ORACLE
COMMERCE

Assembler Application Developer's Guide

Version 11.2
October 2015

Assembler Application Developer's Guide

Product version: 11.2
Release date: 10-22-15
Copyright © 2003, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and

its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Table of Contents

P O G e e Xi
ADOUL This QUILE ...eitit it e e e et ettt et et e e e e et e et e e e e e e eaaeaeenans Xi
Who should use this QUIAEuieieie e xi
Conventions used iN this QUIAE ... e xii
(@e] o] - Tatd g To O - el ST T o] o Yo & A PP Xii

1. ADOUT the ASSEMDIET et ettt 1
Introduction 10 the ASSEMDIET ... e 1

What is the AssembIler? e 1
Configuring Assembler applications in Experience Managercoevevriiiniiiininieiiieneienennenens 5
Assembler Search and Guided Navigation FEAtUIeSc.vueviitiiinirtiine e 5
Assembler ArchiteCtural OVEIVIEWviiiiii ettt e e e e 7
The Assembler processing MOloinininii e 7
About serialization and de-serializationcocieiiiiiiiiiiiii e 1
The Assembler eventing frameWOrKo.iiiiiiie e aans 12
About Assembler error handlingc.ouiniiiiiii e 13
About cartridges and CONTENT IEEMSuiuit ittt eenene 13
F A o oYU =T 4 e o =T PN 14
Y {0 et (01N |t e o =T 14
2. Designing an Assembler APPlICAtIONc.iuiniriii e e 17
Planning an Assembler ApPliCationo.iii i e 17
About planning your application SItEMAaPeeeiiiiiiii e 17
F e oo LUy o LYo T=IN § Y o = O P 18
ADOUL CONTENT FOIAEIS .eeeeiii e et aans 23
ADOUL SITS ..ttt e e e 30
Creating Experience Manager TEMPIateso.euiuiirt ittt ee et ee e eenanaeanenaenen 33
ADOUL Creating teMIPIATES ...v.e ittt et ettt e e et e 33
Anatomy Of @ tEMPIATE ...ttt 34
About the template XML SCheMAviuiiitiiii e e e e e e 35
B aa] o] L= o LT 1 =T PPt 35
About the type Of @ TEMPIATE ...iuieii e eans 36
Specifying the description and thumbnail image for a templatec.ccocoeiiiiiiiiiinnnen. 36
Specifying the default name for a cartridgecooiiiiiii 38
Defining the content properties and editing interfaceccooviiiiiiiiiiiiiiii s 38
SETUCTUTAl PrOPEITIES o .et ittt ettt ettt et e et e e et et e e e et e e e et e et eteenaenenes 41
About keyword redir@Cts GroUPSuuiu ettt et et 44
ADOUL MUILIPIE T0CAIES .. et e e e e e e e e e 47
Managing Experience Manager TEMPIAteSuvuenireitinietit e eiet e iee e eneneeaeenaaes 48
3. Developing an Assembler APPlICAtIONiuiit it e et aa s 53
Deploying the ASSEMDIET i ettt 53
Assembler environmMeNt rEQUIrEMENTSuiniitieiet ettt eee e re e aeeaaeranenans 53
F N 3= g o] o] F= e 1= oT=T g Ve [T o Tl =1 P 54
About deploying the Assembler ... 54
Assembler CONfIUIrAtioNncuininiii e 55
INVOKING the ASSEMDIEKt e e 61
INnvoking the AssembIer iN JaVao.uiriiiiiii e e e e 61
Querying the AsSemMbIEr SEIVICEouuiuiniie i e e eea e 64
About building an Assembler qUErY StHNGc.vuuiuiiien i 66
About retrieving Assembler results using the packaged servicesccovviiiiiiiiiiii. 66
About handling the AssemMbIEr FESPONSE .. .o.uitiiitit e e e aaas 75
Implementing Multichannel APPlICatioNSovuvriniriii e e enaes 77
Overview of multichannel applications with the Assemblercccoviiiiiiiiiiniiiieenne, 78

Assembler Application Developer's Guide iii

About creating templates for mobile channels ... 78

Tuning an Assembler @pPliCationo.iuiiiiiii e 79
Enabling the preview application for Workbenchcccooviviiiiiiiiiiiiiiieeeens 79
Configuring logging for an Assembler AppliCationc.ooiiiiiiiiiieeee e 96
Configuring cartridge performance 10ggingcoeueuiiiiiiiiii s 104
Debugging MDEX Engine query resultso 104

4, Optimizing APPIICAtioN URLS ...u.uiniiitiiiit et ettt et e et et e et et e e e e et enaneeaanenaenan 109

About the URL optimization ClasSescuuuiuiniieiiitit ettt ettt e e e e aeeeaens 109
Package COMTENTS .. .utie it e ettt et e e as 109
Introduction to URL Optimizationcueuiniititiiiii e e e e e e enaaaas 109
Overview of URL optimization capabilitiescuiviriiiiiiiiiir s 110
URL €canonicaliZationc.ouinininiiiiii e 111

Working with Application URLSouiuiiieiiiii e ettt e e 112
P oo LU =T o] o] [ar= o o HLU | 2 {3 PP 112
LY oYU Vet i o] o T PP PPt 113
Working With URL ParameEtersiuenireieieetiteiet e eteteete ettt et eaeneaaeteaneaaenenanen 117
URL configuration in the reference applicationc.coiiiiiiiiiiiiiiiiii e 118
About working with canonical liNKso 122

Preparing your @appliCationeeniii e 124
Preparing YOUr diMENSIONSttt et ettt e e et e et ee e neeeaeenanen 125
Preparing YOUT PrOPEITIESu ittt et e ettt et e et e neenes 125
Handling images and external JavaScript fileso 126
(01 I =T o T 1o T T o T PPN 126

BUIldiNg OptimIZed URLSnuieinitit ettt ettt et e e e e et e e a e e e eaenens 126
Core URL OptimizZation ClaSSES . ..uurininiititiiietieitet et etet et e e e eee s e e e aeeaeeteeneenanenannen 127
Overview of building URLs using the URL optimization classescoeoeiiiiiiiiiinininan. 127
Parsing an incoming query and sending it to an MDEX Enginecccoeveiiieiiiininininenenene. 128
Informing the UrlState of the navigation Statec.covviiiiiiiiiiiii e enenes 128
Creating link URLS from @ UrlStatec.ouiuininieiii e 129

CoNFIGUIING URLS ..ottt e e e ettt ettt et e e et e e aans 129
Anatomy of an optimized URLc.iuiniiiiit e 130
About the URL configuration fileoiiiiiiii e 131
Creating @ URL configuration filecoiiiiii s 132
About optimizing the Misc-path e 135
Configuring the path-param-SeParatoro.vviininiiii e e e eeeeaaaaaas 155
About optimizing the path-params and query Stringcooevevriiiiiiiiinierreeeeans 155
Using the URL configuration file with your applicationccoooiiiiiiiiiiiiiiii e, 160

Integrating with the SItemap GENEIAtOruui e eeeae 160
The Sitemap Generator urlconfigxmlfile 161
Using the URL configuration file with the Sitemap Generatorcccoeveviiiiiiiiiiiiinnnnnnn. 161

5. EXtending the AsSsembIEree e 163

Extending and Developing Cartridgescueu et 163
(@ Vg dg Lo [o 1=l 27 T TS PP PPt 163
First steps With @ NEW Cartridgeoovvuiniiin i e e e eeae e 163
Adding @ basic rENAEIEToniii s 166
Elements of the example cartridgecooeiiii i 167
Overview of cartridge extension POINTScueieieiiiiiiii e et et ereaeeeeeaenas 170
Customizing the Experience Manager iNterfaceouvuvuviiiiiiiniinnneeeeeeeieieieeeeaeaens 171
About Cartridge Handlers and the Assembleroviiiiiiiiiii s 175
About using event listeners to extend the navigation cartridgescocoveieiiiiiiiininia.n. 179
Y 10T o] LI @ T o [1= PP 181

Developing Editors for Workbenchooiininii e es 206
Setting up the Experience Manager Editor SDKoiuiiiiiiiiiiiinnere e 207

Assembler Application Developer's Guide

Flex prerequisites and rESOUICESeuuirinier et ettt et et et eeeteteneatereneasereneaseranenaanan 207

About setting up a Flex development environmentcoviiiiiiiiiiiiiiiiieeeee 207
Developing Editors With the Experience Manager Editor SDKc..oceviviiiiiiniiiiiiniiiinnnnn. 209
Specifying dependencies between editorsvvuviiiiiiiiiiir e 218

6. Template Property and Editor REfEr&NCeuuininini e 225
Editor property mapping refer@nCeuuuii e 225
Oracle Commerce Core EAITOrSuiniie et eenene 225
Oracle Experience Manager EAIOrSo.o.iiininiirtirie et e e renaeenens 226
Editor label configuration refer€nCeouiiiiiiii e 229
S T Tel oo T (T A o] (o] o =] & 41T 229
AddiNg @ STHNG PrOPEITY «....eetet e et ettt et et e enenenes 230
ADOUL NUMEIIC PIrOPEITIES . euveetitetett ettt ettt et et e et e et e et enenaenenenaenen 237
Adding @ BoOIaN ProPertYuiiii e 240
AddiNg an ItEM PrOPEILY ...t e ettt 241
AddiNg @ group 1aDeleie i e 243
(@]] o LN Q o fe] o X1 4 VA =T [1 (oY PP OO 244
ADOUL The MICIODIOWSET . ..eteii ettt 244
About the Select Records dialogoueuiniuiuiei i 246
About the Dynamic SIOt @ditOrueiii e 247
Adding @ LiNk BUIlAEroneeeii e e e e 250
AboUt the Media @ditOrc.iniiii e 253
Adding a Boost-Bury Record @ditorouuuuieiiin e 266
Adding a Guided Navigation ditOro.vuiiiitiiiri i e ena e 267
Adding @ DIMeNSion SEIECTONuiti ittt et et re e e neaeas 269
Adding @ DIMension List @ditOro.iuiuiiii s 270
Adding a Dimension Value Boost-Bury @ditorceveiiiiiiiiiiiiiiiiiiieeeee e 271
Adding a Dimension Value List @ditOrouvuiiiiitiiinir et aeas 273
Adding an IMage PreVIEW ...t et e e e e 274
Adding a Record Stratification @ditorouiiiiiiiiiii s 277
Adding @ Rich Text @ditOrouiii e 278
FA¥e Fe |1 To T Yo T af Yo L1 o PP 282
Adding a Spotlight Selection €ditorevuieiiiiii e 284
Application feature pProperty refer€NCeuiinii e 286
Query configuration MaPPINGS eueninin e e e 286
AdAING @ [IST PrOPEITY .. .eeeeeee e e ettt et ettt e e e aeas 289
7. Navigation Cartridge Configuration REFEIENCEuininininiii e enens 291
Navigation cartridge URL parameter referencec.vuiuiuiuiiiii i 291
ADOUL this SECHION ...eeii e ettt 291

Core URL QUETY ParamMETEIS ...uuiitinititiiitit ettt ettt ettt et a et e ee e eaenes 292
Cartridge-specific URL QUETY Parametersuueuinininenetetetereteteteteeeeeeeneneneneneneenenenns 302
About the navigation cartridge configuration modelsc.oooiiiiiiiiiiiiiiiies 311
Overview of the navigation cartridge configuration modelscccoiiiiiiiiiiiiiiii... 312
YT T I T T Lo TS PPN 315
Guided Navigation Cartridgeso.uer ittt ettt ettt e e e e e e aenenaenenes 330
RESUILS CArtridges ... v ettt e ettt 336
Record details Cartridgesot 341
Content and spotlighting cartridgesouviiiiiii e 342
Dynamic triggering Cartridges . ..o e u ittt ittt ettt et e et e e e e e e eanaen 345
REQUEST EVENT AtriDUTES ..ttt et ettt e et e e e et e e e et eeneeaenanaanans 346
Base request eVeNt attribULESouieii e e e 347
Navigation cartridge request event attributescouvuiiiiiiiir e 347

Assembler Application Developer's Guide v

vi

Assembler Application Developer's Guide

List of Tables

TR Yo Fo (@] o (=Y a4 =T 0 0 o I T 10 0 1= =] - J P 83
3.2, INItIAliZE ParamETerS .. v ettt e et et e e aaaaaas 86
T T Yol [@e oY (=] 014 = o T oY =T 0] (T £ N 87
3.4, removeCoNteNtItEM ParamEterso.uiiie ettt e eean 87
BT = 1 =10 1 <] =] €T P 88
3.6. remMOVEHOTSPOLS PArameEterseuuit ittt ettt ettt ettt et ettt et et et e e eeene e eneenerneenennes 88
A o T o7 T = 0 U= (= N 88
Tt T o) i =T 10/ 1=Y =] < S 89

Assembler Application Developer's Guide vii

viii Assembler Application Developer's Guide

List of Examples

B B =3 ']) PPN 37
TR B = 1 1'0]) PPN 63
I =5 T 1 0] [PPN 64
T TR 52 1 ']) PN 71
B - ']) PPN 104
LT B T 1410) PN 181
6.1. Example: Specifying the URL by using a configurable String propertycccovuveiiineineninnenenennen. 276
8 R =5 101) =T PP 293
0 2 3 1 1101 o) L1 PP 294
2 T T 11101 o] LT P PP 295
A =T 0T (= PPN 296
5 TR =5 1101 o) =T PPt 297
0 T =2 1 '] o) LT PP 298
A B =T 1101 o] LTS P PP PPPP 299
R =T 1 0] [PP 301
8 TR =3 101 o) =T PP 303
8 KR 2T o o 1= PP 304
28 R 2T 0T o 1= PP PP 305
70120 EXAMIPIES ettt ettt ettt et ettt et ens 305
728 1 TR 2T 0 o =33 306
8 0 2T o o 1= PP 307
8 T 2T 0] o L= PP PP 308
7016, EXAMIPIES ettt ettt et et ettt et nens 309
8 7280 = T2 o 133 310
8 300 2T 0] o =33 PP 310
28 RS 2T 0] o 1= PP 311

Assembler Application Developer's Guide ix

Assembler Application Developer's Guide

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Guided Search enables businesses to influence customers in each step of their search
experience. At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System
provides a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX
Engine from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from
any resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's kit
to create custom cartridges.

About this guide

This guide provides an overview of Assembler application development. It covers the architecture of a typical
Assembler application, as well as the taskes required to enable configuration through the Experience Manager
or Rule Manager tools in Workbench.

Note
Rule Manager is deprecated in the Tools and Frameworks 11.0.0 release.

The Tools and Frameworks package includes a Java implementation of the Assembler, so examples in this
document are Java-based.

Who should use this guide

This guide is intended for developers who are building applications using the Assembler, and are supporting
business users who configure these applications using Workbench. You should familiarize yourself with the
concepts in the Oracle Commerce Guided Search Concepts Guide before reading this guide.

Preface xi

Conventions used in this guide

This guide uses the following typographical conventions:
Code examples, inline references to code elements, file names, and user input are set in nonospace font. In the
case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol is

used to show that the content continues on to the next line: ~

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution help,
and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

xii Preface

https://support.oracle.com

1 About the Assembler

This provides an overview of the various components of the Assembler.

Introduction to the Assembler

This section provides a conceptual overview of the Oracle Commerce Guided Search Assembler.

What is the Assembler?

The Assembler is an Oracle Commerce component that performs the following essential roles in any Oracle
Commerce application:

« It acts as the runtime component of Experience Manager, a tool that enables the business user to configure
the runtime appearance and behavior of the application.

+ It accesses values from a variety of sources, including databases, Digital Asset Management systems, social
media feeds, and the MDEX engine.

+ It creates view-ready application component models known as cartridges. A cartridge is a series of key and
value pairs known as a content item. The key and value pairs contain values accessed by the Assembler. Your
application renders these values visually, in the Ul controls or other components that compose the pages in
your application.

Note

Some content items contain other content items rather than consumer information. These content
items represent different types of content and together form a hierarchical tree that can be
traversed by the application when rendering a page.

Assembler Libraries
The Assembler classes are organized into two Java libraries:

+ Assembler Core, packaged as endeca_assenbl er _cor e- <ver si on>. j ar. This library provides the core
Assembler interfaces and a Spring implementation of the Assembler, along with the core facilities for building
Experience Manager driven applications.

+ Assembler Navigation, packaged as endeca_assenbl er _navi gati on- <ver si on>. j ar. This library
provides the built-in cartridges and facilities for building applications with Search and Guided Navigation.

1 About the Assembler 1

+ A separate javadoc is provided for each JAR file.
The Role of the Assembler in an Oracle Commerce Application

The following diagram illustrates the role of the Assembler in an Oracle Commerce implementation:

Customar Web Page
ﬁ —“ Merchandisar's Web Applicaion (Java)
\ - -
{t'}' B : Contentltes ::-spunu.ﬂ:mtmtltm s sewh] assemble (someContentTtem) ;
'E" = s
MNota: Non-Jiava applicalions
(in languages such as PHP,
sy st Perl, Rubry, or NET) musl
deploy the Assembler as a
REST service. In this mods,
Lhe response value must ba
sarialized to ether JSOMN or
Endeca Assembler e
N b
=
CMS Cartrdge RDEMS Cartricgs RSS Cartridge: Mavigation Carfridge Custom Cartridge
Handlar(s) Handiar{s) Handler(s) Handlars) Handlar(s) [Jawa)
] [
CMs RDEMS RSS MDEX Engine Other source(s)

As shown in the preceding diagram, the following things happen when customers request information through
your application page:

1. Your application invokes the assenbl e() method as follows:
Contentltem contentltem = new Redirect Awar eCont ent | ncl ude("/ nyUrl");
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten)

where/ nmyUr | is the URL to a page that you are assembling in Experience Manager and
r esponseCont ent | t emis a tree of other content items.

2. The assenbl e() method sends r esponseCont ent | t emto the Assembler.

3. The Assembler passes the individual content items in r esponseCont ent | t emto cartridge handlers, each of
which handles a different content type. Each content item specifies a request for information.

4, The cartridge handlers pass the requests on to the appropriate sources of information, such as an MDEX
Engine, a relational database system, a content management system, and so on.

5. The cartridge handlers receive and process information from their respective sources. The handlers contain all
the logic needed to process the information, though they may also process requests without requiring input
from an external data source.

2 1 About the Assembler

6. Each cartridge handler returns to the Assembler a content item that contains the requested information.

7. The Assembler combines the content items that it receives from all of the cartridge handlers into a
r esponseCont ent | t em which is structured as a tree that contains all of the information required by the
front end application.

8. The Assembler returns r esponseCont ent | t emto the front end application.

9. Rendering code in the application converts the information in r esponseCont ent | t eminto a form that
can be displayed in the appropriate cartridges on your application page. Typically, a cartridge renderer (a
separate module of rendering code) processes and displays the information for each content item in the
responseCont ent | t emtree.

Note

The Assembler can return XML or JSON representations of objects for consumption by a variety of
rendering engines, such as .NET, PHP, or Flash-based applications. It can also return model objects as
POJOs (plain old Java objects) when embedded in a native Java application.

The Tools and Frameworks package includes a Java Assembler implementation that uses Spring to resolve
cartridge handlers and services.

You can develop extensions to the framework to interact with your resources, centralizing runtime data retrieval
and manipulation in your application. For these reasons, the Assembler can be integrated with organizations
that use Service-Oriented Architecture.

Basic Assembler concepts

The Assembler stores and manipulates data as sets of key: val ue pairs known as content items. Content items
can represent cartridges, which map to front-end features in an application.

About Content Items

Some content items are structural components such as application pages that contain additional content items.
Other content items map to front-end components in an application, such as image banners.

For example, in the Discover Electronics reference implementation, the entire default "browse" page is
represented by a content item that contains the page template. Each section of the page is also a content item,
nested within the containing "three column page" content item. Within those sections are additional content
items that represent front-end features:

» ThreeColumnPage
+ headerContent
+ Search Box
+ leftContent
+ Breadcrumbs
+ Guided Navigation
+ mainContent
+ SearchAdjustments

» ContentSlotMain

1 About the Assembler 3

+ ResultsList
+ rightContent
+ RecordSpotlight
Because the content items are organized as a tree, they are as a group easy to traverse for rendering.
About Cartridges and Cartridge Templates

A cartridge is a content item with a specific role in your application; for example, a cartridge can map to a GUI
component in the front-end application. The Assembler includes a number of cartridges that map to typical GUI
components - for example, a Breadcrumbs cartridge, a Search Box cartridge, and a Results List cartridge. You can
create other cartridges that map to other GUlI components expected by your business users.

Every cartridge is defined by a template. A cartridge template defines:

+ The structure and initial configuration for a content item.

+ A set of configurable properties and the associated editors with which the business user can configure them.
Experience Manager instantiates each content item from its cartridge template. This includes any configuration

made by the business user, and results in a content item with instance configuration that is passed to the
Assembler.

About Cartridge Handlers
A cartridge handler takes a content item as input, processes it, and returns a content item as output.

The input content item typically includes instance configuration, which consists of any properties specified by
a business user using the Experience Manager or Rule Manager tool in Workbench. The content item is typically
initialized by layering configuration from other sources: your application may include default values, or URL
parameters that represent end user selections in the front-end application.

A cartridge handler can optionally perform further processing, such as querying a search engine for data. When
processing is finished, the handler returns a completed content item to the application.

Note

Not all cartridges require cartridge handlers. In the case of a content item with no associated cartridge
handler, the Assembler returns the unmodified content item.

For detailed information regarding the Car t ri dgeHandl er interface, see About the CartridgeHandler
interface (page 175), or refer to the Assembler API Reference (Javadoc).

Example: The Results List Cartridge

Consider the Results List cartridge included with Tools and Frameworks in the Assembler Navigation JAR file.
The Resul t sLi st object that backs the cartridge is a content item. The ResultsList cartridge template exposes a
subset of object properties for configuration in Experience Manager. The remaining properties are configurable
through the Ul in the front-end application.

The Results List cartridge handler combines the default, instance, and URL configuration values to create a query
to send to the MDEX Engine. The values in the query response are used to populate the Resul t sLi st content
item and return it to the application for rendering.

4 1 About the Assembler

Configuring Assembler applications in Experience Manager

The Assembler interacts with the Experience Manager tool in Workbench to expose content configuration to
business users.

Experience Manager instantiates each content item from its content XML. In an unconfigured cartridge, this
XML is identical to the cartridge template (including any default values specified in the template). When a
business user opens and modifies a cartridge in Experience Manager, their settings are saved in the content
XML. In an authoring environment, this XML is stored in the Workbench. In a production environment, it is read
from the path configured using configurationPath property of FileStoreFactory.

At runtime, the Assembler deserializes the content XML to create the appropriate content item object, and
passes it to its corresponding cartridge handler for processing.

In addition to creating instances of front-end application components in this manner, the business user can
also use structural content item templates (such as the Three-Column Navigation Page template) to create the
organizational elements of a site. For example, your business user can create an "About Us" page, a "Frequently
Asked Questions" page, and other static elements of a site by selecting and populating suitable cartridge
templates.

Assembler Search and Guided Navigation Features

The Assembler Navigation package provides a set of Search and Guided Navigation cartridges for use with the
MDEX Engine. These cartridges are included in the endeca_assenbl er _navi gati on- <versi on>. j ar file.

The reference application includes templates that use these navigation cartridges to enable configuration in
Experience Manager and render the resulting data in a front end application.

A navigation cartridge exposes MDEX engine features to an Assembler application. It also enables a business
user to configure powerful Guided Navigation features using Ul components that can be customized by an
application developer to fit business needs.

The navigation cartridges include the following:
+ Search Box

+ Auto-Suggest Search Results
+ Dimension Search Results

+ Search Adjustments

* Refinement Menu

+ Breadcrumbs

» Dimension Navigation

* Results List

* Record Details

* Media Banner

+ Record Spotlight and Horizontal Record Spotlight

1 About the Assembler

Example: The Results List cartridge

The Results List cartridge displays MDEX Engine search results for an end user query. It is backed
by acom endeca. i nfront. cartridge. Resul t sLi st content item object, which extends the
com endeca. i nfront. assenbl er. Basi cCont ent | t eminterface.

The input to the Assembler consists of a configuration model -- a content item with MDEX Engine query
information such as the end user's search terms, selected search refinements, sorting options, and records per
page. These are passed in asa com endeca. i nfront. cartri dge. Resul t sLi st Confi g object.

The Resul t sLi st Handl er generates a query from the properties on Resul t sLi st Conf i g, then sends the
query to the MDEX Engine. It instantiates a Resul t sLi st content item using the query response, and copies
over some of the properties from the configuration model (such as records per page and sorting) directly. This
view-friendly Resul t sLi st object is then returned to the application for rendering.

Cartridge configuration comes from the following sources:

+ Default configuration — For Spring-based Assembler implementations, this is specified in the Spring context
file.

+ Instance configuration — Specified by the business user in the Results List cartridge in Experience Manager.

* Request-based configuration — Specified by the application end user; this includes any search terms or
selected dimension refinements, among other things.

Default Cartridge Configuration

This section illustrates the default cartridge configuration of a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The default cartridge configuration is specified in the Spring context file, located at Tool sAndFr amewor ks

\ <ver si on>\r ef er ence\ di scover - el ect r oni cs- aut hori ng\ VEB- | NF\ assenbl er - cont ext . xm for
the authoring instance of the Discover Electronics reference application. This includes values for the following
properties on the Resul t sLi st Confi g content item:

+ sort Opti on — The sorting options available to the end user when viewing the list of query results.

+ rel RankSt r at egy — The Relevance Ranking strategy applied to search results. For more information about
Relevance Ranking, see the MDEX Engine Developer's Guide.

+ recor dsPer Page — The number of records to display per page of results.
Note
The above list is a subset of configured properties and provided as an example.
Instance Configuration

This section illustrates a cartridge instance configuration for a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The cartridge instance configuration comes from the values in the ToolsAndFrameworks\<version>\reference
\discover-data\import\templates\ResultsList\template.xml cartridge template. The template exposes the
following properties to the business user in Experience Manager:

+ boost Strat a— Alist of records to elevate to the top of the Results List.

6 1 About the Assembler

* buryStrata— A list of records to move to the bottom of the Results List.

+ sort Opti on — The business user can override the default sorting options.

« rel RankSt r at egy — The business user can override the default Relevance Ranking strategy.

+ recor dsPer Page — The business user can override the default number of records to display on each page.
Request-Based Configuration

The application end user's configuration in Discover Electronics is passed to the Resul t sLi st Conf i g object as
URL parameters, though you may choose to implement such functionality differently in your own application.

+ of f set — Controls the record offset of the displayed results in order to control record display while paging
through results.

+ rel RankTer ms —The end user's search terms.
+ sort Opti on — The end user can override the default values and the instance configuration.
+ recor dsPer Page — The end user can override the default values and the instance configuration.

The Results List cartridge handler combines the default, instance, and request-based values to create a query to
send to the MDEX Engine. The values are used to populated the Resul t sLi st content item and return it to the
application for rendering.

Assembler Architectural Overview

This section provides an architectural overview of the Assembler.

Related links

+ The Assembler processing model (page 7)

+ About serialization and de-serialization (page 11)
+ The Assembler eventing framework (page 12)

+ About Assembler error handling (page 13)

The Assembler processing model

The core of the Assembler is the assenbl e() method, which takes a content item representing a cartridge
instance configuration and invokes cartridge handlers to process it into a response content item.

The Assembler uses the visitor pattern to traverse the input content item and any child content items, and
invokes the appropriate cartridge handler (if any) for each of them.

The Assembler makes two passes over the input content item:

1. In the first pass, the Assembler calls Car t ri dgeHandl er . i ni ti ali ze() followed by
CartridgeHandl er. preprocess() on each content item in the tree. This is a pre-order traversal of the tree

1 About the Assembler 7

(working from the top of the tree down through its children), so cartridge handlers may add or modify child
content items at this stage.

2. In the second pass, the Assembler calls Car t ri dgeHandl er . process() on each content item, which
returns the response content item for that cartridge. This is a post-order traversal of the tree (working from
the bottom up), so child content items are processed before the parent. The response object for the root
content item of the tree (the content item originally passed in as input to the first assenbl e() call) contains
the response objects for all its child cartridges.

The default implementation of the Assembler uses Spring to map each cartridge to the appropriate handler
based on its content type. This content type corresponds to the template identifier that was used to create the
content item object. If no cartridge handler is defined for a particular content type, the instance configuration is
passed through as the response model.

Example

For example, consider the following content item:

Nest i ngDol | Cont ent | t enSubcl ass nesti ngDol |

This content item represents a Russian Nesting Doll. It includes properties for its name, color, and its child
content item:

nestingDol | .nanme = "Nesting Dol | "
nestingDol | . col or red
nestingDol | .child = secondNesti ngDol |

The secondNest i ngDol | contained within is green. It contains at hi r dNest i ngDol | , which is blue. Assuming
there is no cartridge handler for Nest i ngDol | Cont ent | t enBubcl ass, an assenbl e(nesti ngDol |) call
executes the following:

1. The pre-order traversal starts. There is no cartridge handler for Nest i ngDol | Cont ent | t enSubcl ass, so no
initialize() orpreprocess() callsare made for nesti ngDol | .

2. Similarly, no calls are made for secondNest i ngDol | ort hi r dNest i ngDol | . At this point, the pre-order
traversal is complete.

3. The post-order traversal starts. The t hi r dNest i ngDol | object is returned as-is, since there is no handler to
invoke a pr ocess() method.

4, Similarly, the secondNest i ngDol I and nest i ngDol | objects are returned, unmodified. Serialized to JSON,
the response looks like the following:

@ype": "NestingDoll Tenpl at eType",
"nane": "Nesting Doll",
"color": "red",
"child": [
{
@ype": "NestingDoll Tenpl at eType",
"nane": "Second Nesting Doll",

“color": "green"
"child": [
{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Third Nesting Doll",

8 1 About the Assembler

“color": "blue"
"child"': []

What if you create a cartridge handler for Nest i ngDol | Cont ent | t enBubcl ass that doesn't override the
initialize() orpreprocess() methods, butimplements logic to add a property col or Type of value war m
orcool , based on the col or property? Steps 1-2 above don't change, but Step 3 invokes the new logic, and the
property shows up in the response:

@ype": "NestingDol | Tenpl at eType",
"nane": "Nesting Doll",

"color": "red",
"col or Type": "warnt,
"child": [

{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Second Nesting Doll",

"color": "green",
"col or Type": "cool ",
"child": [

{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Third Nesting Doll",
"color": "blue",

"col or Type": "cool ",

About content items

A content item is a set of key: val ue pairs where the key is a property name and the value may be any primitive
type, or another content item. The com endeca. i nfront . assenbl er Cont ent I t eminterface extends
java. util . Map.

Content items in the Assembler represent either structural components of an application page, or GUI
components on the page itself. A call to the Assenbl er. assenbl e(Cont ent | t en) method accepts as input
a Cont ent | t emcontaining configuration, and returns a content item as output. The response content item can
encompass an entire page in an application, with each sub-section of the page (such as the search box or the
search results list) represented as its own nested content item.

Note

In the default implementation of the Assembler, the Cont ent | t eminterface is implemented by the
com endeca. i nfront. assenbl er. Basi cCont ent | t emclass. The navigation cartridges in the
package extend this implementation for their individual use cases.

About Contentinclude and ContentSlotConfig objects

The default Assembler implementation typically takes a Cont ent | ncl ude or Cont ent Sl ot Conf i g object as
input to the Assembler. The first specifies a content item by URI, while the second retrieves a content item from a
specified folder according to template type and ID restrictions, trigger criteria, and content item priority.

1 About the Assembler 9

Both methods retrieve the associated configuration for the content item in Workbench.

Defining a Contentinclude object

A Cont ent | ncl ude object defines a single content item to pass into the Assembler (though keep in mind that
a content item may contain additional content items as children). It resolves a URI to a content item within a
configured content source (typically the Endeca Configuration Repository).

Defining a ContentSlotConfig object

Unlike a Cont ent I ncl ude object, which explicitly specifies a content item to pass as input to the Assembler,
the Cont ent Sl ot Conf i g object defines a set of criteria for dynamically retrieving one or more content items at
runtime. In most cases the content administrator creates and populates Cont ent Sl ot Conf i g objects through
editors in Experience Manager, although you can still programatically instantiate them if necessary.

The dynamic content slot is populated based on the following restrictions:

+ Content paths — The path or paths to content folders in Experience Manager. Any content items within the
specified folders or within sub-folders are considered valid for retrieval.

+ Template types (Optional) — The types of content item to retrieve, based on the t ype attribute of the
cartridge template used to create it. For example, a Record Spotlight slot in the Discover Electronics reference
application is restricted to content items created from a template with t ype=" Secondar yCont ent ".

+ Template IDs (Optional) — The template IDs to match against. This is a narrower restriction than restricting
by template t ype, and instead restricts based on a unique template i d. For example, a Record Spotlight slot
in the Discover Electronics reference application is restricted to content items created from a template with
i d="RecordSpotlight".

* Rule Limit — The number of matching content items to retrieve. This is applied after the above restrictions,
and after checking for triggered content items.

When the list of possible content items has been narrowed down, the Cont ent Sl ot Handl er issues a content
trigger request. This checks valid content items against any triggers defined in Experience Manager. Trigger
criteria can include:

+ The user's search terms or refinement selections, also referred to as their "navigation state."

+ Characteristics of the user, such as past buying habits or geographical location. This information constitutes

(T}

the user's "user segment.”
+ The current date and time, referred to as "schedule triggers."

The list of results is limited to triggered content items and ordered by the priority assigned to each content
item in Experience Manager. The number of results is truncated to the value specified for the content slot (also
specified on Cont ent Sl ot Conf i g). The Assembler then processes the content items and returns them in its
response.

About nesting content items

Content items may contain other content items, which can include both Cont ent | ncl ude references and
Cont ent Sl ot Conf i g definitions

For example, in Discover Electronics the / br owse path corresponds to a page within the sitemap. The browse
page consists of a content slot that references the Web folder. Most of the pages within the Web Browse Pages
folder contain a mixture of static and dynamic content items. As the Assembler processes the query forht t p: //

10

1 About the Assembler

waw. exanpl e. conl di scover/ br owse (assuming no search terms or refinement selections), the following
steps occur:

1. The Assembler is invoked with a Cont ent | ncl ude item with the URI/ pages/ br owse.

2. The Assembler invokes the Cont ent | ncl udeHandl er to retrieve the configuration for the browse page,
which is a Cont ent Sl ot Conf i g that specifies a single content item from the Three-Column Page collection.

3. The Assembler invokes the Cont ent Sl ot Handl er to retrieve the highest priority content item within the
Three-Column Page collection. In this case, it is the Default Browse Page, which is a Thr eeCol unmPage.

4. There is no cartridge handler configured to process the Thr eeCol unmPage, but it contains child content
items, so the Assembler goes on to process the child content items:

a. It passes the configuration for the search box cartridge through to the response object.
b. It invokes the Br eadcr unbsHandl er to process the breadcrumbs cartridge.

c. Itinvokes the Cont ent Sl ot Handl er to process the navigation slot, which in turn retrieves the
Default Guided Navigation configuration from the Guided Navigation collection and invokes
Di mensi onNavi gat i onHandl er to process it.

d. Itinvokes the Sear chAdj ust ment sHandl er to process the search adjustments cartridge.

e. Itinvokes the Cont ent Sl ot Handl er to process the results list slot, which in turn retrieves the Default
Results List configuration from the Results List collection and invokes Resul t sLi st Handl er to process it.

f. Itinvokes the Recor dSpot | i ght Handl er to process the spotlight records.

About serialization and de-serialization

The Assembler serializes content items, including any Workbench content, as XML in the Workbench (oron a
file system in a production environment). This XML is deserialized during an assenbl e() call when retrieving a
content item to pass it to its cartridge handler.

You can also use the included classes to serialize the Assembler response to a format that is more convenient for
use in your front end application. For example:

/'l Invoke the Assenbler on nyContentltem

Contentltem responseContentltem = assenbl er. assenbl e(nyContentlten);
/'l Serialize the Assenbl er response to JSON

response. set Char act er Encodi ng(" UTF-8") ;

JsonSerializer serializer = new JsonSerializer(response.getWiter());
serializer.wite(responseContentlten);

When Assembler is deployed as a service, the Assembler service web application needs to specify a serializer
that will be used for the response.

Note

The Assembler includes default implementations of a JSONResponseW i t er and an
XM_LResponseW i t er. You can provide your own implementation if you need to output the Assembler
response to a different format (such as a different XML representation).

For detailed information, refer to the documentation for the com endeca. i nfront. seri al i zat i on package
in the Assembler Core APl Reference (Javadoc).

1 About the Assembler 1

The Assembler eventing framework

The Assembler includes an eventing framework that fires events at different points in an assenbl e() call.
Creating listeners for these events enables cartridge handlers to retrieve or modify data at more granular points
in the Assembly process.

Note

The logic included in an event listener is evaluated for every cartridge handler, and that event listeners
do not have access to the current Assembler request or to the navigation state.

Related links
+ Creating an event listener (page 179)
Assembler event framework reference

The Assembler includes an Assenbl er Event Li st ener interface that you can use to create and register event
listeners.

The Assembler fires the following events:

Event Condition

assenbl yStarting Fires when an assenbl e() call starts.

assenbl yConpl et e Fires when an assenbl e() call completes.
assenbl yError Fires when an assenbl e() call is aborted due to an

unrecoverable error.

cartridgelnitializeStarting Fires when a cartridge handler calls the
initialize() method.

cartridgelnitializeConplete Fireswhen acalltotheinitialize() method
completes.
cartridgePreprocessStarting Fires when a cartridge handler calls the

preprocess() method.

cartridgePreprocessConpl ete Fires when a call to the pr epr ocess() method
completes.

cartridgeProcessStarting Fires when a cartridge handler calls the pr ocess()
method.

cartridgeProcessConpl ete Fires when a call to the pr ocess() method
completes.

cartridgeError Fires when a cartridge fails due to a local error. This

stops execution of the cartridge handler workflow,
and prevents any additional events from firing.

