is used to track the consumer ID. The counter is kept in a local cache.

2. If the limit has been reached, an error message is created, and the response status code is set to 500.
3. If the authorized limit has not been reached, the back-end service is invoked, and the HTTP status code is set to

200.

Run the throttling sample

You can call the sample service using the send request (sr) command or the API Gateway Explorer GUI:

sr command

Enter the following command:

sr -f
INSTALL_DIR/samples/SamplePolicies/Throttling/Request.xml http://HOSTNAME:8081/throttle

For more details, see the topic on Stress test with send request (sr).

22

API Gateway Explorer

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/throttle

2. Select POST as the verb.
3. Click the Close button.
4. Select File > Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Throttling/Request.xml

5. Click the Send Request button.

For more details, see the topic on Send a request with API Gateway Explorer.

Throttling sample policy

23

Virtualized service sample policy
Overview

The virtualized service sample policy is more advanced and combines the following features:

• Content filtering, XML complexity, and message size filters to block unwanted SOAP messages.
• Content filtering to block unwanted REST requests.
• Fault handling.
• Content-based routing.

This topic describes the policies displayed in the Sample Policies > Web Services > Virtualized StockQuote Service
policy container in Policy Studio, and explains how to run this sample.

Virtualized service policies

The Virtualized StockQuote Service sample policy container includes the following policies:

• Virtualized service main policy
• Threat protection policy
• Content-based routing policies
• Response transformation policy

The Main Policy is as follows:

24

The Main Policy uses policy shortcuts to perform the following tasks:

1. The main fault handler relies on some variables to be initialized, which is performed as soon as the policy is entered.
2. The Threat Detection policy is applied to the incoming SOAP message and HTTP headers.
3. The symbol value is extracted from the incoming message, and used to decide whether the request should be sent

to one server instance or another.
4. The name of the instance that served the request is added to the response.
5. In case of errors, a global fault handler is invoked. This is used to return a custom error message to the user.

The Threat Protection policy is as follows:

Virtualized service sample policy

25

The Threat Protection policy performs the following tasks:

1. The incoming request size (including attachments) is checked to be less than 1500 KB.
2. The complexity of the XML is checked in terms of number of nodes, attributes per node, or number of child nodes

per node.
3. XML and eventually HTTP headers are checked for threatening content such as SQL injection or XML processing in-

structions.
4. If any of these filters return an error, the corresponding error handler is called. The error handler is implemented as a

policy that sets the value of the error code and message for this error, and then re-throws the exception so that the
global fault handler catches it.

Content-based routing policies

The Route Based on Symbol Value policy extracts the contents of the symbol XML node and checks whether the first
letter’s value is between A-L or K-Z. Depending on the result, it routes the request to the first or second instance of the
StockQuote server. These servers are simulated by the following relative path URIs defined in the API Gateway:

• /stockquote/instance1

• /stockquote/instance2

The Route Based on Symbol Value policy is as follows:

Virtualized service sample policy

26

The Route Based on Symbol Node policy performs the following tasks:

1. The value of the symbol node is extracted from the request using XPath. The result is placed in a message attribute
named message.symbol.value.

2. A Switch on attribute value filter is used to check the value of the message attribute (using a regular expression),
and a different policy is called to send the request to instance1 or instance2.

The Route to Instance1 policy is as follows:

The Route to Instance1 policy (called from the Switch filter) performs the following tasks:

1. Connects to the instance1 URI .
2. If successful, the instance name (instance1) is placed in a message attribute (stockquote.instance.name).

This is used later on to insert the instance name into the response.

The Route to Instance2 policy performs the same tasks but using the instance2 URI instead.

Response transformation policy

When the response is obtained from the back-end server, the Add Instance Name to Response policy changes it to in-
sert the instance name into a new XML node (instanceName). The Add Instance Name to Response policy is as fol-
lows:

Virtualized service sample policy

27

This policy adds the instance name (the value of the stockquote.message.name message attribute) to the response,
using an Add XML node filter, as part of the SOAPbody. XPath is used to define where the new node must be added.

Run the virtualized service sample

You can call the sample service using the send request (sr) command or the API Gateway Explorer GUI:

sr command

Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml
http://HOSTNAME:8081/main/stockquote

For more details, see the topic on Stress test with send request (sr).

API Gateway Explorer

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/main/stockquote

2. Select POST as the verb.
3. Click the Close button.
4. Select File > Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml

5. Click the Send Request button.

For more details, see the topic on Send a request with API Gateway Explorer.

Virtualized service sample policy

28

Stress test with send request (sr)
Overview

The API Gateway provides a command-line tool for stress testing named send request (sr). The sr tool is available in the
following directory of your API Gateway installation:

Windows INSTALL_DIR\Win32\lib

Solaris/Linux INSTALL_DIR/posix/lib

64-bit Linux INSTALL_DIR/Linux.x86_64/bin

The sr tool is also available from the root directory of the API Gateway Explorer installation.

Important
On Linux, the LD_LIBRARY_PATH environment variable must be set to the directory from which you are
running the sr tool. On Linux and Solaris, you must use the vrun sr command. For example:

vrun sr http://testhost:8080/stockquote

Basic sr examples

The following are some basic examples of using the sr command:

HTTP GET:

sr http://testhost:8080/stockquote

POST file contents (content-type inferred from file extension):

sr -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times:

sr -c 10 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times in 3 parallel clients:

sr -c 10 -p 3 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send the same request quietly:

sr -c 10 -p 3 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

Run test for 10 seconds:

sr -d 10 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

29

POST file contents with SOAP Action:

sr -f StockQuoteRequest.xml -A SOAPAction:getPrice http://testhost:8080/stockquote

Advanced sr examples

The following are some advanced examples of using the sr command:

Send form.xml to http://192.168.0.49:8080/healthcheck split at 171 character size, and trickle 200 millisecond
delay between each send with a 200 Content-Length header:

sr -h 192.168.0.49 -s 8080 -u /healthcheck -b 171 -t 200 -f form.xml
-a "Content-Type:application/x-www-form-urlenprogramlistingd" -a "Content-Length:200"

Send a multipart message to http://192.168.0.19:8080/test, 2 XML docs are attached to message:

sr -h 192.168.0.49 -s 8080 -u /test -{ -a Content-Type:text/xml -f soap.txt
-a Content-Type:text/xml -f attachment.xml -a Content-Type:text/xml -} -A c-timestamp:1234

Send only headers using a GET over one-way SSL running 10 parallel threads for 86400 seconds (1 day) using
super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -u /nextgen -f test_req.xml -a givenName:SHViZXJ0
-a sn:RmFuc3dvcnRo -v GET -p10 -d86400 -qq

Send query string over mutual SSL presenting client certificate and key doing a GET running 10 parallel threads
for 86400 seconds (1 day) using super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -X client.pem -K client.key
-u "https://localhost:8443/idp?TargetResource=http://oracle.test.com" -f test_req.xml
-v GET -p10 -d86400 -qq

Send zip file in users home directory to testhost on port 8080 with /zip URI, save the resulting response content
into the result.zip file, and do this silently:

sr -f ~/test.zip -h testhost -s 8080 -u /zip -a Content-Type:application/zip
-J result.zip -qq

sr arguments

The main arguments to the sr command include the following:

Argument Description

--help List all arguments

-a attribute:value Set the HTTP request header (for example, -a Content-Type:text/xml)

-c [request-count] Number of requests to send per process

-d [seconds] Duration to run test for

-f [content-filename] File to send as the request

-h [host] Name of destination host

-i [filename] Destination of statistics data

Stress test with send request (sr)

30

Argument Description

-l [file] Destination of diagnostic logging

-m Recycle SSL sessions (use multiple times)

-n Enable nagle algorithm for transmission

-o [output] Output statistics information every [milliseconds] (only with -d)

-p [connections] Number of parallel client connections (threads) to simulate

-q , -qq, -qqq Quiet modes (quiet, very quiet, very very quiet)

-r Do not send HTTP Request line

-s [service] Port or service name of destination (default is 8080)

-t [milliseconds] Trickle: delay between sending each character

-u [uri] Target URI to place in request

-v [verb] Set the HTTP verb to use in the request (default is POST)

-w [milliseconds] Wait for [milliseconds] between each request

-x [chunksize] Chunk-encode output

-y [cipherlist] SSL ciphers to use (see OpenSSL manpage ciphers(1))

-z Randomize chunk sizes up to limit set by -x

-A attribute:value Set the HTTP request header (for example, -a Content-Type:text/xml) in
the outermost attachment

-B Buckets for response-time samples

-C enCrypt (use SSL protocol)

-I [filename] File for Input (received) data (- = stdout)

-K RSA Private Key

-L Line-buffer stdout and stderr

-M Multiplier for response-time samples

-N origiN for response-time samples

-O [filename] File for Output (sent) data (- = stdout)

-S [part-id] Start-part for multipart message

-U [count] reUse each connection for count requests

-V [version] Sets the HTTP version (1.0, 1.1)

-X X.509 client certificate

-Y [cipherlist] Show expanded form of [cipherlist]

[-{/-} Create multipart body (nestable: use -f for leaves)

Further information

For a listing of all arguments, enter sr --help. For more information, and details on advanced use, see the srman-
page.pdf file in your sr installation directory.

Stress test with send request (sr)

31

Send a request with API Gateway Explorer
Overview

This topic describes how to create and send a request in the API Gateway Explorer test client GUI. You can start API
Gateway Explorer using the apigatewayexplorer command from the installation directory.

Create a request in API Gateway Explorer

To create a request, perform the following steps:

1. Click the down arrow button beside the green triangular Send Request button in the toolbar, and select Request
Settings:

2. In the Request Settings dialog, click the Add Request button on the left in the toolbar:

3. Enter the details for the request that you wish to execute in the Add Request Configuration dialog (for example:
http://localhost:8080/conversion). If the Request name matches URL setting is not selected, you can
supply a custom Request Name for this request.

32

4. Click OK to save the request configuration.
5. Select the request that you created in the Select Request Configuration menu:

6. In the main menu, select File > Load Request, and browse to the file that you wish to use as input for this request.
For example, you can select the following file for the Virtualized Service sample:

INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml

7. Click the green triangular Send Request button in the toolbar to send the request.

Further information

For more details on using the API Gateway Explorer client GUI tool, see the API Gateway Explorer Policy Developer
Guide.

Send a request with API Gateway Explorer

33

Configure policies manually
Overview

This topic describes how to use Policy Studio to configure an API Gateway policy manually. It also applies to cases
where a Web service definition is not available in a Web Services Description Language (WSDL) file, the policy used to
protect a Web service must be configured manually. The steps outlined in this topic describe how to do this.

However, the recommended way to configure a policy to protect a Web service is to import the WSDL file for that service.
If WS-Policy information is contained in the WSDL file, the policy assertions can also be used to produce a complex
policy with minimum effort for administrators.

If your Web service has WSDL-based definitions, see the Configure policies from WSDL files topic.

Configuration

The following steps outline how to manually create a policy to protect a Web service and then test it.

Step 1: Create the policy
To create a policy manually, complete the following steps:

1. Right-click the Policies node in the tree view of Policy Studio, and select the Add Policy menu option.
2. Enter a suitable name (for example TestPolicy) for the new policy in the Name field, and click the OK button. The

new policy is now visible in the tree view.
3. Click the new policy in the tree view to start configuring the filters for the policy. You can easily configure the policy

by dragging the required filters from the filter palette on the right of Policy Studio, and dropping them on to the policy
canvas.

4. Most policies attempt to check characteristics of the message, such as message size and format, and attempt to au-
thenticate and/or authorize the sender of the message. When the message successfully passes all configured filters,
it is usually routed on to the protected Web service.

5. For demonstration purposes, this topic creates a simple policy consisting of two filters. The first filter checks the size
of the message, and the second echoes the request message back to the client if it is below a certain size.

6. Expand the Content Filtering category of filters from the filter palette, and drag and drop the Message Size filter on
to the canvas.

7. Enter 10 in the At least field and 1000 in the At most field to make sure that only messages between 10 bytes and
1000 bytes are reflected back to the client. Select all other defaults, and click the Finish button.

8. Right-click the newly added filter, and select the Set as Start menu option to indicate that this is the first filter to be
executed in this policy. The icon for the filter changes to indicate that it is the start of the policy.

9. Open the Utilities category of filters, and drag the Reflect filter onto the canvas. Drop it on to the previously con-
figured Message Size filter. Select the defaults for the Reflect filter, and click the Finish button.

10. Because you dropped the Reflect filter on to the Message Size filter, both filters are automatically linked with a suc-
cess path. This means that if the first filter runs successfully, the next filter on the success path is executed. To link
in more filters, add the filters to the canvas, and click the Success Path button at the top of the palette. Click the first
filter followed by the second filter in the success path to link both filters.

11. You can also configure failure paths for filters in the same way. Failure paths are followed when the checks con-
figured in the filter fail.

This completes the configuration of the simple policy.

Step 2: Create a new relative path
You must now create a Relative Path on the API Gateway instance, which maps incoming requests on a particular URI
to the new policy. Complete the following steps:

34

1. In the tree view of Policy Studio, right-click the Default Services node, which can be found under the API Gateway
node under the Listeners node. Select the Add Relative Path menu option.

2. On the Configure Relative Path dialog, enter a suitable URI (for example, TestPolicy) on which you want to re-
ceive requests that are to be processed by the new policy.

3. To map requests received on this URI to our new policy, select the /TestPolicy policy from the list of policies in
the tree. Click the OK button when finished.

Step 3: Deploy to API Gateway
Before the new configuration changes can take effect, you must deploy them to API Gateway. You can do this by clicking
the Deploy button on the right of the toolbar. Alternatively, press the F6 key.

Step 4: Test the policy
You can use the tool of your choice (for example, Oracle API Gateway Explorer) to send SOAP requests to the new
policy. You should send requests of different sizes to the following URL, assuming a default installation of API Gateway
running on the local machine:
http://localhost:8080/TestPolicy
Request messages that fall between the configured size are reflected to the client. Those fall outside of the configured
are blocked, and a SOAP Fault is returned to the client.

Step 5: Next steps
Try running more complicated checks on request messages by adding new filters to the TestPolicy. Try also adding
failure paths to the original Message Size filter to handle messages that fall outside of the 10-1000 byte range.

Use the Help button on each filter window to find out more about the configuration fields that are available on each win-
dow.

Configure policies manually

35

Configure global policies
Overview

Global policies enable you to label policies with specific roles in the API Gateway configuration. For example, you can la-
bel a specific policy such as XML Threat Policy as a Global Request policy. This policy can be executed globally on
the request path for all messages passing through API Gateway. Using a global policy in this way enables you to use the
same policy on all requests, and for multiple services. It also means that you can change the labeled global policy to a
different policy without needing to rewire any existing policies.

For example, using a Policy Shortcut Chain filter in a policy enables you to delegate to one or more policies to perform
specific tasks, before continuing execution of the remaining filters in the current policy. Using this approach to encapsu-
late specific functionality in a policy facilitates modularity and reusability when designing API Gateway policies. This en-
ables you to build up a policy library of reusable routines over time.

Each shortcut in a Policy Shortcut Chain points to a specific policy, which is called at each point in the execution chain.
However, consider a policy whose role is to be called first in all message handling contexts before any context-specific
policies are run, and call this the run-first role. To realize this, you must create a Policy Shortcut Chain with a link to the
run-first policy as its first entry, the context-specific policy as its second link, and so on.

One of the shortcomings of this approach is that if you have set up a large number of Policy Shortcut Chain filters, each
calling the run-first policy, and you need to change the run-first policy globally, you must update each Policy Shortcut
Chain filter individually to point to the newly designated run-first policy. Similarly, if you wish to ignore the run-first Policy
globally, you must remove the first entry in each filter.

Global policies enable you to label a specific policy in terms of its role. You can delegate to the policy using its label in-
stead of a specific link to the policy. This indirection using a label makes it very easy to globally change which policy is
delegated to, merely by moving the label from one policy to another. Each filter that refers to the policy using its label
now resolves the label to the new policy without needing to change the filter configuration. Similarly, if the label is not ap-
plied to a specific policy, nothing is executed for this link.

Global policy roles

The following global policy roles have a reserved label and a specific meaning in the API Gateway policy framework:

Role Label Description

Global Request Policy system.policy.request Executed globally for all messages
passing through the API Gateway on
the request path.

Global Response Policy system.policy.response Executed globally for all messages
passing through the API Gateway on
the response path.

Global Fault Handler Policy system.policy.faulthandler If any policy aborts during execution, or
a top-level policy fails and has not spe-
cified a Fault Handler filter, this policy
is executed instead of the internal
SOAP Fault filter.

You can select specific policies with these roles under the Policies node in the Policy Studio tree. You can then create
links to these roles when creating a Policy Shortcut Chain. These steps are explained in the next sections.

36

Select a global policy

To select a global policy, right-click a policy under the Policies node, and select one or more global policies (for ex-
ample, Set as Global Request Policy, Set as Global Response Policy, or Set as Global Fault Handler Policy).
These policies are executed globally for all messages passing through API Gateway.

The following example shows the XML Threat Policy set as the Global Request Policy. The policy node labeled for the
specific role is displayed with a globe icon:

When you have selected the policy for a specific role, you can then reference the labeled policy in a Policy Shortcut
Chain filter, or at the service level in a relative path or Web service resolver. Referencing a labeled policy is different
from referencing a specific policy directly. Referencing a policy directly involves selecting a specific policy to execute in
the chain. Referencing a labeled policy means selecting a filter by its label only.

The main advantage of this approach is that you can configure a policy to run in a policy shortcut chain in a specific role,
and then select a different policy as the global policy for that role. All references to the global policy label in the various
shortcut chain filters are changed to use the newly selected policy, without requiring you to modify each policy shortcut
chain filter individually to explicitly point to a different policy.

Selecting another policy in a global role deselects the previously selected policy. The following example shows the
Health Check set in the global role, and the XML Threat Policy policy is no longer selected:

Configure global policies

37

Important
You can not select a policy for a specific role if, in doing so, you create a loop in the policies. For example,
if a Policy Shortcut Chain filter has a reference to a labeled policy, and the filter’s parent policy is marked
as the labeled policy, the filter would call back to itself in a loop. This error is caught, and a trace line is out-
put to Policy Studio Console view.

Configure global policies in a policy shortcut chain

When adding a policy shortcut in a Policy Shortcut Chain filter, you can select to call a labeled policy instead of select-
ing a specific policy. The following example from the Add a new Shortcut to a Policy dialog shows adding a shortcut to
the Global Request Policy (Health Check) policy label:

Configure global policies

38

Then if you select a different policy as the request policy in the Policy Studio tree, when you subsequently view this
shortcut in the chain filter, you see that the details for the shortcut have changed. The following example from the Edit
the Shortcut to the Policy dialog shows the policy label changed to Global Request Policy (XML Threat Policy).

For more details on configuring these windows, see the Create policy shortcut chain topic.

Important
If you remove a label from a policy by deselecting it in the Policy Studio tree, any reference to that labeled
policy is not called when evaluating the shortcut in the chain, irrespective of whether the Evaluate this
shortcut when executing the chain check box is selected (the Active status column in the table view).
This corresponds with the behavior for a specific policy in the chain. If a link to a policy is not set for a short-
cut, the link is not evaluated.

In this example, the table shows that the shortcut is configured to point to the labeled policy, but the label does not re-
solve to a policy (for example, it is unspecified because there is no policy in the specified role):

Configure global policies

39

Configure global policies for a service

Under the Listeners node, you can also configure global policies at the service level to run on a specific relative path or
Web service resolver when messages are received by API Gateway. A relative path binds a policy to a specific relative
path location (for example /healthcheck). A Web service resolver maps messages destined for a specific Web service
to a Service Handler or Web Service Filter.

You can configure a global policy at the service level to run as part of a policy chain invoked when incoming messages
are received by API Gateway. The following example shows the Global Request Policy configured to run first on the /
healthcheck relative path:

For more details, see the Configure relative paths topic.

Show global policies

To view the currently configured global policies, right-click the Policies root tree node, and select Show Global Policies.
This displays all currently configured global policies in the context menu, for example:

Configure global policies

40

Note
If there are no global policies configured, the Show Global Policies menu item is not available.

Configure global policies

41

Configure policy assemblies
Overview

In certain cases, you may need to convert a policy into a modular reusable piece of functionality that can be called from
other policies. For example, you have a complex policy that creates a WS-Security UsernameToken, inserts it into the
message, and subsequently creates an XML Signature over the token and SOAP body. Depending on the message re-
cipient, the content may need to be signed using slightly different settings. One service might require a
<sp:Basic128/> algorithm suite, while another might require <sp:Basic256/>).

Similarly, subtle differences in security requirements may require the token and signature to be generated differently. For
example:

• Use a basic or digest password for the UsernameToken

• Insert a <dsig:CarriedKeyName> into the XML-Signature
• Create an enveloped or enveloping signature
• Include a <wsse:BinarySecurityToken>

• Use one signing key over another
• Sign different parts of the message

If you need to create separate policies for such cases, interoperating with different vendor services can become arduous.
This involves creating several complicated policies that might only differ in one field in each filter. To avoid this duplica-
tion, you can create a policy assembly that inserts the WS-Security UsernameToken into the message and generates
the XML-Signature. However, instead of explicitly configuring fields mentioned above (for example, enveloped or envel-
oping signature, include a <wsse:BinarySecurityToken>, or signing key to use), the policy assembly can use se-
lectors for these fields, which are configured dynamically at runtime. For more details, see Select configuration values at
runtime.

The policy assembly advertises that it requires configuration details to be called generically from other policies. For ex-
ample, it requires the key to sign the message. By templating the signing policy as a policy assembly, and making it
available to call from other policies like any other filter, the caller must set the signing key for the policy assembly. In this
way, different policies that require a signed UsernameToken can call the same policy assembly. By using selectors to
pass in different signing keys, messages are signed using the appropriate key for each calling policy.

When a policy has been configured as a policy assembly, it is displayed in the Policy Studio filter palette, and you can
drag and drop it into any policy that requires the functionality in the assembly. You must configure any fields required by
the policy assembly when it is dragged and dropped on to the canvas of another policy.

Configure a policy assembly

To configure a policy as a policy assembly in Policy Studio, perform the following steps:

1. Right-click the policy in the tree on the left, and select Policy Assembly > Create.
2. Specify the following settings on the General tab:

• Palette Category:
Enter the filter palette category in which to display the policy assembly (for example, Monitoring).

• Palette Icon:
Enter the path to the palette icon to display for the policy assembly (for example,
C:\Oracle\apigateway\icons\monitor.ico).

3. The Input tab lists all required message attributes for the policy assembly. You can enter user-friendly names for
each attribute to be displayed in the Policy Activation filter for the policy assembly (for example, HTTP Headers
for the http.headers attribute).

4. The Output tab lists the generated message attributes for the policy assembly. To add a generated attribute, click

42

Add, and enter the following details:
• Expression:

Enter the selector expression for the attribute (for example, ${content.body}).
• Attribute Type:

Enter the message attribute type (for example, com.vordel.mime.Body).
• Output Attribute Name:

Enter the message attribute generated by the policy assembly (for example, content.body).
5. When finished, click OK.
6. Click the Deploy button in the toolbar to deploy the newly created policy assembly to API Gateway.

Apply a policy assembly

When a policy is configured as a policy assembly, it is available for reuse in the Policy Studio filter palette. Draging and
droping the policy assembly on to the policy canvas displays the Policy Activation Filter window for that policy as-
sembly. This enables you to specify any required message attributes and filter-level monitoring settings.

Specifying required attributes
The Required Attributes tab enables you to set the configuration fields required by the policy assembly (for example,
those configured with selectors for dynamic configuration). Click Add to specify the following fields:

• Required Attribute:
Enter the name of the required attribute for display (for example, HTTP Header).

• Raw Attribute Name:
Enter the message attribute name (for example, http.headers).

• Attribute Type:
Enter the message attribute type (for example, com.vordel.mime.HeaderSet).

• Value/Selector:
Enter a message attribute value or selector (for example, ${http.headers}).

Specifying monitoring settings
The Traffic Monitor tab enables you to set the following filter-level monitoring settings:

• Record outbound transactions:
Select whether to record outbound message transactions sent from API Gateway to remote hosts. This is enabled
by default.

• Record policy path:
Select whether to record the policy path for the message transaction, which shows the filters that the message
passes through. This is enabled by default.

Configure policy assemblies

43

Register and secure web services
Overview

Policy Studio provides the following features that enable you to register and secure web services:

• You can register a web service in Policy Studio by importing a WSDL file into the web service repository. For more
information on registering web services, see Manage web services.

• The Import WSDL wizard enables you to automatically generate the policies to protect web services. For more in-
formation on using the wizard, see Configure policies from WSDL files.

• You can also manually configure policies to protect web services (for example, if a WSDL file is not available). For
more information, see Configure policies manually.

WSDL and XML schema cache

API Gateway maintains a global cache of WSDL and XML schema documents. For more information on adding, updat-
ing, and deleting WSDL and XML schema documents, see Manage WSDL and XML schema documents.

API Gateway validates XML schemas and WSDL documents during import. For more information, see the section called
“XML schema and WSDL document validation”. To test a WSDL for WS-I compliance, see the section called “Test a
WSDL for WS-I compliance”.

WSDLs from a UDDI registry

WSDL documents can be imported from and published to a Universal Description, Discovery, and Integration (UDDI) re-
gistry. For more information, see the following topics:

• Connect to a UDDI registry
• Retrieve WSDL files from a UDDI registry
• Publish WSDL files to a UDDI registry

Policy Studio filters

The following Policy Studio filters are of interest when working with web services:

• The Web Service filter is the main filter generated when a WSDL file is imported into the web service repository. It
contains all the routing information and links all the policies that are to be run on the request and response mes-
sages into a logical flow. For more information, see the Web service filter topic.

• The Schema Validation filter is used to validate XML messages against XML schemas stored in the global cache.
For more information, see the Schema validation topic.

44

Configure policies from WSDL files
Overview

When you import a WSDL file describing a web service into the web service repository, API Gateway exposes a virtual-
ized version of the web service. This virtualized service is exposed on a host and port of the machine running API Gate-
way (for more information on how this is achieved see the section called “Publish the WSDL”). In this way, a client can
retrieve the WSDL for the virtualized web service from API Gateway without knowing its real location.

When you import a WSDL file, Policy Studio automatically generates policies that can be used to talk to the back-end
web service. For example, a Service Handler is created to resolve and validate requests to the web service and re-
sponses from the web service. The service handler is automatically configured based on the operation definitions in the
WSDL.

A WSDL file can include WS-Policy assertions that define the security policies or security requirements that a client must
adhere to in order to communicate with the corresponding service. For example, a web service might require the client to
sign sensitive parts of the message and include a WS-Security UsernameToken to authenticate to the web service.

If the imported WSDL file contains WS-Policy assertions, API Gateway is responsible for making sure the requests it
sends to the web service adhere to the security constraints specified in the policy. In this case API Gateway is con-
sidered as the initiator of the web service.

During the WSDL import process, you can select which operations to expose to clients and what path to expose the ser-
vice on, and you can also specify the WS-Policy assertions that API Gateway enforces on the messages it receives from
clients. In this case, API Gateway is considered to be the recipient to a consumer (that is, client) of the virtualized web
service.

You can use the Import WSDL wizard to configure API Gateway as a web service initiator, as a recipient to a consumer
of the virtualized web service, or both. The steps involved in the wizard, and the configuration windows displayed, differ
according to whether WS-Policy assertions are being enforced between API Gateway and the web service (initiator case)
or between a client and API Gateway (recipient case). For more information on the Import WSDL wizard, see the section
called “Import a WSDL file”

The Import WSDL wizard enables you to configure complex policies to secure and virtualize web services with only a
few clicks and minimal intervention.

API Gateway as the web service initiator

The following figure demonstrates the case where API Gateway is the initiator of the web service:

45

When the imported WSDL describing the web service includes WS-Policy assertions, API Gateway is responsible for
making sure that the requests it sends to the web service adhere to the security constraints specified in the policy.

Policy Studio automatically generates the policies required to talk to the web service, and to enforce the security require-
ments specified by the policy assertions in the WSDL. These policies contain filters, most of which are configured auto-
matically. However, a small number of filters require you to manually configure specific fields. For example, when signing
or encrypting a message, you must specify the signing or encrypting key.

API Gateway as the web service recipient

The following figure demonstrates the case where API Gateway is the recipient of the web service:

When importing the WSDL, the Import WSDL wizard enables you to select the web service operations to expose to the
client, set the path on which to expose the service, and optionally to specify the security policies that API Gateway en-
forces on the messages it receives from the client.

Policy Studio automatically generates the policies that API Gateway uses to talk to the client, and to enforce the security
requirements you specified during WSDL import. These policies contain filters, most of which are configured automatic-
ally. However, a small number of filters require you to manually configure specific fields. For example, when configuring
the duration of a WS-Security timestamp, you might need to specify a longer or shorter duration.

Import WSDL summary

The steps involved in the Import WSDL wizard are summarized as follows:

1. Load the WSDL from a file, URL, or UDDI.
2. Retrieve and validate the WSDL.
3. Select the operations to expose.
4. Configure the WS-Policy settings. If the imported WSDL file includes WS-Policy settings, policies are generated to

secure the connection between API Gateway and the web service. You can also secure the virtualized service by
configuring WS-Policy settings between the client and API Gateway at this step.

5. Select the path to expose the services on.
6. If you selected to secure the virtualized service using WS-Policy settings, configure the policies that API Gateway

will enforce for messages it receives. You can select gateway and message level policies at this step.
7. Configure the recipient security settings. At this step you can manually configure the policies that have been auto-

Configure policies from WSDL files

46

matically generated by Policy Studio to enforce the WS-Policy settings between the client and API Gateway.
8. Configure initiator security settings. At this step you can manually configure the policies that have been automatically

generated by Policy Studio to enforce the WS-Policy settings between API Gateway and the back-end web service.
9. Review the summary information for the virtualized service. At this step you can also override the default validation

and routing policies with custom policies, and decide whether or not to publish the WSDL to clients.

Import a WSDL file

To import a WSDL file into the web service repository, complete the following steps:

1. In the Policy Studio tree view, expand the Business Services > Web Service Repository node.
2. Right-click the Web Services node, and select Register Web Service to launch the Import WSDL wizard.
3. In the Load WSDL window, select the WSDL location from one of the following options:

• WSDL File:
Click the Browse button to select a WSDL file from the file system.

• WSDL URL:
Enter a URL where the WSDL can be loaded from. This option supports HTTP basic authentication. Under Au-
thentication select the Use HTTP Basic option and enter a user name and password.

• WSDL from UDDI:
Click the Browse UDDI button to select a WSDL file from a Universal Description, Discovery, and Integration
(UDDI) registry. For more information on how to retrieve a WSDL file from a UDDI registry, see the Retrieve
WSDL files from a UDDI registry topic.

Click Next.
4. In the Retrieve and Validate window, enter a user name and a comment for this version of the WSDL. Click Next to

continue.

Note
If the WSDL fails validation, an error is displayed. For more information, see the section called “XML
schema and WSDL document validation” and the section called “XML schema and WSDL document
limitations”.

5. In the WSDL Operations window, select the operations to be exposed on the virtualized service and click Next. Al-
ternatively, click Select All or Select None to select all or none of the operations defined in the WSDL file.

6. On the WS-Policy Options window, select Secure this virtualized service with a WS-Policy to use a WS-Policy
to secure the virtualized service. If you select this option, the Secure Virtual Service dialog is displayed at a later
step, which enables you to configure WS-Policy settings between the client and API Gateway and generate policies
that API Gateway will enforce for messages it receives from clients.

7. On the WS-Policy Options window, select Use the WS-Policy in the WSDL to connect securely to the back-
end Web Service to generate policies to secure the connection between API Gateway and the web service, based
on the WS-Policy settings included in the WSDL file. This is enabled (and selected by default) only if the imported
WSDL file includes WS-Policy information. Click Next to continue.

8. On the Expose Services window, select or enter a unique relative path on which to expose the virtualized service
(for example, Default Services).

Note
If the WSDL file contains multiple services, you must select a relative path for each service before con-
tinuing. Select a service from the Select a service field, and then select or enter a unique relative path
to expose that service on. Repeat for each service.

9. Click Finish. The configuration is prepared based on your selections and one or more of the following windows are
then displayed:
• Secure Virtual Service

Configure policies from WSDL files

47

If you selected to secure the virtualized service with a WS-Policy, this window is displayed. For more informa-
tion, see the section called “Configure a security policy”.

• Configure Recipient Security Settings
This window is displayed if you selected to secure the virtualized service with a recipient WS-Policy. For more
information, see the section called “Configure recipient security settings”.

• Configure Initiator Security Settings
This window is displayed if selected to use the WS-Policy in the WSDL to secure messages sent from API
Gateway (as initiator) to the web service. For more information, see the section called “Configure initiator secur-
ity settings”.

10. After you have completed configuring the security settings, the Summary window is displayed. This window sum-
marizes the details for the imported WSDL file. It includes the location of the WSDL file, and a tab for each web ser-
vice virtualized by API Gateway. Each tab includes the following:
• The name of the virtualized service.
• The path that the WSDL for the virtualized service is exposed on.
• Validation:

API Gateway uses the WSDL to validate incoming messages by default. Alternatively, you can select the check
box and click the browse button to use a dedicated validation policy for all messages sent to the web service.
For example, this enables you to delegate to a custom validation policy used by multiple web services.

• Routing:
API Gateway routes to the displayed URL by default. Alternatively, you can select the check box and click the
browse button to use a dedicated routing policy to send all messages on to the web service. For example, this
enables you to delegate to a custom routing policy used by multiple web services.

• WSDL Access Options:
Select the Allow the Gateway to publish WSDL to clients option to make the WSDL for this web service
available to clients. This option is selected by default. The published WSDL represents a virtualized view of the
web service. Clients can retrieve the WSDL from API Gateway, generate SOAP requests, and send them to API
Gateway, which routes them on to the web service. For more details, see the section called “Publish the
WSDL”.

These options enable you to configure the underlying auto-generated Service Handler without having to navigate to
it in the Policies tree. Review the information on each tab and click OK to close the wizard.

Configure a security policy

The Secure Virtual Service dialog enables you to specify the policy that API Gateway enforces on the messages that it
receives from the client. To specify a policy, perform the following steps:

1. Select a policy from the Gateway Policy field. A description for the currently selected policy is displayed in the dia-
log. For details on all the available policies, see the WS-Policy reference.

2. Select a message-level request policy from the Request Policy field. The available policies are as follows:
• Encrypt SOAP Body
• Sign SOAP Body
• Sign and Encrypt SOAP Body

3. Select a message-level response policy from the Response Policy field. The available policies are the same as for
Request Policy.

4. Click OK.

Configure recipient security settings

If API Gateway is configured as a recipient for the client, the Configure Recipient Security Settings window is dis-
played. This window enables you to configure the filters used to implement the rules required by the WS-Policy settings
you selected in the Secure Virtual Service window. The exact sequence of filters differs depending on the policies that
you selected.

Configure policies from WSDL files

48

For example, if a policy with a SAML token is selected, the Validate SAML Authentication Assertion filter is displayed,
whereas if a WS-Policy requiring a WS-Security UsernameToken is selected, the Validate WS-Security Username
Token filter is displayed. The effort required to configure these filters is minimal because most of the fields are populated
automatically from the WS-Policy assertions. For example, the layout, signing, encryption, and key wrapping algorithms,
key referencing method, user name digest, and clear password are all automatically populated from the WS-Policy as-
sertions. This means that you only need to configure a small number of settings, such as the signing key, encryption cer-
tificate, and timestamp validity period.

Configure initiator security settings

If API Gateway is configured as an initiator of the web service, the Configure Initiator Security Settings window is dis-
played. This window enables you to configure the filters used to implement the rules required by the WS-Policy settings
specified in the imported WSDL file. The exact sequence of filters differs depending on the WS-Policy assertions con-
tained in the WSDL.

For example, if an sp:SamlToken assertion is specified, the wizard contains a window for the Insert SAML Authentic-
ation Assertion filter. The effort required to configure these filters is minimal because most of the fields are populated
automatically from the WS-Policy assertions in the WSDL.

In the case of the Sign Message filter, the decision to use asymmetric or symmetric signatures is based on whether the
policy uses an asymmetric or symmetric binding. The layout rules are determined by the sp:Layout assertion. The di-
gest method, signature method, and key wrap algorithm (for symmetric signatures) are all populated automatically based
on the contents of the sp:AlgorithmSuite assertion. The KeyInfo section of the XML Signature can be taken from
various properties set in the WSDL. The parts of the message to be signed can be inferred from assertions such as
sp:SignedParts, sp:SignedElements, and SignedSupportingTokens.

The same is true for the XML Encryption Settings filter where the encryption algorithms and key types can all be taken
from the assertions in the WSDL. The ConfirmationMethod for SAML assertions can be inferred from the context of
the SamlToken assertion. For example, an sp:SamlToken that appears as a child of the
sp:SignedSupportingTokens assertion uses a sender-vouches confirmation method, whereas if it appears as a
child of an sp:EndorsingSupportingTokens assertion, the holder-of-key confirmation method can be assumed.

Configure recipient policy filters

The following tables describe the filters that can be created when API Gateway is configured as a recipient. You can con-
figure these filters in the Configure Recipient Security Settings window. For simplicity, only filters that require manual
input are shown, and only the fields that might require manual input are detailed in the tables.

Insert Timestamp Filter

Field Name Description

Expires In You can specify a more appropriate lifetime for the assertion (instead of the de-
fault one hour) by configuring the various time period fields.

Signed Parts Outbound Filter

Field Name Description

Signing Key If the policy uses an asymmetric binding, on the Asymmetric tab, click the
Signing Key button, and select a key from the certificate store to sign the mes-
sage parts with. Alternatively, if the policy specifies a symmetric binding, on the
Symmetric tab, click the Signing Key button, and select a key to wrap the
symmetric signing key with.

Configure policies from WSDL files

49

Find Recipient Certificate for Encryption

Field Name Description

Certificate Store Click the Select button to choose the recipient's certificate from the certificate
store. The public key contained in this certificate is used to encrypt the mes-
sage parts so that only the recipient is able to decrypt them using the corres-
ponding private key.

Validate SAML Authentication Assertion

Field Name Description

Drift Time You can specify a drift time value to allow for a time differential between the
clock on the machine hosting API Gateway and the machine hosting the web
service.

Trusted Issuers On the Trusted Issuers tab, click Add to specify the Distinguished Name of a
SAML authority whose certificate has been added to the certificate store, and
click OK. Repeat this step to add more SAML authorities to the list of trusted is-
suers.

Configure SSL Certificate

Field Name Description

X.509 Certificate On the Network tab, click the X.509 Certificate button to create or import an
SSL certificate.

SSL Server Name Identifier (SNI) On the Network tab, click the Add button to configure a server name in the
SSL Server Name Identifier (SNI) dialog. You can specify the server name in
the Client requests server name field. Click the Server assumes identity
button to import a certificate authority certificate into the certificate store.

Mutual Authentication On the Mutual Authentication tab, select root certificate authorities trusted for
mutual authentication.

Insert MTOM Content

Field Name Description

XPath Location When the wsoma:OptimizedMimeSerialization WS-MTOMPolicy asser-
tion is specified in a recipient policy, you must configure an Insert MTOM Con-
tent filter. Configure an XPath expression that points to the base64-encoded
element content to insert and create an MTOM type attachment for.

Configure initiator policy filters

Configure policies from WSDL files

50

The following tables describe the filters that can be created when API Gateway is configured as an initiator. You can con-
figure these filters in the Configure Initiator Security Settings window. For simplicity, only filters that require manual in-
put are shown, and only the fields that might require manual input are detailed in the tables.

Insert WS-Security Timestamp

Field Name Description

Expires In You can specify a more appropriate lifetime for the assertion (instead of the de-
fault one hour) by configuring the various time period fields.

Sign Message

Field Name Description

Signing Key If the policy uses an asymmetric binding, on the Asymmetric tab, click the
Signing Key button, and select a key from the certificate store to sign the mes-
sage parts with. Alternatively, if the policy specifies a symmetric binding, on the
Symmetric tab, click the Signing Key button, and select a key to wrap the
symmetric signing key with.

Insert WS-Security Username

Field Name Description

Username Enter the user name inserted into the WS-Security UsernameToken block. By
default, the name of the authenticated user is used, which is stored in the au-
thentication.subject.id message attribute. However, you can enter any
value in this field.

Password If the policy requires a password, the password for the user entered above
must be specified here. You can use the default authenticated user password
by selecting the authentication.subject.password message attribute.
Alternatively, you can enter any suitable password. The decision to use a Clear
or Digest password is taken from the corresponding policy assertions.

Insert SAML Authentication Assertion

Field Name Description

Expire In Specify a suitable lifetime for the SAML assertion by configuring the various
time period fields.

Drift Time You can specify a drift time value to allow for a time differential between the
clock on the machine hosting API Gateway and the machine hosting the web
service.

Issuer Name Select the alias of the certificate from the certificate store to use to identify the
issuer of the assertion. The alias name is used as the value of the Issuer at-
tribute of the saml:Assertion element.

Holder of Key: Signing Key In cases where the sp:SamlToken appears as a child of EndorsingSup-
portingTokens or an InitiatorToken, the holder-of-key SAML con-

Configure policies from WSDL files

51

Field Name Description

firmation method is inferred. In this case, if an asymmetric binding is used, on
the Asymmetric tab, specify a key from the certificate store by clicking the
Signing Key button. Alternatively, if a symmetric binding is used in the policy,
on the Symmetric tab, specify a key to use to encrypt the symmetric key with
by clicking the Signing Key button.

Find Recipient Certificate for Encryption

Field Name Description

Certificate Store Select this option, and click the Select button to choose the recipient's certific-
ate from the certificate store. The public key contained in this certificate is used
to encrypt the message parts so that only the recipient is able to decrypt them
using the corresponding private key.

Connect to URL

Field Name Description

Trusted Certificates To connect to an external web service over SSL, you need to trust that web
service's SSL certificate. You can do this on the Trusted Certificates tab of the
Connect to URL filter. Assuming you have already imported this certificate into
the trusted certificate store, simply select it from the list.

Client SSL Authentication If the web service requires the client to present an SSL certificate to it during
the SSL handshake, you must select that certificate from the list on the Client
SSL Authentication tab.

Note
This certificate must have a private key associated with it that is
also stored in the certificate store.

Extract MTOM Content

Field Name Description

XPath Location When the wsoma:OptimizedMimeSerialization WS-MTOMPolicy asser-
tion is specified in an initiator policy, you must configure an Extract MTOM
Content filter. Configure an XPath expression that points to the
base64-encoded element content to extract and create an MTOM type attach-
ment for.

Edit the recipient or initiator WS-Policy

Configure policies from WSDL files

52

To edit a previously configured WS-Policy (for example, to change the signing key in the auto-generated policy), right-
click the web service in the Policy Studio tree, and select WS-Policy > Edit Recipient WS-Policy or WS-Policy > Edit
Initiator WS-Policy. You can also add or remove a recipient WS-Policy after import by selecting the WS-Policy > Add
Recipient WS-Policy or WS-Policy > Remove Recipient WS-Policy options. These options are described as follows:

Edit Recipient WS-Policy
If you configured a recipient WS-Policy during WSDL import (using the Secure Virtual Service window), you can edit its
filters using this option. If you did not configure a recipient WS-Policy during WSDL import, this option is disabled.

Add Recipient WS-Policy
If you did not configure a recipient WS-Policy during WSDL import (using the Secure Virtual Service window), this op-
tion enables you to add a recipient WS-Policy after import. The Secure Virtual Service window is displayed when you
select this option followed by the Configure Recipient Security Settings window. This enables you to select and con-
figure a WS-Policy to enforce between the client and API Gateway.

Remove Recipient WS-Policy
If you configured a recipient WS-Policy during WSDL import (using the Secure Virtual Service window), you can re-
move it using this option. If you did not configure a recipient WS-Policy during WSDL import, this option is disabled.

Edit Initiator WS-Policy
If the imported WSDL file included WS-Policy assertions, you can edit the filters used to implement the WS-Policy asser-
tions in the WSDL using this option. However, if there was no WS-Policy in the imported WSDL file, you cannot use this
option. You cannot add an initiator WS-Policy after WSDL import because that would break the contract between API
Gateway and the back-end web service. If the contract for the web service changes (for example, a WS-Policy is applied
to it at the back-end), you can reimport the WSDL.

Configure a recipient WCF WS-Policy

API Gateway provides four WS-Policies that are identical to those exposed by WCF (Windows Communication Founda-
tion) web services. When one of these policies is exposed by a virtual service in API Gateway, the svcutil .NET web
services utility can consume the WS-Policy and auto-generate clients that communicate securely with API Gateway.

The security settings for a WCF web service are configured in its web.config file, in which the security element de-
termines the WS-Policy applied to the service. For example, the following extract from a WCF web service web.config
file shows the configuration:

<customBinding>
binding name="MyCustomBinding">
<textMessageEncoding messageVersion="Soap11" />
<security defaultAlgorithmSuite="Basic256"

allowSerializedSigningTokenOnReply="true"
authenticationMode="MutualCertificate" requireDerivedKeys="false"
includeTimestamp="true" messageProtectionOrder="SignBeforeEncrypt"
messageSecurityVersion="WSSecurity10..."
requireSecurityContextCancellation="false">

</security>
</binding>

</customBinding>

In this example, the authenticationMode for a customBinding is set to MutualCertificate, which means that
messages sent to and from the web service must be signed and encrypted with mutual certificates. The following ex-
ample shows an example of the WCF wsHttpBinding configuration, which is less verbose:

<wsHttpBinding>
<binding name="MyWsHttpBinding">
<security mode="Message">
<message clientCredentialType="Certificate" />

</security>
</binding>

Configure policies from WSDL files

53

</wsHttpBinding>

The following table shows how the WCF WS-policies provided with API Gateway correspond to a particular configuration
of the security element in the WCF web service web.config file. As shown in the preceding examples, the configur-
ation settings are slightly different, depending on the WCF binding (customBinding or wsHttpBinding). The follow-
ing table shows the available settings:

WS-Policy Name WCF Binding Authentication Mode Security
Mode

Client Cre-
dential Type

WCF MutualCertificate Service customBinding MutualCertificate

WCF UsernameForCertificate Ser-
vice

customBinding UserNameForCertificate

WCF UsernameOverTransport Ser-
vice

customBinding UsernameForTransport

WCF BrokeredX509Authentication
Service

wsHttpBinding Message Certific-
ate

Important
If you intend to consume the WS-Policy exposed by API Gateway with a WCF client, you should use one of
the WCF WS-Policies. All of these policies can be consumed seamlessly by the WCF svcutil utility to
auto-generate secure clients. While the other WS-Policies exposed by API Gateway can be consumed by
svcutil, you need to make additional configuration changes to the auto-generated WCF client to commu-
nicate securely with API Gateway. For more details on making any necessary configuration changes, see
your WCF documentation.

Remove security tokens

When you import a WSDL file containing a WS-Policy into the web service repository, the Remove All Security Tokens
filter is enabled in the Service Handler for the imported web service. To view the configured policy, double-click the Ser-
vice Handler, and select the Message Interception Points > 2. User-defined Request Hooks tab.

The Remove All Security Tokens policy ensures that the following security contexts are kept separate:

• Recipient security context: This is between the client and API Gateway, and is determined by the WS-Policy selec-
ted in the Secure Virtual Service window.

• Initiator security context: This is between API Gateway and the back-end web service, and is determined by the WS-
Policy contained in the imported WSDL file for the back-end web service.

The Remove All Security Tokens policy prevents tokens from one context passing over into the other context, which
could breach the security contract governing that context. This ensures that each security context receives a clean SOAP
message, on which it can then act to enforce the security requirements of the relevant WS-Policy. The following diagram
shows both security contexts and the Remove All Security Tokens policy:

Configure policies from WSDL files

54

Recipient-side WS-Policy only
In this case, a recipient WS-Policy is configured in the Secure Virtual Service window to protect a virtual service ex-
posed by API Gateway. The recipient WS-Policy defines the security contract between the client and API Gateway. Any
security tokens sent by the client are intended for consumption by API Gateway. They are not intended for the back-end
web service.

For example, the web service might not understand SAML, WS-Security, XML Signature, and so on, which might result
in a serialization error if these tokens are propagated to it. In addition, it would add unnecessary overhead to the mes-
sage to propagate security tokens to it. On the response side, the response that API Gateway returns to the client must
adhere to the selected recipient WS-Policy. For example, if the web service has returned a SAML token (out of scope of
any WS-Policy requirements), this must not be returned to the client because it would breach the recipient WS-Policy.

Initiator-side WS-Policy only
In this case, the WS-Policy is contained in the imported WSDL file. The WS-Policy defines the security contract between
API Gateway and the back-end web service defined in the WSDL. On the request side, any security tokens sent by the
client to API Gateway, which are out of scope of the initiator WS-Policy between API Gateway and web service, are re-
moved before API Gateway starts enforcing the initiator WS-Policy on the request, and before it sends the request to the
web service.

For example, if the client sends a wsu:Timestamp in the request message and the initiator policy stipulates that a
wsu:Timestamp must be sent by API Gateway to the web service, two timestamps could be sent in the request, which
is invalid. This means that the timestamp and any other security tokens sent by the client to API Gateway, which might
contradict the rules in the initiator contract (between API Gateway and the web service) must be stripped out before API
Gateway starts adding security tokens to the message. This ensures that the message adheres to the initiator WS-
Policy.

Similarly, any security tokens returned by the web service are only present because the web service complies with the
contract between the web service and API Gateway. Therefore, any tokens returned by the web service are only inten-
ded for use by API Gateway. They are not intended for consumption by the client. In other words, the security context is
only between API Gateway and the web service. If the web service returns a UsernameToken, it is consumed by API
Gateway.

If a token must be returned to the client, this is a user-enforced rule, which is out of scope of the WS-Policy configuration
in the WSDL. If necessary, you can override the default behavior by removing the Remove All Security Tokens filter
from the Service Handler to allow the UsernameToken to be propagated to the client.

Configure policies from WSDL files

55

Initiator-side and Recipient-side WS-Policy
This occurs when you import a WSDL file that includes a WS-Policy (initiator case), and you also select a WS-Policy in
the Secure Virtual Service window (recipient case). This scenario includes both the recipient security context between
the client and API Gateway, and the initiator security context between API Gateway and the web service.

It is vital that these security contexts are kept separate because if tokens from one context pass over into the other con-
text, it is highly likely that the security contract for that context will be breached. For example, if the recipient contract
between the client and API Gateway requires a UsernameToken, but the initiator contract between API Gateway and
the web service requires a SAML token, the UsernameToken must not pass over into the initiator context and be sent to
the web service.

Important
The Remove All Security Tokens policy only applies when a WS-Policy is configured, and is not enabled
when a WS-Policy is not configured. In addition, any non-standard behavior that requires a security token
to be propagated over to another security context can be handled by disabling the Remove All Security
Tokens policy in the Service Handler for the imported WSDL.

Configure policies from WSDL files

56

Manage web services
Overview

The Web Service Repository stores information about web services whose definitions have been imported using Policy
Studio. The WSDL files that contain these web services definitions are stored together with their related XML schemas.
Clients of the web service can then query the repository for the WSDL file, which they can use to build and send mes-
sages to the web service using API Gateway.

The web service repository enables you to register web services by importing a WSDL file, and to group related web ser-
vices into groups. When you register a web service in the web service repository, Policy Studio auto-generates a Service
Handler that is used to control and validate requests to the web service and responses from the web service. If a web
service is updated after initial import, you can resynchronize with it to import new versions of the WSDL and XML schem-
as, and the Service Handler is regenerated to reflect the updates.

This topic describes how to manage web services and groups, and explains what happens when you import a WSDL file
to register a web service. This topic also describes how to export a registered web service, how to update (or resyn-
chronize) an existing web service, and how to expose additional operations on a web service.

Manage web services and groups

The Web Service Repository is displayed under the Business Services node in the Policy Studio tree. WSDL files are
imported into web service groups, which provide a convenient way of keeping groups of related web service definitions
together. To import a WSDL file into the default group, right-click the Web Services node, and select Register Web Ser-
vice.

Alternatively, to add a new web service group, right-click the default Web Services group, or the Web Service Reposit-
ory node, and select Add a new web services group. When the new group is added, you can right-click it in the tree,
and select Register Web Service.

Register a web service

Registering a web service involves importing the WSDL file that contains the definitions for the web service. Policy Studio
provides an Import WSDL wizard to make registering a web service a simple process that requires minimal manual in-
tervention. For more information on registering a web service by importing a WSDL file, see the Configure policies from
WSDL files topic.

The Import WSDL wizard auto-generates policies and service handlers for each web service imported. These are auto-
matically configured wherever possible, based on the imported WSDL. This means that only a small number of fields
need to be configured manually.

After a web service has been registered using the Import WSDL wizard, the WSDL for the service is published by API
Gateway. Clients can specify WSDL on a request query string to retrieve the WSDL file (for example, ht-
tp://localhost:8080/HelloWorldService/HelloWorld?WSDL). For more details, see the section called
“Publish the WSDL”.

Tip
You can also register a web service using a script. For more information, see the section called “Use scripts
to manage web services”.

Results of registering a web service

Service handlers and policies are auto-generated when you register a web service by importing a WSDL file in Policy
Studio. The specific policies that are created depends on whether you configured a policy to enforce security between

57

the client and API Gateway, and whether the imported WSDL file contained any WS-Policy assertions. The following list
summarizes what is created by the wizard:

Web service
A new web service tree node is created in the Web Service Repository tree for each web service that you selected to
expose operations from in the imported WSDL. The web service is created in the Web Services group by default.

Click the new web service node to list the WSDL file for the service and any imported WSDL files and XML schemas. To
view the source for a WSDL or XML schema file, click the file and a read-only view of the source is displayed.

Note
It is important to realize that the WSDL displayed in this view represents the WSDL that is exposed to the
client. Therefore, it contains only those operations that were selected during the import process, together
with any recipient WS-Policy that has been applied to the virtualized web service. You can view the WSDL
in its original form under the Resources > WSDL Document Bundles node.

You can add, remove, or edit recipient WS-Policies for the service from this node. For example, to edit an existing recipi-
ent WS-Policy, right-click the web service node, and select WS-Policy > Edit Recipient WS-Policy. If the imported
WSDL file included WS-Policy assertions, you can also edit the initiator WS-Policy (for example, to change the signing
key). Right-click the web service node and select WS-Policy > Edit Initiator WS-Policy. For more information, see the
section called “Edit the recipient or initiator WS-Policy”.

WSDL resources
A new WSDL document bundle is created for the imported WSDL file under the Resources > WSDL Document
Bundles tree node. This document bundle contains the original WSDL document for the back-end web service, as re-
trieved at the time of the WSDL import. If multiple versions of this WSDL have been imported, each version is available
here. The document bundle also contains the original versions of any resources imported by the WSDL, such as other
WSDL files or XML schemas.

Click the WSDL document bundle to list the versions that have been imported. Click a particular version to list the WSDL
file and any imported WSDL files and XML schemas, as they appeared for that version. To view the source for a WSDL
or XML schema file, click the file and a read-only view of that version of the source is displayed.

For more information about WSDL document bundles, see Manage WSDL and XML schema documents.

Policy container
A container for the newly generated policies is created under the Generated Policies node in the Policies tree. The new
container is named after the service (for example, Web Services.HelloWorldService).

Policy
A policy for the web service is created in the generated policy container. The policy name is the name of the service (for
example, HelloWorldService). This policy contains the Service Handler for the service. The service handler is an auto-
configured Web Service Filter.

Service handler
The Service Handler is used to control and validate requests to the web service and responses from the web service.
The Service Handler is named after the web service (for example, Service Handler for 'HelloWorldService'). The Ser-
vice Handler is a Web Service Filter, and is used to control the following:

• Routing
• Validation
• Message request/response processing
• WSDL options
• Monitoring options

Manage web services

58

For more details, see the Web service filter topic.

Security policies
If you configured a WS-policy to enforce security between the client and API Gateway (as described in the section called
“Configure a security policy”), or if the imported WSDL file contained WS-Policy assertions, a number of additional
policies are automatically created in a generated policy container named WSPolicy. Any recipient policies are created in
a container named Recipient and any initiator policies are created in a container named Initiator. These generated
policies include the filters required to generate and validate the relevant security tokens (for example, SAML tokens, WS-
Security UsernameToken elements, and WS-Addressing headers). These policies perform the necessary cryptographic
operations (for example, signing/verifying and encryption/decryption) to meet the security requirements of the specified
policies.

Export a web service

To export a web service, right-click on the web service node under the Web Service Repository and select Export Web
Service.

The following items are exported:

• All circuit containers for the web service, including policies and containers that were generated as part of WS-Policy
configuration.

• The current version of the WSDL and its schemas.

Note
If multiple versions of the WSDL are available, only the current version is exported. The complete his-
tory of the WSDL is not exported.

• Optionally, other configuration used by the policies can be exported (for example, remote host configuration).

Update a web service

Over the lifetime of a web service, the service definition for the web service can change. You can manage the lifecycle of
a web service easily, by using the Resynchronize Web Service option in Policy Studio. This enables you to update the
web service definition for a service by revisiting the location of the WSDL.

To update a web service, right-click the web service node, and select Resynchronize Web Service. You are prompted
for the location of the latest version of the WSDL. This defaults to the location from which the WSDL was originally
loaded. API Gateway compares the contents of the WSDL and any of its imported schemas to those stored in its cache.
If the contents are different, it creates a new version of the WSDL.

Examples of possible updates to the WSDL or XML schemas that trigger creation of a new version are as follows:

• Service name (local part)
If the service name has changed in the WSDL, the import exits with the error "Couldn't find target Service
in this WSDL". You can import this WSDL definition as a new web service using the Register Web Service op-
tion.

• WSDL namespace
If the namespace has changed in the WSDL, the import continues with a warning.

Note
Namespace changes result in a new node being created under the Resources > WSDL Document
Bundles tree. Any subsequent resynchronizations of the service will result in new versions being ad-
ded to this node (assuming no further namespace changes).

Manage web services

59

• WSDL 2.0
If the WSDL has changed to use the WSDL 2.0 specification, import exits with an error. API Gateway supports
WSDL 1.1 only, it does not support WSDL 2.0.

• Operation added
If a new operation has been added to a portType in the WSDL, import succeeds. API Gateway regenerates the
configuration, using older operations as a template for the WS-Policy settings, if attached. The service handler for
the web service is updated to include a resolver for the new operation.

• Operation modified
If an operation has been modified on a portType in the WSDL (for example, changes to the input, output, or
fault), import succeeds. API Gateway regenerates the configuration and updates the service handler for the web
service.

• SOAPAction
If the SOAPAction has changed for an operation in the WSDL, import succeeds. API Gateway regenerates the
configuration and updates the service handler for the web service.

• Operation removed
If an operation has been removed from a portType in the WSDL, import succeeds. API Gateway removes the
operation from the configuration. The service handler for the web service is updated to remove the resolver for the
removed operation.

• XML schema (when WSDL validation is in use)
If you are using the WSDL to validate incoming messages (this is the default option when you import a WSDL file),
and the schemas in the WSDL have been updated, API Gateway retrieves the updated schemas.

Updating a web service is not possible for the following types of WSDL or XML schema changes:

• Port, binding, or operation changes that require user intervention for WS-Policy configuration.
• Port change (new endpoint location).
• Port added (SOAP flavor).
• Port change (new binding).
• Binding style or use change.
• WS-Policy added.
• WS-Policy modified.
• WS-Policy removed.
• Operation message part changes (for example, reference to an element changes to a type, part name changes, and

so on).
• XML schema changes (when custom schema validation is in use).

Change the operations exposed by a web service

When you register a web service by importing a WSDL file, you are prompted to select the operations that are to be ex-
posed to the client. You can change the operations that are exposed after import by using the Select Exposed Opera-
tions option in Policy Studio. For example, if you imported a web service containing two operations, foo and bar, and
you only selected the foo operation at import time, you can use this feature to also expose the bar operation after im-
port.

To change the operations exposed by a web service, right-click the web service node, and select Select Exposed Oper-
ations. All of the operations defined in the WSDL file are displayed, and the operations that are currently exposed are
selected. Select the operations to be exposed and deselect the operations that are not to be exposed and click OK.

API Gateway regenerates the configuration. The service handler for the web service is updated to include resolvers for
any newly exposed operations, and to remove resolvers for any removed operations. The WSDL exposed to clients of
the virtualized service is updated to reflect the changes.

Delete a web service

Manage web services

60

To delete a web service, right-click on the web service node under the Web Service Repository and select Delete.

Note
To delete the WSDL document or XML schemas associated with a web service, see the section called
“Delete cached WSDL or XML schema documents”.

Use scripts to manage web services

You can also use scripts to manage web services. The following sample scripts are provided in the IN-
STALL_DIR/apigateway/samples/scripts/ws directory:

• listWebServices.py – List web services
• registerWebService.py – Register a web service
• removeWebService.py – Delete a web service

You could also create your own custom scripts, for example, to update a web service. However, it would only be possible
to script the same type of WSDL or XML schema updates that are supported by the Policy Studio Resynchronize Web
Service option. For more information on the types of WSDL or XML schema updates that are supported, see the section
called “Update a web service”.

Publish the WSDL

When the WSDL has been imported into the web service repository, it can be retrieved by clients. In effect, by importing
the WSDL into the repository, you are publishing the WSDL. In this way, consumers of the services defined in the WSDL
can learn how to communicate with those services by retrieving the WSDL for those services. However, to do this, the
location of the service must be changed to reflect the fact that API Gateway now sits between the client and the defined
service.

For example, assume that the WSDL file states that a particular service resides at ht-
tp://www.example.com/services/myService:

<service name="myService">
<port binding="SoapBinding" name="mySample">
<wsdl:address location="http://www.example.com/services/myService"/>

</port>
</service>

When deployed behind API Gateway, this URL is no longer accessible to consumers of the service. Because of this, cli-
ents must send SOAP messages through API Gateway to access the service. In other words, they must now address the
machine hosting API Gateway instead of that directly hosting the service.

When returning the WSDL to the client, API Gateway dynamically changes the value of the location attribute in the
service element in the WSDL file to point to the machine on which API Gateway resides. API Gateway is responsible
for routing messages on to the machine hosting the service.

Assuming that API Gateway is running on port 8080 on a machine called SERVICES, the location specified in the expor-
ted WSDL file is changed to the following:

<service name="myService">
<port binding="SoapBinding" name="mySample">
<wsdl:address location="http://SERVICES:8080/services/myService"/>

</port>
</service>

Manage web services

61

When the client retrieves this modified WSDL file, it routes messages to the machine hosting API Gateway instead of at-
tempting to directly access the web service.

Access the WSDL
For the client to access this modified WSDL file, Policy Studio provides a WSDL retrieval facility whereby clients can
query the web service repository for the WSDL file for a particular web service. To do this, the client must specify WSDL
on a request query string to the relative path mapped to the policy for this web service.

For example, if the policy is deployed under http://SERVICES:8080/services/getQuote, the client can retrieve
the WSDL for this web service by sending a request to http://SERVICES:8080/services/getQuote?WSDL. When
the client has a copy of the updated WSDL file, it knows how to create correctly formatted messages for the service, and
more importantly, it knows to route messages to API Gateway rather than to the web service directly.

Publish to UDDI
For details on how to publish a WSDL file registered in the web service repository to a UDDI registry, see the Publish
WSDL files to a UDDI registry topic.

Manage web services

62

Manage WSDL and XML schema documents
Overview

WSDL files often contain XML schemas that define the elements that appear in SOAP messages. When you import a
WSDL file to register a web service, the imported WSDL file, and any XML schemas included in the WSDL, are added to
a global cache of WSDL and XML schema documents. You can also add XML schemas and WSDL documents to the
cache independently.

If you select a cached WSDL file or XML schema in a Schema Validation filter, API Gateway can retrieve it from the
cache instead of fetching it from its original location. This improves the runtime performance of the filter, and also en-
sures that an administrator has complete control over the schemas used to validate messages.

API Gateway can maintain multiple versions of WSDL and XML schema documents in the global cache, and keeps an
explicit version history as they change over time. The cache is prepopulated with many of the common XML schema
documents that are used in web services, and these are shared across multiple web services.

Structure of the global cache

The global cache consists of both WSDL documents and XML schema documents.

The global cache of WSDL documents contains all WSDL documents that have been imported (either directly, or by re-
gistering a web service) into API Gateway.

The global cache of schema documents contains:

• User-defined catalog – This contains all user-defined schema documents that have been imported into API Gate-
way.

• System catalog – This contains all common schemas (for example, the SOAP encoding schema) that are preloaded
during API Gateway installation.

The following figure shows the structure.

63

View cached WSDL or XML schema documents

Policy Studio provides a read-only view of cached WSDL and XML schema documents.

To view the global cache of WSDL documents, expand the Resources > WSDL Document Bundles tree node. The list
of documents present in the cache is shown in the tree. To view the contents of a document, click the document node. A
read-only view of the document is displayed in a tab on the right. WSDL documents can be added directly to this node,
and they can be resynchronized.

To view the global cache of XML schema documents, expand the Resources > XML Schema Document Bundles tree
node. This node contains two subnodes: User-defined Catalog and System Catalog. To view the documents in each
catalog, expand the catalog node. The list of documents present in the catalog is shown in the tree. To view the contents
of a document, click the document node. A read-only view of the document is displayed in a tab on the right.

Manage WSDL and XML schema documents

64

XML schemas in the System Catalog are preloaded during API Gateway installation. You cannot add schemas to the
system catalog, and schemas in the system catalog cannot be resynchronized. This is indicated by a key icon on these
nodes.

The User-defined Catalog contains schemas that you have imported. These schemas can be resynchronized, and you
can add new schemas directly to this catalog.

Document bundles are categorized by namespace/name, with subcategories used to indicate where the node is being
tracked from (the URL it was retrieved from), and further subcategories for version information. The following figure
shows an example of this.

Click a document bundle in the tree to list the versions that have been imported. Click a version to list all the documents
contained in that version. Click a WSDL or XML schema document to view the WSDL or XML source for the document. A
read-only view of the source is shown in a tab on the right.

Add XML schemas to the cache

To add an XML schema to the user-defined catalog in the global cache, perform the following steps:

1. In the Policy Studio tree view, right-click the XML Schema Document Bundles > User-defined Catalog node, and
select Add Schema. The Load Schema dialog enables you to load a schema directly from the file system.

2. In the File location field, enter or browse to the location of the schema file and click Next.
3. In the Retrieve and Validate window, enter a user name and a comment for this version of the schema. Click Next.

Note
If the XML schema fails validation, an error is displayed. For more information, see the section called
“XML schema and WSDL document validation” and the section called “XML schema and WSDL docu-

Manage WSDL and XML schema documents

65

ment limitations”.

4. Click the Finish button to import the schema into the cache.

Add WSDL documents to the cache

WSDL documents are cached automatically when you import a WSDL file to register a web service. For more informa-
tion, see the Configure policies from WSDL files topic.

Alternatively, you can import a WSDL document directly into the cache. To add a WSDL to the global cache, perform the
following steps:

1. In the Policy Studio tree view, right-click the WSDL Document Bundles node, and select Add a WSDL. The Load
WSDL dialog enables you to load a WSDL file directly from the file system, from a URL, or from a UDDI registry.

2. Select the appropriate option and enter or browse to the location of the WSDL file in the fields provided. To retrieve
the WSDL file from a UDDI registry, click the WSDL from UDDI option, and click the Browse UDDI button. This op-
tion enables you to connect to a UDDI registry and search it for a particular WSDL file. For more information on how
to retrieve a WSDL file from a UDDI registry, see the Retrieve WSDL files from a UDDI registry topic. Click Next to
continue.

3. In the Retrieve and Validate window, enter a user name and a comment for this version of the WSDL.
4. Click the Finish button to import the WSDL document into the cache.

Note
If the WSDL fails validation, an error is displayed. For more information, see the section called “XML
schema and WSDL document validation” and the section called “XML schema and WSDL document
limitations”.

Important
If you import a WSDL document directly into the cache via the WSDL Document Bundles node, Policy
Studio does not automatically generate policies and service handlers. To auto-generate policies and ser-
vice handlers for a web service, you must use the Register Web Service option under the Business Ser-
vices > Web Service Repository node.

Update cached WSDL or XML schema documents

You can update a WSDL document or XML schema in the cache by using the Resynchronize WSDL or Resynchronize
Schema options. This enables you to import a more recent version of a WSDL or schema directly to the global cache.

To update a WSDL, perform the following steps:

1. Expand the WSDL Document Bundles node.
2. Expand the document bundle for the WSDL to be updated.
3. Right-click the Tracking from node and select Resynchronize WSDL.
4. Enter the location of the latest version of the WSDL and click Next. This defaults to the location from which the

WSDL was originally loaded.
5. In the Retrieve and Validate window, enter a user name and a comment for this version of the WSDL.
6. Click Finish to import the new version of the WSDL document into the cache.

API Gateway compares the contents of the WSDL and any of its imported schemas to those stored in its cache. If the

Manage WSDL and XML schema documents

66

contents are different, it creates a new version of the WSDL.

To update an XML schema, perform the following steps:

1. Expand the XML Schema Document Bundles > User-defined Catalog node.
2. Expand the document bundle for the schema to be updated.
3. Right-click the Tracking from node and select Resynchronize Schema.
4. Enter the location of the latest version of the schema and click Next. This defaults to the location from which the

schema was originally loaded.
5. In the Retrieve and Validate window, enter a user name and a comment for this version of the schema.
6. Click Finish to import the new version of the schema document into the cache.

API Gateway compares the contents of the schema and any of its imported schemas to those stored in its cache. If the
contents are different, it creates a new version of the schema.

See the section called “Update a web service” for more information on the types of changes to a WSDL or schema that
trigger creation of a new version.

Delete cached WSDL or XML schema documents

You can delete a WSDL document or XML schema in the cache by using the Remove Tracking Details option.

To delete a WSDL, perform the following steps:

1. Expand the WSDL Document Bundles node.
2. Expand the document bundle for the WSDL to be deleted.
3. Right-click the Tracking from node and select Remove Tracking Details.
4. Click Yes to confirm the removal.

API Gateway removes the WSDL from the cache.

To delete an XML schema from the user-defined catalog, perform the same steps under the XML Schema Document
Bundles > User-defined Catalog node.

XML schema and WSDL document validation

XML schemas and WSDL documents are validated during import. If validation fails, an error is displayed. For example,
validation fails if a schema type is referenced in a WSDL or schema, but that WSDL or schema does not contain an ex-
plicit import statement for the schema that contains the type definition for the referenced type.

Note
API Gateway requires all XML schema and WSDL documents to be present and valid at runtime, and ap-
plies very strict validation checks during import. Therefore, WSDL documents that validate successfully in
other tools, will not necessarily validate in API Gateway, and you might need to preprocess any XML
schemas or WSDL documents to make them valid, before attempting to import them in Policy Studio.

A good starting place is to ensure that all WSDLs and their schemas are Web Service Interoperability
(WS-I) compliant before attempting to import them into Policy Studio. WS-I compliance ensures maximum
interoperability between different vendors' implementation of web services standards, such as SOAP and
WSDL. For more information on how to test for WS-I compliance, see the section called “Test a WSDL for
WS-I compliance”.

An out-of-the-box installation of API Gateway contains a number of common XML schemas (for example, from OASIS
and W3C) preloaded in the global cache. If you import a WSDL that imports any of these standard schemas, API Gate-
way uses the cached version of those schemas, instead of retrieving them from the web.

Manage WSDL and XML schema documents

67

For example, the SOAP encoding schema is often imported into WSDLs that serialize message parts as SOAP encoding
arrays. When such a WSDL is imported into Policy Studio, it recognizes that this schema already exists in the cache and
does not download and import a duplicate version. This optimization avoids unnecessary duplication of shared schema
resources and reduces the overall memory footprint of the API Gateway's configuration store. For more information, see
the section called “Version and duplicate management”.

XML schema and WSDL document limitations

There are some additional limitations when importing XML schema or WSDL documents:

• Non-SOAP bindings
Any HTTP and MIME bindings in the WSDL document are ignored, and only SOAP 1.1 and SOAP 1.2 bindings are
imported.

• Multiple ports for the same service
If the WSDL contains multiple ports for the same service (for example, a service is available over SSL and in the
clear, where the URL differs, but the binding is to the same SOAP service), you can select only one of the ports for
import.

If you absolutely require both endpoints to be virtualized on API Gateway, you can create a separate service for
each port in the WSDL. A distinct service handler is created for each service, which is responsible for processing re-
quests for that service and routing them on to the endpoint URL specified in the port.

• Schemas using the XML Schema namespace to extend element types, but not importing the namespace ex-
plicitly
Although some tools can work with invalid schemas like this, API Gateway requires them to be valid so it can run
schema validation checks against the messages. The schema must be modified to import the namespace explicitly
before you can import the schema in Policy Studio.

• SOAP bodies with no children
For a SOAP binding style of "document", API Gateway does not support any operation whose request SOAP Body
has no child element.

• Input-only SOAP operations
API Gateway does not currently support input-only SOAP operations, as these operations have no concept of a re-
sponse message, and API Gateway has problems generating the Web Service Filter for these operations.

When a Web Service Filter is generated as a result of virtualizing a web service, it handles both the request and re-
sponse messages for the operations that are exposed by that service. Because input-only or notification-style SOAP
operations have no concept of a response message, the Web Service Filter is not ideal, and a custom policy is re-
commended instead.

• Output-only SOAP operations
API Gateway does not currently support output-only SOAP operations, as API Gateway has problems generating
the Web Service Filter for these operations.

Similar to input-only operations, output-only or solicit-response operations cause difficulties for a generated Web
Service Filter and a custom policy is recommended to process this type of request instead.

• Multiple bindings with different WS-Policy requirements
This results in multiple sets of security requirements that need to be configured by the user, and this is not currently
supported by the Import WSDL wizard in Policy Studio.

• WSDL messages that contain multiple parts
API Gateway does not support importing a WSDL where the <wsdl:message> contains multiple parts. A work-
around is to change the WSDL so that each <wsdl:message> contains a single <wsdl:part> that references a
schema complex type that wraps the message parts currently defined in each <wsdl:message>.

• Schemas without the schemaLocation attribute
API Gateway requires schemas to import other schemas using both the namespace and schemaLocation attributes,
except in the following circumstances:
• The schemas are embedded in the WSDL. The schemaLocation attribute can be omitted from the schema im-

port element and the schema resolver looks for the imported schemas in the WSDL itself.

Manage WSDL and XML schema documents

68

• The schemas import a schema from the system catalog (which comes preloaded with a number of common
schemas, for example, the SOAP encoding schema). A schema from the system catalog can be imported into
any schema using just the namespace attribute.

Version and duplicate management

API Gateway manages the resources associated with any WSDL documents or XML schema documents stored in the
global cache. This includes the WSDL or XML schema documents themselves, and any WSDL or XML schemas impor-
ted by those documents.

When a new resource is being added to the global cache (for example, when you import a WSDL or add a new XML
schema), API Gateway compares each resource against the existing resources in the cache. API Gateway tracks two
items for each resource:

• The location of the resource
• The contents of the resource at that location

By tracking these two items, API Gateway can identify when a resource is a new version of an existing resource at the
same location, or when a resource is the same as an existing resource at a different location. In both cases a new ver-
sion of the resource is created.

This means that resources that are shared by multiple web services are not duplicated in the global cache, and that web
services can be updated easily if the WSDL defining the back-end web service changes. For more information on updat-
ing a web service, see the section called “Update a web service”.

A common example of this is where a vendor implements multiple web services that share common data structures, for
example, an object that stores employee details. When the WSDL and schema files for these services are generated,
they will typically all import a common schema file that defines the employee details data structure. On importing these
WSDLs into Policy Studio, API Gateway recognizes that the services all share a common employees schema, and
avoids importing multiple copies of the schema into the cache. Instead, each imported web service points at the common
schema.

Validate messages against XML schemas

The Schema Validation filter is used to validate XML messages against schemas stored in the cache. It can be con-
figured to validate messages against schemas stored in the cache, and also against schemas embedded within WSDL
stored in the cache. This filter is found in the Content Filtering category of filters in Policy Studio. For more information
on configuring this filter, see the Schema validation topic.

Test a WSDL for WS-I compliance

Before importing a WSDL file, you can check it for compliance with the WS-I Basic Profile. The Basic Profile consists of a
set of assertions and guidelines on how to ensure maximum interoperability between different implementations of web
services. For example, there are recommendations on what style of SOAP to use (document/literal), how schema
information is included in WSDL files, and how message parts are defined to avoid ambiguity for consumers of WSDL
files.

Policy Studio uses the Java version of the WS-I testing tools to test imported WSDL files for compliance with the recom-
mendations in the Basic Profile. A report is generated showing which recommendations have passed and which have
failed. While you can still import a WSDL file that does not comply with the Basic Profile, there is no certainty that con-
sumers of the web service can use it without encountering problems.

Important
Before you run the WS-I compliance test, you must ensure that the Java version of the WS-I testing tools is
installed on the machine on which Policy Studio is running. You can download these tools from

Manage WSDL and XML schema documents

69

www.ws-i.org [http://www.ws-i.org].

To configure the location of the WS-I testing tools, select Window > Preferences from the Policy Studio main menu. In
the Preferences dialog, select WS-I Settings, and browse to the location of the WS-I testing tools. You must specify the
full path to these tools (for example, C:\Program Files\WSI_Test_Java_Final_1.1\wsi-test-tools). For
more details on configuring WS-I settings, see the Policy Studio preferences topic.

Run the WS-I compliance test
To run the WS-I compliance test on a WSDL file, perform the following steps:

1. Select Tools > Run WS-I Compliance Test from the Policy Studio main menu.
2. In the Run WS-I Compliance Test dialog, browse to the WSDL File or specify the WSDL URL.
3. Click OK. The WS-I analysis tools run in the background in Policy Studio.

The results of the compliance test are displayed in your browser in a WS-I Profile Conformance Report. The overall
result of the compliance test is displayed in the Summary. The results of the WS-I compliance tests are grouped by type
in the Artifact: description section. For example, you can access details for a specific port type, operation, or message
by clicking the link in the Entry List table. Each Entry displays the results for the relevant WS-I test assertions.

Manage WSDL and XML schema documents

70

http://www.ws-i.org
http://www.ws-i.org

Expose a web service as a REST API
Overview

You can import a WSDL file into Policy Studio, and instead of exposing it to a client, invoke it from a policy. For example,
in a SOAP to REST use case, the web service is registered in Policy Studio by importing a WSDL file into the web ser-
vice repository. A REST API is then defined in Policy Studio, which calls a policy to implement the API, and in turn, this
policy invokes the web service.

Summary of steps

The steps involved in exposing a SOAP web service as a REST API are summarized as follows:

1. Virtualize the SOAP web service.
2. Define a new REST API.
3. Route all REST requests through the virtualized SOAP service.
4. Test the REST to SOAP mapping.

Virtualize a SOAP web service

To expose a virtualized version of a SOAP web service on API Gateway, import a WSDL file describing the web service
into the web service repository. The following figure shows importing the WSDL for a stock quote SOAP web service ex-
posed on the URL:

http://www.webservicex.net/stockquote.asmx?WSDL

71

For more information on using the Import WSDL wizard, see the section called “Import a WSDL file”.

When you register a web service in Policy Studio, service handlers and policies are autogenerated. The following figure
shows the generated policies for the stock quote service.

Expose a web service as a REST API

72

Define a REST API

The next step is to define a REST API for a stock quote service. You can develop REST APIs in Policy Studio using the
REST API development wizard. To launch the wizard, right-click the Business Services > REST API Repository node
in the Policy Studio tree and select Add REST API.

Follow these steps:

1. Define a REST API called StockQuote and expose it on the base path /stockquote.
2. Define a REST API method called GetStockQuote. Set the exposure settings as follows and add an inbound para-

meter for the stock symbol:

Expose a web service as a REST API

73

3. Set the routing policy to the StockQuote policy that was autogenerated when you imported the WSDL for the web
service. For example:

Expose a web service as a REST API

74

Route REST requests through the virtualized SOAP service

To route REST requests through the virtualized SOAP service, perform the following sequence of tasks.

Create a request processing policy

First, create a dedicated request processing policy to create the SOAP request message body to send to the SOAP ser-
vice:

1. Create a request processing policy called GetStockQuoteRequest.
2. Add a Set Message filter to the policy.

• Enter text/xml as the Content-Type.

Expose a web service as a REST API

75

• Select From web service operation from the Populate menu and select the GetQuote operation from the
stock quote web service. This populates the contents of the message body.

• To insert a REST API parameter for the stock symbol, right-click in the message body and select Insert > REST
API parameter.

Expose a web service as a REST API

76

Select the symbol parameter from the Insert REST API Parameter dialog.

This replaces the selected text with the ${params.query.symbol} selector string:

3. Add a Set HTTP verb filter to the policy and enter POST in the HTTP Verb field.
4. Add an Add HTTP header filter to the policy with the following settings:

Expose a web service as a REST API

77

The following figure shows the completed policy.

Expose a web service as a REST API

78

Set the request policy on the REST API method

Next, edit the REST API method GetStockQuote and set this policy as the request processing policy.

Create a response processing policy

Next, create a response processing policy to convert the XML returned from the SOAP web service from XML to JSON
format:

1. Create a response processing policy called XML To JSON.
2. Add an XML to JSON filter to the policy. Configure it to extract the SOAP Body content first and remove any

namespaces:

Expose a web service as a REST API

79

Set the response policy on the REST API method

Finally, edit the REST API method GetStockQuote and set this policy as the response processing policy.

Test the REST to SOAP mapping

To test the REST to SOAP mapping, deploy the configuration on the API Gateway and send a REST request from a
REST client. For example, to get a stock quote for Amazon, send a request to the URL:

Expose a web service as a REST API

80

http://localhost:8080/stockquote/getStockQuote?symbol=AMZN

The following is an example JSON response:

{
"GetQuoteResponse": {

"GetQuoteResult": "<StockQuotes><Stock><Symbol>AMZN</Symbol>
<Last>381.83</Last><Date>2/13/2015</Date><Time>4:00pm</Time>
<Change>+4.66</Change><Open>378.41</Open><High>383.00</High>
<Low>377.01</Low><Volume>3475069</Volume><MktCap>177.3B</MktCap>
<PreviousClose>377.17</PreviousClose><PercentageChange>+1.24%</PercentageChange>
<AnnRange>284.00 - 383.11</AnnRange><Earns>-0.522</Earns>
<P-E>N/A</P-E><Name>Amazon.com</Name></Stock></StockQuotes>"

}
}

Expose a web service as a REST API

81

Connect to a UDDI registry
Overview

This topic explains how to configure a connection to a UDDI registry in the Registry Connection Details dialog. It ex-
plains how to configure connections to UDDI v2 and UDDI v3 registries, and how to secure a connection over SSL.

Configure a registry connection

Configure the following fields in the Registry Connection Details dialog:

Registry Name:
Enter the display name for the UDDI registry.

UDDI v2:
Select this option to use UDDI v2.

UDDI v3:
Select this option to use UDDI v3.

Inquiry URL:
Enter the URL on which to search the UDDI registry (for example, http://HOSTNAME:PORT/uddi/inquiry).

Publish URL:
Enter the URL on which to publish to the UDDI registry, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/publishing).

Security URL (UDDI v3):
For UDDI v3 only, enter the URL for the security service, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/security.wsdl).

Important
For UDDI v3, the Inquiry URL, Publish URL, and Security URL specify the URLs of the WSDL for the in-
quiry, publishing, and security Web services that the registry exposes. These fields can use the same URL
if the WSDL for each service is at the same URL.

For example, a WSDL file at http://HOSTNAME:PORT/uddi/uddi_v3_registry.wsdl can contain three URLs:

• http://HOSTNAME:PORT/uddi/inquiry

• http://HOSTNAME:PORT/uddi/publishing

• http://HOSTNAME:PORT/uddi/security

These are the service endpoint URLs that Policy Studio uses to browse and publish to the registry. These URLs are not
set in the connection dialog, but discovered using the WSDL. However, for UDDI v2, WSDL is not used to discover the
service endpoints, so you must enter these URLs directly in the connection dialog.

Max Rows:
Enter the maximum number of entries returned by a search. Defaults to 20.

Registry Authentication:
The registry authentication settings are as follows:

Type This optional field applies to UDDI v2 only. The only supported authentication

82

type is UDDI_GET_AUTHTOKEN.

Username Enter the user name required to authenticate to the registry, if required.

Password Enter the password for this user, if required.

The user name and password apply to UDDI v2 and v3. These are generally required for publishing, but depend on the
configuration on the registry side.

HTTP Proxy:
The HTTP proxy settings apply to UDDI v2 and v3:

Proxy Host If the UDDI registry location entered above requires a connection to be made
through an HTTP proxy, enter the host name of the proxy.

Proxy Port If a proxy is required, enter the port on which the proxy server is listening.

Username If the proxy has been configured to only accept authenticated requests, Policy
Studio sends this user name and password to the proxy using HTTP Basic au-
thentication.

Password Enter the password to use with the user name specified in the field above.

HTTPS Proxy:
The HTTPS proxy settings apply to UDDI v2 and v3:

SSL Proxy Host If the Inquiry URL or Publish URL uses the HTTPS protocol, the SSL proxy
host entered is used instead of the HTTP proxy entered above. In this case, the
HTTP proxy settings are not used.

Proxy Port Enter the port that the SSL proxy is listening on.

Secure a connection to a UDDI registry

You can communicate with the UDDI registry over SSL. All communication may not need to be over SSL (for example,
you may wish publish over SSL, and perform inquiry calls without SSL). For UDDI v2 and v3, you can use a mix of http
and https URLs for WSDL and service address locations.

You can specify some or all of the Inquiry URL, Publish URL, and Security URL settings as https URLs. For ex-
ample, with UDDI v3, you could use a single URL like the following:

https://HOSTNAME:PORT/uddi/wsdl/uddi_v3_registry.wsdl

If any URLs (WSDL or service address location) use https, you must configure the Policy Studio so that it trusts the re-
gistry SSL certificate.

Configure Policy Studio to trust a registry certificate

For an SSL connection, you must configure the registry server certificate as a trusted certificate. Assuming mutual au-
thentication is not required, the simplest way to configure an SSL connection between Policy Studio and UDDI registry is
to add the registry certificate to the Policy Studio default truststore (the cacerts file). You can do this by performing the

Connect to a UDDI registry

83

following steps in Policy Studio:

1. Select the Certificates and Keys > Certificates node in the Policy Studio tree.
2. Click Create/Import, and click Import Certificate.
3. Browse to the UDDI registry SSL certificate file, and click Open.
4. Click Use Subject on the right of the Alias Name field, and click OK. The registry SSL certificate is now imported in-

to the certificate store, and must be added to the Java keystore.
5. Click Keystore on the Certificate window.
6. Click Browse next to the Keystore field.
7. Browse to the following file:

INSTALL_DIR/policystudio/jre/lib/security/cacerts

8. Click Open, and enter the Keystore password. The default password is: changeit.
9. Click Add to Keystore.
10. Browse to the registry SSL certificate imported earlier, select it, and click OK.
11. Restart Policy Studio. You should now be able to connect to the registry over SSL.

Configure mutual SSL authentication

If mutual SSL authentication is required (if Policy Studio must authenticate to the registry), Policy Studio must have an
SSL private key and certificate. In this case, you should create a keystore containing the Policy Studio key and certific-
ate. You must configure Policy Studio to load this file. For example, edit the IN-
STALL_DIR/policystudio/policystudio.ini file, and add the following arguments:

-Djavax.net.ssl.keyStore=/home/oracle/osr-client.jks
-Djavax.net.ssl.keyStorePassword=changeit

This example shows an osr-client.jks keystore file used with Oracle Service Registry (OSR), which is the UDDI re-
gistry provided by Oracle.

Note
You can also use Policy Studio to create a new keystore (.jks) file. Click New keystore instead of brows-
ing to the cacerts file as described earlier.

Connect to a UDDI registry

84

Retrieve WSDL files from a UDDI registry
Overview

You can use WSDL files to register web services in the Web Service Repository and to add WSDL documents and
XML schemas to the global cache. Policy Studio can retrieve a WSDL file from the file system, from a URL, or from a
UDDI registry. This topic explains how to retrieve a WSDL file from a UDDI registry. For details on how to register WSDL
files, see Manage web services. For details on how to publish WSDL files, see Publish WSDL files to a UDDI registry.

You can also browse a UDDI registry in Policy Studio directly without registering a WSDL file. Under the Business Ser-
vices node in the tree, right-click the Web Service Repository node, and select Browse UDDI Registry.

UDDI concepts

Universal Description, Discovery and Integration (UDDI) is an OASIS-led initiative that enables businesses to publish and
discover Web services on the Internet. A business publishes services that it provides to a public XML-based registry so
that other businesses can dynamically look up the registry and discover these services. Enough information is published
to the registry to enable other businesses to find services and communicate with them. In addition, businesses can also
publish services to a private or semi-private registry for internal use.

A business registration in a UDDI registry includes the following components:

• Green Pages:
Contains technical information about the services exposed by the business

• Yellow Pages:
Categorizes the services according to standard taxonomies and categorization systems

• White Pages:
Gives general information about the business, such as name, address, and contact information

You can search the UDDI registry according to a whole range of search criteria, which is of key importance to Policy Stu-
dio. You can search the registry to retrieve the WSDL file for a particular service. Policy Studio can then use this WSDL
file to create a policy for the service, or to extract a schema from the WSDL to check the format of messages attempting
to use the operations exposed by the Web service.

For a more detailed description of UDDI, see the UDDI specification. In the meantime, the next section gives high-level
definitions of some of the terms displayed in the Policy Studio interface.

UDDI definitions

Because UDDI terminology is used in Policy Studio windows, such as the Import WSDL wizard, the following list of
definitions explains some common UDDI terms. For more detailed explanations, see the UDDI specification.

businessEntity
This represents all known information about a particular business (for example, name, description, and contact informa-
tion). A businessEntity can contain a number of businessService entities. A businessEntity may have an
identifierBag, which is a list of name-value pairs for identifiers, such as Data Universal Numbering System (DUNS)
numbers or taxonomy identifiers. A businessEntity may also have a categoryBag, which is a list of name-value
pairs used to tag the businessEntity with classification information such as industry, product, or geographic codes.
There is no mapping for a WSDL item to a businessEntity. When a WSDL file is published, you must specify a
businessEntity for the businessService.

businessService
A businessService represents a logical service classification, and is used to describe a Web service provided by a
business. It contains descriptive information in business terms outlining the type of technical services found in each
businessService element. A businessService may have a categoryBag, and may contain a number of bind-

85

ingTemplate entities. In the WSDL to UDDI mapping, a businessService represents a wsdl:service. A busi-
nessService has a businessEntity as its parent in the UDDI registry.

bindingTemplate
A bindingTemplate contains pointers to the technical descriptions and the access point URL of the Web service, but
does not contain the details of the service specification. A bindingTemplate may contain references to a number of
tModel entities, which do include details of the service specification. In the WSDL to UDDI mapping, a bindingTem-
plate represents a wsdl:port.

tModel
A tModel is a Web service type definition, which is used to categorize a service type. A tModel consists of a key, a
name, a description, and a URL. tModels are referred to by other entities in the registry. The primary role of the tModel
is to represent a technical specification (for example, WSDL file). A specification designer can establish a unique technic-
al identity in a UDDI registry by registering information about the specification in a tModel. Other parties can express
the availability of Web services that are compliant with a specification by including a reference to the tModel in their
bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a particular specification. tMod-
els are also used in identifierBag and categoryBag structures to define organizational identity and various classi-
fications. In this way, a tModel reference represents a relationship between the keyed name-value pairs to the super-
name, or namespace in which the name-value pairs are meaningful. A tModel may have an identifierBag and a
categoryBag. In the WSDL to UDDI mapping, a tModel represents a wsdl:binding or wsdl:portType.

Identifier
The purpose of identifiers in a UDDI registry is to enable others to find the published information using more formal iden-
tifiers such as DUNS numbers, Global Location Numbers (GLN), tax identifiers, or any other kind of organizational identi-
fiers, regardless of whether these are private or shared.

The following are identification systems used commonly in UDDI registries:

Identification
System

Name tModel Key

Dun and Brad-
street D-U-N-S
Number

dnb-com:D-U-N-S uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823

Thomas Registry
Suppliers

thomasregister-
com:supplierID

uuid:B1B1BAF5-2329-43E6-AE13-BA8E97195039

Category
Entities in the registry may be categorized according to categorization system defined in a tModel (for example, geo-
graphical region). The businessEntity, businessService, and tModel types have an optional categoryBag.
This is a collection of categories, each of which has a name, value, and tModel key.

The following are categorization systems used commonly in UDDI registries:

Categorization
System

Name tModel Key

UDDI Type Tax-
onomy

uddi-org:types uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4

North American In-
dustry Classifica-
tion System
(NAICS) 1997 Re-

ntis-gov:naics:1997 uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

Retrieve WSDL files from a UDDI registry

86

Categorization
System

Name tModel Key

lease

Example tModel mapping for WSDL portType

The following shows an example tModel mapped for a WSDL portType:

<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >
<name>

StockQuotePortType
</name>
<overviewDoc>

<overviewURL>
http://location/sample.wsdl

<overviewURL>
<overviewDoc>

<categoryBag>
<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
keyName="portType namespace"

keyValue="http://example.com/stockquote/" />
<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"

keyValue="portType" />
</categoryBag>

</tModel>

In this example, the tModel name is the same as the local name of the WSDL portType (in this case, StockQuote-
PortType), and the overviewURL links to the WSDL file. The categoryBag specifies the WSDL namespace, and
shows that the tModel is for a portType.

Configure a registry connection

You first need to select the UDDI registry that you want to search for WSDL files. Complete the following fields to select
or add a UDDI registry:

Select Registry:
Select an existing UDDI registry to browse for WSDL files from the Registry drop-down list. To configure the location of
a new UDDI registry, click Add. Similarly, to edit an existing UDDI registry location, click Edit. Then configure the fields
in the Registry Connection Details dialog. For more details, see Connect to a UDDI registry.

Select Locale:
You can select an optional language locale from this list. The default is No Locale.

WSDL search

When you have configured a UDDI registry connection, you can search the registry using a variety of different search op-
tions on the Search tab. WSDL Search is the default option. This enables you to search for the UDDI entries that the
WSDL file is mapped to. You can also do this using the Advanced Search option. The following different types of WSDL
searches are available:

WSDL portType (UDDI tModel):

Retrieve WSDL files from a UDDI registry

87

Searches for a uddi:tModel that corresponds to a wsdl:portType. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Namespace of portType).

WSDL binding (UDDI tModel):
Searches for a uddi:tModel that corresponds to a wsdl:binding. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Name of binding, or Binding Transport Type).

WSDL service (UDDI businessService):
Searches for a uddi:businessService that corresponds to a wsdl:service. You can enter optional search criteria
for specific categories in the uddi:businessService (for example, Namespace of service).

WSDL port (UDDI bindingTemplate):
Searches for a uddi:bindingTemplate that corresponds to a wsdl:port. This search is more complex because a
serviceKey is required to find a uddi:bindingTemplate. This means that at least two queries are carried out, first
to find the uddi:businessService, and another to find the uddi:bindingTemplate.

For example, a bindingTemplate contains a reference to the tModel for the wsdl:portType. You can use the
tModel key to find all implementations (bindingTemplates) for that wsdl:portType. The search looks for busi-
nessServices that have bindingTemplates that refer to the tModel for the wsdl:portType. Then with the ser-
viceKey, you can find the bindingTemplate that refers to the tModel for the wsdl:portType.

In all cases, click Next to start the WSDL search. The Search Results tree shows the tModel URIs as top-level nodes.
These URIs are all WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking
the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search
Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Quick search

The Quick Search option enables you to search the UDDI registry for a specific tModel name or category.

tModel Name:
You can enter a tModel Name for a fine-grained search. This is a partial or full name pattern with wildcard searching as
specified by the SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an under-
score matches any single character and a percent matches zero or more characters.

Categories:
You can select one of the following options to search by:

wsdlSpec Search for tModels classified as wsdlSpec (uddi-org:types category set
to wsdlSpec). This is the default.

Reusable WS-Policy Expressions Search for tModels classified as reusable WS-Policy Expressions.

All Search for all tModels.

Click Next to start the search. The Search Results tree shows the tModel URIs as top-level nodes. These URIs are all
WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search
Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Name search

Retrieve WSDL files from a UDDI registry

88

The Name Search option enables you to search for a businessEntity, businessService or tModel by name. In
the Select Registry Data Type, select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• tModel

You can enter a name in the Name field to narrow the search. You can also use wildcards in the name. The name ap-
plies to a businessEntity, businessService, or tModel, depending on which registry entity type has been selec-
ted. If no name is entered, all entities of the selected type are retrieved.

Click the Search button to start the search. The search results display the matching entities in the tree. For example, if
you enter MyTestBusiness for Name, and select businessEntity, this searches for a businessEntity with the
name MyTestBusiness. Child nodes of the matching businessEntity nodes are also shown. tModels are dis-
played in the results if any child nodes of the businessEntity refer to tModels. Only referred to tModels are dis-
played. The same applies if you search for a businessService. If you select tModel, and search for tModels, only
tModels are displayed.

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node).

UDDI v3 name searches

By default, a UDDI v3 name search is an exact match. To perform a search using wildcards (for example, %, _, and so
on), you must select the approximateMatch find qualifier in the Advanced Options tab. This applies to anywhere you
enter a name for search purposes (for example, Name Search, Quick Search, and Advanced Search).

Advanced search

The Advanced Search option enables you to search the UDDI registry using any combination of Names, Keys, tMod-
els, Discovery URLs, Categories, and Identifiers. You can also specify the entity level to search for in the tree. All of
these options combine to provide a very powerful search facility. You can specify search criteria for any of the categories
listed above by right-clicking the folder node in the Enter Search Criteria tree, and selecting the Add menu option. You
can enter more than one search criteria of the same type (for example, two Key search criteria).

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

The following options enable you to add a search criteria for each of the types listed in the Enter Search Criteria tree.
All search criteria are configured by right-clicking the folder node, and selecting the Add menu option.

Names:
Enter a name to be used in the search in the Name field in the Name Search Criterion dialog. For example, the name
could be the businessEntity name. The name is a partial or full name pattern with wildcards allowed as specified by the
SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an underscore matches any

Retrieve WSDL files from a UDDI registry

89

single character and a percent matches zero or more characters. A name search criterion can be used for busines-
sEntity, businessService, and tModel level searches.

Keys:
In the Key Search Criterion dialog, you can specify a key to search the registry for in the Key field. The key value is a
Universally Unique Identifier (UUID) value for a registry object. You can use the Key Search Criterion on all levels of
searches. If one or more keys are specified with no other search criteria, the keys are interpreted as the keys of the se-
lected type of registry object and used for a direct lookup, instead of a find/search operation. For example, if you enter
key1 and key2, and select the businessService entity type, the search retrieves the businessService object with
key key1, and another businessService with key key2.

If you enter a key with other search criteria, a key criterion is interpreted as follows:

• For a businessService entity lookup, the key is the businessKey of the services.
• For a bindingTemplate entity lookup, the key is the serviceKey of the binding templates.
• Not applicable for any other object type.

tModels:
You can enter a key in the tModel Key field on the tModel Search Criterion window. The key entered should corres-
pond to the UUID of the tModel associated with the type of object you are searching for. A tModel search criterion may
be used for businessEntity, businessService, and bindingTemplate level searches.

Discovery URLs:
Enter a URL in the Discovery URL field on the Discovery URL Search Criterion dialog. The Use Type field is optional,
but can be used to further fine-grain the search by type. You can use a Discovery URL search criterion for busines-
sEntity level searches only.

Categories:
Select a previously configured categorization system from the Type drop-down list in the Category Search Criterion
dialog. This pre-populated with a list of common categorization systems. You can add a new categorization system using
the Add button.

In the Add/Edit Category dialog, enter a Name, Description, and UUID for the new category type in the fields provided.
When the categorization system has been selected or added, enter a value to search for in the Value field. The Name
field is optional.

Identifiers:
Select a previously configured identification system from the Type drop-down list in the Identifier Search Criterion dia-
log. This is pre-populated with well-known identification systems. To add a new identification system, click the Add but-
ton.

In the Add/Edit Identifier dialog, enter a Name, Description, and UUID for the new identifier in the fields provided.

Select Registry Data Type:
Select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• bindingTemplate
• tModel

The search also displays child nodes of the matching nodes. tModels are also returned if they are referred to.

Advanced options

This tab enables you to configure various aspects of the search conditions specified on the previous tabs. The following

Retrieve WSDL files from a UDDI registry

90

options are available:

UDDI Find Qualifier: Description:

andAllKeys By default, identifier search criteria are ORed together. This setting ensures
that they are ANDed instead. This is already the default for categoryBag and
tModelBag.

approximateMatch (v3) This applies to a UDDI v3 registry only. Specifies wildcard searching as defined
by the uddi-org:approximatematch:SQL99 tModel, which means ap-
proximate matching where percent sign (%) indicates any number of characters,
and underscore (_) indicates any single character. The backslash character (\)
is an escape character for the percent sign, underscore and backslash charac-
ters. This option adjusts the matching behavior for name, keyValue and key-
Name (where applicable).

binarySort (v3) This applies to a UDDI v3 registry only. Enables greater speed in sorting, and
causes a binary sort by name, as represented in Unicode codepoints.

bindingSubset (v3) This applies to a UDDI v3 registry only. Specifies that the search uses only
categoryBag elements from contained bindingTemplate elements in the
registered data, and ignores any entries found in the categoryBag that are
not direct descendents of registered businessEntity or businessService
elements.

caseInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that the matching for
name, keyValue and keyName (where applicable) should be performed
without regard to case.

caseInsensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the result set should be
sorted without regard to case. This overrides the default case sensitive sorting
behavior.

caseSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that the matching for
name, keyValue and keyName (where applicable) should be case sensitive.
This is the default behavior.

caseSensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the result set should be
sorted with regard to case. This is the default behavior.

combineCategoryBags Makes the categoryBag entries of a businessEntity behave as if all cat-
egoryBags found at the businessEntity level and in all contained or refer-
enced businessServices are combined. Searching for a category yields a
positive match on a registered business if any of the categoryBags contained
in a businessEntity (including the categoryBags in contained or refer-
enced businessServices) contain the filter criteria.

diacriticInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that matching for name, key-
Value and keyName (where applicable) should be performed without regard to
diacritics. Support for this qualifier by nodes is optional.

diacriticSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that matching for name, key-
Value and keyName (where applicable) should be performed with regard to
diacritics. This is the default behavior.

exactMatch (v3) This applies to a UDDI v3 registry only. Specifies that only entries with name,
keyValue and keyName (where applicable) that exactly match the name argu-
ment passed in, after normalization, are returned. This qualifier is sensitive to
case and diacritics where applicable. This is the default behavior.

exactNameMatch (v2) This applies to a UDDI v2 registry only. Specifies that the name entered as part
of the search criteria must exactly match the name specified in the UDDI re-
gistry.

orAllKeys By default, tModel and category search criteria are ANDed. This setting ORs

Retrieve WSDL files from a UDDI registry

91

UDDI Find Qualifier: Description:

these criteria instead.

orLikeKeys When a bag container contains multiple keyedReference elements (cat-
egoryBag or identifierBag), any keyedReference filters from the same
namespace (for example, with the same tModelKey value) are ORed together
rather than ANDed. For example, this enables you to search for any of
these four values from this namespace, and any of these
two values from this namespace.

serviceSubset Causes the component of the search that involves categorization to use only
the categoryBags from directly contained or referenced businessServices
in the registered data. The search results return only those businesses that
match based on this modified behavior, in conjunction with any other search ar-
guments provided.

signaturePresent (v3) This applies to a UDDI v3 registry only. This restricts the result to entities that
contain, or are contained in, an XML Digital Signature element. The Signa-
ture element should be verified by the client. This option, or the presence of a
Signature element, should only be used to refine a search result, and should
not be used as a verification mechanism by UDDI clients.

sortByDateAsc (v3) This applies to a UDDI v3 registry only. Sorts the results alphabetically in order
of ascending date.

sortByDateDsc (v3) This applies to a UDDI v3 registry only. Sorts the results alphabetically in order
of descending date.

sortByNameAsc Sorts the results alphabetically in order of ascending name.

sortByNameDsc Sorts the results alphabetically in order of descending name.

suppressProjectedServices (v3) This applies to a UDDI v3 registry only. Specifies that service projections must
not be returned when searching for services or businesses. This option is en-
abled by default when searching for a service without a businessKey.

UTS-10 (v3) This applies to a UDDI v3 registry only. Specifies sorting of results based on
the Unicode Collation Algorithm on elements normalized according to Unicode
Normalization Form C. A sort is performed according to the Unicode Collation
Element Table in conjunction with the Unicode Collation Algorithm on the name
field, and normalized using Unicode Normalization Form C. Support for this
qualifier by nodes is optional.

Publish

Click the Publish radio button to view the Published UDDI Entities Tree View. This enables you to manually publish
UDDI entities to the specified UDDI registry (for example, businessEntity, businessService, bindingTemplate,
and tModel entities). You must already have the appropriate permissions to write to the UDDI registry.

Add a businessEntity

To add a business, perform the following steps:

1. Right-click the tree view, and select Add businessEntity.
2. In the Business dialog, enter a Name and Description for the business.
3. Click OK.
4. You can right-click the new businessEntity node to add child UDDI entities in the tree (for example, busi-

nessService, Category, and Identifier entities).

Retrieve WSDL files from a UDDI registry

92

Add a tModel

To add a tModel, perform the following steps:

1. Right-click the tree view, and select Add tModel.
2. In the tModel dialog, enter a Name, Description, and Overview URL for the tModel. For example, you can use

the Overview URL to specify the location of a WSDL file.
3. Click OK.
4. You can right-click the new tModel node to add child UDDI entities in the tree (for example, Category and Iden-

tifier entities).

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node). At
any stage, you can click the Clear button on the right to clear the entire contents of the tree. This does not delete the
contents of the registry.

For more details on UDDI entities such as businessEntity and tModel, see the section called “UDDI definitions”. For
details on how to publish web services automatically using a wizard, see Publish WSDL files to a UDDI registry.

Retrieve WSDL files from a UDDI registry

93

Publish WSDL files to a UDDI registry
Overview

You can register web services in the Web Service Repository using Web Services Description Language (WSDL) files.
Policy Studio can retrieve a WSDL file from the file system, from a URL, or from a UDDI registry. When you have re-
gistered a WSDL file in the web service repository, you can use the Publish WSDL wizard to publish the WSDL file to a
UDDI registry. You can also use the Find WSDL wizard to search for the selected WSDL file in a UDDI registry. This top-
ic explains how to perform both of these tasks.

For background information and an introduction to general UDDI concepts, see Retrieve WSDL files from a UDDI
registry. For details on how to register WSDL files, see Manage web services.

Find WSDL files

You can search a UDDI registry to determine if a web service is already published in the registry. To search for a selec-
ted WSDL file in a specified UDDI registry, perform the following steps:

1. In the Policy Studio tree, expand the Business Services > Web Service Repository node.
2. Right-click a WSDL node and select Find in UDDI Registry to launch the Find WSDL wizard.
3. In the Find WSDL dialog, select a UDDI registry from the list. You can add or edit a registry connection using the

buttons provided. For details on configuring a registry connection, see Connect to a UDDI registry.
4. You can select an optional language Locale from the list. The default is No Locale.
5. Click Next. The WSDL Found in UDDI Registry window displays the result of the search in a tree. The Node

Counts field shows the total numbers of each UDDI entity type returned from the search (businessEntity,
businessService, bindingTemplate, and tModel).

6. You can right-click to edit a UDDI entity node in the tree, if necessary (for example, add a description, add a cat-
egory or identifier node, or delete a duplicate node).

7. Click the Refresh button to run the search again.
8. Click Finish.

The Find WSDL wizard provides is a quick and easy way of finding a selected WSDL file published in a UDDI registry.
For more fine-grained ways of searching a UDDI registry (for example, for specific WSDL or UDDI entities), see Retrieve
WSDL files from a UDDI registry.

Publish WSDL files

To publish a WSDL file registered in the Web Service Repository to a UDDI registry, perform the following steps:

1. Expand the Business Services > Web Service Repository tree node.
2. Right-click a WSDL node and select Publish WSDL to UDDI Registry to launch the Publish WSDL Wizard.
3. Perform the steps in the wizard as described in the next sections.

Step 1: Enter virtualized service address and WSDL URL for publishing in UDDI registry

When you register a WSDL file in the Web service repository, API Gateway exposes a virtualized version of the Web ser-
vice. The host and port for the Web service are changed dynamically to point to the machine running API Gateway. The
client can then retrieve the WSDL for the virtualized Web service from API Gateway, without knowing its real location.

This window enables you to optionally override the service address locations in the WSDL file with the virtualized ad-
dresses exposed by API Gateway. You can also override the WSDL URL published to the UDDI registry. Complete the
following fields:

94

Mapping of Service Addresses to Virtualized Service Addresses:
You can enter multiple virtual service address mappings for each service address specified in the selected WSDL file. If
you do not enter a mapping, the original address location in the WSDL file is published to the UDDI registry. If one or
more mappings are provided, corresponding UDDI bindingTemplates are published in the UDDI registry, each with a
different access point (virtual service address). This enables you to publish the access points of a service when it is ex-
posed on different ports/schemes using API Gateway.

When you launch the wizard, the mapping table is populated with a row for each wsdl:service, wsdl:port,
soap:address, soap12:address, or http:address in the selected WSDL file. To modify an existing entry, select a
row in the table, and click Edit. Alternatively, click Add to add an entry. In the Virtualize Service Address dialog, enter
the virtualized service address. For example, if API Gateway is running on a machine named roadrunner, the new
URL on which the web service is available to clients is: ht-
tp://roadrunner:8080/TestServices/StockQuote.svc.

WSDL URL:
You can enter a WSDL URL to be published to the UDDI registry in the corresponding tModel overviewURL fields. If
you do not enter a URL, the WSDL URL in the Original WSDL URL field is used. For example, an endpoint service is at
http://coyote.qa.acmecorp.com/TestService/StockQuote.svc. Assume this service is virtualized in API
Gateway and exposed at http://HOST:8080/TestService/StockQuote.svc, where HOST is the machine on
which API Gateway is running. The http://HOST:8080/TestService/StockQuote.svc URL is entered as the vir-
tual service address, and http://HOST:8080/TestService/StockQuote.svc?WSDL is entered as the WSDL URL
to publish.

Note
If incorrect URLs are published, you can edit these in the UDDI tree in later steps in this wizard, or when
browsing the registry.

Click Next when finished.

Step 2: View WSDL to UDDI mapping result

You can use this window to view the unpublished mapping of the WSDL file to a UDDI registry structure. You can also
edit a specific mapping in the tree view. This window includes the following fields:

Mapping of WSDL to a UDDI Registry Structure:
The unpublished mappings from the WSDL file to the UDDI registry are displayed in the table. For example, this includes
the relevant businessService, bindingTemplate, tModel, Identifier, Category mappings. You can select a
tree node to display its values in the table below.

You can optionally edit the values for a specific mapping in the table (for example, update a value, or add a key or de-
scription for the selected UDDI entity). You can also right-click a tree node to edit it (for example, add a description, add
a category or identifier node, or delete a duplicate node).

Retrieve service address from WSDL instead of bindingTemplate access point:
When selected, this ensures that the bindingTemplate access point does not contain the service port address, and is
set to WSDL instead. This means that you must retrieve the WSDL to get the service access point. When selected, the
bindingTemplate contains an additional tModelInstanceInfo that points to the
uddi:uddi.org.wsdl:address tModel. This option is not selected by default.

Include WS-Policy as:
When selected, you can choose one of the following options to specify how WS-Policy statements in the WSDL file are
included in the registry:

Remote Policy Expres-
sions

Each WS-Policy URL in the WSDL that is associated with a mapped UDDI entity is ac-
cessed remotely. For example, a businessService is categorized with the

Publish WSDL files to a UDDI registry

95

uddi:w3.org:ws-policy:v1.5:attachment:remotepolicyreference tModel
where the keyValue holds the remote WS-Policy URL. This is the default option.

Reusable Policy Expres-
sions

Each WS-Policy URL in the WSDL that is associated with a mapped UDDI entity has a
separate tModel published for it. Other UDDI entities (for example, businessService)
can then refer to these tModels. These are reusable because UDDI entities published in
the future can also use these tModels. You can do this in Step 4: Select a duplicate
publishing approach by selecting the Reuse duplicate tModels option.

Click Next when finished.

Step 3: Select a registry for publishing

Use this window to select a UDDI registry in which to publish the WSDL to UDDI mapping. Complete the following fields:

Select Registry:
Select an existing UDDI registry to browse for WSDL files from the Registry drop-down list. To configure the location of
a new UDDI registry, click Add. Similarly, to edit an existing UDDI registry location, click Edit. For details on how to con-
figure a UDDI connection, see Connect to a UDDI registry.

Select Locale:
You can select an optional language locale from this list. The default is No Locale.

Click Next when finished.

Step 4: Select a duplicate publishing approach

This window is displayed only if mapped WSDL entities already exist in the UDDI registry. Otherwise, the wizard skips to
step 5. This window includes the following fields:

Select Duplicate Mappings:
The Mapped WSDL to publish pane on the left displays the unpublished WSDL mappings from Step 2. The Duplicates
for WSDL mappings in UDDI registry pane on the right displays the nodes already published in the registry. The Node
List at the bottom right shows a breakdown of the duplicate nodes.

Edit Duplicate Mappings:
You can eliminate duplicate mappings by right-clicking a tree node in the right or left pane, and selecting edit to update a
specific mapping in the dialog. Select the Refresh button on the right to run the search again, and view the updated
Node List. Alternatively, you can configure the options in the next field.

Select Publishing Approach for Duplicate Entries:
Select one of the following options:

Reuse duplicate tModels Publishes the selected entries from the tree on the left, and reuses the selected
duplicate entries in the tree on the right. This is the default option. Some or all
duplicate tModels (for example, for portType, binding, and reusable WS-
Policy expressions) that already exist in the registry can be reused. This means
that a new businessService that points to existing tModels is published.
Any entries selected on the left are published, and any referred to tModels on
the left now point to selected duplicate tModels on the right. By default, this
option selects all businessServices on the left, and all duplicate tModels
on the right. If there is more than one duplicate tModels, only the first is selec-
ted.

Overwrite duplicates Publishes the selected entries from the tree on the left, and overwrites the se-

Publish WSDL files to a UDDI registry

96

lected duplicate entries in the tree on the right. When a UDDI entity is overwrit-
ten, its UUID key stays the same, but all the data associated with it is overwrit-
ten. This is not just a transfer of additions or differences. You can also overwrite
some duplicates and create some new entries. By default, this option selects all
businessServices and tModels on the left and all duplicate busi-
nessServices and tModels on the right. If there is more than one duplicate,
only the first is selected. The default overwrites all selected duplicates and does
not create any new UDDI entries, unless there is a new referred to tModel (for
example, for a reusable WS-Policy expression).

Ignore duplicates Publishes the selected entries from the tree on the left, and ignores all duplic-
ates. You can proceed to publish the mapped WSDL to UDDI data. New UDDI
entries are created for each item that is selected in the tree on the left.

Click Next when finished.

Note
If you select duplicate businessServices in the tree, and select Overwrite duplicates, the wizard skips
to Step 6 when you click Next.

Step 5: Create or search for business

Use this window to specify a businessEntity for the web service. You can create a new businessEntity or search
for an existing one in the UDDI registry. Complete the following fields:

Create a new businessEntity:
This is the default option. Enter a Name and Description for the businessEntity, and click Publish.

Search for an existing businessEntity:
To search for an existing businessEntity name, perform the following steps:

1. Select the Search for an existing businessEntity in the UDDI registry option.
2. In the Search tab, ensure the Name Search option is selected.
3. Enter a Name option (for example, Acme Corporation).

Alternatively, you can select the Advanced Search option to search by different criteria such as Keys, Categories, or
tModels. You can also select a range of search options on the Advanced tab (for example, Exact match, Case sensit-
ive, or Service subset). For more details, see Retrieve WSDL files from a UDDI registry.

The Node Counts field shows the total numbers of each UDDI entity type returned from the search (businessEntity,
businessService, bindingTemplate, and tModel).

Click Next when finished.

Step 6: Publish WSDL

Use this to publish the WSDL to the UDDI registry.

Selected businessEntity for Publishing:
This field displays the name and tModel key of the businessEntity to be published. Click the Publish WSDL button
on the right.

Publish WSDL files to a UDDI registry

97

Published WSDL:
This field displays the tree of the UDDI mapping for the WSDL file. You can right-click to edit or delete any nodes in the
tree if necessary, and click Refresh to run the search again. Click Publish WSDL to publish your updates.

Click Finish.

Publish WSDL files to a UDDI registry

98

Configure messaging services
Overview

A messaging system is a loosely coupled, peer-to-peer facility where clients can send messages to, and receive mes-
sages from any other client. In a messaging system, a client sends a message to a messaging agent. The recipient of
the message can then connect to the same agent and read the message. However, the sender and recipient of the mes-
sage do not need to be available at the same time to communicate (for example, unlike HTTP). The sender and recipient
need only know the name and address of the messaging agent to talk to.

Java Message Service (JMS) is an implementation of such a messaging system. It provides an API for creating, sending,
receiving, and reading messages. Java-based applications can use it to connect to other messaging system implementa-
tions. A JMS provider can deliver messages synchronously or asynchronously, which means that the client can fire and
forget messages or wait for a response before resuming processing. Furthermore, the JMS API ensures different levels
of reliability in terms of message delivery. For example, it can ensure that the message is delivered once and only once,
or at least once.

API Gateway uses the JMS API to connect to other messaging systems that expose a JMS interface (for example, Or-
acle WebLogic Server, IBM WebSphere MQ, Red Hat JBoss Messaging, Apache ActiveMQ, or Progress SonicMQ). As a
consumer of a JMS queue or topic, the API Gateway can read XML messages and pass them into a policy for validation.
These messages can then be routed on over HTTP or dropped on to another JMS queue or topic.

API Gateway also provides a default embedded Apache ActiveMQ service, which enables it to act as a JMS server. For
example, this enables API Gateway to integrate external facing REST APIs and SOAP Web services with back-end sys-
tems and applications using reliable asynchronous messaging.

Prerequisites

API Gateway provides all the required third-party JAR files for IBM WebSphere MQ and Apache ActiveMQ (both embed-
ded and external).

Note
For other third-party JMS providers only, you must add the required third-party JAR files to the API Gate-
way classpath for messaging to function correctly. If the provider's implementation is platform-specific, copy
the provider JAR files to INSTALL_DIR/ext/PLATFORM.

INSTALL_DIR is your API Gateway installation, and PLATFORM is the platform on which API Gateway is in-
stalled (Win32, Linux.i386, or SunOS.sun4u-32). If the provider implementation is platform-inde-
pendent, copy the JAR files to INSTALL_DIR/ext/lib.

Configure API Gateway messaging using the JMS wizard

You can use the JMS Wizard to configure an API Gateway instance to consume JMS messages from a JMS queue or
topic. When a message has been consumed by the API Gateway, it can be sent to a configured policy where the full
range of API Gateway message filters can run on the message. The message can then be routed onwards over HTTP or
dropped back on to a JMS queue or topic. The JMS Wizard guides you through all of the necessary steps to configure
messaging (for example, the JMS service, JMS session, and JMS consumer).

To launch the JMS Wizard, right-click the instance under the Listeners node in the Policy Studio tree, and select Mes-
saging System > JMS Wizard. The wizard includes the following windows:

JMS Service Provider
The first window in the wizard enables you to configure connection details to the JMS provider that produces the JMS
messages that are consumed by the API Gateway. For details on configuring the fields on this window, see Configure a

99

JMS service. Click Next when finished.

JMS Session Configuration
The second window in the wizard enables you to configure settings such as Remove message from source for the JMS
session that is established with the JMS provider. For details on configuring these settings, see Configure a JMS
session. Click Next when finished.

JMS Consumer Configuration
The third window in the wizard enables you to configure JMS consumer settings. For details on configuring the fields on
this window, see Configure a JMS consumer. Click Finish to complete.

Configure global JMS services in external connections

Alternatively, you can configure a global JMS service under the External Connections node in Policy Studio by right-
clicking the JMS Services node, and selecting Add a JMS Service.

The configured global JMS services can then be used by the API Gateway to drop messages on to a JMS queue or top-
ic, or to read messages from a JMS queue or topic (for example, using the Send to JMS or Read from JMS filter).

For more details, see Configure a JMS service.

Configure embedded Apache ActiveMQ in API Gateway settings

You can use the API Gateway server settings to configure the default embedded Apache ActiveMQ broker available in
API Gateway, and which enables it to act as a JMS service provider.

In the Policy Studio tree, select Server Settings > Messaging > Embedded ActiveMQ. For example, you can enable
embedded ActiveMQ, and configure location and SSL security settings.

For more details, see the API Gateway Administrator Guide.

Monitor messaging using API Gateway Manager

You can use the API Gateway Manager web console to monitor messaging at runtime. For example, you can create, de-
lete, and view JMS topics, queues, and messages at runtime.

For more details, see the API Gateway Administrator Guide.

Configure messaging services

100

Configure a JMS service
Overview

You can configure a global JMS service under the External Connections node in Policy Studio by right-clicking the JMS
Services node, and selecting Add a JMS Service. The details entered in the JMS Service dialog can then be used by
the API Gateway to drop messages on to a JMS queue or topic, or to read messages from a JMS queue or topic. For
more details, see the following filters:

• Send to JMS
• Read from JMS

Alternatively, you can configure a JMS service at the API Gateway instance level, and configure the API Gateway to con-
sume a JMS queue or topic. Right-click the instance under the Listeners node in the Policy Studio, and select JMS Wiz-
ard.

General configuration

Configure the following fields on the JMS Service tab:

Name:
Enter a descriptive name for the JMS provider in the Name field.

Service type:
Select one of the following from the list:

• Embedded Apache ActiveMQ: The default Apache ActiveMQ service that is embedded in the API Gateway.
• Apache ActiveMQ: An external Apache ActiveMQ service that is not embedded in the API Gateway.
• IBM MQ: An IBM WebSphere MQ service. See the section called “IBM WebSphere MQ settings”.
• Standard JMS: Other systems that support the JMS standard (for example, Oracle WebLogic Server, IBM MQSer-

ies, JBoss Messaging or Progress SonicMQ).

Apache ActiveMQ and Standard JMS settings

The following settings are displayed when you select a Service Type of Embedded Apache ActiveMQ, Apache Act-
iveMQ, or Standard JMS:

Provider URL:
Enter the URL of the JMS provider. For example, a URL for a JBoss application server might be
jnp://localhost:1099. Defaults to local for Embedded Apache ActiveMQ.

Initial Context Factory:
API Gateway uses a connection factory to create a connection with a JMS provider. A connection factory encapsulates a
set of connection configuration parameters that have been defined by the administrator. The following are some example
default values:

• Embedded Apache ActiveMQ: com.vordel.ama.jndi.InitialContextFactory
• External Apache ActiveMQ: com.vordel.jms.apache.activemq.InitialContextFactory
• JBoss application server: org.jnp.interfaces.NamingContextFactory

Connection Factory:
Enter the name of the connection factory to use when connecting to the JMS provider. The name of the connection fact-

101

ory is vendor-specific. For example, the connection factory for the JBoss application server is
org.jnp.interfaces:javax.jnp. Defaults to connectionFactory for embedded and external ActiveMQ.

IBM WebSphere MQ settings

The following settings are displayed when you select a Service Type of IBM MQ:

Host name:
Enter the host name of the JMS provider (for example, localhost).

Port number:
Enter the port number of the JMS provider (for example, 1414).

Queue manager:
Enter the virtual queue manager name by which IBM WebSphere Application Server is known to WebSphere MQ (for ex-
ample, TEST_BUS).

Channel:
Enter the IBM WebSphere MQ channel name on the WebSphere MQ system (for example, MY_QM.TO.TEST_BUS).

Initial Context Factory:
The API Gateway uses a connection factory to create a connection with a JMS provider. A connection factory encapsu-
lates a set of connection configuration parameters that have been defined by the administrator. Defaults to
com.vordel.jms.ibm.mq.InitialContextFactory.

Connection Factory:
Enter the name of the connection factory to use when connecting to the JMS provider. Defaults to connectionFact-
ory.

Settings for all service types

The following optional settings are common to all service types:

Username:
If a user name is required to connect to this JMS provider, enter it here.

Password:
Enter the password for this user.

Custom Message Properties:
You can add JNDI context settings by clicking Add, and entering name and value properties in the fields.

For the Embedded Apache ActiveMQ service type, you can define Apache ActiveMQ URI parameters using JNDI prop-
erties. For example, see the following:

• http://activemq.apache.org/tcp-transport-reference.html
• http://activemq.apache.org/connection-configuration-uri.html
• http://activemq.apache.org/redelivery-policy.html
• http://activemq.apache.org/ssl-transport-reference.html
• http://activemq.apache.org/what-is-the-prefetch-limit-for.html

Configure advanced settings

You can configure the following options on the Advanced Settings tab:

JMS service settings

Configure a JMS service

102

http://activemq.apache.org/tcp-transport-reference.html
http://activemq.apache.org/connection-configuration-uri.html
http://activemq.apache.org/redelivery-policy.html
http://activemq.apache.org/ssl-transport-reference.html
http://activemq.apache.org/what-is-the-prefetch-limit-for.html

The advanced JMS service settings are as follows:

JMS Client ID:
Enter the client ID required by JMS durable topic subscriptions to consume messages from the service. For more details,
see the following:

• Configure a JMS consumer
• Read from JMS

Automatic reconnection:
Select whether a reconnection to the JMS server is performed when the configured JMS provider raises a connection er-
ror. This setting is selected by default.

Start first connection asynchronously:
Select whether the first connection attempt is detached from the API Gateway startup sequence. When this setting is se-
lected, API Gateway will start even if the JMS connection cannot be established.

SSL settings

Note
SSL settings are available only for the IBM MQ and external Apache ActiveMQ JMS service types.

You can configure the following SSL settings:

Cipher suite:
Click the browse button on the right, and select SSL cipher suites from the list of JSSE or IBM cipher suites in the dialog
(for example, SSL_RSA_WITH_RC4_128_MD5).

Note
When using an IBM MQ JMS service type, you can select only one SSL cipher suite. For more details, see
your IBM WebSphere MQ documentation. When using an Apache ActiveMQ JMS service type, you can
select multiple cipher suites.

Trusted certificates:
When a cipher suite is selected, you can select SSL trusted certificates and authorities from the list. The selected certific-
ates will be used to check the JMS server certificate.

Client certificate (SSL mutual authentication):
Click Client Certificate to select the SSL client certificate and key to use. This setting is required only for SSL mutual au-
thentication.

Next steps

When the JMS service has been configured, you can configure the API Gateway to drop messages on to a queue or top-
ic exposed by this service. You can do this when configuring a policy by selecting the service in the Send to JMS or
Read from JMS filters. For more details, see the following:

• Send to JMS
• Read from JMS

You can also configure JMS sessions for the newly added JMS service at the API Gateway instance level. For more de-
tails, see Configure a JMS session.

Configure a JMS service

103

Configure a JMS session
Overview

JMS services have JMS sessions, which can be shared by multiple JMS consumers, or used by a single JMS consumer
only. To configure a JMS session, right-click an API Gateway instance under the Listeners node in the Policy Studio
tree, and select Messaging System > Add JMS Session. Alternatively, you can configure a JMS session using Mes-
saging System > JMS Wizard.

Note
You must have first configured a JMS service before you can configure a JMS session. For more details,
see Configure a JMS service.

JMS session configuration

The JMS session settings that are displayed on the Session tab depend on whether you selected Add JMS Session or
JMS Wizard.

Add JMS session only

If you selected Messaging System > Add JMS Session, configure the following fields:

JMS service:
Click the browse button on the right, and select a preconfigured JMS service. To add a service, right-click JMS Services,
and select Add a JMS Service. For more details, see Configure a JMS service.

Listener Count:
Specify the number of listeners permitted for this JMS session. Defaults to 1. If the volume of messages arriving at the
queue is more than a single thread can process, you can increase the number of threads listening on the queue by in-
creasing the listener count.

Common configuration

In both cases (Add JMS Session and JMS Wizard), configure the following fields:

Remove message from source:
Select one of the following options from the list:

• Immediately when message is read: Message is removed immediately after it is read.
• Lazily which will allow for duplicate message: Message is removed lazily, which allows possible duplicate mes-

sages and compatibility with previous versions of API Gateway.
• When policy completes without error: Message is removed if the configured policy succeeds or fails, but not if an

error is raised. This option allows possible duplicate messages and compatibility with previous versions of API Gate-
way. This is the default option.

• When policy completes and property below evaluates to true: Message is removed if the message attribute con-
figured in Message removal property evaluates to true. This attribute is set to true by default.

Note
After the configured policy executes, if a message is not removed, it is then rolled back.

Message removal property:
Enter the message attribute name used by the When policy completes and selector below evaluates to true option.

104

Monitoring options

The Traffic Monitor tab enables you to configure traffic monitoring settings for the JMS session. To override the system-
level traffic monitoring settings, select Override system-level settings, and configure the relevant options. For more de-
tails, see the API Gateway Administrator Guide.

Next steps

When the JMS session has been configured, you can configure JMS consumers for the newly added JMS session at the
API Gateway instance level. For more details, see Configure a JMS consumer.

Configure a JMS session

105

Configure a JMS consumer
Overview

You can configure multiple JMS consumers under a single JMS session, which share that session. Alternatively, you can
configure a single JMS consumer per JMS session. Consumers sharing a JMS session access that session serially.
Each consumer blocks until a response (if any) is received. Consumers with their own session do not encounter this
problem, which may improve performance.

You can configure JMS consumers using the JMS Wizard, or by right-clicking an existing JMS session, and selecting
Add JMS Consumer.

Note
You must first configure a JMS service and a JMS session before you can configure a JMS consumer. For
more details see Configure a JMS service.

JMS Message source

On the General tab, configure the following fields in the Message source section:

Source type:
Select one of the following from the list:

• Queue
• Topic
• JNDI lookup

Defaults to Queue.

Source Name:
Enter the name of the JMS queue, JMS topic, or JNDI lookup to specify where you want read the messages from.

Selector:
Enter a selector expression that specifies a response message. The expression entered specifies the messages that the
consumer is interested in receiving. By using a selector, the task of filtering the messages is performed by the JMS pro-
vider instead of by the consumer.

The selector is a string that specifies an expression whose syntax is based on the SQL92 conditional expression syntax.
The API Gateway instance only receives messages whose headers and properties match the selector. For more details
on selectors, see Select configuration values at runtime.

JMS consumer type

The JMS consumer type settings enable you to configure the following:

Durable subscription:
Select this setting to use a durable topic subscription to consume messages from the server. This option is available only
for Topic and JNDI lookup source types.

Topic subscriber name:
Enter the JMS subscriber name used to identify the durable subscription.

106

Note
The JMS service used must have a JMS Client ID configured. If a JNDI lookup source is configured, the
name must not point to a topic.

Only one durable subscriber (described by the JMS client ID and subscriber name) can be active at a time.

Message processing

The Message processing settings include the following:

Extraction Method:
Specify how to extract the data from the JMS message from the drop-down list:

• Create a content.body attribute based on the SOAP over JMS draft specification (the default)
• Insert the JMS message directly into the attribute named below
• Populate the attribute below with the value inferred from message type to Java

Attribute Name:
The name of the API Gateway message attribute that holds the data extracted from the JMS message. Defaults to the
jms.message message attribute.

Policy:
Select the appropriate policy from the list to run on the JMS message after it has been consumed by the API Gateway.
This setting is required.

Send Response to Configured Destination:
Specifies whether the API Gateway sends a reply to the response queue named in the incoming message (in the
ReplyTo header). This option is selected by default. Deselecting this option means that the API Gateway never sends a
reply to the response queue named in the ReplyTo header.

Logging settings

The Logging Settings tab enables you to configure the logging level for all filters in policies executed on this JMS con-
sumer, and to configure when message payloads are logged.

Transaction Audit Logging Level

You can configure the following settings on all filters executed on the JMS consumer:

Logging Level Description

Fatal Logs Fatal log points that occur on all filters executed.

Failure Logs Failure log points that occur on all filters executed. This is the default log-
ging level.

Success Logs Success log points that occur on all filters executed.

For details on logging levels, and configuring logging for a filter, see Set transaction log level and log message.

Transaction Audit Payload Logging

Configure a JMS consumer

107

You can configure the following settings this JMS consumer:

Payload Logging Description

On receive request from client Log the message payload when a request arrives from the client.

On send response to client Log the message payload before the response is sent back to the client.

On send request to remote server Log the message payload before the request is sent using any Connection or
Connect to URL filters deployed in policies.

On receive response from remote
server

Log the message payload when the response is received using any Connec-
tion or Connect to URL filters deployed in a policies.

For details on how to log message payloads at any point in a specific policy, see Log message payload.

Configure a JMS consumer

108

Send to JMS
Overview

The Send to JMS filter enables you to configure a JMS messaging system to which the API Gateway sends messages.
You can configure various settings for the message request and response (for example, destination and message type,
how the message system should respond, and so on).

API Gateway provides all the required third-party JAR files for IBM WebSphere MQ and Apache ActiveMQ (both embed-
ded and external).

Note
For other third-party JMS providers only, you must add the required third-party JAR files to the API Gate-
way classpath for messaging to function correctly. If the provider's implementation is platform-specific, copy
the provider JAR files to INSTALL_DIR/ext/PLATFORM.

INSTALL_DIR is your API Gateway installation, and PLATFORM is the platform on which API Gateway is in-
stalled (Win32, Linux.i386, or SunOS.sun4u-32). If the provider implementation is platform-inde-
pendent, copy the JAR files to INSTALL_DIR/ext/lib.

Request settings

The Request tab specifies the following properties of the request sent to the messaging system:

JMS Service:
Click the browse button on the right, and select an existing JMS service in the tree. To add a JMS Service, right-click the
JMS Services tree node, and select Add a JMS Service. Alternatively, you can configure JMS services under the Ex-
ternal Connections node in the Policy Studio tree. For more details, see the Configure messaging services topic.

Destination type:
Select one of the following from the list:

• Queue
• Topic
• JNDI lookup

Defaults to Queue.

Destination:
Enter the name of the JMS queue, JMS topic, or JNDI lookup to specify where you want to drop the messages.

Delivery Mode:
Select one of the following delivery modes:

• Persistent:
Instructs the JMS provider to ensure that a message is not lost in transit if the JMS provider fails. A message sent
with this delivery mode is logged to persistent storage when it is sent. This is the default mode.

• Non-persistent:
Does not require the JMS provider to store the message. With this mode, the message may be lost if the JMS pro-
vider fails.

Priority Level:
You can use message priority levels to instruct the JMS provider to deliver urgent messages first. The ten levels of prior-

109

ity range from 0 (lowest) to 9 (highest). If you do not specify a priority level, the default level is 4. A JMS provider tries to
deliver higher priority messages before lower priority ones but does not have to deliver messages in exact order of prior-
ity.

