
[image: Oracle Corporation]

Oracle® Communications

Network Integrity

MSS Integration Cartridge Guide

Release 7.3.2

E66044-01

May 2016

Oracle Communications Network Integrity MSS Integration Cartridge Guide, Release 7.3.2

E66044-01

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Documentation Accessibility
	Document Revision History

1 Overview

	About the MSS Integration Cartridge
	Limitations
	About Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies
	Configuration Dependencies
	Configuring the JDBC Data Source Driver
	Configuring MSS as the Import System
	Adding JacORB JAR Files to the Cartridge Project
	Configuring Custom Ports for Reference Integration Between Network Integrity and MSS
	Setting Up Cartridge MBeans

	Downloading and Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

2 About the Cartridge Components

	Import from MSS Action
	Equipment DAOs Initializer
	Page Initializer
	Page Creator
	Node Collector
	Device Modeler
	Equipment Hierarchy Collector
	Equipment Hierarchy Modeler
	Hierarchy Persister
	STM Link Discoverer
	VC4 Circuit Discoverer
	VC3 VC12 LOP Discoverer

	Detect Equipment Discrepancies Action
	Equipment Filters Initializer
	Discrepancy Filter
	MSS Auto Resolve Selected Discrepancies

	MSS Circuit Discrepancy Detection Action
	Partial Circuit Discrepancy Filter

	Resolve in MSS Action
	MSS CORBA Property Initializer
	Resolution Framework Initializer
	MSS Resolution Initializer
	Resolution Framework Dispatcher

	About Discrepancy Detection
	About Discrepancy Resolution
	Extra Entity (Entity+) Discrepancy Resolution
	Network Node Creation
	Equipment Creation
	Circuit Creation
	Channel Assignment Creation on a Trail Pipe
	TrailPath Assignment to a Circuit
	PipeTerminationPoint Assignment to a Circuit

	Missing Entity (Entity-) Discrepancy Resolution
	Network Node Deletion
	Equipment Deletion
	Circuit Deletion
	Channel Assignment Deletion on a Trail Pipe
	TrailPath Unassignment from a Circuit
	PipeTerminationPoint Unassignment from a Circuit

	Attribute Value Mismatch (Attribute) Discrepancy Resolution
	Equipment Mismatch
	Circuit Channel Assignment Mismatch

3 Using the Cartridge

	Creating an MSS Import Scan
	Working with Discrepancies
	Detecting Discrepancies in MSS
	Resolving Discrepancies in MSS

4 About Collected Data

	About Collected Data
	About the MSS Extract Process
	Advantages
	Limitations

	Setting Up the MSS Extract Process
	Refreshing Materialized Views
	MSS Equipment Extract Process
	MSS Equipment Extract Process Materialized Views
	MSS Equipment Extract Process Normal Views

	MSS Circuit Extract Process
	MSS Circuit Extract Process Materialized Views
	MSS Circuit Extract Process Normal Views

	Extending the MSS Extract Process

5 About Cartridge Modeling

	About Cartridge Modeling
	About Import Data Modeling
	API Mapping
	Field Mapping
	Data Import Algorithm
	Import Equipment Hierarchy Algorithm
	Build Equipment Hierarchy Algorithm
	Import Circuit Hierarchy Algorithm

	About Discrepancy Resolution Modeling
	Discrepancy Resolution Field Mapping for Equipment
	Discrepancy Resolution Field Mapping for Circuits

6 About Design Studio Construction

	Model Collections
	Actions

7 About Design Studio Extension

	Importing Additional Information from MSS

Preface

This guide describes the functionality and design of the Oracle Communications Network Integrity MSS Integration cartridge.

Audience

This guide is intended for network administrators who want to understand the design and functionality of this cartridge. Also, for Network Integrity integrators and developers who want either to build or to extend similar cartridges.

You should be familiar with the following documents:

	
Network Integrity Concepts: for an overview of Network Integrity.

	
Network Integrity Developer's Guide: for detailed information about Network Integrity cartridge components and extensibility.

	
Network Integrity Installation Guide: for information about the cartridge deployer to deploy and undeploy cartridges to the run-time application.

This guide assumes that you are familiar with the following Oracle products and components:

	
Oracle Communications Design Studio for Network Integrity

	
Oracle Communications MetaSolv Solution (MSS)

	
Network Integrity Optical TMF814 CORBA Cartridge

	
Network Integrity Circuit Assimilation Cartridge

This guide assumes that you are familiar with the following concepts and technologies:

	
TMF814 and Multi Technology Network Management (MTNM) standards and terminology

	
Common object request broker architecture (CORBA) standards and terminology

	
Development and extensibility of Network Integrity cartridges

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Document Revision History

The following table lists the revision history for this guide:

	Version	Date	Description
	E66044-01
	May 2016
	Initial release.

1 Overview

This chapter provides an overview of the Oracle Communications Network Integrity MSS Integration cartridge.

About the MSS Integration Cartridge

The MSS Integration cartridge is used to integrate Network Integrity with Oracle Communications MetaSolv Solution (MSS), to retrieve inventory data from MSS, and to compare the imported data with discovered network data.

The MSS Integration cartridge includes the following types of actions:

	
Import: retrieves specified equipment and circuit information from MSS and model it in the Oracle Communications Information Model.

	
Discrepancy Detection: compares imported MSS data with either discovered equipment data or assimilated circuit data and reports any differences.

	
Resolution: resolves discrepancies on equipment and circuits by correcting entities, associations, and attributes in MSS.

This cartridge also includes a reference implementation of automatic discrepancy resolution. Automatic discrepancy resolution enables Network Integrity to automatically correct specific discrepancies without the user having to interact with the UI. Complete the reference implementation to specify the types of discrepancies that you want automatically resolved. In the MSS Integration cartridge, the automatic discrepancy resolution reference implementation is built with a properties file and with Java. See Network Integrity Developer's Guide for more information.

Limitations

The MSS Integration cartridge has the following limitations:

	
Network Node Resolution: The MSS CORBA createNetworkElement API method is run by the Resolve in MSS action to create a network nodes in MSS. You must use MSS to search for the created node, manually updating it with the type and associating it with the network system, which allows later resolution actions to create equipment and hierarchies under the new node. Network Integrity cannot upload entire equipment hierarchies under a new network node with a single Resolve in MSS action. Subsequent discrepancy detection actions are likely to detect new entity+ discrepancies on the child entities of the new network node.

	
Port Resolution: There is no API support to create or delete ports. The ports associated to card equipment are obtained from the equipment specification. There is no API support to update MSS equipment. Therefore, Network Integrity cannot resolve entity+ or entity- discrepancies on ports. You must manually resolve such discrepancies from MSS.

	
Equipment Resolution: When there is more than one root equipment for a logical device, the cartridge considers and resolves the first root equipment only.

	
Partial Circuits: The MSS Integration cartridge cannot resolve discrepancies on partial circuits from Network Integrity. Network Integrity assigns the Ignored state to discrepancies on partial circuits.

	
Network Integrity cannot detect discrepancies on all Information Model fields. See "Field Mapping" for a list of tables listing the fields used for discrepancy detection.

	
The MSS Integration cartridge suppresses discrepancies on empty slots and sub-slots.

	
Rack, shelf, and card hierarchy: MSS does not follow a consistent standard for identifying equipment types. Therefore, the MSS Integration cartridge uses a logical algorithm for modeling equipment. See "Data Import Algorithm" for more information.

	
For discrepancy resolution on customer circuits to work properly, the MSS instance service type configuration must be aligned with customer circuit bandwidth. Possible customer circuit bandwidths in SDH networks are E1, E3, and E4. MSS service type configuration defines the circuit auto-build source higher bandwidth to target lower bandwidth. Network Integrity cannot define multiple service type definitions with same source higher bandwidth to different target lower bandwidths.

Table 1-1 lists the service type configurations for each customer circuit type.

Table 1-1 Service Type Configurations for Customer Circuit Types

	Circuit Type	First Level Service Type	Second Level Service Type	Third Level Service Type	Fourth Level Service Type
	
E1

	
STMX-VC4 (X=1, 4, 16)

	
VC4-TUG3 (Pos=3)

	
TUG3-VC12 (Pos=28)

	
VC12-E1 (Pos=1)

	
E3

	
STMX-VC4

	
VC4-TUG3 (Pos=3)

	
TUG3-VC3 (Pos=3)

	
VC3-E3 (Pos=1)

	
E4

	
STMX-VC4

	
VC4-E4 (Pos=1)

	
N/A

	
N/A

	
When uploading customer circuits to MSS to resolve discrepancies, Network Integrity sets the Customer Account ID and Product Catalog ID a configurable, static value. You must use MSS to manually assign uploaded circuits with the correct Customer Account ID and Product Catalog ID. Configure the MSS Customer Account ID and MSS Product Catalog ID MBean attributes to set the static value that Network Integrity assigns to uploaded customer circuits. See "Setting Up Cartridge MBeans" for more information. The Customer Account ID and MSS Product Catalog ID values must be valid values taken from the MSS database.

	
In MSS, it is possible to model a fully-protected HOT circuit two different ways:

	
As a single HOT between two devices, connected by two paths

	
As two separate unprotected HOTs between two devices

By default, the MSS Integration cartridge matches against two separate unprotected HOTs between two devices.

To match against fully-protected HOTs modeled as a single HOTs between two devices, connected by two paths, you can do one of the following:

	
Extend the Import from MSS action to separate protected HOT circuits into two unprotected HOT circuits. The protected HOT circuits must not have the same originating or terminating port.

	
Extend the Assimilate Optical Circuits action on the Network Integrity Optical Circuit Assimilation Cartridge, adding a processor to find separate HOTs that should be merged, modeling them as single HOTs with multiple paths.

If you extend the assimilation or the import action, you must also extend your discrepancy resolution actions to understand the extended circuit model.

About Cartridge Dependencies

The MSS Integration cartridge has the following dependencies.

Run-Time Dependencies

For the MSS Integration cartridge to work at run time, the following dependencies must be met:

	
MSS must be installed.

	
MSS must be configured with the MSS Extract Schema. The MSS database must be populated using the MSS extract process. See "Setting Up the MSS Extract Process" for more information.

	
Network Integrity must be configured with a database connection to the MSS Extract Schema.

	
The data source for the MSS Extract Schema must be created in the Network Integrity WebLogic server domain.

	
Network Integrity must be configured with the common object request broker architecture (CORBA) Name Service details.

	
Network Integrity must be configured with Enterprise Java Bean (EJB) connection details.

Design-Time Dependencies

The MSS Integration cartridge has the following dependencies:

	
Abstract_CORBA_Cartridge

	
NetworkIntegritySDK

	
Optical_Model

	
OpticalAssimilation_Cartridge

	
ora_uim_model

	
TMF814_Model

	
TMF814Discovery_Cartridge

Configuration Dependencies

This section describes the necessary configurations you must perform before you can use the MSS Integration cartridge.

Configuring the JDBC Data Source Driver

	
Log in to the Oracle WebLogic Server Administration Console for Network Integrity using administrator credentials.

	
Under JDBC, select Data Sources.

The Summary of JDBC Data Sources screen appears.

	
Click the New button.

The Create New Data Source screen appears.

	
Do the following:

	
In the Name field, enter a name.

	
In the JNDI Name field, enter a unique JNDI name to be used by Network Integrity. For example, jdbc/NIMSSDatasource.

	
In the Database Type field, enter Oracle.

	
In the Database Driver field, select Oracle's Driver (Thin) for service connections; Versions:9.0.1,9.2.0,10,11.

	
Click Next.

The Transaction Options screen appears.

	
Do the following:

	
Select the Support Global Transaction check box.

	
Select the Emulate Two-Phase Commit option.

	
Click Next.

The Connection Properties screen appears.

	
Do the following:

	
In the Database Name field, enter the SID or service name of the database.

	
In the Host Name field, enter the IP address or host name of the system on which the database running.

	
In the Port field, enter the port number used to communicate with the database.

	
In the Database User Name field, enter the database user name.

	
In the Database User Password field, enter the database user password.

	
Click Next.

The Test Database Connection screen appears.

	
Click the Test Configuration button.

The console displays a success or failure message.

	
Click Next.

	
Select the check box corresponding to the target server.

	
Click Finish.

The data source is created.

Configuring MSS as the Import System

To enable Network Integrity to import data from MSS, MSS must be configured as the import system in Network Integrity.

To set MSS as your import system:

	
In Network Integrity, in the Tasks pane, click Manage Import Systems.

The Import System screen appears.

	
Click the Create or Edit icon.

	
Note:

The Create icon is available only if no import system is configured. The Edit icon is available only if an import system is already configured.

The Edit Import System dialog box appears.

	
Do the following:

	
In the Name field, enter a name for your import system.

For example, MSS.

	
In the Address field, enter the unique JNDI name for the JDBC data source.

For example, jdbc/NIMSSDatasource.

See "Configuring the JDBC Data Source Driver" for more information.

	
Click Save and Close.

Adding JacORB JAR Files to the Cartridge Project

The Discrepancy Resolution action uses a third-party object request broker (ORB) called JacORB to establish CORBA connectivity with MSS. The JacORB JAR files must be manually added to the /lib directory of the cartridge project.

To add the JacORB JAR files to the cartridge project:

	
Download version 2.3.1 of JacORB from the JacORB web site:

http://www.jacorb.org

	
Open the JacORB ZIP file and extract the following JAR files from the /lib directory:

	
slf4j-api-1.5.6.jar

	
slf4j-jdk14-1.5.6.jar

	
jacorb.jar

	
logkit-1.2.jar

	
In Design Studio, switch to the Package Explorer view.

	
Copy the extracted JAR files to the MSS_Cartridge/lib cartridge project directory.

	
Add the JacORB JAR files to the cartridge project classpath:

	
Right-click MSS_Cartridge and select Properties.

The Properties for MSS_Cartridge dialog box appears.

	
In the Navigation pane, click Java Build Path.

	
On the Libraries tab, click the Add JARs button.

The Add JARs dialog box appears.

	
Select the new JacORB JAR files and click Add.

The new JacORB JAR files are added to the JARs and class folders on the build path list.

	
Click OK.

The Properties for MSS_Cartridge dialog box closes.

	
Save the project.

Configuring Custom Ports for Reference Integration Between Network Integrity and MSS

In situations where the reference integration between Network Integrity and MSS is implemented in a way that both the products communicate through a firewall that restricts specific ports, you must configure the jacorb.properties file in MSS and Network Integrity to open specific ports or a range of ports, which will allow network data to pass through a firewall.

The reference integration between Network Integrity and MSS uses the CORBA IIOP (Internet Inter-ORB Protocol) Specification and JacORB to establish CORBA connectivity over the network.

JacORB provides a number of socket factories to allow control over the way sockets are created on both the client side and the server side. On the server side, JacORB uses jacorb.net.server_socket_factory and jacorb.ssl.server_socket_factory to control the creation of sockets. On the client side, JacORB uses jacorb.net.socket_factory and jacorb.ssl.socket_factory to control the creation of sockets. A factory design pattern is used for the creation of sockets and server sockets.

