

[1] Oracle® Communications
Network Integrity
File Transfer and Parsing Guide

Release 7.3.2

E66040-01

May 2016

Oracle Communications Network Integrity File Transfer and Parsing Guide, Release 7.3.2

E66040-01

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Document Revision History .. v

1 Overview

File Transfer and Parsing Processors.. 1-1
Reference Cartridges.. 1-1

2 The File Transfer Processor

About the File Transfer Processor... 2-1
File Transfer Output Parameters ... 2-1

Scan Parameter Groups... 2-1
File Transfer Input Parameters... 2-3
Setting File Transfer Properties.. 2-4

FTP and SFTP Limitations.. 2-4

3 The File Parser Processor

About the File Parser Processor ... 3-1
About the XML API ... 3-2
About ASCII Record API.. 3-3
ASCII Parsing Examples ... 3-5

Example: CSV File with Header, Body, and Trailer Records .. 3-5
Example: ASCII File with Multi-line Records.. 3-7

4 The ASCII Reference Cartridge

About Alcatel 1359IOO Remote Inventory Data Handoff ... 4-1
Modeling a Physical Device Hierarchy.. 4-2
Cartridge Dependencies.. 4-3

Run-Time Dependencies ... 4-3
Design-Time Dependencies .. 4-3

Opening ASCII Reference Cartridge Files .. 4-3
Opening Files in Design Studio ... 4-3

Compiling and Deploying the Cartridge... 4-3

iv

About the Cartridge Components ... 4-4
Discover Alcatel 1359 IOO RI File ... 4-4

Alcatel 1359IOO RI File Collector... 4-4
Alcatel 1359IOO RI File Parser.. 4-5
Alcatel 1359IOO RI Modeler ... 4-6
Alcatel 1359IOO RI Persister ... 4-6

About Collected Data .. 4-6
About Cartridge Modeling ... 4-7

Hierarchy Mapping ... 4-7
Oracle Communications Information Model Information... 4-8
Field Mapping .. 4-8

Model Correction.. 4-9
About Model Correction Code... 4-9

Design Studio Construction .. 4-10
Design Studio Extension.. 4-11

5 The XML Reference Cartridge

Modeling a Physical Device Hierarchy.. 5-1
Cartridge Dependencies.. 5-2

Run Time Dependencies ... 5-2
Design-Time Dependencies .. 5-2

Opening XML Reference Cartridge Files .. 5-2
Opening Files in Design Studio ... 5-3

Compiling and Deploying the Cartridge... 5-3
About the Cartridge Components ... 5-3

Discover Ericsson Xml... 5-3
Ericsson Xml Initializer .. 5-4
Ericsson Xml File Collector.. 5-4
Ericsson Xml File Parser... 5-4
Ericsson Xml Managed Element Collector.. 5-5
Ericsson Xml Device Modeler ... 5-5
Ericsson Xml Device Persister... 5-5

About Collected Data .. 5-5
About Cartridge Modeling ... 5-7

Hierarchy Mapping ... 5-7
Oracle Communications Information Model .. 5-8
Field Mapping .. 5-8

Model Correction.. 5-9
About Model Correction Code... 5-9

Design Studio Construction ... 5-9
Design Studio Extension.. 5-12

v

Preface

This guide describes Oracle Communications Network Integrity file transfer and
parsing functionality.

Audience
This guide is intended for Network Integrity cartridge developers who want to either
build or extend cartridges similar to the samples provided in this guide, and who want
to use Network Integrity processors to transfer and parse files.

It is recommended that you be familiar with the following documents:

■ Network Integrity Concepts

■ Network Integrity Developer’s Guide

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this guide:

Version Date Description

E66040-01 May 2016 Initial release.

vi

1

Overview 1-1

1Overview

This chapter provides an overview of Oracle Communications Network Integrity file
transfer and parsing functionality. This functionality is provided by processors and
cartridges.

File Transfer and Parsing Processors
In some networks, the following entities can write files to the file system:

■ devices

■ users

■ third-party applications

These files contain data that you can collect and model. Use Network Integrity to
collect and model this data, to retrieve all the remote files and process them using
processors. Network Integrity provides two processor types to help you develop
cartridges, and then transfer and parse the required files. The processors are part of
Oracle Communications Design Studio and include configuration options that help
you create the cartridges that you need. This functionality applies to any domain.

The two processor types are:

■ The file transfer processor transfers files from a remote device or EMS to a
Network Integrity file system. This processor can also be used to access files on a
local file system, which is shared between all the nodes in a Network Integrity
cluster.

■ The file parser processor parses, or interrogates, the contents of a file. The file
parser can parse ASCII and XML files. See "The File Parser Processor" for more
information.

Reference Cartridges
This guide provides two reference cartridges that serve as examples of creating a
processor chain, which retrieves and parses ASCII files or XML files.

■ The ASCII Reference Cartridge

■ The XML Reference Cartridge

Note: Files that cannot be parsed by the file parser processor can still
be parsed by adding custom parsing code to a discover, import, or
assimilation processor implementation.

Reference Cartridges

1-2 Network Integrity File Transfer and Parsing Guide

2

The File Transfer Processor 2-1

2The File Transfer Processor

This chapter describes the file Oracle Communications Network Integrity file transfer
processor.

About the File Transfer Processor
The file transfer processor is similar to other Network Integrity processors, with the
following exceptions:

■ The complete implementation is generated.

■ It can be added to discovery, import, and assimilation actions.

File Transfer Output Parameters
The output parameter that the file transfer processor produces can then be used by the
file parser processor as input for the parsing process.

The file transfer processor outputs a single parameter. This output parameter holds a
collection of file objects, each of which points to the local version of the transferred file.
This collection of files is used as input for a file parser processor, but can also be used
by any type of processor in the action. The file collection output parameter can also be
used as input to a For Each structure in the action to loop over the files individually.

The name of the output parameter is system-generated and based on the name of the
file transfer processor. For example, the Sample File Transfer processor outputs
sampleFileTransferFileCollection.

The type of the output parameter is always java.util.Collection<java.io.File>.

The Processor editor Context Parameters tab is read-only for file transfer processors,
the Usage button shows which processors are using the output parameter.

Scan Parameter Groups
When a cartridge is deployed with scan parameter groups that are generated from a
file transfer processor, they appear in the Network Integrity UI as scan parameters, as
shown in Figure 2–1.

File Transfer Output Parameters

2-2 Network Integrity File Transfer and Parsing Guide

Figure 2–1 Scan Parameters in Network Integrity UI

Table 2–1 describes the default characteristics in the file transfer scan parameter group.

Table 2–1 Characteristics in the File Transfer Processor Scan Parameter Group

Characteristic
Name Default Mandatory Description

Transfer Type FTP Yes Select how files should be transferred: FTP,
SFTP, Local.

File Pattern N/A No A pattern to match file names. The pattern
supports wildcard characters. The
supported wildcard characters are "*", "%",
and "_". "*" and "%" represent a match of
zero or more characters. "_" represents a
match of any single character. Wildcard
characters can be escaped with a back slash.

Port N/A No The port used to connect to the remote
server. The default is 21 for FTP, and 22 for
SFTP.

User Name N/A No The user name to connect to the remote
location.

Password N/A No The password to connect to the remote
location.

Session Timeout 60 No The amount of time in seconds before an
idle connection is timed out. The valid
range is from 1 to 3600.