Time to Live:
By default, a message never expires. However, if a message becomes obsolete after a certain period, you may want to
set an expiry time (in milliseconds). The default value is 0, which means the message never expires.

Message ID:
Enter an identifier to be used as the unique identifier for the message. By default, the unique identifier is the ID assigned
to the message by API Gateway (${id}). However, you can use a proprietary correlation system, perhaps using MIME
message IDs instead of API Gateway message IDs.

Correlation ID:
Enter an identifier for the message that API Gateway uses to correlate response messages with the corresponding re-
quest messages. Usually, if ${id} is specified in the Message ID field above, it is also used here to correlate request
messages with their correct response messages.

Message Type:
This drop-down list enables you to specify the type of data to be serialized and sent in the JMS message to the JMS pro-
vider. The option selected depends on what part of the message you want to send to the consumer. For example, to
send the message body, select the option to format the body according to the rules defined in the SOAP over JMS [ht-
tp://www.w3.org/TR/soapjms/] recommendation. Alternatively, to serialize a list of name-value pairs to the JMS message,
choose the option to create a MapMessage.

Select one of thd following serialization options:

• Use content.body attribute to create a message in the format specified in the SOAP over Java Message Ser-
vice recommendation:
If this option is selected, messages are formatted according to the SOAP over JMS [http://www.w3.org/TR/soapjms/]
recommendation. This is the default option because in most cases the message body is routed to the messaging
system. When this option is selected, a javax.jms.BytesMessage is created and a JMS property containing the
content type text/xml) is set on the message.

• Create a MapMessage from the java.lang.Map in the attribute named below:
Select this option to create a javax.jms.MapMessage from the API Gateway message attribute named below that
consists of name-value pairs.

• Create a BytesMessage from the attribute named below:
Select this option to create a javax.jms.BytesMessage from the API Gateway message attribute named below.

• Create an ObjectMessage from the java.lang.Serializable in the attribute named below:
Select this option to create a javax.jms.ObjectMessage from the API Gateway message attribute named below.

• Create a TextMessage from the attribute named below:
Select this option to create a javax.jms.TextMessage from the message attribute named below.

• Use the javax.jms.Message stored in the attribute named below:
If a javax.jms.Message has already been stored in a message attribute, select this option, and enter the name of
the attribute in the field below.

Attribute Name:
Enter the name of the API Gateway message attribute that holds the data that is to be serialized to a JMS message and
sent over the wire to the JMS provider. The type of the attribute named here must correspond to that selected in the
Message Type drop-down field above.

Custom Message Properties:
You can set custom properties for messages in addition to those provided by the header fields. Custom properties may
be required to provide compatibility with other messaging systems. You can use message attribute selectors as property
values. For example, you can create a property called AuthNUser, and set its value to
${authenticated.subject.id}. Other applications can then filter on this property (for example, only consume mes-
sages where AuthNUser equals admin). To add a new property, click Add, and enter a name and value in the fields

Send to JMS

110

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

provided on the Properties dialog.

Use the following policy to change JMS request message:
This setting enables you to customize the JMS message before it is published to a JMS queue or topic. Click the browse
button on the right, and select a configured policy in the dialog. The selected policy is then invoked before the JMS re-
quest is sent to the queuing system.

When the selected policy is invoked, the JMS request message is available on the white board in the
jms.outbound.message message attribute. You can therefore call JMS API methods to manipulate the JMS request
further. For example, you could configure a policy containing a Scripting Language filter that runs a script such as the
following against the JMS message:

function invoke(msg) {
var jmsMsg = msg.get("jms.outbound.message");
jmsMsg.setIntProperty("My_JMS_Report", 123);
return true;

}

Response settings

The Response tab specifies whether API Gateway uses asynchronous or synchronous communication when talking to
the messaging system. For example, to use asynchronous communication, you can select the Do not set response op-
tion. If synchronous communication is required, you can select to read the response from a temporary queue or from a
named queue or topic.

You can also specify whether API Gateway waits on a response message from a queue or topic from the messaging sys-
tem. API Gateway sets the JMSReplyTo property on each message that it sends. The value of the JMSReplyTo prop-
erty is the temporary queue, queue, or topic selected in this dialog. It is the responsibility of the application that con-
sumes the message from the queue (JMS consumer) to send the message back to the destination specified in JMS-
ReplyTo.

API Gateway sets the JMSCorrelationID property to the value of the Correlation ID field on the Request tab to cor-
relate requests messages to their corresponding response messages. If you select to use a temporary queue or tempor-
ary topic, this is created when API Gateway starts up.

Configure how messaging system should respond:
Select where the response message is to be placed using one of the following options:

• Do not set response:
Select this option if you do not expect or do not care about receiving a response from the JMS provider.

• Use temporary queue:
Select this option to instruct the JMS provider to place the response message on a temporary queue. In this case,
the temporary queue is created when API Gateway starts up. Only API Gateway can read from the temporary
queue, but any application can write to it. API Gateway uses the value of the JMSReplyTo header to indicate the
location where it reads responses from.

• Use queue:
If you want the JMS provider to place response messages on a queue, select this option, and enter the queue name
in the text box. This is used in the JMSReplyTo field of the response message.

• Use topic:
If you want the JMS provider to place response messages on a topic, select this option, and enter the topic name in
the text box. This is used in the JMSReplyTo field of the response message.

• Use named queue or topic (JNDI):
If you want the JMS provider to place response messages on a named queue or topic using JNDI lookup, select this
option, and enter the JNDI name for the queue or topic in the text box. This is used in the JMSReplyTo field of the
response message.

Send to JMS

111

Wait for response:
If Do not set response is not selected, you can select whether API Gateway waits to receive a response:

• Wait with timeout (ms):
API Gateway waits a specific time period to receive a response before it times out. If API Gateway times out waiting
for a response, the Messaging System filter fails. Enter the timeout value in milliseconds. The default value of
10000 means that API Gateway waits for a response for 10 seconds. The accepted range of values is
10000–20000 ms.

• Selector for response:
If Wait with timeout (ms) is selected, you can enter a selector expression that specifies a response message. The
expression entered specifies the messages that the consumer is interested in receiving. By using a selector, the task
of filtering the messages is performed by the JMS provider instead of by the consumer.

The selector is a string that specifies an expression whose syntax is based on the SQL92 conditional expression
syntax. The API Gateway instance only receives messages whose headers and properties match the selector. For
more details on selectors, see Select configuration values at runtime.

Important
The JMS consumer automatically returns the results of the invoked policy to the JMS destination specified
in the JMSReplyTo header in the request. This means that you do not need to send a reply using the Send
to JMS filter.

If the incoming JMS message contains a JMSReplyTo header, the queue or topic expects a response. So
when the JMS consumer policy completes, API Gateway sends a message to the JMSReplyTo source in
reverse. For example, the consumer reads the JMS message, and populates an attribute with a value in-
ferred from the message type to Java (for example, from TextMessage to String). When the policy com-
pletes, the consumer looks up this attribute, an infers the JMS response message type based on the object
type stored in the message.

Send to JMS

112

Read from JMS
Overview

The Read from JMS filter enables you to configure a JMS messaging system from which the API Gateway reads mes-
sages. You can configure various settings for the JMS message source, message type, and processing options.

API Gateway provides all the required third-party JAR files for IBM WebSphere MQ and Apache ActiveMQ (both embed-
ded and external).

Note
For other third-party JMS providers only, you must add the required third-party JAR files to the API Gate-
way classpath for messaging to function correctly. If the provider's implementation is platform-specific, copy
the provider JAR files to INSTALL_DIR/ext/PLATFORM.

INSTALL_DIR is your API Gateway installation, and PLATFORM is the platform on which API Gateway is in-
stalled (Win32, Linux.i386, or SunOS.sun4u-32). If the provider implementation is platform-inde-
pendent, copy the JAR files to INSTALL_DIR/ext/lib.

Message source

The Message source settings enable you to configure the following:

JMS Service:
Click the browse button on the right, and select an existing JMS service in the tree. To add a JMS Service, right-click the
JMS Services tree node, and select Add a JMS Service. Alternatively, you can configure JMS services under the Ex-
ternal Connections node in the Policy Studio tree. For more details, see Configure messaging services.

Source type:
Select one of the following from the list:

• Queue
• Topic
• JNDI lookup

Defaults to Queue.

Source Name:
Enter the name of the JMS queue, JMS topic, or JNDI lookup to specify where you want read the messages from.

Selector:
Enter a selector expression that specifies a response message. The expression entered specifies the messages that the
consumer is interested in receiving. By using a selector, the task of filtering the messages is performed by the JMS pro-
vider instead of by the consumer.

The selector is a string that specifies an expression whose syntax is based on the SQL92 conditional expression syntax.
The API Gateway instance only receives messages whose headers and properties match the selector. For more details
on selectors, see Select configuration values at runtime.

Read timeout (ms):
Enter the timeout after which the Read from JMS filter fails. The accepted range of values is 1–20000 ms. Defaults to
1000 ms.

JMS consumer type

113

The JMS consumer type settings enable you to configure the following:

Durable subscription:
Create or use a durable topic subscription to consume messages from the server. This option is only available for Topic
and JNDI lookup source types.

Note
This is only available with a Topic source and the JMS service used must have a client ID configured. If a
JNDI lookup source is configured, the name must not point to a topic.

Topic subscriber name:
Enter the JMS subscriber name used to identify the durable subscription.

Message processing

The JMS consumer type settings enable you to configure the following:

Extraction Method:
Specify how to extract the data from the JMS message from the drop-down list:

• Insert the JMS message directly into the attribute named below (this is the default)
• Populate the attribute below with the value inferred from message type to Java

Attribute Name:
The name of the API Gateway message attribute that holds the data extracted from the JMS message. Defaults to the
jms.message message attribute.

Policy:
Select the appropriate policy to run on the JMS message after it has been consumed by the API Gateway.

Send Response to Configured Destination:
Specifies whether the API Gateway sends a reply to the response queue named in the incoming message (in the
ReplyTo header). This option is selected by default. Deselecting this option means that the API Gateway never sends a
reply to the response queue named in the ReplyTo header.

Read from JMS

114

Manage API Gateway deployments
Overview

When connected to the Admin Node Manager server in Policy Studio, you can deploy configurations to API Gateway in-
stances running in groups in a domain. In Policy Studio, the Group / API Gateway topology view enables you to edit the
configuration of currently running API Gateway instances. You can update the downloaded configuration, and deploy it to
the server, where it can be reloaded later. You can deploy modified configuration to multiple API Gateway instances
managed by Policy Studio. You can also create groups and API Gateway instances.

The web-based API Gateway Manager enables you to deploy configurations to API Gateway instances running in groups
in a domain, to create groups and API Gateway instances, and to manage Admin users. In this way, Policy Studio and
the API Gateway Manager enable policy developers and administrators to centrally manage the policies that are en-
forced at all nodes throughout the network.

In addition, Policy Studio enables you to compare and merge differences between versions of the same policy. Policies
can be merged, and deployed to any running instance that is managed by Policy Studio. One of the most powerful uses
of this centralized management capability is in transitioning from a staging environment to a production environment. For
example, policies can be developed and tested on the staging environment, and when ready, they can be deployed to all
instances deployed in the production environment.

Connect to a server in Policy Studio

Before starting Policy Studio, you should first ensure that the Admin Node Manager and the server instance that you
wish to connect to have been started.

When Policy Studio starts up, click a link to a server to display the Open Connection dialog. You can use this dialog to
specify Connection Details (for example, host, port, user name, and password) or to specify Saved Sessions. If you
wish to connect to the server using a non-default URL, click Advanced, and enter the URL. The default Admin Node
Manager URL is:

https://localhost:8090/api

Alternatively, you can connect to a server configuration file by clicking the Open File button. For more details on con-
necting using a server URL, configuration file, or deployment archive,

Note
You must connect to the Admin Node Manager server to deploy API Gateway configuration or manage
multiple API Gateway instances in your network.

When the connection to the server has been made, the Group / API Gateway topology view is displayed. This displays
the list of server instances currently managed by the Admin Node Manager in Policy Studio, and enables you to manage
the configuration for server instances.

Edit a server configuration in Policy Studio

The Group / API Gateway topology view lists all available instances in each group. Double-click an instance name in the
list to load its active configuration. Alternatively, right-click an instance name, and select Edit Configuration. The active
server configuration is loaded and displayed in the following format: InstanceName [HostName:Port] (for example,
test_server [roadrunner.acme.com:8085]).

When an active server configuration is loaded, its services are displayed under the Listeners node in the Policy Studio
tree on the left. Expand one of the top-level nodes in the tree to display additional details (for example, Business Ser-

115

vices, External Connections, Resources, Libraries, or Settings).

When editing an active server configuration, you can deploy updates using the Deploy button in the toolbar
(alternatively, press F6). You can also deploy configuration packages in the Group / API Gateway topology view. For
more details, see Deploy API Gateway configuration.

Manage deployments in API Gateway Manager

In the web-based API Gateway Manager tool, the TOPOLOGY section on the Dashboard tab enables you to create
groups and API Gateway instances, and to deploy configuration. For details on how to access the API Gateway Man-
ager, see Start the API Gateway tools.

Compare and merge configurations in Policy Studio

You can compare and merge differences between the currently loaded API Gateway configuration with a configuration
stored in a deployment package (.fed file). Click the Compare button on the Policy Studio toolbar to select a .fed file to
compare the current configuration against. The results are displayed in the Compare/Merge tab.

For example, you can view the differences made to particular fields in an Authentication filter that occurs in both configur-
ations. When a difference is located, you can merge the differences, and thereby update the fields in the Authentication
filter in the current configuration with the field values for the same Authentication filter in the deployment package.

For more details,

Manage Admin users in API Gateway Manager

You can add new Admin Users to enable role-based access to the API Gateway configuration managed by Policy Studio
and API Gateway Manager. The default admin user has access to all API Gateway features in Policy Studio and API
Gateway Manager, and can view and modify all API Gateway configurations.

To add or remove Admin Users, click the Settings > Admin Users tab in the API Gateway Manager. For more details,
see Manage Admin users.

For more details on role-based access,

Configure policies in Policy Studio

You can use Policy Studio to manage the configuration of your policies, which can then be deployed to running instances
of Oracle API Gateways.

Manage API Gateway deployments

116

Deploy API Gateway configuration
Overview

You can edit API Gateway configuration offline, and then deploy later to a specified API Gateway instance using API
Gateway configuration packages. A deployment package is a .fed file that contains all API Gateway configuration. This
includes policies, listeners, external connections, users, certificates, and environment settings. A policy package is a
.pol file that contains policies, listeners, external connections, and environment settings. While an environment package
is an .env file that contains users, certificates, and environment settings. The content of the .fed file is equivalent to the
combined contents of the .pol and .env files.

A package property is a name-value pair that applies to a specific configuration package (.fed, .pol, or .env). Specify-
ing a property associates metadata with the configuration in that package. For example, the Name property with a value
of Default Factory Configuration is associated with a default installation. For more details on configuration
packages and properties, see the API Gateway Deployment and Promotion Guide.

You can use Policy Studio to create packages (.fed, .pol, or .env). You can also use Policy Studio to deploy an exist-
ing package or factory configuration on selected API Gateway instances, or to deploy a currently loaded configuration.
You can use the API Gateway Manager console to deploy a package in a browser. Alternatively, you can use the man-
agedomain script to create and deploy deployment packages (.fed files) on the command line.

Create a package in Policy Studio

You can create an API Gateway configuration package for a currently loaded configuration, or for a selected server in-
stance in the Group / API Gateway topology view.

Currently loaded configuration
To create a package (.fed, .pol, or .env) for a currently loaded API Gateway configuration, perform the following
steps:

1. In the main menu, select File > Save followed by the appropriate option:
• Deployment Package
• Policy Package
• Environment Package

2. Enter a filename, and click Save.

Group / API Gateway view
To create a deployment package (.fed) in the API Gateway Group / API Gateway topology view, perform the following
steps:

1. Right-click a server instance in the tree, and select Save Deployment Package.
2. Browse to a directory in the dialog.
3. Click OK. The file is saved to the specified directory (for example,

c:\temp\5c3b2a3c-23a5-4261-87cb-eca150f0a037.fed.
4. Click OK.

Configure package properties in Policy Studio

You can view or modify API Gateway configuration package properties for a currently loaded configuration, or for a se-
lected server instance in the Group / API Gateway topology view.

Currently loaded configuration
To view and modify configuration properties for a currently loaded API Gateway configuration, perform the following

117

steps:

1. In the Policy Studio tree, and select Package Properties > Policy or Environment.
2. Enter values for the appropriate configuration properties (for example, Name, Description, or Version).
3. If you wish to create any additional properties (for example, Department), click the green (+) button on the right, and

enter a property value (for example, Engineering).
4. If you wish to remove a property, click the red (x) button on the right of the property.
5. Click Save on the top right of the screen.

Group / API Gateway view
To view and modify configuration properties for a selected server instance in the API Gateway Group / API Gateway to-
pology view, perform the following steps:

1. Right-click a server in the tree, and select View/Modify Properties.
2. Select the Policy Properties or Environment Properties tab.
3. Enter values for the appropriate configuration properties (Name, Description, and Version).
4. If you wish to create any additional properties (for example, Department), click the green (+) button on the right, and

enter a property value (for example, Engineering).
5. If you wish to remove a property, click the red (x) button on the right of the property.
6. Click Update Configuration Properties.
7. Click OK.

For details on customizing the default package properties displayed,

Deploy packages in Policy Studio

You can use the Policy Studio to deploy configuration packages to selected API Gateway instances in the Group / API
Gateway topology view.

Deploy a deployment package
To deploy an existing deployment package (.fed file) in the Group / API Gateway view, perform the following steps:

1. Click the Deploy button in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the Group list, and select

the server instance(s) in the box below.
3. In the Select the configuration you wish to deploy section, select I wish to deploy configuration contained in a

single Deployment Package.
4. In the Deployment Package field, click Browse for .fed, and select the .fed file.
5. Click Deploy to upload the package to the Admin Node Manager and deploy to the selected server(s).
6. When the package has deployed, click Finish.

Deploy policy and environment packages
To deploy an existing policy package (.pol file) and environment package (.env file) in the Group / API Gateway view,
perform the following steps:

1. Click the Deploy button in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the Group list, and select

the server instance(s) in the box below.
3. In the Select the configuration you wish to deploy section, select I wish to deploy configuration contained in

Policy Package and Environment Package.
4. In the Policy Package field, click Browse for .pol, and select the .pol file.
5. In the Environment Package field, click Browse for .env, and select the .env file.

Deploy API Gateway configuration

118

6. Click Deploy to upload these packages to the Admin Node Manager and deploy to the selected server(s).
7. When the package has deployed, click Finish.

Deploy a factory configuration in Policy Studio

To deploy a default factory configuration in the Group / API Gateway view, perform the following steps:

1. Click the Deploy button in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the Group list, and select

the server instance(s) in the box below.
3. In the Select the configuration you wish to deploy section, select I wish to deploy a factory configuration.
4. Click Deploy to deploy the configuration to the selected server(s).

Deploy currently loaded configuration in Policy Studio

You can also deploy updates to a currently loaded configuration in Policy Studio when editing the configuration. To de-
ploy a currently loaded configuration, perform the following steps:

1. Click the Deploy button on the right in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the Group list, and select

the server instance(s) in the box below.
3. Click Deploy, and wait for the deployment to complete.
4. Click Finish.

Push configuration to a group in Policy Studio

When there is more than one API Gateway instance in a group, and configuration becomes out of sync between in-
stances, you can select which configuration to push to the group. Perform the following steps in Policy Studio:

1. In the Group / API Gateway topology view, right-click the API Gateway instance configuration that you want to de-
ploy to other instances in the group.

2. Select Push this API Gateway's configuration to the group.
3. In the wizard, select the API Gateway instances in the group that you wish to deploy to.
4. Click Deploy to deploy to the selected instances in the group.
5. Click Finish.

View deployment results in Policy Studio

When you click Deploy, the Deployment Results screen is displayed, and deployment to each server occurs sequen-
tially. Feedback is provided using icons in the Task column, and text in the Status column. When the configuration has
deployed, click Finish.

Cancel deployments
You can cancel deployments by clicking the Cancel button. Feedback is provided in the Status column. You cannot can-
cel a deployment when it has started. The wizard performs the cancellation at the end of the current deployment, with all
remaining deployments being cancelled.

Deployment errors
Client-side and server-side errors can occur. Client-side errors are displayed in the System Trace in the Console view.
If any server-side deployment errors occur during the deployment process, you can review these in the Deployment Er-
ror Log view. This is displayed at the bottom of the screen when you click Finish, and lists any errors that occur for each
instance. The corresponding Console Deployment Log is also available in the Console view.

Deploy API Gateway configuration

119

Redeploy
When you have deployed a configuration to one or more instances, you can click back through the wizard to change your
selections and redeploy, without needing to exit and relaunch the wizard.

Deploy on the command line

You can create and deploy a deployment package (.fed) using the managedomain --menu command in the following
directory:

Windows INSTALL_DIR\Win32\bin

UNIX/Linux INSTALL_DIR/posix/bin

The deployment options for the managedomain --menu command are as follows:

18) Deploy to a group
19) List deployment information
20) Create deployment archive
21) Download deployment archive
22) Update deployment archive properties

Deploy packages in API Gateway Manager

You can also use the API Gateway Manager web console to deploy configuration packages to a group of API Gateway
instances. This functionality is available on the default Dashboard tab. For more details,

Deploy API Gateway configuration

120

Compare and merge API Gateway configurations
Overview

In the Policy Studio, you can compare the currently loaded API Gateway configuration with a configuration stored in a de-
ployment package (.fed file). You can also merge any differences between the configurations.

Differences between configurations are identified as additions, deletions, or conflicts. When merging configurations, you
can choose which differences to merge.

Note
The currently loaded configuration can only be compared with a configuration stored in a deployment pack-
age (.fed) or in a server configuration file (.xml). You cannot compare against a policy package (.pol) or
environment package (.env). For more information on configuration packages, see the Deploy API Gate-
way configuration topic.

Compare and merge configurations

To compare the currently loaded configuration against the configuration in a .fed file, follow these steps:

1. Click the Compare button on the Policy Studio toolbar.
2. In the Comparing target with field, click the Browse button to choose a .fed file to compare the configuration

with.
3. Enter the passphrase for the configuration, if one has been set, and click OK. The configurations are compared and

the results are displayed in a tree view. Only entities with differences are shown.
4. To see detailed differences, click a configuration entity in the tree. The differences for that entity are displayed in the

Difference Details pane.
5. To merge differences into the currently loaded configuration, select the check box next to each difference to be

merged, and click the Merge button at the top right of the window.

Note
If you modify the currently loaded configuration after the Compare and Merge tab is opened, click the Re-
fresh button to refresh the comparison and show any new differences.

Comparison results

The following figure shows the result of a comparison:

121

The Difference Counts pane shows the number of differences in total, the number of additions, the number of deletions,
and the number of conflicts.

The Differences tree view shows all of the differences in the configuration entities:

• Entities with green plus icon are additions. These entities exist in the .fed file but not in the currently loaded config-
uration.

• Entities with a red minus icon are deletions. These entities exist in the currently loaded configuration but not in the
.fed file.

• Entities with a yellow warning icon are conflicts. These entities exist in both configurations but are not the same.

The Difference Details pane shows the values of the fields in each configuration when you click on an entity in the tree
view. The second column shows the values of the fields in the .fed file, and the third column shows the values of the
fields in the currently loaded configuration. The fields that are different in each configuration are highlighted.

In the preceding figure:

Compare and merge API Gateway configurations

122

• The cron expression Run at 2am every day in Jan is a deletion.
• The cron expression Run at 2:10pm and at 2:44pm every Wednesday in the month of March is an

addition.
• The user sampleuser is a conflict, because the password field has a different value in each configuration.

Some configuration entities contain references to other entities. In this case, an icon is displayed for the field in the Dif-
ference Details pane. Double-click a row with an icon to view the differences for those entities.

Filter differences

To filter nodes from the Differences tree view based on their type, click View Nodes, and select from the following op-
tions:

• Additions
• Deletions
• Conflicts

All differences are shown by default.

Select differences for merging

To select nodes for merging from the Differences tree view based on their type, click View Nodes, and select from the
following options:

• Additions
• Deletions
• Conflicts

Additions are selected by default.

Compare and merge API Gateway configurations

123

Manage Admin users
Overview

When logging into the Policy Studio or API Gateway Manager, you must enter the user credentials stored in the local Ad-
min user store to connect to the API Gateway server instance. Admin users are responsible for managing API Gateway
instances using the API Gateway management APIs. To manage Admin users, click the Settings > Admin Users tab in
the API Gateway Manager.

Note
Admin users provide access to the API Gateway configuration management features available in the Policy
Studio and API Gateway Manager. However, API Gateway users provide access to the messages and ser-
vices protected by the API Gateway. For more details, see Manage API Gateway users.

Admin user privileges

After installation, a single Admin user is defined in the API Gateway Manager with a user name of admin. Admin user
rights in the system include the following:

• Add another Admin user.
• Delete another Admin user.
• Update an Admin user.
• Reset Admin user passwords.

Important
An Admin user cannot delete itself.

Remove the default Admin user
To remove the default Admin user, perform the following steps:

1. Add another Admin user.
2. Log in as the new Admin user.
3. Delete the default Admin user.

The Admin Users tab displays all existing Admin users. You can use this tab to add, update, and delete Admin users.
These tasks are explained in the sections that follow.

Admin user roles

The API Gateway uses Role-Based Access Control (RBAC) to restrict access to authorized users based on their as-
signed roles in a domain. Using this model, permissions to perform specific system operations are assigned to specific
roles only. This simplifies system administration because users do not need to be assigned permissions directly, but in-
stead acquire them through their assigned roles.

For example, the default Admin user (admin) has the following user roles:

• Policy Developer

• API Server Administrator

124

• KPS Administrator

User roles and privileges
User roles have specific tools and privileges assigned to them. These define who can use which tools to perform what
tasks. The user roles provided with the API Gateway assign the following privileges to Admin users with these roles:

Role Tool Privileges

API Server Administrator API Gateway Manager Read/write access to API Gateway
Manager.

API Server Operator API Gateway Manager Read-only access to API Gateway
Manager.

Deployer Deployment scripts Deploy a new configuration.

KPS Administrator KPS Web UI Perform create, read, update, delete
(CRUD) operations on data in a Key
Property Store (KPS).

Policy Developer Policy Studio Download, edit, deploy, version, and
tag a configuration.

Note
A single Admin user typically has multiple roles. For example, in a development environment, a policy de-
veloper Admin user would typically have the following roles:

• Policy Developer

• API Server Administrator

Add a new Admin user

Complete the following steps to add a new Admin user to the system:

1. Click the Settings > Admin Users tab in the API Gateway Manager.
2. Click the Create button.
3. In the Create New Admin User dialog, enter a name for the user in the Username field.
4. Enter a user password in the Password field.
5. Re-enter the user password in the Confirm Password field.
6. Select roles for the user from the list of available roles (for example, Policy Developer and/or API Server

Administrator).
7. Click Create.

Remove an Admin user

To remove an Admin user, select it in the Username list, and click the Delete button. The Admin user is removed from
the list and from the local Admin user store.

Reset an Admin user password

You can reset an Admin user password as follows:

Manage Admin users

125

1. Select the Admin user in the Username list.
2. Click the Edit button.
3. Enter and confirm the new password in the Password and Confirm Password fields.
4. Click OK.

Manage Admin user roles

You can manage the roles that are assigned to specific Admin users as follows:

1. Select the Admin user in the Username list.
2. Click the Edit button.
3. Select the user roles to enable for this Admin user in the dialog (for example, Policy Developer and/or API

Server Administrator).
4. Click OK.

Edit roles
To add or delete specific roles, you must edit the available roles in the adminUsers.json and acl.json files in the
conf directory of your API Gateway installation.

For more details on role-based access, see the API Gateway Administrator Guide.

Manage Admin users

126

Manage connection details
Overview

You can use the Policy Studio to manage API Gateway, Admin Node Manager, and API Gateway Analytics servers. The
Open Connection dialog enables you to connect to a server URL, and the Open File dialog enables you to connect to a
server configuration file (.xml) or deployment archive (.fed) . By default, the Policy Studio connects to a server URL.
This topic describes how to connect using a server URL, configuration file, or deployment archive.

Connect to a URL

The server exposes a deployment service to its underlying configuration data. This enables Policy Studios running on dif-
ferent machines to that on which the server is installed to manage policies remotely. To connect to the deployment ser-
vice of a running server, select File > Connect to server from the main menu, or the equivalent button in the toolbar.
Configure the following fields on the Open Connection dialog:

Saved Sessions:
Select the session to use from the list. You can edit a session name by entering a new name and clicking Save. You can
also add or remove saved sessions using the appropriate button.

Connection Details
The Connection Details section enables you to specify the following settings:

Host:
Specify the host to connect to in this field. The default is localhost.

Port:
Specify the port to connect on in this field. The default Admin Node Manager port is 8090.

Use SSL:
Specify whether to connect securely over SSL. This is selected by default.

User Name:
The deployment service is protected by HTTP basic authentication. Enter the administrator user name to use to authen-
ticate to the server. For more details, see Manage Admin users.

Password:
Enter the password for the administrator user.

Advanced
Click Advanced to specify the following setting:

URL:
Enter the URL of the deployment service exposed by the server. For example, the default Admin Node Manager URL is
https://localhost:8090/api.

Important
To manage API Gateways in your network, you must connect to the Admin Node Manager server URL.

Connect to a file

Because the server configuration data is stored in XML files, you can specify that the Policy Studio connects directly to a
file. You can connect to a server configuration file (.xml) or a deployment archive (.fed). For more details, see Deploy
API Gateway configuration.

127

To connect to a file, select File > Open file from the main menu, or click the Open file link on the welcome page. Com-
plete the following fields on the Open File dialog:

File:
Enter or browse to the location of a server configuration file (for example, IN-
STALL_DIR\groups\group-2\conf\378fd412-4e14-4924-b666-b974adf19642\configs.xml). Alternatively,
enter or browse to the location of a deployment archive (.fed).

Passphrase Key:
All sensitive server configuration data (password, keys, and so on) can be encrypted using a passphrase. If you wish to
do this, enter a password in this field when connecting. You must use this password thereafter when connecting to the
server.

Unlock a server connection

You can also use the Open File dialog to unlock a connection to a server. This is for emergency use when you have
changed configuration that results in you being locked out from the Management Services on port 8090. In this case,
you have misconfigured the authentication filter in the Protect Management Interfaces policy. For example, if you cre-
ated and deployed an LDAP connection without specifying the correct associated user accounts, and are now unable to
connect to the Admin Node Manager.

To unlock a server connection, perform the following steps:

1. Download all the files in the server's conf/fed directory to the machine on which the Policy Studio is installed.
2. Start the Policy Studio.
3. Connect to the configs.xml file that you downloaded from the server in step 1 (for details, see the section called

“Connect to a file”).
4. Change the configuration details as required (for example, specify the correct user account details for the LDAP con-

nection under the External Connections node).
5. Upload the files back to the server's conf/fed directory.
6. Connect to the server URL in the Policy Studio.

For more details on Management Services, see Policy Studio preferences.

Manage connection details

128

Global configuration
Overview

For convenience, Policy Studio displays various global configuration options. For example, it includes libraries of users,
X.509 certificates, and schemas that can be added globally and then referenced in filters and policies. This avoids the
need to reconfigure details over and over again (for example, each time a schema or certificate is used).

The following global configuration options are available in Policy Studio, each of which are discussed briefly in the sec-
tions below:

• API Gateway Settings
• Web Service Repository
• API Gateway Instances
• Policies
• Certificates and Keys
• API Gateway Users
• Alerts
• External Connections
• Caches
• Black list
• White list
• Document Bundles
• Scripts
• Stylesheets

API Gateway settings

You can configure the underlying configuration settings for API Gateway using the Server Settings node in the Policy
Studio tree. This includes the following settings:

• General
• Logging
• Messaging
• Monitoring
• Security

For more details, see the API Gateway Administrator Guide.

Web service repository

The easiest way to secure a web service with API Gateway is to import the Web Services Description Language (WSDL)
file for the service using Policy Studio. This creates a Service Handler for the web service, which is used to control and
validate requests to the web service and responses from the web service.

The WSDL file is also added to the web service repository, making sure to update the URL of the web service to point at
the machine on which API Gateway is running instead of that on which the web service is running. Consumers of the
web service can then query API Gateway for the WSDL file for the web service. The consumer then knows to route mes-
sages to API Gateway instead of attempting to route directly to the web service, which most likely will not be available on
a public IP address.

129

The web service repository offers a very simple way of securing a web service with minimal impact on consumers of that
service. Because of this, the web service repository should be used as the primary method of setting up policies within
Policy Studio. For more information on using the repository to register a web service, see the Manage web services top-
ic.

API Gateway instances

A single running instance of API Gateway enables you to configure at least two interfaces: one for public traffic, and a
second for listening for and serving configuration data. The configuration interface should rarely need to be updated.
However, you might need to add several HTTP interfaces. For example, an HTTP interface and an SSL-enabled HTTPS
interface.

Furthermore, you can add features such as the following at the API Gateway instance level:

• Remote hosts to control connection settings to a server
• SMTP interfaces to configure email relay
• File transfer services for FTP, FTPS, and SFTP
• Policy execution schedulers to run policies at regular time intervals
• JMS listeners to listen for JMS messages
• Packet sniffers to inspect packets at the network level for logging and monitoring
• FTP pollers to retrieve files to be processed by polling a remote file server
• Directory scanners to scan messages dumped to the file system

Because API Gateway can read messages from HTTP, SMTP, FTP, JMS, or a directory, this enables it to perform pro-
tocol translation. For example, API Gateway can read a message from a JMS queue, and then route it on over HTTP to a
web service. Similarly, API Gateway can read XML messages that have been put into a directory on the file system using
FTP, and send them to a JMS messaging system, or route them over HTTP to a back-end system.

For more information on configuring API Gateway instances, see the Configure API Gateway instances topic.

Policies

A policy is made up of a sequence of modular, reusable message filters, each of which processes the message in a par-
ticular way. There are many categories of filters available, including authentication, authorization, content filtering, rout-
ing, and many more. For example, a typical policy might contain an authentication filter, followed by several content-
based filters (for example, Schema Validation, Threatening Content, Message Size, XML Complexity, and so on), and
provided all configured filters run successfully, the message is routed on to the configured destination.

A policy can be thought of as a network of message filters. A message can traverse different paths through the network
depending on what filters succeed or fail. This enables you to configure policies that, for example, route messages that
pass one Schema Validation filter to one back-end system, and route messages that pass a different Schema Validation
filter to a different system.

You can use policy containers to help manage your policies. These are typically used to group together a number of sim-
ilar policies (for example, all authentication policies) or to act as an umbrella around several policies that relate to a par-
ticular policy (for example, all policies for the getQuote web service). A number of useful policies that ship with API
Gateway are found in the Policy Library policy container. This container is prepopulated with policies to return various
types of faults to the client and policies to block certain types of threatening content, among others. You can also add
your own policies to this container, and create your own policy containers as necessary to suit your own requirements.

Certificates and keys

API Gateway must be able to trust X.509 certificates to establish SSL connections with external servers, validate XML
Signatures, encrypt XML segments for certain recipients, and for other such cryptographic operations. Similarly, a private
key is required to carry out certain other cryptographic operations, such as message signing and decrypting data.

Global configuration

130

The Certificate Store contains all the certificates and keys that are considered to be trusted by the API Gateway. Certi-
ficates can be imported into or created by the certificate store. You can also assign a private key to the public key stored
in a certificate, by importing the private key, or by generating one using the provided interface.

For more information on importing and creating certificates and keys, see Manage certificates and keys.

API Gateway user store

Users are mainly used for authentication purposes in API Gateway. In this context, the User Store acts as a repository
for user information against which users can be authenticated. You can also store user attributes for each user or user
group. For example, you can then use these attributes when generating SAML attribute assertions on behalf of the user.

The Manage API Gateway users topic contains more details on how to create users, user groups, and attributes.

System alerts

API Gateway can send system alerts to various error reporting systems in the case of a policy error (for example, when a
request is blocked by a policy). Alerts can be sent to a Windows Event Log, local syslog, remote syslog, OPSEC firewall,
SNMP NMS, Twitter, or email recipient.

For more details on how to configure API Gateway to send these alerts, see the Configure system alerts topic.

External connections

API Gateway can leverage your existing identity management infrastructure and avoid maintaining separate silos of user
information. For example, if you already have a database full of user credentials, API Gateway can authenticate requests
against this database, rather than using its own internal user store. Similarly, API Gateway can authorize users, lookup
user attributes, and validate certificates against third-party identity management servers.

You can add each connection to an external system as a global External Connection in Policy Studio so that it can be
reused across all filters and policies. For example, if you create a policy that authenticates users against an LDAP direct-
ory and then validates an XML signature by retrieving a public key from the same LDAP directory, it makes sense to cre-
ate a global external connection for that LDAP directory. You can then select the LDAP connection in both the authentic-
ation and XML signature verification filters, rather than having to reconfigure it in both filters.

For example, you can use the external connections interface to configure global connections such as the following:

• Authentication Repository Profiles
• Database Connections
• ICAP Servers
• JMS Services
• Kerberos Services
• LDAP Connections
• Proxy Servers
• Radius Clients
• SiteMinder Connections
• TIBCO Connections
• Tivoli Connections
• XKMS Connections

You can also use external connections to configure a group of related URLs. This is most useful to round-robin between
a number of related URLs to ensure high availability. When API Gateway is configured to use a URL Connection Set
(instead of just a single URL), it round-robins between the URLs in the set.

Global configuration

131

For more information on configuring external connections and connection sets, see the External connections topic.

Caches

You can configure API Gateway to cache responses from a back-end web service. For example, if API Gateway receives
two successive identical requests it can (if configured) take the response for this request from the cache instead of rout-
ing the request on to the web service and asking it to generate the response again.

As a result, excess traffic is diverted from the web service making it more responsive to requests for other services. API
Gateway is saved the processing effort of routing identical requests unnecessarily to the web service, and the client be-
nefits from the far shorter response time.

You can configure local caches for each running instance of API Gateway. If you have deployed multiple API Gateways
throughout your network, you can configure a distributed cache where cache events on one cache are replicated across
all others. For example, if a response message is cached at one instance of API Gateway, it is added to all other caches.

For more details on how to configure API Gateway to use local and distributed caches, see the Global caches topic.

Black list and White list

The White list is a global library of regular expressions that can be used across several different filters. For example, the
Validate HTTP Headers, Validate Query String, and Validate Message Attributes filters all use regular expressions
from the White list to ensure that various parts of the request contain expected content.

The White list is prepopulated with regular expressions that can be used to identify common data formats, such as al-
phanumeric characters, dates, email addresses, IP addresses, and so on. For example, if a particular HTTP header is
expected to contain an email address, the Email Address expression from the library can be run against the HTTP
header to ensure that it contains an email address as expected. This is yet another way that the API Gateway can en-
sure that only the correct data reaches the web service.

While the White list contains regular expressions to identify valid data, the Black list contains regular expressions that
are used to identify common attack signatures. For example, this includes expressions to scan for SQL injection attacks,
buffer overflow attacks, ASCII control characters, DTD entity expansion attacks, and many more.

You can run various parts of the request message against the regular expressions contained in the Black list library. For
example, the HTTP headers, request query string, and message (MIME) parts can be scanned for SQL injection attacks
by selecting the SQL-type expressions from the Black list. The Threatening Content filter also uses regular expres-
sions from the Black list to identify attack signatures in request messages.

For more details on running regular expressions, see the following topics:

• HTTP header validation
• Query string validation
• Validate selector expression
• Threatening content

WSDL and XML schema document bundles

The WSDL documents and XML schemas that API Gateway can use to validate incoming requests against are stored in
a global cache. The Schema Validation filter validates the format of an incoming message against a schema from the
cache. This ensures that only messages of the correct format are processed by the target system.

In the Policy Studio navigation tree, you can access the global cache of WSDL documents or XML schema documents
by selecting Resources > WSDL Document Bundles or Resources > XML Schema Document Bundles. Select a
child node to view its contents. To add a schema, right-click the XML Schema Document Bundles node, and select
Add Schema. For more details on adding XML schemas to the cache see the Manage WSDL and XML schema docu-

Global configuration

132

ments topic.

When you have imported your XML schemas, see the Schema validation topic for instructions on how to validate XML
messages against the schemas in the cache.

Scripts

The Scripts library contains the JavaScript and Groovy scripts that API Gateway can use to interact with the message as
it is processed. For example, you use these scripts with the Scripting Filter to get, set, and evaluate specific message
attributes.

In the Policy Studio navigation tree, you can access the global scripts library by selecting Resources > Scripts. Select a
child node to view or edit its contents. To add a script, right-click the Scripts node, and select Add Script.

For more details on using the Scripts Library dialog to add scripts, and on configuring API Gateway to use scripts, see
the topic on the Scripting language filter.

Stylesheets

The Stylesheets library contains the XSLT style sheets that API Gateway can use to transform incoming request mes-
sages. The XSLT Transformation filter enables you convert the contents of a message using these style sheets. For ex-
ample, an incoming XML message that adheres to a specific XML schema can be converted to an XML message that
adheres to a different schema before it is sent to the destination web service.

In the Policy Studio navigation tree, you can access the global style sheet library by selecting Resources > Stylesheets.
Select a child node to view or edit its contents. To add a style sheet, right-click the Stylesheets node, and select Add
Stylesheet.

For more details on using the Stylesheet Library dialog to add style sheets, and on configuring API Gateway to use
XSLT style sheets, see the topic on the Transform with XSLT filter.

References

References can occur between API Gateway configurations items (for example, a policy might include a reference to an
external connection to a database). You can view references between configuration items in Policy Studio by right-
clicking an item, and selecting Show All References. References are displayed in a tab at the bottom of the window.

The Show All References option is enabled only for items that have references to other items. For an example in a de-
fault API Gateway installation, right-click External Connections > LDAP Connections > Sample Active Directory
Connection, and select Show all References. Showing all references is useful for impact analysis (for example, before
upgrading or migrating), and is a general navigation aid.

Global configuration

133

Policy Studio preferences
Overview

The Preferences dialog enables you to configure a range of options for the Policy Studio. For example, you can config-
ure the level at which the Policy Studio traces diagnostic output, customize the look-and-feel of the Policy Studio, or con-
figure the timeout for the Policy Studio connection to the API Gateway. Each of the available settings is discussed in the
following sections.

Note
When finished your updates, remember to click Apply at the bottom of the screen, and to click Deploy in
the toolbar.

Environmentalization

Environmentalization refers to configuring environment-specific settings for a particular target environment (for example,
users, certificates, and external connections for a development environment). You can enable Policy Studio to display
settings that have been environmentalized by selecting the Allow environmentalization of fields option.

When this option is selected, you can environmentalize a selected field (for example, database URL) by clicking the
globe icon to the right of the field. Alternatively, press Ctrl-E. When you have selected settings to be environmentalized,
the field is disabled, and the globe icon is displayed on the right. You can manage settings that have been environment-
alized under the Environment Settings node in the Policy Studio tree. For more details, see the API Gateway Deploy-
ment and Promotion Guide.

Policy colors

The Policy Colors settings enable you to customize the look-and-feel of the Policy Canvas in the Policy Studio. For ex-
ample, you can change the colors of the following components:

• Policy Background:
Changes the background color of the Policy Canvas.

• Missing Attribute:
You can right-click the Policy Canvas, and select Show All Attributes from the context menu. When this is selec-
ted, each filter displays the list of required and generated message attributes that are relevant for that filter. If a re-
quired attribute has not been generated by a previous filter in the policy, the attribute is highlighted in a different col-
or (red by default). You can change this color by selecting an appropriate color using this setting.

• Success Path:
You can change the color of the Success Path link using this setting.

• Failure Path:
Similarly, you can change the color of the Failure Path link here.

• Show Link Labels:
If this option is selected, a Success Path is labeled with the letter S, while a Failure Path is labeled F.

Prompt for credentials

The Prompt for Credentials setting enables you to select whether to check for user name and password credentials
when you deploy updated API Gateway configuration. For example, this applies when you click Deploy in the toolbar to
update configuration or add a group or server to the topology. To check for credentials each time you deploy, select Al-
ways prompt for Node Manager credentials.

For more details, see Deploy API Gateway configuration.

134

Management services

The Admin Node Manager and API Gateway Analytics expose certain interfaces that are used for management purposes
only, and should be edited only under strict advice from the Oracle Support team.

The Management Services server process, interfaces, and policies are displayed in the Policy Studio tree. The Man-
agement Services policy container is displayed in the tree under the Policies node. The Management Services HTTP
interfaces are displayed under the Listeners node under the server instance. For more details, see the section called
“Management services” in Configure HTTP services.

Important
You should only modify Management Services under strict advice and supervision from the Oracle Sup-
port team.

Proxy settings

You can specify global proxy settings that apply only when downloading WSDL, XSD, and XSLT files from the Policy
Studio. These include the following settings:

Proxy Setting Description

Host Host name or IP address of the proxy server.

Port Port number on which to connect to the proxy server.

Username Optional user name when connecting to the proxy server.

Password Optional password when connecting to the proxy server.

You can also specify individual proxy servers under the External Connections node in the Policy Studio tree. These are
different from the global proxy settings in the Preferences because you can specify these proxy servers at the filter level
(in the Connection and Connect To URL filters). For more details, see the Configure proxy servers topic.

Runtime dependencies

The Runtime Dependencies setting enables you to add JAR files to the Policy Studio classpath. For example, if you
write a custom message filter, you must add its JAR file, and any third-party JAR files that it uses, to the Runtime De-
pendencies list.

Click Add to select a JAR file to add to the list of dependencies, and click Apply when finished. A copy of the JAR file is
added to the plugins directory in your Policy Studio installation.

Important
You must restart Policy Studio and the server for these changes to take effect. You should restart Policy
Studio using the policystudio -clean command.

SSL settings

The SSL Settings enable you to specify what action is taken when an unrecognized server certificate is presented to the
client. This allows the Policy Studio to connect to SSL services without a requirement to add a certificate to its JVM certi-
ficate store.

Policy Studio preferences

135

Configure one of the following options:

Prompt User When you try to connect to SSL services, you are prompted with a dialog. If you
choose to trust this particular server certificate displayed in the dialog, it is
stored locally, and you are not prompted again.

Trust All All server certificates are trusted.

Keystore Enter or browse to the location of the Keystore that contains the authentication
credentials sent to a remote host for mutual SSL, and enter the appropriate
Keystore Password.

Status bar

The Show Status Bar setting enables you to specify whether the applications status bar is displayed at the bottom of the
Policy Studio screen. For example, this status bar displays details such as the currently selected tree node on the left,
and details such as the heap size on the right. You can also use the status bar to run garbage collection by clicking the
trash icon on the right. This status bar is enabled by default.

Topology screen

The Topology Screen settings enable you to customize how configuration package properties are displayed in the To-
pology View table in Policy Studio. These are user-entered properties contained in deployment packages (.fed), policy
packages (.pol), and environment packages (.fed). The Group / API Gateway and Deployed by columns in the To-
pology View are read only. You can customize all other columns to show package property values.

Specify default column values
You can specify the following default package property values in the Column Value column:

• ${manifest.policy.Name}

• ${manifest.policy.Description}

• ${manifest.policy.Version}

• ${manifest.policy.VersionComment}

• ${manifest.env.Name}

• ${manifest.env.Description}

• ${manifest.env.Version}

• ${manifest.env.VersionComment}

• ${manifest.root.Id}

• ${manifest.root.Timestamp}

Add custom properties
You can also add custom package properties. For example, to add a custom policy package property to be displayed in
the Topology View, perform the following steps:

1. Click New.
2. Double-click the value in Column Header, and enter MyCustomPolicyField.
3. Double-click the value in Column Value, and enter ${manifest.policy.MyCustomPolicyField}.

Similarly, to add a custom environment package property, add a property with a Column Header of MyCustomEn-
vField, and a Column Value of ${manifest.env.MyCustomEnvField}.

Policy Studio preferences

136

Customize the topology view table
You can add, edit, remove, or reorder the columns displayed in the Topology View using the Topology Screen set-
tings. You can also specify the Column Width displayed.

For more details on configuring package properites, see the API Gateway Deployment and Promotion Guide.

Trace level

You can set the level at which the Policy Studio logs diagnostic output by selecting the appropriate level from the Tra-
cing Level drop-down list. Diagnostic output is written to a file in the /logs directory of your Policy Studio installation.
You can also select Window > Show View > Console in the main menu to view the trace output in the Console window
at the bottom of the screen. The default trace level is INFO.

WS-I settings

Before importing a WSDL file that contains the definition of a Web service into the Web service repository, you can test
the WSDL file for compliance with the Web Service Interoperability (WS-I) Basic Profile. The WS-I Basic Profile contains
a number of Test Assertions that describe rules for writing WSDL files for maximum interoperability with other WSDL au-
thors, consumers, and other related tools.

The WS-I settings are described as follows:

WS-I Setting Description

WS-I Tool Location Use the Browse button to specify the full path to the Java version of the WS-
Interoperability testing tools (for example, C:\Program
Files\WSI_Test_Java_Final_1.1\wsi-test-tools). The WS-I testing
tools are used to check a WSDL file for WS-I compliance. You can download
them from www.ws-i.org [http://www.ws-i.org].

Results Type Select the type of WS-I test results that you wish to view in the generated report
from the drop-down list. You can select from all, onlyFailed, notPassed,
or notInfo.

Message Entry Specify whether message entries should be included in the report using the
check box (selected by default).

Failure Message Specify whether the failure message defined for each test assertion should be
included in the report using the checkbox (selected by default).

Assertion Description Specify whether the description of each test assertion should be included in the
report using the check box (unselected by default).

Verbose Output Specify whether verbose output is displayed in the Policy Studio console win-
dow using the check box (unselected by default). To view the console window,
select Window > Show Console from the Policy Studio main menu.

Important
On Linux/UNIX, when you download WS-I Testing Tools v1.1, you must run dos2unix on /
java/bin/Analyzer.sh and /java/bin/setenv.sh. This is because both files do not have execut-
able privileges set and have Windows line endings, so the shell interpreter is unable to use them.

For details on running the WS-I testing tools, see the Manage WSDL and XML schema documents topic.

XML settings

Policy Studio preferences

137

http://www.ws-i.org
http://www.ws-i.org

The XML settings enable you to configure a range of options that affect how XML files are treated in the Policy Studio.

XML Files
This includes the following options:

Creating or saving files Specifies a line delimiter (for example, Mac, Unix, Windows, or No transla-
tion).

Creating files Specifies a file suffix (xml), and the type of encoding (for example, ISO
10646/Unicode(UTF-8)).

Validating files Configures whether to warn when no grammar is specified.

Source
This includes the following options:

Formatting Specifies a range of formatting options (for example, line width, line breaks, and
indentation).

Content assist Specifies whether to make suggestions and which strategy to use (for example,
Lax or Strict).

Grammar constraints Specifies whether to use inferred grammar in the absence of DTD/Schema.

Syntax Coloring
These settings enable you to associate specific colors with specific XML syntax elements (for example, attribute names,
comment delimiters, or processing instruction content).

Policy Studio preferences

138

Policy Studio viewing options
Overview

You can filter the Policy Studio navigation tree on the left of the screen to display specified tree nodes only. You can click
the Options link at the bottom of the tree to display additional viewing options. These enable you to configure whether
management services and tree node configuration types are displayed in the tree. Finally, you can configure how the
Policy Studio policy filter palette is displayed on the right of the screen when editing policies.

Filter the tree

To filter the tree by a specific node name, enter the name in the text box above the tree. When you enter a name (for ex-
ample, SOAP Schema), the tree is filtered automatically, and all occurrences are displayed in the tree.

Filtering the tree is especially useful in cases where many policies have been configured in the Policy Studio, and you
wish to find a specific tree node (for example, a schema filter named Check against SOAP Schema).

Configure viewing options

When you click the Options link at the bottom left of the navigation tree, you can configure the following viewing option:

Show Types:
Select this option to show the Type column in the Policy Studio navigation tree. The shows the type of each node in the
tree (for example, HTTP Service or Remote Host. This option is not selected by default. When this option is selected, you
can use the Filter by type setting.

Configure the policy filter palette

When editing policies, you can configure how the Policy Studio policy filter palette is displayed on the right of the screen.
Right-click the filter palette, and select from the following options:

Layout:
Specifies how the filters are displayed in each category in the palette. By default, the filters are displayed in a list. Select
one of the following options from the context menu:

• Columns
• List
• Icons Only
• Details

Customize:
The Customize Palette dialog enables you to customize each of the items displayed in the filter palette. Select a node in
the tree on the left to display what can be customized on the right. For example, you can edit a filter name and descrip-
tion, specify whether it is hidden, and add tags to help searches. In addition, you can use the buttons above the tree to
add or delete new category drawers or separators. You can also move a selected category drawer up or down in the
palette.

Settings:
The Palette Settings dialog enables you to customize settings such as fonts, layout, and category drawer options (for
example, close each drawer automatically when there is not enough room on the screen).

Restore Palette Defaults:
Restores all the palette settings from a default API Gateway installation.

139

Oracle Security Service Module settings (10g)
Overview

An Oracle Security Service Module (SSM) integrates a secured application (in this case, the API Gateway) with an Or-
acle Entitlements Server (OES) 10g so that security administration (for example, roles, resources, and policies) is deleg-
ated to the Oracle Entitlements Server 10g. An SSM must be installed on the machine hosting the application to be se-
cured by the Oracle Entitlements Server 10g. The SSM runs in-process with the secured application, which improves
performance and on-the-wire security.

In the Policy Studio, select the Settings node in the tree, and click the Security Service Module tab at the bottom of the
screen. The Security Service Module settings enable you to configure the API Gateway to act as a Java SSM. For
more details on Oracle Entitlements Server 10g and SSMs, see the Oracle Entitlements Server [ht-
tp://www.oracle.com/technetwork/middleware/oes/overview/index.html] website.

Important
Oracle SSM is required only for integration with Oracle OES 10g. Oracle SSM is not required for integration
with Oracle OES 11g. OES 10g was previously known as BEA AquaLogic Enterprise Security (ALES).
Some items, such as schema objects, paths, and so on, may still use the ALES name.

Prerequisites

Before configuring the settings on the Security Service Module tab, you must perform the following prerequisite tasks:

Test the SSM installation
Because the API Gateway is running a Java SSM internally, it is recommended that the example Java SSM client that
ships with the OES installation is set up and configured. This example can be found in the following directory:
/ales32-ssm/java-ssm/examples/JavaAPIExample
Follow the instructions in the README file in this directory to test the installation. When the testing of the
JavaAPIExample is complete, all the configuration files for an SSM instance are located in the /
ales32-ssm/java-ssm/SSM-Name directory, where SSM-Name is the name of the SSM setup when testing the ex-
ample.

Configure the API Gateway classpath
The API Gateway classpath must be updated to include the JARs and configuration files for the SSM instance. The
jvm.xml file must be updated so that various environment variables and the SSM-Name are updated to reflect the in-
stallation of the Java SSM. At minimum, the following must be updated in jvm.xml:

<Environment name="BEA_HOME" value="/opt/apps/bea" >
<Environment name="INSTANCE_NAME" value="SSM-Name" >

For example, to modify the classpath, place the following jvm.xml in the conf directory of the API Gateway installation:

<!--Additional JVM settings to run with Oracle Entitlements Server BEA_HOME must be set
to the location where the SSM is installed-->

<ConfigurationFragment>
<!-- Environment variables -->
<!-- change these to match location where SSM has been installed and configured -->
<Environment name="BEA_HOME" value="/opt/apps/bea" />
<Environment name="ALES_SHARED_HOME" value="$BEA_HOME/ales32-shared" />

<!-- Name of the SSM running in the API Gateway, replace the "SSM-Name" with the name of
the SSM for the API Gateway -->

140

http://www.oracle.com/technetwork/middleware/oes/overview/index.html
http://www.oracle.com/technetwork/middleware/oes/overview/index.html
http://www.oracle.com/technetwork/middleware/oes/overview/index.html

<Environment name="INSTANCE_NAME" value="SSM-Name" />
<Environment name="INSTANCE_HOME" value="$BEA_HOME/ales32-ssm/java-ssm/instance/
$INSTANCE_NAME" />
<Environment name="PDP_PROXY" value="$INSTANCE_HOME/pdpproxy" />

<!-- Location of the Java SSM libraries -->
<!-- <ClassDir name="$BEA_HOME" /> -->
<ClassDir name="$BEA_HOME/ales32-ssm/java-ssm/lib" />
<ClassDir name="$BEA_HOME/ales32-ssm/java-ssm/lib/providers/ales" />

<!-- Add location of the SSM configuration to classpath -->
<ClassPath name="$INSTANCE_HOME/config/" />

<!-- Additional JVM parameters based on the %JAVA-OPTIONS% of set-env script in SSM
instance running in API Gateway $BEA_HOME/ales32-ssm/java-ssm/instance/ssm-name/config-->
<VMArg name="-Dwles.scm.port=7005" />
<VMArg name="-Dwles.arme.port=8000" />
<VMArg name="-Dwles.config.signer=Oracle Entitlements Serverdemo.oracle.com" />
<VMArg name="-Dlog4j.configuration=file:$INSTANCE_HOME/config/log4j.properties" />
<VMArg name="-Dlog4j.ignoreTCL=true" />
<VMArg name="-Dwles.ssl.passwordFile=$ALES_SHARED_HOME/keys/password.xml" />
<VMArg name="-Dwles.ssl.passwordKeyFile=$ALES_SHARED_HOME/keys/password.key" />
<VMArg name="-Dwles.ssl.identityKeyStore=$ALES_SHARED_HOME/keys/identity.jceks" />
<VMArg name="-Dwles.ssl.identityKeyAlias=wles-ssm" />
<VMArg name="-Dwles.ssl.identityKeyPasswordAlias=wles-ssm" />
<VMArg name="-Dwles.ssl.trustedCAKeyStore=$ALES_SHARED_HOME/keys/trust.jks" />
<VMArg name="-Dwles.ssl.trustedPeerKeyStore=$ALES_SHARED_HOME/keys/peer.jks" />
<VMArg name="-Djava.io.tmpdir=$INSTANCE_HOME/work/jar_temp" />
<VMArg name="-Darme.configuration=$INSTANCE_HOME/config/WLESarme.properties" />
<VMArg name="-Dales.blm.home=$INSTANCE_HOME" />
<VMArg name="-Dkodo.Log=log4j" />
<VMArg name="-Dwles.scm.useSSL=true" />
<VMArg name="-Dwles.providers.dir=$BEA_HOME/ales32-ssm/java-ssm/lib/providers"/>
<VMArg name="-Dpdp.configuration.properties.location=$PDP_PROXY/
PDPProxyConfiguration.properties"/>

</ConfigurationFragment>

Centralize all trace output
Oracle’s Java SSM uses log4j to output any diagnostics. You can also add these messages to the API Gateway trace
output by adding the log4j that ships with the API Gateway to the following file:

/ales32-ssm/java-ssm/SSM-NAME/conf/log4j.properties

Then the log4j.rootCategory=WARN, A1, ASIlogFile line includes a new appender called VordelTrace as
follows:

log4j.rootCategory=WARN, A1, ASIlogFile, VordelTrace

Add the configuration for this new appender by adding the following line to the file:

log4j.appender.VordelTrace=com.vordel.trace.VordelTraceAppender

You can now start the API Gateway so that it runs with the Java SSM classpath and the centralized trace output.

Further information
For more details on configuring and testing SSMs, see the Oracle SSM Installation and Configuration Guide.

Settings

Oracle Security Service Module settings (10g)

141

On the Security Service Module settings screen, configure the following fields on the Settings tab:

Enable Oracle Security Service Module:
Select whether to enable the API Gateway instance to act as an SSM. This setting is disabled by default.

Application Configuration Name:
Enter the Application Configuration name for the SSM instance. This is the name of your runtime application used by
OES (for example, for monitoring purposes).

Configuration Name:
Enter the OES Configuration name for the SSM instance to be stored in the OES Configuration Repository. Configuration
names share the same name as their Policy Domain names.

Application Configuration Properties:
Click Add to specify optional configuration properties as name-value pairs. Enter a Name and Value in the Properties
dialog. Repeat to specify multiple properties.

Policy Domain Name:
Enter the OES Policy Domain name for the SSM instance. Policy Domains contain policy definitions (target resource,
permission set, and policy). Policy Domain names share the same name as their Configuration names.

Name authority definition settings

Configure the following field on the Name Authority Definition tab:

Name Authority Definition File:
Click the Browse button at the bottom right to configure the Name Authority Definition file for the SSM. This is an XML
file that specifies the naming authority definition required for the API Gateway. For example, a specified XML file named
apigatewayNameAuthorityDefinition.xml file should contain the following settings:

<AuthorityConfig>
<AuthorityDefinition name="apigatewayResource" delimiters="/\">

<Attribute name="protocol" type="MULTI_TOKEN" authority="URLBASE" />
</AuthorityDefinition>

<AuthorityDefinition name="apigatewayAction" delimiters="/">
<Attribute name="action" type="SINGLE_VALUE_TERMINAL"/>

</AuthorityDefinition>
</AuthorityConfig>

Further information

When you have configured the settings in the Security Service Module screen, you can use the following filters to integ-
rate the API Gateway with Oracle Entitlements Server 10g:

• Oracle Entitlements Server 10g authorization
• Oracle Entitlements Server 10g authorization

Oracle Security Service Module settings (10g)

142

Kerberos configuration
Overview

The Kerberos Configuration screen enables you to configure API Gateway instance-wide Kerberos settings. The most
important setting allows you to upload a Kerberos configuration file to the API Gateway, which contains information about
the location of the Kerberos Key Distribution Center (KDC), encryption algorithms and keys, and domain realms to use.

You can also configure trace options for the various APIs used by the Kerberos system. For example, these include the
Generic Security Services (GSS) and Simple and Protected GSSAPI Negotiation (SPNEGO) APIs.

Linux and Solaris platforms ship with a native implementation of the GSS library, which can be leveraged by the API
Gateway. The location of the GSS library can be specified using settings on this screen.

Kerberos configuration file—krb5.conf

The Kerberos configuration file (krb5.conf) is required by the Kerberos system to configure the location of the Kerber-
os KDC, supported encryption algorithms, and default realms.

The file is required by both Kerberos Clients and Services that are configured for the API Gateway. Kerberos Clients
need to know the location of the KDC so that they can obtain a Ticket Granting Ticket (TGT). They also need to know
what encryption algorithms to use and to what realm they belong.

A Kerberos Client or Service knows what realm it belongs to because either the realm is appended to the principal name
after the @ symbol. Alternatively, if the realm is not specified in the principal name, it is assumed to be in the de-
fault_realm as specified in the krb5.conf file.

Kerberos Services do not need to talk to the KDC to request a TGT. However, they still require the information about
supported encryption algorithms and default realms contained in the krb5.conf file. There is only one de-
fault_realm specified in this file, but you can specify a number of additional named realms. The default_realm set-
ting is found in the [libdefaults] section of the krb5.conf file. It points to a realm in the [realms] section. This
setting is not required.

A default krb5.conf is displayed in the text area, which can be modified where appropriate and then uploaded to the
API Gateway's configuration by clicking the OK button. Alternatively, if you already have a krb5.conf file that you want
to use, browse to this file using the Load File button. The contents of the file are displayed in the text area, and can sub-
sequently be uploaded by clicking the OK button.

Note
You can also type directly into the text area to modify the krb5.conf contents. Please refer to your Ker-
beros documentation for more information on the settings that can be configured in the krb5.conf file.

Advanced settings

The check boxes on this screen enable you to configure various tracing options for the underlying Kerberos API. Trace
output is always written to the /trace directory of your API Gateway installation.

Kerberos Debug Trace:
Enables extra tracing from the Kerberos API layer.

SPNEGO Debug Trace:
Turns on extra tracing from the SPNEGO API layer.

Extra Debug at Login:

143

Provides extra tracing information during login to the Kerberos KDC.

Native GSS library

The Generic Security Services API (GSS-API) is an API for accessing security services, including Kerberos. Implementa-
tions of the GSS-API ship with the Linux and Solaris platforms and can be leveraged by the API Gateway when it is in-
stalled on these platforms. The fields on this tab allow you to configure various aspects of the GSS-API implementation
for your target platform.

Note
These are instance-wide settings. If use of the native GSS API is selected, it will be used for all Kerberos
operations. All Kerberos Clients and Services must therefore be configured to load their credentials nat-
ively.

If the native API is used the following will not be supported:

• The SPNEGO mechanism.
• The WS-Trust for SPNEGO standard as it requires the SPNEGO mechanism.
• The SPNEGO over HTTP standard as it requires the SPNEGO mechanism. (It is possible to use the KERBEROS

mechanism with this protocol, but this would be non-standard.)
• Signing and encrypting using the Kerberos session keys.

Use Native GSS Library:
Check this checkbox to use the operating system's native GSS implementation. This option only applies to API Gateway
installations on the Linux and Solaris platforms.

Native GSS Library Location:
If you have opted to use the native GSS library, enter the location of the GSS library in the field provided, for example, /
usr/lib/libgssapi.so. On Linux, the library is called libgssapi.so. On Solaris, this library is called libgss.so.

Note
This setting is only required when this library is in a non-default location.

Native GSS Trace:
Use this option to enable debug tracing for the native GSS library.

Kerberos configuration

144

Tivoli integration
Overview

Oracle API Gateway is a dedicated network device for offloading processor-intensive tasks from applications running in
general purpose application servers. The API Gateway performs application networking by routing traffic based on both
content and sender. Its patented high performance XML acceleration engine, coupled with acceleration hardware en-
sures wirespeed network performance.

Tivoli Access Manager is a commonly used product for securing web resources. The Tivoli message filter allows the API
Gateway to leverage existing Access Manager policies, thus avoiding the need to maintain duplicate policies in both
products. At runtime, the Tivoli filters can delegate authentication and authorization decision to Access Manager, and can
also retrieve user attributes. Therefore, the API Gateway integrates with Tivoli Access Manager by providing the follow-
ing functionality:

• Connects to Tivoli Access Manager
• Authenticates a user against Access Manager
• Authorizes a user against Access Manager
• Retrieves user attributes from Access Manager

The API Gateway has been built to integrate with Tivoli Access Manager 6.0.

Integration architecture

The Oracle API Gateway contains a set of message filters that directly or indirectly restrict access to web services. For
example, filters that directly control access include XML-signature verification, CA certificate chain verification, and SAML
assertion verification. With this class of filters, policy decisions are made and enforced within the API Gateway's core en-
gine itself.

On the other hand, filters that indirectly control access offload the policy decision to an external system, such as Tivoli
Access Manager. With indirect filters, the policy decision is made by the external system but then enforced by the API
Gateway.

The objective of this integration solution is to implement a message filter that forwards policy decisions to IBM's Tivoli
Policy Director/Access Manager. The architecture can be seen in the following diagram.

145

The following processing stages are executed:

1. The client sends a message to the API Gateway (for example, using SOAP over HTTPS).
2. The API Gateway dispatches the message to the appropriate policy. The filters configured for that policy are then

executed.
3. Assuming that the Tivoli filter is one of the filters that is configured for this policy, the API Gateway asks Tivoli Ac-

cess Manager to authenticate, authorize, or retrieve attributes for a given user. Tivoli Access Manager makes its se-
curity decision and returns it to the API Gateway, where the decision is enforced.

4. If Tivoli Access Manager successfully authenticates or authorizes the user, or can retrieve attributes about that user,
the message is routed on to the configured target system. Otherwise, the message is blocked and a fault is returned
to the client.

Prerequisites

IBM Tivoli integration requires the following:

Tivoli API

Integration with the IBM Tivoli Access Manager requires the IBM Tivoli Access Manager for e-business Authorization C
API. You must add the required third-party binaries to your API Gateway and Policy Studio installations.

Add third-party binaries to API Gateway

To add third-party binaries to API Gateway, perform the following steps:

1. Add the binary files as follows:

Tivoli integration

146

• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart API Gateway.

Add third-party binaries to Policy Studio

To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Install Tivoli runtime

The Tivoli Access Manager runtime must be installed on the machine running the API Gateway.

Note
The Tivoli Access Manager runtime for Java is not required. The Tivoli runtime is not packaged with the API
Gateway product, so the IBM installers need to run to install the runtime.

The Tivoli Access Manager runtime can be installed using the native utilities instead of the installation wizard. This is ad-
vised so that the IBM Java Runtime 1.4.2 does not get installed. The Java Runtime 1.4.2 is required by the installation
wizard, but not by any of the runtime software.

Tivoli configuration files

The API Gateway uses information stored in the Tivoli configuration files in order to connect to a Tivoli server. These
configuration files can be generated using the svrsslcfg command line utility, which is shipped with the Tivoli Access
Manager runtime discussed in the previous section. The generated configuration files are then either uploaded to the API
Gateway using Oracle Policy Studio or manually copied into a location on the API Gateway's file system.

The following example shows how to run the svrsslcfg utility (using Windows file paths):

svrsslcfg -config -f "C:\conf\config.conf" -d "C:\conf" -n API Gateway
-s remote -P passw0rd -S passw0rd -r 7777 -h test.vordel.com

The available arguments are described as follows:

Argument Description

-config Creates the configuration files required for the API Gateway to communicate
with Tivoli.

-f Name of the main Tivoli configuration file. This file is generated by the com-
mand.

-d Name of the directory that is to contain the SSL key file (.kdb) for the server.
This command generates the key file.

-n Name of the application connecting to Tivoli (the API Gateway).

Tivoli integration

147

Argument Description

-s Mode in which the application (the API Gateway) runs. The most likely scenario
is that the API Gateway runs remotely.

-P Administrator's password.

-S Password for the API Gateway.

-r Listening port for the API Gateway..

-h Name of the host on which the API Gateway is running.

After the svrsslcfg utility has been run with the -config option, the following command must be run:

svrsslcfg -add_replica -f "c:\conf\config.conf" -h tivoli.qa.vordel.com

The available arguments are described as follows:

Argument Description

-add_replica Adds a Tivoli authorization server replica. The API Gateway contacts this serv-
er to make authorization decisions.

-f Name of the main Tivoli configuration file. This file is generated by the com-
mand.

-h name of the Tivoli authorization server.

The following files are generated after running these commands:

• c:\conf\config.conf - The main Tivoli configuration file.
• c:\conf\API Gateway.kdb - The SSL key file.
• c:\conf\API Gateway.sth - The stash file for the SSL key file.
• c:\conf\API Gateway.conf.obf - The database configuration file.

Note
Depending on the version of the API Gateway you are running, the above file names might have spaces in
them.

See the Tivoli documentation for more information on running these command line utilities.

Create a Tivoli object space

An object space, user, and ACL (Access Control List) can be created within Tivoli using the pdadmin command as fol-
lows:

> login -a sec_master passw0rd
> objectspace create /vordel/test "For testing purposes" 9
> user create -gsouser jsmith "cn=John Smith, o=Vordel" "John Smith" Smith passw0rd
> user modify jsmith account-valid yes

Tivoli integration

148

> acl create VordelACL
> acl modify VordelACL set user jsmith brT
> acl attach /vordel/test VordelACL

The following commands allow you to view the details of the newly added user:

> user show jsmith
> objectspace list
> acl show VordelACL

See the Tivoli documentation for more information on running the pdadmin utility.

Global Tivoli configuration

Policy Studio is used to configure all Tivoli connections and settings within the API Gateway. It can be run from the /bin
directory of your product installation.

There are two global Tivoli-specific settings that can be configured:

• Tivoli Connections
• Tivoli Repositories

Tivoli connections

Tivoli connections determine how a particular API Gateway instance connects to an instance of a Tivoli server. Each API
Gateway instance can connect to a single Tivoli server. This connection can be configured by right-clicking the API Gate-
way instance under the Listeners node in the tree on the left of the Policy Studio, and clicking the Tivoli menu option.

Alternatively, you can add a global Tivoli connection by right-clicking the External Connections > Tivoli Connection
node in the tree, and selecting the Add a Tivoli Connection option. The newly added connection can then be assigned
to a particular API Gateway instance.

In both cases, the Tivoli Configuration dialog is used to add the connection details required for the API Gateway to con-
nect to the Tivoli server. As stated in the prerequisites section, the connection details are stored in the Tivoli configura-
tion files that are generated by the svrsslcfg utility. This dialog allows you to upload these files to the API Gateway.

The Policy Studio can be used to upload the Tivoli configuration files to the machine on which the API Gateway is run-
ning or, alternatively, the configuration files may be copied manually using the tool of your choice onto the API Gateway's
file system. This section now describes how to perform each of these methods in turn.

Complete the following steps to upload a configuration file to the API Gateway:

1. Enter a name on the Tivoli Configuration dialog. A previously configured Tivoli connection can be selected to base
the new configuration on.

2. Select the Upload Tivoli configuration files option.
3. Select the version of the Tivoli server that this connection connects to. Both Tivoli 5.1 and 6.0 are supported.
4. Check the Connection enabled check box if you want to immediately enable the connection. It can be disabled at a

later stage by toggling this check box. Click the Next button.
5. On the Upload Tivoli configuration files window, click the Load File button and browse to the location of the main

Tivoli configuration file. The contents of this file are then displayed in the text area. Any of the details can be edited
in the text area at this stage if required.
For example, it may be necessary to change the file locations of the configuration files. This is because when you
use the Upload ... option, the API Gateway writes out the files on startup and on server update to the following dir-
ectory, where PROCESS_NAME is API Gateway instance and INSTALL_DIR refers to the root of your product install-
ation:

Tivoli integration

149

[INSTALL_DIR]\conf\plugin\tivoli\[PROCESS_NAME]

Note
Spaces are substituted with - in the API Gateway instance name.In addition, the API Gateway names
each file as config.[EXTENSION]. For example, the directory,
[INSTALL_DIR]\conf\plugin\tivoli\API Gateway contains config.conf, config.kdb,
config.sth, and config.conf.obf. The API Gateway overwrites these files each time at startup
or refresh (for example, when configuration updates are deployed). This means that any changes to
the main configuration file must be made using the Policy Studio and not directly to the file on disk.

6. Click the Next button.
7. Click the Load File button and browse to the location of the Tivoli SSL key file. Once again, the contents of this file

are displayed in the text area.

Note
In this case, the (base-64 encoded) SSL keys can not be edited in the text area. Click the Next button.

8. Click the Load File button and browse to the location of the Tivoli SSL stash file. Click the Next button.
9. Click the Load File button and browse to the location of the Tivoli Configuration database configuration file. Click the

Finish button to upload all the selected files.

Alternatively, the configuration files can be copied manually onto the API Gateway's file system. Having done this using
some out-of-bounds method, complete the following steps to configure the API Gateway to pick up the uploaded files:

1. Enter a name on the Tivoli Configuration dialog.
2. Select the Set file location for main Tivoli Configuration file option and click the Next button. Click the Next but-

ton.
3. Enter the full path to the main Tivoli configuration file on the server's file system in the Server-side Tivoli configura-

tion field. Click the Finish button.
4. If you have not already manually copied the configuration files on to the API Gateway's file system you should do so

now. Please ensure that the settings contained in the main configuration file that point to other configuration file-
names are set correctly.

Note
When the Set file location option is selected, the API Gateway does not overwrite the files at startup
or refresh time. You may edit the main configuration file directly using an editor of your choice.

Tivoli repositories

A Tivoli repository is used to authenticate clients against a running instance of a Tivoli server. All authentication filters
can pass identity credentials to the Tivoli repository in order to authenticate clients. The Tivoli server decides whether or
not to authenticate the client and the API Gateway subsequently enforces the decision.

Tivoli repositories can be configured globally by right clicking on the Tivoli Repositories node in the tree on the Policy
Studio and selecting the Add option.

Enter a name for the repository in the Repository Name field on the Authentication Repository dialog. Select the Fin-
ish button to complete the configuration. You can specify Tivoli connection details from the Repository Configuration
window or via the Settings button. On the Tivoli Configuration dialog, select the API Gateway instance whose connec-
tion details you want to configure, then follow the steps outlined above in the Tivoli connections section.

Tivoli integration

150

When configuring an authentication filter, you can select this globally configured Tivoli repository to authenticate clients
against. The authentication filter uses the connection details of whatever API Gateway instance was selected.

Tivoli authorization

The Tivoli authorization filter can be found in the Authorization category of filters. To configure this filter, see the Tivoli
authorization topic.

Tivoli authentication

It is possible to authenticate clients against a Tivoli Access Manager repository. In this way, the API Gateway can lever-
age existing Tivoli security policies without the need to duplicate policies across both products.

The Tivoli repository is available from all authentication filters. However, for demonstration purposes, assume that you
want to use the HTTP basic authentication filter to authenticate a client against a Tivoli repository using a user name and
password combination.

Drag the HTTP Basic filter from the Authentication category of filters and drop it onto the policy editor of the Policy Stu-
dio. Complete the following fields:

Name:
Enter a name for the authentication filter.

Realm:
The Realm entered here is presented to the client at the same time as they are entering their user name and password.
The client is then said to be logging into this realm. It is useful in cases where a given user might belong to many differ-
ent realms, and so, by presenting the realm to the client, he can specify which realm he wants to log into.

Credential Format:
The user name presented to the API Gateway during the HTTP basic handshake can be of many formats, usually either
user name or distinguished name. Since the API Gateway has no way of inherently telling one format from the other (the
client's user name could be a DName), it is necessary to specify the format of the credential presented by the client.

Allow Client Challenge:
HTTP basic authentication can be configured to work in two ways:

• Direct Authentication:
The client sends up the Authorization HTTP basic authentication header in its first request to the server.

• Challenge-Response Handshake:
The client does not send the Authorization header when sending its request to the server (it does not know that
the server requires HTTP basic authentication). The server responds with an HTTP 401 response code, instruct-
ing the client to authenticate to the server by sending up the Authorization header. The client then sends up a
second request, this time including the Authorization header and the relevant user name and password.

The first case is used mainly for machine-to-machine transactions in which there is no human intervention. The second
case is typical of situations where a browser is talking to a web server. When the browser receives the HTTP 401 re-
sponse to its initial request, it pops up a dialog to allow the user to enter the user name and password combination.

If you wish to force clients to always send the HTTP basic Authorization header to the API Gateway, disable the Al-
low client challenge check box. If, on the other hand, you wish to allow clients to engage in the HTTP basic authentica-
tion challenge-response handshake with the API Gateway, make sure this feature is enabled by checking this option.

Remove HTTP Authentication Header:
Select this check box to remove the HTTP Authorization header from the downstream message. If this option is left
unchecked, the incoming Authorization header is forwarded onwards to the target system.

Repository Name:

Tivoli integration

151

The Repository Name field specifies the name of the authentication repository where all user profiles are stored. You
can select a previously configured Tivoli repository by simply selecting the name of this repository from the Repository
Name list. Alternatively, a new repository can be added by clicking the Add button.

On the Authentication Repository dialog, select Tivoli Repository from the Repository Type field, and then enter
a name for this type of store in the Repository Name field.

Select the OK button on the Authentication Repository dialog and then Finish button on the HTTP Basic filter to com-
plete the configuration.

Connections to Tivoli authentication repositories can be configured globally by expanding the Authentication Reposit-
ory Profiles node in the Policy Studio, right-clicking on the Tivoli Repositories node and selecting the Add a New Re-
pository menu option. The globally configured repository is then available for selection in authentication filters, such as
the HTTP basic authentication filter, as described above.

Tivoli attribute retrieval

The Retrieve from Tivoli filter can be used in cases where you would like to retrieve user attributes independently from
authorizing the user against Tivoli Access Manager. This filter can be found in the Attributes category of filters. To con-
figure this filter, see the Retrieve attribute from Tivoli topic.

Tivoli integration

152

Export API Gateway configuration
Overview

You can export API Gateway configuration data by right-clicking a Policy Studio tree node (for example, policy or policy
container), and selecting the relevant export menu option (for example, Export Policy). The configuration is exported to
an XML file, which you can then import into a different API Gateway configuration. For example, this is useful in a devel-
opment environment if you wish to share and test configuration with other developers. By exporting configuration data
from one API Gateway installation, and importing into another API Gateway installation, you can effectively share your
API Gateway configuration in a development environment. This also enables you to manage differences and references
between configuration components.

For details on importing configuration data, see Import API Gateway configuration.

Note
For details on migrating API Gateway configuration between development, testing, and production environ-
ments, see the Deployment and Promotion Guide.

What is exported

You can export API Gateway configuration items by right-clicking a node in the Policy Studio tree. For example, this in-
cludes the following Policy Studio tree nodes:

• Policies
• Policy containers
• Schemas
• Alerts
• Caches
• Regular expressions (White List)
• Attacks (Black List)
• Users
• Certificates
• Relative paths
• Remote hosts
• Database connections

In addition, you can also export configuration items that are associated with the selected tree node. For example, this in-
cludes referenced policies, MIME types, regular expressions, schemas, and remote hosts. For details on exporting addi-
tional configuration items, see the next section.

Export configuration items

To export API Gateway configuration items, perform the following steps:

1. Right-click a Policy Studio tree node (for example, policy or policy container), and select the relevant menu option
(for example, Export Policy).

2. The first screen in the export wizard is a read-only screen that displays the configuration items to be exported. The
Exporting tree displays the selected tree node (in this case, policy), which is exported by default. The following
configuration items will also be exported tree includes additional referenced items that are also exported by de-
fault along with the policy (for example, MIME types, regular expressions, and schemas).

153

3. You can click Finish if this selection suits your requirements. Otherwise, click Next to refine the selection.
4. In the next screen, you can select optional configuration items for export. The Additional configuration items that

may be exported tree on the left includes dependent items that are not exported by default. For example, these in-
clude the following:
• Outbound references: configuration items directly referenced out from the export set to other configuration

stores (for example, Certificates, Users, or External Connections).
• Inbound references: configuration items in other configuration stores that directly reference items in the export

set.
• Associated configuration directly related to the export set (for example, remote hosts or relative paths).

5. To add an item for export, select it in the Additional configuration that may be exported tree on the left, and click
Add.

6. To remove an item for export, select it in the Additional configuration that will be exported tree on the right, and
click Remove.

Note
The original set of items in the Additional configuration that will be exported tree cannot be re-
moved. Only items added from the Additional configuration that may be exported tree can be re-
moved.

7. By default, items displayed in the Additional configuration that may be exported tree are scoped to direct refer-
ences to the export set (inbound, outbound, and associated). You can select Display additional configuration that
depends on items to be exported to recursively add references to this tree when additional configuration items are
added to the export set.

8. Click OK to export the selected configuration.

Referenced Policies
When exporting a policy or policy container, by default, any policies referenced by the policy are included for export and
displayed in the Additional configuration that will be exported list.

Export all API Gateway configuration

To export all API Gateway configuration data, perform the following steps:

1. Click Export Configuration button in the Policy Studio toolbar.
2. In the Save As dialog, specify a file name, and click Save to export the entire API Gateway configuration data to a

file. This includes all references between configuration components.

Export API Gateway configuration

154

Import API Gateway configuration
Overview

You can import configuration data into your API Gateway configuration (for example, policies, certificates, and users).
For example, this is useful in a development environment if you wish to share and test configuration with other de-
velopers. By exporting configuration data from one API Gateway installation, and importing into another API Gateway in-
stallation, you can effectively share your API Gateway configuration in a development environment. This also enables
you to manage differences and references between configuration components.

For details on exporting configuration data, see Export API Gateway configuration.

Note
For details on migrating API Gateway configuration between development, testing, and production environ-
ments, see the Deployment and Promotion Guide.

Import configuration

To import API Gateway configuration data, perform the following steps:

1. Click the Import Configuration button in the Policy Studio toolbar.
2. Browse to the location of the XML file that contains the previously exported configuration data that you wish to im-

port.
3. Select the XML file, and click Open.
4. If a passphrase was set on the configuration from which the data was previously exported, enter it in the Enter

Passphrase dialog, and click OK.
5. In the Import Configuration dialog, all configuration items are selected for import by default. If you do not wish to

import specific items, unselect them in the tree. For more details, see Viewing Differences.
6. Click OK to import the selected configuration items.
7. The selected configuration items are imported into your API Gateway configuration and displayed in the Policy Stu-

dio tree. For example, any imported policies and containers are displayed under the Policies node.

Important
Be careful when deselecting configuration nodes for import. Unselecting certain nodes may make the im-
ported configuration inconsistent by removing supporting configuration.

View differences

The Import Configuration dialog displays the differences between the existing stored configuration data (destination)
and the configuration data to be imported (source). Differences are displayed in the tree as follows:

Addition Exists in the source Configuration being imported but not in the destination
Configuration. Displayed as a green plus icon.

Deletion Exists in the destination Configuration but not in the source Configuration being
imported. Displayed as a red minus icon.

Conflict Exists in both Configurations but is not the same. Displayed as a yellow warn-
ing icon.

155

If you select a particular node in the Import Configuration tree, the Differences Details panel at the bottom of the
screen shows details for this Configuration entity (for example, added or removed fields). In the case of conflicts,
changed fields are highlighted. Some Configuration entities also contain references to other entities. In this case, an icon
is displayed for the field in the Difference Details panel. If you double-click a row with an icon, you can drill down to view
further Difference Details dialogs for those entities.

What is imported

When configuration data is imported, some configuration items are imported in their entirety. For example, if the contents
of a particular policy are different, the entire policy is replaced (new filters are added, missing filters are removed, and
conflicting filters are overwritten). In addition, if a complex filter differs in its children, child items are removed and added
as required (for example, WS Filter, Web service, User, and so on). Other imports are additive only. For example, import-
ing a single certificate does not remove the certificates already in the destination Certificate store. All references to other
policies are also maintained during import.

Important
Although importing some configuration items removes child items by default, you can deselect child nodes
to keep existing child items. However, you should take care to avoid inconsistencies. The default selection
applies in most cases.

Import configuration from a previous version

If you import configuration created using a previous version of the API Gateway, the configuration is automatically up-
graded to the current API Gateway version configuration. This results in the migration of the configuration entities present
in the .xml file that is being imported.

The Migration Report trace console at the bottom of the screen displays the migration report output that is generated
when the configuration is upgraded. For example:

The Migration Report console also displays links that navigate to the appropriate upgraded configuration entity. For ex-
ample, the following screen is displayed when the MyFirstDirectoryScanner link is clicked:

Import API Gateway configuration

156

Import API Gateway configuration

157

Configure API Gateway instances
Overview

This topic shows how to configure a running instance of the API Gateway. You can configure the options described in the
following sections on the API Gateway instance in the Policy Studio tree.

Add remote hosts

Remote host settings configure the way in which the API Gateway routes to another host machine. For example, if a des-
tination server may not fully support HTTP 1.1, you can configure Remote Host settings for the server to optimize the
way in which the API Gateway sends messages to it. Similarly, if the server requires an exceptionally long timeout, you
can configure this in the Remote Host settings. For more details, see the Configure remote host settings topic.

Add HTTP services

You can add a container for HTTP-related services, including HTTP and HTTPS Interfaces, Directory Scanners, Static
Content Providers, Servlet Applications, and Packet Sniffers.

HTTP Services act as a container for all HTTP-related interfaces to the API Gateway's core messaging pipeline. You can
configure HTTP and HTTPS interfaces to accept plain HTTP and SSL messages respectively. A relative path interface is
available to map requests received on a particular URI or path to a specific policy. The Static Content Provider interface
can retrieve static files from a specified directory, while the Servlet Application enables you to deploy servlets under the
service. Finally, the Packet Sniffer interface can read packets directly of the network interface, assemble them into HTTP
messages, and dispatch them to a particular policy. The Configure HTTP services topic explains how to configure the
available HTTP Interfaces.

Add SMTP services

Simple Mail Transfer Protocol (SMTP) support enables the API Gateway to receive email and to act as a mail relay. The
API Gateway can accept email messages using the SMTP protocol, and forward them to a mail server. You can also
configure optional policies for specific SMTP commands (for example, HELO/EHLO and AUTH). The Configure SMTP ser-
vices topic explains how to configure SMTP services, interfaces, and handler policies.

Add file transfer services

You can configure the API Gateway to listen for remote clients that connect to it as a file server. This enables the API
Gateway to apply configured policies on transferred files (for example, for schema validation, threat detection or preven-
tion, routing, and so on). The API Gateway supports File Transfer Protocol (FTP), FTP over SSL (FTPS), and Secure
Shell FTP (SFTP). The Configure a file transfer service topic explains how to configure the API Gateway as a file transfer
service.

Add policy execution scheduling

Policy execution scheduling enables you to schedule the execution of any policy on a specified date and time in a recur-
ring manner. The API Gateway provides a preconfigured library of schedules to select from. You can also add your own
schedules to the library. The Policy execution scheduling topic explains how to add a policy execution schedule, and how
to add schedules.

Configure JMS messaging system

You can configure the API Gateway to read JMS messages from a JMS queue or topic, run them through a policy, and
then route onwards to a Web service or JMS queue or topic.

The API Gateway can consume a JMS queue or topic as a means of passing XML messages to its core message pro-

158

cessing pipeline. When the message has entered the pipeline, it can be validated against all authentication, authoriza-
tion, and content-based message filters. Having passed all configured message filters, it can be routed to a destination
Web service over HTTP, or it can be dropped back on to a JMS queue or topic using the Messaging System connection
filter. For more details, see the Configure messaging services topic.

Add Amazon SQS queue listener

The Amazon SQS Queue Listener enables you to poll an Amazon SQS queue for messages at a specified rate. When
messages are retrieved from the queue, they can be passed to a specified policy for processing. For more details, see
the Configure Amazon SQS queue listener topic.

Add FTP poller

The FTP Poller enables you to query and retrieve files by polling a remote file server. When files are retrieved, they can
be passed into the API Gateway core message pipeline for processing. For example, this is useful in cases where an ex-
ternal application drops files on to a remote file server, which can then be validated, modified, or routed on over HTTP or
JMS by the API Gateway. For more details, see the Configure an FTP poller topic.

Add directory scanner

The Directory Scanner reads XML files from a specified directory and dispatches them to a selected policy. This en-
ables you to search a local directory for XML files, which can then be fed into a security policy for validation. Typically,
XML files are transferred by FTP or saved to the file system by another application. The API Gateway can then pick
these files up, run the full array of authentication, authorization, and content-based filters on the messages, and then
route them over HTTP or JMS to a back-end system. For more details, see the Configure directory scanner topic.

Add POP client

The POP Client enables you to poll a POP mail server to read email messages from it, and pass them into a policy for
processing. For more details, see the Configure a POP client topic.

Configure TIBCO

You can configure a TIBCO Rendezvous® Listener. For more details, see TIBCO Rendezvous listener.

API Gateway settings

You can configure per-instance global configuration settings by clicking the Server Settings node in the Policy Studio
tree. For example, these include settings for timeouts, caches, logging, monitoring, security, and so on. For more details
on configuring API Gateway instance settings, see API Gateway Administrator Guide.

Cryptographic acceleration

The API Gateway can leverage the OpenSSL Engine API to offload complex cryptographic operations (for example, RSA
and DSA) to a hardware-based cryptographic accelerator, and to act as an extra layer of security when storing private
keys on a Hardware Security Module (HSM).

The API Gateway uses OpenSSL to perform cryptographic operations, such as encryption and decryption, signature
generation and validation, and SSL tunneling. OpenSSL exposes an Engine API, which enables you to plug in alternative
implementations of some or all of the cryptographic operations implemented by OpenSSL. OpenSSL can, when con-
figured appropriately, call the engine's implementation of these operations instead of its own. For more information on
configuring the API Gateway to use an OpenSSL engine, see the Cryptographic acceleration topic.

Configure API Gateway instances

159

Configure HTTP services
Overview

The API Gateway uses HTTP Services to handle traffic from various HTTP-based sources. The available HTTP Services
are as follows:

HTTP interfaces
HTTP interfaces define the ports and IP addresses on which the API Gateway instance listens for incoming requests.
You can also add HTTPS interfaces to specify SSL certificates to authenticate to clients, and certificates considered trus-
ted for establishing SSL connections with clients.

Relative path
You can configure relative paths so that when a request is received on a specific path, the API Gateway instance can
map it to a specific policy, or chain of policies. For more details, see Configure relative paths.

Static content provider
You can use a static content provider to serve static HTTP content from a particular directory. In this case, the API Gate-
way instance is effectively acting as a web server. For more details, see Configure relative paths

Servlet applications
The API Gateway instance can act as a servlet container, which enables you to drop servlets into the HTTP services
configuration. This should only be used by developers with very specific requirements and under strict advice from the
Oracle Support team. For more details, see Configure relative paths

Packet sniffer
You can add a packet sniffer to intercept network packets from the client, assemble them into complete HTTP messages,
and log these messages to an audit trail. Because the packet sniffer operates at the network layer (unlike an HTTP-
based traffic monitor at the application layer), the packets are intercepted transparently to the client. This means that the
packet sniffer is a passive service, which is typically used for management and monitoring instead of general policy en-
forcement. For more details, see Packet sniffers.

HTTP services groups

An HTTP services group is a container around one or more HTTP services. Usually, an HTTP services group is con-
figured for a particular type of HTTP service. For example, you could have an HTTP Interfaces group that contains the
configured HTTP interfaces, and another Static Providers group to manage static content providers. While organizing
HTTP services by type eases the task of managing services, the API Gateway is flexible enough to enable administrators
to organize services into groups according to whatever scheme best suits their requirements.

This section describes a scenario where HTTP services groups can prove useful. It first describes an HTTP service
group that handles HTTP traffic, and then shows how you can use a second SSL service group to process SSL traffic on
a separate channel.

HTTP interfaces and relative paths

HTTP services groups should consist of at least one HTTP interface together with at least one relative path. The HTTP
interface determines which TCP port the API Gateway instance listens on, while you can use the relative path to map a
request received on a particular path (request URI) to specific policies. You can add several HTTP interfaces to the
groups, in which case requests received on any one of the opened ports are processed in the same manner. For ex-
ample, http://[HOST]:8080/test and http://[HOST]:8081/test requests can both be processed by the same
policy (mapped to the /test relative path).

Similarly, you can add multiple relative paths to this HTTP services group, where each path is bound to a specific policy
or chain of policies. For example, if a request is made to http://[HOST]:8080/a, it is processed by Policy A; where-
as if a request is made to http://[HOST]:8080/b, it is handled by Policy B. As a side-effect of this configuration, re-

160

quests made to the other interface are also processed by the same policy, meaning that a request made to ht-
tp://[HOST]:8081/b is also handled by Policy B.

Effectively, this means that relative paths configured under the HTTP services group are bound to all HTTP interfaces
configured for that group. If you have two interfaces listening on ports 8080 and 8081, requests to ht-
tp://[HOST]:8080/a and http://[HOST]:8081/a are handled identically by the API Gateway instance.

Example HTTP service group

What happens if you want to distinguish between receiving requests on the two different ports? For example, you want
requests to http://[HOST]:443/a to be processed by an SSL Validation policy, while requests for ht-
tp://[HOST]:8080/a to be handled by a standard Schema Validation policy.

The addition of a new HTTP services group can resolve this issue. The new SSL HTTP Services Group opens a
single HTTPS interface that listens on port 443, and is configured with a relative path of /a to handle requests on this
path. The configuration is summarized in the following table:

Services Group HTTP Port Relative Path Policy

HTTP Services Group 8080 /a Schema Validation Policy

SSL HTTP Services
Group

443 /a SSL Validation Policy

With this configuration, when you receive a request on http://[HOST]:8080/a, it is handled by the Schema Valida-
tion Policy. But when you get a request to the SSL port on http://[HOST]:443/a it is processed by the SSL Valida-
tion Policy. Using HTTP services groups in this way, you can configure the API Gateway instance to dispatch requests
received on the same path (for example, /a) to different policies depending on the port on which the request was accep-
ted.

Default HTTP service groups

By default, the API Gateway ships with preconfigured HTTP services groups (for example, Default Services and
Management Services). By default, Management Services are not displayed in the Policy Studio, but can be dis-
played using the Preferences menu. The Default Services group contains some general purpose default policies
for use with an out-of-the-box installation of the API Gateway. In addition to the preconfigured service groups, you can
add new HTTP services groups to dispatch requests to different policies, based on the port on which the requests are re-
ceived. For more details on the default Management Services group, see the section called “Management services”.

Add an HTTP service group

To add a service group, perform the following steps:

1. Right-click the API Gateway instance, and select Add HTTP Services.
2. Enter a name for the group in the HTTP Services dialog.
3. To enable Cross Origin Resource Sharing (CORS) for this HTTP service, select CORS tab, and click the button on

the right to select a preconfigured CORS profile. By default, no profile is selected, which means that CORS is dis-
abled. For details on CORS, see Cross-Origin Resource Sharing.

4. In the Select CORS Profile dialog, if no profiles have already been configured, right-click CORS Profiles, and se-
lect Add a CORS Profile. You can also right-click an existing profile, and select Edit to update its settings. For de-
tails on CORS settings, see the section called “Add a CORS profile”.

When an HTTP service group is created, you can configure it with the HTTP services described in this topic.

Configure HTTP services

161

HTTP and HTTPS interfaces

An HTTP interface defines the address and port that the API Gateway instance listens on. There are two types of inter-
face: HTTP and HTTPS. The HTTP interface handles standard non-authenticated HTTP requests, while the HTTPS in-
terface can accept mutually authenticated SSL connections.

To create an HTTP interface, under the HTTP Service Group (for example, Default Services) in the Policy Studio
tree, right-click Ports, and select Add HTTP or Add HTTPS.

Configure Network settings

The following fields on the Network tab are common to both the HTTP Interface and HTTPS Interface dialogs, and
must be configured for both types of interface:

Port:
The port number that the API Gateway instance listens on for incoming HTTP requests.

Address:
The IP address or host of the network interface on which the API Gateway instance listens. For example, you can config-
ure the instance to listen on port 80 on the external IP address of a machine, while having a Web server running on the
same port but on the internal IP address of the same machine. By entering *, the instance listens on all interfaces avail-
able on the machine hosting the API Gateway.

Protocol:
Select the Internet Protocol version that this Interface uses. You can select IPv4, IPv6, or both of these protocol ver-
sions. Defaults to IPv4.

Trace level:
The level of trace output. The possible values in order of least verbose to most verbose output are:

• FATAL

• ERROR

• INFO

• DEBUG

• DATA

The default trace level is read from the system settings.

Enable interface:
Deselect this setting to disable this HTTP interface. This setting is enabled by default.

Configure Traffic Monitor settings

The fields on the Traffic Monitor tab are common to the HTTP Interface and HTTPS Interface dialogs. To override the
system-level settings at HTTP or HTTPS interface level, select Override settings for this port, and configure the relev-
ant options. For more details, see the API Gateway Administrator Guide.

Configure Advanced settings

The following fields on the Advanced tab are common to both the HTTP Interface and HTTPS Interface dialogs, and
must be configured for both types of interface:

Backlog:
When the API Gateway instance is busy handling concurrent requests, the operating system can accept additional in-
coming connections. In such cases, a backlog of connections can build up while the operating system waits for the in-
stance to finish handling current requests.

Configure HTTP services

162

The specified Backlog value is the maximum number of connections the API Gateway instance allows the operating sys-
tem to accept and queue up until the instance is ready to read them. The larger the backlog, the larger the memory us-
age. The smaller the backlog, the greater the potential for dropped connections.

Idle Timeout:
The API Gateway supports the use of HTTP 1.1 persistent connections. The Idle Timeout is the time that the API Gate-
way instance waits after sending a response over a persistent connection before it closes the connection. Defaults to
60000 milliseconds (60 seconds).

Typically, a client tells the instance that it wants to use a persistent connection. The instance acknowledges this instruc-
tion and decides to keep the connection open for a certain amount of time after sending the response to the client. If the
client does not reuse the connection by sending up another request within the Idle Timeout period, the instance closes
the connection.

Active Timeout:
When the API Gateway instance receives a large HTTP request, it reads the request off the network as it becomes avail-
able. If the time between reading successive blocks of data exceeds the Active Timeout, the instance closes the con-
nection. Defaults to 60000 milliseconds (60 seconds).

This guards against a client closing the connection while in the middle of sending data. Imagine the client's network con-
nection is pulled out of the machine while in the middle of sending data to the instance. When the instance has read all
the available data off the network, it waits the Active Timeout period of time before closing the connection.

Maximum Memory per Request:
The maximum amount of memory in bytes that the API Gateway instance allocates to each request. For more details,
see General settings in the API Gateway Administrator Guide.

Input Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can accept from peers. The avail-
able content encodings include gzip and deflate. By default, the content encodings configured in the Default Set-
tings are used. You can override this setting at the HTTP interface level and in the Remote Host Settings. For more de-
tails, see the topic on Compressed content encoding.

Output Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can apply to outgoing messages.
The available content encodings include gzip and deflate. By default, the content encodings configured in the De-
fault Settings are used. You can override this setting at the HTTP interface level and in the Remote Host Settings. For
more details, see the topic on Compressed content encoding.

Transparent Proxy - allow bind to foreign address:
Enables the use of the API Gateway as a transparent proxy on Linux systems with the TPROXY kernel option set. When
selected, the value in the Address field can specify any IP address, and incoming traffic for the configured address/port
combinations is handled by the API Gateway. For more details and an example, see Configure a transparent proxy.

Include correlation ID in headers:
Specifies whether to insert the correlation ID in outbound messages. For the HTTP transport, this means that an X-
CorrelationID header is added to the outbound message. This is a transaction ID that is tagged to each message
transaction that passes through the API Gateway, and which is used for traffic monitoring in the API Gateway Manager
web console.

You can use the correlation ID to search for messages in the console. You can also access the its value using the id
message attribute in an API Gateway policy. An example correlation ID value is Id-54bbc74f515d52d71a4c0000.
This setting is selected by default.

Threat Protection Settings:
Select whether to Protect this interface with Threat Protection rules using the ModSecurity Web Application Frame-
work (WAF). The ModSecurity engine is embedded in the API Gateway. to provide API firewalling. This setting is not se-
lected by default. When this setting is selected, all traffic is processed by the ModSecurity engine, and threats are rejec-

Configure HTTP services

163

ted based on the configured rules. For more details, see the API Gateway Administrator Guide.

Configuring Conditions for an HTTP Interface
You can configure the API Gateway to bring down an active HTTP interface if certain conditions fail to hold. For example,
the HTTP interface can be brought down if a remote host is not available or if a physical network interface on the ma-
chine on which the API Gateway is running loses connectivity to the network. For more details, see the Configure condi-
tions for HTTP interfaces topic.

HTTPS interfaces only

This section describes settings that apply to HTTPS interfaces only.

Configure Network settings

You must complete the same fields for an HTTPS interface on the Network tab as for an HTTP interface, with the addi-
tion of the following setting:

X.509 Certificate:
Click the X.509 Certificate button to select the certificate that the API Gateway uses to authenticate itself to clients dur-
ing the SSL handshake. The list of certificates currently stored in the Certificate Store is displayed. Select a single certi-
ficate from this list.

Configure Mutual Authentication settings

You can configure clients to authenticate to the API Gateway on the Mutual Authentication tab. The following options
are available:

• Ignore Client Certificates
The API Gateway ignores client certificates if they are presented during the SSL handshake.

• Accept Client Certificates
Client certificates are accepted when presented to the API Gateway, but clients that do not present certificates are
not rejected.

• Require Client Certificates
The API Gateway only accepts connections from clients that present a certificate during the SSL handshake.

Client certificates are typically issued by a Certificate Authority (CA). In most cases, the CA includes a copy of its certific-
ate in the client certificate so that consumers of the certificate can decide whether or not to trust the client based on the
issuer of the certificate.

A chain of CAs can also issue the client certificate. For example, a top-level organization-wide CA (for example, Com-
pany CA) may have issued department-wide CAs (for example, Sales CA, QA CA, and so on), and each department CA
is then responsible for issuing all department members with a client certificate. In such cases, the client certificate may
contain a chain of one or more CA certificates.

Maximum depth of client certificate chain:
You can use this field to configure how many CA certificates in a chain of one or more are trusted when validating the cli-
ent certificate. By default, only one issuing CA certificate is used, and this certificate must be checked in the list of trusted
root certificates. If more than one certificate is used, only the top-level CA must be considered trusted, while the interme-
diate CA certificates are not.

Root Certificate Authorities trusted for mutual authentication:
Select the root CA certificates that the API Gateway considers trusted when authenticating clients during the SSL hand-
shake. Only certificates signed by the CAs selected here are accepted.

Configure Advanced SSL settings

You can complete the following settings on the Advanced (SSL) tab:

Configure HTTP services

164

Check that the SSL certificate's Subject CN resolves to network address:
When this setting is selected the API Gateway attempts to resolve the SSL certificate's Subject Common Name (CN) to
the network address configuring the SSL interface. If the Subject CN cannot be resolved to the network address, a
warning is output in the error traces. This setting is selected by default. You can deselect this setting to disable checking
the certificate's Subject CN.

SSL Server Name Identifier (SNI):
You can specify the host names requested by clients in the SSL Server Name Identifier (SNI) table. SNI is an optional
TLS feature where the client indicates to the server the host name used to resolve the server address. This enables a
server to present different certificates for clients to ensure the correct site is contacted.

For example, the server IP address is 192.168.0.1. The DNS is consulted by clients to resolve a host name to an ad-
dress, and the server address is contacted using TCP/IP. If both www.acme.com and www.anvils.com resolve to
192.168.0.1, without SNI, the server does not know which host name the client uses to resolve the address, because
it is not party to the client DNS name resolution. The server may certify itself as either service, but when the connection
is established, it does not know which host name the client connects to.

With SNI, the client provides the name of the host (for example, www.anvils.com) in the initial SSL exchange, before
the server presents its certificate in its distinguished name (for example, CN=www.anvils.com). This enables the server
to certify itself correctly as providing a service for the client's requested host name.

To specify an SNI, perform the following steps:

1. Click the Add button to configure a server host name in the SSL Server Name Identifier (SNI) dialog.
2. Specify the server host name in the Client requests server name field.
3. Click Server assumes identity to import a Certificate Authority certificate into the Certificate Store.
4. Click OK.

Ciphers:
You can specify the ciphers that the server supports in the Ciphers field. The server selects the highest strength cipher
(that is also supported by the client) from this list as part of the SSL handshake. For more information on the syntax of
this setting, see the OpenSSL documentation [http://www.openssl.org/docs/apps/ciphers.html].

SSL session cache size:
Specifies the number of idle SSL sessions that can be kept in memory. Defaults to 32. If there are more than 32 simul-
taneous SSL sessions, this does not prevent another SSL connection from being established, but means that no more
SSL sessions are cached. A cache size of 0 means no cache, and no outbound SSL connections are cached.

Tip
You can use this setting to improve performance because it caches the slowest part of establishing the SSL
connection. A new connection does not need to go through full authentication if it finds its target in the
cache.

At DEBUG level or higher, the API Gateway outputs trace when an entry goes into the cache, for example:

DEBUG 09:09:12:953 [0d50] cache SSL session 11AA3894 to support.acme.com:443

If the cache is full, the output is as follows:

DEBUG 09:09:12:953 [0d50] enough cached SSL sessions 11AA3894 to
support.acme.com:443 already

Ephemeral DH key parameters:

Configure HTTP services

165

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

The Diffie Hellman (DH) key agreement algorithm is used to negotiate a shared secret between two SSL peers. This en-
ables two parties without prior knowledge of each other to jointly establish a shared secret key over an insecure commu-
nication channel. The Ephemeral DH key parameters setting specifies the parameters used to generate the DH keys.

When DH key parameters are not specified, the SSL client uses the public RSA key in the server's certificate to encrypt
data sent to the SSL server, and establish a shared secret with the server. However, if the RSA key is ever discovered,
any previously recorded encrypted conversations can be decrypted. DH key agreement offers Perfect Forward Secrecy
(PFS) because there is no such key to be compromised.

There are two options when setting the DH parameters: you can enter a number (for example, 512), and the server auto-
matically generates DH parameters with a prime number of the correct size. Alternatively, you can paste the Base64 en-
coding of an existing serialized DH parameters file. You can use standard DH parameters based on known good prime
numbers. OpenSSL ships with the dh512.pem and dh1024.pem files. For example, you can set the DH parameters to
the following Base64-encoded string in pdh512.pem:

-----BEGIN DH PARAMETERS-----
MEYCQQD1Kv884bEpQBgRjXyEpwpy1obEAxnIByl6ypUM2Zafq9AKUJsCRtMIPWakXUGfnHy9iUsiGSa6q6Jew1X
pKgVfAgEC
-----END DH PARAMETERS-----

The DH parameters setting is required if the server is using a DSA-keyed certificate, but also has an effect when using
RSA-based certificates. DH (or similar) key agreement is required for DSA-based certificates because DSA keys cannot
be trivially used to encrypt data like RSA keys can.

SSL Protocol Options:
You can configure the following SSL protocol options:

Option Description

Use EDH key once only Creates a new key from the DH parameters for every SSL session. This is not
strictly necessary if you are sure of the quality of the prime number in the DH
key parameters. When using well-known DH parameters like the example
above, you can leave this option unselected. However, given a bad prime num-
ber in the parameters, gathering enough key exchanges from a single DH key
can allow an eavesdropper to work out the DH key used. Selecting this option
slows down the SSL session establishment and has a negative impact on per-
formance.

Do not use the SSL v1 protocol Specifies not to use SSL v1 to avoid any weaknesses in this protocol. This op-
tion is not selected by default.

Do not use the SSL v2 protocol Specifies not to use SSL v2 to avoid any weaknesses in this protocol. This op-
tion is not selected by default.

Do not use the SSL v3 protocol Specifies not to use SSL v3 to avoid any weaknesses in this protocol. This op-
tion is not selected by default.

Do not use the TLS v1 protocol Specifies not to use TLS v1 to avoid any weaknesses in this protocol. This op-
tion is not selected by default.

Prefer local cipher preferences over
client's proposal

When choosing a cipher during the SSL/TLS handshake, the client's prefer-
ences are selected by default from the list of ciphers supported by the client
and the server. When this option is selected, the server's preferences are used
instead. This option is not selected by default. For more details on ciphers, see
the OpenSSL documentation [http://www.openssl.org/docs/apps/ciphers.html]

Management services

Configure HTTP services

166

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

The Management Services group exposes a number of services used by the Admin Node Manager and API Gateway
Analytics for remote configuration and monitoring. The Management Services server process, interfaces, and policies
are displayed in the Policy Studio tree. The Management Services policy container is displayed in the tree under the
Policies node. The Management Services HTTP interfaces are displayed under the Listeners node under the server
instance.

By default, the Management Services group consists of the following:

HTTP Interface:
By default, the Admin Node Manager exposes all its management services on port 8090 so that they can be configured
remotely. At startup, the Policy Studio can connect to this port to read and write API Gateway configuration data. By de-
fault, the API Gateway Analytics exposes all its management services on port 8040. For more details, see the section
called “Change the management services port”.

Relative Path: /
The / relative path is mapped to a default management policy called Protect Management Interface, which is available
under the Management Services policy container. This policy performs HTTP Basic authentication and passes control
to the Call Internal Service filter. This dispatches a message to a Servlet Application or Static Content Provider based
on the path on which the request was received.

For example, with the default configuration, assume that a request is received on ht-
tp://localhost:8090/configuration. The following steps summarize the request processing cycle:

1. When a relative path of / is configured, it matches all incoming requests, and requests are dispatched to whatever
policy the relative path is mapped to. In this case, the relative path is mapped to the Protect Management Interface
policy, and so the request is passed to this policy.

2. The Protect Management Interface policy performs HTTP basic authentication on the originator of the request. Au-
thentication is necessary because all configuration operations are considered privileged operations and should only
be carried out by those with the authority to do so. If the originator can be successfully authenticated, the Call In-
ternal Service filter is invoked.

3. The Call Internal Service filter is a special filter that passes messages to a Servlet Application or Static Content
Provider. In this case, because the message is received on the management interface (port 8090), the filter attempts
to match the relative path on which the request was received against all the Servlets and Content Providers con-
figured in the same Services Group as this interface.

4. The configured Servlets and Content Providers for the Management Services group include /configuration/
and /api/. Because the request is received on the /configuration/ path, this matches the /configuration/
Servlet Application, which is invoked.

Servlet Application: /configuration/
The Policy Studio running on a different host to the API Gateway can connect to this URL to remotely configure the API
Gateway. For example if the API Gateway is running on a host called SERVER, the Policy Studio can connect to ht-
tp://SERVER:8090/configuration/ on startup so that it can remotely configure policies running at the API Gate-
way on the SERVER host.

Important
Changing the interfaces, relative path, servlet applications, or static content provider exposed under the
Management Services group may prevent the Admin Node Manager from functioning correctly. Because
of this, the Management Services group is hidden by default, and should only be modified under strict su-
pervision from the Oracle Support team.

Configure HTTP services

167

Change the management services port

The default management services port used by the Admin Node Manager is 8090. To specify a different port, perform the
following steps:

1. Under the Listeners node in the Policy Studio tree, right-click the Management Services HTTP Interface, and se-
lect Edit.

2. Specify an updated value in the Port field (for example, 8091), and click OK.
3. Click the Deploy button in the Policy Studio toolbar, or press F6 to deploy the update.
4. Restart Policy Studio. You must restart Policy Studio when Management Services are updated.
5. Use the updated port number in the URL to reconnect Policy Studio (for example, https://HOST:8091/api).

Important
Management Services apply to the Admin Node Manager and API Gateway Analytics only. You should
only modify Management Services under strict advice and supervision from the Oracle Support team.

Configure HTTP services

168

Configure relative paths
Overview

A relative path binds policies to a specific relative path location (for example /test/path). When the API Gateway re-
ceives a request on the specified path, it invokes the specified policy or policy chain. This topic explains configuring relat-
ive path resolvers. For details on configuring policies, see Chapter 2, Manage policies.

You can use a Static Content Provider or Static File Provider to serve static HTTP content or files from a directory. In this
case, the API Gateway instance acts as a Web server. The API Gateway instance can also act as a Servlet Application
container, which enables you to drop servlets into the HTTP Services configuration. This should only be used by de-
velopers with specific requirements under strict advice from Oracle Support.

Relative paths can have nested child resolvers of the following type:

• Relative path
• Static content provider
• Static file provider
• Servlet application

This topic explains how to use the Policy Studio to configure each of these relative path resolver types. For details on
configuring HTTP Services Groups and HTTP Interfaces, see Configure HTTP services.

Configure a relative path

To configure a relative path for a specific HTTP Service Group (for example, Default Services), perform the following
steps:

1. In the Policy Studio tree, select Listeners > API Gateway -> Default Services > Paths.
2. Right-click Paths, and select Add > Relative Path. You can also click Add on the right.
3. In the Configure Relative Path dialog, specify whether to enable listening on the specified path using the Enable

this path resolver setting, which is set by default.

Alternatively, when editing a policy, you can click Add Relative Path at the bottom of the policy canvas beside the Con-
text drop-down list. The next sections explain how to configure the settings on the Configure Relative Path dialog.

Policies settings

Use the Policies tab to specify the relative path and the policies that are called. The API Gateway invokes the selected
policies when it receives a request on the specified path. You can specify a single policy or a chain of policies. Policies
are called in the order displayed on this tab. Complete the following fields:

When a request arrives that
matches the path:

Enter a relative path (for example, /test/path) for the selected HTTP Ser-
vices Group. Requests received on this relative path are processed by the
policies selected on this tab.

Global Request Policy If a global request policy is configured, when you select this setting, the global
request policy is called first in the policy chain. For more details, see Configure
global policies.

Path Specific Policy To configure a path-specific policy, select this setting, and browse to select a
policy from the dialog. You can search for a specific policy by entering its name
in the text box, and the policy tree is filtered automatically. The Path Specific
Policy field is auto-populated with the currently selected policy when the dialog

169

is launched using the Add Relative Path button at the bottom of the policy can-
vas.

Global Response Policy If a global response policy is configured, when you select this setting, the global
response policy is called last in the policy chain. For more details, see Config-
ure global policies.

When you select multiple policies to form a policy chain, the behavior is the same as for a policy shortcut chain filter.
Policies are only evaluated when selected, and when the policy can be reached. If any reachable policy fails, the chain
fails, and no more policies are evaluated.

Logging settings

The Logging Settings tab enables you to configure the logging level for all filters executed on the relative path, and to
configure when message payloads are logged.

Logging Level

You can configure the following settings on all filters executed on the specified relative path:

Logging Level Description

Fatal Logs Fatal log points that occur on all filters executed.

Failure Logs Failure log points that occur on all filters executed. This is the default log-
ging level.

Success Logs Success log points that occur on all filters executed.

For details on logging levels, and configuring logging for a filter, see Set transaction log level and log message.

Payload Level

You can configure the following settings on the specified relative path:

Payload Logging Description

On receive request from client Log the message payload when a request arrives from the client.

On send response to client Log the message payload before the response is sent back to the client.

On send request to remote server Log the message payload before the request is sent using any Connection or
Connect to URL filters deployed in policies.

On receive response from remote
server

Log the message payload when the response is received using any Connec-
tion or Connect to URL filters deployed in a policies.

For details on how to log message payloads at any point in a specific policy, see Log message payload.

Access Log

Select the Include in server access log records setting if you wish to add this relative path to the API Gateway Access

Configure relative paths

170

Log. This enables the Access Log at the service level. This setting is not selected by default.

Important
You must also enable the Transaction Access Log at the API Gateway level. In the Policy Studio tree, se-
lect Server Settings > Logging > Access Log, and ensure that Writing to Transaction Access Log is
enabled. For more details, see the API Gateway Administrator Guide.

HTTP method settings

The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
means that all HTTP Methods are accepted. You can override the default behavior, and select an appropriate HTTP
method for the relative path from the list.

You can also configure multiple HTTP methods on paths of the same name. This enables you to call different policies for
different HTTP methods, as shown in the following example:

In this example, the /test path is configured three times, each using a different HTTP Method as follows:

• If a GET request is sent to the API Gateway on the /test path, the Test1 policy is executed.
• If a POST request is sent, the Test2 policy is executed.
• If any other type of request is sent (for example, DELETE, PUT, and so on), the Test3 policy is executed.

For details on the Path/Test1 subpath in this example, see the section called “Nested relative paths”.

Advanced settings

On the Advanced tab, select whether to resolve this relative path using an Exact path match. The default is to use a
longest path match (explained in the next section). This setting enables you to further restrict the match to an exact path
match (for example, test1/helloService). This setting is not selected by default.

CORS settings

On the CORS tab, you can configure settings for Cross Origin Resource Sharing (CORS). For details on CORS, see
Cross-Origin Resource Sharing. By default, the CORS profile set at the HTTP service level is used for all child resolvers
of the HTTP service. However, you can override this at the relative path level as follows:

1. In the CORS Usage field, select Override CORS using the following profile. By default, no CORS profile is selec-

Configure relative paths

171

ted, and the parent settings are used.

Note
Relative paths can act as HTTP Services, and can accommodate child resolvers. This means that
when a Relative Path has children, and has a CORS profile configured, by default, the children use the
parent profile (unless a child overrides it).

2. In the CORS Profile field, click the button on the right to select a preconfigured CORS Profile.
3. If no CORS Profiles have already been configured, right-click CORS Profiles, and select Add a CORS Profile. You

can also right-click an existing profile, and select Edit to update its settings. For details on CORS settings, see the
section called “Add a CORS profile”.

Nested relative paths

Using the example shown in the section called “HTTP method settings”, when you have a path / that has a child subpath
(in this case /test1), the following occurs when a request arrives at the API Gateway:

1. Incoming request with path /test1 is received
2. Request is resolved against / (using the longest path match algorithm)
3. API Gateway checks if there are any children (in this case /test1)
4. API Gateway checks if any children can process the request (/test1 is a match)
5. Path resolution is successful

When the request is being processed, each policy associated with a matching path is executed. In the above example,
both / and /test1 make up the match. This means that the policy associated with / is executed first, and if that passes,
the policy associated with /test1 is executed. The parent policy uses the Call Internal Service filter, which enables
child resolvers to be invoked.

Nested paths are generally used as a protection mechanism. For example, a system might be configured with / as the
only root path, with a number of children. / could have a Role-Based Access Control (RBAC) policy associated with it
protecting all children. If the RBAC policy succeeds, access is granted, and the child policy is executed. If it fails, access
is denied. This mechanism is implemented in the Admin Node Manager. You can view this in Policy Studio by opening
the Admin Node Manager configuration.

Note
The difference between / having a child /test1, and just having a root relative path of /test1 is due to
path resolution and policy execution. If you wish to protect /test1 using RBAC, or run a prerequisite
policy prior to running the policy associated with /test1, you should use subpaths.

You can also achieve this using a Policy Shortcut filter in the policy associated with /test1 (as a root
path). This may be sufficient for a small number of root policies. But when a large number of policies need
protection, subpaths are a more elegant solution. Children no longer need a Policy Shortcut filter with the
policy associated with the parent path as protector.

Add a nested relative path

To add a child node to a relative path, right-click the appropriate relative path in the Resolvers screen, and select the
node type (for example, Add > Relative Path). You can add child nodes of the following type:

• Relative path
• Static content provider

Configure relative paths

172

• Servlet application

In the following example, the main relative path is /, which calls the Protect policy. Content is served by the underlying
Servlet Application and Static Content resolvers only when the Protect policy succeeds:

Important
The parent policy (in this case, Protect) must use the Call Internal Service filter. This acts as a loopback
and enables child resolvers to be invoked. When this prerequisite is met, you can add nested relative paths
as required.

How to access message attributes from parent resolvers

Because invoking the Call Internal Service policy results in a new transaction being created (in a loopback connection),
a new message whiteboard is generated. This means that you cannot access the message attributes from the parent re-
solver policy directly. However, in the API Gateway trace, the dwe.protocol.loopback.message message attribute
is traced in the child policy. For example:

dwe.protocol.loopback.message {
Value: com.vordel.dwe.http.HTTPMessage@df4117
Type: com.vordel.dwe.http.HTTPMessage

}

This is the message object from the parent policy. For example, given a parent resolver policy that generates an attr1
message attribute, you can use the following selector in the child resolver policy to access attr1:

${dwe.protocol.loopback.message.attr1}

Order of resolution

The order of resolution for nested relative paths is to first resolve at the parent level. If resolution is successful, and there
are children present, then attempt to resolve at the child level. There is no precedence between resolver node types
(relative path, static content provider, and servlet application).

Configure relative paths

173

Path resolution is performed using the longest path match algorithm by default, regardless of whether nested subpaths
are used. For details on exact path match, see the section called “Advanced settings”.

Example nested path resolution

Using the example relative path shown in the section called “Add a nested relative path”, consider the following inbound
requests to the Node Manager:

https://testpc:8090/api/deployment/domain/deployments
https://testpc:8090/common/themes/blue/images/server_icon.png

The /api/deployment/domain/deployments request is resolved as follows:

• Matches the root relative path / as a longest path match
• Matches Servlet Application / as a longest path match (1 char)
• Matches Servlet /api as a longest path match (4 char)
• Matches Static Content / as a longest path match (1 char)
• Does not match Servlet Application /configuration

• Does not match Static Content /docs
• Does not match Static Content /kps

In this example, there are two matches, the api Servlet under the Servlet Application on /, and the Static Content on /.
Because the API Gateway uses the longest path match, the api Servlet wins, and the request is routed to that resolver.
There is no precedence between resolvers, all resolvers are queried for a match.

The /common/themes/blue/images/server_icon.png request is resolved as follows:

• Matches the root relative path / as a longest path match
• Matches servlet application / as a longest path match (1 char)
• Does not match servlet /api
• Matches static content / as a longest path match (1 char)
• Does not match servlet application /configuration

• Does not match static content /docs
• Does not match static content /kps

In this example, there is only one match, the Static Content on /. In this case, the Servlet Application on / is not con-
sidered because none of its children can resolve the request path.

Note
If there are two resolver matches, and each matches on the same path length, the last resolver visited dur-
ing path resolution is used, in the order in which the resolver was read and loaded from the configuration.

Static content providers

A Static Content Provider can be used with an HTTP Interface to serve static content from a specified directory. A relat-
ive path is associated with each Static Content Provider so that requests received on this path are dispatched directly to
the provider and are not mapped to a policy in the usual way. For example, you can configure a Static Content Provider
to serve content from the c:\docs folder on Windows when it receives requests on the relative path /docs.

Adding a Static Content Provider
To add a Static Content Provider to an HTTP Services group (for example, Default Services):

Configure relative paths

174

1. Select Listeners > API Gateway -> Default Services > Paths.
2. Right-click Paths, and select Add -> Static Content Provider.
3. Complete the following fields on the General tab:

Relative Path:
Enter the path that you want to receive requests for static content on.

Content Directory:
Enter or browse to the location of the directory that you want to serve static content from.

Index File:
Enter the name of the file that you want to use as the index file for content retrieved from the directory specified in the
field above. This file is retrieved by default if no resource is explicitly specified in the request URI. For example, if the cli-
ent requests http://[HOST]:8080/docs (with only a relative path specified instead of a specific resource), the file
specified here will be retrieved. This file must exist in the directory specified in the previous field.

Allow Directory Listings:
If this is selected, the Static Content Provider returns full directory listings for requests specifying a relative path only. For
example, if selected, and if a request is received for http://[HOST]:8080/docs/samples, the list of directories un-
der this directory is returned, assuming that this directory exists on the file system. You can deselect to prevent attacks
where a hacker can send up different request URIs in the hope that the server returns some information about the direct-
ory structure of the server.

HTTP Method:
The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
accepts all HTTP methods. You can override the default behavior, and select an appropriate HTTP method for this re-
solver from the list. For more details, see the section called “HTTP method settings”.

Static file providers

A Static File Provider can be used with an HTTP Interface to serve a static file from a specified directory. A relative path
is associated with each Static File Provider so that requests received on this path are dispatched directly to the file pro-
vider and are not mapped to a policy in the usual way. For example, you can configure a Static File Provider to serve
c:\my_brand\favicon.ico on Windows when it receives requests on the /favicon.ico relative path.

Add a Static File Provider
To add a Static File Provider to an HTTP Services group (for example, Default Services):

1. Select Listeners > API Gateway > Default Services > Paths.
2. Right-click Paths, and select Add > Static File Provider.
3. Complete the following fields on the General tab:

Relative Path:
Enter the path that you want to receive requests for the static file on (for example, /favicon.ico).

File:
Enter or browse to the location of static file you want to serve (for example, $VDISTDIR/webapps/emc/favicon.ico,
where $VDISTDIR specifies the directory where the API Gateway is installed).

HTTP Method:
This tab enables you to configure an accepted HTTP method for the static file. The default is GET, which means that only
HTTP GET calls are accepted. You can override the default, and select a different HTTP method for this resolver from
the list. For more details, see the section called “HTTP method settings”.

Servlet applications

Configure relative paths

175

Developers may wish to write their own Java servlets and deploy them under the API Gateway to serve HTTP traffic.
Conversely, they may wish to remove some of the default servlets from the out-of-the-box configuration (for example, to
remove the ability to view logging remotely). This pairing down of unwanted functionality may be required to further lock
down the machine on which the API Gateway is running.

Note
Adding and removing Servlet Applications should be performed only by developers with very specific re-
quirements and under strict guidance from the Oracle Support team. These instructions simply outline how
to configure the fields on the dialogs used to set up Servlet Applications. For more detailed instructions,
please contact the Oracle Support Team.

When editing Admin Node Manager or API Gateway Analytics configuration, there are some default Servlet Applications
available under the Management Services group. By default, this HTTP Services Group is not displayed, but can be dis-
played using the Preferences dialog in the Policy Studio. For example, the /configuration/ Servlet Application up-
dates configuration information for the API Gateway.

Warning
Deleting any default Servlet Applications may prevent the API Gateway from functioning correctly. You
should only delete default Servlet Applications under strict supervision of Oracle Support.

Add a Servlet Application
To add a Servlet Application to an HTTP Services Group (for example, Default Services), perform the following steps:

1. Select Listeners > API Gateway -> Default Services > Paths.
2. Right-click Paths, and select Add -> Servlet Application.
3. Complete the following fields on the General tab:

Relative Path:
Enter the servlet context in this field. You can add multiple servlets under this context, where each servlet is mapped to a
unique URI.

Session Timeout:
Enter the timeout in seconds after which an inactive session is closed. Click OK.

HTTP Method:
This tab enables you to configure an accepted HTTP method (for example, POST). The default is *, which accepts all
HTTP methods. You can override the default, and select an appropriate HTTP method for this resolver from the list. For
more details, see the section called “HTTP method settings”.

Adding a Servlet
The new Servlet Application now appears in the Resolvers screen. To add a new servlet, right-click the new Servlet Ap-
plication, and select Add Servlet. Configure the following fields on the Servlet dialog:

URI:
The path entered maps incoming requests on a particular request URI to the Java servlet class entered in the field be-
low. This path must be unique across all Servlets added under this Servlet Application (servlet context).

Class:
Enter the fully qualified class name of the servlet class. You can add this class to the server runtime by adding the JAR,
class file, or package hierarchy to the [VDISTDIR]/ext/lib folder. VDISTDIR is your API Gateway distribution direct-
ory, which is the location where the API Gateway is installed.

Configure relative paths

176

Read Timeout:
Specify the time in seconds that the servlet should wait before closing an idle connection.

Servlet Properties:
You can configure properties for each servlet by clicking the Add button, and entering a name and value in the fields
provided on the Properties dialog.

Web service resolvers

A web service resolver is used to identify messages destined for a web service, and to map them to the Service Handler
(Web Service Filter) for that web service. When you import a WSDL file in the Web Service Repository, a new web
service resolver node is created for each imported web service under the Paths for the relevant HTTP services group
(for example, Default Services). You can edit the web service resolver settings by right-clicking its tree node, and select-
ing Edit.

The following settings are available in the Web Service Resolver dialog:

Enable this Web service resolver:
Specify whether to enable this Web service resolver. This is enabled by default.

Name:
You can edit the name of the Web service resolver.

Web service:
Click the browse button to select a Web service to resolve to. Defaults to the Web service imported into the Web Ser-
vices Repository when this resolver was created.

Policies:
On the Policies tab, select the path and the policies to use for the Web service. You can specify a single policy or a
chain of policies. Policies are called in the order displayed on this tab. The global request policy, the policy automatically
generated when the WSDL file is imported, and the global response policy are all selected in a chain by default. Com-
plete the following fields:

Matches the paths in the WSDL: Select this option if you want the resolver to use the paths specified in the
WSDL file. This is the default.

Matches this path: Select this option if you want to specify a different path from the WSDL file, and
enter the path.

Global Request Policy If a global request policy is configured, when you select this setting, the global
request policy is called first in the policy chain. For more details, see Configure
global policies.

Path Specific Policy To configure a path-specific policy, select this setting, and browse to select a
policy from the dialog.

Global Response Policy If a global response policy is configured, when you select this setting, the global
response policy is called last in the policy chain. For more details, see Config-
ure global policies.

Policies are only evaluated when selected, and when the policy can be reached. If any selected policy fails, the chain
fails, and no more policies are evaluated.

Logging Settings:
The Logging Settings tab enables you to configure the logging level for all filters executed on the Web service, and to
configure when message payloads are logged. The default logging level for all filters on the Web service is Failure.
These logging settings are the same as those already described for the relative path. For more details, see the section

Configure relative paths

177

called “Logging settings”.

HTTP Method:
The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
means that all HTTP Methods are accepted. You can override the default behavior, and select an appropriate HTTP
method from the list. The HTTP Method settings are the same as those already described for the relative path. For more
details, see the section called “HTTP method settings”.

Editing Service Handler Options
You also edit options for the Service Handler for the Web service. Right-click the Web Service Resolver node, and se-
lect Quick-Edit Policy to display a dialog that enables you to configure the following options:

Validation If you wish to use a dedicated validation policy for all messages sent to the
Web service, select this checkbox, and click the browse button to configure a
policy in the dialog. For example, this enables you to delegate to a custom val-
idation policy used by multiple Web services.

Routing If you wish to use a dedicated routing policy to send all messages on to the
Web service, select this checkbox, and click the browse button to configure a
policy in the dialog. For example, this enables you to delegate to a custom rout-
ing policy used by multiple Web services.

WSDL Access Options Select whether to make the WSDL for this Web service available to clients. The
Allow the API Gateway to publish WSDL to clients checkbox is selected by
default. The published WSDL represents a virtualized view of the Web service.
Clients can retrieve the WSDL from the API Gateway, generate SOAP re-
quests, and send them to the API Gateway, which routes them on to the Web
service.

These options enable you to configure the underlying auto-generated Service Handler (Web Service Filter) without nav-
igating to it in the Policies tree. These are the most commonly modified Web Service Filter options after importing a
WSDL file. Changes made in this dialog are visible in the underlying Web Service Filter. For more details, see the Web
service filter topic.

Configure relative paths

178

Configure virtual hosts
Overview

A virtual host is a server, or pool of servers, that can host multiple domain names (for example, com-
pany1.api.example.com and company2.api.example.com). This enables you to run more than one website, or
set of REST APIs, on a single host machine (for example, 192.0.2.11). Each domain name can have its own host-
name, paths, APIs, and so on. For example:

https://company1.api.example.com:8080/api/v1/test
https://company2.api.example.com:8080/api/v2/test
https://company3.api.example.com:8080/api/v2/test

The API Gateway implements name-based virtual hosting, in which the client HTTP Host header is used as the routing
criteria during path resolution (for example, Host company1.api.example.com). This means that you can have mul-
tiple domains running on the same hardware (IP address), while this is not apparent to the client or end user.

For example, the following URL invokes the company2.api.example.com virtual host:

https:/company2.api.example.com/api/v1/test

This results in the following message at runtime:

POST /api/v1/test HTTP/1.1
Host: company2.api.example.com
Content-Type: application/x-www-form-urlencoded

client_id=SampleConfidentialApp&client_secret=......

Important
To support name-based virtual hosts, you must first ensure that your Domain Name System (DNS) server
has been updated to map each hostname to the correct IP address (for example, *.example.com is
mapped to 192.0.2.11). For more details, see the topic on "Configuring a DNS service with wildcards for
virtual hosting" in the API Gateway Administrator Guide.

When your DNS server has been updated to map each hostname to the correct IP address, you can then configure the
API Gateway for virtual hosting.

Configure virtual hosts for HTTP services

You can configure virtual hosts at the HTTP service level. This means that these settings are applied to the HTTP ser-
vice and to any child resolvers. To configure a virtual host at the HTTP service level, perform the following steps:

1. In the Policy Studio tree, select an HTTP service (for example, Listeners > API Gateway > Default Services > Vir-
tual Hosts).

2. Right-click, and select Add a Virtual Host.
3. Configure the following settings in the Virtual Host dialog:

• Name:
Enter a unique name of the virtual host.

• Enabled:
Select whether the virtual host processing is enabled. This is enabled by default.

• Hosts:

179

Specify the list of domains that you wish to host under this HTTP service. To add a host, click Add at the bottom
right, and enter the domain name (for example company1.api.example.com).

You can also specify domain names using wildcards already configured in your DNS (for example
.example.com:/8080 or company3.api.example.com.). For details on configuring DNS wildcards,
see the API Gateway Administrator Guide.