You use the jacorb.net.socket_factory property to configure a socket factory that implements the operations defined in the interface org.jacorb.orb.factory.SocketFactory. You use the jacorb.net.server_socket_factory property to configure a server socket factory that implements the operations defined in the interface org.jacorb.orb.factory.ServerSocketFactory, as follows:

jacorb.net.socket_factory=org.jacorb.orb.factory.DefaultSocketFactory
jacorb.net.server_socket_factory=org.jacorb.orb.factory.DefaultServerSocketFactory
jacorb.net.socket_factory=org.jacorb.orb.factory.PortRangeSocketFactory
jacorb.net.server_socket_factory=org.jacorb.orb.factory.PortRangeServerSocketFactory

You can use additional socket factories to specify the maximum and minimum port numbers in a fixed port range to enable network data to pass through a firewall, as follows:

jacorb.net.socket_factory.port.min
jacorb.net.socket_factory.port.max
jacorb.net.server_socket_factory.port.min
jacorb.net.server_socket_factory.port.max

Configuring JacORB in MSS for Communicating Through a Firewall

To enable MSS to communicate with Network Integrity through a firewall, you must configure custom ports in MSS by configuring the jacorb.properties file located in the MSS_Home/server_name/jacORB/etc folder, where MSS_Home is the directory on the server under which the MSS software is installed and server_name is the name of the WebLogic Administration server.

To configure JacORB in MSS to communicate through a firewall:

	
Navigate to the MSS_Home/server_name/jacORB/etc folder and open the jacorb.properties file.

	
Configure the following factory properties to specify the maximum and minimum port numbers in a fixed port range:

jacorb.net.socket_factory.port.min
jacorb.net.socket_factory.port.max
jacorb.net.server_socket_factory.port.min
jacorb.net.server_socket_factory.port.max

	
Save and close the jacorb.properties file.

Configuring JacORB in Network Integrity for Communicating Through a Firewall

To configure JacORB in Network Integrity to communicate through a firewall:

	
Copy the jacorb.properties file from the MSS_Home/server_name/jacORB/etc folder to the MSS_Cartridge/src folder in Network Integrity.

	
Build and deploy the MSS Integration cartridge.

See the Design Studio Help for information about building and deploying cartridges.

Setting Up Cartridge MBeans

The MSS Integration cartridge uses generic Network Integrity MBeans to communicate discrepancy resolution commands with MSS. These MBeans contain property groups and properties configured with model variables. The default values are set when the cartridge is deployed. You must use Enterprise Manager to define the MBeans.

The configured MBean values are set in the MSS CORBA Properties Initializer processor during run time.

See Network Integrity System Administrator's Guide for information about setting MBeans using Enterprise Manager.

Table 1-2 lists the generic Network Integrity MBeans used to communicate with MSS. Set each MBean with the value required to connect the cartridge to your MSS system.

Table 1-2 Cartridge MBeans Required for Discrepancy Resolution

	Attribute Name	Property Group	MBean Property Name
	
MSS CORBA Password

	
Resolve in MSS:MSS CORBA Property Initializer:MSSCORBAConnectionDetails

	
MSSCORBAPassword

Required to establish the MSS CORBA connection for MSS equipment upload.

Use the runPropertyEncryptor.sh script to encrypt this property. See Network Integrity System Administrator's Guide for more information.

	
MSS CORBA IOR

	
Resolve in MSS:MSS CORBA Property Initializer:MSSCORBAConnectionDetails

	
MSSCORBAIOR

Required to establish the MSS CORBA connection for MSS equipment upload.

When integrating Network Integrity cluster with an MSS cluster, ensure that you set up the Network Integrity CORBA MBean properties in such a way that each Network Integrity managed server in the Network Integrity cluster refers to the same IOR value of a specific MSS managed server in the MSS cluster.

	
MSS CORBA UserId

	
Resolve in MSS:MSS CORBA Property Initializer:MSSCORBAConnectionDetails

	
MSSCORBAUserId

Required to establish the MSS CORBA connection for MSS equipment upload.

	
MSS EJB JNDI Name

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSSEJBJNDIName

Required to establish the MSS EJB connection for MSS circuit upload.

	
MSS EJB URL

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSSEJBURL

Required to establish the MSS EJB connection for MSS circuit upload.

	
MSS EJB UserId

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSSEJBUserId

Required to establish the MSS EJB connection for MSS circuit upload.

	
MSS EJB Password

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSSEJBPassword

Required to establish the MSS EJB connection for MSS circuit upload.

Use the runPropertyEncryptor.sh script to encrypt this property. See Network Integrity System Administrator's Guide for more information.

	
MSS Customer Account ID

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSS Customer Account Id

Used to assign customer circuits created by Network Integrity to a customer account.

	
MSS Product Catalog ID

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
MSS Product Catalog Id

Used to specify the catalog reference for customer circuits created by Network Integrity.

	
MSS TUG3-VC12 Channel Positions Count

	
Resolve in MSS:MSS CORBA Property Initializer:MSSEJBConnectionDetails

	
mssTUG3VC12ChannelPositionsCount

Used to specify the number of positions in MSS service type defined for TUG3 to VC12.

	
Enable Container Resolution

	
MSS Circuit Discrepancy Detection:Partial Circuit Discrepancy Filter:ResolutionProperties

	
enableContainerResolution

Set to false and is used to not display discrepancies on container entities in Network Integrity. Network Integrity cannot resolve discrepancies on containers.

	
Enable STM Resolution

	
MSS Circuit Discrepancy Detection:Partial Circuit Discrepancy Filter:ResolutionProperties

	
enableSTMResolution

Set to false and is used to not display discrepancies on STMs in Network Integrity. Network Integrity cannot resolve discrepancies on STMs.

	
Enable HOT Resolution

	
MSS Circuit Discrepancy Detection:Partial Circuit Discrepancy Filter:ResolutionProperties

	
enableHOTResolution

Set to false and is used to not display discrepancies on HOTs in Network Integrity. Network Integrity cannot resolve discrepancies on HOTs.

Password properties should be encrypted using the runPropertyEncryptor.sh script. See Network Integrity System Administrator's Guide for more information about encrypting properties.

When encrypting MBean properties, you must enter the property name as it appears in the MBean Property Name column of Table 1-2. For example, enter MSSCORBAPassword when encrypting the MSS CORBA Password attribute.

Downloading and Opening the Cartridge Files in Design Studio

To open, view, and extend the MSS Integration cartridge, you must first download the cartridge ZIP file from the Oracle software delivery web site:

https://edelivery.oracle.com

The MSS Integration cartridge ZIP file has the following structure:

	
MSS_Cartridge

	
Optical_Model

The MSS_Cartridge project contains the extendable Design Studio files.

See Network Integrity Concepts for guidelines and best practices for extending cartridges. See Network Integrity Developer's Guide for information about opening files in Design Studio.

Building and Deploying the Cartridge

To build and deploy the MSS Integration cartridge, you must first add JacORB JAR files to the cartridge project. See "Adding JacORB JAR Files to the Cartridge Project" for more information.

See Design Studio Help for information about building and deploying cartridges.

2 About the Cartridge Components

This chapter provides information about the components of the Oracle Communications Network Integrity MSS Integration cartridge.

The MSS Integration cartridge contains the following actions:

	
Import from MSS Action

	
Detect Equipment Discrepancies Action

	
MSS Circuit Discrepancy Detection Action

	
Resolve in MSS Action

Import from MSS Action

The Import from MSS action connects to Oracle Communications MetaSolv Solution (MSS) to import specified inventory data. This import action writes the inventory information to materialized views and models it according to the Oracle Communications Information Model.

The Import from MSS action contains the following processors run in the following order:

	
Equipment DAOs Initializer

	
Page Initializer

	
Page Creator

	
Node Collector

	
Device Modeler

	
Equipment Hierarchy Collector

	
Equipment Hierarchy Modeler

	
Hierarchy Persister

	
STM Link Discoverer

	
VC4 Circuit Discoverer

	
VC3 VC12 LOP Discoverer

Figure 2-1 illustrates the processor workflow of the Import from MSS action.

Figure 2-1 Import from MSS Action Processor Workflow

[image: Description of Figure 2-1 follows]

Equipment DAOs Initializer

If Run MSS Extract is set to True in the Network Integrity UI, this processor refreshes the MSS materialized views.

Also, this processor reads the data source information from the Import System values and initializes the DAOLocator instance. The DAOLocator instance is used by other processors and actions to retrieve equipment and circuit data.

Page Initializer

This processor counts all the unique network nodes from the MSS extract views, according to the scope defined in the Network Integrity UI, and determines the number of pages needed to list all the nodes. By default, a page can contain 50 nodes. This processor produces a pageCountList iterable object.

Page Creator

This processor creates pages listing unique network node names imported from MSS matching the filtering criteria set in the Network Integrity UI. This processor outputs the node names list in a response object.

Node Collector

This processor collects all root equipment from MSS for each node on the node name list produced by the Page Creator processor. The collected root equipment are placed in the nodesMapByNodeName map, which indexes each node name and its value.

The output iterable object loops over nodeNamesSet, getting one node name per loop.

Device Modeler

This processor models each imported network node as PhysicalDevice and LogicalDevice entities and outputs a root equipment list for each modeled node.

Equipment Hierarchy Collector

This processor retrieves port information for the equipment hierarchy from EquipmentPositionHierDAO and EquipmentPortAddressDAO. This processor outputs a map listing port-to-card IDs.

Equipment Hierarchy Modeler

This processor models root equipment and its floating termination points (FTPs) from the map as physical port and media interface entities. Its associated ports are derived from the output map from the Equipment Hierarchy Collector processor and are modeled as physical port and media interface entities.

This processor builds the equipment hierarchy by parsing the equipment hierarchy string. Slots and subslots are modeled as EquipmentHolders entities, and cards as Equipment entities. This processor saves processed card IDs to an index object to avoid processing duplicate card IDs in a different hierarchy for the same parent.

	
Note:

The equipment hierarchy string in MSS must define the equipment type for equipment for this processor to successfully build the hierarchy.

Hierarchy Persister

This processor saves the logical and physical device trees and saves the modeled hierarchy for each network node.

STM Link Discoverer

This processor discovers synchronous transport module (STM) links from the list of ports produced by the Equipment Hierarchy Modeler processor.

This processor retrieves the STM Circuit information from CircuitExportDAO and CircuitPositionDAO and models each as DisPipe entities. The STM links are modeled with a valid VC4 channel index value.

This processor outputs a list of STM links in an stmSet object.

VC4 Circuit Discoverer

This processor retrieves the VC4 circuit information from the STM Link Discoverer processor. It verifies whether the circuit is a customer circuit. Customer circuits are modeled as E4 circuits with a VC4 display string. Non-customer circuits are modeled as transport pipes with a VC4 higher order transport display string.

This processor produces a list of CircuitExport DAOs for each transport pipe.

VC3 VC12 LOP Discoverer

This processor queries the lower order pipes (LOPs) from the vc4sForLops list and models them as E3 circuits with a VC3 display string or as E1 circuits with a VC12 display string, depending on the layer rate codes.

Detect Equipment Discrepancies Action

The Detect Equipment Discrepancies action compares discovered TMF814 data with the imported MSS data and returns a list of discrepancies.

This discrepancy detection action extends Discrepancy Detector action (from the NetworkIntegritySDK cartridge) and inherits all its processors. For information about the inherited processors, see Network Integrity Developer's Guide.

This action also extends the Auto Resolve Discrepancies action (from the NetworkIntegritySDK cartridge) to provide automatic discrepancy resolution. For information about the processors inherited from the Auto Resolve Discrepancies action, see Network Integrity Developer's Guide.

The Detect Equipment Discrepancies action contains the following processors run in the following order:

	
Equipment Filters Initializer

	
Discrepancy Detector (inherited)

	
Discrepancy Filter

	
Check Auto Resolve Selected (inherited)

	
MSS Auto Resolve Selected Discrepancies

	
Identify Auto Resolving Discrepancies (inherited)

	
Prepare Resolving Discrepancies (inherited)

Figure 2-2 illustrates the processor workflow of the Detect Equipment Discrepancies action.

Figure 2-2 Detect Equipment Discrepancies Action Processor Workflow

[image: Description of Figure 2-2 follows]

Equipment Filters Initializer

This processor applies the equipment filters set in the Network Integrity UI on the Discrepancy Detection process. This processor also automatically filters out discrepancies that are not relevant to MSS equipment.

Discrepancy Filter

This processor collects the discrepancies generated by the Discrepancy Detector processor and sets the priority and status for discrepancies on physical ports.

Discrepancies on physical ports are labeled Manually correct in MSS, and Network Integrity sets the status to Ignored because Network Integrity cannot resolve this type of discrepancy.

MSS Auto Resolve Selected Discrepancies

This processor contains the Java class for the automatic discrepancy resolution manager. The Java implementation class determines the types of discrepancies to be automatically resolved and the resolution logic.

The MSS Integration cartridge also implements automatic discrepancy resolution with a properties file.

See Network Integrity Developer's Guide for more information about automatic discrepancy resolution.

MSS Circuit Discrepancy Detection Action

The MSS Circuit Discrepancy Detection action compares the results of an Assimilate Optical Circuits scan with the imported MSS data and returns a list of discrepancies. For more information about the Assimilate Optical Circuits scan action type, see Network Integrity Optical Circuit Assimilation Cartridge Guide.

This discrepancy detection action inherits all the processors from the Abstract Optical Circuit Discrepancy Detection action (from the Optical Circuit Assimilation cartridge). For information about the inherited processors, see Network Integrity Optical Circuit Assimilation Cartridge Guide.

The MSS Circuit Discrepancy Detection action contains the following processors run in the following order:

	
Circuit Discrepancy Name Filter Initializer (inherited)

	
Missing Entity Filter Initializer (inherited)

	
Partial Circuit Discrepancy Filter

	
Discrepancy Detector (inherited)

Figure 2-3 illustrates the processor workflow of the MSS Circuit Discrepancy Detection action.

Figure 2-3 MSS Circuit Discrepancy Detection Action Processor Workflow

[image: Description of Figure 2-3 follows]

Partial Circuit Discrepancy Filter

This processor collects the discrepancies generated by the Missing Entity Filter initializer processor.

Discrepancies on partial pipe entities with a name that begins with GENERATED_ are labeled Manually correct in MSS, and Network Integrity sets the status to Ignored because Network Integrity cannot resolve this type of discrepancy.

Resolve in MSS Action

The Resolve in MSS action resolves discrepancies between your network data and the imported data by updating equipment and circuit hierarchy in MSS.

This discrepancy resolution action inherits all the processors from the Resolve Abstract CORBA action (from the CORBA cartridge) and inherits all its processors. For information about the inherited processors, see Network Integrity CORBA Cartridge Guide.

The Resolve in MSS action contains the following processors run in the following order:

	
CORBA Property Initializer (inherited)

	
MSS CORBA Property Initializer

	
CORBA Connection Manager (inherited)

	
Resolution Framework Initializer

	
MSS Resolution Initializer

	
Resolution Framework Dispatcher

Figure 2-4 illustrates the processor workflow of the Resolve in MSS action.

Figure 2-4 Resolve in MSS Action Processor Workflow

[image: Description of Figure 2-4 follows]

MSS CORBA Property Initializer

This processor sets the common object request broker architecture (CORBA) object request broker (ORB) properties in the JacORB to establish CORBA connectivity with MSS.

Resolution Framework Initializer

This processor initializes the BaseResolutionElement resolution framework class used to register the handlers required to resolve discrepancies in MSS.

MSS Resolution Initializer

This processor registers the following entity handlers to the BaseResolutionElement class:

	
DeviceHandler

	
EquipmentHandler

	
PhysicalPortHandler

	
DeviceInterfaceHandler

	
CircuitHandler

	
PipeTerminationPointHandler

	
TrailPathHandler

Resolution Framework Dispatcher

This processor runs the BaseResolutionElement class to evaluate and treat discrepancies using the appropriate registered entity handlers.

About Discrepancy Detection

The MSS Integration cartridge extends the NetworkIntegritySDK cartridge project to detect discrepancies.

Table 2-1 lists the possible discrepancies that can be reported and the types of entities that each discrepancy can be found on.

