Oracle NoSQOL Database

C Driver Quick Start

12c¢ Release 1
(Library Version 12.1.3.3)

ORACLE

NOSQL DATABASE




Legal Notice
Copyright © 2011, 2012, 2013, 2014, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except

as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-
safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.
5/18/2015

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 1



Table of Contents

o T [T [ o 3
1] = 1= LT 0 e 3
USING The ProXy SeIVer . .ueiiiiiiiiiii ittt ettt eeeeieeeeereennaasessessnnsseeessnnnneasenns 4
Compiling and RUNNING C ClENTS tiiiiiiiietttiiiiiiieteeeeiiiteeeeeennneeeeesenrnneeeeessnnnsseseeenns 5
CoNNECLING T0 the ST .uiiiiiiiiiiii it ittt ettt et eeernaeeeesasnnnesesessnnnnesaenns 5

Automatically Starting the ProXy Server ......eeeiiiiiiiiiiiiiiiiiiieieiiiieeeeeeeninaeeeeanns 6
Creating Table and IndeX DefinitioNs .....eeiiiiiiiietiiieiiiietereiireeeeeeeerneeeeeessnnneesesanns 8
WIIting t0 @ Table ROW .uuviiiiiiiiiiii ittt eiiiiteeeeeeieeeeeeeaannaeeeeesennnneseessnnnnnneens 9
Deleting @ Table ROW .uuiiiiiiiiiiiiiiiiiiitteteiiieeeeeeenrnaeeeeeessnneseseessnnsseseessnnnnssseenns 10
Reading a Single Table ROW iiiiiieiiiiiiiiiiiiiiiiteeteeiieeeeeeeennaeeeseesnnnasessessnnnneess 11
Reading MULLiple Table ROWS ...uuueiiiiiiiiiiiiiiiiieteeteeiieeeeeeennnneeeesessnneseseessnnneesenes 12
Reading USING INAEXES ..vveiiiiiiittttieiiieteteeeiiteeeeeenrnseseesessnneeeeesesnnsseeesesnnseeenns 17
SEQUENCE EXECULION tiiiiiitititiiiiiittteeeeieteereeenneeeeeeessnneeessessnnnnessessnnnnssssssannnnes 22
Setting ConSiStENCY GUANANTEES .uvviiiriiinettterenineeeereernneeeeeeessnneeeeressnnnsesesssnnnnassens 25
Setting Durability GUAraNteES ...ceveiiieitiiiiiiiittereiiieeeeeeeiineeeeesenrnneeeesessnnsseecaannns 27
ProXy Server REfEIENCE ittt ittt teeiieeeeeeeeinaeeeesesnnnesessessnnnnessesnnes 29

Securing Oracle NoSQL Database ProXy SEIrVer ......iiiivieeriiieiiiieeeeieeiineeeeeeennnnnes 30

Trouble Shooting the ProXy SEIVer ..uiiiiiiiiiiiiiiiiiiiiiieiiiiteeeeeeiieeeeeeeeninnseeeenns 33

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 2



Introduction

This article provides a quick introduction to the Oracle NoSQL Database C driver. This driver
provides native C client access to data stored in Oracle NoSQL Database tables. (There is a
C JNI driver which provides a Key/Value API for access to Oracle NoSQL Database data. That
driver relies on a JNI layer and is not described by this article.)

The C driver is available as a separate download from the Oracle NoSQL Database server
package. You can obtain both the server and the driver download packages from:

http://www.oracle.com/technetwork/database/database-technologies/nosqldb/downloads/
index.html

To work, the C driver requires use of a proxy server which translates network activity between
the C client and the Oracle NoSQL Database store. The proxy is written in Java, and can run
on any machine that is network accessible by both your C client code and the Oracle NoSQL
Database store. However, for performance and security reasons, Oracle recommends that

you run the proxy on the same local host as your driver, and that the proxy be used in a 1:1
configuration with your drivers (that is, each instance of the proxy should be used with just a
single driver instance).

This quick start assumes that you have read and understood the concepts described in the
Oracle NoSQL Database Getting Started with the Table API guide. You can find that guide in
your Oracle NoSQL Database server installation package, or find it here:

o HTML:
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/index.html
» PDF:

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/Oracle-NoSQLDB-GSG-
Tables.pdf

The entirety of the APl used by the C driver is described in the C API Reference Guide. This
document can be accessed in the C driver package by pointing your browser to ... /kv-c-
driver-X.Y.Z/c/doc/html/index.html.

Installation

Both the C driver and the proxy are available in a common download package. The proxy
server resides in the kvproxy directory, and is provided as a Java jar file (kvproxy.jar). To
use the proxy, you must also have a Oracle NoSQL Database server installation. Specifically,
the kvclient. jar file from that installation must be available to the proxy.

The C driver library must be compiled before it can be used by your client code. The source
code for this library is available in the c directory of the driver package. Library dependencies
and compile instructions are available in the BUILDING. html which is found in the c directory.

The C driver is also available as a pre-compiled binary. To access this binary, download
and install the relevant rpm or deb file. If you use the rpm or deb, the required Java jar
files are also installed on your system. In this case, the relevant library and jar files are

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 3


http://www.oracle.com/technetwork/database/database-technologies/nosqldb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/downloads/index.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/index.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/Oracle-NoSQLDB-GSG-Tables.pdf
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/Oracle-NoSQLDB-GSG-Tables.pdf

installed into /usr/local/lib. To use them, you might need to adjust your CLASSPATH and
LD_LIBRARY_PATH environment variables to include that directory.

Using the Proxy Server

The proxy server is a Java application that accepts network traffic from the Table C API,
translates it into requests that the Oracle NoSQL Database store can understand, and then
forwards the translated request to the store. The proxy also provides the reverse translation
service by interpreting store responses and forwarding them to the client.

The proxy server can run on any network-accessible machine. It has minimal resource
requirements and, in many cases, can run on the same machine as the client code is running.

Before your C client can access the store, the proxy server must be running. It requires the
following jar files to be in its class path, either by using the java -cp command line option,
or by using the CLASSPATH environment variable:

« KVHOME/lib/kvclient.jar

e .../kv-c-driver-X.Y.Z/kvproxy/lib/kvproxy.jar
Note

If you installed using rpm or deb, then these files are located in /usr/local/1lib.