Source File
Management

Rename No Select the action to take on source files
when the file transfer is complete. Options
are: Delete, Rename, Nothing.

File Transfer Output Parameters

The File Transfer Processor 2-3

File Transfer Input Parameters
You can configure the file transfer processor to use Java objects that are available in the
action context as input. This allows predecessor processors to programmatically
control the behavior of the file transfer processor at run time.

The input parameters that the file transfer processor uses depend on the options
configured in Oracle Communications Design Studio. For example, if the Parameter
Source option is set to Context Parameter the file transfer processor requires an input
parameter of the following type:
oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTransferProperties

If you select Use Scope Address the file transfer processor uses the Scope Address
entered in the Network Integrity UI.

If Use Scope Address is not selected, a String input parameter is required for the
address. The address value must be in the form of host/path. Where host is either a host
name, IPv4 or IPv6 address, and path is the directory path to where the files are
located. For example, 192.168.1.1/tmp/test. If the file transfer processor is only
retrieving files from the local file system, do not specify the host. For example,
/tmp/test.

Table 2–2 summarizes the required input parameters based on the configuration.

Rename Suffix Processed No The suffix to add to the source file if the
source file management characteristic has a
value of Rename.

Note: Do not modify the characteristics listed in Table 2–1. You can
create new characteristics in the generated scan parameter group, but
the auto-generated characteristics must not be modified.

Note: Only discovery actions have the Use Scope Address option
because only discovery actions contain a scope address. For
assimilation and import actions, there is no scope address, so the
address must come from a context parameter.

Table 2–2 Input Parameters Based on Configuration

Parameter Source
Use Scope
Address Required Input Context Parameters

Scan parameter group Checked None

Scan parameter group Unchecked String

Context Parameter Checked oracle.communications.sce.integrity.sdk.fileTransfer
Collector.FileTransferProperties

Context Parameter Unchecked oracle.communications.sce.integrity.sdk.fileTransfer
Collector.FileTransferProperties

String

Table 2–1 (Cont.) Characteristics in the File Transfer Processor Scan Parameter Group

Characteristic
Name Default Mandatory Description

FTP and SFTP Limitations

2-4 Network Integrity File Transfer and Parsing Guide

Setting File Transfer Properties
Context parameters of type
oracle.communications.sce.integrity.sdk.fileTransferCollector.FileTransferProperties
can be set in a predecessor action processor so that some or all of the properties can be
defined in the action. That is, the action can be configured to specify all the file transfer
properties, instead of prompting the user to enter values.

The File Transfer Property Initializer processor creates and populates a
FileTransferProperties object. The object can then be used by the file transfer processor
to transfer the file.

Example 2–1 shows the invoke method implementation of the file transfer property
initializer. The code demonstrates how to programmatically set file transfer properties.
In this example, the values are static, but the values can come from scan parameter
groups defined on the action, or they can come from the result of an external system
API call.

Example 2–1 Invoke Method Implementation

@Override
public FileTransferPropertyInitializerProcessorResponse invoke(
 DiscoveryProcessorContext context,
 FileTransferPropertyInitializerProcessorRequest request) throws
ProcessorException {
 FileTransferProperties ftProperties = new FileTransferProperties();

 ftProperties.setFilePattern("*.txt");
 ftProperties.setUser("someUser");
 ftProperties.setPassword("myPassword");
 ftProperties.setPort(21);
 ftProperties.setSessionTimeOut(120);
 ftProperties.setFileTransferType(FileTransferTypeT.FTP);
 ftProperties.setSrcFileManagement(SrcFileManagementTypeT.DELETE);

 return new FileTransferPropertyInitializerProcessorResponse(ftProperties);
}

FTP and SFTP Limitations
Network Integrity can fail to complete a file transfer using FTP or SFTP, and when the
Source File Management is set to Rename, if the scope location already contains a file
with the processed name. This problem is an inherent problem with FTP and SFTP.
Ensure that the scope location does not contain a renamed file.

For example, to transfer and rename the file sample.txt from a remote location, ensure
that the location does not also contain a file named sample.txtProcessed.

3

The File Parser Processor 3-1

3The File Parser Processor

This chapter provides information about the Oracle Communications Network
Integrity file parser processor.

About the File Parser Processor
The file parser processor is code-generated and can parse XML and structured ASCII
files into Java representations, which can then be processed by other processors. For
information about the ASCII reference cartridge, see "The ASCII Reference Cartridge".
For information about the XML reference cartridge, see "The XML Reference
Cartridge".

File parser processors can be used within discovery, import, and assimilation actions.

The file parser processor receives a collection of files as its input. The input context
parameter is of type java.util.Collection<java.io.File>. The input context parameter
typically comes from a file transfer processor, but it can come from any processor that
outputs the proper type. A processor with a custom implementation, which outputs a
java.util.Collection<java.io.File> context parameter, can supply input to the file
transfer processor as well.

The file parser processor returns an iterator output context parameter. For XML files,
the iterator is of type DocumentWrappers. For ASCII files, the iterator is of type
RecordWrappers. The iterator is typically used as an input parameter to a For Each
processor. The For Each processor returns individual document or record wrappers on
each iteration of the For Each loop.

The file parser processor uses the iterator pattern to help reduce resource usage. It
ensures that only one file is open at a time, and it also helps to reduce memory usage.
When parsing ASCII files, only a single record is loaded into memory at a time. When
parsing XML files, only a single document is loaded into memory at a time. However,
for large XML files, the memory use might still be significant.

Note: The names of the DocumentWrapper and RecordWrapper
classes are derived from the name of the processor. For example, if the
name of a processor that is used to parse XML documents is "XML File
Parser," the name of the DocumentWrapper class is
"XMLFileParserDocument." If the name of a processor that is used to
parse ASCII files is "ASCII File Parser," the name of the
RecordWrapper class is "ASCIIFileParserWrapper."

About the XML API

3-2 Network Integrity File Transfer and Parsing Guide

If a processor throws an exception while using the iterator, the exception is caught by
the action controller class. The action controller class calls the close method with a
wasError parameter value of true, which causes the file parser processor to rename the
current file to the same name but with a ".error" extension. This allows the file to be
analyzed. A log file is also produced if this event occurs.

About the XML API
When configured to parse XML files, one of the main configuration parameters of the
file parser processor is the name of an XML schema file that describes the documents
to be parsed. From the schema file, the file parser processor generates an API to allow
the interrogation and manipulation of the data in the XML files. The XML API consists
of:

■ A document wrapper class, which wraps an XMLBeans document and provides:

– A method for checking if the document is valid. When a document is parsed,
it is automatically validated against the schema. The isValid method
determines if the document is a valid document.

– If the document is not valid, it might have failed to be parsed. This usually
means that the XML is not well formed. The method getParseException
retrieves the exception that was thrown by the XMLBeans parser, which can
sometimes be useful in diagnosing the reason for the parsing failure.

– Schemas that have multiple top-level elements defined support different
document types. The getDocumentType method determines the type of the
document. The method returns a DocumentType enumeration value.

– Methods for getting the wrapped XMLBeans document. There is a getter
method for each document type, supported by the schema. If the user calls the
wrong document getter method, null is returned.

– The getFile method returns the file associated with the XML wrapper
document.

– A constructor that takes a java.io.File. The constructor is used by the iterator. It
is not normally used by clients of the document wrapper class.