Configure child resolvers

When you have configured a virtual host at the HTTP service level, you can also configure the following child resolvers:

• Relative path
• Static content provider
• Static file provider
• Servlet application

To configure a child resolver, perform the following steps:

1. In the Policy Studio tree, select the Paths node under the virtual host, and right-click to add a resolver (for example,
Add relative path).

2. In the Resolve path to policies dialog, click the browse button beside the Path Specific Policy field, and select a
policy to run on this path.

For example, if an inbound request to /Healthcheck matches on company1.api.*, the Company1 Health Check
policy is executed. Otherwise, the global Health Check policy for the HTTP service is executed (in this case, Default
Services).

Configure virtual hosts

180

Configure SMTP services
Overview

The API Gateway provides support for Simple Mail Transfer Protocol (SMTP), which enables the API Gateway to receive
email and to act as a mail relay. The API Gateway can accept incoming email messages using the SMTP protocol, and
then forward them on to a configured mail server. You can also use Policy Studio to configure optional policies for specif-
ic SMTP commands (for example, HELO/EHLO, AUTH, MAIL FROM, and so on).

When an SMTP command is configured in Policy Studio, each time the SMTP command is accepted by the API Gate-
way, the appropriate policy is executed. When the policy completes successfully, the SMTP conversation resumes. This
topic shows how to configure SMTP services, interfaces, and handler policies using Policy Studio.

Add an SMTP service

To add an SMTP service to enable the API Gateway to accept SMTP connections, perform the following steps in Policy
Studio:

1. Under the Listeners node in the tree, select an API Gateway instance node (for example, the default API Gateway).
2. Right-click, and select Add SMTP Services.
3. In the SMTP Services dialog, specify a unique name for the SMTP service in the Name field.
4. In the Outgoing Server Settings section, complete the following settings:

Host Host name or IP address of the remote mail server. This is the server to which the API Gateway
forwards incoming SMTP commands (for example, smtp.gmail.com). You can also specify a
mail server running locally on the same machine as the API Gateway using an address of loc-
alhost or 127.0.0.1.

Port Port on which to connect to the remote mail server. Defaults to port 25.

5. In the Security section, complete the following settings:

Connection Security Select the type of security used for the connection to the remote mail server.
Defaults to None. Other possible values are SSL and STARTTLS.

Trusted Certificates Use this tab to select the trusted CA certificates used in the security handshake
for the connection to the remote mail server. This field is mandatory if SSL or
STARTTLS connection security is selected.

Client SSL Authentication Use this tab to specify the trusted client certificates used in the security hand-
shake for the connection to the remote mail server. This field is optional if SSL
or STARTTLS connection security is selected.

Advanced Use this tab to specify a list of ciphers to use during the security handshake for
the connection to the remote mail server. Defaults to DEFAULT. For more de-
tails, see the OpenSSL ciphers manpage. This field is optional if SSL or
STARTTLS connection security is selected.

6. In the Authentication section, complete the following settings:

Username Specify the username used to authenticate the API Gateway with a remote SMTP server using
the AUTH SMTP command. For more details, see the section on SMTP Authentication.

181

Password Specify the password used to authenticate the API Gateway with a remote SMTP server using
the AUTH SMTP command. For more details, see the section on SMTP Authentication.

7. Select the Include in real time monitoring checkbox to monitor the SMTP services using the web-based API Gate-
way Manager and API Gateway Analytics monitoring consoles.

8. Click OK. This creates a tree node for the SMTP service under the selected instance in the Services tree.

Add an SMTP interface

When you have configured the outbound SMTP protocol, you must then set up an inbound interface to accept client con-
nections. You can choose from the following interface types:

TCP Non-secure connection. All traffic is sent in-the-clear.

SSL SSL handshake is performed at connection time, so the entire SMTP conversation is secure.

STARTTLS Initial connection is in the clear. The API Gateway advertises STARTTLS during the initial
SMTP HELO/EHLO handshake. If the client supports this, it can send a STARTTLS command to
the API Gateway, which in turn promotes connection security, and upgrades the connection to
SSL/TLS.

Because the SSL and STARTTLS interface types have the potential to be secure (STARTTLS starts off non-secure, but
can be upgraded during the SMTP conversation), a common configuration screen is used for both protocols in Policy
Studio.

To configure an inbound interface, perform the following steps in Policy Studio:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Interface -> interface type (TCP, SSL, or STARTTLS).
3. Complete the settings on the relevant dialog. For full details on these settings, see the Configure HTTP services top-

ic.
4. Click OK.

Configure policy handlers for SMTP commands

You can use Policy Studio to configure optional policy handlers for each of the following SMTP commands:

• HELO/EHLO

• AUTH

• MAIL FROM

• RCPT TO

• DATA

The next sections explain how to configure policy handlers for each command.

Add an HELO/EHLO policy handler

The HELO/EHLO policy handler is invoked when a HELO/EHLO SMTP command is received from a client. This handler

Configure SMTP services

182

enables you to modify the HELO/EHLO greeting and the client domain. You can configure the greeting message sent
back to the client from the API Gateway during the HELO/EHLO handshake as required. You can also configure a policy
to replace the value of smtp.helo.greeting. The domain specified by the connected client in the HELO/EHLO com-
mand can be modified before forwarding on to the remote mail server. You can also configure a policy to replace the
value of smtp.helo.domain.

To configure a policy handler for the HELO/EHLO command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Policy Handler > HELO/EHLO.
3. In the Configure HELO Host dialog, specify the Greeting to be sent back to the client as part of the HELO/EHLO

handshake. Defaults to Hello ${smtp.helo.domain}.
4. In the Policy tree, select the policy that you wish to handle the HELO/EHLO command.
5. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

smtp.helo.domain The client domain specified in the HELO/EHLO SMTP command received from
the client.

smtp.helo.greeting The HELO greeting to be sent back to the client after HELO/EHLO processing is
performed. The default value is Hello ${smtp.helo.domain}.

message.source The inbound port on which SMTP traffic is received by the API Gateway.

message.protocol.type The protocol used for the connection. This can be smtp-tcp or smtp-ssl.

monitoring.enabled Set to true if monitoring is enabled for the protocol, otherwise false.

Add an AUTH policy handler

The AUTH policy handler is invoked when an AUTH SMTP command is received from a client. You can use the AUTH
handler to run a policy to perform user authentication checks. For example, during the Authentication phase of the SMTP
conversation, the client-supplied username and password can be verified against an Authentication Repository using a
policy containing an Attribute Authentication filter. For details on possible authentication scenarios, see the section on
SMTP Authentication.

To configure a policy handler for the AUTH command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Policy Handler > AUTH.
3. In the Configure AUTH dialog, in the Policy tree, select the policy that you wish to handle the AUTH command.
4. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

authentication.subject.id The username supplied by the client.

authentication.subject.password The password supplied by the client.

message.source The inbound port on which SMTP traffic is received by the API

Configure SMTP services

183

Message Attribute Description

Gateway.

message.protocol.type The protocol used for the connection. This can be smtp-tcp or
smtp-ssl.

monitoring.enabled Set to true if monitoring is enabled for the protocol, otherwise
false.

Add a MAIL policy handler

The MAIL policy handler is invoked when a MAIL FROM SMTP command is received from a client. Emails can be rejec-
ted based on wildcard matching of the supplied sender address in the MAIL FROM SMTP command. For example, email
addresses containing GMAIL.COM (fromAddress of *@gmail.com) as the domain could be accepted using a simple
True filter. Whereas, email addresses containing YAHOO.COM (fromAddress of *@yahoo.com) could be rejected using
a simple False filter.

To configure a policy handler for the MAIL FROM command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Policy Handler > MAIL.
3. In the Configure MAIL Address dialog, you must specify the From Address. This is an email address used to filter

addresses specified in the MAIL FROM SMTP command. You can specify this as a wildcard. The following are some
example values:

From Address Description

* Runs the policy for any email address received.

*@gmail.com Runs the policy for all email addresses with the gmail.com domain.

S*@oracle.* Runs the policy for all email addresses with any oracle domain, and begin-
ning with the letter s.

The policy selection is performed on a best-match basis.
4. In the Policy tree, select the policy that you wish to handle the MAIL FROM command.
5. Click OK.

You can configure multiple MAIL handlers so that different policies are executed, depending on the received mail ad-
dress.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

smtp.helo.domain The client domain specified in the HELO/EHLO SMTP command received from
the client.

smtp.mail.from The email address specified in the MAIL FROM SMTP command received from
the client.

message.source The inbound port on which SMTP traffic is received by the API Gateway.

message.protocol.type The protocol used for the connection. This can be smtp-tcp or smtp-ssl.

Configure SMTP services

184

Message Attribute Description

monitoring.enabled Set to true if monitoring is enabled for the protocol, otherwise false.

Add a RCPT policy handler

The RCPT policy handler is invoked when a RCPT TO SMTP command is received from a client. You can use this hand-
ler to filter addresses specified in the RCPT TO SMTP command. Recipients can be rejected based on wildcard matching
of the supplied recipient address in the RCPT SMTP command. For example, recipient addresses containing GMAIL.COM
(toAddress of *@gmail.com) as the domain could be accepted using a simple True filter. Whereas, addresses con-
taining YAHOO.COM (toAddress of *@yahoo.com) could be rejected using a simple False filter. You can configure mul-
tiple RCPT handlers so that different policies are executed, depending on the received email address.

To configure a policy handler for the RCPT TO command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Policy Handler > RCPT.
3. In the Configure Recipient Address dialog, you must specify the To Address. This is an email address used to fil-

ter addresses specified in the RCPT TO SMTP command. You can specify this as a wildcard. The following are
some example values:

To Address Description

* Runs the policy for any email address received.

*@oracle.com Runs the policy for all email addresses with the oracle.com domain.

d*@yahoo.* Runs the policy for all email addresses with any yahoo domain, and beginning
with the letter d.

The policy selection is performed on a best-match basis.
4. In the Policy tree, select the policy that you wish to handle the MAIL FROM command.
5. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

smtp.helo.domain The client domain specified in the HELO/EHLO SMTP command received from
the client.

smtp.mail.from The email address specified in the MAIL FROM SMTP command received from
the client.

smtp.rcpt.to The email address specified in the RCPT TO SMTP command received from
the client.

Note
This is the current recipient being processed, whereas
smtp.rcpt.recipients is the list of recipients processed so
far.

Configure SMTP services

185

Message Attribute Description

smtp.rcpt.recipients The list (collection of strings) of recipients (email addresses) received or pro-
cessed so far by the SMTP transaction. This is read-only and updated by the
API Gateway each time it receives a RCPT TO command from the client.

message.source The inbound port on which SMTP traffic is received by the API Gateway.

message.protocol.type The protocol used for the connection. This can be smtp-tcp or smtp-ssl.

monitoring.enabled Set to true if monitoring is enabled for the protocol, otherwise false.

Add a DATA policy handler

The DATA policy handler is invoked when a DATA SMTP command is received from a client. For example, for emails
that contain SOAP/XML content, you can add an XML signature to the XML data, stored in the content.body message
attribute, using an XML Signature Generation filter. For emails containing attachments, the attached mail data can be
run through one of the API Gateway anti-virus filters. Alternatively, you can use SMIME Encrypt or SMIME Decrypt fil-
ters to encrypt or decrypt emails (including attachments) passing through the API Gateway. You can also digitally sign
emails using an SMIME Sign filter, or verify signatures on already digitally signed emails using an SMIME Verify filter.

To configure a policy handler for the DATA command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the instance.
2. Right-click, and select Add Policy Handler > DATA.
3. In the Policy tree, select the policy that you wish to handle the DATA command.
4. Click OK.

Message attributes
The following message attributes are added during processing:

Message Attribute Description

smtp.helo.domain The client domain specified in the HELO/EHLO SMTP command received from
the client.

smtp.mail.from The email address specified in the MAIL FROM SMTP command received from
the client.

smtp.rcpt.recipients The full list (collection of strings) of recipients (email addresses) processed by
the SMTP transaction.

content.body The stream representing the body of the mail.

Note
The content.body does not include MIME headers.

message.source The inbound port on which SMTP traffic is received by the API Gateway.

message.protocol.type The protocol used for the connection. This can be smtp-tcp or smtp-ssl.

monitoring.enabled Set to true if monitoring is enabled for the protocol, otherwise false.

Configure SMTP services

186

SMTP authentication

The SMTP protocol supports Extended SMTP (ESMTP) PLAIN authentication. The following matrix shows the possible
authentication scenarios and actions based on the SMTP Services configuration:

Scenario AUTH Handler AUTH User-
name and
Password

Mail Server ad-
vertises AUTH

API Gateway
advertises AU-
TH

Proxy client
AUTH

Authenticate
API Gateway
to Server

1 No No No No No No

2 No No Yes Yes Yes No

3 No Yes No No No No

4 No Yes Yes No No Yes

5 Yes No No Yes No No

6 Yes No Yes Yes No No

7 Yes Yes No Yes No No

8 Yes Yes Yes Yes No Yes

These authentication scenarios are described as follows:

1. No authentication user name and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. The mail server does not advertise authentication so
the API Gateway does not advertise AUTH to the client. The client authentication is not proxied because the server
does not support it.

2. No authentication user name and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. The mail server advertises AUTH, so the API Gate-
way advertises AUTH to the client. No AUTH handler is configured, so the client authentication details are proxied to
the server.

3. Same as 1 above.
4. The authentication user name and password are specified so the API Gateway authenticates with the server. The

mail server advertises AUTH, but because a user name and password are specified, the API Gateway does not ad-
vertise AUTH to the client because the API Gateway authenticates with the server using the configured credentials.
This also implies no client authentication proxying.

5. No authentication user name and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. AUTH handler configured, which implies the API
Gateway performs authentication, so advertise AUTH to the client.

6. Same as 5 above.
7. AUTH handler configured, which implies the API Gateway performs authentication, so advertise AUTH to the client.

No proxying occurs because the API Gateway performs the authentication. No authentication is performed with the
server because the server does not support it.

8. AUTH advertised to the client because the API Gateway performs authentication (and the mail server supports it).
AUTH handler configured, which implies the API Gateway performs authentication. No proxying occurs because the
API Gateway performs the authentication. Authentication is performed with the server because the server supports
AUTH and a user name and password is configured.

SMTP Content-Transfer-Encoding

The SMTP protocol supports automatic Content-Transfer-Encoding/Decoding. For DATA SMTP commands, the content
of the incoming mail body may be encoded. To enable policy filters to view and/or manipulate the raw body data, the
contents are automatically decoded before policy execution, and re-encoded afterwards (before being forwarded on to

Configure SMTP services

187

the configured outbound mail server).

Supported encodings
The following encodings are supported:

• Base64
• 7-bit
• 8-bit
• quoted-printable
• binary

However, Base64 is the only encoding that results in decoding/re-encoding of the mail data.

Multipart MIME content, generally used for sending attachments in SMTP, is also supported. Each separate body in the
multipart is checked for a Content-Transfer-Encoding, and the decoding/re-encoding is performed as appropriate.

Deployment example

This section provides a step-by-step example of how to configure and deploy SMTP services using the API Gateway. In
this example, the API Gateway acts as a relay between a Thunderbird email client and the Google Gmail service.

Configuring the API Gateway SMTP Services
The API Gateway connects to the Gmail STARTTLS interface, which is available at smtp.gmail.com, and listening on
port 587. To configure the SMTP Services, perform the following steps in Policy Studio:

1. Under the Listeners node in the tree, select a Process node (for example, the default API Gateway).
2. Right-click, and select Add SMTP Services.
3. Enter smtp.gmail.com for the Host.
4. Enter 587 for the Port.
5. Select STARTTLS from the Connection Security drop-down list. This is selected because smtp.gmail.com:587

exposes the Gmail STARTTLS SMTP interface.
6. Because STARTTLS has the potential to be upgraded to a secure connection, you must also select some Trusted

Certificates.
7. Accept all other defaults, and click OK to add the SMTP services.

Configuring the SMTP Client Interface
To configure a STARTTLS client interface, perform the following steps in Policy Studio:

1. Right-click the SMTP Services node, and select Add Interface > STARTTLS.
2. Enter a Port (for example, 8026). This is the port on which the API Gateway’s incoming SMTP traffic is accepted.

You can enter any port that is not already in use.
3. Because STARTTLS has the potential to be upgraded to a secure connection, you must configure a trusted certific-

ate. Click the X.509 Certificate button.
4. Select a certificate in the Select Certificate dialog.
5. Click OK to return to the Configure STARTTLS Interface dialog.
6. When the certificate has been configured, accept all other defaults, and click OK to add the incoming STARTTLS in-

terface.

When the SMTP services and STARTTLS client interface have been configured, you must deploy the changes to the API
Gateway.

Configuring Thunderbird Client Settings
This example uses Thunderbird as the email client. However, you can use any standard email client that supports SMTP.

Configure SMTP services

188

Thunderbird is available as a free download from http://www.mozillamessaging.com/.

To configure a STARTTLS outgoing server in your Thunderbird client, perform the following steps:

1. Launch the Thunderbird email client.
2. From the main menu, select Tools > Account Settings.
3. Expand the Local Folders tree node in the left pane.
4. Select the Outgoing Server node to create a new outgoing server configuration.
5. Click Add to display the SMTP Server dialog.
6. Enter Oracle API Gateway [STARTTLS] in the Description field.
7. Enter localhost (or the IP Address of the machine on which the API Gateway service is running) in the Server

Name field.
8. Enter 8026 in the Port field. This will send SMTP traffic to the STARTTLS interface configured above, so the ports

must match.
9. Select STARTTLS from the Connection security drop-down list. Traffic on this connection may be upgraded to se-

cure during the SMTP conversation.
10. Select Normal Password from the Authentication method drop-down list. This indicates that Authentication will

be performed.
11. Enter a valid Gmail user-name for the User Name.
12. Click OK to add the new outgoing server configuration.

Configuring Certificates in Thunderbird
To enable Thunderbird to successfully negotiate the STARTTLS conversation with the API Gateway, you must import a
CA certificate into Thunderbird. This is also because a certificate was already generated and imported into the API Gate-
way when configuring its STARTTLS client interface.

To configure a STARTTLS outgoing server in your Thunderbird client, perform the following steps:

1. From the Thunderbird main menu, select Tools > Options.
2. Select the Certificates tab.
3. Click the View Certificates button, to display the Certificate Manager dialog.
4. Click Import, and import the appropriate CA certificate.
5. Click OK when finished.

Testing the STARTTLS Client Interface
To test the STARTTLS client interface using Thunderbird, perform the following steps:

1. Launch the Thunderbird email client, and create a new mail message.
2. Enter a valid Gmail address in the To field.
3. Enter API Gateway Test as the Subject.
4. Enter This mail has been sent using Oracle API Gateway in the mail body.
5. To specify the appropriate outgoing mail server, select Tools > Account Settings from the main menu.
6. Select Oracle API Gateway [STARTTLS] - localhost from the Outgoing Server drop-down list.
7. Click OK.
8. Send the mail.

The following example from the API Gateway trace shows the SMTP commands that occur. Commands marked in bold
text shows traffic from the Thunderbird client to the API Gateway and vice versa. Commands marked in bold italics
shows traffic from the API Gateway to the Gmail server at smtp.gmail.com:587, and vice versa.

DEBUG 14:46:46:546 [14b4] incoming call on interface *:8026 from 127.0.0.1:1487

Configure SMTP services

189

http://www.mozillamessaging.com/

DEBUG 14:46:46:546 [14b4] new connection 08133248, settings source incoming interface
(force 1.0=no, idleTimeout=60000, activeTimeout=60000)
DATA 14:46:46:546 [14b4] snd 0018: <220 doejOracle>
DATA 14:46:46:562 [14b4] rcv 18: <EHLO [127.0.0.1]>
DEBUG 14:46:46:562 [14b4] 080BE260: new connection cache set SMTP Client
DEBUG 14:46:46:562 [159c] idle connection monitor thread running
DEBUG 14:46:46:562 [14b4] new endpoint smtp.gmail.com:587
DEBUG 14:46:46:640 [14b4] Resolved smtp.gmail.com:587 to:
DEBUG 14:46:46:640 [14b4] 209.85.227.109:587
DEBUG 14:46:46:718 [14b4] connected to 209.85.227.109:587
DEBUG 14:46:46:718 [14b4] new connection 08135BA0, settings source service-wide
defaults (force 1.0=no, idleTimeout=15000, activeTimeout=30000)
DATA 14:46:46:765 [14b4] rcv 44: <220 mx.google.com ESMTP v11sm7979387weq.40>
DATA 14:46:46:765 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:46:812 [14b4] rcv 125: <250-mx.google.com at your service, [87.198.245.194]
250-SIZE 35651584
250-8BITMIME
250-STARTTLS
250 ENHANCEDSTATUSCODES>
DATA 14:46:46:812 [14b4] snd 0010: <starttls>
DATA 14:46:46:843 [14b4] rcv 30: <220 2.0.0 Ready to start TLS>
DEBUG 14:46:46:843 [14b4] push SSL protocol on to connection
DEBUG 14:46:46:906 [14b4] No SSL host name provided: using default certificate for
interface
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=2, subject /C=US/O=Equifax/
OU=Equifax Secure Certificate Authority, issuer /C=US/O=Equifax/OU=Equifax Secure
Certificate Authority
DEBUG 14:46:46:906 [14b4] ca cert? 1
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=1, subject /O=Google
Inc/CN=Google Internet Authority, issuer /C=US/O=Equifax/OU=Equifax Secure Certificate
Authority
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=0, subject
/C=US/ST=California/L=Mountain View/O=Google Inc/CN=smtp.gmail.com,
issuer /C=US/O=Google Inc/CN=Google Internet Authority
DEBUG 14:46:46:952 [14b4] negotiated SSL cipher "RC4-MD5",session 00000000 (not reused)
DATA 14:46:46:952 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:46:999 [14b4] rcv 140: <250-mx.google.com at your service, [87.198.245.194]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH
250 ENHANCEDSTATUSCODES>
DATA 14:46:46:999 [14b4] snd 0109: <250-OracleAPI Gateway Hello [127.0.0.1]
250-SIZE 35651584
250-8BITMIME
250-STARTTLS
250 ENHANCEDSTATUSCODES>
DEBUG 14:46:46:999 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:46:999 [14b4] rcv 10: <STARTTLS>
DATA 14:46:46:999 [14b4] snd 0014: <220 Go ahead>
DEBUG 14:46:46:999 [14b4] push SSL protocol on to connection
DEBUG 14:46:46:999 [14b4] Servername CB: SSL host name: localhost, not in host map -
using default certificate for interface
DEBUG 14:46:47:031 [14b4] negotiated SSL cipher "AES256-SHA", session 00000000
(not reused)
DATA 14:46:47:031 [14b4] rcv 18: <EHLO [127.0.0.1]>
DATA 14:46:47:031 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:47:077 [14b4] rcv 140: <250-mx.google.com at your service, [87.198.245.194]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH
250 ENHANCEDSTATUSCODES>
DATA 14:46:47:077 [14b4] snd 0124: <250-OracleAPI Gateway Hello [127.0.0.1]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH

Configure SMTP services

190

250 ENHANCEDSTATUSCODES>
DEBUG 14:46:47:077 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:47:077 [14b4] rcv 41: <AUTH PLAIN ADGzaHllaDe0SHF1ex2r82Su555=>
DATA 14:46:47:077 [14b4] snd 0041: <auth PLAIN ADGzaHllaDe0SHF1ex2r82Su555=>
DATA 14:46:47:718 [14b4] rcv 20: <235 2.7.0 Accepted>
DATA 14:46:47:718 [14b4] snd 0020: <235 2.7.0 Accepted>
DATA 14:46:47:718 [14b4] rcv 45: <MAIL FROM:<john.doe@oracle.com> SIZE=444>
DATA 14:46:47:718 [14b4] snd 0036: <mail from:<john.doe@oracle.com>>
DATA 14:46:47:765 [14b4] rcv 33: <250 2.1.0 OK v11sm7979387weq.40>
DATA 14:46:47:765 [14b4] snd 0033: <250 2.1.0 OK v11sm7979387weq.40>
DATA 14:46:47:765 [14b4] rcv 30: <RCPT TO:<test@gmail.com>>
DATA 14:46:47:765 [14b4] snd 0030: <rcpt to:<test@gmail.com>>
DATA 14:46:47:812 [14b4] rcv 33: <250 2.1.5 OK v11sm7979387weq.40>
DATA 14:46:47:812 [14b4] snd 0033: <250 2.1.5 OK v11sm7979387weq.40>
DATA 14:46:47:812 [14b4] rcv 6: <DATA>
DATA 14:46:47:812 [14b4] snd 0006: <data>
DATA 14:46:48:609 [14b4] rcv 34: <354 Go ahead v11sm7979387weq.40>
DATA 14:46:48:609 [14b4] snd 0008: <354 OK>
DATA 14:46:48:609 [14b4] rcv 447: <Message-ID: <4CB85B46.4060205@oracle.com>
Date: Fri, 15 Oct 2010 14:46:46 +0100
From: John Doe <john.doe@oracle.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.2.9) Gecko/20100915
Thunderbird/3.1.4
MIME-Version: 1.0
To: test@gmail.com
Subject: API Gateway Test
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

This mail has been sent vian Oracle API Gateway

.>
DATA 14:46:48:609 [14b4] snd 0442: <Message-ID: <4CB85B46.4060205@oracle.com>
Date: Fri, 15 Oct 2010 14:46:46 +0100
From: John Doe <john.doe@oracle.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.2.9) Gecko/20100915
Thunderbird/3.1.4
MIME-Version: 1.0
To: test@gmail.com
Subject: API Gateway Test
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

This mail has been sent vian Oracle API Gateway>
DATA 14:46:48:609 [14b4] snd 0005: <.>
DATA 14:46:49:874 [14b4] rcv 44: <250 2.0.0 OK 1287150409 v11sm7979387weq.40>
DATA 14:46:49:874 [14b4] snd 0044: <250 2.0.0 OK 1287150409 v11sm7979387weq.40>
DEBUG 14:46:49:874 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:49:874 [14b4] rcv 6: <QUIT>
DATA 14:46:49:874 [14b4] snd 0006: <quit>
DATA 14:46:49:921 [14b4] rcv 49: <221 2.0.0 closing connection v11sm7979387weq.40>
DEBUG 14:46:49:921 [14b4] delete transaction 08040BD8 on connection 08135BA0
DATA 14:46:49:921 [14b4] snd 0049: <221 2.0.0 closing connection v11sm7979387weq.40>
DEBUG 14:46:49:921 [14b4] delete transaction 0B95D2C0 on connection 08133248
DEBUG 14:46:49:921 [14b4] delete connection 08133248, current transaction 00000000

Configure SMTP services

191

Configure a file transfer service
Overview

The API Gateway can act as a file transfer service that listens on a port for remote clients to connect to it. The API Gate-
way file transfer service supports the following protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

For all file transfer protocols, you must configure a file upload policy and an authentication policy. For FTP and FTPS,
you must configure a password authentication policy. While for SFTP, you can configure a password authentication
policy or a public key authentication policy. The API Gateway can also restrict access to the server based on IP address.

When a file transfer service is configured, users are presented with a personal file system view when they log in. The
root of this file system is specified in a configurable request directory. Any files they upload are processed by the file up-
load policy. If this policy succeeds, the output of the policy is stored in a configurable response directory. If the policy
fails, the original file is moved to a configurable quarantine directory.

Configuring a file transfer service can be useful when integrating with Business-to-Business (B2B) partner destinations or
with legacy systems. For example, instead of making drastic changes to either system, the other system can upload files
to the API Gateway. The added benefit is that the file transfer can be controlled and secured using API Gateway policies
designed to suit system needs.

Tip
For details on how to use the API Gateway to poll a remote file server, to query and retrieve files to be pro-
cessed, see Configure an FTP poller.

General settings

You can configure the following settings in the General section:

Name:
Enter an appropriate name for the file transfer service.

Service Type:
Select the file transfer protocol type for this service from the drop-down list (ftp, ftps, or sftp). Defaults to ftp.

Implicit:
This setting applies to FTPS only. When selected, security is automatically enabled as soon as the remote client makes
a connection to the file transfer service. No clear text is passed between the client and server at any time. In this case,
the file transfer service defines a specific port for the remote client to use for secure connections (990). This setting is not
selected by default.

Explicit:
This setting applies to FTPS only. When selected, the remote client must explicitly request security from the file transfer
server, and negotiate the required security. If the client does not request security, the file transfer server can allow the cli-
ent to continue insecure or refuse and/or limit the connection. This setting is selected by default.

Binding Address:
Enter a network interface to bind to. Defaults to *, which means bind to all available network interfaces on the host on
which the API Gateway is installed. You can enter an IP address to bind to a specific network interface.

192

Port:
Enter a file transfer port to listen on for remote clients to connect to. Defaults to 21.

Note
The API Gateway must execute with superuser privileges to bind to a port number less than 1024 on Linux
and Solaris.

File upload settings

For all file transfer protocols, you must specify a File Upload policy to be invoked with the file data. This enables files
and directories to be uploaded to a user subdirectory of the Request Directory. For example, files uploaded by user
fred are placed in ${environment.VINSTDIR}/file-transfer/in/persistent/fred, where VINSTDIR is the
location of the running API Gateway instance. The specified policy is then invoked with the raw file data. If this policy re-
turns true, the output is placed in the corresponding Response Directory. If this policy returns false or an exception is
thrown, the uploaded file is moved to the Quarantine Directory.

You can configure the following settings in the File Upload section:

Request Directory:
Specifies the directory into which files and directories are uploaded. Defaults to
${environment.VINSTDIR}/file-transfer/in/.

Delete File on Successful Response:
Select whether to delete the uploaded files from the Request Directory when successfully processed. This setting is not
selected by default.

Response Directory:
Specifies the name of the directory in which files output by the API Gateway processing of uploaded files are placed if
the File Upload policy returns true. Defaults to out. The original files remain in the Request Directory.

Response Suffix:
Specifies the filename suffix that is appended to the output files in the Response Directory. Defaults to .resp.${id},
which enables a unique suffix to be appended to the files.

Quarantine Directory:
Specifies the directory into which the uploaded files are moved if the File Upload policy returns false, or an exception is
thrown. Defaults to quarantine.

Important
The response and quarantine directories can be relative or absolute. Relative directories reside under the
request directory. The user can manage the uploaded files using their file transfer session (for example, by
accessing API Gateway file processing results). Absolute directories must reside outside of the request dir-
ectory. The user cannot view or manage uploaded files using their file transfer session. Specifying absolute
directories hides API Gateway file processing from the user.

In this way, the request directory can be seen as the user's home directory for the duration of the connec-
tion. Therefore, anything created under the same home directory is visible to the user. However, if the re-
sponse is created outside this directory (for example, in /tmp/response), the files are not visible to the
user.

Specifying a File Upload Policy
You must specify a File Upload policy to be invoked with the raw file data. Perform the following steps:

Configure a file transfer service

193

1. Click the Add button to display the dialog.
2. In the Pattern field, select or enter a regular expression to match against the filename. For example, the following

expression means that the configured policy is run against these files types only:

([^\s]+(\.(?i)(xml|xhtml|soap|wsdl|asmx))$)

3. In the Policy field, click the browse button on the right to select a policy, and click OK.
4. Click OK to display the configured pattern and policy in the table.

Message Attributes
The File Upload policy uses the following message attributes:

• content.body: Raw message file content.
• file.src.name: Filename of the uploaded file.
• file.src.path: Full file path of the uploaded file.

Secure services settings

On the Secure Services tab, you can configure the following Client Authentication policies:

Password Authentication Policy:
For FTP and FTPS, you must configure a Password Authentication Policy. Click the browse button on the right to se-
lect a configured policy. This policy uses the authentication.subject.id and authentica-
tion.subject.password message attributes, which store the username and password entered by the client user.

Public Key Authentication Policy:
For SFTP, you can configure a Public Key Authentication Policy and/or Password Authentication Policy. Click the
browse button on the right to select a configured policy. This policy uses the authentication.subject.id and au-
thentication.subject.public.key message attributes, which store the username and public key used by the cli-
ent.

You can configure the following Server Authentication settings:

Server Certificate:
For FTPS or SFTP, click the Signing Key button to specify a server certificate. You can select a certificate in the dialog,
or click to create or import a certificate. The selected certificate must contain a private key. For more details, see Manage
certificates and keys. Alternatively, you can specify a certificate to bind to at runtime using an environment variable se-
lector (for example, ${env.serverCertificate}). For details on setting external environment variables for API Gate-
way instances, see the API Gateway Deployment and Promotion Guide.

Server Key Pair:
For SFTP, click the button on the right, and select a previously configured key pair that the file transfer service must
present from the tree. To add a key pair, right-click the Key Pairs node, and select Add. Alternatively, you can import
key pairs under the Certificates and Keys node in the Policy Studio tree. For more details, see Manage certificates and
keys.

Command settings

For FTP and FTPS, the Commands tab enables you to specify commands that can be enabled for this service (other
FTP and FTPS commands are enabled by default). The following commands are specified in the table:

• DELE: Allow user to delete files
• PASV: Support passive mode
• REST: Support restart mode
• RMD: Allow user to remove directories

Configure a file transfer service

194

• STOU: Support unique filename

To enable an existing command, click Edit, select Enabled, and click OK. The command is displayed as enabled in the
table.

Adding New Commands
To add a new command, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter the command Name (for example, STAT).
3. Select the file transfer protocol Type from the drop-down list (for example, ftp or ftp(s)).
4. Enter the command Description.
5. Select whether the command is Enabled.
6. Click OK to display the new command in the table.

Supported Commands
For a full list of supported commands, see
http://mina.apache.org/ftpserver-project/ftpserver_commands.html

Access control settings

The Access Control tab enables you to restrict or block access to the file transfer service based on IP address. All IP
addresses are allowed by default.

Restrict Access to the following IP Ranges:
To restrict access to specified IP addresses, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter an IP Address (for example, 192.168.0.16).
3. Enter a Net Mask for the specified IP address. For example, if you wish to restrict access to the specified IP address

only, enter 255.255.255.255. Alternatively, you can restrict access to a range of IP addresses by entering a value
such as 255.255.255.253, which restricts access to 192.168.0.16, 192.168.0.17, and 192.168.0.18.

4. Click OK to display the IP address details in the table.

Block Access to the following IP Ranges:
To block access to specified IP addresses, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter an IP Address (for example, 192.168.0.16).
3. Enter a subnet Mask for the specified IP address. For example, if you wish to block access to the specified IP ad-

dress only, enter 255.255.255.255. Alternatively, you can block access to a range of IP addresses by entering a
value such as 255.255.255.253, which blocks access to 192.168.0.16, 192.168.0.17, and 192.168.0.18.

4. Click OK to display the IP address details in the table.

Message settings

For FTP and FTPS, the you can specify a welcome message and a goodbye message on the Messages tab. These are
output to the user at the start and at the end of each session:

Welcome Message:
Enter a short welcome text message for the file transfer service (for example, Connected to FTP Test
Service...).

Configure a file transfer service

195

http://mina.apache.org/ftpserver-project/ftpserver_commands.html

Goodbye Message:
Enter a short goodbye text message for the file transfer service (for example, Leaving FTP Test Service...).

Directory settings

You can configure the following settings on the Directory tab:

Directory Type:
Select one of the following directory types:

• Persistent: This is a sharable directory created per user, which persists between connections (for example,
${environment.VINSTDIR}/file-transfer/in/persistent/fred). This is the default directory type.

• Transient: This is an isolated directory created per connection, which is destroyed after the connection (for ex-
ample, ${environment.VINSTDIR}/file-transfer/in/2/fred).

Note
Some clients, notably FileZilla, generate multiple client connection sessions. For these clients, files up-
loaded in one session will not be available in the viewing session.

Directory expiry in seconds:
Specifies how long the directory remains on the system. Defaults to 3600 seconds (1 hour). A setting of 0 seconds
means that the directory never expires.

Directory expiry check period in seconds:
Specifies how often the API Gateway checks to see if a directory has expired. Defaults to 1800 seconds (30 minutes). A
setting of 0 seconds means that it never checks.

Logging settings

The Logging Settings tab enables you to configure the logging level for the file transfer service, and to configure when
message payloads are logged.

Logging Level
You can configure the following settings on all filters executed on the file transfer service:

Logging Level Description

Fatal Logs Fatal log points that occur on all filters executed.

Failure Logs Failure log points that occur on all filters executed. This is the default log-
ging level.

Success Logs Success log points that occur on all filters executed.

For more details on logging levels, and on how to configure logging for a specific filter, see Set transaction log level and
log message.

Payload Level
You can configure the following settings for the file transfer service payload:

Payload Logging Description

On receive request from client Log the message payload when a request arrives from the client.

Configure a file transfer service

196

On send response to client Log the message payload before the response is sent back to the client.

On send request to remote server Log the message payload before the request is sent using any Connection or
Connect to URL filters deployed in any policies executed.

On receive response from remote
server

Log the message payload when the response is received using any Connec-
tion or Connect to URL filters deployed in any policies executed.

For details on how to log message payloads at any point in a specific policy, see Log message payload.

Include in real time monitoring
Select whether to monitor traffic for the file transfer service. This means that traffic for this service is monitored in the API
Gateway Manager and API Gateway Analytics web-based interfaces. For more details, see the API Gateway Adminis-
trator Guide. This setting is selected by default.

Traffic monitor settings

The Traffic Monitor tab enables you to configure traffic monitoring settings for the file transfer service. To override the
system-level traffic monitoring settings, select Override system-level settings, and configure the relevant options. For
more details, see the API Gateway Administrator Guide.

Configure a file transfer service

197

Policy execution scheduling
Overview

You can configure a policy execution scheduler at the level of the API Gateway instance. This enables you to schedule
the execution of any policy on a specified date and time in a recurring manner. The API Gateway provides a pre-
configured library of schedules to select from when creating a policy execution scheduler. You can also add your own
schedules to the globally available library in the Policy Studio.

You can use policy execution scheduling in any policy (for example, to perform a message health check). This feature is
also useful when polling a service to enforce a Service Level Agreement (for example, to ensure the response time is
less than 1000 ms, and if not, to send an alert).

Cron expressions

In the Policy Studio, policy execution schedules are based on cron expressions. A cron expression is a string that spe-
cifies a time schedule for triggering an event (for example, executing a policy). It consists of six required fields and one
optional field, each separated by a space, which together specify when to trigger the event. For example, the following
expression specifies to run at 10:15am every Monday, Tuesday, Wednesday, Thursday, and Friday in 2011:

0 15 10 ? * MON-FRI 2011

Syntax
The following table shows the syntax used for each field:

Field Values Special Characters

Seconds 0-59 , - * /

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day of Month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day of Week 1-7 or SUN-SAT , - * ? / L #

Year (optional) empty or 1970-2199 , - * /

Special Characters
The special characters are explained as follows:

Special Character Description

, Separates values in a list (for example, MON,WED,SAT means Mondays, Wed-
nesdays, and Saturdays only).

- Specifies a range of values (for example, 2011-2015 means every year
between 2011 and 2015 inclusive).

* Specifies all values of the field (for example, every minute).

? Specifies no value in the Day of Month and Day of Week fields. This enables
you to specify a value in one field, but not in the other.

/ Specifies time increments (for example, in the Minutes field, 0/15 means
minutes 0, 15, 30, and 45, while 5/15 means minutes 5, 20, 35, and 50). Spe-

198

Special Character Description

cifying * before the / is the same as specifying 0 as the start value. The /
character enables you to turn on every nth value in the set of values for the
specified field. For example, 7/6 in the month field only turns on month 7, and
does not mean every 6th month.

L Specifies the last value in the Day of Month and Day of Week fields. In the Day
of Month field, this means the last day of the month (for example, January 31,
or February 28 in non-leap years). In the Day of Week field, when used alone,
this means 7 or SAT. When used after another value, it means the last XXX day
of the month (for example, 5L means the last Thursday of the month). When
using the L character, do not specify lists or ranges because this can give con-
fusing results.

W Specifies the weekday (Monday-Friday) nearest the given day. For example,
15W means the nearest weekday to the 15th of the month. If the 15th is a Sat-
urday, the trigger fires on Friday 14th. If the 15th is a Sunday, it fires on
Monday 16th. If the 15th is a Tuesday, it fires on Tuesday 15th. However, if you
specify 1W, and the 1st is a Saturday, the trigger fires on Monday 3rd to avoid
crossing the month boundary. You can only specify the W character for a single
day, and not a range or list of days.

Specifies the nth XXX weekday of the month in the Day of Week field. For ex-
ample, a value of FRI#2 means the second Friday of the month. However, if
you specify #5, and there are not 5 of the specified Day of the Week in the
month, no policy is run that month. When the # character is specified, there can
only be one expression in the Day of Week field (for example, 2#1,6#4 is not
valid because there are two expressions).

Examples
The following are some of the cron expressions provided in the Schedule Library in the Policy Studio:

Cron Expression Description

0 15 10 ? * * Run at 10:15am every day.

0 15 10 ? * 6L 2011-2015 Run at 10:15am on every last Friday of every month during the years 2011,
2012, 2013, 2014, and 2015.

0 15 10 ? * 6#3 Run at 10:15am on the third Friday of every month.

0 0 10 1,15 * ? Run at 10am on the 1st and 15th days of the month.

0 10,44 14 ? 3 WED Run at 2:10pm and at 2:44pm every Wednesday in the month of March.

0,30 * * ? * SAT,SUN Run every 30 seconds but only on Weekends (Saturday and Sunday).

0 0/5 14,18 * * ? Run every 5 minutes starting at 2pm and ending at 2:55pm, and every 5
minutes starting at 6pm and ending at 6:55pm, every day.

0 0-5 14 * * ? Run every minute starting at 2pm and ending at 2:05pm, every day.

Important
Please note the following:

Policy execution scheduling

199

• Support for specifying both a Day of Week and a Day of Month value is not complete. You must use
the ? or * character in one of these fields.

• Overflowing ranges with a larger number on the left than the right are supported (for example, 21-2 for
9pm until 2am , or OCT-MAR). However, overuse may cause problems with daylight savings (for ex-
ample, 0 0 14-6 ? * FRI-MON).

Add schedule

To add a schedule to the globally available library in the Policy Studio, perform the following steps:

1. Select the Libraries > Schedules node in the tree.
2. Click the Add button at the bottom of the Schedules screen.
3. In the Schedules dialog, enter a Name (for example, Run every 30 seconds).
4. Enter a Cron expression (for example, 0/30 * * * * ?). Alternatively, click the browse button to select an ex-

pression in Cron dialog. For more details, see the topic on Configure cron expressions.
5. Click OK.

You can also edit or delete a selected schedule using the appropriate button.

Add policy execution scheduler

To add a policy execution scheduler in the Policy Studio, perform the following steps:

1. Select the Listeners node on the left.
2. Right-click the instance node (for example, API Gateway), and select Add policy execution scheduler.
3. Click the button next to the Schedule field, select a cron expression in the dialog, and click OK.
4. Click the button next to the Policy field, select a policy in the dialog, and click OK. You can search for a specific

policy by entering its name in the text box, and the policy tree is filtered automatically.
5. Click OK.

Policy execution scheduling

200

Configure Amazon SQS queue listener
Overview

Amazon Simple Queue Service (SQS) is a hosted message queuing service for distributing messages amongst ma-
chines. You can configure API Gateway to poll an Amazon SQS queue at a set rate. Any message found on the SQS
queue in this interval can be sent to a policy for processing. For more information on Amazon SQS, go to ht-
tp://aws.amazon.com/sqs/.

To add a new Amazon SQS queue listener, in the Policy Studio tree view, under the Listeners node, right-click the in-
stance name (for example, API Gateway), and select Amazon Web Services > Add SQS Queue Listener.

General settings

You can configure the following general settings for the Amazon SQS queue listener:

Name:
Enter a suitable name for this SQS listener.

AWS settings

AWS Credential:
Click the browse button to select your AWS security credentials (API key and secret) to be used by API Gateway when
connecting to Amazon SQS.

Region:
Select the region appropriate for your deployment. You can choose from the following options:

• US East (Northern Virginia)
• US West (Oregon)
• US West (Northern California)
• EU (Ireland)
• Asia Pacific (Singapore)
• Asia Pacific (Tokyo)
• Asia Pacific (Sydney)
• South America (Sao Paulo)
• US GovCloud

Client settings:
Click the browse button to select the AWS client configuration to be used by API Gateway when connecting to Amazon
SQS. For more details, see the section called “Configure AWS client settings”.

Poll settings

Poll the queue <queueName> every <pollRate> milliseconds:
Enter the name of the queue to be polled and the rate at which the queue is to be polled, in milliseconds. The default
queue name is requestQueue and the default poll rate is 10000 milliseconds (10 seconds).

Call policy:
Click the browse button to select a policy to send the message to for processing. When a message has been consumed
from the queue it is passed to the selected policy for processing.

Process the retrieved messages as body with following Content Type:
Select this option to create a body from the message, and enter a content type. The default is text/xml.

201

http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/

Store the content of the retrieved messages in the following attribute:
Select this option to store the content of the message in an attribute, and enter the attribute name. The default attribute
name is sqs.body.

Delete message on completion:
Select this option to delete the message from the queue when processing is complete. This is selected by default.

Maximum number of messages to read from queue:
Enter the maximum number of messages to return. Amazon SQS never returns more messages than this value but it
might return less. The default value is 10.

Visibility timeout for other consumers:
Enter the duration (in seconds) that the received messages are hidden from subsequent retrieve requests after being re-
trieved by API Gateway. The default value is 1000 seconds.

Response settings

Write a response message:
Select this option to write the contents of an attribute to a response queue. This is not selected by default.

Response queue name:
If you selected the Write a response message option, enter the name of the response queue in this field. The default
name is responseQueue.

Use content body as the response:
Select this option to use the content body as the response.

Use the following attribute as the response:
Select this option to use an attribute as the response, and enter an attribute selector for the attribute containing the re-
sponse in this field (for example, ${sqs.body}). For more details on selectors, see Select configuration values at
runtime.

Configure AWS client settings

API Gateway is a client of AWS, and as such you can define a client profile by which API Gateway connects to AWS.
When you click the browse button on the Client settings field for an Amazon SQS queue listener, a Send to Amazon
SQS filter, an Upload to Amazon S3 filter, or an Amazon Simple Notification Service (SNS) alert destination, you can
edit the configuration of the AWS client profile.

To edit the configuration, right-click the Default AWS Client Configuration and select Edit. Configure the following set-
tings on the dialog:

Name:
Enter a suitable name for this client configuration.

Connection settings

Maximum number of open HTTP connections:
Enter the maximum number of open HTTP connections. The default value is 50.

Socket timeout:
Enter the amount of time to wait (in milliseconds) for data to be transferred over an established, open connection before
the connection is timed out. The default value is 50000 milliseconds. A value of 0 means infinity, and is not recommen-
ded.

Connection timeout:
Enter the amount of time to wait (in milliseconds) when initially establishing a connection before giving up and timing out.
The default value is 50000 milliseconds. A value of 0 means infinity, and is not recommended.

Configure Amazon SQS queue listener

202

Maximum number of retries:
Enter the maximum number of retry attempts for failed requests (that can be retried). The default value is 3.

User agent:
Enter the HTTP user agent header to send with all requests.

Protocol:
Select the protocol (HTTP or HTTPS) to use when connecting to AWS.

Proxy settings

You can optionally configure the following proxy settings:

Proxy Host:
Enter the proxy host to connect through.

Proxy port:
Enter the port on the proxy host to connect through.

User name:
Enter the user name to use when connecting through a proxy.

Password:
Enter the password to use when connecting through a proxy.

NTLM Proxy support:
To configure Windows NT LAN Manager (NTLM) proxy support, enter the Windows domain name in the Windows do-
main field and enter the Windows workstation name in the Windows workstation name field.

Advanced settings

You can optionally configure these settings to tune low level TCP parameters to try and improve performance.

Note
These settings are for advanced users only.

Size hint (in bytes) for the low level TCP send buffer:
Enter the size hint (in bytes) for the low level TCP send buffer.

Size hint (in bytes) for the low level TCP receive buffer:
Enter the size hint (in bytes) for the low level TCP receive buffer.

Further information

For more detailed information on Amazon Web Services integration, see the AWS Integration Guide available from Or-
acle support.

Configure Amazon SQS queue listener

203

Configure an FTP poller
Overview

The FTP poller enables you to query and retrieve files to be processed by polling a remote file server. When the files are
retrieved, they can be passed to the API Gateway core message pipeline for processing. For example, this is useful
where an external application drops files on to a remote file server, which can then be validated, modified, and potentially
routed on over HTTP or JMS by the API Gateway.

This kind of protocol mediation is useful when integrating with Business-to-Business (B2B) partner destinations or with
legacy systems. For example, instead of making drastic changes to either system, the API Gateway can download the
files from a remote file server, and route them over HTTP to another back-end system. The added benefit is that mes-
sages are exposed to the full compliment of API Gateway message processing filters. This ensures that only properly
validated messages are routed on to the target system.

The FTP poller supports the following file transfer protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

To add a new FTP poller, in the Policy Studio tree, under the Listeners node, right-click the instance name (for example,
API Gateway), and select FTP Poller > Add. This topic describes how to configure the fields on the FTP Poller Set-
tings dialog.

Tip
For details on how to configure the API Gateway to act as a file transfer service that listens on a port for re-
mote clients, see Configure a file transfer service.

General settings

This filter includes the following general settings:

Name:
Enter a descriptive name for this FTP poller.

Enable Poller:
Select whether this FTP poller is enabled. This is selected by default.

Host:
Enter the host name of the file transfer server to connect to.

Port:
Enter the port on which to connect to the file transfer server. Defaults to 21.

User name:
Enter the user name to connect to the file transfer server.

Password:
Specify the password for this user.

Scan settings

204

The fields configured in the Scan details tab determine when to scan, where to scan, and what files to scan:

Poll every (ms):
Specifies how often in milliseconds the API Gateway scans the specified directory for new files. Defaults to 60000. To
optimize performance, it is good practice to poll often to prevent the number of files building up.

Look in directory:
Enter the full path of the directory to scan for new files.

For files that match the pattern:
Specifies to scan only for files based on a pattern in a regular expression. For example, to scan only for files with a par-
ticular file extension (for example, .xml), enter an appropriate regular expression. Defaults to:

([^\s]+(\.(?i)(xml|xhtml|soap|wsdl|asmx))$)

Establish new session for each file found:
Select whether to establish a new file transfer session for each file found. This is selected by default.

Limit the number of files to be processed:
Select this option to limit the number of files that the FTP poller will process on each poll of the FTP server. This option is
not selected by default.

Specify the max number of files to be processed:
Enter the maximum number of files to be processed on each poll of the FTP server. The default is 100.

Process file with following policy:
Click the browse button to select the policy to process each file with. For example, this policy may perform tasks such as
validation, threat detection, content filtering, or routing over HTTP or JMS. You can select what action to take after the
policy processes the file in the On Policy Success and On Policy Failure fields.

On Policy Success:
This field enables you to choose the behavior if the policy passes. Select one of the following options:

• Do Nothing — Take no action.
• Delete File — Delete the file.
• Move File — Move the file to a new location. Enter the new location in the Move to Directory field.

On Policy Failure:
This field enables you to choose the behavior if the policy fails. Select one of the following options:

• Do Nothing — Take no action.
• Delete File — Delete the file.
• Move File — Move the file to a new location. Enter the new location in the Move to Directory field.

Connection type settings

The fields configured in the Connection Type tab determine the type of file transfer connection. Select the connection
type from the list:

• FTP — File Transfer Protocol
• FTPS — FTP over SSL
• SFTP — SSH File Transfer Protocol

Configure an FTP poller

205

FTP and FTPS connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data or Binary mode for sending binary data over the connection. Defaults to
ASCII mode.

FTPS connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the FTP poller client makes a connection to
the remote file transfer service. No clear text is passed between the client and server at any time. In this case, the client
defines a specific port for the remote file transfer service to use for secure connections (990). This option is not selected
by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the FTP poller client,
and negotiate the required security. If the file transfer service does not request security, the client can allow the file trans-
fer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the FTP poller client to present an SSL certificate to it during the SSL handshake for mu-
tual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must have
a private key associated with it that is also stored in the Certificate Store.

SFTP connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see Manage certificates and keys.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

Configure an FTP poller

206

Configure directory scanner
Overview

The Directory Scanner enables you to scan a specified directory on the file system for files containing messages (for ex-
ample, in XML or JSON format). When the messages have been read, they can be passed into the core message
pipeline, where the full range of message processing filters can act on them. The Directory Scanner is typically used in
cases where an external application is dropping files (perhaps by FTP) on to the file system so that they can be valid-
ated, modified, and potentially routed on over HTTP or JMS. Alternatively, they can be stored to another directory where
the application can pick them up again.

This sort of protocol mediation is very useful in cases where legacy systems are involved. For example, instead of mak-
ing drastic changes to the legacy system by adding an HTTP engine, the API Gateway can pull the files from the file sys-
tem, and route them on over HTTP to another back-end system. The added benefit is that messages can be exposed to
the full range of message processing filters in the API Gateway. This ensures that only properly validated messages are
routed on to the target system.

To add a new Directory Scanner, in the Policy Studio tree, under the Listeners node, right-click the name of the API
Gateway instance (for example, API Gateway), and select the Directory Scanner > Add menu option. This topic de-
scribes how to configure the fields on the Directory Scanner Settings dialog.

General settings

Configure the following setting:

Name:
Enter a name for this Directory Scanner. This setting is required.

Input settings

The fields in this section configure where to scan for files, what files to scan, and when to scan.

Input Directory:
Enter or browse to the input directory that the API Gateway scans for files. This setting is required.

Match File:
Select one of the following options to specify how inbound files are filtered:

• By Name:
You can specify a comma-separated list of specific names, wildcarded names, or leave this field blank to accept all
files by name. For example, a value of "*.xml,*.xsl" only accepts XML and XSL files in the input directory.

• By Extension:
You can specify a comma-separated list of file extensions (excluding the . character), or leave this field blank to ac-
cept all files by extension. For example, "xml,xsl" only accepts XML and XSL files in the input directory.

• By Pattern (regex):
If you wish to scan only for files based on some pattern, you can specify this as a regular expression. For example, if
you wish to scan only for files with a particular file extension, such as .xml, you can enter a regular expression such
as the following:

^[a-zA-Z\s]*.xml

Similarly, if a particular naming scheme is used when dropping the files into the configured directory, you can enter a
regular expression to scan for these files only. For example, the following regular expression scans only for files
named using a yyyy-mm-dd date format:

207

^(\d{4})[- /.]((1[012])|(0?[1-9]))[- /.]((3[01])|([012]?[1-9])|([12]0))$

Poll Rate (ms):
Specifies the amount of time (in milliseconds) between each scan of the Input Directory for new files. Defaults to
60000.

Processing settings

The fields configured in this section determine what processing is performed on the input files, and where files are placed
before and after processing.

Processing Directory:
Enter or browse to the directory to which the input file is copied prior to processing. This field is optional. If it is not spe-
cified, the input file is moved to the processing directory specified by the processing policy.

Response Directory:
Enter or browse to the directory to which the response file is copied. This field is optional. If this is not specified, the re-
sponse file is not written to disk.

Processing Policy
Select the policy executed on the input file. For example, the policy could perform message validation, routing, virus
checking, or XSLT transformation. This setting is required.

File Type:
Specifies how the input file is interpreted. Select one of the following options:

• Raw:
Assumes a content-type of application/octet-stream. This is the default.

• Treat as HTTP Message (including headers):
Assumes the inbound file contains an HTTP request (optionally with HTTP headers).

• Infer content-type from extension:
Performs a lookup on configured MIME/DIME types to determine the content-type of the file based on its extension.

• Use Content-type:
Enables you to specify a content-type in the textbox.

Sort Files:
Select whether files are sorted, and select one of the following sort types from the list:

• Date last modified

• Extension

• Extension (case-sensitive)

• Name

• Name (case-sensitive)

• Size

The default is to sort by Name.

Select one of the following sort directions:

• Ascending

• Descending

The default is Ascending.

Configure directory scanner

208

File Processing:
Select whether to Process files in parallel or Process files in sequence (queued). This option is useful if you need to
process very large files, or process files in a particular order (when used in conjunction with the Sort Files option).

On completion settings

You can specify what to do when the file processing has completed. Select one of the following options:

• Do Nothing:
The input file remains in the Input Directory or Processing Directory. This is the default.

• Delete Input File:
The input file is deleted from the Input Directory or Processing Directory.

• Move Input File:
The input file is moved (archived) to the directory specified in the To Directory field. You can also specify an option-
al File Prefix or File Suffix for the archived file.

Traffic monitor settings

The Traffic Monitor tab enables you to configure traffic monitoring settings for the directory scanner. To override the
system-level traffic monitoring settings, select Override system-level settings, and configure the relevant options. For
more details, see the API Gateway Administrator Guide.

Configure directory scanner

209

Packet sniffers
Overview

Packet Sniffers are a type of Passive Service. Rather than opening up a TCP port and actively listening for requests, the
Packet Sniffer passively reads raw data packets off the network interface. The Sniffer assembles these packets into com-
plete messages that can then be passed into an associated policy.

Because the Packet Sniffer operates passively (does not listen on a TCP port) and, therefore, completely transparently to
the client, it is most useful for monitoring and managing Web services. For example, the Sniffer can be deployed on a
machine running a Web Server acting as a container for Web services. Assuming that the Web Server is listening on
TCP port 80 for traffic, the Packet Sniffer can be configured to read all packets destined for port 80 (or any other port, if
necessary). The packets can then be marshalled into complete HTTP/SOAP messages by the Sniffer and passed into a
policy that logs the message to a database, for example.

Important
On Linux and Solaris platforms, the API Gateway must be started by the root user to gain access to the raw
packets.

Configuration

Since Packet Sniffers are mainly for use as passive monitoring agents, they are usually created within their own HTTP
Service Group. For example, you can create a new Service Group for this purpose by right-clicking on the API Gateway
instance, selecting the Add HTTP Services menu option, and entering Packet Sniffer Group on the HTTP Ser-
vices dialog.

You can then add a relative path service to this Group by right-clicking the Packet Sniffer Group, and selecting the Add
Relative Path menu option. Enter a path in the field provided, and select the policy that you want to dispatch messages
to when the Packet Sniffer detects a request for this path (after it assembles the packets). For example, if the relative
path is configured as /a, and the Packet Sniffer assembles packets into a request for this path, the request will be dis-
patched to the policy selected in the relative path service.

Finally, you can add the Packet Sniffer by right-clicking the Packet Sniffer Group node, selecting Packet Sniffer, and
then the Add menu option. Complete the following fields on the Packet Sniffer dialog:

Device to Monitor:
Enter the name or identifier of the network interface that the Packet Sniffer will monitor. The default entry is any.

Important
This setting is only valid on UNIX. On UNIX-based systems, network interfaces are usually identified using
names like eth0, eth1, and so on. On Windows, these names are more complicated (for example,
\Device\NPF_{00B756E0-518A-4144 ... }.

Filter:
The Packet Sniffer can be configured to only intercept certain types of packets. For example, it can ignore all UDP pack-
ets, only intercept packets destined for port 80 on the network interface, ignore packets from a certain IP address, listen
for all packets on the network, and so on.

The Packet Sniffer uses the libpcap library filter language to achieve this. This language has a complicated but powerful
syntax that allows you to filter what packets are intercepted and what packets are ignored. As a general rule, the syntax
consists of one or more expressions combined with conjunctions, such as and, or, and not. The following table lists a
few examples of common filters and explains what they filter:

210

Filter Expression Description

port 80 Capture only traffic for the HTTP Port (80).

host 192.168.0.1 Capture traffic to and from IP address 192.168.0.1.

tcp Capture only TCP traffic.

host 192.168.0.1 and port 80 Capture traffic to and from port 80 on IP address
192.168.0.1.

tcp portrange 8080-8090 Capture all TCP traffic destined for ports from 8080 through
to 8090.

tcp port 8080 and not src host 192.168.0.1 Capture all TCP traffic destined for port 8080 but not from
IP address 192.168.0.1.

The default filter of tcp captures all TCP packets arriving on the network interface. For more information on how to con-
figure filter expressions like these, please refer to the tcpdump man page available from ht-
tp://www.tcpdump.org/tcpdump_man.html.

Promiscuous Mode:
When listening in promiscuous mode, the Packet Sniffer captures all packets on the same Ethernet network, regardless
of whether or not the packets are addressed to the network interface that the Sniffer is monitoring.

Packet sniffers

211

http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/tcpdump_man.html

Configure remote host settings
Overview

You can use the Remote Host Settings to configure the way in which API Gateway connects to a specific external serv-
er or routing destination. For example, typical use cases for configuring remote hosts with API Gateway are as follows:

• Allowing API Gateway to send HTTP 1.1 requests to a destination server when that server supports HTTP 1.1.
• Resolving inconsistencies in the way the destination server supports HTTP.
• Mapping a host name to a specific IP address or addresses (for example, if a DNS server is unreliable or unavail-

able).
• Setting the timeout, session cache size, input/output buffer size, and other connection-specific settings for a destina-

tion server (for example, if the destination server is particularly slow, you can set a longer timeout).
• Stop accepting inbound connections on the HTTP interface when API Gateway loses connectivity to the remote

host.
• Set timeouts for incoming connections, for example, to configure long polling. For more information, see the section

called “Configure an incoming remote host”.

You can add remote hosts per-instance by right-clicking the API Gateway instance in the Policy Studio tree view, and se-
lecting Add Remote Host. The tabs in the Remote Host Settings configuration window are described in the following
sections.

General settings

You can configure the following settings on the General tab:

Host Alias:
The human readable alias name for the remote host (for example, StockQuote Host). This setting is required.

Host Name:
The host name or IP address of the remote host to connect to (for example stockquote.com). If the host name entered
in a Static Router filter matches this host name, the connection-specific settings configured on the Remote Host dialog
are used when connecting to this host. This also includes any IP addresses listed on the Addresses and Load Balan-
cing tab, which override the default network DNS server mappings, if configured. This setting is required.

Port:
The TCP port on the remote host to connect to. Defaults to 80.

Maximum Connections:
The maximum number of connections to open to a remote host. If the maximum number of connections has already
been established, the API Gateway instance waits for a connection to drop or become idle before making another re-
quest. The default maximum is 128 connections.

Allow HTTP 1.1:
The API Gateway uses HTTP 1.0 by default to send requests to a remote host. This prevents any anomalies if the des-
tination server does not fully support HTTP 1.1. If the API Gateway is routing on to a remote host that fully supports HT-
TP 1.1, you can use this setting to enable API Gateway to use HTTP 1.1.

Include Content Length in Request:
When this option is selected, the API Gateway includes the Content-Length HTTP header in all requests to this remote
host.

Include Content Length in Response:
When this option is selected, if the API Gateway receives a response from this remote host that contains a Content-
Length HTTP header, it returns this length to the client.

212

Send Server Name Indication TLS extension to server:
Adds a field to outbound TLS/SSL calls that shows the name that the client used to connect. For example, this can be
useful if the server handles several different domains, and needs to present different certificates depending on the name
the client used to connect.

Verify server's certificate matches requested hostname:
Ensures that the certificate presented by the server matches the name of the remote host being connected to. This pre-
vents host spoofing and man-in-the-middle attacks. This setting is selected by default.

Address and load balancing settings

You can configure the following settings on the Addresses and Load Balancing tab:

Addresses to use instead of DNS lookup:
You can add a list of IP addresses that the API Gateway uses instead of attempting a DNS lookup on the host name
provided. This is useful in cases where a DNS server is not available or is unreliable. By default, connection attempts are
made to the listed IP addresses on a round-robin basis.

For example, if a Static Router filter is configured to route to www.webservice.com, it first checks if any remote hosts
have been configured with a Host Name entry matching www.webservice.com. If it finds a Remote Host with match-
ing Host Name, it resolves the hostname to the IP addresses listed here. In addition, it uses all the connection-specific
settings configured on the Remote Host dialog when routing messages to these IP addresses. If it can not find a match-
ing host, the Static Router filter uses whatever DNS server has been configured for the network on which the API Gate-
way is running.

To add a list of IP addresses for a remote host, perform the following steps:

1. In the Addresses to use instead of DNS lookup box, select a priority group (for example, Highest Priority).
2. Click Add.
3. Enter an IP address or server name in the Configure IP Address dialog.
4. Click OK.
5. Repeat these steps to add more IP addresses as appropriate.

Load balancing:
The Load Balancing Algorithm drop-down box enables you to specify whether load balancing is performed on a simple
round-robin basis or weighted by response time. Simple Round Robin is the default algorithm. Connection attempts are
made to the listed IP addresses on a round-robin basis in each priority group. The Weighted by response time al-
gorithm compares the request/reply response times for the server address in each priority group. This is the simplest way
of estimating the relative load of the address. This algorithm works as follows:

1. The address with the least response time is selected to send the next message to.
2. If the address fails to send the message, it ignores that address for a period of time and selects another address in

the same way.
3. If all addresses in a given group fail to accept a connection, addresses in the next group in ascending order of prior-

ity are used in the same way.
4. Only when all addresses in all priorities have failed to accept connections is delivery of the message abandoned,

and an error raised.

The response times used by this algorithm decline over time. You can specify the rate of exponential decline by specify-
ing a Period to wait before response time is halved. The default is 10,000 ms (10 sec). This enables addresses that
were heavily loaded for a period of time to eventually resume accepting messages after the load subsides. For example,
server A takes 100 ms to reply, and the other servers in the same priority group reply in 25 ms. A Period to wait before
response time is halved of 10,000 ms (10 sec) means that after 20 seconds server A is retried along with the other
servers. In this case, the response time has been halved twice (100 ms / 2 / 2 = 25 ms).

Configure remote host settings

213

Advanced settings

The options available on the Advanced tab are used when creating sockets for connecting to the remote host. Default
values are provided for all fields, which should only be modified under advice from the Oracle Support Team.

You can configure the following configuration options on the Advanced tab:

Connection Timeout:
If a connection to this remote host is not established within the time set in this field, the connection times out and the con-
nection fails. Defaults to 30000 milliseconds (30 seconds).

Active Timeout:
When the API Gateway receives a large HTTP request, it reads the request off the network when it becomes available. If
the time between reading successive blocks of data exceeds the Active Timeout, the API Gateway closes the connec-
tion. This prevents a remote host from closing the connection while sending data. Defaults to 30000 milliseconds (30
seconds). For example, the remote host's network connection is pulled out of the machine while sending data to the API
Gateway. When the API Gateway has read all the available data off the network, it waits the Active Timeout period be-
fore closing the connection.

Transaction Timeout (ms):
A configurable transaction timeout that detects slow HTTP attacks (slow header write, slow body write, slow read) and
rejects any transaction that keeps the worker threads occupied for an excessive amount of time. The default value is
240000 milliseconds.

Max Received Bytes:
The maximum number of bytes received in a transaction. This is a configurable maximum length for the received data on
transactions that API Gateway can handle. This setting limits the entire amount of data received over the link, regardless
of whether it consists of body, headers, or request line. The default value is 10 MB (10485760 bytes).

Max Sent Bytes:
The maximum number of bytes sent in a transaction. This is a configurable maximum length for the transmitted data on
transactions that API Gateway can handle. This setting limits the entire amount of data sent over the link, regardless of
whether it consists of body, headers, or request line. The default value is 10 MB (10485760 bytes).

Idle Timeout:
The API Gateway supports HTTP 1.1 persistent connections. The Idle Timeout is the time that API Gateway waits after
sending a message over a persistent connection to the remote host before it closes the connection. Defaults to 15000
milliseconds (15 seconds). Typically, the remote host tells the API Gateway that it wants to use a persistent connection.
The API Gateway acknowledges this, and keeps the connection open for a specified period of time after sending the
message to the host. If the connection is not reused by within the Idle Timeout period, the API Gateway closes the con-
nection.

Input Buffer Size:
The maximum amount of memory allocated to each request. The default value is 8192 bytes.

Output Buffer Size:
The maximum amount of memory allocated to each response. The default value is 8192 bytes.

Cache addresses for (ms):
The period of time to cache addressing information after it has been received from the naming service (for example,
DNS). The default value is 300000 milliseconds.

SSL Session Cache Size:
Specifies the size of the SSL session cache for connections to the remote host. This controls the number of idle SSL
sessions that can be kept in memory. Defaults to 32. If there are more than 32 simultaneous SSL sessions, this does not
prevent another SSL connection from being established, but means that no more SSL sessions are cached. A cache size
of 0 means no cache, and no outbound SSL connections are cached.

Configure remote host settings

214

Tip
You can use this setting to improve performance because it caches the slowest part of establishing the SSL
connection. A new connection does not need to go through full authentication if it finds its target in the
cache.

At DEBUG level or higher, the API Gateway outputs trace when an entry goes into the cache, for example:

DEBUG 09:09:12:953 [0d50] cache SSL session 11AA3894 to support.acme.com:443

If the cache is full, the output is as follows:

DEBUG 09:09:12:953 [0d50] enough cached SSL sessions 11AA3894 to
support.acme.com:443 already

Input Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can accept from peers. The avail-
able content encodings include gzip and deflate. By default, the content encodings configured the Default Settings
are used. You can override this setting at the remote host and HTTP interface levels. For more details, see the topic on
Compressed content encoding.

Output Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can apply to outgoing messages.
The available content encodings include gzip and deflate. By default, the content encodings configured the Default
Settings are used. You can override this setting at the remote host and HTTP interface levels. For more details, see the
topic on Compressed content encoding.

Include correlation ID in headers:
Specifies whether to insert the correlation ID in outbound messages. This means that an X-CorrelationID header is
added to the outbound message. This is a transaction ID that is attached to each message transaction that passes
through API Gateway, and which is used for traffic monitoring in the API Gateway Manager web console. You can use
the correlation ID to search for messages in the web console, and you can also access its value from a policy using the
id message attribute. This setting is selected by default.

Configure watchdogs

You can configure an HTTP interface to shut down based on certain conditions. One such condition is dependent on the
API Gateway being able to contact a particular back-end web service running on a remote host. To do this, you can con-
figure an HTTP Watchdog for a remote host to poll the endpoint. If the endpoint cannot be reached, the HTTP interface
is shut down.

To configure the API Gateway to shut down an HTTP interface based on the availability of a remote host, perform the fol-
lowing steps:

1. Configure an HTTP Watchdog for the remote host.
2. Configure a Requires Endpoint condition on the HTTP interface.
3. When configuring this condition, select the remote host configured in step 1 (the host with the associated Watch-

dog).

Note
When Load Balancing is configured as Weighted by response time, and remote host watchdogs are
configured, the watch dog polling also contributes to the load balancing calculations.

Configure remote host settings

215

For more information on adding a watchdog to a remote host, see Configure HTTP watchdog. For more information on
adding conditions to an HTTP interface, see Configure conditions for HTTP interfaces.

Configure an incoming remote host

A remote host is normally used to configure specific connection features for the outward connection, that is, for the con-
nection from API Gateway to the backend service. However, you can also configure a remote host for an incoming con-
nection, that is, for the connection from the client to API Gateway.

To configure an incoming remote host, configure the following settings on the General tab of the remote host settings:

1. Enter incoming in the Port field.

For an incoming connection, the port is referring to the remote address of the TCP connection. Incoming connec-
tions arrive from effectively arbitrary remote ports, so this acts as a wildcard for all incoming connections.

2. Enter the IP address of the host in the Host name field, rather than the DNS name.

A CIDR style netmask can be specified (for example, 192.168.0.0/24 will match any address in the
192.168.0.x range). This works on a longest-match basis if more than one network specification matches the cli-
ent.

Configure remote host settings

216

Configure WebSocket connections
WebSocket protocol overview

The WebSocket protocol provides an extension to the HTTP 1.1 protocol to establish persistent, bidirectional communic-
ation between a client and a server.

The WebSocket protocol can be summarized as follows:

1. To establish a communication channel between a client and a server, the client needs to send an HTTP Upgrade
request to the server. This is known as the WebSocket protocol handshake.

2. If the server is capable and willing to upgrade the connection, it sends a HTTP 101 response to the requesting cli-
ent. At this point the handshake is considered successful and the connection between the server and the client is
upgraded to the WebSocket protocol.

Note
As soon as the client receives the HTTP 101 response the connection is no longer considered an HT-
TP connection.

3. Messages can now flow bidirectionally between the server and the client over the WebSocket connection.
4. Any participant in the data exchange can request the WebSocket connection be terminated by sending a Close re-

quest to the other participant.

For a detailed description of the protocol, see RFC 6455 [http://tools.ietf.org/html/rfc6455].

Configure a WebSocket connection

API Gateway can act as a WebSocket proxy, whereby it is deployed in front of a WebSocket capable web server (for ex-
ample, Jetty or Apache Tomcat) and provides governance (security, monitoring, and so on) on the WebSocket traffic
flowing between the client, API Gateway, and the web server.

Each WebSocket server that API Gateway is routing to must be defined as an HTTP/1.1 remote host. To add a remote
host to an API Gateway instance, right-click the API Gateway instance in the Policy Studio tree view, and select Add Re-
mote Host. For more information, see Configure remote host settings.

For example, if API Gateway is proxying WebSocket traffic to the URL http://echo.websocket.org/, then you
would configure a remote host as shown in the following figure:

217

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

To enable API Gateway to accept an HTTP Upgrade request from a client you must add a WebSocket handler to your
API Gateway configuration and configure it with the HTTP path that the upgrade can be expected on.

To add a WebSocket handler, follow these steps:

1. In the Policy Studio tree, select a list of relative paths (for example, Listeners > API Gateway > Default Services >
Paths).

2. In the Resolvers window on the right, click Add > WebSocket to display the WebSocket configuration dialog.

WebSocket configuration settings

Configure the following fields on the WebSocket configuration dialog:

Enable this path resolver:
Select or deselect the check box to enable or disable the WebSocket handler. It is enabled by default.

Policies settings

You can assign specific policies on this tab to specific URIs that define the WebSocket endpoints. For example, you
might need to handle frames being exchanged between a client and ws://example.org/echo differently to frames
being exchanged between a client and ws://example.org/voip.

Note
In the above scenario, different sets of policies need to be defined for each URI (/echo and /voip). This
requires different relative paths. For more information on relative paths, see Configure relative paths.

Configure WebSocket connections

218

When a request arrives that matches the path:
Enter the path on which WebSocket connections are to be accepted. This defines the URI of the WebSocket endpoint. A
relative path resolver for this path must already exist.

Default MIME type for message body:
Enter the MIME type of the messages. The default is application/json.

When messages are flowing bidirectionally between a WebSocket server and client, they are no longer HTTP messages
and as such they do not contain a Content type header. For API Gateway to process the content of the message it needs
to know what type of content the message is. This field enables you to specify the type of message being exchanged
between the server and the client.

On Upgrade request from client:
Click the browse button to select a policy to be used by API Gateway when an Upgrade request is received.

This policy is executed when a connection is being upgraded from HTTP to WebSocket. For example, you might static-
ally route all WebSocket requests to ws://example.org to wss://example.com by using a policy. A policy for an
HTTP connection must be provided and this policy must provide a mechanism to connect to the remote server.

For example, to route all requests to ws://example.org to wss://example.com, you can use the Static Router fil-
ter. Similarly, for dynamic routing you can use the Dynamic Router or Connect to URL filters. In the latter case, the re-
mote host that the client is attempting to connect to can be extracted from the Host header of the request. This value can
then be passed to the Connect to URL filter and used by that filter to establish a connection to the remote host.

The on upgrade policy is also a good place to perform authentication and authorization of the requesting client.

On WebSocket communication from client:
Click the browse button to select a policy to be used by API Gateway when frames are received from the WebSocket cli-
ent.

On WebSocket communication from server:
Click the browse button to select a policy to be used by API Gateway when frames are received from the WebSocket
server.

Note
After a successful upgrade request, the context used to upgrade the connection from HTTP to WebSocket
protocol is accessible to the policies called for specific frames. This context is not shared between different
WebSocket connections and it is destroyed when the connection is closed. The context contains all the
message attributes (including authorization and authentication data) used by the upgrade request. This
context should be accessed by the server and client policies in read only mode.

The following figure shows the flow of messages between the client, API Gateway, and the server in a typical WebSocket
communication. It also shows at which point each of the API Gateway policies are called.

Configure WebSocket connections

219

Connection expire time:
Enter a numerical value and choose the units from the list. The available options are: seconds, minutes, hours, and days.
The default value is 0, which means unlimited.

This is the absolute time for the connection to be active. For example, if this value is set to 1 hour, then after 1 hour the
connection is dropped by API Gateway even if the connection is still active (frames are being sent).

Tip
You can define an idle timeout for the connection as a part of the remote host configuration.

Advanced settings

For details on the fields on this tab, see the section called “Advanced settings” in the Configure relative paths topic.

Configure WebSocket connections

220

CORS settings

For details on the fields on this tab, see the section called “CORS settings” in the Configure relative paths topic.

Monitor a WebSocket connection

You can use the API Gateway Manager web console to monitor WebSocket traffic. You can view the initial HTTP Up-
grade request and response on the Traffic > HTTP tab. You can view all the WebSocket frames processed by API
Gateway on the Traffic > WebSockets tab.

To view all the WebSocket frames processed by API Gateway in API Gateway Manager, follow these steps:

1. Click the Traffic button at the top of the window.
2. Click the WebSockets tab.

A view of all WebSocket frames sent from or received by API Gateway is displayed.

Tip
A message might consist of one or more frames.

3. Click a message frame to see a detailed view of the content. For example, if you click a frame sent from the client to
the server, the origin, opcode (interpretation of the payload data), duration, length of the data, key used to mask the
data, and payload itself are shown.

For more information on traffic monitoring using the API Gateway Manager web console, see the API Gateway Adminis-
trator Guide.

Configure WebSocket connections

221

Configure HTTP watchdog
Overview

An HTTP Watchdog can be added to a Remote Host configuration in order to periodically poll the Remote Host to check
its availability. The idea being that if the Remote Host becomes unavailable for some reason, a HTTP Interface can be
brought down and will stop accepting requests. Once the Remote Host comes back online, the HTTP Interface will be
automatically started up and will start accepting requests again.

To learn more about the reasons for shutting down an HTTP Interface if certain conditions do not hold, see Configure
conditions for HTTP interfaces.

To configure an HTTP Watchdog, right-click a previously configured Remote Host in the Policy Studio tree, select
Watchdog > Add, and configure the settings in the dialog.

Configuration

Valid HTTP Response Code Ranges:
You can use this section to specify the HTTP response codes that you will regard as proof that the Remote Host is avail-
able. For example, if a 200 OK HTTP response is received for the poll request, the Remote Host can be considered
available.

To specify a range of HTTP status codes, click the Add button and enter the Start and End of the range of HTTP re-
sponse codes in the fields provided. An exact response code can be specified by entering the response code in both
fields (for example, 200).

HTTP Request for Polling:
The fields in this section enable you to configure the type and URI of the HTTP request to poll the Remote Host with. The
default is the Options HTTP command with a URI of *, which is typically used to retrieve status information about the HT-
TP server. If you wish to use an alternative HTTP request to poll the Remote Host, select an HTTP request method from
the Method, and specify the URI field.

Remote Host Polling:
The settings in this section determine when and how the HTTP Watchdog polls the Remote Host. The Poll Frequency
determines how often the Watchdog is to send the polling request to the Remote Host.

By default, the Watchdog uses real HTTP requests to the Remote Host to determine its availability. In other words, if the
API Gateway is sending a batch of requests to the Remote Host it will use the response codes from these requests to
decide whether or not the Remote Host is up. Therefore, the Watchdog effectively "polls" the Remote Host by sending
real HTTP requests to it.

If you want to configure the Watchdog to send poll requests during periods when it is not sending requests to and receiv-
ing responses from the Remote Host, you select Poll if up. In this case, the Watchdog uses real HTTP requests to poll
the Remote Host as long as it sends them, but starts sending test poll requests when it is not sending HTTP requests to
the Remote Host to test its availability.

Important
When a Remote Host is deemed to be down (an invalid HTTP response code was received) the Watchdog
will continue to poll it at the configured Poll Frequency until it comes back up again (until a valid HTTP re-
sponse code is received).

222

Configure conditions for HTTP interfaces
Overview

In certain cases, it may be desirable to pull down the HTTP Interface that accepts traffic for the API Gateway. For ex-
ample, if the back-end Web service is unavailable or if the physical interface on the machine loses connectivity to the
network, it is possible to shut down the HTTP Interface so that it stops accepting requests.

A typical scenario where this functionality proves useful is as follows:

• A load balancer sits in front of several running instances of the API Gateway and round-robins requests between
them all.

• A client sends SSL requests through the load balancer, which forwards them opaquely to one of the API Gateway in-
stances.

• The API Gateway terminates the SSL connection, processes the message with the configured policy, and forwards
the request on to the back-end Web service.

In this deployment scenario, the load balancer does not want to keep sending requests to an instance of the API Gate-
way if it has either lost connectivity to the network or if the back-end Web service is unavailable. If either of these condi-
tions hold, the load balancer should stop attempting to route requests through this instance of the API Gateway and use
the other instances instead.

So then, how can the load balancer determine the availability of the Web service and also the connectivity of the ma-
chine hosting the API Gateway to the network on which the Web service resides? Given that the request from the client
to the API Gateway is over SSL, the load balancer has no way of decrypting the encrypted SSL data to determine wheth-
er or not a SOAP Fault, for example, has been returned from the API Gateway to indicate a connection failure.

The solution is to configure certain conditions for each HTTP Interface, which must hold in order for the HTTP Interface
to remain available and accept requests. If any of the associated conditions fail, the Interface will be brought down and
will not accept any more requests until the failed condition becomes true and the HTTP Interface is restarted. Once the
load balancer receives a connection failure from the API Gateway (which it will when the HTTP Interface is down) it will
stop sending requests to this API Gateway and will choose to round-robin requests amongst the other instances instead.

The following conditions can be configured on the HTTP Interface:

• Requires Endpoint:
The HTTP Interface will remain up only if the Remote Host is available. The Remote Host is polled periodically to de-
termine availability so that the HTTP Interface can be brought back up automatically when the Remote Host be-
comes available again.

• Requires Link:
The HTTP Interface will remain up only if a named physical interface has connectivity to the network. As soon as a
"down" physical interface regains connectivity, the HTTP Interface will automatically come back up again.

Conditions can be configured for an HTTP Interface by right clicking on the HTTP Interface (e.g. "*:8080") node under
the API Gateway instance node in the tree view of the Policy Studio. Select the Add Condition menu option and then
either the Requires Endpoint or Requires Link option depending on your requirements. The sections below describe
how to configure these conditions.

Configure Requires Endpoint condition

A Requires Endpoint Condition can be configured in cases where you only want to keep the HTTP Interface up if the
back-end Web service (the Remote Host) is available. An HTTP Watchdog can be configured for the Remote Host,
which is then responsible for polling the Remote Host periodically to ensure that the Web service is available. Take a
look at the Configure remote host settings and Configure HTTP watchdog help pages for more information.

223

Remote Host:
The HTTP Interface will be shut down if the Remote Host selected here is deemed to be unavailable. The Remote Host
can be continuously polled so that the Interface can be brought up again when the Remote Host becomes available
again.

Configure Requires Link condition

The Requires Link Condition is used to bring down the HTTP Interface if a named physical network interface is no
longer connected to the network. For example, if the cable is removed from the ethernet switch, the dependent HTTP In-
terface will be brought down immediately. The HTTP Interface will only start listening again once the physical interface is
connected to the network again (i.e. when the ethernet cable is plugged back in).

Important
The Requires Link Condition is only available on Linux and Solaris platforms.

Interface Name:
The HTTP Interface will be brought down if the physical network interface named here is no longer connected to the net-
work. On Unix platforms, physical network interfaces are usually named "eth0", "eth1", and so on. On Solaris machines,
interfaces are named according to the vendor of the network card, for example, "bge0", "bge1", etc.

Configure conditions for HTTP interfaces

224

Configure a POP client
Overview

The API Gateway POP Client enables you to poll a Post Office Protocol (POP) mail server and read email messages
from it. When the messages have been read, they can be passed into the core message pipeline where the full collection
of message processing filters can act on them.

Configuration

You can configure a POP Client by right-clicking an API Gateway instance node under the Listeners node in the Policy
Studio tree, and selecting the POP Client > Add menu option. Complete the following fields on the POP Mail Server dia-
log:

Server Name:
Enter the hostname or IP address of the POP mail server.

Port:
Enter the port on which the POP server is listening. By default, POP servers listen on port 110.

Connection Security:
Select the security used to connect to the POP server (SSL, TLS, or NONE). Defaults to NONE.

User Name:
Enter the user name of a configured mail user for this POP server.

Password:
Enter the password for this user.

Poll Rate:
Enter the rate at which the instance polls the mail server in milliseconds.

Delete Message from Server:
Specifies whether the POP server deletes email messages after they have been read by the instance. This setting is se-
lected by default.

Email Debugging
Select this setting to find out more information about errors encountered by the API Gateway when polling the POP serv-
er. All trace files are written to the /trace directory of your the API Gateway installation. This setting is not selected by
default.

Policy to Use:
Select the policy that you want to use to process messages that have been read from the POP server.

225

TIBCO integration
Overview

The API Gateway ships with in-built support for TIBCO Rendezvous. The API Gateway can both produce and consume
messages for TIBCO Rendezvous. This topic describes how to integrate TIBCO Rendezvous.

TIBCO Rendezvous integration

The API Gateway can act as a producer and a consumer of TIBCO Rendezvous messages. In both cases, a Rendez-
vous daemon must be configured. This is responsible for communicating with other Rendezvous programs on the net-
work.

Producing TIBCO Rendezvous Messages:
You must configure the following steps to produce messages and send them to another Rendezvous program:

• Configure TIBCO Rendezvous daemons
• Route to TIBCO Rendezvous

Consuming TIBCO Rendezvous Messages:
A TIBCO Rendezvous Listener can be configured at the API Gateway instance level to consume Rendezvous messages.
You must configure the following steps to consume Rendezvous messages:

• Configure TIBCO Rendezvous daemons
• TIBCO Rendezvous listener

226

Cryptographic acceleration
Overview

The API Gateway uses OpenSSL to perform cryptographic operations, such as encryption and decryption, signature
generation and validation, and SSL tunneling. OpenSSL exposes an Engine API, which makes it possible to plug in al-
ternative implementations of some or all of the cryptographic operations implemented by OpenSSL. When configured ap-
propriately, OpenSSL calls the engine's implementation of these operations instead of its own.

For example, a particular engine may provide improved implementations of the asymmetric operations RSA and DSA.
This engine can then be plugged into OpenSSL so that whenever OpenSSL needs to perform either an RSA or DSA op-
eration, it calls out to the engine's implementation of these algorithms rather than call its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware im-
plementation usually offers improved performance over its software-based counterpart, which is known as cryptographic
acceleration.

Cryptographic acceleration can be configured at the instance level in the API Gateway. To configure the API Gateway in-
stance to use an OpenSSL engine instead of the default OpenSSL implementation, right-click the instance in the tree-
view in Policy Studio, and select the Cryptographic Acceleration > Add OpenSSL Engine.

General configuration

The OpenSSL Engine Configuration dialog:

The dialog displays the name of the engine, the algorithms that it implements, together with any initialization and cleanup
commands required by the engine. Complete the following fields:

Name:
Enter an appropriate name for the engine in this field.

Provides:
Enter a comma-separated list of cryptographic operations to be performed by the engine instead of OpenSSL. The en-
gine must implement the listed operations, otherwise the default OpenSSL operations are used. The following operations
are available:

RSA RSA (Rivest Shamir Adleman) asymmetric algorithm

DSA DSA (Digital Signature Algorithm) asymmetric algorithm

RAND Random number generation

DH Diffie-Hellman anonymous key exchange algorithm

ALL Engine's implementation of all cryptographic algorithms

For example, if you want to configure the API Gateway to use the engine's implementation of the RSA, DSA, and DH al-
gorithms only, enter the following in the Provides field:

RSA, DSA, DH

Commands:
The OpenSSL engine framework allows a number of control commands to be invoked at various stages in the loading
and unloading of a specific engine library. These commands can be issued before and/or after the initialization of the en-

227

gine, and also before and/or after the engine is un-initialized. Control commands are based on text name-value pairs.

Typical uses for control commands include specifying the path to a driver library, logging configuration information, a
password to access a protected devices, a configuration file required by the engine, and so on.

OpenSSL control commands can be added by clicking the Add button. The OpenSSL Engine Command:

Enter the name of the command in the Name field, and its value in the Value field. This command must be supported by
the engine.

Use the When drop-down list to select when the command is to be run. The options available are as follows:

preInit Command is run before the engine is initialized (before the call to EN-
GINE_init()).

postInit Command is run after the engine is initialized (after the call to
ENGINE_init()).

preShutdown Command is run before the engine shuts down (before the call to EN-
GINE_finish()).

postShutdown Command is run after the engine shuts down (after the call to EN-
GINE_finish().

Conversations for crypto engines

A Hardware Security Module (HSM) protects the private keys that it holds using a variety of mechanisms, including phys-
ical tokens, passphrases, and other methods. When use of the private key is required by an agent, it must authenticate
itself with the HSM, and be authorized to access this data.

For information on how the API Gateway interacts with the HSM, see the Cryptographic acceleration conversation: re-
quest-response topic.

Cryptographic acceleration

228

Cryptographic acceleration conversation: request-response
Conversations for crypto engines

Hardware Security Modules (HSM) protect the private keys they hold using a variety of mechanisms, including physical
tokens, passphrases, and other methods. When use of the private key is required by some agent, it must authenticate it-
self with the HSM, and be authorized to access this data.

Whatever the mechanism protecting the keys on the HSM, this commonly requires some interaction with the agent. The
most common form of interaction required is for the agent to present a passphrase. The intent is generally that this is car-
ried out by a real person, rather than produced mechanically by the agent. Other forms of interaction may include
prompting the operator to insert a specific card into a card reader.

However, the requirement for an operator to enter a passphrase renders automated startup of services using the HSM
impossible. Although weaker from a security standpoint, the server can conduct an automated dialog with a HSM when it
requires access to a private key, presenting specific responses to specific requests, including feeding passphrases to it.
Of course, this is futile if the dialog calls for the insertion of a physical token in a device.

The dialog for different keys on the same device is often the same. For example, a number of keys on an nCipher HSM
may require the server to present an operator passphrase for a pre-inserted card in a card-reader. The specific dialogs
are therefore associated with the cryptographic engine.

Each dialog consists of a set of expected request-generated response pairs. The expected request takes the form of a
regular expression. When the cryptographic device prompts for input, the text of this prompt is compared against each
expected request in the conversation, until a match is found. When matched, the corresponding generated response is
delivered to the HSM.

In the simplest case, consider a HSM producing the following prompt:

Enter passphrase for operator card Operator1:

You can identify this, for example, with the following regular expression:
"passphrase.*Operator1"

In the configured conversation, you can make the expected response to this prompt the passphrase for the specific card,
for example:
"tellNoOne"

The server is somewhat at the mercy of the HSM for how this dialog continues. If the HSM continues to prompt for re-
quests, the server can only attempt to respond. You may set the maximum expected challenge setting on the conversa-
tion to indicate a maximum number of prompts to expect from the HSM, at which point the server does its best to termin-
ate the conversation, almost certainly failing to load the affected key.

229

TIBCO Rendezvous listener
Overview

TIBCO Rendezvous® is the leading low latency messaging product for real-time high throughput data distribution applica-
tions. A message can be sent from the TIBCO daemon running on the local machine to a single TIBCO daemon running
on a separate host machine or it can be broadcast to several daemons running on multiple machines. Each message
has a subject associated with it, which acts as the destination of the message.

A listener, which is itself a TIBCO daemon, can declare an interest in a subject on a specific daemon. Whenever a mes-
sage is delivered to this subject on the daemon the message will be delivered to the listening daemon.

The API Gateway can act as a listener on a specific subject at a TIBCO daemon, in which case it said to be acting as a
consumer of TIBCO messages. Similarly, it can also send messages to a TIBCO daemon, effectively acting as a produ-
cer of messages. For more information on how to send messages to other TIBCO Rendezvous programs, see the Route
to TIBCO Rendezvous filter.

Configuration

A TIBCO Rendezvous Listener is configured at the API Gateway instance level in the Policy Studio. To add a listener,
right-click the API Gateway instance in the tree view of the Policy Studio. Select the TIBCO > Rendezvous Listener >
Add option from the context menu. Configure the following fields on the TIBCO Rendezvous Listener dialog:

TIBCO Settings Tab:
Enter the name of the subject that you want this consumer to listen for in the Rendezvous Subject field. Only messages
addressed with this subject are consumed by the listener.

Click the button next to the TIBCO Rendezvous Daemon to use field, and select a previously configured TIBCO Ren-
dezvous Daemon to communicate with other TIBCO programs. To add a TIBCO Rendezvous Daemon, right-click the
TIBCO Rendezvous Daemons tree node, and select Add a TIBCO Rendezvous Daemon. For more details, see the
Configure TIBCO Rendezvous daemons topic.

Policy to Use:
When messages with the specified subject have been consumed they must be passed into a policy where they can be
processed accordingly. Select the policy that you want to use to process consumed messages from the tree.

230

External connections
Overview

The API Gateway can leverage your existing Identity Management infrastructure, thus avoiding the need to maintain sep-
arate silos of user information. For example, if you already have a database full of user credentials, the API Gateway can
authenticate requests against this database, rather than using its own internal user store. Similarly, the API Gateway can
authorize users, lookup user attributes, and validate certificates against third-party Identity Management servers.

You can add a connection to an external system as a global external connection in the Policy Studio so that it can be re-
used across all filters and policies. For example, if you create a policy that authenticates users against an LDAP direct-
ory, and then validates an XML signature by retrieving a public key from the same LDAP directory, it makes sense to cre-
ate a global external connection for that LDAP directory. You can then select the LDAP connection in both the authentic-
ation and XML signature verification filters, rather than having to reconfigure them in both filters.

You can also use external connections to configure a group of related URLs. This allows you to round-robin between a
number of related URLs to ensure high availability. When the API Gateway is configured to use a URL connection set
(instead of a single URL), it round-robins between the URLs in the set.

To configure external connections, right-click the appropriate node (for example, Database Connections) under the Ex-
ternal Connections node in the Policy Studio tree. This topic introduces the different types of external connection and
shows where to obtain more details.

Authentication repository profiles

The API Gateway can authenticate users against external databases and LDAP repositories, in addition to its own local
user store. You can also use a number of bespoke authentication connectors to enable the API Gateway to authenticate
against specific third-party Identity Management products.

Connection details for these authentication repositories are configured at a global level, making them available for use
across authentication (and authorization) filters. This saves the administrator from reconfiguring connection details in
each filter.

For example, the available authentication repository types include the following:

• CA SiteMinder Repositories
• Database Repositories
• Entrust GetAccess Repositories
• LDAP Repositories
• Local Repositories (for example, Local User Store)
• Oracle Access Manager Repositories
• Oracle Entitlements Server Repositories
• RADIUS Repositories
• RSA Access Manager Repositories
• Tivoli Repositories

For details how to configure the various authentication repository types, see Authentication repository.

Client credentials

Client credentials allow you to configure client authentication settings at a global level. You can configure a client creden-
tial profile for the following authentication options:

231

• API keys as a client
• HTTP basic
• Kerberos
• OAuth 2.0 as a client

After configuring a client credential profile globally, you can select that profile for use at the filter level (for example, in the
Connection or Connect To URL filters).

To add a client credential profile for a particular authentication mechanism, right-click the appropriate node under the Cli-
ent Credentials node under the External Connections node. For more details, see Configure client credentials.

Connection sets

Connection sets are used by the API Gateway to round-robin between groups of external servers (for example, RSA Ac-
cess Manager). You can reuse these global groups when configuring connections to external servers in the Policy Stu-
dio. For this reason, connection sets are available under the External Connections node according to the filter from
which they are available. For example, connection sets under the RSA ClearTrust Connection Sets node are available
in the RSA Access Manager filter.

At runtime, the API Gateway can round-robin between the servers in the group to ensure that if one of the servers be-
comes unavailable, the API Gateway can use one of the other servers in the group.

To add a connection set for a particular category of filters, right-click the appropriate node under the Connection Sets
node under the External Connections node. Select Add a Connection Set to display the Connection Group dialog.
For more details, see Configure connection groups.

Database connections

The API Gateway typically connects to databases to authenticate or authorize users using the API Gateway's numerous
Authentication and Authorization filters. Similarly, the API Gateway can retrieve user attributes from a database (for ex-
ample, which can then be used to generate SAML attribute assertions later in the policy). You can configure database
connections globally under the External Connections node, making them available to the various filters that require a
database connection. This means that an administrator can reuse the same database connection details across multiple
authentication, authorization, and attribute-based filters.

The API Gateway maintains a JDBC pool of database connections to avoid the overhead of setting up and tearing down
connections to service simultaneous requests. This pool is implemented using Jakarta DBCP (Database Connection
Pools). The settings in the Advanced section of the Configure Database Connection dialog are used internally by the
API Gateway to initialize the connection pool. The table at the end of this section shows how the fields correspond to
specific configuration DBCP settings.

To configure details for a global database connection, right-click the External Connections > Database Connections
node. Select the Add a Database Connection menu option, and configure the fields on the Configure Database Con-
nection dialog. For details on configuring these fields, see Configure database connections.

ICAP servers

The Internet Content Adaptation Protocol (ICAP) is a lightweight HTTP-based protocol used to optimize proxy servers,
which frees up resources and standardizes how features are implemented. For example, ICAP is typically used to imple-
ment features such as virus scanning, content filtering, ad insertion, or language translation in the HTTP proxy cache.

When an ICAP Server is configured under the External Connections node, you can then select it in multiple ICAP fil-
ters. For details on how to configure an ICAP Server, see Configure ICAP servers.

JMS services

The Java Message Service (JMS) is a Java message-oriented middleware API for sending messages between two or

External connections

232

more clients. When a JMS Service is configured under the External Connections node, it is available for selection in
multiple JMS-related configuration screens. This enables you to share JMS configuration across multiple filters.

For more details on configuring JMS services, see Configure messaging services.

Kerberos connections

You can configure global Kerberos Clients, Kerberos Services, and Kerberos Principals under the External Con-
nections node. When a Kerberos item is configured, it is available for selection in all Kerberos-related configuration
screens that require this item. This enables you to share Kerberos configuration items across multiple filters.

For more details, see the following topics:

• Configure Kerberos clients
• Configure Kerberos services
• Configure Kerberos principals

LDAP connections

In the same way that database connections can be configured globally in the Policy Studio (and then reused across indi-
vidual filters), LDAP connections are also managed globally in the Policy Studio. LDAP connections are used by authen-
tication, authorization, and attribute filters. Filters that require a public key (from a public-private key pair) can also re-
trieve the key from an LDAP source.

When a filter that uses an LDAP directory is run for the first time, it binds to the LDAP directory using the connection de-
tails configured on the Configure LDAP Server dialog. Usually the connection details include the user name and pass-
word of an administrator user who has read access to all users in the LDAP directory for whom you wish to retrieve at-
tributes or authenticate.

For details on how to configure a global LDAP connection, see Configure LDAP directories.

Proxy servers

You can configure proxy servers under the External Connections node, which can then be specified in the Connection
and Connect To URL filters. When configured, the filter connects to the proxy server, which routes the message to the
destination server.

To configure a proxy server, click the External Connections node, and select Proxy Servers > Add a Proxy Server.
For details on how to configure the settings the Proxy Server Settings dialog, see Configure proxy servers.

RADIUS clients

The Remote Authentication Dial In User Service (RADIUS) protocol provides centralized authentication and authorization
for clients connecting to remote services.

To configure a client connection to a remote server over the RADIUS protocol, click the External Connections node,
and select RADIUS Clients > Add a RADIUS Client. For details on how to configure the settings the RADIUS Client
dialog, see the Configure RADIUS clients.

For details on how to configure a RADIUS Authentication Repository, see the Authentication repository topic.

SiteMinder

To add a CA SiteMinder connection, right-click the SiteMinder/SOA Security Manager node under the External Con-
nections node, and select Add a SiteMinder Connection to display the SiteMinder Connection Details dialog. For
details on configuring the fields on this dialog, see Configure SiteMinder/SOA Security Manager connections.

External connections

233

SMTP servers

You can configure a Simple Mail Transfer Protocol (SMTP) server as a global configuration item under the External
Connections node. The SMTP filter in the Routing category can then reference this SMTP server. To configure an
SMTP server, right-click the External Connections > SMTP Servers node, and select Add an SMTP Server. For more
details, see Configure SMTP servers.

SOA Security Manager

To add a CA SOA Security Manager connection, right-click the External Connections > SiteMinder/SOA Security
Manager node, and select Add a SOA Security Manager Connection to display the SOA Security Manager Connec-
tion Details dialog. For details on configuring the fields on this dialog, see Configure SiteMinder/SOA Security Manager
connections.

Syslog servers

You can configure syslog servers globally, and then select them as a customized logging destination for an API Gateway
instance. Right-click the External Connections > Syslog Servers node, and select Add a Syslog Server. Complete
the following fields on the Syslog Server dialog:

Name:
Enter an appropriate name for the syslog server.

Host:
Enter the host and UDP port on which the syslog daemon is running. Enter in the format of
host_ip_address:udp_port (for example, 192.0.2.0:514). Alternatively, you can enter host_ip_address only,
and the default port of 514 is used.

Facility:
Select the syslog facility to log to (for example, local0).

Note
For details on how to configure the API Gateway instance to enable logging to this remote syslog server,
see the API Gateway Administrator Guide.

TIBCO

You can add a connection to TIBCO Rendezvous Daemon. To add a connection, right-click the External Connections >
TIBCO Rendezvous Daemon node in the tree, and select Add a TIBCO Rendezvous Daemon. For details on configur-
ing the fields on the dialog, see Configure TIBCO Rendezvous daemons.

Tivoli

You can create a connection to an IBM Tivoli server to enable integration between the API Gateway and Tivoli Access
Manager. Tivoli connections can then be used by the API Gateway's Tivoli filter to delegate authentication and authoriza-
tion decisions to Tivoli Access Manager, and to leverage existing Tivoli Access Manager policies.

To add a Tivoli connection, right-click the External Connections > Tivoli Connections node in the tree, and select Add
a Tivoli Connection. For details on configuring the fields on the Tivoli Configuration dialog, see Tivoli integration.

URL connection sets

URL connection sets are used by API Gateway filters to round-robin between groups of external servers (for example,
Entrust GetAccess, SAML PDP, or XKMS). These global groups can then be reused when configuring these filters in the
Policy Studio. For this reason, URL connection sets are available under the External Connections node in the tree, ac-
cording to the filters from which they are available. For example, URL sets under the XKMS URL Sets node are only

External connections

234

available from the XKMS Certificate Validation filter.

At runtime, the API Gateway can round-robin between the servers in the group to ensure that if one of the servers be-
comes unavailable, the API Gateway can use one of the other servers in the group.

To add a URL connection set for a particular category of filters, right-click the appropriate node under the External Con-
nections > URL Connection Sets node in the tree. Select the Add a URL Set option to display the URL Group dialog.
For more details, see Configure URL groups.

XKMS connections

The API Gateway can also validate certificates against an XKMS (XML Key Management Service) responder or group of
responders. An XKMS Connection consists of a group of XKMS responders to validate certificates against, coupled with
the signing key to use for signing requests to each of the responders in the group.

To add a global XKMS Connection, right-click the External Connections > XKMS Connection node in the tree, and se-
lect the Add an XKMS Connection option to display the Certificate Validation - XKMS dialog. For more details, see
XKMS certificate validation.

All global XKMS Connections are available for selection when configuring the Certificate Validation - XKMS filter. This
saves the administrator from reconfiguring XKMS connection details across multiple filters.

External connections

235

Authentication repository
Overview

The API Gateway supports a wide range of common authentication schemes, including SSL, XML Signatures, WS-
Security Username tokens, and HTTP Authentication. With SSL, the client authenticates to the API Gateway using a cli-
ent certificate. With XML Signatures, the client is authenticated by validating the signature contained within the XML
message. However, when the API Gateway attempts to authenticate a client using a user name and password (for ex-
ample, WS-Security Username tokens and HTTP Authentication), it must compare the user name and password presen-
ted by the client to those stored in the Oracle Authentication Repository.

The Authentication Repository acts as a repository for Users. Users serve many roles in the API Gateway. For ex-
ample, clients whose user name and password combinations are stored in the Authentication Repository can authen-
ticate to the API Gateway using that user name and password combination. For more information on Users, see the
Manage API Gateway users topic.

The Authentication Repository can be maintained in the API Gateway's local configuration store, in an LDAP directory,
or in a range of third-party Identity Management products and services. When a user has been successfully authentic-
ated against one of these repositories, the API Gateway can use any one of that user's stored attributes (for example,
DName, email address, user name) to authorize that same user in a subsequent Authorization Filter.

For example, this credential mapping is useful in cases where your client-base uses user name and password combina-
tions for authentication (authentication attributes), yet their access rights must be looked up in an authorization server us-
ing the client's DName (authorization attribute). In this way, the client possesses a single virtual identity within the API
Gateway. The client can use one identity for authentication, and another for authorization, yet the API Gateway sees
both identities as representing the same client.

You can add a new repository under the External Connections node in the Policy Studio tree by right-clicking the ap-
propriate node (for example, Database Repositories), and selecting Add a new Repository. Similarly, you can edit an
existing repository by right-clicking the repository node (for example, the default Local User Store), and selecting Edit
Repository. Repositories added under the External Connections node are available for reuse by multiple filters.

Axway PassPort repositories

The API Gateway can integrate with Axway PassPort to authenticate and authorize users for resources. To authenticate
users against an Axway PassPort repository, right-click Axway PassPort Repositories, and select Add a new Reposit-
ory.

For more details on configuring a connection to an Axway PassPort repository, see Axway PassPort authentication re-
pository. For details on integrating with Axway PassPort using an authorization filter, see Axway PassPort authorization.

CA SiteMinder repositories

In cases where user profiles have been stored in an existing SiteMinder server, the API Gateway can query SiteMinder
to authenticate users.

To authenticate users against a CA SiteMinder repository, right-click CA SiteMinder Repositories, and select Add a
new Repository. Complete the following fields on the Authentication Repository dialog:

Repository Name:
Enter a suitable name for this repository.

Agent Name:
Select a previously configured SiteMinder Agent name from the drop-down list. Click Add to register a new agent. Com-
plete the following fields in the SiteMinder Connection Details dialog:

236

• Agent Name:
Enter the name of the agent to connect to SiteMinder in the Agent Name field. This name must correspond with the
name of an agent that was previously configured in the Policy Server.

• Agent Configuration Object:
The name entered must match the name of the Agent Configuration Object (ACO) configured in the Policy Server.
The API Gateway currently does not support any of the features represented by the ACO parameters except for the
PersistentIPCheck setting. For example, the API Gateway disregards the DefaultAgent parameter and uses
the agent value it collects separately during agent registration.
When the PersistentIPCheck ACO parameter is set to yes, it instructs the API Gateway to compare the IP ad-
dress from the last request (stored in a persistent cookie) with the IP address in the current request to see if they
match. If the IP addresses do not match, the API Gateway rejects the request. If this parameter is set to no, this
check is disabled.

• Connection Details:
For more information on configuring this section, please refer to the instructions in the SiteMinder Connection De-
tails section in SiteMinder certificate authentication.

Resource:
Enter the name of the protected resource for which the user must be authenticated.

Alternatively, you can enter a selector representing a message attribute, which is looked up and expanded to a value at
runtime. Message attribute selectors have the following format:

${message.attribute}

For example, to specify the original path on which the request was received by the API Gateway as the resource, enter
the following selector:

${http.request.uri}

Action:
The user must be authenticated for a specific action on the protected resource. By default, this action is taken from the
HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, you can enter any user-specified value. For more details on selectors, see Select configuration values at
runtime.

Create Single Sign-On Token:
When this option is selected, SiteMinder generates a single sign-on token as part of the authentication event and returns
it to the API Gateway. This is then inserted into the downstream message for re-use later, either by another instance of
the API Gateway running the SiteMinder Session Validation filter, or by another SiteMinder-aware agent.

Put Token in Message Attribute:
Enter the name of the message attribute where you wish to store the single sign-on token. By default, the token is stored
in the siteminder.session attribute.

Database repositories

The API Gateway can store its Authentication Repository in an external database. This option makes sense when an
organization already has a silo of user profiles stored in the database and does not want to duplicate this store within the
API Gateway's local configuration storage.

Authentication repository

237

To authenticate users against a database repository, right-click Database Repositories, and select Add a new Reposit-
ory. Complete the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for the database in the Repository Name field.

Database:
There are two basic configuration items required to retrieve a user's profile from the database:

• Database Location:
You can configure connection details for the database by clicking Add, and completing the Database Connection
dialog. For details on configuring the fields on this dialog, see Configure database connections. You can edit or re-
move previously configured database connections by selecting them in the drop-down list and clicking Edit or De-
lete.

• Database Query:
The Database Query retrieves a specific user's profile from the database to enable the API Gateway to authenticate
them. Having successfully authenticated the user, you can select an attribute of this user to use for the authorization
filter later in the policy. The Database Query can take the form of an SQL statement, stored procedure, or function
call. For details on how to configure the Database Query, see Configure database query.

Format Password Received From Client:
If the user sends up a clear-text password to the API Gateway, but that user's password is stored in a hashed format in
the database, it is the API Gateway must hash the password before performing the authentication step.

• Hash Client Password:
Depending on whether you wish to hash the user's submitted password, select the appropriate radio button.

• Hash Format:
If you have selected to hash the client's password, the API Gateway needs to know the format of the hashed pass-
word. The most typical formats are available from the drop-down list, however, you can also enter another format.
Formats should be entered in terms of message attribute selectors. The following formats are available from the
Hash Format drop-down list.

${authentication.subject.id}:${authentication.subject.realm}:${authentication.
subject.password}
${authentication.subject.password}

The first option combines the username, authentication realm, and password respectively. This combination is then
hashed. The second option simply creates a hash of the user's password.

• Hash Algorithm:
Select either MD5 or SHA1 to use as the digest algorithm to use when creating the hash.

For more details on selectors, see Select configuration values at runtime.

Query Result Processing:
This section enables you to provide the API Gateway with some meta information about the result returned by the Data-
base Query configured earlier on this window. It enables allows you to identify the name of the database table column or
row that contains the user's password, and also the name of the column or row that contains the attribute that is to be
used for the authorization filter.

• Password Column:
Specify the name of the database table column that contains the user's password. The contents of this column are
compared to the password submitted by the user.

• Password Type:

Authentication repository

238

Depending on how the user's password has been stored in the database, select either Clear Password or Digest
Password from the drop-down list.

• Authorization Attribute Column:
By running the Database Query, all of the user's attributes are returned. Only the user's username and password
are used for the authentication event. You can also use one of the other user's attributes for authorization at a later
stage in the policy. The additional authorization attribute should be either a username or an X.509 distinguished
name (DName). You should enter the name of the column containing the username or the DName here, but only if
this value is required for authorization purposes.

• Authorization Attribute Format:
The API Gateway's authorization filters all operate on the basis of a username or DName. They all evaluate whether
a user identified by a username or DName is allowed to access a specific resource. Select the appropriate format
from the drop-down list depending on what type of user credential is stored in the database table column entered
above.

Entrust GetAccess repositories

Entrust GetAccess provides Identity Management and access control services for web resources. It centrally manages
access to Web applications, enabling users to benefit from a single sign-on capability when accessing the applications
that they are authorized to use.

You can configure the API Gateway to connect to a group of GetAccess servers in a round-robin fashion. This provides
the necessary failover capability when one or more GetAccess servers are not available. When the API Gateway suc-
cessfully authenticates to a GetAccess server, it obtains authorization information about the end-user from the GetAc-
cess SAML PDP. The authorization details are returned in a SAML authorization assertion, which is then validated by the
API Gateway to determine whether the request should be denied.

To authenticate users against an Entrust GetAccess repository, right-click Entrust GetAccess Repositories, and select
Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository

Request:
Configure the following request settings:

• URL Group:
Select a URL group from the drop-down list. This group consists of a number of GetAccess Servers to which the API
Gateway round-robins connection attempts. You can add URL groups under the External Connections tree node in
Policy Studio. Expand the URL Connection Sets node, right-click Entrust GetAccess URL Sets, and select Add a
URL Set. For more details on adding and editing URL groups, see the Configure URL groups topic.

• WS-Trust Attribute Field Name:
Specify the field name for the Id field in the WS-Trust request. The default is Id.

Response:
Configure the following response settings:

• SOAP Actor/Role:
To add the SAML authorization assertion to the response message, select a SOAP actor/role to indicate the WS-
Security block where the assertion is added. By leaving this field blank, the assertion is not added to the message.

Drift Time:
The specified time is used to allow for the possible difference between the time on the GetAccess SAML PDP and
the time on the machine hosting the API Gateway. This comes into effect when validating the SAML authorization
assertion.

Authentication repository

239

Further information
For details on using a filter to integrate the API Gateway with Entrust GetAccess, see the Entrust GetAccess authoriza-
tion topic.

Local repositories

The Authentication Repository can be maintained in the same database that the API Gateway uses to store all its con-
figuration information. To edit the default user store, select Local Repositories > Local User Store > Edit Repository.
Alternatively, to create a new user store, select Local Repositories > Add a new Repository.

You can enter an appropriate name for the repository in the Repository Name field. The Authorization Attribute
Format field enables administrators to specify whether to use the client's X.509 Distinguished Name or User Name in
subsequent Authorization Filters. If User Name is selected, the user name used by the client to authenticate to the API
Gateway is used in any configured Authorization filters. If X.509 Distinguished Name is selected, the X.509 DName
stored by the API Gateway for that user is used for subsequent authorization.

For example, if the administrator selects User Name from the Authorization Attribute Format drop-down list, admin
(the User Name field) is used for authorization. Alternatively, if X.509 Distinguished Name is selected, the X.509
DName is used for authorization (for example, O=Company, OU=comp, EMAIL=emp@company.com, CN=emp).

For more information on adding and configuring users to the Authentication Repository, see Manage API Gateway
users.

LDAP repositories

In cases where an organization stores user profiles in an LDAP directory, it does not make sense to re-enter these pro-
files into the default API Gateway user store. Instead, the API Gateway can leverage an existing LDAP directory by
querying it for user profile data. If a user's profile can be retrieved, and you can bind to the LDAP directory as that user,
the user is authenticated.

Authentication with LDAP

The following steps occur when a filter is configured to authenticate a user against an LDAP repository using a user
name and password combination:

1. A pooled LDAP connection to the repository selected in the LDAP Directory field is retrieved.
2. A search filter is run using the retrieved connection (for example,

(&(objectClass={User})(sAMAccountName={c05vc}))). Attributes configured in the Login Authentication
Attribute and Authorization Attribute fields are retrieved in this search.
For example, if you select Distinguished Name from the drop-down list, the user's DName is retrieved from the
LDAP directory. This uniquely identifies the user in the LDAP directory, and is used to bind to the directory so the
user's password can be verified. The attribute specified in Login Authentication Attribute is used when you bind
as any user. The value of the attribute specified in Authorization Attribute is stored in authentica-
tion.subject.id, and can be used by subsequent filters in the policy (for example, Authorization filters that au-
thorize the authenticated user).

3. If no results are returned from the search, the user is not found in the directory. It is important that the administrator
user configured on the Configure LDAP Server window has the ability to see the user that you are attempting to
authenticate.

4. If multiple users are returned from the search, an attempt is made to bind to the directory using each Login Authen-
tication Attribute value retrieved from the search, together with the password from the message.

5. If more than one user is authenticated correctly, an error is returned because you only want to authenticate a single
user.

6. If no user is authenticated, an error is returned.
7. If a single user's Login Authentication Attribute value and password binds successfully to the directory, authentic-

ation has succeeded.
8. Any successful bind is immediately closed.

Authentication repository

240

Create an LDAP repository

To create a new LDAP repository, right-click LDAP Repositories, and select Add a new Repository. The details
entered on the Authentication Repository dialog depend on the type of LDAP directory that you are using. The Policy
Studio has default entries for some of the more common LDAP directories, which are available from the drop-down lists.
However, you can also connect to alternative LDAP directories.

The following subsections demonstrate how to configure this window for typical user searches on three common LDAP
servers:

• Oracle Directory Server
• Microsoft Active Directory Server
• IBM Directory Server

Oracle Directory Server

To configure the Authentication Repository dialog for Oracle Directory Server (formerly iPlanet and Sun Directory
Server), use the following settings:

• Repository Name:
Enter a suitable name for this user store.

• Directory Name:
Click Add/Edit to add details of your Oracle Directory Server. For more details, see Configure LDAP directories.

The User Search Conditions section instructs the API Gateway to search the LDAP tree according to the following con-
ditions:

• Base Criteria:
Enter where the API Gateway should begin searching the LDAP directory (for example, cn=Users, dc=qa,
dc=vordel, dc=com).

• User Class:
Enter or select the name given by the particular LDAP directory to the User class. For Oracle Directory Server, se-
lect 'inetorgperson' LDAP Class.

• User Search Attribute:
The value entered depends on the type of LDAP directory to which you are connecting. When a user is stored in an
LDAP directory, a number of user attributes are stored with that user. One of these attributes corresponds to the
user name presented by the client for authentication. However, different LDAP directories use different names for
that user attribute. For Oracle Directory Server, select cn from the drop-down list.

• Allow Blank Passwords:
Select this to allow the use of blank passwords.

In the next section, you must specify the following:

• Login Authentication Attribute:
In an LDAP directory tree, there must be one user attribute that uniquely distinguishes any one user from all the oth-
ers. In Oracle Directory Server, the Distinguished name is referred to as the entrydn or Entry Domain Name. Select
Entry Domain Name to uniquely identify the client authenticating to the API Gateway.

• Authorization Attribute:
When the client has been successfully authenticated, you can use any one of that user's stored attributes in a sub-
sequent Authorization filter. In this case, you want to use the user's Entry Domain Name (Distinguished Name) for
an Authorization filter, so enter entrydn in the text box. However, you can enter any user attribute as long as the
subsequent Authorization filter supports it. The value of the LDAP attribute specified is stored in the authentica-

Authentication repository

241

tion.subject.id message attribute.
• Authorization Attribute Format:

Because any user attribute can be specified in the Authorization Attribute above, you must inform the API Gate-
way of the type of this attribute. This information is used internally by the API Gateway in subsequent Authorization
filters. Select X.509 Distinguished Name from the drop-down list.

Microsoft Active Directory Server

This subsection describes how to configure the Authentication Repository dialog for Microsoft Active Directory Server.
The values enter here differ from those entered when interfacing to the Oracle Directory Server:

• Repository Name:
Enter a suitable name for this search.

• LDAP Directory:
Click Add/Edit to add details of your Active Directory Server. For more details, see Configure LDAP directories.

The User Search Conditions instruct the API Gateway to search the LDAP tree according to certain criteria. The values
specified are different from those selected for Oracle Directory Server, because MS Active Directory Server uses differ-
ent attributes and classes to Oracle Directory Server:

• Base Criteria:
The base criteria specify the base object under which to search for the user's profile (for example, cn=Users,
dc=qa, dc=vordel, dc=com.

• User Class:
In Active Directory Server, the user class is called User, so select 'User' LDAP Class.

• User Search Attribute:
This specifies the name of the user attribute whose value corresponds to the user name entered by the client during
a successful authentication process. With Active Directory Server, this attribute is called givenName, which repres-
ents the name of the user. Enter givenName in this field.

• Login Authentication Attribute:
Enter the name of the user attribute that uniquely identifies the user in the LDAP directory. This attribute is the Dis-
tinguished Name and is called distinguishedName in Active Directory Server. Select Distinguished Name from
the drop-down list to uniquely identify the user. The API Gateway authenticates the username and password presen-
ted by the client against the values stored for the user identified in this field.

• Authorization Attribute:
When the client has been successfully authenticated, the API Gateway can use any of that user's stored attributes in
subsequent Authorization filters. Because most Authorization filters require a Distinguished Name, enter Distin-
guished Name in the text box. However, any user attribute could be entered here, as long as the subsequent Au-
thorization filter supports it.

• Authorization Attribute Format:
The API Gateway needs to know the format of the Authorization Attribute. Select X.509 Distinguished Name
from the drop-down list.

IBM Directory Server

The configuration details for IBM Directory Server provide an example of a directory server that does not return a full Dis-
tinguished Name (DName) as the result of a standard LDAP user search. Instead, it returns a contextualized DName,
which is relative to the specified Base Criteria. In such cases, the API Gateway can build up the full DName by combin-
ing the Base Criteria and the returned name. The following example shows how this works in practice.

If C=IE is specified as the Base Criteria, the IBM Directory Server returns CN=niall, OU=Dev, instead of the full
DName, which is C=IE, CN=niall, OU=Dev. To enable the API Gateway to do this, leave the Login Authentication
Attribute field blank. The API Gateway then automatically concatenates the specified Base Criteria (C=IE) with the con-
textualized DName returned from the directory server (CN=niall, OU=Dev) to obtain the fully qualified DName (C=IE,

Authentication repository

242

CN=niall, OU=Dev).

You can also leave the Authorization Attribute field blank, which enables the API Gateway to automatically use the
fully qualified DName for subsequent Authorization Filters. You should select X.509 Distinguished Name from the
Authorization Attribute Format drop-down list.

Oracle Access Manager repositories

You can authorize an authenticated user for a particular resource against an Oracle Access Manager (OAM) repository.
After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be used instead of the user
name and password.

To authenticate users against an Oracle Access Manager repository, right-click Oracle Access Manager Repositories,
and select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Resource Request:
Configure the following settings for the resource request:

• Resource Type:
Enter the type of the resource for which you are requesting access. For example, for access to a Web-based URL,
enter http.

• Resource Name:
Enter the name of the resource for which the user is requesting access. By default, this field is set to /
/hostname${http.request.uri}, which contains the original path requested by the client.

• Operation:
In most access management products, users are authorized for a limited set of actions on the requested resource.
For example, users with management roles may be permitted to write (HTTP POST) to a certain Web service, but
users with junior roles might only have read access (HTTP GET) to the same service. Use this field to specify the op-
eration to which you want to grant the user access on the specified resource. By default, this is set to the ht-
tp.request.verb message attribute, which contains the HTTP verb used by the client to send the message to the
API Gateway (for example, HTTP POST).

• Include query string:
Select whether the query string parameters are used by the OAM server to determine the policy that protects this re-
source. This setting is optional if the policies configured do not rely on the query string parameters.

• Client location:
If the client location must be passed to OAM for it to make its decision, you can enter a valid DNS name or IP ad-
dress to specify this location.

• Optional Parameters:
You can add optional additional parameters to be used in the authentication decision. The available optional para-
meters include the following:

ip IP address, in dotted decimal notation, of the client accessing the resource.

operation Operation attempted on the resource (for HTTP resources, one of GET, POST,
PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT, or OTHER).

resource The requested resource identifier (for HTTP resources, the full URL).

targethost The host (host:port) to which resource request is sent.

Authentication repository

243

Note
One or more of these optional parameters may be required by certain authentication schemes, modules, or
plugins configured in the OAM server. To determine which parameters to add, see your OAM server config-
uration and documentation.

Single Sign On:
Configure the following settings for single sign on:

• Create SSO Token:
Select whether to create an SSO token. This is selected by default.

• Store SSO Token in User Attribute:
Enter the name of the message attribute that contains the user's SSO token. This attribute is populated when au-
thenticating to Oracle Access Manager using the HTTP basic authentication or HTTP digest authentication filter. By
default, the SSO token is stored in the oracle.sso.token message attribute.

• Add SSO Token to User Attributes:
Select whether to add the SSO Token to user message attributes. This is selected by default.

OAM Access Server SDK Directory:
Enter the path to your OAM Access Server SDK directory. For more details on the OAM Access Server SDK, see your
Oracle Access Manager documentation.

Further information
For details on using filters to integrate the API Gateway with Oracle Access Manager, see Chapter 23, Oracle Access
Manager filters.

Oracle Entitlements Server 10g repositories

You can authenticate and authorize a user for a particular resource against an Oracle Entitlements Server (OES) 10g re-
pository.

For example, the API Gateway can extract credentials from the message sent by the client, and delegate authentication
to OES 10g. When the client has been authenticated, the API Gateway queries OES 10g to see if the client is permitted
to access the Web service resource. When authentication and authorization have passed, the message is trusted and
forwarded to the target Web service.

To authenticate and authorize users against an OES 10g repository, right-click Oracle Entitlements Server 10g Repos-
itories, and select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Oracle SSM Settings:
Click Configure to launch the Oracle Security Service Module Settings dialog. For details on configuring these set-
tings, see Oracle Security Service Module settings (10g).

RADIUS repositories

You can configure the API Gateway to authenticate users in a Remote Authentication Dial In User Service (RADIUS) re-
pository. RADIUS is a client-server network protocol that provides centralized authentication and authorization for clients
connecting to remote services.

To authenticate users against a RADIUS repository, perform the following steps:

1. Right-click RADIUS Repositories, and select Add a new Repository.

Authentication repository

244

2. In the Authentication Repository dialog, enter the RADIUS Repository Name.
3. On the Client tab, select the RADIUS clients that you wish to authenticate to the repository. For details on how to

add clients to this list, see the Configure RADIUS clients topic.
4. On the Attributes tab, click Add to add a RADIUS attribute. This is a name-value pair used to determine how ac-

cess is granted. Examples include User-Name, User-Password, NAS-IP-Address, or NAS-Port).
5. In the RADIUS Attributes dialog, specify a Name (for example, User-Name). You can select standard RADIUS at-

tributes from the drop-down list, or enter a custom attribute.
6. Enter a Value, and click OK.
7. Click OK.

Repeat steps 4-6 to add multiple attributes. You can edit or delete attributes using the buttons provided.

RSA Access Manager repositories

RSA Access Manager (formerly known as RSA ClearTrust) provides Identity Management and access control services
for Web applications. It centrally manages access to Web applications, ensuring that only authorized users are allowed
access to resources. Integration with RSA Access Manager requires RSA ClearTrust SDK version 6.0.

To authenticate users against an RSA Access Manager repository, right-click RSA Access Manager Repositories, and
select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Connection Details:
The API Gateway can connect to a group of Access Manager Authorization Servers or Dispatcher Servers. When mul-
tiple Access Manager Authorization Servers are deployed for load-balancing purposes, the API Gateway first connects to
a Dispatcher Server, which returns a list of active Authorization Servers. An attempt is made to connect to one of these
Authorization Servers using round-robin DNS. If the first Dispatcher Server in the Connection Group is not available, the
API Gateway attempts to connect to the Dispatcher Server with the next highest priority in the group, and so on.

If a Dispatcher Server has not been deployed, the API Gateway can connect directly to an Authorization Server. If the
Authorization Server with the highest priority in the Connection Group is not available, the API Gateway attempts to con-
nect to the Authorization Server with the next highest priority, and so on. You can select the type of the Connection
Group using the Authorization Server or Dispatcher Server radio button. All servers in the group must be of the same
type.

Connection Group:
Select the Connection Group to use for authenticating clients. You can add Connection Groups under the External
Connections tree node in the Policy Studio. Expand the Connection Sets node, right-click RSA ClearTrust Connec-
tion Sets, and select Add a Connection Set. For more details on adding and editing Connection Groups, see the Con-
figure connection groups topic.

Authentication Type:
Select one of the following authentication types for the connection:

• HTTP Basic
• Windows NT
• RSA SecureID
• LDAP
• Certificate Distinguished Name

Further information
For more details on prerequisites and on using a filter to integrate the API Gateway with RSA Access Manager, see RSA
Access Manager authorization.

Authentication repository

245

Tivoli repositories

The API Gateway can integrate with Tivoli Access Manager to authenticate users. To authenticate users against a Tivoli
repository, right-click Tivoli Repositories, and select Add a new Repository.

For more details on how to configure the API Gateway to communicate with a Tivoli server, see Tivoli integration.

Authentication repository

246

Axway PassPort authentication repository
Overview

Axway PassPort provides a central repository, identity broker, and security audit point for your Axway Business-
to-Business Integration (B2Bi) or Managed File Transfer (MFT) solutions. Axway PassPort centralizes and simplifies pro-
visioning and management for your entire online ecosystem, enabling secure collaboration between applications, divi-
sions, customers, suppliers, and regulatory bodies.

To authenticate users against an Axway PassPort repository, in the Policy Studio tree, select External Connections >
Authentication Repository Profiles, right-click Axway PassPort Repositories, and select Add a new Repository.
This topic explains how to configure the Axway PassPort repository settings, and provides details on Axway PassPort re-
pository registration.

Configuration

Complete the following fields to configure an Axway PassPort repository:

Repository Name:
Enter a descriptive name for this repository.

Hostname:
Enter the host name or IP address of the server running PassPort.

Shared Secret:
Enter the PassPort shared secret. This is specified during the PassPort installation.

CSD Name:
Enter the name of the Axway Component Security Descriptor (CSD) file to use when registering with PassPort. Defaults
to csd.xml.

Note
The CSD file must be deployed in the API Gateway group's conf directory in your API Gateway installa-
tion:

<install_dir>/apigateway/groups/group-<n>/conf

PassPort Certificates—HTTPS:
Select the certificate used for PassPort SSL communication. To export this certificate from PassPort, perform the follow-
ing steps:

1. In the PassPort user interface, click Administration > Server SecuritySettings.
2. Note the certificate used for Default_HTTPS.
3. Click Security > Certificates.
4. Select the certificate noted in step 2 (defaults to CN=PassPortSecured, O=Axway,C=FR), and click Export Cer-

tificate.
5. In the Export Certificate dialog, select a File Extension of .cer.
6. Click OK, and select a location to save the certificate.

To import this certificate into the API Gateway, perform the following steps:

1. In the API Gateway Authentication Repository dialog, click Select.

247

2. In the Select Certificate dialog, click Create/Import.
3. In the Configure Certificate and Private Key dialog, click Import Certificate.
4. Select the certificate that was exported from PassPort.
5. Give the certificate an Alias Name manually, or click Use Subject.
6. Click OK.
7. Select the certificate from the list, and click OK.

PassPort Certificates—HTTPS Client Authentication (Optional):
You can configure PassPort to use a different certificate for its client authentication protocol. To do this, repeat the steps
for the HTTPS certificate, except when exporting from PassPort in step 2, make a note of the De-
fault_HTTPS_Client_Auth certificate.

Ports—HTTPS:
Enter the HTTPS port that PassPort is using. In PassPort, this is found under Administration > Server Ports Configur-
ation. Defaults to 6453.

Ports—HTTPS Client Authentication:
Enter the HTTPS client authentication port that PassPort is using. In PassPort, this is found under Administration >
Server Ports Configuration. Defaults to 6666.

Authentication—Domain:
Enter the PassPort domain that this repository is using for authentication and authorization. Defaults to Synchrony.

Axway PassPort repository registration

The external connection to Axway PassPort requires that communication with the Axway PassPort server is performed
over a secure connection using two-way SSL authentication. This means that the PassPort server must be able to identi-
fy and trust the client connection, and this trust is established by registration.

The first connection from the API Gateway to PassPort initiates registration. A public-private key pair is created and a
Certificate Signing Request (CSR) is submitted to PassPort. This is where the Shared Secret and HTTPS port values
are used. While the CSR is pending, the repository is unable to process any requests. However, registration is a once off
event, and when complete, it does not need to be repeated.

When registration is complete, the key and signed certificate are stored in a Java Key Store file in the following directory
of your API Gateway installation:

<install_dir>/apigateway/groups/group-<n>/conf

Troubleshooting registration issues

In the unlikely event that automatic registration fails, you should check the following:

• Ensure the time on the API Gateway is synchronized with the time on the PassPort machine. When PassPort pro-
cesses the CSR, it sets the Valid From date to the current time. If the PassPort time is ahead of the API Gateway
time, the API Gateway is unable to use the certificate because it is not yet valid. The error in the trace log is as fol-
lows:

java.security.cert.CertificateNotYetValidException:java.security.cert.
CertificateNotYetValidException

• By default, PassPort blocks for up to 2 seconds waiting for the CSR to be processed. You can configure this value in
the PassPort administration user interface under Administration > System Properties
(am.registration.cert.signature.wait.time). If the signing request takes longer than this, one of the fol-
lowing errors may be logged:

Axway PassPort authentication repository

248

Authentication exception when authenticating system:
com.axway.passport.am.api.v2.service.external.PassportConnectionException: Registration
is still in progress. Certificate Signing Request has not yet been validated, please try
again later. [Status: Waiting Validation]

Authentication exception when authenticating system:
com.axway.passport.am.api.v2.service.external.PassportConnectionException: Registration
is still in progress. Certificate Signing Request has not yet been signed, please try
again later. [Status: Waiting Signing]

This is generally a transient error that may be generated when the initial registration is in progress. Resubmitting the
request should succeed. If the error persists, check in the PassPort administration user interface for the reason why
the signing request has been delayed.

• If the registration request has been refused by the PassPort administrator, the following error is displayed:

Registration has been refused. Please contact the PassPort Administrator for further
information. [Status: Validation Refused]

• If CSR processing fails for some other reason, the following error is logged:

Registration has failed and API Gateway is unable to communicate with PassPort. Please
contact the PassPort Administrator or try manually re-triggering registration. [Status:
...]

To resolve this, contact the PassPort administrator to see why the signing request failed. To retry registration, you
needs to manually re-trigger registration, as explained in the next subsection.

Retrigger registration manually

When registration is complete, the API Gateway does not repeat the process, the generated Java Key Store (JKS) is
used for all subsequent connection attempts. However, if for any reason the key pair in the JKS is no longer trusted by
PassPort, or if registration is not being processed, you can trigger the registration procedure manually.

The simplest way to re-trigger registration is to change the repository name and re-deploy. However, if this is not an op-
tion, you can manually remove the keystores.

The format of the JKS file names is as follows:

keystore_<Repository Name>_<Hostname>_<HTTPS Client Authentication port>.jks

All non-alphanumerics are replaced with an underscore (_).

For example, given the following repository details:

• Repository Name: PassPort - local

• Hostname: passport-host
• HTTPS Client Authentication: 6666

The keystore name is keystore_PassPort___local_passport_host_6666.jks.

To trigger registration, perform the following steps:

1. Back up the JKS associated with the Axway PassPort Authentication Repository being reset.
2. Delete this JKS.
3. Restart the API Gateway instance. The deleted file is recreated and registration is initiated.

Axway PassPort authentication repository

249

Note
If registration has not been completed when the registration is being retriggered, you must delete the fol-
lowing additional temporary files to ensure clean registration:

• .jks.cs
keystore_<RepositoryName>_<Hostname>_<HTTPSClientAuthenticationPort>rid

• .jks.pu
keystore_<RepositoryName>_<Hostname>_<HTTPSClientAuthenticationPort>b

• .jks.ke
keystore_<RepositoryName>_<Hostname>_<HTTPSClientAuthenticationPort>y

In addition, to avoid future confusion, it is good practice to ensure that all redundant certificates and signing
requests are removed from PassPort using the PassPort administration user interface.

Axway PassPort authentication repository

250

Configure client credentials
Overview

Client credentials enable you to globally configure client authentication settings for the following authentication options:

• API keys as a client
• HTTP basic
• Kerberos
• OAuth 2.0 as a client

Note
For more information on configuring OAuth 2.0 client credentials, see the API Gateway OAuth Guide.