The proxy server itself is started using the oracle.kv.proxy.KVProxy command. At a
minimum, the following information is required when you start the proxy server:

¢ -helper-hosts

This is a list of one or more host:port pairs representing Oracle NoSQL Database storage
nodes that the proxy server can use to connect to the store.

e -port

The port where your client code can connect to this instance of the proxy server.
e -store

The name of the store to which the proxy server is connecting.

A range of other command line options are available. In particular, if you are using the
proxy server with a secure store, you must provide authentication information to the proxy
server. In addition, you will probably have to identify a store name to the proxy server. For
a complete description of the proxy server and its command line options, see Proxy Server
Reference (page 29).

The simple examples provided in this quick start guide were written to work with an proxy
server that is connected to a kvlite instance which was started with default values. The
location of the kvclient.jar and kvproxy.jar files were provided using a CLASSPATH
environment variable. The command line call used to start the proxy server was:

nohup java oracle.kv.proxy.KVProxy -port 7010 \

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 4



-helper-hosts localhost:5000 -store kvstore

Compiling and Running C Clients

To compile your C clients, link either 1ibkvstore.so or libkvstore-static.a. They can be
found in the 1ib directory contained in the installation location that you provided to cmake.

If you use the .so file, make sure to add its installation directory to your LD_LIBRARY_PATH
environment variable so that the library can be found at run time.

The kvstore.h header file is located in the include directory contained in the installation
location that you provided to cmake.

Connecting to the Store

To perform any store operations, you must establish a network connection between your client
code and the store. There are two pieces of information that you must provide:

1. Identify the store's name, host and port using a kv_config_t structure. The host and port
that you provide to this structure is for any machine hosting a node in the store. (Because
the store is comprised of many hosts, there should be multiple host/port pairs for you to
choose from.)

You create the kv_config_t structure using kv_create_config(). You can release the
structure using kv_release_config().

2. Identify the host and port where the proxy is running. You do this using
kv_open_store(). This function creates an kv_store_t structure, which is what
you will use for all subsequent store operations. You release this structure using
kv_close_store().

For example, suppose you have a Oracle NoSQL Database store named "MyNoSQLStore" and
it has a node running on n1.example.org at port 5000. Further, suppose you are running your
proxy on the localhost using port 7010. Then you would open and close a connection to the
store in the following way:

#include <stdlib.h>

#include <stdio.h>

#include "kvstore.h"

void open_store(kv_store t **);
void do_store ops(kv_store t *);

int main(void) {
kv_store_t *store = NULL;

open_store(&store);
if (!store) {

goto ERROR;
}

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 5



do_store_ops(store);

ERROR:
/* Close the store handle. */
if (store) {
kv_close_store(&store);

}
return 0;
}
void do_store_ops(kv_store_t *store)
{
printf("Do store operations here.\n");
}
void
open_store(kv_store_t **store)
{
kv_config t *config = NULL;
kv_error_t ret;
ret = kv_create_config("kvstore", // store name
"localhost", // host name
5000, // host port
&config);
if (ret != KV_SUCCESS) {
return;
}
/* Connect to a proxy server */
ret = kv_open_store(store, "localhost", 7010, config);
if (ret != KV_SUCCESS) {
printf("could not connect to the store.\n");
// Release the configuration structure
kv_release_config(&config);
}
}

If you are using a secure store then the configuration of your store handle must also include
the user name. Use kv_config_set_auth_user() for this purpose.

Automatically Starting the Proxy Server

Your client code can start the proxy server on the local host when it opens the store using
kv_open_store_with_proxy(). This function requires everything that kv_open_store()
requires, plus a kv_proxy_config t structure populated with the on-disk location of the
kvclient.jar and kvproxy.jar files.

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 6



You populate the kv_proxy_config_t structure using kv_create_proxy_config(). You
can release this structure (only necessary if some error occurs when opening the store) using
kv_release proxy config(). When your code is done with the proxy server, shut it down
using kv_shutdown_proxy().

For example:

int main(void) {
kv_store_t *store = NULL;

open_store(&store);
if (!store) {

goto ERROR;
}

do_store_ops(store);

ERROR:
/* Close the store handle. */
if (store) {
kv_shutdown_proxy(store);
kv_close_store(&store);
}

return 0;

}
// do_store_ops() not implemented in this example

void

open_store(kv_store_t **store)

{
kv_config t *config = NULL;
kv_proxy_config t *proxy_config = NULL;
kv_error_t ret;

const char *path2kvclient = "/export/kvstore/lib/kvclient.jar";
const char *path2kvproxy =
"/export/c_driver/kvproxy/lib/kvproxy.jar";

ret = kv_create_config("kvstore", // store name
"localhost", // host name
5000, // host port
&config);
// All configs are correct for kvlite
if (ret != KV_SUCCESS) {
return;

}

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 7



// Create the proxy configuration structure.
// This must identify where the two relevant jar
// files reside on disk.
ret = kv_create_proxy_config(path2kvclient,
path2kvproxy,
&proxy_config);
if (ret != KV_SUCCESS) {
printf("could not create proxy config.\n");
return;

}

ret = kv_open_store_with_proxy(store,
"localhost",
7010,
config,
proxy_config);
if (ret != KV_SUCCESS) {
printf("could not connect to the store.\n");
// Release the configuration structure
if (config) {
kv_release_config(&config);

}

if (proxy_config) {
kv_release_proxy_config(&proxy_config);

}
store = NULL;

}
Creating Table and Index Definitions

Before you can write data to tables in your store, you must define your tables using table
DDL statements. You also use DDL statements to define indexes. The table DDL is described in
detail in the Oracle NoSQL Database Getting Started with the Table API guide.

If you want to submit table DDL statements to the store from your C client code, use either
kv_table_execute_sync() or kv_table_execute(). The latter function submits DDL
statements to the store asynchronously, which you may want to do when creating indexes or
dropping tables because these operations can take a long time.