12 1 About the Assembler

Event payload
Each Assembler event has an Assenbl er Event payload consisting of three objects:
+ Assenbl er — the Assembler object responsible for servicing the request.
+ Cont ent | t em— the content item currently undergoing processing within the assenbl e() call.

» CartridgeHandl er — the cartridge handler associated with the event.

About Assembler error handling

In case of an error during processing, the Assembler API defines two kinds of exceptions: Assenbl er Except i on
and Car t ri dgeHand! er Except i on.

The exceptions are distinguished as follows:

Exception Description

Assenbl er Excepti on Indicates that an exception occurred while creating or processing an
Assembler request. Exceptions of this type indicate that the entire
assembly process was terminated.

Cartri dgeHandl er Excepti on Indicates that an exception occurred while invoking a single cartridge
handler. Exceptions of this type do not terminate the entire assembly
process.

Both types of exceptions are returned as part of the Assembler response.
Error handling in the Assembler service

The Assembler service returns an HTTP status code of 200 (OK) regardless of whether any exceptions occurred
during Assembler processing. Error conditions are serialized as exceptions in the Assembler response, as with
the following example:

@rror: "comendeca.infront.assenbl er. Cartri dgeHandl er Excepti on"
description: "Detailed cartridge handl er error description”

Unchecked exceptions result in the Assembler service returning HTTP status code 500 (Internal Server Error).

About cartridges and content items

This section describes how cartridges expose content in an application.

1 About the Assembler 13

About cartridges

The component model consists of configurable content items. Cartridges expose these content items in a
rendered format for the front-end application.

A content item is a map of properties or key-value pairs, where the key is a string representing the property
name and the value may be any primitive type (including String, Boolean, List, and Map) or another content
item. This allows for content items to be nested within other content items, forming a content tree that
represents the structure of a Web page and all its components.

There are generally two kinds of content items within an application:

« Container content items are primarily structural components. They define the logical (and sometimes physical)
structure of the content to be rendered by an application. The top-level container typically represents a Web
page with sections that can contain other content items (leaf content items or, occasionally, other containers).
In a Web application, these sections may correspond to areas on the page with certain assumptions about
layout and rendering. In other applications, they may represent logical groupings of related components.

« Leaf content items are typically functional components. They contain information about content to be
displayed in the application, and typically encapsulate the configuration for a particular feature, such as a
Guided Navigation component, spotlight, or results list. Leaf content items are also referred to as cartridges.

A page may contain cartridges directly (in which case the configuration for the cartridges is triggered along
with the page) or the page can contain a dynamic slot, which serves as a placeholder for cartridges that can be
triggered independently of the page in which they display.

Structure of cartridges

A cartridge is a functional component that a content administrator can choose to display on a page.
The basic aspects of a cartridge are the following:

+ The cartridge instance configuration, which consists of a content item created by a business user in
Experience Manager

+ The cartridge handler, which is the Assembler component that contains the processing logic for the
associated feature

+ The response model, which is the content item returned from the Assembler to the application for rendering

The configuration model for a cartridge is defined by a cartridge template, which describes the properties that
can be configured as well as the interface through which the content administrator can specify their values in
Experience Manager. Cartridges typically have configuration options specific to the cartridge's function, such

as the number of refinements to display (and the order in which to display them) for a Dimension Navigation
cartridge; the records to promote for a Spotlight cartridge; or the sort options and records per page for a Results
List cartridge.

1. At query time, the configured values of the cartridge properties become an input to the Assembler.

The Discover Electronics reference application contains several sample templates or cartridges that
demonstrate core functionality. You can customize them for your own application or write your own
templates in order to add or remove configuration options or to pass additional information to the Assembler
or the front-end application.

14

1 About the Assembler

2. At query time, the Assembler invokes the appropriate cartridge handler to process the cartridge
configuration.

The core cartridge handlers also have access to information about the initial request context that triggered
the cartridge. The cartridge handler is responsible for generating a response model based on this
configuration. In most cases this involves fetching content from an ext ernal resource.

In the case where the configuration model is the same as the response model, no cartridge handler is
needed; the default behavior of the Assembler is to pass the configuration properties through to the
response model.

3. The Assembler passes the response model to the corresponding renderer in the application.

As a best practice, the application should contain several modular renderers, each intended to handle the output
model for a particular cartridge or cartridge type. The Discover Electronics application includes reference JSP

pages to render each cartridge. These renderers are intended to be updated for styling or otherwise customized
for your application.

1 About the Assembler 15

16

1 About the Assembler

2 Designing an Assembler Application

This part discusses the steps for designing your Assembler application and the steps for creating templates.

Related links

+ Planning an Assembler Application (page 17)

Planning an Assembler Application

This section covers considerations for designing your Assembler application.

About planning your application sitemap
An Assembler application consists of a combination of static pages and dynamic pages that contain content
related to an end user's navigation state. Your planned sitemap helps determine what pages and content folders
you should create for your application.
Consider a site with the following structure:
+ about
+ contact
 faq
* promotions
+ christmas
+ mothersDay
* browse
+ details
In this case, each of the pages maps directly to a set of content. To separate most of the content out from the

site structure and support dynamic triggering, the organization of an Assembler application is divided into the
pages within an application, and the content that populates them:

2 Designing an Assembler Application 17

+ pages
+ about
+ contact
« faq
+ browse
+ details
+ content
+ guided navigation
+ record details
* browse pages
+ default
+ christmas
* mothers day
+ spotlights
+ top rated
+ best sellers
In the example above, the promotional Christmas and Mother's Day pages no longer exist as explicit pages.
Instead, the content associated with those promotions is stored as available "browse" page configurations that
each trigger during a specified date range.
You can refer to the Discover Electronics reference application for a further example of how content and pages

can be separated. When planning your own application, you should consider which locations in your site are
best represented as pages, and which locations consist of triggered content on an existing page.

About page types

A typical application has several types of pages that are displayed under different circumstances or contain
different content.

For example, a site may have the following three basic page types:

18 2 Designing an Assembler Application

Home Page

Results Page

Record Detail Page

Global Navigation, Search

Merch.

Merchandising

Merchandising

Global Navigation, Search

box

GN Results

Facets —

Global Navigation, Search

=
imageo

Product details

Ratings/Reviews

These pages may differ in the following ways:

+ They are intended to be displayed in different contexts. The home page appears before the user has
made any selections. The results page appears only when the user has performed some search or navigation
query. The record detail page appears only when a user has selected a specific product. These conditions are
configured in Experience Manager as triggering criteria.

+ They display different types of content. A home page or category page typically displays high-level
promotions and merchandising. A results page displays a list of record results as well as additional controls
for the user to select additional facets or otherwise refine the search. A record detail page displays detailed
product information as well as controls for transactions (such as add to cart, wishlist, and so on). These
differences in content imply differences in layout, which is configured at the template level.

+ They are accessed through different URLs. The home page is accessed at the base URL for the site. Search
results pages may be accessed at a URL that includes the path / br owse/ . Record details pages may be
accessed at a URL that includes the path / det ai | / . These URL mappings are typically achieved by setting up
individual services for each page type.

The Discover Electronics reference application includes servlets for results pages and record details pages.

About page structure and content types

An Experience Manager template defines the logical structure of a page and the types of content that the page

can contain.

Every template defines a content item that can be processed by the Assembler. A content item describes the
logic of how to promote content for display to application users. Content items have several parts: the records in
a data set, the conditions that must be met for those records to display, and the templates that determine how
those records are rendered in the application.

A page template defines a container content item with sections that can be populated with other content items,

such as the following:

2 Designing an Assembler Application

19

Header section
type = header content

o o o e

S

e T S i

Banner section
type = medium banner

Guided
Naviga-
tion

Sidebar
section :

type =
sidebar ;
content }

3
@
Il

th
o
(7]
=
Q
3

Results List section

navi-)
type = main content

gation

memsmmsmssssssssssssssssssssssssssssssssss=ssss=n EEssssssessss
mmmsmsmssl besssmssss=es

S [S —————— . R ———

Footer section
type = footer content

===

Typically, a section represents a physical area on the page, but it can also represent a functional grouping,
including content that may not be visible to an end user. Each section has an associated content type that
determines what kind of content items can be inserted in that section. An application may have multiple
cartridges of each type, providing greater flexibility for the content administrator to configure the content for a
specific page.

2 Designing an Assembler Application

Simple Image
Banner ~ | 3
¢ type = header content :
?\\ YP : banner
A_nimated prmnm ;\“:..E [reermss s m—— N et !fpﬁ' —
Banner i —— N Banner section g sicebar
type = medium banner A} type = medium banner | / content
, ’Eﬁied i | /
R;t:tmnal ’ ! Naviga- Sld:!:ar f
nnar I i isection
i i tion I {
type = medivm banner | section i r:ype = r;
L f lype = ! sidebar \I
E phali Results Liﬁt section : i eantent 2\
gation iype = main content \
i f \| |8pot-
— = 11 light
i Footer section type =
i fype = fooler content kideb
L . _ af
COTTteT

You can create templates for different page types within your application and define which content types are
valid for each type of page. You can create templates for high-level page structures and different layouts for a
single page type. Each of the content items that can be inserted into a template is itself defined by a template,
and may be either another container content item or (more commonly) a leaf content item associated with a
front end feature.

About mapping pages to services

You can map the URL paths of pages in your application to specific services.

Services can be used to set attributes on the incoming request before it is processed by the Assembler
depending on the type of page being requested, which can control what content is triggered in response to the
request, and the format in which the response is returned.

The following is an example from the WEB- | NF\ web. xni file for the Discover Electronics reference application,
which maps end user requests to/ ser vi ces via a URL redirect and sends them to the application controller,
VEB- | NF\ ser vi ces\ assenbl e. j sp.

<l-- Services Definition. For reference, this is inplenented as sinple jsp pages, -->

2 Designing an Assembler Application 21

<l-- but this could also be done with a web framework, such as Spring MC -->

<servl et>

<servl et - nane>assenbl e</ servl et - name>

<jsp-file> VEB-| NF/ servi ces/ assenbl e.jsp</jsp-file>
</servlet>

<servl et>

<servl et - nane>aut osuggest . j son</ servl et - name>

<jsp-file>/ WEB-| NF/ servi ces/ aut osuggest-j son.jsp</jsp-file>
</ servl et>

<servl et >
<servl et - nane>l i nk</ servl et - nane>
<l-- link service content omtted for brevity -->

</servl et>

<servl et - mappi ng>
<servl et - nane>aut osuggest . j son</ servl et - name>
<url -pattern>/servl et/ aut osuggest.json/*</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>| i nk</ servl et - name>
<url-pattern>/servlet/link.json/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>assenbl e</ servl et - name>
<url-pattern>/servlet/*</url-pattern>
</ servl et - mappi ng>

When a content administrator defines a new application page in the reference application, requests on that
page are mapped to the / ser vi ces servlet. Your application should include similar logic for mapping arbitrary
pages to a controller, though you may also choose to explicitly define additional services for certain pages
within your site. Additionally, your Ul tier must be able to resolve whatever links you expect your content
administrators to create. For more information about handling application URLs, see "Working with Application

URLs."

Creating a page

The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.

You create pages within the Site Pages section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a page, follow these steps:

1.

Log in to Workbench and navigate to Experience Manager.

. Mouse over the Site Pages heading in the Content Tree.
The drop-down menu arrow appears on the right.

. Click the drop-down menu arrow and select Add Page.
The Add Page panel appears.

. Enter a Name/Path for the new page.

This is the part of the URL path that uniquely identifies the page within your application.

22

2 Designing an Assembler Application

5. Click Create.
The new page is added to your application.

A page exists as a content item in Experience Manager. A content administrator can configure it directly by
selecting a template with included editors, or they can specify a template with a dynamic slot to populate the
page from one or more selected content folders.

About content folders

Before a content administrator can configure dynamic content items within an application, you must create
content folders to contain those items. Content items within the same folder are evaluated against each other
at runtime to determine which item (or items) should be returned to populate a defined section of the current

page.

In Experience Manager, content folders define the top-level organizational structure of an application, in

which the content administrator can browse for content. If a query satisfies the trigger criteria for multiple
content items within a folder, items with higher priority take precedence over those with lower priority. A single
application request may trigger content items from multiple folders

Content folders have the following properties:

« Template type — Specifies the type of content items that can be created in this collection, as defined by the
t ype attribute of the content template.

+ Template ID — Specifies the type of content items that can be created in this collection, as defined by the | D
attribute of the content template. This is more restrictive than specifying by template type, as an ID is unique

to a single template.

Oracle recommends that you create at least one content folder for pages and one for each slot on the page that
can contain either shared or variable content. This provides a logical organization of content within Experience
Manager. It enables content to be triggered independently of the pages that contain them and also enables
content in one slot to be triggered independently of content in another slot.

For example, the Discover Electronics reference application includes the following content folders :

+ Mobile \ Mobile Browse Pages — Top-level page configuration for pages viewed from a mobile device.
Mobile pages must be more streamlined than Web pages, so they require a different page template.

+ Shared \ Auto-Suggest Panels — Configuration for the auto-suggest panel that is displayed when a user
starts to enter a search query. The Shared collections return the same response model for both the Mobile and
Web versions of the application, but the renderers vary based on the client.

+ Shared \ Detail Pages — Configuration for record details pages within the application.
+ Shared \ Guided Navigation — Configuration for the Guided Navigation menu.
+ Shared \ Results List — Configuration for a list of search results.

+ Web \ Spotlights — Category-specific product spotlights that are displayed above the search results when a
user navigates to those products.

+ Web \ General \ Pages — Top-level page configuration for Web pages. These templates are structural and
primarily consist of dynamic slots that pull in content items from other collections to populate the page.

2 Designing an Assembler Application 23

- m
5o :
=5 m
2 e :
£ 5 “
- “

Banner section

Header section
Footer section

e

Results List section

Guided
Navigation
section

Content folders determine which content items are evaluated and returned when populating a dynamic section

of an application page.
Suppose you have a site where a typical structure for a search and navigation page looks like the following:

Content folders example

2 Designing an Assembler Application

Based on this template, the content administrator wants to configure a page for a specific trigger (for example,

Category > Cameras > Digital Cameras) using contextual, shared, and variable content as in this picture:

24

Variable Brand Banner

Guided
Navigation

Results List

o o

+ The header and footer are populated as dynamic slots with default triggering criteria, in order to avoid
defining them multiple times for a large number of pages.

+ The Guided Navigation and Results List cartridges are configured specifically for this page and do not need to
vary based on criteria other than the page triggers.

+ The Banner area is configured to display a different image depending on the brand that the site visitor has
selected.

« The Spotlight area displays a mix of promotions based on triggers that are independent of the triggering
criteria for the page itself. For example, a "Holiday Specials" spotlight may display for the date range between

November 1 and January 2.

The configuration for the page (as specified in Experience Manager) looks like this:

2 Designing an Assembler Application 25

Populate from Header folder

Populate from Brand Banner folder

|;ap ulate

‘ from
Guided Spotlight
Navigation folder

Results List

T ——

Populate from Footer folder

The configuration for Guided Navigation (including which dimensions to display and which dimension values to
boost or bury within those dimensions) and for the Results List (including default sort options and record boost
and bury) are specified as part of the page configuration. The other slots on the page contain only placeholders.
The actual Header, Footer, Banner, and Spotlight content items that display when someone visits the site are
defined in their respective content folders.

The mechanism for populating these slots is the same regardless of whether the content that should display in
each slot is shared or variable content. The only difference between the two kinds of content is in the trigger
criteria on the content items within those collections: variable content, such as the Spotlight, has triggers that
are more specific than the page trigger. Reusable content, such as the generic header and footer, has triggers
that are more general than or orthogonal to the page trigger.

When the content administrator has created all the content needed to populate this page (and a few other
pages), the application may include the following content items in the following folders:

26

2 Designing an Assembler Application

Browse Page Brand Banner Spotlight Header

') -" ™\ 4 R 4)
. n Category > Cameras User profile = Loyal
Searcl “auio-focus AMND Brand > Canon Customer .
Default
B Category > Cameras > Category = Cameras User profile =
.E Digital Cameras AND Brand = Nikon Anommous user b 4
o
5 Footer
£ Category = Category = Cameras _
[Defaul)
Defaul Default
L . " ’ N, r L 7

The content folders are configured as follows:

« The Browse Page folder contains all the content items representing search and navigation pages in the site.

+ The Brand Banner folder contains cartridges of type Medi unBanner that are appropriate to display in the
Banner slot. This dynamic slot on the Browse page has an evaluation limit of 1, since the page is designed to
display only one banner at a time.

+ The Spotlight folder contains cartridges of type Si debar I t embecause items created in this collection are
intended to display in the Spotlight slot in the right column. Because this space is intended to display several
independently triggered spotlight items, the evaluation limit for the dynamic slot on the Browse page is 3.

+ The Header and Footer folders each contain cartridges of type Ful | W dt hCont ent .

Each page or content item within these folders has an associated trigger and priority (relative to the other items
in the same folder) specified by the content administrator in Experience Manager.

When a site visitor refines on Category > Cameras > Digital Cameras and Brand > Sony, the following content

triggers:
Browse Page Brand Banner Spotlight Header
') r ™ 4 B
. n Category = Camers User profile =
I AND Brand > Canon Loyal Customer Default
B Category = Cameras > Category = Cameras User profile =
E Digital Cameras AND Brand > Mikon Anomymous user
; Footer
B Categany = Catagory > Camaras _
Defaui
Dafault Diatault
L r \ r \, r

+ The Digital Cameras page is returned as a Page, which includes the content administrator's configuration for
Guided Navigation and for Results List. Note that the Default page (with a trigger of "Applies at all locations")
is also eligible to fire, but the Digital Cameras page has a higher priority, therefore it takes precedence and the
Default page does not fire.

2 Designing an Assembler Application 27

« The Banner slot is populated by the highest priority content item in the Brand Banner folder that matches the
user's navigation state. In this case, it is the Sony cameras banner. Again, there is a Default banner but it does
not fire because it has a lower priority.

+ The Spotlight slot is populated by the highest priority content items in the Spotlight folder that match the
user's navigation state. In this case, the Default spotlight does fire because there is room for three spotlights in
this slot and that item has a high enough priority (among those that satisfy the user's context) to be included.
These three content items display in the Spotlight area in order of priority.

« The Header and Footer folders have only one content item each, which is set to display at all locations,
therefore the same content is returned for this page as for all pages.

In this example, content is returned from five content folders. Priority between items is specified within each
folder. It does not make sense to prioritize the Sony cameras banner against the April spotlight cartridge, for
example, because they are not competing against each other to be displayed on the page. In general, content
items with more specific trigger criteria should have a higher priority than those with more general criteria,
especially if they are used in a dynamic slot with an evaluation limit of 1.

Oracle recommends that you create separate content folders for each area on the page, even if they have the
same content type. For example, if you want to have two banners on the page, each populated via dynamic
slots, they should reference two different folders, or else the same banner (the one with the highest priority for
the current navigation state) is returned for both sections of the page.

Oracle also recommends that you do not mix reusable and variable content within the same folder. For example,
if a slot (such as the Spotlight slot) can be populated with either reusable or variable content, create two
different folders, Reusable Spotlights and Variable Spotlights. The content administrator can configure a
particular page to populate the Spotlight slot from either folder as applicable. In order to populate the same slot
with a mixture of reusable and variable content, the content administrator can insert two (or more) placeholders
in the Spotlight slot, each referencing the corresponding folder for each type of content.

The final result for the site visitor who is looking at Sony cameras looks something like the following:

28

2 Designing an Assembler Application

Sony Brand Banner

Digital
Camera
Guided

Navigation Digital Camera

Results List

Sign in
for
special
offers!

Spring is
here ...
see our
selection
of
outdoor
cameras

of $100
or more

o o

Creating a content folder

The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.

You create content folders within the Content section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a content folder:
1. Log in to Workbench and navigate to Experience Manager.
2. Mouse over the Content heading in the Content Tree.
The drop-down menu arrow appears on the right.
3. Click the drop-down menu arrow and select Add Folder.

The Add Content Folder panel appears.

2 Designing an Assembler Application

29

4. Enter the Name of the folder you wish to add.
5. Optionally, select a content type restriction.

The drop-down list is populated based on the available t ype values for the set of templates uploaded to the
application.

This selection restricts the content items within the folder to the specified type.
6. Click Add.

The new content folder is added to the Content Tree in Experience Manager.

About moving content folders

You can move and re-organize content folders in the Content Tree within Experience Manager.

If you move a content folder that includes dynamic content referenced elsewhere in the application, a warning
dialog appears with a list of content items that rely on the content you are moving. You must manually update
these content items if you proceed with the move.

About sites

Oracle Commerce Experience Manager enables you to build an application that can run multiple web sites using
a single index. Business users can use this application to create site-specific pages that use a single index. Even if
you are not building an application that supports multiple sites, your application must contain at least one site.

You can create applications to support multiple web sites that share the same code base, templates, cartridges,
and search configuration. Each web site can have its own unique set of pages that display the site's unique look
or branding.

Note

If you are using Oracle Commerce Guided Search, applications have one site by default, and Oracle
does not support adding additional sites.

Site storage

Individual sites are stored directly under the pages node. This default site root path is configured in the
assenbl er. properti es file. For example, in the Discover reference application, the path looks like the one in
the following example:

previ ew. enabl ed=true

user. state.ref=previ emser St ate

medi a. sour ces. r ef =aut hori ngMedi aSour ces

reposi tory. configuration. pat h=./repository/${workbench. app. nane}
def aul t Si t eRoot Pat h=/ pages

In the following configuration, the Discover application contains three sites: DiscoverAll, DiscoverPrinters and
DiscoverCameras.

| pages
/ Di scover Al |

30

2 Designing an Assembler Application

/ Di scover Caner as
/ Di scoverPrinters

Sites are the top-level content in this application. Each page within a site belongs to exactly one and only one
site. Each site node is a site definition and every application must have at least one site definition. The Assembler
uses properties in these site definitions to facilitate site-specific behavior. Site definitions are stored in the pages
node of the IFCR. Our sample configuration would have three site definitions: one each for Di scover Al |,

Di scover Camer as,and Di scover Printers.

| pages
/ Di scover Al |
_.json
/ Di scover Caner as
_.json
/ Di scoverPrinters
_.json

The following site definition for DiscoverAll shows a unique display name, DiscoverAll and description, as well
as a unique URL pattern,/ Di scover Al | for this site:

{

"ecr:type":"site-hone",

"url Pattern" : "/Di scoverAl",

"di spl ayNane" : "DiscoverAll"

"description" : "This site shows all things that are Discover."
}

If only a subset of records within the index are relevant for a specific site, then you must specify site-based filters.
The site-based filter is applied to all queries performed on the site. The filter that is applied is determined by

site context. The following configuration has three site definitions and two sites with site-based filters. One for
DiscoverCameras and one for DiscoverPrinters. The filter for DiscoverCameras would filter out all records except
those that were relevant to cameras, while the DiscoverPrinters filter would filter out all records except those
that were relevant to printers. DiscoverAll includes every record in the index, so that site does not have afilter.

ifcr/
| pages
/ Di scover Al |
_.json
/ Di scover Carer as
_.json

filterState. xm
/ Di scoverPrinters

_.json

filterState. xm

The following is an example of thefi | t er St at e. xnl file for DiscoverCameras:

<l tem cl ass="com endeca. i nfront. navi gati on. nodel . FilterState" xm ns="http://endeca.com
schena/ xavi a/ 2010" >

2 Designing an Assembler Application 31

<Property nanme="recordFilters">
<Li st>
<String>product.category: "Caneras"</String>
</ List>
</ Property>
</ltem

Note that Oracle does not support site-based filters in Oracle Commerce Guided Search.

Site Awareness

In a multiple site application, the Assembler must identify the site or the site state for incoming requests. This
identity is included in the request as part of a domain name, a URL, or a request parameter. Resolving this site
state gives the Assembler the ability to retrieve the relevant site definition, the site-based filter and other site
specific information.

The Act i onPat hPr ovi der is an interface that you are free to implement as you see fit. Cartridge handlers

in applications built with Spring can use the Act i onPat hPr ovi der to determine navigation or record detail
action paths. The content paths that prefix navigation and record states are configured as sets of key-value pair
mappings. In a multiple site application, the Act i onPat hPr ovi der can define different mappings for pages on
different sites. The following example shows an Act i onPat hPr ovi der in the assenbl er - cont ext . xni file
with new mappings for the DiscoverCameras site that has been added to navi gat i onAct i onUri Map and the
recor dActi onUri Map:

<bean i d="acti onPat hProvi der" scope="request" class="com endeca.infront.re-
f app. navi gati on. Basi cActi onPat hProvi der" >

<constructor-arg index="0" ref="content Source"/>

<constructor-arg i ndex="1" ref="httpServl et Request"/>

<l-- navigationActionUiMp -->
<constructor-arg index="2">
<map>

<entry key=""/pages/Di scover Caneras/.*$" val ue="/pages/ Di scover Caner as/
caner asbr owse" />
<entry key=""/pages/[~/]*/ nobile/detail $" val ue="/nobil e/ browse" />
<entry key=""/pages/[~/]*/services/recorddetails/.*$" val ue="/services/
gui dedsearch" />
<entry key=""/pages/[~/]*/detail $" val ue="/browse" />
<entry key=""/services/.*$" val ue="/services/ gui dedsearch" />
</ map>
</ constructor-arg>
<l-- recordActionUriMp -->
<constructor-arg index="3">
<map>
<entry key=""/pages/Di scover Caneras/.*$" val ue="/pages/ Di scover Caner as/
canerasdetail" />
<entry key=""/pages/[~/]*/nobile/.*$" value="/nobile/detail" />
<entry key=""/pages/[~/]*/services/.*$" value="/services/recorddetails" />
<entry key=""/pages/[~/]*/.*$" value="/detail" />
<entry key=""/services/.*$" value="/recorddetails" />
</ map>
</ constructor-arg>
<constructor-arg index="4" ref="siteState"/>
</ bean>

32

2 Designing an Assembler Application

Creating Experience Manager Templates

This section describes the process of creating templates that enable the configuration of content items in
Experience Manager.

Related links

+ Designing an Assembler Application (page 17)

» About creating templates (page 33)

+ Anatomy of a template (page 34)

» About the template XML schema (page 35)

« Template identifiers (page 35)

+ About the type of a template (page 36)

+ Specifying the description and thumbnail image for a template (page 36)
+ Specifying the default name for a cartridge (page 38)

+ Defining the content properties and editing interface (page 38)
« Structural properties (page 41)

+ About keyword redirects groups (page 44)

« About multiple locales (page 47)

+ Managing Experience Manager Templates (page 48)

About creating templates

Templates define the content structure of a content item as well as the editing interface that content
administrators can use to configure instances of content items in Experience Manager.

In general, you create one or more templates that define the high-level structure of the pages in your
application. These templates define sections that can be populated with other content items, or cartridges.
Cartridge templates specify the properties required to display the content for that component. This may include
values that the client application uses directly to render the information, or inputs into the Assembler for
processing (such as query parameters to the MDEX Engine).

While cartridges and template properties typically determine aspects of the visual appearance of the page,
keep in mind that they can also represent page elements that are not visible in the application. For example, a
property can contain meta keywords used for search engine optimization, or a cartridge can include embedded
code that does not render in the page but enables functionality such as Web analytics beaconing.

The Discover Electronics reference application provides sample page templates for some standard page types,
as well as templates that enable configuration of the core set of cartridges in Experience Manager. These
cartridges cover basic functionality, and are provided as a starting point for your application. You can customize
them to suit your needs.

Note

In some cases, the reference application includes more than one template for the same functional
cartridge. This is in order to enforce the proper constraints on which cartridges are available to insert

2 Designing an Assembler Application 33

in specific template slots. The only difference between the different versions of these templates is the
template type.

This section concentrates on the basic template elements that enable you to create top-level page templates
appropriate to your application. Details about the template configuration for core cartridges are covered in the
"Feature Configuration" section. Reference information about the full range of properties and editors that can be
used in templates is provided in the appendix to this guide.

Anatomy of a template

Top-level templates, which define an entire page, and cartridge templates, which drive the content of individual
components, are both XML documents that share the same structure.

Templates can be broken down into three parts:

+ General information such as the template type, description, and thumbnail image. This information is
used in Experience Manager to help the content administrator select the appropriate template for a page or
section.

+ Content item definition. In this part of the template, you explicitly declare all the properties of the content
item that is described by this template. Property types can include Strings, Lists, and Booleans. You can also
specify the default values of properties here.

+ Editor panel definition. These allow you to define the editing interface in Experience Manager for this
content item. Properties are generally associated with an editor that enables content administrators to
configure the content items that they create within the tool.

Genera ! caditors="aditora™ type=*Mair 1 ntent®
riformalion e ICIL] i pl 1R MIch I lts. L Pt 1

Property
definitions

Proparty iimensk
adilors ifrors:Numari: poarEditar prar & ol A E Y ma wEnt Tl e D4 s " b =

By defining the properties in the template along with how they can be configured in the tool, you ensure that
the content configured in Experience Manager provides the necessary properties to the corresponding cartridge
handler in the Assembler.

34 2 Designing an Assembler Application

About the template XML schema

All templates share the same primary schema. In addition, there are several other namespaces that are
commonly used in templates.

The template schema

The template schema describes the overall structure of page and cartridge templates. It is also used for primitive
property types such as String and Boolean.

All templates must include the following schema declaration:

<Cont ent Tenpl ate xm ns="http://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
type="PageTenpl ate" >

The Xavia schema

The Xavia namespace is used for properties that are lists or items (collections of key-value pairs). Include the
following namespace declaration in templates that use these properties:

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conf schema/ xavi a/ 2010"
type="PageTenpl ate" >

The editors schema

There is no formal schema for editor configuration, however, by convention, they are associated with an

edi t or s namespace to distinguish these elements from the template schema. Include the following namespace
declaration in all templates:

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conf schema/ xavi a/ 2010"
xm ns: edi tors="editors"
type="PageTenpl ate" >

Template identifiers

Templates are saved as XML files named t enpl at e. xm that are then uploaded to Experience Manager. Each
template is required to have a unique identifier.

The template identifier is the folder name where the t enpl at e. xm file resides. For example, in

Thr eeCol uimNavi gat i onPage\ t enpl at e. xmi , the folder name, Thr eeCol uimNavi gat i onPage, is the
template identifier. The identifier appears as the name of the cartridge in the cartridge selector in Experience
Manager. The value should be as descriptive as possible to help the user select the appropriate template, for
instance, "ThreeColumnWithLargeBanner" or "HolidaySalePromotion."

2 Designing an Assembler Application 35

Template folder names cannot have spaces in them. Folder names must be unique within your application.
Templates with non-unique identifiers are not available in Experience Manager. Oracle recommends that you
treat templates as part of your application's configuration and store them in a version control system. It can also
be useful to include a template version number in a property for debugging.

About the type of a template
Each template has at ype that indicates where the template fits in an application page.

The type restriction serves two purposes. For top-level container templates, such as those that define a page,
a type restriction can be specified for each section of the page. This limits the cartridges that can be inserted
into that section. For example, if a template that includes a "HorizontalBanner" section, only cartridges of type
"HorizontalBanner" are available to insert into that section in Experience Manager.

Additionally, you can specify a template type in a dynamic slot to restrict the content that appears in that slot.
This restriction applies at runtime when content items are evaluated against each other and ranked by priority
for display in the application; any content items that do not match the specified template type for a dynamic slot
are removed from consideration.

Setting a template type

The template t ype is specified as a required attribute on the <Cont ent Tenpl at e> element of the
t enpl at e. xni . For example:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http:// endeca. conl schena/ xavi a/ 2010"
xm ns: edi tors="editors"
type="PageTenpl ate" >

Note

Thet ype attribute is defined as type xs: Name in the template schema. This means that valid values for
these attributes must:

+ be assingle string token (no spaces or commas)
+ begin with a letter, a colon (:), or an underscore (_)

Numbers are allowed as long as they do not appear at the beginning of the string.

Specifying the description and thumbnail image for a template

The description and thumbnail image for a template display in the template selector and cartridge selector
dialog boxes in Experience Manager. Adding a description and thumbnail image to a template is optional.

To specify the description and thumbnail image for a template:

1. Insert the following elements within <Cont ent Tenpl at e>:

36 2 Designing an Assembler Application

Element Description

<Descri ption> One or two brief sentences to help the content
administrator identify the template in Experience
Manager. This can include information about the
visual layout of the template ("Three-column layout
with large top banner") or its intended purpose
("Back to school promotion").

<Thunbnai | Ur | > The absolute URL to a thumbnail image that shows
a sample page or section that is based on the
template. The images must be hosted on a Web
server accessible from the Experience Manager
server. Any URL without a protocol or leading slash
will be treated as relative to the root of the template
structure.

If your thumbnail is in the same folder
asyourtenpl ate. xm file,youcan
omit the path altogether. For example,
<Thunbnai | Ur | >t hunbnai | . png</
Thurbnai | Ur | >.

Example 2.1. Example

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: edi tors="editors"
type="PageTenpl ate" >
<Rul el nf o zone="Navi gati onPageZone" styl e="PageStyle"/>
<Descri pti on>A page layout with left and right sidebars intended for general category
pages. </ Descri pti on>
<Thunbnai | Url >http://i mages. myconpany. cont t hunbnai | s/ PageTenpl at e/
Thr eeCol ummNavi gat i onPage. png</ Thunbnai | Ur | >
<l-- additional elements deleted fromthis exanple -->
</ Cont ent Tenpl at e>

About using thumbnail images in Experience Manager

Thumbnail images can help the content administrator identify the appropriate template to use for the pages
they create.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this size and larger
images are cropped to show only the top left corner.

The images must be hosted on a Web server accessible from the Experience Manager server. If the thumbnail
image for a template is either not specified or not accessible, a default image displays in the dialog box.

2 Designing an Assembler Application 37

Specifying the default name for a cartridge

The value of <Name> within the <Cont ent | t en» displays as a label for the cartridge in the Content Tree in
Experience Manager.

To specify a default name for a cartridge:

1. Insert the <Name> element inside <Cont ent | t en® as in the following example:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"

xm ns: xavi a="http://endeca. conf schenma/ xavi a/ 2010"

xm ns: editors="edi tors"

t ype="PageTenpl at e" >

<Rul el nf o zone="Navi gati onPageZone" styl e="PageStyle"/>

<Descri pti on>A page |layout with left and right sidebars intended for general

cat egory pages. </ Descripti on>

<Thunbnai | Url >htt p://i mages. nyconpany. coni t hunbnai | s/ PageTenpl at e/
Thr eeCol unmmNavi gat i onPage. png</ Thunbnai | Ur| >

<Contentltenp

<Nanme>New Thr ee- Col utm Navi gati on Page</ Name>

<l-- additional elenments deleted fromthis exanple -->
</ Content|tenr
<l-- additional elenents deleted fromthis exanple -->

</ Cont ent Tenpl at e>

<Nane> is a required element. The value you specify in the template becomes the default name when a
content adminstrator creates the page or adds a cartridge. If you insert an empty <Nane/ > element, an
empty text field displays in Experience Manager and the content administrator can supply a value.

Defining the content properties and editing interface

A template defines the properties of a content item and also the interface that enables a content administrator
to configure the properties.

You define properties within the <Cont ent | t en® element in the template. For each property, you specify a
name and a property type. You can optionally specify a default value for a property.

You associate editors with properties to enable the content administrator to configure their values within
Experience Manager. Properties are generally primitive types such as Strings, Booleans, or Lists. Another type of
property is a section, which allows content administrators to insert and configure another content item.

You can choose not to expose a particular property in Experience Manager and simply specify a default value
to pass to the Assembler and ultimately to the client application. This is useful for values that do not need to
be configured by the content administrator, but are needed by the Assembler for content processing or by the
client application to determine how to render the content.

Template properties

You can define the properties of a content item by nesting any number of <Pr oper t y> elements within the
<Cont ent | t en» element.

Cartridge properties are typically used for one of the following purposes:

38

2 Designing an Assembler Application

+ The property values may be intended to be used directly by the client application. For example, the content
administrator may be able to enter text to use a heading or link text, or she may supply a URL to an image.
Property values can also contain information such as meta keywords that are part of the page but do not
affect its display.

+ The values may be intended for the relevant cartridge handler in the assembler to use for processing, for
example, parameters for a query to the MDEX Engine (or another external resource) to return the actual
content that the application should display.

+ Occasionally, a cartridge has no properties (and therefore no configuration options in Experience Manager),
but exists only as a placeholder to indicate that a certain functional component should be included on a page.
The Assembler inserts the necessary information for this cartridge at query time.

Each property must have a name that is unique within the template. If the property is to be passed through
directly to the renderer, this can be any name that makes sense for your application. However, some properties
are part of the configuration model for the cartridge. In this case the associated cartridge handler depends on
the presence of specific properties in the template.

The property name is specified in the nane attribute of the <Pr oper t y> element.
Note

The nane attribute is defined as type xs: Name in the template schema. This means that valid values for
these attributes must:

» be asingle string token (no spaces or commas)
+ begin with a letter, a colon (:), or a hyphen (-)
Numbers are allowed as long as they do not appear at the beginning of the string.
You specify the property type by adding a child element of <Pr oper t y>. Properties can be one of two kinds:
+ content properties (described by the template schema for primitive properties and Xavia for lists and items)
« structural properties (described by the template schema)
Defining the editing interface for properties

After you have defined the content properties in your template, you can define how those properties can be
configured by the content administrator in Experience Manager.

You add content editors inside the <Edi t or Panel > element in the template. The
<Basi cCont ent | t enEdi t or > element enables you to specify individual property editors that display in
Experience Manager and associate them with a particular property.