Table 2-1 Discrepancy Types

	Discrepancy Type	Entity Types
	
Extra Entity (Entity+)

	
Physical device, equipment, equipment holder, physical port, pipe (STM/HOT/LOP), pipe termination point, trail path, trail pipe

	
Missing Entity (Entity-)

	
Physical device, equipment, equipment holder, physical port, pipe (STM/HOT/LOP), pipe termination point, trail path, trail pipe

	
Attribute Value Mismatch (Attribute)

	
Physical device, logical device, equipment, equipment holder, pipe

For more information about discrepancy detection and automatic discrepancy resolution, see Network Integrity Developer's Guide.

About Discrepancy Resolution

The MSS Integration cartridge has two distinct discrepancy resolution actions: one for circuits and another for equipment. The cartridge communicates equipment resolution using a CORBA connection and communicates circuit resolution using an Enterprise JavaBean (EJB) connection.

This section lists the discrepancy types that the MSS Integration cartridge can resolve from Network Integrity. All other discrepancy types must be resolved manually in MSS.

This action automatically uses the correct handler depending on the type of discrepancy being resolved. Table 2-2 lists the discrepancy types and the handler used to resolve the discrepancy.

Table 2-2 Discrepancy Resolution Handlers

	Handler	Handled Entity Types	Discrepancy Type
	
DeviceHandler

	
Physical device

	
Entity+

	
EquipmentHandler

	
Equipment, equipment holder

	
Entity+, Attribute value mismatch

	
PipeTerminationPointHandler

	
Pipe termination point

	
Entity+, Entity-

	
TrailPathHandler

	
Trail path

	
Entity+, Entity-

	
CircuitHandler

	
Pipe (customer circuit)

	
Entity+ (LOP, TrailPipe upload), Entity- (LOP, TrailPipe delete), Attribute value mismatch (for timeslot)

	
PhysicalPortHandler

	
Physical port

	
Entity+, Entity-

Each handler runs creation and removal operations to fully resolve discrepancies. For discrepancies on MSS equipment, the handlers run CORBA API methods and populate Java classes with the resolution information.

Network Integrity updates the status of discrepancies as they are being resolved:

	
Processed: Network Integrity successfully processed the discrepancy.

	
Failed: Network Integrity could not successfully process the discrepancy. The reasonForFailure field explains the cause of the failure. Network Integrity logs exceptions and failure reasons.

	
Ignored: Network Integrity does not support making this resolution in MSS. You must manually resolve this discrepancy in MSS.

	
Not Implemented: Network Integrity could not upload the resolution to MSS. You can manually resolve this discrepancy in MSS, or extend or develop a handler to resolve the discrepancy from Network Integrity.

For more information about discrepancy resolution, see Network Integrity Developer's Guide.

Extra Entity (Entity+) Discrepancy Resolution

Entity+ discrepancies occur when an entity exists in your network but is missing from the imported data. Network Integrity resolves this type of discrepancy by creating the missing entity in MSS.

Network Node Creation

Entity+ discrepancies occur on physical or logical devices when the corresponding network node does not exist in MSS. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Queries location_id using the MSS CORBA getLocationI API method. This method belongs to NetworkLocationSubSession of the InfrastructureSession interface.

	
Creates a network node in MSS in the location returned by the getLocation API by running the MSS CORBA createNetworkElement API method. This method belongs to NetworkElementSubSession of the EquipmentSession interface.

	
You must open the MSS UI and search for the created node, updating it with the type and manually associating it with the network system, which allows later resolution actions to create equipment and hierarchies under the new node.

	
Note:

Creating a network node can cause additional discrepancies on the next Discrepancy Detection action, such as new Entity+ discrepancies on MSS equipment or equipment hierarchy belonging to the new network node. This is normal.

Equipment Creation

Entity+ discrepancies occur on equipment when the corresponding rack, shelf, sub-shelf, or card does not exist in MSS. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Traverses the Information Model equipment hierarchy. For each equipment found, creates equipment in MSS using the MSS CORBA installEquipment API method. This method belongs to InstallationSubSession of the EquipmentSession interface.

	
For each root equipment, queries for its parent and obtains network_node_id using the CORBA getNetworkElement API method. This method belongs to NetworkElementSubSession of the EquipmentSession interface.

	
For each equipment, queries for EquipmentSpecification using the MSS CORBA queryEquipSpec_v2 API method and obtains equip_spec_id. This method belongs to SpecificationSubsession of the EquipmentSession interface. NativeEMSName, discoveredPartNumber, and modelName on modeled Information Model equipment are used to identify the equipment specification in MSS.

Ensure that the equipment specification for the equipment being created exists in MSS before uploading the equipment from Network Integrity. Port creation is determined by the card equipment specification.

Circuit Creation

Entity+ discrepancies occur on circuits when a circuit does not exist in MSS. You must resolve the discrepancies on equipment, HOTs, and STMs and reconcile the data again before you can upload the resolution for customer circuits. It is recommended that you limit your first discrepancy detection scan to equipment, HOTs, and STMs. Expand subsequent scans to detect all discrepancies.

The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Uploads customer circuits to MSS by creating new end-to-end customer connections using the EJB createNewCustomerConnection API method. This method also assigns ports and channels to the uploaded circuit if the information is available.

	
If the channel information is not available, the MSS Integration cartridge builds the channel hierarchy at the given circuit position using the EJB autoBuild API method and updates the provisioning information. The method derives the circuit position based on the synchronous digital hierarchy (SDH).

	
Prepares the port and channel assignment containers for the circuit based on the traced circuit information.

	
Calls the EJB updateCircuit and updateProvisioningInfo API methods to pass updated circuit and provisioning information to MSS.

You can use a wrapper API to call multiple MSS methods in a single transaction.

You can also extend the circuit resolution handler to use custom logic.

STM links and higher-order transport (HOT) circuits cannot be uploaded to or corrected in MSS with API methods from Network Integrity. Discrepancies on STMs and HOTs must be corrected manually in MSS.

Because VC4 HOTs span across multiple links in a network, you should follow these guidelines while creating HOTs in MSS:

	
Create the facility connection for the VC4 rate code.

	
Using CLR/DLR design, assign the channel from the STM links to the HOT.

	
In the network system, create the connection spanning the entire VC4 HOT.

	
Associate the VC4 HOT to the network system.

Channel Assignment Creation on a Trail Pipe

Entity+ discrepancies occur on trail pipes when a circuit in MSS is missing its channel assignment. This discrepancy occurs when channel assignments were not assigned to the circuit in MSS or when a circuit is rerouted.

When dealing with unassigned channel assignments, the MSS Integration cartridge resolves this discrepancy by assigning the circuit to the channel in MSS.

You can identify a rerouted circuit when Network Integrity reports multiple Entity+ and Entity- discrepancies. By filtering on the circuit name, you can see that the discrepancies are all related.

The MSS Integration cartridge resolves rerouted circuits by creating or correcting the channel assignments on trail pipes in MSS.

TrailPath Assignment to a Circuit

Entity+ discrepancies on trail paths are resolved by assigning the trail path to a circuit and updating the provisioning information. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Calls the updateCircuit method to assign the entire trail path to the customer circuit.

	
Calls the updateProvisioningInfo method to pass and update the provisioning information on the customer circuit.

PipeTerminationPoint Assignment to a Circuit

Entity+ discrepancies on pipe termination points are resolved by assigning the pipe termination point to a circuit and updating the circuit with the provisioning information. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Assigns the pipe termination point to the circuit using the updateCircuit method.

	
Calls the updateProvisioningInfo MSS method with the PipeTerminationPoint information to update the circuit.

Missing Entity (Entity-) Discrepancy Resolution

Entity- discrepancies occur when an entity exists in the imported data and not in your network data. Network Integrity resolves this type of discrepancy by deleting the entity from MSS.

Take special care when resolving Entity- discrepancies, because there can be many underlying causes. Review the cause carefully, choosing to resolve the root cause (either from Network Integrity or manually in MSS).

Network Node Deletion

Entity- discrepancies occur on physical or logical devices when the corresponding network node does not exist in your network. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Queries the network node using the MSS CORBA getNetworkElement API method. This method belongs to NetworkElementSubSession of the EquipmentSession interface. This method may not return the network node if it was deleted while resolving another discrepancy.

	
Searches for root equipment. For each root equipment, traverses the hierarchy and deletes the lowest-level equipment. See "Equipment Deletion" for more information.

	
Deletes the parent network node after all child equipment are deleted. Network nodes are deleted using the MSS CORBA deleteNetworkElement API method.

Equipment Deletion

Entity- discrepancies occur on equipment when the corresponding rack, shelf, sub-shelf, or card does not exist in your network. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Queries the equipment using the MSS CORBA searchEquipmentInstall_v2 API method. This method belongs to InstallationSubSession of the EquipmentSession interface.

	
Uninstalls the equipment from MSS using the MSS CORBA uninstallEquipment API method at the location obtained from equipment_id.

Circuit Deletion

Entity- discrepancies occur on circuits when an additional circuit exists in MSS. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Locates the additional circuit in MSS and calls the MSS EJB deleteCircuit API method with a specific circuit ID or name.

Channel Assignment Deletion on a Trail Pipe

Entity- discrepancies occur on trail pipes when a trail pipe in the network is missing its channel assignment. This discrepancy occurs when a cross-connect is missing in the network or a customer circuit is down.

To resolve this discrepancy, you must repair the circuit in the network or release the circuit from MSS.

TrailPath Unassignment from a Circuit

Entity- discrepancies on trail paths are resolved by unassigning the trail path from a circuit and updating the provisioning information. The MSS Integration cartridge resolves this discrepancy by doing the following:

	
Calls the updateCircuit method to unassign the entire trail path from the customer circuit.

	
Calls the updateProvisioningInfo MSS method to update the circuit.

	
Note:

You must resolve Entity+ discrepancies on trail paths before resolving Entity- discrepancies on trail paths if the discrepancies are reported on the same circuit. Or, you can also resolve the Entity+ and the Entity- discrepancies at the same time and Network Integrity will fix them in the correct order.

PipeTerminationPoint Unassignment from a Circuit

Entity- discrepancies on pipe termination points are resolved by unassigning the pipe termination point from a circuit:

	
Unassigns the pipe termination point from the circuit using the updateCircuit method.

	
Updates the circuit using the updateProvisioningInfo MSS method.

Attribute Value Mismatch (Attribute) Discrepancy Resolution

Attribute discrepancies occur when an entity exists in the imported data and in your network data, but the attribute values in the two sets of information do not match. Network Integrity resolves this type of discrepancy by correcting the attribute values in MSS.

Equipment Mismatch

The MSS Integration cartridge resolves attribute discrepancies on equipment by running the MSS CORBA updateEquipment API method. This method belongs to NetworkElementSubSession of the EquipmentSession interface.

Circuit Channel Assignment Mismatch

This attribute discrepancy appears on trail pipes when a customer circuit is rerouted.

The MSS Integration cartridge resolves attribute discrepancies on circuits by identifying the timeslot on the circuit and using the following APIs:

	
To update a circuit entity attribute, calls the MSS EJB updateCircuit() API method.

	
To update a channel attribute, calls the MSS EJB updateProvisioningInfo() API method.

The MSS Integration cartridge also calls the necessary MSS APIs to unassign the circuit from its timeslot before setting the new attribute value.

3 Using the Cartridge

This chapter provides information on how to use Oracle Communications Network Integrity when the Oracle Communications Network Integrity MSS Integration cartridge is deployed to the run-time application.

Creating an MSS Import Scan

The MSS Import Scan action imports inventory data from Oracle Communications MetaSolv Solution (MSS).

You must already have created a data source in the Network Integrity WebLogic Server domain that points to the MSS extract database, and MSS must be configured as the import system. See "Configuration Dependencies" for more information.

To create an MSS Import scan:

	
Create a scan.

See the Network Integrity Help for more information.

	
On the General tab, do the following:

	
From the Scan Action list, select Import from MSS.

The Scan Type field displays Import.

	
(Optional) To refine the scope of the imported data, do any of the following:

	
In the Network Location field, specify the network location. Enter either the CLLI code or the coded location format.

	
In the Status field, specify the status of the data to import.

	
Filter the imported nodes by name by entering one or more names (separated by commas) in the Node Name field and choose a value from the Node Name Qualifier list.

	
In the Node ID field, enter one or more node IDs separated by commas.

	
In the Scope field, specify the scope of data to be imported.

	
In the Run MSS Extract field, specify whether you want to run the MSS extract procedure before running the MSS Import scan.

See Table 6-2, "Cartridge Scan Parameter Groups Design Studio Construction" for more information.

	
Make any other required configurations.

	
Save the scan.

	
Note:

The Scope tab is automatically set to the MSS Extract Schema configured on the Import System screen of Network Integrity.

Working with Discrepancies

This cartridge allows you to detect and resolve discrepancies between your discovered data and your imported MSS data. When you resolve a discrepancy, the resolution is submitted to MSS by Network Integrity.

See the Network Integrity Help for information about using Network Integrity to resolve discrepancies.

See "About Discrepancy Detection" and "About Discrepancy Resolution" for information about how the MSS Integration cartridge detects and resolves discrepancies.

When the MSS Integration cartridge is deployed to your run-time application, you can use Network Integrity for:

	
Detecting Discrepancies in MSS

	
Resolving Discrepancies in MSS

Detecting Discrepancies in MSS

To detect discrepancies between discovered data and imported data from MSS:

	
Create a discovery scan.

	
Create an Import from MSS scan.

	
For your Import from MSS scan, select the Detect Discrepancies option.

	
Run the scans: first the discovery scan, then the import scan.

The scan with Detect Discrepancies enabled must be run last. Discrepancy detection runs automatically after the import scan completes.

Resolving Discrepancies in MSS

To resolve discrepancies in MSS:

	
Review the scan results for a scan with Detect Discrepancies enabled.

	
On the Scan Details page, click Review Discrepancies.

	
For every discrepancy you want to resolve, right-click on the discrepancy and select Correct in MSS.

	
Click Submit.

The MSS Integration cartridge calls the appropriate APIs to resolve the discrepancy in MSS.

4 About Collected Data

This chapter provides information about how the Oracle Communications Network Integrity MSS Integration cartridge treats collected data.

About Collected Data

The reference integration between Oracle Communications Network Integrity and Oracle Communications MetaSolv Solution (MSS) uses the MSS extract process that uses fast-refreshable, read-only materialized views to store the MSS inventory data, which is imported by the MSS Integration cartridge for discrepancy detection/resolution.

About the MSS Extract Process

The MSS extract process includes the following:

	
MSS Equipment Extract Process: The MSS equipment extract process extracts the relevant equipment information from MSS and stores it into read-only materialized views in the MSS database, which is imported by the MSS Integration cartridge for discrepancy resolution.

See "MSS Equipment Extract Process" for more information.

	
MSS Circuit Extract Process: The MSS circuit extract process extracts the relevant circuit information from MSS and stores it into read-only materialized views in the MSS database, which is imported by the MSS Integration cartridge for discrepancy resolution.

See "MSS Circuit Extract Process" for more information.

The MSS extract process enables you to do the following:

	
Retrieve information about:

	
Equipment

	
Equipment custom attributes

	
Port address custom attributes

	
Circuits

	
Template-based connections

	
Service Trails for circuits and connections

	
Connection custom attributes, including allocation parameters, such as VLAN ID and VPI/VCI

	
Store the retrieved equipment and circuit information into read-only materialized views within the EXTRACT schema in the MSS database, which is imported by the MSS Integration cartridge to do the following:

	
Compare the imported MSS data with either the discovered equipment data or assimilated circuit data and report any differences

	
Resolve discrepancies on equipment and circuits by using MSS APIs to correct entities, associations, and attributes in MSS

	
Note:

A materialized view is a complete or partial copy (replica) of one or more target (master) tables.