You can configure settings for client credentials under the External Connections node in the Policy Studio tree, which
you can then specify at the filter level (for example, in the Connection and Connect To URL filters).

Configure API key client credential profiles

API key client credential profiles enable you to globally configure authentication settings for API keys as a client. API
keys are supplied by client users and applications calling REST APIs to allow the API service provider to track and con-
trol how the APIs are used (for example, to meter access and prevent abuse or malicious attack).

To configure API key client credential profiles, you must first configure a provider. The following Amazon Web Services
provider configurations are included in an out-of-the-box installation of API Gateway:

• Amazon AWS V2 Signing
• Amazon AWS V4 Signing

Add API keys

To add an API key for an existing API key provider, click an API key client credential node (for example, Amazon AWS
V2 Signing), and click the Add button on the API Key Credential Profiles tab of the API Key Credential Profile win-
dow. Complete the following fields on the Add API Key dialog:

Name:
Enter a suitable name for this API key.

API Key ID:
Enter an identifier for this API key. This is the Amazon client ID associated with your Amazon account.

API Key Secret:
Enter a secret for this API key. This is the Amazon secret associated with your Amazon account.

Tip
To sort the list view of client credential profiles, click the column heading.

After you have configured your API key client credentials globally, you can select the client credential profile to use for
authentication on the Authentication tab of your filter (for example, in the Connection and Connect To URL filters). For
more information, see the Connection and Connect to URL topics.

251

Add API key providers

To configure a new API key provider, right-click API Keys, and select Add API Key Client Credential. Complete the fol-
lowing fields on the API Key Service Provider Configuration dialog:

Name:
Enter a suitable name for this API key service provider configuration.

Sign the request using:
Select an option to specify how the request is signed. The options are:

• Amazon Access Key Signing V2
• Amazon Access Key Signing V4
• No Signing

Put the API key in:
Select an option to specify where to put the API key in the request and enter a name in the named field. The options are:

• Header – The parameter is added to the header of the request.
• Query String/Form Body – If the incoming request is a GET request, the parameter is added to the query string. If

the incoming request is a POST request, the parameter is added to the content body.

Note
Version 2 of the Amazon Signing API only supports the GET operation and only recognizes a limited
set of query string parameters. Any unsupported query string parameters result in a HTTP 400 Bad
Request response from the V2 Amazon web service.

For example, to put the API key in the header of the request in a field named AWSKeyId, choose Header and enter
AWSKeyId.

Tip
To change the configuration of an existing API key service provider, click the API key client credential node,
and edit the settings on the API Key Configuration tab of the API Key Credential Profile window.

Configure HTTP basic/digest client credential profiles

A client can authenticate to the API service provider with a user name and password combination using HTTP basic au-
thentication or HTTP digest authentication.

To add a HTTP basic/digest client credential profile, click the HTTP Basic node, and click the Add button on the HTTP
Basic/Digest Client Credentials window. Complete the following fields on the Add HTTP Authentication Profile dia-
log:

Profile Name:
Enter a suitable name for this HTTP authentication profile.

Choose Authentication Type:
Select the Basic or Digest radio button to specify the type of HTTP authentication to use, and enter a user name and
password in the Username and Password fields.

Automatically send credentials:
Select this option to automatically send credentials in the request. This is the equivalent of Send token with first re-
quest in Kerberos. This option is selected by default.

Configure client credentials

252

After you have configured your HTTP client credentials globally, you can select the client credential profile to use for au-
thentication on the Authentication tab of your filter (for example, in the Connection and Connect To URL filters). For
more information, see the Connection and Connect to URL topics.

Configure Kerberos client credential profiles

A client can authenticate to a Kerberos service by sending a Kerberos service ticket in the HTTP request to that service.

Note
You can also configure the API Gateway to authenticate to a Kerberos service by including the relevant
Kerberos tokens inside the XML message. For more details, see the Kerberos client authentication topic.

To add a Kerberos client credential profile, click the Kerberos node, and click the Add button on the Kerberos Client
Credentials window. Complete the following fields on the Add Kerberos Profile dialog:

Profile Name:
Enter a suitable name for this Kerberos authentication profile.

Kerberos Client:
Click the browse button to select a Kerberos client. The selected Kerberos client has two roles. First, it must obtain a
Kerberos Ticket Granting Ticket (TGT). Second, it uses this TGT to obtain a service ticket for the Kerberos Service
Principal selected below.

You can configure Kerberos clients globally under the External Connections node in the Policy Studio tree. These can
then be selected in the Kerberos Client field. For more details on configuring Kerberos clients, see the Configure Ker-
beros clients topic.

Kerberos Service Principal:
Click the browse button to select a Kerberos service principal. The Kerberos client must obtain a ticket from the Kerberos
Ticket Granting Server (TGS) for the selected Kerberos service principal. The service principal can be used to uniquely
identify the service in the Kerberos realm. The TGS grants a ticket for the selected principal, which the client can then
send to the Kerberos service. The principal in the ticket must match the Kerberos service's principal for the client to be
successfully authenticated.

You can also configure Kerberos principals globally under the External Connections node in the Policy Studio tree. For
more details on configuring Kerberos principals, see the Configure Kerberos principals topic.

Send token with first request:
In some cases, the client might not authenticate (send the Authorization HTTP header) to the Kerberos service on its
first request. The Kerberos service should then respond with an HTTP 401 response containing a WWW-Authenticate:
Negotiate HTTP header. This header value instructs the client to authenticate to the server by sending up the Au-
thorization header. The client then sends up a second request, this time with the Authorization header, which
contains the relevant Kerberos token. Select this option to always send the Authorization HTTP header that contains
the Kerberos service ticket on the first request to the Kerberos service. This option is selected by default.

Send body only after establish context:
Select this option to configure the Kerberos client to only send the message body after the context has been fully estab-
lished (the client has mutually authenticated with the service). This option is not selected by default.

Pass when service returns 200 even if context not established:
In rare cases, a Kerberos service might return a 200 OK response to a Kerberos client's initial request even though the
security context has not yet been fully established. This 200 OK response might not contain the WWW-authenticate
HTTP header. Select this option to send the request to the Kerberos service even if the context has not been estab-
lished. It is the responsibility of the Kerberos service to decide whether to process the request depending on the status of
the security context. This option is not selected by default.

After you have configured your Kerberos client credentials globally, you can select the client credential profile to use for

Configure client credentials

253

authentication on the Authentication tab of your filter (for example, in the Connection and Connect To URL filters). For
more information, see the Connection and Connect to URL topics.

Configure client credentials

254

Configure Sentinel servers
Sentinel server overview

Axway Sentinel is a Business Activity Monitoring (BAM) product that collects, aggregates, correlates, and reports events
from API Gateway and other Oracle products, applications, and systems throughout your infrastructure. Sentinel is a
separate product that you can buy from Axway or an authorized partner. This topic describes how you can configure API
Gateway to send events to Axway Sentinel server.

Note
A complete documentation set for Axway Sentinel is available on the Axway Support website: ht-
tps://support.axway.com.

To add a new Sentinel server connection, in the Policy Studio tree view, under the External Connections node, right-
click the Sentinel Servers node, and select Add a Sentinel Server.

General settings

You can configure the following general settings for the Sentinel server:

Name:
Enter a suitable name for this Sentinel server.

Host:
Enter the host name (FQDN) or IP address of the Sentinel server.

Port:
Enter the port number that the Sentinel server is listening for events on.

Use overflow file:
Select this option to use an overflow file to store API Gateway event data when there is no connection between API
Gateway and Sentinel.

Name:
Enter a suitable name for the overflow file.

Size (MB):
Enter the maximum size of the overflow file.

Encoding:
Enter the encoding type to use. The default is utf-8.

User agent settings:
By default API Gateway registers events against the API Gateway's name in the topology. To use another name, select
the Or the following name option and enter an alternative name to use. By default API Gateway registers events
against the host name of the machine running the API Gateway. To use another host name, select the Or the following
name option and enter an alternative host name to use.

Further information

For more detailed information, see the Sentinel Integration Guide available from Oracle support.

255

https://support.axway.com
https://support.axway.com

Configure database connections
Overview

The details entered on the Configure Database Connection dialog specify how the API Gateway connects to the data-
base. The API Gateway maintains a JDBC pool of database connections to avoid the overhead of setting up and tearing
down connections to service simultaneous requests. This pool is implemented using Apache Commons DBCP
(Database Connection Pools).

The settings in the Advanced - Connection pool section of this window configure the database connection pool. For de-
tails on how the fields on this window correspond to specific DBCP configuration settings, see the table in the section
called “Database connection pool settings”.

Prerequisites

Before configuring a database connection, you must add the JDBC driver files for your chosen database to your API
Gateway and Policy Studio installations.

API Gateway
To add the third-party JDBC Driver files for your database to the API Gateway, perform the following steps:

1. Add the binary files for your database driver as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Configure the database connection

Configure the following fields on the Configure Database Connection window:

Name:
Enter a name for the database connection in the Name field.

URL:
Enter the fully qualified URL of the location of the database. The following table shows examples of database connection
URLs, where reports is the name of the database and DB_HOST is the IP address or host name of the machine on
which the database is running:

Database Example Connection URL

Oracle jdbc:oracle:thin:@DB_HOST:1521:reports

Microsoft SQL Server jdbc:sqlserver://DB_HOST:1433;DatabaseName=reports;

256

Database Example Connection URL

integratedSecurity=false;

MySQL jdbc:mysql://DB_HOST:3306/reports

IBM DB2 jdbc:db2://DB_HOST:50000/reports

User Name:
The user name to use to access the database.

Password:
The password for the user specified in the User Name field.

Initial pool size:
The initial size of the DBCP pool when it is first created.

Maximum number of active connections:
The maximum number of active connections that can be allocated from the JDBC pool at the same time. The default
maximum is 8 active connections.

Maximum number of idle connections:
The maximum number of active connections that can remain idle in the pool without extra connections being released.
The default maximum is 8 connections.

Minimum number of idle connections:
The minimum number of active connections that can remain idle in the pool without extra connections being created. The
default minimum is 8 connections.

Maximum wait time:
The maximum number of milliseconds that the pool waits (when there are no available connections) for a connection to
be returned before throwing an exception, or -1 to wait indefinitely. The default time is 10000ms, and a value of -1 indic-
ates an indefinite time to wait.

Time between eviction:
The number of milliseconds to sleep between runs of the thread that evicts unused connections from the JDBC pool.

Number of tests:
The number of connection objects to examine from the pool during each run of the evictor thread. The default number of
objects is 3.

Minimum idle time:
The minimum amount of time, in milliseconds, an object may sit idle in the pool before it is eligible for eviction by the idle
object evictor (if any).

Database connection pool settings

The table below shows the correspondence between the fields in the Advanced - Connection pool section of the win-
dow and the Apache Commons DBCP configuration properties:

Field Name DBCP Configuration Property

URL url

User Name username

Password password

Configure database connections

257

Field Name DBCP Configuration Property

Initial pool size initialSize

Maximum number of active connections maxActive

Maximum number of idle connections maxIdle

Minimum number of idle connections minIdle

Maximum wait time maxWait

Time between eviction timeBetweenEvictionRunsMillis

Number of tests numTestsPerEvictionRun

Minimum idle time minEvictableIdleTimeMillis

Connection validation

By default, when the API Gateway makes a connection, it performs a simple connection validation query. This enables
the API Gateway to test the database connection before use, and to recover if the database goes down (for example, if
there is a network failure, or if the database server reboots).

The API Gateway validates connections by running a simple SQL query (for example, a SELECT 1 query with MySQL).
If it detects a broken connection, it creates a new connection to replace it.

Test the connection

When you have specified all the database connection details, you can click the Test Connection button to verify that the
connection to the database is configured successfully. This enables you to detect any configuration errors at design time
instead at runtime.

Configure database connections

258

Configure database query
Overview

The Database Statement dialog enables you to enter an SQL query, stored procedure, or function call that the API
Gateway runs to return a specific user's profile from a database.

Configuration

The following fields should be completed on this window:

Name:
Enter a name for this database query here.

Database Query:
Enter the actual SQL query, stored procedure, or function call in the text area provided. When executed, the query
should return a single user's profile. The following are examples of SQL statements and stored procedures:

select * from users where username=${authentication.subject.id}

{ call load_user (${authentication.subject.id}, ${out.param}) }

{ call ${out.param.cursor} := p_test.f_load_user(${authentication.subject.id}) }

These examples show that you can use selectors in the query. The selector that is most commonly used in this context is
${authentication.subject.id}, which specifies the message attribute that holds the identity of the authenticated
user. For more details on selectors, see Select configuration values at runtime.

Statement Type:
The database can take the form of an SQL query, stored procedure, or function call, as shown in the above examples.
Select the appropriate radio button depending on whether the database query is an SQL Query or a Stored procedure/
function call

Table Structure:
To process the result set that is returned by the database query, the API Gateway needs to know whether the user's at-
tributes are structured as rows or columns in the database table.

The following example of a database table shows the user's attributes (Role, Dept, and Email) structured as table
columns:

Username Role Dept Email

Admin Administrator Engineering admin@org.com

Tester Testing QA tester@org.com

Dev Developer Engineering dev@org.com

In the following table, the user's attributes have been structured as name-value pairs in table rows:

Username Attribute Name Attribute Value

Admin Role Administrator

259

Username Attribute Name Attribute Value

Admin Dept Engineering

Admin Email admin@org.com

Tester Role Testing

Tester Dept QA

Tester Email tester@org.com

Dev Role Developer

Dev Dept Engineering

Dev Email dev@org.com

If the user's attributes are structured as column names in the database table, select the attributes as column names ra-
dio button. If the attributes are structured as name-value pair in table rows, select the attribute name-value pairs in
rows option.

Configure database query

260

Configure ICAP servers
Overview

The Internet Content Adaptation Protocol (ICAP) is a lightweight HTTP-based protocol used to optimize proxy servers,
which frees up resources and standardizes how features are implemented. For example, ICAP is typically used to imple-
ment features such as virus scanning, content filtering, ad insertion, or language translation in the HTTP proxy server
cache. Content Adaptation refers to performing a specific value-added service (for example, virus scanning) for a specific
client request and/or response.

You can configure ICAP servers under the External Connections tree node, which you can then specify in an ICAP fil-
ter later. To configure an ICAP server, right-click the ICAP Servers node, and select Add an ICAP Server to display the
ICAP Server Settings dialog.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the ICAP server.

Server settings

Configure the following settings on the Server tab:

Host The machine name or IP address of the remote ICAP host. Defaults to the loc-
alhost (127.0.0.1).

Port The port on which the ICAP server is listening. Defaults to 1344.

Request Service The path to the service (exposed by the ICAP server) that handles Request
Modification (REQMOD) requests. The default value is /request.

Response Service The path to the service exposed by the ICAP server that handles Response
Modification (RESPMOD) requests. The default value is /response.

Options Service The path to the service (exposed by the ICAP server) that handles OPTIONS
requests. OPTIONS requests enable server capabilities to be queried. The de-
fault value is /options.

Security settings

The following settings on the Security tab enable you to secure the connection to the ICAP server:

Trusted Certificates
When the API Gateway connects to the ICAP server over SSL, it must decide whether to trust the ICAP server's SSL
certificate. You can select a list of CA or server certificates on the Trusted Certificates tab that are considered trusted
by API Gateway when connecting to the ICAP server. The table displayed on the Trusted Certificates tab lists all certi-
ficates imported into the API Gateway Certificate Store. To trust a certificate for this particular connection, select the box
next to the certificate in the table.

Client SSL Authentication
In cases where the destination ICAP server requires clients to authenticate to it using an SSL certificate, you must select
a client certificate on the Client SSL Authentication tab. Select the checkbox next to the client certificate that you want
to use to authenticate to the ICAP server.

261

Advanced
The Ciphers field enables you to specify the ciphers that API Gateway supports. The API Gateway sends this list of sup-
ported ciphers to the destination ICAP server, which then selects the highest strength common cipher as part of the SSL
handshake. The selected cipher is then used to encrypt the data when it is sent over the secure channel.

Advanced settings

Select one of the following ICAP server modes on the Advanced tab:

Request Modification Mode
(REQMOD)

Specifies that the ICAP filter in the API Gateway sends a Request Modification
(REQMOD) request to the ICAP server. The ICAP Server returns a modified
version of the request, an HTTP response, or a 204 response code indicating
that no modification is required. This mode is selected by default.

Response Modification Mode
(RESPMOD)

Specifies that the ICAP filter in the API Gateway sends a Response Modifica-
tion (RESPMOD) request to the ICAP server. For example, the API Gateway
sends an origin server's HTTP response to the ICAP server. The response from
the ICAP server can be an adapted HTTP response, an error, or a 204 re-
sponse code indicating that no adaptation is required.

Further information

For more details, see the Send to ICAP topic. This topic includes example policies that show an ICAP filter configured in
REQMOD and RESPMOD modes.

Configure ICAP servers

262

Configure Kerberos clients
Overview

The API Gateway can act as a Kerberos client. In doing so, it must authenticate to the Kerberos KDC (Key Distribution
Center) as a specific principal and use the TGT (Ticket Granting Ticket) granted to it to obtain tickets from the TGS
(Ticket Granting Service) so that it can authenticate to Kerberos services.

Kerberos clients can be configured globally under the External Connections node in the tree view of the Policy Studio.
To configure a Kerberos client, right-click the Kerberos Clients node in the tree, and select the Add a Kerberos Client
option from the context menu. Enter a name for the Kerberos client in the Name field of the Kerberos Client dialog, and
complete the following sections where necessary.

Having configured the Kerberos client, it will be available for selection when configuring other Kerberos-related filters.
Make sure to select the Enabled check box at the bottom of the window, which is checked by default.

Kerberos endpoint settings

Configure the following settings on the Kerberos Endpoint tab.

Ticket Granting Ticket Source

Use this section to configure where to obtain the Kerberos client credentials required in order to request service tickets,
i.e. Ticket Granting Tickets (TGT) and the session key used in communications with the TGS. The TGT can be retrieved
from a cache created as part of a JAAS (Java Authentication and Authorization Service) login, from delegated creden-
tials, or from the native GSS implementation on Linux and Solaris platforms.

Note
Depending on what option is selected here, the Kerberos Principal, Password, and Keytab File fields be-
low may or may not be disabled because some of the TGT source options do not require these fields to be
configured.

Load via JAAS Login:
By default, the API Gateway will perform a JAAS login to the Kerberos KDC, after which the credentials will be cached by
the API Gateway and used to acquire service tickets as they are needed. The JAAS login acquires the credentials in one
of the following ways:

• Request from KDC:
Request a new TGT from the Key Distribution Center. This is performed at server startup, refresh (for example,
when a configuration update is deployed), and also when the TGT expires.

• Extract from Default System Ticket Cache:
If a TGT has already been obtained out of bounds of the API Gateway and has been stored in the default system
ticket cache, this option can be used to retrieve the TGT from this cache. On a Windows 2000 machine, the TGT will
be extracted from the cache using the Local Security Authority (LSA) API. On a Linux/Solaris box, it is assumed that
the ticket cache resides in /tmp/krb5cc_uid, where the uid is a numeric user identifier. If the ticket cache can not
be found in these locations (or if we are running on a different Windows platform), the API Gateway will look for the
cache in {user.home}{file.separator}krb5cc_{user.name}.

Note
A system ticket cache may only hold the credentials of a single Kerberos client. If you wish to load the
credentials of more than one client from system ticket caches, they must be be explicitly named using
the Extract from System Cache option. Ticket caches can be populated with client credentials using

263

an external utility such as kinit.

• Extract from System Ticket Cache:
Get the TGT from an explicitly named system ticket cache instead of from the default ticket cache. Browse to the
location of the alternative cache using the Browse button.

Load from Delegated Credentials:
The Kerberos Client can use a TGT that has been delegated for use by the server and has been already retrieved from a
Kerberos Service Authentication filter. In this case, the TGT is extracted from message attributes (i.e. authentica-
tion.delegated.credentials and authentication.delegated.credentials.client.name) that have
been set by a previous Kerberos Service Authentication filter. It is not necessary to configure the Kerberos Principal or
Secret Key fields if this option is selected.

Load via Native GSS Library:
Select this option to have the Native GSS API acquire the client's credentials. The Native GSS API will expect the cre-
dentials to be already in a system ticket cache that it can access.

If Load via Kinit is not selected, the client credentials must exist in the default system ticket cache. In this case only one
Kerberos client can be used within the API Gateway, as the API Gateway cannot support accessing credentials natively
from the default system ticket cache and other system ticket caches. See above for more details on the location of the
default system ticket cache.

If Load via Kinit is selected the API Gateway can support multiple Kerberos clients natively. In this case, the API Gate-
way will run kinit and create a ticket cache for each client in the /conf/plugins/kerberos/cache directory. The
Native GSS API will know to acquire the client credentials from these caches.

Important
To use the GSS library and optionally the kinit tool in this manner, you must select to use the native GSS
library on the API Gateway instance-level Kerberos Configuration settings. To configure these settings,
right-click the instance in the tree view of the Policy Studio, and select the Kerberos > Add option from the
context menu. Open the Native GSS Library tab of the Kerberos Configuration dialog and check the Use
Native GSS Library checkbox.

Kerberos Principal

A Kerberos principal is used to assign a unique identity to the API Gateway for use in the Kerberos environment. Select a
previously configured principal from the list. You can configure Kerberos principals globally under the External Connec-
tions node in the Policy Studio tree. For more information, see Configure Kerberos principals.

Note
The semantics of this field are slightly different depending on what you selected as the TGT source above.
If you have opted to retrieve the TGT from the KDC, then you are effectively asking the KDC to issue a
TGT for the principal selected here.

Alternatively, if you have opted to retrieve the TGT from a system ticket cache, then the principal selected here will be
used to lookup the cache in order to retrieve the TGT for this principal. Similarly, to use the kinit utility, the principal
name selected here will be passed as an argument to kinit.

Finally, to retrieve a TGT from delegated credentials, it is not necessary to specify any principal.

Secret Key

Configure Kerberos clients

264

The secret key is used by the principal to talk to the KDC's Authentication Service in order to acquire a TGT. The secret
key can either be generated from a password or it can be taken from the principal's keytab file. Once again, the options
available here will depend on what has been selected as the source of the TGT.

Password:
A password can only be entered if you have chosen to request the TGT from the KDC. The password will be used when
generating the secret key. A secret key is not required at all if the TGT has been already retrieved either from a system
ticket cache or from delegated credentials.

Important
The password entered here is stored by default in clear-text form in the API Gateway's underlying configur-
ation data. If necessary, this can be encrypted using a passphrase. For more information on encrypting all
sensitive API Gateway configuration data, such as passwords, see the API Gateway Administrator Guide.

Keytab:
When the Request from KDC option is selected above, the secret key for the principal can also be extracted from a
Keytab file, which maps principal names to encryption keys. Similarly, the kinit tool requires a Keytab file.

You can load the principal-to-key mappings into the table by selecting the Load Keytab button and then browsing to the
location of an existing Keytab file. A new Keytab Entry can be added by clicking the Add Principal button. For more in-
formation on configuring the Keytab Entry dialog, see the Kerberos Keytab concepts.

A Keytab entry can be deleted by selecting the entry in the table and clicking on the Delete Entry button. You can also
export the entire contents of the Keytab table by clicking the Export Keytab button.

Important
The contents of the Keytab table (whether derived from a Keytab file or manually entered using the Keytab
Entry dialog) are stored in the clear in the API Gateway's underlying configuration data. The Keytab con-
tents can be stored encrypted, if required, by setting a passphrase. For more details, see the API Gateway
Administrator Guide.

When the server starts up it writes the stored Keytab contents out to the /conf/plugin/kerberos/keytabs/ folder
of your API Gateway installation. Oracle recommends that you configure directory- or file-based access control for this
directory and its contents.

Advanced settings

The following fields can be configured on the Advanced tab:

Mechanism:
Select the mechanism used to establish a context between the API Gateway and the Kerberos service. The Kerberos
service must use the same mechanism.

Mutual Authentication:
Request that mutual authentication be carried out during context setup, i.e. the service authenticates back to the client.
For the SPNEGO mechanism this must be turned on.

Integrity:
Enables data integrity for GSS operations.

Confidentiality:
Enables data confidentiality for GSS operations.

Configure Kerberos clients

265

Credential Delegation:
Request that the initiator's credentials be delegated to the acceptor during context setup. When this option is checked,
the acceptor can then assume the initiator's identity and authenticate to other Kerberos services on behalf of the initiator.

Anonymity:
Request that the client's identity is not disclosed to the service.

Replay Detection:
Enables replay detection for the per-message security services after context establishment.

Sequence Checking:
Turns on sequence checking for the per-message security services after context establishment.

Synchronize to Avoid Replays Errors at Service:
In cases where the Kerberos client is running "under stress" and is attempting to send many requests to a Kerberos Ser-
vice within a very short (millisecond) timeframe, it is possible that sequential Kerberos Authenticator tokens generated by
the client will contain identical values for the ctime (i.e. the current time on the client's host) and cusec (i.e. the micro-
second portion of the client's timestamp) fields.

Since Kerberos service implementations often compare the ctime and cusec values on successive Authenticator tokens
to determine replay attacks, it is possible that the service will reject Authenticator requests in which the ctime and cusec
fields have the same value.

To avoid situations where the client may generate successive Authenticator requests (for a particular service) in which
the ctime and cusec fields are identical, you can select this option to synchronize the creation of the Authenticator re-
quests. The Authenticator request generation will be synchronized using the Pause Time field below.

Pause Time:
Specify the time interval (in milliseconds) to wait before generating client-side Authenticator tokens when synchronizing
to avoid over-zealous replay detection at the Kerberos service. This field is only enabled if the Synchronize to Avoid
Replays Errors at Service check box is checked above.

Note
The default value of 15 milliseconds matches the clock resolution time of operating systems such as Win-
dows. Consult your operating system documentation for more information on the clock resolution for your
target system.

Configure Kerberos clients

266

Configure Kerberos principals
Overview

A Kerberos principal represents a unique identity in a Kerberos system to which Kerberos can assign tickets to access
Kerberos-aware services. Principal names are made up of several components separated by the / separator. You can
also specify a realm as the last component of the name by using the @ character. If no realm is given, the principal is as-
sumed to belong to the default realm, as configured in the krb5.conf file.

Typically, a principal name comprises three parts: the primary, the instance, and the realm. The format of a typical Ker-
beros v5 principal name is:
primary/instance@realm

• Primary:
If the principal represents a user in the system, the primary is the user name of the user. Alternatively, for a host, the
primary is specified as the host string.

• Instance:
The instance can be used to further qualify the primary (for example, user/admin@foo.abc.com).

• Realm:
This is your Kerberos realm, which is usually a domain name in upper case letters. For example, the foo.abc.com
machine is in the ABC.COM Kerberos realm.

Configuration

You can configure Kerberos principals globally under the External Connections node in the Policy Studio tree. To con-
figure a Kerberos principal, right-click the Kerberos Principals node, and select the Add a Kerberos Principal option
from the context menu. Complete the following fields on the Kerberos Principal dialog:

Name:
Enter a friendly name for the Kerberos principal. This name will be available for selection from drop-down lists in other
Kerberos-related configuration windows in the Policy Studio.

Principal Name:
Enter the name of the Kerberos principal in this field. The principal name consists of a number of components separated
using the / separator. The realm should be specified here if the principal belongs to either a non-default realm or if a de-
fault realm is not specified.

Principal Type:
Select the type of principal specified in the field above. The following table lists the available principal types.

Note
The principal name types and their corresponding OIDs are defined in the General Security Services (GSS)
API.

Principal Name Type Explanation

NT_USER_NAME The principal name identifies a named user on the local system

KERBEROS_V5_PRINCIPAL_NAME The principal name represents a Kerberos version 5 principal.

NT_EXPORT_NAME The principal name represents an exported canonical byte representation of the
name (for example, which can be used when searching for the principal in an
Access Control List (ACL)).

267

Principal Name Type Explanation

NT_HOSTBASED_SERVICE The principal name identifies a service associated with a specific host.

You can add new principal types by clicking the Add button. The name entered in the Name field on the Kerberos Prin-
cipal Name OID must correspond to one of the constant fields defined in the org.ietf.jgss.GSSName Java class.
Please refer to the Javadocs for the GSSName [http://java.sun.com/javase/6/docs/api/index.html] class for other allow-
able name types. Similarly, the corresponding OID for this name type must be entered in the OID field of the dialog.
Please consult the GSSName Javadoc here [http://java.sun.com/javase/6/docs/api/index.html] for more information.

Important
OIDs and principal type names should only be changed to reflect changes in the underlying GSS API. Be-
cause of this, you should only choose to Edit existing Principal Types under strict supervision from the Or-
acle support team.

Configure Kerberos principals

268

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

Configure Kerberos services
Overview

The API Gateway can act as a Kerberos service. In this case, Kerberos clients must obtain a Kerberos service ticket to
authenticate to the Kerberos service exposed by the API Gateway. Clients must present this ticket to the API Gateway
for their requests to be processed (to be successfully authenticated). The Kerberos service is responsible for consuming
these tickets.

You can configure Kerberos services globally under the External Connections node in the tree view of the Policy Stu-
dio. To configure a Kerberos service, right-click the Kerberos Services node in the tree, and select the Add a Kerberos
Service option from the context menu. The following sections describe how to configure the various fields on the Kerber-
os Service dialog.

Globally configured Kerberos services are selected by name as part of the Kerberos Service filter, which is responsible
for validating the tickets consumed by the Kerberos service. Make sure to enter a descriptive name for the service in the
Name field of the Kerberos Service dialog. For more information on configuring this filter, see the Kerberos service au-
thentication topic.

Having configured the Kerberos service, it is available for selection when configuring other Kerberos-related filters. Make
sure to select the Enabled check box at the bottom of the window, which is selected by default.

Kerberos endpoint settings

Complete the following fields on the Kerberos Endpoint tab:

Kerberos Principal:
Select the name of the principal to be associated with the API Gateway. Clients wishing to authenticate to the API Gate-
way must present a service ticket containing a matching principal name to the API Gateway.

Kerberos principals are configured globally under the External Connections node in the tree view of the Policy Studio.
Right-click the Kerberos Principals node, and select the Add a Kerberos Principal option from the context menu.

Alternatively, you can select the Add button under the Kerberos Principal drop-down list to add a new principal. For
more information on configuring a principal, see the Configure Kerberos principals topic.

Secret Key:
Use this section to specify the location of the Kerberos service's secret key, which is used to decrypt service tickets re-
ceived from Kerberos clients.

Password:
The Kerberos service's secret key is originally created for a specific principal on the KDC. A password is required to gen-
erate this key, which can be entered directly into the Password field here.

Keytab:
Usually, however, a Keytab file is generated, which contains a mapping between a principal name and that principal's
secret key. The Keytab file can then be loaded into the API Gateway configuration using the fields provided on this sec-
tion.

You can load the principal-to-key mappings in the table by clicking Load Keytab, and browsing to the location of an ex-
isting Keytab file. You can add a new Keytab entry by clicking Add Principal. For more information on configuring the
Keytab Entry dialog, see Kerberos Keytab concepts.

You can delete a Keytab entry by selecting the entry in the table, and clicking the Delete Entry button. You can also ex-
port the entire contents of the Keytab table by clicking the Export Keytab button.

269

Important
The contents of the Keytab table (whether derived from a Keytab file or manually entered using the Keytab
Entry dialog) are stored in the clear in the API Gateway's underlying configuration. The Keytab contents
can be stored encrypted, if required, by setting a passphrase for the API Gateway configuration data. For
more information on how to do this, see the API Gateway Administrator Guide.

When the server starts up it writes the stored Keytab contents out to the /
conf/plugin/kerberos/keytabs/ folder of your API Gateway installation. Oracle recommends that
you configure directory-based or file-based access control for this directory and its contents.

Load via Native GSS Library:
If you have configured the API Gateway to Use Native GSS Library on the instance-level Kerberos Configuration set-
tings, you must choose to load the Kerberos service's secret key from the location preferred by the GSS library. The nat-
ive GSS library expects the Kerberos service's secret key to be in the system's default Keytab file. The location of this
Keytab file is specified in the default_keytab_name setting in the krb5.conf file that the native GSS library reads
using the KRB5_CONFIG environment variable. This Keytab may contain keys for multiple Kerberos services.

Advanced settings

Configure the following fields on the Advanced tab:

Mechanism:
Select the mechanism used to establish a context between this Kerberos service and the Kerberos client. The Kerberos
client must use the same mechanism selected here.

Extract Delegated Credentials:
A Kerberos client can set an attribute on the context with the Kerberos service to indicate that they wish to allow the ser-
vice to act on behalf of the client in subsequent communications. For example, this enables the Kerberos service (the
API Gateway) to assume the identity of the client when communicating with a back-end Kerberos service. In this way, the
client's credentials are propagated to the back-end service as opposed to the API Gateway's credentials. This is called
credential delegation.

In cases where a Kerberos client wishes to delegate its credentials to a Kerberos service, you can configure the service
to extract the delegated credentials from the context it establishes with the client. Select the Extract Delegated Creden-
tials check box to extract the client's delegated credentials and store them in the gss.delegated.credentials and
gss.delegated.credentials.client.name message attributes.

The extracted delegated credentials can be forwarded on to the back-end Kerberos service (on behalf of the user) using
the Kerberos settings on the Kerberos Client filter or the Connection filter. When configuring the Kerberos Client used
on the Kerberos Authentication tab of the Connection filter, make sure to select the option to retrieve the Ticket Grant-
ing Ticket(TGT) from the extracted delegated credentials (the Extract from delegated credentials check box on the
Kerberos Endpoint tab).

For more details on configuring these options, see the following topics:

• Connection
• Configure Kerberos clients

Configure Kerberos services

270

Kerberos Keytab concepts
Overview

The Kerberos Keytab file contains mappings between Kerberos principal names and DES-encrypted keys that are de-
rived from the password used to log into the Kerberos Key Distribution Center (KDC). The purpose of the Keytab file is to
allow the user to access distinct Kerberos services without being prompted for a password at each service. Furthermore,
it allows scripts and daemons to login to Kerberos services without the need to store clear-text passwords or for human
intervention.

Important
Anyone with read access to the Keytab file has full control of all keys contained in the file. For this reason, it
is imperative that the Keytab file is protected using very strict file-based access control.

The Keytab Entry dialog, which is displayed when you click the Add Principal button in the Secret Key section of either
the Kerberos client or Kerberos service configuration windows, is essentially a graphical interface to entries in a Kerberos
Keytab file.

This dialog enables you to generate Keytab entries. You can remove entries from the Keytab file by clicking the Delete
Entry button in the Secret Key section of either the Kerberos client or Kerberos service configuration windows. You can
configure Kerberos clients and Kerberos services under the External Connections node in the Policy Studio tree.

Each key entry in the file is identified by a Kerberos principal and an encryption type. For this reason, the Keytab file can
hold multiple keys for the same principal where each key has a different encryption type. It can also contain keys for sev-
eral different principals.

In cases where the Keytab file contains encryption keys for different principals, at runtime the Kerberos client or service
only considers keys mapped to the principal name selected in the Kerberos Principal drop-down list on their respective
windows.

If the Keytab file contains several keys for the principal, the Kerberos client or service uses the key with the strongest en-
cryption type as agreed during the negotiation of previous messages with the Kerberos Key Distribution Center (KDC).

Configuration

Configure the following fields on the Keytab Entry dialog:

Kerberos Principal:
Select an existing Kerberos principal from the drop-down list or add a new one by clicking on the Add button. You can
configure Kerberos principals globally under the External Connections node in the Policy Studio tree. For more informa-
tion on configuring Kerberos principals, see the Configure Kerberos principals topic.

Password:
The password entered here is used to seed the encryption algorithms selected below.

Encryption Types:
The encryption types selected here determine the algorithms used to generate the encryption keys that are stored in the
Keytab file. In cases where the Keytab file contains multiple keys for the principal, the encryption type is used to select
an appropriate encryption key.

To ensure maximum interoperability between Kerberos clients/services configured in the API Gateway and different
types of KDC, all encryption types are selected by default. With this configuration, the generated Keytab file contains a
separate encryption key for each encryption type listed here where each key is mapped to the principal name selected
above.

271

Important
You must ensure that the required encryption types exist in the Keytab as defined by settings in the
krb5.conf. For a Kerberos client to request a Ticket Granting Ticket, it must have at least one key that
matches one of the encryption types listed in the default_tkt_enctypes setting in the krb5.conffile.
A Kerberos service requires a key of a certain encryption type to be able to decrypt the service ticket
presented by a client.

For Windows 2003 Active Directory, by default, the service ticket is encrypted using the rc4-hmac encryption type.
However, if the service user has the Use DES encryption types for this account option enabled, the des-cbc-md5
encryption type is used.

Kerberos Keytab concepts

272

Configure LDAP directories
Overview

A filter that uses an LDAP directory to authenticate a user or retrieve attributes for a user must have an LDAP directory
associated with it. You can use the Configure LDAP Server dialog to configure connection details of the LDAP direct-
ory. Both LDAP and LDAPS (LDAP over SSL) are supported.

When a filter that uses an LDAP directory is run for the first time after a server refresh/restart, the server binds to the
LDAP directory using the connection details configured on the Configure LDAP Server dialog. Usually, the connection
details include the user name and password of an administrator user who has read access to all users in the LDAP dir-
ectory for whom you wish to retrieve attributes or authenticate.

General configuration

Configure the following general LDAP connection settings:

Name:
Enter or select a name for the LDAP filter in the drop-down list.

URL:
Enter the URL location of the LDAP directory. The URL is a combination of the protocol (LDAP or LDAPS), the IP ad-
dress of the host machine, and the port number for the LDAP service. By default, port 389 is reserved for LDAP connec-
tions, while port 636 is reserved for LDAPS connections. For example, the following are valid LDAP directory URLs:
ldap://192.168.0.45:389
ldaps://145.123.0.28:636

Cache Timeout:
Specifies the timeout for cached LDAP connections. Any cached connection that is not used in this time period is dis-
carded. Defaults to 300000 milliseconds (5 minutes). A cache timeout of 0 means that the LDAP connection is cached in-
definitely and never times out.

Cache Size:
Specifies the number of cached LDAP connections. Defaults to 8 connections. A cache size of 0 means that no caching
is performed.

Authentication configuration

If the configured LDAP directory requires clients to authenticate to it, you must select the appropriate authentication
method in the Authentication Type field. When the API Gateway connects to the LDAP directory, it is authenticated us-
ing the selected method. Choose one of the following authentication methods:

• None
• Simple
• Digest-MD5
• External

Important
If any of the following authentication methods connect to the LDAP server over SSL, that server's SSL certi-
ficate must be imported into the API Gateway certificate store.

None:

273

No authentication credentials need to be submitted to the LDAP server for this method. In other words, the client con-
nects anonymously to the server. Typically, a client is only allowed to perform read operations when connected anonym-
ously to the LDAP server. It is not necessary to enter any details for this authentication method.

Simple:
Simple authentication involves sending a user name and corresponding password in clear text to the LDAP server. Be-
cause the password is passed in clear text to the LDAP server, it is recommended to connect to the server over an en-
crypted channel (for example, over SSL).

It is not necessary to specify a Realm for the Simple authentication method. The realm is only used when a hash of the
password is supplied (for Digest-MD5). However, in cases where the LDAP server contains multiple realms, and the spe-
cified user name is present in more than one of these realms, it is at the discretion of the specific LDAP server as to
which user name binds to it.

Click the SSL Enabled check box to force the API Gateway to connect to the LDAP directory over SSL. To successfully
establish SSL connections with the LDAP directory, you must import the directory's certificate into the API Gateway's cer-
tificate store. You can do this using the global Manage certificates and keys window. For LDAPS (LDAP over SSL) con-
nections, the LDAP server's certificate must be imported into the Policy's Studio's JRE trusted store. For more details,
see the section called “Test the LDAP connection”.

Digest-MD5:
With Digest-MD5 authentication, the server generates some data and sends it to the client. The client encrypts this data
with its password according to the MD5 algorithm. The LDAP server then uses the client's stored password to decrypt the
data and hence authenticate the user.

The Realm field is optional, but may be necessary in cases where the LDAP server contains multiple realms. If a realm is
specified, the LDAP server attempts to authenticate the user for the specified realm only.

External:
External authentication enables you to use client certificate-based authentication when connecting to an LDAP directory.
When this option is selected, you must select a client certificate from the API Gateway certificate store. The SSL En-
abled checkbox is selected automatically. This means that you must specify the URL field using LDAPS (for example,
ldaps://145.123.0.28:636). The user name, password, and realm fields are not required for external authentica-
tion.

Test the LDAP connection

When you have specified all the LDAP connection details, you can click the Test Connection button to verify that the
connection to the LDAP directory is configured successfully. This enables you to detect any configuration errors at
design time, rather than at runtime.

Important
For LDAPS (LDAP over SSL) connections, the LDAP server's certificate must be imported into the Policy
Studio JRE trusted store. You can do this by performing the following steps in Policy Studio:

1. Select the Certificates and Keys > Certificates node in the Policy Studio tree.
2. In the Certificates panel on the right, click Create/Import, and click Import Certificate.
3. Browse to the LDAP server's certificate file, and click Open.
4. Click Use Subject on the right of the Alias Name field, and click OK. The LDAP server's certificate is

now imported into the Certificate Store, and must be added to the Java keystore.
5. In the Certificates panel, select the certificates that you wish the JRE to trust.
6. Click Export to Keystore, and browse to the cacerts file in the following directory:

Policy_Studio_Install\Win32\jre\lib\security\cacerts

7. Select the cacerts file.
8. Click Save.

Configure LDAP directories

274

9. You are prompted for a password. The default password for the JRE is changeit.
10. Click OK.
11. Restart Policy Studio.
12. You can now click Test Connection to test the connection to the LDAP directory server over SSL.

Additional JNDI properties

You can also specify optional JNDI properties as simple name-value pairs. Click the Add button to specify properties in
the dialog.

Configure LDAP directories

275

Configure proxy servers
Overview

You can configure settings for individual proxy servers under the External Connections node in the Policy Studio tree,
which you can then specify at the filter level (in the Connection and Connect To URL filters). When configured, the filter
connects to the HTTP proxy server, which in turn routes the message on to the destination server named in the request
URI. For more details, see Connection and Connect to URL.

These proxy server settings are different from the global proxy settings in the Preferences dialog in the Policy Studio,
which apply only when downloading WSDL, XSD, and XSLT files from the Policy Studio. For more details, see the Policy
Studio preferences topic.

Configuration

To configure a proxy server under the External Connections tree node, right-click the Proxy Servers node, and select
Add a Proxy Server. You can configure the following settings in the dialog:

Proxy Server Setting Description

Name Unique name or alias for these proxy server settings.

Host Host name or IP address of the proxy server.

Port Port number on which to connect to the proxy server.

Username Optional user name when connecting to the proxy server.

Password Optional password when connecting to the proxy server.

Scheme Specifies whether the proxy server uses the HTTP or HTTPS transport. De-
faults to HTTP.

276

Configure RADIUS clients
Overview

The API Gateway provides support for integration with remote systems over the Remote Authentication Dial In User Ser-
vice (RADIUS) protocol. RADIUS is a client-server network protocol that provides centralized authentication and author-
ization for clients connecting to remote services. For more details, see the RADIUS specification [ht-
tp://tools.ietf.org/html/rfc2865].

To configure a client connection to a remote server over the RADIUS protocol, under the External Connections tree
node in the Policy Studio, select RADIUS Clients > Add a RADIUS Client. This topic explains how to configure the set-
tings the RADIUS Client dialog.

For details on how to configure a RADIUS authentication repository, see the Authentication repository topic.

Configuration

Configure the following fields in the RADIUS Client dialog:

• Name:
Enter an appropriate name for the RADIUS client to display in the Policy Studio.

• Host name:
Enter the host name used by the RADIUS client.

• Client port:
Enter the port number used by the RADIUS client.

• RADIUS servers:
This field displays a list of configured RADIUS servers. To add a server to the list, click Add, and complete the fol-
lowing fields:

Name Name of the RADIUS server.

Port Port number used by the RADIUS server.

Secret Shared secret used to access the RADIUS server.

Response timeout (sec) Response timeout in seconds before the connection to the server is closed.

Retransmit count Number of times retransmission is attempted before the connection to the serv-
er fails.

277

http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2865

Configure SiteMinder/SOA Security Manager connections
Overview

This topic explains how to create connections to CA SiteMinder and CA SOA Security Manager. Under the External
Connections tree node in the Policy Studio, right-click the SiteMinder/SOA Security Manager Connection node, and
select Add CA SiteMinder Connection or Add CA SOA Security Manager Connection.

You can specify how the API Gateway connects to CA SiteMinder using the SiteMinder Connection Details dialog. You
can specify how the API Gateway connects to CA SOA Security Manager using the CA SOA Security Manager Con-
nection Details dialog. In both cases, the API Gateway must have already been set up as an agent in the CA Policy
Server.

The connection details to be configured for the API Gateway are the same for both SiteMinder and SOA Security Man-
ager, with an additional setting for SOA Security Manager.

Prerequisites

Integration with CA SiteMinder requires CA SiteMinder SDK version 12.0-sp1-cr005 or later. You must add the required
third-party binaries to your API Gateway and Policy Studio installations.

Integration with CA SOA Security Manager requires CA TransactionMinder SDK version 6.0 or later. You must add the
required third-party binaries to your API Gateway and Policy Studio installations.

For details on obtaining the required third-party binaries, see your CA product documentation.

API Gateway
To add third-party binaries to the API Gateway, perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

SiteMinder and SOA Security Manager connection settings

This section describes settings that are common to both SiteMinder and CA SOA Security Manager connections.

Agent Name:
Enter the name of the agent to connect to SiteMinder or SOA Security Manager in the Agent Name field. This name
must correspond to the name of an agent previously configured in the CA Policy Server.

278

Agent Configuration Object:
The name entered must match the name of the Agent Configuration Object (ACO) configured in the CA Policy Server.
The API Gateway currently oes not support any features represented by the ACO parameters except for the Persist-
entIPCheck setting. For example, the API Gateway ignores the DefaultAgent parameter, and uses the agent value it
collects separately during agent registration.

When the PersistentIPCheck ACO parameter is set to yes, this instructs the API Gateway to compare the IP ad-
dress from the last request (stored in a persistent cookie) with the IP address in the current request to see if they match.
If the IP addresses do not match, the API Gateway rejects the request. If this parameter is set to no, this check is dis-
abled.

SmHost.conf file created by smreghost:
The API Gateway host machine must be registered with SiteMinder or SOA Security Manager. To register the host, you
must use the smreghost tool on the API Gateway machine. The tool creates a file called SmHost.conf, which you can
then upload into the API Gateway configuration using Policy Studio.

To generate a SmHost.conf file, perform the following steps:

1. Install the smreghost command on the machine on which the API Gateway is installed. For details on installing
smreghost, see your CA product documentation.

2. Open a command prompt in the directory where you installed smreghost, and run the smreghost command. You
must pass the appropriate command-line arguments, depending on the hostname and hostconfigobject con-
figured to represent the API Gateway in the CA Policy Server. Similarly, you must specify the hostname or IP ad-
dress and port of the CA Policy Server.

3. The smreghost tool writes its output to a SmHost.conf file in the same directory.

When you have generated a SmHost.conf file, perform the following steps:

1. Copy the SmHost.conf file to the machine on which you are running Policy Studio.
2. Specify the file location using the browse button at the bottom right of the text area.
3. You can select whether to use an SmHost.conf or SmHost.cnf file in the dialog. You can also enter the file name

as an environment variable selector (for example, ${env.SMHOST}). For more details, see the API Gateway De-
ployment and Promotion Guide.

After selecting the SmHost.conf configuration file, the connection details are displayed in the text area.

SOA Security Manager connection settings

This section describes details that are specific to CA SOA Security Manager connections only. In addition to the fields
already described in the previous section, you must also configure the following field on the CA SOA Security Manager
Connection Details dialog.

XMLSDKAcceptSMSessionCookie:
This setting controls whether the CA SOA Security Manager authentication filter accepts a single sign-on token for au-
thentication purposes. The single sign-on token must reside in the HTTP header field named SMSESSION to authenticate
using this mechanism. This token is created and updated when the CA SOA Security Manager authorization filter runs
successfully.

When this check box is selected, the authentication filter allows authentication using a single sign-on token.

Note
If no single sign-on token is present in the message, the authentication filter authenticates fully by gathering
credentials from the request in whatever manner has been configured in the CA SOA Security Manager.
When this check box is unselected, the authentication filter authenticates fully (it never allows authentica-

Configure SiteMinder/SOA Security Manager connections

279

tion using a single sign-on token).

Configure SiteMinder/SOA Security Manager connections

280

Configure SMTP servers
Overview

You can configure the API Gateway to use a specified Simple Mail Transfer Protocol (SMTP) server to relay messages
to an email recipient. You can configure the SMTP server as a global configuration item under the External Connec-
tions node. The SMTP server is then available for selection in the SMTP filter in the Routing category.

To configure an SMTP server, right-click the External Connections > SMTP Servers node, and select Add an SMTP
Server. Alternatively, in the SMTP filter window, click the button beside the SMTP Server Settings field, right-click the
SMTP Servers node, and select Add an SMTP Server.

Configuration

Configure the following fields in the SMTP Server settings dialog:

Name:
Enter an appropriate name for the SMTP server.

SMTP Server Settings
Specify the following fields:

• SMTP Server Hostname:
Enter the host name or IP address of the SMTP server.

• Port:
Enter the SMTP port on the specified server hostname. By default, SMTP servers run on port 25.

• Connection Security:
Select the security required for the connection to the SMTP server (SSL, TLS, or NONE). Defaults to NONE.

Log on using
If you are required to authenticate to the SMTP server, specify the following fields:

• User Name:
Enter the user name of a registered user that can access the SMTP server.

• Password:
Enter the password for the user name specified.

Note
The SMTP server connection supports a simple user name and password type of authentication. Microsoft
Windows NT LAN Manager (NTLM) authentication is not supported.

281

Configure TIBCO Rendezvous daemons
Overview

TIBCO Rendezvous® is the leading low latency messaging product for real-time high throughput data distribution applica-
tions. A message can be sent from the TIBCO daemon running on the local machine to a single TIBCO daemon running
on a separate host machine or it can be broadcast to several daemons running on multiple machines. Each message
has a subject associated with it, which acts as the destination of the message.

A listener, which is itself a TIBCO daemon, can declare an interest in a subject on a specific daemon. Whenever a mes-
sage is delivered to this subject on the daemon the message is delivered to the listening daemon.

The API Gateway can act as a listener on a specific subject at a TIBCO daemon, in which case it said to be acting as a
consumer of TIBCO messages. Similarly, it can also send messages to a TIBCO daemon, effectively acting as a produ-
cer of messages. In both cases, the local TIBCO daemon must be configured to talk to the TIBCO daemons running on
the remote machines.

For more information on consuming and producing messages to and from TIBCO Rendezvous, see the following topics:

• TIBCO integration
• TIBCO Rendezvous listener
• Route to TIBCO Rendezvous

The remainder of this topic describes how to configure a TIBCO Rendezvous daemon. For a more detailed description of
how to configure the fields on this dialog please refer to your TIBCO Rendezvous documentation.

Configuration

You can configure TIBCO Rendezvous daemons under the External Connections tree node in the Policy Studio. Right-
click the TIBCO Rendezvous Daemons node, and select Add a TIBCO Rendezvous Daemon. Configure the following
fields on the TIBCO Daemon Settings dialog:

Name:
Enter a friendly name for this TIBCO Rendezvous daemon. When configured, this name is available for selection when
configuring a TIBCO Rendezvous Listener and a TIBCO Rendezvous filter.

Service:
Communication between TIBCO Rendezvous daemons takes place using Pragmatic General Multicast (PGM) or Univer-
sal Datagram Protocol (UDP) services. The specified service parameter configures the local TIBCO Rendezvous dae-
mon to use this type of service when sending or broadcasting messages to other TIBCO Rendezvous daemons who are
also using this service.

You can specify the service in the following ways:

• By Service Name:
If your network administrator has added an entry for TIBCO Rendezvous in a network database such as NIS (for ex-
ample, rendezvous 7500/udp), you can enter the name of the service (for example, rendezvous) in this field.

• By Port Number:
Alternatively, you can enter the port number on which the TIBCO Rendezvous daemon is listening (for example,
7500).

• Default Option:
If you leave this field blank, a default service name of rendezvous is assumed. For this reason, administrators
should add an entry in the network database with this name (for example, rendezvous 7500/udp. This enables
you to leave this field blank so that this default service is used.

282

Network:
If the machine on which the TIBCO Rendezvous daemon is running has more than one network interface, you can spe-
cify what interface to use for all communications with other daemons. Each TIBCO Rendezvous daemon can only com-
municate on a single network, meaning that separate daemons must be configured for each network you want the dae-
mon to communicate on.

For simplicity, you can leave this field blank, in which case the primary network interface is used for communication with
other daemons. For more information on how to configure different networks and multicast groups, please see the
TIBCO Rendezvous documentation.

Daemon:
The value entered here tells the API Gateway where it can find the TIBCO Rendezvous daemon, which is responsible for
communicating with all other daemons on the network. This daemon can be local or remote.

For local daemons you need only specify the port number that the daemon is running on (for example 6500). Alternat-
ively, you can leave this field blank to connect to the daemon on the default port.

To connect to a remote daemon, you must specify both the host and port number of the daemon in this field (for example
daemon_host:6500).

Configure TIBCO Rendezvous daemons

283

Configure XKMS connections
Overview

XML Key Management Specification (XKMS) is an XML-based protocol that enables you to establish the trustworthiness
of a certificate over the Internet. The API Gateway can query an XKMS responder to determine whether a given certific-
ate can be trusted.

You can add XKMS Connections under the External Connections tree node in the Policy Studio. To add a global XKMS
Connection, right-click the XKMS Connections node, and select Add an XKMS Connection.

Configuration

Configure the following fields on the Certificate Validation - XKMS window.

Name:
Enter an appropriate name for this XKMS connection.

URL Group:
Select a group of XKMS responders from the URL Group drop-down list. The API Gateway attempts to connect to the
XKMS responders in the selected group in a round-robin fashion. It attempts to connect to the responders with the
highest priority first, before connecting to responders with a lower priority.

You can add, edit, or remove URL Groups by selecting the appropriate button. For more information on adding and edit-
ing URL groups, see the Configure URL groups topic.

User Name:
Requests to XKMS responders can be signed by a user to whom the Sign OCSP or XKMS Requests privilege has been
assigned. Only those users who have been assigned this privilege are displayed in the drop-down list. For more informa-
tion on assigning privileges to users, see the Manage API Gateway users topic.

Signing Key:
Click the Signing Key button to open the list of certificates in the Certificate Store. You can then select the key to use to
sign requests to XKMS responders. This user must have been granted the Sign OCSP or XKMS Requests privilege.

284

Manage API Gateway users
Overview

The Users and Groups node in the Policy Studio tree enables you to manage API Gateway users and groups, which
are stored in the API Gateway user store.

By default, the API Gateway user store contains the configuration data for managing API Gateway user information. The
API Gateway user store is typically used in a development environment, and is useful for demonstration purposes. In a
production environment, user information may be stored in existing user Identity Management repositories such as Mi-
crosoft Active Directory, Oracle Access Manager, CA SiteMinder, and so on. For more details, see the API Gateway In-
tegration Guide.

Note
API Gateway users provide access to the messages and services protected by API Gateway. However, Ad-
min users provide access to the API Gateway configuration management features available in Policy Stu-
dio, Configuration Studio, and API Gateway Manager. For more details, see Manage Admin users.

API Gateway users

API Gateway users specify the user identity in the API Gateway user store. This includes details such as the user name,
password, and X.509 certificate. API Gateway users must be a member of at least one user group. In addition, users can
specify optional attributes, and inherit attributes at the group level.

To view all existing users, select the Users and Groups > Users node in the tree. The users are listed in the table on
the main panel. You can find a specific user by entering a search string in the Filter field.

Add API Gateway users

You can create API Gateway users on the Users page. Click the Add button on the right.

Add user details
To specify the new user details, complete the following fields on the General tab:

• User Name:
Enter a name for the new user.

• Password:
Enter a password for the new user.

• Confirm Password:
Re-enter the user's password to confirm.

• X.509 Cert:
Click the X.509 Cert button to load the user's certificate from the Certificate Store.

Add user attributes
You can specify optional user attributes on the Attributes tab, which is explained in the next section.

API Gateway user attributes

You can specify attributes at the user level and at the group level on the Attributes tab. Attributes specify user configura-
tion data (for example, attributes used to generate SAML attribute assertions).

Add attributes

285

The Attributes tab enables you to configure user attributes as simple name-value pairs. The following are examples of
user attributes:

• role=admin

• email=niall@oracle.com

• dept=eng

• company=oracle

You can add user attributes by clicking the Add button. Enter the attribute name, type, and value in the fields provided.
The Encrypted type refers to a string value that is encrypted using a well-known encryption algorithm or cipher.

API Gateway user groups

API Gateway user groups are containers that encapsulate one or more users. You can specify attributes at the group
level, which are inherited by all group members. If a user is a member of more than one group, that user inherits attrib-
utes from all groups (the superset of attributes across the groups of which the user is a member).

To view all existing groups, select the Users and Groups > Groups node in the tree. The user groups are listed in the
table on the main panel. You can find a specific group by entering a search string the Filter field.

Add API Gateway user groups

You can create user groups on the Groups page. Click the Add button on the right to view the Add Group dialog.

Add group details
To specify the new group details, complete the following fields on the General tab:

• Group Name:
Enter a name for the new group.

• Members:
Click the Add button to display the Add Group Member dialog, and select the members to add to the group.

Add group attributes
You can specify optional attributes at the group level on the Attributes tab. For more details, see the section called “API
Gateway user attributes”.

Update API Gateway users or groups

To edit details for a specific user or group, select it in the list, and click the Edit button on the right. Enter the updated de-
tails in the Edit User or Edit Group dialog.

To delete a specific user or group, select it in the list, and click the Remove button on the right. Alternatively, to delete all
users or Groups, click the Remove All button. You are prompted to confirm all deletions.

Manage API Gateway users

286

Manage certificates and keys
Overview

For API Gateway to trust X.509 certificates issued by a specific Certificate Authority (CA), you must import that CA's cer-
tificate into the API Gateway's trusted certificate store. For example, if API Gateway is to trust secure communications
(SSL connections or XML Signature) from an external SAML Policy Decision Point (PDP), you must import the PDP's
certificate, or the issuing CA's certificate into the API Gateway certificate store.

In addition to importing CA certificates, you can import and create server certificates and private keys in the certificate
store. These can be stored locally or on an external Hardware Security Module (HSM). You can also import and create
public-private key pairs. For example, these can be used with the Secure Shell (SSH) File Transfer Protocol (SFTP) or
with Pretty Good Privacy (PGP).

View certificates and keys

To view the certificates and keys stored in the certificate store, select Certificates and Keys > Certificates in the Policy
Studio tree. Certificates and keys are listed on the following tabs in the Certificates window:

• Certificates with Keys: Server certificates with associated private keys
• Certificates: Server certificates without any associated private keys
• CA: Certificate Authority certificates with associated public keys

You can search for a specific certificate or key by entering a search string in the text box at the top of each tab, which
automatically filters the tree.

287

Certificate management options

The following options are available at the bottom right of the window:

• Create/Import: Click to create or import a new certificate and private key. For details, see the section called
“Configure an X.509 certificate”.

• Edit: Select a certificate, and click to edit its existing settings.
• View: Select a certificate, and click to view more detailed information.
• Remove: Select a certificate, and click to remove the certificate from the certificate store.
• Keystore: Click this to export or import certificates to or from a Java keystore. For details, see the section called

“Manage certificates in Java keystores”.

Configure an X.509 certificate

To create a certificate and private key, click Create/Import. The Configure Certificate and Private Key dialog is dis-
played. This section explains how to use the X.509 Certificate tab on this dialog.

Create a certificate

Configure the following settings to create a certificate:

• Subject:
Click Edit to configure the Distinguished Name (DName) of the subject.

• Alias Name:
This mandatory field enables you to specify a friendly name (or alias) for the certificate. Alternatively, you can click

Manage certificates and keys

288

Use Subject to add the DName of the certificate in the text box instead of a certificate alias.
• Public Key:

Click Import to import the subject's public key (usually from a PEM or DER-encoded file).
• Version:

This read-only field displays the X.509 version of the certificate.
• Issuer:

This read-only field displays the distinguished name of the CA that issued the certificate.
• Choose Issuer Certificate:

Select to explicitly specify an issuer certificate for this certificate (for example, to avoid a potential clash or expiry is-
sue with another certificate using the same intermediary certificate). You can then click the browse button on the
right to select an issuer certificate. This setting is not selected by default.

• Not valid before:
Select a date to define the start of the validity period of the certificate.

• Not valid after:
Select a date to define the end of the validity period of the certificate.

• Sign Certificate:
You must click this button to sign the certificate. The certificate can be self-signed, or signed by the private key be-
longing to a trusted CA whose key pair is stored in the certificate store.

Import certificates

You can use the following buttons to import or export certificates into the certificate store:

• Import Certificate:
Click to import a certificate (for example, from a .pem or .der file).

• Export Certificate:
Click to export the certificate (for example, to a .pem or .der file).

Configure a private key

Use the Private Key tab to configure details of the private key. By default, private keys are stored locally (for example, in
the API Gateway certificate store). They can also be provided by an OpenSSL engine, or stored on a Hardware Security
Module (HSM) if required.

API Gateway supports PKCS#11-compatible HSM devices. For example, this includes Thales nShield Solo , SafeNet
Luna SA, and so on.

Manage certificates and keys

289

Private key stored locally

If the private key is stored in the API Gateway certificate store, , select Private key stored locally. The following options
are available for keys stored locally:

• Private key stored locally:
This read-only field displays details of the private key.

• Import Private Key:
Click to import the subject's private key (usually from a PEM or DER-encoded file).

• Export Private Key:
Click to export the subject's private key to a PEM or DER-encoded file.

Private key provided by OpenSSL engine

If the private key that corresponds to the public key in the certificate is provided by an OpenSSL engine, select Private
key provided by OpenSSL Engine.

Configure the following fields to associate a key provided by the OpenSSL engine with the current certificate:

• Engine name:
Enter the name of the OpenSSL engine to use to interface to an HSM. All vendor implementations of the OpenSSL
Engine API are identified by a unique name. See your vendor's OpenSSL engine implementation or HSM document-
ation to find out the name of the engine.

Manage certificates and keys

290

• Key Id:
Enter the key ID used to uniquely identify a specific private key from all others stored on an HSM. When you com-
plete this dialog, the private key is associated with the certificate that you are currently editing. Private keys are iden-
tified by their key ID by default.

Private key stored on external HSM

If the private key that corresponds to the public key stored in the certificate resides on an external HSM, select Private
key stored on Hardware Security Module (HSM), and enter the name of the Certificate Realm.

Note
To use the API Gateway's PKCS#11 engine to access objects in an external HSM, the corresponding HSM
provider and certificate realms must also be configured. For more details, see the section called “Configure
HSMs and certificate realms”.

Configure HSMs and certificate realms

Certificate realms are abstractions of private keys and public key certificates, which mean that policy developers do not
need to enter HSM-specific configuration such as slots and key labels. Instead, if a private key exists on an HSM, the de-
veloper can configure the certificate to show that its private key uses a specific certificate realm, which is simply an alias
for a private key (for example, JMS Keys).

For example, on the host machine, an administrator could configure the JMS Keys certificate realm, and create a key-
store for the realm, which requires specific knowledge about the HSM (for example, PIN, slot, and private key label). The
certificate realm is the alias name, while the keystore is the actual private keystore for the realm.

Manage HSMs with keystoreadmin

The keystoreadmin script enables you to perform the following tasks:

• Register an HSM provider
• List registered HSM providers
• Create a certificate realm
• List certificate realms

For example, if a policy developer is using JMS, and wants to indicate that private keys exist on an HSM, they could in-
dicate that the certificate is using the JMS Keys certificate realm. On each instance using the configuration, it is the re-
sponsibility of the administrator to create the JMS Keys certificate realm.

For more details, enter keystoreadmin in the following directory, and perform the instructions at the command prompt:

Windows INSTALL_DIR\apigateway\Win32\bin

UNIX/Linux INSTALL_DIR/apigateway/posix/bin

Use keystoreadmin in interactive mode

When you enter keystoreadmin without arguments, this displays an interactive menu with the following options:

Option Description When to use

1 Change group or instance When registering HSMs or configuring certificate realms,

Manage certificates and keys

291

Option Description When to use

you must choose the local group and instance to configure.

2 List registered HSM pro-
viders

Display the HSMs that are currently registered.

3 Register an HSM provider Before creating certificate realms, you must first register
the HSM. This option guides you through the steps. The
HSM must be installed, configured, and active, and you
must know the full path to the HSM device driver
(PKCS#11). You give the HSM an alias (for example, Lun-
aSA), which you use later when registering certificate
realms.

4 List Certificate Realms List configured certificate realms and associated keystores.

5 Create a Certificate Realm Create a keystore and assign it to a certificate realm.

Step 1—Register an HSM provider

You must first register an HSM provider as follows:

1. Open a command prompt in the API Gateway bin directory (for example, apigateway\Win32\bin).
2. Enter the keystoreadmin command.
3. Select option 3) Register an HSM provider.
4. If prompted, select the appropriate API Gateway group or instance.
5. You are prompted for a provider alias name. The alias is local only. For example, if registering a LunaSA HSM, you

might enter the LunaSA alias.
6. For convenience, keystoreadmin searches for supported HSM drivers. If found, it shows the list of supported

drivers. If none are found, this does not mean the driver does not exist. You must see your HSM documentation for
the location of the drivers. For example:

Choose from one of the following:

1) C:\LunaSA\cryptoki.dll

o) Other
q) Quit

7. If successful, keystoreadmin loads the driver and displays its details. For example:

Registering HSM provider...
Initializing HSM...
Crypto Version: 2.20
Manufacter Id: SafeNet, Inc.
Library Description: Chrystoki
Library Version: 5.1
Device registered.

Step 2—Create a certificate realm and associated keystore

To create a certificate realm and associated keystore, perform the following steps:

1. Open a command prompt in the API Gateway bin directory (for example, apigateway\Win32\bin).

Manage certificates and keys

292

2. Enter the keystoreadmin command.
3. Select option 5) Create a Certificate Realm.
4. You are prompted to enter a certificate realm name. This certificate realm name will be used in Policy Studio when

configuring the private key of the corresponding X.509 certificate. The realm name is case sensitive (for example,
JMS Keys).

5. The registered HSMs are listed. For example, select option 1) HSM.
6. The command connects to the selected HSM, and a list of available slots is displayed. Select the slot containing the

private key to use for the certificate realm (for example, select slot 1).
7. You are prompted to input the PIN passphrase for the slot. The passphrase will not echo any output.
8. When you enter the correct PIN passphrase for the slot, this displays a list of private keys. Choose the key to use for

the certificate realm. For example:

Choose from one of the following:

1) server1_priv
2) jms_priv
q) Quit

Select option: 2

9. You are prompted for a file name for the keystore. For example:

Certificate realm filename [jms keys.ks]:
Successfully created the certificate realm: JMS Keys
Press any key to continue...

10. The keystore is output to the API Gateway instance directory. For example:

apigateway/groups/group-2/instance-1/conf/certrealms/jms keys.ks

Note
Each API Gateway instance must have its certificate realm configured. When finished creating certificate
realms, you must restart the API Gateway instance for the changes to take effect.

Step 3—Start the API Gateway when using an HSM

When the API Gateway is configured to use certificate realms, these realms are initialized on startup, and a connection
to the corresponding HSM is established. This requires the PIN passphrase for the specific HSM slots. At startup, you
can manually enter the required HSM slot PIN passphrase, or you can automate this instead.

Start API Gateway with manually entered PIN passphrase

When the API Gateway is configured to use an HSM, the API Gateway stops all processing, prompts for the HSM slot
PIN passphrase, and waits indefinitely for input. For example:

INFO 07/Jan/2015:16:31:54 Initializing certificate realm 'JMS Keys'...
Enter passphrase for Certificate Realm, "JMS Keys":

The API Gateway does not reprompt if the PIN passphrase is incorrect. It logs the error and continues, while any ser-
vices that use the certificate realm cannot use the HSM.

Start API Gateway with automatic PIN passphrase

You can configure the API Gateway to start and initialize the HSM by invoking a command script on the operating system
to obtain the HSM slot PIN passphrase. This enables the API Gateway for automatic startup without manually entering

Manage certificates and keys

293

the PIN passphrase.

To configure an automatic PIN passphrase, perform the following steps:

1. Edit the API Gateway instance’s vpkcs11.xml configuration file. For example:

apigateway/groups/group-2/instance-1/conf/vpkcs11.xml

2. Add a PASSPHRASE_EXEC command that contains the full path to the script that executes and obtains the pass-
phrase. The script should write the passphrase to stdout, and should have the necessary operating system file and
execute protection settings to prevent unauthorized access to the PIN passphrase. The following example shows a
vpkcs11.xml file that invokes the hsmpin.sh to echo the passphrase:

<?xml version="1.0" encoding="utf-8"?>
<ConfigurationFragment provider="cryptov">

<Engine name="vpkcs11" defaultFor="">
<EngineCommand when="preInit" name="REALMS_DIR"

value="$VINSTDIR/conf/certrealms" />
<EngineCommand when="preInit" name="PASSPHRASE_EXEC"

value=""$VDISTDIR/hsmpin.sh"" />
</Engine>

</ConfigurationFragment>

3. The API Gateway provides the certificate realm as an argument to the script, so you can use the same script to ini-
tialize multiple realms. The following examples show scripts that write a PIN of 1234 to stdout when initializing the
JMS Keys certificate realm:

Example hsmpin.bat file on Windows

@echo off
IF [%1]==[] GOTO _END

:: Strip out the double quotes around arg
SET REALM=%1
SET REALM=%REALM:"=%

IF "%REALM%"=="JMS Keys" ECHO 1234

Example hsmpin.sh file on Linux/UNIX

#!/bin/sh
case $1 in
"JMS Keys")

echo 1234
;;

esac

Configure SSH key pairs

To configure public-private key pairs in the certificate store, select Certificates and Keys > Key Pairs. The Key Pairs
window enables you to add, edit, or delete OpenSSH public-private key pairs, which are required for the Secure Shell
(SSH) File Transfer Protocol (SFTP).

Add a key pair

To add a public-private key pair, click Add on the right, and configure the following settings in the dialog:

• Alias:

Manage certificates and keys

294

Enter a unique name for the key pair.
• Algorithm:

Enter the algorithm used to generate the key pair. Defaults to RSA.
• Load:

Click to select the public key or private key files to use. The Fingerprint field is auto-populated when you load a
public key.

Note
The keys must be OpenSSH keys. RSA keys are supported, but DSA keys are not supported. The keys
must not be passphrase protected.

Manage OpenSSH keys

You can use the ssh-keygen command provided on UNIX to manage OpenSSH keys. For example:

• The following command creates an OpenSSH key:
ssh-keygen -t rsa

• The following command converts an ssh.com key to an OpenSSH key:
ssh-keygen -i -f ssh.com.key > open.ssh.key

• The following command removes a passphrase (enter the old passphrase, and enter nothing for the new pass-
phrase):
ssh-keygen -p

• The following command outputs the key fingerprint:
ssh-keygen -lf ssh_host_rsa_key.pub

Edit a key pair
To edit a public-private key pair, select a key pair alias in the table, and click Edit on the right. For example, you can load
a different public key and private key. Alternatively, double-click a key pair alias in the table to edit it.

Delete key pairs
You can delete a selected key pair from the certificate store by clicking Remove on the right. Alternatively, click Remove
All.

Configure PGP key pairs

To configure Pretty Good Privacy (PGP) key pairs in the certificate store, select Certificates and Keys > PGP Key
Pairs. The PGP Key Pairs window enables you to add, edit, or delete PGP public-private key pairs.

Add a PGP key pair

To add a PGP public-private key pair, click the Add on the right, and configure the following settings in the dialog:

• Alias:
Enter a unique name for the PGP key pair.

• Load:
Click Load to select the public key and private key files to use.

Note
The PGP keys added must not be passphrase protected.

Manage certificates and keys

295

Manage PGP keys

You can use the freely available GNU Privacy Guard (GnuPG) tool to manage PGP key files (available from ht-
tp://www.gnupg.org/). For example:

• The following command creates a PGP key:
gpg --gen-key
For more details, see http://www.seas.upenn.edu/cets/answers/pgp_keys.html [ht-
tp://www.seas.upenn.edu/cets/answers/pgp_keys.html]

• The following command enables you to view the PGP key:
gpg -a --export

• The following command exports a public key to a file:
gpg --export -u 'UserName' -a -o public.key

• The following command exports a private key to a file:
gpg --export-secret-keys -u 'UserName' -a -o private.key

• The following command lists the private keys:
gpg --list-secret-keys

Edit a PGP key pair
To edit a PGP key pair, select a key pair alias in the table, and click Edit on the right. For example, you can load a differ-
ent public key and private key. Alternatively, double-click a key pair alias in the table to edit it.

Delete PGP key pairs
You can delete a selected PGP key pair from the certificate store by clicking Remove on the right. Alternatively, click Re-
move All.

Global import and export options

This section desribes global import and export options available when managing certificates and keys.

Import and export certificates and keys

The following global configuration options apply to both the X.509 Certificate and Private Key tabs:

• Import Certificate + Key:
Use this option to import a certificate and a key (for example, from a .p12 file).

• Export Certificate + Key:
Use this option to export a certificate and a key (for example, to a .p12 file).

Click OK when you have finished configuring the certificate and private key.

Manage certificates in Java keystores

You can also export a certificate to a Java keystore. You can do this by clicking Keystore on the main Certificates win-
dow. Click the browse button at beside the Keystore field at the top right to open an existing keystore, or click New Key-
store to create a new keystore. Choose the name and location of the keystore file, and enter a passphrase for this key-
store when prompted. Click Export to Keystore, and select a certificate to export.

Similarly, you can import certificates and keys from a Java keystore into the certificate store. To do this, click Keystore
on the main Certificates window. On the Keystore window, browse to the location of the keystore by clicking the browse
button beside the Keystore field. The certificates/keys in the keystore are listed in the table. To import any of these keys
to the certificate store, select the box next to the certificate or key to import, and click Import to Trusted certificate
store. If the key is protected by a password, you are prompted for this password.

You can also use the Keystore window to view and remove existing entries in the keystore. You can also add keys to

Manage certificates and keys

296

http://www.gnupg.org/
http://www.gnupg.org/
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html

the keystore and to create a new keystore. Use the appropriate button to perform any of these tasks.

Further information

For more details on supported security features, see the API Gateway Security Guide.

Manage certificates and keys

297

Global caches
Overview

In cases where a backend service is serving the same request (and generating the same response) over and over again,
it makes sense to use a caching mechanism. When a cache is employed, a unique identifier for the requestis cached to-
gether with the corresponding response for this request. If an identical request is received, the response can be retrieved
from the cache instead of forcing the service to reprocess the identical request and generate the same response. The
use of caching in this way helps divert unnecessary traffic from the service and makes it more responsive to new re-
quests.

For example, assume you have deployed a service that returns a list of cities in the USA from an external database,
which is then used by a variety of Web-based applications. Because the names and quantity of cities in the USA are rel-
atively constant, if the service handles hundreds or thousands of requests every day, this is waste of processing time and
effort, especially considering that the database that contains the relatively fixed list of city names is hosted on a separate
machine to the service.

If you assume that the list of cities in the database does not change very often, it makes sense to use the API Gateway
to cache the response from the service that contains the list of cities. Then when a request for this service is identified by
the API Gateway, the cached response can be returned to the client. This approach results in the following performance
improvements:

• The API Gateway does not have to route the message on to the service, therefore saving the processing effort re-
quired, and perhaps more importantly, saving the time it takes for the round trip.

• The service does not have to waste processing power on generating the same list over and over again, therefore
making it more responsive to requests for other services.

• Assuming a naive implementation of database retrieval and caching, the service does not have to query the data-
base (over the network) and collate the results over and over again for every request.

The caching mechanism used in the API Gateway offers full control over the size of the cache, the lifetime of objects in
the cache, whether objects are cached to disk, and even whether caches can be replicated across multiple API Gateway
instances. This topic describes how to configure both local and distributed caches in the API Gateway, and shows ex-
amples of how to configure a policy to cache responses.

Local caches

Local caches are used where a single API Gateway instance has been deployed. In such cases, you do not need to rep-
licate caches across multiple running instances of the API Gateway.

Adding a local cache
In the Policy Studio tree, you can add a local cache by selecting the Libraries > Caches node, and clicking the Add but-
ton at the bottom right of the screen. Select Add Local Cache from the menu. You can configure the following fields on
the Configure Local Cache dialog:

Cache Name:
Enter a name for the cache.

Maximum Elements in Memory:
Enter the maximum number of objects that can be in memory at any one time.

Maximum Elements on Disk:
Sets the maximum number of objects that can be stored in the disk store at any one time. A value of zero indicates an
unlimited number of objects.

Eternal:

298

If this option is selected, objects stored in the caches never expire and timeouts have no effect.

Overflow to Disk:
Select this option if you want the cache to overflow to disk when the number of objects in memory has reached the
amount set in the Maximum Elements in Memory field above.

Note
The following fields are optional:

Time to Idle:
Determines the maximum amount of time (in seconds) between accesses that an object can remain idle before it expires.
A value of zero indicates that objects can idle for infinity, which is the default value. If the Eternal field is selected, this
setting is ignored.

Time to Live:
Sets the maximum time between when an object is created and when it expires. The default value is zero, which means
that the object can live for infinity. If the Eternal field is selected, this setting is ignored.

Persist to Disk:
If selected, the disk store is persisted between JVM restarts. This option is disabled by default.

Disk Expiry Interval:
Configures the number of seconds between runs of the disk expiry thread. The default is 120 seconds.

Disk Spool Buffer Size:
Indicates the size of memory (in MBs) to allocate the disk store for a spool buffer. Writes are made to this memory and
then asynchronously written to disk. The default size is 30 MB. If you get OutOfMemory exceptions, you may consider
lowering this value. However, if you notice poor performance, you should increase the value.

Eviction Policy:
Select the eviction policy that the cache uses to evict objects from the cache. The default policy is Least Recently Used.
However, you can also use First in First Out and Less Frequently Used.

Distributed caches

If you have deployed several API Gateways throughout your network, you need to employ a distributed cache. In this
scenario, each API Gateway has its own local copy of the cache but registers a cache event listener that replicates mes-
sages to the other caches so that put, remove, expiry, and delete events on a single cache are duplicated across all oth-
er caches.

Adding a Distributed Cache
You can add a distributed cache by selecting the Libraries > Caches tree node, and clicking the Add button at the bot-
tom right of the screen. Select Add Distributed Cache from the menu, and configure the following fields on the Config-
ure Distributed Cache dialog:

Note
Many of the settings for the distributed cache are identical to those for the local cache. For details on how
to configure these fields, see the section called “Local caches”. The following information refers to fields
that are not displayed on both dialogs.

Event Listener Class Name:
Enter the name of the listener factory class that enables this cache to register listeners for cache events, such as put, re-
move, delete, and expire.

Global caches

299

Properties Separator:
Specify the character to use to separate the list of properties.

Properties:
Specify the properties to pass to the RMICacheReplicatorFactory. The following properties are available:

• replicatePuts=true | false
Determines whether new elements placed in a cache are replicated to other caches. Default is true.

• replicateUpdates=true | false
Determines whether new elements that override (update) existing elements with the same key in a cache are replic-
ated. Default is true.

• replicateRemovals=true
Determines whether element removals are replicated. Default is true.

• replicateAsynchronously=true | false
Determines whether replications are asynchronous (true) or synchronous (false). Default is false.

• replicateUpdatesViaCopy=true | false
Determines whether new elements are copied to other caches (true) or a remove message is sent (false). Default is
true.

• asynchronousReplicationIntervalMillis=[number of ms]
The asynchronous replicator runs at a set interval of milliseconds. The default is 1000 and the minimum is 10. This
property is only applicable if replicateAsynchronously=true.

Cache Bootstrap Class Name:
Specifies a BootstrapCacheLoader factory that the cache can call on initialization to pre-populate itself. The RMI-
BootstrapCacheLoader bootstraps caches in clusters where RMICacheReplicators are used.

Properties Separator:
The character entered here is used to separate the list of properties listed in the field below.

Properties:
The properties listed here are used to initialize the RMIBootstrapCacheLoaderFactory. The following properties are
recognized:

• bootstrapAsynchronously=true | false
Determines whether the bootstrap happens in the background after the cache has started (true), or if bootstrapping
must complete before the cache is made available (false). Default is true.

• maximumChunkSizeBytes=[integer]
Caches can potentially grow larger than the memory limits on the JVM. This property enables the bootstrapper to
fetch elements in chunks. The default chunk size is 5000000 (5 MB).

Distributed cache settings

In a distributed cache, there is no master cache controlling all caches in the group. Instead, each cache is a peer in the
group and needs to know where all the other peers in the group are located. Peer Discovery and Peer Listeners are two
essential parts of any distributed cache system.

Editing Distributed Cache Settings
You can configure distributed cache settings by selecting the Server Settings node in the Policy Studio tree, and clicking
General > Cache. Alternatively, you can access these settings in the Policy Studio main menu by selecting Tasks >
Manage Gateway Settings. You can configure the following fields:

Peer Provider Class:
By default, the built-in peer discovery class factory is used:
net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory

Global caches

300

Properties Separator:
Specify the token used as the separator for the list of properties in the next field.

Properties:
The properties listed specify whether the peer discovery mechanism is automatic or manual. If the automatic mechanism
is used, each peer uses TCP multicast to establish and maintain a multicast group. This is the default option because it
requires minimal configuration and peers can be automatically added and removed from the group. Each peer pings the
group every second. If a peer has not pinged any of the other peers after 5 seconds, it is dropped from the group, while a
new peer is admitted to the group if it starts pinging the other peers.

To use automatic peer discovery, ensure that the peerDiscovery setting is set to automatic. You can specify the
multicast address and port using the multicastGroupAddress and multicastGroupPort settings. You can specify
the time to live for multicast datagrams using the timeToLive setting.

Alternatively, you can configure a manual peer discovery mechanism, whereby each peer definitively lists the peers it
wants to communicate with. This should only be used in networks where there are problems propagating multicast data-
grams. To use a manual peer discovery mechanism, ensure the peerDiscovery setting is set to manual. The list of
RMI URLs of the other peers in the group must also be specified, for example:
rmiUrls=//server2:40001/sampleCache1|//server2:40001/sampleCache2 .

Peer Listener Class:
The peer listener class specified is responsible for listening for messages from peers in the group.

Properties Separator:
Specify the token used to separate the list of properties.

Properties:
The properties entered configure the way the listener behaves. Valid properties are as follows:

• hostname (optional)
Hostname of the machine on which the listener is listening.

Note
By default, this is set to localhost, which maps to the local loopback address of 127.0.0.1, which
is not addressable from another machine on the network. If you intend this cache to be used over the
network, you should change this address to the IP address of the network interface on which the listen-
er is listening.

• port (mandatory)
Specify the port on which the listener is listening, which by default is 4001. This setting is mandatory.

• socketTimeoutMillis (optional)
Enter the number of seconds that client sockets wait when sending messages to this listener until they give up. The
default is 2000 ms.

Notify replicators of removal of items during refresh:
A server refresh automatically purges all items from the cache (for example, when configuration updates are deployed to
the API Gateway). If this checkbox is selected, the contents of each peer in the group are also purged. This avoids a situ-
ation where a single peer is refreshed (and has its contents purged), but the other peers in the group are not purged. If
this option is not selected, the refreshed peer attempts to bootstrap itself to the other peers in the group, resulting in the
cache items becoming replicated in the refreshed cache. This effectively negates the effect of the server refresh and may
result in inconsistent behavior.

Example of caching response messages

This simple example shows how to construct a policy that caches responses from the service. It uses the request body to

Global caches

301

identify identical successive requests. If the API Gateway receives two successive requests with an identical message
body, it returns the corresponding response from the cache instead of routing the request to the service. The following
diagram illustrates the complete policy:

The logic of the policy is summarized as follows:

1. The purpose of the first filter is to configure what part of the request you want to use to identify unique requests. This
example uses the request body as the unique key, which is then used to look up the appropriate response message
from the cache.

2. The second filter looks up the request body in the response cache to see if it contains the request body. If it does,
the response message that corresponds to this request is returned to the client.

3. If it does not, the request is routed to the service, which processes it (by connecting to a database over the network
and running a SQL statement) and returns a response to the API Gateway.

4. The API Gateway then returns the response to the client and caches it in the response cache.
5. When the next identical request is received by the API Gateway, the corresponding response is located in the re-

sponses cache and returned immediately to the client.

You must configure the following caching filters to achieve this policy. For convenience, the routing filters are not in-
cluded in this example because the configuration options depend on your target service.

Create Key Filter:
This filter is used to decide what part of the request is used for a request to be considered unique. Different parts of the
request can be identified internally using message attributes (for example, content.body contains the request body).
The following fields must be configured for this filter:

• Name: Use request body to create unique key
• Attribute Name: content.body
• Output attribute name: message.key

Is Cached?:
This filter looks up the cache to see if a response has been stored for the current request. It looks up the cache using the
message.key attribute by default. The message.key attribute contains a hash of the request message, and can be

Global caches

302

used as the key for objects in the cache. If the key is found in the cache, the value of the key (cached response for this
request) is written to the content.body attribute, which can be returned to the client using the Reflect filter. You must
configure the following fields:

• Name: Is a response for this request already cached?
• Cache containing key: Response Cache (assuming you have created a cache of this name)
• Attribute Containing Key: message.key
• Overwrite attribute name if found: content.body

Reflect:
If the Is Cached? filter passes, it retrieves the response from the cache and stores it in the content.body message at-
tribute. The Reflect filter is used to return the cached response to the client.

Routing:
If a response for this request could not be located in the cache, thr API Gateway routes the request to the service, and
waits for a response. For more details on how to route messages, see Getting started with routing configuration.

Cache Attribute:
When the response has been received from the service, it should be cached for future use. The Cache Attribute filter is
used to configure the key used to look up the cache and which aspect of the response message is stored as the key
value in the cache.

Note
This example specifies the value of the content.body attribute to cache. Because this filter is configured
after the routing filters, this attribute contains the response message. The value entered in the Attribute
Key field should match that entered in the Attribute containing key field in the Is Cached? filter. You
must configure the following fields:

• Name: Cache response body
• Cache to use: Response Cache
• Attribute key: message.key
• Attribute name to store: content.body

For more information on these filters, see the following topics:

Filter Topic

Create Key Create key

Is Cached? Check if attribute is cached

Cache Attribute Cache attribute

Remove Cached Attribute Remove cached attribute

Global caches

303

Cross-Origin Resource Sharing
Overview

Cross-Origin Resource Sharing (CORS) enables client-side code running in a browser in a particular domain to access
resources hosted in another domain in a secure manner. Cross-origin requests are typically not permitted by browsers,
and CORS provides a framework in which cross-domain requests are treated as same-domain requests.

For example, using CORS, JavaScript embedded in a web page can make an HTTP XMLHttpRequest to a different do-
main. This is used to send an HTTP or HTTPS request to a web server, and to load the server response data back into
the script. The following diagram shows an example CORS architecture:

This example is described as follows:

1. A user browses to the following URL:

http://client.cors-api.appspot.com

2. The client page displayed on the left contains JavaScript that attempts to access resources in Domain A (ht-
tp://client.cors-api.appspot.com), and in Domain B (http://item-a16823:8080).

3. Attempts by the browser to access resources in Domain A are granted because Domain A is the same domain in
which the JavaScript code is running.

4. When the browser attempts to access resources in Domain B, it must use the CORS protocol because Domain B is
in a different domain than that in which the JavaScript code is running. In this way, CORS enables client JavaScript
code running in the browser in Domain A to access resources in Domain B.

The CORS standard provides CORS HTTP headers that enable servers to serve resources to permitted origin domains.
Browsers support these CORS HTTP headers and enforce their restrictions. Browsers can also send preflight CORS re-
quests to retrieve supported methods from the server using an HTTP OPTIONS method. Then on approval from the serv-
er, the browser client can send the request with the appropriate HTTP request method.

CORS request headers

The CORS HTTP request headers are as follows:

• Origin

• Access-Control-Request-Method (preflight only)
• Access-Control-Request-Headers (preflight only)

304

CORS response headers

The CORS HTTP response headers are as follows:

• Access-Control-Allow-Origin

• Access-Control-Allow-Credentials

• Access-Control-Expose-Headers

• Access-Control-Max-Age (preflight only)
• Access-Control-Allow-Methods (preflight only)
• Access-Control-Allow-Headers (preflight only)

Add a CORS profile

To enable CORS support in API Gateway, you must first add a CORS profile in Policy Studio:

1. In the Policy Studio tree, select Libraries > CORS Profiles.
2. Right-click, and select Add a CORS Profile, and configure the settings on the following tabs.

General

Configure the following general settings:

• Name:
Unique name of the CORS profile. Defaults to Cross Origin Resource Sharing.

• Enable CORS:
Specifies whether CORS processing is enabled for the profile. Enabled by default.

Origins

The Origins table enables you to configure the list of origins that are allowed to access resources configured with this
CORS profile, or exposed by a specific HTTP service. Click Add at the bottom right to add an origin.

You can specify origins using the following values:

• * (permits all values supplied in the CORS Origin header)
• Domain (for example, http://client.corsapi.appspot.com)
• Wildcarded value (for example, http://*.appspot.com or http://client.corsapi.appspot.com:*)

Allowed Headers

The Allowed Headers table enables you to configure the list of HTTP headers that are permitted when requesting a re-
source exposed by this CORS profile or HTTP service. The list of headers is defined by the value of the Access-Con-
trol-Request-Headers CORS header. Click the Add button at the bottom right of the screen to add an allowed
header to the table.

Note
The list of allowed headers is checked only during a CORS preflight OPTIONS request, which can be sent
before access to the resource is granted.

Cross-Origin Resource Sharing

305

Exposed Headers

The Exposed Headers table enables you configure the list of CORS HTTP response headers that are exposed to the
client. Click the Add button at the bottom right of the screen to add an exposed header to the table.

You can specify the list of CORS headers that are exposed to the client, in response to a resource exposed by this pro-
file or HTTP service. You do not need to include the following simple HTTP response headers:

• Cache-Control

• Content-Type

• Content-Language

• Expires

• Last-Modified

• Pragma

Credentials Support

The Support credentials setting specifies whether resources using this CORS profile or HTTP service support user cre-
dentials. When this option is selected, the Access-Control-Allow-Credentials CORS header is sent in the re-
sponse, with a value of true. This setting is not selected by default.

Preflight Results Cache

The Max. age (seconds) setting specifies how long the results of a CORS preflight OPTIONS request can be stored in
the client preflight result cache. When this setting is configured, the Access-Control-Max-Age CORS header is sent
in the response.

Configure CORS for HTTP services

You can also configure a CORS profile at the HTTP service level. This means that the settings configured for the profile
are also applied to any child resolvers of this HTTP service. For example, this may be useful when using a third-party
load balancer, and you need to configure a CORS profile for the default API Portal HTTP service, and specify the load
balancer address as an origin.

To configure CORS at the HTTP service level, perform the following steps:

1. In the Policy Studio tree, select an HTTP service (for example, Listeners > API Gateway > Default Services).
2. Right-click, and select Edit to display the HTTP Services dialog.
3. Select CORS tab, and click the browse button to select a preconfigured CORS profile. By default, no profile is selec-

ted, which means that CORS is disabled.
4. In the Select CORS Profile dialog, if no profiles have already been configured, right-click CORS Profiles, and se-

lect Add a CORS Profile. You can also right-click an existing profile, and select Edit to update its settings. For de-
tails on CORS settings, see the section called “Add a CORS profile”.

Cross-Origin Resource Sharing

306

For more details on HTTP services, see Configure HTTP services.

Configure CORS for relative paths

By default, the CORS profile set at the parent HTTP service level is used for all child resolvers of the HTTP service.
However, you can override this at the relative path level as follows:

1. In the Policy Studio tree, select a list of relative paths (for example, API Gateway > Listeners > Default Services >
Paths).

2. In the Resolvers screen on the right, right-click a resolver, and select Edit to display the dialog.
3. Select CORS tab, and in the CORS Usage field, select Override CORS using the following profile. By default, no

CORS profile is selected, and the parent settings are used.

Note
Relative paths can act as HTTP services, and can accommodate child resolvers. This means that
when a relative path has children, and has a CORS profile configured, by default, the children use the
parent profile (unless a child overrides it).

4. In the CORS Profile field, click the browse button to select a preconfigured CORS profile.
5. If no CORS profiles have already been configured, right-click CORS Profiles, and select Add a CORS Profile. You

can also right-click an existing profile, and select Edit to update its settings. For details on CORS settings, see the
section called “Add a CORS profile”.

Note
Similarly, you can also override CORS for the following relative path resolvers:

• Static Content Providers
• Static File Providers
• Servlet Application

For more details on relative paths and resolvers, see Configure relative paths.

Cross-Origin Resource Sharing

307

Send to Amazon SQS
Overview

Amazon Simple Queue Service (SQS) is a hosted message queuing service for distributing messages amongst ma-
chines. API Gateway acts as a client to SQS and can send messages to SQS. You can use the Send to Amazon SQS
filter to send messages to an SQS queue.

For more information on Amazon SQS, go to http://aws.amazon.com/sqs/.

General settings

Configure the following settings on the Send to Amazon SQS window:

Name:
Enter a suitable name for the filter.

AWS settings

AWS Credential:
Click the browse button to select your AWS security credentials (API key and secret) for Amazon SQS.

Region:
Select the region in which to access the SQS service. You can choose from the following options:

• US East (Northern Virginia)
• US West (Oregon)
• US West (Northern California)
• EU (Ireland)
• Asia Pacific (Singapore)
• Asia Pacific (Tokyo)
• Asia Pacific (Sydney)
• South America (Sao Paulo)
• US GovCloud

Client settings:
Click the browse button to select the AWS client configuration to be used by API Gateway when connecting to Amazon
SQS. For more information on configuring client settings, see the section called “Configure AWS client settings”.

Send message settings

Configure the following settings on the Send Message tab:

Queue name:
Enter the name of the queue to send the message to. The default name is publishQueue. To create a new queue with
the specified name click the Create option.

Send the message payload:
Select this option to send the message payload to the queue.

Or send the value of the attribute below to SQS:
Select this option to send the value of an attribute to the queue. Complete the following fields:

• Attribute Name:

308

http://aws.amazon.com/sqs/

Enter the name of the attribute.
• Content Type:

Enter the content type to be used for sending the message to SQS (for example, text/plain).
• Content Encoding:

Enter the content encoding.

Advanced settings

On the Advanced tab you can configure how to handle messages that are larger than 256KB in size. Configure these
fields:

Split message into smaller ones:
Select this option to split the message into smaller messages before sending it to the queue.

Store in S3 and place pointer on SQS queue:
Select this option to store the payload in Amazon S3 and place a pointer to S3 in the queue. Configure the S3 settings as
described in the section called “S3 settings”.

Further information

For more detailed information on Amazon Web Services integration, see the AWS Integration Guide available from Or-
acle support.

Send to Amazon SQS

309

Upload to Amazon S3
Overview

Amazon Simple Storage Service (S3) is an online storage web service that you can use to store and retrieve any amount
of data. API Gateway acts as a client to S3 and can upload data to S3. You can use the Upload to Amazon S3 filter to
upload data to Amazon S3.

For more information on Amazon S3, go to http://aws.amazon.com/s3/.

General settings

Configure the following settings on the Upload to Amazon S3 window:

Name:
Enter a suitable name for the filter.

AWS settings

AWS Credential:
Click the browse button to select your AWS security credentials (API key and secret) for Amazon S3.

Region:
Select the region in which to store your data. You can choose from the following options:

• US East (Northern Virginia)
• US West (Oregon)
• US West (Northern California)
• EU (Ireland)
• Asia Pacific (Singapore)
• Asia Pacific (Tokyo)
• Asia Pacific (Sydney)
• South America (Sao Paulo)
• US GovCloud

Client settings:
Click the browse button to select the AWS client configuration to be used by API Gateway when connecting to Amazon
S3. For more information on configuring client settings, see the section called “Configure AWS client settings”.

S3 settings

Bucket name:
Enter the name of the bucket in which to store the data. To create a new bucket with the specified name click the Create
option.

Object key:
Enter the object key for the object to be stored. Alternatively, you can enter a selector that is expanded at runtime. For
more details on selectors, see Select configuration values at runtime.

Encryption key:
Click the browse button to select an encryption key for the object.

How to store:
Select how to store the object. You can choose from the following options:

310

http://aws.amazon.com/s3/

• Standard – This is the standard S3 storage option.
• Reduced Redundancy – This is a storage option within Amazon S3 for storing non-critical, reproducible data at lower

levels of redundancy than standard storage.
• Glacier – This is a low-cost storage storage option for data archival.

Further information

For more detailed information on Amazon Web Services integration, see the AWS Integration Guide available from Or-
acle support.

Upload to Amazon S3

311

Compare attribute
Overview

The Compare Attribute filter enables you to compare the value of a specified message attribute on the API Gateway
white board with the values specified in the filter. For example, the following filter only passes if the authentica-
tion.subject.id message attribute has a value of penelope:

Configuration

Configure the following fields:

Name:
Enter an appropriate name for this filter.

Filter will pass if:
Select all or one of the specified conditions to apply. Defaults to all. Click the Add button at the bottom right to specify a
rule condition. In the Attribute filter rule dialog, perform the following steps:

1. Enter a message attribute name in the Value from text box on the left (for example, http.request.verb or
my.customer.attribute).

2. Select one of the following rule conditions from the drop-down list:
• contains

• doesn't contain

• doesn't match regular expression

• ends with

• is

• is not

• matches regular expression

• starts with

3. Enter a value to compare with in the text box on the right (for example, POST). Alternatively, you can enter a selector
that is expanded at runtime (for example, ${http.request.uri}). For more details on selectors, see Select con-
figuration values at runtime.

4. Click OK.

Finally, to edit or delete an existing rule condition, select it in the table, and click the appropriate button.

312

Extract REST request attributes
Overview

This filter extracts the values of query string parameters and/or HTTP headers from a REST request and stores them in
separate message attributes. The request can be an HTTP GET or HTTP POST request. This filter is in the Attributes
category in Policy Studio. For details on creating a REST request, see Create REST request.

HTTP GET requests

The following example shows an incoming HTTP GET request with query string and HTTP headers:

GET /services?name=Niall&location=Dublin&location=Pembroke%20St HTTP/1.1
Host: mail.google.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Using this example, the Extract REST Request Attributes filter generates the following attributes:

http.header.Host = mail.google.com
http.header.User-Agent = Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15
http.header.Accept = text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
http.header.Accept-Language = en-gb,en;q=0.5
http.header.Accept-Encoding = gzip,deflate
http.header.Accept-Charset = ISO-8859-1,utf-8;q=0.7,*;q=0.7

http.querystring.name = Niall
http.querystring.location.1 = Dublin
http.querystring.location.2 = Pembroke St

This filter extracts all parameters from an incoming REST request, and stores them in separate message attributes so
that they can be validated easily, without needing to iterate through the set of http.headers.

Note
For multi-valued query string parameters (for example, location), each value is given an incremental in-
dex. For example, the multi-valued location parameter results in the creation of the ht-
tp.querystring.location.1 and http.querystring.location.2 message attributes.

HTTP POST requests

When you POST a form to the API Gateway, the parameters are placed in the message body, and not in the query
string. However, the Extract REST Request Attributes filter treats posted parameters the same as normal query para-
meters, and also adds them to the http.querystring message attribute in a similar way to the HTTP GET request.
For example, an HTTP POST message body contains the following:

grant_type=test&test1=a&test2=b

This means that the ${http.querystring.grant_type} message attribute selector will contain a value of test.

Configuration

313

Configure the following fields on the Extract REST Request Attributes screen:

Name:
Enter an appropriate name for this filter.

Request Querystring:
Select whether to extract the values of query string parameters from an HTTP POST or GET request. These are simple
name-value pairs (for example, Name=Joe Bloggs). This setting is selected by default.

HTTP Headers:
Select whether to extract the HTTP header values from an HTTP POST or GET request (selected by default).

Decode Extracted Attributes:
Select whether to decode URI paths that have been percent-encoded (for example, using %2F for /). This setting en-
ables compatibility with previous API Gateway versions, which decoded URI paths, and is not selected by default. For
example, this means that URI path components such as the following stay in a raw state:

/s8koID4%2FAd6AqgADSghC%2Bg%3D%3D/book%20repo/first%20book.pdf

This results in:

path[0] = ""
path[1] = "s8koID4%2FAd6AqgADSghC%2Bg%3D%3D"
path[2] = "book%20repo"
path[3] = "first%20book.pdf"

When this setting is selected, the URI path is decoded. This results in:

path[0] = ""
path[1] = "s8koID4%/Ad6AqgADSghC+g=="
path[2] = "book repo"
path[3] = "first book.pdf"

Extract REST request attributes

314

Extract WSS header
Overview

The Extract WSS Header filter extracts a WS-Security Header block from a message. The extracted security header is
stored in the authentication.ws.wsblockinfo message attribute.

To process this security header later in the policy, you can specify this message attribute in the configuration screen for
the specific processing filter. For example, to sign the security header, you can specify the authentica-
tion.ws.wsblockinfo message attribute in the What to Sign section of the Sign Message filter. Open the Message
Attribute tab on the What to Sign screen, and specify this attribute to sign the security header.

Timestamp validity

The Extract WSS Header filter implicitly checks the wsu:Timestamp in the WSS Header block, if present. It checks
the Expires and Created time to determine whether the current time is between the following values:

[Created time - drift time], [Expires time + drift time]

The drift time is taken from the value set in Server Settings > General Token drift time (secs), which defaults to 300
seconds. This filter will fail if the extracted WSS header block contains an invalid timestamp.

Configuration

Configure the following fields on the Extract WSS Header filter configuration screen:

Name:
Enter an intuitive name for this filter (for example, Extract Current Actor WSS Header).

Actor or Role:
Specify the name of the SOAP Actor or Role of the WS-Security header that you want to extract. Remember, the WS-
Security header is stored in the authentication.ws.wsblockinfo message attribute.

Remove enclosing WS-Security element:
This option removes the enclosing wsse:Security element from the message.

315

Extract WSS timestamp
Overview

You can use the Extract WSS Timestamp filter to extract a WSS header timestamp from a message. The timestamp is
stored in a specified message attribute so that it can be processed later in a policy. This filter requires the WSS header
block to have been extracted previously. For more details, see the Extract WSS header filter.

Typically, the Validate Timestamp filter is used to retrieve the timestamp from the specified message attribute and valid-
ate it. The Validate Timestamp filter is available from the Content Filtering filter category. For more details, see the
Validate timestamp filter.

Configuration

Configure the following fields on the Extract WSS Timestamp filter configuration screen:

Name:
Enter an appropriate name for this filter.

Message Attribute to Contain the Timestamp:
When the API Gateway extracts the WSS header timestamp from the message at runtime, it stores the timestamp in the
specified message attribute. To validate the timestamp later in the policy, you must specify this message attribute in the
configuration screen for the Validate Timestamp filter.

316

Extract WSS UsernameToken element
Overview

You can use the Extract WSS Username Token filter to extract a WS-Security UsernameToken from a message if it
exists. The extracted UsernameToken token is stored in the wss.usernameToken message attribute.

To process the UsernameToken later in the policy, you can specify this message attribute in the configuration screen for
the processing filter. For example, to sign the UsernameToken, you can simply specify the wss.usernameToken mes-
sage attribute in the What to Sign section of the Sign Message filter. Open the Message Attribute tab on the What to
Sign screen, and specify this attribute to sign the user name token.

Configuration

Configure the following field on the Extract WSS Username Token filter configuration screen:

Name:
Enter an appropriate name for the filter. Remember that the WS-Security UsernameToken is stored in the
wss.usernameToken message attribute.

317

Get cookie
Overview

An HTTP cookie is data sent by a server in an HTTP response to a client. The client can then return an updated cookie
value in subsequent requests to the server. For example, this enables the server to store user preferences, manage ses-
sions, track browsing habits, and so on.

The Get Cookie filter is used to read the Cookie and Set-Cookie HTTP headers. The Cookie header is used when a
client sends a cookie to a server. The Set-Cookie header is used when the server instructs the client to store a cookie.

For more details, see the topic on the Create cookie.

Configuration

Configure the following fields on the Get Cookie Filter Configuration screen:

Filter Name:
Enter an appropriate name to display for this filter.

Cookie Name:
Enter a regular expression that matches the name of the cookie. This value can use wildcards. Defaults to .*.

Remove all Cookie Headers from Message after retrieval:
When this setting is selected, all Cookie and Set-Cookie headers are removed from the message after retrieving the
target cookie. This setting is not selected by default.

Attribute storage

When a cookie is retrieved, it is stored in the appropriate API Gateway message attribute. The following message attrib-
utes are used to store cookies:

Cookie Header Type Message Attribute Name

Cookie cookie.cookie_name.value (for example, cookie.mytest.value)

Set-Cookie cookie.cookie_name.cookie_attribute_name (for example, cook-
ie.mytest.header)

Set-Cookie attribute list
The Set-Cookie HTTP header includes the following cookie attributes (reflected in the Set-Cookie message attribute
name):

Cookie Attribute Name Description

header The HTTP header name.

value The value of the cookie.

domain The domain name for this cookie.

path The path on the server to which the browser returns this cookie.

maxage The maximum age of the cookie in days, hours, minutes, and/or seconds.

secure Whether sending this cookie is restricted to a secure protocol. This setting is
not selected by default, which means that it can be sent using any protocol.

318

Cookie Attribute Name Description

HTTPOnly Whether the browser should use cookies over HTTP only. This setting is not
selected by default.

Get cookie

319

Insert SAML attribute assertion
Overview

A Security Assertion Markup Language (SAML) attribute assertion contains information about a user in the form of a
series of attributes. Having collated a certain amount of information about a user, the API Gateway can generate a SAML
attribute assertion, and insert it into the downstream message.

A SAML Attribute (see example below) is generated for each entry in the attribute.lookup.list attribute. Other fil-
ters from the Attributes filter group can be used to insert user attributes into the attribute.lookup.list attribute.

It might be useful to refer to the following example of a SAML attribute assertion when configuring this filter:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<soap:Header>
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameIdentifier Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameIdentifier>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>

<soap:Body>
<product>
<name>API Gateway</name>
<company>Oracle</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

General settings

Configure the following field:

Name:

320

Enter an appropriate name for the filter.

Assertion Details

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) to be used as the Issuer of the SAML assertion. This
DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion> element. For
an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. Please see section 5.4.2 of the oasis-sstc-saml-core-1.0.pdf
and section 5.4.2 of sstc-saml-core-1.1.pdf documents, both of which are available at ht-
tp://www.oasis-open.org.

Assertion Location

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the
First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configure XPath expressions topic.

Insert SAML attribute assertion

321

You can specify exactly how the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject Confirmation Method

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The value selected here determines the value of the <ConfirmationMethod> element. The following table shows the
available methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key used to
prove that the API Gateway is the holder of the
key, or includes a reference to the key.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer The subject of the assertion is the bearer of the
assertion.

urn:oasis:names:tc:SAML:1.0:cm:bea
rer

SAML Artifact The subject of the assertion is the user that
presented a SAML Artifact to the API Gateway.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender Vouches Use this confirmation method to assert that the
API Gateway is acting on behalf of the authen-
ticated end-user. No other information relating
to the context of the assertion is sent. It is re-
commended that both the assertion and the
SOAP Body must be signed if this option is se-

urn:oasis:names:tc:SAML:1.0:cm:bea
rer

Insert SAML attribute assertion

322

Method Meaning Value

lected. These message parts can be signed by
using the XML signature generation filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is to be included in the message. There are a number of configuration options available depend-
ing on whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the
Asymmetric Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio
button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway is the holder-of-key entity. You must enter the name of the message attribute in the
field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway and the recipient
and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmetric key
with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only
the recipient has access. Select the Signing Key button and then select the recipient's certificate on the Select Cer-
tificate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter the message attribute in this field.

• Symmetric Key Length:

Insert SAML attribute assertion

323

Enter the length (in bits) of the symmetric key to use.
• Key Wrap Algorithm:

Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and select the Text Value or Distinguished Name Attribute radio button, depending on the source of
the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks in a message use the same key materi-
al, and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the drop-down list, whereas if it refers to a BinarySecurityToken, select X509v3 from the dropdown. Other
options are available to enable more specific security requirements.

Advanced settings

The settings on the Advanced tab include the following fields.

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header in a SOAP message. The SAML assertion is inserted into the WS-Security header according
to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of Strict, Lax,
LaxTimestampFirst, and LaxTimestampLast.

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML attribute assertion can be encapsulated in a <SecurityTokenReference> block. The following
example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

Insert SAML attribute assertion

324

</saml:Issuer>
<saml:Subject>
<saml:NameID Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameID>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="attrib1" NameFormat="">
<saml:AttributeValue xsi:nil="true"/>
<saml:AttributeValue>value1</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block like in this example, select the Embed SAML as-
sertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML attribute assertion

325

Retrieve attributes from JSON message
Overview

JSON Path is an XPath like query language for JSON (JavaScript Object Notation) that enables you to select nodes in a
JSON document. The Retrieve Attributes with JSON Path filter enables you to retrieve specified message attributes
from a JSON message using JSON Path expressions.

For more details on JSON Path, see http://code.google.com/p/jsonpath/.

Configuration

Configure the following fields on the Retrieve Attributes with JSON Path filter screen:

Name:
Enter an appropriate name for this filter.

Extract attributes using the following JSON Path expressions:
Specify the list of attributes for the API Gateway to retrieve using appropriate JSON Path expressions. All attribute values
are stored in the attribute.lookup.list message attribute.

To add an attribute to the list, click the Add button, and enter the following values in the dialog:

• Attribute name:
Enter the message attribute name that you wish to extract using JSON Path (for example, bicycle.price).

• JSON Path Expression:
Enter the JSON Path expression that you wish to use to extract the message attribute (for example,
$.store.bicycle.price). The Policy Studio prompts if you enter an unsupported JSON Path expression.

• Unmarshal as:
Enter the data type to unmarshal the message attribute value as (defaults to java.lang.String).

• Fail if JSON Path Fails:
Select whether the filter should fail if the specified JSON Path expression fails. This option is not selected by default.

Note
If no attributes are specified, the API Gateway retrieves all the attributes in the message and sets them to
the attribute.lookup.list attribute.

JSON Path examples

The following are some examples of using the Retrieve Attributes with JSON Path filter to retrieve data from a JSON
message.

Retrieving attributes
The following example retrieves three different data items from the JSON message and stores them in the specified mes-
sage attributes as strings:

326

http://code.google.com/p/jsonpath/

When the extracted attributes are added to the content.body message attribute, the following example shows the cor-
responding request and response message in Oracle API Gateway Explorer:

Retrieve attributes from JSON message

327

Retrieving multiple attributes in a list
The following example retrieves all the authors from the JSON message and stores them in the specified message attrib-
ute as a List:

Retrieve attributes from JSON message

328

The following example shows the corresponding request and response in Oracle API Gateway Explorer:

Retrieve attributes from JSON message

329

Retrieve attribute from directory server
Overview

The API Gateway can leverage an existing directory server by querying it for user profile data. The Retrieve From Dir-
ectory Server filter can lookup a user and retrieve that user's attributes represented as a list of search results. Each ele-
ment of the list represents a list of multi-valued attributes returned from the directory server.

General settings

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database settings

Configure the following fields on the Database tab:

LDAP Directory:
The API Gateway queries the selected Lightweight Directory Access Protocol (LDAP) directory for user attributes. An
LDAP connection is retrieved from a pool of connections at runtime. Click the browse button to select the LDAP directory
to query. To use an existing LDAP directory, (for example, Sample Active Directory Connection), select it in the
tree. To add an LDAP directory, right-click the LDAP Connections tree node, and select Add an LDAP Connection. Al-
ternatively, you can add LDAP connections under the External Connections node in the Policy Studio tree view. For
more details on how to configure LDAP connections, see Configure LDAP directories.

The Retrieve Unique User Identity section enables you to select the user whose profile the API Gateway looks up in
the directory server. The user ID can be taken from a message attribute or looked up from an LDAP directory.

From Selector Expression:
Select this option if the user ID is stored in a message attribute, and specify the selector expression used to obtain its
value at runtime (for example, ${authentication.subject.id}). A user's credentials are stored in the authen-
tication.subject.id message attribute after authenticating to the API Gateway, so this is the most likely attribute to
enter in this field. Typically, this contains the Distinguished Name (DName) or user name of the authenticated user. The
name extracted from the specified message attribute is used to query the directory server. For more details on selector
expressions, see Select configuration values at runtime.

From LDAP Search:
In cases where you have not already obtained the user's identity and the authentication.subject.id attribute has
not been prepopulated by a prior authentication filter, you must configure the API Gateway to retrieve the user's identity
from an LDAP search. Click the Configure Directory Search button to configure the search criteria to use to retrieve the
user's unique DName from the LDAP repository.

The Retrieve Attributes section instructs the API Gateway to search the LDAP tree to locate a specific user profile.
When the appropriate profile is retrieved, the API Gateway extracts the specified user attributes.

Base Criteria:
You can specify where the API Gateway should begin searching the LDAP directory using a selector. The selector rep-
resents the value of a message attribute that is expanded at runtime. The two most likely message attributes to be used
here are the authenticated user's ID and Distinguished Name. Select one of the predefined selectors from the list:

• ${authentication.subject.id}

• ${authentication.subject.dname}

330

Alternatively, you can enter a selector representing other message attributes using the same syntax. For more details on
selectors, see Select configuration values at runtime.

Search Filter:
This is the name given by the particular LDAP directory to the User class. This depends on the type of LDAP directory
configured. You can also use a selector to represent the value of a message attribute. For example, you can use the
user.role attribute to store the user class. The syntax for using the selector representing this attribute is as follows:

(objectclass=${user.role})

Search Scope:
If the API Gateway retrieves a user profile node from the LDAP tree, the option selected here dictates the level that the
API Gateway searches the node to. The available options are:

• Object level
• One level
• Sub-tree

Unique Result:
Select this option to force the API Gateway to retrieve a unique user profile from the LDAP directory. This is useful in
cases where the LDAP search has returned several profiles.

Attribute Name:
The Attribute Name table lists the attributes the API Gateway retrieves from the user profile. If no attributes are listed,
the API Gateway extracts all user attributes. In both cases, retrieved attributes are set to the attribute.lookup.list
message attribute. Click Add to add the name of an attribute to extract from the returned user profile. Enter the attribute
name to extract from the profile in the Attribute Name field of the Attribute Lookup dialog.

Important

• If the search returns results for more that one user, and the Unique Result option is enabled, an error
is generated. If this option is not enabled, all attributes are merged.

• If an attribute is configured that does not exist in the repository, no error is generated.
• If no attributes are configured, all attributes present for the user are retrieved.

Advanced settings

Configure the following fields on the Advanced tab:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes. This field is not selected by default. Prior to
version 7.1, retrieved attributes were stored in message attributes in the following format:

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on. In version 7.1 and later, by default, you
can query for multi-valued retrieved attributes using an array syntax (for example, ${user.email[0]}, or
${user.email[1]}, and so on). Select this setting to use the legacy format for attribute naming instead.

Example of output attribute format with legacy attribute naming
The following table shows the output attribute format when legacy attribute naming is selected:

Retrieve attribute from directory server

331

Prefix for message attribute name
(optional)

Output attribute format (when attribute name is memberOf)

user (default)
• attribute.lookup.list: Map of retrieved attributes
• user.memberOf: When retrieves only a single value for the given attribute
• user.memberOf.* (for example, user.memberOf.1,

user.memberOf.2, and so on): When retrieves multiple values for the
given attribute

• ${user.memberOf}: Example selector

None
• attribute.lookup.list: Map of retrieved attributes
• memberOf: When retrieves only a single value for the given attribute
• memberOf.* (for example, memberOf.1, memberOf.2, and so on):

When retrieves multiple values for the given attribute
• ${user.memberOf}: Example selector

Example of output attribute format without legacy attribute naming
The following table shows the output attribute format when legacy attribute naming is not selected:

Prefix for message attribute name
(mandatory)

Output attribute format (when attribute name is user.memberOf)

user (default)
• user: List of search results, where each element of the list corresponds to

search results (pairs of attribute names and values)
• Example selector: ${user[0].memberOf[0]}

Prefix for message attribute:
You can specify an optional prefix for message attribute names. The default prefix is user. For more details, see Enable
legacy attribute naming for retrieved attributes.

Retrieve attribute from directory server

332

Retrieve attribute from HTTP header
Overview

The Retrieve from HTTP Header attribute retrieval filter can be used to retrieve the value of an HTTP header and set it
to a message attribute. For example, this filter can retrieve an X.509 certificate from a USER_CERT HTTP header, and set
it to the authentication.cert message attribute. This certificate can then be used by the filter's successors. The fol-
lowing HTTP request shows an example of such a header:

POST /services/getEmployee HTTP/1.1
Host: localhost:8095
Content-Length: 21
SOAPAction: HelloService
USER_CERT: MIIEZDCCA0 ...9aKD1fEQgJ

You can also retrieve a value from a named query string parameter and set this to the specified message attribute. The
following example shows a request URL that contains a query string:

http://hostname.com/services/getEmployee?first=john&last=smith

In the above example, the query string is first=john&last=smith. As is clear from the example, query strings con-
sist of attribute name-value pairs. Each name-value pair is separated by the & character.

Configuration

The following fields are available on the Retrieve from HTTP Header filter configuration screen:

Name:
Enter an appropriate name for this filter.

HTTP Header Name:
Enter the name of the HTTP header contains the value that we want to set to the message attribute.

Base64 Decode:
Check this box if the extracted value should be Base64 decoded before it is set to the message attribute.

Use Query String Parameters:
Select this setting if the API Gateway should attempt to extract the HTTP Header Name from the query string paramet-
ers instead of from the HTTP headers.

Attribute ID:
Finally, select the attribute used to store the value extracted from the request.

333

Retrieve attribute from SAML attribute assertion
Overview

A SAML (Security Assertion Markup Language) attribute assertion contains information about a user in the form of a
series of attributes. The Retrieve from SAML Attribute Assertion filter can retrieve these attributes and store them in
the attribute.lookup.list message attribute.

The following SAML attribute assertion contains three attributes, "role", "email", and "dept". The Retrieve from SAML
Attribute Assertion filter stores all three attributes and their values in the attribute.lookup.list message attrib-
ute.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<soap:Header>
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameIdentifier Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameIdentifier>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>

<soap:Body>
<product>
<name>API Gateway</name>
<company>Oracle</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

Details

The following fields are available on the Details configuration tab:

Name:
Enter a name for this filter here.

334

SOAP Actor/Role:
If you expect the SAML assertion to be embedded within a WS-Security block, you can identify this block by specifying
the SOAP Actor or Role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, if the assertion is not contained within a WS-Security block, you can enter an XPath expression to locate
the attribute assertion. XPath expressions can be added by selecting the Add button. Expressions can be edited and de-
leted by selecting an XPath expression and clicking the Add and Delete buttons respectively.

SAML Namespace:
Select the SAML namespace that must be used on the SAML assertion in order for this filter to succeed. If you do not
wish to check the namespace, select the "Do not check version" option from the dropdown.

SAML Version:
Enter the SAML Version that the assertion must adhere to by entering the major version in the 1st field, followed by the
minor version in the 2nd field. For example, for SAML version 2.0, enter "2" in the 1st field and "0" in the 2nd field.

Drift Time:
When the API Gateway receives a SAML attribute assertion, it first checks to make sure that it has not expired. The life-
time of the assertion is specified using the "NotBefore" and "NotOnOrAfter" attributes of the <Conditions> element in
the assertion itself. The API Gateway makes sure that the time at which it validates the assertion is between the "NotBe-
fore" and "NotOnOrAfter" times.

The Drift Time is used to account for differences in the clock time of the machine that generated the assertion and the
machine hosting the API Gateway. The time specified here will be subtracted from the time at which the API Gateway at-
tempts to validate the assertion.

Trusted Issuers

You can use the table on this tab to select the issuers that you consider trusted. In other words, this filter will only accept
assertions that have been issued by the SAML Authorities selected here.

Click the Add button to display the Trusted Issuers screen. Select the Distinguished Name of a SAML Authority whose
certificate has been added to the Certificate Store and click the OK button. Repeat this step to add more SAML Authorit-
ies to the list of trusted issuers.

Subject configuration

The API Gateway can perform some very basic authentication checks on the subject or sender of the assertion using the
options available on the Subject tab. The API Gateway can compare the subject of the assertion (i.e. the
<NameIdentifier>) to one of the following values:

• Subject of the Authentication Filter:
Select this option if the user specified in the <NameIdentifier> element must match the user that authenticated
to the API Gateway. The subject of the authentication event is stored in the authentication.subject.id mes-
sage attribute.

• A User-Specified Value:
This option can be used if the <NameIdentifier> must match a user-specified value. Select this radio button and
enter the value in the field provided.

• No Authentication:
If the Neither of the above radio button is selected, the API Gateway will not attempt to match the
<NameIdentifier> to any value.

Lookup Attributes

The Lookup Attributes tab is used to determine what attributes the API Gateway should extract from the SAML attribute

Retrieve attribute from SAML attribute assertion

335

assertion. Extracted attributes and their values will be set to the attribute.lookup.list message attribute.

The table lists the attributes that the API Gateway will extract from the assertion and set to the attrib-
ute.lookup.list.

Alternatively, check the Extract all of the attributes from the SAML assertion check box to configure the API Gateway
to extract all attributes from the assertion. All attributes will be set to the attribute.lookup.list message attribute.

To configure a specific attribute to lookup in the message, click the Add button to display the Attribute Lookup dialog.
Enter the value of the "Name" attribute of the <Attribute> element in the Name field. Enter the value of the "Name-
Format" attribute of the <Attribute> element in the Namespace field.

Retrieve attribute from SAML attribute assertion

336

Retrieve attribute from SAML PDP
Overview

The API Gateway can request information about an authenticated end-user in the form of user attributes from a SAML
PDP (Policy Decision Point) using the SAML Protocol (SAMLP). In such cases, the API Gateway presents evidence to
the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509 certificate.

The PDP looks up its configured user store and retrieves attributes associated with that user. The attributes are inserted
into a SAML attribute assertion and returned to the API Gateway in a SAMLP response. The assertion and/or SAMLP re-
sponse is usually signed by the PDP.

When the API Gateway receives the SAMLP response, it performs a number of checks on the response, such as validat-
ing the PDP signature and certificate, and examining the assertion. It can also insert the SAML attribute assertion into
the original message for consumption by a downstream Web service.

Request configuration

This section describes how the API Gateway should package the SAMLP request before sending it to the SAML PDP.

SAML PDP URL sets
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL Set. You can configure a SAML PDP URL Set using this
screen or under the External Connections node in the Policy Studio tree. For more details, see the topic on Configure
URL groups.

You can configure the following general fields:

• SAML PDP URL Set:
Click the button on the right, and select a previously configured SAML PDP URL Set from the tree. To add a URL
Set, right-click the SAML PDP URL Sets tree node, and select Add a URL Set. Alternatively, you can configure a
SAML PDP URL Set under the External Connections node in the Policy Studio tree.

• SOAPAction:
Enter the SOAP Action required to send SAML Protocol requests to the PDP. Click the Use Default button to use
the following default SOAP Action as specified by the SAML Protocol:
http://www.oasis-open.org/committees/security

• SAML Version:
Select the SAML version to use in the SAMLP request.

• Signing Key:
If the SAMLP request is to be signed, click the Signing Key button, and select the appropriate signing key from the
Certificate Store.

SAML Subject
These details describe the subject of the SAML assertion. Complete the following fields:

• Subject Attribute:
Select the message attribute that contains the name of an authenticated username. By default, the authentica-
tion.subject.id message attribute is selected, which contains the username of the authenticated user.

• Subject Format:
Select the format of the message attribute selected in the Subject Attribute field above.

337

Note
There is no need to select a format here if the Subject Attribute field is set to authentica-
tion.subject.id

Subject Confirmation
The settings on the Subject Confirmation tab determine how the <SubjectConfirmation> block of the SAML asser-
tion is generated. When the assertion is consumed by a downstream Web service, the information contained in the
<SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API Gate-
way, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key A <SubjectConfirmation> is inserted into
the SAMLP request. The
<SubjectConfirmation> contains a
<dsig:KeyInfo> section with the certificate
of the user selected to sign the SAMLP re-
quest. The user selected to sign the SAMLP
request must be the authenticated subject
(authentication.subject.id).
Select the Certificate is included if the sign-
er's certificate is to be included in the Sub-
jectConfimration block. Alternatively, se-
lect the Only key name is included radio but-
ton if only the key name is to be included.
Select the user whose private key is used to
sign part of the message in the User Name
drop-down list on the Sign Request tab.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer A <SubjectConfirmation> is inserted into
the SAMLP request.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

Retrieve attribute from SAML PDP

338

Method Meaning Value

SAML Artifact A <SubjectConfirmation> is inserted into
the SAMLP request.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender Vouches A <SubjectConfirmation> is inserted into
the SAMLP request. The SAMLP request must
be signed by a user.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

If the Method field is left blank, no <ConfirmationMethod> block is inserted into the assertion.

Include Certificate:
Select this option if you wish to include the SAML subject's certificate in the <KeyInfo> section of the
<SubjectConfirmation> block.

Include Key Name:
Alternatively, if you do not want to include the certificate, you can select this option to only include the key name in the
<KeyInfo> section.

Attributes:
You can list a number of user attributes to include in the SAML attribute assertion that is generated by the API Gateway.
If no attributes are explicitly listed in this section, the API Gateway inserts all attributes associated with the user (all user
attributes in the attribute.lookup.list message attribute) in the assertion.

To add a specific attribute to the SAML attribute assertion, click the Add button. A user attribute can be configured using
the Attribute Lookup dialog.

Enter the name of the attribute that is added to the assertion in the Attribute Name field. Enter the namespace that is
associated with this attribute in the Namespace field.

You can edit and remove previously configured attributes using the Edit and Remove buttons.

Response configuration

The fields on this tab relate to the SAMLP Response returned from the SAML PDP. The following fields are available:

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML attribute assertion, the API Gateway can extract it from the re-
sponse and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identified
by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is time stamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

Retrieve attribute from SAML PDP

339

Retrieve attribute from Tivoli
Overview

You can use the Retrieve from Tivoli filter when you need to retrieve user attributes independently from authorizing the
user against Tivoli Access Manager. This filter is found in the Attributes category of filters.

For details on prerequisites for integration with IBM Tivoli, see the Tivoli integration topic.

Configuration

Complete the following fields to configure the Retrieve from Tivoli filter:

Name:
Enter an appropriate name for the filter.

User ID:
Enter the ID of a user to retrieve attributes for. You can enter a static user name, Distinguished Name (DName), or se-
lector representing a message attribute. The selector is expanded to the value of the message attribute at runtime.

For example, you can enter ${authentication.subject.id}. This means that the ID of the authenticated user,
which is normally a DName, is used to retrieve attributes for. For this to work correctly, an authentication filter must have
been configured to run before this filter in the policy. For more details on selectors, see Select configuration values at
runtime.

Attributes:
You can specify a list of user attributes to retrieve from the Tivoli server. You can add individual attributes to be retrieved
by clicking the Add button and entering the attributes in the dialog. If you want all attributes to be retrieved, leave the ta-
ble blank.

Tivoli Configuration Files:
A Tivoli configuration file that contains all the required connection details is associated with a particular Oracle API Gate-
way instance. Click the Settings button to display the Tivoli Configuration dialog.

On the Tivoli Configuration dialog, select the API Gateway instance whose connection details you want to configure.
For more details on configuring this wizard, see the Tivoli integration topic.

340

Retrieve attribute from message
Overview

The Retrieve from Message filter uses XPath expressions to extract the value of an XML element or attribute from the
message and set it to an internal message attribute. The XPath expression can also return a NodeList, and the
NodeList can be set to the specified message attribute.

Configuration

The following fields are available on the Retrieve from Message filter configuration screen:

Name:
Enter an appropriate name for this filter.

Use the following XPath:
Configure an XPath expression to retrieve the desired content.

Click the Add button to add an XPath expression. You can add and remove existing expressions by clicking the Edit and
Remove buttons respectively.

Store the extracted content:
Select an option to specify how the extracted content is stored. The options are:

• of the node as text (java.lang.String)
This option saves the content of the node retrieved from the XPath expression to the specified message attribute as
a String.

• for all nodes found as text (java.lang.String)
This option saves all nodes retrieved from the XPath expression to the specified message attribute as a String (for
example, <node1>test</node1>). This option is useful for extracting <Signature>, <Security>, and
<UsernameToken> blocks, as well as proprietary blocks of XML from messages.

• for all nodes found as a list (java.util.List)
This option saves the nodes retrieved from the XPath expression to the specified message attribute as a Java List,
where each item is of type Node. For example, if the XPath returns <node1>test</node1>, there is one node in
the List (<node1>). The child text node (test) is accessible from that node, but is not saved as an entry in the
List at the top-level.

Extracted content will be stored in attribute named:
The API Gateway sets the value of the message attribute selected here to the value extracted from the message. You
can also enter a user-defined message attribute.

Optionally the message payload can be replaced by the extracted content:
Select this option to take the value being set into the attribute and add it to the content body of the response. This option
is not selected by default.

Use the following content type for new payload:
This field is only available if the preceding option is selected. This allows you to specify the content type for the response,
based on what will be added to the content body.

341

Retrieve attribute from database
Overview

The API Gateway can retrieve user attributes from a specified database, or write user attributes to a specified database.
It can do this by running an SQL query on the database, or by invoking a stored procedure call. The query results are
represented as a list of properties. Each element in the list represents a query result row returned from the database for
the specified SQL query or stored procedure call. These properties represent pairs of attribute names and values for
each column in the row.

General settings

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database settings

Configure the following fields on the Database tab:

Database Location:
The API Gateway searches the selected database for the user's attributes. Click the browse button to select the data-
base to search. To use an existing database connection (for example, Default Database Connection), select it in
the tree. To add a database connection, right-click the Database Connections tree node, and select Add DB connec-
tion. Alternatively, you can add database connections under the External Connections node in the Policy Studio tree
view. For more information on configuring database connections, see Configure database connections.

Database Statements:
The Database Statements table lists the currently configured SQL queries or stored procedure calls. These queries and
calls retrieve certain user attributes from the database selected in the Database Location field. You can edit and delete
existing queries by selecting them from the drop-down list and clicking the Edit and Delete buttons. For more information
on how to configure a Database Query, see Configure database query.

Advanced settings

On the Advanced tab, configure the following fields in the User Attribute Extraction section:

Place query results into user attribute list:
Select whether to place database query results in message attributes. When selected, the message attribute names are
generated based on the message attribute prefix and the attribute name. For example, if the specified prefix is user and
the attributes are PHONE and EMAIL, the user.PHONE and user.EMAIL attributes are generated. This setting is selec-
ted by default.

Associate attributes with user ID returned by selector:
When the Place query results into message attribute list setting is selected, you can specify a user ID to associate
with the user attributes. For example, if the user name is stored as admin in the database, you must select the message
attribute containing the value admin. The API Gateway then looks up the database using this name. By default, the user
ID is stored in the ${authentication.subject.id} message attribute.

Configure the following fields on the Attribute Naming section:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes. This field is not selected by default. Prior to
version 7.1, retrieved attributes were stored in message attributes in the following format:

342

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on. In version 7.1 and later, by default, you
can query for multi-valued retrieved attributes using an array syntax (for example, ${user.email[0]}, or
${user.email[1]}, and so on). Select this setting to use the legacy format for attribute naming instead.

Example of output attribute format with legacy attribute naming
The following table shows the output attribute format when legacy attribute naming is selected:

Place query results into user attrib-
ute list

Prefix for message attribute name
(optional)

Output attribute format (when attrib-
ute name is PHONE)

Selected (default) user (default)
• attribute.lookup.list: Map

of retrieved attributes
• user.PHONE: Attribute value
• ${user.PHONE}: Example se-

lector

Selected (default) None
• attribute.lookup.list: Map

of retrieved attributes
• PHONE: Attribute value
• ${PHONE}: Example selector

Not selected user (default)
• user.PHONE: Attribute value
• ${user.PHONE}: Example se-

lector

Not selected None
• PHONE: Attribute value
• ${PHONE}: Example selector

Example of output attribute format without legacy attribute naming
The following table shows the output attribute format when legacy attribute naming is not selected:

Place query results into user attrib-
ute list

Prefix for message attribute name
(mandatory)

Output attribute format (when attrib-
ute name is PHONE)

Selected (default) user (default)
• user: List of properties, where

each corresponds to a retrieved
row (attribute name and value
pair)

• ${user[0].PHONE}: Example
selector

Not selected user (default)
• user.PHONE: List of properties,

where each corresponds to a re-

Retrieve attribute from database

343

Place query results into user attrib-
ute list

Prefix for message attribute name
(mandatory)

Output attribute format (when attrib-
ute name is PHONE)

trieved row (attribute name and
value pair)

• ${user.PHONE[0]}: Example
selector

Prefix for message attribute:
Specifies an optional prefix for message attribute names used to store query results. The default prefix is user. For more
details, see Place query results into user attribute list and Enable legacy attribute naming for retrieved attributes.

Attribute name for stored procedure out parameters:
You can also specify an attribute name for stored procedure out parameters. The default prefix is out.param.value.

Case for attribute names:
You can specify whether attribute names are in lower case or upper case. The default is lower case.

Configure the following fields on the Result Set Options section:

Fail on empty result set:
Specify whether this filter fails if the result set is empty. This setting is not selected by default.

Attribute name for result set size:
Specify the attribute name used to store the size of the result set. Defaults to db.result.count.

Retrieve attribute from database

344

Retrieve attribute from user store
Overview

The API Gateway user store contains user profiles, including attributes relating to each user. After a user has success-
fully authenticated to the API Gateway, the Retrieve From User Store filter can retrieve attributes belonging to that user
from the user store.

General settings

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database settings

Configure the following fields on the Database tab:

User ID:
Select or enter the name of the message attribute that contains the name of the user to look up in the user store. For ex-
ample, if the user name is stored as admin, select the message attribute containing the value admin. The API Gateway
then looks up the user in the user store using this name.

Attributes:
Enter the list of attributes that the API Gateway should retrieve if it successfully looks up the user specified by the User
ID field. To add attributes, click the Add button. Similarly, to edit or remove existing attributes, click the Edit or Remove
buttons.

Advanced settings

Configure the following fields on the Advanced tab:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes. This field is not selected by default. Prior to
version 7.1, retrieved attributes were stored in message attributes in the following format:

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on. In version 7.1 and later, by default, you
can query for multi-valued retrieved attributes using an array syntax (for example, ${user.email[0]}, or
${user.email[1]}, and so on). Select this setting to use the legacy format for attribute naming instead.

Prefix for message attribute:
You can specify an optional prefix for message attribute names. The default prefix is user.