For example, to create a table synchronously:
void do_store_ops(kv_store_t *store)

{

kv_error_t ret;

/* ... Data operations ... */
kv_statement_result_t *result = NULL;

const char *statement = "CREATE TABLE Users2 (\

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 8



id INTEGER CHECK(id > 300), \

firstName STRING, \

lastName STRING, \

description STRING, \

PRIMARY KEY (SHARD(id, firstName), lastName)\

)

ret = kv_table_execute_sync(store, statement, &result);
if (ret != KV_SUCCESS) {
printf("Table creation failed.\n");
printf("Error message is %s\n",
kv_statement_result_get error_message(result));
} else {
printf("Table create succeeded.\n");
}
}

Writing to a Table Row

Once you have defined a table in the store, use kv_create_row() to create an empty table
row. Then use the appropriate kv_row_put_xxx() function (where xxx is the data type for
the field that you are writing) to populate each field with data. Finally, use kv_table put()
to actually write the table row to the store. For example, for a table designed like this:
"CREATE TABLE myTable (item STRING, \

description STRING, \

count INTEGER, \

percentage FLOAT, \

PRIMARY KEY (item))"

You can write a row of table data in the following fashion (the store open and close is skipped
for brevity):
void
do_store_ops(kv_store_t *store)
{
kv_error_t ret;
kv_row_t *row = NULL;

row = kv_create_row();

if (lrow) {
printf("row creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(row, "item", "Bolts");
if (ret != KV_SUCCESS) {

printf("row put 'item' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "description",

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 9



"Hex head, stainless");
if (ret != KV_SUCCESS) {
printf("row put 'description' failed.\n");
goto cleanup;
}
ret = kv_row_put_int(row, "count", 5);
if (ret != KV_SUCCESS) {
printf("row put 'count' failed.\n");
goto cleanup;

}

ret = kv_row_put_float(row, "percentage", 0.2173913);
if (ret != KV_SUCCESS) {

printf("row put 'percentage' failed.\n");

goto cleanup;

}

ret = kv_table_put(store, "myTable", row,
NULL); // new version
if (ret != KV_SUCCESS) {
printf("Store put failed.\n");
goto cleanup;
} else {
printf("Store put succeeded.\n");

}
cleanup:
if (row) {
kv_release_row(&row);
}

}

Other versions of kv_table put() exist which allow you to provide options and version
information, and so forth. See the API C documentation for details.

Deleting a Table Row

Use kv_table_delete() to delete a table row. Notice that this function does not return
KV_ERROR_T, but instead returns an integer.
void
do_store_ops(kv_store_t *store)
{
kv_error_t ret;
kv_row_t *key = NULL;

key = kv_create_row();

if ('key) {
printf("key creation failed.\n");
goto cleanup;

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 10



}

ret = kv_row_put_string(key, "item", "Bolts");
if (ret != KV_SUCCESS) {

printf("row put 'item' failed.\n");

goto cleanup;

}

ret = kv_table_delete(store, "myTable", key);
// ret is 1 if a row was deleted
// @ if no row with the provided key was found
// < @ if an error occurred.
if (ret < 0) {
printf("Row deletion failed. %i\n", ret);
goto cleanup;
} else {
printf("Row deletion succeeded.\n");

}
cleanup:
if (key) {
kv_release_row(&key);
}

}

Other versions of kv_table_delete() exist which allow you to provide options and version

information, and so forth. See the API C documentation for details.

Reading a Single Table Row

To read a single table row, create a kv_row_t structure set with the field names and

field values contained by the row that you want to retrieve. Then create a second

kv_row_t structure that you will use to hold the retrieved row. The row is retrieved using
kv_table get(). You can then examine the various fields in the retrieved row using the
proper version of kv_row_get_xxxx(), where xxxx is the datatype of the field that you are

examining.

For example, to retrieve the table row created in Writing to a Table Row (page 9):
void
do_store_ops(kv_store_t *store)
{
kv_error_t ret;
kv_row_t *key = NULL;

key = kv_create_row();

if ('key) {
printf("key creation failed.\n");
goto cleanup;

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 11



ret = kv_row_put_string(key, "item", "Bolts");
if (ret != KV_SUCCESS) {

printf("row put 'item' failed.\n");

goto cleanup;

}

kv_row_t *retRow = NULL;
retRow = kv_create_row();
if (!retRow) {

printf("retRow creation failed.\n");

goto cleanup;
}
ret = kv_table_get(store, "myTable", key, &retRow);
if (!retRow) {

printf("Row retrieval failed.\n");

goto cleanup;

}

const char *retItem
int retCount = 0;
float retPercentage

NULL, *retDescription = NULL;

0.0;

kv_row_get_string(retRow, "item", &retItem);
kv_row_get_string(retRow, "description", &retDescription);
kv_row_get_int(retRow, "count", &retCount);
kv_row_get_float(retRow, "percentage", &retPercentage);

printf("Item: %s. Desc: %s. Count is %i. Percent is %f\n",
retItem, retDescription, retCount, retPercentage);

cleanup:

if (key) {
kv_release_row(&key);
}

if (retRow) {
kv_release_row(&retRow);

}

Reading Multiple Table Rows

Use kv_table _multi_get() or kv_table_iterator() to read multiple rows from a table
at a time. These functions require you to provide a kv_row_t structure that serves as the
lookup key. Different restrictions apply to the key you provide, depending on the function
that you use. The example provided here uses kv_table_multi_get() which requires that
the provided key at least contains all the table's shard keys. If all of the shard keys are not
present, then the function will return without error, but without any results.

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 12



kv_table multi_get() populates a kv_iterator_t structure, which you iterate over using

kv_iterator_next(). Use kv_iterator_get result() and kv_result get row() to

retrieve the row available for each position in the result set.