■ The XMLBeans classes are the second and main part of the XML API. The schema
is automatically compiled into XMLBeans. The XMLBeans provide the remainder
of the XML API. XMLBeans is an open source technology. Documentation on
XMLBeans and its APIs can be found at:

http://xmlbeans.apache.org/

Example 3–1 shows sample code that demonstrates the use of the XML API generated
by the file parser. This code is located in the modeler processor implementation class,
as seen in the code below. This code is supplied by the cartridge developer.

Example 3–1 File Parser-generated XML API

package com.oracle.integrity.xmlexamplecartridge.discoveryprocessors.xmlmodeller;

import java.util.logging.Level;
import java.util.logging.Logger;

Note: For very large XML files, consider using a processor with a
custom implementation that uses a SAX-style parser.

About ASCII Record API

The File Parser Processor 3-3

import
com.oracle.integrity.xmlexamplecartridge.fileparserprocessors.examplexmlparserproc
essor.ExampleXMLParserProcessorDocument;

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorConte
xt;

public class XMLModellerProcessorImpl implements XMLModellerProcessorInterface {
 private static Logger logger = Logger
 .getLogger(XMLModellerProcessorImpl.class.getName());

 @Override
 public void invoke(DiscoveryProcessorContext context,
 XMLModellerProcessorRequest request) throws ProcessorException {
 logger.log(Level.FINE, "Entering XMLModellerProcessorImpl");

 ExampleXMLParserProcessorDocument documentWrapper = request
 .getXmlDocument();
 if (!documentWrapper.isValid()) {
 logger.log(Level.WARNING, "Document for file '"
 + documentWrapper.getFile()
 + "' is invalid. Parse exception: "
 + documentWrapper.getParseException());
 } else if (!(documentWrapper.getDocumentType() ==
 ExampleXMLParserProcessorDocument.DocumentType.
BulkCmConfigDataFileDocument)) {
 logger.log(Level.WARNING, "Document for file '"
 + documentWrapper.getFile()
 + "' is invalid. Parse exception: "
 + documentWrapper.getParseException());
 } else {
 // Get the XMLBeans document class
 BulkCmConfigDataFileDocument bulkCmConfigDataFileDocument =
documentWrapper
 .getBulkCmConfigDataFileDocument();
 /*
 * Additional code, not shown here, would use the XMLBeans API to
 * access the information in the document.
 */
 }
 logger.log(Level.FINE, "Leaving XMLModellerProcessorImpl");
 }
}

About ASCII Record API
When configured for structured ASCII files, the cartridge developer supplies the rules
for parsing the ASCII file. Included are the rules for parsing the header, body, and
trailer records, and their fields. The header and trailer rules are optional, because, in
some cases, they might not be required. From the rules, the file parser processor
generates a Java API, which allows easy access to the information in the ASCII files.
The RecordWrapper class is that API.

The RecordWrapper class provides the following:

■ The getRecordType method returns the type of the wrapped record: Body, Header,
and Trailer, for valid records, and Unknown for a record that fails to parse

About ASCII Record API

3-4 Network Integrity File Transfer and Parsing Guide

correctly. If a header record is not configured, the header value is not included in
the RecordWrapper API. The same is true for trailer records.

■ The methods getBodyRecord, getHeaderRecord, and getTrailerRecord return the
wrapped BodyRecord, HeaderRecord, and TrailerRecoder classes. The
BodyRecord, HeaderRecord, and TrailerRecord classes provide getter methods for
retrieving each of the included fields of the record. If a record is configured to be
ignored, its corresponding getter method is not available in the RecordWrapper
API. Also, if the wrong get record method is called, the method returns null. (For
example, if the RecordWrapper wraps a HeaderRecord, the getBodyRecord returns
null.)

■ The method getFile returns the file associated with the record.

■ The method getRecordPosition returns, the character offset of the record within its
file.

The sample code in Example 3–2 demonstrates the use of the ASCII API generated by
the file parser processor. This code is located in the modeler processor implementation
class. This code is supplied by the cartridge developer.

Example 3–2 File Parser-generated ASCII API

package com.oracle.integrity.asciicarparser.discoveryprocessors.asciimodeller;

import java.util.logging.Level;
import java.util.logging.Logger;

import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCII
CarsWrapper;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCII
CarsWrapper.BodyRecord;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCII
CarsWrapper.HeaderRecord;
import
com.oracle.integrity.asciicarparser.fileparserprocessors.parseasciicars.ParseASCII
CarsWrapper.TrailerRecord;

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorConte
xt;

public class ASCIIModellerProcessorImpl implements
 ASCIIModellerProcessorInterface {
 private static Logger logger = Logger
 .getLogger(ASCIIModellerProcessorImpl.class.getName());

 @Override
 public void invoke(DiscoveryProcessorContext context,
 ASCIIModellerProcessorRequest request) throws ProcessorException {
 logger.log(Level.FINE, "Entering ASCIIModellerProcessorImpl");

 ParseASCIICarsWrapper carWrapper = request.getCarRecord();

 if (carWrapper.getRecordType() == ParseASCIICarsWrapper.RecordType.Header)
{
 // For this example, our columns are "Make", "Model" and "Year".

ASCII Parsing Examples

The File Parser Processor 3-5

 // Here we are verify that the header of the file is correct.
 if ((!headerRecord.getMakeColumn().equals("Make"))
 || (!headerRecord.getModelColumn().equals("Model"))
 || (!headerRecord.getYearColumn().equals("Year"))) {
 throw new ProcessorException("Error in header columns");
 }
 } else if (carWrapper.getRecordType() ==
ParseASCIICarsWrapper.RecordType.Body) {
 BodyRecord bodyRecord = carWrapper.getBodyRecord();

 logger.log(Level.FINE, "Car body record: " + bodyRecord.getMake()
 + " " + bodyRecord.getModel() + " " + bodyRecord.getYear());
 } else if (carWrapper.getRecordType() ==
ParseASCIICarsWrapper.RecordType.Trailer) {
 TrailerRecord trailerRecord = carWrapper.getTrailerRecord();

 // For this example, the trailer record configuration has a single
 // field defined called "All" with Aggregate Extra Fields option
 // selected. This returns the full record as a single field.
 logger.log(Level.FINE, "Car trailer record: "
 + trailerRecord.getAll());
 } else {
 throw new ProcessorException("Error parsing: "
 + carWrapper.getFile());
 }
 logger.log(Level.FINE, "Entering ASCIIModellerProcessorImpl");
 }
}

ASCII Parsing Examples
The ASCII parsing examples in this section show how the files might be configured
and how the information is then displayed in the file parser processor user interface.

Example: CSV File with Header, Body, and Trailer Records
Example 3–3 shows a CSV file with header, body, and trailer records.

Example 3–3 CSV File with Header, Body, and Trailer Records

 Make,Model,Year
 Lamborghini,Murcielago,2003
 Lamborghini,Gallardo,2007
 Lamborghini,LP 640,2007
 ===========================

Figure 3–1 shows how the header record definition might be configured. With this
definition, the API would include getMakeColumn, getModelColumn, and
getYearColumn methods on the HeaderRecord, which could be used to validate that
the correct type of file is being read.

Note: Using the Aggregate Extra Fields option causes the full line of
data to be returned by the getAll method.