Advantages

The MSS extract process has the following advantages:

	
Improves the end-to-end performance and reliability of the integrated solution.

	
Includes custom attributes (connections, equipment, port addresses, and allocation parameters) and service trails of virtual connections. The system integrator can use these attributes to extend the SDH reference integration to support other technologies and meet specific business requirements.

	
Enables the system integrator to extend the MSS extract process without:

	
Defining new tables and/or columns within the MSS EXTRACT schema

	
Writing any Procedural Language (PL)/Structured Query Language (SQL) logic to update the tables

	
Enables the system integrator to:

	
Update the definition of an existing materialized view to retrieve the required data

	
Define a new materialized view to store the retrieved data

	
Leverages the capability of the Oracle database and its materialized view logs to keep the retrieved data in sync with the ASAP schema, instead of relying on complex user-written PL/SQL logic to update the retrieved data.

Limitations

The MSS extract process has the following limitations:

	
Equipment and Port Address Custom Attributes Resolution: The MSS extract process supports the extraction of equipment and port address custom attributes; however, there is no MSS API support to upload this data to MSS. Therefore, you must manually resolve such discrepancies in MSS.

	
End-to-end Reconciliation of SONET/SDH circuits modeled within the traditional SONET/SDH Network Design Module: The MSS extract process supports the extraction of the channelized connectivity that constitutes a synchronous optical networking/synchronous digital hierarchy (SONET/SDH) network built within the traditional SONET/SDH Network Design module; however, there is no API support to create or update the existing SONET/SDH network assignments and their related SONET blocks on the circuit's design layout report (DLR) in MSS. Therefore, Network Integrity must use custom logic to resolve such circuit discrepancies in MSS.

Setting Up the MSS Extract Process

Before you run the equipment/circuit extract process, you must set up the MSS extract process.

Setting up the MSS extract process involves the following steps:

	
Creating a new EXTRACT schema in the MSS database.

	
Creating new materialized views within the EXTRACT schema, which stores information about equipment and circuits.

	
Granting appropriate privileges to the ASAP and EXTRACT user to define and use the new materialized views.

To set up the MSS extract process:

	
Download the MSS Integration cartridge ZIP file from the Oracle software delivery Web site:

https://edelivery.oracle.com

The MSS Integration cartridge ZIP file has the following structure:

	
MSS_Cartridge

	
Optical_Model

	
Connect to the MSS database as the ASAP user through sqlplus at the command prompt.

	
Navigate to the MSS_Cartridge/scripts folder and run the mss_ni_ext_using_mviews_mstr.sql file with database administrator privileges.

The mss_ni_ext_using_mviews_mstr.sql file is the master file for the refactored MSS extract process using materialized views.

When you run the mss_ni_ext_using_mviews_mstr.sql master file, the following scripts are run:

	
extr_schema.sql: Creates a new EXTRACT schema in the MSS database if the EXTRACT schema does not already exist.

	
extr_log.sql: Creates materialized view logs within the ASAP schema for the appropriate master tables that are used by the materialized views within the EXTRACT schema. The materialized view logs keep track of the changes to the data in the master tables and can be used to perform a fast refresh (incremental) for all materialized views without requiring a complete refresh every time the data in the master tables is modified.

	
Note:

A materialized view log is a table associated with the master table of a materialized view.

	
extr_grants.sql: Grants the following privileges to the ASAP user to define and use the new materialized views:

	
GRANT CREATE ANY MATERIALIZED VIEW TO ASAP;

	
GRANT CREATE TABLE TO EXTRACT;

	
GRANT GLOBAL QUERY REWRITE TO EXTRACT;

	
GRANT SELECT ON ASAP.TABLE_NAME TO EXTRACT;

	
GRANT SELECT ON MLOG$_TABLE_NAME TO EXTRACT;

where:

TABLE_NAME is the name of the master ASAP table from which the data is extracted. For example, ASAP.EQUIPMENT, ASAP.EQUIPMENT_SPEC, ASAP.CIRCUIT, ASAP.CIRCUIT_XREF, and so on.

	
extr_jklm.sql: Adds the JKLM function to the EXTRACT schema. The JKLM function calculates JKLM values.

	
extr_PKG_VIEW_PARAMETERS.sql: Creates the EXTRACT.PKG_VIEW_PARAMETERS package that you can use to GET/SET equipment ID and circuit design ID to retrieve data from the V_MP_HIER and V_PA_HIER hierarchy views:

	
pkg_view_parameters.set_equip_id(e_id in number). For example, pkg_view_parameters.set_equip_id(45332).

	
pkg_view_parameters.set_ckt_id(c_id in number). For example, pkg_view_parameters.set_ckt_id(1015332).

You must set the equipment ID and circuit design ID in the EXTRACT.PKG_VIEW_PARAMETERS package before using V_MP_HIER and V_PA_HIER hierarchy views on the same transaction.

	
extr_mviews.sql: Creates materialized views under the EXTRACT schema.

See the following for more information:

	
MSS Equipment Extract Process Materialized Views

	
MSS Circuit Extract Process Materialized Views

	
extr_views.sql: Creates normal views under the EXTRACT schema.

See the following for more information:

	
MSS Equipment Extract Process Normal Views

	
MSS Circuit Extract Process Normal Views

	
extr_index.sql: Creates indexes on materialized views.

Refreshing Materialized Views

Because the MSS data is updated constantly, you must refresh the materialized views at regular intervals to ensure that the materialized views always contain the latest data.

You can refresh the materialized views in the following ways:

	
Through the Network Integrity GUI, do the following:

	
When running the MSS Import scan, select the Run MSS Extract check box to refresh the materialized views.

	
Note:

The scope of the materialized views to be refreshed is governed by the option you select from the Scope list of the Import Scan. For example, if you select Equipment Only from the Scope list, only those materialized views that store information about MSS equipment are refreshed. If you select Equipment and STM Links Only from the Scope list, only those materialized views that store information about MSS equipment/synchronous transport module (STM) links are refreshed. If you select Equipment, STM Links, and Circuits from the Scope list, all the materialized views that store information about MSS equipment/STM links/circuits are refreshed.

	
Manually call the following procedure:

DBMS_MVIEW.REFRESH('MV_NAME','argument');

where:

	
MV_NAME is the name of the materialized view

	
argument is one of the following:

	
?: Performs a fast refresh, and if fast refresh is not successful, performs a complete refresh.

	
F: Performs a fast refresh, and if fast refresh is not successful, the materialized view is not refreshed.

	
C: Performs a complete refresh.

	
Note:

Oracle recommends that you use the ? argument to refresh the materialized views.

	
Using Oracle Scheduler (DBMS_SCHEDULER), you can schedule jobs to run at a specified time or interval.

MSS Equipment Extract Process

The MSS equipment extract process extracts the relevant equipment information from MSS and stores it into fast-refreshable, read-only materialized views within the EXTRACT schema in the MSS database, which is imported by the MSS Integration cartridge to compare the imported MSS data with discovered network data and resolve discrepancies on equipment in MSS.

MSS Equipment Extract Process Materialized Views

The MSS equipment extract process retrieves equipment information and stores it in the following MSS materialized views:

	
EXTRACT.MV_EQUIPMENT: Stores the attributes and defining information of an equipment instance. See Table 4-1 for more information.

	
EXTRACT.MV_MOUNTING_POSITION: Stores the slot hierarchy and installed equipment within an equipment instance. See Table 4-2 for more information.

	
EXTRACT.MV_EQUIPMENT_SPEC: Stores the attributes and defining information of an equipment specification. See Table 4-3 for more information.

	
EXTRACT.MV_EQUIPMENT_SPEC_MPOS: Stores information about the number of mounting positions each equipment specification contains. See Table 4-4 for more information.

	
EXTRACT.MV_PORT_ADDRESS: Stores the port address hierarchy and assigned circuits for an equipment instance. See Table 4-5 for more information.

	
EXTRACT.MV_NETWORK_NODE: Stores the attributes and defining information of a network element. See Table 4-6 for more information.

	
EXTRACT.MV_NS_COMPONENT: Stores the attributes and defining information of a network component. See Table 4-7 for more information.

	
EXTRACT.MV_NETWORK_LOCATION: Stores the attributes and defining information of a network location. See Table 4-8 for more information.

	
EXTRACT.MV_EQUIPMENT_CA: Stores the configurable parameters tied to an equipment instance which is stored within Custom Attributes. See Table 4-9 for more information.

	
EXTRACT.MV_PORT_ADDRESS_CA: Stores the configurable parameters tied to a port address which is stored within Custom Attributes. See Table 4-10 for more information.

	
EXTRACT.MV_NS_COMP_EQUIP: Stores the attributes and defining information of a network component tied to an equipment instance. See Table 4-11 for more information.

The following tables describe the contents of the MSS materialized views in which the MSS equipment extract process stores the inventory data.

Table 4-1 describes the contents of the EXTRACT.MV_EQUIPMENT materialized view.

Table 4-1 EXTRACT.MV_EQUIPMENT Materialized View

	Column Name	Data Type	Description
	
EQUIPMENT_ID

	
NUMBER(9)

	
The unique table key.

	
EQUIPMENT_NAME

	
VARCHAR2(15)

	
The name of the equipment.

	
AVAILABILITY_STATUS

	
CHAR(1)

	
Indicates the current state of this item.

Valid values are:

	
I = Installed

	
S = Spare

	
U = Under Construction

	
LOCATION_ID

	
NUMBER(9)

	
A unique identifier visible only to the system. Used to store and retrieve information about the location.

	
LOCATION_ID_2

	
NUMBER(9)

	
The location ID that represents the 11-byte CLLI location.

	
NETWORK_NODE_ID

	
NUMBER(9)

	
Used to uniquely identify a network node.

	
TIMING_SOURCE

	
VARCHAR2(15)

	
Identifies the origination of the timing signal for this equipment.

Valid values are:

	
External

	
Loop/Line

	
Internal

	
VERSION_OF_HARDWARE_INSTALLED

	
VARCHAR2(20)

	
The version of the hardware equipment to be installed.

	
SERIAL_NBR

	
VARCHAR2(35)

	
The unique identification for a piece of equipment. Entered/modified as an attribute residing on a circuit.

	
EQUIPMENT_SPEC_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about an equipment specification.

	
SOFTWARE_RELEASE_IDENTIFIER

	
VARCHAR2(10)

	
The current software release for an operating system. For example, a Northern Telecom DNX-100 DACS may be at NSR-5 software release.

Table 4-2 describes the contents of the EXTRACT.MV_MOUNTING_POSITION materialized view.

Table 4-2 EXTRACT.MV_MOUNTING_POSITION Materialized View

	Column Name	Data Type	Description
	
EQUIPMENT_ID

	
NUMBER(9)

	
A unique identifier visible only to the system. Used to store and retrieve information about the equipment.

	
EQUIPMENT_ID_2

	
NUMBER(9)

	
Describes the current piece of equipment that is installed in equipment_id.

	
MOUNTING_POSITION_NUMBER

	
VARCHAR2(8)

	
Identifies the exact location of an assignable item (equipment or termination) within relay rack or multi-position equipment.

	
GROUP_IDENTIFIER

	
VARCHAR2(12)

	
Allows you to associate mounting positions and port addresses with complement information (for example, DIGROUP A) for a piece of equipment (for example, D4 channel bank).

	
MOUNTPOS_SEQ

	
NUMBER(5)

	
System generated number to uniquely identify and sequence mounting positions for an equipment specification or a piece of installed equipment.

	
SLOT_NODE_ADDR

	
VARCHAR2(30)

	
Used to build the node address for a given port address when the software address depends on mounting information.

Table 4-3 describes the contents of the EXTRACT.MV_EQUIPMENT_SPEC materialized view.

Table 4-3 EXTRACT.MV_EQUIPMENT_SPEC Materialized View

	Column Name	Data Type	Description
	
EQUIPMENT_SPEC_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about an equipment specification.

	
EQUIPMENT_ACRONYM

	
VARCHAR2(10)

	
Used on the connection layout record (CLR) or design layout report (DLR). It is an acronym for a material item. For example, FXS is the acronym for a Foreign Exchange Channel Unit on the subscriber's end.

	
VENDOR_PART_NUMBER

	
VARCHAR2(25)

	
The part number for this unit of equipment as assigned by the manufacturer. For example, 263DB2, 1011, 4420D, and so on.

	
VENDOR_NAME

	
VARCHAR2(20)

	
The manufacturer of this unit of equipment.

	
EQUIPSPEC_TYPE

	
VARCHAR2(50)

	
Identifies the equipment type within an equipment category. For a category of SHELF, the type can be CHANNEL BANK or MUX. You can define the types within a category.

	
OCCUPIES_MOUNTING_POSITIONS

	
NUMBER(4)

	
The number of spaces or slots required in a parent piece of equipment (bay/rack/shelf) to mount this hardware.

Table 4-4 describes the contents of the EXTRACT.MV_EQUIPMENT_SPEC_MPOS materialized view.

Table 4-4 EXTRACT.MV_EQUIPMENT_SPEC_MPOS Materialized View

	Column Name	Data Type	Description
	
EQUIPMENT_SPEC_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about an equipment specification.

	
NBR_OF_MOUNT_POS

	
NUMBER

	
Stores the number of mounting positions an equipment specification contains, on which other equipment can be installed.

Table 4-5 describes the contents of the EXTRACT.MV_PORT_ADDRESS materialized view.

Table 4-5 EXTRACT.MV_PORT_ADDRESS Materialized View

	Column Name	Data Type	Description
	
EQUIPMENT_ID

	
NUMBER(9)

	
A unique identifier used to store and retrieve information about equipment.

	
PORTADDR_SEQ

	
NUMBER(9)

	
System-generated number to uniquely identify and sequence port addresses for an equipment specification or a piece of installed equipment.

	
NODE_ADDRESS

	
VARCHAR2(30)

	
Identifies the specific port/channel addressing designation for a port address. The physical or logical address (software address) associated with this port. It may be derived from the node address of the equipment specification.

The node addresses are of the following types:

	
The node addresses that remain constant irrespective of the location of the installed device.

	
The node addresses that are dependent on the hierarchy of the equipment on which they are installed. For example, a DCM card in a DCM shelf has an address that is dependent on the bay-shelf combination on which it is installed.

	
The node addresses that are entirely dependent on the slot in which they are installed. For example, a low-speed card installed on a DDM2000 shelf inherits the node address of its ancestor, A-1-1.

	
RATE_CODE

	
VARCHAR2(10)

	
Identifies the bit rate associated with a circuit, facility, or equipment. For example, DS0, DS1, DS3, N/A, and so on.

	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
A unique identifier used for storing and retrieving information about a single circuit.

	
PORT_ADDR_STATUS

	
CHAR(1)

	
Describes the current status of the circuit position.

Valid values are:

	
1 = Unassigned

	
2 = Pending installation work order

	
3 = In service

	
4 = Pending removal work order

	
5 = Trouble

	
6 = Reserved

	
7 = Reserved capacity

	
PORTADDR_TYPE

	
CHAR(1)

	
Indicates whether the port address (or enabled port address) is physical or virtual. Physical ports are those that have actual wired connections and include their enabled (software) ports. Virtual ports are those that have no actual physical appearance or connection and are entirely in the software of the equipment.

Valid values are:

	
P = Physical

	
V = Virtual

The existing rows in the TBS database at the time of implementation default to P.

	
CIRCUIT_POSITION_NUMBER_CP

	
NUMBER(9)

	
The subposition within a mounting position. This column applies only to plug-in cards that have multi-position capabilities. For such cards, this field identifies the multiple position number of a transmission facility circuit (TFC) or a channel number within a carrier system. This number may correspond to the mounting position of the equipment used to terminate the TFC. This column on this table is a foreign key describing the circuit position that this port address enables.