For example, suppose you design a table like this:

CREATE TABLE myTable (
itemType STRING,
itemCategory STRING,
itemClass STRING,
itemColor STRING,
itemSize STRING,
price FLOAT,
inventoryCount INTEGER,

PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,

itemSize)

)

And you populate it with data like this:

int main(void) {
kv_store_t *store = NULL;

open_store(&store);
if (!store) {

goto ERROR;
}

do_store_ops(store, "Hats", "baseball", "longbill",

"red", "small", 12.07, 127);

do_store_ops(store, "Hats", "baseball", "longbill",

"red", "medium", 13.07, 201);

do_store_ops(store, "Hats", "baseball", "longbill",

"red", "large", 14.07, 309);
retrieve_table_rows(store);

ERROR:
/* Close the store handle. */
if (store) {
kv_close_store(&store);

}

return 0;

}

void
do_store_ops(kv_store_t *store,

const char *itemType, const char *itemCategory,
const char *itemClass, const char *itemColor,

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 13



const char *itemSize, float price, int inventoryCount)

kv_error_t ret;
kv_row_t *row = NULL;

row = kv_create_row();

if (lrow) {
printf("row creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(row, "itemType", itemType);
if (ret != KV_SUCCESS) {

printf("row put 'itemType' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "itemCategory", itemCategory);
if (ret != KV_SUCCESS) {

printf("row put 'itemCategory' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "itemClass", itemClass);
if (ret != KV_SUCCESS) {

printf("row put 'itemClass' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "itemColor", itemColor);
if (ret != KV_SUCCESS) {

printf("row put 'itemColor' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "itemSize", itemSize);
if (ret != KV_SUCCESS) {

printf("row put 'itemSize' failed.\n");

goto cleanup;

}

ret = kv_row_put_float(row, "price", price);
if (ret != KV_SUCCESS) {
printf("row put 'price' failed.\n");
goto cleanup;

}

ret = kv_row_put_int(row, "inventoryCount", inventoryCount);
if (ret != KV_SUCCESS) {

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 14



printf("row put 'inventoryCount' failed.\n");
goto cleanup;

}

ret = kv_table_put(store, "myTable", row,
NULL); // new version
if (ret != KV_SUCCESS) {
printf("Store put failed.\n");
goto cleanup;
} else {
printf("Store put succeeded.\n");

}
cleanup:
if (row) {
kv_release_row(&row);
}

}

Then you can retrieve all of the rows in the table by providing just the shard key because, in
this example, the shard key is identical for all the rows in the table. (Normally, if you wanted
to display all the rows in a table, you would use kv_table_iterator with an empty row for

the key parameter.)

void

retrieve_table_rows(kv_store_t *store)

{

kv_error_t ret;
kv_iterator_t *iter = NULL;
kv_row_t *key = NULL;

key = kv_create_row();

if ('key) {
printf("key creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(key, "itemType", "Hats");
if (ret != KV_SUCCESS) {

printf("row put 'itemType' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(key, "itemCategory", "baseball");
if (ret != KV_SUCCESS) {

printf("row put 'itemCategory' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(key, "itemClass", "longbill");

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 15



if (ret != KV_SUCCESS) {

printf("row put 'itemClass' failed.\n");
goto cleanup;

}

ret = kv_table_multi_get(store,
"myTable",
key,

KV_FALSE /* Keyonly*/,

NULL /* Field range */,
NULL /* Included tables */,
NULL /* Read options */,
&iter);

int nRows = 0;
while (kv_iterator_next(iter) == KV_SUCCESS) {

const kv_result_t *result;
kv_row_t *retRow;

const char *itemType = NULL;
const char *itemCategory = NULL;
const char *itemClass = NULL;
const char *itemColor = NULL;
const char *itemSize = NULL;
float price = 0.0,

int inventoryCount = 0;

result = kv_iterator_get_result(iter);
retRow = kv_result_get_row(result);

NRows++;

kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,

"itemType", &itemType);
"itemCategory", &itemCategory);
"itemClass", &itemClass);
"itemSize", &itemSize);
"itemColor", &itemColor);

kv_row_get float(retRow, "price", &price);
kv_row_get_int(retRow, "inventoryCount", &inventoryCount);

printf("Row %d:\n", nRows);

printf("\t%s, %s, %s:\n",

printf("\t\tColor: %s
itemSize);

printf("\t\tprice: %f
inventoryCount);

}

cleanup:
if (key) {

itemType, itemCategory, itemClass);

itemSize: %s\n", itemColor,

inventory: %d\n", price,

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 16



kv_release_row(&key);

}

if (iter) {
kv_release_iterator(&iter);

}

}

Reading Using Indexes

Use kv_index_iterator() to read table rows based on a specified index. To use this
function, the index must first be created using the CREATE INDEX statement.

There are two ways to identify the index values you want the results set based on. The first
way is to provide a kv_row_t structure that represents the indexed field(s) and value(s)
that you want retrieved. The second way is to provide a kv_field range t structure that
identifies starting and ending index values that you want returned. The kv_field_range_t
and kv_row_t structures can be used together to restrict the return set values.

If both the kv_row_t and kv_field_range_t values are NULL, then every row in the table
matching the specified index is contained in the return set.

For example, suppose you have a table defined like this:

CREATE TABLE myTable (
surname STRING,
familiarName STRING,
userID STRING,
phonenumber STRING,
address STRING,
email STRING,
dateOfBirth STRING,
PRIMARY KEY (SHARD(surname, familiarName), userID))

With this index:
CREATE INDEX DoB ON myTable (dateOfBiPth)

And you populate the table with data like this:
int main(void) {
kv_store_t *store = NULL;

open_store(&store);
if (!store) {

goto ERROR;
}

do_store_ops(store, "Anderson", "Pete", "panderson",
"555-555-5555", "1122 Somewhere Court",
"panderson@example.com", "1994-05-01");

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 17



do_store_ops(store, "Andrews", "Veronica", "vandrews",

"666-666-6666", "5522 Nowhere Court",
"vandrews@example.com", "1973-08-21");

do_store_ops(store, "Bates", "Pat", "pbates",
"777-777-7777", "12 Overhere Lane",
"pbates@example.com”, "1988-02-20");

do_store_ops(store, "Macar", "Tarik", "tmacar",
"888-888-8888", "100 Overthere Street",
"tmacar@example.com”, "1990-05-17");

read_index(store);

ERROR:
/* Close the store handle. */
if (store) {
kv_close_store(&store);
}

return 0;