ASCII Parsing Examples

3-6 Network Integrity File Transfer and Parsing Guide

Figure 3–1 Car Header Record Definition

Figure 3–2 shows how the body record definition might be configured. With this
definition, the API would include getMake, getModel, and getYear methods on the
BodyRecord, which could be used to field values from the body record.

Figure 3–2 Car Body Record Definition

ASCII Parsing Examples

The File Parser Processor 3-7

Figure 3–3 shows how the trailer record might be configured. With this definition, the
API would include a getAll method on the TrailerRecord.

Figure 3–3 Car Trailer Record Definition

Example: ASCII File with Multi-line Records
Example 3–4 shows an ASCII file that has multi-line records.

Example 3–4 ASCII File with Multi-line Records

1, John
 Doe,8000

 2,Dave
 Smith,8001

 3,Jim
 Yong,8002

 4,Kate
 May,8003

Figure 3–4 and Figure 3–5 show how the body record definitions can be configured for
this record structure. In this example, the record delimiter is a blank line. The Ignore
option is set on the RecordNumber field. With this definition, the API would include
getFirstName, getLastName, and getID methods on the BodyRecord.

ASCII Parsing Examples

3-8 Network Integrity File Transfer and Parsing Guide

Figure 3–4 Multi-line First Line Body Record Definition

Figure 3–5 Multi-line Second Line Body Record Definition

4

The ASCII Reference Cartridge 4-1

4The ASCII Reference Cartridge

This chapter describes the functionality and design of the Oracle Communications
Network Integrity ASCII Reference cartridge.

The ASCII Reference cartridge uses ASCII file processing technology. The cartridge
uses an Alcatel 1359IOO Remote Inventory Data as its example. This guide assumes
that you are familiar with remote inventory data handoff in Alcatel 1359IOO
Information Content Description.

About Alcatel 1359IOO Remote Inventory Data Handoff
Alcatel 1359IOO uses a TCP/IP connection to exchange a set of messages between
EOS and a generic IOO agent.

For a discovery action, the focus is on the remote inventory data handoff. Remote
Inventory Data Handoff (RIDH) allows the export of the main identification data
relevant to hardware products (physical boards) installed into the network elements
(NEs) managed by the EML. The identification data is stored in permanent memory
devices (EEPROM) included in each product part list.

This IOO application enables the EOS to retrieve all the remote inventory data stored
in the 1353NM.

RI_DATA_NOTIFICATION primitives provide the EOS with the list of hardware
components currently installed in the Network Elements (NE), and notify a change if
the remote inventory file is updated on the 1353NM. Each RI_DATA_NOTIFICATION
primitive refers to a single board.

RI_DATA_NOTIF primitives are sent after all the RI_DATA_NOTIFICATIONs
referring to the boards installed in a single network element, to give the EOS an End
Of File indicator (the inventory of the NEX is completely uploaded).

This reference implementation deals only with RI_DATA_NOTIF, because the Alcatel
1359 IOO Information Content Description document does not show RI_DATA_
NOTIFICATION in the sample Remote Inventory Data. The Alcatel 1359 IOO
Information Content Description document only shows RI_DATA_NOTIF. RI_DATA_
NOTIFICATION does not appear in the RI Data Handoff document.

RI_DATA_NOTIF primitives have different parameters for Q3 and QB3* NEs. In this
reference implementation, QB3* NE is used as example.

The CSV format of RI_DATA_NOTIF is as follows (QB3* NE):

RI_DATA_NOTIF
[<riDataList or riDataUnsol> |
<neName attribute value> |
<neLocationName attribute value> |

Modeling a Physical Device Hierarchy

4-2 Network Integrity File Transfer and Parsing Guide

<protocolType attribute value> |
<blockNumber attribute value> |
<blockLabel attribute value> | (unique to SND NE's)
<alcatelCompany attribute value> |
<unitType attribute value> |
<unitPartNumber attribute value> |
<softwarePartNumber attribute value> |
<cleiCode attribute value> |
<manufacPlant attribute value> |
<serialNumber attribute value> |
<manufacDate attribute value> |
<operatorInvData attribute value>]

The CSV format for the last notification received for each remote inventory file is as
follows:

RI_DATA_NOTIF
[<riDataList or riDataUnsol > |
<neName attribute value> |
<protocolType attribute value> |
{ <uploadTime attribute value> } |
< numberOfCards attribute value>]

The ASCII Reference cartridge is designed to be used on a standalone basis to display
the physical device hierarchy in Network Integrity. The ASCII Reference cartridge
provides no integration with other products, but can be extended.

Modeling a Physical Device Hierarchy
The samples in this section do not directly deal with the TCP/IP protocol, as described
in Alcatel 1359IOO document, to get the Remote Inventory Data. Instead, it is assumed
that the remote inventory data is retrieved using the IOO protocol and stored as CSV
files by an external process. The samples use the ASCII Reference Cartridge to retrieve
the IOO CSV file, parse it, and model it into Oracle Communications Information
Model. Each RI_DATA_NOTIF record contains one board for an NE. All the boards
belonging to one NE must be aggregated as a list of child equipment of the NE (NE is
modeled as Physical Device).

Figure 4–1 shows a sample discovered physical device hierarchy. This hierarchy is
displayed in the Network Integrity user interface, in the Scan Result Detail page.

Figure 4–1 Sample Discovered Physical Device Hierarchy

Compiling and Deploying the Cartridge

The ASCII Reference Cartridge 4-3

Cartridge Dependencies
This section provides information about dependencies that the ASCII Reference
cartridge has on other entities.

Run-Time Dependencies
For the ASCII Reference cartridge to work at run time, you must deploy the Address_
Handlers cartridge to Network Integrity.

Design-Time Dependencies
The ASCII Reference cartridge has the following dependencies:

■ Address_Handlers

■ NetworkIntegritySDK

■ ora_uim_model

Opening ASCII Reference Cartridge Files
This section provides information about downloading and opening the ASCII
Reference cartridge files in Design Studio. After you open the files, you can review and
extend them.

You can download a ZIP file that contains the individual Design Studio files. You can
open these files in Design Studio to review and extend the cartridge ZIP files.

Opening Files in Design Studio
To review and extend the ASCII Reference cartridge, you must first download the
Oracle Communications Network Integrity File Transfer and Parsing software from
the Oracle software delivery website:

https://edelivery.oracle.com

The software contains the ASCII Reference cartridge ZIP file, which has the following
structure:

■ \Network_Integrity_Cartridge_Projects\ASCII_Reference_Cartridge

For information about opening files in Design Studio, see the Design Studio Help and
Network Integrity Developer's Guide.

Compiling and Deploying the Cartridge
This section provides information about compiling and deploying the ASCII Reference
cartridge.

To compile and deploy the ASCII Reference cartridge:

1. Import projects into Design Studio for Network Integrity.

2. Clean and build the cartridge.

3. Deploy the cartridge.

For more information about deploying and undeploying, see Network Integrity
Developer's Guide.

About the Cartridge Components

4-4 Network Integrity File Transfer and Parsing Guide

About the Cartridge Components
The ASCII Reference Cartridge contains the following actions:

■ Discover Alcatel 1359 IOO RI File

Discover Alcatel 1359 IOO RI File
The Discover Alcatel 1359IOO RI action reads one or more Alcatel 1359IOO RI CSV file
instances in a directory, and from it provides hierarchical physical device model
instances.