For example, this excerpt from a sample template defines a configurable string property namedti tl e:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
t ype="Resul t sPage" >
<!-- additional elenments deleted fromthis exanple -->
<Contentltenr
<Nanme>Thr ee- Col uimm Navi gat i on Page</ Name>
<l-- First define the content property -->
<Property nane="title">
<String>Di scover Electronics</String>

2 Designing an Assembler Application 39

</ Property>
<!-- additional properties deleted fromthis exanple -->
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- Define an editor for each property that should
be configurable -->
<StringEditor propertyNane="title" |abel="Title"/>
<l-- additional editors deleted fromthis exanple -->
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Editors are defined in templates with the edi t or s namespace. By convention, the pr oper t yNane is a required
attribute and specifies the property that this editor is associated with. The property must be defined in the
<Cont ent | t en® part of the template, and must be of the appropriate type for that editor. For example, an

<edi tors: StringEdi t or > cannot be associated with a <xavi a: Li st > property. If you define a content editor
for a property that does not exist, or that is of the wrong type, a warning displays in Experience Manager when a
content administrator attempts to configure the content.

Property editors do not have to be defined in the same order as the properties in the template. The

<Basi cCont ent | t enEdi t or > renders the editors in a vertical layout in Experience Manager, in the order in
which you define them in the template. If you do not want a property to be exposed in the Experience Manager
interface, do not define an editor associated with it.

It is possible to create more than one editor associated with the same property. However, be aware that all
editors that you define in the template are displayed in Experience Manager, which may be confusing to the
content administrator. When the value of a property is changed, any other editors associated with that property
are instantly updated with the new value.

Related links

« Editor property mapping reference (page 225)

Configuring editor default values

You can configure default values for Experience Manager editors across the entire application by modifying the
editor configuration file, or on a per-template basis by modifying cartridge templates directly.

You can configure Experience Manager editors through the following methods:

+ You can configure editors in the editor configuration file, edi t or s. xmi . This configuration applies to all
instances of a specific editor within an application.

+ You can configure editors within a cartridge template. This configuration applies to all instances of a specific
editor created based on that template. In the case of shared properties, configuration in the cartridge
template overrides configurationin edi t ors. xm .

For details about configuring the core editors packaged with Oracle Commerce Tools and Frameworks, see the
"Template Property and Editor Reference" Appendix.

Related links
« Template Property and Editor Reference (page 225)

+ Defining the editing interface for properties (page 39)

40

2 Designing an Assembler Application

Specifying editor-specific configuration

You can modify the editor configuration file to set configuration that is common to all instances of a specific
editor within an application. This can include basic values for the editor, or information used to communicate
with an external resource.

Note

Oracle recommends configuring a data service for cases where different editors all need to access a
common set of configuration for an external resource.

To add configuration information to the editor configuration file:

1. Navigate to the editor configuration file at <app di r>\ confi g\i nport\ confi gurati on\t ool s\ xngr
\editors. xm .

2. Insert an <Edi t or Conf i g> element directly inside the <Edi t or > tag of the editor you wish to modify.
3. Add your arbitrary configuration information.

The example below includes the configuration inside a nested element, but you can also specify the
information as attributes of the Edi t or Conf i g element:

<Edi tor nane="editors: MyEdi tor">
<Edi t or Confi g>
<Arbitrary foo="bar" size="10" resizeabl e="fal se"/>
</ Edi t or Confi g>
</ Edi t or >

4. Save and close the file.
5. Navigate to the <app di r>\control directory.

6. Runtheset _edi t ors_confi g script to publish your changes to the Endeca Configuration Repository.

Structural properties

You can define a section within a template by inserting a <Cont ent | t en» or <Cont ent | t enLi st > element
within a <Pr opert y>.

Adding a content item property

A content item property defines a template section by creating a placeholder for a nested content item defined
by a cartridge template.

Content administrators can configure a section in Experience Manager by choosing a cartridge to insert in the
section then configuring the properties of the cartridge.

To add a content item property to a template:

2 Designing an Assembler Application 41

1. Insert a <Cont ent | t en® element inside a <Pr oper t y> element.

2. Specify the section t ype.

Only cartridge templates with a type that matches the section type are presented as options for the content
administrator to choose from in Experience Manager. For example, when a content administrator inserts a
cartridge in a RecormendedCont ent section, only templates of type ReconmendedCont ent display in the
Select Cartridge dialog box. (Recall that the cartridge template is the part of a cartridge that is exposed in
Experience Manager). Because the type of the section property and cartridge templates must match exactly,
the type attribute is also defined as type xs: Nane in the schema and all restrictions that apply to template
types also apply to section types.

The following example defines two sections within a template. Note that more than one section in a template
can have the same type, as long as your client application expects this kind of content.

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schenma/ xavi a/ 2010"
xm ns: editors="edi tors"
t ype="PageTenpl at e" >
<l-- additional elenments deleted fromthis exanple -->
<Contentltenr
<Nanme>New Thr ee- Col utm Navi gati on Page</ Name>
<l-- additional properties deleted fromthis exanple -->
<Property name="|eft Col um" >
<Contentltemtype="Si debarltenm />
</ Property>
<Property nanme="ri ght Col um" >
<Contentltemtype="Si debarltenm />
</ Property>
</ Contentlten
<l-- additional elenments deleted fromthis exanple -->
</ Cont ent Tenpl at e>

Adding a content item list property

A content item list allows content administrators to add an arbitrary number of items to a section and to reorder
those items within the list using the Content Tree in Experience Manager.

Using content item properties to define the subsections of a cartridge restricts the number of subsections
available to the content administrator in Experience Manager. For example, the right column of this page
template can contain exactly four cartridges:

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conf schenma/ xavi a/ 2010"
xm ns: edi tors="editors"
t ype="PageTenpl at e" >
<l-- additional elenments deleted fromthis exanple -->
<Contentlten
<Name>New Thr ee- Col utm Navi gati on Page</ Name>
<l-- additional elenments deleted fromthis exanple -->
<Property nanme="ri ght Col um1">
<Contentltemtype="Si debarltem' />
</ Property>

42 2 Designing an Assembler Application

<Property nanme="ri ght Col um2">
<Contentltemtype="Si debarltem />
</ Property>
<Property nanme="ri ght Col um3">
<Contentltemtype="Si debarltem />
</ Property>
<Property nanme="ri ght Col um4">
<Contentltemtype="Si debarltem' />
</ Property>
</ Contentlten>
<l-- additional elenments deleted fromthis exanple -->
</ Cont ent Tenpl at e>

Although some of the sections can be left empty, no more than four cartridges can be added to the right
column.

Using a content item list removes the restriction and allows the content administrator to add an arbitrary
number of content items to the right column of the page:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: edi tors="editors"
type="PageTenpl at e" >
<l-- additional elenments deleted fromthis exanple -->
<Contentltenp
<Nane>New Thr ee- Col utm Navi gati on Page</ Nane>
<l-- additional elenments deleted fromthis exanple -->
<Property nane="ri ght Col um" >
<Contentltenli st type="Sidebarltent />
</ Property>
</ Content|tenr
<l-- additional elenments deleted fromthis exanple -->
</ Cont ent Tenpl at e>

To add a content item list to a template:
1. Insert a <Cont ent | t enLi st > element inside a <Pr oper t y> element.
2. Specify the template t ype.

Only cartridge templates with a type that matches the content item list type are presented as options for
the content administrator to choose from in Experience Manager. In the above example, when a content
administratorinserts a cartridge in a Ri ght Col unm section, only templates of type Si debar | t emdisplay in
the Select Cartridge dialog box.

3. Optionally, specify a maximum number of content items using the maxCont ent | t ens attribute.

For example:

<Property nane="Ri ght Col um" >
<Contentltenli st type="Sidebarltent nmaxContentltens="4"/>
</ Property>

By default, the value of raxCont ent | t ens is 0, which means that there is no limit to the number of
cartridges that can be added to a content item list.

2 Designing an Assembler Application

43

About cartridge selectors

Unlike other types of content properties, section properties are always editable; you do not need to explicitly
specify an editor in the template.

In Experience Manager, content administrators can select cartridges to insert in sections either by clicking

the cartridge Add button in the content detail panel or by right-clicking the section in the Content Tree. Both
options bring up the cartridge selector dialog box and are enabled automatically when you define a section in
the template.

About keyword redirects groups

Business users can configure a keyword redirect in Workbench to direct end users to a specified location in an
application when they enter a specified search term or terms. This lets you display a relevant promotional page
or product category page instead of a typical list of search results.

A keyword redirect triggers on one or more search terms; the target of a keyword redirect is a URL to a page in
your application. This target page in your application is typically a search results page.

Keyword redirects are organized into groups. One is a default group. You can enhance your redirect experience
by categorizing your keyword redirects into multiple keyword redirect groups. One search result page can be

a target for one redirect group, while another search result page can be a target for another redirect group.
Keyword redirect groups are not associated with the pages that have the search box on them; the groups are
associated with the target search results page that the search box uses.

Organize your results pages into redirect groups to meet the needs of your application. Redirect groups are
especially useful if you are creating an application with multiple sites. In a multiple site application, you can
create a keyword redirect group exclusively for pages in each site. If you implement keyword redirect groups for
sites, then the search results page that the end user is sent to can be site-specific and might not be appropriate
for other sites in the application.

For example, an application has two sites: site A and site B. Site A and site B might each have their own contact
information pages. A user shopping at site A that enters "contacts" in the search bar is redirected to a contact
page that is unique to site A rather than a global contact page for the whole application.

Implementing keyword redirects in templates

To enable multiple keyword redirect groups in an application, include a redirect group property,

r edi r ect G oup when you create page templates. If you do not add this property, a default redirect group is
used. In the future, however, if you want to configure search pages to use a specific redirect group, you must
add this property to the template and all content (cont ent . xni) that is based on that template. At a minimum,
Oracle recommends adding this property to your search results page templates and their corresponding

cont ext . xnl , but you can add this to any or all page templates as you see fit. If the property is added to a
template, it must be added to any content based on the template, or business users see Updated Template
warnings in Experience Manager.

Note

In the Discover reference application, since any page template can be used for a search results page
and any search results page can be configured to use a specific redirect group, all page templates and
corresponding content contain the r edi r ect G- oup property.

The following example shows ar edi r ect G oup property added to a page template.

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"

44

2 Designing an Assembler Application

xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: editors="editors"
type="Page" >
<Descri ption>%{tenpl ate. descri pti on} </ Descri pti on>
<Thunbnai | Ur| >t hunbnai | . png</ Thunbnai | Ur | >
<Contentltenp
<Nanme>Dynam ¢ Page Sl ot </ Nanme>
<Property name="cont ent Pat hs" ><xavi a: Li st/ ></ Property>
<Property nane="tenpl at eTypes" >
<xavi a: Li st >
<xavi a: Stri ng>Page</ xavi a: Stri ng>
</ xavi a: Li st >
</ Property>
<Property nanme="tenpl at el ds" ><xavi a: Li st/ ></ Property>
<Property name="rul eLimt"><String>1</String></Property>
<Property nanme="redirect G oup"><String/></Property>
</ Contentlten
<l-- additional content deleted fromthis exanple -->
</ Cont ent Tenpl at e>

This property lets you associate redirect groups with any search results pages created from this template. You
must also edit the page cont ent . xni file to associate a redirect group with pages in the application. If you do
not add any redirect groups to the cont ent . xni , then the page is automatically associated with the default
redirect group. The following section lists the steps to follow to associate a redirect group with a search results

page.
Associating keyword redirect groups with pages

Follow these instructions to associate keyword redirect groups with pages in your application.

Before you begin, verify that the template from which the pages were created has a redirect group property.
1. Export the application to which you want to add a keyword group.
a. Navigate to the <app_di r >\ contr ol \ directory on Windows (<app_di r >/ cont r ol / directory on Unix).

b. From the command line, export the application by entering the following command: r uncomand. <bat |
sh> | FCR export Application <destination> true.

2. In the destination directory, navigate to\ conf i g\ i nport\redi rect s\ and copy the Def aul t folder.
3. Paste the copied folderinto\ confi g\i mport\redirect s\
For example, \ confi g\i nport\redirects\ Def aul t - Copy.
4. Rename the copied folder with the name of your new redirect group.
For example, \ confi g\i nport\redirects\D scoverWst
5. In the new redirect group folder, change the name of the _Def aul t. j sonto_. | son.

6. Use a text editor to update the keyword redirects group JSON with unique information appropriate for your
group. At a minimum, enter a di spl ayName value and verify that the enabl eSt enmi ng value is appropriate
for the keyword redirect group. You do not need to enter r edi r ect s values since business users can use the
Workbench interface for that activity. See the Oracle Commerce Administrator's Guide for more information on
properties in the redirect-group JSON file.

2 Designing an Assembler Application 45

Be sure that the di spl ayNane property that you enter is meaningful to the business users that add keyword
redirects manage permissions in Workbench.

In the following example, the redirect group has been updated with a unique display name.

"ecr:type": "redirect-group",
"di spl ayNane": "Di scover West",
"enabl eSt enmi ng": true,
"redirects": [
{ "matchnode": " MATCHEXACT",
"url": "/browse/west/_/N1z141lya",
"searchTerns": "west"

7. Navigate to the cont ext . xni file for the relevant search results page. For example: \i nport\ pages
\ Di scover El ectroni cs\ browse\ cont ext . xni .

8. Use a text editor to update the cont ext . xnl file with the appropriate keyword redirect group. The group
name must match the folder name where the redirects JSON is stored.

For example, for the DiscoverWest redirects group, the redirects group string has the following value:

</ Property>
<Property nane="redi rect G oup">
<String>/redirects/ D scover West </ String>
</ Property>

Note that/ r edi r ect s/ Di scover West matches the folder name where the redirects JSON file is stored.
9. Repeat the previous two steps for every page that you plan on using as a target for search results.
Note
Remember, the templates that these pages are based on must have a redirects group property.
10.Import the content with the new keyword group updates.

a. Navigate to the <app_dir>\control\ directory on Windows (<app_di r>/control / directory on
Unix).

b. From the command line, import the updated content by entering the following commands:
* runconmmand. <bat/sh> | FCR i nport Cont ent pages <path to source>
* runconmand. <bat/sh> | FCR i nport Content redirects <path to source>
* runcomrand. <bat/sh> | FCR i nport Content tenplates <path to source>

For example:

runcommand. bat | FCR i nport Content pages c:\nyexports\Di scover\config\inport\pages

46 2 Designing an Assembler Application

runcommand. bat | FCR i nmport Content redirects c:\myexports\Di scover\config\inport
\redirects

and

runconmand. bat | FCR i nport Content tenpl ates c:\myexports\Di scover\config\inport
\tenpl ates

If you fail to update either the template or cont ent . xni for the search results page, then business users editing
content in the Experience Manager might see the following warning:

About multiple locales
If your implementation supports multiple locales, you can localize your custom templates.

You can create resource property files for each locale for storing localized strings. Each resource property

file name must follow this format: Resour ces_<I ocal e>. properti es where <locale> is the ISO language
code. For example Resour ces_fr. properti es indicates that French values are stored in it. Place

these files in a locales folder for your custom template: <app di r>\confi g\ cartri dge_tenpl ates

\ <tenpl ate_i denti fi er>\1ocal es. You can specify values that do not change for locale (thumbnail URLs for
example) in the single Resour ces. properti es file or directly in the t enpl at e. xnd file.

In the template itself, you can use ${ pr oper t y. nane} notation in element content and attributes to reference a
localized string in the Resour ces_<I ocal e>. properti es.Only contentin the Descri pti on, Thunbnai | URL,
and Edi t or Panel sections can reference localized strings in the resources properties files.

The following example shows a template that uses notation to reference strings in resource properties files and
two resource property files containing the stings that are being referenced.

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
type="Type">
<Descri ption>${ny. tenpl at e. descri pti on} </ Descri pti on>
<Thunbnai | Url >${ny. tenpl at e. t hunbnai | url } </ Thunbnai | Ur | >
<Contentltenr
<Nanme>Di mensi on Sear ch Aut o- Suggest </ Nanme>
<Property name="title">
<String>Search Suggestions:</String>
</ Property>
<Property nanme="di spl ayl mage" >
<Bool ean>t r ue</ Bool ean>
</ Property>
</ Contentltenr
<Edi t or Panel >
<Basi cContent |t enEdi t or >
<G oupLabel |abel ="${ny.tenpl ate. di spl aySettingsLabel }"/>
<edi tors: StringEditor
propertyNane="title" |abel ="${ny.tenplate.titleLabel}" enabl ed="true"/>
<edi t or s: Bool eanEdi t or propertyNane="di spl ayl nage"
| abel ="${ny. tenpl at e. di spl ayl nageLabel }"
enabl ed="true"/>
<edi tors: Nuneri cSt epper Edi t or propertyNane="naxResul t s"

2 Designing an Assembler Application 47

| abel ="${ny. t enpl at e. nexSear chSuggesti onsLabel }"
maxVal ue="100"
enabl ed="true"/>
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

The English resources property file, Resour ces_en. properti es, for this template contains the following:

Di mensi on Search Auto- Suggest

ny.tenpl ate. description = Display di mension matches as part of the auto-suggest panel
bel ow t he search box.

my. tenpl at e. di spl aySetti ngsLabel = Display Settings

ny.tenplate.titleLabel = Title

ny. tenpl at e. di spl ayl rageLabel = Display | nmage

nmy. tenpl at e. maxSear chSuggesti onsLabel = Max Search Suggesti ons

In the template example, the thumbnail URL is the same for all locales, so the ${ ny. t enpl at e. t hunbnai | url}
notation is only referenced in the Resour ces. properti es file.

Di nensi on Search Auto- Suggest
my.tenplate.thunbnai lurl = /ifcr/tool s/ xmgr/inmg/tenplate_thunbnails/type_ahead_2.j pg

Managing Experience Manager Templates

You must upload templates to Workbench before they are available to users in Experience Manager.

Updating Experience Manager templates

All deployment template applications include a set _t enpl at es script in the cont r ol directory to update
Experience Manager templates. You run the script after you locally modify XML template files and you want the
templates available in Experience Manager.

This script requires that the templates you modify are stored locally in <app dir>\config
\cartridge_tenpl ates.

To send updated templates to Experience Manager:
1. In a command prompt, navigate to the cont r ol directory of your deployed application.

This is located under your application directory. For example: C: \ Endeca\ apps\ <app nane>\control .
2. Runtheset _t enpl at es script.

For example:

C. \ Endeca\ apps\ Di scover\control >set _t enpl at es. bat

Setting new cartridge tenplates for Discover

[06.05.13 10:46:52] | NFO Checking definition from AppConfig.xm against existing EAC
provi si oni ng.

[06.05.13 10:46:54] INFG Updating provisioning for conponent 'DailyReportGenerator'.

[06.05.13 10:46:54] |INFO Updating definition for conponent 'Dail yReport Generator'.

48

2 Designing an Assembler Application

[06. 05. 13 10: 46: 55]
[06. 05. 13 10: 46: 55]
[06. 05. 13 10: 46: 55]
[06. 05. 13 10: 46: 55]
Di scover/tenpl at es
[06. 05. 13 10: 47: 05]

I NFO Definition updated.

I NFO Packagi ng contents for upload...

I NFO Fini shed packagi ng contents.

I NFO Upl oadi ng contents to: http://Ilocal host:8006/ifcr/sites/

I NFO Fi ni shed upl oadi ng contents.

Fi ni shed setting tenpl ates

Troubleshooting problems with uploading templates

Template errors are detailed in thei f cr. | og file.

Thei fcr. 1 ogfileis located in:

* OENDECA TOOLS CONF% | ogs on Windows

- $ENDECA TOOLS_CONF/ | ogs on UNIX

If any templates fail validation, the upload is canceled, and the previous templates remain in Workbench.

Schema validation

Schema validation failure issues an error similar to the following:

Setting new cartridge tenplates for Discover

[06.05.13 11:02:

provi si oni ng.

[06.05.13 11:02:
[06.05.13 11:02:

[06.05.13 11: 02

25]

26]
26]

1 26]
[06.05.13 11:02:

26]

Di scover/tenpl at es

I NFO.

I NFO.
I NFO.
I NFO
I NFO.

Checking definition from AppConfig.xm against existing EAC

Definition has not changed.

Packagi ng contents for upload...

Fi ni shed packagi ng contents.

Upl oadi ng contents to: http://Iocal host:8006/ifcr/sites/

[06.05.13 11:02: 28] SEVERE: Caught an exception while invoking nethod 'l oadContent' on
object 'IFCR . Rel easing | ocks.
Caused by java.lang.refl ect.|nvocati onTarget Exception
sun. refl ect. Nati veMet hodAccessor | npl invokeO - null
Caused by com endeca. sol eng.eac.tool kit.utility. | FCRUtility$HttpStatusException
com endeca. sol eng. eac.tool kit.utility. |FCRUtility execute - Internal Server Error
(500): comendeca.ifcr.content.entity.ValidationFail ureException:
The following 2 validation failures occurred:
[/sites/Di scover/tenpl at es/ Badl nage] Error reading tenplate XM.:
javax. xm . bi nd. Unmar shal Excepti on
- with linked exception:
[org. xm . sax. SAXPar seExcepti on: cvc-conpl ex-type.4: Attribute 'type' nust appear on
el ement ' Content Tenpl ate'.]
[/sites/Discover/tenpl at es/ BadPageS| ot] Error reading tenplate XM.:
javax. xm . bi nd. Unmar shal Excepti on
- with |linked exception:
[org. xm . sax. SAXPar seExcepti on: cvc-conpl ex-type.2.4.a: Invalid content was found
starting with el ement 'EditorPanel'. One of '{"http://endeca.conl schena/content-
tenpl at e/ 2008": Contentlten}' is expected.]
The errors are written to thei f cr . | og file. The upload in the example has two errors:
2 Designing an Assembler Application 49

+ The Badl mage template is missing its t ype attribute.

+ The BadPageS! ot template has no Cont ent | t emelement.

Troubleshooting invalid templates

Some templates may be successfully uploaded to Workbench, but still contain errors that lead to unexpected
behavior in Experience Manager.

The most common scenario is when a property is associated with an editor that has constraints, such as a choice
editor that can only accept certain string properties. If the default value of the property does not meet the
editor's constraints, the editor may discard the value and display the following messsage in the Content Details
Panel when a user adds the cartridge to a page:

Some fields or cartridges within this cartridge may have been

updated or renoved. Your content has been converted to the new cartridge.
To accept these changes click OK and Save Al Changes fromthe List View.
To reject these changes, click Cancel. For nore information, see

"Troubl eshooti ng pages" in the Oracle Wrkbench Hel p.

To avoid this message, ensure that all property defaults are valid options in the associated property editor.

About modifying templates that are used by existing pages

During the development and testing phase of your application deployment, you may need to make adjustments
to your templates and update them in Experience Manager.

When Experience Manager populates the Content Detail Panel for a content item, it checks the content
configuration of the loaded page against the template. If the template has been changed such that it is no
longer compatible with the content, Experience Manager displays a warning and attempts to upgrade existing
content to fit the new template definition.

Note

Existing configurations are not upgraded to the new template until a content administrator edits and
saves the affected content item in Experience Manager.

Experience Manager does the following to ensure that the content and template are in sync:
+ If a property has not changed its name or type, the existing values are migrated to the new template.

+ If new properties are added to a template, any corresponding property editors become available in
Experience Manager when a content administrator edits a content item based on the updated template. If
you specify default values for the new properties, they are applied when a content administrator edits and
saves the content item using the updated template.

+ If properties are removed from a template, the corresponding property editors no longer display in
Experience Manager when a content administrator edits a content item based on the updated template. The
properties and their values are deleted from the page configuration.

« Ifthe type of a property has changed (for example from string to list) within a template, the corresponding
property editor (if one is specified) becomes available in the Experience Manager when a content
administrator edits a content item based on the updated template. The existing value for the property does
not display in Experience Manager until the content administrator saves the new value, replacing the previous
value.

50

2 Designing an Assembler Application

+ If a content item or content item list property has changed to specify a different content type, then any
existing cartridge in that section is ejected and its configured properties deleted.

+ If the default value of an existing property has changed, it is only applied to new content items that are
created based on the updated template. In existing pages, the previously saved value of the property (even if
it is an empty string) is preserved regardless of whether it was originally a default or user-specified value.

+ Some editors may implement specific update-handling logic in cases where an existing value does not meet
the editor's constraints.

Note

Changing the nane of a property is equivalent to removing the property with the old name and
adding a property with the new name. Avoid changing the names of properties that are being used
by existing pages. To change the display name of a property on Experience Manager, use the | abel
attribute instead.

Managing template changes

Because existing content is not automatically updated to the new templates, and default values are never
updated in existing pages, any changes that you make to your rendering code to reflect changes to a template
should be backward-compatible. You can trigger the content upgrade process manually by accessing all
affected content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in production. You
should limit updates to templates to the early stages of application development when you have little or no
legacy content to support.

Retrieving the current templates from Experience Manager

If you need to view or edit an existing template on a local machine, you can run the get _t enpl at es script
to download templates from Experience Manager to the local <app dir>\config\cartridge_tenpl ates
directory.

To get templates from Experience Manager:
1. In a command prompt, navigate to the cont r ol directory of your deployed application.
This is located under your application directory. For example: C: \ Endeca\ apps\ <app di r>\control.

2. Runthe get _t enpl at es script.

2 Designing an Assembler Application 51

52

2 Designing an Assembler Application

3 Developing an Assembler
Application

This part provides information for developing an Assembler application.

Related links

+ Deploying the Assembler (page 53)

Deploying the Assembler

The Assembler can run in process as part of a Java application, or it can be deployed as a standalone servlet. This
section covers both deployment options, as well as environment requirements and Assembler dependencies.

Assembler environment requirements
Review the requirements in this section before you deploy an Assembler.

Port usage

Before you begin your deployment, you might need to request an open port. You must assign a port for the
Assembler client port. If this port is set to - 1, the system uses an ephemeral port. An ephemeral port is allocated
automatically for a short time and is used only for the duration of a communication session. When the session
ends, the ephemeral port is available for another request.

For a complete list of ports used by Oracle Commerce, see the Oracle Commerce Guided Search Administrator's
Guide.

Threads

The Assembler spawns threads to monitor and query various components for updates. This affects how you
manage and prioritize threads.

About authoring and production environments

When designing your application and deploying the Assembler, consider the deployment requirements that
come with maintaining an authoring environment and a live environment.

3 Developing an Assembler Application 53

You should monitor the performance of your application and make adjustments as necessary to handle the
expected load in a production situation.

Note

The Assembler has no dependencies on Workbench in a live environment; rule information is
published to the MDEX Engine, and content items are exported from Workbench and maintained in an
external location accessible from the live server(s). All live Assembler instances for a given application
access the same exported content.

For additional information, including the necessary steps for exporting conent from Workbench, see the Oracle
Commerce Administrator's Guide.

Assembler dependencies

Assembler dependencies are packaged in the %ENDECA_TOOLS_ROOT% assenbl er\ | i b directory. You must
include them in any custom Assembler application that you build.

The Assembler relies on the following libraries:
+ AOP Alliance 1.0

» Apache Commons Logging 1.1.1
» Endeca Navigation AP1 6.5.1

+ Endeca Logging API 11.1.0

* Spring AOP 3.0.1

* Spring ASM 3.0.1

* Spring Beans 3.0.1

» Spring Context 3.0.1

» Spring Core 3.0.1

» Spring Expression 3.0.1

+ Spring Web 3.0.1

About deploying the Assembler

The Assembler can run in process as part of a Java application that powers a Web site, or it can be deployed as a
standalone servlet. Non-Java applications must use the Assembler servlet.

The Tools and Frameworks package includes an example of each deployment mode in/ r ef er ence/

di scover - el ect roni cs (for the Assembler running in process) and / r ef er ence/ di scover - ser vi ce (for
the standalone Assembler servlet). The standalone servlet, or Assembler Service, provides a RESTful interface for
Assembler queries that returns results in either JSON or XML.

Both deployment modes depend on a Spring context file for application-specific configuration. The deployment
descriptor files for the reference implementations specify a context file located in / VEB- | NF/ assenbl er -
cont ext . xnl, as follows:

54

3 Developing an Assembler Application

<listener>
<listener-class>
org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>
<li stener>
<listener-class>
or g. spri ngframewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>
<cont ext - par an>
<par am name>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>/ VEEB- | NF/ assenbl er - cont ext . xm </ par am val ue>
</ cont ext - par an>

Assembler configuration

The Assembler implementation included with Tools and Frameworks is configured through Spring. The
configuration in the Spring context file applies to both the in-process Assembler and the Assembler Service.

This guide assumes an application based around the included Assembler implementations. You can provide
your own implementation if you need to use an alternate means of configuring the Assembler.

In the reference implementations, application-specific Assembler configuration is specified in the Spring context
file located in WEB- | NF\ assenbl er - cont ext . xmi .

Assembler factory

The Assenbl er Fact ory is an interface for creating a new Assembler. The reference implementation uses the
Spri ngAssenbl er Fact ory implementation and defines it as follows:

<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<const ruct or - ar g>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs">
<property nanme="previ enEnabl ed" val ue="${previ ew. enabl ed}" />
<property nane="previ ewmbdul eUrl" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr" />
</ bean>
</ constructor-arg>
</ bean>

For details about the Assenbl er Fact ory interface and the Spri ngAssenbl er Fact ory implementation, see
the Assembler APl Reference (Javadoc).

About configuring cartridge handlers
A cartridge handler is an Assembler component that takes the configuration model for a specific cartridge and

interacts with an external system to produce a response model. Cartridge handler configuration is a subset of
Assembler configuration.

3 Developing an Assembler Application 55

HTTP servlet request access

The ht t pSer vl et Request bean provides access to the HTTPSer vl et Request object for the current request.

<bean i d="httpServl et Request" scope="request"
factory-bean="springUtility"
factory-nethod="get Htt pSer vl et Request" />

Cartridge handlers that need access to the servlet request can specify a reference to this bean as follows:

<property nanme="httpServl et Request" ref="httpServl et Request" />

Search and navigation request configuration

The Assembler provides several utilities for parsing incoming requests and forming MDEX Engine queries.

MDEX resource configuration
The MDEX resource provides access to the MDEX Engine and manages information about the MDEX Engine and
its schema configuration. Cartridge handlers can request data from their MDEX resource during the course of

processing a cartridge.

The MDEX resource has the following properties:

MDEX resource property Description

appNane The name of the application that the MDEX instance is
associated with. Typically there is at least one MDEX per
application.

host The hostname or IP address of your MDEX Engine server.

port The port on which the MDEX Engine server listens.

ssl Enabl ed Enables SSL communication for the MDEX Engine.

r ecor dSpecNane The name of the property that serves as the record spec in your
data set.

Navigation state builder configuration

The navigation state builder is responsible for parsing the request URL into a Navi gat i onSt at e object and for
generating URLs based on a Navi gat i onSt at e.

56 3 Developing an Assembler Application

Navigation state builder property

url Formatter

Description

Specifies the Ur | For mat t er object to use for parsing the
request URL into a Navi gat i onSt at e object and for generating
URLs based on a Navi gat i onSt at e.

Note

In the Discover Electronics application, this bean is
configured in endeca- url - confi g. xni .

ndexRequest Bui | der

The MlexRequest Bui | der implementation to use for forming
MDEX Engine requests. For more information, see "About
configuring cartridge handlers that make search and navigation
queries."

cont ent Pat hPr ovi der

Specifies the Cont ent Pat hPr ovi der implementation

that provides the URL path info for a navigation

query or a record query. A reference implementation,

Basi cCont ent Pat hPr ovi der, is included as part of Discover
Electronics. As configured in the example below, it returns /

br owse for navigation queries and / det ai | for record detail
queries.

def aul t Sear chKey

The name of a property, dimension, or search interface against
which searches (using the Search Box cartridge) are performed.

def aul t Mat chMode

The match mode to use for text searches. Valid values for this
property follow the syntax of URL parameters for search mode,
without the mode+mat ch prefix.

siteState

Identifies the current site using the si t eSt at eBui | der
configuration.

si t eManager

Reference to the si t eManager component, which is used by
Navi gat i onSt at eBui | der to look up the site definition for the
currently active site.

removeAl ways

removeOnUpdat eFi l ter State

renmoveOnCl earFilterState

recor dDet ai | sDi mensi onNanes

These properties configure which URL parameters from the
request URL are preserved when generating action strings and
which ones are removed, depending on the type of transition
the action URL represents.

A list of dimensions whose dimension values should be applied
to the navigation state for a record query based on the values
that are tagged on that record. This navigation state can be used
for triggering configuration for the associated record detail page
or for a spotlight cartridge that has the "restrict to refinement
state" option enabled.

3 Developing an Assembler Application

57

Filter state property Description

rol | upKey A rollup key (used for aggregated records) to apply to all queries
made with the default filter state.

aut oPhr aseEnabl ed Specifies whether to apply automatic phrasing to text search
queries. By default, automatic phrasing is enabled. For more
information about automatic phrasing configuration, see "About
implementing automatic phrasing" in this guide.

securityFilter A default record filter to apply to MDEX Engine queries. For
information about the record filter syntax, refer to the MDEX
Engine Development Guide.

| anguagel d The language ID (as a valid RFC-3066 or ISO-639 code) to specify
for MDEX Engine queries. For information about working with
internationalized data, refer to the MDEX Engine Development
Guide.

Filtering requests
The Navi gat i onSt at e object contains two filter states:
« getUr | FilterStat e - The filter state used for generating URL actions.

« getFilterState - Thefilter state used for combining the site-based filter (fi | t er St at e. xnl) and the filter
for generating URL actions. See Combining site-based filters and URL filters.

For more information about filtering syntax, refer to the Assembler API Reference(Javadoc) content for the
Navi gat i onSt at e interface.

Combining site-based filters and URL filters

Using com endeca. i nfront. navi gati on. Navi gati onState. getFi | t er St at e() combines site-based
filters and URL filters.

FilterState feature Filter results
Search (Ntt, Ntk, Ntx) Site and URL
Security (Cannot be security filter with a URL) Site
Nav (N) URL
Record (Nr) Site and URL
Range (Nf) Site and URL
Geo (Nfg) URL
Featured Records (Rsel) Site and URL
EQL Filter (Nrs) URL

58 3 Developing an Assembler Application

FilterState feature Filter results

Rollup Key (Cannot be specified in a URL) Site
Language ID (Ntl) URL
Autophrase Enabled (Ntp) URL

Site state builder configuration

The site state builder is responsible for identifying the current site or Si t eSt at e object. The site state builder
iterates through all si t eSt at ePar ser s and determines the current site or site state. Site state is referenced
in Assembler components that must know the current site, for example, Navi gat i onCart ri dgeHandl er and
Navi gat i onSt at eBui | der.

Si t eSt at eBui | der has the following properties:

Site state builder property Descritption
si t eManager Retrieves site definitions.
siteSt at ePar sers A list of site state parsers that are run in the

configured order to resolve si t eSt at e. Oracle
provides the Request Par anPar ser and
URLPat t er nPar ser.

Request Par anPar ser returns Si t eSt at e if site id
is provided by a request parameter called si t el d.

URLPat t er nPar ser returns Si t eSt at e by
matching patterns configured on each site with the
incoming request.

def aul t Si t eSt at ePar ser Returns the default site for an application. This is
only used if si t eSt at ePar ser s fails to return a
SiteState.

cont ent Pat hTr ansl at or Retrieves the page cont ent Pat h from a request, for

example, / br owse.

About configuring cartridge handlers that make search and navigation queries

Cartridge handlers that need to make MDEX Engine queries can reference the navigation state, record state,
site state, user state, and MDEX request builder beans configured in the cartridge support section of the Spring
context file.

The navigation state and record state represent the query parameters for each type of MDEX Engine query. The
MDEX request builder consolidates requests from all the cartridge handlers in a single Assembler processing

3 Developing an Assembler Application 59

cycle into as few MDEX queries as possible. These beans are defined in terms of previously configured beans;
their configuration should not need to vary between applications.

The Navi gati onCartri dgeHandl er references the navi gat i onSt at e, ndexRequest Bui | der and

si t eSt at e beans for making navigation queries. The Recor dDet ai | sHandl er references therecor dSt at e
for record detail queries. Cartridge handlers (including many of the core cartridges) that need access to

the navigation state, record state, site state or the MDEX request builder typically extend one of these
handlers. Note that Recor dDet ai | sHandl er itself extends Navi gati onCart ri dgeHandl er as shown
below, thereby inheriting the references to the navigation state and MDEX request builder specified in the
Navi gati onCartri dgeHandl er bean.

<bean i d="Navi gationCartridgeHandl er" abstract="true">
<property nanme="navi gationState" ref="navigationState" />
<property nanme="ndexRequestBui |l der" ref="ndexRequestBuilder" />
<property nanme="ndexRequestBuil der" ref="nmdexRequestBuil der" />
<property nane="acti onPat hProvi der" ref="actionPathProvider"/>
<property nane="siteState" ref="siteState"/>
<property nanme="userState" ref="${user.state.ref}"/>

</ bean>

<bean i d="CartridgeHandl er _RecordDet ai | s"
cl ass="com endeca.infront.cartridge. RecordDet ai | sHandl er"
parent =" Navi gati onCartri dgeHandl er" scope="prototype" >
<property nane="recordState" ref="recordState" />
</ bean>

About configuring cartridges to retrieve dynamic content

Cartridge handlers that retrieve dynamic content based on trigger criteria can reference the content manager
bean configured in the cartridge support section of the Spring context file.

The content manager depends on the content trigger state builder and its associated content trigger state,
which perform similar functions to the navigation state builder and navigation state, only for the trigger query
that retrieves dynamic content configuration, rather than the main navigation query.

Application-specific configuration for these beans relates to preview and auditing functionality. For more
information about configuring preview, see "Setting up the Preview Application for Workbench."

The Cont ent Sl ot Handl er references the content manager to make dynamic content queries. Other handlers
that need to retrieve content items from a folder in Experience Manager should extend from this handler.