}

void
do_store_ops(kv_store_t *store,

const char *surname, const char *familiarName,

const char *userID, const char *phone,
const char *address, const char *email,
const char *birthdate)

kv_error_t ret;
kv_row_t *row = NULL;

row = kv_create_row();

if (lrow) {
printf("row creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(row, "surname", surname);
if (ret != KV_SUCCESS) {

printf("row put 'surname' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "familiarName", familiarName);

if (ret != KV_SUCCESS) {
printf("row put 'familiarName' failed.\n");
goto cleanup;

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 18



}

ret = kv_row_put_string(row, "userID", userID);
if (ret != KV_SUCCESS) {

printf("row put 'userID' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "phonenumber", phone);
if (ret != KV_SUCCESS) {

printf("row put 'phonenumber' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "address", address);
if (ret != KV_SUCCESS) {

printf("row put 'address' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "email", email);
if (ret != KV_SUCCESS) {

printf("row put 'email' failed.\n");

goto cleanup;

}

ret = kv_row_put_string(row, "dateOfBirth", birthdate);
if (ret != KV_SUCCESS) {

printf("row put 'birthdate' failed.\n");

goto cleanup;

ret = kv_table_put(store, "myTable", row,
NULL); // new version
if (ret != KV_SUCCESS) {
printf("Store put failed.\n");
goto cleanup;
} else {
printf("Store put succeeded.\n");

}

cleanup:
if (row) {
kv_release_row(&row);

}

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 19



Then you can read using the DoB index using the following function. In the following example,
BLOCK 1 (see the comments in the code) is commented out, because its usage with BLOCK 2
causes the result set to be empty. Comment both BLOCK 1 and BLOCK 2 in order to print the
entire table.
void
read_index(kv_store_t *store)
{
kv_error_t ret;
kv_iterator_t *iter = NULL;
kv_row_t *key = NULL;
kv_field_range_t *rangep = NULL;

key = kv_create_row();

if ('key) {
printf("key creation failed.\n");
goto cleanup;

}

// BLOCK 1:

// Uncomment this block to look up only table rows with a
// dateOfBirth field set to "1988-02-20". If this

// block and BLOCK 2 are both used, then the result set
// will be empty.

//

//ret = kv_row_put_string(key, "dateOfBirth", "1988-02-20");
//if (ret != KV_SUCCESS) {

// printf("row put 'dateOfBirth' failed.\n");

// goto cleanup;

//}

// BLOCK 2:

// This field range restricts the results set to only

// those rows with a dateOfBirth field value between

// "1990-01-01" and "2000-01-01", inclusive.

ret = kv_create_field_range("dateOfBirth", // Field
"1990-01-01", // Start value

KV_TRUE, // Inclusive?
"2000-01-01", // End value
KV_TRUE, // Inclusive?
&rangep);

if (ret != KV_SUCCESS) {
printf("field range creation failed.\n");
goto cleanup;

}

ret = kv_index_iterator(store, "myTable", "DoB",
key, // Key to use for the lookup
KV_FALSE, // Whether only primary keys
// are returned

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 20



rangep, // Field range

NULL, // Included tables
KV_DIRECTION_UNORDERED,

NULL, // Read options

0, // max iterator results, @ - use default

&iter);

int nRows = 0;

while (kv_iterator_next(iter) == KV_SUCCESS) {
const kv_result_t *result;
kv_row_t *retRow;
const char *surname = NULL;
const char *familiarName = NULL;
const char *userID = NULL;
const char *phonenumber = NULL;
const char *address = NULL;
const char *email = NULL;
const char *dateOfBirth = NULL;

result = kv_iterator_get_result(iter);
retRow = kv_result_get_row(result);
NRows++;

kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,
kv_row_get_string(retRow,

"surname", &surname);
"familiarName", &familiarName);
"userID", &userID);
"phonenumber", &phonenumber);
"address", &address);

"email", &email);
"dateOfBirth", &dateOfBirth);

printf("Row %d:\n", nRows);

printf("\t%s, %s (%s):\n", familiarName, surname, userID);

printf("\t\tPhone: %s\n", phonenumber);
printf("\t\tEmail: %s\n", email);
printf("\t\tAddress: %s\n", address);
printf("\t\tDoB: %s\n", dateOfBirth);

}

cleanup:

if (key) {
kv_release_row(&key);
}

if (rangep) {

kv_release_field_range(&rangep);

}

if (iter) {

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 21



kv_release_iterator(&iter);

}

Sequence Execution

Use kv_create_operations() to create a kv_operations_t structure to hold a sequence of
write operations. All the write operations will execute as a single atomic structure so long as
all the operations share the same shard key.

You populate operations to the kv_operations_t structure using a series of one or more
kv_create_table xxxx_op() functions, where xxxx indicates the type of operation to insert
into the operations list. For example, kv_create_table_delete_op() inserts a row deletion
operation into the sequence.

The operations sequence is executed using kv_table_execute_operations().

For example, if you had a table populated with data such as is described in Reading Multiple
Table Rows (page 12), then you could update the price and inventory values for each row of
the table in an atomic operation like this:
int main(void) {

kv_error_t ret;

kv_store_t *store = NULL;

kv_operations_t *op = NULL;

kv_operation_results_t *resultp = NULL;

open_store(&store);
if (!store) {

goto ERROR;
}

op = kv_create_operations();

// Causes all rows to be released when op is released.
kv_operations_set_donate(op);

ret = add_op_list(op, "Hats", "baseball", "longbill",
"red", "small", 13.07, 107);
if (ret != KV_SUCCESS) {
printf("adding to op list failed.\n");
return -1;

}

ret = add_op_list(op, "Hats", "baseball", "longbill",
"red", "medium", 14.07, 198);
if (ret != KV_SUCCESS) {
printf("adding to op list failed.\n");
return -1;

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 22



ret = add_op_list(op, "Hats", "baseball", "longbill",
"red", "large", 15.07, 140);
if (ret != KV_SUCCESS) {
printf("adding to op list failed.\n");
return -1;

}

ret = kv_table_execute_operations(store, op, NULL, &resultp);
if (ret != KV_SUCCESS) {

printf("operation execution failed.\n");
} else {

printf("operation execution succeeded.\n");