The Discover Alcatel 1359 IOO RI File action contains the following processors run in
the following order:

1. Alcatel 1359IOO RI File Collector

2. Alcatel 1359IOO RI File Parser

3. Alcatel 1359IOO RI Modeler

4. Alcatel 1359IOO RI Persister

Figure 4–2 illustrates the processor workflow of the Discover Alcatel 1359 IOO RI File
action.

Figure 4–2 Discover Alcatel 1359IOO RI File Action Processor Workflow

Alcatel 1359IOO RI File Collector
The Alcatel 1359IOO RI File Collector processor is used to retrieve Alcatel 1359IOO RI
CSV files, which are then made available to the next processor in the chain.

About the Cartridge Components

The ASCII Reference Cartridge 4-5

Alcatel 1359IOO RI File Parser
The Alcatel 1359IOO RI File Parser processor is used to read the RI CSV files, parse the
CSV file to get a list of RI records, and make them available to the next processor.

Each Alcatel IOO RI data record consists of multiple lines (refer to the sample IOO RI
data in "About Collected Data"). To parse the multiple lines of record, each line must
be defined as a sub-record. The last record in the IOO RI CSV file is the end of data
record, which is configured as the trailer record. Like the data record, the trailer record,
is a multi-line record, so each line is configured as a sub-record of the trailer record.
See the Alcatel 1359IOO RI File Parser processor in Design Studio for information
about how to configure the ASCII parsing rules for Alcatel 1359IOO RI CSV file.

The following diagram shows the ASCII parsing rules configuration tab of the Alcatel
1359IOO RI File Parser in Design Studio.

Figure 4–3 ASCII Parser in Design Studio

Note: This processor is automatically generated from Design Studio
input data.

Note: This processor is automatically generated from Design Studio
by configuring a set of proper ASCII parsing rules.

About Collected Data

4-6 Network Integrity File Transfer and Parsing Guide

Alcatel 1359IOO RI Modeler
The Alcatel 1359IOO RI Modeler processor is used to model each individual RI record
that is parsed by the Alcatel1359IOORIFileParser processor and aggregate all of them
into a single physical device entity. This processor demonstrates how to do
aggregation when modeling data in Network Integrity.

Alcatel 1359IOO RI Persister
The Alcatel 1359IOO RI Persister processor is used to persist the physical device tree to
the Network Integrity database.

About Collected Data
This section shows a sample Alcatel 1359IOO RI CSV file that is provided to the
Alcatel1359IOORIFileParser processor. This CSV file is generated by an external
process, which uses the IOO protocol (TCP/IP connection) to get the RI records from
EOS and save them to an ASCII file. This ASCII file is collected by the
Alcatel1359IOORIFileCollector processor.

One ASCII file contains the information of all the boards for one NE. The ASCII file
ends with the end of data record (the last record in the following sample ASCII file) to
indicate that there are no more boards from that NE.

RI_DATA_NOTIF
[riDataList|
Palermo|
Zen|
QB3*|
1|
Palermo/r01sr1/board#01|
AITA|
A2S1|
3AL78818AAAC01
----------|
FA|
FA003650914|
00/08/31|
--]

RI_DATA_NOTIF
[riDataList|
Palermo|
Zen|
QB3*|
8|
Palermo/r01sr1/board#08|
AITA|
PREA4ETH|
3AL79631AAAC03
----------|
FA|
FA024658237|
03/05/07|
--]

RI_DATA_NOTIF
[riDataList|

About Cartridge Modeling

The ASCII Reference Cartridge 4-7

Palermo|
Zen|
QB3*|
9|
Palermo/r01sr1/board#09|
AITA|
SYNTH1N|
3AL79090BAAA01
----------|
EZ|
EZ004150316|
00/10/06|
EXP RAM 32MB----------------------------------]

RI_DATA_NOTIF
[riDataList|
Palermo|
QB3*|
{2010/12/10 12:25:32}|
3]

About Cartridge Modeling
This section provides information about modeling the ASCII Reference cartridge.

Figure 4–4 shows a Unified Modeling Language (UML) diagram depicting the object
relationship being rendered.

Figure 4–4 Information Model Entities UML Diagram

Hierarchy Mapping
The physical device object is established and seeded with data sourced by "neName"
attribute inside the RI record.

About Cartridge Modeling

4-8 Network Integrity File Transfer and Parsing Guide

The Equipment object (board) is established and seeded from "blockLabel" attribute.
Artificial chassis are created to the NE so that slot (equipment holder) can be created
under.

The EquipmentHolder object is established and seeded from "blockNumber" attribute
and modeled as slot: Block Number = Slot Number - 1.

Oracle Communications Information Model Information
All entities shown in Figure 4–4 (for example, physical device, and equipment) are
Information Model 1.0-compliant for static fields. The dynamic fields (sometimes
referred to as characteristics) are application-specific.

Field Mapping
This section provides information about field mappings used in the cartridge.

■ Text: Implies Text [255].

■ static: The Information Model 1.0 defines this field to be static on the entity
specification. The specification provides getters/setters for this field.

■ dynamic: This is a dynamic field where the entity specification treats the field as a
name/value pair. The specification does not provide getter/setters but generically
has a get/setCharacteristics method holding a HashSet of entries.

Table 4–1 Physical Device Mappings

Physical Device

Information
Model
Support

RI Record
Attribute Field Type

Id static N/A Text

Name static neName Text

Description static N/A Text

Specification static N/A N/A, Programmatically set to
Alcatel1359IOORIPhysicalDevice

neLocationName static neLocationName Text

protocolType dynamic protocolType Text

nativeEmsName static neName Text

discoveredVendorName dynamic N/A Text, hard-coded to be set to Alcatel

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 4–2 Equipment Mappings

Equipment
Information Model
Support RI Record Attribute Field Type

Id static N/A Text

Name static blockLabel Text, Extract the last part of blockLabel

Description static blockLabel Text

Specification static N/A N/A

Model Correction

The ASCII Reference Cartridge 4-9

Model Correction
This section provides Alcatel 1359IOO RI to Oracle Communications Information
Model correction information.

About Model Correction Code
Model correction occurs when the Alcatel 1359IOO RI information received through
discovery does not conform to Information Model and therefore cannot be persisted,
as it is within Network Integrity. See "About Cartridge Modeling" for supported
hierarchy.

The ASCII Reference Cartridge applies the model corrections as outlined below.

EquipmentHolder under physical device:

 PhysicalDevice
 EquipmentHolder

alcatelCompany dynamic alcatelCompany Text, Programmatically set to
Alcatel1359IOORIPhysicalDevice

unitType dynamic unitType Text

unitPartNumber dynamic unitPartNumber Text

softwarePartNumber dynamic softwarePartNumber Text

cleiCode dynamic cleiCode Text

manufacPlant dynamic manufacPlant Text

manufacDate dynamic manufacDate Text

operatorInvData dynamic operatorInvData Text

serialNumber static serialNumber Text

nativeEmsName static blockLabel Text

discoveredVendorName dynamic N/A Text, hard-coded to be set to Alcatel

Physical Location yes N/A Text

Table 4–3 EquipmentHolder Mappings

EquipmentHolder
Information
Model Support RI Record Attribute Field Type

Id static N/A Text

Name static blockNumber Text, SlotNumber = blockNumber + 1

Specification static N/A N/A, Programmatically set to
Alcatel1359IOORIEquipmentHolder

nativeEmsName static blockNumber Text, SlotNumber = BlockNumber +1

Description yes N/A Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 4–2 (Cont.) Equipment Mappings

Equipment
Information Model
Support RI Record Attribute Field Type

Design Studio Construction

4-10 Network Integrity File Transfer and Parsing Guide

The ASCII Reference Cartridge adds an equipment entity as follows:

 PhysicalDevice
 Equipment-named Alcatel 1359IOO RI Artificial Chassis
 EquipmentHolder

Design Studio Construction
This section provides information about using Design Studio to construct the ASCII
Reference cartridge.