<bean i d="CartridgeHandl er _ContentS| ot"
cl ass="com endeca. i nfront. content. Cont ent Sl ot Handl er"
scope="pr ot ot ype" >
<property nanme="content Manager" ref="content Manager" />
</ bean>

About configuring the Assembler servlet

The Spring Assembler servlet extends the Abst r act Assenbl er Ser vl et class, which requires a method for
retrieving an Assenbl er Fact or y, and another for retrieving a ResponseW i t er that processes Assembler
output.

The Assembler servlet references the same Spring configuration as the rest of the Assembler, with an additional
dependency on response writer configuration.

60

3 Developing an Assembler Application

Response writers

The Assembler servlet uses JSON or XML response writers to serialize the results of a query. The Assembler
includes default implementations of a JSONResponseW i t er and an XM_LResponseW i t er . You can provide
your own implementation if you need to output the Assembler response to a different format (such as a
different XML representation).

<bean i d="j sonResponseWiter"
cl ass="com endeca. i nfront. assenbl er. servl et. JsonResponseWiter"
scope="si ngl eton"/ >

<bean i d="xm ResponseWiter"
cl ass="com endeca. i nfront. assenbl er. servl et. Xm ResponseWiter"
scope="si ngl eton"/ >

Reference implementations

The reference content includes two Web applications that run the Spring Assembler servlet with the appropriate
configuration for Discover Electronics in either an authoring or a live environment:

+ The implementation for an authoring environment is located at r ef er ence\ di scover - ser vi ce-
aut hori ng.

+ The implementation for a live environment is located at r ef er ence\ di scover - servi ce.

Invoking the Assembler

This section describes how to invoke the Assembler in process or as a service.

Related links

+ Invoking the Assembler in Java (page 61)

* Querying the Assembler Service (page 64)

+ About building an Assembler query string (page 66)

» About retrieving Assembler results using the packaged services (page 66)

» About handling the Assembler response (page 75)

Invoking the Assembler in Java

You invoke the Assembler by passing in a content item object for assembly.

If a cartridge handler exists for the input content item, the Assembler invokes that handler to process it. If not,
the content item is passed through as output. Upon invoking the cartridge handler, the Assembler might in turn
invoke additional cartridge handlers to process child content items. The end result of the processing cycle is an
output content item representing the Assembler response.

3 Developing an Assembler Application 61

Note

If you have purchased Oracle Guided Search, you typically query the Assembler using one of the
packaged services, either with a Cont ent | ncl ude item or via the Assembler service.

The examples in this topic are specific to a Spring implementation of the Assembler.
To invoke the Assembler in Java:
1. Create an Assenbl er Fact or y object.

Note that the example implementation below first fetches configuration via the WebAppl i cat i onCont ext
in the Spring framework:

/Il Get the Spring Web Application Context
Servl et Context servletCix = this.getServletContext();
WebAppl i cati onCont ext webappCtx =
WebAppl i cati onContext Util s. get Requi redWebAppl i cati onCont ext (servl et Ctx);

/1l Get an assenbler factory and create an assenbl er
Assenbl er Fact ory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean(" assenbl er Fact ory", Assenbl er Factory. cl ass);

2. Use the Assenbl er Fact ory to create an Assenbl er:

Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er () ;

3. Optionally, add event listeners to the newly-created Assenbl er:

assenbl er. addAssenbl er Event Li st ener (new MyLogger ());

4. Pass in the content item object to assemble:

ContentltemresponseContentltem = assenbl er. assenbl e(nmyContentlten);

Note

You can instantiate any content item programmatically and pass it to the Assembler, but typically
an assembly cycle begins with a Cont ent I ncl ude or Cont ent Sl ot Conf i g item. Both of these
methods retrieve content items created in Workbench, the former by URI, and the latter by
triggering content from a folder populated either in Experience Manager or Rule Manager.

After invoking the Assembler, you may wish to serialize the response:

/1 Serialize the results to JSON
response. set Char act er Encodi ng(" UTF-8");
JsonSeri alizer serializer = new JsonSerializer(response.getWiter());
serializer.wite(responseContentlten;

The Assembler implementation included with Tools and Frameworks comes with two classes for this purpose,
JsonSeri al i zer and Xnl Seri al i zer . See the Assembler APl Reference (Javadoc) for details.

62 3 Developing an Assembler Application

Related links

» About retrieving Assembler results using the packaged services (page 66)
Invoking the Assembler with a Contentinclude item

A Cont ent | ncl ude object specifies the URI from which to retrieve a content item.

In an authoring instance the content configuration is stored in the Endeca Configuration Repository. In a
live instance, the Assembler retrieves content configuration from the live content source, specified in the
configuration for the Cont ent | ncl udeHandl er.

+ In Oracle Experience Manager implementations, the URI begins with the path info from the request URL.

+ In Oracle Guided Search implementations, the URI must begin with / ser vi ces and specify one of the
packaged Assembler services.

The Cont ent | ncl udeHandl er retrieves the content that matches the deepest path in the URI. For example,
if the request URL is ht t p: / / www. exanpl e. cont br owse/ el ect r oni cs/ Caner as, the URI passed to the
Assembler is / br owse/ el ect r oni cs/ Caner as. Suppose that the sitemap for this site looks like the following:

Pages #| ¥
about
browse
glectronics
contact

detail

The cartridge handler first tries to retrieve the content at the exact URI. There is no content at that location,
so it attempts to find the deepest matching path, which in this case is the content configuration at/ br owse/
el ectroni cs. The Assembler then processes the content item at that location and returns the response for
rendering.

Example 3.1. Example

The following example of a content include query retrieves page content for the Discover Electronics application
with Experience Manager:

/1 Construct a content include to query the content source
/1 for content, given the path info of the request
Contentltemcontentltem =

new Content | ncl ude(request. getPathlnfo());

Invoking the Assembler with a ContentSlotConfig item

A Cont ent Sl ot Conf i g object specifies one or more paths to a content folder in Experience Manager. The
Assembler dynamically retrieves content items from the folder based on the trigger criteria and priorities set by
the content administrator. It returns a number of content items equal to the evaluation limit configured for the
specified content folder.

3 Developing an Assembler Application 63

The Endeca Configuration Repository stores all Workbench content configuration for a given application within

acont ent node. For example, the path to a Web - Spotlights content folder in the Discover Electronics
reference application would be cont ent / Web/ Spot | i ght s.

Example 3.2. Example

The following example creates a Cont ent Sl ot Conf i g object that is intended to populate the sidebar of

an application page with three content items pulled from a Web - Spotlights content folder in Experience
Manager:

Content |t em dynani cContentltem = new Cont ent Sl ot Confi g();
dynani cCont ent | t em set Cont ent Pat hs("/ cont ent/ Wb/ Spotlights");
dynam cCont ent | t em set Tenpl at eTypes(" SecondaryContent");
dynam cContentltem set Rul eLimt(3);

It specifies a template type restriction to retrieve only "SecondaryContent" for the sidebar, but does not restrict
results by template ID. This allows the query to pull in content items created from multiple cartridge templates,
as long as those templates have the correct type; for example, it might return a Breadcrumbs cartridge, a Record
Spotlight cartridge, and a Rich Text cartridge.

The call to the Assembler is the same as for any other content item:

Contentltem responseContentltem = assenbl er. assenbl e(dynani cContentlten);

Querying the Assembler Service

The Assembler Service provides a RESTful interface for making Assembler queries and retrieving results in either
JSON or XML.

You query the Assembler Service by making a GET request to a URL that specifies the location of a content item
that you wish to assemble. The URL should be of the following form:

http://[hostnanme: port]/[servl et-path]/[content-URI]?[query-parans]

In the reference deployment of the Assembler Service, the servlet path determines the format of the Assembler
response. The deployment descriptor file (web. xni) in the reference deployment defines two servlets:

Servlet path Servlet description
/j son Returns the Assembler response as JSON.
/xm Returns the Assembler response as XML.

The difference between the servlets is in the ResponseW i t er implementation that they use. It is also possible
to write an Assembler response writer that forwards the results to another servlet rather than serializing them.

The cont ent - URI is the path to the content item to be assembled.

64

3 Developing an Assembler Application

+ In Experience Manager implementations, the URI begins with the path info from the request URL.

+ In Oracle Guided Search-only implementations, the URI must begin with / ser vi ces and specify one of the
Assembler packaged services.

The Assembler servlet request URL ht t p: / / www. exanpl e. cont j son/ br owse is equivalent to passing a
Cont ent I ncl ude item to the Assembler assenbl e() method with the URI/ pages/ [site-1D]/ browse and
retrieving the results in JSON format.

Query parameters in an Assembler servlet request URL are processed the same way as in the embedded Java
Assembler. For example, the URL ht t p: / / www. exanpl e. conl j son/ br owse?N=101022 with the reference

Assembler servlet deployment returns the same results as ht t p: / / www. exanpl e. cont di scover/ br owse?
N=101022 in the reference Java application.

Querying the Assembler Service in a multiple site deployment

If your Experience Manager implementation has multiple sites within an application, you must use a domain
or URL pattern in your Assembler servlet request URL or pass a site ID parameter. For example, if your site
uses a domain pattern for a cameras site, your request URL could be ht t p: / / caner as. di scover . con!

j son/ br owse. If your site uses a URL pattern for a cameras site, your request URL could be ht t p: //

| ocal host: 8006/ j son/ caner as/ br owse where / camer as is the URL pattern.

To pass a site ID parameter, you can use this formatht t p: / /| ocal host : 8006/ j son/ br owse?si t el d=/
Di scover Caner as for a DiscoverCameras site.

Making dynamic content queries to the Assembler servlet

Unlike the Assembler in embedded mode, which allows assembly of any configuration content item, all queries
to the Assembler servlet are treated as content include queries. To request content dynamically from a content
folder based on a set of trigger criteria, you can create a content slot at a location in the sitemap that you can
then specify in your Assembler request URL. In the reference implementation, the br owse page is one example
of a content item that is addressable by URI that then references content items within a specified folder path.

Related links
+ Invoking the Assembler with a Contentinclude item (page 63)
The Assembler serviet response format

The Assembler provides response writer implementations that serialize the Assembler response to JSON or XML.

The Assembler response takes the form of a content item (that is, a map of properties). The properties are key-
value pairs where the key is a string and the value may be one of the following types:

» String

+ Boolean

» Integer

« List (of any property type)

+ Item (a nested map of properties)

This structure makes it straightforward to serialize the response to JSON.

3 Developing an Assembler Application 65

The XML output of the Assembler (using the default Xnml ResponseW i t er) is not SOAP-compliant. The default
XML format has the following characteristics:

+ The root element of the response is <I t en».

+ <l t en> may have either at ype attribute whose value is equivalent to the template i d that defined the
content item, or a cl ass attribute in the case of a strongly typed reponse model for a content item.

» The child elements of <I t en» are <Pr oper t y> elements.

+ Each <Propert y> element has a nane attribute whose value is the property key, and contains either a
<String> <Bool ean>, <l nt eger >, <Li st >, or <I t en> element whose contents represent the property
value.

For convenience, the Discover Electronics reference application provides links to the JSON and XML
representations of the Assembler response, which are identical to the output of the Assembler servlet. This
link can be useful for debugging purposes, but it is not recommended as a primary means of querying the
Assembler for JSON or XML-formatted results.

About building an Assembler query string

Whether you invoke the Assembler programatically in Java or as a service, the content URI that you pass into the
Assembler includes any MDEX Engine query parameters.

For more information about MDEX Engine query parameter syntax, refer to the Assembler API Reference (Javadoc)
content for the Ur | Navi gat i onSt at eBui | der class.

About retrieving Assembler results using the packaged services

If you have purchased Oracle Commerce Guided Search (without Oracle Commerce Experience Manager), you
must retrieve Assembler results via the packaged services.

These services are also available for Experience Manager implementations. In an Experience Manager
implementation, the services must be located in the / pages/ <Def aul t Si t e>/ servi ces/ directory. The
packaged services include the following:

Service URI Description

/ servi ces/ di nensi onsear ch Returns dimension search results based on a text search.

/ services/recorddetails Returns record detail information for a given record.

/ servi ces/ gui dedsear ch Returns search and navigation results including core features such as
Guided Navigation, along with dynamic content returned from content
folders.

You query the services by passing a Cont ent | ncl ude item to the Assembler with the relevant service URI or
making an Assembler servlet request specifying the service URI. The services are configured to return results for
a specific cartridge or set of cartridges.

66

3 Developing an Assembler Application

The cartridges that are returned by the services cannot be configured on a per-instance basis in Rule Manager
or Experience Manager, but application-wide default configuration for the cartridges can be specified based on
your configuration framework (such as Spring). The exception is the dynamic content that can be configured in
content folders and that is returned by the Guided Search Service, which can be configured in Rule Manager or
Experience Manager.

The services are populated in the Endeca Configuration Repository (for use by the authoring instance) when you
runinitial i ze_servi ces after deploying an application. They are promoted to the live content source when
you promote the site configuration for the live instance.

The Dimension Search Service

The Dimension Search Service returns dimension search results for a keyword search.

The service returns a single Di mensi onSear chResul t s object in a di nensi onSear chResul t s property,
representing the list of dimensions that match the search term.

The default behavior of this cartridge is configured as part of the

Cartri dgeHandl er _Di nensi onSear chResul t s bean in the Spring context file for the Assembler. For
information about the configuration options for the Dimension Search Results cartridge, refer to the Assembler
API Reference (Javadoc) for the Di mensi onSear chResul t sConfi g class.

This service exists for cases where you want to retrieve dimension search results only (such as in the case of an
auto-suggest dimension search feature). Dimension search results are also returned as part of the response from
the Guided Search Service.

The following is an example of the results of a Dimension Search Service query for the URI ht t p: / /
| ocal host : 8006/ assenbl er - aut hori ng/j son/ servi ces/ di mensi onsear ch?Nt t =f | a* &Dy=1, serialized

to JSON:
{
"@ype": "D nmensionSearchService",
"name": "D mension Search Service",
"di mensi onSear chResul t s": {
"@ype": "D nmensionSearchResults",

"total NunResul ts": 13,
"di mensi onSear chG oups": [

{
"@l ass": "com endeca.infront.cartridge. nodel . D mensi onSear chG oup",
"di nensi onSear chVal ues": [...],
"di mensi onNane": "canera.flash"
H
{
"@l ass": "com endeca.infront.cartridge. nodel.D nensi onSear chG oup",
"di mensi onSearchVal ues": [...],
"di mensi onNanme": "product.features”
H
{
"@l ass": "com endeca.infront.cartridge. nodel . D nensi onSear chG oup",
"di mensi onSearchVal ues": [...],
"di mensi onNane": "product. category"
}
]
H
"endeca: content Path": "/services/di nensi onsearch",
"previ ewivbdul eUrl": "http://Iocal host: 8006/ previ ew'

3 Developing an Assembler Application 67

The Record Details Service

The Record Details Service returns record detail information for a given record.

The service returns a single Recor dDet ai | s objectin ar ecor dDet ai | s property, representing the details for a
single record or an aggregate record.

The default behavior of this cartridge is configured as part of the Car t ri dgeHandl er _Recor dDet ai | s bean in
the Spring context file for the Assembler. For information about the configuration options for the Record Details
cartridge, refer to the Assembler APl Reference (Javadoc) for the Recor dDet ai | sConf i g class.

The following is an Experience Manager example of the results of a record details service query for the URI
http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ servi ces/ recorddet ai | s/ Canon/ Pri ma-
Super - 130U Dat e/ _/ A- 266556, serialized to JSON:

{
"@ype": "RecordDetail sService",
"name": "Record Details Service",
"recordDetail s": {
"@ype": "ProductDetail",
"record": {
"@l ass": "com endeca.infront.cartridge. nodel . Record",
"nunRecords": 1,
"attributes": { ..},
"records": [
{
"@l ass": "com endeca.infront.cartridge. nodel.Record",
"nunRecords": O,
"attributes": { ...}
}
]
}
b
"endeca: si t eRoot Pat h": "/ pages",
"endeca: contentPath": "/services/recorddetails",
"previ ewivbdul eUrl": "http://Iocal host: 8006/ previ ew',
"endeca: assenbl er Request I nformation": { ...}
}

In a Guided Search implementation without Experience Manager, the site root path would be / ser vi ces.

"endeca: sit eRoot Path": "/services",
"endeca: contentPath": "/recorddetails"

The Guided Search Service

The Guided Search Service returns search and navigation results including core features such as Guided
Navigation, along with dynamic content returned for content slots.

68 3 Developing an Assembler Application

The properties returned as part of the response model, as well as their associated configuration, are listed below:

Property name

Response model

Configuration bean

Configuration model

navi gation

Gui dedNavi gat i on

CartridgeHandl er _Cui ¢

g@Naedjddviagat i onConfi g

br eadcr unbs

Br eadcr unbs

CartridgeHandl er _Brea

dareaxdbs umbsConfi g

resul tsLi st

Resul t sLi st

Cartri dgeHandl er _Rest

|ReduilsttsLi st Confi g

sear chAdj ust ment s

Sear chAdj ust nent s

CartridgeHandl er _Sean

chetalj acisAdjagtsnent sConfi g

di nensi onSear chResul t

sDi nensi onSear chResul t

SCartri dgeHandl er _Di ne

S erBaaorehReseiiRessul t sConfi g

zones

Depends on contents
of referenced content
folders.

CartridgeHandl er _Cont

eCar8l entl$lsat Conf i g

The following is an example of the results of a guided search service query for the URI ht t p: //
| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/ gui dedsear ch?Nt t =pi nk+caner a, serialized

to JSON:
{

"@ype": "Qui dedSearchService",

"name": "Cui ded Search Service",

"navi gation": {
"@ype": "QuidedNavi gation"

b

"breadcrunbs”: {
"@ype": "Breadcrunbs",
"renoveAl | Action": "/services/gui dedsearch",
"refinement Crunbs": [],
"searchCrunbs": [...],
"rangeFilterCrunbs": []

H

"resul tsList": {
"@ype": "Resul tsList",
"total NunRecs": 213,
"sortOptions": [..],
"firstRecNunt: 1,
"l ast RecNuni': 10,

"pagi ngActi onTenpl ate":

%/ Br ecor dsPer Page%/ D&\t t =pi nk+caner a",

"recsPer Page":
"records": [

b,

"sear chAdj ust ment s":
" Sear chAdj ust ment s",

"@ype":

10,

21

{

"original Ternms": [
"pink canera"

]
b
"zones": {

"@ype": "Cont

ent Sl otList"

"/ servi ces/ gui dedsear ch?No=%Bof f set %/ D&N\r pp=

3 Developing an Assembler Application

69

b

"endeca: content Path": "/services/ gui dedsearch",

"previ ewibdul eUrl": "http://Iocal host: 8006/ previ ew'
}

Note

For details about the contents of the zones property, see "About dynamic content and the Guided
Search Service."

Configuring dynamic content for the Guided Search Service
For each dynamic slot that you wish to populate as part of the response from the Guided Search Service, you
must configure a Cont ent Sl ot Conf i g object. Each of these objects is set as a property of the default input

content item for the Cont ent Sl ot Handl er.

Specify the following properties for each instance of Cont ent Sl ot Confi g:

Property name Value

cont ent Pat hs A List of String typed paths to the content folders from which you want to
return results.

t enpl at eTypes (Optional) A Li st of Stri ng typed template type restrictions for the
dynamic slot.

tenpl at el ds (Optional) A Li st of Stri ng typed template ID restrictions for the dynamic
slot.

rul eLimit The maximum number of content items to return from this collection. The

Assembler returns up to this number of items that match the trigger criteria,
based on priority.

Note

The content within a folder depends on the template type or ID restrictions configured for that folder
in Experience Manager. While it is possible to configure your default Cont ent Sl ot Conf i g objects
with any restrictions you wish, you should ensure that the type and ID restrictions you enter match
those in Experience Manager. For example, it is possible to create a Cont ent Sl ot Conf i g object that
is restricted by template type "MainContent," while the cont ent Pat hs property points to folders

in Experience Manager that are restricted to "SecondaryContent" (and thus will never contain any
"MainContent" content items).

70 3 Developing an Assembler Application

Example 3.3. Example

In the example below, the input content item to the Cont ent Sl ot Handl er isa Cont ent Sl ot Li st Confi g
object. It is instantiated as "contentSlotList," and contains a Cont ent Sl ot Conf i g object for each dynamic slot
in the application. The cont ent S ot Li st is passed in to the Confi gl ni ti al i zer thatinstantiates it as the
input content item for the cartridge handler.

The cont ent Sl ot Li st for the Discover Electronics reference application is configured in the
CartridgeHandl er _Cont ent Sl ot Li st bean in the Spring context file, assenbl er - cont ext . xni . For
each content folder that is enabled for the Guided Search Service, a Cont ent Sl ot Conf i g bean appears in the
cont ent Sl ot Li st as in the example below:

<bean i d="CartridgeHandl er _Content Sl ot List"
cl ass="com endeca. i nfront. cont ent. Cont ent Sl ot Li st Handl er"
scope="pr ot ot ype">
<property nane="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property nanme="defaul ts">
<bean cl ass="com endeca. i nfront. content. Content Sl ot Li st Confi g"
scope="si ngl et on" >
<property nane="content Sl otList">

<list>

<bean cl ass="com endeca. i nfront. content. Content S| ot Confi g"
scope="si ngl et on" >

<property nanme="cont ent Pat hs">

<list>
<val ue>/ content/Ri ght Col umm Spot | i ght s</val ue>
</list>

</ property>
<property nane="tenpl at eTypes" >

<list>
<val ue>Secondar yCont ent </ val ue>
</list>

</ property>
<property nanme="tenpl at el ds" >
<list>
<val ue>Recor dSpot | i ght </ val ue>
<val ue>Ri chText Secondar y</ val ue>
</list>
</ property>
<property name="ruleLimt" value="3"/>

</ bean>
</[list>
</ property>
</ bean>
</ property>
</ bean>
</ property>

</ bean>

For detailed information about the Cont ent Sl ot Conf i g configuration model and its included properties, see
the Assembler API Reference (Javadoc).

Handling the Guided Search Service response

The Assembler returns the matching content items for each configured Cont ent Sl ot Conf i g, so the response
consists of a list of lists of content items:

3 Developing an Assembler Application

71

+ Content Sl ot Li st response content item
+ Tst content item, returned from a Cont ent Sl ot Confi g witharul eLi mit of 3
+ Highest priority matching content item
+ Second highest priority matching content item
+ Third highest priority matching content item
+ 2nd content item, returned from a Cont ent Sl ot Confi g witharul eLi mi t of 2
+ Highest priority matching content item
+ Second highest priority matching content item
Note that the Guided Search Service response is not view-friendly. You must parse it in your application logic to
determine if any of the content items returned in the tree correspond to page sections you wish to populate for

the end user's current location in the application.

Below is a sample JSON response from the Guided Search Service in the Discover Electronics reference
application when the user selects the "Cameras" category:

"zones": {
"@ype": "ContentSlotList",
"contentSlotList": [
{
"@ype": "ContentSlot",
"tenpl ateTypes": [
"RecordSpot|ight"

I
"contents": [
{
"@ype": "RecordSpotlight",
"title": "Most Popul ar Caneras",
"nanme": "Spotlight Records",
"records": [
{ ..}
{1
{ -}
{ ..}
]
H
{
"@ype": "RecordSpotlight",
"title": "Top Rated Products",
"name": "Spotlight Records",
"records": [
{ -}
{ ..}
{ ...}
]
}
I.

"contentPaths": [
"/ content/Ri ght Colum Spotlights"
1,
"ruleLimt": 3,
"tenplatelds": []

72 3 Developing an Assembler Application

b

It populates two sidebar Record Spotlight cartridges, the first with four records, and the second with three.
About retrieving content item properties from packaged services

This topic outlines the logic required for retrieving properties from the Assembler response model for the
included Guided Search Service.

The example below includes processing logic within a renderer JSP file. Oracle recommends including most
of your logic for handling Assembler responses in your cartridge handlers, as this minimizes the amount of
duplicate code required across multiple renderers.

Note

APl documentation for the Assembler packages is available in the assenbl er\ api doc\ assenbl er
directory of your Tools and Frameworks installation.

Retrieving information from the Assembler response

Recall the serialized Assembler response for the URI ht t p: / / | ocal host : 8006/ assenbl er - aut hori ng/
j son/ servi ces/ gui dedsear ch?Nt t =pi nk+caner a:

"@ype": "Qui dedSearchService",
"name": "CQui ded Search Service",
"navi gation": {
"@ype": "QuidedNavi gation"
H
"breadcrunbs”: {
"@ype": "Breadcrunbs",
"renoveAl | Action": "/services/gui dedsearch",
"refinement Crunbs": [],
"searchCrunmbs": [...],
"rangeFilterCrunbs": []
H
"resul tsList": {
"@ype": "ResultsList",
"total NunRecs": 213,
"sortOptions": [..],
"firstRecNunmt': 1,
"l ast RecNuni': 10,
"pagi ngActi onTenpl ate": "/services/ gui dedsear ch?No=% Bof f set % D&Nr pp=
%/ Br ecor dsPer Page%/ D&Nt t =pi nk+caner a",
"recsPer Page": 10,
"records": [..]
H
"sear chAdj ustment s": {
"@ype": "SearchAdjustnents",
"original Terms": [
"pink canera"
]
H
"zones": {
"@ype": "ContentSlotlList"

3 Developing an Assembler Application

b
"endeca: content Path": "/services/ gui dedsearch",
"previ ewibdul eUrl": "http://Iocal host: 8006/ previ ew'

To create a sample JSP file that invokes the Assembler:

1. Import the required packages and create the necessary objects for supporting the Assembler:

<%page | anguage="j ava" content Type="text/htm ; charset=UTF-8" %
<%page i nport="com endeca.infront.assenbl er. Assenbl er" %
<%@page i nport="com endeca.infront.assenbl er. Assenbl er Fact ory" %
<% - additional inports renmoved fromthis exanple --%
<%apage i nport="org.springfranmework.web. cont ext. \WbAppl i cati onCont ext" %
<U@aglib prefix="discover" tagdir="/WEB-|NF/tags/discover" %
<%
/]l Create the Wb Application Context object
WebAppl i cati onCont ext webappCtx =
WebAppl i cati onContext Utils. get Requi r edWebAppl i cati onCont ext (application);

/] CGet the AssenblerFactory fromthe Spring context file
Assenbl er Fact ory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean("assenbl er Factory");

2. Recall that the packaged services invoke the Assembler with a Cont ent | ncl ude item. Create the assenbl er
object and the Cont ent I ncl ude item, and pass it into the Assembler as the configuration model:

/]l Create an Assenbl er object
Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er ();

/1 Construct a content include itemfor the Cuided Search service
Contentltem contentltem = new Contentl ncl ude("/servi ces/gui dedsearch");

/'l Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten;

The Assembler returns a com endeca. i nfront . assenbl er . Cont ent | t eminterface as the response
model; this extends the Java Map interface. Assign this response to a r esponseCont ent | t emobject.

3. get theresul tsLi st object from ther esponseContent|tem

Contentltemresul tsListltem= (Contentltem
responseContentltem get("resul tsList");

This retrieves the top-level r esul t sLi st object, which is itself an extension of Basi cCont ent | t em from the
Assembler response.

4, You can now retrieve and use the individual values stored on the r esul t sLi st object, for example, the total

number of records:

String total NunRecs = resul tsListltemget("total NunRecs");

74

3 Developing an Assembler Application

This assigns a value of " 213" to the t ot al NunRecs variable (based on the sample response presented at
the start of this topic). Similarly, you could retrieve any other value from the key/value pairs that comprise
resul t sLi st, including other objects that extend the Map interface and are themselves made up of key/
value pairs.

Refer to the Assembler APl documentation for additional information about available Assembler interfaces,
implementations, and methods. Following the pattern described in Steps 3-4, you can continue to retrieve
values from the Assembler response by calling the get method on the response model object to traverse the
nested values.

About handling the Assembler response

As a best practice, your application should have modular renderers to handle the response model for each
content item.

A typical page consists of a content item that contains several child content items representing the individual
feature cartridges. The Discover Electronics application maps each response model to the proper renderer by
convention, based on the @ ype. The model @ ype corresponds to the template identifier (the directory name)
of the template that was used to configure it. (Recall that the template t ype determines where a cartridge can
be placed in another content item, while the template ID uniquely identifies the cartridge and its associated
content definition.) For each cartridge, the associated renderer is located in VEB- | NF/ vi ews/ <channel >/
<Tenpl at el D>/ <Tenpl at el D>. j sp. For example, the renderer for the Br eadcr unbs cartridge is located in
VEB- | NF/ vi ews/ deskt op/ Br eadcr unbs/ Br eadcr unbs. j sp.

In the Discover Electronics application, this logic is implemented ini ncl ude. t ag. Your application should
implement a similar mapping of response models to their corresponding rendering code.

Source code for the renderers in the Discover Electronics application is provided as an example of how to
work with the model objects returned by the Assembler in Java. The sample rendering code is intentionally
lightweight, enabling it to be more easily customized for your own site. For information about the response
models for the core cartridges, refer to the Assembler API Reference (Javadoc).

Some features in the Discover Electronics application are designed with certain assumptions about the data
set, such as property and dimension names. Mirroring the Discover Electronics data schema for your own data
can facilitate reuse of the reference cartridges, reducing the need to update rendering logic and Assembler
configuration for your data set.

About rendering the Assembler response

As soon as you have retrieved the necessary information for your page, Oracle recommends subdividing your
view logic to correspond to the hierarchy of content items returned by the Assembler.

The renderer for the Three Column Navigation Page content item in Discover Electronics provides an example
of the page rendering process as implemented in the reference application. It is located in your Tools and
Frameworks installation directory under r ef er ence\ di scover - el ect r oni ¢s- aut hor i ng\ WVEB- | NF

\ vi ews\ deskt op\ Thr eeCol uimPage\ Thr eeCol unmPage. j sp. You can use this JSP file as a point of
reference for developing your own application pages. While the details are specific to the Discover Electronics
implementation of the Assembler API, your general approach should be similar.

Recall that each of the <di v> elements that make up the page uses a custom <di scover : i ncl ude> tag,
defined in WEB- | NF\ t ags\ di scover\ i ncl ude. j sp, to include the rendering code for the associated page
component:

<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN' "http://ww.w3. org/ TR xhtnm 1/
DTD/ xht m 1-strict.dtd">

3 Developing an Assembler Application 75

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xml :lang="en" |ang="en">
<head>
<l-- Additional elenments renoved fromthis sanple -->
</ head>
<body>
<endeca: pageBody root Cont ent |t em="${r oot Conponent}">
<di v cl ass="PageCont ent">
<% -include user panel --%
<%@i nclude file="/WEB-INF/vi ews/ userPanel .jsp" %
<% -incl ude user page |logo --%
<%@i ncl ude file="/WEB-INF/ vi ews/ pageLogo.jsp" %
<di v cl ass="PageHeader">
<c:forEach var="el ement" itens="${conponent. header Content}">
<di scover:incl ude conponent="%{el enent}"/>
</ c: forEach>
</ div>
<di v cl ass="PageLeft Col um" >
<c:forEach var="el enent" itens="${conponent.|eftContent}">
<di scover:incl ude conponent="${el enent}"/>
</ c: forEach>
</ di v>
<di v cl ass="PageCent er Col utm" >
<c:forEach var="el ement" itens="${conponent. mai nContent}">
<di scover:incl ude conponent="%${el enent}"/>
</ c:forEach>
</ div>
<di v cl ass="PageRi ght Col utm" >
<c:forEach var="el ement" itens="${conponent.rightContent}">
<di scover:incl ude conponent="%${el ement}"/>
</ c:forEach>
</ div>
<di v cl ass="PageFooter">
<% -incl ude copyright --%
<%@ ncl ude file="/WEB-|NF/vi ews/ copyright.jsp" %
</ div>
</ di v>
</ endeca: pageBody>
</ body>
</htm >

For the example above, the JSP is composed as follows:

1. The static<di v cl ass="User Panel ">and <di v cl ass="PageLogo" > elements are included from the
specified JSP files.

2. The<di v cl ass="PageHeader "> element retrieves the list of header Cont ent content items from the
component.

+ Inan Oracle Experience Manager installation, this is the list of content items defined by the content
administrator in Experience Manager:

76

3 Developing an Assembler Application

E Three-Column Page
headerContent
W= Search Box
leftContent
™= Breadcrumbs
"= Second Content Slot
mainContent
B8 Search Adjustments
"= Dimension Search Results
™= Results List
rightContent

= Spotlight Records

+ Inan Oracle Guided Search installation, this is the list of content items specified application-wide under
WEB- | NF\ ser vi ces\ browse. j sp:

<di v cl ass="PageCont ent">
<% -include user panel --%
<%@i nclude fil e="/WEB-INF/vi ews/userPanel .jsp" %
<%@i ncl ude fil e="/WEB-1NF/vi ews/ pageLogo. j sp" %

<di v cl ass="PageHeader" >
<di scover:incl ude conponent ="${searchBox}"/>
</ div>
<di v cl ass="PageLeft Col um">
<di scover:incl ude conponent ="${conponent . breadcrunbs}"/>
<di scover:incl ude conponent ="${conponent. navi gati on}"/>
</ di v>

3. For each of the included content items, the JSP includes the output of the associated renderer.

4, The <di v cl ass="PagelLeft Col um">,<di v cl ass="PageCent er Col um" >, and <di v
cl ass="PageRi ght Col um" > elements are included in the same fashion.

5. The static <di v cl ass="Copyri ght "> element is included from the specified JSP file.

Implementing Multichannel Applications

This section covers how to design and implement multichannel applications built on the Assembler and
managed using Workbench with Experience Manager.

3 Developing an Assembler Application 77

Related links
» Overview of multichannel applications with the Assembler (page 78)

+ About creating templates for mobile channels (page 78)

Overview of multichannel applications with the Assembler

The Assembler provides an API for delivering content across an entire site, allowing content configuration to be
shared between channels when appropriate, and also enabling a more targeted channel-specific experience
where desired.

Enabling the full flexibility of the cross-channel experience involves the following:

+ Creating channel-specific templates. Content administrators may wish to configure different features or
cartridges for different channels. For example, pages designed for mobile devices typically have a simpler
structure and present fewer options than pages designed for desktop Web.

+ Writing channel-specific rendering code. Due to the limitations of mobile browsers and device bandwidth,
renderers for mobile Web applications are typically more lightweight than those for desktop Web, while
native applications for mobile devices require platform-specific client code.

+ Enabling device detection. The Ul tier of your Assembler application should include logic for handling
device detection. Typically, this also includes redirecting a client to the appropriate service for their user
agent.

About creating templates for mobile channels

Templates for mobile-specific content in a multichannel application can give content administrators the
flexibility to manage channel-specific content in Experience Manager. When planning the set of templates for
your application, however, use more general templates whenever possible in order to share configuration across
multiple channels.

The following general practices help enable this combination of flexibility and consistency:

+ Create different top-level page templates for channels that have a different high-level structure. For example,
the same range of cartridges may be appropriate for pages designed to be displayed on desktop computers
but not for pages designed to be displayed on mobile devices. Native applications for mobile devices may
display content in simplified "pages" that differ from those intended for Web browsers.

+ Use dynamic slots for configuration that should be shared across channels, because they enable reuse of
content between pages. For example, if the same refinement configuration (such as overall dimension order,
refinement ordering, and boost and bury options) should apply at a specific navigation state regardless
of channel, it may make sense to configure it within a separate content folder and reference it from the
appropriate pages for each channel.

To enable the greatest flexibility in Experience Manager while ensuring that content administrators create
configurations that are appropriate to each channel, you can restrict the cartridges that can be placed on a page
or in a content folder by content type. These content types may vary depending on the intended purpose of a
page or dynamic slot. For example, you may have the following in your application:

+ Page templates for desktop Web, which may define a section of type Secondar yCont ent . This section
may be populated with Guided Navigation cartridges, Spotlight cartridges, or dynamic slots serving as a
placeholder for either type.

78

3 Developing an Assembler Application

+ A content folder designed for Guided Navigation cartridges. This is similar to the Navigation section of the
mobile page, but it should not allow a content administrator to create a dynamic slot within a dynamic slot, so
it should have a third content type (such as Navi gat i on) to enforce this restriction.

In most cases, the set of Dimension Navigation cartridges in an application should be identical. Variance
between different output channels tends to manifest at the page design level, rather than at the level of the
individual components of a page.

Tuning an Assembler application

The Assembler and the MDEX Engine both include logging functionality that you can use to debug and fine
tune your application. In addition, Workbench includes Preview functionality that your Content Administrator
can use to evaluate the results of their changes.

Related links

+ Enabling the preview application for Workbench (page 79)
+ Configuring logging for an Assembler Application (page 96)
+ Configuring cartridge performance logging (page 104)

+ Debugging MDEX Engine query results (page 104)

Enabling the preview application for Workbench

If you are using Experience Manager, you can use a preview application to simulate sets of trigger conditions,
such as time-based triggers, in order to determine which content items are displayed when specific conditions
are met. This section describes how to set up a custom application to function as the preview application in
Workbench.

About the preview application

The preview application enables content administrators to determine whether each content item is or is not
displayed by particular combinations of navigation queries and triggers. This chapter describes how to set up
your own custom application as the Workbench preview application.

You can start the preview application for a specific page or for an individual cartridge. A selected cartridge is
displayed in the context of a page that includes it.

The preview application does not need to be an exact representation of your final front-end application if it uses
the correct data. The business logic that is built into Workbench is not tied to the physical representation of the
front-end application. It is good practice, however, to make sure that your preview application represents your
final application closely enough to enable business users to verify that their changes are correct.

By default, Workbench is configured to use the Discover Electronics reference application as the preview
application. This application is located under “ENDECA_TOOLS_ROOT% r ef er ence\ di scover - el ectroni cs-
aut hor i ng (BENDECA_TOOLS_ROOT/ r ef er ence/ di scover - el ect roni cs- aut hor i ng on UNIX).