}

ERROR:

}

int

add_

/* Close the store handle. */
if (store) {
kv_close_store(&store);

}

if (resultp) {
kv_release_operation_results(&resultp);

}
if (op) {

kv_release_operations(&op);
}

return 0;

op_list(kv_operations_t *op,
const char *itemType, const char *itemCategory,
const char *itemClass, const char *itemColor,
const char *itemSize, float price, int inventoryCount)

kv_error_t ret;
kv_row_t *row = NULL;

row = kv_create_row();

if (lrow) {
printf("row creation failed.\n");
return -1;

}

ret = kv_row_put_string(row, "itemType", itemType);
if (ret != KV_SUCCESS) {

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 23



printf("row put 'itemType' failed.\n");
return -1;

}

ret = kv_row_put_string(row, "itemCategory", itemCategory);
if (ret != KV_SUCCESS) {

printf("row put 'itemCategory' failed.\n");

return -1;

}

ret = kv_row_put_string(row, "itemClass", itemClass);
if (ret != KV_SUCCESS) {

printf("row put 'itemClass' failed.\n");

return -1;

}

ret = kv_row_put_string(row, "itemColor", itemColor);
if (ret != KV_SUCCESS) {

printf("row put 'itemColor' failed.\n");

return -1;

}

ret = kv_row_put_string(row, "itemSize", itemSize);
if (ret != KV_SUCCESS) {

printf("row put 'itemSize' failed.\n");

return -1;

}

ret = kv_row_put_float(row, "price", price);
if (ret != KV_SUCCESS) {
printf("row put 'price' failed.\n");
return -1;

}

ret = kv_row_put_int(row, "inventoryCount", inventoryCount);
if (ret != KV_SUCCESS) {

printf("row put 'inventoryCount' failed.\n");

return -1;

}

ret = kv_create_table_put_op(op, "myTable", row,
KV_RETURN_ROW_NONE, // kv_return_row_version_enum
0); // Abort on failure?
if (ret != KV_SUCCESS) {
printf("Store put op failed.\n");
return -1;
} else {
printf("Store put op succeeded.\n");

}

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 24



// Do not release the row at the end of this, as doing so will
// cause the operation execution to core dump. The row must be
// saved for the future operation.

//

return KV_SUCCESS;

}

Setting Consistency Guarantees

By default, read operations are performed with a consistency of guarantee of
KV_CONSISTENCY_NONE. Use one of the following functions to create a consistency guarantee
that overrides this default:

1. kv_create_simple_consistency()
2. kv _create_time_consistency()
3. kv_create_version_consistency()

These allocate and populate a kv_consistency_t structure that must be released using
kv_release_consistency().

You then use the kv_consistency_t structure with kv_create_read_options() to create
allocate and populate a kv_read_options_t structure. Use kv_release_read_options() to
release this structure.

Finally, use the kv_read_options_t structure when performing a read operation from the
store.

For example, the code fragment shown in Reading a Single Table Row (page 11) can be
rewritten to use a default consistency policy in the following way:
void
do_store_ops(kv_store_t *store)
{
kv_consistency_t *consis = NULL;
kv_error_t ret;
kv_read_options_t *readopts = NULL;
kv_result_t *results = NULL;
kv_row_t *key = NULL;

ret = kv_create_simple_consistency(KV_CONSISTENCY_ABSOLUTE,
&consis);
if (ret != KV_SUCCESS) {
printf("consistency creation failed\n");
goto cleanup;

}

ret = kv_create_read_options(consis, // consistency
o, // timeout value.
// © means use the default.

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 25



&readopts);
if (ret !'= KV_SUCCESS) {
printf("readoptions creation failed\n");
return;

}

key = kv_create_row();

if ('key) {
printf("key creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(key, "item", "Bolts");
if (ret != KV_SUCCESS) {

printf("row put 'item' failed.\n");

goto cleanup;

}

ret = kv_table_get_with_options(store,
"myTable",
key,
readopts,
&results);

if (ret != KV_SUCCESS) {
printf("Retrieval failed.\n");
goto cleanup;

}

kv_row_t *retRow = kv_result_get_row(results);

const char *retItem
int retCount = 0;
float retPercentage

NULL, *retDescription = NULL;

0.0;

kv_row_get_string(retRow, "item", &retItem);
kv_row_get_string(retRow, "description", &retDescription);
kv_row_get_int(retRow, "count", &retCount);
kv_row_get_float(retRow, "percentage", &retPercentage);

printf("Item: %s. Desc: %s. Count is %i. Percent is %f\n",
retItem, retDescription, retCount, retPercentage);

cleanup:
if (key) {
kv_release_row(&key);
}

if (retRow) {
kv_release_row(&retRow);

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 26



}

}

// kv_release_read_options also releases the

// kv_consistency_t structure.

if (readopts) {
kv_release_read_options(&readopts);

}

Setting Durability Guarantees

By default, write operations are performed with a durability guarantee of
KV_DURABILITY_COMMIT_NO_SYNC. You can override this by creating and using a durability
guarantee.

Use kv_create_durability() to initialize a kv_durability_t structure. You then use the
kv_durability_t structure with kv_create write options() to allocate and populate a
kv_write_options_t structure. Use kv_release_write_options() to release this structure.

Finally, use the kv_write options_t structure when performing a write operation in the

store.