Fail on empty result set:
Specify whether this filter fails if the result set is empty. This setting is not selected by default.

345

Attribute authentication
Overview

In cases when user credentials are passed to the API Gateway in a non-standard way, the credentials can be copied into
API Gateway message attributes, and authenticated against a specified authentication repository (for example, API
Gateway user store, LDAP directory, or database) using an Attribute Authentication filter. For example, assume user
credentials are passed to API Gateway in the following XML message:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<ns:User xmlns:ns="http://www.user.com">

<ns:Username>1</ns:Username>
<ns:Password>2</ns:Password>

</ns:User>
</s:Body>

</s:Envelope>

In this example, the standard methods of passing credentials, such as HTTP Basic/Digest authentication, SAML asser-
tions, WS-Security Username tokens, are bypassed, and the client sends the user name and password as parameters in
a simple SOAP message. When the API Gateway receives this message, it can extract the value of the <Username>
and <Password> elements using an XPath expression configured in the Retrieve Attributes from Message filter. This
filter uses an XPath expression to retrieve the value of an element or attribute, and can then store this value in the spe-
cified message attribute.

You can configure an instance of this filter to retrieve the value of the <Username> attribute, and store it in the authen-
tication.subject.id message attribute. Similarly, you can configure another filter to retrieve the value of the
<Password>, and store it in the authentication.subject.password message attribute.

The Attribute Authentication filter can then use the user name and password values stored in these message attributes
to authenticate the user against the specified authentication repository.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter.

Username:
Specify the API Gateway message attribute that contains the user name of the user to be authenticated. The default at-
tribute is the authentication.subject.id attribute, which is typically used to store a user name.

Password:
Enter the API Gateway message attribute that contains the password of the user to authenticate. The default message
attribute is authentication.subject.password, which typically stores a password.

Credential Format:
Select the format of the credential stored in the API Gateway message attribute specified in the Username field above.
By default, User Name is selected.

Repository Name:
Select an existing repository to authenticate the user against from the drop-down list. Alternatively, you can configure a
new authentication repository by clicking the Add button. For more details on configuring the various types of repository
supported by the API Gateway, see the Authentication repository topic.

346

API key authentication
Overview

API keys are supplied by client users and applications calling REST APIs to track and control how the APIs are used (for
example, to meter access and prevent abuse or malicious attack). The Authenticate API Key filter enables you to se-
curely authenticate an API key with the API Gateway. API keys include a key ID that identifies the client responsible for
the API service request. This key ID is not a secret, and must be included in each request. API keys can also include a
confidential secret key used for authentication, which should only be known to the client and to the API service. You can
use the Authenticate API Key filter to specify where to find the API key ID and secret key in the request message, and
to specify timestamp and expiry options.

An example use case for this filter would be a client accessing a REST API service to invoke specific methods (for ex-
ample, startVM() or stopVM()). To invoke these methods, you are required to provide your API key ID and secret key
to the API Gateway. You can keep the secret key private by sending the request over HTTPS. Alternatively, you can use
the secret key to generate an HMAC digital signature. This means that the secret key is not sent in the request, but is in-
ferred instead, because the message must have been signed using the required secret key. When the API service re-
ceives the request, it uses the API key ID to look up the corresponding secret key, and uses it to validate the signature
and confirm the request sender.

The API Gateway supports the following API key types:

• Simple API keys including a key ID only. The API key ID is included in all requests to authenticate the client.
• Amazon Web Services style API keys including a key ID and a secret key, which are used together to securely au-

thenticate the client. The API key ID is included in all requests to identify the client. The secret key is known only to
the client and the API Gateway.

For more details on authenticating Amazon Web Services API keys, see
http://s3.amazonaws.com/doc/s3-developer-guide/RESTAuthentication.html

General settings

Configure the following general settings:

Name:
Enter a suitable name for this filter in your policy.

KPS Alias:
Enter the alias name of the Key Property Store (KPS) used to store the API keys. For more details, see Key Property
Store. Defaults to the example ClientRegistry supplied with the API Gateway. For details on storing API keys in the
Oracle Client Application Registry, see the API Gateway OAuth User Guide.

Field Containing Secret:
Enter the name of the field in the KPS that contains the secret. Defaults to secretKey.

API key settings

Configure the following fields on the API Key tab:

Where to find API key:
To specify where to find the API key in the request message, select one of the following options:

• API key is located in:
Select one of the following from the list:
• Query String

347

http://s3.amazonaws.com/doc/s3-developer-guide/RESTAuthentication.html

• Header

• Parameter
The default option is Query String. Enter the name in the text box. Defaults to KeyId.

• API key is in Authorization header with format:
Select one of the following Authorization headers from the list:
• Amazon AWS s3 Authorization Header - "AWS apiKey + ":" + base64(signature)"

• HTTP Basic Authentication Header - "Basic base64(apiKey:secret)"
Defaults to the Amazon AWS s3 Authorization Header.

• API key can be found using the following selector:
Enter the selector value that specifies the location of the API key. For details on selectors, see Select configuration
values at runtime. Defaults to ${http.client.getCgiArgument("KeyId")}.

Where to find Secret key:
To specify where to find the secret key in the request message, select the Extract Secret setting, and select one of the
following options:

• Secret key is in:
Select one of the following from the list:
• Query String

• Header

• Parameter
The default option is Query String. Enter the name in the text box. Defaults to SecretKey.

• Secret key is in Authorization header with format:
Select the Authorization header from the list. Defaults to HTTP Basic Authentication Header - "Basic
base64(apiKey:secret)".

• Secret key can be inferred from signature:
The client can use the secret key to generate a digital signature that is included in the request. When the API Gate-
way receives the request, it uses the API key ID to identify the client and look up the corresponding secret key in the
Oracle Client Application Registry. The secret key is then used to validate the signature and authenticate the client.
To specify the signature format, select one of the following from the list:
• Amazon AWS s3 Authorization Header Authentication - "AWS apiKey + ":" +

base64(signature)"

• Amazon AWS s3 REST Authentication - "?Signature=<base64(signature)>
&Expires=<seconds since epoch>&AWSAccessKeyId=<aws-id>"

Defaults to Amazon AWS s3 Authorization Header Authentication.
• Secret key can be found using the following selector:

Enter the selector value that specifies the location of the secret key. For details on selectors, see Select configura-
tion values at runtime. Defaults to ${http.client.getCgiArgument("SecretKey")}.

Authenticate API key and secret:
Select whether to authenticate both the API key ID and the secret key. This means that the client must supply the API
key ID and the secret key in the request message. This setting is selected by default.

Advanced settings

Configure the following fields on the Advanced tab:

Validate Timestamp:
Select whether to validate the API key timestamp using the settings specified below. This setting is unselected by de-
fault.

Timestamp is located in:
To specify where the timestamp is located in the request message, select one of the following from the list:

API key authentication

348

• Header

• Parameter

• Query String

The default option is Header. Enter the name in the text box. Defaults to Date.

Timestamp format is:
To specify the timestamp format, select one of the following from the list:

• Simple Date Format

• Milliseconds since epoch

• Seconds since epoch

The default option is Simple Date Format. Enter the format in the text box. Defaults to EEE, dd MMM yyyy
HH:mm:ss zzz.

Timestamp Drift +/-:
You can specify a drift time in milliseconds to allow differences in the clock times between the machine on which the API
key was generated and the machine on which the API Gateway is running. Defaults to +-60000 milliseconds (one
minute).

Validate Expires:
Select whether to validate the API key expiry details using the settings specified below. This setting is unselected by de-
fault.

Expires is located in:
To specify the location of the expiry details in the request message, select one of the following from the list:

• Query String

• Header

• Parameter

The default option is Query String. Enter the name in the text box. Defaults to Expires.

Expires format is:
To specify the format of the expiry details, select one of the following from the list:

• Milliseconds since epoch

• Seconds since epoch

• Simple Date Format

The default option is Milliseconds since epoch. Enter the format in the text box.

Timestamp Drift +/-:
You can specify a drift time in milliseconds to allow differences in the clock times between the machine on which the API
key was generated and the machine on which the API Gateway is running. Defaults to 60000 milliseconds (one minute).

API key authentication

349

Check session
Overview

The Check Session filter checks for the presence of a valid cookie-based HTTP session. This filter tries to locate a valid
session as specified by the value of the VIDUSR cookie, and if found, retrieves and sets the user in the authentica-
tion.subject.id attribute.

The Check Session filter should be used with the Create Session and End Session filters to manage HTTP sessions.
For more details, see:

• Create session
• End session

Configuration

Complete the following field to configure this filter:

Name:
Enter an appropriate name for this filter to display in a policy.

350

Create session
Overview

The Create Session filter enables the API Gateway to create an HTTP session and configure various session attributes
(for example, expiry, domain, and security). This filter requires an authentication.subject.id attribute for the
user, and stores it in the HTTP session. The session ID is used to create a cookie named VIDUSR, which is stored in the
generated http.session.cookie.name attribute. The cookie is then sent to the user specified by the authentica-
tion.subject.id attribute.

The Create Session filter should be used with the Check Session and End Session filters to manage HTTP sessions.
For more details, see:

• Check session
• End session

Tip
The Create Session filter offers a more flexible approach to managing HTTP sessions than using the HT-
TP Form-Based Authentication filter. For example, the form-based approach does not include the ability
to check or end sessions, and sessions are auto-renewed on each invocation of the filter. For more details,
see HTML form-based authentication.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter to display in a policy.

Expiration time of session in milliseconds:
Enter the HTTP session expiry timeout in milliseconds. When the session reaches the specified lifetime, it is automatic-
ally invalidated, and can no longer pass the Check Session filter.

Session cookie domain:
Enter the domain value for the Set-Cookie header (for example, example.com). This informs the browser that cookies
should be sent back to the server for the specified domain only.

Session cookie path:
Enter the path value for the Set-Cookie header (for example, /sales). This informs the browser that cookies should
be sent back to the server for the specified path only. Defaults to /.

Session sent over SSL only:
Select whether the session uses SSL only. When selected, this adds a Secure flag to the cookie.

HTTP-only cookie:
Select whether the session uses HTTP only. When selected, this adds an HTTPOnly flag to the cookie.

351

End session
Overview

The End Session filter terminates a cookie-based HTTP session. This filter tries to locate the session specified by the
VIDUSR cookie, and then invalidates it.

The End Session filter should be used with the Create Session and Check Session filters to manage HTTP sessions.
For more details, see:

• Create session
• Check session

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter to display in a policy.

Remove session cookie:
Select whether to try and remove the session cookie. When selected, the API Gateway sends a new cookie with the ex-
piry time set in the past. You must also set the same domain and path values that were used to create the session using
the Create Session filter.

Session cookie domain:
When Remove session cookie is selected, enter the same domain that was used to create the session in the Create
Session filter (for example, example.com). This removes the cookie for the specified domain only.

Session cookie path:
When Remove session cookie is selected, enter the same path that was used to create the session in the Create Ses-
sion filter (for example, /sales). This removes the cookie for the specified path only. Defaults to /.

352

CA SOA Security Manager authentication
Overview

CA SOA Security Manager can authenticate end-users and authorize them to access protected web resources. When
the API Gateway receives a message containing user credentials, it can forward the message to CA SOA Security Man-
ager where the passed credentials are extracted from the message to authenticate the end-user. When the message has
been passed to CA SOA Security Manager, it can authenticate the user by the following methods:

• XML Document Credential Collector:
Gathers credentials from the message and maps them to fields within a user directory.

• XML Digital Signature:
Validates the X.509 certificate contained within an XML-Signature on the message.

• WS-Security:
Extracts user credentials from WS-Security tokens contained in the message.

• SAML Session Ticket:
Consumes a SAML session ticket from an HTTP header, SOAP envelope, or session cookie to authenticate the
end-user.

By delegating the authentication decision to CA SOA Security Manager, the API Gateway acts as a Policy Enforcement
Point (PEP). It enforces the decisions made by the CA SOA Security Manager, which acts a Policy Decision Point (PDP).
For more details, see the CA SOA Security Manager Policy Configuration Guide.

Prerequisites

Integration with CA SOA Security Manager requires CA TransactionMinder SDK version 6.0 or later. You must add the
required third-party binaries to your API Gateway and Policy Studio installations.

Add third-party binaries to API Gateway

To add third-party binaries to the API Gateway, perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart API Gateway.

Add third-party binaries to Policy Studio

To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Configuration

353

Name:
Enter a name for this authentication filter in the field provided.

Agent Name:
To act as a PEP for the CA SOA Security Manager, the API Gateway must have been set up as a SOA Agent with the
Policy Server. For more details on how to do this, see the CA SOA Security Manager Agent Configuration Guide.

Click the button on the right to select a previously configured agent to connect to SOA Security Manager. This name
must correspond with the name of an agent previously configured in the SOA Security Manager Policy Server. At
runtime, the API Gateway connects as this agent to a running instance of SOA Security Manager.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a SOA Se-
curity Manager Connection. Alternatively, you can add SOA Security Manager connections under the External Con-
nections node in the Policy Studio tree view. For details on how to configure SOA Security Manager connections, see
the section called “SOA Security Manager connection settings”.

Message details settings

While authenticating the user against CA SOA Security Manager, the user can also be authorized for a specified action
on a particular resource. Configure the following fields in the Message Details section:

Resource:
Enter the name of the resource for which you want to ensure that the user has access to. By default, the ht-
tp.request.uri message attribute is used, which contains the relative path on which the request was received by the
API Gateway.

Action:
Specify the action that the user is attempting to perform on the specified resource. The API Gateway will check the user's
entitlements in CA SOA Security Manager to ensure that the user is allowed to perform this action on the resource
entered above. By default, the http.request.verb message attribute is used, which stores the HTTP verb used by
the client when sending up the message.

Protocol:
Enter the protocol used by the client to access the requested resource. Users can have different access rights depending
on their roles in the organization. For example, managers may be allowed to FTP to a given resource, but more junior
employees are only allowed to GET a resource using HTTP. Defaults to http.

Headers:
In order to carry out further authorization checks on the message, it is possible to forward the HTTP headers associated
with the client message to the CA SOA Security Manager. By default, the http.headers message attribute is used to
ensure that the original client headers are send to the CA SOA Security Manager.

XmlToolkit.properties file

The XmlToolkit.properties file contains default properties used by the SOA agent, such as the URL of the CA
SOA Manager, an identifier for the SOA agent, and an indication to the SOA Manager if it should perform fine-grained re-
source identification or not. The XmlToolkit.properties file can be found in the /lib/modules/soasm directory of
your API Gateway installation.

#Wed Jul 18 15:02:16 BST 2007
WSDMResourceIdentification=yes
WS_UT_CREATION_EXPIRATION_MINUTES=60

The following properties are available:

• WSDMResourceIdentification:

CA SOA Security Manager authentication

354

This value cannot be configured from the Policy Studio, and so can only be set directly in the properties file. If this
property is set to no (or if the properties file cannot be found) only a coarse-grained resource identification is per-
formed on the requested URL. If this value is set to yes, a fine-grained resource identification including the reques-
ted URL, Web service name, and SOAP operation ([url]/[web service name]/[soap operation]).

• WS_UT_CREATION_EXPIRATION_MINUTES:
Specifies the WS-Username Token age limit restriction in minutes. This setting helps prevent against replay attacks.
The default token age limit is 60 minutes. See the section below for more information on modifying this setting.

Configure the user name and password digest token age restriction

By default, the WS-Security authentication scheme imposes a 60 minute restriction on the age of user name and pass-
word digest tokens to protect against replay attacks.

You can configure a different value for the token age restriction for the API Gateway by setting the
WS_UT_CREATION_EXPIRATION_MINUTES parameter in the XmlToolkit.properties file for that API Gateway. To
configure the API Gateway to use a non-default age restriction for user name and password token authentication, com-
plete the following steps:

1. Navigate to the INSTALL_DIR/system/lib/modules/soasm directory, where INSTALL_DIR points to the root
of your API Gateway installation.

2. Open the XmlToolkit.properties file in a text editor.
3. Add the following line, where token_age_limit specifies the token age limit in minutes:

WS_UT_CREATION_EXPIRATION_MINUTES=token_age_limit

4. Save and close the XmlToolkit.properties file.
5. Restart the API Gateway.

Important
It is important to note the following:

• The properties file is written to the /lib/modules/soasm directory when a SOA Security Manager
Authentication or Authorization filter is loaded at startup, or on server refresh (for example, when a
configuration update is deployed), but only if the file does not already exist in this location.

• If the properties file already exists in the /lib/modules/soasm directory, the WSDMResourceIden-
tification property is not overwritten. In other words, the user is allowed to manually set this property
independently of the Policy Studio.

• If the WSDMResourceIdentification property does not exist, it is given a default value of yes and
written to the file.

CA SOA Security Manager authentication

355

HTML form-based authentication
Overview

HTML form-based authentication enables users to supply their user name and password details in an HTML form, and
submit them to login to a system. Using HTML form-based authentication, normal HTTP authentication features such as
HTTP basic or HTTP digest are not used. Instead, the user name and password are typically sent as HTML <FORM> data
in an HTTP POST over SSL.

When the HTML Form based Authentication filter is configured, the API Gateway can authenticate the user details
specified in the HTML form against a user profile stored in the API Gateway local repository, a database, or an LDAP dir-
ectory. The HTML Form based Authentication filter also enables you to specify how HTTP sessions are managed (for
example, session expiry, and applicable API Gateway domain or relative path).

Tip
For an alternative approach to HTTP session management, which also includes the ability to check or to
end sessions, see the Create session filter.

General settings

These settings enable you to configure general details such as the names of the HTML form fields, format of user cre-
dentials, and repository to validate credentials against. Complete the following settings:

Name:
Enter an appropriate name for the filter.

Username:
Enter the name of the HTML form field in which the user enters their user name. Defaults to username.

Password:
Enter the name of the HTML form field in which the user enters their password. Defaults to password.

Format of Authentication Credentials:
You must specify the format of the user credentials presented by the client because the API Gateway has no way of
telling one credential format from another. Select one of the following from the list:

• User Name

• Distinguished Name

The selected format is then used internally by the API Gateway when performing authorization lookups against third-
party Identity Management servers.

Validate Credentials against this Repository:
This specifies the name of the authentication repository where all user profiles are stored. This can be in the API Gate-
way's local repository, a database, or an LDAP directory. Select a preconfigured Repository Name from the drop-down
list (for example, Local User Store).

You can add a new repository by right-clicking the appropriate node under External Connections > Authentication Re-
pository Profiles (for example, Database Repositories), and selecting Add a new Repository. For more details, see
the Authentication repository tutorial.

Session settings

The session settings enable you to configure how HTTP sessions between the HTML form client and the API Gateway

356

are managed. Complete the following settings:

Create a session:
Select whether to create an HTTP session. This setting is selected by default.

Expiry of session in milliseconds:
Enter the period of time in milliseconds before the session expires. Defaults to 600000 (10 minutes).

Session applicable for this domain:
Enter the API Gateway domain name to which the session applies (for example, dmz).

Session applicable for this path:
Enter the API Gateway relative path to which the session applies. Defaults to /.

Session sent over SSL only:
Select whether the session is sent over an SSL connection only. This setting is not selected by default.

HTML form-based authentication

357

HTTP basic authentication
Overview

A client can authenticate to API Gateway with a user name and password combination using HTTP basic authentication.
When an HTTP Basic Authentication filter is configured, API Gateway requests the client to present a user name and
password combination as part of the HTTP basic challenge-response mechanism. API Gateway can then authenticate
this user against a user profile stored in an API Gateway local repository, a database, or an LDAP directory.

With HTTP basic authentication, the client's user name and password are concatenated, base64-encoded, and passed in
the Authorization HTTP header as follows:

Authorization: Basic dm9yZGVsOnZvcmRlbA==

The realm presented in the challenge for HTTP basic authentication is the realm currently specified in the server settings
(Server Settings > General). For more details, see the API Gateway Administrator Guide.

General settings

The HTTP Basic Authentication filter enables you to specify where API Gateway finds user profiles for authentication.
API Gateway can look up user profiles in an API Gateway local repository, a database, or an LDAP directory. For details
on adding users to a local repository, see Manage API Gateway users.

Complete the following settings:

Name:
Enter an appropriate name for the filter.

Credential Format:
The user name presented to API Gateway during the HTTP basic handshake can be of many formats, usually user name
or Distinguished Name (DName). Because API Gateway has no way of inherently telling one format from another (for ex-
ample, the client's user name could be a DName), you must specify the format of the credential presented by the client.
This format is then used internally by API Gateway when performing authorization lookups against third-party Identity
Management servers.

Allow client challenge:
HTTP basic authentication can use the following approaches:

• Direct authentication: The client sends up the Authorization HTTP basic authentication header in its first request
to the server. This is used mainly for machine-to-machine transactions where there is no human intervention.

• Challenge-response handshake: The client does not send the Authorization header when sending its request to
the server (it does not know that the server requires HTTP basic authentication). The server responds with an HTTP
401 response code, instructing the client to authenticate to the server by sending the Authorization header. The
client then sends a second request, this time including the Authorization header and the relevant user name and
password. This is typical of situations where a browser is talking to a web server. When the browser receives the
HTTP 401 response to its initial request, it displays a dialog to enable the user to enter the user name and password
combination.

To force clients to always send the HTTP basic Authorization header to API Gateway, deselect Allow client chal-
lenge. This is selected by default to allow clients to engage in the HTTP basic authentication challenge-response hand-
shake with API Gateway.

Allow retries:
Select this option to allow the user to retry their user name and password in the browser when an HTTP 401 response

358

code is received (for example, if authentication fails, or is not yet provided). The number of times that the browser dis-
plays the user name and password dialog when an HTTP 401 is received is controlled by the browser (usually three
times). This setting is not selected by default.

Remove HTTP authentication header:
Select this option to remove the HTTP Authorization header from the downstream message. If this option is not se-
lected, the incoming Authorization header is forwarded on to the destination web service.

Repository Name:
Select the name of the authentication repository where all user profiles are stored. This can a local repository, a data-
base, or an LDAP directory.

You can add a new repository under the External Connections node. Right-click the appropriate node under Authentic-
ation Repositories (for example, Database Repositories), and select Add a new repository. For more details, see the
Authentication repository topic.

Invalid attempts

The Invalid Attempts section enables you to specify how to handle invalid attempts. You can choose to lock user ac-
counts, ban IP addresses, or both, if a specified number of invalid attempts are made in a specified time period. The in-
valid attempt information is also stored in a cache.

To lock user accounts, select the Lock user accounts for check box and enter appropriate values in the corresponding
fields. For example, to lock user accounts for 30 minutes if 6 invalid attempts are made over 5 minutes, you would enter
the values shown in the following figure.

To ban IP addresses, select the Ban IP address after check box and enter appropriate values in the corresponding
fields. For example, to ban IP addresses after 5 invalid attempts are made over 1 minute, you would enter the values
shown in the preceding figure. In this case you must also enter the attribute that contains the IP address in the Key is
field.

Store invalid attempt information in cache:
Click the browse button to choose a local or distributed cache to store invalid attempt information. To create a new cache
right-click Caches, and select Add Local Cache or Add Distributed Cache.

HTTP basic authentication

359

HTTP digest authentication
Overview

A client can authenticate to API Gateway with a user name and password digest using HTTP digest authentication.
When an HTTP Digest Authentication filter is configured, API Gateway requests the client to present a user name and
password digest as part of the HTTP digest challenge-response mechanism. API Gateway can then authenticate this
user against a user profile stored in the API Gateway's local repository.

The realm presented in the challenge for HTTP digest authentication is the realm currently specified in the server set-
tings (Server Settings > General). For more information on API Gateway settings, see the API Gateway Administrator
Guide.

General settings

The HTTP Digest Authentication filter enables you to specify where API Gateway can find user profiles for authentica-
tion purposes. API Gateway can look up user profiles in the API Gateway's local repository. For more information on
adding users to the local repository, see Manage API Gateway users.

Complete the following settings:

Name:
Enter an appropriate name for the filter.

Credential Format:
The user name presented to API Gateway during the HTTP digest handshake can be of many formats, usually user
name or Distinguished Name (DName). Because API Gateway has no way of inherently telling one format from another
(for example, the client's user name could be a DName), you must specify the format of the credential presented by the
client. This format is then used internally by API Gateway when performing authorization lookups against third-party
Identity Management servers.

Session Timeout:
As part of the HTTP digest authentication protocol, API Gateway must generate a nonce (number used once) value, and
send it to the client. The client uses this nonce to create the digest of the user name and password. However, it should
only be allowed a certain amount of time to do so. The Session Timeout field specifies the length of time (in milli-
seconds) for which the nonce is valid.

Allow retries:
Select this option to allow the user to retry their user name and password in the browser when an HTTP 401 response
code is received (for example, if authentication fails, or is not yet provided). The number of times that the browser dis-
plays the user name and password dialog when an HTTP 401 is received is controlled by the browser (usually three
times). This setting is not selected by default.

Remove HTTP authentication header:
Select this option to remove the HTTP Authorization header from the downstream message. If this option is not se-
lected, the incoming Authorization header is forwarded on to the destination web service.

Repository Name:
Select the name of the local authentication repository where all user profiles are stored.

You can add a new repository under the External Connections node. Right-click the Local Repositories node under
Authentication Repositories, and select Add a new repository. For more details, see the Authentication repository
topic.

Invalid attempts

The Invalid Attempts section enables you to specify how to handle invalid attempts. You can choose to lock user ac-

360

counts, ban IP addresses, or both, if a specified number of invalid attempts are made in a specified time period. For de-
tails on the fields in this section, see the section called “Invalid attempts” in the HTTP basic authentication topic.

HTTP digest authentication

361

HTTP header authentication
Overview

You can use the HTTP Header filter in cases where the API Gateway receives end-user authentication credentials in an
HTTP header. A typical scenario would see the end-user (or message originator) authenticating to an intermediary. The
intermediary authenticates the end-user, and to propagate the end-user credentials to the destination Web service, the
intermediary inserts the credentials into an HTTP header and forwards them onwards.

When the API Gateway receives the message, it performs the following tasks:

• Authenticate the sender of the message (the intermediary)
• Extract the end-user identity from the token in the HTTP header for use in subsequent authorization filters

Important
In the case outlined above, the API Gateway does not attempt to reauthenticate the end-user. It trusts that
the intermediary has already authenticated the end-user, and so the API Gateway does not authenticate
the user again. However, it is good practice to authenticate the message sender (the intermediary). Any
subsequent authorization filters use the end-user credentials that were passed in the HTTP header.

Configuration

The following configuration fields are available on this window:

Name:
Enter an appropriate name for this filter in the Name field.

HTTP Header Name:
Enter the name of the HTTP header that contains the end-user credentials.

HTTP Header Type:
Select the type of credentials that are passed in the named HTTP header. The following types are supported:

1. X.509 Distinguished Name
2. Certificate
3. User Name

362

IP address authentication
Overview

You can configure the API Gateway to allow or deny machines, or groups of machines, access to resources based on
their IP addresses. The main table on the window shows the IP addresses from which the API Gateway accepts or
denies messages depending on what is configured.

The IP Address authentication filter uses the value stored in the http.request.clientaddr message attribute to de-
termine whether to allow or deny access. This message attribute contains the remote host address from the TCP socket
used in the connection between the client and the API Gateway.

Configuration

Configure the following fields:

Name:
Enter a name for the filter.

IP Addresses:
You can add IP addresses by clicking the Add button, which displays the Add IP Filter dialog. Enter an IP Address and
Subnet Mask to indicate a network to filter.

Messages sent from hosts belonging to this network will be accepted or rejected based on what is configured in the sec-
tion below. A Subnet Mask of 255.255.255.255 can be used to filter specific IP addresses. For more details, see the
section called “Configure subnet masks”.

Important
If requests are made across a proxy, portal, or other such intermediary, the API Gateway filters on the IP
address of the intermediary. Therefore, you should enter the IP address of the intermediary on this screen,
and not that of the user or client machine.

You can edit and remove existing IP addresses by selecting the Edit and Remove buttons.

Access:
Depending on whether the Allow Access or Deny Access radio button is checked, the IP addresses listed in the table
are allowed or denied access to the web service.

Configure subnet masks

An IP address is normally represented by a string of four numbers separated by periods (for example, 192.168.0.20).
Each number is normally represented as the decimal equivalent of an eight-bit binary number, which means that each
number can take any value between 0 (all eight bits cleared) and 255 (all eight bits set).

A subnet mask (or netmask) is also a set of four number blocks separated by periods, each of which has a value in the
range 0-255. Every IP address consists of two parts: the network address and the host number. The netmask is used to
determine the size of these two parts. The positions of the bits set in the netmask represent the space reserved for the
network address, while the bits that are cleared represent the space reserved for the host number. The netmask determ-
ines the range of IP addresses.

The following examples illustrate how netmasks work in practice:

Example 1: Specify a range of IP addresses

363

To allow requests from the following IP addresses:
192.168.0.16, 192.168.0.17, 192.168.0.18, and 192.168.0.19.
Use the following address and netmask combination:
192.168.0.16/255.255.255.252

In more detail, the binary representation of the netmask is as follows:
11111111.11111111.11111111.11111100
The top 30 bits of the netmask indicate the network and the last 2 bits refer to the host on the network. These last 2 bits
allow 4 different addresses as shown in the worked example below.

When the API Gateway receives a request from a certain IP address, the API Gateway performs a logical AND on the cli-
ent IP address and the configured netmask. It also does a logical AND with the IP address entered in the IP Address fil-
ter and the configured subnet mask. If the AND-ed binary values are the same, the request from the IP address can be
considered in the same network range as that configured in the filter.

The following worked example illustrates the mechanics of the IP address filtering. It assumes that you have entered the
following in the IP Address and Netmask fields in the IP Address filter:

Field Value

IP Address 192.168.0.16

Net Mask 255.255.255.252

Step 1: AND the IP address and Netmask configured in the IP Address Filter:
11000000.10100000.00000000.00010000 (192.168.0.16)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010000

Step 2: Request is received from 192.168.0.18:
11000000.10100000.00000000.00010010 (192.168.0.18)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010000
===> AND-ed value is equal to the result for 192.168.0.16.
===> Therefore the client IP address is inside the configured range.

Step 3: Request is received from 192.168.0.20:
11000000.10100000.00000000.00010100 (192.168.0.20)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010100
===> AND-ed value is NOT equal to the result for 192.168.0.16.
===> Therefore the client IP address is NOT inside the configured range.

Example 2: Specify an exact IP address

You can also specify an exact IP address by using a netmask of 255.255.255.255. When this netmask is used, only
requests from this client IP address is allowed or blocked, depending on what is configured in the filter. This example as-
sumes that the following details have been configured in the IP Address filter:

IP address authentication

364

Field Value

IP Address 192.168.0.36

Net Mask 255.255.255.255

Step 1: AND the IP address and Netmask configured in the IP Address Filter:
11000000.10100000.00000000.00100100 (192.168.0.36)
AND
11111111.11111111.11111111.11111111 (255.255.255.255)
===
11000000.10100000.00000000.00100100

Step 2: Request is received from client with IP address of 192.168.0.37:
11000000.10100000.00000000.00100101 (192.168.0.37)
AND
11111111.11111111.11111111.11111111 (255.255.255.255)
===
11000000.10100000.00000000.00100101
===> AND-ed value is NOT equal to the result for 192.168.0.36
===> Therefore the client IP address is NOT inside the configured range.

IP address authentication

365

Insert SAML authentication assertion
Overview

After successfully authenticating a client, the API Gateway can insert a SAML (Security Assertion Markup Language) au-
thentication assertion into the SOAP message. Assuming all other security filters in the policy are successful, the asser-
tion is eventually consumed by a downstream web service.

You can refer to the following example of a signed SAML authentication assertion when configuring the Insert SAML
Authentication Assertion filter:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthenticationStatement>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

id="Sample User">
<dsig:SignedInfo>

.....
</dsig:SignedInfo>
<dsig:SignatureValue>

rpa/......0g==
</dsig:SignatureValue>
<dsig:KeyInfo>

.....
</dsig:KeyInfo>

</dsig:Signature>
</saml:Assertion>

</wsse:Security>
</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>
</soap-env:Body>
</soap-env:Envelope>

General settings

Configure the following field:

366

Name:
Enter an appropriate name for the filter.

Assertion details settings

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) that you want to use as the Issuer of the SAML asser-
tion. This DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion>
element. For an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both
uses the exclusive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safe-
guards inserted assertions from such changes of context in the XML document. Please see section 5.4.2 of
the oasis-sstc-saml-core-1.0.pdf and section 5.4.2 of sstc-saml-core-1.1.pdf documents,
both of which are available at http://www.oasis-open.org.

Assertion location settings

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the

Insert SAML authentication assertion

367

First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configure XPath expressions topic.

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject confirmation method settings

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gate-
way, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key used to
prove that the API Gateway is the holder of the
key, or it includes a reference to the key.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer The subject of the assertion is the bearer of the
assertion.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

SAML Artifact The subject of the assertion is the user that
presented a SAML Artifact to the API Gateway.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender Vouches Use this confirmation method to assert that the
API Gateway is acting on behalf of the authen-
ticated end-user. No other information relating

urn:oasis:names:tc:SAML:1.0:cm:
bearer

Insert SAML authentication assertion

368

Method Meaning Value

to the context of the assertion is sent. It is re-
commended that both the assertion and the
SOAP Body must be signed if this option is se-
lected. These message parts can be signed by
using the XML signature generation filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the
Asymmetric Key radio button and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Selector Expression:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key can be retrieved using the selector expression entered in this field. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute,
Key Property Store (KPS), or environment variable). For more details, see Select configuration values at runtime.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio
button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key Selector Expression:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can reuse this key as
proof that the API Gateway is the holder-of-key entity. Enter the name of the selector expresion (for example, mes-
sage attribute) in the field provided, which defaults to ${symmetric.key}. Using a selector enables settings to be
evaluated and expanded at runtime based on metadata (for example, in a message attribute, Key Property Store
(KPS), or environment variable). For more details, see Select configuration values at runtime.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway and the recipient
and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmetric key
with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only

Insert SAML authentication assertion

369

the recipient has access. Select the Signing Key button, and select the recipient's certificate on the Select Certific-
ate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter this message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained within a SOAP message from an-
other part of the message. It is often used in cases where different security blocks in a message use the same key
material and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the dropdown, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the drop-
down. Other options are available to enable more specific security requirements.

Advanced settings

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion will be inserted into the WS-Security header
according to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can insert a SAML attribute statement into the generated SAML authentication assertion. If you select this option, a
SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message attribute and
subsequently inserted into the assertion. The attribute.lookup.list attribute must have been populated previously
by an attribute lookup filter for the attribute statement to be generated successfully.

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML authentication assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

Insert SAML authentication assertion

370

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="Id-00000109fee52b06-0000000000000012"
IssueInstant="2006-03-15T17:12:45Z"
Issuer="oracle" MajorVersion="1" MinorVersion="0">

<saml:Conditions NotBefore="2006-03-15T17:12:39Z"
NotOnOrAfter="2006-03-25T17:12:39Z"/>

<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2006-03-15T17:12:45Z">

<saml:Subject>
<saml:NameIdentifier Format="Oracle-Username-Password">

admin
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML authentication assertion

371

Insert timestamp
Overview

In any secure communications protocol, it is crucial that secured messages do not have an indefinite life span. In secure
web services transactions, a WS-Utility (WSU) timestamp can be inserted into a WS-Security Header to define the life-
time of the message in which it is placed. A message containing an expired timestamp should be rejected immediately by
any web service that consumes the message.

Typically, the timestamp contains Created and Expires times, which combine to define the lifetime of the timestamp.
The following shows an example wsu:Timestamp:

<wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<wsu:Created>2009-03-16T16:32:22Z</wsu:Created>
<wsu:Expires>2009-03-16T16:42:22Z</wsu:Expires>

</wsu:Timestamp>

Because the WS-Utility timestamp is inserted into the WS-Security header block, it is also referred to as a WSS
timestamp. For example, see the Extract WSS timestamp filter.

Configuration

Complete the following fields to configure the API Gateway to insert a timestamp into the message:

Name:
Enter an intuitive name for the filter.

Actor:
The timestamp is inserted into the WS-Security header identified by the SOAP Actor selected here.

Expires In:
Configure the lifetime of the timestamp (and hence the message into which the timestamp is inserted) by specifying the
expiry time of the assertion. The expiry time is expressed in days, hours, minutes, and/or seconds.

Layout Type:
In cases where the timestamp must adhere to a particular layout as mandated by the WS-Policy <Layout> assertion,
you must select the appropriate layout type. A Web service that enforces a WS-Policy may reject the message if the lay-
out of security elements in the SOAP header is incorrect. Therefore, you must ensure that you select the correct layout
type.

372

Insert WS-Security UsernameToken
Overview

When a client has been successfully authenticated, the API Gateway can insert a WS-Security UsernameToken into the
downstream message as proof of the authentication event. The <wsse:UsernameToken> token enables a user's iden-
tity to be inserted into the XML message so that it can be propagated over a chain of web services.

A typical example would see a user authenticating to the API Gateway using HTTP digest authentication. After success-
fully authenticating the user, the API Gateway inserts a WS-Security UsernameToken into the message and digitally
signs it to prevent anyone from tampering with the token.

The following example shows the format of the <wsse:UsernameToken> token:

<wsse:UsernameToken wsu:Id="oracle"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

<wsu:Created>2006.01.13T-10:42:43Z</wsu:Created>
<wsse:Username>oracle</wsse:Username>
<wsse:Nonce EncodingType="UTF-8">

KFIy9LgzhmDPNiqU/B9ZiWKXfEVNvFyn6KWYP+1zVt8=
</wsse:Nonce>
<wsse:Password Type="wsse:PasswordDigest">

CxWj1OMnYj7dddMnU/DrOhyY3j4=
</wsse:Password>

</wsse:UsernameToken>

This topic explains how to configure the API Gateway to insert a WS-Security UsernameToken after successfully authen-
ticating a user.

General settings

To configure general settings, complete the following fields:

Name:
Enter an appropriate name for the filter.

Actor:
The UsernameToken is inserted into the WS-Security block identified by the specified SOAP Actor.

Credential details

To configure the credential details, complete the following fields:

Username:
Enter the name of the user included in the UsernameToken. By default, the authentication.subject.id message
attribute is stored, which contains the name of an authenticated user.

Include Nonce:
Select this option if you wish to include a nonce in the UsernameToken. A nonce a random number that is typically used
to help prevent replay attacks.

Include Password:
Select this option if you wish to include a password in the UsernameToken.

Password:
If the Include Password check box is selected, the API Gateway inserts the user's password into the generated WS-
Security UsernameToken. It can insert Clear or SHA1 Digest version of the password, depending on which radio button

373

you select. Oracle recommends the digest form of the password to avoid potential eavesdropping.

You can either explicitly enter the password for this user in the Password field, or use a message attribute by selecting
the Wildcard option, and entering the message attribute in the field provided. By default, the authentica-
tion.subject.password attribute is used, which contains the password used by the user to authenticate to the API
Gateway.

Advanced options

To configure advanced options, complete the following field:

Indent:
Select this option to add indentation to the generated UsernameToken and Signature blocks. This makes the security
tokens more human-readable.

Insert WS-Security UsernameToken

374

Kerberos client authentication
Overview

You can configure the API Gateway to act as a Kerberos client by obtaining a service ticket for a specific Kerberos ser-
vice. The service ticket makes up part of the Kerberos client-side token that is injected into a SOAP message and then
sent to the service. If the service can validate the token, the client is authenticated successfully.

You can also configure a Connection filter (from the Routing category) to authenticate to a Kerberos service by inserting
a client-side Kerberos token into the Authorization HTTP header.

Therefore, you should use the Connection filter to send the client-side Kerberos token in an HTTP header to the Kerber-
os service. You should use the Kerberos Client Authentication filter to send the client-side Kerberos token in a Bin-
arySecurityToken block in the SOAP message. For more information on authenticating to a Kerberos service using a
client-side Kerberos token, see the topic on the Connection filter.

The Kerberos Client Authentication filter is available from the authentication category of filters. Drag and drop this filter
on to the policy canvas to configure the filter. The sections below describe how to configure the fields on this filter win-
dow.

General settings

Name:
Enter an appropriate name for the filter.

Kerberos client settings

The fields configured on the Kerberos Client tab determine how the Kerberos client obtains a service ticket for a specific
Kerberos service. The following fields must be configured:

Kerberos Client:
The role of the Kerberos client selected in this field is twofold. First, it must obtain a Kerberos Ticket Granting Ticket
(TGT) and second, it uses this TGT to obtain a service ticket for the Kerberos Service Principal selected below. The
TGT is acquired at server startup, refresh (for example, when a configuration update is deployed), and when the TGT ex-
pires.

Click the button on the right, and select a previously configured Kerberos client in the tree. To add a Kerberos client,
right-click the Kerberos Clients tree node, and select Add Kerberos Client. Alternatively, you can add Kerberos clients
under the External Connections node in the Policy Studio tree view. For more details, see the Configure Kerberos cli-
ents topic.

Kerberos Service Principal:
The Kerberos client selected above must obtain a service ticket from the Kerberos Ticket Granting Server (TGS) for the
Kerberos service principal selected in this field. The service principal can be used to uniquely identify the service in the
Kerberos realm. The TGS grants a ticket for the selected principal, which the client can then send to the Kerberos ser-
vice. The principal in the ticket must match the Kerberos service's principal for the client to be successfully authenticated.

Click the button on the right, and select a previously configured Kerberos principal in the tree (for example, the default
HTTP/host Service Principal). To add a Kerberos principal, right-click the Kerberos Principals tree node, and
select Add Kerberos Principal. Alternatively, you can add Kerberos Principals under the External Connections node
in the Policy Studio tree view. For more details, see the topic on Configure Kerberos principals.

Kerberos Standard:
When using the Kerberos Client Authentication filter to insert Kerberos tokens into SOAP messages in order to au-
thenticate to Kerberos services, it can do so according to two different standards:

375

• Web Services Security Kerberos Token Profile 1.1
• WS-Trust for Simple and Protected Negotiation Protocol (SPNEGO)

When using the Kerberos Token Profile, the client-side Kerberos token is inserted into a BinarySecurityToken block
within the SOAP message. The Kerberos session key may be used to sign and encrypt the SOAP message using the
signing and encrypting filters. When this option is selected, the fields on the Kerberos Token Profile tab must be con-
figured.

When the WS-Trust for SPNEGO standard is used, a series of requests and responses occur between the Kerberos cli-
ent and the Kerberos service in order to establish a secure context. Once the secure context has been established (using
WS-Trust and WS-SecureConversation), a further series of requests and responses are used to produce a shared secret
key that can be used to sign and encrypt "real" requests to the Kerberos service.

If the WS-Trust for SPNEGO option is selected it will not be necessary to configure the fields on the Kerberos Token
Profile tab. However, the Kerberos Client Authentication filter must be configured as part of a complicated policy that
is set up to handle the multiple request and response messages that are involved in setting up the secure context
between the Kerberos client and service.

Kerberos token profile settings

The fields on this tab need only be configured if the Kerberos Token Profile option has been selected on the Kerberos
Client tab. This tab allows you to configure where to insert the BinarySecurityToken within the SOAP message.

Where to Place BinarySecurityToken:
It is possible to insert the BinarySecurityToken inside a named WS-Security Actor/Role within the SOAP message
or else an XPath expression can be specified to indicate where the token should be inserted.

Select the WS-Security Element radio button to insert the token into a WS-Security element within the SOAP Header
element. You can either select the default Current actor/role only option or enter a named actor/role in the field
provided. The BinarySecurityToken will be inserted into a WS-Security block for the actor/role specified here.

Alternatively, you should select the XPath Location option to use an XPath expression to specify where the BinarySe-
curityToken is to be inserted. Click the Add button to add a new XPath expression or select an XPath and click the
Edit or Delete buttons to edit or delete an existing XPath expression. For more information, see the Configure XPath ex-
pressions topic.

Note
You can insert the BinarySecurityToken before or after the node pointed to by the XPath expression.
Select the Append or Before radio buttons depending on where you want to insert the token relative to the
node pointed to by the XPath expression.

BinarySecurityToken Value Type:
Currently, the only supported BinarySecurityToken type is the GSS_Kerberosv5_AP_REQ type. The selected type
will be specified in the generated BinarySecurityToken.

Kerberos client authentication

376

Kerberos service authentication
Overview

The API Gateway can act as a Kerberos service to consume Kerberos tokens sent from a client in the HTTP header or in
the message itself. The client must have obtained a ticket from the Ticket Granting Server (TGS) for this service. The
Kerberos Service Authentication filter is available from the authentication category. Drag and drop this filter on to the
policy canvas to configure it. This topic describes how to configure the fields on this filter window.

General settings

Name:
Enter an appropriate name for the filter.

Kerberos Service:
The Kerberos Service selected in this field is responsible for consuming the client's Kerberos token. The client must
have obtained a ticket for the service's principal name to be able to use the service.

Click the button on the right, and select a previously configured Kerberos service. To add a Kerberos service, right-click
the Kerberos Services node, and select Add Kerberos Service. Alternatively, you can add Kerberos Services under
External Connections in the Policy Studio tree. For more details, see the Configure Kerberos services topic.

Kerberos standard settings

Complete the following fields on the Kerberos Standard tab.

Kerberos Standard:
You must first select one of the following Kerberos standards:

• Kerberos Token Profile
• WS-Trust for SPNEGO
• SPNEGO over HTTP

Note
The Kerberos Service Authentication filter is used to consume the Kerberos client-side token regardless of
whether the token is sent at the message layer (in the SOAP message), or at the transport layer (in an HT-
TP header).

Client Token Location for Message-Level Standards:
The Kerberos service ticket can be sent in the Authorization HTTP header or inside the message itself (for example,
inside a <BinarySecurityToken> element). Alternatively, it may be contained within a message attribute. Select one of the
following options:

• Message Body:
Select this if you expect the Kerberos Service ticket to be contained in the message. You must enter an XPath ex-
pression to point to the expected location of the Kerberos token. You can select some default expressions that point
to common locations from the list. Otherwise you can add a new XPath expression by clicking the Add button. Simil-
arly, existing XPath expressions can be configured by clicking Edit and Delete. For more details, see Configure
XPath expressions.

• Selector Expression:
When using the WS-Trust for SPNEGO standard above, the Consume WS-Trust filter places the client-side Ker-
beros token inside the ws.trust.spnego.token message attribute.

377

Message level settings

The Message Level tab allows you to configure settings that adhere to the message-level standards, for example, Ker-
beros Token Profile and WS-Trust for SPNEGO.

Extract Session Keys:
You must check this check box to use the Kerberos/SPNEGO session keys to perform a signing or encryption/decryption
operation in a subsequent filter. This option is only available when the token is extracted from the message body.

WS-Trust Settings: Key Length:
When using WS-Trust for SPNEGO, the Kerberos Service Authentication filter generates a new symmetric key and
wraps it using the Kerberos session key. This setting determines the length of the new symmetric key.

WS-Trust Settings: Cache Security Context Session Key:
The service-side may need to cache the session key in order to process (decrypt and verify) multiple requests from the
client.

Transport level settings

The options available on the Transport Level are specific to Kerberos tokens received over HTTP and are only relevant
when the SPNEGO Over HTTP option is selected above.

Cookie Name:
The initial handshake between a Kerberos client and service can sometimes involve the exchange of a series of request
and responses until the secure context has been established. In such cases, an HTTP cookie can be used to keep track
of the context across multiple request and response messages. Enter the name of this cookie in the field provided.

Allow Client Challenge:
In some cases, the client may not authenticate (send the Authorization HTTP header) to the Kerberos service on its
first request. The Kerberos service should then respond with an HTTP 401 response code, instructing the client to au-
thenticate to the server by sending up the Authorization header. The client then sends up a second request, this time
with the Authorization header, which contains the relevant Kerberos token. Check this option to allow this type of ne-
gotiation between the client and service.

Client Sends Body Only After Context is Established:
The Kerberos client may wait to mutually authenticate the Kerberos service before sending the body of the message. If
this setting is enabled, the Kerberos service will accept the body after the context has been established if the client
provides the known cookie. The cookies are cached in the configured cache.

Advanced SPNEGO settings

Complete the following fields on the Advanced SPNEGO tab:

Cache Partially Established Contexts:
In theory, the Kerberos client and service may need to send and receive a number of tokens between each other in order
to authenticate to each other. In this case, the Kerberos Service Authentication filter will need to cache the partially es-
tablished context for each client. The contexts will only be cached during the establishment of the context.

In practice however, a single client-side Kerberos token is normally enough to establish a context on the service-side, in
which case this setting is not required. This setting applies to the WS-Trust for SPENGO and SPENGO over HTTP
standards only.

Kerberos service authentication

378

SAML authentication
Overview

A Security Assertion Markup Language (SAML) authentication assertion is issued as proof of an authentication event.
Typically, an end-user authenticates to an intermediary, who generates a SAML authentication assertion to prove that it
has authenticated the user. The intermediary inserts the assertion into the message for consumption by a downstream
Web service.

When the API Gateway receives a message containing a SAML authentication assertion, it does not attempt to authen-
ticate the end-user again. Instead, it authenticates the sender of the assertion (the intermediary) to ensure that only the
intermediary could have issued the assertion, and then validates the authentication details contained in the assertion.
Therefore, the API Gateway performs the following tasks in this scenario:

• Authenticates the sender of the message (the intermediary)
• Extracts the end-user's identity from the authentication assertion and validates the authentication details

The SAML Authentication filter performs the second task. A separate authentication filter must be placed before this fil-
ter in the policy to authenticate the sender of the assertion. The end-user's identity is used in any subsequent authoriza-
tion filters.

The following sample SOAP message contains a SAML authentication assertion:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">

sample
</saml:NameIdentifier>

</saml:Subject>
</saml:AuthenticationStatement>

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
id="Sample User">

<dsig:SignedInfo>
.....

</dsig:SignedInfo>
<dsig:SignatureValue>
rpa/......0g==

</dsig:SignatureValue>
<dsig:KeyInfo>
.....

</dsig:KeyInfo>

379

</dsig:Signature>
</saml:Assertion>
</wsse:Security>

</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

General settings

Configure the following field:

Name:
Enter an appropriate name for the filter.

Details settings

Configure the following fields on the Details tab:

SOAP Actor/Role:
If you expect the SAML assertion to be embedded in a WS-Security block, you can identify this block by specifying the
SOAP Actor or Role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, if the assertion is not contained in a WS-Security block, you can enter an XPath expression to locate the
authentication assertion. You can configure XPath expressions using the Add Edit and Delete buttons.

SAML Namespace:
Select the SAML namespace that must be used on the SAML assertion for this filter to succeed. If you do not wish to
check the namespace, select the Do not check version option from the drop-down list.

SAML Version:
Specify the SAML Version that the assertion must adhere to by entering the major version in the first field, and the minor
version in the second field. For example, for SAML 2.0, enter 2 in the first field and 0 in the second field.

Drift Time:
The drift time, specified in seconds, is used when checking the validity dates on the authentication assertion. The drift
time allows for differences between the clock times of the machine on which the assertion was generated and the ma-
chine hosting the API Gateway.

Remove enclosing WS-Security element on successful validation:
Select this check box if you wish to remove the WS-Security block that contains the SAML assertion after the assertion
has been successfully validated.

Trusted issuer settings

You can use the table on Trusted Issuers tab to select the issuers that you consider trusted. In other words, this filter
only accepts assertions that have been issued by the SAML authorities selected here.

Click the Add button to display the Trusted Issuers window. Select the Distinguished Name of a SAML authority whose
certificate has been added to the certificate store, and click OK. Repeat this step to add more SAML authorities to the list
of trusted issuers.

SAML authentication

380

SAML PDP authentication
Overview

The API Gateway can request an authentication decision from a Security Assertion Markup Language (SAML) Policy De-
cision Point (PDP) for an authenticated client using the SAML Protocol (SAMLP). In such cases, the API Gateway
presents evidence to the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509
certificate.

The PDP decides whether to authenticate the end-user. It then creates an authentication assertion, signs it, and returns it
to the API Gateway in a SAMLP response. The API Gateway can then perform a number of checks on the response,
such as validating the PDP signature and certificate, and examining the assertion. It can also insert the SAML authentic-
ation assertion into the message for consumption by a downstream web service.

General settings

Configure the following general field:

Name:
Enter an appropriate name for the filter.

Request settings

This section describes how the API Gateway should package the SAMLP request before sending it to the SAML PDP.

You can configure the following fields on the Request tab:

SAML PDP URL Set:
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL set. Click the button on the right, and select a previously
configured SAML PDP URL set in the tree. To add a URL set, right-click the SAML PDP URL Sets tree node, and select
Add a URL Set. Alternatively, you can configure a SAML PDP URL set under the External Connections node in the
Policy Studio tree.

SOAP Action:
Enter the SOAP action required to send SAMLP requests to the PDP. Click the Use Default button to use the following
default SOAP action as specified by SAMLP:
http://www.oasis-open.org/committees/security

SAML Version:
Select the SAML version to use in the SAMLP request.

Signing Key:
If the SAMLP request is to be signed, click the Signing Key button, and select the appropriate signing key from the certi-
ficate store.

SAML subject settings

You can describe the subject of the SAML assertion on the SAML Subject tab. Complete the following fields:

Subject Selector Expression:
Enter a selector expression for the message attribute that contains the user name of an authenticated user. The default
value is ${authentication.subject.id}.

Subject Format:
Select the format of the subject selected in the Subject Selector Expression field above.

381

Subject confirmation settings

The settings on the Subject Confirmation tab determine how the <SubjectConfirmation> block of the SAML asser-
tion is generated. When the assertion is consumed by a downstream web service, the information contained in the
<SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gateway, or
the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key Inserts a <SubjectConfirmation> into the
SAMLP request. The
<SubjectConfirmation> contains a
<dsig:KeyInfo> section with the certificate
of the user selected to sign the SAMLP re-
quest. The user selected to sign the SAMLP
request must be the authenticated subject
(authentication.subject.id).
Select the Include Certificate option if the
signer's certificate is to be included in the Sub-
jectConfimration block. Alternatively, se-
lect the Include Key Name option if only the
key name is to be included.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer Inserts a <SubjectConfirmation> into the
SAMLP request.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

SAML Artifact Inserts a <SubjectConfirmation> into the
SAMLP request.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender Vouches Inserts a <SubjectConfirmation> into the
SAMLP request. A user must sign the SAMLP
request.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

If the Method field is left blank, no <ConfirmationMethod> block is inserted into the assertion.

SAML PDP authentication

382

Include Certificate:
Select this option to include the SAML subject's certificate in the <KeyInfo> section of the <SubjectConfirmation>
block.

Include Key Name:
Alternatively, to not include the certificate, select this option to only include the key name in the <KeyInfo> section.

Response settings

The Response tab configures the SAMLP response returned from the SAML PDP. The following fields are available:

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML authentication assertion, the API Gateway can extract it from the
response and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identi-
fied by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is timestamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

SAML PDP authentication

383

SSL authentication
Overview

A client can mutually authenticate to the API Gateway through the exchange of X.509 certificates. An X.509 certificate
contains identity information about its owner and is digitally signed by the Certificate Authority (CA) that issued it.

A client will present such a certificate to the API Gateway while the initial SSL/TLS session is being negotiated, in other
words, during the SSL handshake. The SSL Authentication filter extracts this information from the client certificate and
sets it as message attributes. These attributes can then be used by subsequent filters in the policy.

The SSL Authentication filter can be used as a decision-making node on the policy. For example, it can be used to de-
termine a path through a policy based on how users authenticate to the API Gateway.

Configuration

Name:
Enter an appropriate name for the filter.

384

STS client authentication
Overview

The Security Token Service Client filter enables the API Gateway to act as a client to a Security Token Service (STS).
An STS is a third-party web service that authenticates clients by validating credentials and issuing security tokens across
different formats (for example, SAML, Kerberos, or X.509). The API Gateway can use the Security Token Service Cli-
ent filter to request security tokens from an STS using WS-Trust. WS-Trust specifies the protocol for issuing, exchan-
ging, and validating security tokens.

An STS has its own security requirements for authenticating and authorizing requests for tokens. This means that the
API Gateway may need to insert tokens, digitally sign, and encrypt the request that it sends to the STS for the required
token. Because the STS is exposed as a web service, it should have a WSDL file with WS-Policies that describe its se-
curity requirements.

For example, the API Gateway can use the Security Token Service Client filter to request tokens that it cannot issue it-
self, and which may be required by an endpoint service. The endpoint service may require tokens to be signed by a par-
ticular authority (STS), or there may be a requirement for a token that contains a key encrypted for the endpoint service,
and which only the STS can generate. You can also use the Security Token Service Client filter to virtualize an STS
using the API Gateway.

Example request

Using WS-Trust, requests for tokens are placed in a RequestSecurityToken (RST) element in the SOAP Body ele-
ment. The STS returns the requested token in a RequestSecurityTokenResponse (RSTR) element in the SOAP
Body. The following example is an extract from a token request message sent from the API Gateway to the STS:

<soap:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="Id-0000012e71431904-00000000011d5641-19">
<wst:RequestSecurityToken

xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="Id-0000012e71431904-00000000011d5641-15">
<wst:RequestType>

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:TokenType>

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
</wst:TokenType>
<wst:KeyType>

http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
</wst:KeyType>
<wst:Entropy>

<wst:BinarySecret
Type="http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey">
WLQmo5mRYiBRqq2D7677Dg==

</wst:BinarySecret>
</wst:Entropy>
<wsp:AppliesTo

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference

xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>default</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>

</wst:RequestSecurityToken>
</soap:Body>

385

In this simple example, the client (API Gateway) requests a SAML token with a symmetric KeyType. The SAML token is
requested for an endpoint service named default. An optional OnBehalfOf token is not supplied.

The Security Token Service Client filter enables you to configure token requests sent by the API Gateway to the STS.
The remainder of this topic explains all of the available settings.

General settings

You can configure the following general settings:

Name:
Enter an appropriate name for this filter.

Request settings

Configure the following general request settings on the Request tab:

Request Type:
Select one of the following request types:

Issue A request to issue a token. This is the default request type.

Validate A request to validate a token.

Token Type to Request:
Select the token type to request from the STS (for example, SAML 1.0, SAML 1.1, SAML 2.0, or UsernameToken).
You can also request a custom token type by entering the custom token URI (for example, ht-
tp://www.mycustomtoken.com/EmailToken). The default is SAML 1.1 (#SAMLV1.1).

Issue: POP Key

A proof-of-possession (POP) security token contains secret data used to demonstrate authorized use of an associated
security token. Typically, the POP data is encrypted with a key known only to the recipient of the POP token. For Issue
requests, you can configure the following POP key settings on the Request > Issue: POP Key tab:

Proof of Possession Key Type:
Select the POP key type for the token you are requesting. This only applies to certain types of tokens (for example,
SAML tokens). Select one of the following key types from the drop-down list:

SymmetricKey When a SAML token is requested with a symmetric POP key, the SAML asser-
tion returned by the STS has a subject confirmation type of holder-of-key.
The subject confirmation data contains a symmetric key encrypted for the end-
point service. The API Gateway (the client) can request the SAML token from
the STS with the endpoint service specified as the token scope, so the STS
knows what certificate to use to encrypt the symmetric key it places in the
SAML assertion’s subject confirmation data. The API Gateway cannot decrypt
the symmetric key in the SAML assertion because it is encrypted for the end-
point service. The STS passes the symmetric key to the requesting API Gate-
way in the RSTR so that the API Gateway also has the symmetric key. It can
then use the SAML assertion (symmetric key) to sign the message to the end-
point service, proving that it holds the key in the SAML assertion. The endpoint
service can verify the signature because it can decrypt the key in the SAML as-
sertion. This is the default POP key type.

PublicKey When a SAML token is requested with a public asymmetric POP key, the SAML

STS client authentication

386

assertion returned by the STS has a subject confirmation type of holder-
of-key. The subject confirmation data contains a public key or certificate. The
API Gateway (the client) can also use this SAML assertion to sign messages to
the endpoint service using the related private key, thus proving they hold the
key referenced in the SAML assertion. The public key in the SAML assertion is
not encrypted because it is not sensitive data. This SAML assertion can be
used to sign messages to multiple endpoint services because it does not con-
tain a key encrypted for a specific service. The API Gateway can specify the
public key used in the Public Proof of Possession Key settings. This public
key can be associated with a certificate in the certificate store, or generated on-
the-fly using the Generate Key filter. For more details, see the Generate key
topic.

Bearer When a SAML token is requested with a bearer POP key, the SAML assertion
returned by the STS has a subject confirmation type of bearer. In this case,
the SAML token does not contain a POP key.

Important
An STS can also generate a SAML token with a subject confirmation type of sender-vouches. In this
case, the endpoint service trusts the client directly, the SAML assertion does not need to be signed by the
STS. The client signs the SAML assertion and the SOAP Body before sending the message to the end-
point service. This type of SAML assertion does not map to a value for Proof of Possession Key Type,
but can be returned from the STS if no key type is specified.

Key Size:
Enter the key size in bits to indicate the desired strength of the security. Defaults to 256 bits.

Entropy Type:
If the Proof of Possession Key Type requested is a SymmetricKey, you must specify an Entropy Type. If the API
Gateway provides entropy, this means that it provides some of the binary material used to generate the symmetric key.
In general, both the API Gateway and the STS provide some entropy for the symmetric key (a computed key). However,
either side can also fully generate the symmetric key. Select one of the following options:

None The API Gateway does not provide any entropy, so the STS must fully generate
the symmetric key.

Binary Secret The API Gateway provides entropy in the form of a Base64-encoded binary
secret (or key). You must specify a Binary Secret Type. For details, see the
next setting.

EncryptedKey The API Gateway provides entropy in the form of an EncryptedKey element.
You must configure an XML-Encryption filter in the policy, which applies se-
curity before creating the WS-Trust message. This filter generates a symmetric
key and encrypts it, but does not encrypt any data. The key must be encrypted
with the STS certificate.

Binary Secret Type:
If the Entropy Type is Binary Secret, you must specify a Binary Secret Type. Select one of the following:

Nonce The API Gateway generates a nonce value and places it in the RST.

STS client authentication

387

SymmetricKey The Binary Secret Message Attribute value must be specified. In this case,
this is the name of the message attribute that contains the symmetric key
passed to the STS to be used as entropy for generating the POP symmetric
key. The type of this message attribute must be byte[] when the Binary
Secret Type is SymmetricKey.

AsymmetricKey The Binary Secret Message Attribute value must be specified. In this case,
this is the name of the message attribute that contains the private asymmetric
key passed to the STS to be used as entropy for generating the POP symmet-
ric key. The type of this message attribute must be byte[], PrivateKey,
KeyPair, or X509Certificate when the Binary Secret Type is Asymmet-
ricKey. In each case, the private key is used.

Binary Secret Message Attribute:
Enter or select the message attribute that contains the binary secret. This setting is required when the Binary Secret
Type is SymmetricKey or AsymmetricKey.

Computed Key Algorithm:
When both the API Gateway and STS provide entropy values for the symmetric POP key, you can specify a computed
key algorithm (for example, PSHA1). This is used when the key resulting from the token request is not directly returned,
and is computed.

Public Proof of Possession Key:
If the Proof of Possession Key Type requested is a PublicKey, you can specify what public key to include in the
token using the following settings:

Use Key Format Select how the UseKey element in the RST formats the public key from the
drop-down list (for example, PublicKey, Certificate, BinarySecurity-
Token, and so on).

Use Key Message Attribute Select or enter the message attribute that contains the public key. The public
key can be of type X509Certificate, PublicKey or KeyPair.

Issue: On Behalf Of Token

For Issue requests, you can optionally configure the OnBehalfOf token for the RST. If an OnBehalfOf token is in the
RST, this means you are requesting a token on behalf of the subject identified by the token or endpoint reference in the
OnBehalfOf element. You can configure the following settings on the Request > Issue: On Behalf Of Token tab:

On Behalf Of:
Select one of the following options:

None No OnBehalfOf token is specified. This is the default.

Token The token is embedded directly under the <OnBehalfOf> element in the RST.

EmbeddedSTR The token is placed in the
<OnBehalfOf><SecurityTokenReference><Embedded> element in the
RST.

Endpoint Reference A reference to the token is placed in the
<OnBehalfOf><SecurityTokenReference>< element. The token is
placed in the WS-Security header.

STS client authentication

388

On Behalf Of Token Message Attribute:
Enter or select the message attribute that contains the OnBehalfOf token. This may be a UsernameToken, SAML
token, X.509 certificate, and so on. The type of this message attribute can be Node, List of Nodes, String, or
X509Certificate. This message attribute must be populated using a filter configured in the policy that applies security
before creating the WS-Trust message. For example, this includes a filter to extract a UsernameToken from the incom-
ing message, or a Find Certificate filter.

Endpoint Address:
When the On Behalf Of type is Endpoint Reference, no token is placed in the OnBehalfOf element. Instead, you can
enter an endpoint address in this field that identifies the subject on whose behalf you are requesting the token.

Identity Type:
When the On Behalf Of type is Endpoint Reference, you can select an identity type from the drop-down list (for ex-
ample, DNSName, ServicePrincipaName, or UserPrincipalName).

Identity:
When the Identity Type is set to DNSName, ServicePrincipaName, or UserPrincipalName, you must specify a
value in this field.

Identity Message Attribute:
When the selected Identity Type is one of PublicKey, Certificate, BinarySecurityToken, SecurityToken-
Reference_x509v3, or SecurityTokenReference_ThumbprintSHA1, you must specify a message attribute in this
field. This specifies the name of the message attribute that contains the certificate for the subject on whose behalf you
are requesting the token. The type of this message attribute must be X509Certificate.

Issue: Token Scope and Lifetime

For Issue requests, you can optionally specify details for the scope of the requested token (for example, the endpoint
service this token is used for). These details are placed in the AppliesTo element of the RST. You can configure the
following settings on the Request > Issue: Token Scope and Lifetime tab:

Endpoint Address:
Enter an address for the endpoint.

Identity Type:
Select an identity type from the drop-down list (for example, Certificate, BinarySecurityTokenDNSName, Servi-
cePrincipalName, or UserPrincipalName).

Identity:
When the Identity Type is set to DNSName, ServicePrincipaName, or UserPrincipalName, you must specify a
value in this field.

Identity Message Attribute:
When the Identity Type selected is one of PublicKey, Certificate, BinarySecurityToken, SecurityToken-
Reference_x509v3, or SecurityTokenReference_ThumbprintSHA1, you must specify a message attribute in this
field. This specifies the name of the message attribute that contains the certificate for the endpoint service that the token
is sent to. The type of this message attribute must be X509Certificate.

Expires In:
Specify when the token is due to expire in the day and time boxes.

Lifetime Format:
Enter the date and time format in which the token lifetime is specified. Defaults to yyyy-MM-dd'T'HH:mm:ss.SSS'Z'.

Note
The STS may choose to ignore the token lifetime specified in the RST.

STS client authentication

389

Validate: Target

If the request type is set to Validate, you can use the Request > Validate: Target tab to specify the token that you re-
quire the STS to validate. In this case, the STS does not issue a token. It validates the token passed to it in the RST and
returns a status. The STS response is placed in the sts.validate.code and sts.validate.reason message at-
tributes.

You can configure the following settings on the Request > Validate: Target tab:

Token:
Specifies that the token is placed directly under the <ValidateTarget> element in the RST.

EmbeddedSTR:
Specifies that the token is placed in the <ValidateTarget><SecurityTokenReference><Embedded> element.

STR:
Specifies that a reference to the token is placed in the <ValidateTarget><SecurityTokenReference> element.
The token is placed in the WS-Security header.

Validate Target Message Attribute:
Select the message attribute that contains the token that you wish to validate. The attribute type can be Node, a List of
Nodes, or String. This message attribute must be populated using a filter configured in the policy that applies security
before creating the WS-Trust message. For example, you can run a filter to extract a SAML token from the incoming
message.

Policies settings

The Policies tab enables you to specify the policies that the Security Token Service Client filter delegates to. You can
configure the following settings on this tab by clicking the button next to each field:

Policy to run to apply security before creating the WS-Trust message:
Specifies the policy that runs before the Security Token Service Client filter creates the RST (the WS-Trust request
message for the STS). The filters in this policy are used to set up message attribute values that the STS client filter re-
quires (for example, the OnBehalfOf token).

Policy to run to apply security to the WS-Trust request:
Specifies the policy that runs after the Security Token Service Client filter has created the RST. The filters in this policy
can sign and/or encrypt the message as required by the STS. It can also inject other security tokens into the WS-Security
header if required.

Policy to run to apply security to the WS-Trust response:
Specifies the policy that runs to apply security to the WS-Trust response. This policy runs when the response is received
from the STS. The filters in this policy can decrypt and verify signatures on the response message.

Routing settings

When routing to an STS, you can specify a direct connection to the web service endpoint by entering a URL on the Rout-
ing tab. Alternatively, when the routing behavior is more complex, you can delegate to a custom routing policy to handle
the added complexity. The options on the Routing tab allow for these alternative routing configurations.

Use the following URL:
Select this option to route to the specified URL. You can enter the URL in the text box, or specify the URL as a selector
so that the URL is built dynamically at runtime from the specified message attributes (for example ${host}:${port},
or ${http.destination.protocol}://${http.destination.host}:${http.destination.port}). For
more details on selectors, see Select configuration values at runtime.

You can configure SSL settings, credential profiles for authentication, and other settings for the direct connection using
the tabs in the Connection Details group. For more details, see the Connect to URL topic.

STS client authentication

390

Delegate to Routing Policy:
Select this option to use a dedicated routing policy to send messages on to the STS. Click the browse button next to the
Routing policy field to select the policy to use to route messages.

No Routing:
Select this option to only allow request reflection for test purposes.

Response settings

The Response tab enables you to specify options for processing the response message from the STS. You can config-
ure the following settings on this tab:

Verify returned security token type:
When selected, the filter checks that the TokenType returned is what was requested. This is selected by default.

Put security token into message attribute:
When specified, the token returned from the STS is placed in the specified message attribute. The type of this attribute is
String. Defaults to sts.security.token. An element version of the token is placed in a message attribute named
attrname.element.

Insert security token into original message in SOAP Actor/Role:
When specified, the token returned from the STS is inserted into the original message. This is the original message re-
ceived by the API Gateway (was the current message before the Security Token Service Client filter ran). Defaults to
Current actor/role only.

Extract Token Lifetime:
When selected, the token lifetime is extracted from the response, and the sts.token.lifetime.created and
sts.token.lifetime.expires message attributes are populated. This setting is selected by default.

Advanced settings

The Advanced tab enables you to specify the following options:

Versions and Namespaces:
The version and namespace options are as follows:

WS-Trust Version Specifies the WS-Trust namespace to use in the generated RST. Defaults to
WS-Trust 1.3.

SOAP version Specifies the SOAP version to use in the generated RST. Defaults to SOAP
1.1.

WS-Addressing Namespace Specifies the WS-Addressing namespace to use in the generated RST. De-
faults to http://www.w3.org/2005/08/addressing.

WS-Policy Namespace Specifies the WS-Policy namespace to use in the generated RST. Defaults to
WS-Policy 1.2.

WS-Security Actor Specifies the actor in which to place tokens that are referred to from the RST
using STRs (for example, OnBehalfOf). Defaults to Current actor/role
only.

Algorithms:
The algorithm options are as follows:

Canonicalization Algorithm When selected, additional elements are added to the RST, which specify a cli-
ent-requested canonicalization algorithm (for example, ExC14n).

STS client authentication

391

Encryption Algorithm When selected, additional elements are added to the RST, which specify a cli-
ent-requested encryption algorithm (for example, Aes256).

Encrypt with When selected, specifies the encryption algorithm with which to encrypt the
RSTR (for example, Aes256).

Sign with When selected, specifies the signature algorithm with which to digitally sign the
RSTR (for example, RsaSha256).

Advanced Settings:
The advanced options are as follows:

Content-Type Specifies the Content-Type of the message to be sent to the STS. For ex-
ample, for Microsoft Windows Communication Foundation (WCF), select ap-
plication/soap+xml. Defaults to text/xml.

Store and restore original message When selected, the original message is saved before messages sent from the
API Gateway to the STS and messages sent from the STS to the API Gateway
are processed. It is then reinstated after this filter finishes processing the STS
response. This is the default behavior. For debug purposes, you may wish to
return the STS response from your policy. In this case, deselect this setting,
and the current message after this filter completes should then be the STS re-
sponse. You may also wish to debug the RST (the request to the STS), and re-
turn that from your policy. In this case, disable this setting, click the Routing
tab, and select the No routing option.

STS client authentication

392

WS-Security UsernameToken authentication
Overview

A WS-Security UsernameToken enables an end-user identity to be passed over multiple hops before reaching the des-
tination web service. The user identity is inserted into the message and is available for processing at each hop on its
path.

The client user name and password are encapsulated in a WS-Security <wsse:UsernameToken>. When the API Gate-
way receives this token, it can perform one of the following tasks, depending on the requirements:

• Ensure that the timestamp on the token is still valid
• Authenticate the user name against a repository
• Authenticate the user name and password against a repository

The following sample SOAP message contains two <wsse:UsernameToken> blocks:

<?xml version="1.0" encoding="iso-8859-1"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
<wsse:UsernameToken wsu:Id="sample"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">
<wsse:Username>sample</wsse:Username>
<wsse:Password Type="wsse:PasswordText">oracle</wsse:Password>
<wsu:Created>2004-05-19T08:44:51Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<wsse:Security soap:actor="oracle"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
<wsse:UsernameToken wsu:Id="oracle"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">
<wsse:Username>oracle</wsse:Username>
<wsse:Password Type="wsse:PasswordText">oracle</wsse:Password>
<wsu:Created>2004-05-19T08:46:04Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com"/>
</soap:Body>

</soap:Envelope>

This topic explains how to configure the API Gateway to authenticate users using a WS-Security
<wsse:UsernameToken>.

General settings

To configure general settings, complete the following fields:

Name:
Enter an appropriate name for this filter.

Actor Details

Actor:

393

The example SOAP message at the top of this page contains two <wsse:UsernameToken> blocks. You must specify
which block contains the <wsse:UsernameToken> used to authenticate the end-user. Specify the SOAP Actor/Role of
the WS-Security block that contains the token.

Credential Format:
The API Gateway can authenticate users against a user profile repository based on User Names, X.509 Distinguished
Names, or email addresses. Unfortunately, the WS-Security specification does not provide a means of specifying the
type of <wsse:UsernameToken>, and so it is necessary for the administrator to do so using the Credential Format
field. The type specified here is used internally by the API Gateway in subsequent authorization filters.

Token Validation

Each wsse:UsernameToken contains a timestamp inserted into the <wsu:Created> element. Using this timestamp
together with the details entered in this section, the API Gateway can determine whether the WS-Security UsernameT-
oken has expired. The <wsu:Created> element is as follows:

<wsse:UsernameToken wsu:Id="oracle"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

<wsu:Created>2006.01.13T-10:42:43Z</wsu:Created>
...

</wsse:UsernameToken>

To configure token validation settings, complete the following fields:

Drift Time:
Specified in seconds to account for differences in the clock times between the machine on which the token was gener-
ated and the machine running the API Gateway. Using the start time, end time, and drift time, the token is considered
valid if the current time falls between the following times:

[start - drift] and [start + drift + end]

Validity Period:
Specifies the lifetime of the token, where the value of the <wsu:Created> element represents the start time of the as-
sertion, and the time period entered represents the end time.

Timestamp Required:
Select this option if you want to ensure that the UsernameToken contains a timestamp. If no timestamp is found in the
UsernameToken, a SOAP Fault is returned.

Nonce Settings

Nonce Required:
Select this option to ensure that the UsernameToken contains a <wsse:Nonce> element. This is a randomly generated
number that is added to the message. You can use the combination of a timestamp and a nonce to help prevent replay
attacks.

Select cache to store WSS UsernameToken nonces in:
Click the button on the right, and select the cache that stores the nonce value (for example, Kerberos Session
Keys). Defaults to the local WSS UsernameToken Nonce Cache.

To add a cache, right-click the Caches tree node, and select Add Local Cache or Add Distributed Cache. Alternat-
ively, you can configure caches under the Libraries node in the Policy Studio tree. For more details, see the topic on
Global caches.

Token Validation via Repository

Having validated the timestamp on the token, the API Gateway can then optionally authenticate the user name and pass-
word contained in the token. The following options are available:

WS-Security UsernameToken authentication

394

• No Verification
No verification of the user name and password is performed. Only the timestamp on the token is validated. This is
the default behavior.

• Verify Username Only
Only the user name is looked up in the selected repository. If the user name is found in this repository, the user is
authenticated. Select the No password allowed check box to block messages that contain a UsernameToken with
a <wsse:Password> element.

• Verify Username and Password
The user name is looked up in the selected repository and is only authenticated if the corresponding password
matches the one configured in the repository. If you select this option, you must select the type of the password.
Both clear text and digest formats are supported. Select the appropriate option.

Repository Name:
The API Gateway attempts to authenticate users against the selected Authentication Repository. User profiles can be
stored in the local store, a database, or an LDAP directory. For details on adding a new repository, and editing or delet-
ing a repository, see the Authentication repository tutorial.

Advanced

Remove enclosing WS-Security element on successful validation:
Select this option if you wish to remove the WS-Security block that contains the UsernameToken after the token has
been successfully authenticated. For example, in the above sample SOAP message that contains two
<wsse:UsernameToken> elements in two different WS-Security blocks, you could configure the API Gateway to re-
move one of these on successful authentication.

WS-Security UsernameToken authentication

395

RSA Access Manager authorization
Overview

RSA Access Manager (formerly known as RSA ClearTrust) provides identity management and access control services
for web applications. It centrally manages access to web applications, ensuring that only authorized users are allowed
access to resources.

The Access Manager filter enables integration with RSA Access Manager. This filter can query Access Manager for au-
thorization information for a particular user on a given resource. In other words, API Gateway asks Access Manager to
make the authorization decision. If the user has been given authorization rights to the web service, the request is allowed
through to the service. Otherwise, the request is rejected.

Prerequisites

Integration with RSA Access Manager requires the RSA ClearTrust SDK, version 6.0. You must add the required third-
party binaries to your API Gateway and Policy Studio installations.

Add third-party binaries to API Gateway

To add third-party binaries to the API Gateway, perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart API Gateway.

Add third-party binaries to Policy Studio

To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Connection details

The Connection Details section enables you to specify a group of Access Manager servers to connect to in order to au-
thenticate clients. You can select a group of Access Manager servers to provide failover in cases where one or more
servers are not available.

396

Connection Group Type
The API Gateway can connect to a group of Access Manager authorization servers or dispatcher servers. When multiple
Access Manager authorization servers are deployed for load-balancing purposes, the API Gateway should first connect
to a dispatcher server, which returns a list of active authorization servers. An attempt is then made to connect to one of
these authorization servers using round-robin DNS. If the first dispatcher server in the connection group is not available,
the API Gateway attempts to connect to the dispatcher server with the next highest priority in the group, and so on.

If a dispatcher server has not been deployed, the API Gateway can connect directly to an authorization server. If the au-
thorization server with the highest priority in the connection group is not available, the API Gateway attempts to connect
to the authorization server with the next highest priority, and so on. Select the type of the connection group (Authoriza-
tion Server or Dispatcher Server). All servers in the group must be of the same type.

Connection Group:
Click the button on the right, and select the connection group to use for authenticating clients. To add a connection
group, right-click the RSA ClearTrust Connection Sets tree node, and select Add a Connection Set. Alternatively, you
can configure a connection set under the External Connections node in the Policy Studio tree. For more details, see the
topic on Configure connection groups.

Authorization details

The Authorization Details section describes the resource for which the user is requesting access.

• Server:
Enter the name of the server that is hosting the requested resource. The name entered must correspond to a pre-
configured server name in Access Manager.

• Resource:
Enter the name of the requested resource. This resource must be preconfigured in Access Manager.

Alternatively, you can enter a selector representing a message attribute in the Resource field. The API Gateway ex-
pands this selector at runtime to the value of the corresponding message attribute. API Gateway message attribute se-
lectors take the following format:

${message.attribute}

The following example of a typical SOAP message received by the API Gateway shows how this works:

POST /services/timeservice HTTP/1.0
Host: localhost:8095
Content-Length: 374
SOAPAction: TimeService
Accept-Language: en-US
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">

</ns1:getTime>
</soap:Body>

</soap:Envelope>

The following table shows an example of selector expansion:

Selector Expanded To

${http.request.uri} /services/timeservice

RSA Access Manager authorization

397

For more details on selectors, see Select configuration values at runtime.

RSA Access Manager authorization

398

Attribute authorization
Overview

The purpose of the filters in the Attributes filter group is to extract user attributes from various sources. You can use
these filters to retrieve attributes from the message, an LDAP directory, a database, the API Gateway user store, HTTP
headers, a SAML attribute assertion, and so on.

After retrieving a set of user attributes, API Gateway stores them in the attribute.lookup.list message attribute,
which is essentially a map of name-value pairs. It is the role of the Attributes authorization filter to check the value of
these attributes to authorize the user.

Configuration

Configure the following fields on the Attributes configuration window:

Name:
Enter a suitable name for this filter.

Attributes:
The Attributes table lists the checks that the API Gateway performs on user attributes stored in the attrib-
ute.lookup.list message attribute. The API Gateway performs the following checks:

• The entries in the table are OR-ed together so that if any one of them succeeds, the filter returns a pass.
• The attribute checks listed in the table are run in series until one of them passes.
• You can add a number of attribute-value pairs to a single attribute check by separating them with commas (for ex-

ample, company=oracle, department=engineering, role=engineer).
• If multiple attribute-value pairs are present in a given attribute check, these pairs are AND-ed together so that the

overall attribute check only passes if all the attribute-value pairs pass. For example, if the attribute check comprises,
department=engineering, role=engineer, this check only passes if both attributes are found with the cor-
rect values in the attribute.lookup.list message attribute.

To add an attribute check to the Attributes table, click Add, and enter attributes in the dialog. For attribute checks in-
volving attributes extracted from a SAML attribute assertion, you must specify the namespace of the attribute given in the
assertion. For example, API Gateway can extract the role attribute from the following SAML <Attribute State-
ment>, and store it in the attribute.lookup.list map:

<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.company.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.company.com">
<saml:AttributeValue>joe@company.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The NameFormat attribute of the <Attribute> gives the namespace of the attribute name. You must enter this
namespace (together with a corresponding prefix) in the Add Attributes dialog. For example, to extract the role attrib-
ute from the SAML attribute statement above, enter pre:role=admin in the Attribute Requirement field. Then you
must also map the pre prefix to the http://www.company.com namespace, as specified by the NameFormat attrib-
ute in the attribute statement.

399

Axway PassPort authorization
Overview

Axway PassPort provides a central repository, identity broker, and security audit point for Axway Business-to-Business
Integration (B2Bi) or Managed File Transfer (MFT) solutions. Axway PassPort centralizes and simplifies provisioning and
management for your entire online ecosystem, enabling secure collaboration between applications, divisions, customers,
suppliers, and regulatory bodies.

This topic explains how to configure the settings in the Axway PassPort Authorization filter, which are used to config-
ure integration between Axway PassPort and API Gateway.

Axway CSD

An Axway Component Security Descriptor (CSD) file is an XML file that defines resources, privileges, and roles for each
component. For more details, see the Axway PassPort 4.6 Administrators Guide that is available on the Axway Support
website: https://support.axway.com. The Axway PassPort Authorization filter checks if the specified user has the priv-
ileges to perform the action on the specified resource. The CSD file defines the available actions that a resource sup-
ports. It might also define privileges and roles, which can also be created in the PassPort administration user interface.

Configuration

Specify the following settings to configure the Axway PassPort Authorization filter:

Name:
Enter an appropriate name for this filter.

User ID:
Enter the ID of the user to authorize. You can enter a static name or a selector that specifies a message attribute. The
selector is expanded at runtime to the value of the message attribute. For more details on specifying settings as select-
ors, see Select configuration values at runtime. Defaults to ${authentication.subject.id}.

Resource:
Enter the name of the resource for which the user is seeking authorization. This resource must have been defined in the
<ResourceDefinition> in the PassPort repository CSD. You can enter a static name or a selector that specifies a
message attribute. The selector is expanded at runtime to the value of the message attribute. Defaults to
${http.request.uri}.

Action:
Enter the action being performed on the resource for which authorization is sought. This action must have been defined
in the <AvailableActions> section of the PassPort repository CSD. You can enter a static name or a selector that
specifies a message attribute. The selector is expanded at runtime to the value of the message attribute. Defaults to
${http.request.verb}.

PassPort Repository:
Select an existing connection to an Axway PassPort repository to use for authorization. To configure a connection in the
Policy Studio tree, right-click External Connections > Authentication Repository Profiles > Axway PassPort Repos-
itory, and select Add a new Repository. For more details, see Axway PassPort authentication repository.

400

https://support.axway.com

CA SOA Security Manager authorization
Overview

CA SOA Security Manager can authenticate end-users and authorize them to access protected web resources. The API
Gateway can interact directly with CA SOA Security Manager by asking it to make authorization decisions on behalf of
end-users that have successfully authenticated to the API Gateway. CA SOA Security Manager decides whether to au-
thorize the user, and relays the decision back to the API Gateway where the decision is enforced. The API Gateway acts
as a Policy Enforcement Point (PEP) in this situation, enforcing the authorization decisions made by the CA SOA Secur-
ity Manager, which acts a Policy Decision Point (PDP).

Important
A CA SOA Security Manager authentication filter must be invoked before a CA SOA Security Manager
authorization filter in a given policy. In other words, the end-user must authenticate to CA SOA Security
Manager before they can be authorized for a protected resource.

Prerequisites

Integration with CA SOA Security Manager requires CA TransactionMinder SDK version 6.0 or later. You must add the
required third-party binaries to your API Gateway and Policy Studio installations.

Add third-party binaries to API Gateway

To add third-party binaries to the API Gateway, perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart API Gateway.

Add third-party binaries to Policy Studio

To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Configuration

Configure the following fields on the CA SOA Security Manager authorization filter:

Name:
Enter an appropriate name for the filter.

Attributes:

401

If the end-user is successfully authorized, the attributes listed here are looked up in CA SOA Security Manager, and re-
turned to the API Gateway. These attributes are stored in the attributes.lookup.list message attribute. They can
be retrieved at a later stage to generate a SAML attribute assertion.

Select the Set attributes for SAML Attribute token check box, and click the Add button to specify an attribute to fetch
from CA SOA Security Manager.

CA SOA Security Manager authorization

402

Certificate attribute authorization
Overview

The API Gateway can authorize access to a web service based on the X.509 attributes of an authenticated client's certi-
ficate. For example, a simple Certificate Attributes filter might only authorize clients whose certificates have a Distin-
guished Name (DName) containing the following attribute: O=oracle. In other words, only oracle users are authorized
to access the web service.

An X.509 certificate consists of a number of fields. The Subject field is most relevant. It gives the DName of the client
to which the certificate belongs. A DName is a unique name given to an X.500 directory object. It consists of a number of
attribute-value pairs called Relative Distinguished Names (RDNs). Some of the most common RDNs and their explana-
tions are as follows:

• CN: CommonName
• OU: OrganizationalUnit
• O: Organization
• L: Locality
• S: StateOrProvinceName
• C: CountryName

For example, the following is the DName of the sample.p12 client certificate supplied with API Gateway:

CN=Sample Cert, OU=R&D, O=Company Ltd., L=Dublin 4, S=Dublin, C=IE

Using the Certificate Attributes filter, it is possible to authorize clients based on (for example, the CN, OU, or C in the
DName).

Configuration

Configure the following settings:

Name:
Enter an appropriate name for the filter.

X.509 Attributes:
To add a new X.509 attribute check, click the Add button button. In the Add X.509 Attributes dialog, enter a comma-
separated list of name-value pairs representing the X.509 attributes and their values (for example,
OU=dev,O=Company).

The new attribute check is displayed in the X.509 Attributes table. You can edit and delete existing entries by clicking
the Edit and Remove buttons.

The X.509 Attributes table lists a number of attribute checks to be run against the client certificate. Each entry tests a
number of certificate attributes in such a way that the check only passes if all of the configured attribute values match
those in the client certificate. In effect, the attributes listed in a single attribute check are AND-ed together.

For example, imagine the following is configured as an entry in the X.509 Attributes table:

OU=Eng, O=Company Ltd

If the API Gateway receives a certificate with the following DName, this attribute check passes because all the con-

403

figured attributes match those in the certificate DName:

CN=User1, OU=Eng, O=Company Ltd, L=D4, S=Dublin, C=IE
CN=User2, OU=Eng, O=Company Ltd, L=D2, S=Dublin, C=IE

However, if the API Gateway receives a certificate with the following DName, the attribute check fails because the attrib-
utes in the DName do not match all the configured attributes (the OU attribute has the wrong value):

CN=User1, OU=qa, O=Company Ltd, L=D4, S=Dublin, C=IE

The X.509 Attributes table can contain several attribute check entries. In such cases, the attribute checks (the entries in
the table) are OR-ed together, so that if any of the checks succeed, the overall Certificate Attributes filter succeeds.

So to summarize:

• Attribute values within an attribute check only succeed if all the configured attribute values match those in the
DName of the client certificate.

• The filter succeeds if any of the attribute checks listed in the X.509 Attributes table succeed.

Certificate attribute authorization

404

Entrust GetAccess authorization
Overview

Entrust GetAccess provides identity management and access control services for web resources. It centrally manages
access to web applications, enabling users to benefit from a single sign-on capability when accessing the applications
that they are authorized to use.

The GetAccess filter enables integration with Entrust GetAccess. This filter can query GetAccess for authorization in-
formation for a particular user for a given resource. In other words, the API Gateway asks GetAccess to make the author-
ization decision. If the user has been given authorization rights to the web service, the request is allowed through to the
service. Otherwise, the request is rejected.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

GetAccess WS-Trust STS settings

This tab enables you to configure how the API Gateway authenticates to the GetAccess WS-Trust Security Token Ser-
vice (STS). You can configure the API Gateway to connect to a group of GetAccess STS servers in a round-robin fash-
ion. This provides the necessary failover capability when one or more STS servers are not available.

Configure the following fields:

• URL Group:
Click the button on the right, and select an STS URL group in the tree. This group consists of a number of GetAc-
cess STS Servers to which the API Gateway round-robins connection attempts. To add a URL group, right-click the
Entrust GetAccess URL Sets node, and select Add a URL Set. Alternatively, you can configure a URL connection
set under the External Connections node in the Policy Studio tree. For more details, see the topic on Configure
URL groups.

• Drift Time:
Having successfully authenticated to a GetAccess STS server, the STS server issues a SAML authentication asser-
tion and returns it to the API Gateway. When checking the validity period of the assertion, the specified Drift Time is
used to account for a possible difference between the time on the STS server and the time on the machine hosting
the API Gateway.

• WS-Trust STS Attribute Field Name:
Specify the field name for the Id field in the WS-Trust request. The default is Id.

GetAccess SAML PDP settings

When the API Gateway has successfully authenticated to a GetAccess STS server, it can then obtain authorization in-
formation about the end-user from the GetAccess SAML PDP. The authorization details are returned in a SAML authoriz-
ation assertion, which is then validated by the API Gateway to determine whether the request should be denied.

Configure the following fields:

• URL Group:
Click the button on the right, and select an SAML PDP URL group in the tree. This group consists of a number of
GetAccess SAML PDP Servers to which the API Gateway round-robins connection attempts. To add a URL group,
right-click the Entrust GetAccess URL Sets node, and select Add a URL Set. Alternatively, you can configure a

405

URL connection set under the External Connections node in the Policy Studio tree. For more details, see the topic
on Configure URL groups.

• Drift Time:
The specified Drift Time is used to account for the possible difference between the time on the GetAccess SAML
PDP and the time on the machine hosting the API Gateway. This comes into effect when validating the SAML au-
thorization assertion.

• Resource:
This is the resource for which the client is requesting access. You can enter a selector representing a message at-
tribute, which is looked up and expanded to a value at runtime. Message attribute selectors have the following
format:
${message.attribute}
For example, to specify the original path on which the request was received by the API Gateway as the resource,
enter the following selector:
${http.request.uri}

For more details on selectors, see Select configuration values at runtime.
• Actor/Role:

To add the SAML authorization assertion to the downstream message, select a SOAP actor/role to indicate the WS-
Security block where the assertion is added. Leave this field blank if the assertion is not to be added to the mes-
sage.

Entrust GetAccess authorization

406

Insert SAML authorization assertion
Overview

After successfully authorizing a client, the API Gateway can insert a Security Assertion Markup Language (SAML) au-
thorization assertion into the SOAP message. Assuming all other security filters in the policy are successful, the asser-
tion will eventually be consumed by a downstream web service.

The following example of a signed SAML authorization assertion might be useful when configuring this filter.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://.../soap/envelope/">
<soap:Header xmlns:wsse="http://.../secext">
<wsse:Security>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Security>

</soap:Header>
<soap:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap:Body>
</soap:Envelope>

General settings

Configure the following field:

Name:
Enter an appropriate name for the filter.

Assertion details settings

Configure the following fields on the Assertion Details tab:

Issuer Name:

407

Select the certificate containing the Distinguished Name (DName) to use as the Issuer of the SAML assertion. This
DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion> element. For
an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. For more information, see the oasis-sstc-saml-core-1.0.pdf and
the sstc-saml-core-1.1.pdf documents, both of which are available at http://www.oasis-open.org.

Resource:
Enter the resource for which you want to obtain the authorization assertion. You should specify the resource as a URI
(for example, http://www.oracle.com/TestService). The name of the resource is then included in the assertion.

Action:
You can specify the operations that the user can perform on the resource using the Action field. This entry is a comma-
separated list of permissions. For example, the following is a valid entry: read,write,execute.

Assertion location settings

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the list.

XPath Location:
To insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to specify the ex-
act location in the message. You can select XPath expressions from the list. The default is the First WSSE Security
Element, which has an XPath expression of //wsse:Security. You can add, edit, or remove expressions by clicking
the relevant button. For more details, see the Configure XPath expressions topic.

Insert SAML authorization assertion

408

http://www.oasis-open.org

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the list (for example, saml.assertion). Alternatively,
you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML assertion
can then be accessed downstream in the policy.

Subject confirmation method settings

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key
used to prove that the API Gateway is
the holder of the key, or it includes a
reference to the key.

urn:oasis:names:tc:SAML:1.0:c
m:
holder-of-key

Bearer The subject of the assertion is the
bearer of the assertion.

urn:oasis:names:tc:SAML:1.0:c
m:
bearer

SAML Artifact The subject of the assertion is the user
that presented a SAML artifact to the
API Gateway.

urn:oasis:names:tc:SAML:1.0:c
m:
artifact

Sender Vouches Use this confirmation method to assert
that the API Gateway is acting on be-
half of the authenticated end-user. No

urn:oasis:names:tc:SAML:1.0:c
m:
bearer

Insert SAML authorization assertion

409

Method Meaning Value

other information relating to the context
of the assertion is sent. It is recom-
mended that both the assertion and
the SOAP Body must be signed if this
option is selected. These message
parts can be signed by using the Sign
Message filter (see XML signature
generation).

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key

To use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the Asymmetric
Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
To select a key that is stored in the certificate store, select this option and click the Signing Key button. On the Se-
lect Certificate screen, select the box next to the certificate that is associated with the key that you want to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key

To use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio button, and
then configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway is the holder-of-key entity. You must enter the name of the message attribute in the
field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must be in-
cluded in the message so that the recipient can validate the key. To avoid meet-in-the-middle style attacks, where a
hacker could eavesdrop on the communication channel between the API Gateway and the recipient and gain access
to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One way of doing
this is to select the recipient's certificate from the certificate store. By encrypting the symmetric key with the public in

Insert SAML authorization assertion

410

the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only the recipient has
access. Select the Signing Key button and then select the recipient's certificate on the Select Certificate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter the message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info

The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option to not include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks n a message use the same key material
and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the list, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the list. Other op-
tions are available to enable more specific security requirements.

Advanced settings

Configure the following fields on the Advanced tab:

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion is inserted into the WS-Security header ac-
cording to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can specify to insert a SAML attribute statement into the generated SAML authorization assertion. If this option is
selected, a SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message at-
tribute and subsequently inserted into the assertion. The attribute.lookup.list attribute must have been popu-
lated previously by an attribute lookup filter for the attribute statement to be generated successfully.

Indent:
Select this method to ensure that the generated signature is properly indented.

Insert SAML authorization assertion

411

Security Token Reference:
The generated SAML authorization assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML authorization assertion

412

LDAP attribute authorization
Overview

The LDAP RBAC filter combines Local Directory Access Protocol (LDAP) with Role-Based Access Control (RBAC). This
filter enables you to authorize a backend service based on user roles stored using LDAP. You can use the LDAP RBAC
filter to read an attribute from LDAP, and compare it against some known values (for example, if role contains engin-
eering, authorize the user). This filter combines functionality available in the Retrieve from Directory Server and
Compare Attribute filters.

The LDAP RBAC filter enables you to define LDAP connection and search settings, and to configure how specified mes-
sage attributes are processed. This filter also enables you to configure optional settings such as results caching and ac-
tions to take if a returned attribute is multi-valued.

General configuration

You must configure the following general setting:

Name:
Enter an appropriate name for this filter.

You must configure the following fields on the Settings tab:

Connection:
Click the button on the right to select your pre-configured LDAP directory server (for example, open-
ldap.qa.vordel.com). For details on how to configure LDAP servers, see Configure LDAP directories.

Search Base:
Enter the Distinguished Name (DN) to use as the base from which the search starts (for example, o=Vordel
Ltd.,l=Dublin 4,st=Dublin,C=IE).

Filter:
Enter the search filter to use. For example:

(&(objectclass=inetOrgPerson)(cn=${authentication.subject.id}))

Scope:
Select one of the following search scopes from the list.

• Object: Searches on the base DN only (compare)
• One Level: Searches the direct children of the base DN
• Subtree: Searches the base DN and all its descendants

Defaults to Subtree.

Attribute validation rules:
When the search completes, the attributes returned in the results are processed by the rules in the Attribute validation
rules table. This processing is the same as the Compare Attribute filter. You can logically AND and OR rules together in
the Filter will pass if list by selecting all or one.

For example, if Filter will pass if is set to all, and Rule A, Rule B, and Rule C all evaluate to true, the filter passes.
However, if Rule A evaluates to false, the filter fails. If the Filter will pass is set to one, and Rule A and Rule B evaluate
to false, but Rule C evaluates to true, the filter passes. However, if Rule C evaluates to false, the filter fails.

Select all or one of the specified conditions to apply. Click the Add button at the bottom right to specify a rule condition.
In the Attribute filter rule dialog, perform the following steps:

413

1. Enter a message attribute name in the LDAP attribute named field on the left (for example, member or mail).
2. Select one of the following rule conditions from the drop-down list:

• contains

• doesn't contain

• doesn't match regular expression

• ends with

• is

• is not

• matches regular expression

• starts with

3. Enter a value to compare with in the text box on the right (for example, POST). Alternatively, you can enter a selector
that is expanded at runtime (for example, ${http.request.uri}). For more details on selectors, see Select con-
figuration values at runtime.

4. Click OK.

The following screen shows some example search settings and attribute validation rules:

Tip
When using this filter to determine if a user is a member of a groupOfNames, all the member attributes are
concatenated together. The string containing the member attributes can be compared using a regular ex-
pression value provided in Attribute validation rules.

Because each attribute is not checked individually, you must create the regular expression string appropri-
ately. For example, an expression such as (?i:^.*${cert.subject.id}.*$) allows for extra charac-
ters before and after the string searched for.

LDAP attribute authorization

414

Advanced configuration

You can configure the following optional settings on the Advanced tab:

Cache settings:
Select whether to cache the LDAP search results. This setting is selected by default.

Store results in the cache:
Click the button on the right to select the pre-configured cache in which to store results. For more details, see Global
caches. Select one of the following settings:

• Use the LDAP search filter as cache key: Uses the LDAP search filter configured on the Settings tab as the
cache key.

• Or use the following value as the cache key: Enter a specific value for the cache key.

If returned attribute contains multiple values:
Select one of the following settings:

• Concatenate values with the following: Enter the character used to concatenate multiple attribute values. This
setting is selected as a comma by default.

• Use value at index: Enter the index number of the attribute value to use. Defaults to 0.

LDAP attribute authorization

415

SAML authorization
Overview

A Security Assertion Markup Language (SAML) authorization assertion contains proof that a certain user has been au-
thorized to access a specified resource. Typically, such assertions are issued by a SAML Policy Decision Point (PDP)
when a client requests access to a specified resource. The client must present identity information to the PDP, which en-
sures that the client does have permission to access the resource. The PDP then issues a SAML authorization assertion
stating whether the client is allowed access the resource.

When the API Gateway receives a request containing such an assertion, it performs the following validation on the asser-
tion details:

• Ensures the resource in the assertion matches that configured in the SAML Authorization filter
• Checks the client's access permissions for the resource
• Ensures the assertion has not expired

If the information validates, the API Gateway authorizes the message for the resource specified in the assertion.

The following example of a SAML authorization assertion might be useful when configuring the SAML Authorization fil-
ter.

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
MajorVersion="1" MinorVersion="0"
AssertionID="192.168.0.131.1010924615489"
Issuer="AA" IssueInstant="2002-03-26 16:23:35">

<saml:Conditions NotBefore="2002-04-18T09:19:00Z"
NotOnOrAfter="2003-06-28T09:21:00Z"/>

<saml:AuthorizationDecisionStatement
Resource="http://www.abc.org/services/getPrice"
Decision="Permit">
<saml:Action>Read</saml:Action>

</saml:AuthorizationDecisionStatement>
</saml:Assertion>

General settings

Configure the following general field:

Name:
Enter an appropriate name for the filter.

Details settings

The following fields are available on the Details tab:

SOAP Actor/Role:
There might be several authorization assertions contained in a message. You can identify the assertion to validate by en-
tering the name of the SOAP actor/role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, you can enter an XPath expression to locate the authorization assertion. You can configure XPath expres-
sions using the Add, Edit and Delete buttons.

SAML Namespace:

416

Select the SAML namespace that must be used on the SAML assertion for this filter to succeed. To not check the
namespace, select the Do not check version option from the list.

SAML Version:
Enter the SAML Version that the assertion must adhere to by entering the major version in the first field, followed by the
minor version in the second field. For example, for SAML version 2.0, enter 2 in the first field and 0 in the second field.

Drift Time:
The drift time, specified in seconds, is used when checking the validity dates on the authorization assertion. The drift time
allows for differences between the clock times of the machine on which the assertion was generated and the machine
hosting the API Gateway.

Remove enclosing WS-Security element on successful validation:
Select this check box to remove the WS-Security block that contains the SAML assertion after the assertion has been
successfully validated.

Trusted issuer settings

You can use the table on the Trusted Issuers tab to select the issuers that you consider trusted. In other words, this fil-
ter only accepts assertions that have been issued by the selected SAML authorities.

Click the Add button to display the Trusted Issuers dialog. Select the Distinguished Name of a SAML authority whose
certificate has been added to the certificate store, and click OK. Repeat this step to add more SAML authorities to the list
of trusted issuers.

Optional settings

The optional settings enable further examination of the contents of the authorization assertion. The assertion can be
checked to ensure that the authorized subject matches a specified value, and that the resource specified in the assertion
matches the one entered here.

The API Gateway can verify that the subject in the SAML assertion (the <NameIdentifier>) matches one of the fol-
lowing options:

• The subject of the authentication filter
• The following value: (for example, user@oracle.com)
• Neither of the above

The API Gateway examines the <Resource> tag inside the SAML authorization assertion. By default, it compares the
<Resource> to the destination.uri attribute that is set in the policy. If they are identical, this filter passes. Other-
wise, it fails.

You can enter a value for the resource in the Resource field. The API Gateway then compares the <Resource> in the
assertion to this value instead of the destination.uri attribute. The filter passes if the <Resource> value matches
the value entered in the Resource field.

SAML authorization

417

SAML PDP authorization
Overview

API Gateway can request an authorization decision from a Security Assertion Markup Language (SAML) Policy Decision
Point (PDP) for an authenticated client using the SAML Protocol (SAMLP). In such cases, the API Gateway presents
evidence to the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509 certificate.

The PDP decides whether the user is authorized to access the requested resource. It then creates an authorization as-
sertion, signs it, and returns it to the API Gateway in a SAML Protocol response. The API Gateway can then perform a
number of checks on the response, such as validating the PDP signature and certificate, and examining the assertion. It
can also insert the SAML authorization assertion into the message for consumption by a downstream web service.

General settings

Configure the following general field:

Name:
Enter an appropriate name for the filter.

Request settings

This section describes how the API Gateway packages the SAMLP request before sending to the SAML PDP.

You can configure the following fields on the Request tab:

SAML PDP URL Set:
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL set. Click the button on the right, and select a previously
configured SAML PDP URL set in the tree. To add a URL set, right-click the SAML PDP URL Sets tree node, and select
Add a URL Set. Alternatively, you can configure a SAML PDP URL set under the External Connections node in the
Policy Studio tree.

SOAP Action:
Enter the SOAP action required to send SAMLP requests to the PDP. Click Use Default to use the following default
SOAP action as specified by SAMLP (see http://www.oasis-open.org/committees/security).

SAML Version:
Select the SAML version to use in the SAMLP request.

Signing Key:
If the SAMLP request is to be signed, click Signing Key, and select the signing key from the certificate store.

SAML subject settings

The following settings on the SAML Subject tab describe the subject of the SAML assertion:

Subject Selector Expression:
Enter a selector expression for the message attribute that contains the user name of an authenticated user. The default
is ${authentication.subject.id}.

Subject Format:
Select the format of the subject selected in the Subject Selector Expression field above.

Subject confirmation settings

418

http://www.oasis-open.org/committees/security

The settings on the Subject Confirmation tab determine how the SubjectConfirmation block of the SAML assertion
is generated. When the assertion is consumed by a downstream web service, the information contained in the Sub-
jectConfirmation block can be used to authenticate the end-user that authenticated to the API Gateway, or the is-
suer of the assertion, depending on what is configured.

The following is a typical SubjectConfirmation block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the ConfirmationMethod element. The following table shows the available
methods, their meanings, and their respective values in the ConfirmationMethod element:

Method Meaning Value

Holder Of
Key

Inserts a SubjectConfirmation into the SAMLP re-
quest. The SubjectConfirmation contains a
dsig:KeyInfo section with the certificate of the user se-
lected to sign the SAMLP request. The user selected to
sign the SAMLP request must be the authenticated subject
(authentication.subject.id).
Select the Include Certificate option if the signer's certific-
ate is to be included in the SubjectConfimration block.
Alternatively, select the Include Key Name option if only
the key name is to be included.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer Inserts a SubjectConfirmation into the SAMLP re-
quest.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

SAML Arti-
fact

Inserts a SubjectConfirmation into the SAMLP re-
quest.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender
Vouches

Inserts a SubjectConfirmation into the SAMLP re-
quest. The SAMLP request must be signed by a user.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

If the Method field is left blank, no ConfirmationMethod block is inserted into the assertion.

Include Certificate:
Select this option to include the SAML subject's certificate in the KeyInfo section of the SubjectConfirmation block.

Include Key Name:
Alternatively, to exclude the certificate, select this option to only include the key name in the KeyInfo section.

SAML PDP authorization

419

Resource:
Enter the resource to obtain the authorization assertion for. You should specify the resource as a URI (for example, ht-
tp://www.oracle.com/TestService). The name of the resource is then included in the assertion.

Evidence:
SAMLP stipulates that proof of identity in the form of a SAML authentication assertion must be presented to the SAML
PDP as part of the SAMLP request. API Gateway can use an existing SAML authentication assertion that is already
present in the message, or generate one based on the user that authenticated to it.

Select the Use SAML Assertion in message option to include an existing assertion in the SAMLP request. Specify the
actor/role of the WS-Security block where the assertion is found in the SOAP Actor/Role field.

Alternatively, select the Create SAML Assertion from authenticated client radio button to generate a new authentica-
tion assertion for inclusion in the SAMLP request. To sign the newly generated assertion with a private key from the certi-
ficate store, click Signing Key. Alternatively, you can enter a selector expression for the signing certificate (for example,
${certificate}).

The specified Drift Time is subtracted from the time that API Gateway generates the authentication assertion. This ac-
counts for any possible difference in the times of the machines hosting the SAML PDP and the API Gateway.

Response settings

The Response tab enables you to configure the API Gateway to perform a number of checks on the SAMLP response
from the PDP by examining the contents of various key elements in the authorization assertion.

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML authentication assertion, the API Gateway can extract it from the
response and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identi-
fied by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is timestamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

Subject in the assertion (the NameIdentifier) must match:
The authorization assertion can be checked to ensure that the authorized subject matches a specified value, and that the
resource specified in the assertion matches the one entered here. API Gateway can verify that the subject in the SAML
assertion (the NameIdentifier) matches one of the following options:

• The subject of the authentication filter
• The following value (for example, CN=sample, O=Company, C=ie)
• Neither of the above

SAML PDP authorization

420

Tivoli authorization
Overview

Tivoli Access Manager provides authentication and access control services for web resources. It also stores policies de-
scribing the access rights of users.

The API Gateway can integrate with this product through the Tivoli connector. The API Gateway Tivoli connector can
query Tivoli for authorization information for a particular user on a given resource. In other words, the API Gateway asks
Tivoli to make the authorization decision. If the user has been given authorization rights to the web service, the request is
allowed through to the service. Otherwise, the request is rejected.

For details on prerequisites for integration with IBM Tivoli, see the Tivoli integration topic.

Add a Tivoli client

To add the machine running the API Gateway as a client of Tivoli, perform the following steps:

1. Open a terminal window on the machine running the Tivoli authorization server and management server.
2. Start the pdadmin tool using the following command, where oracle is the password for the management server:

C:\WINNT> pdadmin -a sec_master -p oracle

This starts the pdadmin terminal tool.
3. Use the user create command to add a user. The parameters are as follows:

pdadmin> user create <username> <dn> <cn> <sn> <password>

The following is an example where the API Gateway is running on a machine called TEST_CLIENT with an IP ad-
dress of 192.168.0.100:

pdadmin> user create TEST_CLIENT cn=PdPermission/192.168.0.100,o=Company,c=ie \
PdPermission/192.168.0.100 PdPermission myPass1234

Make sure the DName you assign the user is exactly identical to the DName in your user's certificate. This includes
case and attribute order. Also make sure that you put the IP address or hostname in the CN.

4. Next you must activate the account for the new user. Use the following command:

pdadmin> user modify TEST_CLIENT account-valid yes

5. Finally, the user must be included in the remote access control list (ACL) client list:

pdadmin> group modify remote-acl-users add batman

The machine running the API Gateway has now been added as a client to Tivoli.

Add users and web services to Tivoli

To authorize a user to access a web service, you must first add the user to Tivoli as follows:

1. Add the user as before using the user create command as follows:

pdadmin> user create <username> <dn> <cn> <sn> <password>

Ensure that the DN you assign the user is identical to the DName in the user's certificate.
2. Next, you must insert the server that runs your web service into Tivoli's object space. Use the following command to

421

do this:

pdadmin> object create /API Gateway/<object-name> <description> 9

Note
The 9 parameter indicates that you are adding a web resource. In addition, it is the responsibility of the
Policy Decision Point (API Gateway) to map an attempt to access a web service to a given object. The
Tivoli authorization server does not contain any mapping between its object space nodes and URLs.

3. Finally, you must create a binding between the user and the object by creating an ACL for the object, and adding the
user to that list:

pdadmin> acl create <acl-name>
pdadmin> acl modify <acl-name> set user <username> rx
pdadmin> acl attach <object-name> <acl-name>

Configuration

Configure the following fields on the Tivoli Authorization window:

Name:
Enter an appropriate name for the filter.

Object Space:
The object space represents the resource for which the client must be authorized. Enter the name of the resources in the
Object Space field. You can also enter selectors that represent the values of message attributes. At runtime, the API
Gateway expands the selector to the current value of the corresponding message attribute.

Selectors have the following format:
${message.attribute}
For example, to specify the original path on which the request was received by the API Gateway as the resource, enter
the following selector:
${http.request.uri}

For more details on selectors, see Select configuration values at runtime.

Permissions:
Clients can access a resource with a number of permissions such as read, write, execute, and so on. A client is only au-
thorized to access the requested resource if it has the relevant permissions checked in the table. You can edit existing
permissions by clicking the Edit button.

Attributes:
You can specify a list of user attributes to retrieve from the Tivoli server. You can add attributes to be retrieved can be
added by clicking the Add button and entering the attribute name in the dialog. If you want all attributes to be retrieved,
leave the table blank, and select the Set attributes for SAML Attribute token option. These attributes can then be
made available to the Insert SAML Attribute Assertion filter at a later stage. If you do not require any attribute retrieval,
do not select the Set attributes for SAML Attribute token option.

Note
The permissions for the primary action group are available by default. You can also configure custom ac-
tion groups and make them available for selection in the filter. The groups created here reflect custom
groups created on the Tivoli server. To create a new group with custom action bits, click the Edit button to
display the Tivoli Action Group dialog.

Tivoli authorization

422

Enter a name for the group in the Name field. Click the Add button to add a new action bit to the group.
The Tivoli Action dialog is displayed. You must enter an Action Bit (for example, r) and a Description
(for example, Read permission) for the new action bit. Click the OK button on the Tivoli Action dialog
to return to the Tivoli Action Group dialog.

Add as many action bits as required to your new group before clicking OK on the Tivoli Action Group dia-
log. The new action bits are then available for selection in the table on the main filter window.

Tivoli Configuration Files:
A Tivoli configuration file that contains all the required connection details is associated with a particular Oracle API Gate-
way instance. Click the Settings button to display the Tivoli Configuration dialog.

On the Tivoli Configuration dialog, select the API Gateway instance whose connection details you want to configure,
then follow the steps as outlined in the Tivoli integration topic.

Tivoli authorization

423

XACML PEP authorization
Overview

The eXtensible Access Control Markup Language (XACML) Policy Enforcement Point (PEP) filter enables you to config-
ure the API Gateway to act as a PEP. The API Gateway intercepts a user request to a resource, and enforces the de-
cision from the Policy Decision Point (PDP). The API Gateway queries the PDP to see if the user has access to the re-
source, and depending on the PDP response, allows the filter to pass or fail. Possible PDP responses include Permit,
Deny, NotApplicable, and Indeterminate.

Workflow
In more detail, when the XACML PEP filter is configured in the API Gateway, the workflow is as follows:

1. The client sends a request for the resource to the XACML PEP filter.
2. The PEP filter stores the original client request, and generates the XACML request.
3. The PEP filter delegates message-level security to the polices configured on the XACML tab.
4. The PEP filter routes the XACML request to the PDP using details configured on the Routing tab.
5. The PDP decides if access should be granted, and sends the XACML response back to the API Gateway.
6. The PEP filter validates the response from the PDP.
7. By default, if the response is Permit, the PEP filter passes, and the original client request for the resource is au-

thorized, and the policy flow continues on the success path.

Further information

For more details on XACML, see the XACML specification at:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Example XACML request

424

The following example XACML request is used to illustrate the XACML request configuration settings explained in this
topic:

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Subject>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>admin</AttributeValue>

</Attribute>
<Attribute AttributeId=”department" DataType="http://www.w3.org/2001/

XMLSchema#string">
<AttributeValue>sysadmin</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>http://localhost:8280/services/echo/echoString</AttributeValue>
</Attribute>

</Resource>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>read</AttributeValue>
</Attribute>

</Action>
<Environment/>

</Request>

General settings

In the XACML PEP filter window, configure the following general field:

Name:
Enter an appropriate name for this filter.

XACML settings

The XACML tab specifies configuration settings for the generated XACML request. Configure the following fields on this
tab:

XACML Version:
Select the XACML version from the list. Defaults to XACML2_0.

Create XACML Request Assertion with the following attributes:
Click the Add button on the following tabs to add attributes to the XACML request:

Subject Represents the entity making the access request (wants access to the re-
source). The Subject element can contain multiple Attribute elements
used to identify the Subject. Each Attribute element has two attributes:
AttributeId and DataType. You can define your own AttributeId or use
those provided by the XACML specification. For more details on adding attrib-
utes, see the next subsection.

Resource Defines the data, service, or system component that the Subject wants to ac-
cess. The Resource element contains one or more attributes of the resource
to which subjects request access. There can be only one Resource element
per XACML request. A specific Resource is identified by the Attribute child
element. In the the section called “Example XACML request”, the Subject

XACML PEP authorization

425

wants to access the following Resource:
http://localhost:8280/services/echo/echoString.

Action Contains one or more attributes of the action that subjects wish to perform on
the resource. There can be only one Action element per XACML request. A
specific Action is identified by the Attribute child element. In the the sec-
tion called “Example XACML request”, the Subject wants read access the fol-
lowing Resource:
http://localhost:8280/services/echo/echoString.

Environment A more complex request context may contain some attributes not associated
with the Subject, Resource, or Action. These are placed in an optional En-
vironment element after the Action element.

Add Attributes

When you click the Add button on each tab, the XACML dialog is displayed to enable you to add attributes. Complete
the following fields on this dialog:

Attribute ID Enter a custom AttributeId or select one provided by the XACML specifica-
tion from the list. For example, the XACML special identifiers defined for the
Subject include the following:
urn:oasis:names:tc:xacml:1.0:subject:
authn-locality:dns-name
urn:oasis:names:tc:xacml:1.0:subject:
authn-locality:ip-address
urn:oasis:names:tc:xacml:1.0:subject:
authentication-method
urn:oasis:names:tc:xacml:1.0:subject:
authentication-time
urn:oasis:names:tc:xacml:1.0:subject:
key-info
urn:oasis:names:tc:xacml:1.0:subject:
request-time
urn:oasis:names:tc:xacml:1.0:subject:
session-start-time
urn:oasis:names:tc:xacml:1.0:subject:
subject-id
...
In the the section called “Example XACML request”, the first attribute under the
Subject element uses the
urn:oasis:names:tc:xacml:1.0:subject:subject-id identifier. The
next is a custom department attribute. This can be any custom attribute for
example, mail, givenName, or accessList), which is identified by the
XACML policy defined where this request is evaluated.

Value(s) Click the Add button to add an attribute value. Enter the value in the Add dia-
log, and click OK. You can add multiple values for a single attribute.

Type Select the type of data that the AttributeValue element should contain from
the list. For example, the set of data types defined in XACML includes the fol-
lowing:
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#double

XACML PEP authorization

426

http://www.w3.org/2001/XMLSchema#time
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#dayTimeDuration
http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#yearMonthDuration
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#hexBinary
...
In the the section called “Example XACML request”, the Attributes are of type
http://www.w3.org/2001/XMLSchema#string.

Issuer Specify an optional issuer for the attribute. For example, this may be a Distin-
guished Name, or some other identifier agreed with the issuer.

AuthzDecisionQuery Settings
This section enables you to configure settings for the Authorization Decision Query, which is sent in the XACML request
to the PDP. Complete the following fields in this group:

Decision based on external XACML
attributes

If this is selected, the authorization decision must be made based only on the
information contained in the XACML Authz Decision Query, and external
XACML attributes must not be used. If this is unselected, the authorization de-
cision can be made based on XACML attributes not contained in the XACML
Authz Decision Query. This is unselected by default, which is equivalent to the
following setting in the XACML Authz Decision Query:
<InputContextOnly value="false">

Return Context If this is selected, the PDP must include an xacmlcontext:Request instance
in the XACMLAuthzDecision statement in the XACMLAuthzDecision re-
sponse. The xacmlcontext:Request instance must include all attributes
supplied by the PEP in the xacml-samlp:XACMLAuthzDecisionQuery
used to make the authorization decision. If this is unselected, the PDP must not
include an xacmlcontext:Request instance in the XACMLAuthzDecision
statement in the XACMLAuthzDecision response. This is unselected by de-
fault, which is equivalent to the following setting in the XACML request:
<ReturnContext value="false">

Combine Policies If this is selected, the PDP must insert all policies passed in the xacmlsam-
lp:XACMLAuthzDecisionQuery into the set of policies or policy sets that
define the PDP. If this is unselected, there must be no more than one
xacml:Policy or xacml:PolicySet passed in the xacml-sam-
lp:XACMLAuthzDecisionQuery. This is selected by default, which is equi-
valent to the following setting in the XACML request:
<CombinePolicies value="true">

XACML Message Security
This section enables you to delegate message-level security to the configured custom security polices. Complete the fol-
lowing fields in this group:

XACML Request Security Click the browse button, select a policy in the XACML request security policy
dialog, and click OK.

XACML PEP authorization

427

XACML Response Security Click the browse button, select a policy in the XACML response security
policy dialog, and click OK.

XACML Response:
Select the Required response decision from the PDP that is required for this XACML PEP filter to pass. Defaults to
Permit. Possible values are as follows:

• Permit

• Deny

• Indeterminate

• NotApplicable

Routing settings

The Routing tab enables you to specify configuration settings for routing the XACML request to the PDP. You can spe-
cify a direct connection to the PDP using a URL. Alternatively, if the routing behavior is more complex, you can delegate
to a custom routing policy, which takes care of the added complexity.

Use the following URL:
To route XACML requests to a URL, select this option, and enter the URL. You can also specify the URL as a selector so
that the URL is built dynamically at runtime from the specified message attributes. For example, ${host}:${port}, or
${http.destination.protocol}://${http.destination.host}:${http.destination.port}. For more
details on selectors, see Select configuration values at runtime.

You can configure SSL settings, credential profiles for authentication, and other settings for the direct connection using
the tabs in the Connection Details group. For more details, see the Connect to URL topic.

Delegate routing to the following policy:
To use a dedicated routing policy to send XACML requests to the PDP, select this option. Click the browse button next to
the Routing Policy field. Select the policy to use to route XACML requests, and click OK.

Advanced settings

Configure the following settings on the Advanced tab:

SOAP Settings:
The available SOAP settings are as follows:

SOAP version required Specifies the SOAP version required when creating the XACML request mes-
sage. The available options are as follows:

• SOAP1_1

• SOAP1_2

• NONE

Defaults to SOAP1_1.

SOAP Operation Specifies the SOAP operation name used in the XACML request message. De-
faults to XACMLAuthzDecisionQuery.

Prefix Specifies the prefix name used in the XACML request message. Defaults to
xacml-samlp.

Namespace Specifies the namespace used in the XACML request message. Defaults to

XACML PEP authorization

428

urn:oasis:xacml:2.0:saml:protocol:schema:os.

SOAP Action You can specify an optional SOAPAction field used in the XACML request
header to indicate the intent of the request message.

Advanced Settings:
The available advanced settings are as follows:

Store and restore original message Specifies whether to store the original client request before generating the
XACML request, and then to restore the original client request after access is
granted. This option is selected by default.

Split subject attributes into individu-
al elements

Specifies whether to split Subject attributes into individual elements in the
XACML request. This option is not selected by default.

Split resource attributes into indi-
vidual elements

Specifies whether to split Resource attributes into individual elements in the
XACML request. This option is not selected by default.

XACML PEP authorization

429

SiteMinder certificate authentication
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected web resources. When the API Gate-
way retrieves an X.509 certificate from a message or during an SSL handshake, it can authenticate to SiteMinder on be-
half of the user using the certificate. SiteMinder decides whether the user should be authenticated, and the API Gateway
then enforces this decision.

Prerequisites

Integration with CA SiteMinder requires CA SiteMinder SDK version 12.0-sp1-cr005 or later. You must add the required
third-party binaries to your API Gateway and Policy Studio installations.

Add third-party binaries to API Gateway

To add third-party binaries to the API Gateway, perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart API Gateway.

Add third-party binaries to Policy Studio

To add third-party binaries to Policy Studio, perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Configuration

Configure the following fields:

Name:
Enter an appropriate name for the filter.

Agent Name:
Click the button on the right to select a previously configured agent to connect to SiteMinder. This name must correspond
with the name of an agent previously configured in the SiteMinder Policy Server. At runtime, the API Gateway connects
as this agent to a running instance of SiteMinder.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a Site-
Minder Connection. Alternatively, you can add SiteMinder connections under the External Connections node in the
Policy Studio tree view. For details on how to configure a SiteMinder connection, see the Configure SiteMinder/SOA Se-
curity Manager connections topic.

Resource:

430

Enter the name of the protected resource for which the end-user must be authenticated. You can enter a selector repres-
enting a message attribute, which is expanded to a value at runtime. Message attribute selectors have the following
format:

${message.attribute}

For example, to specify the original path on which the request was received by the API Gateway as the resource, enter
the following selector:

${http.request.uri}

Action:
The end-user must be authenticated for a specific action on the protected resource. By default, this action is taken from
the HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, any user-specified value can be entered. For more details on selectors, see Select configuration values at
runtime.

Single Sign-On Token:
When a client has been authenticated for a given resource, SiteMinder can generate a single sign-on token and return it
to the client. The client can then pass this token with future requests to the API Gateway. When the API Gateway re-
ceives such a request, it can validate the token using the SiteMinder Session Validation filter to authenticate the client.
In other words, the client is authenticated for the entire lifetime of the token. As long as the token is still valid, the API
Gateway does not need to authenticate the client against SiteMinder for every request, which increases throughput con-
siderably.

In this section, you can instruct SiteMinder to generate a single sign-on token. The API Gateway can then store this
token in a user-specified message attribute. By default, the token is stored in the siteminder.session message at-
tribute.

Typically, the token is copied to the attribute.lookup.list message attribute using the Copy / Modify Attributes
filter, before being inserted into a SAML attribute statement using the Insert SAML Attribute Assertion filter. The attrib-
ute statement is then returned to the client for use in subsequent requests.

Select the Create single sign-on token check box to instruct SiteMinder to generate the single sign-on token. Enter the
name of the message attribute where the token is stored in the field provided.

SiteMinder certificate authentication

431

SiteMinder session validation
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected web resources. When the API Gate-
way has authenticated successfully to SiteMinder on behalf of a user using the SiteMinder certificate authentication filter,
SiteMinder can issue a single sign-on token and return it to the API Gateway. Typically, the API Gateway inserts this
token into a SAML attribute assertion or an HTTP header, and returns it to the client.

The client then sends the single-sign on token in subsequent requests to the API Gateway. The API Gateway extracts
the single-sign on token from the message payload or HTTP headers, and stores it in a message attribute, usually the
siteminder.session attribute.

The API Gateway can then use the SiteMinder Session Validation filter to ensure that the token is still valid, and
hence, that the user is still authenticated. This means that the API Gateway does not have to authenticate every request
to SiteMinder. By validating the token, the user can be authenticated, and therefore, unnecessary round-trips to Site-
Minder can be avoided.

Prerequisites

Integration with CA SiteMinder requires CA SiteMinder SDK version 12.0-sp1-cr005 or later. You must add the required
third-party binaries to your API Gateway and Policy Studio installations. For more information, see the following sections:

• the section called “Add third-party binaries to API Gateway”
• the section called “Add third-party binaries to Policy Studio”

Configuration

Configure the following fields:

Name:
Enter an appropriate name for the filter.

Agent Name:
Click the button on the right to select a previously configured agent to connect to SiteMinder. This name must correspond
with the name of an agent previously configured in the SiteMinder Policy Server. At runtime, the API Gateway connects
as this agent to a running instance of SiteMinder.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a Site-
Minder Connection. Alternatively, you can add SiteMinder connections under the External Connections node in the
Policy Studio tree view. For details on how to configure a SiteMinder connection, see the Configure SiteMinder/SOA Se-
curity Manager connections topic.

Resource:
Enter the name of the protected resource for which the end-user must be authenticated. You can enter a selector repres-
enting a message attribute, which is expanded to a value a runtime. Message attribute selectors have the following
format:

${message.attribute}

For example, to specify the original path on which the request is received by the API Gateway as the resource, enter the
following selector:

${http.request.uri}

432

Action:
The end-user must be authenticated for a specific action on the protected resource. By default, this action is taken from
the HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, any user-specified value can be entered here. For more details on selectors, see Select configuration val-
ues at runtime.

Message attribute containing session:
Enter the name of the message attribute that contains the single sign-on token generated by SiteMinder. By default, the
token is stored in the siteminder.session message attribute, but can be stored in any attribute.

SiteMinder session validation

433

SiteMinder logout
Overview

When the API Gateway authenticates to CA SiteMinder on behalf of a user, SiteMinder can issue a single sign-on token
as evidence of the authentication event. The token is eventually returned to the client, which can then use it in sub-
sequent requests to the API Gateway.

Instead of authenticating the client against SiteMinder for every request, the API Gateway need only validate the token. If
the token validates, the client can be considered authenticated. If the token does not validate, the client is not considered
authenticated.

You can use the SiteMinder Logout filter to invalidate a single sign-on token that was previously issued by SiteMinder.
When the token has been invalidated, the client is no longer be considered authenticated.

Note
You must have already validated the session before calling the SiteMinder Logout filter in your policy. For
more details, see the SiteMinder session validation topic.

Prerequisites

Integration with CA SiteMinder requires CA SiteMinder SDK version 12.0-sp1-cr005 or later. You must add the required
third-party binaries to your API Gateway and Policy Studio installations. For more information, see the following sections:

• the section called “Add third-party binaries to API Gateway”
• the section called “Add third-party binaries to Policy Studio”

Configuration

Enter a name for the filter in the Name field of the SiteMinder Logout window.

434

SiteMinder authorization
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected web resources. The API Gateway
can interact directly with SiteMinder by asking it to make authorization decisions on behalf of end-users that have suc-
cessfully authenticated to API Gateway. The API Gateway then enforces the decisions made by SiteMinder.

Important
A SiteMinder authentication filter must be configured before a SiteMinder authorization filter is created. In
other words, end-users must authenticate to SiteMinder before they can be authorized.

Prerequisites

Integration with CA SiteMinder requires CA SiteMinder SDK version 12.0-sp1-cr005 or later. You must add the required
third-party binaries to your API Gateway and Policy Studio installations. For more information, see the following sections:

• the section called “Add third-party binaries to API Gateway”
• the section called “Add third-party binaries to Policy Studio”

Configuration

Configure the following fields on the SiteMinder Authorization filter:

Name:
Enter an appropriate name for the filter.

Attributes:
If the end-user is successfully authorized, the attributes listed here are returned to the API Gateway and stored in the
attribute.lookup.list message attribute. They can then be used by subsequent filters in a policy to make de-
cisions on their values. Alternatively, they can be inserted into a SAML attribute assertion so that the target service can
apply some business logic based on their values (for example, if role is CEO, escalate the request, and so on).

Select the Retrieve attributes from CA SiteMinder check box, and click the Add button to specify an attribute to fetch
from SiteMinder. If you select the Retrieve attributes from CA SiteMinder check box, and do not specify attribute
names to be retrieved, all attributes returned by SiteMinder are added to the attribute.lookup.list message at-
tribute.

435

Static CRL certificate validation
Overview

A Certificate Authority (CA) may wish to publish a Certificate Revocation List (CRL) to a file. In this case, API Gateway
can load the revoked certificates from the file-based CRL and validate user certificates against it.

Note
Because the CRL is typically signed by the CA that owns it, the CA certificate that issued the CRL must first
be imported into the certificate store. In addition, the CRL (Static) filter requires the certificates mes-
sage attribute to be set by a preceding filter.

Example CRL-based validation policy

Typically, a Find Certificate filter is first used to find the certificate, which is stored in a certificate message attrib-
ute. You can then use a Copy / Modify Attributes filter to copy the certificate attribute to the certificates at-
tribute by selecting its Create list attribute setting.

The following example policy shows the filters used:

The following example shows the settings used in the Copy / Modify Attributes filter:

436

Important
Typically, a CA publishes a new CRL, containing the most up-to-date list of revoked certificates at regular
intervals. However, the CRL (Static) filter does not automatically update the CRL when it is loaded from a
local file. If you need to automatically retrieve updated CRLs from a particular URL, you should use the
CRL (Dynamic) filter instead. For more details, see Dynamic CRL certificate validation.

Configuration

Enter a name for the filter in the Name field, and click the Load CRL button to browse to the location of the CRL file.
When the CRL has been loaded from the selected location, read-only information regarding revoked certificates and up-
date dates is displayed in the other fields on the window.

Static CRL certificate validation

437

Dynamic CRL certificate validation
Overview

This filter enables validation of certificates against a Certificate Revocation List (CRL) that has been published by a Certi-
ficate Authority (CA). The CRL is retrieved from the specified URL and is cached by the server for certificate validation.
The filter automatically fetches a potentially updated CRL from this URL when the criteria specified in the Automatic
CRL Update Preferences section are met.

Note
Because the CRL is typically signed by the CA that owns it, the CA certificate that issued the CRL must first
be imported into the certificate store. In addition, the CRL (Dynamic) filter requires the certificates
message attribute to be set by a preceding filter.

Example CRL-based validation policy

The topic on the CRL (Static) filter shows a typical CRL-based policy that first uses a Find Certificate filter to find the
certificate, which is stored in a certificate message attribute. It then uses a Copy/Modify Attributes filter to copy
this certificate attribute to the certificates attribute by selecting its Create list attribute setting. This certi-
ficates attribute is then used by the CRL-based filter.

You can use the same approach with the CRL (Dynamic) filter instead of the CRL (Static) filter. For more details, see
Static CRL certificate validation.

Configuration

Configure the following fields on the CRL (Dynamic) window:

Name:
Enter an appropriate name for the filter.

CRL Import URL:
Enter the full URL of the CRL to use to validate the certificate, or browse to the CRL location.

Automatic CRL Update Preferences:
Typically, a CA publishes an updated CRL at regular intervals. You can configure the filter to dynamically pull the latest
CRL published by the CA at specified intervals. Select one of the following update options:

• Do not update:
The filter never attempts to automatically retrieve the latest CRL.

• Update on "next update" date:
The CRL published by the CA contains a Next Update date, which indicates the next date on which the CA pub-
lishes the CRL. You can choose to dynamically retrieve the updated CRL on the Next Update date by selecting this
option. This effectively synchronizes the server with the CA updates.

• Update every number of days:
The filter retrieves the CRL every number of days specified.

• Trigger update on cron expression:
You can enter a cron expression to determine when to perform the automatic update.

438

CRL LDAP validation
Overview

A Certificate Revocation List (CRL) is a signed list indicating a set of certificates that are no longer considered valid
(revoked certificates) by the certificate issuer. API Gateway can query a CRL to find out if a given certificate has been re-
voked. If the certificate is present in the CRL, it should not be trusted.

To validate a certificate using a CRL lookup, the certificate's issuing CA certificate should be trusted by API Gateway.
This is because for a CRL lookup, the CA public key is needed to verify the signature on the CRL. The issuing CA public
key is not always included in the certificates that it issues, so it is necessary to retrieve it from API Gateway's certificate
store instead.

Configuration

The Name and URL of all currently configured LDAP directories are displayed in the table on the CRL Certificate Valid-
ation window. API Gateway checks the CRL of all selected LDAP directories to validate the client certificate. The filter
fails as soon as API Gateway determines that one of the CRLs has revoked the certificate.

To configure LDAP connection information, complete the following fields:

Name:
Enter an appropriate name for the filter.

LDAP Connection:
Click the button on the right, and select the LDAP directory to check its CRL. If you wish to use an existing LDAP direct-
ory, (for example, Sample Active Directory Connection), you can select it in the tree. To add an LDAP direct-
ory, right-click the LDAP Connections tree node, and select Add an LDAP Connection.