Workbench communicates with the preview application via settings you specify in the Preview Settings tool. The
Preview URL field lets you specify the preview application URL.

3 Developing an Assembler Application 79

Note

The preview application must not use frames, because they are likely to collide with the frames of the
Workbench preview toolbar.

Enabling your Java application for preview

In order to enable auditing and editing in your custom preview application, your JSP file rendering code must
include logic for adding preview frames and buttons for auditing and editing content items.

Your custom preview application should include tags that specify paths to the required JavaScript and CSS
resources, as well as tags for enabling audit and edit functionality. These are provided in the tag library.

These requirements assume an application that uses JSP files for cartridge renderers (as in the case of the
Discover Electronics reference application). If you are using a different technology stack to implement your
Assembler application, you must write your own auditing functionality. See Enabling non-Java applications for
preview (page 81).

Adding Preview resources

All JSP files must include the tag library, as shown below:

<Y@taglib prefix="endeca" uri="/endeca-infront-assenbler/utilityTags"%

Each <head> tag must contain a reference to the pageHead tag. This includes paths to the Preview JavaScript
and CCSfiles:

<head>
<endeca: pageHead root Cont ent | t en" ${r oot Conponent }"/ >
<title><c:out value="${component.title}"/></title>
<neta nane="keywor ds" content="${conponent . net akeywords}" />
<met a nanme="description" content="${conponent. netaDescription}" />
</ head>

Enabling auditing and editing

All slots and content items must include a Pr evi ewAnchor tag that wraps them in a div class that contains
preview information. This tag requires the current content item element and enables audit and edit
functionality. Oracle recommends that instead of including this in every renderer, have a centralized place where
content items are dispatched. In the Discover reference application, this is done in the i ncl ude. t ag:

<% - save the parent's conponent currently in request scope into page scope --%
<c:set var="parent Conponent" scope="page" val ue="${request Scope[' conponent']}"/>
<% - set the content itemthe child will use as this one (the one passed in the tag) --
%
<c:set var="conponent" scope="request" val ue="${conponent}"/>
<c:catch var="inport Exception">

<endeca: previ ewAnchor contentlten="${conponent}">

<c:inmport url="${resourcePath}" charEncodi ng="UTF-8"/>

</ endeca: pr evi ewAnchor >

</c:catch>

Each <body> tag must contain a reference to the pageBody tag. This tag requires the root and current content
item elements and enables audit and edit functionality:

80

3 Developing an Assembler Application

<script type="text/javascript" src="<c:url value='/js/global.js'/>"></script>
</ head>
<body>
<endeca: pageBody root Content|tem="${root Conponent}" contentltem"${conponent}">
<di v cl ass="PageContent">
<% -i ncl ude user panel --%
<%@i nclude file="/WEB-INF/vi ews/ user Panel . jsp" %

Device-specific auditing and editing

In order to handle preview for different devices, you must implement conditional rendering logic for different
user agent strings. The rendering code should include the tags described in the previous section.

You can retrieve the user agent String by getting a reference to the User St at e object and
calling get User Agent () onit. The User St at e class is documented in the Javadoc for the
com endeca. i nfront . cont ent package.

For example, the Discover Electronics reference application includes the following logic in the VEB- | NF
\'servi ces\ assenbl e. j sp page:

User State userState =
webappCt x. get Bean(properties. getProperty("user.state.ref"), UserState.class);

String userAgent = userState.getUserAgent();
/11f the userAgent is null, then no user-agent was specified and we need to get the
user agent fromthe request header.
i f(userAgent == null){
user Agent = request. get Header ("user-agent");
}
Decorating the page

Preview requires a request attribute to decorate the page. For example, the Discover Electronics reference
application includes the following logic in the VEB- | NF\ ser vi ces\ assenbl e. j sp page. The last line retrieves
the value of the pr evi ew. enabl ed property from the assenbl er. properti es file. The value of the constant
Pr evi ewAnchor . ENDECA_PREVI EW ENABLEDis endeca: pr evi ewAnchor sEnabl ed.

/11f the userState has no specified userAgent, use the one fromthe request header.
i f(userAgent == null){
user Agent = request. get Header ("user-agent");

}

request.setAttri bute(Previ ewAnchor. ENDECA_PREVI EW ENABLED,
Bool ean. val ueOf (properties. get Property("preview enabled")));

g g g
R L L R R e

Enabling non-Java applications for preview

This section describes how to enable hotspots in any Assembler-based Web application that lets a user audit
and edit cartridges and slots in Experience Manager.

3 Developing an Assembler Application 81

The preview JavaScript framework should be added to the Assembler application's Web pages to enable this
behavior. The framework supports single page applications (SPAs) and the popular module loader RequireJs.
Note that the framework depends on the open source JQuery library. If your application already uses a JQuery
version higher than 1.9, and if its available on the window object, you do not have to include the JQuery version
provided by Oracle Commerce.

Preview CSS

Include the following style sheet in the head of your page:

<link rel ="styl esheet" href="http:// GMORKBENCH HOST@® @MNORKBENCH_PORT/i fcr/t ool s/
xngr/ app/ previ ew css/audit-site.css" />

Standard Web page

If you do not use an AMD module loader, include the following scripts in the head tag of the page or at the
bottom of the body tag - depending on your script loading strategy.

<l-- You can skip inclusion of the following two scripts if your web app al ready uses
jquery version higher than 1.9. If not, make sure jquery is |oaded before |oading the
previ ew script -->

<script type="text/javascript" src="http:// GMNORKBENCH HOST@® @MORKBENCH PORT/ifcr/

static/oraclejet/js/libs/jquery/jquery-2.1.1. mn.js"></script>

<script type="text/javascript">
ocJQuery = j Query.noConflict(true);

</script>

<l-- Oacle commerce preview framework that enables hotspots in a web page -->
<script type="text/javascript" src="http:// GINORKBENCH HOST@® @@NORKBENCH_PORT/ifcr/
t ool s/ xngr/ app/ previ ew j s/ previ ew. js"></script>

RequireJS (AMD-based) Web page

<script type="text/javascript">
requirejs.config({
paths: {
jquery: "lifcr/static/oraclejet/js/libs/jquery/jquery-2.1.1. mn",
xmgrPreview. "/ifcr/tool s/ xnmgr/app/ preview js/preview'
}
IOF

</script>

When you develop your application, you must pass the assembled content item (tree) returned by the
Assembler to the preview framework to support editing and auditing a Web page from within Experience
Manager. The content-item is used by Experience Manager to construct the manifest panel. Optionally, preview
framework can add hotspots to slots and cartridges in the page by looking at the data-oc-content-item-id
attribute on all DOM elements in the page.

You initialize the preview framework by calling thei ni ti al i ze() method and passing it the assembled
content item returned by the Assembler. You can instead pass the content-uri that was used to invoke the

82

3 Developing an Assembler Application

Assembler service. In this case, the framework makes a j sonp call to retrieve the content item. Be sure that the
Assembler Service URL is set in Preview Settings in Workbench.

The framework provides an eventing mechanism to let application developers hook into its life cycle. The
available events are hot spot sOn, hot spot sOf f, addCont ent | t em and r enpbveCont ent | t em For example, in
order to be notified when the framework decorates the content items with hotspots, use:

f ramewor k. on(" hot spot sOn", function() {
/'l your code
}, this);

The following preview framework API lists all the public methods and events. The APl enables Assembler
application pages to be decorated with hotspots when a business user previews pages in Experience Manager.
The APl must be used to enable Experience Manager to construct the manifest panel. The manifest panel assists
the user in understanding how the page was assembled and allows the user to audit or edit slots and cartridges.

addContentltemld(pElement, pContentltem)

Adds data-oc-content-item-id attribute to the DOM element. All elements that should be decorated with hot
spots must call this method.

Table 3.1. addContentltemld Parameters

Name Type | Description

pElement Object | Required. The DOM element that is injected with data-oc-
content-item-id attribute. The element maps to the content
item: slot or cartridge.

3 Developing an Assembler Application 83

Name

pContentitem

Type | Description

Object | Required. The content item that represents a slot or cartridge.
Example:
{

@ype: "SearchBox",

endeca: audi tlnfo: {

"ecr:resourcePath": "/content/\Wb/ Cat egories/
Pages/ Cat egory - Bags - Cases",
"ecr:assertedFacts": {

}

"endeca: ancest or Di nval | d: 100972",
"endeca: ancest or Di nval | d: 101022",
"endeca: ancest or Di nval | d: 101024",
"101927",
"endeca: ancest or Di nval | d: 20001",
"4294967266",
"4294967247"
I,
"endeca: navAndSear chCount": [
nan
I,
"endeca:time": |
"1441745067199"
I,
"endeca: wor kspacel d": [
"d826ca36- 80a2- 4278- a09f - 2933dab92d1f "
I,
"endeca: path": [
"/ cont ent/ Wb"
I,
"endeca: tenpl ateType": [

" Page"

1

"endeca: tenplateld": [

1

"endeca: wor kfl owState": [
n e

]

ecr:innerPath: "headerContent[0]"

}

narme: "Search Box",
content Pat hs: ["/content/ Shared/ Aut o- Suggest

t
t

Panel s"],
enpl at eTypes: ["AutoSuggest Panel "],
emplatelds: [],

m nAut oSuggest | nput Lengt h: "3",

r

}

uleLimt: "1"

84

3 Developing an Assembler Application

initialize(pContentltem, pCallback)

Initializes the preview framework, processes the content item tree and opens up a communication channel with
Experience Manager. If Experience Manager responds with a load hot spots message, the framework traverses
the application DOM and decorates the page with hot spots. This method should be invoked at the beginning
of the page construction. Single page applications should use the addContentitemld() method to add data-
oc-content-item-id attribute to the DOM elements that should be decorated with hotspots and then call
addHotspots() to decorate the content items with hot spots.

3 Developing an Assembler Application

85

Table 3.2. initialize Paramete

rs

I

"endeca: wor kfl owState": [

nqn
|

1

}s

nanme: "About Page",

header Content: [

{

@ype: "SearchBox",

endeca: audi tlnfo: {

"ecr:resourcePat h": "/pages/ Di scoverEl ectronics/

about us",

"ecr:assertedFacts": {

}

"endeca: ancest or Di nval | d: 100972",
"endeca: ancest or Di nval | d: 101022",
"endeca: ancest or Di nval | d: 101024",
"101927",
"endeca: ancest or Di nval | d: 20001",
"4294967266",
"4294967247"
I,
"endeca: navAndSear chCount": [
nan
I,
"endeca:time": |
"1441745067199"
I,
"endeca: wor kspacel d": [
"d826ca36- 80a2- 4278- a09f - 2933dab92d1f "
I,
"endeca: path": [
"/ cont ent/ Wb"

]

ndeca: tenpl ateType": [

" Page"

1.

"endeca: tenplateld": [

1.

"endeca: wor kfl owState": [
nqn

]

ecr:innerPath: "headerContent[0]"

b

name:

" Sear ch Box",

content Pat hs: [
"/ cont ent/ Shar ed/ Aut o- Suggest Panel s"

1.

tenpl at eTypes: [
" Aut oSuggest Panel "

1.

tenplatelds: []

}
1.

endeca: siteState: {
@l ass:
"com endeca.infront.site.nodel.SiteState",
content Path: "/about-us",
siteld: "/DiscoverEl ectronics",
siteDi spl ayNanme: "Di scover Electronics"

}
}

86

3 Developing an Assembler Application

Name Type | Description

pCallback Function Optional. The callback that is invoked after the framework is
initialized. Always use the callback if the content uri is passed
as the first argument. This ensures that the framework has
been initialized.

addContentltem(pContentitem, pElement, pParentElement)

Add the given content item tree to the Manifest. Optionally turns on hot spots for the dynamically generated
DOM element and its descendants - elements with the data-oc-content-item-id attribute which visually
represent the content item tree. Information about the parent content item is needed in order to add it to the
correct location in the page components area. Page components are uniquely identified by their resourcePath
and innerPath information. This information can be found in the parent DOM element's data-oc-content-
item-id attribute. If there is no parent DOM element, the content item will be added to the end of the page
components tree in the Manifest.

An example of this method can be found in the Sear chBox. j sp page in the Discover Electronics application.
The parent search box DOM element is passed so that the auto suggest results cartridge is added to the correct
location in the page components tree.

This method should be invoked to add dynamic content item trees, such as auto suggest, that are returned by
the Assembler after a page has been constructed.

Table 3.3. addContentitem Parameters

Name Type Description

pContentitem Object | Required. The new content item tree returned by the
Assembler's JSON serializer.

pElement Object | Optional. The new DOM element with data-oc-content-item-id
attribute.
pParentElement Object | Optional. The parent DOM element with data-oc-content-

item-id attribute. Adds the content tree to the correct location
in the page components area of the Manifest.

removeContentitem(pElement)

Removes hot spots from the element and its descendants. The associated content item tree is removed from the
page components area of the Manifest.

Table 3.4. removeContentltem Parameters

Name Type Description

pElement Object | Required. The DOM element with the {@link
CONTENT_ITEM_SELECTOR} attribute whose hot spots and
associated content item tree are to be removed.

addHotspots(pElement, pTraverseDom)

Decorates the element and optionally its descendants with hot spots. An error occurs if the preview framework
has not been prepared yet. You must call the framework's prepare() method before using this method.

3 Developing an Assembler Application 87

Table 3.5. Parameters

Name Type Description

pElement Object | Required. The DOM element that is to be decorated with hot
spots.

pTraverseDom Boolean| Required. Flag indicating whether or not the descendants of
the element have to be decorated.

removeHotspots(pElement, pTraverseDom)

Removes hot spots from the element and optionally removes its descendants. An error occurs if the preview
framework has not been prepared yet.

Table 3.6. removeHotspots Parameters

Name Type | Descripton

pElement Object | Required. The DOM element from which hot spots are to be
removed.

pTraverseDom Boolean Required. Flag indicating whether or not hot spots have to be
removed from the descendants.

on(pEvent, pListener, pScope)
Registers a listener to one of the framework life cycle events. Supported events are:
+ hotspotsOn
+ hotspotsOff
+ addContentltem

+ removeContentltem

Table 3.7. on Parameters

Name Type | Description

pEvent String | Required. The name of the event.

pListener Function Required. The listener function that is invoked when the event
fires.

pScope Object | The scope that invokes the listener.

off(pEvent, pListener)

Removes a listener to one of the framework life cycle events.

88 3 Developing an Assembler Application

Table 3.8. off Parameters

Name Type | Description
pEvent String | Required. The name of the event.
pListener Function Required. The listener function to be removed.

Enabling your preview application
After you have finished instrumenting your preview application, you can enable it for use in Workbench.

Ensure that your application has been correctly instrumented before enabling it for preview in Workbench. See
Enabling your Java application for preview (page 80).

All examples shown below are taken from the configuration files for the Discover Electronics authoring
application, located in “ENDECA_TOOLS_ROOT% r ef er ence\ di scover - el ectroni cs- aut hori ng (on
Windows) or SENDECA TOOLS_ROOT/ r ef er ence/ di scover - el ect roni cs- aut hori ng (on UNIX). The exact
mechanisms used for configuring your Assembler and content sources will depend on your implementation
details.

For a full description of the properties described below, see the Assembler APl Javadoc for the
Assenbl er Fact ory and Cont ent Sour ce interfaces and their corresponding implementations.

To enable your custom preview application:

1. In the constructor arguments for your Assenbl er Set t i ngs, set the following:

Property Value
previ ewknabl ed true
previ ewhbdul eUr | http://1 ocal host: 8006/i fcr

In the Discover Electronics reference implementation, these are configured as properties in VEB- | NF
\assenbl er. properties:

wor kbench. host =l ocal host
wor kbench. port =8006

... Additional settings renoved fromthis exanple ...

previ ew. enabl ed=true

These properties are then included in the Assembler context file, WEB- | NF\ assenbl er - cont ext . xni :

<l
HHH R R R
ASSEMBLER FACTORY
#

3 Developing an Assembler Application 89

Required.
#
-->
<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor-arg>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs">
<property nane="previ enEnabl ed" val ue="${previ ew. enabl ed}" />
<property nane="previ ewvbdul eUr| " val ue="http://${wor kbench. host }:
${wor kbench. port}/ifecr™ />
</ bean>
</ constructor-arg>
<constructor - ar g>
<list>
<bean cl ass="com endeca. i nfront.| ogger. SLF4JAssenbl er Event Logger" />
</list>
</ constructor-arg>
</ bean>

. In the constructor arguments for your St or eFact or y bean, seti sAut hori ngtotrue.

<bean i d="StoreFactory" class="com endeca.infront.content.source. Fil eStoreFactory"
init-nethod="init" destroy-nethod="destroy">
<property nanme="configurationPath" val ue="${repository.configuration.path}"/>
<property nane="isAut horing" val ue="${previ ew. enabl ed}"/ >
<property nane="appNane" val ue="${wor kbench. app. nane}" />
<property name="host" val ue="${wor kbench. host}" />
<property name="clientPort" val ue="${wor kbench. publishing.clientPort}"/>
<property name="serverPort" val ue="${wor kbench. publi shing. serverPort}"/>
<property nanme="nessageTi neout"” val ue="10000" />

</ bean>

Property name Value

configurationPath Required. The path from which the content and
configuration zip files are retrieved

appName Required. The name of the EAC application

isAuthoring Optional. Default is false. If this is an authoring
server, the value must be set to true.

host Required if the i sAut hor i ng property is set to
true. The name of the server the workbench is
running on. Default is localhost..

serverPort Optional. Used only when the i sAut hori ng
property is set to true. The port the Workbench is
listening on. Default is 8007.

3 Developing an Assembler Application

Property name Value

clientPort Optional. Used only when the i sAut hori ng
property is set to true. The port used to initiate
contact to the workbench from this server. If client
port is set to -1, the system will assign an ephemeral
port automatically.

messageTimeout Optional. Used only when the i sAut hori ng
property is set to true. The amount of time in
milliseconds to wait on communications with the
workbench. Default is 10000ms.

3. Configure a link service for your application that returns a preview link as a JSONP response.

This service must construct a link to the page selected for preview; for example, if a content administrator
previews the Brand - Canon Web Browse page in the reference application, the service returns "/ br owse/ _/
N- 25y6" . Additionally, the response from the service is used to construct the links in the Audit Panel.

In Discover Electronics, the link service is configured as a link servlet that uses the
com endeca. i nfront. web. spring. Previ ewLi nkSer vl et class. The servlet is defined in WEB- | NF
\web. xm :

<servl et >
<servl et - name>| i nk</ servl et - name>
<servl et-class>
com endeca. i nfront. assenbl er. servl et. spring. SpringPrevi ewLi nkSer vl et
</ servl et-class>
<i nit-paran>
<descri ption>
The I D of the NavigationStateBuilder in the spring
contextConfig file
</ descri ption>
<par am nanme>navi gat i onSt at eBui | der Beanl d</ par am nane>
<par am val ue>navi gati onSt at eBui | der </ par am val ue>
</init-paranm
<init-paranmr
<descri pti on>
The I D of the MlexResource in the spring
contextConfig file
</ descri pti on>
<par am nane>ndexResour ceBeanl d</ par am name>
<par am val ue>ndexResour ce</ par am val ue>
</init-paranr
</servlet>

Changing the preview link service
If you have implemented your own link service for use with preview, you can specify the path to the service.

After you have created your own preview link service, you can specify it for use with preview instead of the
default link service included with the Discover Electronics reference application.

3 Developing an Assembler Application 91

Note

For information about the required inputs and outputs for a link service, see the Javadoc for the
Abst ract Previ ewLi nkSer vl et classinthe com endeca. i nfront. assenbl er. servl et package.

To change the preview link service:
1. Stop the Tools Service.
2. Open your application's deployment descriptor file, web. xni .

For the Discover Electronics reference application, this file is located at “%&ENDECA_TOOLS_ROOT% r ef er ence
\ di scover - el ectroni cs- aut hori ng\ VEB- | NF\ web. xm .

3. Define the link servlet.

The servlet definition for the Discover Electronics reference application is shown below:

<servl et>
<servl et - nane>| i nk</ servl et - name>
<servl et-cl ass>
com endeca. i nfront. assenbl er. servl et. spring. Spri ngPrevi ewLi nkServl et
</ servl et-class>
<i ni t-paranp
<descri pti on>
The I D of the NavigationStateBuilder in the spring
contextConfig file
</ descri ption>
<par am nanme>navi gat i onSt at eBui | der Beanl d</ par am nane>
<par am val ue>navi gat i onSt at eBui | der </ par am val ue>
</init-paranr
<init-paranr
<descri pti on>
The 1D of the ContentSource in the spring
contextConfig file
</ descri pti on>
<par am nanme>cont ent Sour ceBeanl d</ par am name>
<par am val ue>cont ent Sour ce</ par am val ue>
</init-paranr
</ servl et>

4. Define the link servlet mapping.

For example:

<servl et - mappi ng>

<servl et - name>| i nk</ servl et - name>

<url -pattern>/servlet/link.json/*</url-pattern>
</ servl et - mappi ng>

5. Save and close the file.
6. Start the Tools Service.
Managing the preview application in Workbench

You can manage the preview URL configuration and the preview devices for an application in Workbench by
using the Preview Settings tool.

92 3 Developing an Assembler Application

After you have instrumented your application and it for preview, it becomes the default preview application
for your initial site or any sites that you add to your application. You can manage preview devices for displaying
content and change the default application preview URLs or site-specific preview URLs.

1. Navigate to the Application Settings — Preview Settings tool.

2. Navigate to the Preview URLs section.

The default preview URL that you set up in Enabling your preview application (page 89) appears

in the Default Preview URL field. The link service URL that you set up in Changing the preview link

service (page 91) appears in the Default Link Service URL field. The URL that exposes the Assembler
Services REST API for non-Java applications appears in the Default Assembler Service URL field. These URLs
also appear by default for the sites listed in the section below the default URLs section.

3. To change the default preview application follow these steps:
a. Enter the fully qualified preview URL of the default preview application in the Default Preview URL field.

b. Enter the URL of the service within the application that constructs links for preview in the Default Link
Service URL.

c. Enter the URL that exposes the Assembler Services REST API for preview in the Default Assembler Service
URL. This field is only required for non-Java applications. It is not required for Java applications. See
Formatting the Assembler Service URL (page 94) for more information.

4. To update the preview URLs and link service URLs for a site follow these steps:

a. In the Preview URL field of the site, enter the fully qualified preview URL of the site that you want to
preview .

b. In the Link Service URL of the site, enter the URL of the service within the site that constructs links for
preview.

If your organization has integrated Oracle Core Commerce Platform with Guided Search, you must include
the pushSi t e parameter in the Link Service URL for each site: pushSi t e=<si t el D>. For example:

http:// <PREVI EW HOST>: <PREVI EW PCORT>/ crs/ | i nk. j son?pushSi t e=npbi | eHoneSi t e

c. Inthe Assembler Service URL of the site, URL that exposes the Assembler Services REST API for preview.
This field is only required for non-Java applications. It is not required for Java applications.

5. Click Save.
6. In the Manage Preview Devices section, enter values for the attributes of each preview device.

All devices can be rotated, so enter the height and width of the page orientation that is previewed more

frequently.
Option Description
Name The name of the device
User Agent Agent types supported as a string
Height The view port height of the device, in pixels

3 Developing an Assembler Application 93

Option

Width

Description

The view port width of the device, in pixels

Zoom

The Zoom factor can simulate displays on devices
other than the current monitor. For example,

the display on a retina display monitor can be
simulated by setting the Zoom factor to 30 - that is,
30%.

The following table shows example preview settings by device.

Option First Preview Device Second Preview Device
Name | Handheld Tablet
User Mozilla/5.0 (iPhone; U; CPU like Mac OS X; Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS
Agent | en) AppleWebKit/420+ (KHTML, like Gecko) X; en-us) AppleWebKit/531.21.10 (KHTML,
Version/3.0 Mobile/1A537a Safari/419.3 like Gecko) Version/4.0.4 Mobile/7B334b
Safari/531.21.10
Height| 680 1224
Width | 400 848
Zoom | 30 60
7. Click Save.

Formatting the Assembler Service URL

At runtime, the Assembler Service URL is used to build the various URLs for individual content items in your site.

For example, if your site uses the following Assembler Service URL:

http://1 ocal host: 8006/ assenbl er - aut hori ng/j son

The JSON for the / br owse page can be retrieved by concatenating the path at the end of the URL:

http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ br owse

If the path is not appended at the end of the URL, you can also use a placeholder % to designate where the
path should be inserted at runtime. For example, to retrieve the following / br owse page:

http://1ocal host: 8006/ di scover - aut hori ng/ br owse?f or mat =j son

You can format the Assembler Service URL with a placeholder:

94

3 Developing an Assembler Application

http://1 ocal host: 8006/ di scover - aut hori ng%?f or mat =j son

Note that if you do not use a placeholder, the path is always appended to the end of the Assembler Service URL.

Experience Manager makes a JSONP call to the deployed Assembler Service by using the jsonp query parameter.
For example, to construct the Manifest panel for the browse page, Experience Manager makes a call to the
Assembler Service at the following:

http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ br owse?j sonp=<dynani c_net hod_nanme>

Testing your preview application

After instrumenting and enabling your preview application, you can test the preview and audit functionality in
Workbench.

Your custom preview application must be fully instrumented and enabled in Workbench in order for the preview
option to be displayed.

To test your custom preview application:
1. In Workbench, navigate to the Experience Manager tool.
2. Navigate to a content item of your choosing.
3. Hove the mouse over the content item.
The Action menu button appears.
4. Select Preview from the Action dropdown.

5. Optionally, specify the preview time instead of using the default indicated by the system clock for the MDEX
Engine:

a. Click the arrow beside the selected device in the Preview Toolbar:
The Preview Toolbar expands to show configuration options.
b. Select a device from the Device list and click Apply.
Specifying a preview device lets you see how the application renders on that device.
6. To test audit functionality:
a. Hove the mouse over the cartridge you wish to audit.
b. Click the gear button and select Audit
The Audit Panel appears with a list of all content items considered for the specified content slot.
c. Click any of the listed Locations to navigate to that location in the preview application.

d. Click the name of any of the listed content items and confirm that you return to that item in Experience
Manager.

Disabling preview

You can disable the ability to preview your application in Experience Manager.

3 Developing an Assembler Application 95

To disable preview, you export the preview configuration of your application, replace the preview URL and link
service URL with null values and then import your updated preview configuration, as follows:

1. Export the preview configuration.

The following command exports the Discover preview configuration to the / i mpor t folder in unzipped files:

runconmand. sh | FCR export Cont ent configuration/tool s/ preview /| ocal di sk/ apps/
Di scover/config/inport/configuration/tools/preview true

2. Replace the preview URL and link services URL information with null values in the configuration-preview
JSON file.

{
"ecr:type":"configuration-preview',
"linkServiceUl":"",
"previewur|":"",
"assenbl er Servi ceURL": "http:/ /1 ocal host: 8006// assenbl er - aut hori ng/j son",
"devices": [
{
"userAgent":"Mzillal/5.0 (iPhone; U, CPUIlike Mac OS X; en) Appl eWebKit/ 420+
(KHTM., 1ike Gecko)
Version/ 3.0 Mbile/1A537a Safari/419. 3",
"nanme": "Handhel d (Portrait)",
"hei ght": 1280,
"w dt h": 960,
"zoont: 50
}
]
}

3. Import the updated preview configuration.

The following command imports the Discover preview configuration to the confi gur ati on/ t ool s/
pr evi ewfolder:

runcommand. sh | FCR i nport Cont ent configuration/tool s/ preview /| ocal di sk/ apps/
Di scover/config/inport/configuration/tools/preview

Configuring logging for an Assembler Application

The Assembler logs information to the Platform Services Log Server component.

In order to implement this logging feature in an application, you must instantiate a LogSer ver Adapt er

and pass it in to the Assenbl er Fact or y, along with any other Event Listeners. To log front-end

information, you must also register a Cont ent | t emAugnent Adapt er . The LogSer ver Adapt er and

Cont ent | t emAugnent Adapt er require a Request Event I nitial i zer and a MlexQueryl nfol nitializer
to log request event information to the Dgraph request log, so these should also be configured. Registering
aMlexQueryl nfolnitializer letsyou establish the relationship between the Assembler request and its
corresponding MDEX Engine queries in the Dgraph request logs. This helps you to identify and troubleshoot
problems.

926

3 Developing an Assembler Application

Configuring the RequestEventinitializer and the MdexQueryinfolnitializer

The Request Event I nti ai | i zer is used to initialize the RequestEvent thread local variable. Similarly,
MiexQueryl nfol nitializer isused to initialize the MdexQueryInfo thread local variable in the assembly
process. If the MdexQuer yI nf ol ni ti al i zer is notincluded in the assembler configuration, then the additional
request information will not be included in the Dgraph request log.

In the following example of an assenbl er - cont ext . xm file in a Spring implementation,

note that the Request Event I nti ai | i zer is configured before the LogSer ver Adapt er and

Cont ent | t emAugnent Adapt er so that the request event is logged. The MlexQueryl nfol ni ti al i zer isalso
configured so that query information such as the request id, and the session id is added to the Dgraph request

log.

<bean
cl ass="com endeca. i nfront. assenbl er. event. request. Request EventInitializer">
<property nanme="sessionl dProvider" ref="springUility"/>
<property nane="request!|dProvider" ref="springUility"/>

</ bean>

<bean cl ass="com endeca. i nfront. navi gati on. event. MlexQuerylnfolnitializer">

</ bean>

<bean cl ass="com endeca. i nfront. assenbl er. event. request. Content|temAugnent Adapt er ">
</ bean>

<!-- Renpve the following lines to disable logging to an Oracle Endeca Log Server -->

<bean cl ass="com endeca. i nfront. navi gati on. event. LogServer Adapt er" >
<property nane="|ogServerHost" val ue="${l ogserver. host}"/>
<property nane="| ogServerPort" val ue="${l ogserver.port}"/>
<property nanme="i sSsl Enabl ed" val ue="${l ogserver. ssl Enabl ed}"/>
</ bean>

The Request Event I ni ti al i zer specifies a Sessi onl dProvi der and a Request | dPr ovi der so you can
associate Assembler requests with MDEX query entries in the Dgraph request log. You specify the following
properties:

+ Aninstance of an object that implements the
com endeca. i nfront. assenbl er. event . request. Sessi onl dProvi der interface, which requires a
String get Sessi onl d() method that returns a user's session ID.

+ Aninstance of an object that implements the
com endeca. i nfront. assenbl er. event . request . Request | dProvi der interface, which requires a
String get Request | d() method that returns a request ID.

The referenced bean is configured as follows:

<bean id="springUtility" class="com endeca.infront.web.spring. SpringUility"
scope="si ngl eton"/ >

Instantiating a ContentitemAugmentAdapter

The Cont ent | t emAugnent Adapt er augments content items with front-end application information, such as
a user's search and navigation state. As a result, the response content item returned from an assenbl e() call
includes cartridge logging information.

<bean cl ass="com endeca. i nfront. assenbl er. event. request. Cont ent | t emAugnent Adapt er" >

3 Developing an Assembler Application 97

</ bean>

Instantiating a LogServerAdapter

The LogSer ver Adapt er logs server-side information. You specify the following properties:
+ Log server host

* Log server port

+ SSL Enabled (optional)

In the Spring implementation, it is configured in the assenbl er - cont ext . xm file as follows:

<bean cl ass="com endeca. i nfront. navi gati on. event. LogSer ver Adapt er" >
<property nanme="|ogServerHost" val ue="${| ogserver. host}"/>
<property nanme="|ogServerPort" val ue="${l ogserver.port}"/>
<property nane="i sSsl Enabl ed" val ue="${I ogserver. ssl Enabl ed}"/>
</ bean>

Dgraph request logs

The following Dgraph request log shows the request component (reqcom), session ID (sid) , and request ID (rid)
information:

1402522721112 127.0.0.1 - 3 8357 3.13 2.82 200 5684 0 1 /graph?

node=0&of f set =0&nbi ns=0&I og=r eqcon?@dcont ent Request Br oker ¥%26si d

%38dDD2 CAF659BE6 CFDFFDED091F69037113%26r i d%8d140252272098164091&i r ver si on=640 - Accept
YBA+YR AYR FYR AYODYO APr agma%8A+no%2Dcache%®DYOACache¥2DCont r ol ¥8A+no%@2Dcache¥®DYOAUser
9%2DAgent ¥8A+Java%RF19%R2E7Y2E0Y%S F25%0 DYOAHost ¥8A+| ocal host ¥%8A15000%0D¥OAConnect i on¥3A
+keep%2Dal i veYODYOA

The request component is the class that made the MDEX Engine query.

Customizing logging information

All key-value pairs in com endeca. i nfront. assenbl er. event . request . MlexQuer yl nf o are logged to the
Dgraph response log. You can extend MiexQuer yl nf ol ni ti al i zer and add the desired key-value pairs. For
example:

public class CustomWexQuerylnfolnitializer extends MiexQuerylnfolnitializer {
public CustomvexQuerylnfolnitializer() {
super () ;
}
public void assenblyStarting(Assenbl er Event event) {
super. assenbl yStarting(event);
String custonkKey = "CUSTOM KEY";
String custonVal ue = " CUSTOM VALUE";
/1 Get the MlexQuerylnfo associated with the current assenbl er request
MiexQueryl nfo info = MlexQueryl nf oFact ory. get MlexQueryl nfo();
//Store the custominfornation
i nfo. put (custonKey , custonVal ue);

98

3 Developing an Assembler Application

Customizing session ID information

Depending on the information you wish to include in a session ID object, you can create a custom
implementation of the Sessi onl dPr ovi der interface. For additional information, refer to the Assembler AP/
Reference (Javadoc).

Customizing request ID information

Depending on the information you wish to include in a request ID object, you can create a custom
implementation of the Request | dPr ovi der interface. For additional information, refer to the Assembler AP/
Reference (Javadoc).

Configuring the Log4J logger

The logging implementation in the Discover Electronics reference application uses the Log4J logger. Log level
settings are configurable through the properties file located at Tool sAndFr amewor ks\ <ver si on>\r ef er ence
\ di scover - el ectroni cs-[authoring|live]\WEB_I NF\ cl asses\ | og4j . properti es.If you choose to
use this implementation in your own application, you can configure the log level by opening the corresponding
file.

Locate and uncomment the following line:

Uncomment to see Oracle Commerce Assenbl er debug info.
1 0g4j .| ogger.com endeca. i nfront.| ogger =DEBUG

At the DEBUG level, Assembler and cartridge handler entrances and exits are logged, although the details of the
navigation context passed in to the cartridge handler do not appear.

Configuring logging for custom events
You can create custom cartridge handlers to collect and act on any information that is important to your
application.

About request events
Each invocation of the Assembler creates an associated Request Event object that tracks request information.
Information on a Request Event is stored as key/value pairs. You can include arbitrary information about an

Assembler request by extending the Request Event object in a cartridge handler's pr ocess method. For
example:

/**
* Cartridge Handl er process nethod
*/
public void process(ConfigType pContent Type) {

/1 Create a new Request Event from the gl obal Request Event obj ect
Request Event event = Request Event Factory. get Event();

/] Store arbitrary infornation

3 Developing an Assembler Application 99

event. put ("nmyKey","my arbitrary val ue");

The Navi gat i onEvent W apper class

The Navi gat i onEvent W apper class provides convenience methods for getting and setting common search
and navigation information about a request event. It modifies the Request Event object specified in the
constructor, as in the example below:

/)\')\'
* Cartridge Handl er process nethod
*/
public void process(ConfigType pContent Type) {

/1 Create a new Navigati onEvent Wapper around the gl obal RequestEvent object
Navi gat i onEvent W apper navi gati onEvent = new
Navi gat i onEvent W apper (Request Event Fact ory. get Event ());

/1 Store navigation event infornation
navi gat i onEvent . set Aut ocorrect To("aut ocorrected terni);

For additional information about the Request Event and Navi gat i onEvent W apper classes, including a full
list of the convenience methods available for the Navi gat i onEvent W apper , see the Assembler APl Reference
(Javadoc).

About request event adapters

Request event adapter classes perform some action based on information included with a request event.

A request event adapter class implements the handl eAssenbl er Request () method in the abstract
Request Event Li st ener class. This method is invoked at the end of the Assembler's assenbl e() method.

The following is an example of a simple request event adapter:

/**
* Add log information to root content item
*/
public class Sanpl eRequest Event Adapt er extends Request EventLi stener {

| **

* Constructor
* @aram sessi onl dProvi der provides an ID for the current user session

*/
publ i ¢ Sanpl eRequest Event Adapter () {
super () ;
}
/**

* Prints the request event's session id, request id, and search term (if present)
to the console

100

3 Developing an Assembler Application

* @aram assenbl er Request Event the event containing all of the
* information about the Assenbl er request
* @aramrootContentltemthe Assenbl er out put
*/
public void handl eAssenbl er Request Event (Request Event event, Contentltem
rootContentlten) {
Navi gat i onEvent W apper navi gati onEvent = new
Navi gat i onEvent W apper (assenbl er Request Event) ;
/1 Print Session ID - Note that the session Id has already been deternined and
set in the event object
Systemout. println("The current session is: "+event.getSessionld());
/1 Print Request ID - Note that the request Id has already been determ ned and
set in the event object
Systemout. println("The request IDis: "+event.getRequestld());
/1 Print Search Term
if (navigationEvent.getSearchTerns() != null && !
navi gati onEvent. get SearchTernms().trin().isEnpty()) {
Systemout.println("The current search terns are:
"+navi gati onEvent . get SearchTerns());
} else {
Systemout.println("There were no search terns in the current request");

}

The SessionldProvider interface

The example request event adapter registers an implementation of Sessi onl dPr ovi der in the constructor.
This enables it to retrieve the server session ID.

The Tools and Frameworks installation implements this interface in the included Spri ngUti I i ty class.
You can create your own Sessi onl dPr ovi der class by extending the Sessi onl dPr ovi der interface and
implementing the get Sessi onl D() method.