	
CIRCUIT_DESIGN_ID_CP

	
NUMBER(9)

	
An identifier visible only to the system; Used for storing and retrieving information about a single circuit. This column is a foreign key describing the circuit position that this port address enables.

	
NODE_ADDR_LEVELS

	
VARCHAR2(2)

	
Determines how many pieces of equipment (levels up from the circuit_attachable piece) are used to determine the node address.

	
ORIG_ASSIGNMENT_IND

	
CHAR(1)

	
Used to designate whether or not an equipment assignment is the original assignment in a cross-connect chain. This is mainly used in the reconcile process of the circuit design to identify where the original assignment was made.

Valid values are:

	
Y = Yes

	
N (default) = No

	
A_Z_OTHER_CD

	
CHAR(1)

	
Identifies the location of a piece of equipment residing on a circuit.

Valid values are:

	
A = A location

	
Z = Z location

	
O = On the circuit but not at the A or Z location

	
EQUIPMENT_ID_VE

	
NUMBER(9)

	
A unique identifier visible only to the system, used to store and retrieve information about equipment. This plus the portaddr_seq_ve column indicate that this port_address is virtual and enabled by the port address referenced.

	
PORTADDR_SEQ_VE

	
NUMBER(9)

	
System generated number to uniquely identify and sequence port addresses for an equipment spec or piece of installed equipment. This plus the equipment_id_ve column indicate that this port_address is virtual and enabled by the port address referenced.

	
GROUP_IDENTIFIER

	
VARCHAR2(12)

	
Allows the user to associate mounting positions and port addresses with complement information (for example, DIGROUP A) for a piece of equipment (for example, D4 channel bank).

	
ADDITIONAL_ASSIGNMENT_SEQ_NBR

	
NUMBER(2)

	
This assignment sequence is used to keep track of equipment assignments for multiple assignments of a circuit to the same network.

	
NETWORK_NODE_ID

	
NUMBER(9,0)

	
Artificial key used to uniquely identify a network node. Allows nodes to be defined outside the network.

Table 4-6 describes the contents of the EXTRACT.MV_NETWORK_NODE materialized view.

Table 4-6 EXTRACT.MV_NETWORK_NODE Materialized View

	Column Name	Data Type	Description
	
NETWORK_NODE_ID

	
NUMBER(9)

	
Artificial key used to uniquely identify a network node. Allows nodes to be defined outside of a network.

	
TFC_NETWORK_ID

	
NUMBER(9)

	
A system-generated number used to uniquely identify a network node

	
LOCATION_ID

	
NUMBER(9)

	
A unique identifier for a specific location. This ID is visible only to the system an dit is used to store and retrieve information about the location.

	
NODE_NAME

	
VARCHAR2(50)

	
An identifier for the network element.

	
NODE STATUS

	
CHAR(1)

	
Status of the network node (network location on a SONET ring).

Valid values are:

	
1 = Pending

	
2 = In Service

	
3 = Pending Removal

	
NODE_SEQUENCE

	
NUMBER(9)

	
Designates the nodes in sequential order to identify the switching or signaling directions, such as clockwise or counterclockwise.

	
TARGET_IDENTIFIER

	
VARCHAR2(25)

	
An equipment's network element address for the network node for communications between network elements and between operating systems and network elements.

	
NETWORK_ELEMENT_CD

	
CHAR(1)

	
Identifies the scope of the network node or network element. The network element can be a system (for example, a number of shelf assemblies) as with a switch or Digital Cross-connect System (DCS) or it can be a single shelf with a SONET network node.

Values include:

	
S = System (for example, DCS)

	
N = SONET network node

Table 4-7 describes the contents of the MV_NS_COMPONENT materialized view.

Table 4-7 MV_NS_COMPONENT Materialized View

	Column Name	Data Type	Description
	
NS_COMP_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies entities of this type.

	
NST_COMP_TYPE

	
VARCHAR2(10)

	
A type of component that can be part of a network system. For example, local digital switch (LDS), central office terminal (COT), remote digital terminal (RDT), digital cross-connect system (DCS), and so on.

	
NS_COMP_ACRONYM

	
VARCHAR2(50)

	
A short name for a network system component. The default value comes from NST Component Type. Examples, of acronyms are host digital terminal (HDT) and remote services terminal (RST). The name of the NST Component Type is generic. This attribute allows the acronym represented by the NST Component Type to be tailored, as it can be different for different types of equipment. For example, one vendor may refer to an RDT as an RST.

	
NS_COMP_NM

	
VARCHAR2(50)

	
The name of the network system component. The default value for entities of this type comes from the NS_CONFIG_COMP_DEFAULT_NM. An example of this name is Remote Services Terminal.

	
LOCATION_ID

	
NUMBER(9)

	
A unique identifier for a specific location. This ID is visible only to the system and it is used to store and retrieve information about the location.

	
STATUS

	
CHAR(1)

	
Describes the current operational state.

Valid values are:

	
1 = (Pending)

	
2 = (Assigned)

	
3 = (In Progress)

	
4 = (CLR Issued)

	
5 = (DLR Issued)

	
6 = (In Service)

	
7 = (Pending Disconnect)

	
8 = (Disconnected)

	
9 = (Problem)

	
A = (Cancelled)

	
NETWORK_NODE_ID

	
NUMBER(9,0)

	
Unique ID to identify a network node. Foreign key to NETWORK_NODE. Allows nodes to be defined outside of a network.

Table 4-8 describes the contents of the EXTRACT.MV_NETWORK_LOCATION materialized view.

Table 4-8 EXTRACT.MV_NETWORK_LOCATION Materialized View

	Column Name	Data Type	Description
	
LOCATION_ID

	
NUMBER(9)

	
A unique identifier for a specific location. This ID is visible only to the system and it is used to store and retrieve information about the location.

	
LOCATION_NAME

	
VARCHAR2(50)

	
The name for a location.

	
CLLI_CODE

	
VARCHAR2(20)

	
A location identification code that identifies specific locations or terminations. This code may be free-form and user-defined, or the Common Language Location Identification (CLLI) code administered by iconectiv.

	
NETLOC_TYPE_CD

	
CHAR(1)

	
Describes whether this network location represents an end user, terminal location or a CLLI. This column is used only with the new architecture location model where the network location table becomes an entity with sub-types (CLLI location, terminal location, and end user location).

Valid values are:

	
E = end user

	
C = CLLI

	
T = terminal location

	
O = Other

Table 4-9 describes the contents of the EXTRACT.MV_EQUIPMENT_CA materialized view.

Table 4-9 EXTRACT.MV_EQUIPMENT_CA Materialized View

	Column Name	Data Type	Description
	
EQUIP_CA_VALUE_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies entities of this type.

	
EQUIPMENT_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies a piece of equipment.

	
CA_VALUE

	
VARCHAR2(1500)

	
The value taken on by an attribute, such as 320 for a Local Cell ID.

	
CA_VALUE_LABEL

	
VARCHAR2(50)

	
The name of the attribute associated to a value, such as Local Cell ID whose value is 320.

	
CA_VALUE_UOM

	
VARCHAR2(32)

	
The unit in a system that is used to determine the dimensions, area, volume, weight, or such of the attribute's value.

	
CA_USAGE_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies an entity of this type.

	
CA_USAGE_VV_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies the valid value for an attribute associated to a building block.

	
MS_BB_ID

	
NUMBER(9)

	
Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key (building block) to which this CA_Usage applies.

	
CURRENT_ROW_IND

	
CHAR(1)

	
Indicates whether this row of custom attributed is one of the current in-service rows for the network component.

	
CA_ID

	
NUMBER(9)

	
Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA value.

Table 4-10 describes the contents of the EXTRACT.MV_PORT_ADDRESS_CA materialized view.

Table 4-10 EXTRACT.MV_PORT_ADDRESS_CA Materialized View

	Column Name	Data Type	Description
	
PORT_ADDR_CA_VALUE_ID

	
NUMBER(10)

	
A system assigned unique identifier for port_addr_ca_value table. It is populated by an Oracle generated sequence and is hidden to the user. This information is used internally for tracking purposes

	
EQUIPMENT_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies a piece of equipment.

	
MS_BB_ID

	
NUMBER(9)

	
Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key (building block) to which this CA_Usage applies.

	
CURRENT_ROW_IND

	
CHAR(1)

	
Indicates whether this row of custom attributes is one of the current in-service rows for the network component.

	
PORTADDR_SEQ

	
NUMBER(10)

	
System generated number to uniquely identify and sequence port addresses for an equipment spec or piece of installed equipment.

	
CA_VALUE

	
VARCHAR2(1500)

	
The value taken on by an attribute, such as 320 for a Local Cell ID.

	
CA_VALUE_LABEL

	
VARCHAR2(50)

	
The name of the attribute associated to a value, such as Local Cell ID whose value is 320.

	
CA_VALUE_UOM

	
VARCHAR2(32)

	
The unit in a system that is used to determine the dimensions, area, volume, weight, or such of the attribute's value.

	
CA_USAGE_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies an entity of this type.

	
CA_USAGE_VV_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies the valid value for an attribute associated to a building block.

	
CA_ID

	
NUMBER(9)

	
Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA value.

Table 4-11 describes the contents of the EXTRACT.MV_NS_COMP_EQUIP materialized view.

Table 4-11 EXTRACT.MV_NS_COMP_EQUIP Materialized View

	Column Name	Data Type	Description
	
NS_COMP_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies entities of this type.

	
NS_COMP_EQUIP_SEQ

	
NUMBER(3)

	
A number that together with NS_COMP_ID uniquely identifies entities of this type. This number starts with one for each value of NS_COMP_ID.

	
EQUIPMENT_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies entities of this type.

MSS Equipment Extract Process Normal Views

You use normal views to:

	
Consolidate the data from multiple fast-refreshable materialized views

	
Simplify the presentation of the data

All the MSS extract normal views retrieve data from the EXTRACT schema.

The following normal views enable Network Integrity to consolidate equipment-related data from the normal/materialized views:

	
EXTRACT.V_EQUIPMENT: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.MV_EQUIPMENT_SPEC

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.MV_NETWORK_NODE

	
EXTRACT.MV_NS_COMPONENT

	
EXTRACT.MV_NS_COMP_EQUIP

	
EXTRACT.V_EQUIPMENT_SPEC: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_EQUIPMENT_SPEC

	
EXTRACT.MV_EQUIPMENT_SPEC_MPOS

	
EXTRACT.V_EQUIP_LEAF: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.MV_PORT_ADDRESS

	
EXTRACT.MV_CIRCUIT

	
EXTRACT.MV_MOUNTING_POSITION

	
EXTRACT.V_NN_FOR_HIER: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.MV_NETWORK_NODE

	
EXTRACT.MV_NS_COMPONENT

	
EXTRACT.MV_NS_COMP_EQUIP

	
EXTRACT.V_NETWORK_NODE: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_NETWORK_NODE

	
EXTRACT.MV_NS_COMPONENT

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.V_PA_HIER: Network Integrity uses this normal view to consolidate the required information from the following normal/materialized views:

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.V_EQUIPMENT_SPEC

	
EXTRACT.MV_MOUNTING_POSITION

	
EXTRACT.V_NN_FOR_HIER

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.MV_PORT_ADDRESS

	
EXTRACT.MV_CIRCUIT

	
EXTRACT.V_MP_HIER: Network Integrity uses this normal view to consolidate the required information from the following normal/materialized views:

	
EXTRACT.MV_MOUNTING_POSITION

	
EXTRACT.V_EQUIPMENT_SPEC

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.V_NN_FOR_HIER

MSS Circuit Extract Process

The MSS circuit extract process extracts the relevant circuit information from MSS and stores it into fast-refreshable, read-only materialized views within the EXTRACT schema in the MSS database, which is imported by the MSS Integration cartridge to compare the imported MSS data with discovered network data and resolve discrepancies on circuits in MSS.

MSS Circuit Extract Process Materialized Views

The MSS circuit extract process retrieves circuit information and stores it in the following MSS materialized views:

	
EXTRACT.MV_CIRCUIT: Stores the attributes of a circuit. See Table 4-12 for more information.

	
EXTRACT.MV_CIRCUIT_POSITION: Stores the channelization and assignment information for circuits. See Table 4-13 for more information.

	
EXTRACT.MV_CIRCUIT_XREF: Stores information about the circuit cross-reference. See Table 4-14 for more information.

	
EXTRACT.MV_CIRCUIT_TRAIL: Stores the hop-by-hop path for all non-channelized connectivity, including the allocation parameters such as VLAN ID, VPI/VCI, and DLCI, stored within custom attributes. See Table 4-15 for more information.

	
EXTRACT.MV_CIRCUIT_CA: Stores all of the custom attributes of a template-based connection such as the Bit Rate, Broadband Service Category, and Capacity Allocation Thresholds. See Table 4-16 for more information.

	
EXTRACT.MV_TFC: Stores additional information about CLF-formatted circuits. See Table 4-17 for more information.

	
EXTRACT.MV_NETWORK_LOCATION: Stores the attributes and defining information of a network location. See Table 4-8 for more information.

The following tables describe the contents of the MSS materialized views in which the MSS circuit extract process stores the inventory data.

Table 4-12 describes the contents of the EXTRACT.MV_CIRCUIT materialized view.

Table 4-12 EXTRACT.MV_CIRCUIT Materialized View

	Column Name	Data Type	Description
	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about a single circuit.

	
EXCHANGE_CARRIER_CIRCUIT_ID

	
VARCHAR2(53)

	
Commonly known as EC ID. This is the circuit number assigned by you or provided on the order by the OEC (Other Exchange Company). Oracle recommends that you use the iconectiv COMMON LANGUAGE CLF, CLS, CLT, and CLM formats for circuits; however, freeform formatted identifications are also stored here for "Other" facility, serial, and telephone-type formatted identifications. The other identifications are identified by "OTF," "OTS," and "OTT" as an ECCKT_Type.

	
ECCKT_TYPE

	
VARCHAR2(3)

	
The ECCKT type:

	
CLF (Common Language Facility)

	
CLM (Common Language Message)

	
CLT (Common Language Telephone)

	
CLS (Common Language Serial)

	
OTF (Free format of the CLF; unformatted facility)

	
OTS (Free format of the CLS; unformatted serial)

	
OTT (Free format of the CLT; unformatted telephone number, used for PSR dialtone products: line and trunk)

	
CLF, CLT, CLS, and CLM values indicate the iconectiv Common Language Circuit Identification format.

	
TYPE

	
CHAR(1)

	
The type of circuit.

Valid values are:

	
F = Facility (connects two terminating locations with a rate that is usually higher than DS0 and carries other circuits).

	
T = Trunk (connects two serving office switching systems. A serving office can be a C.O. or MTSO).

	
S = Special (a dedicated circuit connecting two end-user locations or an end-user location to a coded location).

	
P = Product (a circuit ID created at the back end in PSR for dial tone circuits or trunks).

	
C = Template-based connections.

	
STATUS

	
CHAR(1)

	
The status for the circuit.

Valid values are:

	
1 = Pending

	
3 = In Progress

	
4 = Record Issued

	
5 = DLR Issued

	
6 = In Service

	
7 = Pending Disconnect

	
8 = Disconnected

	
9 = Problem

	
A = Cancelled

	
RATE_CODE

	
VARCHAR2(10)

	
The rate code associated with the circuit. For example, DS0, DS1, DS3, N/A, and so on.

	
SERVICE_TYPE_CATEGORY

	
VARCHAR(20)

	
A description of the service provided, such as special services (for IntraLATA and LATA Access), switched services, and facility services.