For example, the code fragment shown in Writing to a Table Row (page 9) can be rewritten
to use a durability policy in the following way:

void

do_store_ops(kv_store_t *store)

{

kv_error_t ret;

kv_row_t *row = NULL;
kv_durability t durability;
kv_write_options_t *writeopts;
kv_result_t *results;

row = kv_create_row();

if (lrow) {
printf("row creation failed.\n");
goto cleanup;

}

ret = kv_row_put_string(row, "item", "Bolts");
if (ret != KV_SUCCESS) {
printf("row put 'item' failed.\n");
goto cleanup;
}
ret = kv_row_put_string(row, "description"”, "Hex head,
if (ret != KV_SUCCESS) {
printf("row put 'description' failed.\n");
goto cleanup;

}

ret = kv_row_put_int(row, "count", 5);

stainless");

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 27



if (ret != KV_SUCCESS) {
printf("row put 'count' failed.\n");
goto cleanup;

}

ret = kv_row_put_float(row, "percentage", 0.2173913);

if (ret != KV_SUCCESS) {
printf("row put 'percentage' failed.\n");
goto cleanup;

}

durability = kv_create_durability(
KV_SYNC_FLUSH, // Master sync
KV_SYNC_NONE, // Replica sync
KV_ACK_MAJORITY); // Ack policy

ret = kv_create_write_options(durability,

0, // 0 is default timeout

&writeopts);
if (ret !'= KV_SUCCESS) {
printf("Write options creation failed.\n");
return;

ret = kv_table_put_with_options(store,
"myTable",
row,
writeopts,

// Whether the new row should be
// returned in the results

// parameter.

KV_RETURN_ROW_NONE,

&results);

if (ret != KV_SUCCESS) {
printf("Store put failed.\n");
goto cleanup;

} else {
printf("Store put succeeded.\n");

cleanup:

}

if (row) {
kv_release_row(&row);

}

if (writeopts) {
kv_release_write_options(&writeopts);

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start

Page 28



}

if (results) {
kv_release_result(&results);
}
}

Proxy Server Reference

The proxy server command line options are:

nohup java -cp KVHOME/lib/kvclient.jar:kvproxy/lib/kvproxy.jar
oracle.kv.proxy.KVProxy -help
-port <port-number> Port number of the proxy server. Default: 5010
-store <store-name> Required KVStore name. No default.
-helper-hosts <host:port,host:port,...> Required list of KVStore
hosts and ports (comma separated).
-security <security-file-path> Identifies the security file used
to specify properties for login. Required for connecting to
a secure store.

-username <user> Identifies the name of the user to login to the
secured store. Required for connecting to a secure store.

-read-zones <zone,zone,...> List of read zone names.

-max-active-requests <int> Maximum number of active requests towards
the store.

-node-limit-percent <int> Limit on the number of requests, as a
percentage of the requested maximum active requests.
-request-threshold-percent <int> Threshold for activating request
limiting, as a percentage of the requested maximum active

requests.

-request-timeout <long> Configures the default request timeout in
milliseconds.

-socket-open-timeout <long> Configures the open timeout in
milliseconds used when establishing sockets to the store.

-socket-read-timeout <long> Configures the read timeout in
milliseconds associated with the underlying sockets to the
store.

-max-iterator-results <long> A long representing the maximum
number of results returned in one single iterator call.
Default: 100

-iterator-expiration <long> Iterator expiration interval in

milliseconds.
-max-open-iterators <int> Maximum concurrent opened iterators.
Default: 10000
-num-pool-threads <int> Number of proxy threads. Default: 20
-max-concurrent-requests <int> The maximum number of
concurrent requests per iterator. Default: <num_cpus * 2>
-max-results-batches <int> The maximum number of results
batches that can be held in the proxy per iterator.
Default: ©

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 29



-help Usage instructions.

-version Print KVProxy server version number.

-verbose Turn verbose flag on.
Always start the Oracle NoSQL Database store before starting the proxy server.
When connecting to a non-secured store, the following parameters are required:
¢ -helper-hosts
e -port
e -store
When connecting to a secured store, the following parameters are also required:

e -security

e -username

Note

Drivers are able to start and stop the proxy server on the local host if properly
configured. See Automatically Starting the Proxy Server (page 6) for details.

Securing Oracle NoSQL Database Proxy Server

If configured properly, the proxy can access a secure installation of Oracle NoSQL Database. To
do this, the -username and -security proxy options must be specified.

The following example describes how to add security to an Oracle NoSQL Database single
node deployment. The example also shows how to initiate a connection to the Oracle NoSQL
Database replication nodes.

To install Oracle NoSQL Database securely:

java -Xmx256m -Xms256m \

-jar KVHOME/lib/kvstore.jar makebootconfig \

-root KVROOT -port 5000 \

-admin 5001 -host node@l -harange 5890,5900 \
-store-security configure -pwdmgr pwdfile -capacity 1

1.  Run the makebootconfig utility with the required -store-security option to set up the
basic store configuration with security:

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:

Enter a password for the Java KeyStore:

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 30



3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: *¥¥¥¥kikkix

Re-enter the KeyStore password for verification: **x¥¥¥kkkxx
Created files:

security/client.trust

security/client.security

security/store.keys

security/store.trust

security/store.passwd

security/security.xml

Note

In a multi-host store environment, the security directory and all files contained
in it should be copied to each server that will host a Storage Node. For more
information on multiple node deployments see the Oracle NoSQL Database
Security Guide.

4. Start the Storage Node Agent (SNA):

nohup java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. To reduce risk of unauthorized
access, an admin will only allow you to connect to it from the host on which it is running.
This security measure is not a complete safeguard against unauthorized access. It is
important that you do not provide local access to machines running KVStore. In addition,
you should perform steps 5, 6 and 7 soon after this step to minimize the time period in
which the admin might be accessible without full authentication. For more information on
maintaining a secure store see the Oracle NoSQL Database Security Guide.

5. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx256m -Xms256m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node@l \
-security KVROOT/security/client.security
Logged in admin as anonymous

6. Use the configure -name command to specify the name of the KVStore that you want to
configure:
kv-> configure -name mystore
Store configured: mystore

7. Configure the KVStore by deploying a Zone, a Storage Node, and an Admin Node. Then,
create a Storage Node Pool. Finally, create and deploy a topology.

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 31



kv-> plan deploy-zone -name mydc -rf 1 -wait

Executed plan 2, waiting for completion...

Plan 2 ended successfully

kv-> plan deploy-sn -zn znl -port 5000 -host node@l -wait
Executed plan 3, waiting for completion...

Plan 3 ended successfully

kv-> plan deploy-admin -sn snl -port 5001 -wait

Executed plan 4, waiting for completion...