The RequestldProvider interface

The example request event adapter registers an implementation of Request | dPr ovi der in the constructor.
This enables it to retrieve the request ID.

The Tools and Frameworks installation implements this interface in the included Spri ngUti | i ty class. You can
create your own Request | dPr ovi der class by extending the Rquest | dPr ovi der interface and implementing
the get Request | D() method.

Request event adapters in the reference application

The Discover Electronics reference application includes the following implementations of the
Assenbl er Event Li st ener interface:

+ AssemblerEventAdapter

+ ContentltemAugmentAdapter
» LogServerAdapter

» RequestEventListener

For additional information about these classes, see the Assembler APl Reference (Javadoc).

3 Developing an Assembler Application 101

About registering a request event adapter

To use a request event adapter, you must register it with your Assenbl er Fact ory.

You can disable request event adapters by removing them from the Assenbl er Fact or y configuration.
Request event adapter configuration in the reference application

In the reference application, the Assenbl er Fact or y interface is implemented as Spri ngAssenbl er Fact ory,
and the Assenbl er Event Li st ener objects are specified as constructor arguments in the Assembler context
file:

<l--
FHE MG I G G G R G A G A G L B L B M
ASSEMBLER FACTORY
#
Required
#
-->
<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor - ar g>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs">
<property nane="previ ewkEnabl ed" val ue="${previ ew. enabl ed}" />
<property nanme="previ ewbdul eUr|" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr" />
</ bean>
</ constructor-arg>
<constructor-arg>
<list>
<bean cl ass="com endeca. i nfront.| ogger. SLF4JAssenbl er Event Logger" />
<bean
cl ass="com endeca. i nfront. assenbl er. event.request. Request EventInitializer">
<property name="sessionl dProvider" ref="springUility"/>
<property nane="request!|dProvider" ref="springUility"/>
</ bean>
<bean
cl ass="com endeca. i nfront. navi gati on. event. MlexQuerylnfolnitializer">
</ bean>
<bean
cl ass="com endeca. i nfront. assenbl er. event. request. Cont ent | t emAugment Adapt er " >
</ bean>
<l-- Renove the following lines to disable logging to an Oracle Endeca Log
Server -->
<bean cl ass="com endeca. i nfront. navi gati on. event. LogSer ver Adapt er" >
<property nanme="|ogServerHost" val ue="${l ogserver. host}"/>
<property nanme="| ogServerPort" val ue="${l ogserver.port}"/>
<property nanme="isSsl Enabl ed" val ue="${| ogserver. ssl Enabl ed}"/ >

</ bean>
</list>
</ constructor-arg>

</ bean>

Request event adapters in the reference application

The Discover Electronics reference application includes two request event adapters,
Cont ent I t emAugnent Adapt er and LogSer ver Adapat er .

102 3 Developing an Assembler Application

Adapter Description

com endeca. i nfront. assenbl er. r eAppendSoayaast e\emiugftentasiaptethe Content Item returned
by the assenbl e() method. Information is included as a nested
Content Item of type Assenbl er Request Event , with the

key endeca: assenbl er Request | nf or mat i on. For a list of
attributes that are available out-of-the-box, see Request Event
Attributes (page 346).

com endeca. i nf ront . navi gat i on. efFfemhatsod@arfrtemAtieprequest event and sends it to the Log Server,
which enables Workbench users to generate reports using the Report
Generator.

The adapter must be configured with the host and port of the log
server. In the reference application, these values are configured in the
VEB- | NF\ assenbl er . properti es file.

Client side click events

The Oracle log server tracks the following click events from the client side of an Assembler application:

Attribute Key Type Description

IN_DIM_SEARCH | Bool ean | Did the user select a dimension search result.

IN_DYM Bool ean | Did the user select the "did-you-mean" value.
IN_MERCH Bool ean | Did the user select a merch rule (spotlight).
CONVERTED Bool ean | Did an action cause a conversion.

You can include the information collected from these events in your application reports. For more information
about the Log Server and Report Generator components, refer to the Platform Services Log Server and Report
Generator Guide.

3 Developing an Assembler Application 103

Configuring cartridge performance logging

The Assembler tracks performance statistics for registered events; this information is available from the
administrative servlet at ht t p: / / <wor kbench host >: <wor kbench port >/ <appl i cati on>/ adni n using
the / adni n?op=st at s operation.

For example, you can view the performance statistics for the default Discover Electronics application by
navigatingto htt p: / /| ocal host : 8006/ di scover - aut hor i ng/ adni n?op=st at s. For more information
about the administrative servlet, see the Oracle Commerce Administrator's Guide.

Performance logging is enabled for the core cartridges included with Tools and Frameworks. If you create a
custom cartridge handler and wish to track its processing time, you must use the staticPer f Uti | . start ()
method to create a corresponding Event .

Example 3.4. Example

For example:

Event event = PerfUtil.start("com exanpl e. d assNane_M/Met hod");
try {

/* cartridge handler logic */

event . succeed();

} finally {
event. faillfNotConpl eted();
}

Note

AcalltoPerfUtil.start mustinclude a corresponding call to either the Event . succeed()
orEvent . fai | () method of the returned Event instance. Oracle recommends using the
Event . fail | f Not Conpl et ed() helper method withinafi nal | y{} block to ensure proper
resolution.

For more information about the com endeca. i nfront . perf package, see the Assembler API Reference
(Javadoc).

Debugging MDEX Engine query results

The MDEX Engine provides several methods for understanding why certain results were returned for a query so
that you can determine how to tune search features to provide the desired results.

Query debugging features

The MDEX Engine query debugging features include Why Match, Word Interpretation, Why Rank, and Why
Precedence Rule Fired. Each feature provides information about a different aspect of search results.

Feature Description

Why Match Augments record results with information about which record properties
were involved in search matching.

104 3 Developing an Assembler Application

Feature Description

Why Rank Augments record results with information about which relevance ranking
modules ordered the results and why a particular record was ranked in the
way that it was.

Why Precedence Rule Fired Augments root dimension values with information about how the
precedence rule was triggered (explicitly or implicitly), which dimension ID
and name triggered the precedence rule, and the type of precedence rule
(standard, leaf, or default).

Word Interpretation Reports word or phrase substitutions made during text search processing
due to stemming, thesaurus expansion, or spelling correction.

Enabling query debugging features

You enable the query debugging features on an Assembler application via the debugEnabl ed constructor
argument on your MiexRequest Br oker object. In the Discover Electronics reference application, this is
configured in the MDEX Resource section of the Spring context file for the Assembler.

When debugEnabl ed is set to t r ue, it enables query debugging features to be applied to an Assembler
request. When set to f al se, debugging features are turned off for every request. Debugging features are
disabled by default.

In addition to the corresponding object configuration, Word Interpretation must be enabled via the - -
wor dI nt er p Dgraph flag.

The following shows the default MDEX resource configuration in the Discover Electronics application:

<bean i d="ndexRequest Bui | der" scope="request"
cl ass="com endeca. i nfront. navi gati on. request. MlexRequest Br oker" >
<constructor-arg ref="nlexResource" />
<!-- Debug Enabl ed Paraneter. \Wen set to true, allows debug information to be
returned fromthe Assenbler -->
<constructor-arg val ue="fal se"/>
</ bean>

URL parameters for query debugging features

All query debugging features except for Word Interpretation may be enabled on a per-query basis via URL
parameters.

The following parameters take a value of 1 (for enabled) or 0 (for disabled):
* whymat ch

* whyrank

* whyprecedencerul efired

The Word Interpretation feature can only be enabled at the level of an individual cartridge handler.

3 Developing an Assembler Application 105

Note

If the debug constructor argument on the MDEX resource bean is set to f al se, all debugging features
are disabled on every request regardless of URL parameters.

Query debugging results in the reference application

In Discover Electronics, the results of query debugging can be returned as part of the response model for the
Results List, Search Adjustments, and Refinement Menu cartridges as appropriate. In the Discover Electronics
reference application, these results can be enabled by removing comments from the corresponding properties

in each cartridge handler.

The debugging results are returned as properties on returned records:

Feature Results
Why Match Returns information about why each record matched the query in a
Dgr aph. \hy Mat ch property on the record.
Why Rank Returns information about why each record was ranked the way it was in a

Dgr aph. WhyRank property on the record.

Why Precedence Rule Fired

Returns information about precedence rules that fired on a query in a
DG aph. \hyPr ecedenceRul eFi r ed property on each root dimension
value.

Word Interpretation

Returns information about word or phrase substitutions as a map that can be
accessed viaget I nt er pret edTer ns() on the Sear chAdj ust ment s model.

For details about the format of the debugging results, refer to the MDEX Engine Developer's Guide.

Note

The renderers in the Discover Electronics application do not include rendering logic to display the
query debugging properties, but the information is available from the JSON or XML view.

The relevant configuration for the individual cartridge handlers in the Discover Electronics reference application

is shown below:

* Results List — Why Match, Why Rank

<bean cl ass="com endeca.infront.cartridge. Resul tsListConfig" scope="singl eton">

<!-- <property name="whyMat chEnabl ed" val ue="true"/> -->
<l-- <property nane="whyRankEnabl ed" val ue="true"/> -->
<!-- additional elements omtted fromthis exanple -->
</ bean>

Enabling these settings overrides the default values specified for the set WhyMat chEnabl ed and
set WhyRankEnabl ed methods on the com endeca. i nfront. cartri dge. Resul t sLi st Confi g object
when the Tools Service is initialized.

* Refinement Menu — Why Precedence Rule Fired

106

3 Developing an Assembler Application

<bean cl ass="com endeca.infront.cartridge. Refi nement MenuConfi g" scope="singl eton">

<property name="norelLi nkText" val ue="Mre..."/>
<I-- <property name="whyPrecedenceRul eFired" val ue="true"/> -->
</ bean>

Enabling this setting overrides the default value specified for the set WhyPr ecedenceRul eFi r ed method
onthecom endeca. i nfront. cartridge. Refi nement MenuConf i g object when the Tools Service is
initialized.

+ Search Adjustments — Word Interpretation

<bean cl ass="com endeca. i nfront. cartridge. Sear chAdj ust nent sConfi g" scope="si ngl eton">
<l-- <property nane="showwérdl nterp" value="true"/> -->
</ bean>

Enabling this setting overrides the default value specified for the set Showér dI nt er p method on the
com endeca. i nfront. cartri dge. Sear chAdj ust ment sConf i g object when the Tools Service is
initialized.

3 Developing an Assembler Application 107

108 3 Developing an Assembler Application

4 Optimizing Application URLs

This part provides information on optimizing application URLs.

About the URL optimization classes

This section provides an introduction to the URL optimization classes in the Assembler API.

Related links

« Optimizing Application URLs (page 109)

+ Package contents (page 109)

+ Introduction to URL optimization (page 109)

+ Overview of URL optimization capabilities (page 110)

+ URL canonicalization (page 111)

Package contents

The com endeca. sol eng. ur| f or mat t er package within Tool sAndFr anmewor ks\ <ver si on>\ assenbl er
\1i b\ endeca_assenbl er - <ver si on>. j ar contains the classes and dependencies necessary for generating
optimized URLs and canoncial links in your application.

To enable the API for the Discover Electronics reference application, the endeca_assenbl er - <ver si on>. j ar
file is also included under the Tool sAndFr amewor ks\ <ver si on>\r ef er ence\ di scover - el ectroni cs-
aut hori ng\ VEB- | NF\ | i b directory.

Introduction to URL optimization

Dynamically created URLs that are composed of meaningless, randomly generated strings can lower your site's
search engine ranking and make it harder for users to recognize your site. The Assembler APl includes classes
that enable you to create site links using directory-style URLs. These URLs include keywords and store the
dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary values are stored in
the URL path, resulting in search engine-friendly URLs.

4 Optimizing Application URLs 109

Note

The examples in this guide assume a sample Web application runningon htt p: / /| ocal host : 8888
against a wine data set.

Overview of URL optimization capabilities

The URL optimization classes are designed to increase your search engine rankings by enabling you to create
search engine-friendly URLs.

Integration of keywords into the URL string

Many search engines evaluate URL strings as part of their relevancy ranking strategy. Generating URLs that
include keywords can increase your natural search engine ranking as well as create visitor-friendly URLs that are
easier for front-end users to understand.

Using the URL optimization classes, you can configure the following strings to appear in the URL:
» Dimensions

+ Dimension values

» Dimension ancestors

* Record properties

+ Text search queries

For example, the base URL for a Merlot page in a wine application configured to include ancestors in the string
could appear as:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ W ne- Red- Mer | ot /

The optimized URL is more comprehensible to users and more search-engine friendly than the traditional URL,
which contains no keywords:

http://1 ocal host: 8888/ endeca_j spref/controller.jsp?
si d=122C7EA4C912&Ne=6200&enePor t =15000&eneHost =| ocal host &\=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs result in
duplicate content and lower search engine ranking.

For example, users might be able to reach a Napa white wine page by first clicking on “Napa” and then clicking
on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically unique links pointing to
the same Napa White page:

* http://1ocal host:8888/url formatter_jspref/controller/ W ne-Wite/Region-Gernmany/ _/
N 1z141vcZ66t

* http://local host: 8888/ url formatter_jspref/controller/ Regi on-Germany/ Wne-Wite/ _/
N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the
com endeca. sol eng. url formatter . NavStateCanonicalizer interface provides options for creating a
single "canonical" URL for a given location.

110

4 Optimizing Application URLs

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the word separator
is the dash character "-":

http://1ocal host: 8888/ url formatter_jspref/controller/ W ne-Wite/Region-CGernmany/_/
N-1z141vcZ66t

Moving URL parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by moving
them from the query string and into the path-params section of the URL.

For example, the following URL has the parameters N, Nt k, Nt t , and Nt x in the query string:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux?
N=4294966952&f r onsear ch=f al se&Nt k=Al | &\t t =r ed&\t x=rode%2bmat chal | parti al

To optimize the URL, you can move parameters into the path-params section of the URL. For example, the
following URL includes the Nand Nt t parameters in the base URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux/ _/ N- 4294966952/ Nt t - red?
fromsear ch=f al se&N\t k=Al | &\t x=rrode%2bmat chal | parti al

Encoding Parameters
In order to shorten URLs, the URL optimization classes allow base-36 encoding of parameters.
For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996 (4294962059):
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ _/ N- 4294962059
By base-36 encoding the N parameter, you can shorten the URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ _/ N-1z213xxn

URL canonicalization

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs can lower
the search engine ranking of a page. Canonicalizing URLs reduces the duplicate content and improves search
engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that point
to a particular page. The more links there are that point to a particular page, the higher the page rank. Multiple
URLs generated by a dynamic site can lower the ranking of a page because, to the search engine, each version of
the URL appears to point to a different page.

For example, users might be able to reach a Napa Red wine page by first clicking on “Napa” and then clicking on
“Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically unique links pointing to the
same Napa Red page:

* http://1ocal host:8888/url formatter_jspref/controller/ W ne-Red/ Regi on- Napa/ _/
N-1z141vcZ66t

* http://1ocal host:8888/url formatter_jspref/controller/Regi on- Napa/ W ne- Red/ _/
N-1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page with identical or near-identical
content, and each page takes a portion of the link references.

4 Optimizing Application URLs 111

To improve quality, search engines try to minimize the appearance of largely similar pages within results sets.
Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates before a page is
selected to be displayed in the search results. In the case of the Napa Red page, only one of the two URLs would
be selected -- and therefore only half of the link references are evaluated. This link dilution of the Napa Red page
may result in a lower position within search results. Multiple parameters in URLs have the same effect.

In order to avoid multiple versions of URLs per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the canonical
version via a "301" (permanent) redirect.

By design, the URL optimization classes prevent the creation of syntactically different URLs by canonicalizing
keywords, ensuring that equivalent pages have URLs with the same syntax even if they can be navigated to
through different paths. You can choose from a number of configuration options to control the arrangement of
keywords. For example, you can configure your Ur | For nat t er object to arrange dimensions alphabetically in
an ascending order:

* http://1ocal host:8888/url formatter_jspref/controller/Regi on- Napa/ W ne- Red/ _/
N-1z141vcZ66t

Now even if a user navigates to "Red" before "Napa", the link still appears as / Regi on- Napa/ W ne- Red.
Related links

+ Canonicalization configuration options (page 143)

Working with Application URLs

Each of the user-facing pages in an Assembler application exists as a page with a corresponding navigation or
record state; the combination of the page and its state results in a specific set of results or a set of record details.
The Assembler APl includes an Act i on class for storing these URL components and returning them as part of
the output model produced by a cartridge handler.

Related links

« Optimizing Application URLs (page 109)

+ About application URLs (page 112)

+ About Actions (page 113)

« Working with URL parameters (page 117)

+ URL configuration in the reference application (page 118)

+ About working with canonical links (page 122)

About application URLs

Features in a front-end application can provide one or more links to other locations within a site. The
information required for constructing these links is provided on the cartridge response model as an Act i on
object that includes the components of a destination URL.

112

4 Optimizing Application URLs

For example, a dimension refinement in a Refinement Menu cartridge has an associated action to select the
refinement and add it to the end user's navigation state. A record in a Results List cartridge has an action to view
the corresponding record detail page.

The Assembler APl includes an Act i onPat hPr ovi der interface that returns components of an application
URL. For the Discover Electronics reference application, an implementation of this interface is configured in the
Navi gati onCartri dgeHandl er.

Cartridge handlers in the reference application use this implementation to create Navi gat i onAct i on paths
to a certain navigation state (like the modified navigation state created when a user selects a dimension
refinement), or Recor dAct i on paths to specified records (such as a record select from the results list).

About Actions

An Act i on object allows you to construct a link that represents a decision by an end user. The included fields
and values depend on the action that the user wishes to take; they can include the action label, the root site
path, the path to the destination content within the site, and the site state.

The Act i on class does not include a complete URL to the resulting navigation state or record; instead, the URL
resulting from an Action is generally created by combining fields. For details, see "Action fields."

The Assembler splits the class into three subclasses:

» Navi gati onActi on — An Action that represents changing the current navigation state, such as
through a search query or the addition of a dimension refinement. For example, the "See All" link on a
Recor dSpot | i ght object includes a Navi gat i onAct i on for navigating to the refinement state represented
by the spotlight.

+ RecordActi on — An Action that represents selecting a record or aggregate record. The individual records in
aRecordSpot | i ght each include a Recor dAct i on for selecting that record.

+ Url Acti on — An Action that represents following an arbitrary URL. The Media Banner cartridge includes a
Ur | Act i on for URLs that are manually specified in Experience Manager.

Note

For information about the Actions associated with each output model, refer to the Assembler API
Reference (Javadoc) for the corresponding class.

Action fields

All Actions include the following fields:

Field Description

Label The label that displays to the application end-user for the specified action. For example,
you might set this to a product name for a link from a results list to a record detail page, or
it you might set it to a dimension refinement name when displaying a breadcrumb with an
associated Action to remove the refinement and adjust the user's navigation state.

Site root path The path that identifies the EAC application associated with the Action, such as/ si t es/
Di scover.

4 Optimizing Application URLs 113

Field Description

Content path The path that identifies the content associated with the Action within the containing
site. In the Discover Electronics reference application, this is the servlet that handles the
specified content type, such as/ browse or/ det ai | .

Site state Site State is an object that contains the si t el d, mat chedUr | Pat t er n, and cont ent Pat h
used to query the Assembler.

Additionally, certain types of Actions may include additional fields. A Navi gat i onAct i on includes a field for the
navigation state represented by the Action, while a Recor dAct i on action includes a field for the corresponding
record state.

Using action fields

To construct a useable link from an Action, the Ul tier of your application (the cartridge renderers in the Discover
Electronics reference application) must include logic for combining the Action fields. A typical use case consists
of directly concatenating fields, depending on the type of page you wish to link to.

In the reference application, a link to a navigation state typically combines the content path and the desired
navigation state:

String href = action. getContentPath() + action.getNavigationState();

A link to a record details page combines the content path with the appropriate record state:

String href = action.getContentPath() + action.getRecordState();

In an application with multiple sites where your site definition specifies URL pattern matching, a link to a
navigation state combines the site state, the content path and the desired navigation state. In this example,
get Mat chedUr | Pat t er n returns the portion of URL from the incoming request that matches with a pattern
configured on a site.

String href = action.getSiteState().getMatchedUrl Pattern() + action.getContentPath() +
action. get Navi gationState();

If the site definition in this application specifies domain pattern matching, then the link would be:

String href = action. getContentPath() + action.getNavigationState();

If it matches a domain pattern, get Mat chedUr | Pat t er n() is blank so you can use the following for either
domain or URL pattern matching:

String href = action.getSiteState().getMatchedU |l Pattern() + action.getContentPath() +
action. get Navi gati onState();

This does not handle the case where the site ID is passed, such as preview passing the site ID. To handle all these
cases, you can add com endeca. i nfront.site. Siteltils.getSiteUrl toreturn a site-specific URL.

114

4 Optimizing Application URLs

For example:

SiteUtils.getSiteUrl (action.getSiteState(), action.getContentPath() +
action. get Navi gati onState())

Functi onTags also hasaget Si t eUr | method so you can call this from a JSP file as well. For example, in the
user Panel . j spfile:

<a href="<c:url value="${util:getSiteUrl (siteState, '/about-us')}" /> >
About Us
</ a>

A link to an arbitrary URL does not require combining fields, since the Ur | Act i on object includes a method for
directly retrieving a configured URL:

String href = action.getUrl ();

Most of the Discover Electronics cartridge renderers use the <di scover : | i nk> tag, defined in VEB- | NF
\tags\ di scover\ i nk.tag.The tag makes use of the get Ur | For Act i on function declared in VEB- | NF
\tlds\functions.tldanddefinedinWEB- | NF\ cl asses\ com endeca\ i nfront\refapp\ support

\ Functi onTags. j ava.

About using Actions with the packaged services
The packaged services in Oracle Tools and Frameworks return specific actions for the included cartridges.

The following is an Experience Manager example of the results of a guided search service query for the URI
http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ servi ces/ gui dedsear ch?Nt t =pi nk+caner a,
serialized to JSON:

"@ype": "Qui dedSearchService",
"name": "Cui ded Search Service",
"navigation": { ..},
"breadcrunbs": { ...},
"resultsList": {
"@ype": "Resul tsList",
"total NunRecs": 228,
"sortOptions": [
{
"@l ass":"com endeca.infront.cartridge. nodel . Sort Opti onLabel ",
"sel ected":true,
"navi gati onState": " ?Nt t =pi nk+canera",
"content Pat h": "\ /services\/gui dedsearch",
"siteRoot Path":"\/ pages",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Path": "\ /services\/gui dedsearch",
"siteld":"\/ D scoverEl ectronics",
"properties":{
}
H
"| abel ": " Rel evance"

h

4 Optimizing Application URLs 115

{ ..}
1.
"firstRecNun': 1,
"l ast RecNuni': 12,

"pagi ngActionTenplate": { ... },
"recsPer Page": 12,
"records": [

{

"@l ass":"com endeca.infront.cartridge. nodel . Record",
"detail sAction":{
"@l ass":"com endeca.infront.cartridge. nodel . Recor dActi on",
"recordState":"\/Canon\/Digital -1 XUS-80-1S\/_\/A-1439032",
"contentPath":"\/services\/recorddetails",
"siteRoot Path":"\/pages",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /services\/gui dedsearch",
"siteld":"\/D scoverEl ectronics",
"properties":{
}
}
H
"nunRecords": 3,
"attributes":{},
"records":[...]
H
{ content renoved fromthis exanple }
]
H

"content renpoved fromthis exanple"

Note that the sor t Opt i ons returned for the Results List cartridge include the Action fields required to
create a URL for the navigation state resulting from modifying the sort order. Sorting by Price (Ascending)
requires constructing a URL with the appropriate navi gati onSt at e and si t eSt at e, resultinginht tp: //
| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/ gui dedsear ch?Ns=pr oduct . pri ce|
0&Nt t =pi nk+camer a. Querying this URL returns the JSON response for the re-ordered results.

Similarly, each of the records returned in the Results List includes the Action fields for an associated record
details page. Using the / ser vi ces/ r ecor ddet ai | s content root and the r ecor dSt at e for the Slim

Camera Case resultsinthe URL ht t p: / /| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/

recor ddet ai | s/ Kodak/ Sl i m Caner a- Case/ _/ A- 2707821. Querying this URL returns the record details for
the Slim Camera Case.

The following is an Oracle Commerce Guided Search (without Experience Manager) example of the results of
the same guided search service query for the URIht t p: / /| ocal host : 8006/ assenbl er - aut hori ng/ j son/
servi ces/ gui dedsear ch?Nt t =pi nk+camer a, serialized to JSON:

"@ype": "CQui dedSearchService",
"name": "Qui ded Search Service",
"navigation": { ..},
"breadcrunbs": { ...},
"resultsList": {
"@ype":"Resul tsList",
"total NunRecs": 228,
"sortOptions":[

{

116 4 Optimizing Application URLs

"@l ass":"com endeca.infront.cartridge. nodel . Sort Opti onLabel ",
"sel ected":true,
"navi gati onState":"?Nt t =pi nk+canera",
"cont ent Pat h": "\ / gui dedsearch",
"siteRoot Path":"\/services",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /gui dedsearch",
"siteld":"\/ D scoverEl ectronics",
"properties":{

}
H
"l abel ": " Rel evance"

H

{ ...}
I
"firstRecNum': 1,
"l ast RecNuni': 12,
"pagi ngActi onTenpl ate":{ ... },
"recsPer Page": 12,
"records": [

{

"@l ass":"com endeca.infront.cartridge. nodel . Record",
"detail sAction":{
"@l ass":"com endeca.infront.cartridge. nodel . Recor dActi on",
"recordState":"\/Canon\/Digital -1 XUS-80-1S\/_\/A-1439032",
"contentPath":"\/recorddetail s",
"siteRootPath":"\/services",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /gui dedsearch",
"siteld":"\/DiscoverEl ectronics",
"properties":{
}
}
3
"nunRecords": 3,
"attributes":{},
"records":[...]
H
{ content renoved fromthis exanple }
]
H

"content renmoved fromthis exanple"

Note the differences from the Experience Manager example for the cont ent Pat h and si t eRoot Pat h values.

Working with URL parameters

The navi gat i onSt at eBui | der handles both Oracle-specific and non-Oracle URL parameters.

All URL parameters are parsed into the parameters map in the Navi gat i onSt at e object that represents the
user's current navigation state. Oracle-specific parameters are used in constructing MDEX Engine queries. All
other parameters are included in the navigation state or record state fields on the Action object in the output

model. You can change this default behavior by specifying which parameters to remove when generating
Actions:

4 Optimizing Application URLs 117

URL configuration in the reference application

Property

r enoveAl ways

removeOnUpdat eFi l ter State

renmoveOnCl earFilterState

Description

A list of URL parameters that should be removed
from all Actions.

A list of URL parameters that should be removed
from an Action when the Action represents a change
in the filter (search or navigation) state.

A list of URL parameters that should be removed
from an Action when the user clears the filter state of
all search and navigation selections.

URL configuration in the Discover Electronics reference application is located in the Assembler context file, WEB-
I NF\ assenbl er - cont ext . xm . Configuration is divided between the navi gat i onSt at eBui | der and the

Navi gati onCartri dgeHandl er.

The configuration for the navi gat i onSt at eBui | der specifies aur | For mat t er to use when serializing a

Navi gati onSt at e:

<l--

~ Navi gation state (including record state) and related config

-->

<bean i d="navi gati onSt at eBui | der" scope="request"
cl ass="com endeca. i nfront. navi gati on. url . Url Navi gati onSt at eBui | der" >

<property nanme="url Formatter"

ref="seolr| Formatter" />

<property nanme="ndexRequest Broker" ref="ndexRequest Broker"/>
<property name="def aul t Sear chKey" val ue="AIl" />

<property nanme="def aul t Mat chMbde"
<property nane="defaul tFilterState"

val ue="ALLPARTI AL" />
ref="defaultFilterState"/>

<l-- Filter state properties renoved fromthis exanple -->

</ property>

Note

The seoUr | For mat t er bean is defined in the imported endeca- seo- ur| - confi g file.

Configuring URL parameters

The configuration for the navi gat i onSt at eBui | der also lets you specify the URL parameters to remove from
the request URL when serializing a Navi gat i onSt at e or Recor dSt at e:

<property nanme="renoveAl ways" >

<list>

<val ue>cont ent Text </ val ue>
<val ue>Nt y</ val ue>

<val ue>Dy</ val ue>

<val ue>col | ecti on</val ue>

118

4 Optimizing Application URLs

</[list>
</ property>
<property nanme="renpveOnUpdateFilterState">

<list>
<val ue>No</ val ue>
</list>

</ property>
<property name="renoveOnC earFilterState">
<list>
<val ue>Ns</ val ue>
<val ue>Nr pp</ val ue>
<val ue>nor e</ val ue>
</list>
</ property>
</ bean>

Configuration for navigation and record paths

The content paths that prefix navigation and record states when creating Action URLs are configured in the
act i onPat hPr ovi der of the Navi gati onCartri dgeHandl er as sets of key-value pairs:

<bean i d="Navi gationCartridgeHandl er" abstract="true">
<property nane="navi gationState" ref="navigationState" />
<property nanme="ndexRequest Broker" ref="ndexRequest Broker" />
<property nane="acti onPat hProvi der" ref="actionPathProvider"/>
<property nane="siteState" ref="siteState"/>
<property nanme="user State" ref="${user.state.ref}"/>
<bean i d="acti onPat hProvi der" scope="request"
cl ass="com endeca. i nfront. ref app. navi gati on. Basi cActi onPat hProvi der" >
<constructor-arg index="0" ref="content Source"/>
<constructor-arg i ndex="1" ref="httpServl et Request"/>
<!-- pavigationActionUiMp -->
<constructor-arg index="2">
<map>
<entry key=""/pages/[~/]*/nobile/detail $"val ue="/nobil e/ browse"/>
<entry key=""/pages/[~/]*/services/recorddetails/.*$"val ue="/services/
gui dedsearch"/>
<entry key=""/pages/[~/]*/detail $"val ue="/browse"/>
<entry key=""/services/.*$"val ue="/servi ces/ gui dedsearch"/>
</ map>
</ constructor-arg>
<!-- recordActionUi Map -->
<constructor-arg index="3">
<map>
<entry key=""/pages/[~/]*/ mobile/.*$"val ue="/nobil e/ detail"/>
<entry key=""/pages/[~/]*/services/.*$"val ue="/services/recorddetail s"/>
<entry key=""/pages/[~/]*/.*%$"val ue="/detail"/>
<entry key=""/services/.*$"value="/recorddetails"/>
</ map>
</ constructor-arg>
<constructor-arg index="4" ref="siteState"/>
</ bean>

URL formatter configuration

The Discover Electronics reference application serializes Navi gat i onSt at e objects through the use
of aUr | Navi gat i onSt at eBui | der configured with a Ur | For mat t er . By default, the application is

4 Optimizing Application URLs 119

configured for search engine optimized (SEO) URLs using the SeoUr | For mat t er class, but it also includes a
Basi cUr | For mat t er for creating basic URLs.

The basic URL formatter

The following properties can be set on the basi cUr | For mat t er bean:

Property Description

def aul t Encodi ng Specifies the default query encoding, for example, UTF- 8.

pr ependQuest i onMar k Specifies whether a question mark is prepended to the URL
parameter portion of the URL, after the servlet path.

The configuration in VEB- | NF\ endeca- ur | - confi g is shown below:

<l--
BRI E RO HHHE RO T
BEAN. basicUrl Fornatter
#
This is an Ul Fornmatter that generates "classic" URLs.
#

<bean id="basicUr | Fornatter"
cl ass="com endeca. sol eng. url formatter. basic. BasicU | Formatter">
<property nanme="defaul t Encodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nane="prependQuesti onMark">
<val ue>t rue</ val ue>
</ property>
</ bean>

The SEO URL formatter

The following properties can be set on the seoUr | For mat t er bean:

Property Description
def aul t Encodi ng Specifies the default query encoding, for example, UTF- 8.
pat hSepar at or Token The separator token used to separate the path section of the URL from the

parameter section.

pat hKeyVal ueSepar at or The character used to separate key/value pairs in the parameter section of
the URL.

120 4 Optimizing Application URLs

Property Description
pat hPar ankeys Specifies the URL parameter keys for the following:
+ The parameter key used for record detail links. The default value is R

+ The parameter key used for aggregate record detail links. The default
valueis A

+ The parameter key used for navigation state. The default value is N.

navSt at eFor matt er The Nav St at eFor nat t er that maps navigation state information to URL
path keywords.

ERecFor mat t er The ERecFor mat t er that maps Endeca record attributes to URL path
keywords.
aggr ERecFor mat t er The Aggr ERecFor mat t er that maps aggregate record attributes to URL

path keywords.

nav St at eCanoni cal i zer Specifies the canonicalizer used to sort URL parameters to ensure that
included parameters are arranged a specific order.

useNavSt at eCanoni cal i zer | Determines whether or not the canonicalizer specified in
navSt at eCanoni cal i zer is used. The default value is t r ue. This value is
ignored if the canoni cal Li nkBui | der enables canonical links.

ur | Par anEncoder s A list of Ur | Par anEncoder objects to use for encoding URL parameters.

The configuration in VEB- | NF\ endeca- seo- ur | - confi g is shown below:

<l--

g g g g g
R L L b L R L L L R R R R e

BEAN. seolr| Fornatter

#

This is the SEO URL formatter, which is responsible for
transformng Ul State objects into URL strings.

#

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<property nane="defaul t Encodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nanme="pat hSepar at or Token" >
<val ue>_</val ue>
</ property>

<property name="pat hKeyVal ueSepar at or ">
<val ue>- </ val ue>

</ property>

<property nane="pat hPar ankeys" >

4 Optimizing Application URLs 121

<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>N</ val ue>
</list>
</ property>

<property name="navStateFormatter">
<ref bean="navStateFormatter"/>
</ property>

<property name="ERecFormatter">
<ref bean="erecFormatter"/>
</ property>

<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>
</ property>

<property name="navStateCanonicalizer">
<ref bean="navStat eCanoni cal i zer"/>
</ property>

<property nane="useNavStat eCanoni cal i zer">
<val ue>f al se</ val ue>
</ property>

<property nanme="url| ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
</list>
</ property>
</ bean>

About working with canonical links
Configure the Assembler to add canonical link support to the root content item.

The canonical link configuration in the Discover Electronics reference application is located in the Assembler
context file, WEB- | NF\ assenbl er - cont ext . xni . Configuration is handled by the canoni cal Li nkBui | der
which constructs links for navigation state and record state URLs that include the canonical link element.

The Canonical Link Builder

The following properties can be set on the canoni cal Li nkBui | der:

Property Description

obj ect Locat or Allows the retrieval of services without explicit
injection. In this case, it is used to reference the
framework for retrieving the r ecor dSt at e and
navi gat i onSt at e for the current request.

recordStatel d The ID of the r ecor dSt at e being retrieved, not the
actualrecordSt at e.

122 4 Optimizing Application URLs

Property

navi gati onStateld

siteStateld

Description

The ID of the navi gat i onSt at e being retrieved, not
the actual navi gat i onSt at e.

The ID of the si t eSt at e being retrieved, not the
actualsiteState.

i ncl udedPar anet er s

The list of URL parameters that are included in the
canonical link.

The configuration for the canoni cal Li nkBui | der specifies an obj ect Locat or to use when creating

canonical links:

<bean i d="assenbl er Fact ory"

cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory" >

<constructor-arg>
<list>

<bean cl ass="com endeca. i nfront. navi gati on. url.event. Canoni cal Li nkBui | der">

<property
<property
<property
<property
<property

<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>N</ val ue>
<val ue>Ntt </ val ue>
</list>
</ property>

name="obj ect Locator" ref="springUility"/>
nane="r ecordSt atel d" val ue="recordState"/>
nane="navi gati onStatel d' val ue="navi gati onState"/>
nane="siteStatel d"
name="i ncl udedPar anet er s" >

val ue="siteState"/>

</ bean>
</[list>
</ constructor-arg>
</ bean>
Output content items

The Assembler API returns navigation state, record state, and site state content items as output from the
CanonicalLinkBuilder. The following examples are JSON representations of the output.

NavigationState

name: "Static Page Slot",

canoni cal Li nk: {

@l ass: "com endeca.infront.cartridge. nodel . Navi gati onActi on",

navi gati onSt at e:

| abel :

"/ Canon/ canmeras/ _/ N-1z141xuZ1z141yaZ25y6Zej 4?f or mat =j son",
contentPath: "/browse",
sit eRoot Pat h: "/ pages",

4 Optimizing Application URLs

123

}
RecordState
{
name: "Static Page Slot",
canoni cal Li nk: {
@l ass: "com endeca.infront.cartridge. nodel . RecordAction",
recordState: "/_/A-1318562?f or mat =j son",
contentPath: "/detail",
siteRoot Pat h: "/ pages",
| abel :
}
}
SiteState

canoni cal Li nk: {
@l ass":"com endeca. i nfront.cartridge. nodel . Navi gati onActi on",
navi gati onState: "\/cameras\/_\/N 25y6",
content Pat h: "\ / browse",
si t eRoot Pat h: "\ / pages”,
siteState": {"@l ass":"com endeca.infront.site.nodel.SiteState",

contentPath":"\/browse\/canmeras\/_\/N 25y6",
siteld:"\/DiscoverEl ectronics",
properties: {}
}
| abel : ""}
}
}

For each of the content items, a JSP file can render output as in this example:

<link rel ="canonical" href="<c:url
val ue=" ${util: get Url For Acti on(r oot Conponent . canoni cal Link)}'/>"/>

Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Related links
+ Optimizing Application URLs (page 109)

+ Preparing your dimensions (page 125)

124 4 Optimizing Application URLs

» Preparing your properties (page 125)
+ Handling images and external JavaScript files (page 126)

» URL transitioning (page 126)

Preparing your dimensions

If you intend to display dimensions or dimension values in your URLs, you must configure each of the
dimensions to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions to Show
with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:
1. Open your project in Developer Studio.
2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.
3. Select the dimension you need to edit.
4. Select the Show with record list checkbox.
5. Select the Show with record checkbox.
6. Click OK.
7. Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Preparing your properties

If you intend to display record properties in your URLs, you must configure each property to Show with record
and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to Show
with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:
1. Open your project in Developer Studio.
2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.
3. Select the dimension you need to edit.
4. Select the Show with record list checkbox.
5. Select the Show with record checkbox.