	
SERVICE_TYPE_CODE

	
VARCHAR2(10)

	
Identifies the service provided by a circuit:

	
For special services, the characters in positions 3 and 4 of the CLCI-SS format indicate the service that is provided.

	
For message services, the characters in positions 5 and 6 of the CLCI-MSG Trunk Group format indicate the traffic use.

	
For facility service, the characters in positions 6 to 11 of the CLFI format indicate the facility type.

	
NST_CON_TYPE

	
NUMBER(6)

	
A value that along with the category and name logically identifies a type of connection used to join two network system component types.

Valid values are:

	
1 = Physical

	
2 = Virtual

	
3 = Group

	
NST_CON_CATEGORY_CD

	
NUMBER(6)

	
Indicates the category of connector spec type. This value is denormalized from the value within the NST_CON_TYPE table. Similar to circuit type. It further defines the type of link or connector.

Valid values are:

	
1 = Facility (connects two terminating locations, with a rate that is usually higher than DS0, and carries other circuits).

	
2 = Trunk (connects two serving office switching systems. A serving office can be a C.O. or MTSO).

	
3 = Special (a dedicated circuit connecting two end user locations or an end user location to a coded location).

	
4 = Product (a circuit ID created at the back end in the PSR for dial tone circuits or trunks).

	
5 = Virtual circuits.

	
6 = Bandwidth circuits.

	
7 = Virtual connection that is not a PVC.

	
LOCATION_ID

	
NUMBER(9)

	
The A location ID of the circuit.

	
LOCATION_ID_2

	
NUMBER(9)

	
The Z location ID of the circuit.

Table 4-13 describes the contents of the EXTRACT.MV_CIRCUIT_POSITION materialized view.

Table 4-13 EXTRACT.MV_CIRCUIT_POSITION Materialized View

	Column Name	Data Type	Description
	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
The circuit design ID of the circuit.

	
CIRCUIT_POSITION_NUMBER

	
NUMBER(5)

	
The channel position of the circuit with respect to the parent circuit.

	
CIRCUIT_DESIGN_ID_3

	
NUMBER(9)

	
An identifier visible only to the system, used for storing and retrieving information about a single circuit. This circuit is assigned to the circuit represented by Circuit Design ID

	
ADDITIONAL_ASSIGNMENT_SEQ_NBR

	
NUMBER(2)

	
This assignment sequence is used to keep track of equipment assignments for multiple assignments of a circuit to the same network.

	
CIRCUIT_NODE_STATUS

	
CHAR(1)

	
Describes the current status of the circuit position.

Valid values are:

	
1 = Unassigned

	
2 = Pending installation work order

	
3 = In Service

	
4 = Pending removal work order

	
5 = Trouble

	
STS_CHAN_NBR

	
NUMBER(3)

	
The synchronous transport number that is used to identify the actual designation for the virtual channel assignment. This is used in the concatenation process of network assignment identification. For example, 12-7-4, where 12 equals the STS assignment.

	
VTG_CHAN_NBR

	
NUMBER(1)

	
The virtual tributary group (VTG) number that is used to identify the actual designation for the virtual channel assignment. This is used in the concatenation process of network assignment identification. For example, 12-7-4, where 7 equals the VTG assignment.

	
VT_CHAN_NBR

	
NUMBER(1)

	
The virtual tributary (VT) number that is used to identify the actual designation for the virtual channel assignment. This is used in the concatenation process of network assignment identification. For example, 12-7-4, where 4 equals the VT assignment.

	
PROTECTED_PATH_TRI

	
CHAR(1)

	
Distinguishes the primary path from the protection path.

Valid values are:

	
Y = Identifies a protected path.

	
N = Identifies a primary (working) path.

	
Null = Identifies that the assignment is not part of a network path.

The attribute is set when creating a new network assignment block using the optical network provisioning assistant. It is used in mass reconcile and reconciliation from the circuit reconciliation window to keep the design lines in the proper order with the primary path displayed on top of the protection path in the Connection Design window.

Table 4-14 describes the contents of the EXTRACT.MV_CIRCUIT_XREF materialized view.

Table 4-14 EXTRACT.MV_CIRCUIT_XREF Materialized View

	Column Name	Data Type	Description
	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about a single circuit.

	
CIRCUIT_XREF_SEQ

	
NUMBER(3)

	
Sequence number that starts over with every new relationship to circuit. (Not an Oracle sequence).

	
CIRCUIT_XREF_ECCKT

	
VARCHAR2(60)

	
ECCKT that needs to be cross-referenced to an ECCKT that was provisioned.

An ECCKT that another provider provisioned or an alias of one of the circuits.

	
LOCATION_ID

	
NUMBER(9)

	
The A location ID for the circuit.

	
STATUS

	
CHAR(1)

	
The status for the circuit.

Valid values are:

	
1 = Pending

	
3 = In Progress

	
4 = Record Issued

	
5 = DLR Issued

	
6 = In Service

	
7 = Pending Disconnect

	
8 = Disconnected

	
9 = Problem

	
A = Cancelled

Table 4-15 describes the contents of the EXTRACT.MV_CIRCUIT_TRAIL materialized view.

Table 4-15 EXTRACT.MV_CIRCUIT_TRAIL Materialized View

	Column Name	Data Type	Description
	
CIRCUIT_DESIGN_ID_PARENT

	
NUMBER(9)

	
This is a foreign key from the CIRCUIT table. Represents the parent when connectors are associated with other connectors. For example, when a connection is allocated to a link, the link is the parent. Or, when multiple connectors are associated to one another to create a group, the parent is the group. For example, this occurs for inverse multiplexing.

	
CIRCUIT_DESIGN_ID_CHILD

	
NUMBER(9)

	
This is a foreign key from the CIRCUIT table. Represents the child when connectors are associated with other connectors. For example, when a connection is allocated to a link, the connection is the child. Or, when multiple connectors are associated to one another to create a group, the individual connectors are the children. For example, this occurs for inverse multiplexing.

	
CA_ID

	
NUMBER(9)

	
Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA value.

	
CA_VALUE

	
VARCHAR2(1500)

	
The value taken on by an attribute, such as 320 for a Local Cell ID.

	
CA_USAGE_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies an entity of this type.

	
CA_VALUE_LABEL

	
VARCHAR2(50)

	
The name of the attribute associated to a value, such as Local Cell ID whose value is 320.

	
CA_USAGE_VV_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies the valid value for an attribute associated to a building block.

	
MS_BB_ID

	
NUMBER(9)

	
Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key (building block) to which this CA_Usage applies.

	
NS_COMP_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies entities of this type.

Table 4-16 describes the contents of the EXTRACT.MV_CIRCUIT_CA materialized view.

Table 4-16 EXTRACT.MV_CIRCUIT_CA Materialized View

	Column Name	Data Type	Description
	
CONN_CA_VALUE_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies an attribute.

	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about a single circuit.

	
CA_VALUE_LABEL

	
VARCHAR2(50)

	
The name of the attribute associated to a value, such as Local Cell ID whose value is 320.

	
CA_VALUE

	
VARCHAR2(1500)

	
The value taken on by an attribute, such as 320 for a Local Cell ID.

	
CA_VALUE_UOM

	
VARCHAR2(32)

	
The unit in a system that is used to determine the dimensions, area, volume, weight, or such of the attribute's value.

	
CA_USAGE_ID

	
NUMBER(9)

	
An Oracle sequence number that uniquely identifies an entity of this type.

	
CA_USAGE_VV_ID

	
NUMBER(9)

	
An Oracle sequence that uniquely identifies the valid value for an attribute associated to a building block.

	
MS_BB_ID

	
NUMBER(9)

	
Foreign Key from MS_BUILDING_BLOCK. Identifies the table or key (building block) to which this CA_Usage applies.

	
CA_ID

	
NUMBER(9)

	
Foreign Key from CA_CUSTOMIZED_ATTRIBUTE. Identifies the CA value.

	
CURRENT_ROW_IND

	
CHAR(1)

	
Indicates whether this row of custom attributed is one of the current in-service rows for the network component.

Table 4-17 describes the contents of the EXTRACT.MV_TFC materialized view.

Table 4-17 EXTRACT.MV_TFC Materialized View

	Column Name	Data Type	Description
	
CIRCUIT_DESIGN_ID

	
NUMBER(9)

	
An identifier visible only to the system. Used for storing and retrieving information about a circuit.

	
VIRTUAL_IND

	
CHAR(1)

	
Indicates whether the circuit is part of a virtual assignment or not.

Valid values are:

	
Y: Yes

	
N: No

	
TFC_NETWORK_ID

	
NUMBER(9)

	
The unique ID which identifies a network. A TFC Network maintains information concerning the various transmission facility circuit network topologies, such as point-to-point, linear Add/Drop, hubbing, and rings. These fiber networks are normally SONET-based; however, specific asynchronous facilities can be included. Other information pertaining to these networks are the Fiber Network Identification, assignment methods, protection schemes, and switching directions.

MSS Circuit Extract Process Normal Views

You use normal views to:

	
Consolidate the data from multiple fast-refreshable materialized views

	
Simplify the presentation of the data

All the MSS extract normal views retrieve data from the EXTRACT schema.

The following normal views enable Network Integrity to consolidate circuit-related data from the normal/materialized views:

	
EXTRACT.V_CIRCUIT: Network Integrity uses this normal view to consolidate the required information from the following materialized views:

	
EXTRACT.MV_CIRCUIT

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.V_PA_HIER: Network Integrity uses this normal view to consolidate the required information from the following normal/materialized views:

	
EXTRACT.MV_CIRCUIT

	
EXTRACT.MV_MOUNTING_POSITION

	
EXTRACT.MV_EQUIPMENT

	
EXTRACT.V_EQUIPMENT_SPEC

	
EXTRACT.V_NN_FOR_HIER

	
EXTRACT.MV_NETWORK_LOCATION

	
EXTRACT.MV_PORT_ADDRESS

	
EXTRACT.V_CIRCUIT_POSITION: Network Integrity uses this normal view, which uses the JKLM stored function, to consolidate the information about JKLM values from the following materialized views:

	
EXTRACT.MV_CIRCUIT

	
EXTRACT.MV_CIRCUIT_POSITION

Extending the MSS Extract Process

This section provides information on extending the MSS extract process.

The system integrator can extend the Equipment/Circuit extract process by adding additional columns to the definition of an existing materialized view, create new materialized views, and create new normal views to retrieve data from new or existing materialized views. When retrieving data from a table that does not already have a materialized view log, you must first create the materialized view log in order to incrementally refresh the materialized view. This process does not require writing any PL/SQL logic.

When creating a new materialized view or extending an existing materialized view, Oracle recommends that you structure the materialized views to be incrementally (fast) refreshed.

The reference integration also provides normal views to consolidate and simplify the data from multiple materialized views. See the following sections for more information on the normal views:

	
MSS Equipment Extract Process Normal Views

	
MSS Circuit Extract Process Normal Views

You can find more information about materialized view concepts and architecture at the following Web site:

http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm#i34980

5 About Cartridge Modeling

This chapter provides information on how imported data is modeled.

About Cartridge Modeling

To facilitate discrepancy detection and resolution, the Oracle Communications Network Integrity MSS Integration cartridge models the imported data from Oracle Communications MetaSolv Solution (MSS) to the Oracle Communications Information Model.

The MSS Integration cartridge uses different modeling logic depending on the action it is performing. See the following sections for more information:

	
About Import Data Modeling

	
About Discrepancy Resolution Modeling

About Import Data Modeling

This section explains how Network Integrity models data imported from MSS.

You can configure various parameters in the Network Integrity UI to determine the quantity of data to import from MSS. Network Integrity logically applies the parameters to filter the imported data. When no filtering parameters are configured in the UI, Network Integrity imports all MSS data.

API Mapping

Network Integrity uses APIs to map the imported MSS data to the Information Model, which allows the MSS data to map directly to TMF814 entities. The MSS Integration cartridge uses TMF814 specifications to model the MSS data.

Table 5-1 shows the relationship between the imported MSS data, physical TMF814 entities, and physical Information Model entities.

Table 5-1 MSS Data Modeling to the Physical Information Model Tree

	MSS Data Object	TMF814 Entity	Information Model Entity
	
Network Node

	
Managed Element (ME)

	
Physical Device, Logical Device

	
Equipment

	
Equipment Holder (Rack)

	
Equipment

	
Equipment

	
Equipment Holder (Shelf)

	
Equipment

	
Equipment

	
Equipment Holder (Sub-Shelf)

	
Equipment

	
Mounting Position

	
Equipment Holder (Slot)

	
Equipment Holder

	
Mounting Position

	
Equipment Holder (Sub-Slot)

	
Equipment Holder

	
Equipment

	
Equipment (Card)

	
Equipment

	
Port

	
Physical Termination Point (PTP)

	
Physical Port

Table 5-2 shows the relationship between the imported MSS data, logical TMF814 entities, and logical Information Model entities.

Table 5-2 MSS Data Modeling to the Logical Information Model Tree

	MSS Data	TMF814 Entity	Information Model Entity
	
Network Node from EXTRACT.MV_EQUIPMENT

	
ME

	
LogicalDevice

	
Port from EXTRACT.MV_PORT_ADDRESS

	
Point Termination Port (PTP) and Floating Termination Point (FTP)

	
DeviceInterface

	
(Port) Circuit and (Rack/Shelf) Circuit from EXTRACT.V_PA_HIER

	
Connection Termination Point (CTP)

	
DeviceInterface

	
N/A

	
LayeredParameters

	
DeviceInterfaceConfigurationItem

Field Mapping

The following tables explain the field mappings for each imported MSS object.