Alternatively, you can add LDAP connections under the External Connections node in the Policy Studio tree view. For
more details on how to configure LDAP connections, see the topic on Configure LDAP directories.

439

CRL responder
Overview

This filter enables API Gateway to behave as Certificate Revocation List (CRL) responder, which returns CRLs to clients.
This filter imports the CRL from a specified URL. You can also configure it to periodically retrieve the CRL from this URL
to ensure that it always has the latest version.

Configuration

Configure the following fields on the CRL Responder window:

Name:
Enter an appropriate name for the filter.

CRL Import URL:
Enter the full URL of the CRL that you want to return to clients. Alternatively, browse to the location of the CRL file by
clicking the browse button on the right.

Automatic CRL Update Preferences:
Because keeping up-to-date with the latest list of revoked certificates is crucial in any trust network, it is important that
you configure the filter to retrieve the latest version of the CRL on a regular basis. The following automatic update op-
tions are available:

• Do not update:
The CRL is not automatically updated.

• Update on "next update" date:
The CRL published by the CA contains a Next Update date, which indicates the next date on which the CA pub-
lishes the CRL. You can choose to dynamically retrieve the updated CRL on the Next Update date by selecting this
option. This effectively synchronizes the server with the CA updates.

• Update every number of days:
The CRL is updated after the specified number of days has elapsed (for example, every 3 days).

• Trigger update on cron expression:
You can enter a cron expression to determine when to perform the automatic update.

440

Create thumbprint from certificate
Overview

The Create Thumbprint filter can be used to create a human-readable thumbprint (or fingerprint) from the X.509 certific-
ate that is stored in the certificate message attribute. The generated thumbprint is stored in the certific-
ate.thumbprint attribute.

Configuration

Configure the following fields on this filter:

Name:
Enter a name for this filter.

Digest Algorithm:
Select the digest algorithm to create the thumbprint of the certificate from the drop-down list.

441

Certificate validity
Overview

The validity period of an X.509 certificate is encoded in the certificate. The Certificate Validity filter performs a simple
check on a certificate to ensure that it has not expired.

By default, the Certificate Validity filter searches for the X.509 certificate in the certificate message attribute, which
must be set by a predecessor filter in the policy (for example, by an SSL Authentication filter).

Configuration

Configure the following fields on the Certificate Validity window:

Name:
Enter an appropriate name for the filter.

Certificate Selector Expression:
Enter the selector expression that specifies where to obtain the certificate (for example, from a message attribute). The
filter checks the validity of the specified certificate. If no certificate is found, the filter returns an error. Defaults to
${certificate}.

Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for example, in a mes-
sage attribute, Key Property Store (KPS), or environment variable). For more details, see Select configuration values at
runtime.

442

Find certificate
Overview

The Find Certificate filter locates a certificate and sets it in the message for use by other certificate-based filters. Certi-
ficates can be extracted from the user store, message attributes, HTTP headers, or attachments.

Configuration

By default, API Gateway stores the extracted certificate in the certificate message attribute. However, it can store
the certificate in any message attribute, including any arbitrary attribute (for example, user_certificate). The certific-
ate can be extracted from this attribute by a successor filter in the policy.

Name:
Enter an appropriate name for the filter.

Attribute Name:
Enter or select the name of the message attribute to store the extracted certificate in. When the target message attribute
has been selected, the next step is to specify the location of the certificate from one of the following options.

Certificate Store:
Click the Select button, and select a certificate from the certificate store.

User or Wildcard:
This field represents an alternative way to specify what user certificate is used. An explicitly named user certificate is
used, or you can specify a selector to locate a user name or DName, which can then be used to locate the certificate.

Selector Expression:
You can specify a selector by enclosing the message attribute that contains the user name or DName in curly brackets,
and prefixing this with $. For example:

${authentication.subject.id}

This selector means that API Gateway uses the certificate belonging to the subject of the authentication event in sub-
sequent certificate-related filters. The certificate is set to the certificate message attribute. Using selectors is a more
flexible way of locating certificates than specifying the user directly. For more details on selectors, see Select configura-
tion values at runtime.

HTTP Header Name:
Enter the name of the HTTP header that contains the certificate.

Attachment Name:
Enter the name of the attachment (Content-Id) that contains the certificate. Alternatively, you can enter a selector in
this field to represent the value of a message attribute.

Certificate Alias or Wildcard:
Enter the alias name of the certificate. Alternatively, you can enter a selector to represent the value of a message attrib-
ute. For more details on selectors, see Select configuration values at runtime.

443

Extract certificate attributes
Overview

You can use the Extract Certificate Attributes filter to extract the X.509 attributes from a certificate stored in a specified
API Gateway message attribute.

Typically, this filter is used in conjunction with the Find Certificate filter, which is found in the Certificates category of
message filters. In this case, the Find Certificate filter can locate a certificate from one of many possible sources (for ex-
ample, the message itself, an HTTP header, or the API Gateway certificate store), and store it in a message attribute,
which is usually the certificate attribute.

The Extract Certificate Attributes filter can then retrieve this certificate and extract the X.509 attributes from it. For ex-
ample, you can then use a Validate Message Attribute filter to check the values of the attributes.

Generated message attributes

The Extract Certificate Attributes filter extracts the X.509 certificate attributes and populates a number of API Gateway
message attributes with their respective values. The following table lists the message attributes that are generated by
this filter, and shows what each of these attributes contains after the filter has executed:

Generated Message Attribute Contains

attribute.lookup.list This user attribute list contains an attribute for each Distin-
guished Name (DName) attribute for the subject (cn, o, l,
and so on). The user attributes are named cn, o, and so
on.

attribute.subject.id The DName of the subject of the cert.

attribute.subject.format Set to X509DName.

cert.basic.constraints If the subject is a Certificate Authority (CA), and the Ba-
sicConstraints extension exists, this field gives the
maximum number of CA certificates that may follow this
certificate in a certification path. A value of zero indicates
that only an end-entity certificate may follow in the path.
This contains the value of pathLenConstraint if the
BasicConstraints extension is present in the certificate
and the subject of the certificate is a CA, otherwise its
value is -1. If the subject of the certificate is a CA and
pathLenConstraint does not appear, there is no limit to
the allowed length of the certification path.

cert.extended.key.usage A String representing the OBJECT IDENTIFIERs of the
ExtKeyUsageSyntax field of the extended key usage ex-
tension (OID = 2.5.29.37). It indicates a purpose for
which the certified public key may be used, in addition to,
or instead of, the basic purposes indicated in the key usage
extension field.

cert.hash.md5 An MD5 hash of the certificate.

cert.hash.sha1 A SHA1 hash of the certificate.

cert.issuer.alternative.name An alternative name for the certificate issuer from the Is-
suerAltName extension (OID = 2.5.29.18).

cert.issuer.id The DName of the issuer of the certificate.

cert.issuer.id.c The c attribute of the issuer of the certificate, if it exists.

444

Generated Message Attribute Contains

cert.issuer.id.cn The cn attribute of the issuer of the certificate, if it exists.

cert.issuer.id.emailaddress The email or emailaddress attribute of the issuer of the
certificate, if it exists.

cert.issuer.id.l The l attribute of the issuer of the certificate, if it exists.

cert.issuer.id.o The o attribute of the issuer of the certificate, if it exists.

cert.issuer.id.ou The ou attribute of the issuer of the certificate, if it exists.

cert.issuer.id.st The st attribute of the issuer of the certificate, if it exists.

cert.key.usage.cRLSign Set to true or false if the key can be used for crlSign.

cert.key.usage.dataEncipherment Set to true or false if the key can be used for dataEn-
cipherment.

cert.key.usage.decipherOnly Set to true or false if the key can be used for de-
cipherOnly.

cert.key.usage.digitalSignature Set to true or false if the key can be used for digital sig-
nature.

cert.key.usage.encipherOnly Set to true or false if the key can be used for en-
cipherOnly.

cert.key.usage.keyAgreement Set to true or false if the key can be used for key-
Agreement.

cert.key.usage.keyCertSign Set to true or false if the key can be used for keyCert-
Sign.

cert.key.usage.keyEncipherment Set to true or false if the key can be used for keyEn-
cipherment.

cert.key.usage.nonRepudiation Set to true or false if the key can be used for non-
repudiation.

cert.not.after Not after validity period date.

cert.not.before Not before validity period date.

cert.serial.number Certificate serial number.

cert.signature.algorithm The signature algorithm for certificate signature.

cert.subject.alternative.name An alternative name for the subject from the SubjectAlt-
Name extension (OID = 2.5.29.17).

cert.subject.id The DName of the subject of the certificate.

cert.subject.id.c The c attribute of the subject of the certificate, if it exists.

cert.subject.id.cn The cn attribute of the subject of the certificate, if it exists.

cert.subject.id.emailaddress The email or emailaddress attribute of the subject of
the certificate, if it exists.

cert.subject.id.l The l attribute of the subject of the certificate, if it exists.

cert.subject.id.o The o attribute of the subject of the certificate, if it exists.

cert.subject.id.ou The ou attribute of the subject of the certificate, if it exists.

cert.subject.id.st The st attribute of the subject of the certificate, if it exists.

cert.version The certificate version.

Extract certificate attributes

445

Configuration

Name:
Enter a name for the filter.

Certificate Attribute:
The Extract Certificate Attributes filter extracts the attributes from the certificate contained in the message attribute se-
lected or entered here. The selected attribute must contain a single certificate only.

Include Distribution Points:
If the certificate contains CRL Distribution Point X.509 extension attributes (which point to the location of the certificate is-
suer's CRL), you can also extract these and store them in message attributes by selecting this check box. The extracted
distribution points are stored in message attributes that are prefixed by:
distributionpoint.

Extract certificate attributes

446

Certificate chain check
Overview

It is a trivial task for a user to generate a structurally sound X.509 certificate, and use it to negotiate mutually authentic-
ated connections to publicly available services. However, this scenario is a security nightmare for IT administrators. You
can not allow every user to generate their own certificate and use it on the Internet. For this reason, API Gateway can es-
tablish the authenticity of the client certificate by ensuring that the certificate originated from a trusted source. To do this,
a server can perform a certificate chain check on the client certificate.

The main purpose of certificate chain validation is to ensure that a certificate has been issued by a trusted source. Typic-
ally, in a Public Key Infrastructure (PKI), a Certificate Authority (CA) is responsible for issuing and distributing certificates.
This infrastructure is based on the premise of transitive trust—if everybody trusts the CA, everybody transitively trusts the
certificates issued by that CA. If entities only trust certificates that have been issued by the CA, they can reject certific-
ates that have been self-generated by clients.

When a CA issues a certificate, it digitally signs the certificate and inserts a copy of its own certificate into it. This is
called a certificate chain. Whenever an application (such as API Gateway) receives a client certificate, it can extract the
issuing CA certificate from it, and run a certificate chain check to determine whether it should trust the CA. If it trusts the
CA, it also trusts the client certificate.

API Gateway maintains a repository of trusted CA certificates, which is known as the certificate store. To trust a specific
CA, that CA certificate must be imported into the certificate store. For more details, see the Manage certificates and keys
topic.

Configuration

You can configure the following settings on the Certificate Chain Check window:

Name:
Enter an appropriate name for this filter.

Certificates Message Attribute:
You can specify a message attribute that contains the certificate or certificates to check. The message attribute type can
be an X509Certificate object, or an ArrayList of X509Certificate objects.

Distinguished Name:
This table lists the Distinguished Names of the certificates currently in the certificate store. Select the check box beside a
CA to enable this filter to consider it as trusted when performing the certificate chain check. You can select multiple CAs
in the table.

447

OCSP client
Overview

You can use the Online Certificate Status Protocol (OCSP) to retrieve the revocation status of a certificate, as an altern-
ative to retrieving Certificate Revocation Lists (CRLs).

The OCSP Client filter enables you to retrieve certificate revocation status from an OSCP responder, such as Axway
Validation Authority. The input to this filter is the certificate to be checked. You must specify the message attribute that
contains the certificate (java.security.cert.X509Certificate).

This filter returns the following outputs:

• True if the certificate status is GOOD.
• False if the certificate status is REVOKED or UNKNOWN (or if an exception occurs).

This filter also outputs the following message attributes:

• ocsp.response.certificate.status: The status of the OCSP responder certificate as an
java.lang.Integer. The possible values are:
• 0 (GOOD)
• 1 (REVOKED)
• 2 (UNKNOWN)
You can use this attribute if the filter return value is not detailed enough.

• ocsp.response.signing.certificate: The optional certificate included in the OCSP response
(java.security.cert.X509Certificate) used to sign the response. You can use an additional OCSP filter to
verify the status of this certificate.

General settings

Configure the following general settings on the OCSP Client dialog:

Name:
Enter a suitable name for this OCSP client filter.

OCSP Responder URL:
Enter the URL of the OCSP responder.

Message settings

Configure the following OCSP message settings on the Settings tab:

The message attribute storing the certificate to validate:
Enter the name of the attribute that contains the certificate to be checked
(java.security.cert.X509Certificate). The default is ${certificate}.

The key to sign the request:
Click the Signing Key button to open the list of certificates in the certificate store. You can then select the key to use to
sign requests to the OCSP responder.

You can select a specific certificate from the certificate store in the dialog, or click Create/Import to create or import a
certificate. Alternatively, you can specify a certificate to bind to at runtime using an environment variable selector (for ex-
ample, ${env.serverCertificate}). For more details on selectors, see Select configuration values at runtime.

448

Validate response:
Select the Do not validate response option to disable response validation. The response from the OCSP responder is
not validated when this option is selected.

Select the Validate response option to enable response validation. Click one or more of the following options to specify
how the response from the OCSP responder is validated:

• Against the certificate contained in the response:
The response is validated against the certificate contained in the response. This option is selected by default.

• Against the CA certificate of the certificate being validated:
The response is validated against the CA certificate of the certificate being validated. This option is selected by de-
fault.

• Against the specified certificate:
Click Signing Key to choose a certificate from the certificate store or to specify a certificate to bind to at runtime.

You can select any combination of these options. If multiple options are selected, the filter continues as soon as the re-
sponse is successfully validated against one of the selected options.

In the Allowable time difference in seconds between this system and time stamp on received responses field,
enter a value in seconds. You can use this field to allow for drift on server and client machines. It validates against the
value producedAt in the OCSP response. The default value is 300 (5 minutes). This value is only validated if the Valid-
ate response option is selected.

Use nonce to prevent reply attack:
Select this option to include a nonce in the request. This is a randomly generated number that is added to the message
to help prevent reply attacks.

Store results of certificate status in:
Click the browse button to select the cache in which to store the certificate status result. The list of currently configured
caches is displayed in the tree. To add a cache, right-click the Caches tree node, and select Add Local Cache or Add
Distributed Cache. Alternatively, you can configure caches under the Libraries node in the Policy Studio tree. For more
details, see Global caches.

Storing the certificate status in the cache enables the certificate status to be retrieved without having to return to the OC-
SP responder.

Routing settings

You can configure the settings for routing the OCSP request to the OCSP responder on the Routing tab.

You can configure SSL settings, credential profiles for authentication, and other settings for the connection using the
SSL, Authentication, and Settings tabs. For more details, see Connect to URL.

Advanced settings

On the Advanced tab, you can enable a specific policy to run after the message is created, or after the response is re-
ceived.

Configure the following advanced settings:

Run this policy after the message has been created:
Click the browse button to select a policy to be run after the message has been created.

Run this policy after a response has been received:
Click the browse button to select a policy to be run after a response has been received.

Record outbound transactions:

OCSP client

449

Select this option to enable recording of outbound transactions on the Traffic tab in API Gateway Manager. This field is
not selected by default. For more details, see the API Gateway Administrator Guide.

Integration with Axway Validation Authority

When using the OCSP client with Axway Validation Authority (VA) as an OCSP responder, you can use the following
trust models:

• Direct trust
In this model, OCSP responses are signed with the OCSP signing certificate of the VA server. The signing certificate
is not included in the OCSP response.

• VA delegated trust
In this model, the signing certificate is included in the OCSP response. API Gateway might not have this certificate.
If not, it must have the issuer (CA) certificate of the signing certificate.

You can import certificates into the API Gateway trusted certificate store under the Certificates and Keys node in the
Policy Studio tree. For more details, see Manage certificates and keys.

Note
A complete documentation set for Axway Validation Authority is available on the Axway Support website:
https://support.axway.com.

OCSP client

450

https://support.axway.com

Validate certificate store
Overview

The Validate Server's Certificate Store filter checks API Gateway's certificate store for certificates that are due to ex-
pire before a specified number of days. This enables you to monitor the certificates that API Gateway is running with.

For example, you can configure a policy that includes a Validate Server's Certificate Store filter and an Alert filter,
which sends an email alert when it finds certificates that are due to expire. You can also configure this policy to run at
regular intervals using the policy execution scheduler provided with API Gateway.

Configuration

Configure the following fields:

Name:
Enter an appropriate name for the filter.

Days before expires:
Enter the number of days before the certificates are due to expire.

Check Server's Certificate Store:
Select whether to check the certificates in API Gateway's certificate store. This is selected by default.

Check Server's Java Keystore:
Select whether to check the certificates in API Gateway's Java Keystore. This is not selected by default. When selected,
you must enter the password for this keystore. The default password is changeit.

Check Java Keystore:
Select whether to check the certificates in the specified Java Keystore. This is not selected by default. When selected,
you must configure the following fields:

Keystore Location Specify the path to this keystore (for example, /
home/oracle/osr-client.jks).

Password Enter the password for this keystore.

Deployment example

The following example shows a Validate Certificates policy that includes a Validate Server's Certificate Store filter
and an Alert filter. This policy sends an email alert when it finds certificates that are due to expire:

451

Configuring an email alert
When this filter is successful, and finds certificates that are due to expire, it generates an expired.certs.summary at-
tribute, which contains a summary of certificates due to expire. You can then use this attribute in the Alert filter to send
an email alert to the API Gateway administrators, as shown in the following example:

You must also select a preconfigured email alert destination on the Destination tab (for example, Email API Gateway
Administrators). For more details on configuring email alert destinations, see the Configure system alerts topic.

Configuring a policy execution schedule
You can configure this policy to run at regular intervals (for example, once every day) using the policy scheduler provided
with API Gateway. Under the Listeners node, right-click the API Gateway instance node, and select Add policy execu-
tion scheduler. The following example runs the policy at 12 noon every day:

Validate certificate store

452

For more details, see the Policy execution scheduling topic.

Example email alert
An email alert is sent if any certificates that are due to expire are detected. The contents of the email are obtained from
the expired.certs.summary message attribute. For example:

Oracle API Gateway running on Roadrunner contains certificates that will expire in 730 days.

2 expired certificates in API Gateway certificate store:

1. Cert details:
Cert issued to: CN=CA
Cert issued by: CN=CA
SHA1 fingerprint: 72:04:35:7C:A1:B1:C2:F5:E2:86:75:C4:83:12:9C:70:A8:D6:21:8E
MD5 fingerprint: 82:23:6F:59:F2:8F:C3:95:56:87:70:B5:51:3F:53:05
Subject Key Identifier (SKI): dfABenFoM0r7iJ3E1ZqU7HmKiyY=
Expires on: 2012-04-20

2. Cert details:
Cert issued to: CN=John Doe
Cert issued by: CN=CA
SHA1 fingerprint: 83:32:EB:3F:9C:15:87:FB:81:E1:D5:AC:CC:35:C3:F8:21:BB:DF:CD
MD5 fingerprint: 48:02:F6:3F:B9:64:EB:DA:DF:CF:F9:82:AC:CC:13:AB
Subject Key Identifier (SKI): HabJNMjAsBAWp4AcCq8yZkTEJKQ=
Expires on: 2012-04-20

Validate certificate store

453

XKMS certificate validation
Overview

XML Key Management Specification (XKMS) is an XML-based protocol that enables you to establish the trustworthiness
of a certificate over the Internet. API Gateway can query an XKMS responder to determine whether a given certificate
can be trusted.

Configuration

Configure the following fields:

Name:
Enter an appropriate name for this XKMS filter.

XKMS Connection:
Click the button on the right, and select an XKMS connection in the tree. To add an XKMS connection, right-click the
XKMS Connections node, and select Add an XKMS Connection. Alternatively, you can configure an XKMS connection
under the External Connections node in the Policy Studio tree. For more details, see the Configure XKMS connections
topic.

454

Cache attribute
Overview

The Cache Attribute filter allows you to configure what part of the message to cache. Typically, response messages are
cached and so this filter is usually configured after the routing filters in a policy. In this case, the content.body attribute
stores the response message body from the web service and so this message attribute should be selected in the Attrib-
ute Name to Store field.

For more information on how to configure this filter in a caching policy, see the topic on Global caches.

Configuration

Name:
Enter a name for this filter here.

Select Cache to Use:
Click the button on the right, and select the cache to store the attribute value. The list of currently configured caches is
displayed in the tree. To add a cache, right-click the Caches tree node, and select Add Local Cache or Add Distrib-
uted Cache. Alternatively, you can configure caches under the Libraries node in the Policy Studio tree. For more de-
tails, see the topic on Global caches.

Attribute Key:
The value of the message attribute entered here acts as the key into the cache. In the context of a caching policy, it must
be the same as the attribute specified in the Attribute containing key field on the Is Cached? filter.

Attribute Name to Store:
The value of the API Gateway message attribute entered here will be cached in the cache specified in the Cache to use
field above.

455

Create key
Overview

The Create Key filter is used to identify the part of the message that determines whether a message is unique. For ex-
ample, you can use the request message body to determine uniqueness so that if two successive identical message
bodies are received by the API Gateway, the response for the second request is taken from the cache.

You can also use other parts of the request to determine uniqueness (for example, HTTP headers, client IP address, cli-
ent SSL certificate, and so on). This means that you can use the Create Key filter to create keys for a range of different
caching scenarios (for example, caching a user's role, or caching a session for a user).

For more information on how to configure this filter in the context of a caching policy, see the Global caches topic. This
shows the order in which caching filters such as the Create Key filter are placed in an example caching policy.

Configuration

Name:
Enter a suitable name for this filter.

Attribute Name:
Select or enter the name of the message attribute to use to determine whether an incoming request is unique or not. For
example, if http.request.clientcert (the client SSL certificate) is selected, the API Gateway takes a cached re-
sponse for successive requests in which the client SSL certificate is the same. Defaults to content.body.

Output attribute name:
Select or enter the name of the output message attribute to be used as the key for objects in the cache. Defaults to mes-
sage.key. This attribute contains a hash of the request message, which can then be used as the key for objects in the
cache.

456

Check if attribute is cached
Overview

The Is Cached? filter looks up a named cache to see if a specified message attribute has already been cached. A mes-
sage attribute (usually message.key) is used as the key to search for in the cache. If the lookup succeeds, the retrieved
value overrides a specified message attribute, which is usually the content.body attribute.

For example, if a response message for a particular request has already been cached, the response message overrides
the request message body so that it can be returned to the client using the Reflect filter.

For more information on how to configure this filter in the context of a caching policy, see the Global caches topic.

Configuration

Name:
Enter a suitable name for this filter.

Select Cache to Use:
Click the button on the right, and select the cache to lookup to find the attribute specified in the Attribute containing key
field below. The list of currently configured caches is displayed in the tree. To add a cache, right-click the Caches tree
node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure caches under the Lib-
raries node in the Policy Studio tree. For more details, see the topic on Global caches.

Attribute containing key:
The message attribute entered here is used as the key to lookup in the cache. In the context of a caching policy, the at-
tribute entered here must be the same as the attribute specified in the Attribute key field on the Cache Attribute filter.

Overwrite Attribute Name if Found:
Usually the content.body is selected here so that value retrieved from the cache (which is usually a response mes-
sage) overrides the request content.body with the cached response, which can then be returned to the client using
the Reflect filter.

457

Remove cached attribute
Overview

The Remove Cached Attribute filter allows you to delete a message attribute value that has been stored in a cache.
Each cache is essentially a map of name-value pairs, where each value is keyed on a particular message attribute. For
example, you can store a cache of request messages according to their message ID. In this case the message's id at-
tribute is the key into the cache, which stores the value of the request message's content.body message attribute.

In this example, the Remove Cached Attribute filter can be used to remove a particular entry from the cache based on
the run-time value of a particular message attribute. By specifying the id message attribute to remove, the API Gateway
looks up the cache based on the value of the id message attribute. When it finds a matching message ID in the cache, it
removes the corresponding entry from the cache.

The example described above might be useful in cases where a request message needs to be cached and stored until
the request is fully processed and a response returned to the client. For example, if the request must be routed on to a
back-end web service, but that web service is temporarily unavailable, you can configure the policy to resend the cached
request instead of forcing the client to retry.

For more information on how to configure a caching policy, see the topic on Global caches.

Configuration

Name:
Enter a name for this filter here.

Select Cache to Use:
Click the button on the right, and select the cache that contains the cached values that have been keyed according to the
message attribute specified below. The list of currently configured caches is displayed in the tree. To add a cache, right-
click the Caches tree node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure
caches under the Libraries node in the Policy Studio tree. For more details, see the topic on Global caches.

Attribute Key:
Enter the message attribute that is used as the key into the cache in this field. At run-time, the API Gateway populates
the value of this message attribute, which is then used to lookup the cache selected in the table above. If a match is
found in the cache, the corresponding entry is deleted from the cache.

458

Scan with ClamAV anti-virus
Overview

You can use the ClamAV Anti-Virus filter to check messages for viruses by connecting to a ClamAV daemon running on
network. The ClamAV daemon inspects the message and if the daemon finds a virus, it returns a corresponding re-
sponse to the API Gateway, which can then block the message, if necessary.

Configuration

Complete the following fields to configure the ClamAV Anti-Virus filter:

Name:
Enter an appropriate name for this filter.

ClamAV Daemon Host:
Enter the host name of the machine on which the ClamAV daemon is running.

ClamAV Daemon Port Number:
Enter the port on which the ClamAV daemon is listening.

459

Content type filtering
Overview

The SOAP Messages with Attachments specification introduced a standard for transmitting arbitrary files along with
SOAP messages as part of a multipart MIME message. In this way, both XML and non-XML data, including binary data,
can be encapsulated in a SOAP message. The more recent Direct Internet Message Encapsulation (DIME) specification
describes another way of packaging attachments with SOAP messages.

API Gateway can accept or block multipart messages with certain MIME or DIME content types. For example, you can
configure a Content Type filter to block multipart messages with image/jpeg type parts.

Allow or deny content types

The Content Type Filtering screen lists the content types that are allowed or denied by this filter.

Allow Content Types:
Use this option if you wish to accept most content types, but only want to reject a few specific types. To allow or deny in-
coming messages based on their content types, complete the following steps:

1. Select the Allow content types radio button to allow multipart messages to be routed onwards. If you wish to allow
all content types, you do not need to select any of the MIME types in the list.

2. To deny multipart messages with certain MIME or DIME types as parts, select those types here. Multipart messages
containing the selected MIME or DIME type parts will be rejected.

Deny Content Types:
If you wish to block multipart messages containing most content types, but want to allow a small number of content
types, select this option. To reject multipart messages based on the content types of their parts, complete the following
steps:

1. Select the Deny content types radio button to reject multipart messages. If you wish to block all multipart mes-
sages, you do not need to select any of the MIME or DIME types in the list.

2. To allow messages with parts of a certain MIME or DIME type, select the checkbox next to those types. Multipart
messages with parts of the MIME or DIME types selected here will be allowed. All other MIME or DIME types will be
denied.

MIME and DIME types can be added by clicking the MIME/DIME Registered Types button. The next section describes
how to add, edit, and remove MIME/DIME types.

Configure MIME/DIME types

The MIME/DIME Settings dialog enables you to configure new and existing MIME types. When a type is added, you can
configure the API Gateway to accept or block multipart messages with parts of this type.

Click the Add button to add a new MIME/DIME type, or highlight a type in the table, and select the Edit button to edit an
existing type. To delete an existing type, select that type in the list, and click the Remove button. You can edit or add
types using the Configure MIME/DIME Type dialog.

Enter a name for the new type in the MIME or DIME Type field, and the corresponding file extension in the Extension
field.

460

Content validation
Overview

This tutorial describes how the API Gateway can examine the contents of an XML message to ensure that it meets cer-
tain criteria. It uses boolean XPath expressions to evaluate whether or not a specific element or attribute contains has a
certain value.

For example, you can configure XPath expressions to make sure the value of an element matches a certain string, to
check the value of an attribute is greater (or less) than a specific number, or that an element occurs a fixed amount of
times within an XML body.

There are two ways to configure XPath expressions on this screen. Please click the appropriate link below:

• Manual XPath Configuration
• XPath Wizard

Manual XPath configuration

To manually configure a Content Validation rule using XPath:

1. Enter a meaningful name for this XPath content filter.
2. Click the Add button to add a new XPath expression. Alternatively, you can select a previously configured XPath ex-

pression from the drop-down list.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (i.e. Prefix, URI) should be

entered in the table.

As an example of how this screen should be configured, consider the following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.company.com">
<prod:name>SOA Product</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>
</prod:product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //prod:company[text()='Company']

In this case, you must define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.company.com

461

In another example, the element to be examined by the XPath expression belongs to a default namespace. Consider the
following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">
<name>SOA Product</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

Because the <company> element belongs to the default (xmlns) namespace (http://www.company.com, you must
make up an arbitrary prefix (ns) for use in the XPath expression, and assign it to http://www.company.com. This is
necessary to distinguish between potentially several default namespaces which may exist throughout the XML message.
The following mapping illustrates this:

Prefix URI

ns http://www.company.com

XPath wizard

The XPath Wizard assists administrators in creating correct and accurate XPath expressions. The wizard enables ad-
ministrators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath Wizard, click the XPath Wizard Button on the XPath Expression dialog.

To use the XPath Wizard, enter (or browse to) the location of an XML file in the File field. The contents of the XML file
are displayed in the main window of the wizard. Enter an XPath expression in the XPath field, and click the Evaluate
button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns true),
those elements are highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. If you wish to use this expres-
sion, select the Use this path button, and click OK.

Content validation

462

HTTP header validation
Overview

The API Gateway can check HTTP header values for threatening content. This ensures that only properly configured
name-value pairs appear in the HTTP request headers. Regular expressions are used to test HTTP header values. This
enables you to make decisions on what to do with the message (for example, if the HTTP header value is X, route to ser-
vice X).

You can configure the following sections on the Validate HTTP Headers screen:

• Enter Regular Expression:
HTTP header values can be checked using regular expressions. You can select regular expressions from the global
White list or enter them manually. For example, if you know that an HTTP header must have a value of ABCD, a
regular expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against all HTTP headers in
the message. These regular expressions identify common attack signatures (for example, SQL injection attacks).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Configure HTTP header regular expressions

The Enter Regular Expression table displays the list of configured HTTP header names together with the White list of
regular expressions that restrict their values. For this filter to run successfully, all required headers must be present in the
request, and all must have values matching the configured regular expressions.

The Name column shows the name of the HTTP header. The Regular Expression column shows the name of the regu-
lar expression that the API Gateway uses to restrict the value of the named HTTP header. A number of common regular
expressions are available from the global White list library.

Configure a regular expression
You can configure regular expressions by selecting the Add, Edit, and Delete buttons. The Configure Regular Expres-
sion dialog enables you to add or edit regular expressions to restrict the values of HTTP headers. To configure a regular
expression, perform the following steps:

1. Enter the name of the HTTP header in the Name field.
2. Select whether this header is Optional or Required using the appropriate radio button. If it is Required, the header

must be present in the request. If the header is not present, the filter fails. If it is Optional, the header does not need
to be present for the filter to pass.

3. You can enter the regular expression to restrict the value of the HTTP header manually or select it from the global
White list library of regular expressions in the Expression Name drop-down list. A number of common regular ex-
pressions are provided (for example, alphanumeric values, dates, and email addresses).
You can use selectors representing the values of message attributes to compare the value of an HTTP header with
the value contained in a message attribute. Enter the $ character in the Regular Expression field to view a list of
available attributes. At runtime, the selector is expanded to the corresponding attribute value, and compared to the
HTTP header value that you want to check. For more details on selectors, see Select configuration values at
runtime.

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

Advanced settings

463

The Advanced section enables you to extract a portion of the header value which is run against the regular expression.
The extracted substring can be Base64 decoded if necessary. This section is specifically aimed towards HTTP Basic au-
thentication headers, which consist of the Basic prefix (with a trailing space), followed by the Base64-encoded user-
name and password. The following is an example of the HTTP Basic authentication header:

Authorization: Basic dXNlcjp1c2Vy

The Base64-encoded portion of the header value is what you are interested in running the regular expression against.
You can extract this by specifying the string that occurs directly before the substring you want to extract, together with
the string that occurs directly after the substring.

To extract the Base64-encoded section of the Authorization header above, enter Basic (with a trailing space) in the
Start substring field, and leave the End substring field blank to extract the entire remainder of the header value.

Important
You must select the start and end substrings to ensure that the exact substring is extracted. For example,
in the HTTP Basic example above, you should enter Basic (with a trailing space) in the Start substring
field, and not Basic (with no trailing space).

By specifying the correct substrings, you are left with the Base64-encoded header value (dXNlcjp1c2Vy). However,
you still need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode
checkbox. The Base64-decoded header value is user:user, which conforms to the standard format of the Authoriz-
ation HTTP header. This is the value that you need to run the regular expression against.

The following example shows an example of an HTTP Digest authentication header:

Authorization: Digest username="user", realm="oracle.com", qop="auth",
algorithm="MD5", uri="/editor", nonce="Id-00000109924ff10b-0000000000000091",
nc="1", cnonce="ae122a8b549af2f0915de868abff55bacd7757ca",
response="29224d8f870a62ce4acc48033c9f6863"

You can extract single values from the header value. For example, to extract the realm field, enter realm=" (including
the " character), in the Start substring field and " in the End substring field. This leaves you with oracle.com to run
the regular expression against. In this case, there is no need to Base64 decode the extracted substring.

Note
If both Start substring and End substring fields are blank, the regular expression is run against the entire
header value. Furthermore, if both fields are blank and the Base64 decode checkbox is selected, the entire
header value is Base64 encoded before the regular expression is run against it.

While the above examples deal specifically with the HTTP authentication headers, the interface is generic enough to en-
able you to extract a substring from other header values.

Configure threatening content regular expressions

The regular expressions entered in this section guard against the possibility of an HTTP header containing malicious
content. The Enter Threatening Content Regular Expression table lists the Black list of regular expressions to run to
ensure that the header values do not contain threatening content.

For example, to guard against an SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
it to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run
against all HTTP header values in an incoming request. If the expression matches any of the values, the filter fails.

HTTP header validation

464

Important
If any regular expressions are configured in the section called “Configure selector-based regular expres-
sions”, these expressions are run before the threatening content regular expressions. For example, if you
have already configured a regular expression to extract the Base64-decoded attribute value, the threaten-
ing content regular expression is run against this value instead of the attribute value stored in the message.

You can add threatening content regular expressions using the Add button. You can edit or remove existing expressions
by selecting them in the drop-down list, and clicking the Edit or Delete button.

You can enter the regular expressions manually or select them from the global Black list library of threatening content
regular expressions. This library is pre-populated with a number of regular expressions that scan for common attack sig-
natures. These include expressions to guard against common SQL injection-style attacks (for example, SQL INSERT,
SQL DELETE, and so on), buffer overflow attacks (content longer than 1024 characters), and the presence of control
characters in attribute values (ASCII control characters).

Enter or select an appropriate regular expression to restrict the value of the specified HTTP header. You can add a regu-
lar expression to the library by selecting the Add/Edit button. Enter a Name for the expression followed by the Regular
Expression.

Regular expression format

This filter uses the regular expression syntax specified by java.util.regex.Pattern. For more details, see ht-
tp://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

HTTP header validation

465

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Send to ICAP
Overview

You can use an ICAP filter to send a message to a preconfigured ICAP Server for content adaptation. For example, this
includes specific operations such as virus scanning, content filtering, ad insertion, and language translation. For more de-
tails, see the topic on Configure ICAP servers.

Configuration

Configure the following settings:

Name:
Enter an appropriate name for the filter.

ICAP Server:
Click the button next to this field, and select a pre-configured ICAP Server in the tree. To add an ICAP Server, right-click
the ICAP Servers tree node, and select Add an ICAP Server. Alternatively, you can configure ICAP Servers under the
External Connections node in the Policy Studio tree. For more details, see the topic on Configure ICAP servers.

Example policies

This section shows some example use cases of the ICAP filter configured in policies.

Request Modification Mode
The following policy shows an ICAP filter used in Request Modification (REQMOD) mode:

This example policy is essentially an internet proxy but with all incoming messages being sent to an ICAP server for vir-
us-checking before being sent to the destination. All ICAP server-bound messages in this instance are REQMOD re-
quests.

Response Modification Mode
The following policy illustrates an ICAP Filter used in Response Modification (RESPMOD) mode:

466

This example policy also is an internet proxy but with all responses being sent to an ICAP server for virus-checking after
being sent to the destination and before being sent back to the client. All ICAP server-bound messages in this instance
are RESPMOD requests.

Further information

For more details on the REQMOD and RESPMOD modes, see the topic on Configure ICAP servers.

Send to ICAP

467

Scan with McAfee anti-virus
Overview

The McAfee Anti-Virus filter scans incoming HTTP requests and their attachments for viruses and exploits. For ex-
ample, if a virus is detected in a MIME attachment or in the XML message body, the API Gateway can reject the entire
message and return a SOAP Fault to the client. In addition, this filter supports cleaning of messages from infections such
as viruses and exploits. It also provides scan type presets for different detection levels, and reports overall message
status after scanning.

Note
The McAfee Anti-Virus filter is available on Windows and Linux only.

Prerequisites

McAfee virus scanner integration requires the McAfee Scan Engine. You must add the required third-party binaries to
your API Gateway and Policy Studio installations.

Add McAfee binaries to API Gateway

To add third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the install-dir/apigateway/ext/lib directory.
• Add .dll files to the install-dir\apigateway\Win32\lib directory.
• Add .so files to the install-dir/apigateway/platform/lib directory.

2. Restart the API Gateway.

Add McAfee binaries to Policy Studio

To add third-party binaries to Policy Studio, you must perform the following steps:

1. Select Windows > Preferences > Runtime Dependencies in the Policy Studio main menu.
2. Click Add to select a JAR file to add to the list of dependencies.
3. Click Apply when finished. A copy of the JAR file is added to the plugins directory in your Policy Studio installa-

tion.
4. Click OK.
5. Restart Policy Studio.

Configuration

To configure the McAfee Anti-Virus filter, perform the following steps:

1. Enter an appropriate name in the Name field.
2. Select a Scan type from the drop-down box. The available options are as follows:

Normal Processes the entire message detecting exploits and viruses in the message
headers, macros, multi-file archives, executables, MIME-en-
coded/UU-encoded/XX-encoded/BinHex and TNEF/IMC format files. Performs

468

heuristic analysis to find new viruses and potentially unwanted programs. This
is the default scan type.

Fast Detects infections in the top level of each message part, such as exploits that
use headers and multiple bodies. The detection is less precise, but the perform-
ance is better if the top-level object is infected.

Multi-pass Combines the Normal and Fast scan types. The Fast scan (pass 1) runs first
on the whole message with no cleaning. The scanner stops if it finds an infec-
ted object, and if the clean type is set to No cleaning, the scanner reports the
infection, or otherwise deletes the message. If pass 1 does not detect any virus
or exploit, the Normal scan (pass 2) runs with the specified clean type and
provides more precise detection.

Custom Enables you to set the Custom options described in the next section. This
provides compatibility with previous API Gateway versions.

Note
When existing policies are upgraded to the current API Gateway
version, the McAfee Anti-Virus filter scan type is set to Custom
and the clean type is set to No cleaning for backward compatibil-
ity.

3. Select a Clean type from the drop-down box. The available options are as follows:

No cleaning Fails if any infection is detected. This is the default clean type.

Always remove infected parts Removes the infected message part, and does not try to repair it.

Attempt to repair infected parts Attempts to repair the found infection (if repairable), otherwise deletes the infec-
ted message part.

Custom options

When you configure a custom scan type, the following Custom options are available:

Decompress Archives:
This instructs the filter to scan each file in an archive for viruses. Types of archived files include the ZIP, JAR, TAR, ARJ,
LHA, PKARC, PKZIP, RAR, WinACE, BZip, and Zcompress formats.

Decompress Executables:
Executables are sometimes compressed to decrease overall message size. In such cases, any embedded viruses are
also compressed and may be missed by conventional scans. If this option is selected, the filter decompresses the ex-
ecutable before scanning it for viruses.

Fail Any Macros:
A macro is a series of commands that can be invoked in a single command or keystroke. While calling the macro can ap-
pear to be harmless, the initiated command sequence may be harmful. Macros are usually configured to run automatic-
ally when the host document is opened. When this option is selected, the API Gateway fails if any macro is detected in a
compound document (whether it matches a virus signature or not). An appropriate SOAP Fault is returned to the client.

Scan with McAfee anti-virus

469

Heuristic Program Analysis:
A heuristic virus detection algorithm runs a series of probing tests on a file in an attempt to solicit virus-like behavior from
it. Based on the results of these tests, the algorithm can then make an educated guess on whether the file represents a
potential threat or not. For example, programs that attempt to modify or delete files, invoke email clients, or replicate
themselves all display virus-like behavior and so may be treated as viruses by the scanner.

The major advantage of this type of analysis is that new viruses can be detected. With the signature detection method,
the scanner attempts to find a fixed number of known virus signatures in a file. Because the number of known signatures
is fixed, new or unknown viruses can not be detected. If this option is selected, the filter runs heuristic analysis on ex-
ecutables only.

Heuristic Macro Analysis:
When this option is enabled, the filter runs heuristic detection analysis on macros contained in any body parts of the
message. If any viruses are detected, the message is blocked. If this option is selected, the API Gateway searches for
virus signatures in the respective body parts of a MIME message. However, it can only search for known viruses using
this method.

Note
Macros embedded in MIME parts are also scanned for virus signatures.

Scan Embedded Scripts:
The API Gateway can scan MIME parts, such as HTML documents, for embedded scripts. If this option is selected, the
filter scans for embedded scripts.

Scan for Test Files:
When this option is selected, the API Gateway fails if it encounters an anti-virus test file (for example, eicar.com). This
is a convenient way to check that the anti-virus filter successfully detects known viruses.

Message status

When the scan is complete, the McAfee Anti-Virus filter reports the overall message status in the mcafee.status
message attribute, which is generated by the filter. This reflects the overall status of the scan for all message parts, and
includes one of the following values:

NOVIRUS No virus or exploit detected in the message.

INFECTED Infection detected in the message.

REPAIRED Message repaired.

REMOVED Some or all message parts successfully removed.

REPAIRED, REMOVED Some message parts successfully repaired and some others removed.

Load McAfee updates

When the McAfee Anti-Virus filter has been loaded, it searches for virus definitions in the following directory:

install-dir\conf\plugin\mcafee\datv2

When these have been loaded, it periodically checks for the presence of a directory named as follows:

install-dir\conf\plugin\mcafee\datv2.new

Scan with McAfee anti-virus

470

If the datv2.new directory is found, the scanner is stopped and the datv2 directory is renamed to datv2.0. If a
datv2.0 directory already exists from a previous rollover, a datv2.1 directory is created instead, and so on, until an
unused index is used. This means that the server never deletes the old files, and rolls them out of the way.

When the engine is stopped and restarted, any messages that require scanning are suspended until the restart com-
pletes. In addition, an initiated reload is suspended until all currently active scans are completed.

Important
Like all file system scanning approaches, there is an inherent ordering problem. If you create the
datv2.new directory before copying the files into the directory, the scanner may pick up the new directory
before it is ready to be used. For example, on Windows, you may experience problems if you enter the fol-
lowing commands from the install-dir\conf\plugin\mcafee directory:

mkdir datv2.new
copy c:\mcafee\newfiles*.* datv2.new

You can use the following commands to prevent this problem:

mkdir datv2.tmp
copy c:\mcafee\newfiles*.* datv2.tmp
rename datv2.tmp datv2.new

These create a temporary folder, copy the files into this folder, and rename the temporary folder to datv2.new. In this
way, the scanner is guaranteed to pick up the virus definition files when it detects the new directory.

On Linux, the same approach applies, but the location of the file and the commands used are different. For example,
enter the following commands from the install-dir/conf/plugin/mcafee directory:

mkdir datv2.tmp
cp /var/tmp/mcafee/newfiles/*.* datv2.tmp
mv datv2.tmp datv2.new

Scan with McAfee anti-virus

471

Message size filtering
Overview

It is sometimes useful to filter incoming messages based, not only on the internal content of the message, but on external
characteristics of the message such as size. You can use the Message Size filter to configure the API Gateway to reject
messages that are greater or less than a specified size.

Note
You should not use the Message Size filter on HTTP GET requests

Configuration

To configure the API Gateway to block messages of a certain size, complete the following fields:

At least:
Enter the size (in bytes) of the smallest message that should be processed in the field. Messages smaller than this size
will be rejected.

At most:
Enter the size (in bytes) of the largest message that should be processed. Messages larger than the size entered here
will be rejected.

Use in Size Calculation:
Select one of the following options to specify the portion of the message that is to be used when calculating the size of
the message:

• Root body only: The API Gateway calculates the size of the message body excluding all other MIME parts
(attachments).

• Attachments only: The API Gateway only calculates the size of all attachments to the message. This excludes the
size of the root body payload from its calculation. The Message Size filter still works even when there are no attach-
ments.

• Root body and attachments: The API Gateway includes the root body together with all other MIME parts when it
calculates the size of the message.

Important
The message size measured by the API Gateway does not include HTTP headers.

472

Query string validation
Overview

The API Gateway can check the request query string to ensure that only properly configured name and value pairs ap-
pear. Regular expressions are used to test the attribute values. This enables you to make decisions on what to do with
the message (for example, if the query sting value is X, route to service X)

You can configure the following sections on the Validate Query String screen:

• Enter Regular Expression:
Query string values can be checked using regular expressions. You can select regular expressions from the global
White list or enter them manually. For example, if you know that a query string must have a value of ABCD, a regu-
lar expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against all query string
names and values. These regular expressions identify common attack signatures (for example, SQL injection at-
tacks).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Request query string

The request query string is the portion of the URL that comes after the ? character, and contains the request parameters.
It is typically used for HTTP GET requests in which form data is submitted as name-value pairs on the URL. This con-
trasts with the HTTP POST method where the data is submitted in the body of the request. The following example shows
a request URL that contains a query string:

http://hostname.com/services/getEmployee?first=john&last=smith

In this example, the query string is first=john&last=smith. Query strings consist of attribute name-value pairs, and
each name-value pair is separated by the & character.

The Query String Validation filter can also operate on the form parameters submitted in an HTTP Form POST. Instead
of encoding the request parameters in the query string, the client uses the application/x-www-form-urlencoded
content-type, and submits the parameters in the HTTP POST body, for example:

POST /services/getEmployee HTTP/1.1
Host: localhost:8095
Content-Length: 21
SOAPAction: HelloService
Content-Type: application/x-www-form-urlencoded

first=john&last=smith

If the API Gateway receives an HTTP request body such as this, the Query String Validation filter can validate the form
parameters.

Configure query string attribute regular expressions

The Enter Regular Expression table displays the list of configured query string names together with the white list of reg-
ular expressions that restrict their values. For this filter to run successfully, all required attributes must be present in the
request, and all must have the correct value.

473

The Name column shows the name of the query string attribute. The Regular Expression column shows the name of
the regular expression that the API Gateway uses to restrict the value of the named query string attribute. A number of
common regular expressions are available from the global White list library.

If the Allow unspecified names checkbox is selected, additional unnamed query string attributes are not filtered by the
API Gateway. For example, this is useful if you are interested in filtering the content of only a small number of query
string attributes but the request may contain many attributes. In such cases, you only need to filter those few attributes,
and by selecting this checkbox, the API Gateway ignores all other query string attributes.

Configure a regular expression
You can configure regular expressions by selecting the Add, Edit, and Delete buttons. The Configure Regular Expres-
sion dialog enables you to add or edit regular expressions to restrict the values request query string attributes. To config-
ure a regular expression, perform the following steps:

1. Enter the name of the query string attribute in the Name field.
2. Select whether this request parameter is Optional or Required using the appropriate radio button. If it is Required,

the parameter name must be present in the request. If the parameter is not present, the filter fails. If it is Optional,
the attribute does not need to be present for the filter to pass.

3. You can enter the regular expression to restrict the value of the query string attribute manually or select it from the
global White list library of regular expressions in the Expression Name drop-down list. A number of common regu-
lar expressions are provided (for example, alphanumeric values, dates, and email addresses).
You can use selectors representing the values of message attributes to compare the value of the query string attrib-
ute with the value contained in a message attribute. Enter the $ character in the Regular Expression field to view a
list of available attributes. At runtime, the selector is expanded to the corresponding attribute value, and compared to
the query string attribute value that you want to check.

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

Advanced settings
The Advanced section enables you to extract a portion of the query string attribute value that is run against the regular
expression. The extracted substring can also be Base64 decoded if necessary. The following is an example of a URL
containing a query string. The value of the password attribute is Base64 encoded, and must be extracted from the query
string and decoded before it is run against the regular expression.

http://oracle.com/services?username=user&password=dXNlcg0K&dept=eng

You can extract the encoded value of the password= attribute value by specifying the string that occurs directly before
the substring you want to extract, together with the string that occurs directly after the substring. Enter password= in the
Start substring field, and & in the End substring field.

Important
You must select the start and end substrings to ensure that the exact substring is extracted. For example,
in this example, password= (including the equals sign) should be entered in the Start substring field, and
not password (without the equals sign).

By specifying the correct substrings, you are left with the Base64-encoded attribute value (dXNlcg0K). However, you still
need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode check-
box. The Base64-decoded password value is simply user. This is the value that you want to run the regular expression
against.

By specifying the correct substrings, you are left with the Base64-encoded attribute value (dXNlcg0K). However, you still
need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode check-
box. The Base64-decoded password value is user. This is the value that you need to run the regular expression against.

Query string validation

474

Note
If both Start substring and End substring fields are blank, the regular expression is run against the entire
attribute value. Furthermore, if both fields are blank and the Base64 decode checkbox is selected, the en-
tire attribute value is Base64 encoded before the regular expression is run against it.

Configure threatening content regular expressions

The regular expressions entered in this section guard against the possibility of a query string attribute containing mali-
cious content. The Enter Threatening Content Regular Expression table lists the Black list of regular expressions to
run to ensure that the header values do not contain threatening content.

For example, to guard against an SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
it to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run
against all attribute values in the query string. If the expression matches any of the values, the filter fails.

Important
If any regular expressions are configured in the section called “Configure selector-based regular expres-
sions”, these expressions are run before the threatening content regular expressions. For example, if you
have already configured a regular expression to extract the Base64-decoded attribute value, the threaten-
ing content regular expression is run against this value instead of the attribute value stored in the message.

You can add threatening content regular expressions using the Add button. You can edit or remove existing expressions
by selecting them in the drop-down list and clicking the Edit or Delete button.

You can enter the regular expressions manually or select them from the global Black list library of threatening content
regular expressions. This library is pre-populated with regular expressions that guard against common attack signatures.
These include a expressions to guard against common SQL injection style attacks (for example, SQL INSERT, SQL DE-
LETE, and so on), buffer overflow attacks (content longer than 1024 characters), and the presence of control characters
in attribute values (ASCII Control Character).

Enter or select an appropriate regular expression to restrict the value of the specified query string. You can add a regular
expression to the library by selecting the Add/Edit button. Enter a Name for the expression followed by the Regular Ex-
pression.

Regular expression format

This filter uses the regular expression syntax specified by java.util.regex.Pattern. For more details, see ht-
tp://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Query string validation

475

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Schema validation
Overview

API Gateway can check that XML messages conform to the structure or format expected by the Web service by validat-
ing those requests against XML schemas. An XML schema precisely defines the elements and attributes that constitute
an instance of an XML document. It also specifies the data types of these elements to ensure that only appropriate data
is allowed through to the Web service.

For example, an XML schema might stipulate that all requests to a particular Web service must contain a <name> ele-
ment, which contains at most a ten character string. If the API Gateway receives a message with an improperly formed
<name> element, it rejects the message.

You can find the Schema Validation filter in the Content Filtering category of filters in Policy Studio. Drag and drop the
filter on to a policy to perform schema validation.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for the filter.

Selecting the schema

To configure the XML schema to validate messages against, click the Schema to use tab. You can select to use either a
schema from the WSDL for the current Web service, or a specific schema from the global cache of WSDL and XML
schema documents.

Select one of the following options:

Use Schema from WSDL of Web service:
Select this option to dynamically use the appropriate SOAP operation schema from the current Web service context.
When this option is selected, this filter has an additional required message attribute named webservice.context,
which must be provided. This enables you to share this filter to perform validation across multiple Web services.

Select which XML Schema to validate message with:
Select this option to use a schema from the global cache. This is the default option. Click the browse button, and select a
schema from the tree view. The XML schemas under both the XML Schema Document Bundles and the WSDL Docu-
ment Bundles nodes can be selected. Click the check box next to the schema document to select the schema. You can
also select a particular version of a schema by clicking the check box next to the version information.

To add a new schema, right-click the XML Schema Document Bundles tree node, and select Add Schema. Alternat-
ively, you can add schemas under the Resources node in the Policy Studio tree. For more details on configuring schem-
as, see the Manage WSDL and XML schema documents

Tip
If you have a WSDL file that contains an XML schema, you can use this schema to validate messages by
importing the WSDL file into the Web service repository. The Import WSDL wizard automatically adds any
XML schemas contained in the WSDL to the global cache under the Resources > WSDL Document
Bundles node. For more details on importing WSDL files, see the Configure policies from WSDL files topic.

Selecting which part of the message to match

476

To configure which part of the message to validate, click the Part of message to match tab.

A portion of the XML message can be extracted using an XPath expression. API Gateway can then validate this portion
against the specified XML schema. For example, you might need to validate only the SOAP Body element of a SOAP
message. In this case, enter or select an XPath expression that identifies the SOAP Body element of the message. This
portion should then be validated against an XML schema that defines the structure of the SOAP Body element for that
particular message.

Click the Add or Edit buttons to add or edit an XPath expression using the Enter XPath Expression dialog. To remove
an expression select the expression in the XPath Expression field and click the Delete button.

You can configure XPath expressions manually or using a wizard. For more details, see the Configure XPath expres-
sions topic.

Advanced settings

The following settings are available on the Advanced tab:

Allow RPC Schema Validation:
When the Allow RPC Schema Validation check box is selected, the filter makes a best attempt to validate an RPC-
encoded SOAP message. An RPC-encoded message is defined in the WSDL as having an operation with the following
characteristics:

• The style attribute of the <soap:operation> element is set to document.
• The use attribute of the <soap:body> element is set to rpc.

For details on the possible values for these attributes, see Section 3.5 [http://www.w3.org/TR/wsdl#_soap:body] of the
WSDL specification.

The problem with RPC-encoded SOAP messages in terms of schema validation is that the schema contained in the
WSDL file does not necessarily fully define the format of the SOAP message, unlike with document-literal style
messages. With an RPC-encoded operation, the format of the message can be defined by a combination of the SOAP
operation name, WSDL message parts, and schema-defined types. As a result, the schema extracted from a WSDL file
might not be able to validate a message.

Another problem with RPC-encoded messages is that type information is included in each element that appears in the
SOAP message. For such element definitions to be validated by a schema, the type declarations must be removed,
which is precisely what the Schema Validation filter does if the check box is selected on this tab. It removes the type de-
clarations and then makes a best attempt to validate the message.

However, as explained earlier, if some of the elements in the SOAP message are taken from the WSDL file instead of
the schema (for example, when the SOAP operation name in the WSDL file is used as the wrapper element beneath the
SOAP Body element instead of a schema-defined type), the schema is not able to validate the message.

Inline MTOM Attachments into Message:
Message Transmission Optimization Mechanism (MTOM) provides a way to send binary data to Web services in stand-
ard SOAP messages. MTOM leverages the include mechanism defined by XML Optimized Packaging (XOP), whereby
binary data can be sent as a MIME attachment (similar to SOAP with Attachments) to a SOAP message. The binary data
can then be referenced from within the SOAP message using the <xop:Include> element.

The following SOAP request contains a binary image that has been Base64-encoded so that it can be inserted as the
contents of the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

When this message is converted to an MTOM message by API Gateway (for example, using the Extract MTOM Con-
tent filter) the Base64-encoded content from the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

--MIME_boundary

When attempting to validate the MTOM message with an XML schema, it is crucial that you are aware of the format of
the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

When the API Gateway receives this request, the Extract MTOM Content filter can be used to extract the
Base64-encoded content from the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

509

--MIME_boundary

Important
Note the following in the resulting MTOM message:

• The Base64-encoded contents of the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

--MIME_boundary

When the API Gateway receives this request, the Insert MTOM Attachment filter can be used to read the binary data in
the MIME parts pointed to by the <xop:Include> elements embedded in the SOAP request. The binary data is then
Base64-encoded and inserted into the message in place of the <xop:Include> elements. The resulting message is as
follows:

<?xml version="1.0" encoding="UTF-8"?>

511

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<uploadGraphic xmlns="www.example.org">

</uploadGraphic>

</soap:Body>
</soap:Envelope>

Configuration

Complete the following fields for the Insert MTOM Attachment filter:

Name:
Enter a name for the filter.

XPath Location:
Use an XPath expression to point to the location of the <xop:Include> element that refers to the binary attachment.
The specified XPath expression can point to multiple <xop:Include> elements if necessary. For example, an XPath
expression of //xop:Include returns all <xop:Include> elements in the SOAP envelope. For more information, see
the Configure XPath expressions topic.

Remove attachments once they have been included in the message:
Select this option to remove the MIME parts that contain the actual binary content from the message after they have
been inserted into the message.

Insert MTOM attachment

512

Add node to JSON document
Overview

You can use the JSON Add Node filter to add a node to a JavaScript Object Notation (JSON) document. The new node
is inserted into the location specified by a JSON Path expression. JSON Path is a query language that enables you to
select nodes in a JSON document.

For more details on JSON Path, see http://code.google.com/p/jsonpath.

Configuration

You can configure the following settings:

Name:
Enter a suitable name that reflects the role of this filter in the policy.

JSON Path Expression:
Enter the JSON Path expression used to add the node to the JSON document (for example, $.store). Policy Studio
warns you if you enter an unsupported JSON Path expression.

Note
If this expression returns more than one node, the first node is used. If the expression returns no nodes, the
filter returns false.

Node Source:
In the Content area, enter the JSON node to be inserted into the message. For example, the following node source rep-
resents a new car:

{"make":"Ford",
"airbags":true,
"doors":4
"price":1111.00

}

Select one of the following options for the source of the new node:

• Add as a new item to an array:
If you select this option, the new JSON node is added as an item in an array.

• Add as a new item with field name:
If you select this option, the new JSON node is added as a field specified in the Field Name field (for example, car).

• Insert previously removed nodes:
You can configure a JSON Remove Node filter to remove JSON nodes from the message and store them in the
deleted.json.node.list message attribute. You can then use the JSON Add Node filter to reinsert these
nodes in a different location in the message, effectively moving the deleted nodes in the message. When selecting
this option, you must also select Save deleted nodes to be reinserted to new location in the Remove JSON
Node filter, which runs before the Add JSON Node filter in the policy. For more details, see the Remove node from
JSON document topic.

What to do with any existing siblings in the container:
Select one of the following options to determine where the new node is placed relative to the nodes returned by the
JSON Path expression:

513

http://code.google.com/p/jsonpath

• Append:
The new node is appended as a child node of the node returned by the JSON Path expression. If there are already
child nodes of the node returned by the JSON expression, the new node is added as the last child node.

• Replace:
The node pointed to by the JSON expression is completely replaced by the new node.

Examples

The following are some examples of using the JSON Add Node filter to add and replace JSON nodes.

Add a JSON node

The following example shows the settings required to add a car node to the store:

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

Add node to JSON document

514

Add an item to an array

The following example shows the settings required to add a book to an array:

Add node to JSON document

515

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

Add node to JSON document

516

Add a field replacing others

The following example shows the settings required to add a field to the bicycle, removing any other fields that may exist:

Add node to JSON document

517

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

Add node to JSON document

518

Add node to JSON document

519

Remove node from JSON document
Overview

You can use the JSON Remove Node filter to remove a JSON node from a JSON message. You can specify the node
to remove using a JSON Path expression. The JSON Path query language enables you to select nodes in a JSON docu-
ment.

For more details on JSON Path, see http://code.google.com/p/jsonpath.

Configuration

To configure this filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter.

JSON Path Expression:
Enter a JSON Path expression to specify the node to remove (for example, $.store.bicycle). Policy Studio warns
you if you enter an unsupported JSON Path expression.

Note
If the specified expression returns more than one node, all returned nodes are removed.

Fail if no nodes returned from JSON Path:
When this option is selected, and the JSON Path expression returns no nodes, the filter returns false. If this option is not
selected, and the JSON Path returns no nodes, the filter returns true, and no nodes are removed. This option is not se-
lected by default.

Save deleted nodes to be reinserted to new location:
Select this option if you want to move JSON nodes from one location in the message to another. The deleted nodes are
stored in the deleted.json.node.list message attribute. You can then use the JSON Add Node filter to insert the
deleted nodes into a different location in the message. For more details, see the Add node to JSON document topic.

Examples

The following are some examples of using the JSON Remove Node filter.

Remove a node

The following example shows removing a bicycle from the store:

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

520

http://code.google.com/p/jsonpath

Remove all items in an array

The following example shows removing all books in an array:

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

Remove node from JSON document

521

Remove node from JSON document

522

Convert JSON to XML
Overview

You can use the JSON to XML filter to convert a JavaScript Object Notation (JSON) document to an XML document. For
details on the mapping conventions used, go to:
https://github.com/beckchr/staxon/wiki/Mapping-Convention

Configuration

To configure the JSON to XML filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter.

Virtual root element:
If the incoming JSON document has multiple root elements, enter a virtual root element to be added to the output XML
document. This is required because multiple root elements are not valid in XML. Otherwise, the XML parser will fail. For
more details, see the section called “Examples”.

Insert processing instructions into the output XML representing JSON array boundaries:
Select this option to enable round-trip conversion back to JSON. This inserts the necessary processing instructions into
the output XML. This option is not selected by default. For more details, see the section called “Examples”.

Note
This option is recommended if you wish to convert back to the original JSON array structures. This informa-
tion would be lost during the translation back to XML.

For more details, see the Convert XML to JSON topic.

Convert JSON object names to valid XML element names:
Select this option to convert your JSON object names to XML element names. This option is not selected by default.

Important
You should ensure that your JSON object names are also valid XML element names. If this is not possible,
this option analyzes each object name and automatically performs the conversion. This has a performance
overhead and is not recommended if you wish to convert back to the original JSON.

Examples

This section shows examples of using JSON to XML filter options.

Multiple root elements

For example, the following incoming JSON message has multiple root elements:

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{

523

https://github.com/beckchr/staxon/wiki/Mapping-Convention

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber":
[

{
"type": "home",
"number": "212 555-1234"

},
{
"type": "fax",
"number": "646 555-4567"

}
]

}

If you enter customer in the Virtual root element field, this results in the following output XML:

<?xml version="1.0" encoding="utf-8"?>
<customer>

<firstName>John</firstName>
<lastName>Smith</lastName>
<age>25</age>
<address>

<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>

</address>
<phoneNumber>

<type>home</type>
<number>212 555-1234</number>

</phoneNumber>
<phoneNumber>

<type>fax</type>
<number>646 555-4567</number>

</phoneNumber>
</customer>

Insert processing instructions into the output XML

For example, take the following incoming JSON message:

{
"customer" : {
"first-name" : "Jane",
"last-name" : "Doe",
"address" : {

"street" : "123 A Street"
},
"phone-number" : [{

"@type" : "work",
"$" : "555-1111"

}, {
"@type" : "cell",
"$" : "555-2222"

}]
}

}

Convert JSON to XML

524

When the Insert processing instructions into the output XML representing JSON array boundaries option is selec-
ted, the output XML is as follows:

<?xml version="1.0" encoding="utf-8"?>
<customer>

<first-name>Jane</first-name>
<last-name>Doe</last-name>
<address>

<street>123 A Street</street>
</address>
<?xml-multiple phone-number?>
<phone-number type="work">555-1111</phone-number>
<phone-number type="cell">555-2222</phone-number>

</customer>

Convert JSON to XML

525

Load contents of a file
Overview

The Load File filter enables you to load the contents of the specified file, and set them as message content to be pro-
cessed. When the contents of the file are loaded, they can be passed to the core message pipeline for processing by the
appropriate message filters. For example, you might use the Load File filter in cases where an external application drops
XML or JSON files on to the file system to be validated, modified, and potentially routed on over HTTP, JMS, or stored to
a directory where the application can access them again.

For example, this sort of protocol mediation can be useful when integrating legacy systems. Instead of making drastic
changes to the legacy system by adding an HTTP engine, the API Gateway can load files from the file system, and route
them on over HTTP to another back-end system. The added benefit is that messages are exposed to the full range of
message processing filters available in the API Gateway. This ensures that only properly validated messages are routed
on to the target system.

Configuration

Configure the following fields:

Name:
Enter an appropriate name for the filter.

Input settings

File:
Enter the name of the file to load, or browse to the file in the file system. This setting is required.

Processing settings

The fields in this section determine what processing is performed on the input files, and where files are placed before
and after processing.

Processing Directory:
Enter or browse to the directory to which the input file is copied prior to processing. This field is optional. If this is not spe-
cified, the input file remains in the current input directory.

Response Directory:
Enter or browse to the directory to which the response file is copied. This field is optional. If this is not specified, the re-
sponse file is not written to disk.

Processing Policy
Select the policy executed on the input file. For example, the policy could perform message validation, routing, virus
checking, or XSLT transformation. This field is optional.

File Type:
Specifies how the input file is interpreted. Select one of the following options:

• Raw:
Assumes a content-type of application/octet-stream. This is the default.

• Treat as HTTP Message (including headers):
Assumes the inbound file contains an HTTP request (optionally with HTTP headers).

• Infer content-type from extension:
Performs a lookup on configured MIME/DIME types to determine the content-type of the file based on its extension.

• Use Content-type:
Enables you to specify a content-type in the textbox.

526

On completion settings

You can specify what to do when the file processing has completed. Select one of the following options:

• Do Nothing:
The input file remains in the input directory or in the Processing Directory. This is the default.

• Delete Input File:
The input file is deleted from the input directory or the Processing Directory.

• Move Input File:
The input file is moved (archived) to the directory specified in the To Directory field. You can also specify an option-
al File Prefix or File Suffix for the archived file.

Load contents of a file

527

Remove HTTP header
Overview

The API Gateway can strip a named HTTP header from the message as it passes through a policy. This is especially
useful in cases where end-user credentials are passed to the API Gateway in an HTTP header. After processing the cre-
dentials, you can use the Remove HTTP Header filter to strip the header from the message to ensure that it is not for-
warded on to the destination web service.

Configuration

To configure the Remove HTTP Header filter, perform the following steps:

1. Enter an appropriate name for this filter in the Name field.
2. Specify name of the HTTP header to remove in the HTTP Header Name field.
3. Select the Fail if header is not present check box to configure the API Gateway to abort the filter if the message

does not contain the named HTTP header. Headers can be added to the message using the Add HTTP header filter.

528

Remove XML node
Overview

You can use the Remove XML Node filter to remove an XML element, attribute, text, or comment node from an XML
message. You can specify the node to remove using an XPath expression. The XPath query language enables you to
select nodes in an XML document.

Configuration

To configure this filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter. For example, if the purpose of this filter is to remove an <ID> ele-
ment from the message, it would be appropriate to name this filter Remove ID Element.

XPath Location:
Specify an XPath expression to indicate the node to remove. When the expression is configured correctly, you can re-
move an element, attribute, text, or comment node. If this expression returns more than one node, all returned nodes are
removed.

You can select XPath expressions from the list, and edit or add expressions by clicking the relevant button. The following
are some example expressions:

Name XPath Expression Prefix URI

The First WSSE Security
element

//wsse:Security[1] wsse http://docs.oasis-open.org/wss/2004/01/
oasis-
200401-wss-wssecurity-secext-1.0.xsd

Text Nodes in SOAP Body /
soap:Envelope/soap:
Body/text()

soap ht-
tp://schemas.xmlsoap.org/soap/envelope/

Fail if no nodes returned from XPath:
If this option is selected, and the XPath expression returns no nodes, the filter returns false. If this option is not selected,
and the XPath returns no nodes, the filter returns true, and no nodes are removed.

Save deleted nodes to be reinserted to new location:
You can use this option in cases where you want to move XML nodes from one location in the message to another. By
selecting this option, the deleted nodes are stored in the deleted.node.list message attribute. You can then use the
Add XML Node filter to insert the deleted nodes back into a different location in the message. For more details, see the
Add XML node topic.

529

Remove attachments
Overview

You can use the Remove attachment filter to remove all attachments from either a request or a response message, de-
pending on where the filter is placed in the policy.

Configuration

Enter a name for this filter in the Name field.

530

Restore message
Overview

You can use the Restore Message filter to restore message content at runtime using a specified selector expression.
You can restore the contents of a request message or a response message, depending on where the filter is placed in
the policy.

For example, you could use this filter to restore original message content if you needed to manipulate the message for
authentication or authorization. Typically, this filter is used with the Store Message filter, which is first used to store the
original message content. For more details, see Store message.

Configuration

Name:
Enter a suitable name for this filter.

Selector Expression to retrieve message:
Enter the selector expression used to restore the message content. Defaults to ${store.content.body}). For more
details on selector expressions, see Select configuration values at runtime.

531

Set HTTP verb
Overview

You can use the Set HTTP Verb filter to explicitly set the HTTP verb in the message that is sent from the API Gateway.
By default, all messages are routed onwards using the HTTP verb that the API Gateway received in the request from the
client. If the message originated from a non-HTTP client (for example, JMS), the messages are routed using the HTTP
POST verb.

Configuration

Complete the following fields:

Name:
Enter a name for the filter.

HTTP Verb:
Specify the HTTP verb to use in the message that is routed onwards.

532

Set message
Overview

The Set Message filter replaces the body of the message. The replacement data can be plain text, HTML, XML, or any
other text-based markup.

You can also use the Set Message filter to customize SOAP faults that are returned to clients in the case of a failure or
exception in the policy. For a detailed explanation of how to use this filter to customize SOAP faults, see the SOAP fault
handling topic.

Configuration

Perform the following steps to configure the Set Message filter:

1. Enter a name for this filter in the Name field.
2. Specify the content type of the new message body in the Content-Type field. For example, if the new message

body is HTML markup, enter text/html in the Content-Type field.
3. Enter the new message body in the Message Body text area.

You can use selectors to ensure that current message attribute values are inserted into the message body at the ap-
propriate places. For more information, see the section called “Example of using selectors in the message body”.

Alternatively, click Populate on the right of the window, and select From file on disk to load the message contents
from a file, or select From web service operation to load the message contents from a web service (WSDL file)
that you have already imported into the web service repository.

You can also insert REST API parameters into the message body. Right-click within the message body at the point
where the parameter should be inserted and select Insert > REST API Parameter.

Example of using selectors in the message body

You can use selectors representing the values of message attributes in the replacement text to insert message-specific
data into the message body. For example, you can insert the authenticated user's ID into a <Username> element by us-
ing a ${authentication.subject.id} selector as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>${authentication.subject.id}</Username>

</soap:Header>
<soap:Body>
<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>
</soap:Envelope>

Assuming the user authenticated successfully to the API Gateway, the message body is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>oracle</Username>

</soap:Header>
<soap:Body>

533

<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>
</soap:Envelope>

For more details on selectors, see Select configuration values at runtime.

Set message

534

Store message
Overview

You can use the Store Message filter to store message content in a specified message attribute. You can store the con-
tents of a request message or a response message, depending on where the filter is placed in the policy.

For example, you could use this filter to store the original message content for reuse later if you need to manipulate the
message for authentication or authorization. Typically, this filter is used with the Restore Message filter, which is then
used to restore the original message content. For more details, see Restore message.

Configuration

Name:
Enter a suitable name for this filter.

Attribute to store message:
Enter the name of the message attribute used to store the message content. Defaults to store.content.body.

535

Convert XML to JSON
Overview

You can use the XML to JSON filter to convert an XML document to a JavaScript Object Notation (JSON) document. For
details on the mapping conventions used, go to:
https://github.com/beckchr/staxon/wiki/Mapping-Convention.

Configuration

To configure the XML to JSON filter, specify the following fields:

Name:
Enter a suitable name to reflect the role of this filter.

Automatically insert JSON array boundaries:
Select this option to attempt to automatically reconstruct JSON arrays from the incoming XML document. This option is
selected by default.

Convert number/boolean/null elements to primitives:
Select this option to convert number, boolean, or null elements in the incoming XML document to JSON primitive types.
This option is selected by default.

When this option is selected, the filter converts an XML number element to a JSON primitive. Otherwise, an XML number
element is converted to a JSON text node. For example:

Incoming XML:

<number>123.4</number>

JSON output with this option selected:

"number" : 12.4

JSON output with this option not selected:

"number" : "12.4"

Similarly, XML boolean or null elements are converted to JSON primitives if this option is selected.

Convert namespace declarations:
Select this option to convert namespace declarations in the incoming XML and add them to the resulting JSON. This op-
tion is not selected by default, and any namespace declarations are removed from the resulting JSON.

Use the following XPath to convert:
Select an XPath expression to specify which elements of the incoming XML to convert. The options are:

• All elements inside SOAP body (SOAP 1.1 or SOAP 1.2)
• All elements inside SOAP body (SOAP 1.1)
• The entire message

Note
If the incoming XML document includes the <?xml multiple> processing instruction, the JSON array is
reconstructed regardless of this option setting. If the XML document does not contain <?xml multiple>,
and this option is selected, the filter makes an attempt at guessing what should be part of the array by ex-

536

https://github.com/beckchr/staxon/wiki/Mapping-Convention

amining the element names.

For more details and example <?xml multiple> processing instructions, see the Convert JSON to XML topic.

Convert XML to JSON

537

Transform with XSLT
Overview

Extensible Stylesheet Language Transformations (XSLT) is a declarative, XML-based language used to transform XML
documents into other XML documents. An XSL stylesheet is used to transform an XML document into another document
type. The stylesheet defines how elements in the XML source document should appear in the resulting XML document.

The API Gateway can convert XML data to other data formats using XSL files. For example, an incoming XML message
adhering to a specific XML schema can be converted to an XML message adhering to a different schema before it is sent
to the destination web service. You can use the XSLT Transformation filter to convert the contents of a message using
an XSLT stylesheet.

This type of conversion is especially valuable in the web services arena, where a web service might receive SOAP re-
quests from various types of clients, such as browsers, applications, and mobile phones. Each client might send up a dif-
ferent type of SOAP request to the web service. Using stylesheets, the API Gateway can then convert each type of re-
quest to the same format. The requests can then be processed in the same fashion.

Configuration

Configure the following fields for the XSLT Transformation filter:

Name:
Enter a suitable name to reflect the role of this filter.

Stylesheet location settings

On the Stylesheet Location tab, select an XSL stylesheet from the Stylesheet Location list, which is populated with
the contents of the Stylesheets library.

To import a new stylesheet into the library, click the View/Import button, and click Add on the dialog that appears. Al-
ternatively, you can add stylesheets under the Resources > Stylesheets node in the Policy Studio tree view.

You can also modify existing stylesheets in the XSLT Contents text area of the dialog. Click the Update button to up-
date them in the API Gateway configuration.

Stylesheet parameter settings

You can pass parameters to an XSL stylesheet using specified values in <xsl:param> elements. These values are
then used in the templates defined throughout the stylesheet.

Using the XSLT Transformation filter, you can pass the values of message attributes to the configured stylesheet. For
example, you can take the value of the authentication.subject.id message attribute, pass it to the configured
XSL stylesheet, and then output this value to the result produced by the conversion.

To use this feature, select the Use Message Attributes as Stylesheet Parameters check box, and click Add to specify
the message attribute to pass to the stylesheet.

The following example from an XSL stylesheet that uses parameters shows how to configure this:

<xsl:param name="authentication.subject.id"/>
<xsl:param name="authentication.issuer.id"/>

To pass the corresponding message attribute values to the stylesheet, you must add the authentica-
tion.subject.id and authentication.issuer.id message attributes to the Message Attributes to use table.

538

Important
The name of the specified parameter must be a valid API Gateway message attribute name, and there
must be an equivalent parameter name in the stylesheet.

Advanced settings

Complete the following fields on the Advanced tab:

Provider class name:
Enter the fully qualified name of the XSLT provider class of the XSLT library to be used. This class must be added to the
API Gateway's classpath. If this field is left blank, the default provider is used.

Tip
The simplest way to add a provider class to the API Gateway's classpath is to drop the required JAR file in-
to the INSTALL_DIR/apigateway/ext/lib directory, where INSTALL_DIR refers to the root of your
API Gateway installation.

Result will be XML:
You can convert an incoming XML message to other data formats. Select this option if the result of the XSLT conversion
is always XML. If not, the content-type of the result document depends on the output method of the XSLT stylesheet. For
example, if the stylesheet specifies an output method of HTML (<xsl:output method="html">), this field should be
left blank so that the API Gateway can forward on the HTML output document to the target web service.

Do not change the content type header:
You can select whether to change the HTTP Content-Type header in this XSLT transformation. This setting is selected
by default, so the content type is preserved.

Transform with XSLT

539

Generate key
Overview

The Generate Key filter enables you to generate an asymmetric key pair, or a symmetric key. The generated keys are
placed in message attributes, which are then available to be consumed by other filters.

An example use case for this filter is to use it in conjunction with the Security Token Service Client filter. For example,
you wish to request a SAML token with a symmetric proof-of-possession key from an STS. You need to provide the key
material to the STS as a binary secret, which is the private key of an asymmetric key pair. You can use an asymmetric
private key generated on-the-fly instead of from the Certificate Store with an associated certificate. You must configure
the Generate Key filter in a Security Token Service Client filter policy that runs before the WS-Trust request is created.
You can then configure the Security Token Service Client filter to consume the generated asymmetric private key. For
more details, see STS client authentication.

Note
An asymmetric key pair generated by the Generate Key filter can also be used by the Security Token
Service Client filter when a proof-of-possession key of type PublicKey is requested. The generated pub-
lic key can be used as the UseKey in the request to the STS.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Key Type:
Select the key type from the drop-down list. Defaults to RSA Asymmetric Key Pair. You can also select Symmetric
Key, which is based on Hash-based Message Authentication Code - Secure Hash Algorithm (HMAC-SHA1).

Key Size:
Enter the key size in bits. Defaults to 2048 bits.

540

PGP decrypt and verify
Overview

You can use the PGP Decrypt and Verify filter to decrypt a message encrypted with Pretty Good Privacy (PGP). This fil-
ter decrypts an incoming message using the specified PGP private key, and creates a new message body using the spe-
cified content type. The decrypted message can be processed by API Gateway, and then encrypted again using the PGP
Encrypt and Sign filter.

An example use case for this filter would be when files are sent to API Gateway over Secure Shell File Transfer Protocol
(SFTP) in PGP-encrypted format. API Gateway can use the PGP Decrypt and Verify filter to decrypt the message, and
then use threat detection filters to perform virus scanning. The clean files can be PGP-encrypted again using the PGP
Encrypt and Sign filter before being sent over SFTP to their target destination. For more details, see the PGP encrypt
and sign filter.

You can also use the PGP Decrypt and Verify filter to to verify signed messages passing through the API Gateway
pipeline. Signed messages received by API Gateway can be verified by validating the signature using the public PGP
key of the message signer.

Note
PGP decryption and verification require two different keys: your own private key for decryption, and the
sender's public key for verification.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter.

Decrypt:
Select whether to use this filter to PGP decrypt an incoming message with a private key.

PGP Private Key to be retrieved from one of the following locations:
If you selected the Decrypt option, select the location of the private key from one of the following options:

• PGP Key Pair list:
Click the browse button on the right, and select a PGP key pair configured in the certificate store. If no PGP key
pairs have already been configured, right-click PGP Key Pairs, and select Add PGP Key. For details on configuring
PGP key pairs, see the section called “Configure PGP key pairs”.

• Alias:
Enter the alias name used to look up the PGP key in the certificate store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression with the name of a message attribute that contains the alias. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• Message attribute:
Enter a selector expression with the name of the message attribute that contains the key. The value of the selector
is expanded at runtime (for example, ${my.pgp.test.private.key}).

For more details on selectors, see Select configuration values at runtime.

Verify:
Select whether to use this filter to verify an incoming signed message with the public key used to sign the message.

541

Verification Key Location (Public Key):
If you selected the Verify option, select the location of the public key from one of the following options:

• PGP Key Pair list:
Click the browse button on the right, and select a PGP key pair configured in the certificate store. If no PGP key
pairs have already been configured, right-click PGP Key Pairs, and select Add PGP Key. For details on configuring
PGP key pairs, see the section called “Configure PGP key pairs”.

• Alias:
Enter the alias name used to look up the PGP key in the certificate store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression with the name of a message attribute that contains the alias. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• Message attribute:
Enter a selector expression with the name of the message attribute that contains the key. The value of the selector
is expanded at runtime (for example, ${my.pgp.test.public.key}).

For more details on selectors, see Select configuration values at runtime.

Signing Method:
If you selected to verify but not decrypt the incoming message, select a signing method from one of the following options:

• Compressed:
Verifies a compressed signature. Because the message is contained in the signature, this signature is used in place
of the message. This is the default.

• Clear signed:
In a clear signed message, the message is intact with a signature attached beneath the clear message text. Verify-
ing this message verifies the sender and the message integrity.

• Detached signature (MIME):
Verifies a multipart MIME document where the message is in clear text and the signature is attached as a MIME
part.

Decrypt and Verify Method:
If you selected to decrypt and verify the incoming message, select the decrypt and verify method from one of the follow-
ing options:

• Decrypt and Verify in One Pass:
Decrypts and verifies the message in a single pass. This is the default. API Gateway decrypts the message while
reading the data packet, and continues on sequentially when it reaches the signature packet.

• Decrypt and Verify in Two Passes:
Decrypts the message in the first pass, and then verifies the signature in the second pass. Use this option when the
message has been encrypted and signed in two passes.

Content type:
Enter the Content-Type of the unencrypted message data. Defaults to application/octet-stream.

PGP decrypt and verify

542

PGP encrypt and sign
Overview

You can use the PGP Encrypt and Sign filter to generate a Pretty Good Privacy (PGP) encrypted message. This filter
enables you to configure the PGP public key used when encrypting the message. You can also configure advanced op-
tions such as whether the message outputs ASCII armor, or whether it uses a symmetrically encrypted integrity protected
data packet to protect against modification attacks.

For example, using the default options, the PGP Encrypt and Sign filter creates a PGP encrypted message such as the
following:

-----BEGIN PGP MESSAGE-----
Version: BCPG v1.46

hQIOA3ePizxHLIA8EAgAmVNAgJO7TXI9vWCJHZS27r4FIfZIYWNc0+MiQ3H+LZrW
29Wageetg5N7cFAbRpG28iKYSE5O0uFMThuWuhnMZ/GtRwMogiRsNyBY0Cq0LKaG
7oIbkjWE1BHdWXQLWW44zYl8ekTWJ4ZPNCemTtHyULB9QwuWx5b6QfAyh1jvFrSN
ub9mQzU8caY7xQrVgWii1tBFOzTcGw6/Vb7AtMZfwGGjqmzYLT5pLozWUKB0gZe1
/7wpWDsHsn+53lrRXdoqwvAhY2AnOLPyrrVsykXS38YtIh9N5D+uCCvgmICej9Ok
iieh1hgGnuzw3VdQ6n3TS0t/Xk3shB95I3IkXU1l4ggAjPSnf9qEuN2u8dsRooNR
J6nYWs/OGwBSj0/MtssoRAcEVYu93tITUXqybduq8CATHGD8at4WRiTLOcndgJTp
0aUU+aOi3l3SsnrlpPSKIu18K9AqFCE+lafdXKlqU2OaGMBbsU22Vy6SkDgSXuGg
EOG0KYHRdrAntHJiO3qrJRTd8BDrPc5PZWUwDfCUWuQRMJiJVp0bxrK8Qzz/Ni7T
XgRSL1cYzAQRsQAbne69On+5n+NWO1Qcx9SnSimBtPOQXJfff+a+Wb45ABj5TdYr
4PCd2OJ0uOapSWfiSA5mZ1sB9hEAR0FidXs1iAploun1qggNYZK94BGGXblnTCzR
ccnARKqWmWanr1VVnp6fs9WI6I3zkiCGTJlQMNa0UKZdEPe1wJb7NHgJFMKrwN1X
3rSVyUWiovnYYMlDGBHG/RWGsTSd0LT7VugtIByefCI2G7WevgLUJbOq+U/0Sh6A
82oMNuWbXbDTp3pfZae/SHqOyEdDp5zsGqZ/F4M7CQFx63XCIBsFA6JRj6GdYqYf
dewuej3WJtRDdHmikjb3o7Utl8fFhKjA9GdEZueG9ls+XcAx21iBT656HRof8wio
oSca8ui3SYbhZ+0uzwImDJ0054P3Xr24+iwI4vlKjiQNY23GjXsVa2rQn6VHT60o
CYo08tDYBH4gyetLAqczCVyh6sff9SqX
=qkB0
-----END PGP MESSAGE-----

For an example use case, see the PGP decrypt and verify filter.

You can also use the PGP Encrypt and Sign filter to digitally sign messages passing through the API Gateway pipeline.
Messages signed by API Gateway can be verified by the recipient by validating the signature using the public PGP key of
the signer. Signed messages received by API Gateway can be verified in the same way.

Note
PGP encryption and signing require two different keys: a public key for encryption and your own private key
for signing.

General settings

Complete the following field on the PGP Encrypt and Sign window:

Name:
Enter an appropriate name for the filter.

Encrypt and sign settings

Complete the following fields on the Encrypt and Sign tab:

543

Encrypt:
Select whether to use this filter to PGP encrypt an outgoing message with a public key.

Encryption Key location (Public Key):
If you selected the Encrypt option, select the location of the public key from one of the following options:

• PGP Key Pair list:
Click the browse button on the right, and select a PGP key pair configured in the certificate store. If no PGP key
pairs have already been configured, right-click PGP Key Pairs, and select Add PGP Key. For details on configuring
PGP key pairs, see the section called “Configure PGP key pairs”.

• Alias:
Enter the alias name used to look up the PGP key in the certificate store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression with the name of a message attribute that contains the alias. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• Message attribute:
Enter a selector expression with the name of the message attribute that contains the key. The value of the selector
is expanded at runtime (for example, ${my.pgp.test.public.key}).

For more details on selectors, see Select configuration values at runtime.

Sign:
Select whether to use this filter to sign an outgoing message with a private key.

Signing Key location (Private Key):
If you selected the Sign option, select the location of the private key from one of the following options:

• PGP Key Pair list:
Click the browse button on the right, and select a PGP key pair configured in the certificate store. If no PGP key
pairs have already been configured, right-click PGP Key Pairs, and select Add PGP Key. For details on configuring
PGP key pairs, see the section called “Configure PGP key pairs”.

• Alias:
Enter the alias name used to look up the PGP key in the certificate store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression with the name of a message attribute that contains the alias. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• Message attribute:
Enter a selector expression with the name of the message attribute that contains the key. The value of the selector
is expanded at runtime (for example, ${my.pgp.test.private.key}).

For more details on selectors, see Select configuration values at runtime.

Signing Method:
If you selected to sign but not encrypt the outgoing message, select the signing method from one of the following options:

• Compressed:
Compresses the message and creates a hash of the contents before signing. Because the message is contained
within the signature this signature can be used in place of the message. The typical use of this method produces a
signature in printable ASCII form (ASCII Armor). This option can be turned off to produce a binary signature.

• Clear signed:
Clear signing a message leaves the message intact and adds the signature beneath the clear message text. This
provides for optional verification of the message signature and contents. The output has the content type applica-
tion/pgp-signature. It is not possible to clear sign binary objects.

• Detached signature (MIME):
Creates a multipart MIME document where the message remains in clear text and the signature is attached as a
MIME part.

PGP encrypt and sign

544

Encrypt and Sign Method:
If you selected to encrypt and sign the outgoing message, select the encrypt and sign method from one of the following
options:

• Encrypt and Sign in One Pass:
Encrypts and signs the message in a single pass. This is the default setting. This enables the receiver to decrypt
and verify in a single pass.

• Encrypt and Sign in Two Passes:
Signs the message in a first pass, and then encrypts it in a second pass. Because the message is signed before it is
encrypted, this means that the message must be decrypted first before the signature can be verified.

Advanced settings

Complete the following fields on the Advanced tab:

ASCII Armor Output:
Select whether to output the binary message data as ASCII Armor. ASCII Armor is a special text format used by PGP to
convert binary data into printable ASCII text. ASCII Armored data is especially suitable for use in email messages, and is
also known as Radix-64 encoding. This option is selected by default.

Symmetric Encrypted Integrity Protected Data Packet:
Select whether the message uses a Symmetrically Encrypted Integrity Protected Data packet. This is a variant of the
Symmetrically Encrypted Data packet, and is used detect modifications to the encrypted data. This option is selected by
default.

Symmetric Key Algorithm:
Select a symmetric-key algorithm to use to encrypt the data. The default is CAST5.

Hash Algorithm:
Select a hash algorithm to use to protect against modification. The default is SHA1.

Compression Algorithm:
Select a compression algorithm to use to compress the data. The default is ZIP.

PGP encrypt and sign

545

SMIME decryption
Overview

The SMIME Decryption filter can be used to decrypt an encrypted Secure/Multipurpose Internet Mail Extensions
(SMIME) message.

Configuration

Complete the following fields to configure this filter:

Name:
Enter a name for the filter in the Name field.

Use Certificate to Decrypt:
Check the box next to the certificate that you want to use to decrypt the encrypted PKCS#7 message with. The private
key associated with this certificate will be used to actually decrypt the message.

546

SMIME encryption
Overview

You can use the SMIME Encryption filter to generate an encrypted Secure/Multipurpose Internet Mail Extensions
(SMIME) message. This filter enables you to configure the certificates of the recipients of the encrypted message. You
can also configure advanced options such as ciphers and Base64 encoding.

General settings

Complete the following field:

Name:
Enter an appropriate name for the filter.

Recipient settings

The Recipients tab enables you to configure the certificates of the recipients of the encrypted SMIME message. Select
one of the following options:

Use the following certificates:
This is the default option. Select the certificates of the recipients of the encrypted message. The public keys associated
with these certificates are used to encrypt the data so that it can only be decrypted using the associated private keys.

Certificate in attribute:
Alternatively, enter the message attribute that contains the certificate of the recipients of the encrypted message. De-
faults to the certificate message attribute.

Advanced settings

The Advanced tab includes the following settings:

Cipher:
Enter the cipher that you want to use to encrypt the message data. Defaults to the DES-EDE3-CBC cipher.

Content-Type:
Enter the Content-Type of the message data. Defaults to application/pkcs7-mime.

Base64 encode:
Select whether to Base64 encode the message data. This option is not selected by default.

547

XML decryption
Overview

The XML-Decryption filter is responsible for decrypting data in XML messages based on the settings configured in the
XML-Decryption Settings filter.

The XML-Decryption Settings filter generates the decryption.properties message attribute based on configura-
tion settings. The XML-Decryption filter uses these properties to perform the decryption of the data.

Configuration

Enter an appropriate name for the filter in the Name field.

Auto-generation using the XML decryption wizard

Because the XML-Decryption filter must always be paired with an XML-Decryption Settings filter, the Policy Studio
provides a wizard that can generate both of these filters at the same time. To use the wizard, right-click a policy node un-
der the Policies node in the Policy Studio tree, and select XML Decryption Settings.

Configure the fields on the XML Decryption Settings dialog as explained in the XML decryption settings topic. When fin-
ished, an XML-Decryption Settings filter is created along with an XML-Decryption filter.

548

XML decryption settings
Overview

The API Gateway can decrypt an XML encrypted message on behalf of its intended recipients. XML Encryption is a W3C
standard that enables data to be encrypted and decrypted at the application layer of the OSI stack, thus ensuring com-
plete end-to-end confidentiality of data.

You should use the XML-Decryption Settings in conjunction with the XML-Decryption filter, which performs the de-
cryption. The XML-Decryption Settings generates the decryption.properties message attribute, which is required
by the XML-Decryption filter.

Important
The output of a successfully executed decryption filter is the original unencrypted message. Depending on
whether the Remove EncryptedKey used in decryption has been enabled, all information relating to the
encryption key can be removed from the message. For more details, see Options section.

XML encryption overview

XML encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tradi-
tional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web service. Furthermore, the data is encrypted such that only its intended recipients can decrypt it.

To understand how the API Gateway decrypts XML encrypted messages, you should first examine the format of an XML
encryption block. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>

549

<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey: The EncryptedKey element encapsulates all information relevant to the encryption key.
• EncryptionMethod: The Algorithm attribute specifies the algorithm that is used to encrypt the data. The mes-

sage data (EncryptedData) is encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but
the session key (EncryptedKey) is encrypted with the RSA asymmetric algorithm.

• CipherValue: The value of the encrypted data. The contents of the CipherValue element are always Base64 en-
coded.

• KeyInfo: Contains information about the recipient and his encryption key, such as the key name, X.509 certificate,
and Common Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. The Refer-
enceList contains a DataReference element for each encrypted element, where the value of a URI attribute
points to the Id of the encrypted element. In the previous example, you can see that the DataReference URI at-
tribute contains the value #00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData ele-
ment.

• EncryptedData: The XML element(s) or content that has been encrypted. In this case, the SOAP Body element
has been encrypted, and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how this
data gets encrypted in the first place. When you understand how data is encrypted, the fields that must be configured to
decrypt this data become easier to understand.

When a message is encrypted, only the intended recipient(s) of the message can decrypt it. By encrypting the message
with the recipient's public key, the sender can be guaranteed that only the intended recipient can decrypt the message
using his private key, to which he has sole access. This is the basic principle behind asymmetric cryptography.

XML decryption settings

550

In practice, however, encrypting and decrypting data with a public-private key pair is notoriously CPU-intensive and time
consuming. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The following
steps exemplify a more typical encryption process:

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key) and session key (encrypted with the recipient's public key) are then

sent together to the intended recipient.
5. When the recipient receives the message he, decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, he is the only one who can decrypt the encrypted session
key.

6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand how XML Encryption works, it is now time to learn how to configure the API Gateway to decrypt
XML encrypted messages. The following sections describe how to configure the XML Decryption Settings filter to de-
crypt encrypted XML data.

Nodes to decrypt

An XML message may contain several EncryptedData blocks. The Node(s) to Decrypt section enables you to specify
which encryption blocks are to be decrypted. There are two available options:

• Decrypt All Encrypted Nodes
• Use XPath to Select Encrypted Nodes

Decrypt All:
The API Gateway attempts to decrypt all EncryptedData blocks contained in the message.

Use XPath:
This option enables the administrator to explicitly choose the EncryptedData block that the API Gateway should de-
crypt.

For example, the following skeleton SOAP message contains two EncryptedData blocks:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>

...
<s:Header>
<s:Body>
<!-- 1st EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_1" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>
<!-- 2nd EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_2" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>

</s:Body>
</s:Envelope>

XML decryption settings

551

The EncryptedData blocks are selected using XPath. You can use the following XPath expressions to select the re-
spective EncryptedData blocks:

EncryptedData Block XPath Expression

1st //enc:EncryptedData[@Id='ENC_1']

2nd //enc:EncryptedData[@Id='ENC_2']

Click the Add, Edit, or Delete buttons to add, edit, or remove an XPath expression.

Decryption key

The Decryption Key section enables you to specify the key to use to decrypt the encrypted nodes. As discussed in the
section called “XML encryption overview”, data encrypted with a public key can only be decrypted with the corresponding
private key. The Decryption Key settings enable you to specify the private (decryption) key from the <KeyInfo> ele-
ment of the XML Encryption block, or the certificate stored in the Oracle message attribute can be used to lookup the
private key of the intended recipient of the encrypted data in the Certificate Store.

Find via KeyInfo in Message:
Select this option if you wish to determine the decryption key to use from the KeyInfo section of the EncryptedKey
block. The KeyInfo section contains a reference to the public key used to encrypt the data. You can use this KeyInfo
section reference to find the relevant private key (from the Oracle Certificate Store) to use to decrypt the data.

Find via certificate from Selector Expression:
Select this option if you do not wish to use the KeyInfo section in the message. Enter a selector expression that con-
tains a certificate, (for example, ${certificate}) whose corresponding private key is stored in the Oracle Certificate
Store . Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for example, in a
message attribute, a Key Property Store (KPS), or environment variable). For more details, see Select configuration val-
ues at runtime.

Extract nodes from Selector Expression:
Specify whether to extract nodes from a specified selector expression (for example, ${node.list}). This setting is not
selected by default.

Typically, a Find Certificate filter is used in a policy to locate an appropriate certificate and store it in the certificate
message attribute. When the certificate has been stored in this attribute, the XML Decryption Settings filter can use this
certificate to lookup the Certificate Store for a corresponding private key for the public key stored in the certificate. To do
this, select the certificate attribute from the drop-down list.

Options

The following configuration options are available in the Options section:

Fail if no encrypted data found:
If this option is selected, the filter fails if no <EncryptedData> elements are found within the message.

Remove the EncryptedKey used in decryption:
Select this option to remove information relating to the decryption key from the message. When this option is selected,
the <EncryptedKey> block is removed from the message.

Important
In cases where the <EncryptedKey> block has been included in the <EncryptedData> block, it is re-
moved regardless of whether this setting has been selected.

XML decryption settings

552

Default Derived Key Label:
If the API Gateway consumes a <DerivedKeyToken>, the default value entered is used to recreate the derived key
that is used to decrypt the encrypted data.

Algorithm Suite Required:
Select the WS-Security Policy Algorithm Suite that must have been used when encrypting the message. This check en-
sures that the appropriate algorithms were used to encrypt the message.

Auto-generation using the XML decryption wizard

Because the XML-Decryption Settings filter must always be paired with an XML-Decryption filter, it makes sense to
have a wizard that can generate both of these filters at the same time. To use the wizard, right-click the name of the
policy in the tree view of the Policy Studio, and select the XML Decryption Settings menu option.

Configure the fields on the XML Decryption Settings dialog as explained in the previous sections. When finished, an
XML-Decryption Settings filter is created along with an XML-Decryption filter.

XML decryption settings

553

XML encryption
Overview

The XML-Encryption filter is responsible for encrypting parts of XML messages based on the settings configured in the
XML-Encryption Settings filter.

The XML-Encryption Settings filter generates the encryption.properties message attribute based on configura-
tion settings. The XML-Encryption filter uses these properties to perform the encryption of the data.

Configuration

Enter a suitable name for the filter in the Name field.

Auto-generation using the XML encryption settings wizard

Because the XML-Encryption filter must always be used in conjunction with the XML-Encryption Settings and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. To use this
wizard, right-click a policy node under the Policies node in the Policy Studio tree, and select the XML Encryption Set-
tings menu option.

For more information on how to configure the XML Encryption Settings Wizard see the XML encryption wizard topic.

554

XML encryption settings
Overview

The API Gateway can XML encrypt an XML message so that only certain specified recipients can decrypt the message.
XML encryption is a W3C standard that enables data to be encrypted and decrypted at the application layer of the OSI
stack, thus ensuring complete end-to-end confidentiality of data.

The XML-Encryption Settings should be used in conjunction with the XML-Encryption filter, which performs the en-
cryption. The XML-Encryption Settings generates the encryption.properties message attribute, which is required
by the XML-Encryption filter.

XML encryption overview

XML encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tradi-
tional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer, and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web service.

Before explaining how to configure the API Gateway to encrypt XML messages, it is useful to examine an XML encrypted
message. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="http://www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>
<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>

555

<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey:
The EncryptedKey element encapsulates all information relevant to the encryption key.

• EncryptionMethod:
The Algorithm attribute specifies the algorithm used to encrypt the data. The message data (EncryptedData) is
encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but the session key (EncryptedKey)
is encrypted with the RSA asymmetric algorithm.

• CipherValue:
The value of the encrypted data. The contents of the CipherValue element are always Base64 encoded.

• DigestValue:
Contains the Base64-encoded message-digest.

• KeyInfo:
Contains information about the recipient and his encryption key, such as the key name, X.509 certificate, and Com-
mon Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. It contains a
DataReference element for each encrypted element, where the value of a URI attribute points to the Id of the en-
crypted element. In the previous example, the DataReference URI attribute contains the value
#00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData element.

• EncryptedData:
The XML elements or content that has been encrypted. In this case, the SOAP Body element has been encrypted,
and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how the
data is encrypted. When a message is encrypted, it is encrypted in such a manner that only the intended recipients of the
message can decrypt it. By encrypting the message with the recipient public key, the sender can be guaranteed that only
the intended recipient can decrypt the message using his private key, to which he has sole access. This is the basic prin-
ciple behind asymmetric cryptography.

In practice, however, encrypting and decrypting data with a public-private key pair is a notoriously CPU-intensive and
time consuming affair. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The
following steps show a more typical encryption process:

XML encryption settings

556

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption, and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key), and session key (encrypted with the recipient's public key), are then

sent together to the intended recipient.
5. When the recipient receives the message, he decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, only he can decrypt the encrypted session key.
6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand the structure and mechanics of XML Encryption, you can configure the API Gateway to encrypt
egress XML messages. The next section describes how to configure the tabs on the XML Encryption Settings screen.

Encryption key settings

The settings on the Encryption Key tab determine the key to use to encrypt the message, and how this key is referred
to in the encrypted data. The following configuration options are available:

Important
A symmetric key is used to encrypt the data. This symmetric key is then encrypted (asymmetrically) with
the recipient's public key. In this way, only the recipient can decrypt the symmetric encryption key with its
private key. When the recipient has access to the unencrypted encryption key, it can decrypt the data.

Generate Encryption Key:
Select this option to generate a symmetric key to encrypt the data with.

Encryption Key from Selector Expression:
If you have already used a symmetric key in a previous filter (for example, a Sign Message filter), you can reuse that key
to encrypt data by selecting this option and specifying a selector expression to obtain the key (for example,
${symmetric.key}). Using a selector enables settings to be evaluated and expanded at runtime based on metadata
(for example, in a message attribute, a Key Property Store (KPS), or environment variable). For more details, see Select
configuration values at runtime.

Include Encryption Key in Message:
Select this option if you want to include the encryption key in the message. The encryption key is encrypted for the recipi-
ent so that only the recipient can access the encryption key. You may choose not to include the symmetric key in the
message if the API Gateway and recipient have agreed on the symmetric encryption key using some other means.

Specify Method of Associating the Encryption Key with the Encrypted Data:
This section enables you to configure the method by which the encrypted data references the key used to encrypt it. The
following options are available:

• Point to Encryption Key with Security Token Reference:
This option creates a <SecruityTokenReference> in the <EncryptedData> that points to an
<EncryptedKey>.

• Embed Symmetric Key Inside Encrypted Data:
Place the <xenc:EncryptedKey> inside the <xenc:EncryptedData> element.

• Specify Encryption Key via Carried Keyname:
Place the encrypted key's carried keyname inside the <dsig:KeyInfo>/ <dsig:KeyName> of the
<xenc:EncryptedData>.

• Specify Encryption Key via Retrieval Method:
Refer to a symmetric key via a retrieval method reference from the <xenc:EncryptedData>.

XML encryption settings

557

• Symmetric Key Refers to Encrypted Data:
The symmetric key refers to <xenc:EncryptedData> using a reference list.

Use Derived Key:
Select this option if you want to derive a key from the symmetric key configured above to encrypt the data. The
<enc:EncryptedData> has a <wsse:SecurityTokenReference> to the <wssc:DerivedKeyToken>. The
<wssc:DerivedKeyToken> refers to the <enc:EncryptedKey>. Both <wssc:DerivedKeyToken> and
<enc:EncryptedKey> are placed inside a <wsse:Security> element.

Key info settings

The Key Info tab configures the content of the <KeyInfo> section of the generated <EncryptedData> block. Configure
the following fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the certificate that contains the public key that was used to encrypt
the data from the <EncryptedData> block. In other words, the <KeyInfo> element is omitted from the
<EncryptedData> block. This is useful where a downstream Web service uses an alternative method to decide what
key to use to decrypt the message. In such cases, adding certificate information to the message may be regarded as an
unnecessary overhead.

Include Certificate:
This is the default option, which places the certificate that contains the encryption key inside the <EncryptedData>.
The following example, shows an example of a <KeyInfo> that has been produced using this option:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Expand Public Key:
The details of the public key used to encrypt the data are inserted into a <KeyValue> block. The <KeyValue> block is
only inserted when this option is selected.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>

</dsig:RSAKeyValue>

XML encryption settings

558

</dsig:KeyValue>
</dsig:KeyInfo>

</enc:EncryptedData>

Include Distinguished Name:
If this checkbox is selected, the Distinguished Name of the certificate that contains the public key used to encrypt the
data is inserted in an <X509SubjectName> element as shown in the following example:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Include Key Name:
This option enables you insert a key identifier, or <KeyName>, to allow the recipient to identify the key to use to decrypt
the data. Enter an appropriate value for the <KeyName> in the Value field. Typical values include Distinguished Names
(DName) from X.509 certificates, key IDs, or email addresses. Specify whether the specified value is a Text value of a
Distinguished name attribute by selecting the appropriate radio button.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</enc:EncryptedData>

Put Certificate in an Attachment:
The API Gateway supports SOAP messages with attachments. By selecting this option, you can save the certificate con-
taining the encryption key to the file specified in the input field. This file can then be sent along with the SOAP message
as a SOAP attachment.

From previous examples, it is clear that the user's certificate is usually placed inside a <KeyInfo> element. However, in
this example, the certificate is contained in an attachment, and not in the <EncryptedData>. Clearly, you need a way
to reference the certificate from the <EncryptedData> block, so that the recipient can determine what key it should use
to decrypt the data. This is the role of the <SecurityTokenReference> block.

The <SecurityTokenReference> block provides a generic mechanism for applications to retrieve security tokens in
cases where these tokens are not contained in the SOAP message. The name of the security token is specified in the
URI attribute of the <Reference> element.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

</dsig:KeyInfo>
</enc:EncryptedData>

XML encryption settings

559

When the message is sent, the certificate attachment is given a Content-Id corresponding to the URI attribute of the
<Reference> element. The following example shows the wire format of the complete multipart MIME SOAP message.
It should help illustrate how the <Reference> element refers to the Content-ID of the attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</enc:EncryptedData>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used to encrypt the data. If
you wish to use a <wsse:SecurityTokenReference>, enable this option, and select a Security Token Reference
type from Reference Type drop-down list.

The <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may refer to a certificate us-
ing a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

If you have configured the SecurityContextToken (sct) mechanism from the Security Token Reference drop-
down list, you can select to use an Attached SCT or an Unattached SCT. The default option is to use an Attached
SCT, which should be used in cases where the SCT refers to a security token inside the <wsse:Security> header. If
the SCT is located outside the <wsse:Security> header, you should select the Unattached SCT option.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate (that contains the encryp-
tion key) in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected from the dropdown.

Select Include TokenType if you want to add the TokenType attribute to the SecurityTokenReference element.

XML encryption settings

560

Important
When using the Kerberos Token Profile standard, and the API Gateway is acting as the initiator of a secure
transaction, it can use Kerberos session keys to encrypt a message. The KeyInfo must be configured to
use a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case, the Ker-
beros token is contained in a <BinarySecurityToken> in the message.

If the API Gateway is acting as the recipient of a secure transaction, it can also use the Kerberos session keys to encrypt
the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security Token Ref-
erence with ValueType of Kerberosv5_APREQSHA1. When this is selected, the Kerberos token is not contained in the
message. The Security Token Reference contains a SHA1 digest of the original Kerberos token received from the client,
which identifies the session keys to the client.

When using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to encrypt messages
because a security context with an associated symmetric key is negotiated. This symmetric key is shared by both client
and service and can be used to encrypt messages on both sides.

Recipient settings

XML Messages can be encrypted for multiple recipients. In such cases, the symmetric encryption key is encrypted with
the public key of each intended recipient and added to the message. Each recipient can then decrypt the encryption key
with their private key and use it to decrypt the message.

The following SOAP message has been encrypted for 2 recipients (oracle_1 and oracle_2). The encryption key has
been encrypted twice: once for oracle_1 using its public key, and a second time for oracle_2 using its public key:

Important
The data itself is only encrypted once, while the encryption key must be encrypted for each recipient. For il-
lustration purposes, only those elements relevant to the above discussion have been included in the follow-
ing XML encrypted message.

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext"

s:actor="Enc Keys">
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-A692675C" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_1's public key and base64-encoded -->
<enc:CipherValue>AAAAAExx1A ... vuAhCgMQ==</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_1</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="#0000418BBB61-D4495D9B" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_2's public key and base64-encoded -->
<enc:CipherValue>AAAAABZH+U ... MrMEEM/Ps=</enc:CipherValue>

</enc:CipherData>

XML encryption settings

561

<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_2</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-D4495D9B" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- SOAP Body encrypted with symmetric enc key and base64-encoded -->
<enc:CipherValue>WD0TmuMk9 ... GzYFeq8SM=</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
</s:Envelope>

There are two <EncryptedKey> elements, one for each recipient. The <CipherValue> element contains the symmet-
ric encryption key encrypted with the recipient's public key. The encrypted symmetric key must be Base64-encoded so
that it can be represented as the textual contents of an XML element.

The <EncryptedData> element contains the encrypted data, along with information about the encryption process, in-
cluding the encryption algorithm used, the size of the encryption key, and the type of data that was encrypted (for ex-
ample, whether an element or the contents of an element was encrypted).

Click the Add button to add a new recipient for which the data will be encrypted. Configure the following fields on the
XML Encryption Recipient dialog:

Recipient Name:
Enter a name for the recipient. This name can then be selected on the main Recipients tab of the filter.

Actor:
The <EncryptedKey> for this recipient is inserted into the specified SOAP actor/role.

Use Key in Message Attribute:
Specify the message attribute that contains the recipient's public key that is used to encrypt the data. By default, the
certificate attribute is used. Typically, this attribute is populated by the Find Certificate filter, which retrieves a certi-
ficate from any one of a number of locations, including the Certificate Store, an LDAP directory, HTTP header, or from
the message itself.

If you want to encrypt the message for multiple recipients, you must configure multiple Find Certificate filters (or some
other filter that can retrieve certificates). Each Find Certificate filter retrieves a certificate for a single recipient and store
it in a unique message attribute.

For example, a Find Certificate filter called Find Certificate for Recipient1 filter could locate Recipient1's certificate
from the Certificate Store and store it in a certificate_recip1 message attribute. You would then configure a
second Find Certificate filter called Find Certificate for Recipient2, which could retrieve Recipient2's certificate from
the Certificate Store and store it in a certificate_recip2 message attribute.

On the Recipients tab of the XML Encryption Settings filter, you would then configure two recipients. For the first recip-
ient (Recipient1), you would enter certificate_recip1 as the location of the encryption key, while for the second re-

XML encryption settings

562

cipient (Recipient2), you would specify certificate_recip2 as the location of the encryption key.

Note
If the API Gateway fails to encrypt the message for any of the recipients configured on the Recipients tab,
the filter will fail.

What to encrypt settings

The What to Encrypt tab is used to identify parts of the message that must be encrypted. Each encrypted part will be re-
placed by an <EncryptedData> block, which contains all information required to decrypt the block.

You can use any combination of Node Locations, XPaths, and the nodes contained in a Message Attribute to specify
the nodes that are required to be encrypted. Please refer to the Locate XML nodes filter for more information on how to
use these node selectors.

Important
Note the difference between encrypting the element and encrypting the element content. When encrypting
the element, the entire element is replaced by the <EncryptedData> block. This is not recommended, for
example, if you wish to encrypt the SOAP Body because if this element is removed from the SOAP mes-
sage, the message may no longer be considered a valid SOAP message.

Element encryption is more suitable when encrypting security blocks, (for example, WS-Security Username tokens and
SAML assertions) that may appear in a WS-Security header of a SOAP message. In such cases, replacing the element
content (for example, a <UsernameToken> element) with an <EncryptedData> block will not affect the semantics of
the WS-Security header.

If you wish to encrypt the SOAP Body, you should use element content encryption, where the children of the element are
replaced by the <EncryptedData> block. In this way, the message can still be validated against the SOAP schema.

When using Node Locations to identify nodes that are to be encrypted, you can configure whether to encrypt the ele-
ment or the element contents on the Locate XML Nodes dialog. To encrypt the element, select the Encrypt Node radio
button. Alternatively, to encrypt the element contents, select the Encrypt Node Content radio button.

If you are using XPath expressions to specify the nodes that are to be signed, be careful not to use an expression that
returns a node and all its contents. The Encrypt Node and Encrypt Node Content options are also available when con-
figuring XPath expressions on the Enter XPath Expression dialog.

Advanced settings

The Advanced tab on the main XML-Encryption Settings screen enables you to configure some of the more complic-
ated settings regarding XML-Encryption. The following settings are available:

Algorithm Suite Tab:
The following fields can be configured on this tab:

Algorithm Suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite uses specific algorithms for asymmetric encryption, symmetric encryption, asymmetric
key wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of crypto-
graphic algorithms to use.

If you want to use a particular WS-Security Policy algorithm suite, you can select it here. The Encryption Algorithm and
Key Wrap Algorithm fields are automatically populated with the corresponding algorithms for that suite.

XML encryption settings

563

Encryption Algorithm:
The encryption algorithm selected is used to encrypt the data. The following algorithms are available:

• AES-256
• AES-192
• AES-128
• Triple DES

Key Wrap Algorithm:
The key wrap algorithm selected here is used to wrap (encrypt) the symmetric encryption key with the recipient's public
key. The following key wrap algorithms are available:

• KwRsa15
• KwRsaOaep

Settings Tab:
The following advanced settings are available on this tab:

Generate a Reference List in WS-Security Block:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the WS-Security block indicated by the specified actor.

Insert Reference List into EncryptedKey:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the <xenc:EncryptedKey> element.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the generated tokens to adhere to. This includes elements such
as the <EncryptedData>, <EncryptedKey>, <ReferenceList>, <BinarySecurityToken>, and
<DerivedKeyToken> tokens, among others.

Fail if no Nodes to Encrypt:
Select this option if you want the filter to fail if any of the nodes specified on the What to Encrypt tab are found in the
message.

Insert Timestamp:
This option enables you to insert a WS-Security Timestamp as an encryption property.

Indent:
This option enables you to format the inserted <EncryptedData> and <EncryptedKey> blocks by indenting the ele-
ments.

Insert CarriedKeyName for EncryptedKey:
Select this option to insert a <CarriedKeyName> element into the generated <EncryptedKey> block.

Auto-generation using the XML encryption settings wizard

Because the XML-Encryption Settings filter must always be used in conjunction with the XML-Encryption and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. Right-click a
policy under the Policies node in the Policy Studio, and select XML Encryption Settings.

For more information on how to configure the XML Encryption Settings Wizard see the XML encryption wizard topic.

XML encryption settings

564

XML encryption wizard
Overview

The following filters are involved in encrypting a message using XML encryption:

Filter Role

Find Certificate Specifies the certificate that contains the public key to use in the encryption.
The data is encrypted such that it can only be decrypted with the corresponding
private key.

XML-Encryption Settings Specifies the recipient of the encrypted data, what data to encrypt, what al-
gorithms to use, and other such options that affect the way the data is encryp-
ted.

XML-Encryption Performs the actual encryption using the certificate selected in the Find Certi-
ficate filter, and the options set in the XML-Encryption Settings filter.

While these filters can be configured independently of each other, it makes sense to configure them all at the same time
because they must play a role in the policy that XML-Encrypts messages. You can do this using the XML Encryption
Wizard. The wizard is available by right-clicking the name of the policy in the tree view of the Policy Studio, and selecting
the XML Encryption Settings menu option. The next section describes how to configure the settings on this dialog.

Configuration

The first step in configuring the XML Encryption Wizard is to select the certificate that contains the public key to use to
encrypt the data. When the data has been encrypted with this public key, it can only be decrypted using the correspond-
ing private key. Select the relevant certificate from the list of Certificates in the Trusted Certificate Store.

When the wizard is completed, the information configured on this screen results in the auto-generation of a Find Certi-
ficate filter. This filter is automatically configured to use the selected certificate from the Certificate Store. For more de-
tails, see the Find certificate tutorial.

After clicking the Next button on the first screen of the wizard, the configuration options for the XML-Encryption Set-
tings filter are displayed. For more details, see the XML encryption settings topic.

When you have completed all the steps in the wizard, a policy is created that comprises a Find Certificate, XML-
Encryption Settings, and XML-Encryption filter. You can insert other filters into this policy as required, however, the
order of the encryption filters must be maintained as follows:

1. Find Certificate
2. XML-Encryption Settings
3. XML-Encryption

565

XML signature generation
Overview

The API Gateway can sign both SOAP and non-SOAP XML messages. Attachments to the message can also be signed.
The resulting XML signature is inserted into the message for consumption by a downstream web service. At the web ser-
vice, the signature can be used to authenticate the message sender and verify the integrity of the message.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Signing key settings

On the Signing Key tab, you can select either a symmetric or an asymmetric key to sign the message content. Select
the appropriate radio button and configure the fields on the corresponding tab.

Asymmetric Key

With an asymmetric signature, the signatory's private key (from a public-private key pair) is used to sign the message.
The corresponding public key is then used to verify the signature. The following fields are available for configuration on
this tab:

Private Key in Certificate Store:
To use a signing key from the certificate store, select Key in Store, and click Signing Key. Select a certificate that has
the required signing key associated with it. The signing key can also be stored on a Hardware Security Module (HSM).
For more details, see Manage certificates and keys. The Distinguished Name of the selected certificate appears in the
X509SubjectName element of the XML signature as follows:

<dsig:X509SubjectName>
CN=Sample,OU=R&D,O=Company Ltd.,L=Dublin 4,ST=Dublin,C=IE

</dsig:X509SubjectName>

Private Key from Selector Expression:
Alternatively, the signing key might have already have been used by another filter and stored in a message attribute. To
reuse this key, select Private Key from Selector Expression, and enter the selector expression (for example,
${asymmetric.key}). Using a selector enables settings to be evaluated and expanded at runtime based on metadata
(for example, in a message attribute, Key Property Store (KPS), or environment variable). For more details, see Select
configuration values at runtime.

Symmetric Key

With a symmetric signature, the same key is used to sign and verify the message. Typically the client generates the sym-
metric key and uses it to sign the message. The key must then be transmitted to the recipient so that they can verify the
signature. It would be unsafe to transmit an unprotected key along with the message so it is usually encrypted (or
wrapped) with the recipient's public key. The key can then be decrypted with the recipient's private key and can then be
used to verify the signature. The following configuration options are available on this window:

Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is sent
to the client. By default, the key is saved in the symmetric.key message attribute.

Symmetric Key from Selector Expression:

566

If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key as
proof that the API Gateway is the holder-of-key entity. Enter the name of the selector expression in the field provided,
which defaults to ${symmetric.key}. Using a selector enables settings to be evaluated and expanded at runtime
based on metadata (for example, in a message attribute, a Key Property Store (KPS), or environment variable). For more
details, see Select configuration values at runtime.

Include Encrypted Symmetric Key in Message:
As described earlier, the symmetric key is typically encrypted for the recipient and included in the message. However, it
is possible that the initiator and recipient of the transaction have agreed on a symmetric key using some out-of-bounds
mechanism. In this case, it is not necessary to include the key in the message. However, the default option is to include
the encrypted symmetric key in the message. The <KeyInfo> section of the signature points to the <EncryptedKey>.

Encrypt with Key in Store:
Select this option to encrypt the symmetric key with a public key from the certificate store. Click the Signing Key button
and then select the certificate that contains the public key of the recipient. By encrypting the symmetric key with this pub-
lic key, you are ensuring that only the recipient that has access to the corresponding private key will be able to decrypt
the encrypted symmetric key.

Encrypt with Key from Selector Expression:
You can also use a key stored in a message attribute to encrypt (or wrap) the symmetric key. Select this radio button and
enter the selector expression to obtain the public key you want to use to encrypt the symmetric key with. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute, a
Key Property Store (KPS), or environment variable). For more details, see Select configuration values at runtime.

Use Derived Key:
A <wssc:DerivedKeyToken> token can be used to derive a symmetric key from the original symmetric key held in and
<enc:EncryptedKey>. The derived symmetric key is then used to actually sign the message, as opposed to the origin-
al symmetric key. It must be derived again during the verification process using the parameters in the
<wssc:DerivedKeyToken>. One of these parameters is the symmetric key held in <enc:EncryptedKey>. The fol-
lowing example shows the use of a derived key:

<enc:EncryptedKey Id="Id-0000010b8b0415dc-0000000000000000">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<dsig:KeyInfo>

...
</dsig:KeyInfo>
<enc:CipherData>

</enc:EncryptedKey>

<wssc:DerivedKeyToken wsu:Id="Id-0000010bd2b8eca1-0000000000000017"
Algorithm="http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1">

<wsse:SecurityTokenReference wsu:Id="Id-0000010bd2b8ed5d-0000000000000018">
<wsse:Reference URI="#Id Id-0000010b8b0415dc-0000000000000000"
ValueType="..../oasis-wss-soap-message-security-1.1#EncryptedKey"/>

</wsse:SecurityTokenReference>
<wssc:Generation>0</wssc:Generation>
<wssc:Length>32</wssc:Length>
<wssc:Label>WS-SecureConverstaionWS-SecureConverstaion</wssc:Label>
<wssc:Nonce>h9TTWKRylCOz87+mc1/7Pg==</wssc:Nonce>

</wssc:DerivedKeyToken>

<dsig:Signature Id="Id-0000010b8b0415dc-0000000000000004">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<dsig:Reference>...</dsig:Reference>

</dsig:SignedInfo>
<dsig:SignatureValue>...dsig:SignatureValue>
<dsig:KeyInfo>
<wsse:SecurityTokenReference wsu:Id="Id-0000010b8b0415dc-0000000000000006">

XML signature generation

567

<wsse:Reference
URI="# Id-0000010bd2b8eca1-0000000000000017"
ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"/>

</wsse:SecurityTokenReference>
</dsig:KeyInfo>

</dsig:Signature>

Symmetric Key Length:
This option enables the user to specify the length of the key to use when performing symmetric key signatures. It is im-
portant to realize that the longer the key, the stronger the encryption.

Key Info

This tab configures how the <KeyInfo> block of the generated XML signature is displayed. Configure the following
fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the signatory's certificate from the signature. In other words, the
KeyInfo element is omitted from the signature. This is useful where a downstream web service uses an alternative
method of authenticating the signatory, uses the signature for the sole purpose of verifying the integrity of the message.
In such cases, adding certificate information to the message is an unnecessary overhead.

Include Certificate:
This is the default option which places the signatory's certificate inside the XML signature itself. The following example,
shows an example of an XML signature using this option:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Expand Public Key:
The details of the signatory's public key are inserted into a KeyValue block. The KeyValue block is only inserted when
this option is selected.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>

XML signature generation

568

<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</dsig:Signature>

Include Distinguished Name:
If this check box is selected, the Distinguished Name of the signatory's X.509 certificate is inserted in an
<X509SubjectName> element as shown in the following example:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Include Key Name:
This option allows you insert a key identifier, or KeyName, to allow the recipient to identify the signatory. Enter an appro-
priate value for the KeyName in the Value field. Typical values include Distinguished Names (DName) from X.509 certi-
ficates, key IDs, or email addresses. Specify whether the specified value is a Text value of a Distinguished name at-
tribute by checking the appropriate radio button.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>

Put Certificate in an Attachment:
The API Gateway supports SOAP messages with attachments. By selecting this option, you can save the signatory's cer-
tificate to the file specified in the input field. This file can then be sent along with the SOAP message as a SOAP attach-
ment.

From previous examples, it is clear that the user's certificate is usually placed inside a KeyInfo element. However, in
this example, the certificate is actually contained within an attachment, and not within the XML signature itself. To refer-
ence the certificate from the XML signature, so that validating applications can process the signature correctly, is the role
of the SecuriyTokenReference block.

The SecurityTokenReference block provides a generic way for applications to retrieve security tokens in cases
where these tokens are not contained within the SOAP message. The name of the security token is specified in the URI
attribute of the Reference element.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

XML signature generation

569

</dsig:KeyInfo>
</dsig:Signature>

When the message is actually sent, the certificate attachment will be given a "Content-Id" corresponding to the URI at-
tribute of the Reference element. The following example shows what the complete multipart MIME SOAP message
looks like as it is sent over the wire. This illustrates how the Reference element actually refers to the "Content-ID" of the
attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</dsig:Signature>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used in the generation of
the signature. Select this option to use this element. The type of the reference must be selected from the Reference
Type field.

The <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), can contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), can refer to a certificate
via a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate used to wrap the sym-
metric key in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected.

Important
When using the Kerberos Token Profile standard and the API Gateway is acting as the initiator of a secure
transaction, it can use Kerberos session keys to sign a message. The KeyInfo must be configured to use

XML signature generation

570

a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case, the Kerberos
token is contained in a <BinarySecurityToken> in the message.

If the API Gateway is acting as the recipient of a secure transaction, it can also use the Kerberos session keys to sign
the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security Token Ref-
erence with ValueType of Kerberosv5_APREQSHA1. When this ValueType is selected, the Kerberos token is not
contained in the message. The Security Token Reference contains a SHA1 digest of the original Kerberos token re-
ceived from the client, which identifies the session keys to the client.

Using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to sign messages because a
security context with an associated symmetric key is negotiated. This symmetric key is shared by both client and service
and can be used to sign messages on both sides.

What to sign settings

The What to Sign tab is used to identify parts of the message that must be signed. Each signed part will be referenced
from within the generated XML signature. You can use any combination of Node Locations, XPaths, XPath Predicates,
and the nodes contained in a Message Attribute to specify what must be signed. For details on the settings on these
tabs, see the Locate XML nodes filter.

XML Signing Mechanisms
It is important to consider the mechanisms available for referencing signed elements from within an XML signature. For
example, With WSU Ids, an Id attribute is inserted into the root element of the nodeset that is to be signed. The XML sig-
nature then references this Id to indicate to verifiers of the signature the nodes that were signed. The use of WSU Ids is
the default option because these are WS-I compliant.

Alternatively, a generic Id attribute (not bound to the WSU namespace) can be used to dereference the data. The Id at-
tribute is inserted into the top-level element of the nodeset that is to be signed. The generated XML signature can then
reference this Id to indicate what nodes were signed. When XPath transforms are used, an XPath expression that points
to the root node of the nodeset that is signed will be inserted into the XML signature. When attempting to verify the signa-
ture, this XPath expression must be run on the message to retrieve the signed content.

Id Attribute:
Select the Id attribute used to dereference the signed element in the dsig:Signature. The available options are as fol-
lows:

• wsu:Id
The default option references the signed data using a wsu:Id attribute. A wsu:Id attribute is inserted into the root
node of the signed nodeset. This Id is then referenced in the generated XML signature as an indication of which
nodes were signed. For example:

<soap:Envelope xmlns:soap="...">
<soap:Header>
<wsse:Security xmlns:wsse="...">

<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>

XML signature generation

571

</dsig:SignedInfo>
<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">

<dsig:X509Data>
<dsig:X509Certificate>

MIID ... ZiBQ==
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <soap:Body> element. This wsu:Id attribute
is then referenced by the URI attribute of the <dsig:Reference> element in the actual signature. When the signa-
ture is being verified, the value of the URI attribute can be used to locate the nodes that have been signed.

• Id
Select the Id option to use generic Ids (not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an Id attribute, which is inserted into the top-level node
of the signed nodeset. In the following example, the Id specified in the signature matches the Id attribute inserted in-
to the <Body> element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">

<name>API Gateway</name>
<company>oracle</company>
<description>SOA Security and Management</description>

</product>

XML signature generation

572

</soap:Body>
</soap:Envelope>

• ID
Select this option to use generic IDs (not bound to the WSU namespace) to dereference the signed data. Under this
schema, the URI attribute of the Reference points at an ID attribute, which is inserted into the top-level node of the
signed nodeset. In the following example, the URI specified in the Signature Reference node matches the ID attrib-
ute inserted into the Body element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="....">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>

<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">

<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• xml:id
Select this option to use an xml:id to dereference the signed data. Under this schema, the URI attribute of the
Reference points at an xml:id attribute, which is inserted into the top-level node of the signed nodeset. In the fol-
lowing example, the URI specified in the Signature Reference node matches the xml:id attribute inserted into the
Body element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

XML signature generation

573

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version=11.1.2.4.0>

<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• No id (use with enveloped signature and XPath 'The Entire Document')
Select this option to sign the entire document. In this case, the URI attribute on the Reference node of the signa-
ture is “”, which means that no id is used to refer to what is being signed. The “” URI means that the full document
is signed. A signature of this type must be an enveloped signature. On the Advanced > Options tab, select Create
enveloped signature. To sign the full document, on the What to Sign > XPaths tab, select the XPath named The
entire document.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="....">

<soap:Header>
<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
Id="Id-0001346926985531-fffffffff28f6103-1">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<dsig:Reference URI="">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2000/09/

xmldsig#enveloped-signature" />
<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

BAz3140AFAfBL/DIj9y+16TEJIU=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>........</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0001346926985531-fffffffff28f6103-2">

<dsig:X509Data>
<dsig:X509Certificate>........</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

XML signature generation

574

</dsig:Signature>
</wsse:Security>

</soap:Header>
<soap:Body>

<product version=11.1.2.4.0>
<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

Use SAML Ids for SAML Elements:
This option is only relevant if a SAML assertion is required to be signed. If this option is selected, and the signature is to
cover a SAML assertion, an AssertionID attribute is inserted into a SAML version 1.1 assertion, or an ID attribute is
inserted into a SAML version 2.0 assertion. The value of this attribute is then referenced from within a <Reference> block
of the XML signature. This option is selected by default.

Add and Dereference Security Token Reference for SAML:
This option is only relevant if a SAML assertion is required to be signed. This setting signs the SAML assertion using a
Security Token Reference and an STR-Transform. The Signature points to the id of the
wsse:SecurityTokenReference, and applies the STR-Transform. When signing the SAML assertion, this means to
sign the XML that the wsse:SecurityTokenReference points to, and not the wsse:SecurityTokenReference.
This option is unselected by default. The following shows an example SOAP header:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<wsse:Security xmlns:wsse="...." xmlns:wsu="....";
<dsig:Signature xmlns:dsig=".....">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
<dsig:Reference

URI="#Id-0001347292983847-00000000530a9b1a-1">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform">
<wsse:TransformationParameters>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</wsse:TransformationParameters>
</dsig:Transform>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

6/aLwABWfS+9UiX7v39sLJw5MaQ=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

......
</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0001347292983847-00000000530a9b1a-3">

<dsig:X509Data>
<dsig:X509Certificate>

.....
</dsig:X509Certificate>

XML signature generation

575

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
<wsse:SecurityTokenReference

wsu:Id="Id-0001347292983847-00000000530a9b1a-1">
<wsse:KeyIdentifier

ValueType="http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

Id-948d50f1504e0f3703e00000-1
</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>
<saml:Assertion xmlns:saml="...."

IssueInstant="2012-09-10T16:03:03Z"
Issuer="CN=AAA Certificate Services, O=Comodo CA Limited,

L=Salford, ST=Greater Manchester, C=GB"
MajorVersion="1" MinorVersion="1">
<saml:Conditions NotBefore="2012-09-10T16:03:02Z"

NotOnOrAfter="2012-12-18T16:03:02Z" />
<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2012-09-10T16:03:03Z">
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
admin

</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:sender-vouches

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>
....

</soap:Envelope>

Where to place signature settings

Append Signature to Root or SOAP Header:
If the message is a SOAP message, the signature will be inserted into the SOAP Header element when this radio button
is selected. The XML signature will be inserted as an immediate child of the SOAP Header element. The following ex-
ample shows a skeleton SOAP message which has been signed using this option:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

</s:Body>
</s:Envelope>

If the message is just plain XML, the signature is inserted as an immediate child of the root element of the XML mes-
sage. The following example shows a non-SOAP XML message signed using this option:

XML signature generation

576

<PurchaseOrder>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

</dsig:Signature>

<Items>
...
</Items>

</PurchaseOrder>

Place in WS-Security Element for SOAP Actor/Role:
By selecting this option, the XML signature will be inserted into the WS-Security element identified by the specified
SOAP actor or role. A SOAP actor/role is simply a way of distinguishing a particular WS-Security block from others which
might be present in the message.

Enter the name of the SOAP actor or role of the WS-Security block in the field. The following SOAP message contains
an XML signature within a WS-Security block identified by the "test" actor:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

</s:Body>
</s:Envelope>

Use XPath Location:
This option is useful in cases where the signature must be inserted into a non-SOAP XML message. In such cases, it is
possible to insert the signature into a location pointed to by an XPath expression. Select or add an XPath expression in
the field provided, and then specify whether the API Gateway should insert the signature before the location to which the
XPath expression points, or append it to this location.

Advanced settings

The Advanced tab enables you to set the following:

• Additional elements from the message to be signed.
• Algorithms and ciphers used to sign the message parts.
• Various advanced options on the generated XML signature.

Additional

The Additional tab allows you to select additional elements from the message that are to be signed. It is also possible to
insert a WS-Security Timestamp into the XML signature, if necessary.

Additional Elements to Sign:
The options here allow you to select other parts of the message to sign.

• Sign KeyInfo Element of Signature:
The <KeyInfo> block of the XML signature can be signed to prevent people cut-and-pasting a different <KeyInfo>
block into the message, which might point to some other key material, for example.

XML signature generation

577

• Sign Timestamp:
As stated earlier, timestamps are used to prevent replay attacks. However, to guarantee the end-to-end integrity of
the timestamp, it is necessary to sign it.

Note
This option is only enabled when you have elected to insert a Timestamp into the message using the
relevant fields on the Timestamp Options section below.

• Sign Attachments:
In addition to signing some or all contents of the SOAP message, you can also sign attachments to the SOAP mes-
sage. To sign all attachments, select Include Attachments. A signed attachment is referenced in an XML signature
using the Content-Id or cid of the attachment. The URI attribute of the Reference element corresponds to this Con-
tent-Id. The following example shows how an XML signature refers to a sample attachment. It shows the wire format
of the message and its attachment as they are sent to the destination web service. Multiple attachments result in
successive Reference elements.

POST /myAttachments HTTP/1.0
Content-Length: 1000
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
SOAPAction: none
Content-Type: text/xml; charset="utf-8"

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="cid:moredata.txt">...</dsig:Reference>

</dsig:SignedInfo>
</dsig:Signature>

</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: moredata.txt
Content-Type: text/plain; charset="UTF-8"

Some more data.
------=Multipart-SOAP-boundary--

Transform:
This field is only available when you have selected the Sign Attachments box above. It determines the transform used
to reference the signed attachments.

Timestamp Options:
It is possible to insert a timestamp into the message to indicate when exactly the signature was generated. Consumers of
the signature can then validate the signature to ensure that it is not of date.