6. Click OK.

4 Optimizing Application URLs 125

7. Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Handling images and external JavaScript files

When you modify your application to produce optimized URLs, it is important to ensure that the server can still
locate resources requested by the application, such as image files, JavaScript files, and CSS files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative URLs:

« "Site-relative" URLs are relative to the root directory on the site that hosts the Web page, for example: /
sitemap. htm

+ "Non-site-relative" URLs are relative to their parent pages, for example: . . / si t emap. ht m

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved, optimized
URLs may create unresolved links when external resources are referenced. When using optimized URLs, Endeca
recommends replacing non-site-relative URLs with site-relative URLs to ensure that links resolve properly.

URL transitioning

Managing redirects is an important aspect of search engine optimization. In order to maintain page rank for
resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional URLs to optimized URLs, or when you change the configuration of your
optimized URLs, it is important to ensure that:

+ Links throughout your Web site are updated
+ Links to external resources (such as image files, CSS, or Javascript files) are updated
+ External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the new
URLs. However, external references to your site must be redirected in order to prevent unresolved links.

The URL optimization classes are responsible for transforming URLs into search and navigation queries, and
vice-versa. They do not implement redirect logic. In order to redirect incoming requests, you must include the
appropriate logic in your application controller. By comparing an inbound URL to the canonical (optimized)
form, you can redirect to the canonical URL in cases where the inbound URL is different.

Oracle recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking information
and index content on a site against the source URL, 301 redirects apply this information to the destination URL.

Building optimized URLs

This section describes the basic tasks for using the URL optimization classes to build search engine-optimized
URLs.

126 4 Optimizing Application URLs

Related links

+ Optimizing Application URLs (page 109)

+ Core URL optimization classes (page 127)

+ Overview of building URLs using the URL optimization classes (page 127)
+ Parsing an incoming query and sending it to an MDEX Engine (page 128)
+ Informing the UrlState of the navigation state (page 128)

+ Creating link URLs from a UrlState (page 129)

Core URL optimization classes

The primary classes and interfaces of the URL Optimization APl are Ur | St at e, Ur| For nat t er, and
Quer yBui | der.

UrliState

A Ur| St at e instance represents the URL, including any parameters, for a particular navigation state in Your
application. You typically create a Ur | St at e by using a Ur | For mat t er to parse a URL string. You then inform
the Ur | St at e of the navigation state that it represents by passing it a set of query results. When the Ur | St at e
is informed, you can modify it in order to generate URLs representing links to other states in your application,
such as selecting refinements.

UrlIFormatter

AU | Formatt er is responsible for parsing URL strings into Ur | St at e objects and transforming Ur | St at e
objects back into URLs. The SeoUr | For mat t er is a highly configurable implementation of Ur | For mat t er that
parses and generates search engine-optimized URLs.

QueryBuilder

A Quer yBui | der marshals Ur | St at e objects into MDEX Engine queries. The Basi cQuer yBui | der is an
implementation of Quer yBui | der that creates ENEQuer y objects from a given Ur | St at e.

For more information about these and other classes, refer to the Assembler API Reference (Javadoc).

Overview of building URLs using the URL optimization classes

Building optimized URLs with the Assembler API requires passing in the necessary configuration and
instantiating the required objects.

The high-level process is as follows:
1. Set up your basic application configuration with a Basi cQuer yBui | der and SeoUr | For matt er.

How you create and configure the Quer yBui | der and Ur | For mat t er may vary depending on your
application, but they should be should be scoped at a global or application level.

2. Handle requests by parsing the incoming query and sending it to an MDEX Engine.
3. Inform a Ur| St at e object of the navigation state.

4. Modify the Ur| St at e object by adding or removing URL parameters.

4 Optimizing Application URLs 127

5. Generate a URL fromthe Ur | St at e.

Parsing an incoming query and sending it to an MDEX Engine

Because it is possible for optimized URLs not to contain query string parameters (these parameters can be
stored in the path), you cannot rely on the Ur | ENEQuer y class to create an ENEQuer y object from a URL.

Instead, use a Ur | For mat t er to parse the incoming request URL in order to populate the Ur | St at e with the
current URL query parameters, then use a Quer yBui | der to create the ENEQuer y from the Ur| St at e.

To parse an incoming request and query an MDEX Engine, follow these steps:
1. Parse the requestinto a Ur| St at e instance.

For example:

Ul State requestUrl State = url Formatter. parseRequest (request);

2. Build an ENEQuer y based onthe Ur| St at e.

For example:

ENEQuery eneQuery = queryBuil der. buil dQuery(requestUrl State);

3. Execute the request and retrieve the results.

For example:

Ht t pENEConnecti on conn = new Ht t pENEConnecti on(nmdexHost, ndexPort);
ENEQuer yResul t s eneQueryResul ts = conn. query(eneQuery);

Informing the UrIState of the navigation state

Informing is the process of providing the Ur | St at e object with information about the current query results.

From this information, the Ur | St at e object creates either a NavSt at eUr | Par amif the query results
are from a navigation query, an ERecUr | Par amif the query results are from a record detail query, or an
Aggr ERecUr | Par amif the query results are from an aggregated record detail query.

The SeoUr | For mat t er can use the extra information in these objects to generate customized URLs based on
the current navigation state or properties and dimensions associated with these results.

To inform a Ur | St at e of the current navigation state:

1. Add code similar to the following:

url State.inform eneQueryResul ts);

You can generate properly formatted URLs representing either the current navigation state, a record detail link,
or an aggregated record detail link. Note that of these three possiblities, only the record detail link is guaranteed

128

4 Optimizing Application URLs

to be complete when calling i nf or mon an empty Ur | St at e. A navigation URL would be correct but, without
further modification, only reflects the selected dimension values (the N parameter values). An aggregated record
detail URL would not work without adding the required An and Au parameters.

The intent of the i nf or n{) method is to give the Ur | For matt er and Ur | St at e access to property and
dimension information, not to copy your query. In some cases a complete query URL can only be created
through a combination of using Ur | For mat t er . par seRequest () on the initial request and calling

Url St at e. set Par an() as needed in addition to using i nf orn{().

Creating link URLs from a UrlIState

To create link URLs on a particular page to different navigation states within your application, modify the
Ur | St at e and then transform the modified Ur | St at e to a URL string.

This procedure requires that you have an informed Ur | St at e representing the current navigation state of your
page.

To create a link URL, follow these steps:
1. Modify the Ur | St at e to reflect a different navigation state in your application.

For example, the following statement creates a refinement link for a Guided Navigation component in your
application:

Ul State refinedUrl State =
informedUr| State. sel ectRefinenent(refDim refDinVal, true);

The final parameter indicates whether the modification should be performed on a cloned version of the
current Ur | St at e, and should typically be t r ue. For instance, in the case of a Guided Navigation component,
you would loop through the possible refinements and create a modified Ur | St at e based on the current

Ur | St at e for each refinement link. If you wanted to select several refinements in the same URL, you would
pass f al se as the value of this parameter.

For further details about additional methods that can be used to modify a Ur | St at e, please refer to the
Assembler API Reference (Javadoc).

2. Generate the URL string from the modified Ur| St at e.

String refinedUrl = refinedUl State.toString();

Theurl State.toString() method calls the f or mat St ri ng() method of the Ur | For mat t er that
constructed the Ur | St at e instance.

Configuring URLs

The following sections provide information about creating and using a URL configuration file to optimize
your URLs. The information and examples provided in this section relate to basic URL configuration tasks,
and do not cover the entire breadth of URL optimization capabilities. Oracle recommends consulting the API
documentation as you develop your application.

4 Optimizing Application URLs 129

Related links

+ Optimizing Application URLs (page 109)

+ Anatomy of an optimized URL (page 130)

+ About the URL configuration file (page 131)

+ Creating a URL configuration file (page 132)

+ About optimizing the misc-path (page 135)

+ Configuring the path-param-separator (page 155)

+ About optimizing the path-params and query string (page 155)

+ Using the URL configuration file with your application (page 160)

Anatomy of an optimized URL

An optimized Oracle Commerce Guided Search URL is made up of four configurable sections.

General URL References

When referring to URLs in general, the APl documentation may use the terms "base URL" and "URL query
parameters.” The "base URL" is the part of the URL that precedes the question mark.

For example, in the URL:
http://ww. exanpl e. coni pat hpar aml/ pat hpar an®/ pat hpar an8/ r esul t s?quer ypar am=123
the base URL is the string that appears before the question mark:
http://ww. exanpl e. com pat hpar aml/ pat hpar an/ pat hpar anB/ resul ts
Optimized URLs
For reference purposes, the documentation identifies four distinct sections of optimized URLs:
* misc-path
+ path-param-separator
+ path-params
* query string
For example, the following URL is broken down into subsections:
http://1 ocal host: 8888/ control |l er[/ W ne- Red- Mer| ot/ Napa/ Pi ne- Ri dge/ _/ N- 12Zaf Zf d?Ne=123]
The sections of the URL encased in square brackets can be broken down into the following components:
[/ <m sc- pat h>] [/ <pat h- par am separ at or >] [/ <pat h- par ans>] [?<quer y-stri ng>]

The components correspond to the following strings:

130 4 Optimizing Application URLs

Section String

misc-path Wine-Red-Merlot/Napa/Pine-Ridge

path-param-separator

path-params N-12ZafZfd

query string Ne=123

misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search engine-
optimized URLs. The misc-path section of the optimized URL can be generated based on dimension names,
dimension values, ancestor names, and record properties. The misc-path component is largely ignored by the
application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting point for
path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of the
application. This may include the numerical representation of the navigation state or a specific record, as well
as any other parameter key-value pairs that have an effect on the displayed content. This component can

be configured to contain several parameters that would typically be included as part of the query string in
traditional URLs, such as the N, Ne, Nt t , and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the path-
params and query string represents the current state of the application. parameters that are not configured to
appear in the path-params section of the URL — such as N, Ne, Nt t , and R— appear in the query string.

About the URL configuration file

The example application uses an XML file named ur | confi g. xnl to configure the format of the URLs that it
generates.

The reference application uses the Spring Framework for this configuration file. Although the Assembler

APl does not require the Spring Framework, it supplies a convenient and flexible configuration mechanism.

In addition, if you plan to use the Sitemap Generator with your application, Oracle recommends using a

url confi g. xnl file to configure your optimized URLs, because the Sitemap Generator relies on the same
format for configuration. If you need further information about the Spring Framework syntax, please consult the
documentation provided with the Spring Framework.

The URL configuration file contains basic configurations for the following objects:
+ ABasi cQueryBui | der to transform Ur | St at e objects into ENEQuer y objects

+ An SeoUr| For matt er to transform Ur | St at e objects into optimized URL strings

4 Optimizing Application URLs 131

By specifying settings for additional components in the configuration file, you can configure the following

aspects of your URLs:

+ the dimension values and properties to include in the misc-path

+ canonicalization options for dimensions in the misc-path

+ the path-param-separator

+ parameters to be included in the path-params instead of the query string

+ base-36 encoding for numeric parameters

Creating a URL configuration file

A URL configuration file defines a Basi cQuer yBui | der and a top-level SeoUr | Formatter.

To create a URL configuration file, follow these steps:

1. Create a basic query builder that invokes the

com endeca. sol eng. url formatter. basi c. Basi cQuer yBui | der class:

For example:

<bean i d="queryBuil der"

cl ass="com endeca. sol eng. url formatter. basi c. Basi cQueryBui | der">

</ bean>

2. Add the following properties:

Option

Description

quer yEncodi ng

Specifies the query encoding. For example:
<val ue>UTF- 8</ val ue>

baseUr | ENEQuery

Sets the baseUr LENEQuer y. This query is used to
create the Ur | ENEQuery if the Ur | St at e is not
associated with a record or navigation state. If this
value is <nul | / >, a new query is created.

baseNavi gati onUr | ENEQuery

Sets the baseNavi gat i onUr | ENEQuery. This
query is used to create the Ur | ENEQuer y if the

Ur | St at e is associated with a navigation state (but
not a record or aggregate record). If this value is
<nul I / >, a new query is created.

baseERecUr | ENEQuery

Sets the baseERecUr | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Ur| St at e
is associated with a record (but not an aggregate
record). If this value is <nul | / >, a new query is
created.

132

4 Optimizing Application URLs

Option Description

baseAggr ERecUr | ENEQuery Sets the baseAggr ERecUr | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Url St at e is
associated with an aggregate record. If this value is
<nul I / >, a new query is created.

def aul t Ur | ENEQuery Sets the det aul t Ur | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Ur| St at e
contains no parameters.

For example:

<bean i d="queryBuil der"
cl ass="com endeca. sol eng. url formatter. basi c. Basi cQueryBui | der">

<property nanme="queryEncodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nanme="baseUr| ENEQuery" >
<val ue><! [CDATA] N=0&Ns=P_Pri ce| 1&Nr =8020]] ></ val ue>
</ property>

<property nanme="baseNavi gati onUr | ENEQuery" >
<val ue><! [CDATA[N=0&Ns=P_Pri ce| 1&Nr =8020]] ></ val ue>
</ property>

<property nane="baseERecUr| ENEQuery" >
<nul I />
</ property>

<property name="baseAggr ERecUr | ENEQuery" >
<val ue>An=0</ val ue>
<null/>

</ property>

<property nane="defaul t Ur| ENEQuery" >
<val ue>N=0</ val ue>

</ property>

</ bean>

3. Create a top-level seoUr | For mat t er bean to invoke the
com endeca. sol eng. url fornmatter. seo. SeoUr | For mat t er class:

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
</ bean>

4. Add the following properties:

4 Optimizing Application URLs 133

Option Description

def aul t Encodi ng Specifies the default query encoding. For example:
<val ue>UTF- 8</ val ue>

pat hSepar at or Token Specifies the character used to separate the misc-
path from the path-params section in URLs.

pat hKeyVal ueSepar at or Specifies the character used to separate key-value
pairs in the path parameter section of the URL.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">

<property nane="defaul t Encodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nane="pat hSepar at or Token" >
<val ue>_</val ue>

</ property>

<property nanme="pat hKeyVal ueSepar at or ">
<val ue>- </ val ue>

</ property>

<!-- additional elenents deleted fromthis exanple --!>

</ bean>

5. Set any required properties to specify configuration beans.
Note

The instructions in this chapter explain which of beans are required for each task. You can set these
properties on your SeoUr | Pr ovi der object as you work through the chapter.

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nane="pat hPar ankKeys" >
<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>An</ val ue>
<val ue>Au</ val ue>
<val ue>N</ val ue>

134 4 Optimizing Application URLs

<val ue>No</ val ue>
<val ue>Np</ val ue>
<val ue>Nu</ val ue>
<val ue>D</ val ue>
<val ue>Nt t </ val ue>
<val ue>Ne</ val ue>
</list>
</ property>

<property nanme="navStateFormatter">
<ref bean="navStateFormatter"/>
</ property>

<property name="ERecFormatter">
<ref bean="erecFormatter"/>
</ property>

<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>
</ property>

<property nanme="navSt at eCanoni cal i zer">
<ref bean="navStateCanonicalizer"/>
</ property>

<property nanme="url ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
<ref bean="Ne-parantncoder"/>
<ref bean="An-paranEncoder"/>
</list>
</ property>

</ bean>

After you have created the basic URL configuration file, you create additional beans to specify further
configuration for the misc-path and path-params. Follow the procedures in the sections below to complete your
URL configuration.

Related links

+ Using the URL configuration file with your application (page 160)

About optimizing the misc-path

You can configure dimensions, dimension values, record properties, and aggregate record properties to display
in the misc-path of URLs. You can also specify the order in which dimension and dimension values display. The
url confi g. xnl file provides a simple and convenient method for configuring these options.

navStateFormatter

The navSt at eFor mat t er bean invokes the
com endeca. sol eng. url formatter. seo. SeoNavSt at eFor mat t er class to define
di m_ocat i onFor mat t er s for each dimension that you want to configure.

4 Optimizing Application URLs 135

Using the di nLocat i onFor mat t er s defined in the navSt at eFor mat t er bean, you can configure URLs for
navigation pages to include dimension names, roots, ancestors, and dimension value names in the misc-path of
URLs for navigation pages.

For example, the following URL is for the navigation state Region > Napa:
http://1 ocal host: 8888/ endeca_j spref/control |l er.jsp?&Ne=8&N=4294967160
By optimizing the URL, it can be formatted as follows:

http://1ocal host: 8888/ url formatter_jspref/controller/Napa/_/ N 1z141vc/ Ne-8

navStateCanonicalizer

The navSt at eCanoni cal i zer bean invokes the

com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer to order the dimension and
dimension value names included in the misc-path for navigation pages. For example, an end user can reach the
Wine Type > Red, Region > Napa page by navigating first to Wine Type > Red and then to Region > Napa, or by
navigating to Region > Napa and then Wine Type > Red. To avoid two syntactically different URLs for the same
Wine Type > Red, Region > Napa page, you can use the navSt at eCanoni cal i zer to standardize the order of
dimension and dimension values in the misc-path.

Note

By design, the URL optimization classes prevent the creation of syntactically different URLs by
canonicalizing keywords. You can choose from a number of configuration options to control the
arrangement of keywords, but the URLs are always canonicalized.

erecFormatter

URL optimization for record detail pages is configured separately from navigation

pages and aggregate record details pages. The er ecFor mat t er bean invokes the

com endeca. sol eng. url fornatt er. seo. SeoERecFor mat t er class to define di nLocat i onFor mat t er s for
each dimension that you want to configure.

The same options for including dimension names, roots, ancestors, and dimension value names are available
for record detail pages as are available for navigation pages. While the ur | conf i g. xnl configuration file uses
the same di nLocat i onFor mat t er s for the er ecFor mat t er and the aggEr ecFor nat t er as are used for
the navSt at eFor mat t er, this is not a requirement. You can create separate di nLocat i onFor nat t er s for
navigation pages, record detail pages, and aggregate record detail pages.

aggrERecFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages

and record details pages as are available for navigation pages. The aggr ERecFor nat t er bean

invokes the com endeca. sol eng. url formatt er. seo. SeoAggr ERecFor mat t er class to define

di nLocat i onFor mat t er s for each dimension that you want to configure. The same options for including
dimension names, roots, ancestors, a nd dimension value names are available for aggregate record detail
pages. While the ur | confi g. xnl configuration file uses the same di m_Locat i onFor nat t er s for the

aggr ERecFor mat t er and the er ecFor mat t er as are used for the navSt at eFor mat t er, this is not a
requirement. You can create separate di mLocat i onFor mat t er s for navigation pages, record detail pages, and
aggregate record detail pages.

Formatting misc-path strings in optimized URLs

The SeoNav St at eFor mat t er, SeoERecFor mat t er, and SeoAggr ERecFor nat t er use Stri ngFor matt er
objects to format dimension and record property strings that display in URLs.

136 4 Optimizing Application URLs

You can format the strings in the misc-path section of a URL by using string formatters that are predefined in
the Assembler API. Formatting may include changing capitalization or applying a regular expression to replace
portions of the string.

There are several St ri ngFor mat t er objects in the Assembler API:

« Lower CaseStri ngFor mat t er — formats path-keyword data into lower case.
+ Upper CaseSt ri ngFor mat t er — formats path-keyword data into upper case.
« Url EncodedsSt ri ngFor mat t er — URL-encodes strings.

+ RegexStringFormatter — You can create a new RegexSt ri ngFor nat t er object and customize the
pattern,repl acenent,andrepl aceAl | properties to perform custom string formatting. For more
information about the properties, please refer to the Assembler API Reference (Javadoc).

To define St ri ngFor mat t er objectsinthe url confi g. xm file:
1. Create a bean to invoke a St ri ngFor mat t er class.

This example shows the configuration for a RegexSt ri ngFor mat t er that replaces all non-word character
sequences with a single "- " character:

<bean cl ass="com endeca. sol eng. urlformatter. seo. RegexStri ngFornatter">
<property nane="pattern">
<val ue><![CDATA[[\ W &&["\ u00CO-\ uOOFF]] +]] ></ val ue>
</ property>

<property nanme="repl acenent" >
<val ue>- </ val ue>
</ property>

<property name="replaceA l">
<val ue>t rue</ val ue>
</ property>
</ bean>

2. Optionally, you can build a St ri ngFor mat t er Chai n to apply more than one St ri ngFor nat t er to a string
in series.

The following example shows the def aul t St ri ngFor mat t er Chai n that is used throughout the sample
url config. xni file.

<bean name="def aul t Stri ngFor mat t er Chai n"
cl ass="com endeca. sol eng. url formatter.seo. Stri ngFor mat t er Chai n" >

<property nane="stringFornatters">
<list>

<l--
HUHBHHBHHBHH BB R H B H R R R R R R R R R
replace all non-word character sequences with a single '-'
#

-->

<bean cl ass="com endeca. sol eng. url formatter. seo. RegexStri ngFormatter">
<property name="pattern">

<val ue><![CDATA[[\ W &&["\ u00CO-\ uO0FF]] +]] ></ val ue>

</ property>

4 Optimizing Application URLs 137

<property nanme="repl acenent" >
<val ue>- </ val ue>
</ property>

<property name="replaceAl">
<val ue>true</val ue>
</ property>
</ bean>

<l--

o g g g gy
R L L L L L L L L L S R R R

trimleading and trailing '-' characters (if any)
#
-->
<bean cl ass="com endeca. sol eng. urlfornmatter.seo. RegexStringFornatter">
<property name="pattern">
<val ue><![CDATA[*- ?([\ WA uO0OCO-\ uOOFF] [\ w-\ u00CO-\ uOOFF] *[\ WA uO0OCO-
\ UOOFF]) - ?$]] ></ val ue>
</ property>

<property nane="repl acenent" >
<val ue>$1</ val ue>
</ property>

<property nanme="repl aceAl | ">
<val ue>f al se</val ue>
</ property>
</ bean>

</[list>
</ property>
</ bean>

Note that because St ri ngFor mat t er Chai n implements St ri ngFor mat t er, you can nest chains. For example:

<bean cl ass="com endeca. sol eng. url formatter. seo. Stri ngFor matter Chai n">
<property nanme="stringFormatters">
<list>

<l-- replace 'Wne Type' with 'Wne' -->

<bean cl ass="com endeca. sol eng. urlformatter. seo. RegexStri ngFormatter">
<property name="pattern">
<val ue>W ne Type</val ue>
</ property>

<property nane="repl acenent" >
<val ue>W ne</ val ue>
</ property>

<property name="repl aceAl | ">
<val ue>f al se</val ue>
</ property>
</ bean>

<l-- execute the default string formatter chain -->

<ref bean="defaultStringFormatterChain"/>

138 4 Optimizing Application URLs

</list>
</ property>
</ bean>

Optimizing URLs for navigation pages

Using URL optimization, you can include dimension and dimension value names in the misc-path of URLs. You
can also choose to canonicalize these dimension and dimension value names in order to avoid duplicate content
and to increase your natural search rankings.

Note

For dimensions to display properly in the URL, they must be enabled for display with the record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for navigation pages:

1. Open your URL configuration file.

2. Create anavSt at eFor mat t er bean to invoke the

com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter:

For example:

<bean i d="navStateFornmatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter">
</ bean>

. Add anavSt at eFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<l-- additional elenments deleted fromthis exanple --!>
<property name="navStateFormatter">
<ref bean="navStateFormatter"/>

</ property>

</ bean>

4. Add auseDi nensi onNameAsKey property on the navSt at eFor mat t er .

For example:

<bean i d="navStateFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter">

<property nanme="useDi nensi onNaneAsKey" >
<val ue>t r ue</ val ue>

4 Optimizing Application URLs 139

</ property>
</ bean>

Setting the useDi mensi onNanmeAsKey to f al se creates a key on the dimension ID numbers.

5. Add adi nLocat i onFor nat t er s property and list each di nLocat i onFor mat t er bean you plan to define.

For example:

<bean i d="navStateFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter" >

<property nane="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>

<property nanme="di mLocati onFormatters">
<list>
<ref bean="wi neTypeFormatter"/>
<ref bean="regi onFormatter"/>
<ref bean="wi neryFormatter"/>
<ref bean="flavorsFormatter"/>
</list>
</ property>

</ bean>

6. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFornatter">

</ bean>

Note

The sample ur | confi g. xni file uses the same di mLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique
di nLocat i onFor mat t er s for each page type.

7. Add the following properties to each di mLocat i onFor mat ter:

Property Description

In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

key

140 4 Optimizing Application URLs

Property

appendRoot

Description

Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

appendAncest ors

Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

appendDescri pt or

Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or

root StringFornmatter

Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

Specifies the bean to format the dimension

name. The reference application uses

adef aul t Stri ngFor matt er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh

di mval StringFormatter

Specifies the bean to format the dimension

value names. The reference application

usesadefaul t StringFornatterChain

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh
The examples below also use a

def aul t St ri ngFor mat t er Chai n bean.

For example:

<bean i d="regi onFormatter"

cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property nane="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</val ue>
</ property>

<property nane="appendDescriptor">
<val ue>true</val ue>
</ property>

<property nane="separator">
<val ue>- </ val ue>

4 Optimizing Application URLs

141

</ property>

<property name="root StringFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

<property nanme="di nVal Stri ngFormatter">
<ref bean="defaultStringFormatterChain"/>

</ property>

</ bean>

8. Create anavSt at eCanoni cal i zer bean to invoke the
com endeca. sol eng. url fornatter. seo. SeoNavSt at eCanoni cal i zer class.

For example:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer">
</ bean>

Note

Canonicalizing the dimension and dimension value names in the misc-path also changes the order
in which they appear in the path-params section of the URL. For example, if Napa is configured

to display before Red in the misc-path, the Napa dimension value ID displays before the Red
dimension value ID in the path-params section.

9. Add anavSt at eCanoni cal i zer property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<!-- additional elenments deleted fromthis exanple --!>
<property nanme="navSt at eCanoni cal i zer">
<ref bean="navStat eCanoni cal i zer"/>

</ property>

</ bean>

10.Configure the navSt at eCanoni cal i zer.

For example, the following configuration creates URLs sorted by dimension ID in descending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer" >

<property name="sort ByNane">
<val ue>f al se</val ue>

</ property>

<property nanme="sortByDi nensi on">

142 4 Optimizing Application URLs

<val ue>t rue</ val ue>
</ property>

<property nanme="ascendi ng">
<val ue>f al se</val ue>

</ property>

</ bean>

Note
There a number of possible configuration options for canonicalization.

11.Save and close the file.

Related links

» Preparing your properties (page 125)

* Preparing your dimensions (page 125)

+ URL canonicalization (page 111)

+ Formatting misc-path strings in optimized URLs (page 136)
Canonicalization configuration options

You can customize the canonicalization of URLs for navigation pages by choosing a sort method, for example by
dimension name or dimension ID, and then a sort direction.

The following example configurations use the dimensions:
+ Wine Type (dimension ID: 6200)

+ region (dimension ID: 8)

and the dimension values:

+ red (dimension value ID: 8021)

» Napa (dimension value ID: 4294967160)

Sort direction

Sort Configuration Example base URL (sorted by
Direction dimension ID)
Ascending http://1ocal host/

<property nanme="ascendi ng"> url formatter_jspref/controller/

<val ue>true</ val ue>

regi on- Napa/ W ne- r ed/
</ property>

4 Optimizing Application URLs 143

Sort Configuration Example base URL (sorted by

Direction dimension ID)
Descending http://1ocal host/
<property nane="ascendi ng"> url formatter_jspref/controller/

<val ue>f al se</ val ue>

W ne-r ed/ r egi on- Napa/
</ property>

Sort method
Sort by Configuration Example base URL (sort direction
ascending)
Dimension http://1 ocal host/
name, case <Property name="sortByName"> urlformatter_jspref/controller/
sensitive <val ue>true</val ue> W ne- r ed/ r egi on- Napa/
</ property>
<property name="sortByDi mensi on">
<val ue>t rue</ val ue>
</ property>
<property name="i gnoreCase">
<val ue>f al se</ val ue>
</ property>
| |
Dimension http:/ /1 ocal host/
name, case ~ <Property name="sortByName"> urlformatter_jspref/controller/
insensitive <val ue>true</val ue> regi on- Napa/ W ne- r ed/
</ property>
<property name="sortByD nmensi on">
<val ue>t rue</ val ue>
</ property>
<property name="i gnoreCase">
<val ue>t rue</ val ue>
</ property>
| |
Dimension http:/ /1 ocal host/
ID <property name="sort ByNane" > url formatter_jspref/controller/

<val ue>f al se</val ue> r egi on- Napa/ W ne- r ed/
</ property>
<property name="sortByD nmensi on">
<val ue>true</ val ue>
</ property>

144 4 Optimizing Application URLs

Sort by Configuration Example base URL (sort direction

ascending)
Dimension http:/ /1 ocal host/
value <property name="sortByName"> urlformatter_jspref/controller/
name, case <val ue>true</val ue> r egi on- Napa/ W ne-r ed/
- </ property>
sensitive
<property name="sortByDi nmensi on">
<val ue>f al se</val ue>
</ property>
<property name="i gnoreCase">
<val ue>f al se</val ue>
</ property>
| |
Dimension http:/ /| ocal host/
value <property name="sortByName"> urlformatter_jspref/controller/
name, case <val ue>true</val ue> regi on- Napa/ W ne- r ed/
. . </ property>
insensitive
<property name="sortByD nmensi on">
<val ue>f al se</val ue>
</ property>
<property name="i gnoreCase">
<val ue>t rue</ val ue>
</ property>
| |
Dimension http://| ocal host/
value ID <property name="sort ByNane"> url formatter_jspref/controller/

<val ue>f al se</val ue> W ne-red/ r egi on- Napa/
</ property>
<property nanme="sort ByDi nensi on">
<val ue>f al se</val ue>
</ property>

Example 1: the following code sample creates a canonicalized URL that sorts by dimension name, case sensitive,
in an ascending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer">

<property nane="sort ByNane">
<val ue>t rue</val ue>
</ property>

<property name="sortByDi nensi on">
<val ue>t rue</ val ue>

</ property>

<property nane="ascendi ng">

4 Optimizing Application URLs 145

<val ue>t rue</ val ue>
</ property>

<property nanme="i gnoreCase">
<val ue>f al se</val ue>

</ property>

</ bean>

The resulting base URL: ht t p: / /| ocal host/url formatter_jspref/control | er/Wne-red/region-
Napa/

Example 2: the following code sample creates a canonicalized URL that sorts by dimension value ID in a
descending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer" >

<property name="sort ByNane">
<val ue>f al se</val ue>
</ property>

<property nane="sortByDi nensi on">
<val ue>t rue</ val ue>
</ property>

<property nane="ascendi ng">
<val ue>f al se</val ue>

</ property>

</ bean>

The resulting base URL: ht t p: / /| ocal host/url formatter_jspref/controller/regi on- Napa/ W ne-
red/

Note

Canonicalizing the dimension and dimension value names in the misc-path changes the order in
which they appear in the path-params section of the URL. For example, if Napa is configured to display
before Red in the misc-path, the Napa dimension value ID displays before the Red dimension value ID
in the path-params section.

Optimizing URLs for record detail pages

Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for record detail pages.

Note
For dimensions to display properly in the URL, they must be enabled for display with the record list.
You must create a URL configuration file before completing this procedure.

To optimize URLs for record detail pages:

146 4 Optimizing Application URLs

1. Open your URL configuration file.

2. Create an er ecFor mat t er bean to invoke the
com endeca. sol eng. url formatter. seo. SeoERecFornatter:

For example:

<bean i d="erecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >
</ bean>

3. Add an ERecFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<!-- additional elements deleted fromthis exanple --!>
<property name="ERecFormatter">
<ref bean="erecFormatter"/>

</ property>

</ bean>

4. Add auseDi nensi onNameAsKey property on the er ecFor mat t er.

For example:

<bean i d="erecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>

</ property>

</ bean>

Setting useDi mensi onNameAsKey to f al se creates a key on the dimension ID numbers.
5. Add a pr oper t yKeys property to include record properties in the URLs of record details pages.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</val ue>
</ property>

<property nanme="propertyKeys">
<list>

4 Optimizing Application URLs 147

<val ue>P_Nane</ val ue>
</list>
</ property>

</ bean>

6. Add a propert yFor mat t er property to format record properties included in the URLs of record details
pages.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</val ue>

</ property>

<property nanme="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>
<property name="propertyFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>

</ property>

</ bean>

7. Add adi nmLocat i onFor mat t er s property and list each di mLocat i onFor mat t er bean you plan to define.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>

<property nanme="di nLocationFornatters">
<list>
<ref bean="regi onFormatter"/>
<ref bean="w neryFormatter"/>
<ref bean="wi neTypeFormatter"/>
<ref bean="vintageFormatter"/>
</list>
</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>

<property name="propertyFormatter">

148 4 Optimizing Application URLs

<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

</ bean>

8. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFornmatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoDi nLocati onFormatter">
</ bean>

Note
The sample ur | confi g. xni file uses the same di nLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique

di m_ocat i onFor mat t er s for each page type.

9. Add the following properties to each di m_ocat i onFor matt er:

Property Description

key In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

appendRoot Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

appendAncestors Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

appendDescri pt or Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

root Stri ngFormatter Specifies the bean to format the dimension

name. The reference application uses

adef aul t StringFormatter Chain

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh

4 Optimizing Application URLs 149

Property Description

di nval Stri ngFornat ter Specifies the bean to format the dimension

value names. The reference application

uses adef aul t Stri ngFor mat t er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFormatter Chai n.
The examples below also use a

def aul t Stri ngFor mat t er Chai n bean.

For example:

<bean i d="regi onFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property nane="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</ val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</val ue>
</ property>

<property nane="appendDescriptor">
<val ue>true</val ue>
</ property>

<property nanme="separator">
<val ue>- </ val ue>
</ property>

<property nanme="root Stri ngFormatter">
<ref bean="default StringFormatterChain"/>
</ property>

<property nanme="dinVal Stri ngFormatter">
<ref bean="defaul t Stri ngFormatterChain"/>
</ property>

</ bean>

10.Save and close the file.

Related links
* Preparing your properties (page 125)
+ Preparing your dimensions (page 125)

+ Formatting misc-path strings in optimized URLs (page 136)

150 4 Optimizing Application URLs

Optimizing URLs for aggregate record detail pages

Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for aggregate record detail pages. These are configured separately from the
optimizations for navigation pages.

Note

For dimensions to display properly in the URL, they must be enabled for display with the record list.
You must create a URL configuration file before completing this procedure.
To optimize URLs for aggregate record detail pages:
1. Open your URL configuration file.

2. Create an aggr ERecFor mat t er bean to invoke the
com endeca. sol eng. url formatter. seo. SeoAggr ERecFor mat t er class:

For example:

<bean i d="aggr ERecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFor matter">
</ bean>

3. Add an aggr ERecFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<l-- additional elenents deleted fromthis exanple --!>
<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>

</ property>

</ bean>

4. Add a useDi mensi onNanmeAsKey property on the aggr ERecFor mat t er.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nane="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>
</ bean>

Setting the useDi mensi onNaneAsKey to f al se creates a key on the dimension ID numbers.

4 Optimizing Application URLs 151

5. Add a pr oper t yKeys property to include record properties in the URLs of record details pages.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</ val ue>

</ property>

<property nanme="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>

</ bean>

6. Add a propert yFor mat t er property to format record properties included in the URLs of record details
pages.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nane="useDi nmensi onNaneAsKey" >
<val ue>t rue</ val ue>

</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>
</ property>
<!-- use default string formatter chain -->

<property name="propertyFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

</ bean>

7. Add adi m_ocat i onFor mat t er s property and list each di m_ocat i onFor mat t er bean you plan to define.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</val ue>

</ property>

<property nane="di nLocati onFornatters">

152 4 Optimizing Application URLs

<list>
<ref bean="regi onFormatter"/>
<ref bean="wi neryFormatter"/>
</list>
</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</[list>

</ property>

<property name="propertyFormatter">

<ref bean="defaultStringFormatterChain"/>

</ property>

</ bean>

Note

The sample ur | confi g. xni file uses the same di mLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique

di nLocat i onFor mat t er s for each page type.

8. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFormatter"

cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

</ bean>

9. Add the following properties to each di m_ocat i onFor mat t er:

Property

key

appendRoot

appendAncest ors

Description

In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

4 Optimizing Application URLs

153

Property Description

appendDescri pt or Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

root Stri ngFormat t er Specifies the bean to format the dimension

name. The reference application uses

adef aul t Stri ngFor mat t er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFormatter Chai n.

di nval StringFor natter Specifies the bean to format the dimension

value names. The reference application

uses adef aul t Stri ngFor matt er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFor mat t er Chai n.
The examples below also use a

defaul t StringFor mat t er Chai n bean.

For example:

<bean i d="regi onFornmatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property name="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</ val ue>
</ property>

<property nane="appendDescriptor">
<val ue>t rue</ val ue>
</ property>

<property nanme="separator">
<val ue>- </ val ue>
</ property>

<property name="root StringFornmatter">
<ref bean="defaultStringFormatterChain"/>
</ property>

<property nanme="di nVal StringFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>

154 4 Optimizing Application URLs

</ property>

</ bean>

10.Save and close the file.

Related links
» Preparing your properties (page 125)
+ Preparing your dimensions (page 125)

+ Formatting misc-path strings in optimized URLs (page 136)

Configuring the path-param-separator

You can customize the string that displays between the misc-path and the path-params components of URLs.