	
Table 5-3, "Physical Device Field Mapping"

	
Table 5-4, "Root Equipment Field Mapping"

	
Table 5-5, "Non-Root Equipment Field Mapping"

	
Table 5-6, "Equipment Holder Field Mapping"

	
Table 5-7, "Physical Port Field Mapping"

	
Table 5-8, "Logical Device Field Mapping"

	
Table 5-9, "Media Interface Field Mapping"

	
Table 5-10, "Pipe Field Mapping"

	
Table 5-11, "Transport Pipe Field Mapping"

	
Table 5-12, "STM Link Field Mapping"

	
Table 5-13, "Trail Path Field Mapping"

	
Table 5-14, "Trail Pipe Field Mapping"

	
Table 5-15, "Pipe Termination Point Field Mapping"

Table 5-3 Physical Device Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
EXTRACT.MV_EQUIPMENT.NETWORK_NODE_ID/EXTRACT.MV_NETWORK_NODE.NETWORK_NODE_ID

	
No

	
name

	
Static

	
EXTRACT.V_EQUIPMENT.NW_NODE_NAME/EXTRACT.MV_NETWORK_NODE.NETWORK_NODE_NAME

	
No

	
description

	
Static

	
N/A

	
No

	
discoveredVendorName

	
Dynamic

	
EXTRACT.V_EQUIPMENT_SPEC.VENDOR_NAME

	
No

	
serialNumber

	
Static

	
EXTRACT.MV_EQUIPMENT.SERIAL_NBR

	
No

	
physicalLocation

	
Static

	
EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_CODE/V_NETWORK_NODE.CLLI_CODE

	
No

	
softwareRev

	
Dynamic

	
EXTRACT.MV_EQUIPMENT.SOFTWARE_RELEASE_IDENTIFIER

	
No

	
modelName

	
Dynamic

	
EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPEC_TYPE/V_NETWORK_NODE.NST_COMP_TYPE

	
No

	
nativeEmsName

	
Static

	
EXTRACT.V_EQUIPMENT.NW_NODE_NAME/ EXTRACT.MV_NETWORK_NODE.NETWORK_NODE_NAME

	
No

	
userLabel

	
Dynamic

	
EXTRACT.V_EQUIPMENT.NW_NODE_NAME/ EXTRACT.MV_NETWORK_NODE.NETWORK_NODE_NAME

	
No

	
owner

	
Dynamic

	
EXTRACT.V_EQUIPMENT_SPEC.VENDOR_NAME

	
No

Table 5-4 Root Equipment Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
EXTRACT.V_EQUIPMENT.EQUIPMENT_ID

	
No

	
name

	
Static

	
EXTRACT.MV_EQUIPMENT_SPEC.EQUIPMENT_ACRONYM

	
No

	
description

	
Static

	
N/A

	
No

	
discoveredVendorName

	
Dynamic

	
EXTRACT.V_EQUIPMENT_SPEC.VENDOR_NAME

	
Yes

	
serialNumber

	
Static

	
EXTRACT.MV_EQUIPMENT.SERIAL_NBR

	
Yes

	
physicalLocation

	
Static

	
EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_CODE

	
No

	
discoveredPartNumber

	
Dynamic

	
EXTRACT.MV_EQUIPMENT_SPEC.VENDOR_PART_NUMBER

	
Yes

	
hardwareRev

	
Dynamic

	
EXTRACT.MV_EQUIPMENT.VERSION_OF_HARDWARE_INSTALLED

	
No

	
modelName

	
Dynamic

	
EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPEC_TYPE

	
No

	
nativeEmsName

	
Static

	
EXTRACT.MV_EQUIPMENT_SPEC.EQUIPMENT_ACRONYM

	
No

	
expectedObjectType

	
Dynamic

	
N/A

	
No

	
serviceState

	
Dynamic

	
EXTRACT.MV_EQUIPMENT.AVAILABILITY_STATUS

Valid values are IN_SERVICE, OUT_OF_SERVICE, IN_MAINTENANCE, UNKNOWN, TESTING

	
No

	
userLabel

	
Dynamic

	
EXTRACT.MV_EQUIPMENT.EQUIPMENT_NAME

	
No

	
owner

	
Dynamic

	
EXTRACT.MV_EQUIPMENT_SPEC.VENDOR_NAME

	
No

Table 5-5 Non-Root Equipment Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
Derived From EQUIP_ID_2_HIER with mounting_position_seq

	
No

	
name

	
Static

	
Derived from EXTRACT.V_MP_HIER.EQUIPMENT_ACRONYM_HIER

	
No

	
description

	
Static

	
N/A

	
No

	
discoveredVendorName

	
Dynamic

	
Derived from EXTRACT.V_MP_HIER.VENDOR_NAME_HIER

	
No

	
serialNumber

	
Static

	
Derived from EXTRACT.V_MP_HIER.SERIAL_NBR_HIER

	
Yes

	
physicalLocation

	
Static

	
EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_CODE

This field value corresponds to the root equipment.

	
No

	
discoveredPartNumber

	
Dynamic

	
Derived from EXTRACT.V_MP_HIER.VENDOR_PART_NUMBER_HIER

	
Yes

	
hardwareRev

	
Dynamic

	
N/A

	
Yes

	
modelName

	
Dynamic

	
Derived from EXTRACT.V_MP_HIER.EQUIPSPEC_TYPE_HIER

	
No

	
nativeEmsName

	
Static

	
Derived from EXTRACT.V_MP_HIER.EQUIPMENT_ACRONYM_HIER

	
No

	
expectedObjectType

	
Dynamic

	
N/A

	
No

	
serviceState

	
Dynamic

	
EXTRACT.V_MP_HIER.AVAILABILITY_STATUS_HIER

This field is assigned one of the following values: IN_SERVICE, OUT_OF_SERVICE, IN_MAINTENANCE, UNKNOWN, TESTING.

	
No

	
userLabel

	
Dynamic

	
Derived from EXTRACT.V_MP_HIER.EQUIPMENT_NAME_HIER

	
No

	
owner

	
Dynamic

	
Derived from EXTRACT.V_MP_HIER.VENDOR_NAME_HIER

	
No

Table 5-6 Equipment Holder Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
Derived From EQUIP_ID_2_HIER with mounting_position_seq

	
No

	
name

	
Static

	
Derived from V_MP_HIER.EQUIPMENT_ACRONYM_HIER

The slot number is equivalent to mounting position number.

	
No

	
description

	
Static

	
N/A

	
No

	
serialNumber

	
Static

	
N/A

	
No

	
physicalLocation

	
Static

	
N/A

	
No

	
modelName

	
Dynamic

	
EXTRACT.MV_EQUIPMENT_SPEC.EQUIPSPEC_TYPE

	
No

	
nativeEmsName

	
Static

	
Derived from V_MP_HIER.EQUIPMENT_ACRONYM_HIER

	
No

	
userLabel

	
Dynamic

	
Derived from V_MP_HIER.EQUIPMENT_NAME_HIER

	
No

	
owner

	
Dynamic

	
Derived from V_MP_HIER.VENDOR_NAME_HIER

	
No

Table 5-7 Physical Port Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
Derived with parent-id from EXTRACT.MV_PORT_ADDRESS.PORTADDR_SEQ

	
No

	
name

	
Static

	
Derived from EXTRACT.MV_PORT_ADDRESS.PORTADDR_SEQ

	
Yes

	
description

	
Static

	
N/A

	
No

	
portNumber

	
Static

	
N/A

	
No

	
customerPortName

	
Static

	
N/A

	
No

	
vendorPortName

	
Static

	
N/A

	
No

	
serialNumber

	
Static

	
N/A

	
No

	
physicalLocation

	
Static

	
N/A

	
No

	
nativeEmsName

	
Static

	
N/A

	
No

	
direction

	
Dynamic

	
Bidirection

	
No

	
tpProtectionAssociation

	
Dynamic

	
N/A

	
No

	
edgePoint

	
Dynamic

	
True

	
No

	
physicalAddress

	
Static

	
EXTRACT.MV_PORT_ADDRESS.NODE_ADDRESS when EXTRACT.MV_PORT_ADDRESS.PORTADDR_TYPE value corresponds to physical

	
No

Table 5-8 Logical Device Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
N/A

	
No

	
name

	
Static

	
EXTRACT.V_EQUIPMENT.NW_NODE_NAME

	
Yes

	
description

	
Static

	
N/A

	
No

	
specification

	
Static

	
N/A

	
No

	
nativeEmsAdminServiceState

	
Static

	
N/A

	
No

	
nativeEmsServiceState

	
Static

	
N/A

	
No

	
physicalLocation

	
Static

	
EXTRACT.V_EQUIPMENT.LOC_ID_CLLI_CODE

	
No

Table 5-9 Media Interface Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
Id

	
Static

	
N/A

	
No

	
name

	
Static

	
Derived from EXTRACT.MV_PORT_ADDRESS.PORTADDR_SEQ

	
No

	
description

	
Static

	
N/A

	
No

	
ifType

	
Static

	
PTP, FTP, or CTP, according to the entity being modeled

	
No

	
interfaceNumber

	
Static

	
N/A

	
No

	
customerInterfaceNumber

	
Static

	
N/A

	
No

	
vendorInterfaceNumber

	
Static

	
N/A

	
No

	
nativeEmsName

	
Static

	
N/A

	
No

	
nativeEmsAdminServiceState

	
Static

	
N/A

	
No

	
nativeEmsServiceState

	
Static

	
N/A

	
No

	
mtuSupported

	
Static

	
N/A

	
No

	
mtuCurrent

	
Static

	
N/A

	
No

	
physicalAddress

	
Static

	
N/A

	
No

	
physicalLocation

	
Static

	
N/A

	
No

	
minSpeed

	
Static

	
N/A

	
No

	
maxSpeed

	
Static

	
N/A

	
No

	
nominalSpeed

	
Static

	
N/A

	
No

	
connectionState

	
Dynamic

	
EXTRACT.MV_CIRCUIT.STATUS

	
No

	
tpMappingMode

	
Dynamic

	
N/A

	
No

	
Direction

	
Dynamic

	
Bidirection

	
No

	
tpProtectionAssociation

	
Dynamic

	
N/A

	
No

	
edgePoint

	
Dynamic

	
N/A

	
No

	
userLabel

	
Dynamic

	
N/A

	
No

	
owner

	
Dynamic

	
N/A

	
No

	
activeEmsConnectorPresent

	
Static

	
N/A

	
No

Table 5-10 Pipe Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
V_CIRCUIT.EXCHANGE_CARRIER_CIRCUIT_ID

	
Yes

	
Id

	
Static

	
EXTRACT.MV_CIRCUIT.CIRCUIT_DESIGN_ID

	
No

	
gapPipe

	
Static

	
Hard-coded to FALSE

	
No

	
physicalLocation

	
Static

	
EXTRACT.V_CIRCUIT.LOC_A_CLLI_CODE

	
No

	
layerRate

	
Dynamic

	
EXTRACT.MV_CIRCUIT.RATE_CODE

	
No

	
Rerouted

	
Dynamic

	
Hard-coded to FALSE

	
No

	
partial

	
Dynamic

	
Derived: set to FALSE if the number of ports is greater than one, else it is TRUE.

	
No

Table 5-11 Transport Pipe Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
V_CIRCUIT.EXCHANGE_CARRIER_CIRCUIT_ID

	
Yes

	
Id

	
Static

	
EXTRACT.MV_CIRCUIT.CIRCUIT_DESIGN_ID

	
No

	
gapPipe

	
Static

	
Hard-coded to FALSE

	
No

	
physicalLocation

	
Static

	
EXTRACT.V_CIRCUIT.LOC_A_CLLI_CODE

	
No

	
layerRate

	
Dynamic

	
EXTRACT.MV_CIRCUIT.RATE_CODE

	
No

	
Rerouted

	
Dynamic

	
Hard-coded to FALSE

	
No

	
partial

	
Dynamic

	
Derived: set to FALSE if the number of ports is greater than one, else it is TRUE.

	
No

Table 5-12 STM Link Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
EXTRACT.V_CIRCUIT.EXCHANGE_CARRIER_CIRCUIT_ID

	
Yes

	
Id

	
Static

	
EXTRACT.MV_CIRCUIT.CIRCUIT_DESIGN_ID

	
No

	
gapPipe

	
Static

	
Hard-coded to FALSE

	
No

	
physicalLocation

	
Static

	
EXTRACT.V_CIRCUIT.LOC_A_CLLI_CODE

	
No

	
layerRate

	
Dynamic

	
EXTRACT.MV_CIRCUIT.RATE_CODE

	
No

Table 5-13 Trail Path Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
EXTRACT.V_CIRCUIT_POSITION.EXCHANGE_CARRIER_CIRCUIT_ID

	
Yes

	
gapPipe

	
Static

	
Hard-coded to FALSE

	
No

	
layerRate

	
Dynamic

	
EXTRACT.V_CIRCUIT_POSITION.RATE_CODE

	
No

	
channel

	
Dynamic

	
EXTRACT.V_CIRCUIT_POSITION.JKLM

	
Yes

Table 5-14 Trail Pipe Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
EXTRACT.V_CIRCUIT_POSITION.EXCHANGE_CARRIER_CIRCUIT_ID

	
Yes

	
AEnd

	
Static

	
Derived from the originating port name

	
No

	
ZEnd

	
Dynamic

	
Derived from the terminating port name

	
No

	
channel

	
Dynamic

	
EXTRACT.V_CIRCUIT_POSITION.JKLM

	
Yes

Table 5-15 Pipe Termination Point Field Mapping

	Information Model Attribute	Information Model Support	MSS Inventory Field	Used for Discrepancy Detection
	
name

	
Static

	
Hierarchical name derived from of the following:

	
EXTRACT.V_PA_HIER.EQUIPMENT_ACRONYM_HIER

	
EXTRACT.V_PA_HIER.MTG_POS_NBR_HIER

	
EXTRACT.V_PA_HIER.PORTADDR_SEQ

	
Yes

	
physicalLocation

	
Static

	
EXTRACT.V_PA_HIER.CLLI_CODE

	
No

	
Device

	
Dynamic

	
EXTRACT.V_PA_HIER.NW_NODE_NAME

	
Yes

	
Directionality

	
Dynamic

	
EXTRACT.V_PA_HIER.A_Z_OTHER_CD

	
Yes

Data Import Algorithm

This section explains the various algorithms and logic used to model the imported MSS inventory data.

Import Equipment Hierarchy Algorithm

This algorithm uses spring framework pagination to incrementally retrieve node names from each page created by the Page Creator processor. This algorithm uses the following logic:

	
Gets all the node names from EquipmentExportDAO.

	
For each node:

	
Creates a physical and logical device in the Information Model.

	
Gets the root equipment (such as a shelf, or rack) from EquipmentExportDAO.

	
For each root equipment:

	
Verifies that the occupiedMountingPositions attribute value is 0:

	
If yes, the equipment is modeled as a rack.

	
If no, verifies whether the root equipment has a mounting position. If there is a mounting position, the equipment is modeled as a shelf.

	
Associates the rack and shelf to the physical device and states the equipment type (rack or shelf) in the equipment name.

	
Retrieves the child equipment hierarchy from EquipmentPositionHierDAO (child equipment are represented as EquipmentPositionHier entities).

	
Queries the ports in the root equipment hierarchy from EquipmentPortAddressDAO (ports are represented as EquipmentPortAddress entities).

	
Creates a list that maps card IDs to their ports.

	
For each EquipmentPortAddress entity, verifies if leafEquipmentId equals EquipmentId.

	
If yes, models the port as a physical port (FTP) and associates it with the parent equipment. Models a media interface, associates it to the physical port, and sets the media interface as a child of the logical device.

	
If no, fills the card ID and all ports with the leafEquipmentId value as the list of associated ports.

	
Builds the child equipment hierarchy in the Information Model with the EquipmentPositionHier entities.

	
Saves the modeling information to the physical and logical trees.

Build Equipment Hierarchy Algorithm

The input for this algorithm is the list of EquipmentPositionHier entities and the map of cards-to-ports. Each EquipmentPositionHier is an immediate child (either a card or shelf) of the root equipment. This algorithm uses the following logic:

	
Gets the list of mounting position numbers down the hierarchy for each EquipmentPositionHier entity.

	
For each mounting position number:

	
Models a shelf object as an equipment entity if its parent is a rack object and the shelf is not yet built in this hierarchy and associates the child with its parent.

	
Models a card object as an equipment entity if the shelf is already built. Models a slot object as an equipment holder entity for the card. If the slot is already built, models a sub-slot object as an equipment holder entity. Associates children objects with their parent.

	
Gets the list of ports associated with the card from the map of cards-to-ports.

	
Models each port as a physical port and a media interface entity. Associates the media interface and the physical port with the logical device.

	
Adds the EquipmentPortAddressDAO entities to each port as a collection.

Import Circuit Hierarchy Algorithm

MSS and the MSS Integration cartridge distinguish between the following types of circuits:

	
STM (physical circuit, such as STM1 or STM4)

	
HOT (logical circuit, such as VC4)

	
LOP (logical circuit, such as E1, E3, or E4)

Table 5-16 shows the relationship between the imported MSS data, physical TMF814 entities, and physical Information Model entities.

Table 5-16 MSS Circuit Data Mapping to Information Model

	MSS Data	TMF814 Entity	Information Model Entity
	
STM-Type Circuit

	
STM Link

	
Link

	
LOP-Type Circuit

	
Customer Circuit or LOP

	
Pipe

	
HOT-Type Circuit

	
HOT

	
Transport Pipe

MSS organizes logical circuits as children to physical circuits. The input for this algorithm is the list of EquipmentPortAddress entities produced by the Build Equipment Hierarchy algorithm. This algorithm uses the following logic:

	
For each port entity from the EquipmentPortAddress table:

	
Gets the CircuitPortAddress instance containing the circuit ID corresponding to an STM link passing through that port.