The ASCII Reference cartridge contains the following specifications:

■ Alcatel1359IOORIPhysicalDevice

■ Alcatel1359IOOBoard

■ Alcatel1359IOORIEquipentHolder

■ Alcatel1359IOOArtificialChassis

In Figure 4–2 the first two chevrons indicate code-generated processors from Design
Studio user input.

■ Alcatel 1359IOO RI File Collector is an instance of the file transfer processor

■ Alcatel 1359IOO RI File Parser is an instance of the file parser processor

Table 4–4 Discover Alcatel 1359IOO RI File Action Construction

Result
Category

Address
Handler

Scan Parameter Group
Characteristics Model Processors

Device FileTransfer
AddressHandler

ftaFileTransferType

ftaFilePattern

ftaPort

ftaUser

ftaPassword

ftaSessionTimeOut

ftaSourceFileManagement

ftaRenameSuffix

Alcatel 1326 IOO
RI Model

Alcatel 1359IOO RI File
Collector

Alcatel 1359IOO RI File Parser

Alcatel 1359IOO RI Modeler

Alcatel 1359IOO RI Persister

Table 4–5 Action Conditions for Discover Alcatel 1359IOO RI File Action

Condition Name Notes

checkPhysicalDevice This condition returns a false result if the physical device
from the Alcatel 1359IOO RI Modeler is null.

Design Studio Extension

The ASCII Reference Cartridge 4-11

Design Studio Extension
This section provides information about Design Studio extensions to the ASCII
Reference cartridge.

The source code to this cartridge is provided. You can change any part to customize
this cartridge to fit your environment.

The Alcatel 1359IOO RI Modeler aggregates the information for all the boards before
completely modeling a physical device. Before a physical device is completely
modeled, this processor outputs a null physical device. The action has a condition
applied on the Alcatel 1359IOO RI Persister, which checks the physical device to
determine whether it is null or not. The persister does not get invoked if
PhysicalDevice is null (which means it is not completely modeled at that time). A new
processor that is to further modify PhysicalDevice must apply the same condition
(checkPhysicalDevice) to make sure that the physical device is ready and not null.

For more information on extensibility, see Network Integrity Developer's Guide.

Table 4–6 Discover Alcatel 1359IOO RI File Action Processors

Processor Name Variables

Alcatel 1359IOO
RI File Collector

Input: N/A

Output:

■ alcatel1359IOORIFileCollectorFileCollection. java.util.Collecton

A collection of files found in the path specified in the scope field.

Alcatel 1359IOO
RI File Parser

Input: alcatel1359IOORIFileCollectorFileCollection

Output:

■ alcatel1359IOORIFileParserIterable

An iterable to iterate over each discovered file.

Alcatel 1359IOO
RI Modeler

Input: riFile

Output: physicalDevice

This processor can be extended to enhance an individual physical device tree. Any processor
that uses its output parameter must check if this value is null before using it. The physical
device is null if it does not contain information from all the boards.

Alcatel 1359IOO
RI Persister

Input: N/A

Output: N/A

Context is persisted for performance

Design Studio Extension

4-12 Network Integrity File Transfer and Parsing Guide

5

The XML Reference Cartridge 5-1

5The XML Reference Cartridge

This chapter describes the functionality and design of the Oracle Communications
Network Integrity XML Reference cartridge.

The XML Reference cartridge uses the XML File processing technology. The cartridge
uses an Ericsson XML device file as its example.

The XML Reference cartridge is designed to be used on a standalone basis to display
the physical device hierarchy in the Network Integrity UI. The XML Reference
Cartridge provides no integration with other products but can be extended.

This section assumes that you are familiar with the following:

■ Network Inventory Organizer (NIO) Export Interface (v 155 19-APR 901 219 Uen F
2006-06-01)

■ 3GPP TS 32.615v630

(http://www.3gpp.org/ftp/specs/html-info/32615.htm)

■ 3GPP TS 32.625v660

(http://www.3gpp.org/ftp/specs/html-info/32625.htm)

■ 3GPP TS 32.695v600

(http://www.3gpp.org/ftp/specs/html-info/32695.htm)

Modeling a Physical Device Hierarchy
Using a CLI command, Ericsson devices can deliver XML device inventory to the local
file system. These XML device files can be transferred to Network Integrity for
processing.

See Ericsson SMO CLI, Software Management, Organizer Command Line Interface,
User Guide, 2/1553-APR 901 007 for reference.

The cartridge reads the XML device file and produces a physical device hierarchy that
represents the discovered device and includes a physical device instance, equipment,
and equipment holders. (PhysicalPorts are not rendered in the XML file and so are not
supported.)

Figure 5–1 shows a sample discovered physical device hierarchy. This hierarchy is
displayed in the Network Integrity user interface, in the Scan Result Detail page.

Cartridge Dependencies

5-2 Network Integrity File Transfer and Parsing Guide

Figure 5–1 Sample Discovered Physical Device Hierarchy

Cartridge Dependencies
This section provides information about dependencies that the XML Reference
cartridge has on other entities.

Run Time Dependencies
For the XML Reference cartridge to work at run time, you must deploy the Address_
Handlers cartridge to Network Integrity.

Design-Time Dependencies
The XML Reference cartridge has the following dependencies:

■ Address_Handlers

■ NetworkIntegritySDK

■ ora_uim_model

Opening XML Reference Cartridge Files
This section provides information about downloading and opening the XML Reference
Cartridge files in Design Studio. After you open the files, you can review and extend
them.

You can download a ZIP file that contains the individual Design Studio files. You can
open these files in Design Studio to review and extend the cartridge ZIP files.

About the Cartridge Components

The XML Reference Cartridge 5-3

Opening Files in Design Studio
To review and extend the XML Reference cartridge, download the Oracle
Communications Network Integrity File Transfer and Parsing software from the
Oracle software delivery website:

https://edelivery.oracle.com

The software contains the XML Reference cartridge ZIP file, which has the following
structure:

■ \Network_Integrity_Cartridge_Projects\XML_Reference_Cartridge

For information about opening files in Design Studio, see the Design Studio Help and
Network Integrity Developer’s Guide.

Compiling and Deploying the Cartridge
This section provides information about compiling and deploying the XML Reference
Cartridge.

To compile and deploy the XML Reference Cartridge:

1. Import projects into Design Studio for Network Integrity.

2. Clean and build the cartridge.

3. Deploy the cartridge.

For more information about deploying and undeploying, see Network Integrity
Developer's Guide.

About the Cartridge Components
The XML Reference cartridge contains the following actions:

■ Discover Ericsson Xml

Discover Ericsson Xml
The Discover Ericsson Xml action reads one or more XML device file instances, and
provides multiple hierarchical device model instances. (XML device file instances
could contain multiple devices.)