Plan 4 ended successfully

kv-> pool create -name mypool

kv-> pool join -name mypool -sn snil

Added Storage Node(s) [snl] to pool mypool

kv-> topology create -name mytopo -pool mypool -partitions 30
Created: mytopo

kv-> plan deploy-topology -name mytopo -wait

Executed plan 5, waiting for completion...

Plan 5 ended successfully

8. Create an admin user. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: *¥*¥iixx

Re-enter the new password: **x****x*

Executed plan 6, waiting for completion...
Plan 6 ended successfully

9. Create a new password file to store the credentials needed to allow clients to login as the
admin user (root):
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file KVROOT/security/login.passwd
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file KVROOT/security/login.passwd -set -alias root
Enter the secret value to store: ***iiiik
Re-enter the secret value for verification: ******x*x*
Secret created
OK

Note

The password must match the one set for the admin in the previous step.

10. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username” property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following command:
java -Xmx256m -Xms256m \

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 32



-jar KVHOME/1lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSvl
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Then, to run KVProxy and access the secure Oracle NoSQL Database deployment:
java -cp KVHOME/1lib/kvclient.jar:KVPROXY/1lib/kvproxy.jar
oracle.kv.proxy.KVProxy -helper-hosts node01:5000 -port 5010
-store mystore -username root -security mylogin
Nov 21, 2014 12:59:12 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: Starting KVProxy server
Nov 21, 2014 12:59:12 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: Connect to Oracle NoSQL Database mystore nodes : localhost:5000
Nov 21, 2014 12:59:13 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: ... connected successfully
Nov 21, 2014 12:59:13 AM oracle.kv.proxy.KVProxy startServer
INFO: PS: Starting listener ( Half-Sync/Half-Async server - 20
no of threads on port 5010)

Note

Because this proxy server is being used with a secure store, you should limit the proxy
server's listening port (port 5010 in the previous example) to only those hosts running
authorized clients.

Trouble Shooting the Proxy Server

If your client is having trouble connecting to the store, then the problem can possibly be with
your client code, with the proxy and its configuration, or with the store. To help determine
what might be going wrong, it is useful to have a high level understanding of what happens
when your client code is connecting to a store.

1. First, your client code tries to connect to the ip:port pair given for the proxy.

2. If the connection attempt is not successful, and your client code indicates that the proxy
should be automatically started, then:

a. The client driver will prepare a command line that starts the proxy on the local host.
This command line includes the path to the java command, the classpath to the two
jar files required to start the proxy, and the parameters required to start the proxy
and connect to the store (these include the local port for the proxy to listen on, and
the store's connection information).

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 33



b. The driver executes the command line. If there is a problem, the driver might be
able to provide some relevant error information, depending on the exact nature of
the problem.

c. Upon command execution, the driver waits for a few seconds for the connection to
complete. During this time, the proxy will attempt to start. At this point it might
indicate a problem with the classpath.

Next, it will check the version of kvclient.jar and indicate if it is not suited.

After that, it will check the connection parameters, and indicate problems with
those, if any.

Then the proxy will actually connect to the store, using the helper-hosts
parameter. At this time, it could report connection errors such as the store is not
available, security credentials are not available, or security credentials are incorrect.

Finally, the proxy tries to listen to the indicated port. If there's an error listening
to the port (it is already in use by another process, for example), the proxy reports
that.

d. If any errors occur in the previous step, the driver will automatically repeat the
entire process again. It will continue to repeat this process until it either successfully
obtains a connection, or it runs out of retry attempts.

Ultimately, if the driver cannot successfully create a connection, the driver will
return with an error.

3. If the driver successfully connects to the proxy, it sends a verify message to the proxy.
This verify message includes the helper-host list, the store name, the username (if using a
secure store), and the readzones if they are being used in the store.

If there is anything wrong with the information in the verify message, the proxy will
return an error message. This causes the proxy to check the verify parameters so as to
ensure that the driver is connected to the right store.

4. If there are no errors seen in the verify message, then the connection is established and
store operations can be performed.

To obtain the best error information possible when attempting to troubleshoot a connection
problem, start the proxy with the -verbose command line option. Also, you can enable
assertions in the proxy Java code by using the java -ea command line option.

Between these two mechanisms, the proxy will provide a great deal of information. To help
you analyze it, you can enable logging to a file. To do this:

Start the proxy with the following parameter:

java -cp KVHOME/lib/kvclient.jar:KVPROXY/1lib/kvproxy.jar
-Djava.util.logging.config.file=1logger.properties
oracle.kv.proxy.KVProxy -helper-hosts node01:5000 -port 5010

5/18/2015

Oracle NoSQL Database Table C Driver Quick Start Page 34



-store mystore -verbose
The file logger.properties would then contain content like this:

# Log to file and console

handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

## ConsoleHandler ##

java.util.logging.ConsoleHandler.level = FINE

java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

## FileHandler ##

java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter

# Limit the size of the file to x bytes

java.util.logging.FileHandler.limit = 100000

# Number of log files to rotate

java.util.logging.FileHandler.count = 1

# Location and log file name

# %g is the generation number to distinguish rotated logs

java.util.logging.FileHandler.pattern = ./kvproxy.%g.log

Configuration parameters control the size and number of rotating log files used (similar
to java logging, see java.util.logging.FileHandler). For a rotating set of files, as each file
reaches a given size limit, it is closed, rotated out, and a new file is opened. Successively
older files are named by adding "0", "1", "2", etc. into the file name.

5/18/2015 Oracle NoSQL Database Table C Driver Quick Start Page 35


http://docs.oracle.com/javase/7/docs/api/java/util/logging/FileHandler.html

	Oracle NoSQL Database Table C Driver Quick Start
	Table of Contents
	Introduction
	Installation
	Using the Proxy Server
	Compiling and Running C Clients
	Connecting to the Store
	Automatically Starting the Proxy Server

	Creating Table and Index Definitions
	Writing to a Table Row
	Deleting a Table Row
	Reading a Single Table Row
	Reading Multiple Table Rows
	Reading Using Indexes
	Sequence Execution
	Setting Consistency Guarantees
	Setting Durability Guarantees
	Proxy Server Reference
	Securing Oracle NoSQL Database Proxy Server
	Trouble Shooting the Proxy Server