XML signature generation

578

The following options are available:

• No Timestamp:
No timestamp is inserted into the signature.

• Embed in WSSE Security:
The wsu:Timestamp is inserted into a wsse:Security block. The Security block is identified by the SOAP act-
or/role specified on the Signature tab.

• Embed in Signature Property:
The wsu:Timestamp is placed inside a signature property element in the dsig:Signature.

The Expires In fields enable the user to optionally specify the wsu:Expires for the wsu:Timestamp. If all fields are
left at 0, no wsu:Expires element is placed inside the wsu:Timestamp. The following example shows a
wsu:Timestamp that has been inserted into a wsse:Security block:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security>

<wsu:Timestamp wsu:Id="Id-0000011294a0311e-000000000000003d">
<wsu:Created>2007-05-16T11:22:45Z</wsu:Created>
<wsu:Expires>2007-05-23T11:22:45Z</wsu:Expires>

</wsu:Timestamp>
<dsig:Signature ...>
...
</dsig:Signature ...>

</wsse:Security>
</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

Algorithm Suite

The fields on this tab determine the combination of cryptographic algorithms and ciphers that are used to sign the mes-
sage parts.

Algorithm suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite will use specific algorithms for asymmetric signing, symmetric signing, asymmetric key
wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of cryptographic
algorithms to use.

To use a particular WS-Security Policy algorithm suite, you can select it here. The Signature Method, Key Wrap Al-
gorithm, and Digest Method fields will then be automatically populated with the corresponding algorithms for that suite.

Signature Method:
The Signature Method field enables you to configure the method used to generate the signature. Various strengths of
the HMAC-SHA1 algorithms are available from the list.

Key Wrap Algorithm:
Select the algorithm to use to wrap (encrypt) the symmetric signing key. This option need only be configured when you
are using a symmetric key to sign the message.

Digest Algorithm:
Select the digest algorithm to you to produce a cryptographic hash of the signed data.

Options

XML signature generation

579

This tab enables you to configure various advanced options on the generated XML signature. The following fields can be
configured on this tab:

WS-Security Options:
WSSE 1.1 defines a <SignatureConfirmation> element that can be used as proof that a particular XML signature
was processed. A recipient and verifier of an XML signature must generate a <SignatureConfirmation> element for
each piece of data that was signed (for each <Reference> in the XML signature). A <SignatureConfirmation> ele-
ment contains the hash of the signed data and must be signed by the recipient before returning it in the response to the
initiator (the original signatory of the data).

When the initiator receives the <SignatureConfirmation> elements in the response, it compares the hash with the
hash of the data that it produced initially. If the hashes match, the initiator knows that the recipient has processed the
same signature. Select the Initiator option if the API Gateway is the initiator as outlined in the scenario above. The API
Gateway keeps a record of the signed data and compares it to the contents of the <SignatureConfirmation> ele-
ments returned from the recipient in the response message.

Alternatively, if the API Gateway is acting as the recipient in this transaction, you can select the Responder radio button
to instruct the API Gateway to generate the <SignatureConfirmation> elements and return them to the initiator. The
signature confirmations will be added to the WS-Security header.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the XML signature and any generated tokens to adhere to. This
includes elements such as <Signature>, <BinarySecurityToken>, and <EncryptedKey>, which can all be gener-
ated as part of the signing process.

Fail if No Nodes to Sign:
Check this option if you want the filter to fail if it cannot find any nodes to sign as configured on the What to Sign tab.

Add Inclusive Namespaces for Exclusive Canonicalization:
You can include information about the namespaces (and their associated prefixes) of signed elements in the signature it-
self. This ensures that namespaces that are in the same scope as the signed element, but not directly or visibly used by
this element, are included in the signature. This ensures that the signature can be validated as a standalone entity out-
side of the context of the message from which it was extracted.

Note
The WS-I specification only permits the use of exclusive canonicalization in an XML signature. The
<InclusiveNamespaces> element is an attempt to take advantage of some of the behavior of inclusive
canonicalization, while maintaining the simplicity of exclusive canonicalization.

A PrefixList attribute is used to list the prefixes of in-scope, but not visibly used elements and attributes. The following ex-
ample shows how the PrefixList attribute is used in practice:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope'>
<soap:Header>
<wsse:Security xmlns:wsse='http://docs.oasis-open.org/...'

xmlns:wsu='http://docs.oasis-open.org/...'>
<wsse:BinarySecurityToken wsu:Id='SomeCert'

ValueType="http://docs.oasis-open.org/...">
lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sH
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
<ds:SignedInfo>
<ds:CanonicalizationMethod

Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='wsse wsu soap' />

XML signature generation

580

</ds:CanonicalizationMethod>
<ds:SignatureMethod

Algorithm='http://www.w3.org/2000/09/xmldsig#rsa-sha1'/>
<ds:Reference URI=''>
<ds:Transforms>
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:m='http://example.org/ws'>
//soap:Body/m:SomeElement
</dsig:XPath>
<ds:Transform Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='soap wsu test' />

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm='http://www.w3.org/2000/09/xmldsig#sha1' />
<ds:DigestValue>VEPKwzfPGOxh2OUpoK0bcl58jtU=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>+diIuEyDpV7qxVoUOkb5rj61+Zs=</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI='#SomeCert' />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu='http://docs.oasis-open.org/...'

xmlns:test='http://www.test.com' wsu:Id='TheBody'>
<m:SomeElement xmlns:m='http://example.org/ws' attr1='test:fdwfde' />

</soap:Body>
</soap:Envelope>

Indent:
Select this method to ensure that the generated signature is properly indented.

Create Enveloped Signature:
By selecting this option, an enveloped XML signature is generated. The following skeleton signed SOAP message shows
the enveloped signature:

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" id="Sample">
<ds:SignedInfo>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
</ds:Transforms>
</ds:Reference>

</ds:SignedInfo>
</ds:Signature>

This indicates to the application validating the signature that the signature itself should not be included in the signed
data. In other words, to validate the signature, the application must first strip out the signature. This is necessary in cases
where the entire SOAP envelope has been signed, and the resulting signature has been inserted into the SOAP header.
In this case, the signature is over a nodeset which has been altered (the signature has been inserted), and so the signa-
ture will break.

Insert CarriedKeyName for EncryptedKey:
Select this option to include a <CarriedKeyName> element in the <EncryptedKey> block that is generated when us-
ing a symmetric signing key.

XML signature generation

581

XML signature verification
Overview

In addition to validating XML signatures for authentication purposes, the API Gateway can also use XML signatures to
prove message integrity. By signing an XML message, a client can be sure that any changes made to the message do
not go unnoticed by the API Gateway. Therefore by validating the XML signature on a message, the API Gateway can
guarantee the integrity of the message.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Signature verification settings

The following sections are available on the Signature Verification tab:

Signature Location:
Because there may be multiple signatures in the message, you must specify which signature API Gateway uses to verify
the integrity of the message. The signature can be extracted from one of the following:

• From the SOAP header
• Using WS-Security Actors
• Using XPath

Select the appropriate option from the list. For more details, see Signature location.

Find Signing Key
The public key used to verify the signature can be taken from the following locations:

• Via KeyInfo in Message:
Typically, a <KeyInfo> block is used in an XML signature to reference the key used to sign the message. For ex-
ample, it is common for a <KeyInfo> block to reference a <BinarySecurityToken> that contains the certificate
associated with the public key used to verify the signature.

• Via Selector Expression:
The certificate used to verify the signature can be extracted from a selector expression. For example, a previous fil-
ter (for example, Find Certificate) may have already located a certificate and populated the certificate mes-
sage attribute. To use this certificate to verify the signature, specify the selector expression in the field provided (for
example, ${certificate}). Using a selector enables settings to be evaluated and expanded at runtime based on
metadata (for example, in a message attribute, KPS, or environment variable). For more details, see Select configur-
ation values at runtime.

• Via Certificate in LDAP:
Clients may not always want to include their public keys in their signatures. In such cases, the public key can be re-
trieved from a specified LDAP directory. This setting enables you to select a previously configured LDAP directory
from a list. You can add LDAP connections under the External Connections node in the Policy Studio tree. Right-
click the LDAP Connection tree node, and select Add an LDAP Connection.

• Via Certificate in Store:
Similarly, you can retrieve a certificate from the certificate store by selecting this option, and clicking the Select but-
ton. Select the check box next to the certificate that contains the public key that you want to use to verify the signa-
ture, and click OK.

582

What must be signed settings

The What Must Be Signed tab defines the content that must be signed for a SOAP message to pass the filter. This en-
sures that the client has signed something meaningful (part of the SOAP message), instead of arbitrary data that would
pass a blind signature validation. This further strengthens the integrity verification process. The nodeset that must be
signed can be identified by a combination of XPath expressions, node locations, and the contents of a message attribute.
For more details, see What to sign.

Note
If all attachments are required to be signed, select All attachments to enforce this.

Advanced settings

The following advanced configuration options are available on the Advanced tab:

Signature Confirmation:
If this filter is configured as part of an initiator policy, where the API Gateway acts as the client in a web services transac-
tion, select the Initiator option. This means that the filter keeps a record of the signature that it has verified, and checks
the SignatureConfirmation returned by the recipient.

Alternatively, if the API Gateway acts as the recipient in the transaction, select the Recipient option. In this case, the API
Gateway returns the SignatureConfirmation elements in the response to the initiator.

Default Derived Key Label:
If the API Gateway consumes a DerivedKeyToken, use the default value to recreate the derived key.

Algorithm Suite:
Select the WS-Security Policy Algorithm Suite that must have been used when signing the message. This check ensures
that the appropriate algorithms were used to sign the message.

Fail if No Signatures to Verify:
Select this if you want to configure the filter to fail if no XML signatures are present in the incoming message.

Verify Signature for Authentication Purposes:
You can use the XML Signature Verification filter to authenticate an end user. If the message can be successfully valid-
ated, it proves that only the private key associated with the public key used to verify the signature was used to sign the
message. Because the private key is only accessible to its owner, a successful verification can be used to effectively au-
thenticate the message signer.

Retrieve DOM using Selector Expression:
You can configure this field to verify the response from a SAML PDP. When the API Gateway receives a response from
the SAML PDP, it stores the signature on the response in a message attribute. You can specify this attribute using a se-
lector expression to verify this signature. Using a selector enables settings to be evaluated and expanded at runtime
based on metadata (for example, in a message attribute, Key Property Store (KPS), or environment variable). For more
details, see Select configuration values at runtime.

Remove enclosing WS-Security element on successful verification:
Select this check box if you wish to remove the enclosing WS-Security block when the signature has been successfully
verified. This setting is not selected by default.

XML signature verification

583

Sign SMIME message
Overview

You can use the SMIME Sign filter to digitally sign a multipart Secure/Multipurpose Internet Mail Extensions (SMIME)
message as it passes through the API Gateway core pipeline. The recipient of the message can then verify the integrity
of the SMIME message by validating the Public Key Cryptography Standards (PKCS) #7 signature.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Sign Using Key:
Select the check box next to the certificate that contains the public key associated with the private signing key to be used
to sign the message.

Create Detached Signature in Attachment:
Specifies whether to create a detached digital signature in the message attachment. This is selected by default. For ex-
ample, this is useful when the software reading the message does not understand the PKCS#7 binary structure, because
it can still display the signed content, but without verifying the signature.

If this is unselected, the message content is embedded with the PKCS#7 binary signature. This means that user agents
that do not understand PKCS#7 can not display the signed content. Intermediate systems between the sender and final
recipient can modify the text content slightly (for example, line wrapping, whitespace, or text encoding). This might cause
the message to fail signature validation due to changes in the signed text that are not malicious, nor necessarily affecting
the meaning of the text.

584

Verify SMIME message
Overview

You can use the SMIME Verify filter to check the integrity of a Secure/Multipurpose Internet Mail Extensions (SMIME)
message. This filter enables you to verify the Public Key Cryptography Standards (PKCS) #7 signature over the mes-
sage.

You can select the certificates that contain the public keys to be used to verify the signature. Alternatively, you can spe-
cify a message attribute that contains the certificate with the public key to be used.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Certificates from the following list:
Select the certificates that contain the public keys to be used to verify the signature. This is the default option.

Certificate in attribute:
Alternatively, enter the message attribute that specifies the certificate that contains the public key to be used to verify the
signature. Defaults to ${certificate}.

Remove Outer Envelope if Verification is Successful:
Select this option to remove the PKCS#7 signature and all its associated data from the message if it verifies successfully.

585

Generic error handling
Overview

In cases where a transaction fails, the API Gateway can use a generic error to convey error information to the client
based on the message type (for example, SOAP or JSON). By default, the API Gateway returns a very basic error to the
client when a message filter fails. You can add the Generic Error filter to a policy to return more meaningful error inform-
ation to the client based on the message type.

When the Generic Error filter is configured, the API Gateway examines the incoming message and attempts to infer the
type of message to be returned. For example, for an incoming SOAP message, the API Gateway sends an appropriate
SOAP response (for example, SOAP 1.1 or 1.2) using the SOAP fault processor. For an incoming JSON message, the
API Gateway sends an appropriate JSON response. If the inference process fails, the API Gateway sends a SOAP mes-
sage by default. For example error messages, see the JSON error handling and SOAP fault handling topics.

You can also transform the error message returned by applying an XSLT stylesheet. The API Gateway implicitly trans-
forms the incoming message into XML before applying the stylesheet to the message.

Important
For security reasons, it is good practice to return as little information as possible to the client. However, for
diagnostic reasons, it is useful to return as much information to the client as possible. Using the Generic
Error filter, administrators have the flexibility to configure just how much information to return to clients, de-
pending on their individual requirements.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

HTTP Response Code Status
Enter the HTTP response code status for this Generic Error filter. This ensures that a meaningful response is sent to the
client in the case of an error occurring in a configured policy. Defaults to 500 (Internal Server Error). For a com-
plete list of status codes, see the HTTP Specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

Generic error contents

The following configuration options are available in the Generic Error Contents section:

Show detailed explanation of error:
Select this option to return a detailed explanation of the generic error in the error message. This makes it possible to sup-
press the reason for the exception in a tightly locked down system (the reason is displayed as message blocked in the
generic error). Defaults to the value of the ${circuit.failure.reason} message attribute selector.

Show filter execution path
Select this option to return a generic error containing the list of filters run on the message before the error occurred. For
each filter listed in the generic error, the status is given (pass or fail).

Show stack trace
Select this option to return the Java stack trace for the error to the client. This option should only be enabled under in-
structions from Oracle Support.

Show current message attributes

586

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Select this option to return the message attributes present at the time the generic error was generated to the client. For
example, for an incoming SOAP message, each message attribute forms the content of a <fault:attribute> ele-
ment.

Warning
For security reasons, Show filter execution path, Show stack trace, and Show current message attrib-
utes should not be used in a production environment.

Use Stylesheet
Select this option to transform the error message returned by applying an XSLT stylesheet. Click the browse button on
the right of the Stylesheet field, and select a stylesheet in the dialog. To add a stylesheet, right-click the Stylesheets
node, and select Add Stylesheet. Alternatively, you can also add stylesheets under the Resources > Stylesheets node
in the Policy Studio tree view.

Because XSLT stylesheets accept XML as input, the API Gateway implicitly transforms the incoming message into XML.
The API Gateway then retrieves the selected XSLT stylesheet and applies the transformation to the message, and sends
the response in the format specified in the XSLT stylesheet.

Create customized generic errors

You can also use the Set Message filter to create customized generic errors. The Set Message filter can change the
contents of the message body to any arbitrary content. When an exception occurs in a policy, you can use this filter to
customize the body of the generic error. For details on how to use the Set Message filter to generate customized faults
and return them to the client, see the example in the SOAP fault handling topic. You can use the same approach to gen-
erate customized generic errors.

Generic error handling

587

JSON error handling
Overview

In cases where a JavaScript Object Notation (JSON) transaction fails, the API Gateway can use a JSON error to convey
error information to the client. By default, the API Gateway returns a very basic fault to the client when a message filter
fails. You can add the JSON Error filter to a policy to return more meaningful error information to the client. For example,
the following message extract shows the format of a JSON error raised when a JSON Schema Validation filter fails:

{
"reasons": [

{
"language": "en",
"message": "JSON Schema Validation filter failed"

}
],
"details": {

"msgId": "Id-f5aab7304f6c754804f70000",
"exception message": "JSON Schema Validation filter failed",

...
}

}

Important
For security reasons, it is good practice to return as little information as possible to the client. However, for
diagnostic reasons, it is useful to return as much information to the client as possible. Using the JSON Er-
ror filter, administrators have the flexibility to configure just how much information to return to clients, de-
pending on their individual requirements.

For more details on JSON schema validation, see JSON schema validation filter. For more details on JSON, see ht-
tp://www.json.org/index.html.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

HTTP Response Code Status
Enter the HTTP response code status for this JSON error filter. This ensures that a meaningful response is sent to the
client in the case of an error occurring in a configured policy. Defaults to 500 (Internal Server Error). For a com-
plete list of status codes, see the HTTP Specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

JSON error contents

The following configuration options are available in the JSON Error Contents section:

Show detailed explanation of error:
Select this option to return a detailed explanation of the JSON error in the error message. This makes it possible to sup-
press the reason for the exception in a tightly locked down system. By default, the reason is displayed as message
blocked in the JSON error. This option displays the value of the ${circuit.failure.reason} message attribute
selector.

Show filter execution path

588

http://www.json.org/index.html
http://www.json.org/index.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Select this option to return the list of filters run on the message before the error occurred. For each filter listed in the
JSON Error, the status is output (Pass or Fail). The following message extract shows a filter execution path returned in
a JSON error:

"path" : {
"policy" : "test_policy",
"filters" : [{
"name" : "True Filter",
"status" : "Pass"

}, {
"name" : "JSON Schema Validation",
"status" : "Fail",
"filterMessage" : "Filter failed"

}, {
"name" : "Generic Error",
"status" : "Fail",
"filterMessage" : "Filter failed"

}]
},

Show stack trace
Select this option to return the Java stack trace for the error to the client. This option should only be enabled under in-
structions from Oracle Support.

Show current message attributes
Select this option to return the message attributes present when the JSON error is generated to the client. The value of
each message attribute is output as shown in the following example:

"attributes": [
{

"name": "circuit.exception",
"value": "com.vordel.circuit.CircuitAbortException: JSON Schema Validation
filter failed"

},
{

"name": "circuit.failure.reason",
"value": "JSON Schema Validation filter failed"

},
{

"name": "content.body",
"value": "com.vordel.mime.JSONBody@185afba1"

},
{

"name": "failure.reason",
"value": "JSON Schema Validation filter failed"

},
{

"name": "http.client",
"value": "com.vordel.dwe.http.ServerTransaction@7d3e1384"

},
{

"name": "http.headers",
"value": "com.vordel.mime.HeaderSet@76737f58"

},
{

"name": "http.response.info",
"value": "ERROR"

},
{

"name": "http.response.status",
"value": "500"

},
{

JSON error handling

589

"name": "id",
"value": "Id-f5aab7304f6c754804f70000"

},
{

"name": "json.errors",
"value": "org.codehaus.jackson.JsonParseException: Unexpected character
('\"' (code 34)): was expecting comma to separate OBJECT entries\n at [Source:
com.vordel.dwe.InputStream@592c34b; line: 3, column: 25]"

},
...

]

Warning
For security reasons, Show filter execution path, Show stack trace, and Show current message attrib-
utes should not be used in a production environment.

Create customized JSON errors

You can use the following approaches to create customized JSON errors:

Use the Generic Error filter

Instead of using the JSON Error filter, you can use the Generic Error filter to transform the JSON error message re-
turned by applying an XSLT stylesheet. The Generic Error filter examines the incoming message and infers the type of
message to be returned (for example, JSON or SOAP). For more details, see the Generic error handling topic.

Use the Set Message filter

You can create customized JSON errors using the Set Message filter with the JSON Error filter. The Set Message filter
can change the contents of the message body to any arbitrary content. When an exception occurs in a policy, you can
use this filter to customize the body of the JSON error. For details on how to use the Set Message filter to generate cus-
tomized faults and return them to the client, see the example in the SOAP fault handling topic. You can use the same ap-
proach to generate customized JSON errors.

JSON error handling

590

SOAP fault handling
Overview

In cases where a typical SOAP transaction fails, a SOAP fault can be used to convey error information to the SOAP cli-
ent. The following message shows the format of a SOAP fault:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<env:Fault>
<env:Code>
<env:Value>Receiver</env:Value>
<env:Subcode>
<env:Value>policy failed</env:Value>

</env:Subcode>
</env:Code>
<env:Detail xmlns:oraclefault="http://www.oracle.com/soapfaults"

oraclefault:type="exception" type="exception"/>
</env:Fault>

</env:Body>
</env:Envelope>

By default, the API Gateway returns a very basic SOAP fault to the client when a message filter fails. You can add the
SOAP Fault filter to a policy to return more complicated error information to the client.

For security reasons, it is good practice to return as little information as possible to the client. However, for diagnostic
reasons, it is useful to return as much information to the client as possible. Using the SOAP Fault filter, administrators
have the flexibility to configure just how much information to return to clients, depending on their individual requirements.

SOAP fault format settings

The following configuration options are available in the SOAP Fault Format section:

SOAP Version:
Select the appropriate SOAP version. You can send either a SOAP Fault 1.1 or 1.2 response to the client.

Fault Namespace:
Select the default namespace to use in SOAP faults, or enter a new one if necessary.

Indent SOAP Fault:
If this option is selected, an XSL stylesheet is run over the SOAP fault to indent nested XML elements. The indented
SOAP fault is returned to the client.

SOAP fault content settings

The following configuration options are available in the SOAP Fault Contents section:

Show Detailed Explanation of Fault:
Select this option to return a detailed explanation of the SOAP fault in the fault message. This makes it possible to sup-
press the reason for the exception in a tightly locked down system (the reason is displayed as message blocked in the
SOAP fault).

Show Filter Execution Path
Select this option to return a SOAP fault containing the list of filters run on the message before the error occurred. For
each filter listed in the SOAP fault, the status is given (pass or fail). The following message shows a filter execution
path returned in a SOAP fault:

591

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
</env:Header>
<env:Body>
<env:Fault>
<env:Code>
<env:Value>Receiver</env:Value>
<env:Subcode>
<env:Value>policy failed</env:Value>

</env:Subcode>
</env:Code>
<env:Detail xmlns:oraclefault="http://www.oracle.com/soapfaults"
oraclefault:type="exception" type="exception">
<oraclefault:path>
<oraclefault:visit node="HTTP Parser" status="Pass"></oraclefault:visit>
<oraclefault:visit node="/services" status="Fail"></oraclefault:visit>
<oraclefault:visit node="/status" status="Fail"></oraclefault:visit>

</oraclefault:path>
</env:Detail>
</env:Fault>

</env:Body>
</env:Envelope>

Show Stack Trace
Select this option to return the Java stack trace for the error to the client. This option should only be enabled under in-
structions from Oracle Support.

Show Current Message Attributes
Select this option to return the message attributes present at the time the SOAP fault was generated to the client. Each
message attribute forms the content of a <fault:attribute> element, as shown in the following example:

<fault:attributes>
<fault:attribute name="circuit.failure.reason" value="null">
<fault:attribute name="circuit.lastProcessor" value="HTTP Digest">
<fault:attribute name="http.request.clientaddr" value="/127.0.0.1:4147">
<fault:attribute name="http.response.status" value="401">
<fault:attribute name="http.request.uri" value="/authn">
<fault:attribute name="http.request.verb" value="POST">
<fault:attribute name="http.response.info" value="Authentication Required">
<fault:attribute name="circuit.name" value="Digest AuthN">

</fault:attributes>

Create Customized SOAP faults

You can use the following approaches to create customized SOAP faults:

Use the Generic Error filter

Instead of using the SOAP Fault filter, you can use the Generic Error filter to transform the SOAP fault message re-
turned by applying an XSLT stylesheet. The Generic Error filter examines the incoming message and infers the type of
message to be returned (for example, JSON or SOAP). For more details, see the Generic error handling topic.

Use the Set Message filter

You can create customized SOAP faults using the Set Message filter with the SOAP Fault filter. The Set Message filter
can change the contents of the message body to any arbitrary content. When an exception occurs in a policy, you can
use this filter to customize the body of the SOAP fault. The following example demonstrates how to generate customized
SOAP faults and return them to the client.

SOAP fault handling

592

Step 1: Create the top-level policy

This example first creates a very simple policy called Main Policy. This policy ensures the size of incoming messages is
between 100 and 1000 bytes. Messages in this range are echoed back to the client.

Step 2: Create the fault policy

Next, create a second policy called Fault Circuit. This policy uses the Set Message filter to customize the body of the
SOAP fault. When configuring this filter, enter the contents of the customized SOAP fault to return to clients in the text
area provided.

Step 3: Create a shortcut to the fault policy

Add a Policy Shortcut filter to the Main Policy and configure it to refer to the Fault Circuit. Do not connect this filter to
the policy. Instead, right-click the filter, and select Set as Fault Handler. The Main Policy is displayed as follows:

SOAP fault handling

593

How it works

So how does it work? Assume a 2000-byte message is received by the API Gateway and is passed to the Main Policy
for processing. The message is parsed by the HTTP Parser filter, and the size of the message is checked by the Mes-
sage Size filter. Because the message is greater than the size constraints set by this filter, and because there is no fail-
ure path configured for this filter, an exception is thrown.

When an exception is thrown in a policy, it is handled by the designated Fault Handler, if one is present. In the Main
Policy, a Policy Shortcut filter is set as the fault handler. This filter delegates to the Fault Circuit, meaning that when
an exception occurs, the Main Policy invokes (or delegates to) the Fault Circuit.

The Fault Circuit consists of two filters, which play the following roles:

1. Set Message:
This filter is used to set the body of the message to the contents of the customized SOAP fault.

2. Reflect:
When the SOAP fault has been set to the message body, it is returned to the client using the Reflect filter.

SOAP fault handling

594

Configure system alerts
Overview

This topic shows the API Gateway system alert capabilities. System alerts and events are usually sent when a filter fails,
but they can also be used for notification purposes. API Gateway can send system alerts to several alert destinations, in-
cluding a Windows Event Log, UNIX/Linux syslog, SNMP Network Management System, Check Point Firewall-1, email
recipient, Amazon Simple Notification Service (SNS), or Twitter.

There are two main steps involved in configuring API Gateway to send system alerts:

1. Configure an alert destination
2. Configure an alert filter

Configure an alert destination

The first step in configuring API Gateway to send alerts is to configure an alert destination. This section describes the
destinations to which the API Gateway can send alerts to. You can configure these alert destinations under the Libraries
> Alerts node in the Policy Studio tree.

Syslog (local or remote)

Many types of UNIX and Linux provide a general purpose logging utility called syslog. Both local and remote processes
can send logging messages to a centralized system logging daemon, known as syslog, which in turn writes the mes-
sages to the appropriate log files. You can configure the level of detail at which syslog logs information. This enables
administrators to centrally manage how log files are handled, rather than separately configuring logging for each process.

Each type of process logs to a different syslog facility. There are facilities for the kernel, user processes, authorization
processes, daemons, and a number of place-holders used by site-specific processes. For example, API Gateway en-
ables you to log to facilities such as auth, daemon, ftp, local0-7, and syslog itself.

Remote syslog
To configure a remote syslog alert destination, perform the following steps:

1. Click the Libraries > Alerts node, and then Add > Syslog Remote at the bottom on the right.
2. The Syslog Server dialog enables you to specify details about the machine on which the syslog daemon is running.

API Gateway connects to this daemon and logs to the specified facility when the alert event is triggered. Complete
the following fields on the Syslog Server dialog:
• Name:

Enter a name for this alert destination.
• Host:

Enter the host name or IP address of the machine where the syslog daemon is running.
• Facility:

Select the facility that API Gateway sends alerts to.
3. Click OK.

Local syslog (UNIX only)
To configure a local syslog alert destination, perform the following steps:

1. Click the Libraries > Alerts node, and then click Add > Syslog Local (UNIX only) at the bottom of the window on
the right.

2. The Syslog Server dialog enables you to specify where the alert is sent when the alert event is triggered. Complete
the following fields on the Syslog Server dialog:

595

• Name:
Enter a name for this alert destination.

• Facility:
Select the facility that API Gateway sends alerts to.

3. Click OK.

Windows Event Log

This alert destination enables alert messages to be written to the local or a remote Windows Event Log. To add a Win-
dows Event Log alert destination, perform the following steps:

1. Click the Libraries > Alerts node in the Policy Studio tree, and then click Add > Windows Event Log at the bottom
of the window on the right.

2. The Windows Event Log Alerting dialog enables you to specify the machine of the event log API Gateway sends
alerts to. Complete the following fields on this dialog:
• Name:

Enter a name for this alert destination.
• UNC Server name:

Enter the UNC (Universal Naming Code) of the machine where the event log resides. For example, to send
alerts to the event log running on a machine called \\NT_SERVER, enter \\NT_SERVER as the UNC name for
this host.

3. Click OK.

Check Point FireWall-1 (OPSEC)

API Gateway complies with Open Platform for Security (OPSEC). OPSEC compliance is awarded by Check Point Soft-
ware Technologies to products that have been successfully integrated with at least one of their products. In this case,
API Gateway has been integrated with the Check Point FireWall-1 product.

FireWall-1 is the industry leading firewall that provides network security based on a security policy created by an admin-
istrator. Although OPSEC is not an open standard, the platform is recognized worldwide as the standard for interoperabil-
ity of network security, and the alliance contains over 300 different companies. OPSEC integration is achieved through a
number of published APIs, which enable third-party vendors to interoperate with Check Point products.

To configure a FireWall-1 alert destination, perform the following steps:

1. Click the Libraries > Alerts node in the Policy Studio tree, and then click Add > OPSEC at the bottom of the win-
dow on the right.

2. The OPSEC Alerting dialog enables you to specify details about the machine on which FireWall-1 is installed, the
port it is listening on, and how to authenticate to the firewall. The API Gateway connects to the specified firewall
when the alert event is triggered and prevents further requests for the particular client that triggered the alert. The
following configuration settings must be set:
• sam_server auth_port:

The port number used to establish Secure Internal Communications (SIC) connections with the firewall.
• sam_server auth_type:

The authentication method used to connect to the firewall.
• sam_server ip:

The host name or IP address of the machine that hosts Check Point Firewall.
• sam_server opsec_entity_sic_name:

The firewall's SIC name.
• opsec_sic_name:

The OPSEC application SIC Name (application's full DName defined by the VPN-1 SmartCenter Server).
• opsec_sslca_file:

Configure system alerts

596

The name of the file containing the OPSEC application's digital certificate.
3. Click OK.

You can store configuration information in a file, and load it using the Browse button. Alternatively, use the Template
button to load the required settings into the text area, and add the configuration values manually.

For API Gateway to establish the SSL connection to the firewall, the opsec_sslca_file specified must be uploaded to
the API Gateway machine. To do this, click Add at the bottom of the window.

For more information on OPSEC settings, see the documentation for your OPSEC application.

SNMP Network Management System

This alert destination enables API Gateway to send Simple Network Management Protocol (SNMP) traps to a Network
Management System (NMS). To configure an SNMP alert destination, perform the following steps:

1. Click the Libraries > Alerts node in the Policy Studio tree, and then click Add > SNMP at the bottom of the window
on the right.

2. The SNMP Alerting dialog enables you to specify details about the NMS that API Gateway sends alerts to. Com-
plete the following fields:
• Host:

The host name or IP address of the machine on which the NMS resides.
• Port:

The port on which the NMS is listening.
• Timeout:

The timeout in seconds for connections from API Gateway to the NMS.
• Retries:

The number of retries that should be attempted whenever a connection failure occurs.
• SNMP Version:

Select the version of SNMP to use for this alert.
3. Click OK.

Email recipient

This alert destination enables alert messages to be sent by email. To add an email alert destination, perform the follow-
ing steps:

1. Click the Libraries > Alerts node in the Policy Studio tree, and click Add > Email at the bottom on the right.
2. The Email Alerting dialog enables you to configure how the email alert is sent. Complete the following:

• Name:
Enter a name for this alert destination.

• Email Recipient (To):
Enter the recipient of the alert mail in this field. Use a semicolon-separated list of email addresses to send alerts
to multiple recipients.

• Email Sender (From):
Email alerts appear from the sender email address specified here.

Important
Some mail servers do not allow relaying mail when the sender in the From field is not recognized
by the server.

• Email Subject:

Configure system alerts

597

Email alerts use the subject specified in this field.
3. In the SMTP Server Settings, specify the following fields:

• Outgoing Mail Server (SMTP):
Specify the SMTP server that API Gateway uses to relay the alert email.

• Port:
Specify the SMTP server port to connect to. Defaults to port 25.

• Connection Security:
Select the connection security used to send the alert email (SSL, TLS, or NONE). Defaults to NONE.

4. If you are required to authenticate to the SMTP server, specify the following fields in Log on Using:
• User Name:

Enter the user name for authentication.
• Password:

Enter the password for the user name specified.
5. Finally, you can select the Email Debugging setting to find out more information about errors encountered by API

Gateway when attempting to send email alerts. All trace files are written to the /trace directory of your API Gate-
way installation. This setting is not selected by default.

6. Click OK.

Amazon SNS

This alert destination enables alert messages to be sent to the Amazon Simple Notification Service (SNS). Amazon SNS
is a managed push messaging service that can be used to push to mobile devices and Internet connected smart devices,
as well as to other distributed services. For more information on Amazon SNS, go to http://aws.amazon.com/sns/.

To add an Amazon SNS alert destination, perform the following steps:

1. Click the Libraries > Alerts node in the Policy Studio tree.
2. Click Add > Amazon SNS at the bottom of the window on the right.
3. Complete the following fields on the AWS SNS Alert dialog:

• Name:
Enter a name for this alert destination.

• AWS Credential:
Click the browse button to select your AWS security credentials (API key and secret) to be used by API Gate-
way when connecting to Amazon SNS.

• Region:
Select the region appropriate for your deployment. You can choose from the following options:
• US East (Northern Virginia)
• US West (Oregon)
• US West (Northern California)
• EU (Ireland)
• Asia Pacific (Singapore)
• Asia Pacific (Tokyo)
• Asia Pacific (Sydney)
• South America (Sao Paulo)
• US GovCloud

• Client settings:
Click the browse button to select the AWS client configuration to be used by API Gateway when connecting to
Amazon SNS. For more details, see the section called “Configure AWS client settings”.

• Topic ARN:
Enter the topic Amazon Resource Name (ARN) to send alerts to.

When you create a topic, Amazon SNS assigns a unique ARN to the topic, which includes the service name (for

Configure system alerts

598

http://aws.amazon.com/sns/

example, SNS), the region, the AWS ID of the user, and the topic name. Whenever a publisher or subscriber
needs to perform any action on the topic, they should reference the unique topic ARN. The ARN is returned as
part of the API call to create the topic. For example,
arn:aws:sns:us-east-1:1234567890123456:mytopic is the ARN for a topic named mytopic created
by a user with the AWS account ID 123456789012 and hosted in the US East region.

• Subject:
Enter the subject of the alert to be sent to Amazon SNS.

4. Click OK.

Twitter

This alert destination enables API Gateway to send tweet alerts to Twitter. Twitter uses the OAuth open authentication
standard. To enable API Gateway to send tweet alerts using the Twitter API, you first need to do the following:

• Create a Twitter account to represent you as the user
• Register a custom application for your API Gateway instance, which posts alerts on the user's behalf

Twitter requires that API calls are made for both the user and the application. The Twitter API requires the following cre-
dentials:

• Consumer key of registered applications
• Consumer secret key of registered application
• Access token allowing application to post on behalf of a user
• Access token secret to verify the access token

Twitter uses this information to determine which application is calling the API, and verifies that the Twitter user you are
attempting to make API requests on behalf of has authorized access to their account using the specified application.
Twitter identifies and authenticates all requests as coming from both the user performing the request and the registered
API Gateway application working on the user's behalf.

Register a client application
To use the Twitter API, you must create a Twitter account, and register a client application for API Gateway. If you have
not already created a Twitter account, register a new account using the instructions on http://www.twitter.com. When you
have created an account, register a client application for API Gateway:

1. Go to http://dev.twitter.com/.
2. On the Twitter toolbar, select Your apps.
3. Click the Register a new app button.
4. Enter the details for your custom application. Some details are arbitrary, but you must specify the following values:

• Application Type:
Select the Client radio button.

• Default Access Type:
Select the Read & Write radio button.

Note
The Application Name might already be registered to another user, so you may need to specify a dif-
ferent unique name.

5. Click Register Application. Each client application you register is provisioned a consumer key and consumer
secret. These are used, in conjunction with the OAuth library, to sign every request you make to the API. Using this
signing process, Twitter trusts that the traffic identifying itself as you is indeed you.

Configure system alerts

599

http://www.twitter.com
http://dev.twitter.com/

6. Select your registered application, and select My Access Token. This provides you with an access token and an ac-
cess token secret. You must store these safely.

Configure a Twitter alert destination
To configure a Twitter alert destination, perform the following steps:

1. Click the Libraries > Alerts node in the Policy Studio tree.
2. Click Add > Twitter at the bottom of the window on the right.
3. The Twitter Alerting dialog enables you to specify credentials for the Twitter user that API Gateway uses to send

an alert to. Complete the following fields on this dialog:
• Consumer Key:

The consumer key of your registered application.
• Consumer Secret:

The consumer secret of your registered application.
• Access Token:

The access token that represents you.
• Access Token Secret:

The access token secret that represents you.

Configure an alert filter

Typically, an Alert filter is placed on the failure path of another filter in the policy. For example, to configure an alert if a
schema validation fails 10 times within a 5000 millisecond period for a specified web service. In this case, you would
place the Alert filter on the failure path from the Schema Validation filter, as shown in the following policy example.

When editing policies, you can drag and drop the Alert filter from the Monitoring filter group.

General settings

Configure the following settings on the Alert filter window:

Name:
Enter a descriptive name for the filter.

Alert Type:
Select the severity level of the alert. The options are Error, Warn, and Info. This option is only relevant for alert destina-
tions that support severity levels, such as the Windows Event Log.

Notifications settings

The Notifications tab enables you to configure the alert destinations. Any alert destinations that are already configured
are shown under the respective alert destination type on the left of the window. You can also create new alert destina-

Configure system alerts

600

tions, and edit or delete existing alert destinations directly from this window.

Select an existing alert destination
To select an existing alert destination, follow these steps:

1. Click the check box next to the alert destination on the left of the window. Alternatively, click the check box next to
the alert destination type to select all alert destinations of that type (for example, all Email destinations).

2. Choose the message to use for the alert destination on the right side of the window.
• To set the message for an email destination, select Use the Default Message to use the message from the De-

fault Message tab, select Use the following message to enter a custom message, or select Load from file to
load a message from a file.

You can select the Content type of a custom message or a message loaded from a file (for example, as text/
html). You can also register new MIME/DIME content types by clicking the Registered Types button.

• To set the message for all other destinations, select Use the Default Message to use the message from the
Default Message tab, or select Use the following message to enter a custom message.

The following figure shows an example of an email alert destination with a text/html custom message.

The following figure shows an example of an SNMP alert destination that uses the default message.

Configure system alerts

601

Create a new alert destination
To create a new alert destination, click Add at the top left and choose from the following options:

• Email
• OPSEC
• Syslog Local (UNIX only)
• SNMP
• Windows Event Log
• Syslog Remote
• Twitter

For more information on configuring alert destinations see the section called “Configure an alert destination”.

Edit or delete an existing alert destination
To edit or delete an existing alert destination, select the destination on the left and click Edit or Delete.

Call this policy when alert is triggered:
Click the browse button to select a policy to be used by API Gateway when an alert is triggered.

Tracking settings

The Tracking tab enables you to configure how often alerts are sent. Configure the following settings:

Accumulated number of messages:
Enter the number of times this filter can be invoked before the alert is sent. The default value is 1.

In time period (secs):
Enter the time period in which the accumulated number of messages can occur before an alert is triggered. The default is
60 seconds.

Track per client:
Select this option to record the accumulated number of messages in the specified time period for each client. This option
is selected by default.

Default message settings

The Default Message tab enables you to configure a default message for alerts. Enter the message text to appear in the
alert in the Message to send field.

Configure system alerts

602

You can enter message attributes using selectors, which API Gateway looks up and expands at runtime. For example,
instead of sending a generic alert stating Authentication Failed, you can use a message attribute to include the ID
of the user whose authentication failed. The following examples show how to use message attributes in alert messages.

Authentication failure for user: ${authentication.subject.id}.

{alert.number.failures} authentication failures have occurred in ${alert.time.period} seconds.

${alert.number.failures} exceptions have occurred in policy ${circuit.name}.

The last exception was ${circuit.exception} with path ${circuit.path}.

For more information on selectors, see Select configuration values at runtime.

Note
An alert message is not required for alerts sent to an OPSEC firewall.

Configure system alerts

603

Set transaction log level and log message
Overview

By default, logging is configured for a service with logging level of failure. You can also configure each filter in a policy to
log its own message depending on whether it succeeds, fails, and/or throws an exception. Log messages can be stored
in several locations, including a database, a file, or the system console. For more details on configuring logging destina-
tions, see the API Gateway Administrator Guide.

Logging levels apply to the following cases:

• A filter succeeds if it returns a true result after carrying out its processing. For example, if an LDAP directory returns
an authorized result to an authorization filter, the filter succeeds.

• A filter fails if it returns a false result after performing its processing. For example, an authorization filter returns false
if an LDAP directory returns a not authorized result to the filter.

• A filter aborts when it can not make the decision it is configured to make. For example, if an LDAP-based authoriza-
tion filter can not connect to the LDAP directory, it aborts because it can neither authorize nor refuse access. This is
regarded as a fatal error.

Configuration

You can access the Transaction Log Level and Message window by clicking the Next button on the main window of all
filters. This window includes the following fields:

Logging Level:
Configure one of the following options:

Use Service Level Settings This option is selected by default. Logging is configured for the Web service
with logging level of Failure.

Override Logging Level for this Fil-
ter

Alternatively, select this option to configure log messages for this filter when it
succeeds, fails, and/or aborts. Select Success, Failure, and/or Fatal to config-
ure this filter to log at the respective levels.

Log Messages:
Default log message values are provided at each level for all filters. When you select the checkbox for a particular level,
the default log message for that level is used. You can specify an alternative log message by entering the message in
the text field provided.

All filters require and generate message attributes, while some consume attributes. In some cases, it may be useful to
log the value of these attributes. For example, instead of an authentication filter logging a generic Authentication
Failed message, you can use the value of the authentication.subject.id attribute to log the ID of the user that
could not be authenticated.

Use the following format to enter a message attribute selector in a log message:

${name_of_attribute}

At runtime, the API Gateway expands these selectors to the value of the message attribute. For example, to make sure
the ID of a non-authenticated user is logged in the message, enter something like the following in the text field for the
Failure case:

604

The user '${authentication.subject.id}' could not be authenticated.

Then if a user with ID oracle can not be authenticated by the API Gateway (a failure case), the following message is
logged:

The user 'oracle' could not be authenticated.

For more details on selectors, see Select configuration values at runtime.

Transaction Logging Behavior:
This setting is relevant only in cases where you have configured the API Gateway to log audit trail messages to a data-
base. For more details, see the API Gateway Administrator Guide.

You can select the Abort policy processing on database log error checkbox if you have configured the API Gateway
to write log messages to a database, but that database is not available at runtime. If you have selected this checkbox,
and the database is not available, the filter aborts, which in turn causes the policy to abort. In this case, the Fault Handler
for the policy is invoked.

Filter Category:
The category selected here identifies the category of filters to which this filter belongs. The default selection should be
appropriate in most cases.

Set transaction log level and log message

605

Log message payload
Overview

The Log Message Payload filter is used to log the message payload at any point in the policy. The message payload in-
cludes the HTTP headers and MIME/DIME attachments.

By placing the Log Message Payload filter at various key locations in the policy, a complete audit trail of the message
can be achieved. For example, by placing the filter after each filter in the policy, the complete history of the message can
be logged. This is especially useful in cases where the message has been altered by the API Gateway (for example, by
signing or encrypting the message, inserting security tokens, or by converting the message to another grammar using
XSLT).

Log messages can be stored in several locations, including a database, a file, or the system console. For more details on
configuring logging destinations, see the API Gateway Administrator Guide.

Configuration

Enter an appropriate name for the Log Message Payload filter in the Name field. It is good practice to use descriptive
names for these filters. For example, Log message before signing message and Log message after signing would
be useful names to give to two Log Message Payload filters that are placed before and after a Sign Message filter.

By default, the Log Message Payload filter writes entries to the log file in the following format:

${timestamp} ${id} ${filterName} ${payload}

However, you can alter the format of the logging output using the values entered in the Format field. You can use select-
ors to output logging information that is specific to the request. You can specify the following properties:

• level:
The log level (i.e. fatal, fail, success).

• id:
The unique transaction ID assigned to the message.

• ip:
The IP address of the client that sent the request.

• timestamp:
The time that the message was processed in user-readable form.

• filterName:
The name of the filter that generated the log message.

• filterType:
The type of the filter that logged the message.

• text:
The text of the log message that was configured in the filter itself.

• payload:
The complete contents of the HTTP request, including HTTP headers, body, and attachments.

606

Service level agreement
Overview

A service level agreement (SLA) is an agreement put in place between a web services host and a client of that web ser-
vice in order to guarantee a certain minimum quality of service. It is common to see SLAs in place to ensure that a min-
imum number of messages result in a communications failure and that responses are received within an acceptable
timeframe. In cases where the conditions of the SLA are breached, it is crucial that an alert can be sent to the appropri-
ate party.

API Gateway satisfies these requirements by allowing SLAs to be configured at the policy level. It is possible to configure
SLAs to monitor the following types of problems:

• Response times
• HTTP status codes returned from the web service
• Communication failures

The SLA monitoring performed by API Gateway is statistical. Because of this, a single message (or even a small number
of messages) is not considered a sufficient sample to cause an alert to be triggered. The monitoring engine actually uses
an exponential decay algorithm to determine whether an SLA is failing or not. This algorithm is best explained with an ex-
ample.

Assume the poll rate is set to 3 seconds (3000ms), the data age is set to 6 seconds (6000ms), and you have a web ser-
vice with an average processing time of 100ms. A single client sending a stream of requests through API Gateway will be
able to generate about 10 requests per second, given the web service's 100ms response time.

At every 3 seconds poll period you will have data from a previous 30 samples to consider the average response times of.
However, rather than simply using the response time of the last 3 seconds worth of data, historical data is "smoothed" in-
to the current estimate of the failing percentage. The new data is combined with the existing data such that it will take ap-
proximately the data age time for a sample to disappear from the average.

Therefore the closer the data age is to the sampling rate, the less significant historical data becomes, and the more signi-
ficant the "last" sample becomes.

To generate an alert, you must also have enough significant samples at each poll period to consider the date to be stat-
istically valid. For example, if a single request arrives over a period of 1 hour it might not be fair to say that "less than
20%" of all received requests have failed the response time requirements. For this reason, statistical analysis provides a
more realistic SLA monitoring mechanism than a solution based purely on absolute metrics.

Response time requirements

You can monitor the response times of web services protected by the SLA Filter. This filter provides different ways of
measuring response times:

Response Time Measurement Description

receive-request-start The time that the API Gateway receives the first byte of the request from the cli-
ent.

receive-request-end The time that the API Gateway receives the last byte of the request from the cli-
ent.

send-request-start The time that the API Gateway sends the first byte of the request to the web
service.

send-request-end The time that the API Gateway sends the last byte of the request to the web

607

Response Time Measurement Description

service

receive-response-start The time that the API Gateway receives the first byte of the response from the
web service

receive-response-end The time that the API Gateway receives the last byte of the response from the
web service.

send-response-start The time that the API Gateway sends the first byte of the response to the client.

send-response-end The time that the API Gateway sends the last byte of the response to the client.

API Gateway will measure each of the 8 time values. They will be available for processing after the policy has completed
for a single request. These 8 options are available for the following reasons:

• API Gateway might start to send the first byte to the web service before the last byte is received from the client
(send-request-start <receive-request-end). This will occur if the invoked policy does not require the full message to
be read into memory.

• API Gateway might start to send the response to the client before the complete response has been received from
the web service, (send-response-start < receive-response-end). This will occur when invoked policy does not require
the full message to be read into memory.

• It is possible that the web service might start to send the response before it has received the complete request.
However, API Gateway will not start to read the response until it has sent the complete request. This means that the
following is always true: send-request-end < receive-response-start.

• The time value for send-response-end will depend upon the client application. This value will be larger if the client is
slow to read the response.

To add a response time requirement for an SLA, click the Add button.

To configure the start time and end time for the response time measurement, click the Add button. On the Settings tab,
specify the percentage of response times that must be below a specified time interval (in milliseconds) in the fields
provided. The purpose of these options is to allow for situations where a very small number of unusually slow requests
might cause an SLA to trigger unnecessarily. By using percentages, such requests will not distort the statistics collected
by API Gateway.

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared, that is, when the breached conditions are no longer in breach of the SLA.

Finally, click the Advanced tab to configure timing information. Select a Start Timing Point from the 8 times listed in the
table above. API Gateway will start measuring the response time from this time. Then select an End Timing Point from
the 8 times listed in the table above. API Gateway will stop measuring the response time from this time.

HTTP status requirements

HTTP status codes might be received from a web service. API Gateway can be configured to monitor these and gener-
ate alerts based on the number of occurrences of certain types of status code response. HTTP status codes are three di-
git codes that can be grouped into standard status "classes", with the first digit indicating the status class. The status
classes are as follows:

HTTP Status Code Class Description

1xx These status codes indicate a provisional response.

2xx These status codes indicate that the client's request was successfully received,

Service level agreement

608

HTTP Status Code Class Description

understood, and accepted.

3xx These status codes indicate that further action needs to be taken by the user
agent in order to fulfill the request.

4xx These status codes are intended for cases in which the client seems to have
erred. For example 401, means that authentication has failed.

5xx These status codes are intended for cases where the server has encountered
an unexpected condition that prevented it from fulfilling the request. For ex-
ample, 500 is used to transmit SOAP faults.

API Gateway might monitor a class (that is, range) of status codes, or it might monitor specific status codes. For ex-
ample, it is possible to configure the following HTTP status code requirements:

• At least 97% of the requests must yield HTTP status codes between 200 and 299
• At most 2% of requests can yield HTTP status codes between 400 and 499
• At most 0% of requests can yield HTTP status code 500

Click the Add button in the HTTP Status Code Requirements section.

Select an existing status code or class of status codes from the HTTP Status Code field. To add a new code or range of
codes, click the Add button.

Enter a name for the new code or range of codes in the Name field of the Configure HTTP Status Code dialog. Enter
the first HTTP status code in the range of status codes that you want to monitor in the Start Status field. Then enter the
last HTTP status code in the range of status codes that you want to monitor in the End Status field.

To monitor just one specific status code, enter the same code in the Start Status and End Status fields.

Click OK when you are satisfied with the selected range of status codes to return to the previous dialog. The remaining 2
fields allow the administrator to specify the minimum or maximum percentage of received HTTP status codes that fall into
the configured range before an alert is triggered.

Again, the use of percentages here is to allow for situations where a very small number of requests return the status
codes within the "forbidden" range. By using percentages, such requests will not distort the statistics collected by API
Gateway.

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared, (when the breached conditions are no longer in breach of the SLA).

Communications failure requirements

API Gateway is deemed to have experienced a communications failure when it fails to connect to the web service, fails to
send the request, or fails to receive the response.

The requirements for communications failures can be expressed as follows:

• No more than 4% of requests can result in communications failures.

Enter the percentage of allowable communications failures in the field provided. An alert will be configured if the percent-
age of communicates failures rises above this level.

Service level agreement

609

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared (when the breached conditions are no longer in breach of the SLA).

Select alerting system

If an alert is triggered, it must be sent to an alerting destination. API Gateway can send alerts to the following destina-
tions:

• Windows Event Log
• Email Recipient
• SNMP Network Management System
• Local Syslog
• Remote Syslog
• CheckPoint FireWall-1 (OPSEC)
• Twitter

The Select Alerting System table at the bottom of the window displays all available alerting destinations that have been
configured. You can click Add to configure an alert destination. For more details, see the topic on Configure system
alerts.

Select one or more alerting systems in the table. An alert will be sent to each selected system in the event of a violation
of the performance requirements. Alert clearances will be generated when the violation no longer exists.

Service level agreement

610

Set service context
Overview

The Set Service Context filter configures service-level monitoring details. For example, you can use the fields on this fil-
ter window to configure whether API Gateway stores service usage and service usage per client details. You can also set
the name of the service displayed in the web-based API Gateway Manager monitoring tools and API Gateway Analytics
reporting tools.

General settings

Name:
Enter an appropriate name for the filter to be displayed in a policy.

Service Name:
Enter an appropriate name for this service to be displayed in the web-based API Gateway Manager tools, and in the API
Gateway Analytics interface when generating reports for this service.

Monitoring Options:
The fields in this group enable you to configure whether this service stores usage metrics data to a database. For ex-
ample, this information can be used by API Gateway Analytics to produce reports showing how and who is calling this
service. For details on the fields, see the section called “Monitoring options” in the Web service filter topic.

611

Send event to Sentinel
Overview

You can use the Sentinel Event filter to send tracked events to Axway Sentinel. Sentinel uses tracked objects to identify
events. Every tracked object contains a unique name, version number, and a list of attributes.

Every tracked event must specify a tracked object, and this tracked object must already be defined in Sentinel. A tracked
event can also contain attributes, and the attributes must already be defined as tracked object attributes in Sentinel.

General settings

Configure the following settings on the Sentinel Event window:

Name:
Enter a suitable name for the filter.

Settings tab

Sentinel Server:
Click the browse button to select a Sentinel server connection.

The Tracked object section enables you to specify the tracked object to use in the Sentinel event.

Note
Tracked objects must exist in your Sentinel database before you can start using Sentinel to monitor your
applications and track their activities. For more information on defining tracked objects in Sentinel, see the
Sentinel Configuration Guide available on the Axway Support website: https://support.axway.com.

Use the following tracked object:
Select this option and click the browse button to select a Sentinel tracked object to use. If no tracked objects are already
defined, right-click Sentinel Tracked Objects in the dialog and select Add a tracked object. Enter a Name and a Ver-
sion for the tracked object. The values entered must correspond to the Public name and Version of the tracked object
in Sentinel.

Or use the following from the message:
Select this option to retrieve the tracked object name and tracked object version from a message received from an up-
stream product (for example, B2Bi). If the upstream product has inserted tracking information inside some HTTP head-
ers, you can use selectors to retrieve these from the message. For example,
${http.headers["X-TRACKEDOBJECT-NAME"]} retrieves the tracked object name from the HTTP headers, and
${http.headers["X-TRACKEDOBJECT-IDENTITY"]} retrieves the tracked object version from the HTTP headers.

The Event will contain the following section enables you to specify the tracked object attributes to use in the Sentinel
event.

Note
The named event attributes specified in this section must be contained within the tracked object definition in
Sentinel.

Include Cycle ID:
Select this option to include the cycle ID in the event, and enter a value. For example, enter ${id} to use the API Gate-
way transaction ID as the cycle ID. This value is used to populate the CycleId attribute of the tracked object in Sentinel.

612

https://support.axway.com

Include policy name in event named:
Select this option to include the name of the policy in the event, in an attribute with the specified name. You can use any
name for the attribute, as long as the attribute name exists in the tracked object definition in Sentinel.

Include filter name in event named:
Select this option to include the name of the filter in the event, in an attribute with the specified name. You can use any
name for the attribute, as long as the attribute name exists in the tracked object definition in Sentinel.

You can also add other attributes to be included in the event by populating entries in the table. Click the Add button to
add an attribute. Enter a Name and a Value for the attribute. For example, to populate an attribute named UserName
with the authenticated user, you would enter UserName for the Name and ${authentication.subject.id} for the
Value.

Send as update:
Select this option to send the event as an update.

Tracking tab

Add Cycle ID in header named:
Select this option and enter a value, to include the cycle ID in the HTTP header.

Add Tracked Object name in header named:
Select this option and enter a value, to include the tracked object name in the HTTP header.

Add Tracked Object version in header named:
Select this option and enter a value, to include the tracked object version in the HTTP header.

Further information

For more detailed information on Sentinel integration, see the Sentinel Integration Guide available from Oracle support.

Send event to Sentinel

613

Send cycle link event to Sentinel
Overview

You can use the Sentinel Cycle Link filter to send cycle link events to Axway Sentinel. Sentinel uses cycle links to link
processing cycles sequentially. A processing cycle is a group of related tracked events (identified by the same cycle ID).

Every cycle link must specify a parent processing cycle and a child processing cycle. A processing cycle is identified by a
cycle ID, and the tracked object name and version are used to identify the tracked events within the processing cycle.

This filter can be used to link related events from different products. For example, if B2Bi and API Gateway are both
sending events to the same Sentinel server, each product sends the events with different cycle IDs. You can link the
events from B2Bi with the events from API Gateway by sending a cycle link event to the Sentinel server. This links the
two cycle IDs in Sentinel.

General settings

Configure the following settings on the Sentinel Cycle Link window:

Name:
Enter a suitable name for the filter.

Sentinel Server:
Click the browse button to select a Sentinel server connection.

The Parent Settings section enables you to specify the cycle ID for the parent processing cycle. You also need to spe-
cify the tracked object name and version to identify the relevant tracked events.

Parent Cycle ID:
Enter the cycle ID of the parent processing cycle. This should be the cycle ID of the upstream product (for example,
B2Bi). For example, ${http.headers["X-TRACKING-CYCLEID"]} retrieves the parent cycle ID from the HTTP re-
quest headers.

Use the following tracked object:
Select this option and click the browse button to select a Sentinel tracked object to use. If no tracked objects are already
defined, right-click Sentinel Tracked Objects in the dialog and select Add a tracked object. Enter a Name and a Ver-
sion for the tracked object. The values entered must correspond to the Public name and Version of the tracked object
in Sentinel.

Or use the following from the message:
Select this option to retrieve the tracked object name and tracked object version from a message received from an up-
stream product (for example, B2Bi). If the upstream product has inserted tracking information inside some HTTP head-
ers, you can use selectors to retrieve these from the message. For example,
${http.headers["X-TRACKEDOBJECT-NAME"]} retrieves the tracked object name from the HTTP headers, and
${http.headers["X-TRACKEDOBJECT-IDENTITY"]} retrieves the tracked object version from the HTTP headers.

The Child Settings section enables you to specify the cycle ID for the child processing cycle. You also need to specify
the tracked object name and version to identify the relevant tracked events.

Child Cycle ID:
Enter the cycle ID of the child processing cycle. This should be the cycle ID of API Gateway. For example, enter ${id}
to specify the API Gateway transaction ID.

Use the following tracked object:
Select this option and click the browse button to select a Sentinel tracked object to use. If no tracked objects are already
defined, right-click Sentinel Tracked Objects in the dialog and select Add a tracked object. Enter a Name and a Ver-
sion for the tracked object. The values entered must correspond to the Public name and Version of the tracked object

614

in Sentinel.

Or use the following from the message:
Select this option to retrieve the tracked object name and tracked object version from a message received from an up-
stream product (for example, B2Bi). If the upstream product has inserted tracking information inside some HTTP head-
ers, you can use selectors to retrieve these from the message. For example,
${http.headers["X-TRACKEDOBJECT-NAME"]} retrieves the tracked object name from the HTTP headers, and
${http.headers["X-TRACKEDOBJECT-IDENTITY"]} retrieves the tracked object version from the HTTP headers.

Further information

For more detailed information on Sentinel integration, see the Sentinel Integration Guide available from Oracle support.

Send cycle link event to Sentinel

615

Oracle Access Manager authorization
Overview

The Authorization filter enables you to authorize an authenticated user for a particular resource against Oracle Access
Manager (OAM). The user must first have been authenticated to OAM using the HTTP basic authentication or HTTP di-
gest authentication filter. After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be
used instead of the user name and password.

General settings

Configure the following general fields:

Name:
Enter a descriptive name for this filter.

Attribute Containing SSO Token:
Enter the name of the message attribute that contains the user's SSO token. This attribute is populated when authentic-
ating to Oracle Access Manager using the HTTP basic authentication or HTTP digest authentication filter. By default, the
SSO token is stored in the oracle.sso.token message attribute.

Request settings

Configure the following fields to authorize a user for a particular resource against Oracle Access Manager:

Resource Type:
Enter the resource type for which you are requesting access (for example, http for access to a web-based URL).

Resource Name:
Enter the name of the resource for which the user is requesting access. The default is
//hostname${http.request.uri}, which contains the original path requested by the client.

Operation:
In most access management products, it is common to authorize users for a limited set of actions on the requested re-
source. For example, users with management roles may be able to write (HTTP POST) to a certain web service, but
users with more junior roles might only have read access (HTTP GET) to the same service.

You can use this field to specify the operation to grant the user access to on the specified resource. By default, this field
is set to the http.request.verb message attribute, which contains the HTTP verb used by the client to send the mes-
sage to the API Gateway (for example, POST).

Include Query String
Select whether the OAM server uses the HTTP query string parameters to determine the policy that protects this re-
source. This setting is optional if the configured policies do not rely on the query string parameters. This setting is not
configured by default.

OAM Access SDK settings

Configure the following fields for the OAM Access SDK:

OAM ASDK Directory:
Enter the path to your OAM Access SDK directory. For more details on the OAM Access SDK, see your Oracle Access
Manager documentation.

OAM ASDK Compatibility Mode:
Select the Oracle Access Manager server version to which this filter connects (OAM 10g or OAM 11g). Defaults to OAM

616

11g.

Oracle Access Manager authorization

617

Oracle Access Manager certificate authentication
Overview

The Log in with certificate filter enables authentication to Oracle Access Manager (OAM) using an X.509 certificate
presented by the client. After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be
used by the client for subsequent calls to the virtualized service.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

Attribute containing X509 certificate:
Enter the name of the message attribute that contains the user's X.509 certificate. By default, this is stored in the cer-
tificate message attribute.

Attribute to contain SSO token id:
Enter the name of the message attribute to contain the user's SSO token. By default, the SSO token is stored in the or-
acle.sso.token message attribute.

Resource settings

Configure the following resource settings:

Resource Type:
Enter the type of the resource for which you are requesting access. For example, when seeking access to a web-based
URL, enter http.

Resource Name:
Enter the name of the resource for which the user is requesting access. By default, this field is set to /
/hostname${http.request.uri}, which contains the original path requested by the client.

Operation:
In most access management products, it is common to authorize users for a limited set of actions on the requested re-
source. For example, users with management roles may be able to write (HTTP POST) to a certain web service, but
users with more junior roles might only have read access (HTTP GET) to the same service.

You can use this field to specify the operation to grant the user access to on the specified resource. By default, this field
is set to the http.request.verb message attribute, which contains the HTTP verb used by the client to send the mes-
sage to the API Gateway (for example, POST).

Include query string:
Select whether the query string parameters are used by the OAM server to determine the policy that protects this re-
source. This setting is optional if the policies configured do not rely on the query string parameters.

Session settings

Configure the following session settings:

Location:
If the client location must be passed to OAM for it to make its decision, you can enter a valid DNS name or IP address to
specify this location.

618

Parameters:
You can add optional additional parameters to be used in the authentication decision. The available optional parameters
include the following:

ip IP address, in dotted decimal notation, of the client accessing the resource.

operation Operation attempted on the resource (for HTTP resources, one of GET, POST,
PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT, or OTHER).

resource The requested resource identifier (for HTTP resources, the full URL).

targethost The host (host:port) to which resource request is sent.

Note
One or more of these optional parameters might be required by certain authentication schemes, modules,
or plug-ins configured in the OAM server. To determine which parameters to add, see your OAM server
configuration and documentation.

OAM Access SDK settings

Configure the following fields for the OAM Access SDK:

OAM ASDK Directory:
Enter the path to your OAM Access SDK directory. For more details on the OAM Access SDK, see your Oracle Access
Manager documentation.

OAM ASDK Compatibility Mode:
Select the Oracle Access Manager server version to which this filter connects (OAM 10g or OAM 11g). Defaults to OAM
11g.

Oracle Access Manager certificate authentication

619

Oracle Access Manager SSO session logout
Overview

The Log out session filter enables you to log out a session from Oracle Access Manager by invalidating the SSO token
that is associated with this session.

Configuration

Configure the following fields to explicitly log out (invalidate) an SSO token from Oracle Access Manager:

Name:
Enter a descriptive name for this filter.

Attribute Containing SSO Token ID:
Enter the name of the message attribute that contains the SSO token to invalidate. This attribute is populated when au-
thenticating to Oracle Access Manager using the HTTP basic authentication or HTTP digest authentication filter. By de-
fault, the SSO token is stored in the oracle.sso.token message attribute.

OAM ASDK Directory:
Enter the path to your OAM Access SDK directory. For more details on the OAM Access SDK, see your Oracle Access
Manager documentation.

OAM ASDK Compatibility Mode:
Select the Oracle Access Manager server version to which this filter connects (OAM 10g or OAM 11g). Defaults to OAM
11g.

620

Oracle Access Manager SSO token validation
Overview

The SSO Token Validation filter enables you to check an Oracle Access Manager Single Sign On (SSO) token to en-
sure that it is still valid. The SSO token is issued by Oracle Access Manager (OAM) after the API Gateway authenticates
to it on behalf of an end-user using the HTTP basic authentication or HTTP digest authentication filter. After successfully
authenticating to OAM, the SSO token is stored in the oracle.sso.token message attribute.

Oracle Access Manager SSO enables a client to send up its user name and password once, and then receive an SSO
token (for example, in a cookie or in the XML payload). The client can then send up the SSO token instead of the user
name and password.

Configuration

Configure the following fields to validate an SSO token issued by Oracle Access Manager:

Name:
Enter a descriptive name for the filter.

Attribute Containing SSO Token ID:
Enter the name of the message attribute that contains the SSO token to validate. This attribute is populated when au-
thenticating to Oracle Access Manager using the HTTP basic authentication or HTTP digest authentication filters. By de-
fault, the SSO token is stored in the oracle.sso.token message attribute.

OAM ASDK Directory:
Enter the path to your OAM Access SDK directory. For more details on the OAM Access SDK, see your Oracle Access
Manager documentation.

OAM ASDK Compatibility Mode:
Select the Oracle Access Manager server version to which this filter connects (OAM 10g or OAM 11g). Defaults to OAM
11g.

621

Oracle Entitlements Server 10g authorization
Overview

This filter enables you to authorize an authenticated user for a particular resource against Oracle Entitlements Server
(OES) 10g. The user must first have been authenticated to OES 10g (for example, using the HTTP basic authentication
or HTTP digest authentication filter).

This filter enables you to configure the API Gateway to delegate authorization to OES 10g. You can configure the API
Gateway to authorize an authenticated user for a particular resource against OES 10g. Credentials used for authentica-
tion can be extracted from the HTTP Basic header, WS-Security username token, or the message payload. After suc-
cessful authentication, the API Gateway can authorize the user to access a resource using OES 10g.

Configuration

Configure the following general field:

Name:
Enter an appropriate descriptive name for this filter.

Settings

Configure the following fields on the Settings tab:

Resource:
Enter the URL for the target resource (for example, web service). Alternatively, if this policy is reused for multiple ser-
vices, enter a URL using message attribute selectors, which are expanded at runtime to the value of the specified attrib-
ute. For example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Resource Naming Authority:
Enter apigatewayResource to match the Naming Authority Definition loaded in the OES 10g settings. For more de-
tails, see Oracle Security Service Module settings (10g).

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a message attribute selector, which is expanded at runtime to the value of the specified attribute (for ex-
ample, ${http.request.verb}) For more details on selectors, see Select configuration values at runtime.

Action Naming Authority:
Enter apigatewayAction to match the Naming Authority Definition loaded in the OES 10g settings. For more details,
see Oracle Security Service Module settings (10g).

How access request is processed:
Select one of the following options:

ONCE Specifies that the authorization query is only asked once for a resource and ac-
tion.

POST Specifies that the authorization query is asked after a resource is acquired, but
before it has been processed or presented.

PRIOR Specifies that the authorization query is asked before a resource is acquired.

622

Application Context

Configure the following field on the Application Context tab:

Application's Current Context:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

Oracle Entitlements Server 10g authorization

623

Get roles from Oracle Entitlements Server 10g
Overview

This filter enables you to get the set of roles that are assigned to an identity for a specific resource (for example, web ser-
vice) and a specific action (for example, HTTP POST) from Oracle Entitlements Server (OES) 10g.

Configuration

Configure the following general field:

Name:
Enter an appropriate descriptive name for this filter.

Settings

Configure the following fields on the Settings tab:

Resource:
Enter the URL of the target resource (for example, web service). Alternatively, if this policy is reused for multiple ser-
vices, enter a URL using message attribute selectors, which are expanded at runtime to the value of the specified attrib-
ute. For example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Resource Naming Authority:
Enter apigatewayResource to match the Naming Authority Definition loaded in the OES 10g settings. For more de-
tails, see Oracle Security Service Module settings (10g).

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a message attribute selector, which is expanded at runtime to the value of the specified attribute (for ex-
ample, ${http.request.verb}). For more details on selectors, see Select configuration values at runtime.

Action Naming Authority:
Enter apigatewayAction to match the Naming Authority Definition loaded in the OES 10g settings. For more details,
see Oracle Security Service Module settings (10g).

Application Context

Configure the following field on the Application Context tab:

Application's Current Context:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

624

Oracle Entitlements Server 11g authorization
Overview

This filter enables you to authorize an authenticated user for a particular resource against Oracle Entitlements Server
(OES) 11g. The user must first have been authenticated to OES 11g (for example, using the HTTP basic authentication
or HTTP digest authentication filter).

This filter enables you to configure the API Gateway to delegate authorization to OES 11g. You can configure the API
Gateway to authorize an authenticated user for a particular resource against OES 11g. Credentials used for authentica-
tion can be extracted from the HTTP Basic header, WS-Security username token, or the message payload. After suc-
cessful authentication, the API Gateway can authorize the user to access a resource using OES 11g.

Configuration

Configure the following fields:

Name:
Enter an appropriate descriptive name for this filter.

Resource:
Enter the URL for the target resource to be authorized (for example, web service). Alternatively, if this policy is reused for
multiple services, enter a URL using selectors, which are expanded at runtime to the value of the specified attributes. For
example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a selector, which is expanded at runtime to the value of the specified attribute (for example,
${http.request.verb}). For more details on selectors, see Select configuration values at runtime.

Environment/Context attributes:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

625

Operation name resolver
Overview

The Operation Name filter enables you to identify an incoming XML message based on the SOAP operation in the mes-
sage.

The following example shows how to find the SOAP operation of an incoming message. Consider the following SOAP
message:

POST /services/timeservice HTTP/1.0
Host: localhost:8095
Content-Length: 374
SOAPAction: TimeService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns1:getTime xmlns:ns1="Some-URI">

<ns1:city>Dublin</ns1:city>
</ns1:getTime>

</soap:Body>
</soap:Envelope>

The SOAP operation for this message and its namespace are as follows:

• SOAP operation: getTime
• SOAP operation namespace: urn:timeservice

The SOAP operation is the first child element of the SOAP <soap:Body> element.

Configuration

To configure the Operation Name filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter the name of the SOAP operation in the Operation field. Incoming messages with an operation name matching

the value entered here are passed on to the next success filter in the policy.
3. Enter the namespace to which the SOAP operation belongs in the Namespace field.

626

Relative path resolver
Overview

The Relative Path filter enables you to identify an incoming XML message based on the relative path on which the mes-
sage is received.

The following example shows how to find the relative path of an incoming message. Consider the following SOAP mes-
sage:

POST /services/helloService HTTP/1.1
Host: localhost:8095
Content-Length: 196
SOAPAction: HelloService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com/"/>

</soap:Body>
</soap:Envelope>

The relative path for this message is as follows:

/services/helloService

Configuration

To configure the Relative Path filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter a regular expression to match the value of the relative path on which messages are received in the Relative

Path field. For example, enter ^/services/helloService$ to exactly match a path with a value of /
services/helloService. Incoming messages received on a matching relative path value are passed on to the
next filter on the success path in the policy.

Regular expression format

This filter uses the regular expression syntax specified by java.util.regex.Pattern. For more details, see ht-
tp://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

627

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

SOAP action resolver
Overview

The SOAP Action Resolver filter enables you to identify an incoming XML message based on the SOAPAction HTTP
header in the message. The SOAP Action Resolver filter applies to SOAP 1.1 and SOAP 1.2.

The following example illustrates how to locate the SOAPAction header in an incoming message. Consider the following
SOAP message:

POST /services/helloService HTTP/1.1
Host: localhost:8095
Content-Length: 196
SOAPAction: HelloService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com/"/>

</soap:Body>
</soap:Envelope>

The SOAP Action for this message is HelloService.

Configuration

To configure the SOAP Action Resolver filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter a regular expression to match the value of the SOAPAction HTTP header in the SOAP Action field. For ex-

ample, enter ^getQuote$ to exactly match a SOAPAction header with a value of getQuote. Incoming messages
with a matching SOAPAction value are passed on to the next filter on the success path in the policy.

Regular expression format

This filter uses the regular expression syntax specified by java.util.regex.Pattern. For more details, see ht-
tp://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

628

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Getting started with routing configuration
Overview

This topic describes how to configure API Gateway to send messages to external web services. API Gateway offers a
number of different filters that can be used to route messages. Depending on how API Gateway is perceived by the cli-
ent, different combinations of routing filters can be used.

For example, API Gateway can act both as a proxy and as an endpoint (in-line) server for a client, depending on how the
client is configured. In each case, the request received by API Gateway appears slightly different, and API Gateway can
take advantage of this when routing the message onwards. Furthermore, API Gateway can provide service virtualization
by shielding the underlying hierarchy of back-end web services from clients.

This topic explains how clients can use API Gateway both as a proxy and as an endpoint server. It then shows how ser-
vice virtualization works. When these basic concepts are explained, this topic helps you to identify the combination of
routing filters that is best suited to your deployment scenario.

Proxy or endpoint server

API Gateway can be used by clients as both a proxy server and an endpoint server. When a client uses API Gateway as
a proxy server, it sends up the complete URL of the destination web service in the HTTP request line. API Gateway can
use the URL to determine the host and port to route the message to. The following example shows an HTTP request re-
ceived by API Gateway when acting as a proxy for a client:

POST http://localhost:8080/services/getHello HTTP/1.1

Alternatively, when API Gateway is acting as an endpoint (in-line) server, the client sends the request directly to API
Gateway. In this case, the request line appears as follows:

POST /services/getHello HTTP/1.1

In this case, only the path on the server is specified, and no scheme, host, or port number is included in the HTTP re-
quest line. Because this information is not provided by the client, API Gateway must be explicitly configured to route the
message on to the specific destination.

Service virtualization

It is sometimes desirable to shield the underlying structure of the directory hierarchy in which web services reside from
external clients. You can do this by providing a mapping between the path that the client accesses and the actual path at
which the web service resides.

For example, suppose you have two web services accessible at the /helloService/getHello and /
financeService/getQuote URIs. You might wish to hide that these services are deployed under different paths, per-
haps exposing them under a common /services base URI (for example, /services/getHello and /
services/getQuote). The client is therefore unaware of the underlying hierarchy (for example, directory structure) of
the two web services. This is termed service virtualization.

Choosing the correct routing filters

To choose the correct combination of routing filters, you must first consider how your client will use API Gateway (as a
proxy or as an endpoint). Additionally, you must consider if you require virtualization. This section includes several use
cases that demonstrate how different filters can be used in different scenarios.

Proxy or endpoint

629

• If the client is using API Gateway as a proxy server, see use cases 1 or 2, depending on whether service virtualiza-
tion is required.

• Alternatively, if the client using API Gateway as the endpoint of the connection (as an in-line server), see use cases
3 or 4.

Service virtualization

• To shield the hierarchy of protected web services by exposing a virtual view of these services, see use cases 2, 4,
and 5.

• If service virtualization is not important, see use cases 1 and 3.

These permutations are summarized in the following table:

Proxy or endpoint Service virtualization Example

Proxy No See the section called “Case 1: Proxy without service virtu-
alization”.

Proxy Yes See the section called “Case 2: Proxy with service virtualiz-
ation”.

Endpoint No See the section called “Case 3: Endpoint without service
virtualization”.

Endpoint Yes See the section called “Case 4: Endpoint with service virtu-
alization”.

Proxy or Endpoint Yes See the section called “Case 5: Simple redirect”.

Case 1: Proxy without service virtualization

In this case, API Gateway is configured as an HTTP proxy for the client, and maintains the original path used by the cli-
ent in the HTTP request. For example, if API Gateway is listening at http://localhost:8080/, and the web service
is running at http://localhost:5050/services/getQuote, the request line of the client HTTP request appears
as follows:

POST http://localhost:5050/services/getQuote HTTP/1.1

Because the client is configured to use the API Gateway instance running on localhost at port 8080 as its HTTP
proxy, the client automatically sends all messages to the proxy. However, it includes the full URL of the ultimate destina-
tion of the message in the request line of the HTTP request.

When API Gateway receives the request, it extracts this URL from the request line and uses it to determine the destina-
tion of the message. In the above example, API Gateway routes the message on to ht-
tp://localhost:5050/services/getQuote.

You can configure the following policy to route the message to the URL specified in the request line of the client request:

Getting started with routing configuration

630

The following table explains the role of each filter in the policy. For more information on a specific filter, click the appropri-
ate link in the Details column.

Filter Role in Policy Details

Dynamic Router Extracts the URL of the destination web service from the
request line of the incoming HTTP request. The Dynamic
Router is normally used when API Gateway is perceived
as a proxy by the client.

Dynamic router

Connection Establishes the connection to the destination web service,
and sends the message over this connection. This connec-
tion can be mutually authenticated if necessary.

Connection

Case 2: Proxy with service virtualization

In this case, API Gateway is also perceived as an HTTP proxy by the client. However, API Gateway exposes a virtual-
ized view of the services that it protects. This is termed service virtualization.

To achieve this, API Gateway must provide a mapping between the path used by the client and the path under which the
service is deployed. Assuming API Gateway is running at http://localhost:8080/services, and the web service
is deployed at http://localhost:5050/financialServices/quotes/getQuote, the following example shows
what the client might send up in the HTTP request line:

POST http://localhost:5050/services/getQuote HTTP/1.1

To achieve this, API Gateway must provide a mapping between what the client requests (/services/getQuote), and
the address of the Web service (/financialServices/quotes/getQuote. The Rewrite URL filter in the following
policy fulfills this role:

Getting started with routing configuration

631

The following table explains the roles of each filter in the policy:

Filter Role in Policy Details

Dynamic Router Extracts the URL of the destination web service from the
request line of the incoming HTTP request. The Dynamic
Router is normally used when API Gateway is perceived
as a proxy by the client.

Dynamic router

Rewrite URL Specifies the mapping between the path requested by the
client and the path under which the Web service is de-
ployed, therefore providing service virtualization.

Rewrite URL

Connection Establishes the connection to the destination web service,
and sends the message over this connection. This connec-
tion can be mutually authenticated if necessary.

Connection

Case 3: Endpoint without service virtualization

In this scenario, the client sees API Gateway as the endpoint to its connection, and API Gateway must be configured to
route messages on to a specific destination. For example, assuming that API Gateway is running at ht-
tp://localhost:8080/services, the request line of the client's HTTP request is received by API Gateway as fol-
lows:

POST /services HTTP/1.1

The request line above shows that no information about the scheme, host, or port of the destination web service is spe-
cified. Therefore, this information must be configured in API Gateway so that it knows where to route the message on to.
The Static Router enables you to enter connection details for the destination web service.

Assuming that the web service is running at http://localhost:5050/stockquote/getPrice, the host, port, and
scheme respectively are: localhost, 5050, and http. You must explicitly configure this information in the Static
Router. The following policy illustrates this scenario:

Getting started with routing configuration

632

The following table explains the role of each filter in the policy:

Filter Role in Policy Details

Static Router Enables the user to explicitly specify the host, port, and
scheme at which the Web service is listening. This filter
must be used when the client sees API Gateway as the en-
dpoint to its connection (API Gateway is not acting as a
proxy for the client).

Static router

Connection Establishes the connection to the destination web service,
and sends the message over this connection. This connec-
tion can be mutually authenticated if necessary.

Connection

Case 4: Endpoint with service virtualization

In this case, API Gateway acts as the endpoint to the client connection (and not as a proxy), and hides the deployment
hierarchy of protected web services from clients (performs service virtualization).

In this scenario, the client sends messages directly to API Gateway. For example, assuming that API Gateway is running
at http://localhost:8080/services, and the web service is running at ht-
tp://localhost:5050/stockquote/getPrice, the request line of the client HTTP request is received by API
Gateway as follows:

POST /services HTTP/1.1

You can then configure the Static Router filter to route the message on to port 8080 on localhost using the http
scheme, while the Rewrite URL filter provides the mapping between the path requested by the client (/services) and
the path under which the web service is deployed (/stockquote/getPrice). The following policy illustrates a sample
policy that provides service virtualization when API Gateway is used as an endpoint:

Getting started with routing configuration

633

The following table explains the role of each filter in the policy:

Filter Role in Policy Details

Static Router Enables you to explicitly specify the host, port, and scheme
at which the web service is listening. This filter can be used
when the client sees the API Gateway as the endpoint to
its connection (not as a proxy for the client).

Static router

Rewrite URL Provides the mapping between the path requested by the
client and the path under which the web service is de-
ployed.

Rewrite URL

Connection Establishes the connection to the destination web service,
and sends the message over this connection. This connec-
tion can be mutually authenticated if necessary.

Connection

Important
Alternatively, instead of using the Static Router, Rewrite URL, and Connection filters, you can use the
Connect to URL filter, which is equivalent to using these three filters combined. You can configure the
Connect to URL filter to send messages to a web service simply by specifying the destination URL. For
more details, see the Connect to URL topic.

Case 5: Simple redirect

In some cases, API Gateway must route the incoming message to an entirely different URL. You can use the Rewrite
URL filter for this purpose, in addition to rewriting the path on which the request is received (as described in cases 2 and
4).

Note
The full URL of the destination web service should be specified in the Rewrite URL filter.

Getting started with routing configuration

634

The following policy illustrates the use of the Redirect URL filter to route messages to a fully qualified URL:

The following table describes the role of each filter in the policy:

Filter Role in Policy Details

Rewrite URL Used to specify the fully qualified URL of the destination
web service.

Rewrite URL

Dynamic Router In this case, the Dynamic Router filter is used to parse the
URL specified in the Rewrite URL filter into its constituent
parts. The HTTP scheme, port, and host of the web service
are extracted and set to the internal message object for
use by the Connection filter.

Dynamic router

Connection Establishes the connection to the destination web service,
and sends the message over this connection. This connec-
tion can be mutually authenticated if necessary.

Connection

Case 6: Routing on to an HTTP proxy

This is a more advanced case where API Gateway is configured to route on through an HTTP proxy to the back-end web
service sitting behind the proxy. When API Gateway is configured to route through a proxy, it connects directly to the
proxy, and sends a request including the full URL of the target web service in the HTTP request URI. When the HTTP
proxy receives this request, it uses the URL in the request line to determine where to route the message to. The following
example shows the request line of a request made through a proxy:

POST http://localhost:8080/services/getQuote HTTP/1.1

The following filters are required to configure API Gateway to route through an HTTP proxy:

Filter Role in Policy Details

Static Router You must explicitly specify the host, port, and scheme of
the HTTP proxy.

Static router

Rewrite URL Enter the full URL of the web service (for example, ht- Rewrite URL

Getting started with routing configuration

635

Filter Role in Policy Details

tp://HOST:8080/myServices). Because you are rout-
ing through a proxy, the full URL is sent in the request line
of the HTTP request.

Connection In this case, the Connection filter connects to the HTTP
proxy, which in turn routes the message on to the destina-
tion server named in the request URI. The Send via Proxy
option must be enabled in the Connection filter to facilitate
this.

Connection

Note
Note the differences between how the filters are configured to route on through a proxy and the scenario
described in the section called “Case 4: Endpoint with service virtualization” where no proxy is involved:

• Static Router:
When API Gateway routes on to an HTTP proxy, the Static Router filter is configured with the details
of the HTTP proxy. Otherwise, the Static Router filter is given the details of the web service endpoint
directly.

• Rewrite URL:
The full URL of the web service endpoint must be specified in this filter when API Gateway routes
through a proxy. The full URL is then included in the request line of the HTTP request to the proxy. In
cases where no proxy is involved, the Rewrite URL filter is only necessary when the back-end web
services are virtualized. In this case, API Gateway must send the request to a different URI than that
requested by the client.

• Connection:
When routing through a proxy, the Send via Proxy option must be enabled in the Connection filter.
This is not necessary when no proxy sits between API Gateway and the back-end web service.

Summary

The following are the key concepts to consider when configuring API Gateway to connect to external web services:

• The Connection or Connect to URL filter must always be used because it establishes the connection to the web
service.

• Service virtualization can be achieved using the Rewrite URL or Connect to URL filter.
• If the client is configured to use API Gateway as a proxy, API Gateway can use the Dynamic Router filter to extract

the URL from the request line of the HTTP request. It can then route the message on to this URL.
• If the client sees API Gateway as the endpoint of the connection (not as a proxy), the Static Router filter can be

used to explicitly configure the host, port, and scheme of the destination web service. Alternatively, you can use the
Connect to URL filter to specify a URL.

Getting started with routing configuration

636

Call internal service
Overview

The Call internal service filter is a special filter that passes messages to an internal servlet application or static content
provider that has been deployed at the API Gateway. The appropriate application is selected based on the relative path
on which the request message is received.

This filter is used by Management Services that are configured to listen on the Management Interface on port 8090. For
more information on how the Call internal service filter is used by these services, see the section called “Management
services” in the Configure HTTP services topic.

Configuration

You can configure the following fields on the filter window:

Name:
Enter an appropriate name for this filter.

Additional HTTP Headers to Send to Internal Service:
Click the Add button to configure additional HTTP headers to send to the internal application. Specify the following fields
on the HTTP Header dialog:

• HTTP Header Name:
Enter the name of the HTTP header to add to the message.

• HTTP Header Value:
Enter the value of the new HTTP header. You can also enter selectors to represent message attributes. At runtime,
API Gateway expands these selectors to the current value of the corresponding message attribute. For example, the
${id} selector is replaced by the value of the current message ID. Message attribute selectors have the following
syntax:
${messsage_attribute}

For more details on selectors, see Select configuration values at runtime.

637

Connection
Overview

The Connection filter makes the connection to the remote Web service. It relies on connection details that are set by the
other filters in the Routing category. Because the Connection filter connects out to other services, it negotiates the SSL
handshake involved in setting up a mutually authenticated secure channel.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. For
an introduction to using the various filters in the Routing category, see the topic on Getting started with routing configur-
ation.

General settings

Enter an appropriate name for the filter in the Name field. Click the tabs to configure the various aspects of the Connec-
tion filter.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the section called “SSL settings” in the Connect to URL topic.

Authentication settings

You can select credential profiles to use for authentication on the Authentication tab. For details on the fields on this
tab, see the section called “Authentication settings” in the Connect to URL topic.

Additional settings

The Settings tab allows you to configure the following additional settings:

• Retry
• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the section called “Additional settings” in the Connect to URL topic.

638

Connect to URL
Overview

The Connect to URL filter is the simplest routing filter to use to connect to a target Web service. To configure this filter to
send messages to a Web service, you need only enter the URL of the service in the URL field. If the Web service is SSL
enabled or requires mutual authentication, you can use the other tabs on the Connect to URL filter to configure this.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. Us-
ing the Connect to URL filter is equivalent to using the following combination of routing filters:

• Static Router
• Rewrite URL
• Connection

The Connect to URL filter enables the API Gateway to act as the endpoint to the client connection (and not as a proxy),
and to hide the deployment hierarchy of protected Web services from clients. In other words, the API Gateway performs
service virtualization. For an introduction to routing scenarios and the filters in the Routing category, see the Getting
started with routing configuration topic.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for the filter.

URL:
Enter the complete URL of the target Web service. You can specify this setting as a selector, which enables values to be
expanded at runtime. For more details, see Select configuration values at runtime. Defaults to ${http.request.uri}.

Tip
You can also enter any query string parameters associated with the incoming request message as a select-
or, for example, ${http.request.uri}?${http.raw.querystring}.

Request settings

On the Request tab, you can use the API Gateway selector syntax to evaluate and expand request details at runtime.
For more details, see Select configuration values at runtime. The values specified on this tab are used in the outbound
request to the URL.

Method:
Enter the HTTP verb used in the incoming request (for example, GET). Defaults to ${http.request.verb}.

Request Body:
Enter the content of the incoming request message body. Defaults to ${content.body}.

Important
You must enter the body headers and body content in the Request Body text area. For example, enter the
Content-Type followed by a return and then the required message payload:

Content-Type: text/html

639

<!DOCTYPE html>
<html>
<body>
<h1>Hello World</h1>
</body>
</html>

Request Protocol Headers:
Enter the HTTP headers associated with the incoming request message. Defaults to ${http.headers}.

SSL settings

Configure the SSL settings on the SSL tab. You can select the server certificates to trust on the Trusted Certificates
tab, and the client certificates on the Client Certificates tab.

You can also specify the ciphers that API Gateway supports in the Ciphers field. The API Gateway sends this list of sup-
ported ciphers to the destination server, which selects the highest strength common cipher as part of the SSL hand-
shake. The selected cipher is then used to encrypt the data as it is sent over the secure channel.

Trusted certificates

When API Gateway connects to a server over SSL, it must decide whether to trust the server's SSL certificate. You can
select a list of CA or server certificates from the Trusted Certificates tab that are considered trusted by the API Gate-
way when connecting to the server specified in the URL field on this dialog.

The table on the Trusted Certificates tab lists all certificates imported into the API Gateway Certificate Store. To trust a
certificate for this particular connection, select the box next to the certificate in the table.

To select all certificates for a particular CA, select the box next to the CA parent node in the table.

Alternatively, you can select the Trust all certificates in the Certificate Store option to trust all certificates in the store.
This is selected by default.

Client certificates

In cases where the destination server requires clients to authenticate to it using an SSL certificate, you must select a cli-
ent certificate on the Client Certificates tab.

To select a client certificate click the Signing Key button, and complete the following fields on the Select Certificate dia-
log:

Choose the certificate to present for mutual authentication (optional):
Select this option to choose a certificate from the Certificate Store. Select the client certificate to use to authenticate to
the server specified in the URL field.

Authentication settings

The Authentication tab enables you to select a client credential profile for authentication. You can use client credential
profiles to configure client credentials and provider settings for authentication using API keys, HTTP basic or digest au-
thentication, Kerberos, or OAuth.

Click the browse button next to the Choose a Credential Profile field to select a credential profile. You can configure cli-
ent credential profiles globally under the External Connections node in the Policy Studio tree. For more details on con-
figuring client credentials, see the Configure client credentials topic.

Connect to URL

640

Additional settings

The Settings tab enables you to configure the following additional settings:

• Retry
• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

Retry settings

To specify the retry settings for this filter, complete the following fields:

Perform Retries:
Select whether the filter performs retries. By default, this setting is not selected, no retries are performed, and all Retry
settings are disabled. This means that the filter only attempts to perform the connection once.

Retry On:
Select the HTTP status ranges on which retries can be performed. If a host responds with an HTTP status code that
matches one of the selected ranges, this filter performs a retry. Select one or more ranges in the table (for example,
Client Error 400-499). For details on adding custom HTTP status ranges, see the next subsection.

Retry Count:
Enter the maximum number of retries to attempt. Defaults to 5.

Retry Interval (ms):
Enter the time to delay between retries in milliseconds. Defaults to 500 ms.

Add an HTTP status range
To add an HTTP status range to the default list displayed in the Retry On table, click the Add button. In the Configure
HTTP Status Code dialog, complete the following fields:

Name Enter a name for the HTTP status range.

Start status Enter the first HTTP status code in the range.

End status Enter the last HTTP status code in the range.

To add one specific status code only, enter the same code in the Start status and End status fields. Click OK to finish.
You can manage existing HTTP status ranges using Edit and Delete.

Failure settings

To specify the failure settings for this filter, complete the following fields:

Consider SLA Breach as Failure:
Select whether to attempt the connection if a configured SLA has been breached. This is not selected by default. If this
option is selected, and an SLA breach is encountered, the filter returns false.

Save Transaction on Failure (for replay):
Select whether to store the incoming message in the specified directory and file if a failure occurs during processing. This
is not selected by default.

File name:

Connect to URL

641

Enter the name of the file that the message content is saved to. You can specify this using a selector, which is expanded
to the specified value at runtime. Defaults to ${id}.out. For more details on selectors, see Select configuration values
at runtime.

Directory:
Enter the directory that the file is saved to. You can specify this using a selector, which is expanded to the specified
value at runtime. Defaults to ${environment.VINSTDIR}/message-archive, where VINSTDIR is the location of a
running API Gateway instance.

Maximum number of files in directory:
Enter the maximum number of files that can be saved in the directory. Defaults to 500.

Maximum file size:
Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers:
Select whether to include HTTP headers in the file. HTTP headers are not included by default.

Include Request Line:
Select whether to include the HTTP request line from the client in the file. The request line is not included by default.

Call policy on Connection Failure:
Select whether to execute a policy in the event of a connection failure. This is not selected by default.

Connection Failure Policy:
Click the browse button on the right, and select the policy to run in the event of a connection failure in the dialog.

Proxy settings

To specify the proxy settings for this filter, complete the following fields:

Send via Proxy:
Select this option if the API Gateway must connect to the destination Web Service through an HTTP proxy. In this case,
the API Gateway includes the full URL of the destination Web service in the request line of the HTTP request. For ex-
ample, if the destination Web service resides at http://localhost:8080/services, the request line is as follows:

POST http://localhost:8080/services HTTP/1.1

If the API Gateway was not routing through a proxy, the request line is as follows:

POST /services HTTP/1.1

Proxy Server:
When Send via Proxy is selected, you can configure a specific proxy server to use for the connection. Click the browse
button next to this field, and select an existing proxy server. To add a proxy server, right-click the Proxy Servers tree
node, and select Add a Proxy Server. Alternatively, you can configure Proxy Servers under External Connections in
the Policy Studio tree. For more details, see the Configure proxy servers topic.

Transparent Proxy (present client's IP address to server):
Enables the API Gateway as a transparent proxy on Linux systems with the TPROXY kernel option set. When selected,
the IP address of the original client connection that caused the policy to be invoked is used as the local address of the
connection to the destination server. For more details, see the Configure a transparent proxy topic.

Redirect settings

To specify the redirect settings for this filter, complete the following fields:

Follow Redirects:

Connect to URL

642

Specifies whether the API Gateway follows HTTP redirects, and connects to the redirect URL specified in the HTTP re-
sponse. This setting is enabled by default.

Header settings

To specify the header settings for this filter, complete the following fields:

Forward spurious received Content headers:
Specifies whether the API Gateway sends any content-related message headers when sending an HTTP request with no
message body to the HTTP server. For example, select this setting if content-related headers are required by an out-
of-band agreement. If there is no body in the outbound request, any content-related headers from the original inbound
HTTP request are forwarded. These are extracted from the http.content.headers message attribute, generally pop-
ulated by the API Gateway for the incoming call. This attribute can be manipulated in a policy using the appropriate fil-
ters, if required. This field is not selected by default.

HTTP Host Header:
An HTTP 1.1 client must send a Host header in all HTTP 1.1 requests. The Host header identifies the host name and
port number of the requested resource as specified in the original URL given by the client.

When routing messages on to target Web services, the API Gateway can forward on the Host as received from the cli-
ent, or it can specify the address and port number of the destination Web Service in the Host header that it routes on-
wards.

Select Use Host header specified by client to force the API Gateway to always forward on the original Host header
that it received from the client. Alternatively, to configure the API Gateway to include the address and port number of the
destination Web service in the Host header, select the Generate new Host header radio button.

Connect to URL

643

Dynamic router
Overview

API Gateway can act as a proxy for clients of the secured web service. When a client uses a proxy, it includes the fully
qualified URL of the destination in the request line of the HTTP request. It sends this request to the configured proxy,
which then forwards the request to the host specified in the URL. The relative path used in the original request is pre-
served by the proxy on the outbound connection.

The following is an example of an HTTP request line that was made through a proxy, where WEB_SERVICE_HOST is the
name or IP address of the machine hosting the destination web service:

POST http://WEB_SERVICE_HOST:80/myService HTTP/1.0

When API Gateway acts as a proxy for clients, it can receive requests like the one above. The Dynamic Router filter can
route the request on to the URL specified in the request line (http://WEB_SERVICE_HOST:80/myService).

Depending on how API Gateway is perceived by the client, different combinations of routing filters can be used. For an
introduction to using the various filters in the Routing category, see the Getting started with routing configuration topic.

Configuration

Enter an appropriate name for the filter in the Name field on the Dynamic Router filter configuration window.

644

Extract path parameters
Overview

The Extract Path Parameters filter enables API Gateway to parse the contents of a specified HTTP path into message
attributes. This means that you can define HTTP path parameters, and then extract their values at runtime using select-
ors. For example, this is useful when passing in parameters to REST-based requests. For more details on selectors, see
the topic on Select configuration values at runtime.

Configuration

Complete the following settings:

Name:
Enter a descriptive name for this filter.

URI Template:
Enter the URI template for the path to be parameterized. This is a formatted Jersey @Path annotation string, which en-
ables you to parameterize the path specified in the incoming http.request.path message attribute. The following is
an example URI template entry:

/twitter/{version}/statuses/{operation}.{format}

Path Parameters:
The Path Parameters table enables you to map the path parameters specified in the URI Template to user-defined
message attributes. These attributes can then be used by other filters downstream in the policy. Click Add to configure a
path parameter, and specify the following in the dialog:

Field Description

Path Parameter Enter the name of the path parameter (for example, version).

Type Enter the type of the path parameter (for example, java.lang.String)..

Message Attribute Enter the name of the message attribute that stores the parameter value (for
example, twitter_version).

The following figure shows the example path parameters:

645

Required input and generated output

The incoming http.request.path message attribute is required as input to this filter.

This filter generates the message attributes for the parameters that you specify in the Path Parameters table. For ex-
ample, in the previous figure, the following attributes are generated:

• twitter_format

• twitter_operation

• twitter_version

Possible outcomes

The possible outcomes of this filter are as follows:

• True if the specified URI Template is successfully parsed.
• False if an error occurs during URI Template parsing.
• CircuitAbortException if an exception occurs during URI Template parsing.

Extract path parameters

646

File download
Overview

You can use the File download filter to download files from a file transfer server and store their contents in the con-
tent.body message attribute. The File download filter supports the following protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

Configuring a File download filter can be useful when integrating with Business-to-Business (B2B) partner destinations
or with legacy systems. For example, instead of making drastic changes to either system, API Gateway can download
files from the other system. The added benefit is that the files are exposed to the full compliment of API Gateway mes-
sage processing filters. This ensures that only properly validated files are downloaded from the target system. The File
download filter is available from the Routing category of filters in Policy Studio.

General settings

Configure the following general settings:

Name:
Enter a descriptive name for this filter.

Host:
Enter the name of the host machine on which the file transfer server is running.

Port:
Enter the port number to connect to the file transfer server. Defaults to 21.

Username:
Enter the username to connect to the file transfer server.

Password:
Specify the password for this user.

File details

Configure the following fields in the File details section:

Filename:
Specifies the filename to download from the file transfer server. The default value is filename.xml. You can enter a
different filename or use a message attribute selector, which is expanded at runtime (for example,
${authentication.subject.id}).

When downloading a file from the file transfer server, API Gateway uses a temporary file name of filename.part.
When the file has been downloaded, it then uses the filename specified in this filter (for example, the default file-
name.xml). This prevents an incomplete file from being downloaded.

Directory:
Specify the directory where the file is stored.

Connection type

The fields configured in the Connection Type section determine the type of file transfer connection. Select the FTP con-

647

nection type from the following options:

• FTP - File Transfer Protocol
• FTPS - FTP over SSL
• SFTP - SSH File Transfer Protocol

FTP and FTPS connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data, or Binary mode for sending binary data over the file transfer connection.
Defaults to ASCII mode.

FTPS connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the File Download client makes a connection
to the remote file transfer service. No clear text is passed between the client and server at any time. In this case, a spe-
cific port is used for secure connections (990). This option is not selected by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the File Download cli-
ent, and negotiate the required security. If the file transfer service does not request security, the client can allow the file
transfer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the File Download client to present an SSL certificate to it during the SSL handshake
for mutual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must
have a private key associated with it that is also stored in the Certificate Store.

SFTP connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see the Manage certificates and keys topic.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

File download

648

File upload
Overview

You can use the File Upload filter to upload processed messages as files to a file transfer server. This enables you to
upload the contents of the content.body message attribute as a file. The File Upload filter supports the following pro-
tocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

Configuring a File Upload filter can be useful when integrating with Business-to-Business (B2B) partner destinations or
with legacy systems. For example, instead of making drastic changes to either system, API Gateway can make files
available for upload to the other system. The added benefit is that the files are exposed to the full compliment of API
Gateway message processing filters. This ensures that only properly validated files are uploaded to the target system.

The File Upload filter is available from the Routing category of filters in Policy Studio. This topic describes how to con-
figure the fields on the File Upload filter dialog.

General settings

Configure the following general settings:

Name:
Enter a descriptive name for this filter.

Host:
Enter the name of the host machine on which the file transfer server is running.

Port:
Enter the port number to connect to the file transfer server. Defaults to 21.

Username:
Enter the username to connect to the file transfer server.

Password:
Specify the password for this user.

File details

Configure the following fields in the File details section:

Filename:
The message body (in the content.body message attribute) is stored using this filename on the destination file trans-
fer server. The default value of ${id}.out enables you to use the unique identifier associated with each message pro-
cessed by API Gateway. When this value is specified, messages are stored in individual files on the file transfer server
according to their unique message identifier.

Directory:
Specify the directory where this file will be stored on the destination file transfer server.

Use temporary file name during upload:
This option specifies whether to use a temporary file name of ${id}.part when the file is uploading to the file transfer
server. When the file has uploaded, it then uses the filename specified in this filter (for example, the default ${id}.out

649

filename). This prevents an incomplete file from being uploaded. This option is selected by default.

Important
You must deselect this option if the file transfer server is API Gateway. For example, this option applies
when the API Gateway uploads to a file transfer server, and then another server (possibly API Gateway)
polls the file transfer server for new files to process. The poller server is configured to consume *.xml files
and ignores the temporary file. When the upload is complete, the file is renamed and the poller sees the
new file to process.

Connection type

The fields configured in the Connection Type section determine the type of file transfer connection. Select the FTP con-
nection type from the following options:

• FTP - File Transfer Protocol
• FTPS - FTP over SSL
• SFTP - SSH File Transfer Protocol

FTP and FTPS connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data, or Binary mode for sending binary data over the file transfer connection.
Defaults to ASCII mode.

FTPS connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the File Upload client makes a connection to
the remote file transfer service. No clear text is passed between the client and server at any time. In this case, a specific
port is used for secure connections (990). This option is not selected by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the File Upload client,
and negotiate the required security. If the file transfer service does not request security, the client can allow the file trans-
fer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the File Upload client to present an SSL certificate to it during the SSL handshake for
mutual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must
have a private key associated with it that is also stored in the Certificate Store.

File upload

650

SFTP connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see the Manage certificates and keys topic.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

File upload

651

HTTP redirect
Overview

You can use the HTTP Redirect filter to enable API Gateway to send an HTTP redirect message. For example, you can
send an HTTP redirect to force a client to enter user credentials on an HTML login page if no HTTP cookie already ex-
ists. Alternatively, you can send an HTTP redirect if a web page has moved to a new URL address.

Configuration

Complete the following settings:

Name:
Enter a descriptive name for this filter.

HTTP response code status:
Enter the HTTP response code status to use in the HTTP redirect message. Defaults to 301, which means that the re-
quested resource has been assigned a new permanent URI, and any future references to this resource should use the
returned redirect URL.

Redirect URL:
Enter the URL address to which the message is redirected.

Content-Type:
Enter the Content-Type of the HTTP redirect message (for example, text/xml).

Message Body:
Enter the message body text to send in the HTTP redirect message.

652

HTTP status code
Overview

This filter sets the HTTP status code on response messages. This enables an administrator to ensure that a more mean-
ingful response is sent to the client in the case of an error occurring in a configured policy.

For example, if a Relative Path filter fails, it might be useful to return a 503 Service Unavailable response. Simil-
arly, if a user does not present identity credentials when attempting to access a protected resource, you can configure
API Gateway to return a 401 Unauthorized response to the client.

HTTP status codes are returned in the status-line of an HTTP response. The following are some typical examples:

HTTP/1.1 200 OK
HTTP/1.1 400 Bad Request
HTTP/1.1 500 Internal Server Error

Configuration

Name:
Enter an appropriate name for this filter.

HTTP response code status:
Enter the status code returned to the client. For a complete list of status codes, see the HTTP Specification [ht-
tp://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

653

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Insert WS-Addressing information
Overview

The WS-Addressing specification defines a transport-independent standard for including addressing information in SOAP
messages. API Gateway can generate WS-Addressing information based on a configured endpoint in a policy, and then
insert this information into SOAP messages.

Configuration

Complete the following fields to configure API Gateway to insert WS-Addressing information into the SOAP message
header.

Name:
Enter an appropriate name for the filter.

To:
The message is delivered to the specified destination.

From:
Informs the destination server where the message originated from.

Reply To:
Indicates to the destination server where it should send response messages to.

Fault To:
Indicates to the destination server where it should send fault messages to.

MessageID:
A unique identifier to distinguish this message from others at the destination server. It also provides a mechanism for cor-
relating a specific request with its corresponding response message.

Action:
The specified action indicates what action the destination server should take on the message. Typically, the value of the
WS-Addressing Action element corresponds to the SOAPAction on the request message. For this reason, this field de-
faults to the soap.request.action message attribute.

Relates To:
If responses are to be received asynchronously, the specified value provides a method to associate an incoming reply to
its corresponding request.

Namespace:
The WS-Addressing namespace to use in the WS-Addressing block.

654

Read WS-Addressing information
Overview

The WS-Addressing specification defines a transport-independent standard for including addressing information in SOAP
messages. API Gateway can read WS-Addressing information contained in a SOAP message and subsequently use this
information to route the message to its intended destination.

Configuration

Complete the following fields to configure API Gateway to read WS-Addressing information contained in a SOAP mes-
sage.

Name:
Enter an appropriate name for the filter.

Address location:
Specify the name of the element in the WS-Addressing block that contains the address of the destination server to which
the API Gateway routes the message. For more information on configuring XPath expressions, see the Configure XPath
expressions topic.

By default, XPath expressions are available to extract the destination server from the From, To, ReplyTo, and FaultTo
elements. Click the Add button to add a new XPath expression to extract the address from a different location.

Remove enclosing WS-Addressing element:
If this option is selected, the WS-Addressing element returned by the XPath expression configured above is removed
from the SOAP header when it has been consumed.

655

Rewrite URL
Overview

You can use the Rewrite URL filter to specify the path on the remote machine to send the request to. This filter normally
used in conjunction with a Static Router filter, whose role is to supply the host and port of the remote service. For more
details, see the Static router topic.

Depending on how API Gateway is perceived by the client, different combinations of routing filters can be used. For an
introduction to using the various filters in the Routing category, see the Getting started with routing configuration topic.

Configuration

Configure the following fields on the Rewrite URL filter configuration window:

Name:
Enter an appropriate name for the filter in the Name field.

URL:
Enter the relative path of the web service in the URL field. API Gateway combines the specified path with the host and
port number specified in the Static Router filter to build up the complete URL to route to.

Alternatively, you can perform simple URL rewrites by specifying a fully qualified URL into the URL field. You can then
use a Dynamic Router to route the message to the specified URL.

656

Save to file
Overview

The Save to File filter enables you to write the current message contents to a file. For example, you can save the mes-
sage contents to a file in a directory where it can be accessed by an external application. This can be used to quarantine
messages to the file system for offline examination. This filter can also be useful when integrating legacy systems. In-
stead of making drastic changes to the legacy system by adding an HTTP engine, API Gateway can save the message
contents to the file system, and route them on over HTTP to another backend system.

Configuration

To configure the Save to File filter, specify the following fields:

Name Name of the filter to be displayed in a policy. Defaults to Save to File.

File name Enter the name of the file that the content is saved to. You can specify this us-
ing a selector, which is expanded to the specified value at runtime. Defaults to
${id}.out. For more details on selectors, see Select configuration values at
runtime.

Directory Enter the directory that the file is saved to. You can specify this using a select-
or, which is expanded to the specified value at runtime. Defaults to
${environment.VINSTDIR}/message-archive, where VINSTDIR is the
location of a running API Gateway instance.

Maximum number of files in direct-
ory

Enter the maximum number of files that can be saved in the directory. Defaults
to 500.

Maximum file size Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers Select whether to include HTTP headers in the file. HTTP headers are not in-
cluded by default.

Include Request Line Select whether to include the request line in the file. This is not included by de-
fault.

657

Route to SMTP
Overview

You can use the SMTP filter to relay messages to an email recipient using a configured SMTP server.

General settings

Complete the following general settings:

Name:
Specify a descriptive name for this SMTP server.

SMTP Server Settings:
Click the browse button and select a preconfigured SMTP server in the tree. To add an SMTP server, right-click the
SMTP Servers node, and select Add an SMTP Server. Alternatively, you can configure SMTP servers under the Ex-
ternal Connections node. For more details, see Configure SMTP servers.

Message settings

Complete the following fields in the Message settings section:

To:
Enter the email address of the recipients of the messages. You can enter multiple addresses by separating each one us-
ing a semicolon. For example:

joe.soap@example.com;joe.bloggs@example.com;john.doe@example.com

From:
Enter the email address of the senders of the messages. You can enter multiple addresses by separating each one using
a semicolon.

Subject:
Enter some text as the subject of the email messages.

Send content in body:
Select this option to send the message content in the body of the message. This is selected by default.

Send content as attachment:
Select this option to send the message content as an attachment.

Send content in body and as attachment:
Select this option to send the message content in the body of the message and as an attachment.

Attachment name:
If you selected Send content as attachment or Send content in body and as attachment, enter a name for the at-
tachment in this field. The default is ${id}.bin. For more details, see Select configuration values at runtime.

658

Static router
Overview

API Gateway uses the information configured in the Static Router filter to connect to a machine that is hosting a web
service. You should use the Static Router filter in conjunction with a Rewrite URL filter to specify the path to send the
message to on the remote machine. For more details, see the Rewrite URL topic.

Depending on how API Gateway is perceived by the client, different combinations of routing filters can be used. For an
introduction to using the various filters in the Routing category, see the Getting started with routing configuration topic.

Configuration

You must configure the following fields must be configured on the Static Router configuration window:

Name:
Enter a name for the filter.

Host:
Enter the host name or IP address of the remote machine that is hosting the destination Web service.

Port:
Enter the port on which the remote service is listening.

HTTP:
Select this option if API Gateway should send the message to the remote machine over plain HTTP.

HTTPS:
Select this option if API Gateway should send the message to the remote machine over a secure channel using SSL.
You can use a Connection filter to configure API Gateway to mutually authenticate to the remote system.

659

Route to TIBCO Rendezvous
Overview

TIBCO Rendezvous® is a low latency messaging product for real-time high throughput data distribution applications. It fa-
cilitates the exchange of data between applications over the network. A TIBCO Rendezvous daemon runs on each parti-
cipating node on the network. All data sent to and read by each application passes through the daemon. API Gateway
uses the TIBCO Rendezvous API to communicate with a TIBCO Rendezvous daemon running locally (by default) to
send messages to other TIBCO Rendezvous programs.

You can configure the TIBCO Rendezvous filter to route messages (using a TIBCO Rendezvous daemon) to other
TIBCO Rendezvous programs. This filter is found in the Routing category of filters.

Configuration

Configure the following fields to route messages to other TIBCO Rendezvous programs:

Name:
Enter an appropriate name for this filter in the field provided.

TIBCO Rendezvous Daemon to Use:
Click the button on the right, and select a previously configured TIBCO Rendezvous Daemon from the tree. API Gateway
sends messages to the specified TIBCO Rendezvous Subject on this daemon. To add a TIBCO Rendezvous Daemon,
right-click the TIBCO Rendezvous Daemons tree node, and select Add a TIBCO Rendezvous Daemon. For more de-
tails, see the Configure TIBCO Rendezvous daemons topic.

Rendezvous Subject:
The message is sent with the subject entered here meaning that all other TIBCO daemons on the network that have sub-
scribed to this subject name will receive the message. The subject name comprises a series of elements, including wild
cards (for example, *), separated by dot characters, for example:

• news.sport.soccer

• news.sport.*

• FINANCE.ACCOUNT.SALES

For more information on the subject name syntax, see the TIBCO Rendezvous documentation.

Field Name:
Click the Add button to add details about a particular field to add to the message. On the Message Field Definition dia-
log, enter the name of the field to send in the message in the Field Name field, and complete the remaining fields.

Type:
Select the data type of the value specified in either of the following fields:

Set value to the following constant value:
You can explicitly set this value by entering it here.

Set value to the object found in the following attribute:
If you would like to dynamically populate the field value using the contents of a message attribute, you can select this at-
tribute from this drop-down list. At runtime, the contents of the message attribute are placed into the message that is sent
to TIBCO Rendezvous.

660

Wait for response packets
Overview

Packet sniffers are a type of passive service. Rather than opening up a TCP port and actively listening for requests, the
packet sniffer passively reads data packets off the network interface. The sniffer assembles these packets into complete
messages that can then be passed into an associated policy.

Because the packet sniffer operates passively (does not listen on a TCP port) and transparently to the client, it is most
useful for monitoring and managing web services. For example, you can deploy the sniffer on a machine running a web
server acting as a container for web services. Assuming that the web server is listening on TCP port 80 for traffic, the
packet sniffer can be configured to read all packets destined for port 80 (or any other port, if necessary). The packets can
then be marshaled into complete HTTP/SOAP messages by the sniffer and passed into a policy that, for example, logs
the message to a database.

Packet sniffer configuration

Because packet sniffers are mainly used as passive monitoring agents, they are usually created in their own service
group. For example, to create a new group, right-click the API Gateway instance under Listeners in the Policy Studio
tree, and select Add Service Group. Enter Packet Sniffer Group in the dialog.

You can then add a relative path service to this group by right-clicking the Packet Sniffer Group, and selecting Add
Relative Path. Enter a path in the field provided, and select the policy to dispatch messages to when the packet sniffer
detects a request for this path (after it assembles the packets). For example, if the relative path is configured as /a, and
the packet sniffer assembles packets into a request for this path, the request is dispatched to the policy selected in the
relative path service.

Finally, to add the packet sniffer, right-click the Packet Sniffer Group node, and select Packet Sniffer > Add, and
complete the following fields:

Device to Monitor:
Enter the name of the network interface that the packet sniffer monitors. The default is any (valid on Linux only). On
UNIX, network interfaces are usually identified by names like eth0 or eth1. On Windows, names are more complicated
(for example, \Device\NPF_{00B756E0-518A-4144 ... }).

Filter:
You can configure the packet sniffer to only intercept certain types of packets. For example, it can ignore all UDP pack-
ets, only intercept packets destined for port 80 on the network interface, ignore packets from a certain IP address, listen
for all packets on the network, and so on.

The packet sniffer uses the libpcap library filter language to achieve this. This language has a complicated but powerful
syntax that enables you to filter what packets are intercepted, and what packets are ignored. As a general rule, the syn-
tax consists of one or more expressions combined with conjunctions, such as and, or, and not. The following table lists
a few examples of common filters and explains what they filter:

Filter Expression Description

port 80 Captures only traffic for the HTTP Port (i.e. 80).

host 192.168.0.1 Captures traffic to and from IP address 192.168.0.1.

tcp Captures only TCP traffic.

host 192.168.0.1 and port 80 Captures traffic to and from port 80 on IP address
192.168.0.1.

tcp portrange 8080-8090 Captures all TCP traffic destined for ports from 8080
through to 8090.

661

Filter Expression Description

tcp port 8080 and not src host 192.168.0.1 Captures all TCP traffic destined for port 8080 but not from
IP address 192.168.0.1.

The default filter of tcp captures all TCP packets arriving on the network interface. For more details on how to configure
filter expressions, see http://www.tcpdump.org/tcpdump_man.html.

Promiscuous Mode:
When listening in promiscuous mode, the packet sniffer captures all packets on the same Ethernet network, regardless
of whether the packets are addressed to the network interface that the sniffer is monitoring.

Sniffing response packets

API Gateway can capture both incoming and outgoing packets when it is listening passively (not opening any ports) on
the network interface. For example, a web service is deployed in a web server that listens on port 80. API Gateway can
be installed on the same machine as the web server. It is configured not to open any ports and to use a packet sniffer to
capture all packets destined for TCP port 80.

When packets arrive on the network interface that are destined for this port, they are assembled by the packet sniffer into
HTTP messages and passed into the configured policy. Typically, this policy logs the message to an audit trail, and so
usually consists of just a Log Message filter.

To also log response messages passively, as is typically required for a complete audit trail, you can use the Wait for Re-
sponse Packets filter to correlate response packets with their corresponding requests. The Wait for Response Packets
filter assembles the response messages into HTTP messages and can then log them again using the Log Message
Payload filter. The following policy logs both request and response messages captured transparently by the packet
sniffer:

You can see from the policy that the first logging filter logs the request message. By this stage, the packet sniffer has as-
sembled the request packets into a complete HTTP request, and this is what is passed to the Log Request Message fil-
ter. The Assemble response packets filter is a Wait for Response Packets filter that assembles response packets into
complete HTTP response messages and passes them to the Log Response Message filter, which logs the complete re-
sponse message. More information on the Log Message Payload filter is available in the Log message payload topic.

Wait for response packets

662

http://www.tcpdump.org/tcpdump_man.html

Encrypt and decrypt web services
Overview

The Encrypt Web Service filter allows the API Gateway to act as an XML encrypting web service, where clients can
send up XML blocks to the API Gateway that are required to be encrypted. The API Gateway encrypts the XML data, re-
placing it with <EncryptedData> blocks in the message. The encrypted content is then returned to the client.

Similarly, the Decrypt Web Service filter allows the API Gateway to act as an XML decrypting web service, where cli-
ents can send up <EncryptedData> blocks to the API Gateway, which decrypts them and returns the plain-text data back
to the client.

By deploying the API Gateway as a centralized encryption and decryption service, clients distributed throughout an SOA
(Services Oriented Architecture) can abstract out the security layer from their core business logic. This simplifies the lo-
gic of the client applications and makes the task of managing and configuring the security aspect a lot simpler since it is
centralized.

Furthermore, the API Gateway's XML and cryptographic acceleration capabilities ensure that the process of encrypting
and decrypting XML messages - a task that involves some very CPU-intensive operations - is performed at optimum
speed.

Configuration

To configure both the Encrypt Web Service and Decrypt Web Service filters you simply need to enter a descriptive
name for the filter in the Name field.

663

DSS signature generation
Overview

The Sign Web Service filter enables the API Gateway to generate XML signatures as a service according to the OASIS
Digital Signature Services (DSS) specification. The DSS specification describes how a client can send a message con-
taining an XML signature to a DSS signature web service that can sign the relevant parts of the message, and return the
resulting XML signature to the client.

The advantage of this approach is that the signature generation code is abstracted from the logic of the web service and
does not have to be coded into the web service. Furthermore, in a Services Oriented Architecture (SOA), a centralized
DSS server provides a single implementation point for all XML signature related services, which can then be accessed
by all services running in the SOA. This represents a much more manageable solution that one in which the security lay-
er is coded into each Web service.

Configuration

Complete the following fields to configure the Sign Web Service filter.

Name:
Enter a descriptive name for the filter in this field.

Signing Key:
Click the Signing Key button to select a private key from the certificate store. This key is used to perform the signing op-
eration.

664

STS web service
Overview

The STS Web Service filter can be used to expose a Security Token Service (STS), allowing clients to obtain security
tokens for use within a SOA (Services Oriented Architecture) network.

Configuration

Complete the following field to configure the STS Web Service filter.

Name:
Enter a descriptive name for the filter in this field.

665

DSS signature verification
Overview

The Verify Sig Web Service filter enables the API Gateway to verify XML signatures as a service according to the OAS-
IS Digital Signature Services (DSS) specification. The DSS specification describes how a client can send a message
containing an XML signature to a DSS signature verification web service that can verify the signature and return the res-
ult of the verification to the client.

The advantage of this approach is that the signature verification code is abstracted from the logic of the web service and
does not have to be coded into the web service. Furthermore, in a Services Oriented Architecture (SOA), a centralized
DSS server provides a single implementation point for all XML signature related services, which can then be accessed
by all services running in the SOA. This represents a much more manageable solution that one in which the security lay-
er is coded into each web service.

Configuration

Complete the following fields to configure the Verify Sig Web Service filter.

Name:
Enter a descriptive name for the filter.

Find Signing Key:
The public key to be used to verify the signature can be retrieved from one of the following locations:

• Via KeyInfo in Message:
The verification certificate can be located using the <KeyInfo> block in the XML signature. For example, the certi-
ficate could be contained in a <BinarySecurityToken> element in a WSSE security header. The <KeyInfo>
section of the XML signature can then reference this BinarySecurityToken. The API Gateway can automatically
resolve this reference to locate the certificate that contains the public key necessary to perform the signature verific-
ation.

• Via Selector Expression:
The certificate used to verify the signature can be extracted from the message attribute specified in the selector ex-
pression (for example, ${certificate}). The certificate must have been placed into the specified attribute by a
predecessor of the Verify Sig Web Service filter. For more details on selector expressions, see Select configuration
values at runtime.

• Via Certificate in LDAP:
The certificate used to verify the signature can be retrieved from an LDAP directory. Click the button next to this
field, and select a previously configured LDAP directory in the tree. To add an LDAP directory, right-click the LDAP
Connections tree node, and select Add an LDAP Connection. Alternatively, you can configure LDAP connections
under the External Connections node in the Policy Studio tree. For more details, see the topic on Configure LDAP
directories.

• Via Certificate in Store:
Finally, the verification certificate can be selected from the certificate store. Click the Select button to view the certi-
ficate that has been added to the store. Select the verification certificate by selecting the check box next to it in the
table.

666

Consume WS-Trust message
Overview

You can configure the API Gateway to consume various types of WS-Trust messages. For example, RequestSecur-
ityToken (RST), RequestSecurityTokenResponse (RSTR), and RequestSecurityTokenResponseCollec-
tion (RSTRC). For more details on WS-Trust messages and their semantics and format, see the WS-Trust specifica-
tion.

Configuration

Configure the fields in the following sections.

Message types

The API Gateway can consume the following types of WS-Trust messages. Select the appropriate message type based
on your requirements:

• RST: RequestSecurityToken
The RST message contains a request for a single token to be issued by the Security Token Service (STS).

• RSTR: RequestSecurityTokenResponse
The RSTR message is sent in response to an RST message from a token requestor. It contains the token issued by
the STS.

• RSTRC: RequestSecurityTokenResponseCollection
The RSTRC message contains an RSTR (containing a single issued token) for each RST that was received in an
RSTC message.

Message consumption settings

The configuration options available on the Message Consumption tab enable you to extract various parts of the WS-
Trust message and store them in message attributes for use in subsequent filters.

Extract Token:
Extracts a <RequestedSecurityToken> from the WS-Trust message and stores it in a message attribute. Select the
expected value of the <TokenType> element in the <RequestSecurityToken> block. The default URI is ht-
tp://schemas.xmlsoap.org/ws/2005/02/sc/sct.

Extract BinaryExchange:
Extracts a <BinaryExchange> token from the message and stores it in a message attribute. Select the ValueType of
the token from the list.

Extract Entropy:
The client can provide its own key material (entropy) that the token issuer may use when generating the token. The is-
suer can use this entropy as the key itself, it can derive another key from this entropy, or it can choose to ignore the en-
tropy provided by the client altogether in favor of generating its own entropy.

Extract RequestedProofToken:
Select this option to extract a <RequestedProofToken> from the WS-Trust message and store it in a message attrib-
ute for later use. You must select the type of the token (encryptedKey or computedKey) from the list.

Extract CancelTarget:
You can select this option to extract a <CancelTarget> block from the WS-Trust message and store it in a message
attribute.

Extract RequestedTokenCancelled:

667

You can select this option to extract a <RequestedTokenCancelled> block from the WS-Trust message and store it
in a message attribute.

Match Context ID:
Select this option to correlate the response message from the STS with a specific request message. The Context attrib-
ute on the RequestSecurityTokenResponse message is compared to the value of the ws.trust.context.id
message attribute, which contains the context ID of the current token request.

Extract Lifetime:
Select this option to remove the <Lifetime> elements from the WS-Trust token.

Extract Authenticator:
Select this option to extract the <Authenticator> from the WS-Trust token and store it in a message attribute.

Advanced settings

The following fields can be configured on the Advanced tab: WS-Trust Namespace:
Enter the WS-Trust namespace that you expect all WS-Trust elements to be bound to in tokens that are consumed by
this filter. The default namespace is http://schemas.xmlsoap.org/ws/2005/02/trust.

Cache Security Context Session Key:
Click the browse button, and select the cache to store the security context session key. The session key (the value of the
security.context.session.key attribute), is cached using the value of the secur-
ity.context.token.unattached.id message attribute as the key into the cache.

You can select a cache from the list of currently configured caches in the tree. To add a cache, right-click the Caches
tree node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure caches under the
Libraries node in the Policy Studio tree. For more details, see Global caches.

Lifetime of ComputedKey:
The settings in this section enable you to add a time stamp to the extracted computedKey using the values specified in
the <Lifetime> element. This section is enabled only after selecting the Extract RequestedProofToken check box
above, selecting the computedKey option from the associated list, and finally by selecting the Extract Lifetime check
box. Configure the following fields in this section:

• Add Lifetime to ComputedKey:
Adds the <Lifetime> details to the security.context.session.key message attribute. This enables you to
check the validity of the key every time it is used against the details in the <Lifetime> element.

• Format of Timestamp:
Specify the format of the time stamp using the Java date and time pattern settings.

• Timezone:
Select the appropriate time zone from the list.

• Drift:
To allow for differences in the clock times on the machine on which the WS-Trust token was generated and the ma-
chine running the API Gateway, enter a drift time. This allows for differences in the clock times on these machines
and is used when validating the time stamp on the computedKey.

Verify Authenticator Using:
You can verify the authenticator using either the Generated or Consumed message. In either case select the appropri-
ate type of WS-Trust message from the available options.

Consume WS-Trust message

668

Create WS-Trust message
Overview

You can configure the API Gateway to create various types of WS-Trust messages. The API Gateway can act both as a
WS-Trust client when generating a RequestSecurityToken (RST) message, but also as a WS-Trust service, or Se-
curity Token Service (STS), when generating RequestSecurityTokenResponse (RSTR) and RequestSecurity-
TokenResponseCollection (RSTRC) messages.

A token requestor generates an RST message and sends it to the STS, which generates the required token and returns
it in an RSTR message. If several tokens are required, the requestor can send up multiple RST messages in a single
RequestSecurityTokenCollection (RSTC) request. The STS generates an RSTR for each RST in the RSTC mes-
sage and returns them all in batch mode in an RSTRC message.

For more information on the various types of WS-Trust messages and their semantics and format, see the WS-Trust spe-
cification.

Configuration

Configure the fields in the following sections.

Message types

The Create WS-Trust filter can create the following types of WS-Trust message. Select the appropriate message type
based on your requirements:

• RST: RequestSecurityToken
The RST message contains a request for a single token to be issued by the STS.

• RSTR: RequestSecurityTokenResponse
The RSTR message is sent in response to an RST message from a token requestor. It contains the token issued by
the STS.

• RSTRC: RequestSecurityTokenResponseCollection
The RSTRC message contains an RSTR (containing a single issued token) for each RST that was received in an
RSTC message.

General message creation settings

The settings on this tab specify characteristics of the WS-Trust message. The following fields are available:

Insert Token Type:
Select the type of token requested from the list. The type of token selected here is returned in the response from the
STS. By default, the Security Token Context type is used, which is identified by the URI ht-
tp://schemas.xmlsoap.org/ws/2005/02/sc/sct.

Binary Exchange:
You can use a <BinaryExchange> when negotiating a secure channel that involves the transfer of binary blobs as part
of another security negotiation protocol (for example, SPNEGO). The contents of the blob are always Base64-encoded to
ensure safe transmission.

Select the Binary Exchange option to use a negotiation-type protocol for the exchange of keys, such as SPNEGO. The
URI selected in the Value Type field identifies the type of the negotiation in which the blob is used. The URI is placed in
the ValueType attribute of the <BinaryExchange> element.

Entropy:
The client can provide its own key material (entropy) that the token issuer may use when generating the token. The is-

669

suer can use this entropy as the key itself, it can derive another key from this entropy, or it can choose to ignore the en-
tropy provided by the client altogether in favor of generating its own entropy.

Select this option to generate some entropy, which is included in the <wst:entropy> element of the
<wst:RequestSecurityToken> block.

Insert Key Size:
The client can request the key size (in number of bits) required in a <RequestSecurityToken> request. However, the
WS-Trust token issuer does not have to use the requested key size. It is merely intended as an indication of the strength
of security required. The default request key size is 256 bits.

Insert Lifetime:
Select this option to insert a <Lifetime> element into the WS-Trust message. Use the associated fields to specify
when the message expires. The lifetime of the WS-Trust message is expressed in terms of <Created> and <Expires>
elements.

Lifetime Format:
The specified date and time pattern string determines the format of the <Created> and <Expires> elements. The de-
fault format is yyyy-MM-dd'T'HH:mm:ss.SSS'Z', which can be altered if necessary. For more details on how to use
this format, see the Javadoc for the java.text.SimpleDateFormat Java class in the Java API specification.

Insert RequestedTokenCancelled:
Select this option to insert a <RequestedTokenCancelled> element into the generated WS-Trust message.

RST creation settings

The following configuration fields specify the way in which a WS-Trust RST message is created:

Insert Request Type:
You can create two types of RST message. Select one of the following request types from the list:

• Issue: This type of RST message is used to request the STS to issue a token for the requestor.
• Cancel: This type of RST message is used to cancel a specific token.

Insert Key Type:
Select this option to insert the key type into the RST WS-Trust message.

Insert Computed Key Algorithm:
Select this option to insert the computed key algorithm into the message.

Insert Endpoint Reference:
Select this option and enter a suitable endpoint to include an endpoint reference in the RST message.

RSTR creation settings

The following configuration fields determine the way in which a WS-Trust RSTR message is created:

Insert RequestedProofToken:
Select this check box to insert a <RequestedProofToken> element into the generated WS-Trust message. The type of
this token can be set to either computedKey or encryptedKey using the associated list.

Insert Authenticator:
Select this option to insert an authenticator into the RSTR message.

Advanced settings

This section enables you to configure certain advanced aspects of the SOAP message that is sent to the WS-Trust ser-
vice.

Create WS-Trust message

670

WS-Trust Namespace:
Enter the WS-Trust namespace to bind all WS-Trust elements to in this field. The default namespace is ht-
tp://schemas.xmlsoap.org/ws/2005/02/trust.

WS-Addressing Namespace:
Select the WS-Addressing namespace version to use in all created WS-Trust messages.

WS-Policy Namespace:
Select the appropriate WS-Policy namespace from the list. The selected version selected can affect the ordering of
tokens that are inserted into the WS-Security header of the SOAP message.

SOAP Version:
Select the SOAP version to use when creating the WS-Trust message.

Overwrite SOAP Method:
Select this option if the WS-Trust token should overwrite the SOAP method in the request. In this case, the token ap-
pears as a direct child of the SOAP Body element. Use this option to preserve the contents of the SOAP Header, if
present.

Overwrite SOAP Envelope:
Select this option if the generated WS-Trust message should form the entire contents of the message. In other words,
the generated WS-Trust message replaces the original SOAP request.

Content-Type:
Specify the HTTP content-type of the WS-Trust message. For example, for Microsoft Windows Communication Founda-
tion (WCF), you should use application/soap+xml.

Generate Authenticator Using:
You can verify the authenticator using the Generated or Consumed message. In either case, select the appropriate type
of WS-Trust message from the available options.

Create WS-Trust message

671

Abort policy
Overview

You can use the Abort filter to force a policy to throw an exception. You can use it to test the behavior of the policy when
an exception occurs.

For example, to quickly test how the policy behaves when a Message Size filter throws an exception, you can place an
Abort filter before it in the policy. The following policy diagram illustrates this.

Configuration

Enter a name for the filter in the Name field.

672

Check group membership
Overview

The Check Group Membership filter checks whether the specified API Gateway user is a member of the specified API
Gateway user group. The user and the group are both stored in the API Gateway user store. For more details, see Man-
age API Gateway users.

Configuration

Configure the following required fields:

Name:
Enter an appropriate name for this filter.

User:
Enter the user name configured in the API Gateway user store. You can specify this value as a string or as a selector
that expands to the value of the specified message attribute at runtime. Defaults to
${authentication.subject.id}.

Group:
Enter the group name configured in the API Gateway user store (for example, engineering or sales). You can spe-
cify this value as a string or as selector that expands to the value of the specified message attribute at runtime (for ex-
ample, ${groupName}).

Note
The message attribute specified in the selector must exist on the message whiteboard prior to calling the fil-
ter. For more details on selectors, see Select configuration values at runtime.

Possible paths

The possible paths through this filter are as follows:

Outcome Description

True The specified user is a member of the specified group.

False The specified user is not a member of the specified group.

CircuitAbort An exception occurred while executing the filter.

673

Copy or modify attributes
Overview

The Copy/Modify Attributes filter copies the values of message or user attributes to other message or user attributes.
You can also set the value of a message or user attribute to a user-specified value.

Configuration

The table lists the configured attribute-copying rules. To add a new rule, click the Add button and enter values in the dia-
log to copy a message or user attribute to a different message or user attribute. The From attribute represents the
source attribute, while the To attribute represents the destination attribute.

The attribute value can be copied from three possible sources:

• Message:
Select this option to copy the value of a message attribute. Enter the name of the source attribute in the Name field.

• User:
Select this option should to copy a user attribute stored in the attribute.lookup.list. Enter the name (and
namespace if the attribute was extracted from a SAML attribute assertion) of the user attribute in the Name and
Namespace fields.
If there are multiple values stored in the attribute.lookup.list for the attribute entered in the Name field, only
the first value is copied.

• User entered value:
Select this option to copy a user-specified value to an attribute. Enter the new attribute value in the Value field. You
can enter a selector to represent the value of a message attribute instead of entering a specific value directly. The
syntax for entering message attribute selectors is as follows:
${authentication.subject.id}
In this case the value of the authentication.subject.id attribute is copied to the named attribute.

The message can be copied to one of the following types of attributes:

• Message:
The attribute can be copied to any message attribute. Enter the name of the attribute in the Name field.

• User:
Select this option if the attribute or value should be copied to a user attribute stored in the attrib-
ute.lookup.list. Specify the name and namespace (if necessary) of this attribute in the Name and Namespace
fields.
If there are multiple values stored in the attribute.lookup.list for the attribute entered in the Name field of
the From attribute section, the attribute value will be copied to the first occurrence of the attribute name in list.