The Discover Ericsson Xml action contains the following processors run in the
following order:

1. Ericsson Xml Initializer

2. Ericsson Xml File Collector

3. Ericsson Xml File Parser

4. Ericsson Xml Managed Element Collector

5. Ericsson Xml Device Modeler

6. Ericsson Xml Device Persister

Figure 5–2 illustrates the processor workflow of the Discover Ericsson Xml action.

About the Cartridge Components

5-4 Network Integrity File Transfer and Parsing Guide

Figure 5–2 Discover Ericsson Xml Action Processor Workflow

Ericsson Xml Initializer
The Ericsson Xml Initializer instantiates a helper class, and then makes it available to
other processors in the chain.

Ericsson Xml File Collector
The Ericsson Xml File Collector processor is used to retrieve XML device files and
make them available to the next processor in the chain.

Ericsson Xml File Parser
The Ericsson Xml file parser processor is used to read the XML device files, validate
them against a loaded schema, and convert the XML device file to an XML bean,
making it available for parsing to the next processor.

Note: This processor is automatically generated from Design Studio
input data.

Note: This processor is automatically generated from Design Studio
input data.

About Collected Data

The XML Reference Cartridge 5-5

Ericsson Xml Managed Element Collector
The Ericsson Xml Managed Element Collector processor is used to process the XML
device file and locate managed elements (MEs). These MEs are then inserted into a list
for further processing.

Ericsson Xml Device Modeler
The Ericsson Xml Device Modeler processor is used to model the data collected from
the Ericsson Xml Managed Element Collector. Modeling includes building the
hierarchical relationship of physical device and children equipment and equipment
holders from an individual ME.

Ericsson Xml Device Persister
The Ericsson Xml Device Persister is used to persist the physical device tree to the
Network Integrity database.

About Collected Data
This section shows a sample XML device file that is provided to the processor.

<?xml version="1.0" encoding="UTF-8"?>
<bulkCmConfigDataFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.3gpp.org/ftp/specs/archive/32_
series/32.615#configData
../../../eclipseWorkSpace/XMLReferenceCartridge/schemas/configData.xsd"
 xmlns="http://www.3gpp.org/ftp/specs/archive/32_series/32.615#configData"
 xmlns:xn="http://www.3gpp.org/ftp/specs/archive/32_series/32.625#genericNrm"
 xmlns:in="http://www.3gpp.org/ftp/specs/archive/32_series/32.695#inventoryNrm">
 <fileHeader fileFormatVersion="32.615 V6.3" vendorName="Ericsson AB"/>
 <configData dnPrefix="DC=150.132.36.75,SubNetwork=NRO_
RootMo,ManagementNode=ONRM,IRPAgent=ONRM_IrpAgent">
 <xn:SubNetwork id="NRO_RootMo">
 <xn:SubNetwork id="RNC106">
 <xn:ManagedElement id="RNC106">
 <xn:attributes>
 <xn:managedElementType>RNC</xn:managedElementType>
 <xn:userLabel>RNC106</xn:userLabel>
 <xn:vendorName>Ericsson AB</xn:vendorName>
 </xn:attributes>
 <in:InventoryUnit id="1B">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>SUBRACK</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ 605 107/3_
R1A</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>X911033101</in:serialNumber>
 <in:dateOfManufacture>2005-10-22</in:dateOfManufacture>
 <in:unitPosition>1B</in:unitPosition>

<in:manufacturerData>ProductName=CBM,SlotCount=28</in:manufacturerData>
 </in:attributes>
 <in:InventoryUnit id="0">

Note: One or more managed elements are contained within nested
subNetworks in the XML device file. This processor is capable of
finding all managed elements. SubNetworks are not modeled.

About Collected Data

5-6 Network Integrity File Transfer and Parsing Guide

 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>FAN</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>BKV 301 487/1_
R3A</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber/>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="1">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192108/4_
R2B</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>TU87600308</in:serialNumber>
 <in:dateOfManufacture>2005-12-01</in:dateOfManufacture>
 <in:unitPosition>1</in:unitPosition>

<in:manufacturerData>ProductName=SCB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="2">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192109/3_
R1B</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>TU87153523</in:serialNumber>
 <in:dateOfManufacture>2005-10-07</in:dateOfManufacture>
 <in:unitPosition>2</in:unitPosition>

<in:manufacturerData>ProductName=SXB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 <in:InventoryUnit id="3">
 <in:attributes>
 <in:inventoryUnitType>HW</in:inventoryUnitType>
 <in:vendorUnitFamilyType>PIU</in:vendorUnitFamilyType>
 <in:vendorUnitTypeNumber>ROJ1192109/3_
R1B</in:vendorUnitTypeNumber>
 <in:vendorName>Ericsson AB</in:vendorName>
 <in:serialNumber>TU87153427</in:serialNumber>
 <in:dateOfManufacture>2005-10-07</in:dateOfManufacture>
 <in:unitPosition>3</in:unitPosition>

<in:manufacturerData>ProductName=SXB3</in:manufacturerData>
 </in:attributes>
 </in:InventoryUnit>
 </in:InventoryUnit>
 </xn:ManagedElement>
 </xn:SubNetwork>
 </xn:SubNetwork>
 </configData>
 <fileFooter dateTime="2006-09-06T08:03:04+02:00"/>
</bulkCmConfigDataFile>

About Cartridge Modeling

The XML Reference Cartridge 5-7

About Cartridge Modeling
This section provides information about modeling the XML Reference cartridge.

Figure 5–3 shows a Unified Modeling Language (UML) diagram depicting the object
relationship.

Figure 5–3 XML UML Diagram

Hierarchy Mapping
The physical device object is established and seeded with data sourced by
ManagedElement.

The Equipment object is established and seeded from InventoryUnit, where the
vendorUnitFamilyType = PIU (Plug In Unit). All other InventoryUnits are discarded,
that is (vendorUnitFamilyType = OTHER, FAN).

The EquipmentHolder object is established and seeded from InventoryUnit, where the
vendorUnitFamilyType =SUBRACK.

Note: Modeling limits InventoryUnit to two (2) levels deep. If an
XML file instance has more than two levels of InventoryUnit below
ManagedElement, the third to nth levels are ignored, and
customization is required to model those levels.

About Cartridge Modeling

5-8 Network Integrity File Transfer and Parsing Guide

Oracle Communications Information Model
All entities shown in Figure 5–3 (for example, physical device and equipment) are
Information Model 1.0-compliant for static fields. The dynamic fields (sometimes
referred to as characteristics) are application-specific.

Field Mapping
This section provides information about field mappings used in the cartridge.

■ Text: Implies Text [255].

■ static: The Information Model 1.0 defines this field to be static on the entity
specification. The specification provides getters/setters for this field.

■ dynamic: This is a dynamic field where the entity specification treats the field as a
name/value pair. The specification does not provide getter/setters but generically
has a get/setCharacteristics method holding a HashSet of entries.