	
Queries the CircutExport table to get the STM link with the circuit ID.

	
Obtains the aPort and zPort for the STM link from the CircuitPortAddress table.

	
Models the STM link as an optical topological link entity, models its ports as pipe termination point entities, and associates the ports to their link.

	
Adds the modeled STM link circuit ID to the stmSet collection.

	
Identifies all VC4 HOT circuits for all the STM circuit IDs in the stmSet collection by querying the trail from CircuitPositionDAO. For each trail:

	
Identifies E4 customer circuits by counting its children in the CircuitPosition table. For each E4 customer circuit:

	
Queries the CircuitExport table for the circuit ID and models the CircuitExport objects as a pipe entities.

	
Queries the ports for the circuit from the CircuitPortAddress table, models them as PTPs, and associates them to their pipe entity.

	
Queries the trail path from the CircuitPosition table, models them as trail path entities, and associates them to their pipe entity.

	
Verifies the JKLM value for the trail path, and corrects it if necessary.

	
Identifies VC4 HOT circuits by evaluating the layer rate code. For each VC4 HOT circuit:

	
Models them as transport pipe entities.

	
Queries the CircuitExport table for circuit ID and models the CircuitExport object as a transport pipe entity.

	
Queries the parent STM link from the CircuitPosition table, and queries the STM link ports from the CircuitPortAddress table.

	
Determines the start-port and end-port from the STM link ports, models them as pipe termination points entities, and associates them to their transport pipe entity.

	
Queries the trail paths from the CircuitPosition table, models them as trail path entities, and associates them to their pipe entity.

	
Adds the modeled transport pipe circuit ID to the vc4sForLops list.

	
Queries E1 and E3 trail circuits for each VC4 circuit in the vc4sForLop list. For each trail circuit:

	
Queries circuits from the CircuitExport table and models them as pipe entities.

	
Queries customer circuit ports from the CircuitPortAddress table, models them as pipe termination point entities, and associates the ports to the pipe.

	
Queries trail paths from the CircuitPosition table, models them as trail path entities, and associates them to the pipe.

	
Verifies the JKLM value for the trail path, and corrects it if necessary.

About Discrepancy Resolution Modeling

The Discrepancy Resolution action uses different field mappings depending on the type of entity being resolved.

Discrepancy Resolution Field Mapping for Equipment

The MSS Integration cartridge uses MSS CORBA API methods to resolve equipment discrepancies. Each API method runs a Type Java object. Table 5-17 explains the field mapping for physical entities mapping to circuits in the Information Model.

Table 5-17 Equipment Resolution Field Mapping

	MSS CORBA API	Information Model Attribute	API Type Field
	
MetaSolv.CORBA.WDIEquipmentTypes.EquipSpecQuery (Equipment entity)

	
	
discoveredVendorName

	
discoveredPartNumber

	
	
Manufacturer

	
partNumber

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.EquipmentInstallation (Equipment entity)

	
	
serialNumber

	
name

	
serviceState

	
hardwareRev

	
	
EquipmentModification.serialNumber

	
startingMountingPosition (derived)

	
Status

	
ConfigurationModificationSeq.hardwareVersion

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.EquipmentUpdate (Equipment entity)

	
	
serialNumber

	
hardwareRev

	
	
EquipmentModification.serialNumber

	
ConfigurationModificationSeq.hardwareVersion

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.EquipInstallQuery (Equipment entity)

	
	
Name

	
physicalLocation

	
discoveredPartNumber

	
modelName

	
	
acronym

	
installedAtLocationCode

	
partNumber

	
type

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkElementQuery (Equipment entity)

	
	
Name

	
physicalLocation

	
	
Name

	
networkLocation

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkElementCreate (PhysicalDevice entity)

	
	
Name

	
physicalLocation

	
Description

	
	
Name

	
locId

	
Description

	
MetaSolv.CORBA.WDIEquipmentTypes_v2.NetworkElementResult (PhysicalDevice entity)

	
	
ID

	
	
networkNodeId

	
MetaSolv.CORBA.WDINetworkLocationTypes_v2.NetworkLocationQuery (PhysicalDevice entity)

	
	
physicalLocation

	
	
locationCode

Discrepancy Resolution Field Mapping for Circuits

Table 5-18 explains the field mapping for circuit entities mapping to circuits in the Information Model.

Table 5-18 Circuit Resolution Field Mapping

	Information Model Entity	Information Model Attribute	Connection Field
	
Pipe

	
Specification Name

	
Ratecode

	
Pipe

	
Termination points

	
Ports

	
Pipe

	
Channel

	
Circuit positions

	
Pipe

	
PipeTerminationPoint.Originating.location

	
ALocation

	
Pipe

	
PipeTerminationPoint.Terminating.location

	
ZLocation

6 About Design Studio Construction

This chapter provides information on the composition of the Oracle Communications Network Integrity MSS Integration cartridge from the Oracle Communications Design Studio perspective.

Model Collections

The MSS Integration cartridge models imported data to the TMF814 Generic specification. See Network Integrity Optical TMF814 CORBA Cartridge Guide for more information.

Actions

The following tables outline the Design Studio construction of the MSS Integration cartridge and associated components:

	
Table 6-1, "Actions Design Studio Construction"

	
Table 6-2, "Cartridge Scan Parameter Groups Design Studio Construction"

	
Table 6-3, "Import Processors Design Studio Construction"

	
Table 6-4, "Equipment Discrepancy Detection Processors Design Studio Construction"

	
Table 6-5, "Circuit Discrepancy Detection Processors Design Studio Construction"

	
Table 6-6, "Discrepancy Resolution Processors Design Studio Construction"

Table 6-1 Actions Design Studio Construction

	Action	Result Category	Scan Parameter Groups	Processors
	
Import from MSS

	
Device

	
See Table 6-2

	
See Table 6-3

	
Detect Equipment Discrepancies

	
Device

	
N/A

	
See Table 6-4

	
MSS Circuit Discrepancy Detection

	
Circuit

	
N/A

	
See Table 6-5

	
Resolve in MSS

	
Device

	
N/A

	
See Table 6-6

Table 6-2 Cartridge Scan Parameter Groups Design Studio Construction

	Characteristic Name	Type	Description	UI Label
	
NetworkLocation

	
Text box

	
The network location. Enter either the common language location identifier (CLLI) code, or the coded location from MSS.

	
Network Location

	
Status

	
Drop down

	
List: All, Installed equipment, Equipment under maintenance

The status of the root equipment.

	
Status

	
NodeNameQualifier

	
Drop down

	
Works in combination with the NodeName parameter to filter the imported nodes by name and qualifier.

	
Node Name Qualifier

	
NodeName

	
Text box

	
The device name or a list of device names.

	
Node Name

	
NodeId

	
Text box

	
The node ID or a list of node IDs.

	
Node Id

	
Scope

	
Drop down

	
List:

	
Equipment, STM Links, and Circuits

	
Equipment and STM Links only

	
Equipment only

The scope of data to import from MSS.

	
Scope

	
RunMSSExtract

	
Drop down

	
Boolean to determine whether to run MSS incremental extraction procedure before the scan run.

	
Run MSS Extract

Table 6-3 Import Processors Design Studio Construction

	Processor Name	Variable
	
Equipment DAOs Initializer

	
Input: N/A

Output:

	
daoLocator

The data access object (DAO) locator class that performs data lookup on the views.

	
Page Initializer

	
Input: daoLocator

Output:

	
pageCountList

An iterable list object for each page created.

	
pageSize

The size of each page.

	
filterString

The configurations entered in the Network Integrity UI for filtering the imported data.

	
Page Creator

	
Input:

	
daoLocator, pageSize, filterString

	
pageIndex

An instance of the pageCountList iterable object.

Output:

	
nodeNameList

A list of imported node names corresponding to the filtered UI configurations.

	
Node Collector

	
Input: daoLocator, nodeNameList

Output:

	
nodesMapByNodeName

A map of node names to a list of corresponding root equipment.

	
nodeSet

The list of node names.

	
Device Modeler

	
Input:

	
nodesMapByNodeName

	
node

An entry from the nodeSet object.

Output:

	
collectedPortsUnderNode

A list of ports belonging to the current node object.

	
logicalDevice

A modeled logical device.

	
physicalDevice

A modeled physical device.

	
rootEquipments

A list of root equipment objects for the current node object.

	
Equipment Hierarchy Collector

	
Input:

	
daoLocator, logicalDevice, physicalDevice, nodesMapByNodeName

	
rootEquipment

An entry from the current rootEquipments object.

Output:

	
cardsToPortsMap

A list mapping ports to their corresponding cards.

	
equipmentHierarchyDetails

The equipment hierarchy details for the imported data.

	
Equipment Hierarchy Modeler

	
Input: cardsToPortsMap, equipmentHierarchyDetails, rootEquipment, collectedPortsUnderNode, physicalDevice, logicalDevice

Output: N/A

	
Hierarchy Persister

	
Input: logicalDevice, physicalDevice

Output: N/A

	
STM Link Discoverer

	
Input: collectedPortsUnderNode, daoLocator, physicalDevice

Output:

	
stmList

A complete list of synchronous transport modules (STMs).

	
VC4 Circuit Discoverer

	
Input: stmList, daoLocator, physicalDevice

Output:

	
igForCircuits

The circuits inventory group.

	
vc4sForLops

A list of VC4 circuits from which lower order pipes (LOPs) are collected.

	
VC3 VC12 LOP Discoverer

	
Input: daoLocator, igForCircuits, PhysicalDevice, vc4sForLops

Output: N/A

Table 6-4 Equipment Discrepancy Detection Processors Design Studio Construction

	Processor Name	Variable
	
Equipment Filters Initializer

	
Input: N/A

Output: N/A

	
Discrepancy Detector

	
This processor is imported from the NetworkIntegritySDK cartridge project.

	
Discrepancy Filter

	
Input: N/A

Output: N/A

	
Check Auto Resolution Selected

	
This processor is imported from the NetworkIntegritySDK cartridge project.

	
MSS Auto Resolve Selected Discrepancies

	
Input: autoResolutionManager

Output: N/A

	
Identify Auto Resolving Discrepancies

	
This processor is imported from the NetworkIntegritySDK cartridge project.

	
Prepare Resolving Discrepancies

	
This processor is imported from the NetworkIntegritySDK cartridge project.

Table 6-5 Circuit Discrepancy Detection Processors Design Studio Construction

	Processor Name	Variable
	
Circuit Discrepancy Name Filter Initializer

	
Input: N/A

Output: isTopLevel

	
Missing Entity Filter Initializer

	
Input: isTopLevel

Output: N/A

This processor extends the Optical Circuit Discrepancy Detection action on the Optical Circuit Assimilation cartridge.

	
Partial Circuit Discrepancy Filter

	
Input: N/A

Output: N/A

	
Discrepancy Detector

	
Input: N/A

Output: N/A

This processor extends the Base Detection cartridge.

Table 6-6 Discrepancy Resolution Processors Design Studio Construction

	Processor Name	Variable
	
CORBA Property Initializer

	
Input: N/A

Output:

	
corbaSeed

A JavaBean that holds properties related to the CORBA cartridge, for CORBA connectivity. See Network Integrity CORBA Cartridge Guide for more information.

	
MSS CORBA Property Initializer

	
Input: corbaSeed

Output:

	
corbaSeed

	
mssCORBAConnectionDetails

The property group containing the MBean configuration required to establish CORBA connectivity with MSS.

	
mssEJBConnectionDetails

The property group containing the MBean configuration required to establish EJB connectivity with MSS.

	
CORBA Connection Manager

	
Input: corbaSeed

Output:

	
namingServer

The Naming context for the MSS system.

	
orb

The object request broker (ORB) instance.

	
Resolution Framework Initializer

	
Input: mssCORBAConnectionDetails, mssEJBConnectionDetails

Output:

	
baseResolutionElement

An instance of the data structure used to run resolution actions in MSS.

	
MSS Resolution Initializer

	
Input: mssCORBAConnectionDetails, mssEJBConnectionDetails, namingServer, orb, baseResolutionElement

Output: mssCORBAConnectionDetails, mssEJBConnectionDetails

	
Resolution Framework Dispatcher

	
Input: mssCORBAConnectionDetails, mssEJBConnectionDetails, baseResolutionElement

Output: mssCORBAConnectionDetails, mssEJBConnectionDetails

7 About Design Studio Extension

This chapter provides examples and explanations on how to extend certain aspects of the Oracle Communications Network Integrity MSS Integration cartridge using Oracle Communications Design Studio. See Network Integrity Developer's Guide for more information. See Network Integrity Concepts for guidelines and best practices for extending cartridges.

Importing Additional Information from MSS

The Import from MSS action imports equipment and circuit information from Oracle Communications MetaSolv Solution (MSS) from specific fields in the MSS materialized views.

You can extend the Import from MSS action to:

	
Import additional information from other fields in the MSS Extract Schema.

	
Import additional information from fields outside the MSS Extract Schema.

To import additional information from the MSS Extract Schema:

	
Identify the additional fields and the corresponding entities from the MSS Extract Schema to add to the scope of the Import from MSS action.

	
Determine the required API mapping and the corresponding TMF814 entities for the additional information. See Network Integrity Optical TMF814 CORBA Cartridge Guide for more information.

	
Identify the processor that models the additional TMF814 entities.

	
Extend the Import from MSS action to import and model the additional entities.

To import additional information from outside the MSS Extract Schema:

	
Identify the additional fields and the corresponding entities from MSS to add to the scope of the Import from MSS action.

	
Determine the MSS Extract Schema views for the additional information.

	
Use the custom fields in each of the MSS Extract Schema views to populate the additional fields for each entity.

	
Extend the MSS extract process to populate the additional information in the custom fields for each entity. See "Extending the MSS Extract Process" for more information.

	
Identify the additional fields and the corresponding entities from the MSS Extract Schema to add to the scope of the Import from MSS action.

	
Determine the required API mapping and the corresponding TMF814 entities for the additional information. See Network Integrity Optical TMF814 CORBA Cartridge Guide for more information.

	
Identify the processor that models the additional TMF814 entities.

	
Extend the Import from MSS action to import and model the additional entities.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]
OEBPS/img/mss_action_circ_disc_det.gif
222>

10399350 houedauosig

s34 hovedsiosig
noud fened

sszyfenu 19314 Az usssiny
BzfenIu] 42313
swep Auedaos1q anaad

OEBPS/img/mss_action_imp_proc.gif
)

4212103510 JOTZTIAEIN
1818103510 HN241D HIA
1813003510 ur LS

smsising Ay aessiy

9[3pOIN Ayo1esIH Justdinb
103931103 Ayp1e431H 3usIdinby
s[pop 331n80

10399]]03 3pON

s03e8.3 33ed

sszyfenu sded

sszijenul sOVQ Juswdinby

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications
Network Integrity MSS
Integration Cartridge
Guide, Release 7.3.2

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications
Network Integrity MSS
Integration Cartridge
Guide, Release 7.3.2

OEBPS/img/mss_action_eq_disc_det.gif
)

sspuedsiosig Buinjossy siedaid

ssppuedaassig 3u

|osay oany Ajzusp)
sappuedaudsiq pa3oa|as 2A|0saY 0INY SSII
pe3ajas uonnjosey oany o243
Asuedaiasiq

10399350 houedauosig

OEBPS/dcommon/oracle.gif

OEBPS/img/mss_action_disc_res.gif
mm

1aya3edsiq aomaIEIy UORN|OSOY

) u

njosay SN

upomawWeI3 uonjossy

1a3euey UOIIULG) YAHOD

) Azsadoad YOO SSIN

uj Avsadoad yauos