Select the Create list attribute check box if the new attribute can contain several items.

674

Evaluate selector
Overview

The Evaluate Selector filter enables you to evaluate the contents of a specified selector expression, and return a
boolean result. A selector is a special syntax that enables API Gateway configuration settings to be evaluated and ex-
panded at runtime.

This filter enables you to evaluate a specified selector expression and make a decision in a policy based on whether the
expression value fails or passes. For example, you could use the following expression to check if the user belongs to a
particular group that allows the user to access a particular resource:

${user[0].memberOf.contains("CN=Group Policy Creator Owners,CN=Users,DC=acmeqa,DC=com")}

This expression checks if the memberOf attribute retrieved for the first user contains the specified value (in this case,
membership of a particular group). If the expression matches, the filter passes.

Alternatively, you could use the following selector expression to check if the user email address is valid:

${user[0].mail.contains("admin@qa.acme.com")}

This expression checks if the mail attribute retrieved for the first user contains the specified value (in this case, a par-
ticular email address). If the expression matches, the filter passes.

For more details on selectors, see Select configuration values at runtime.

Configuration

Name:
Enter a descriptive name for this filter.

Expression:
Enter the selector expression to be evaluated. Defaults to the following selector expression:

${1 + 1 == 2}

675

Execute external process
Overview

This filter enables you to execute an external process from a policy. It can execute any external process (for example,
start an SSH session to connect to another machine, run a script, or send an SMS message).

Configuration

To configure the Execute Process filter, specify the following fields:

Name:
Enter an appropriate name for the filter. This name is displayed in a policy.

Command settings

The Command tab includes the following fields:

Command to execute Specify the full path to the command to execute (for example,
c:\cygwin\bin\mkdir.exe).

Arguments Click Add to add arguments to your command. Specify an argument in the Value field
(for example, dir1), and click OK. Repeat these steps to add multiple arguments (for ex-
ample, dir2 and dir3).

Working directory Specify the directory to run the command from. You can specify this using a selector that
is expanded to the specified value at runtime. Defaults to ${environment.VINSTDIR},
where VINSTDIR is the location of a running API Gateway instance. For more details,
see Select configuration values at runtime.

Expected exit code Specify the expected exit code for the process when it has finished. Defaults to 0.

Kill if running longer than
(ms)

Specify the number of milliseconds after which the running process is killed. Defaults to
60000.

Advanced settings

The Advanced tab includes the following fields:

Environment variables to
set

Click Add to add environment variables. In the dialog, specify an Environment variable
name (for example, JAVA_HOME) and a Value (for example, c:\jdk1.6.0_18), and
click OK. Repeat to add multiple variables.

Block till process finished Select whether to block until the process is finished in the check box. This is enabled by
default.

676

False filter
Overview

You can use the False filter to force a path in the policy to return false. This can be useful to create a false positive path
in a policy.

The following policy parses the HTTP request and then runs a Message Size filter on the message to make sure that the
message is no larger than 1000 bytes. To make sure that the message cannot be greater than this size, you can connect
a False filter to the success path of the Message Size filter. This means that an exception is raised if a message ex-
ceeds 1000 bytes in size.

Configuration

Enter a name for the filter in the Name field.

677

HTTP parser
Overview

The HTTP Parser filter parses the HTTP request headers and body. As such, it acts as a barrier in the policy to guaran-
tee that the entire content has been received before any other filters are invoked. It requires the content.body attrib-
ute.

The HTTP Parser filter forces the server to do store-and-forward routing instead of the default cut-through routing, where
the request is only parsed on-demand. For example, you can use this filter as a simple test to ensure that the message is
XML.

Configuration

Enter a name for the filter in the Name field.

678

Insert BST
Overview

You can use the Insert BST filter to insert a Binary Security Token (BST) into a message. A BST is a security token that
is in binary form, and therefore not necessarily human readable. For example, an X.509 certificate is a binary security
token. Inserting a BST into a message is normally performed as a side effect of signing or encrypting a message.
However, there are also some scenarios where you might insert a certificate into a message in a BST without signing or
encrypting the message.

For example, you can use the Insert BST filter when the API Gateway is acting as a client to a Security Token Service
(STS) that issues security tokens (for example, to create OnBehalfOf tokens). For more details, see the topic on STS
client authentication. Finally, you can also use the Insert BST filter to generate XML nodes without inserting them into
the message. In this case, the WS-Security Actor is set to blank.

Configuration

You can configure the following settings on the filter dialog:

Name:
Enter an appropriate name for this filter.

WS-Security Actor:
Select or enter the WS-Security element in which to place the BST. Defaults to Current actor / role only. To
use the Insert BST filter to generate XML nodes without inserting them into the message, you must ensure that this field
is set to blank.

Message Attribute:
Select or enter the message attribute that contains the BST. The message attribute type can be byte[], String,
X509Certificate, or X509Certificate[].

Value Type:
Select the BST value type, or enter a custom type. Example value types include the following:

• http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

• ht-
tp://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_R
EQ

• http://xmlns.oracle.com/am/2010/11/token/session-propagation

Base64 Encode:
Select this option to Base64 encode the data. This option applies only when the data in the message attribute is not
already Base64 encoded. In some cases, the input might already be Base64 encoded, so you should deselect this set-
ting in these cases.

679

Invoke policy per message body
Overview

In cases where API Gateway receives a multipart related MIME message, you can use the Invoke Policy per Message
Body filter to pass each body part to a specified policy for processing.

For example, if other XML documents are attached to an XML message (using the SOAP with Attachments specification
perhaps), you can pass each of these documents to an appropriate policy where they can be processed by the full com-
plement of message filters.

Configuration

Complete the following fields:

Name:
Enter a name for the filter.

Policy Shortcut:
Select the policy to invoke for each MIME body part in the message. Each body part is passed to the selected policy in
turn. The filter fails if the selected policy fails for any of the passed body parts.

Maximum level to unzip:
In cases where a MIME body part is a MIME message itself (which might, in turn, contain more multipart messages), this
setting determines how many levels of enveloped MIME messages to attempt to unzip. A default value of 2 levels en-
sures that the server will not attempt to unwrap unnecessarily deep MIME messages.

If one of the body parts is actually an archive file (for example, tar or zip), this setting determines the maximum depth of
files to unzip in cases where the archive file contains other archive files, which might contain others, and so on.

680

Locate XML nodes
Overview

You can use the Locate XML Nodes filter to select a number of nodes from an XML message. The selected nodes are
stored in a message attribute, which is typically used by a signature or XML encryption filter later in a policy.

The primary use of the Locate XML Nodes filter is when a series of policies is autogenerated by importing a Web Ser-
vices Description Language (WSDL) file that contains WS-Policy assertions. For example, because there might be many
different WS-Policy assertions that describe elements in the message that must be signed, you can use the Locate XML
Nodes filter to build up the node list of elements. Eventually, this node list is passed into the Sign Message filter (using a
message attribute) so that a single signature can be created that covers all the relevant parts.

However, you can also use this filter in similar cases where the message content that must be signed depends on con-
tent of the message. For example, a given policy runs a number of XPath expressions on a message where each XPath
expression checks for a particular element. If that element is found, it can be marked as an element to be signed or en-
crypted by selecting that element in the Locate XML Nodes filter. This means that only a single signature or XML en-
cryption filter must be configured, with each path feeding back into this filter and passing in the message attribute that
contains the nodes set for each specific case.

Configuration

As explained earlier, nodes can be selected using any combination of node locations, XPaths, or message attributes.
The following sections explain how to use each different mechanism and how to store the selected nodes in a message
attribute.

Node locations

The simplest way to select nodes is using the preconfigured elements listed in the table on the Node Locations tab. The
table is prepopulated with elements that are typically found in secured SOAP messages, including the SOAP Body,
WSSE Security Header, WS-Addressing headers, SAML Assertions, WS UsernameToken, and so on.

The elements selected here are found by traversing the SOAP message as a DOM and finding the element name with
the correct namespace and with the selected index position (for example, the first Signature element from the ht-
tp://www.w3.org/2000/09/xmldsig# namespace).

You can select the check box in the Name column of the table to select the corresponding node. You can select any
number of node locations in this manner.

To locate an element that is not already present in the table, click the Add button below the table to add a new node loc-
ation. In the Locate XML Nodes dialog, enter the name of the element, its namespace, and its position in the message
using the Element Name, Namespace, and Index fields.

To select this node for encryption purposes, select an appropriate Encryption Type. For example, WS-Security policy
mandates that when encrypting the SOAP Body that only its contents are encrypted and not the SOAP Body element it-
self. This means that the <xenc:EncryptedData> is inserted as a direct child of the SOAP Body element. In this case,
you should select the Encrypt Node Content option.

However, in most other cases, it is typically the entire node that gets encrypted. For example, when encrypting a
<wsse:UsernameToken>, the entire node should be encrypted. In this case, the <EncryptedData> element replaces
the <UsernameToken> element. To encrypt the entire node in this manner, select the Encrypt Node option.

XPath expressions

To select nodes that exist under a more complicated element hierarchy, it might be necessary to use an XPath expres-
sion to locate the required nodes. The XPaths table is prepopulated with a number of XPath expressions to locate SOAP

681

elements and common security elements, including SAML Assertions and SAMLP Responses.

To select an existing XPath expression, you can select the check box next to the Name of the appropriate XPath expres-
sion. You can select any number of XPath expressions in this manner.

To add a new XPath expression, click the Add button. You must enter a name for the XPath expression in the Name
field and enter the XPath expression in the XPath Expression field. For more information on configuring this dialog, see
Configure XPath expressions.

To select this node for encryption purposes, you must select an appropriate Encryption Type. For example, WS-
Security policy mandates that when encrypting the SOAP Body that only its contents are encrypted and not the SOAP
Body element itself. This means that the <xenc:EncryptedData> is inserted as a direct child of the SOAP Body ele-
ment. In this case, you should select the Encrypt Node Content option.

However, in most other cases, it is typically the entire node that gets encrypted. For example, when encrypting a
<wsse:UsernameToken>, the entire node should be encrypted. In this case, the <EncryptedData> element replaces
the <UsernameToken> element. To encrypt the entire node in this manner, select the Encrypt Node option.

Message attribute

Finally, you can also retrieve nodes that have been previously stored in a named message attribute. In such cases, an-
other filter extracts nodes from the message and stores them in a named message attribute (for example, node.list).
The Locate XML Nodes filter can then extract these nodes and store them in the message attribute configured in the
Message Attribute Name field.

Extract nodes from Selector Expression:
Specify whether to extract nodes from a specified selector expression (for example, ${node.list}). This setting is not
selected by default. Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for
example, in a message attribute, Key Property Store (KPS), or environment variable). For more details, see Select con-
figuration values at runtime.

Message attribute in which to place list of nodes

Message Attribute Name:
At runtime, the Locate XML Nodes filter locates and extracts the selected nodes from the message. It then stores them
in the specified message attribute. For example, to sign the selected nodes, it would make sense to store the nodes in a
message attribute called sign.nodeList, which would then be specified in the Sign Message filter. Alternatively, to
encrypt the selected nodes, you could store the nodes in the encrypt.nodeList message attribute, which would then
be specified in the XML Encryption Properties filter. The Message Attribute Name setting defaults to the node.list
attribute.

Finally, you must specify whether the selected nodes should Overwrite any nodes that might already exist in the spe-
cified attribute, or if they should Append to any existing nodes. You can also decide to Reset the contents of the mes-
sage attribute. Select the appropriate option depending on your requirements.

Locate XML nodes

682

Management services RBAC
Overview

Role-Based Access Control (RBAC) is used to protect access to the API Gateway management services. For example,
management services are invoked when a user accesses the server using Policy Studio or API Gateway Manager (ht-
tps://localhost:8090/). For more information on RBAC, see the API Gateway Administrator Guide.

The Management Services RBAC filter can be used to perform the following tasks:

• Read the user roles from the configured message attribute (for example, authentication.subject.role).
• Determine which management service URI is currently being invoked.
• Return true if one of the roles has access to the management service currently being invoked, as defined in the

acl.json file.
• Otherwise, return false.

Configuration

Configure the following settings:

Name:
Enter an appropriate name for this filter.

Role Attribute:
Select or enter the message attribute that contains the user roles.

683

Pause processing
Overview

The Pause filter is mainly used for testing purposes. A Pause filter causes a policy to sleep for a specified amount of
time.

Configuration

Enter an appropriate name for the filter in the Name field. When the filter is executed in a policy, it sleeps for the time
specified in the Pause for field. The sleep time is specified in milliseconds.

684

Create policy shortcut
Overview

The Policy Shortcut filter enables you to reuse the functionality of one policy in another policy. For example, you could
create a policy called Security Tokens that inserts various security tokens into the message. You can then create a
policy that calls this policy using a Policy Shortcut filter.

In this way, you can adopt a design pattern of building up reusable pieces of functionality in separate policies, and then
bringing them together when required using a Policy Shortcut filter. For example, you can create modular reusable
policies to perform specific tasks, such as authentication, content-filtering, or logging, and call them as required using a
Policy Shortcut filter.

For details on how to create a sequence of policy shortcuts in a single policy, see Create policy shortcut chain.

Configuration

Complete the following fields to configure the Policy Shortcut filter:

Name:
Enter an appropriate name for the filter.

Policy Shortcut:
Select the policy that to reuse from the tree. You can search for a specific policy by entering its name in the text box, and
the policy tree is filtered automatically. The policy in which this Policy Shortcut filter is configured calls the selected
policy when it is executed.

Tip
Alternatively, to speed up policy shortcut configuration, you can drag a policy from the tree on the left of the
Policy Studio and drop it on to the policy canvas on the right. This automatically configures a policy shortcut
to the selected policy.

685

Create policy shortcut chain
Overview

The Policy Shortcut Chain filter enables you to run a series of configured policies in sequence without needing to wire
up a policy containing several Policy Shortcut filters. This enables you to adopt a design pattern of creating modular re-
usable policies to perform specific tasks, such as authentication, content-filtering, or logging. You can then link these
policies together into a single, coherent sequence using this filter.

Each policy in the Policy Shortcut Chain is evaluated in succession. The evaluation proceeds as each policy in the
chain passes, until finally the filter exits with a pass status. If a policy in the chain fails, the entire Policy Shortcut Chain
filter also fails at that point.

General settings

Complete the following general setting:

Name:
Enter an intuitive name for the filter in this field. For example, the name might reflect the business logic of the policies
that are chained together in this filter.

Add a policy shortcut

Click the Add button to display the Policy Shortcut Editor dialog, which enables you to add a policy shortcut to the
chain. Complete the following settings in this dialog:

Shortcut Label:
Enter an appropriate name for this policy shortcut.

Evaluate this shortcut when executing the chain:
Select whether to evaluate this policy shortcut when executing a policy shortcut chain. When this option is selected, the
policy shortcut has an Active status in the table view of the policy shortcut chain. This option is selected by default.

Choose a specific policy to execute:
Select this option to choose a specific policy to execute. This option is selected by default.

Policy:
Click the browse button next to the Policy field, and select a policy to reuse from the tree (for example, Health Check).
You can search for a specific policy by entering its name in the text box, and the policy tree is filtered automatically. The
policy in which this Policy Shortcut Chain filter is configured calls the selected policy when it is executed.

Choose a policy to execute by label:
Select this option to choose a policy to execute based on a specific policy label. For example, this enables you to use the
same policy on all requests or responses, and also enables you to update the assigned policy without needing to rewire
any existing policies. For more details, see the Configure global policies topic.

Policy Label:
Click the browse button next to the Policy Label field, and select a policy label to reuse from the tree (for example, API
Gateway request policy (Health Check)). The policy in which this Policy Shortcut Chain filter is configured calls the
selected policy label when it is executed.

Click OK when finished. You can click Add and repeat as necessary to add more policy shortcuts to the chain. You can
alter the sequence in which the policies are executed by selecting a policy in the table and clicking the Up and Down
buttons on the right. The policies are executed in the order in which they are listed in the table.

Edit a policy shortcut

686

Select an existing policy shortcut, and click the Edit button to display the Policy Shortcut Editor dialog. Complete the
following settings in this dialog:

Shortcut Label:
Enter an appropriate name for this policy shortcut.

Evaluate this shortcut when executing the chain:
Select whether to evaluate this policy shortcut when executing a policy shortcut chain. When this option is selected, the
policy shortcut has an Active status in the table view of the policy shortcut chain.

Policy or Policy Label:
Click the browse button next to the Policy or Policy Label field (depending on whether you chose a specific policy or a
policy label when creating the policy shortcut). Select a policy or policy label to reuse from the tree (for example, Health
Check or API Gateway request policy (Health Check)). The policy in which this Policy Shortcut Chain filter is con-
figured calls the selected policy or policy label when it is executed.

Create policy shortcut chain

687

Quote of the day
Overview

The Quote of the day filter is a useful test utility for returning a simple SOAP response to a client. The API Gateway
wraps the quote in a SOAP response, which can then be returned to the client.

Configuration

Simply enter the quote in the Quotes text area. This quote can be returned in a SOAP response to the client by setting
the Reflect filter to be the successor of this filter in the policy.

The Quote of the day filter can also load a file containing a list of quotes at runtime. In this case, a random quote from
the file is returned to the client in the SOAP response. Each quote should be delimited by a % character on a new line.
This is analogous to the BSD fortune format. The format of this file is shown in the following example:

Most powerful is he who has himself in his own power.
%
All science is either physics or stamp collecting.
%
A cynic is a man who knows the price of everything and the value of nothing.
%
Intellectuals solve problems; geniuses prevent them.
%
If you can't explain it simply, you don't understand it well enough.

You can also enter the quotes in this format into the Quotes text area to achieve the same goal.

The following example shows a SOAP response returned by the API Gateway to a client who requested the Quote of
the day service:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header/>
<s:Body xmlns:oracle="www.oracle.com">
<oracle:getQuoteResponse>

Every cloud has a silver lining
</oracle:getQuoteResponse>

</s:Body>
</s:Envelope>

688

Reflect message
Overview

The Reflect Message filter echoes the HTTP request headers, body, and attachments back to the client.

Configuration

Enter a name for the filter in the Name field. Specify an HTTP status response code to return to the client in the HTTP
response code status field.

689

Reflect message and attributes
Overview

The Reflect Message and Attributes filter echoes the HTTP request headers, body, and attachments back to the client.
It also echoes back the message attributes that were stored in the message at the time when the message completed
the policy.

Configuration

Enter a name for the filter in the Name field.

690

Remove attribute
Overview

You can use the Remove Attribute filter to remove a specified message attribute from a request message or a response
message, depending on where the filter is placed in the policy.

Configuration

Name:
Enter a suitable name for this filter.

Attribute Name:
Select or enter the message attribute name to be removed from the message (for example, authentica-
tion.subject.password).

691

Set attribute
Overview

The simple Set Attribute filter enables you to set the value of a message attribute.

Configuration

Complete the following fields to configure the Set Attribute filter:

• Name:
Enter a name for the filter.

• Attribute Name:
Enter the name of the message attribute in which to store a value.

• Attribute Value:
Enter the value of the message attribute specified above.

692

Set response status
Overview

The Set Response Status filter is used to explicitly set the response status of a call. This status is then recorded as a
message metric for use in reporting.

This filter is primarily used in cases where the fault handler for a policy is a Policy Shortcut filter. If the Policy Shortcut
passes, the overall fail status still exists. You can use the Set Response Status filter to explicitly set the response
status back to pass, if necessary.

Note
This filter should only be used under advice from Oracle Support.

Configuration

Name:
Enter an intuitive name for the filter in this field.

Response Status:
Select Pass or Fail to set the response status.

693

Replace string
Overview

The String Replace filter enables you to replace all or part of the value of a specified message attribute. You can use
this filter to replace any specified string or substring in a message attribute. For example, changing the from attribute in
an email, or changing all or part of a URL.

Configuration

To configure the String Replace filter, specify the following fields:

Name Enter the name of the filter to be displayed in a policy.

Message Attribute Select the name of the message attribute to be replaced from the list. This is re-
quired. If this is not specified, a MissingPropertyException is thrown,
which results in a CircuitAbortException.

Specify Destination Attribute By default, the value of the specified Message Attribute is both the source and
destination, and is therefore overwritten. To specify a different destination at-
tribute, select this check box to enable the Destination Attribute field, and se-
lect a value from the list.

Replacement String The string used to replace the value of the specified source attribute. You can
specify this as a selector, which is expanded to the specified value at runtime
(for example, ${http.request.uri}). This is a required field if you specify
the Specify Destination Attribute.

Straight A match string used to search the value of the specified source attribute. You
can specify this as a selector, which is expanded to the specified value at
runtime. If a straight (exact) match is found, it is replaced with the specified Re-
placement String.

Regexp A match string, specified as a regular expression, used to search the value of
the specified source attribute. You can specify this as a selector, which is ex-
panded to the specified attribute value at runtime. If a match is found, it is re-
placed with the specified Replacement String. For more details on selectors,
see Select configuration values at runtime.

First Match If a match is found, only replace the first occurrence.

All Matches If a match is found, replace all occurrences.

Note
The possible paths available through this filter are True (even if no replacement takes place), and Cir-
cuitAbort. Under certain circumstances, if the Replacement String contains a selector, a Missing-
PropertyException can occur, which results in a CircuitAbortException.

694

Switch on attribute value
Overview

The Switch on Attribute Value filter enables you to switch to a specific policy based on the value of a configured mes-
sage attribute. You can specify various switch cases (for example, contains, is, ends with, matches regular expression,
and so on). Specified switch cases are evaluated in succession until a switch case is found, and the policy specified for
that case is executed. You can also specify a default policy, which is executed when none of the switch cases specified
in the filter are found.

Configuration

Complete the following configuration settings:

Name:
Enter an intuitive name for the filter. For example, the name might reflect the business logic of a specified switch case.

Switch on selector expression:
Enter or select the name of the message attribute selector to switch on (for example, ${http.request.path}). This
filter examines the specified message attribute value, and switches to the specified policy if this value meets a configured
switch case.

Case:
You can add, edit, and delete switch cases by clicking the appropriate button on the right. All configured switch cases are
displayed in the table. For more details, see the section called “Add a switch case”.

Default:
This field specifies the default behavior of the filter when none of the specified switch cases are found in the configured
message attribute value. Select one of the following options:

Return result of calling the following policy Click the browse button, and select a default policy to ex-
ecute from the dialog (for example, XML Threat Policy).
The filter returns the result of the specified policy. This op-
tion is selected by default.

Return true The filter returns true.

Return false The filter returns false.

Add a switch case

To add a switch case, click the Add button, and configure the following fields in the dialog:

Comparison Type:
Select the comparison type to perform with the configured message attribute. The available options include the following:

• Contains

• Doesn't Contain

• Ends With

• Equals

• Does not Equal

• Matches Regular Expression

• Starts With

695

All of these options are case insensitive, except for Matches Regular Expression.

Compare with:
Enter the value to compare the configured message attribute value with. For example, if you select a Comparison Type
of Matches Regular Expression, enter the regular expression in this field.

Policy:
Click the browse button next to the Policy field, and select the policy to execute from the dialog (for example, Remove
All Security Tokens). You can search for a specific policy by entering its name in the text box, and the policy tree is
filtered automatically. The selected policy is executed when this switch case is found.

Click OK when finished. You can click Add, and repeat as necessary to add more switch cases to this filter. The switch
cases are examined in the order in which they are listed in the table. You can alter the sequence in which the switch
cases are evaluated by selecting a policy in the table and clicking the Up and Down buttons on the right.

Switch on attribute value

696

Allow or block messages at specified times
Overview

The Time filter enables you to block or allow messages on a specified time of day, or day of week, or both. You can input
the time of day directly in the Time filter window, or configure message attributes to supply this information using the
Java SimpleDateFormat, or specify a cron expression.

You can use the Time filter in any policy (for example, to block messages at specified times when a web service is not
available, or has not been subscribed for by a consumer). In this way, this filter enables you to meter the availability of a
web service and to enforce Service Level Agreements (SLAs).

General settings

Configure the following general options:

Name:
Enter an appropriate name for this filter.

Block Messages:
Select this option to use this filter to block messages. This is the default option.

Allow Messages:
Select this option to use this filter to allow messages.

Basic time settings

Select Basic to block or allow messages at specified times of the day. This is the default option. You can configure fol-
lowing settings:

User defined time:
Select this option to input the times to block or allow messages directly in this screen. This is the default option. Config-
ure the following settings:

From The time to start blocking or allowing messages from in hours, minutes, and
seconds. Defaults to 9:00:00.

To The time to end blocking or allowing messages in hours, minutes, and seconds.
Defaults to 17:00:00.

Time from attribute:
Select this option to specify times to block or allow messages using configured message attributes. You can specify
these attributes using selectors, which are replaced at runtime with the values of the specified message attributes set in
previous filters or messages. For more details, see Select configuration values at runtime. You must configure the follow-
ing settings:

From Message attribute that contains the time to start blocking or allowing messages
from (for example, $(message.starttime)). Defaults to a time of 9:00:00.

To Message attribute that contains the time to end blocking or allowing messages
(for example,
$(message.endtime)). Defaults to a time of 17:00:00.

Pattern Message attribute that contains the time format based on the Java SimpleD-
ateFormat class (for example,$(message.pattern)). This enables you to

697

format and parse dates in a locale-sensitive manner. Day, month, years, and
milliseconds are ignored. Defaults to a format of HH:mm:ss.

Days:
To block or allow messages on specific days of the week, select the check boxes for those days. For example, to block
messages on Saturday and Sunday only.

Advanced time settings

Select Advanced to block or allow messages at specified times based on a cron expression. Configure the following set-
ting:

Cron Expression:
Enter a cron expression or a message attribute that contains a cron expression in this field. Alternatively, click the
browse button next to this field to select a preconfigured cron expression or to create and test a new cron expression.
For more details, see Configure cron expressions.

For example, the following cron expression blocks all messages received on April 27 and 28 2012, at any time except
those received between 10:00:01 and 10:59:59.

* * 0-9,11-23 27-28 APR ? 2012

The default value is * * 9-17 * * ? *, which specifies a time of 9:00:00 to 17:00:00 every day. For more details on
cron expressions, see the Policy execution scheduling topic.

Allow or block messages at specified times

698

Trace filter
Overview

The Trace filter outputs the current message attributes to the configured trace destinations. By default, output is traced to
the system console.

Configuration

Name:
Enter an appropriate name for the filter.

Include the following text in trace:
Enter an optional custom text message to include in the trace output.

Trace Level:
Select the trace level. DATA is the most verbose level, while FATAL is the least verbose.

Include Attributes:
Select this option to trace all current message attributes to the configured trace destination.

Include Body:
Select this option to trace the entire message body.

Indent XML:
If this option is selected, the XML message is pretty-printed (indented) before it is output to the trace destination.

699

True filter
Overview

You can use the True filter to force a path in a policy to return true. For example, this can be useful to prevent a path
from ending on a false case and consequently throwing an exception. The following policy parses the HTTP request, and
then runs Attachment1 on the message. If Attachment1 passes, the message is echoed back to the client by the Re-
flect filter. However, if Attachment1 fails, the Attachment2 filter is run on the message. Because this is an end node, if
this filter fails, an exception is thrown.

By adding a True filter to the Attachment2 filter, this path always ends on a true case, and so does not throw an excep-
tion if Attachment2 fails.

Configuration

Enter an appropriate name for the filter in the Name field.

700

Web service filter
Overview

The Web Service Filter is used to control and validate requests to the web service and responses from the web service.
Typically, this is automatically generated and populated as a Service Handler when a WSDL file is imported into the
web service repository. For example, if you import the WSDL file for a web service named ExampleService, a Service
Handler for ExampleService filter is automatically generated. However, you can also configure a Web Service Filter
manually.

In cases where the imported WSDL file contains WS-Policy assertions, a number of policies are automatically created
containing the filters required to generate and validate the relevant security tokens (for example, SAML, WS-Security
UsernameToken, and WS-Addressing headers). These policies perform the necessary cryptographic operations (for ex-
ample, signing and encrypting) to meet the security constraints stipulated by the WS-Policy assertions.

General settings

Name:
Enter an intuitive name for the filter in this field.

Web Service Context:
Click the button on the right, and select a WSDL file currently registered in the web service repository from the tree to set
the web service context. To register a web service, right-click the default Web Services node, and select Register Web
Service. For more details on adding services to the web service repository, see the Manage web services topic.

When you select a web service from the Web Service Context field, the Message Interception Points tab is automatic-
ally populated with resolvers for the operations exposed by that web service. Similarly, the Routing tab is automatically
populated with the routing information for the selected web service.

Routing settings

When routing to a service, you can specify a direct connection to the web service endpoint by using the URL in the
WSDL or you can override this URL by entering a URL in the field provided. Alternatively, in cases where the routing be-
havior is more complex, you can delegate to a custom routing policy, which takes care of the added complexity. The top-
level radio buttons on the Routing tab allow for these alternative routing configurations.

Direct Connection to Service Endpoint:
Select this option to route to either the URL specified in the WSDL or a URL. The radio buttons in the Routing Details
group enable you to choose between using the URL in the WSDL and providing an override. When providing an override,
you can enter the new URL in the URL field. Alternatively, you can specify the URL as a selector so that the URL is built
dynamically at runtime from the specified message attributes (for example ${host}:${port}, or
${http.destination.protocol}://${http.destination.host}:${http.destination.port}). For more
details on selectors, see Select configuration values at runtime.

In both cases, you can configure SSL settings, credential profiles for authentication, and other settings for the direct con-
nection using the tabs in the Connection Details group. For more details, see the Connect to URL topic.

Delegate to Routing Policy:
To use a dedicated routing policy to send messages on to the web service, you can select this radio button. For example,
you might have configured a dedicated routing policy that uses the JMS-based Messaging System filter to route over
JMS. Click the browse button next to the Routing Policy field. Select the policy to use to route messages, and click OK.
You can search for a specific policy by entering its name in the text box, and the policy tree is filtered automatically.

Validation settings

The WSDL for a web service contains information about the SOAP Action, SOAP Operation, and the data types of the

701

message parts used in a particular SOAP operation. API Gateway creates the following implicit validation incoming re-
quests for the web service:

• SOAPAction HTTP Header:
If a web service requires clients to send a certain SOAPAction HTTP header in all requests, API Gateway can check
the value of this header in the incoming request against the value specified in the WSDL.

• SOAP Operation and Namespace:
The WSDL defines the SOAP Operation and namespace to be used in the SOAP request. The SOAP Operation is
defined as the first child element of the SOAP Body element. API Gateway can check the value of this element in an
incoming SOAP request and its namespace against the values specified in the WSDL.

• Relative Path:
The filter ensures that requests for this web service are received on the same URL as that specified in the
<service> block of the WSDL.

• SOAP Version:
API Gateway also validates requests by matching the SOAP protocol version in the message against the SOAP
binding version (1.1 or 1.2) of the corresponding operation definition in the WSDL.

It is also common for a WSDL document to contain an XML schema that defines the format and types of the message
parts in the request. This is usually the case for document/literal style SOAP requests, where a complete XML schema is
embedded or imported into the <wsdl:types> block of the WSDL.

When using a WSDL to import a service into the web service repository, Policy Studio can extract the XML schema from
the WSDL and configure API Gateway to validate incoming requests against it. Select Use WSDL Schema to validate in-
coming requests against the schema in the WSDL.

Alternatively, you can create a custom-built policy to validate the contents of incoming requests. To do this, select the
Delegate to Validation Policy radio button, and the click the browse button next to the Message Validation Policy
field. Select the policy to use to validate requests, and click the OK button.

Configuring message interception points

The configuration settings on the Message Interception Points tab determine how the request and response messages
for the service are processed as they pass through API Gateway. Several message interception points are exposed to
enable you to hook into different stages of the API Gateway's request processing cycle.

At each of these interception points, it is possible to run policies that are specific to that stage of the request processing
cycle. For example, you can configure a logging policy to run just before the request has been sent to the web service
and then again just after the response has been received.

Typically, the configuration settings on this window are automatically configured when importing a service into the web
service repository based on information contained in the WSDL. In cases where the WSDL contains WS-Policy asser-
tions, a number of policies are automatically generated and hooked up to perform the relevant security operations on the
message. For example, policies are created to insert SAML assertions, WS-Security UsernameToken elements, WS-
Addressing headers, and WS-Security timestamps into the message. Similarly, filters are created to sign and encrypt the
outbound message, if necessary, and to decrypt and validate the signature on the response from the web service.

Order of execution:
The order of execution of the message interception points is as follows:

• The interception points are executed in the following order:
1. Request from Client
2. User-defined Request Hooks
3. Request to Service
4. Response from Service
5. User-defined Response Hooks
6. Response to Client

Web service filter

702

• In steps 1, 3, 4, and 6, the execution order is as follows:
A) Before Operation-specific Policy
B) Operation-specific Policy Shortcuts
C) After Operation-specific Policy

• The overall order of all the message interception points is given in the sequence below.

1. Request from Client:
This is the first message interception point, which enables you to run a policy against the request as it is received by API
Gateway. Typically, this is where authentication and authorization events should occur.

1A) Before Operation-specific Policy:
This is usually where authentication policies should be configured because it is the earliest point in the request cycle that
you can hook into. To select a policy to run at this point, click the browse button, and select the check box next to a previ-
ously configured policy.

1B)Operation-specific Policy Shortcuts:
To run policies that are specific to the different operations exposed by the web service, click the Edit button at the bottom
of the table to set this up. For example, you can perform different validation on requests for the different operations.

On the Policy Shortcut Editor dialog, enter the Operation Namespace and Operation Name in the fields provided.
Enter a regular expression used to match the value of the SOAPAction HTTP header in the SOAPAction Regular Ex-
pression field. Finally, select the policy to run requests for this operation by clicking the browse button next to the Policy
Shortcut field. Select the check box next to the policy to run.

1C) After Operation-specific Policy:
This enables you to run a policy on the request after all the operation-level policies have been executed on the request.
Select the appropriate policy as described earlier by clicking the browse button.

2. User-defined Request Hooks:
You should primarily use this interception point to hook in their own custom-built request processing policies.

User-defined Request Policy:
Browse to your custom-built request processing policy using the browse button.

3. Request to Service:
This enables you to alter the message before it is routed to the web service. For example, if the service requires the
message to be signed and encrypted, you can configure the necessary policies here.

3A) Before Operation-specific Policy:
This enables you to run policies on the message before the operation-level policies are run. Select the policy to run as
outlined in the previous sections.

3B) Operation-specific Policy Shortcuts:
Operation-level policies on the request to the web service can be run here. For example, if the input policy for a particular
operation requires the body to be signed and encrypted, a Locate XML Nodes filter can be run here to mark the required
nodes.

3C) After Operation-specific Policy:
This is the last interception point available before the message is routed on to the web service. For example, if certain
operation-level policies have been run to mark parts of the message to be signed and encrypted, the signing and en-
crypting filters should be run here.

4. Response from Service:
This is executed on the response returned from the web service.

4A) Before Operation-specific Policy:
If the response from the web service is encrypted, this interception point enables you to decrypt the message before any
of the operation-level policies are run on the decrypted message.

Web service filter

703

4B) Operation-specific Policy Shortcuts:
The policies configured at this point run on specific operation-level responses (for example, getHelloResponse) from
the web service.

4C) After Operation-specific Policy:
This should be used to run policies after the operation-level policies have been run. For example, this is the appropriate
point to place an XML Signature Verification filter.

5. User-defined Response Hooks:
You should primarily use this interception point to hook in custom-built response processing policies.

User-defined Response Policy:
Browse to your custom-built response processing policy using the browse button.

6. Response to Client:
This enables you to process the response before it is returned to the client.

6A) Before Operation-specific Policy:
This enables you to process the message with a policy before the operation-level policies are run on the response.

6B) Operation-specific Policy Shortcuts:
The policies listed here are run on each operation response.

6C) After Operation-specific Policy:
This is the very last point at which you can run policies to process the response message before it is returned to the cli-
ent. For example, if you are required to return a signed and encrypted response message to the client, the signing and
encrypting should be done at this point.

WSDL settings

You can expose an imported WSDL file to clients of API Gateway. A client can retrieve a WSDL for a service by append-
ing WSDL to the query string of the relative path on which the service is accepting requests. For example, if the service is
accepting requests at the URL http://server:8080/services/getHello, the client can retrieve the WSDL on the
following URL:
http://server:8080/services/getHello?WSDL

Important
When API Gateway returns the WSDL to the client, it dynamically modifies the service URL of the original
WSDL to point to the machine on which API Gateway is running. For example, the original WSDL contains
the following service element, where www.service.com resolves to an internal IP address that is not ac-
cessible to the public Internet:

<wsdl:service name="GetHelloService">
<wsdl:port name="GetHelloServiceSoap" binding="tns:ServiceSoap">

<soap:address location="http://www.service.com/getHello"/>
</wsdl:port>

</wsdl:service>

When API Gateway returns this WSDL to the client, it dynamically modifies the value of the location attribute to point
to the name of the machine hosting API Gateway. In the following example, the location attribute has been modified to
point to the API Gateway instance running on port 8080 on the Oracle_SERVER host:

<wsdl:service name="GetHelloService">
<wsdl:port name="GetHelloServiceSoap" binding="tns:ServiceSoap">
<soap:address location="http://Oracle_SERVER:8080/getHello"/>

</wsdl:port>

Web service filter

704

</wsdl:service>

When the client receives the WSDL, it can automatically generate the SOAP request for the getHello service, which it
then sends to the Oracle_SERVER machine on port 8080.

Complete the following fields if you wish to expose the WSDL for this service to clients.

Advertise WSDL to the Client:
Select this option to publish the WSDL for the selected web service.

Note
The exposed WSDL represents a virtualized view of the back-end web service. In this way, clients can re-
trieve the WSDL from API Gateway, generate SOAP requests, and send these requests to API Gateway.
API Gateway then routes the requests on to the web service.

WSDL Access Policy:
To configure a policy to control or monitor access to the WSDL for this service, you can select the policy by clicking the
browse button to the right of this field. Select the policy to run on requests to retrieve the WSDL.

Monitoring options

The fields on this tab enable you to configure whether this web service stores usage metrics data to a database. For ex-
ample, this information can b used by API Gateway Analytics to produce reports showing who is calling this web service.
You can configure the following fields:

• Enable Monitoring:
Select this option to enable monitoring for this web service in the Monitoring view in API Gateway Manager, and in
API Gateway Analytics. For more details on monitoring, see the API Gateway Administrator Guide.

• Which attribute is used to identify the client:
Enter the message attribute to use to identify authenticated clients. The default is authentication.subject.id,
which stores the identifier of the authenticated user (for example, the user name or user's X.509 Distinguished
Name).

• Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, API Gateway receives a message, and sends it to serviceA first, and then to serviceB. Monitoring
is performed separately for each service by default. However, you can set a composite service context before ser-
viceA and serviceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

Web service filter

705

Return WSDL
Overview

The Return WSDL filter returns a WSDL file from the Web service repository. This filter is configured automatically when
auto-generating a policy from a WSDL file and is not normally manually configured.

For details on how to auto-generate a policy from a WSDL file, see the Manage web services topic. For details on how to
identify services in the Web service repository, see the Set web service context topic.

Configuration

Enter a name for the filter in the Name field.

706

Set web service context
Overview

The Set Web Service Context filter is used in a policy to determine the service to obtain resources from in the web ser-
vice repository. For example, by pointing this filter at a preconfigured getQuote service in the web service repository,
the policy knows to return the WSDL for this particular service when a WSDL request is received. The Return WSDL fil-
ter is used in conjunction with this filter to achieve this.

The Set Web Service Context filter is configured automatically when auto-generating a policy from a WSDL file and is
not normally manually configured. For a detailed example, see the Manage web services topic.

General settings

Name:
Enter a name for the filter.

Service WSDL settings

The Service WSDL tab enables you to select the web service to obtain resources from in the web service repository.

Click the browse button to select a service definition (WSDL file) currently registered in the web service repository from
the tree. To register a web service, right-click the default Business Services > Web Services node, and select Register
Web Service. For more details on adding services to the web service repository, see the Manage web services topic.

Monitoring settings

The fields on this tab enable you to configure whether this web service stores usage metrics data to a database. This in-
formation can be used by API Gateway Analytics to produce reports showing how and who is calling this web service.
For details on the fields on this tab, see the section called “Monitoring options” in the Web service filter topic.

707

Advanced filter view
Overview

You can use the advanced filter view in Policy Studio to edit all filter settings as text values. This enables you to edit each
field as a text value regardless of whether the field is displayed as a radio button, check box, or drop-down list in the de-
fault user-friendly view for the filter.

This also means that you can specify all filter fields using the API Gateway selector syntax. This enables settings to be
evaluated and expanded at runtime using metadata (for example, from message attributes, a Key Property Store (KPS),
or environment variables). This is a powerful feature for System Integrators (SIs) and Independent Software Vendors
(ISVs) when integrating with other systems.

Important
You should only modify filter settings using the advanced filter view under strict advice and supervision
from Oracle Support.

Configuration

To enable the advanced filter view for a filter in the Policy Studio, press the Shift key when opening the filter. For ex-
ample, you can press Shift, and double-click a filter on the policy canvas. Alternatively, you can press Shift, right-click
the filter in the Policy Studio tree or policy canvas, and select Edit.

In the advanced filter view, settings are displayed with the following characters before the field name:

• Required: * (for example, *name)
• Reference: ^ (for example, ^proxyServer)
• Radio attribute: (:) (for example, (:)httpAuthType)

Edit filter settings

You can specify all fields in this view using text values (for example, values such as ht-
tp://stockquote.com/stockquote/instance1, false, 0, -1, 500, and so on). Alternatively, you can use the
API Gateway selector syntax to expand values at runtime. The following example selector expands the user agent head-
er sent by the client in the http.headers message attribute:

${http.headers["User-Agent"]}

For example, this selector might return a user agent header such as the following at runtime:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/535.7

For more details on the API Gateway selector syntax, see Select configuration values at runtime. To confirm your up-
dates, you must click Save Changes at the bottom right of the dialog. Alternatively, at any stage, you can click Restore
Defaults to return to the original factory settings.

Return to the default filter view

When you have finished editing filter settings in the advanced filter view, deselect the Show Advanced Filter View set-
ting in Preferences. Then when you edit a selected filter on the policy canvas, the default user-friendly view for the filter

708

is displayed.

Advanced filter view

709

Select configuration values at runtime
Overview

A selector is a special syntax that enables API Gateway configuration settings to be evaluated and expanded at runtime
based on metadata values (for example, from message attributes, a Key Property Store (KPS), or environment vari-
ables). The selector syntax uses the Java Unified Expression Language (JUEL) to evaluate and expand the specified
values. Selectors provide a powerful feature when integrating with other systems or when customizing and extending the
API Gateway.

When you press the Shift key and open a filter, you can edit all filter settings using text values in the advanced filter
view. This means that you can specify all filter fields using the API Gateway selector syntax. For more details on the ad-
vanced view, see Advanced filter view.

Selector syntax

The API Gateway selector syntax uses JUEL to evaluate and expand the following types of values at runtime:

• Message attribute properties configured in message filters, for example:

${authentication.subject.id}

• Environment variables specified in envSettings.props and system.properties files, for example:

${env.PORT.MANAGEMENT}

• Values stored in a KPS table, for example:

${kps.CustomerProfiles[JoeBloggs].age}

Important
Do not use hyphens (-) in selector expressions. Hyphens are not supported by the Java-based selector
syntax. You can use underscores (_) instead.

Access fields

A message attribute selector can refer to a field of that message (for example certificate), and you can use . char-
acters to access subfields. For example, the following selector expands to the username field of the object stored in the
profile attribute in the message:

${profile.username}

You can also access fields indirectly using square brackets ([and]). For example, the following selector is equivalent to
the previous example:

${profile[field]}

You can specify literal strings as follows:

${profile["a field name with spaces"]}

710

For example, the following selector uses the kathy.adams@acme.com key value to look up the User table in the KPS,
and returns the value of the age property:

${kps.User["kathy.adams@acme.com"].age}

Note
For backwards compatibility with the . spacing characters used in previous versions of the API Gateway, if
a selector fails to resolve with the above rules, the flat, dotted name of a message attribute still works. For
example, ${content.body} returns the item stored with the content.body key in the message.

Special selector keys

The following top-level keys have a special meaning:

Key Description

kps Subfields of the kps key reflect the alias names of KPS tables in the API Gateway group.
Further indexes represent properties of an object in a table (for example,
${kps.User["kathy.adams@acme.com"].age}).

env, system In previous versions, fields from the envSettings.props and system.properties
files had restrictions on prefixes. The selector syntax does not require the env and sys-
tem prefixes in these files. For example, ${env. selects settings from envSet-
tings.props, and the rest of the selector chooses any properties in it. However, for
compatibility, if a setting in either file starts with this prefix, it is stripped away so the se-
lectors still behave correctly with previous versions.

Resolve selectors

Each ${...} selector string is resolved step-by-step, passing an initial context object (for example, Message). The top-
level key is offered to the context object, and if it resolves the field (for example, the message contains the named attrib-
ute), the resolved object is indexed with the next level of key. At each step, the following rules apply:

1. At the top level, test the key for the global values (for example, kps, system, and env) and resolve those specially.
2. If the object being indexed is a Dictionary, KPS, or Map, use the index as a key for the item’s normal indexing mech-

anism, and return the resulting lookup.
3. If all else fails, attempt Java reflection on the indexed object.

Note
Method calls are currently only supported using Java reflection. There are currently no supported functions
as specified by the Unified Expression Language (EL) standard. For more details on JUEL, see ht-
tp://juel.sourceforge.net/.

Example selector expressions

This section lists some example selectors that use expressions to evaluate and expand their values at runtime.

Message attribute

Select configuration values at runtime

711

http://juel.sourceforge.net/
http://juel.sourceforge.net/

The following message attribute selector returns the HTTP User-Agent header:

${http.headers["User-Agent"]}

For example, this might expand to the following value:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/535.7

Environment variable

In a default configuration, the following environment variable selector returns port 8091:

${env.PORT.MANAGEMENT + 1}

Key Property Store

The following selector looks up a KPS table with an alias of User:

${kps.User[http.querystring.id].firstName}

This selector retrieves the object whose key value is specified by the id query parameter in the incoming HTTP request,
and returns the value of the firstName property in that object.

The following selector explicity provides the key value, and returns the value of the age property:

${kps.User["kathy.adams@acme.com"].age}

In this example, the ASCII " character is used to delimit the key string.

The following selector looks up a KPS table with a composite secondary key of firstName,lastName:

${kps.User[http.querystring.firstName][http.querystring.lastName].email}

In this example, the key values are received as query parameters in the incoming HTTP request. The selector returns the
value of the email property from the resulting object.

Examples using reflection

The following message attribute selector returns the CGI argument from an HTTP URL (for example, returns bar for ht-
tp://localhost/request.cgi?foo=bar):

${http.client.getCgiArgument("foo")}

This returns the name of the top-level element in an XML document:

${content.body.getDocument().getDocumentElement().getNodeName()}

This returns true if the HTTP response code lies between 200 and 299:

${http.response.status / 200 == 2}

Select configuration values at runtime

712

Tip
You can use the Trace filter to determine the appropriate selector expressions to use for specific message
attributes. When configured after another filter, the Trace filter outputs the available message attributes and
their Java type (for example, Map or List). For details on com.vordel classes, see:

<install-dir>/apigateway/docs/javadoc/index.html

For example, for the OAuth2AccessToken class, you can use selector expressions such as
${accesstoken.getAdditionalInformation()}.

Extract message attributes

There are a number of API Gateway filters that extract message attribute values (for example, Extract Certificate At-
tributes and Retrieve from HTTP Header). Using selectors to extract message attributes offers a more flexible alternat-
ive to using such filters. For more details on using selectors instead of these filters, contact Oracle Support.

Select configuration values at runtime

713

Key Property Store
Overview

A Key Property Store (KPS) is a table of data referenced by policies running on an API Gateway. Data in a KPS table is
assumed to be read frequently and seldom written, and can be changed without incurring an API Gateway service out-
age. KPS tables are shared across an API Gateway group. Data can be stored in one of the following locations:

• Embedded Apache Cassandra database (default)—data can be distributed across multiple nodes to provide high
availability

• Relational database accessible to all API Gateways in the group
• JSON files on the local file system

A KPS is typically used to store property values used in policies on an API Gateway. KPS data is injected into policies
using selectors created in Policy Studio. Selectors are evaluated and expanded dynamically at runtime. For example, a
KPS table contains authorization tokens for different users. A policy looks up the token for the current user, and inserts it
into an HTTP request.

KPS tables and collections

KPS tables are organized into collections. The tables in a collection typically have a relationship to each other. For ex-
ample, the OAuth collection contains a set of tables that store all OAuth-related data. Every KPS table is assigned an ali-
as so that it can be easily referred to in a policy or a REST request.

Column Type Description

email String User email address. This is the primary key used to identify a row in the
table.

password String User password. This confidential data is encrypted.

firstName String User first name.

lastName String User surname.

age Integer User age.

Enter data in a KPS table

You can enter data in a KPS table using the API Gateway Manager web console for viewing and modifying data. This is
available in API Gateway Manager under Settings > Key Property Stores. The kpsadmin command-line tool also sup-
ports data entry in addition to other administrative functions. KPS data can also be read and written by remote program-
matic clients using the KPS REST interface.

Important
New values for encrypted fields are always transmitted to the server in the clear. For security, always use
HTTPS when accessing KPS over its REST API (this is the default).

The following example shows some simple table data that has been entered in API Gateway Manager, and which follows
the example structure in the section called “KPS tables and collections”:

714

email password firstName lastName age

jdoe@acme.com ***** John Doe 21

jbloggs@acme.com ***** Joe Bloggs 42

jdupont@acme.com ***** Jean Dupont 33

In this example, the email column is the primary key. You can use this to look up and uniquely identify a row using a se-
lector expression. For example, the following selector expression evaluates to John:

${kps.customers["jdoe@acme.com"].firstName}

The following selector expression evaluates to 42:

${kps.customers["jbloggs@acme.com"].age}

For more details on selectors, see Select configuration values at runtime.

KPS data sources

A KPS provides a consistent interface to data that can be stored in different data sources. API Gateway supports the fol-
lowing KPS data sources:

• Embedded Apache Cassandra database (default): Used across an API Gateway group to provide high availability in
a production environment.

• Relational Database: Enables you to use your existing database (for example, Oracle, Microsoft SQL Server, IBM
DB2, or MySQL). The following approaches to data storage are supported:
• Shared storage—data for multiple KPS tables is stored in a single dedicated database table. This is the recom-

mended approach.
• Per-table storage—each KPS table is backed by a single database table.

• JSON files on the local file system: Suited to single API Gateway deployments. In a multi-API Gateway scenario, file
replication or a shared disk is required to ensure all API Gateways use the same data.

Note
If a file-based KPS table is shared across API Gateways, the API Gateways must be restarted after data
has changed.

Add a KPS collection

A KPS collection is a group of KPS tables. To add a KPS collection, perform the following steps:

1. In the main Policy Studio tree, right-click Key Property Stores, and select Add KPS Collection.
2. Complete the following fields in the Add KPS Collection dialog:

• Name:
Enter the KPS name (for example, CustomerCollection).

• Description:
Enter a text description of your KPS collection.

• Alias prefix:
Leave this field blank.

Key Property Store

715

• Default data source:
Select one of the following from the list:
• Embedded (Cassandra)

• File

• SQL Database
Defaults to Embedded (Cassandra).

The newly created KPS collection is displayed on the window on the right.

Edit a KPS collection

To edit a KPS collection, perform the following steps:

1. In the main Policy Studio tree, select the KPS collection to edit under Key Property Stores.
2. Click the Properties tab.
3. You can edit the Name, Description, or Alias prefix for the KPS collection as required.
4. To change the Default data source, click the browse button to display a tree of data sources, and select a new de-

fault data source from the tree.
5. You can also specify a cache for storage and retrieval of selector results. This improves selector read performance

for storage backends such as databases. In the Cache field, click the browse button to display a tree of caches, and
select a cache. Only local caches are supported.

6. You can add, edit, or delete KPS collection data sources on the Data Sources tab. For more information, see the
following sections.

7. Click the Save button at the top right corner to save your changes.

Add a file data store

To add a file-based data store to a selected KPS collection, perform the following steps:

1. On the Data Sources tab, select Add > Add File at the bottom right.
2. Complete the following fields in the Add File Data Source dialog:

• Name:
Enter the KPS name (for example, Customer File Data Source).

• Description:
Enter a text description of your file data source.

• Directory Path:
Enter the full directory path (for example, c:\kpsdata). Each table in the collection has its own JSON file in
this directory.

3. Click OK.

Add a database data store

To add an SQL database data store to a selected KPS collection, perform the following steps:

1. On the Data Sources tab, select Add > Add Database at the bottom right.
2. Complete the following fields in the Add File Data Source dialog:

• Name:
Enter the KPS name (for example, Customer DB Data Source).

• Description:
Enter a text description of your SQL database data source.

• Database Connection:
Click the button on the right, select a database connection in the dialog (for example, Default Database

Key Property Store

716

Connection), and click OK. You can add more database connections to the list by right-clicking External Con-
nections > Database Connections in the Policy Studio tree, and selecting Add a Database Connection.

3. Click OK.

Add a KPS table

To add a KPS table to a KPS collection, perform the following steps:

1. In the main Policy Studio tree, right-click a KPS collection (for example CustomerCollection), and select Add
Table.

2. Complete the following fields in the Add KPS Table dialog:
• Name:

Enter the KPS name (for example, Customers).
• Description:

Enter a text description of your KPS.
• Aliases:

Click Add, and enter an alias used to identify your KPS (for example, customers). Click OK. Every KPS must
have at least one alias.

3. Click OK.

The newly created KPS table is displayed on the window on the right.

Define the KPS table structure

To define the KPS table structure, perform the following steps:

1. In the main Policy Studio tree, select a KPS table (for example Customers), and click the Structure tab.
2. Click Add, and complete the following fields in the Add Property dialog:

• Name:
Enter the name of the table column (for example, email).

• Type:
Select the data type from the list (for example, java.lang.String).

• Key:
For java.util.Map types, select the key type from the list (for example, java.lang.Integer).

• Value:
For java.util.Map and java.util.List types, select the value type from the list (for example,
java.lang.Boolean).

3. Click OK. The newly created KPS table column is added to the Structure tab.
4. Select Primary Key to make a field the primary key for the table.
5. Select Autogenerated to autogenerate a field in the KPS data source.
6. Select Encrypted to encrypt a field in the KPS data source.
7. Select Indexed to index a field in the KPS data source.
8. Repeat the preceding steps to add more table columns.
9. At the bottom, enter names of one or more properties used to look up this table from a selector (for example,

firstName,surname). If none are specified, selectors can access the table using the primary key.
10. Click Save at the top right to save your changes.

Define the KPS table structure

For more detailed information on Key Property Stores and on Apache Cassandra configuration, see the Key Property
Store User Guide available from Oracle Support.

Key Property Store

717

For more detailed information on using a KPS, contact Oracle Support with your queries.

Key Property Store

718

Scripting language filter
Overview

The Scripting Language filter uses the Java Specification Request (JSR) 223 [ht-
tp://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/] to embed a scripting environment in the API Gate-
way core engine. This enables you to write bespoke JavaScript or Groovy code to interact with the message as it is pro-
cessed by the API Gateway. You can get, set, and evaluate specific message attributes with this filter.

Some typical uses of the Scripting Language filter include the following:

• Check the value of a specific message attribute
• Set the value of a message attribute
• Remove a message attribute
• DOM processing on the XML request or response

Write a script

To write a script filter, you must implement the invoke() method. This method takes a
com.vordel.circuit.Message object as a parameter and returns a boolean result.

The API Gateway provides a Script Library that contains a number of prewritten invoke() methods to manipulate spe-
cific message attributes. For example, there are invoke() methods to check the value of the SOAPAction header, re-
move a specific message attribute, manipulate the message using the DOM, and assign a particular role to a user.

You can access the script examples provided in the Script library by clicking the Show script library button on the fil-
ter's main configuration window.

Important
When writing the JavaScript or Groovy code, you should note the following:

• You must implement the invoke() method. This method takes a com.vordel.circuit.Message
object as a parameter, and returns a boolean.

• You can obtain the value of a message attribute using the getProperty method of the Message ob-
ject.

• Do not perform attribute substitution as follows:

msg.get("my.attribute.a") == msg.get("my.attribute.b")

This is not thread safe and can cause performance issues.

Use local variables

The API Gateway is a multi-threaded environment, therefore, at any one time multiple threads can be executing code in
a script. When writing JavaScript or Groovy code, always declare variables locally using var. Otherwise, the variables
are global, and global variables can be updated by multiple threads.

For example, always use the following approach:

var myString = new java.lang.String("hello word");
for (var i = 100; i < 100; i++) {

java.lang.System.out.println(myString + java.lang.Integer.toString(i));

719

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/

}

Do not use the following approach:

myString = new java.lang.String("hello word");
for (i = 100; i < 100; i++) {

java.lang.System.out.println(myString + java.lang.Integer.toString(i));
}

Using the second example under load, you cannot guarantee which value is output because both of the variables (myS-
tring and i) are global.

Add your script JARs to the classpath

You must add your custom JavaScript or Groovy JAR files to your API Gateway classpath and to the list of runtime de-
pendencies in Policy Studio.

Add your script JARs to the API Gateway classpath

Because the scripting environment is embedded in the API Gateway engine, it has access to all Java classes on the API
Gateway classpath, including all JRE classes. If you wish to invoke a Java object, you must place its corresponding class
file on the API Gateway classpath. The recommended way to add classes to the API Gateway classpath is to place them
(or the JAR files that contain them) in the INSTALL_DIR/ext/lib folder. For more details, see the readme.txt in this
folder.

Add your script JARs to Policy Studio

Your custom JavaScript or Groovy script JARs must also be compiled and validated in Policy Studio. To add your JARs
files to the list of runtime dependencies in Policy Studio, perform the following steps:

1. In the Policy Studio main menu, select Window > Preferences > Runtime Dependencies.
2. Click Add to select your script JAR file(s) and any other required third-party JARs.
3. Click Apply when finished. Copies of these JAR files are added to the plugins directory in your Policy Studio in-

stallation.
4. You must restart Policy Studio and the server for these changes to take effect. You should restart Policy Studio us-

ing the policystudio -clean command.

Configure a script filter

You can write or edit the JavaScript or Groovy code in the text area on the Script tab. A JavaScript function skeleton is
displayed by default. Use this skeleton code as the basis for your JavaScript code. You can also load an existing JavaS-
cript or Groovy script from the Script library by clicking the Show script library button.

On the Script library dialog, click any of the Configured scripts in the table to display the script in the text area on the
right. You can edit a script directly in this text area. Make sure to click the Update button to store the updated script to
the Script library.

Add a script to the library

You can add a new script to the library by clicking the Add button, which displays the Script Details dialog. Enter a
Name and a Description for the new script in the fields provided. By default, the Language field is set to JavaScript, but
you can also select Groovy from the drop-down list. You can then write the script in the Script text area.

Scripting language filter

720

Note
Regular expressions specified in Scripting Language filters use the regular expression engine of the rel-
evant scripting language. For example, JavaScript-based filters use JavaScript regular expressions. This
includes regular expressions inside XSDs defined by the W3C XML Schema standard. Other API Gateway
filters that use regular expressions are based on java.util.regex.Pattern, unless stated otherwise.

Scripting language filter

721

Certificate validation
Overview

Whenever API Gateway receives an X.509 certificate, either as part of the SSL handshake or as part of the XML mes-
sage itself, it is important to be able to determine whether that certificate is legitimate or not. Certificates can be revoked
by their issuers if it becomes apparent that the certificate is being used maliciously. Such certificates should never be
trusted, and so it is very important that API Gateway can perform certificate validation.

API Gateway uses the following methods/protocols to validate certificates:

• Online Certificate Status Protocol (OCSP) – OCSP is an automated certificate checking network protocol. API Gate-
way can query the OCSP responder for the status of a certificate. The responder returns whether the certificate is
still trusted by the CA that issued it.

• Certificate Revocation List (CRL) – A CRL is a signed list indicating a set of certificates that are no longer con-
sidered valid (that is, revoked certificates) by the certificate issuer. API Gateway can query a CRL to find out if a giv-
en certificate has been revoked. If the certificate is present in the CRL, it should not be trusted.

• XML Key Management Services (XKMS) – XKMS is an XML-based protocol for (amongst other things) establishing
the trustworthiness of a certificate over the Internet. API Gateway can query an XKMS responder to determine
whether or not a given certificate can be trusted or not.

Configuration

The API Gateway can check the validity of a client certificate using any of the following filters:

• OCSP client
• Static CRL certificate validation
• Dynamic CRL certificate validation
• CRL LDAP validation
• XKMS certificate validation

Note
To validate a certificate using either an OCSP request or CRL lookup, the issuing CA's certificate should be
trusted by API Gateway. This is because for a CRL lookup, the CA's public key is needed to verify the sig-
nature on the CRL, and for an OCSP request, the protocol stipulates that the CA's public key must be sub-
mitted as part of the request. The issuing CA's public key is not always present in issued certificates, so it is
necessary to retrieve it from the API Gateway's certificate store instead.

722

Compressed content encoding
Overview

The API Gateway supports HTTP content encoding for the gzip and deflate compressed content encodings. This en-
ables the API Gateway to compress files and deliver them to clients (for example, web browsers) and to back-end serv-
ers. For example, HTML, text, and XML files can be compressed to approximately 20% to 30% of their original size,
thereby saving on server traffic. Compressing files causes a slightly higher load on the server, but this is compensated by
a significant decrease in client connection times to the server. For example, a client that takes six seconds to download
an uncompressed XML file might only take two seconds for a compressed version of the same file.

In Policy Studio, an Input Encodings list specifies the content encodings that the API Gateway can accept from peers,
and an Output Encodings list specifies the content encodings that the API Gateway can apply to outgoing messages.
You can configure these settings globally, per remote host, or per listening interface.

Encoding of HTTP responses

Content encoding of HTTP responses is negotiated using the Accept-Encoding HTTP request header. This enables a
client to indicate its willingness to receive a particular encoding in this header. The server can then choose to encode the
response with one of these client-supported encodings, and indicate this with the Content-Encoding header.

When the API Gateway is acting as a client communicating with a server, it uses the currently configured Input Encod-
ings list to format the Accept-Encoding header sent to the server, thereby requesting the server to apply one of these
encodings to it. If the server decides to apply one of these encodings, the API Gateway automatically inflates the com-
pressed response when it is received.

When acting as a server, the API Gateway selects an output encoding from the intersection of what the client specified in
its Accept-Encoding header, and the currently configured Output Encodings, and applies that encoding to the re-
sponse.

Encoding of HTTP requests

Because a request arrives unsolicited from a client to a server, there is not normally a chance to negotiate the server's
ability to process any optional features, so the automatic negotiation provided by the Accept-Encoding header is not
available.

When acting as a client, the API Gateway selects the first configured encoding from the Output Encodings list to en-
code its request to the server. If the server fails to accept this encoding, it most likely responds with an HTTP 415 error,
and the API Gateway treats this as a general HTTP error. Therefore, if the server is unable to accept content encodings,
the API Gateway must be configured not to send them to that particular server.

By default, the API Gateway always accepts any supported encoding from clients, regardless of settings. For example, if
a client sends gzipped content, the API Gateway inflates it regardless of configured settings.

Delimit the end of an HTTP message

HTTP sessions can encode a number of request/response pairs. The rules for delimiting the end of each message and
the start of the next one are well defined, but complex due to requirements for historical compatibility, and poor support
from HTTP entities.

HTTP requests

There are two ways to delimit the end of an HTTP request:

• A Content-Length header in the request indicates to the server the exact length of the payload entity following the
HTTP headers, and can be used by the receiving server to locate the end of that entity.

723

• Alternatively, an HTTP/1.1 server should accept chunked transfer encoding, which precedes each chunk of the en-
tity with a length, until a zero-length chunk indicates the end.

The benefit of using chunked transfer encoding is that the client does not need to know the length of the transmitted en-
tity when it sends HTTP request headers (unlike when inserting a Content-Length header). Because the API Gateway
compresses the requests on the fly, it is prohibitively expensive to calculate the content length before compressing the
body. As a result, outbound content encoding is only supported when talking to HTTP/1.1 servers that support chunked
transfer encoding.

Note
All HTTP/1.1 servers are required to support chunked transfer encoding, but unfortunately some do not, so
you can use Remote Host settings to configure whether a destination is capable of supporting the chunked
encoding in HTTP/1.1, regardless of its advertised HTTP protocol version. For more details, see Configure
remote host settings.

HTTP responses

For HTTP responses, the server has three options for delimiting the end of the entity. The two mentioned above, and
also the ability to close the HTTP connection after the response is transmitted. The receiving client can then infer that the
entire message has been received due to the normal end of the TCP/IP session. When content encoding responses, the
API Gateway avoids using Content-Length headers in the response, and uses chunked encoding or TCP/IP connec-
tion closure to indicate the end of the response. This means that content encoding of responses is supported for HTTP/
1.0 or HTTP/1.1 clients.

Configure content encodings

In Policy Studio, you can configure HTTP content encodings in the Content Encodings dialog. You can configure the
following settings globally per API Gateway instance, per remote host, or per listening interface:

Input Encodings Specifies the content encodings that the API Gateway can accept from peers.

Output Encodings Specifies the content encodings that the API Gateway can apply to outgoing
messages.

The available content encodings include gzip and deflate. By default, the content encodings configured in Server
Settings > General are used, which apply at the API Gateway instance level. The default is no content encodings. You
can also override these settings at the HTTP interface and remote host levels.

Add content encodings

To add content encodings, click the browse button next to the Input Encodings or Output Encodings field, and perform
the following steps in the Content Encodings dialog:

1. Deselect the Use Default setting.
2. Select the content encodings to add in the Available Content Encodings list on the left.
3. Click the > or >> button to move the content encodings to the Content Encodings list on the right, which displays

the active settings. You can also double-click a content encoding to move it to the right or left.
4. Click OK. This displays the configured encodings in the Input Encodings or Output Encodings field (for example,

gzip, deflate).

Compressed content encoding

724

Configure no content encodings

To configure no content encodings, deselect the Use Default setting, and click OK. This displays None in the Input En-
codings or Output Encodings field.

Note
You can select the Use Default setting to switch to the Default Settings without losing your original con-
tent encoding selection.

Further information

For more details on the different levels at which you can configure content encodings in Policy Studio, see the following
topics:

• General settings in the API Gateway Administrator Guide.
• Configure remote host settings
• Configure HTTP services

For more details on HTTP content encoding, see HTTP RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616.html]

Compressed content encoding

725

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Configure connection groups
Overview

A connection group consists of a number of external servers that the API Gateway connects to (for example, RSA Ac-
cess Manager servers for authorization). The API Gateway attempts to connect to all the servers in the group in a round-
robin fashion, therefore providing a high degree of failover. If one or more servers are unavailable, the API Gateway can
still connect to an alternative server.

The API Gateway attempts to connect to the listed servers according to the priorities assigned to them. For example, as-
sume there are two High priority servers, one Medium priority server, and one Low priority server configured. Assuming
the API Gateway can successfully connect to the two High priority servers, it alternates requests between these two
servers only in a round-robin fashion. The other group servers are not used. However, if both High priority servers be-
come unavailable, the API Gateway then tries to use the Medium priority server, and only if this fails is the Low priority
server used.

Connection groups are available in the Policy Studio tree under the External Connections > Connection Sets node ac-
cording to the filter from which they are available. For example, connection sets under the RSA ClearTrust Connection
Sets node are available in the RSA Access Manager filter. For more details, see RSA Access Manager authorization.

Configure a connection group

You can configure a connection group using the Connection Group dialog. The external servers are listed in order of
priority in the table on the Connection Group dialog. The API Gateway attempts to connect to the server at the top of
the list first. If this server is not available, a connection attempt is made to the second server, and so on until an available
server is contacted. If none of the listed servers are available, the client is not authorized and a SOAP fault is returned to
the client.

You can increase or decrease the priorities of the listed external servers using the Up and Down buttons. You can add,
edit, and delete connections in the group using the Add, Edit, and Remove buttons.

Configure a connection

You can configure a connection within a connection group using the Connection Configuration dialog. Perform the fol-
lowing steps:

1. Enter the name or IP address of the machine hosting the selected Access Manager server in the Location field.
2. Enter the Port on which the specified Access Manager server is listening.
3. Select a suitable Timeout in seconds for connections to this server.
4. Select the appropriate Connection Type for the API Gateway to use when connecting to the specified Access Man-

ager server. Connections between the API Gateway and the Access Manager server can be made in the clear, over
Anonymous SSL, or Mutual SSL Authentication (two-way SSL).

5. If SSL Authentication is selected, you must select an SSL mutual authentication certificate. This certificate is
then used to authenticate to the Access Manager server.

726

Configure cron expressions
Overview

Cron expressions are used in policy execution scheduling, and within several filters (for example, Allow or block mes-
sages at specified times). The Cron Dialog enables you to create a cron expression used to trigger regularly occurring
events (for example, generate a report, or block or allow messages at specified times). You can use the time tabs in this
dialog to guide you through the configuration steps. Alternatively, enter the cron expression value directly in the text
boxes. When you have created the cron expression, you can click the Test Cron button to test the value of the cron ex-
pression and see when it is next due to fire.

For background information and details on cron expression syntax, see Policy execution scheduling.

Create a cron expression using the time tabs

Using the time tabs in the dialog to guide you through the configuration steps is the default option. You can create a cron
expression to trigger at the specified times using the following settings:

Seconds

Select one of the following options:

Every Second of the Minute Fires every second of the minute. This is the default setting.

Just on Second Fires only on the specified second of the minute.

Range from Second Fires over a range of seconds. For example, if the first value is 10 and the
second value is 25, the trigger starts firing on second 10 of the minute and con-
tinues to fire for 15 seconds.

Start on Second Fires on the specified second of the minute and repeats every specified number
of seconds. For example, if the first number is 15 and the second number is 30,
the trigger fires at 15 seconds and repeats every 30 seconds until stopped.

On Multiple Seconds Fires on the specified seconds of each minute. Enter a comma separated list of
seconds (values of 0-59 inclusive). For example, 10,20,30.

Minutes

Select one of the following options:

Every Minute of the Hour Fires every minute of the hour. This is the default setting.

Just on Minute Fires only on the specified minute of the hour.

Range from Minute Fires over a range of minutes. For example, if the first value is 5 and the
second value is 15, the trigger starts firing on minute 5 of the hour and contin-
ues to fire for 10 minutes.

Start on Minute Fires on the specified minute of the hour and repeats every specified number of
minutes. For example, if the first number is 10 and the second number is 20,
the trigger fires at 10 minutes and repeats every 20 minutes until stopped.

On Multiple Minutes Fires on the specified minute of each hour. Enter a comma-separated list of
minutes (values of 0-59 inclusive). For example, 5,15,30.

727

Hours

Select one of the following options:

Every Hour of the Day Fires every hour of the day. This is the default setting.

Just on Hour Fires only on the specified hour of the day.

Range from Hour Fires over a range of hours. For example, if the first value is 9 and the second
value is 17, the trigger starts firing on hour 9 of the day and continues to fire for
8 hours.

Start on Hour Fires on the specified hour of the day and repeats every specified number of
hours. For example, if the first number is 6 and the second number is 2, the
trigger fires at hour 6 and repeats every 2 hours until stopped.

On Multiple Hours Fires on the specified hours of each day. Enter a comma-separated list of hours
(values of 0-23 inclusive). For example, 6,12,18.

Multiple Ranges Fires on the specified ranges of hours of each day. Enter comma separated
ranges of hours (values of 0-23 inclusive). For example, 9-1,14-17.

Day

You must first select Day of Week or Day of Month from the drop-down list (using both of these fields in not supported).
Day of Month is selected by default.

Day of Month

Select one of the following options:

Every Day of the Month Fires every day of the month. This is the default setting.

Just on Day Fires only on the specified day of the month.

Range from Day Fires over a range of days. For example, if the first value is 7 and the second
value is 14, the trigger starts firing on day 7 of the month and continues to fire
for 9 days.

Start on Day Fires on the specified day of the month and repeats every specified number of
days. For example, if the first day is 2 and the second number is 5, the trigger
fires at day 2 and repeats every 5 days until stopped.

On Multiple Days Fires on the specified days of each month. Enter a comma separated list of
days (values of 1-32 inclusive). For example, 1,14,21,28.

Last Day of the Month Fires on the last day of each month (for example, 31 January, or 28 February in
non-leap years).

Last Week Day of the Month Fires on the last week day of each month (Monday-Friday inclusive only).

Day of Week

Select one of the following options:

Every Day of the Week Fires every day of the week. This is the default setting.

Just on Day Fires only on the specified day of the week. Defaults to SUN.

Configure cron expressions

728

Range from Day Fires over a range of days. For example, if the first value is MON and the second
value is FRI, the trigger starts firing on MON and continues to fire until FRI.

Start on Day Fires on the specified day of the week and repeats every specified number of
days. For example, if the first day is TUES and the number is 3, the trigger fires
on TUES and repeats every 3 days until stopped.

On Multiple Days Fires on the specified days of each week. Enter a comma separated list of
days. For example, MON,WED,FRI.

Last Day of the Week Fires on the last day of each week (SAT).

On the Nth Day Fires on the Nth day of the week of each month (for example, the second FRI
of each month).

Month

Select one of the following options:

Every Month of the Year Fires every month of the year. This is the default setting.

Just on Month Fires only on the specified month of the year. Defaults to JAN.

Range from Month Fires over a range of months. For example, if the first value is MAY and the
second value is JUL, the trigger starts firing on MAY and continues to fire until
JUL.

Start on Month Fires on the specified month of the year and repeats every specified number of
months. For example, if the first month is FEB and the number is 2, the trigger
fires in FEB and repeats every 2 months until stopped.

On Multiple Months Fires on the specified months of each year. Enter a comma-separated list of
months (values of JAN-DEC or 1-12 inclusive). For example, MAR,JUN,SEPT.

Year

Select one of the following options:

Every Year Fires every year. This is the default setting.

No Specific Year Fires no specific year.

Just on Year Fires only on the specified year. Defaults to current year.

Range from Year Fires over a range of years. For example, if the first value is 2012 and the
second value is 2015, the trigger starts firing on 2012 and continues to fire until
2015.

Start on Year Fires on the specified year and repeats every specified number of years. For
example, if the first year is 2012 and the number is 2, the trigger fires in 2012
and repeats every 2 years until stopped.

On Multiple Years Fires on the specified Year. Enter a comma-separated list of years (for ex-
ample, 2012,2013,2015).

Configure cron expressions

729

Enter a cron expression

To enter the cron expression value directly in the dialog, click Create cron expression using edit boxes, and enter the
values in the appropriate boxes. For example, the following cron expression fires on April 27 and 28, at any time except
those received between 10:00:01 and 10:59:59:

* * 0-9,11-23 27-28 APR ?

For details on cron expression syntax and special characters, see Policy execution scheduling.

Test the cron expression

When you have configured the cron expression using either approach, click the Test Cron button to test the syntax of
the cron expression value and view when it is next due to fire. If the configured cron expression is invalid, a warning dia-
log is displayed.

Results

The test results include the following output:

Expression Displays the configured cron expression. For example, the default is: * *
9-17 * * ? *

Next Fire Times Displays when cron expression is next due to fire. For example, Next fire
event: Fri Jul 22 10:26:09 EST 2012.

Further information

For details on using the Cron Dialog to create cron expressions that trigger regularly occurring events (for example, gen-
erate reports, or block or allow messages at specified times), see the following topics:

• Allow or block messages at specified times
• Configure scheduled reports in the API Gateway Administrator Guide

Configure cron expressions

730

Signature location
Overview

A given XML message can contain several XML signatures. Consider an XML document (for example, a company policy
approval form) that must be digitally signed by a number of users (for example, department managers) before being sub-
mitted to the ultimate web service (for example, a company policy approval web service). Such a message will contain
several XML signatures by the time it is ready to be submitted to the web service.

In such cases, where multiple signatures will be present within a given XML message, it is necessary to specify which
signature the API Gateway should use in the validation process. For more information on validating XML signatures, see
XML signature verification.

Configuration

The API Gateway can extract the signature from an XML message using several different methods:

• WS-Security block
• SOAP message header
• Advanced (XPath)

Select the most appropriate method from the Signature Location field. Your selection will depend on the types of SOAP
messages that you expect to receive. For example, if incoming SOAP messages will contain an XML signature within a
WS-Security block, you should choose this option from the list.

Use WS-Security actors

If the signature is present in a WS-Security block:

1. Select WS-Security block from the Signature Location field.
2. Select a SOAP actor from the Select Actor/Role(s) field. Each actor uniquely identifies a separate WS-Security

block. By selecting Current actor/role only from the list, the WS-Security block with no actor is taken.
3. In cases where there might be multiple signatures within the WS-Security block, it is necessary to extract one using

the Signature Position field.

The following is a skeleton version of a message where the XML signature is contained in the sample WS-Security block,
(soap-env:actor="sample"):

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"

s:actor="sample">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">
....

</dsig:Signature>
</wsse:Security>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

Use SOAP header

731

If the signature is present in the SOAP header:

1. Select SOAP message header from the Signature Location field.
2. If there is more than one signature in the SOAP header, then it is necessary to specify which signature the API

Gateway should use. Specify the appropriate signature by setting the Signature Position field.

The following is an example of an XML message where the XML signature is contained within the SOAP header:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">

....
</dsig:Signature>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

Use XPath expression

Finally, an XPath expression can be used to locate the signature.

1. Select Advanced (XPath) from the Signature Location field.
2. Select an existing XPath expression from the list, or add a new one by clicking on the Add button. XPath expres-

sions can also be edited or removed with the Edit and Remove buttons.

The default First Signature XPath expression takes the first signature from the SOAP header. The expression is as fol-
lows:

//s:Envelope/s:Header/dsig:Signature[1]

To edit this expression, click the Edit button to display the Enter XPath Expression dialog.

An example of a SOAP message containing an XML signature in the SOAP header is provided below. The following
XPath expression instructs the API Gateway to extract the first signature from the SOAP header:

//s:Envelope/s:Header/dsig:Signature[1

Because the elements referenced in the expression (Envelope and Signature) are prefixed elements, you must
define the namespace mappings for each of these elements as follows:

Prefix URI

s http://schemas.xmlsoap.org/soap/envelope/

dsig http://www.w3.org/2000/09/xmldsig#

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">

Signature location

732

....
</dsig:Signature>

</s:Header>
<s:Body>
<product xmlns="http://www.oracle.com">
<name>SOA Product*</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</s:Body>
</s:Envelope>

When adding your own XPath expressions, you must be careful to define any namespace mappings in a manner similar
to that outlined above. This avoids any potential clashes that might occur where elements of the same name, but belong-
ing to different namespaces are present in an XML message.

Signature location

733

Configure a transparent proxy
Overview

On Linux systems with the TPROXY kernel option enabled, you can configure the API Gateway as a transparent proxy.
This enables the API Gateway to present itself as having the server's IP address from the point of view of the client, and/
or having the client's IP address from the point of view of the server. This can be useful for administrative or network in-
frastructure purposes (for example, to keep using existing client/server IP addresses, and for load-balancing).

You can configure transparent proxy mode both for inbound and outbound API Gateway connections:

• Incoming interfaces can listen on IP addresses that are not assigned to any interface on the local host.
• Outbound calls can present the originating client's IP address to the destination server.

Both of these options act independently of each other.

Configure transparent proxy mode for incoming interfaces

To enable transparent proxy mode on an incoming interface, perform the following steps:

1. In the Policy Studio tree, expand the Listeners > Oracle API Gateway nodes.
2. Right-click your service, and select Add Interface > HTTP or HTTPS to display the appropriate dialog (for example,

Configure HTTP Interface).
3. Select the check box labeled Transparent Proxy (allow bind to foreign address). When selected, the value in the

Address field can specify any IP address, and incoming traffic for the configured address/port combinations is
handled by the API Gateway.

For more details on configuring interfaces, see Configure HTTP services.

Configure transparent proxy mode for outgoing calls

Transparent proxy mode for outgoing calls must be enabled at the level of a connection filter in a policy. To enable trans-
parent proxy mode for outbound calls, perform the following steps:

1. Ensure that your policy contains a connection filter (for example, Connect to URL or Connection, available from
the Routing category in the filter palette).

2. In your connection filter, select the Advanced tab.
3. Select the check box labeled Transparent Proxy (present client's IP address to server). When selected, the IP

address of the original client connection that caused the policy to be invoked is used as the local address of the TCP
connection to the destination server.

For more details on configuring connection filters, see Connection and Connect to URL .

Configuration example

A typical configuration example of transparent proxy mode is shown as follows:

734

In this example, the remote client’s address is 172.16.0.99, and it is attempting to connect to the server at
10.0.0.99 on port 80. The front-facing firewall is configured to route traffic for 10.0.0.99 through the API Gateway at
address 192.168.0.9. The server is configured to use the API Gateway at address 10.0.0.1 as its default IP router.

The API Gateway is multihomed, and sits on both the 192.168.0.0/24 and 10.0.0.0/24 networks. In the Configure
HTTP Interface dialog, the API Gateway is configured with a listening address of 10.0.0.99 and port of 80 on the Net-
work tab, and with transparent proxy mode enabled on the Advanced tab. For example:

The API Gateway accepts the incoming call from the client, and processes it locally. However, there is no communication
with the server yet. The API Gateway can process the call to completion and respond to the client—it is masquerading as
the server.

If the API Gateway invokes a connection filter when processing this call (with transparent proxying enabled), the connec-
tion filter consults the originating address of the client, and binds the local address of the new outbound connection to

Configure a transparent proxy

735

that address before connecting. The server then sees the incoming call on the API Gateway originating from the client
(172.16.0.99), rather than either of the API Gateway's IP addresses. The following dialog shows the example configur-
ation for the Connect to URL filter:

The result is a transparent proxy, where the client sees itself as connecting directly to the server, and the server sees an
incoming call directly from the client. The API Gateway processes two separate TCP connections, one to the client, one
to the server, with both masquerading as the other on each connection.

Note
Either side of the transparent proxy is optional. By configuring the appropriate settings for the incoming in-
terface or the connection filter, you can masquerade only to the server, or only to the client.

Configure a transparent proxy

736

LDAP user search
Configure directory search

The User Search dialog is used to search a given LDAP directory for a unique user according to the criteria configured
in the fields on this dialog.

Base Criteria:
The value entered here tells the API Gateway where it should begin searching the LDAP directory. For example, it may
be appropriate to search for a given user under the C=IE tree in the LDAP hierarchy.

Query Search Filter:
The value entered here is what the API Gateway uses to determine whether it has obtained a successful match. In this
case, because you are searching for a specific user, you can use the user name of an authenticated user (the value of
the authentication.subject.id message attribute to lookup in the LDAP directory. You must also specify the ob-
ject class that defines users for the particular type of LDAP directory that you are searching against. For example, object
classes representing users amongst common LDAP directories are inetOrgPerson, givenName, and User.

For example, to search for an authenticated user against Microsoft's Active Directory, you might specify the following as
the Query Search Filter:

(objectclass=User)(cn=${authentication.subject.id})

This example uses a selector to obtain the ID of the authenticated subject at runtime. For more details on selectors, see
Select configuration values at runtime.

Search Scope:
These settings specify the depth of the LDAP tree that you wish to search. The settings selected here depends largely on
the structure of your LDAP directory.

737

Configure URL groups
Overview

The API Gateway can make connections on a round-robin basis to the URLs listed in a URL group, thus enabling a high
degree of failover to external servers (for example, Entrust GetAccess, SAML PDP, or XKMS).

The API Gateway attempts to connect to the listed servers according to the priorities assigned to them. For example, as-
sume there are two High priority URLs, one Medium URL, and one Low URL configured. Assuming the API Gateway can
successfully connect to the two High priority URLs, it alternates requests between these two URLs only in a round-robin
fashion. The other group URLs are not used. However, if both of the High priority URLs become unavailable, the API
Gateway then tries to use the Medium priority URL, and only if this fails is the Low priority URL used.

In general, the API Gateway attempts to round-robin requests over URLs of the same priority, but uses higher priority
URLs before lower priority ones. When a new URL is added to the group, it is automatically given the highest priority.
You can then change priorities by selecting the URL, and clicking the Up and Down buttons.

You can add and edit URLs by selecting the URL from the table, and clicking on the Add and Edit buttons.

Configuration

Configure the following fields in the URL Configuration dialog:

• URL:
Enter the full URL of the external server.

• Timeout:
Specify the timeout in seconds for connections to the specified server.

• Retry After:
Whenever the server becomes unavailable for whatever reason (for example, maintenance), no attempt is made to
connect to that server until the time specified here has elapsed. In other words, when a connection failure is detec-
ted, the next connection to that URL is after this amount of time.

• SSL Certificate:
If the specified server requires clients to authenticate to it over two-way SSL, you must select an SSL Certificate
from the Certificate Store for authentication.

• Host/IP:
If the specified server sits behind a proxy server, you must enter the host name or IP address of the proxy server.

• Port:
Enter the port on which the proxy is listening.

738

What to sign
Overview

The What To Sign section enables the administrator to define the exact content that must be signed for a SOAP mes-
sage to pass the corresponding filter. The purpose of this configuration section is to ensure that the client has signed
something meaningful (part of the SOAP message) instead of some arbitrary data that would pass a blind signature val-
idation.

This prevents clients from simply pasting technically correct, but unrelated signatures into messages in the hope that
they pass any blind signature verification. For example, the user may be able to generate a valid XML Signature over any
arbitrary XML document. Then by including the signature and XML portion into a malicious SOAP message, the signa-
ture passes a blind signature validation, and the harmful XML is allowed to reach the Web service.

The What To Sign section ensures that clients must sign a part of the SOAP message, and therefore prevents them
from pasting arbitrary XML Signatures into the message. This section enables you to use any combination of Node Loc-
ations, XPath Expressions, XPath Predicates, and/or Message Attribute to specify message content that must be
signed. This topic describes how to configure each of the corresponding tabs displayed in this section.

ID configuration

With WSU IDs, an ID attribute is inserted into the root element of the nodeset that is to be signed. The XML Signature
then references this ID to indicate to verifiers of the signature the nodes that were signed. The use of WSU IDs is the de-
fault option because they are WS-I compliant.

Alternatively, a generic ID attribute (that is not bound to the WSU namespace) can be used to dereference the data. The
ID attribute is inserted into the top-level element of the nodeset to be signed. The generated XML Signature can then ref-
erence this ID to indicate what nodes were signed.

You can also use AssertionID attributes when signing SAML assertions. The following options provide more details
and examples of the different styles of IDs that are available.

Use WSU IDs:
Select this option to reference the signed data using a wsu:Id attribute. In this case, a wsu:Id attribute is inserted into
the root node of the nodeset that is signed. This id is then referenced in the generated XML Signature as an indication of
what nodes were signed. The following example shows the correlation:

<s:Envelope xmlns:s="...">
<s:Header>
<wsse:Security xmlns:wsse="...">
<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">
<dsig:X509Data>

739

<dsig:X509Certificate>
MIID ... ZiBQ==

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</wsse:Security>
</s:Header>
<s:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <s:Body> element. This wsu:Id attribute is then
referenced by the URI attribute of the <dsig:Reference> element in the actual Signature.

When the Signature is being verified, the value of the URI attribute can be used to locate the nodes that have been
signed.

Use IDs:
Select this option to use generic IDs (that are not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an ID attribute, which is inserted into the top-level node of
the nodeset that is signed. Take a look at the following example, noting how the ID specified in the Signature matches
the ID attribute that has been inserted into the <Body> element, indicating that the Signature applies to the entire con-
tents of the SOAP Body.

lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

Id="Id-0000011a101b167c-0000000000000013">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">
<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>

What to sign

740

</soap:Body>
</soap:Envelope>

Use SAML IDs for SAML Elements:
This ID option is specifically intended for use where a SAML assertion is to be signed. When this option is selected, an
AssertionID attribute is inserted into a SAML 1.1 assertion, or a more generic ID attribute is used for a SAML 2.0 as-
sertion.

Node locations

Node locations are perhaps the simplest way to configure the message content that must be signed. The table on this
screen is pre-populated with a number of common SOAP security headers, including the SOAP Body, WS-Security
block, SAML assertion, WS-Security UsernameToken and Timestamp, and the WS-Addressing headers. For each of
these headers, there are several namespace options available. For example, you can sign both a SOAP 1.1 and/or a
SOAP 1.2 block by distinguishing between their namespaces.

On the Node Locations tab, you can select one or more nodesets to sign from the default list. You can also add more
default nodesets by clicking the Add button. Enter the Element Name, Namespace, and Index of the nodeset in the
fields provided. The Index field is used to distinguish between two elements of the same name that occur in the same
message.

XPath configuration

You can use an XPath expression to identify the nodeset (the series of elements) that must be signed. To specify that
nodeset, select an existing XPath expression from the table, which contains several XPath expressions that can be used
to locate nodesets representing common SOAP security headers, including SAML assertions. Alternatively, you can add
a new XPath expression using the Add button. XPath expressions can also be edited and removed with the Edit and Re-
move buttons.

An example of a SOAP message is provided below. The following XPath expression indicates that all the contents of the
SOAP body, including the Body element itself, should be signed:

/soap:Envelope/soap:Body/descendant-or-self::node()

You must also supply the namespace mapping for the soap prefix, for example:

Prefix URI

soap http://schemas.xmlsoap.org/soap/envelope/

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>
<soap:Body>
<product xmlns="http://www.oracle.com">

<name>SOA Product</name>
<company>Company</company>
<description>Web services Security</description>

</product>
</soap:Body>

</soap:Envelope>

XPath predicates

What to sign

741

Select this option if you wish to use an XPath transform to reference the signed content. You must select an XPath pre-
dicate from the table to do this. The table is prepopulated with several XPath predicates that can be used to identify com-
mon security headers that occur in SOAP messages, including SAML assertions.

To illustrate the use of XPath predicates, the following example shows how the SOAP message is signed when the de-
fault Sign SOAP Body predicate is selected:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<vs:getProductInfo xmlns:vs="http://www.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

The default XPath expression (Sign SOAP Body) identifies the contents of the SOAP Body element, including the Body
element itself. The following is the XML Signature produced when this XPath predicate is used:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>

...
<dsig:Reference URI="">
<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ancestor-or-self::soap:Body
</dsig:XPath>

</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
...

</dsig:Reference>
</dsig:SignedInfo>
...

</dsig:Signature>
</s:Header>
<s:Body>
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

This XML Signature includes an extra Transform element, which has a child XPath element. This element specifies the
XPath predicate that validating applications must use to identify the signed content.

Message attribute

Finally, you can use the contents of a message attribute to determine what must be signed in the message. For example,
you can configure a Locate XML nodes filter to extract certain content from the message and store it in a particular mes-
sage attribute. You can then specify this message attribute on the Message Attribute tab.

To do this, select the Extract nodes from message attribute check box, and enter the name of the attribute that con-
tains the nodes in the field provided.

What to sign

742

Configure XPath expressions
Overview

The API Gateway uses XPath expressions in a number of ways, for example, to locate an XML signature in a SOAP
message, to determine what elements of an XML message to validate against an XML schema, to check the content of a
particular element within an XML message, amongst many more uses.

There are two ways to configure XPath expressions:

• Manual configuration
• XPath wizard

Manual configuration

If you are already familiar with XPath and wish to configure the expression manually, complete the following fields, using
the examples below if necessary:

1. Enter or select a name for the XPath expression in the Name drop-down list.
2. Enter the XPath expression to use in the XPath Expression field.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (Prefix, URI) should be

entered in the table.

Consider the following example SOAP message: >

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.oracle.com">

<prod:name>SOA Product*</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>

</prod:product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <name> element contains the value API Gateway:
XPath Expression: //prod:name[text()='API Gateway']

In this case, it is necessary to define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.oracle.com

743

In another example, the element to be examined belongs to a default namespace. Consider the following SOAP mes-
sage:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">

<name>SOA Product</name>
<company>Company</company>
<description>WebServices Security</description>

</product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

The <company> element actually belongs to the default (xmlns) namespace (http://www.company.com. This means
that it is necessary to make up an arbitrary prefix, ns, for use in the XPath expression and assign it to ht-
tp://www.company.com. This is necessary to distinguish between potentially several default namespaces, which may
exist throughout the XML message. The following mapping illustrates this:

Prefix URI

ns http://www.oracle.com

Return a nodeset

Both of the examples above dealt with cases where the XPath expression evaluated to a Boolean value. For example,
the expression in the above example asks does the <company> element in the http://www.oracle.com namespace
contain a text node with the value oracle?.

It is sometimes necessary to use the XPath expression to return a subset of the XML message. For example, when using
an XPath expression to determine what nodes should be signed in a signed XML message, or when retrieving the node-
set to validate against an XML Schema.

The API Gateway ships with such an XPath expression: one that returns All Elements inside SOAP Body To view
this expression, select it from the Name field. It appears as follows:
XPath Expression: /soap:Envelope/soap:Body//*

This XPath expression simply returns all child elements of the SOAP <Body> element. To construct and test more com-
plicated expressions, administrators are advised to use the XPath Wizard.

XPath wizard

The XPath wizard assists administrators in creating correct and accurate XPath expressions. The wizard allows adminis-

Configure XPath expressions

744

trators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath wizard, click the XPath Wizard button on the XPath Expression dialog.

To use the XPath wizard, simply enter (or browse to) the location of an XML file in the File field. The contents of the XML
file will appear in the main window of the wizard. Enter an XPath expression in the XPath field and click the Evaluate
button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns true),
those elements will be highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. To use this expression, select
the Use this path button, and click OK.

Configure XPath expressions

745

WS-Policy reference
Asymmetric Binding WS-Policies

WS-Policy Name Description

AsymmetricBinding with Encrypted UsernameToken The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message. An encrypted UsernameT-
oken with hash password must be included in all mes-
sages from the client to the server.

AsymmetricBinding with SAML 1.1 (Sender Vouches)
Assertion and Signed Supporting Token

The service is secured with an AsymmetricBinding
where the client and server use their respective X.509v3
certificates to secure the message. The client must include
a SAML 1.1 Assertion (sender vouches) in all messages it
sends to the service.

AsymmetricBinding with Signed and Encrypted User-
nameToken

The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message. A signed and encrypted
UsernameToken with plaintext password must be included
in all messages from the client to the service.

AsymmetricBinding with WSS 1.0 Mutual Authentica-
tion with X509 Certificates, Sign, Encrypt

The service exposes an AsymmetricBinding interface
where the client and server use their respective X.509v3
certificates for mutual authentication, signing, and encrypt-
ing.

AsymmetricBinding with X509v3 Tokens The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message.

Message Level WS-Policies

WS-Policy Name Description

Encrypt SOAP Body The SOAP body must be encrypted.

Sign and Encrypt SOAP Body The SOAP body must be signed and encrypted.

Sign SOAP Body The SOAP body must be signed.

Oracle Web Services Manager WS-Policies

WS-Policy Name Description

WS-Security 1.0 Mutual Auth with Certificates AsymmetricBinding where the client and server use
their respective X.509v3 certificates to secure the mes-
sage.

WS-Security 1.0 SAML with Certificates AsymmetricBinding with SAML assertion as Signed-
SupportingToken.

WS-Security 1.0 Username with Certificates AsymmetricBinding with WS-Security UsernameToken
as SignedSupportingToken.

WS-Security 1.1 Mutual Auth with Certificates SymmetricBinding where the same X.509v3 certificate
is used to secure all messages between the client and the

746

service.

WS-Security 1.1 Username with Certificates SymmetricBinding with a WS-Security UsernameT-
oken as a SignedSupportingToken. The message is
endorsed with an asymmetric Signature.

WS-Security SAML Token Over SSL TransportBinding with a SAML Token as a Support-
ingToken.

WS-Security UsernameToken Over SSL TransportBinding with a WS-Security UsernameT-
oken as a SupportingToken.

Simple WS-Policies

WS-Policy Name Description

SAML 1.1 Bearer The client must include a SAML 1.1 Assertion (bearer)
representing the Requestor in all messages from the client
to the service.

Username SupportingToken Hash Password The client must authenticate with a WS-Security SAML
UsernameToken with hash password.

Username SupportingToken No Password The client must authenticate with a WS-Security User-
nameToken without a password.

Username SupportingToken Plaintext Password The client must authenticate with a WS-Security User-
nameToken with a plaintext password.

Symmetric Binding WS-Policies

WS-Policy Name Description

SymmetricBinding with SAML 2.0 (Sender Vouches)
Assertion and Endorsing Supporting Token

The service exposes a SymmetricBinding that requires
the client to send a SAML 2.0 Assertion to the service.
An X.509v3 token is also included in all messages from the
client to the service as an EndorsingSupportingToken.

SymmetricBinding with Signed and Encrypted User-
nameToken

The service uses a SymmetricBinding where the client
and service use the same X.509v3 token to sign and en-
crypt the message. A signed and encrypted UsernameT-
oken with plaintext password must be included in all mes-
sages from the client to the service. The policy uses WSS
SOAP Message Security 1.1 options.

SymmetricBinding with WSS 1.1 Anonymous Authen-
tication with X.509v3, Sign, Encrypt

The service is secured by a SymmetricBinding where
the same X.509v3 certificate is used to secure all mes-
sages between the client and the service. Derived Keys are
used for signing and encrypting and Signature Confirma-
tion is required by the Policy.

SymmetricBinding with WSS 1.1 Mutual Authentication
with X.509v3, Sign, Encrypt

The service exposes a SymmetricBinding where the
same X.509v3 certificate is used to secure all messages
between the client and the service. The client also en-
dorses the primary message signature using another
X.509v3 certificate.

WS-Policy reference

747

Transport Binding WS-Policies

WS-Policy Name Description

SAML 1.1 Holder-of-Key over SSL The client includes a SAML 1.1 Assertion (sender
vouches) in all messages from the client to the service. The
client provides an endorsing signature to prove that it is the
holder-of-key. A TransportBinding is used to sign and
encrypt the message.

SAML 1.1 Sender-Vouches over SSL The client includes a SAML 1.1 Assertion (sender
vouches) on behalf of the Requestor to all messages from
the client to the service. The service uses a Transport-
Binding to ensure that all messages are signed and en-
crypted.

SAML 2.0 Holder-of-Key over SSL The client includes a SAML 2.0 Assertion (sender
vouches) in all messages from the client to the service. The
client provides an endorsing signature to prove that it is the
holder-of-key. A TransportBinding is used to sign and
encrypt the message.

SAML 2.0 Sender-Vouches over SSL The client includes a SAML 2.0 Assertion (sender vouches)
on behalf of the Requestor to all messages from the client
to the service. The service uses a TransportBinding to
ensure that all messages are signed and encrypted.

SSL Transport Binding The service is secured by SSL (HTTPS).

Username Token over SSL with no Timestamp The service is secured over SSL (HTTPS), the client is au-
thenticated with a UsernameToken, and no timestamp
should be included in the Security header.

Username Token over SSL with Timestamp The service is secured over SSL (HTTPS), the client is au-
thenticated with a UsernameToken. The Security header
contains a timestamp.

WS-Policy reference

748

License acknowledgments
Overview

Oracle API Gateway uses several third-party toolkits to perform specific types of processing. In accordance with the Li-
censing Agreements for these toolkits, the relevant acknowledgments are listed below.

Acknowledgments

Apache Software Foundation:
This product includes software developed by the Apache Software Foundation [http://www.apache.org/].

OpenSSL Project:
This product includes software developed by the OpenSSL Project [http://www.openssl.org/] for use in the OpenSSL
Toolkit.

Eric Young:
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

James Cooper:
This product includes software developed by James Cooper.

iconmonstr:
This product includes graphic icons developed by iconmonstr [http://iconmonstr.com/].

749

http://www.apache.org/
http://www.apache.org/
http://www.openssl.org/
http://www.openssl.org/
http://iconmonstr.com/
http://iconmonstr.com/

	Oracle® Fusion Middleware
	Contents
	What's new
	New topics
	Updated topics

	Chapter 1. Get started
	Policy development with Policy Studio
	Overview
	API Gateway instances and groups
	Topology view
	API Gateway groups
	API Gateway instances

	Filters
	Policies
	Message attributes
	Selectors
	Faults and errors
	Policy shortcuts
	Alerts
	Policy containers
	Policy contexts
	Listeners
	Remote hosts
	Servlet applications
	Service virtualization

	Start the API Gateway tools
	Overview
	Before you begin
	Launch API Gateway Manager
	Start Policy Studio

	Configure the sample policies
	Overview
	Enable the sample services interface
	Configure a different sample services interface
	StockQuote demo service
	Remote host settings

	Conversion sample policy
	Overview
	REST to SOAP policy
	Run the conversion sample
	sr command
	API Gateway Explorer

	Security sample policies
	Overview
	Signature verification
	Run the signature verification sample
	sr command
	API Gateway Explorer

	Encryption and decryption
	Run the encryption and decryption sample
	sr command
	API Gateway Explorer

	Throttling sample policy
	Overview
	Throttling policy
	Run the throttling sample
	sr command
	API Gateway Explorer

	Virtualized service sample policy
	Overview
	Virtualized service policies
	Content-based routing policies
	Response transformation policy

	Run the virtualized service sample
	sr command
	API Gateway Explorer

	Stress test with send request (sr)
	Overview
	Basic sr examples
	Advanced sr examples
	sr arguments
	Further information

	Send a request with API Gateway Explorer
	Overview
	Create a request in API Gateway Explorer
	Further information

	Chapter 2. Manage policies
	Configure policies manually
	Overview
	Configuration

	Configure global policies
	Overview
	Global policy roles
	Select a global policy
	Configure global policies in a policy shortcut chain
	Configure global policies for a service
	Show global policies

	Configure policy assemblies
	Overview
	Configure a policy assembly
	Apply a policy assembly

	Chapter 3. Web services
	Register and secure web services
	Overview
	WSDL and XML schema cache
	WSDLs from a UDDI registry
	Policy Studio filters

	Configure policies from WSDL files
	Overview
	API Gateway as the web service initiator
	API Gateway as the web service recipient
	Import WSDL summary
	Import a WSDL file
	Configure a security policy
	Configure recipient security settings
	Configure initiator security settings
	Configure recipient policy filters
	Configure initiator policy filters
	Edit the recipient or initiator WS-Policy
	Configure a recipient WCF WS-Policy
	Remove security tokens

	Manage web services
	Overview
	Manage web services and groups
	Register a web service
	Results of registering a web service
	Export a web service
	Update a web service
	Change the operations exposed by a web service
	Delete a web service
	Use scripts to manage web services
	Publish the WSDL

	Manage WSDL and XML schema documents
	Overview
	Structure of the global cache
	View cached WSDL or XML schema documents
	Add XML schemas to the cache
	Add WSDL documents to the cache
	Update cached WSDL or XML schema documents
	Delete cached WSDL or XML schema documents
	XML schema and WSDL document validation
	XML schema and WSDL document limitations
	Version and duplicate management
	Validate messages against XML schemas
	Test a WSDL for WS-I compliance

	Expose a web service as a REST API
	Overview
	Summary of steps
	Virtualize a SOAP web service
	Define a REST API
	Route REST requests through the virtualized SOAP service
	Create a request processing policy
	Set the request policy on the REST API method
	Create a response processing policy
	Set the response policy on the REST API method

	Test the REST to SOAP mapping

	Connect to a UDDI registry
	Overview
	Configure a registry connection
	Secure a connection to a UDDI registry
	Configure Policy Studio to trust a registry certificate
	Configure mutual SSL authentication

	Retrieve WSDL files from a UDDI registry
	Overview
	UDDI concepts
	UDDI definitions
	Example tModel mapping for WSDL portType

	Configure a registry connection
	WSDL search
	Quick search
	Name search
	UDDI v3 name searches

	Advanced search
	Advanced options
	Publish
	Add a businessEntity
	Add a tModel

	Publish WSDL files to a UDDI registry
	Overview
	Find WSDL files
	Publish WSDL files
	Step 1: Enter virtualized service address and WSDL URL for publishing in UDDI registry
	Step 2: View WSDL to UDDI mapping result
	Step 3: Select a registry for publishing
	Step 4: Select a duplicate publishing approach
	Step 5: Create or search for business
	Step 6: Publish WSDL

	Chapter 4. Messaging
	Configure messaging services
	Overview
	Prerequisites
	Configure API Gateway messaging using the JMS wizard
	Configure global JMS services in external connections
	Configure embedded Apache ActiveMQ in API Gateway settings
	Monitor messaging using API Gateway Manager

	Configure a JMS service
	Overview
	General configuration
	Apache ActiveMQ and Standard JMS settings
	IBM WebSphere MQ settings
	Settings for all service types
	Configure advanced settings
	JMS service settings
	SSL settings

	Next steps

	Configure a JMS session
	Overview
	JMS session configuration
	Add JMS session only
	Common configuration

	Monitoring options
	Next steps

	Configure a JMS consumer
	Overview
	JMS Message source
	JMS consumer type
	Message processing
	Logging settings
	Transaction Audit Logging Level
	Transaction Audit Payload Logging

	Send to JMS
	Overview
	Request settings
	Response settings

	Read from JMS
	Overview
	Message source
	JMS consumer type
	Message processing

	Chapter 5. Manage deployments
	Manage API Gateway deployments
	Overview
	Connect to a server in Policy Studio
	Edit a server configuration in Policy Studio
	Manage deployments in API Gateway Manager
	Compare and merge configurations in Policy Studio
	Manage Admin users in API Gateway Manager
	Configure policies in Policy Studio

	Deploy API Gateway configuration
	Overview
	Create a package in Policy Studio
	Configure package properties in Policy Studio
	Deploy packages in Policy Studio
	Deploy a factory configuration in Policy Studio
	Deploy currently loaded configuration in Policy Studio
	Push configuration to a group in Policy Studio
	View deployment results in Policy Studio
	Deploy on the command line
	Deploy packages in API Gateway Manager

	Compare and merge API Gateway configurations
	Overview
	Compare and merge configurations
	Comparison results
	Filter differences
	Select differences for merging

	Manage Admin users
	Overview
	Admin user privileges
	Admin user roles
	Add a new Admin user
	Remove an Admin user
	Reset an Admin user password
	Manage Admin user roles

	Chapter 6. General configuration
	Manage connection details
	Overview
	Connect to a URL
	Connect to a file
	Unlock a server connection

	Global configuration
	Overview
	API Gateway settings
	Web service repository
	API Gateway instances
	Policies
	Certificates and keys
	API Gateway user store
	System alerts
	External connections
	Caches
	Black list and White list
	WSDL and XML schema document bundles
	Scripts
	Stylesheets
	References

	Policy Studio preferences
	Overview
	Environmentalization
	Policy colors
	Prompt for credentials
	Management services
	Proxy settings
	Runtime dependencies
	SSL settings
	Status bar
	Topology screen
	Trace level
	WS-I settings
	XML settings

	Policy Studio viewing options
	Overview
	Filter the tree
	Configure viewing options
	Configure the policy filter palette

	Oracle Security Service Module settings (10g)
	Overview
	Prerequisites
	Settings
	Name authority definition settings
	Further information

	Kerberos configuration
	Overview
	Kerberos configuration file—krb5.conf
	Advanced settings
	Native GSS library

	Tivoli integration
	Overview
	Integration architecture
	Prerequisites
	Tivoli API
	Add third-party binaries to API Gateway
	Add third-party binaries to Policy Studio

	Install Tivoli runtime
	Tivoli configuration files
	Create a Tivoli object space

	Global Tivoli configuration
	Tivoli connections
	Tivoli repositories

	Tivoli authorization
	Tivoli authentication
	Tivoli attribute retrieval

	Export API Gateway configuration
	Overview
	What is exported
	Export configuration items
	Export all API Gateway configuration

	Import API Gateway configuration
	Overview
	Import configuration
	View differences
	What is imported
	Import configuration from a previous version

	Chapter 7. API Gateway instances
	Configure API Gateway instances
	Overview
	Add remote hosts
	Add HTTP services
	Add SMTP services
	Add file transfer services
	Add policy execution scheduling
	Configure JMS messaging system
	Add Amazon SQS queue listener
	Add FTP poller
	Add directory scanner
	Add POP client
	Configure TIBCO
	API Gateway settings
	Cryptographic acceleration

	Configure HTTP services
	Overview
	HTTP services groups
	HTTP interfaces and relative paths
	Example HTTP service group
	Default HTTP service groups
	Add an HTTP service group

	HTTP and HTTPS interfaces
	Configure Network settings
	Configure Traffic Monitor settings
	Configure Advanced settings

	HTTPS interfaces only
	Configure Network settings
	Configure Mutual Authentication settings
	Configure Advanced SSL settings

	Management services
	Change the management services port

	Configure relative paths
	Overview
	Configure a relative path
	Policies settings
	Logging settings
	Logging Level
	Payload Level
	Access Log

	HTTP method settings
	Advanced settings
	CORS settings
	Nested relative paths
	Add a nested relative path
	How to access message attributes from parent resolvers
	Order of resolution
	Example nested path resolution

	Static content providers
	Static file providers
	Servlet applications
	Web service resolvers

	Configure virtual hosts
	Overview
	Configure virtual hosts for HTTP services
	Configure child resolvers

	Configure SMTP services
	Overview
	Add an SMTP service
	Add an SMTP interface
	Configure policy handlers for SMTP commands
	Add an HELO/EHLO policy handler
	Add an AUTH policy handler
	Add a MAIL policy handler
	Add a RCPT policy handler
	Add a DATA policy handler
	SMTP authentication
	SMTP Content-Transfer-Encoding
	Deployment example

	Configure a file transfer service
	Overview
	General settings
	File upload settings
	Secure services settings
	Command settings
	Access control settings
	Message settings
	Directory settings
	Logging settings
	Traffic monitor settings

	Policy execution scheduling
	Overview
	Cron expressions
	Add schedule
	Add policy execution scheduler

	Configure Amazon SQS queue listener
	Overview
	General settings
	AWS settings
	Poll settings
	Response settings

	Configure AWS client settings
	Connection settings
	Proxy settings
	Advanced settings

	Further information

	Configure an FTP poller
	Overview
	General settings
	Scan settings
	Connection type settings
	FTP and FTPS connections
	FTPS connections
	SFTP connections

	Configure directory scanner
	Overview
	General settings
	Input settings
	Processing settings
	On completion settings
	Traffic monitor settings

	Packet sniffers
	Overview
	Configuration

	Configure remote host settings
	Overview
	General settings
	Address and load balancing settings
	Advanced settings
	Configure watchdogs
	Configure an incoming remote host

	Configure WebSocket connections
	WebSocket protocol overview
	Configure a WebSocket connection
	WebSocket configuration settings
	Policies settings
	Advanced settings
	CORS settings

	Monitor a WebSocket connection

	Configure HTTP watchdog
	Overview
	Configuration

	Configure conditions for HTTP interfaces
	Overview
	Configure Requires Endpoint condition
	Configure Requires Link condition

	Configure a POP client
	Overview
	Configuration

	TIBCO integration
	Overview
	TIBCO Rendezvous integration

	Cryptographic acceleration
	Overview
	General configuration
	Conversations for crypto engines

	Cryptographic acceleration conversation: request-response
	Conversations for crypto engines

	TIBCO Rendezvous listener
	Overview
	Configuration

	Chapter 8. External connections
	External connections
	Overview
	Authentication repository profiles
	Client credentials
	Connection sets
	Database connections
	ICAP servers
	JMS services
	Kerberos connections
	LDAP connections
	Proxy servers
	RADIUS clients
	SiteMinder
	SMTP servers
	SOA Security Manager
	Syslog servers
	TIBCO
	Tivoli
	URL connection sets
	XKMS connections

	Authentication repository
	Overview
	Axway PassPort repositories
	CA SiteMinder repositories
	Database repositories
	Entrust GetAccess repositories
	Local repositories
	LDAP repositories
	Authentication with LDAP
	Create an LDAP repository
	Oracle Directory Server
	Microsoft Active Directory Server
	IBM Directory Server

	Oracle Access Manager repositories
	Oracle Entitlements Server 10g repositories
	RADIUS repositories
	RSA Access Manager repositories
	Tivoli repositories

	Axway PassPort authentication repository
	Overview
	Configuration
	Axway PassPort repository registration
	Troubleshooting registration issues
	Retrigger registration manually

	Configure client credentials
	Overview
	Configure API key client credential profiles
	Add API keys
	Add API key providers

	Configure HTTP basic/digest client credential profiles
	Configure Kerberos client credential profiles

	Configure Sentinel servers
	Sentinel server overview
	General settings
	Further information

	Configure database connections
	Overview
	Prerequisites
	Configure the database connection
	Database connection pool settings
	Connection validation
	Test the connection

	Configure database query
	Overview
	Configuration

	Configure ICAP servers
	Overview
	General settings
	Server settings
	Security settings
	Advanced settings
	Further information

	Configure Kerberos clients
	Overview
	Kerberos endpoint settings
	Ticket Granting Ticket Source
	Kerberos Principal
	Secret Key

	Advanced settings

	Configure Kerberos principals
	Overview
	Configuration

	Configure Kerberos services
	Overview
	Kerberos endpoint settings
	Advanced settings

	Kerberos Keytab concepts
	Overview
	Configuration

	Configure LDAP directories
	Overview
	General configuration
	Authentication configuration
	Test the LDAP connection
	Additional JNDI properties

	Configure proxy servers
	Overview
	Configuration

	Configure RADIUS clients
	Overview
	Configuration

	Configure SiteMinder/SOA Security Manager connections
	Overview
	Prerequisites
	SiteMinder and SOA Security Manager connection settings
	SOA Security Manager connection settings

	Configure SMTP servers
	Overview
	Configuration

	Configure TIBCO Rendezvous daemons
	Overview
	Configuration

	Configure XKMS connections
	Overview
	Configuration

	Chapter 9. Resources and libraries
	Manage API Gateway users
	Overview
	API Gateway users
	Add API Gateway users
	API Gateway user attributes
	API Gateway user groups
	Add API Gateway user groups
	Update API Gateway users or groups

	Manage certificates and keys
	Overview
	View certificates and keys
	Certificate management options

	Configure an X.509 certificate
	Create a certificate
	Import certificates

	Configure a private key
	Private key stored locally
	Private key provided by OpenSSL engine
	Private key stored on external HSM

	Configure HSMs and certificate realms
	Manage HSMs with keystoreadmin
	Use keystoreadmin in interactive mode

	Step 1—Register an HSM provider
	Step 2—Create a certificate realm and associated keystore
	Step 3—Start the API Gateway when using an HSM
	Start API Gateway with manually entered PIN passphrase
	Start API Gateway with automatic PIN passphrase

	Configure SSH key pairs
	Add a key pair
	Manage OpenSSH keys

	Configure PGP key pairs
	Add a PGP key pair
	Manage PGP keys

	Global import and export options
	Import and export certificates and keys
	Manage certificates in Java keystores

	Further information

	Global caches
	Overview
	Local caches
	Distributed caches
	Distributed cache settings
	Example of caching response messages

	Cross-Origin Resource Sharing
	Overview
	CORS request headers
	CORS response headers

	Add a CORS profile
	General
	Origins
	Allowed Headers
	Exposed Headers
	Credentials Support
	Preflight Results Cache

	Configure CORS for HTTP services
	Configure CORS for relative paths

	Chapter 10. Amazon Web Services filters
	Send to Amazon SQS
	Overview
	General settings
	AWS settings

	Send message settings
	Advanced settings
	Further information

	Upload to Amazon S3
	Overview
	General settings
	AWS settings
	S3 settings

	Further information

	Chapter 11. Attribute filters
	Compare attribute
	Overview
	Configuration

	Extract REST request attributes
	Overview
	HTTP GET requests
	HTTP POST requests

	Configuration

	Extract WSS header
	Overview
	Timestamp validity

	Configuration

	Extract WSS timestamp
	Overview
	Configuration

	Extract WSS UsernameToken element
	Overview
	Configuration

	Get cookie
	Overview
	Configuration
	Attribute storage

	Insert SAML attribute assertion
	Overview
	General settings
	Assertion Details
	Assertion Location
	Subject Confirmation Method
	Advanced settings

	Retrieve attributes from JSON message
	Overview
	Configuration
	JSON Path examples

	Retrieve attribute from directory server
	Overview
	General settings
	Database settings
	Advanced settings

	Retrieve attribute from HTTP header
	Overview
	Configuration

	Retrieve attribute from SAML attribute assertion
	Overview
	Details
	Trusted Issuers
	Subject configuration
	Lookup Attributes

	Retrieve attribute from SAML PDP
	Overview
	Request configuration
	Response configuration

	Retrieve attribute from Tivoli
	Overview
	Configuration

	Retrieve attribute from message
	Overview
	Configuration

	Retrieve attribute from database
	Overview
	General settings
	Database settings
	Advanced settings

	Retrieve attribute from user store
	Overview
	General settings
	Database settings
	Advanced settings

	Chapter 12. Authentication filters
	Attribute authentication
	Overview
	Configuration

	API key authentication
	Overview
	General settings
	API key settings
	Advanced settings

	Check session
	Overview
	Configuration

	Create session
	Overview
	Configuration

	End session
	Overview
	Configuration

	CA SOA Security Manager authentication
	Overview
	Prerequisites
	Add third-party binaries to API Gateway
	Add third-party binaries to Policy Studio

	Configuration
	Message details settings

	XmlToolkit.properties file
	Configure the user name and password digest token age restriction

	HTML form-based authentication
	Overview
	General settings
	Session settings

	HTTP basic authentication
	Overview
	General settings
	Invalid attempts

	HTTP digest authentication
	Overview
	General settings
	Invalid attempts

	HTTP header authentication
	Overview
	Configuration

	IP address authentication
	Overview
	Configuration
	Configure subnet masks
	Example 1: Specify a range of IP addresses
	Example 2: Specify an exact IP address

	Insert SAML authentication assertion
	Overview
	General settings
	Assertion details settings
	Assertion location settings
	Subject confirmation method settings
	Advanced settings

	Insert timestamp
	Overview
	Configuration

	Insert WS-Security UsernameToken
	Overview
	General settings
	Credential details
	Advanced options

	Kerberos client authentication
	Overview
	General settings
	Kerberos client settings
	Kerberos token profile settings

	Kerberos service authentication
	Overview
	General settings
	Kerberos standard settings
	Message level settings
	Transport level settings
	Advanced SPNEGO settings

	SAML authentication
	Overview
	General settings
	Details settings
	Trusted issuer settings

	SAML PDP authentication
	Overview
	General settings
	Request settings
	SAML subject settings
	Subject confirmation settings

	Response settings

	SSL authentication
	Overview
	Configuration

	STS client authentication
	Overview
	Example request
	General settings
	Request settings
	Issue: POP Key
	Issue: On Behalf Of Token
	Issue: Token Scope and Lifetime
	Validate: Target

	Policies settings
	Routing settings
	Response settings
	Advanced settings

	WS-Security UsernameToken authentication
	Overview
	General settings
	Actor Details
	Token Validation
	Nonce Settings
	Token Validation via Repository
	Advanced

	Chapter 13. Authorization filters
	RSA Access Manager authorization
	Overview
	Prerequisites
	Add third-party binaries to API Gateway
	Add third-party binaries to Policy Studio

	General settings
	Connection details
	Authorization details

	Attribute authorization
	Overview
	Configuration

	Axway PassPort authorization
	Overview
	Axway CSD

	Configuration

	CA SOA Security Manager authorization
	Overview
	Prerequisites
	Add third-party binaries to API Gateway
	Add third-party binaries to Policy Studio

	Configuration

	Certificate attribute authorization
	Overview
	Configuration

	Entrust GetAccess authorization
	Overview
	General settings
	GetAccess WS-Trust STS settings
	GetAccess SAML PDP settings

	Insert SAML authorization assertion
	Overview
	General settings
	Assertion details settings
	Assertion location settings
	Subject confirmation method settings
	Asymmetric Key
	Symmetric Key
	Key Info

	Advanced settings

	LDAP attribute authorization
	Overview
	General configuration
	Advanced configuration

	SAML authorization
	Overview
	General settings
	Details settings
	Trusted issuer settings
	Optional settings

	SAML PDP authorization
	Overview
	General settings
	Request settings
	SAML subject settings
	Subject confirmation settings

	Response settings

	Tivoli authorization
	Overview
	Add a Tivoli client
	Add users and web services to Tivoli
	Configuration

	XACML PEP authorization
	Overview
	Further information

	Example XACML request
	General settings
	XACML settings
	Add Attributes

	Routing settings
	Advanced settings

	Chapter 14. CA SiteMinder filters
	SiteMinder certificate authentication
	Overview
	Prerequisites
	Add third-party binaries to API Gateway
	Add third-party binaries to Policy Studio

	Configuration

	SiteMinder session validation
	Overview
	Prerequisites
	Configuration

	SiteMinder logout
	Overview
	Prerequisites
	Configuration

	SiteMinder authorization
	Overview
	Prerequisites
	Configuration

	Chapter 15. Certificate filters
	Static CRL certificate validation
	Overview
	Example CRL-based validation policy
	Configuration

	Dynamic CRL certificate validation
	Overview
	Example CRL-based validation policy
	Configuration

	CRL LDAP validation
	Overview
	Configuration

	CRL responder
	Overview
	Configuration

	Create thumbprint from certificate
	Overview
	Configuration

	Certificate validity
	Overview
	Configuration

	Find certificate
	Overview
	Configuration

	Extract certificate attributes
	Overview
	Generated message attributes
	Configuration

	Certificate chain check
	Overview
	Configuration

	OCSP client
	Overview
	General settings
	Message settings
	Routing settings
	Advanced settings
	Integration with Axway Validation Authority

	Validate certificate store
	Overview
	Configuration
	Deployment example

	XKMS certificate validation
	Overview
	Configuration

	Chapter 16. Cache filters
	Cache attribute
	Overview
	Configuration

	Create key
	Overview
	Configuration

	Check if attribute is cached
	Overview
	Configuration

	Remove cached attribute
	Overview
	Configuration

	Chapter 17. Content filters
	Scan with ClamAV anti-virus
	Overview
	Configuration

	Content type filtering
	Overview
	Allow or deny content types
	Configure MIME/DIME types

	Content validation
	Overview
	Manual XPath configuration
	XPath wizard

	HTTP header validation
	Overview
	Configure HTTP header regular expressions
	Configure threatening content regular expressions
	Regular expression format

	Send to ICAP
	Overview
	Configuration
	Example policies
	Further information

	Scan with McAfee anti-virus
	Overview
	Prerequisites
	Add McAfee binaries to API Gateway
	Add McAfee binaries to Policy Studio

	Configuration
	Custom options
	Message status
	Load McAfee updates

	Message size filtering
	Overview
	Configuration

	Query string validation
	Overview
	Request query string
	Configure query string attribute regular expressions
	Configure threatening content regular expressions
	Regular expression format

	Schema validation
	Overview
	General settings
	Selecting the schema
	Selecting which part of the message to match
	Advanced settings
	Reporting schema validation errors

	JSON schema validation
	Overview
	Configuration
	Generate a JSON schema using Jython

	Scan with Sophos anti-virus
	Overview
	Prerequisites
	General settings
	Sophos configuration settings

	Threatening content
	Overview
	Scanning settings
	MIME type settings
	Regular expression format

	Throttling
	Overview
	Rate limit settings
	Advanced settings
	Use multiple throttling filters

	Validate selector expression
	Overview
	Configure selector-based regular expressions
	Configure a Regular Expression

	Threatening content regular expressions

	Validate REST request
	Overview
	General settings
	Adding REST request parameter restrictions
	URI path templates

	Validate timestamp
	Overview
	Configuration

	Verify the WS-Policy security header layout
	Overview
	Configuration

	XML complexity
	Overview
	Configuration

	Chapter 18. Conversion filters
	Add HTTP header
	Overview
	Configuration

	Add XML node
	Overview
	Configuration
	Where to insert new nodes
	Node source
	New node details
	Attribute node details

	Examples
	Replace an attribute value
	Add an attribute
	Add an element
	Replace an element

	Transform with Contivo
	Overview
	Configuration

	Convert multipart or compound body type message
	Overview
	Configuration

	Create cookie
	Overview
	Configuration
	Cookie details

	Create REST request
	Overview
	Configuration

	Extract MTOM content
	Overview
	Configuration

	Insert MTOM attachment
	Overview
	Configuration

	Add node to JSON document
	Overview
	Configuration
	Examples
	Add a JSON node
	Add an item to an array
	Add a field replacing others

	Remove node from JSON document
	Overview
	Configuration
	Examples
	Remove a node
	Remove all items in an array

	Convert JSON to XML
	Overview
	Configuration
	Examples
	Multiple root elements
	Insert processing instructions into the output XML

	Load contents of a file
	Overview
	Configuration
	Input settings
	Processing settings
	On completion settings

	Remove HTTP header
	Overview
	Configuration

	Remove XML node
	Overview
	Configuration

	Remove attachments
	Overview
	Configuration

	Restore message
	Overview
	Configuration

	Set HTTP verb
	Overview
	Configuration

	Set message
	Overview
	Configuration
	Example of using selectors in the message body

	Store message
	Overview
	Configuration

	Convert XML to JSON
	Overview
	Configuration

	Transform with XSLT
	Overview
	Configuration
	Stylesheet location settings
	Stylesheet parameter settings
	Advanced settings

	Chapter 19. Encryption filters
	Generate key
	Overview
	Configuration

	PGP decrypt and verify
	Overview
	Configuration

	PGP encrypt and sign
	Overview
	General settings
	Encrypt and sign settings
	Advanced settings

	SMIME decryption
	Overview
	Configuration

	SMIME encryption
	Overview
	General settings
	Recipient settings
	Advanced settings

	XML decryption
	Overview
	Configuration
	Auto-generation using the XML decryption wizard

	XML decryption settings
	Overview
	XML encryption overview
	Nodes to decrypt
	Decryption key
	Options
	Auto-generation using the XML decryption wizard

	XML encryption
	Overview
	Configuration
	Auto-generation using the XML encryption settings wizard

	XML encryption settings
	Overview
	XML encryption overview
	Encryption key settings
	Key info settings
	Recipient settings
	What to encrypt settings
	Advanced settings
	Auto-generation using the XML encryption settings wizard

	XML encryption wizard
	Overview
	Configuration

	Chapter 20. Integrity filters
	XML signature generation
	Overview
	General settings
	Signing key settings
	Asymmetric Key
	Symmetric Key
	Key Info

	What to sign settings
	Where to place signature settings
	Advanced settings
	Additional
	Algorithm Suite
	Options

	XML signature verification
	Overview
	General settings
	Signature verification settings
	What must be signed settings
	Advanced settings

	Sign SMIME message
	Overview
	Configuration

	Verify SMIME message
	Overview
	Configuration

	Chapter 21. Fault handler filters
	Generic error handling
	Overview
	General settings
	Generic error contents
	Create customized generic errors

	JSON error handling
	Overview
	General settings
	JSON error contents
	Create customized JSON errors
	Use the Generic Error filter
	Use the Set Message filter

	SOAP fault handling
	Overview
	SOAP fault format settings
	SOAP fault content settings
	Create Customized SOAP faults
	Use the Generic Error filter
	Use the Set Message filter
	Step 1: Create the top-level policy
	Step 2: Create the fault policy
	Step 3: Create a shortcut to the fault policy
	How it works

	Chapter 22. Monitoring filters
	Configure system alerts
	Overview
	Configure an alert destination
	Syslog (local or remote)
	Windows Event Log
	Check Point FireWall-1 (OPSEC)
	SNMP Network Management System
	Email recipient
	Amazon SNS
	Twitter

	Configure an alert filter
	General settings
	Notifications settings
	Tracking settings
	Default message settings

	Set transaction log level and log message
	Overview
	Configuration

	Log message payload
	Overview
	Configuration

	Service level agreement
	Overview
	Response time requirements
	HTTP status requirements
	Communications failure requirements
	Select alerting system

	Set service context
	Overview
	General settings

	Send event to Sentinel
	Overview
	General settings
	Settings tab
	Tracking tab

	Further information

	Send cycle link event to Sentinel
	Overview
	General settings
	Further information

	Chapter 23. Oracle Access Manager filters
	Oracle Access Manager authorization
	Overview
	General settings
	Request settings
	OAM Access SDK settings

	Oracle Access Manager certificate authentication
	Overview
	General settings
	Resource settings
	Session settings
	OAM Access SDK settings

	Oracle Access Manager SSO session logout
	Overview
	Configuration

	Oracle Access Manager SSO token validation
	Overview
	Configuration

	Chapter 24. Oracle Entitlements Server filters
	Oracle Entitlements Server 10g authorization
	Overview
	Configuration
	Settings
	Application Context

	Get roles from Oracle Entitlements Server 10g
	Overview
	Configuration
	Settings
	Application Context

	Oracle Entitlements Server 11g authorization
	Overview
	Configuration

	Chapter 25. Resolver filters
	Operation name resolver
	Overview
	Configuration

	Relative path resolver
	Overview
	Configuration
	Regular expression format

	SOAP action resolver
	Overview
	Configuration
	Regular expression format

	Chapter 26. Routing filters
	Getting started with routing configuration
	Overview
	Proxy or endpoint server
	Service virtualization
	Choosing the correct routing filters
	Case 1: Proxy without service virtualization
	Case 2: Proxy with service virtualization
	Case 3: Endpoint without service virtualization
	Case 4: Endpoint with service virtualization
	Case 5: Simple redirect
	Case 6: Routing on to an HTTP proxy
	Summary

	Call internal service
	Overview
	Configuration

	Connection
	Overview
	General settings
	SSL settings
	Authentication settings
	Additional settings

	Connect to URL
	Overview
	General settings
	Request settings
	SSL settings
	Trusted certificates
	Client certificates

	Authentication settings
	Additional settings
	Retry settings
	Failure settings
	Proxy settings
	Redirect settings
	Header settings

	Dynamic router
	Overview
	Configuration

	Extract path parameters
	Overview
	Configuration
	Required input and generated output
	Possible outcomes

	File download
	Overview
	General settings
	File details
	Connection type
	FTP and FTPS connections
	FTPS connections
	SFTP connections

	File upload
	Overview
	General settings
	File details
	Connection type
	FTP and FTPS connections
	FTPS connections
	SFTP connections

	HTTP redirect
	Overview
	Configuration

	HTTP status code
	Overview
	Configuration

	Insert WS-Addressing information
	Overview
	Configuration

	Read WS-Addressing information
	Overview
	Configuration

	Rewrite URL
	Overview
	Configuration

	Save to file
	Overview
	Configuration

	Route to SMTP
	Overview
	General settings
	Message settings

	Static router
	Overview
	Configuration

	Route to TIBCO Rendezvous
	Overview
	Configuration

	Wait for response packets
	Overview
	Packet sniffer configuration
	Sniffing response packets

	Chapter 27. Security services filters
	Encrypt and decrypt web services
	Overview
	Configuration

	DSS signature generation
	Overview
	Configuration

	STS web service
	Overview
	Configuration

	DSS signature verification
	Overview
	Configuration

	Chapter 28. Trust filters
	Consume WS-Trust message
	Overview
	Configuration
	Message types
	Message consumption settings
	Advanced settings

	Create WS-Trust message
	Overview
	Configuration
	Message types
	General message creation settings
	RST creation settings
	RSTR creation settings
	Advanced settings

	Chapter 29. Utility filters
	Abort policy
	Overview
	Configuration

	Check group membership
	Overview
	Configuration
	Possible paths

	Copy or modify attributes
	Overview
	Configuration

	Evaluate selector
	Overview
	Configuration

	Execute external process
	Overview
	Configuration
	Command settings
	Advanced settings

	False filter
	Overview
	Configuration

	HTTP parser
	Overview
	Configuration

	Insert BST
	Overview
	Configuration

	Invoke policy per message body
	Overview
	Configuration

	Locate XML nodes
	Overview
	Configuration
	Node locations
	XPath expressions
	Message attribute
	Message attribute in which to place list of nodes

	Management services RBAC
	Overview
	Configuration

	Pause processing
	Overview
	Configuration

	Create policy shortcut
	Overview
	Configuration

	Create policy shortcut chain
	Overview
	General settings
	Add a policy shortcut
	Edit a policy shortcut

	Quote of the day
	Overview
	Configuration

	Reflect message
	Overview
	Configuration

	Reflect message and attributes
	Overview
	Configuration

	Remove attribute
	Overview
	Configuration

	Set attribute
	Overview
	Configuration

	Set response status
	Overview
	Configuration

	Replace string
	Overview
	Configuration

	Switch on attribute value
	Overview
	Configuration
	Add a switch case

	Allow or block messages at specified times
	Overview
	General settings
	Basic time settings
	Advanced time settings

	Trace filter
	Overview
	Configuration

	True filter
	Overview
	Configuration

	Chapter 30. Web services filters
	Web service filter
	Overview
	General settings
	Routing settings
	Validation settings
	Configuring message interception points
	WSDL settings
	Monitoring options

	Return WSDL
	Overview
	Configuration

	Set web service context
	Overview
	General settings
	Service WSDL settings
	Monitoring settings

	Chapter 31. Extend filters
	Advanced filter view
	Overview
	Configuration
	Edit filter settings
	Return to the default filter view

	Select configuration values at runtime
	Overview
	Selector syntax
	Access fields
	Special selector keys
	Resolve selectors

	Example selector expressions
	Message attribute
	Environment variable
	Key Property Store
	Examples using reflection

	Extract message attributes

	Key Property Store
	Overview
	KPS tables and collections
	Enter data in a KPS table

	KPS data sources
	Add a KPS collection
	Edit a KPS collection
	Add a file data store
	Add a database data store

	Add a KPS table
	Define the KPS table structure
	Define the KPS table structure

	Scripting language filter
	Overview
	Write a script
	Use local variables

	Add your script JARs to the classpath
	Add your script JARs to the API Gateway classpath
	Add your script JARs to Policy Studio

	Configure a script filter
	Add a script to the library

	Chapter 32. Configure common settings
	Certificate validation
	Overview
	Configuration

	Compressed content encoding
	Overview
	Encoding of HTTP responses
	Encoding of HTTP requests
	Delimit the end of an HTTP message
	HTTP requests
	HTTP responses

	Configure content encodings
	Add content encodings
	Configure no content encodings

	Further information

	Configure connection groups
	Overview
	Configure a connection group
	Configure a connection

	Configure cron expressions
	Overview
	Create a cron expression using the time tabs
	Seconds
	Minutes
	Hours
	Day
	Day of Month
	Day of Week

	Month
	Year

	Enter a cron expression
	Test the cron expression
	Results

	Further information

	Signature location
	Overview
	Configuration
	Use WS-Security actors
	Use SOAP header
	Use XPath expression

	Configure a transparent proxy
	Overview
	Configure transparent proxy mode for incoming interfaces
	Configure transparent proxy mode for outgoing calls
	Configuration example

	LDAP user search
	Configure directory search

	Configure URL groups
	Overview
	Configuration

	What to sign
	Overview
	ID configuration
	Node locations
	XPath configuration
	XPath predicates
	Message attribute

	Configure XPath expressions
	Overview
	Manual configuration
	Return a nodeset

	XPath wizard

	Chapter 33. Reference
	WS-Policy reference
	License acknowledgments
	Overview
	Acknowledgments