Table 5–1 Physical Device Mappings

Physical Device

Information
Model
Support Xml Object Field Type

Id static N/A Text

Name static id Text

Description static xmlFile Source Text

Specification static N/A Programmatically set to
EricssonCPPPhysicalDevice

discoveredVendorName dynamic vendorName Text

modelName dynamic managedElementType Text

nativeEmsName static userLabel Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 5–2 Equipment Mappings

Equipment

Information
Model
Support XML Object Field Type

Id static N/A Text

Name static manufacturerData Text, Extract ProductName

Description static manufacturerData Text

Specification static N/A Programmatically set to
EricssonCPPEquipment

discoveredModelNumber dynamic vendorUnityType
Number

Text

discoveredVendorName dynamic vendorName Text

serialNumber static serialNumber Text

nativeEmsName static manufacturerData
+ unitPosition

Text, Extract ProductName,
append unitPosition which is
occupied slot number

Design Studio Construction

The XML Reference Cartridge 5-9

Model Correction
This section provides 3GPP to Information Model correction information.

About Model Correction Code
Model correction occurs when the 3GPP information received through discovery does
not conform to the Information Model and therefore cannot be persisted, as it is within
Network Integrity. For information about supported hierarchy, see "About Cartridge
Modeling".

The XML Reference Cartridge applies the model corrections as outlined below.

EquipmentHolder under physical device:

 PhysicalDevice
 EquipmentHolder

The XML Reference Cartridge adds an equipment entity as follows:

 PhysicalDevice
 Equipment-named Artificial Equipment
 EquipmentHolder

Design Studio Construction
This section provides information about using Design Studio to construct the XML
Reference cartridge.

Physical Location yes N/A Text

Table 5–3 EquipmentHolder Mappings

EquipmentHolder

Information
Model
Support XML Object Field Type

Id static N/A Text

Name static manufacturerData
+ slotNumber

Text

Specification static N/A Programmatically set to
EricssonCPPEquipmentHolder

nativeEmsName static slotNumber Text

manufacturerData contains
SlotCount. SlotCount is used to
generate the required number of
slots and slotNumber is a slot
instance.

Description yes N/A Text

Serial Number yes N/A Text

Physical Location yes N/A Text

Table 5–2 (Cont.) Equipment Mappings

Equipment

Information
Model
Support XML Object Field Type

Design Studio Construction

5-10 Network Integrity File Transfer and Parsing Guide

The XML Reference cartridge contains the following specifications:

■ EricssonCPPPhysicalDevice

■ EricssonCPPEquipment

■ EricssonCPPEquipmentHolder

■ EricssonXmlFileCollectorProperties

Figure 5–4 shows the discover DiscoverEricssonXml action chain.

Figure 5–4 Discovery XML Action Chain

Table 5–4 Discover Ericsson Xml Action Construction

Result
Category

Address
Handler Scan Parameter Groups Model Processors

Device FileTransfer
AddressHandler

ftaFileTransferType

ftaFilePattern

ftaPort

ftaUser

ftaPassword

ftaSessionTimeOut

ftaSourceFileManagement

ftaRenameSuffix

Ericsson
CPP Model

Ericsson Xml Initializer

Ericsson Xml File collector

Ericsson Xml File Parser

Ericsson Xml Managed Element Collector

Ericsson Xml Device Modeler

Ericsson Xml Device Persister

Design Studio Construction

The XML Reference Cartridge 5-11

In Figure 5–4, the chevrons that correspond to EricssonXmlFileCollector and
EricssonXmlFileParser indicate the code-generated processors from Design Studio user
input.

■ EricssonXmlFileCollector is an instance of the file transfer processor

■ EricssonXmlFileParser is an instance of the file parser processor

Table 5–5 Discover Ericsson Xml Action Processors

Processor Name Variable

Ericsson Xml
Initializer

Input: N/A

Output:

■ physicalDeviceHelper

The output is a helper class used in proceeding chain.

Ericsson Xml File
Collector

Input: N/A

Output:

■ ericssonXmlFileCollectorFileCollection <java.util.Collecton>

The output is a collection of files found in the path specified in the
scope field.

Ericsson Xml File
Parser

Input:

■ ericssonXmlFileCollectorFileCollection

The input is a collection of files.

■ XmlSchema: schemas/configData.xsd

The schema is used to validate XML file instances.

Output: N/A

Ericsson Xml
Managed Element
Collector

Input: XmlFile

Output:

■ managedElements <java.util.ArrayList>

The output is a list containing the managedElements.

The processor is wrapped in a For each loop to execute this processor for
each XML file.

Ericsson Xml
Device Modeler

Input: ManagedElement, physicalDeviceHelper

Output: physicalDevice

The processor is wrapped in a For each loop to execute this processor for
each ME.

This processor can be extended to enhance an individual physical device
tree.

Ericsson Xml
Device Persister

Input: N/A

Output: N/A

Context is persisted for performance.

Design Studio Extension

5-12 Network Integrity File Transfer and Parsing Guide

Design Studio Extension
This section provides information about Design Studio extensions to the XML
Reference cartridge.

The source code to this cartridge is provided. You can change any part to customize
this cartridge to fit your environment.

For more information on extensibility, see Network Integrity Developer's Guide.

Note: configData.xsd is the root document of the XSD formed from
documents configData.xsd, genericNrm.xsd, inventoryNrm.xsd, and
sessionLog.xsd. These documents had to first be stitched and
validated after retrieval from:

http://www.3gpp.org

See the "The ASCII Reference Cartridge" for 3GPP URLs. Stitching
implies that schemaLocation had to be input into the configData.xsd
and inventoryNrm.xsd. In addition, all unused namespaces are
removed.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Document Revision History

	1 Overview
	File Transfer and Parsing Processors
	Reference Cartridges

	2 The File Transfer Processor
	About the File Transfer Processor
	File Transfer Output Parameters
	Scan Parameter Groups
	File Transfer Input Parameters
	Setting File Transfer Properties

	FTP and SFTP Limitations

	3 The File Parser Processor
	About the File Parser Processor
	About the XML API
	About ASCII Record API
	ASCII Parsing Examples
	Example: CSV File with Header, Body, and Trailer Records
	Example: ASCII File with Multi-line Records

	4 The ASCII Reference Cartridge
	About Alcatel 1359IOO Remote Inventory Data Handoff
	Modeling a Physical Device Hierarchy
	Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies

	Opening ASCII Reference Cartridge Files
	Opening Files in Design Studio

	Compiling and Deploying the Cartridge
	About the Cartridge Components
	Discover Alcatel 1359 IOO RI File
	Alcatel 1359IOO RI File Collector
	Alcatel 1359IOO RI File Parser
	Alcatel 1359IOO RI Modeler
	Alcatel 1359IOO RI Persister

	About Collected Data
	About Cartridge Modeling
	Hierarchy Mapping
	Oracle Communications Information Model Information
	Field Mapping

	Model Correction
	About Model Correction Code

	Design Studio Construction
	Design Studio Extension

	5 The XML Reference Cartridge
	Modeling a Physical Device Hierarchy
	Cartridge Dependencies
	Run Time Dependencies
	Design-Time Dependencies

	Opening XML Reference Cartridge Files
	Opening Files in Design Studio

	Compiling and Deploying the Cartridge
	About the Cartridge Components
	Discover Ericsson Xml
	Ericsson Xml Initializer
	Ericsson Xml File Collector
	Ericsson Xml File Parser
	Ericsson Xml Managed Element Collector
	Ericsson Xml Device Modeler
	Ericsson Xml Device Persister

	About Collected Data
	About Cartridge Modeling
	Hierarchy Mapping
	Oracle Communications Information Model
	Field Mapping

	Model Correction
	About Model Correction Code

	Design Studio Construction
	Design Studio Extension