The sampleur | confi g. xm file uses an underscore to separate the misc-path from the path-params in URLs.
For example:htt p: / /1 ocal host/url formatter_jspref/control | er/ Wne-Red- Pi not-Noir/_/ N 66w

You must create a URL configuration file before completing this procedure.
To change the path-param-separator string:
1. Locate the top-level URL formatter bean in your URL configuration file.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">
</ bean>

2. Customize the value of the pat hSepar at or Token property:

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
<property nane="pat hSepar at or Token" >
<val ue>separ at or </ val ue>
</ property>
</ bean>

The new URL displays as: ht t p: / /| ocal host/url formatter_j spref/control | er/ W ne- Red- Pi not -
Noi r/ separ at or/ N- 66w

About optimizing the path-params and query string

The URL optimization classes provide functionality for encoding path parameters and moving path parameters
from the query string into the path-params section of the URL.

4 Optimizing Application URLs 155

Moving parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of parameters to move from the query string and into the path-params section of the URL. For
example, the following URL has the parameters N, Ntk, Ntt, and Ntx in the query string:

http://1ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux?
N=4294966952&f r onsear ch=f al se&Nt k=Al | &\t t =r ed&N\t x=rrode%@2bmat chal | parti al

Using the URL Optimization API, you can move parameters into the path-params section of the URL. For
example, the following URL includes the N and Ntt parameters in the base URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux/ _/ N- 4294966952/ Nt t - red?
fronsear ch=f al se&Nt k=Al | &\t x=npde%2bmat chal | parti al

Note

To ensure the best possible natural search-engine ranking, it is recommended that you limit the
number of parameters you include in the path-params section.

Encoding parameters
In order to shorten URLs, the Assembler API allows base-36 encoding of parameters.
For example, the following URL for Region > Napa contains the dimension value ID for Napa (4294966952):
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Napa/ _/ N- 4294966952
By base-36 encoding the N parameter, you can shorten the URL:
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Napa/ _/ N- 1z141pk
Note
Only the numeric parameters can be encoded:
* N
* Ne
+ An
- Dn
Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored as
session objects. This might include any parameters that do not change value during the session, such as the
session ID or MDEX host and port values.

Passing non-parameters to the API
You can add non-parameters to URLs by passing them through the API.
Moving parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of parameters to move from the query string and into the path-params section of the URL.

You must create a URL configuration file before completing this procedure.

156 4 Optimizing Application URLs

To move parameters out of the query string and into the path-params section of the URL:

1. In your URL configuration file, locate the top-level URL formatter.

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nanme="def aul t Encodi ng" >
<val ue>UTF- 8</ val ue>

</ property>

<property nane="pat hSepar at or Token" >
<val ue>_</val ue>

</ property>

<l-- additional elenments deleted fromthis exanple --!>

</ bean>

2. Add a pat hPar anKeys property.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<property nane="pat hPar ankKeys" >
</ property>

</ bean>

3. Add al i st attribute containing all of the parameters you want moved from the query string.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nane="pat hPar ankKeys" >
<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>An</ val ue>
</list>
</ property>

</ bean>

Encoding parameters

You can apply base-36 encoding to numeric parameters.

4 Optimizing Application URLs

157

You must create a URL configuration file before completing this procedure.
Only the numeric parameters can be encoded:

« N

* Ne

* An

* Dn

The following procedure provides instructions for applying base-36 encoding to the An parameter. You can
apply base-36 encoding to any numeric parameter, but each parameter requires a separately configured
par anEncoder bean.

To encode numeric parameters:
1. Open your URL configuration file.

2. Create a par anEncoder bean to invoke the
com endeca. sol eng. url formatter. seo. SeoNavSt at eEncoder :

For example:

<bean name="An- par anEncoder"
cl ass="com endeca. sol eng. url for matter. seo. SeoNavSt at eEncoder " >
</ bean>

3. Add a par anKey property to specify which numeric parameter to encode.

For example:

<bean nane=" An- par anEncoder "
cl ass="com endeca. sol eng. url for matter. seo. SeoNavSt at eEncoder " >
<property nanme="paranKey">
<val ue>An</ val ue>
</ property>
</ bean>

4. Repeat steps one and two for each parameter you want to encode.
5. Locate the top-level URL formatter bean in your URL configuration file.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
</ bean>

6. Add a ur | Par anEncoder s property:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">

158 4 Optimizing Application URLs

<property nanme="url| ParanEncoders" >
</ property>
</ bean>

7. Add al i st attribute and specify each of the parameter encoder beans.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">
<property nane="url ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
<ref bean="Ne- paranEncoder"/>
<ref bean="An-paranEncoder"/>
</list>
</ property>
</ bean>

8. Save and close the file.
Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored as
session objects.

This might include any parameters that do not change value during the session, such as the session ID or MDEX
host and port values. For example, the following URL contains information about the MDEX host and port:

http://1 ocal host: 8888/ endeca_j spref/control |l er.jsp?N=0&neHost =| ocal host &nePort =15002

You can remove the MDEX host and port values from the URL and store them as session objects. The resulting
URL is simplified:

http://1 ocal host: 8888/ endeca_j spref/controller.jsp

The following procedure provides instructions for removing the MDEX host and port values from the URL, but
this procedure can be adapted as necessary to remove other session-scope parameters.

To remove the MDEX host and port values from the URL and store them as session attribute values:

1. To set the attribute, use the following code:

session.setAttri bute("eneHost", eneHost);

2. To retrieve the attribute value, use the following code:

eneHost = (String)session.getAttribute("eneHost");

About passing non-parameters to the API

You can add non-parameters to URLs by passing them through the API.

4 Optimizing Application URLs 159

For example, you could add information about how many records per page should display in each results set:

In the reference application's cont r ol | er . j sp file, find the following section:

Ul State baseUrl State = url Formatter. par seRequest (request);

ENEQuery usq = queryBuil der. bui | dQuery(baselUr| State);

and add code similar to the following:

baseUr| St at e. set Paran("records_per_page", "25");

Note

Oracle recommends limiting the number of parameters that display in URLs. It is recommended that
session-scope parameters be removed from the URL and stored as session objects.

Using the URL configuration file with your application

Before you can create optimized URLs with your own application, you need to include the URL configuration file
in your application's classpath.

To use the URL configuration file with your application:

1. Stop the HTTP service.

2. Locate your URL configuration file.

3. Copy the URL configuration file into the WEB- | NF subdirectory of your Web application directory.

For example: C: \ Endeca\ Tool sAndFr amewor ks\ <ver si on>\r ef er ence\ di scover - el ectroni cs-
aut hor i ng\ VEEB- | NF

4. Start the HTTP service.

To verify that the URL configurations are working properly, open a Web browser and navigate to your Web
application. Check that the URLs display as you configured them with the URL configuration file.

Related links
+ Creating a URL configuration file (page 132)

+ Creating a URL configuration file (page 132)

Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX Engine,
not information stored on your application server. Because of this, you need to ensure that the URLs produced

160 4 Optimizing Application URLs

by the Sitemap Generator match the URLs in your application. To make certain that the URLs match, you need
to configure the Sitemap Generator's ur | confi g. xni file to make the same customizations to URLs as those
configured for the Assembler API.

Related links
» Optimizing Application URLs (page 109)
+ The Sitemap Generator urlconfig.xml file (page 161)

+ Using the URL configuration file with the Sitemap Generator (page 161)

The Sitemap Generator urlconfig.xml file

The Sitemap Generator uses a URL configuration file that must mirror your URL configurations in order to output
a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine to retrieve the
necessary record, dimension, and dimension value data. It uses this information to build an index of pages. The
formatting of the URLs it creates is controlled by the ur | confi g. xn file located in the conf subdirectory of
your Sitemap Generator installation directory. For example: C: \ Endeca\ SEM Si t emapGener at or \ <ver si on>
\ conf

To ensure that the URLs in the sitemap are consistent with the URLs produced by the Assembler, configuration in
the URL configuration file must correspond to the Sitemap Generator's ur | confi g. xmi file.

Because the url confi g. xni file included with the Sitemap Generator uses the same format as the sample
url confi g. xnl file for the Assembler API, you can copy the ur | confi g. xm file for sitemap generation.

Using the URL configuration file with the Sitemap Generator

You can use the same ur | confi g. xm file you created for URL optimization as the URL configuration file for
sitemap generation.

To use the URL configuration file with the Sitemap Generator:
1. Open the conf . xni file located in the conf subdirectory of your Sitemap Generator installation directory.
For example: Tool sAndFr amewor ks\ <ver si on>\ si t enap_gener at or\ conf
2. Locate the URL_FORMAT _FI LE:

For example:

<URL_FORMAT_FI LE>ur | confi g. xm </ URL_FORMAT_FI LE>

3. Edit the <URL_FORMAT_FI LE> value so that it points to the ur | confi g. xm file you created with the URL
Optimization API.

For example:

4 Optimizing Application URLs 161

<URL_FORMAT_FI LE>C: \ Endeca\ Tool sAndFr anewor ks\ <ver si on>\r ef erence\ di scover -
el ectroni cs-aut hori ng\ WEB- | NF\ ur | confi g. xm </ URL_FORMAT_FI LE>

4. Save and close the conf . xni file.

Related links
+ Creating a URL configuration file (page 132)

+ About the URL configuration file (page 131)

162 4 Optimizing Application URLs

5 Extending the Assembler

This part provides information on extending the Assembler.

Extending and Developing Cartridges

If your application requires functionality that is not covered by the core cartridges and navigation cartridges
included in Tools and Frameworks, you can extend the existing cartridges or develop your own.

Related links

+ Extending the Assembler (page 163)

+ Cartridge Basics (page 163)

« First steps with a new cartridge (page 163)

+ Adding a basic renderer (page 166)

+ Elements of the example cartridge (page 167)

« Overview of cartridge extension points (page 170)

+ Customizing the Experience Manager interface (page 171)

+ About Cartridge Handlers and the Assembler (page 175)

+ About using event listeners to extend the navigation cartridges (page 179)

» Sample Cartridges (page 181)

Cartridge Basics

This section introduces the basic components of a cartridge by examining how they work together in a "Hello,
World" example cartridge.

First steps with a new cartridge

This section describes how to define a new cartridge and use Workbench to configure it to appear on a page.

5 Extending the Assembler 163

To create and configure a basic "Hello, World" cartridge, follow these steps:

1. Navigate to the templates directory of your application, and create a subdirectory named "HelloWorld." This
directory name is the template ID for your template.

For example: C: \ Endeca\ apps\ Di scover\config\cartridge\inport\tenpl ates\Hel | oWorl d.
2. Create a cartridge template.
a. Open a new plain text or XML file.

b. Type or copy the following into the contents of the file:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
t ype="Secondar yContent " >
<Descri pti on>A sanple cartridge that can display a sinple
message. </ Descri pti on>
<Thunbnai | Url >/ifcr/tool s/ xnmgr/ing/tenpl ate_thunbnail s/ si debar_content. | pg</
Thunbnai | Ur |l >
<Contentltenr
<Nanme>Hel | o cartridge</ Name>
<Property nanme="nessage">
<String/>
</ Property>
<Property nanme="nessageCol or" >
<String/>
</ Property>
</ Contentlten>

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<editors: StringEditor propertyNanme="nessage" |abel ="Message"/>
<edi tors: StringEditor propertyNanme="nessageCol or"
| abel =" Col or"/ >
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

c. Save the file with the namet enpl at e. xm in the Hel | oWor | d directory of your Discover Electronics
application, for example: C: \ Endeca\ apps\ Di scover\ confi g\cartri dge_t enpl at es\ Hel | oWor | d.

3. Upload the template to Workbench.

a. Open a command prompt and navigate to the cont r ol directory of your deployed application, for
example, C: \ Endeca\ apps\ Di scover\control .

b. Run the set _t enpl at es command.

C:.\ Endeca\ apps\ Di scover\ control >set _t enpl at es. bat
Renovi ng existing cartridge tenplates for D scover
Setting new cartridge tenplates for Discover

Fi ni shed setting tenpl ates

C:\ Endeca\ apps\ Di scover\control >

4. Add the cartridge to a page.

164 5 Extending the Assembler

a. Open Workbench in a Web browser.

The default URL for Workbench is ht t p: / / <wor kbench- host >: 8006. The default Username is admni n
and the default Password is admi n.

b. From the launch page, select Experience Manager.

c. Inthe tree on the left, select Search and Navigation Pages under the Content section, then select the
Default Page.

d. In the Edit Pane on the right, select the right column section from the Content Tree in the bottom left.
e. Click Add.
The cartridge selector dialog displays.
f. Select the Hello cartridge and click OK.
g. Select the new Hello cartridge from the Content Tree on the left and configure it as shown:
h. Click Save Changes in the upper right of the page.
5. Try to view the cartridge in the Discover Electronics application.
a. InaWeb browser, navigate to ht t p: / / <wor kbench- host >: 8006/ di scover - aut hori ng/ .
The error displays because we have not yet created a renderer for the Hello cartridge.

b. Scroll down to the bottom of the page and click the json link to view the serialized Assembler response
model that represents the current page.

Oracle recommends that you use a browser or install a plugin that supports native JSON display.
Otherwise, you can download the JSON response as a file.

Alternatively, you can click the xml link to view the same response in XML. In this guide, we use the JSON
format when examining the Assembler response.

The following shows the JSON representation of the page with most of the tree collapsed, highlighting the data
for the cartridge that we just added.

{

"@ype": "Resul tsPageSlot",

"nanme": "Browse Page",

"content Col | ection": "Search And Navi gati on Pages",

"ruleLimt": "1",

"contents": [

{

"@ype": "ThreeCol umNavi gati onPage",
"name": "Default Page",
"title": "Discover Electronics",
"met akeywords": "canera caneras el ectronics”,
"met aDescription": "Endeca eBusiness reference application."”,
"links": [1,

"header": [...],
"leftColum": [...],
"min": [...],
"rightColum": [

5 Extending the Assembler 165

{1

{ ..}

{
"@ype": "Hello",
"nanme": "Hello cartridge",
"message": "Hello, World!'",
"messageCol or": "#FF0000"

}

In the next section, we'll create a simple renderer that displays the message based on the values configured in
Experience Manager.

Adding a basic renderer

While there is no one way to write rendering code for an application, in this example we'll write a simple JSP
renderer for our basic cartridge.

To write a basic "Hello, World" renderer:

1. Create a new JSP page and type or copy the following:

<%@page | anguage="j ava" pageEncodi ng="UTF- 8"
cont ent Type="t ext/ htnl ; char set =UTF- 8" %

<% ncl ude file="/WEB-INF/ vi ews/i ncl ude.jsp"%
<div style="border-style: dotted; border-w dth: 1px;
border-col or: #999999; paddi ng: 10px 10px">
<div style="font-size: 150%
col or: ${conponent. messageCol or}" >${ conponent . nessage}
</div>
</ di v>

2. Save the renderer to di scover - el ect r oni cs- aut hori ng/ WEB- | NF/ vi ews/ deskt op/ Hel | o/
Hel |l 0. sp.

3. Refresh the Discover Electronics authoring application at ht t p: / / <wor kbench- host >: 8006/ di scover -
aut hori ng/ to see the result.

166 5 Extending the Assembler

= Ehoppisg Cart

Biscover

alecironics

Ao Showing 1-10 of 5616 items 1 2 3 4 § > Customer Favoribes
Lok
Category v 10perpage - | Relevance - gl

| ot i

Bags & Cases (565) Cable {2.5

Cameras (4851 = Kandak -l Wi, 4 Pin
l' 7i6 §517.00 s,

£rs5 00
71617 11 43 cm (4 5 7 CWOS, 3MP 6.095 Add io Cart
Price Range om (2 4 7 LC0, 128 MA, USA 20, 107

A . EREES-EE=
Under 25 (81) e Prise
25 - 5l {55} $3T0oo

50 - 100 (170)
106 - 250 (548] :
250 - 50 (A1E) _— '!!_"!'5""“.'. I:!' '.UII:IPI.
G0 - 1006 {1512} | _ [) E5 £373.00 'r__I : us
Orver 1000 (1334 ' ES30, 12.20F 4320 x 2880 1/ 65182 cm §147 00
to Cart
(2337 CCO 782 om (30 Y LCE-TFT
=B 2.0, NTESCRAL 141, Puiple k) o ity Hell
Brand Mame ello
Kodak (285}
LCanom (2305, Logtech
Cass Logic [1TE) @ CuickCami@ Chat For Skype 51 ,l]!En.ﬂﬂ
O-Link (14]
Pl [352) QusckCam® Chat for Skype m
Logatech {175] o =
Pentax (186) :

Elements of the example cartridge

As we have seen, the high-level workflow for creating a basic cartridge is:

1. Create a cartridge template and upload it to Workbench.
2. Use Experience Manager to create and configure and instance of the cartridge.
3. Add a renderer to the front-end application.

Step 2 is necessary during development in order to have a cartridge instance with which to test. However,
once the cartridge is complete, the business user is typically responsible for creating and maintaining cartridge
instances in Experience Manager.

In the following sections, we'll describe each of these elements of the cartridge in greater detail.
The cartridge template

The template defines the configuration that the business user can specify in Workbench using Experience
Manager.

5 Extending the Assembler 167

The template contains two main sections: the <Cont ent | t en> element and the <Edi t or Panel > element.

The content item is a core concept in Assembler applications that can represent both the configuration model for
a cartridge and the response model that the Assembler returns to the client application. A content item is a map
of properties, or key-value pairs. The <Cont ent | t en> element in the template defines the prototypical content
item and its properties, similar to a class or type definition.

The <Edi t or Panel > defines the interface that can be used in Experience Manager to configure the properties
of the content item. The editor panel is composed of a number of editors. The editors provide the Ul controls that
the business user can use to specify the property values for a particular instance of that cartridge.

AN

Template [e=—uses=— Workbench

Content
Item

Editor
Panel

Property Editor
. String Boolean
String Boolean ‘ ‘ Editor Editor

In our example template, we defined two string properties named nessage and nessageCol or and attached
two simple string editors to those properties. The result looks like this in Experience Manager:

168

5 Extending the Assembler

Section Settings

Section Type SidebarContent

SidebarContent Hello - Hello cartridge | Change |
Name Hello cartridge:

Message

Color

For more information about creating and managing cartridge templates, see About creating
templates (page 33).

The cartridge instance configuration

The business user creates and configures instances of cartridges in Experience Manager based on a template.
During cartridge development you need to create at least one instance of a cartridge for testing.

Experience Manager writes this cartridge instance configuration as XML. You can view the XML representation
of the configuration using the XML View tab in Experience Manager. The following shows the XML that
corresponds to the configured instance of our example cartridge:

Content Editor KNIL View

=) Conlent XML

164

69

Find

) Rule XML

{Contentlten type="Secondarvilontent”:
<Hame:*Hello cartridges Hane:
<{Property nane="nessade’ »

<«StringiHello< Strings
</Property:
<Property nane="nessageColor®:
{String:»#FF0000¢ Straing?
<sProperty:
sContentlten;

) Saved Copy -

Working Copy

Note the similarities to the <Cont ent | t en» portion of the template that we created. At this stage, the values of
the string properties have been filled in based in the input in the Content Editor pane.

The Assembler retrieves this configuration at runtime and uses it to build the response model that it returns to
the client application.

5 Extending the Assembler

169

Template uses=——1y ‘Workbench / Assembler

!
<Credles> <ratrigyas> <ratums=>

Carfridge

. j J Response
instance

config

object

For any given cartridge, the default behavior is for the Assembler to do no processing on the configuration and
simply return the configuration content item as a map of properties. That is, the response object is the same as
the configuration object unless specific processing logic is defined in the Assembler for that cartridge.

The cartridge renderer

As a best practice, the client application should be composed of modular rendering components, each
corresponding to a particular cartridge.

Recall the contents of the Assembler response object corresponding to the example cartridge:

{
"@ype": "Hello",
"nane": "Hello cartridge",
"message": "Hello, World!",
"messageCol or": "#FF0000"

}

For each cartridge, the @ ype of the response object corresponds to the i d of the template that was used to
create it. The Discover Electronics application uses this type to identify the appropriate renderer to use for this
content item.

Cliant Application

Assemblar A Ul renderar
" y

Y
<refurms V- T

,
"y Response [
ohjact

Workbench

",

L

Cariridge

instanca
canfig

The logic for mapping response objects to the appropriate renderer is contained ini ncl ude. t ag in the
reference application.

Overview of cartridge extension points

Cartridges are made up of several components that may be customized for specific purposes.

170 5 Extending the Assembler

The following diagram shows the parts of a cartridge and where they fit within the overall architecture:

Cliam Application
||| o
Workdbench (
Responss
Experence Manager ohject
Assernoer
Se——
et - o
Editors T —
Cartridge Handlers
Templates
-
'.\L - . /
\ | !
., Cartridge .
| rslance
configuration

N, '

The cartridge template defines the configuration options that are available to the business user in Workbench.
The Experience Manager interface is composed of editors, or Flex components that provide Ul controls for
specifying property values. Experience Manager produces the cartridge instance configuration that is consumed
by the Assembler. During the processing of a query, the Assembler may invoke cartridge handlers that define
specific processing logic for particular cartridges. Using these cartridge handlers, the Assembler produces

the response object that it returns to the client application. Typically, the client application includes modular
renderers that are intended to handle a particular cartridge.

We created a basic template and renderer in the example cartridge. We also inspected the cartridge instance
configuration generated in Workbench and the response returned by the Assembler. In the example cartridge,
both the configuration and the response model were generic content items that are simple maps of properties.
Many of the core cartridges have strongly typed configuration models and response objects associated with
them that extend from the basic content item. This makes it easier to understand the expected input to and
output from the core cartridge handlers, and also enables reuse of the models for the core cartridges. Strongly
typed configuration beans also make it possible to configure default values for cartridge properties via Spring.
Creating strongly typed model objects for the Assembler configuration and response is not required when
developing cartridges.

In the following sections, we discuss how to customize the Experience Manager interface using editors, and how
to define custom processing logic in the Assembler using cartridge handlers.

Customizing the Experience Manager interface

Experience Manager provides a set of standard editors that you can use in cartridge templates as well as the
ability to develop custom editors.

Adding embedded user assistance to a cartridge

You can provide embedded assistance for the business user in the Experience Manager interface by specifying it
in the cartridge template.

In our example cartridge, we provided two simple text fields for the business user to enter a message and
the desired color. This user interface makes it unclear what values are allowed or expected for those fields.

5 Extending the Assembler 171

The template schema for configuring editors allows you to supply a short descriptive label for each field, but
sometimes additional context can be helpful. For such cases, you can use the bot t onLabel attribute to provide
further information.

To add additional guidance for the business user to the example cartridge:
1. Open the template file (Hel | oWor | d\ t enpl at e. xni) that you previously created.

2. Add abot t onlLabel attribute to each editor in the <Edi t or Panel >, as in the example below:

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<editors: StringEditor propertyName="nessage" |abel ="Message"
bottonlLabel ="Enter a nessage to display. HTM. is allowed."/>
<editors: StringEditor propertyName="nessageCol or"
| abel =" Col or" bottonlabel ="Enter the color as a hex code, such
as #FF0000."/>
</ Basi cContent | t enEdi t or >

This additional label text can be configured for all editors built using the Experience Manager SDK, including
all the standard editors. For the full content of the updated template, see the example below. If your
implementation uses multiple locales, see About multiple locales (page 47) for information about localizing

strings.
3. Save and close the template.

4. Upload the template by running the set _t enpl at es script.

The resulting user interface in Experience Manager looks like the following:

Section Settings

Section Type SidebarContent

SidebarContent Hello - Hello cartridge X | Change |
Hame Hello cartridge

Message Hello, <i=VWorld=/i=

Color #996633

The following shows the complete content of the updated template:

<Cont ent Tenpl ate xm ns="http://endeca. conl schenma/ cont ent -t enpl at e/ 2008"

172 5 Extending the Assembler

xm ns: editors="edi tors"
t ype="Secondar yCont ent " >
<Descri pti on>A sanple cartridge that can display a sinple
nessage. </ Descri pti on>
<Thunbnai | Url >/ifcr/tool s/ xmgr/ing/tenpl ate_t hunbnai | s/ si debar_content. j pg</
Thunbnai | Ur | >
<Contentltenp
<Nane>Hel | o cartri dge</ Name>
<Property nane="nmessage">
<String/ >
</ Property>
<Property nanme="nessageCol or">
<String/ >
</ Property>
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<editors: StringEditor propertyNanme="nessage" |abel ="Message"
bottonlabel ="Enter a nessage to display. HTM. is allowed."/>
<editors: StringEditor propertyName="nessageCol or"
| abel =" Col or" bottomnlabel ="Enter the color as a hex code, such as #FF0000."/>
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

For more information about label options for Experience Manager editors, see the Editor label configuration
reference (page 229).

Using the core Experience Manager editors

Experience Manager provides a set of editors that can configure primitive property types as well as
Oracle Commerce-specific features. You specify which editor to use to configure which properties in the
<Edi t or Panel > portion of the template.

Even with additional user assistance text, asking the business user to type a hex code into a text field does not
provide a very user-friendly experience. One of the standard editors included with Experience Manager is a
combo box that can be used to specify a set of valid values for a string property. In this example, we provide a
set of colors from which the business user can choose. This not only relieves the business user from typing in a
hex code, but it can also ensure that the selected color matches the site's color scheme.

To update the example cartridge to use a combo box editor:
1. Open the template file, Hel | oWor | d\ t enpl at e. xm , that you previously created.

2. Replace the string editor configuration for the messageCol or property with the following:

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<editors: StringEditor propertyName="nessage" |abel ="Message"
bottonlLabel ="Enter a nessage to display. HTM. is allowed."/>
<edi t ors: Choi ceEdi t or propertyNanme="nmessageCol or" | abel =" Col or">
<choi ce | abel =" Red" val ue="#FF0000"/>
<choi ce | abel ="Green" val ue="#00FF00"/ >
<choi ce | abel ="Bl ue" val ue="#0000FF"/ >
</ edi t ors: Choi ceEdi t or >
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >

5 Extending the Assembler 173

For the full content of the updated template, see the example below.
3. Upload the template by running the set _t enpl at es script.

The resulting user interface in Experience Manager looks like the following:

Section Settings

Section Type SidebarContent

SidebarContent Hello - Hello cartridge : | Change |
Hame Hello cartridge

Mezzage Hello, <i=Worldi/i=

Color | Red i

Depending on the option that the business user selects, the value of the property is set to the appropriate hex
code. You can change the value and refresh the application to see the change.

The following shows the complete content of the updated template:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
t ype="Secondar yCont ent " >
<Descri pti on>A sanple cartridge that can display a sinple
nmessage. </ Descri pti on>
<Thunbnai | Url >/ifcr/tool s/ xnmgr/ing/tenpl ate_t hunbnai |l s/ si debar_content. j pg</
Thurnbnai | Ur | >
<Contentltenr
<Nane>Hel | o cartri dge</ Name>
<Property nane="message">
<String/>
</ Property>
<Property nanme="nessageCol or">
<String/>
</ Property>
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<edi tors: StringEditor propertyNanme="nessage" |abel ="Message"
bottonlLabel ="Enter a nmessage to display. HTM. is allowed."/>
<edi t or s: Choi ceEdi t or propertyNanme="nessageCol or" | abel ="Col or">
<choi ce | abel ="Red" val ue="#FF0000"/ >
<choi ce | abel =" Green" val ue="#00FF00"/ >

174 5 Extending the Assembler

<choi ce | abel ="Bl ue" val ue="#0000FF"/ >
</ edi t ors: Choi ceEdi t or >
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

For more information about the standard Experience Manager editors and their configuration, refer to the
Template Property and Editor Reference (page 225).

About custom editors

If none of the standard editors meet your needs, you can develop your own editors using the Experience
Manager Editor SDK.

You may want to develop an editor if:

+ You want to allow the business user to configure more advanced properties such as lists or maps of key-value
pairs.

+ You want to provide a more advanced interface for the business user, such as a list that enables drag-and-
drop.

+ You want the editor options to be populated dynamically from an external system rather than configured in
the template.

» You want the behavior of one editor or Ul control to be linked to the state of another.

For more information about the Experience Manager Editor SDK and developing Experience Manager editors,
see Developing Editors for Workbench (page 206).

About Cartridge Handlers and the Assembler

This section provides an overview of the Assembler. It describes the Assembler processing model and core
interfaces as well as how to implement a cartridge handler.

About the CartridgeHandler interface

A cartridge handler takes a content item representing the cartridge instance configuration as input and is
responsible for returning the response as a content item.

The Cart ri dgeHandl er interface defines three methods:i ni ti al i ze(), preprocess(),and process().

Cartridge Handler processing

First Assembler pass Second Assembler pass

Ca firichge Augrmanled Response

object

Glance cariridge PEepEacasd |}
config config

Theinitialize() method provides an opportunity for the cartridge handler to augment the cartridge
instance configuration specified in Experience Manager with configuration from other sources. This can be used

5 Extending the Assembler 175

to define default behavior for a cartridge in the case where there is no Experience Manager configuration, or
to override the Experience Manager configuration for the current query. Thei ni ti al i ze() method should
return a content item containing the complete configuration for the cartridge from all possible configuration
sources. This augmented configuration item can either be the mutated input content item or a new instance of
Cont ent | t em and is used as input to both the pr epr ocess() and pr ocess() methods.

Because the pr epr ocess() method is called on all cartridges before pr ocess() is called on any cartridges, it
provides an opportunity to coordinate processing between cartridges. Many of the core cartridges make use of
this mechanism in order to consoldiate queries to an MDEX Engine among several cartridges during the course
of a single assembly cycle.

The pr ocess() method is responsible for returning a Cont ent | t emthat represents the cartridge response.

A cartridge handler need not define any behavior fori ni ti al i ze() orpreprocess().The

Abst ract Cartri dgeHandl er class exists to simplify the task of implementing the Cart ri dgeHand| er
interface. It provides empty implementations fori ni ti al i ze() and pr eprocess() . Subclasses of
Abstract Cartri dgeHandl er need only implement the pr ocess() method to return the response object.
They can optionally override thei ni ti al i ze() and preprocess() methods.

About initializing the cartridge configuration

Theinitialize() phasein the cartridge processing life cycle enables the cartridge handler to synthesize the
complete configuration for the cartridge from several sources.

The configuration content item that is passed in to the assembly process is the cartridge instance configuration
from Experience Manager, however, any given cartridge may also have other configuration sources.

In a typical scenario, a cartridge has some default behavior that can be specified as a property value in a Spring
context file. A business user can specify a value for a specific instance of a cartridge using Experience Manager.
The site visitor may also have the ability to override either the default or the cartridge instance setting from the
client application. For example, in the Results List cartridge, the default value for records per page is 10. The
business user can set this value to 25 in Experience Manager, and the site visitor can choose to display 50 records
by selecting the appropriate option on the site.

The Assembler APl includes the Confi gl ni ti al i zer utility class with the method i ni ti al i ze() . The default
implementation of i ni ti al i ze() layers the cartridge configuration in the following order (from lowest to
highest):

1. Default configuration, typically defined in the Spring configuration for the cartridge handler

2. Cartridge instance configuration, typically created in Experience Manager and passed in as the
configuration content item

3. Request-based configuration parsed from the HTTP request parameters, using the
Request Par amvar shal | er helper class

The Confi gl nitializer class also provides methods for additional layering of configuration. Subclasses can
override Confi gl ni tializer to define custom layering behavior, for example, to incorporate configuration
saved in the session state.

About the NavigationCartridgeHandler class

The core cartridges that make queries to an MDEX Engine use cartridge handlers that extend from
Navi gati onCartri dgeHandl er.

The Navi gat i onCar t ri dgeHandl er makes use of the two-pass Assembler processing model to consolidate
MDEX Engine queries across cartridges.

176

5 Extending the Assembler

In the pr epr ocess() phase, the cartridge handler calls cr eat eMlexRequest () but does not execute

the request. In subsequent calls to cr eat eMlexRequest () by other handlers, the MDEX resource broker
determines whether the new request can be consolidated with an existing request in order to minimize the
number of queries to the MDEX Engine for a single assembly cycle.

During the process() phase, the handler calls execut eMlexRequest () to retrieve the results.

The actual query to the MDEX Engine is executed when the first handler in the assembly cycle calls

execut eMlexRequest () and the results are cached for all subsequent handlers that try to execute the same
request.

You can use a similar approach if you have multiple cartridges that need to make requests to the same external
resource and can achieve efficiencies by consolidating requests across cartridges.

For further information about the Navi gat i onCart ri dgeHandl er class, refer to the Assembler APl Reference
(Javadoc).

Implementing a cartridge handler

You add a cartridge handler by writing a Java class that implements the Car t ri dgeHand! er interface and
configuring the Assembler to use the new handler in the Spring context file.

In this example, we update our "Hello, World" cartridge to do some simple string manipulation on the message
that was specified in Experience Manager. Because this cartridge does not use any configuration other than the
cartridge instance configuration from Experience Manager and does not need to do any preprocessing, we can
extend Abst ract Cartri dgeHandl er.

To add a cartridge handler to the example cartridge:

1. Create a new Java class in the package com endeca. sanpl e. cartri dges and type or copy the following:

package com endeca. sanpl e. cartri dges;

import com endeca.infront.assenbl er. Abstract Cartri dgeHandl er;
i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
import com endeca.infront.assenbl er. Contentltem

public class UppercaseCartridgeHandl er extends AbstractCartridgeHandl er

{
11

/1 The cartridge handl er 'process' nethod
public Contentltem process(Contentltem pContentlten) throws
Cartri dgeHandl er Excepti on

{
/1 Get the nmessage property off of the content item
final String nessage = (String) pContentltem get("message");
/1 If the nessage is non-null, uppercase it.
if (null !'= nessage) {
pContent|tem put ("nessage", message.toUpperCase());
}
return pContentltem
}

2. Compile the cartridge handler and add the compiled class to your application, for example, by saving it in
YENDECA TOOLS ROOT% r ef er ence\ di scover - el ectroni cs-aut hori ng\ VEB- | NF\ cl asses.

3. Configure the Assembler to use the Upper caseCart ri dgeHandl er for the Hello cartridge.

5 Extending the Assembler 177

Cartridge handler development scenarios

a. Navigate to the VEB- | NF directory of your application, for example, YENDECA TOOLS_ROOT% r ef er ence
\ di scover - el ectroni cs- aut hori ng\ VEB- | NF.

b. Open the assenbl er - cont ext . xni file.

¢. Add the following in the CARTRI DGE HANDLERS section:

<l --

~ BEAN: CartridgeHandl er_Hello

-->

<bean i d="CartridgeHandl er _Hel | 0"
cl ass="com endeca. sanpl e. cartri dges. Upper caseCartri dgeHandl er"

scope="prototype" />

d. Save and close the file.

4. Restart the Tools Service.

5. Refresh the authoring instance of the application.

The message now appears in all-uppercase letters.

You should write a cartridge handler in cases where you need to perform some processing on the cartridge
instance configuration before sending the response to the client application.

It is always possible to do processing in the client application, but encapsulating the business logic in an
extension to the Assembler provides several advantages:

+ It makes the rendering code cleaner and easier to maintain.

« It centralizes the processing in one place so that the results can be consumed by multiple client applications
including across multiple channels such as desktop, mobile, and others.

« It provides an opportunity for coordinating processing across multiple cartridges before returning the

response to the client application.

Depending on what the cartridge handler needs to accomplish, your implementation approach may vary.
Cartridge handlers must always implement the pr ocess() method to return the response model.

Scenario

Implementation approach

Example cartridge

Update properties from the
cartridge instance configuration
in place (data cleansing or
manipulation scenario)

Extend Abst r act Cart ri dgeHandl er
and override process() to update the
property values in the input content item

"Hello, World" with
UppercaseCartridgeHandler

Use information from the
cartridge instance configuration
to query an external resource for
the information to display

Extend Abst r act Cart ri dgeHandl er
and override pr ocess() to query the
resource and insert the results in the
output content item

RSS Feed cartridge

178

5 Extending the Assembler

Scenario

Query an external resource,
consolidating queries between
cartridges within a single
assembly cycle for improved
performance

Implementation approach

Take advantage of the two-pass assembly
model with pr epr ocess() and
process() and implement a resource
broker that can consolidate queries and
manage their execution

Example cartridge

NavigationCartridgeHandler

Augment the results from a
core cartridge with additional
information from a non-MDEX
resource

Extend the core cartridge and override
process() to query the resource and
add additional properties to the MDEX
query results before returning the
response

Custom Record Details
with availability
information

Customize a core cartridge to
modify the MDEX Engine query
parameters

Extend the core cartridge and override
eitherinitialize() orpreprocess()
to modify the query before it is executed

Custom Results List with
recommendations

Combine multiple sources of
cartridge configuration before
processing results

Extend Abst r act Cart ri dgeHandl er
orimplement the Cart ri dgeHand! er
interface and overrideiniti al i ze(),
making use of the Confi gl ni tial i zer
and Request Par anivar shal | er

helper classes to generate the complete
configuration model

"Hello, World" with layered
color configuration

About using event listeners to extend the navigation cartridges

You can use the Assembler eventing framework as an extension point for navigation cartridges in cases where
extending an existing cartridge handler is insufficient.

If you are making modifications to the navigation cartridges, you can trigger processing logic based on
Assembler events instead of subclassing the core cartridge handlers.

Using an event listener instead of extending a cartridge handler introduces the following considerations:

+ Unlike extending a cartridge handler, logic included in an event listener is evaluated for every cartridge

handler.

+ Event listeners do not have access to the current Assembler request or to the navigation state.

« Event listeners must be thread safe.

Related links

+ Assembler event framework reference (page 12)

Creating an event listener

The Assembler provides an empty implementation of the Assenbl er Event Li st ener,
Assenbl er Event Adapt er . You can extend this implementation to create a listener that triggers on an

Assembler event.

To create an event listener:

5 Extending the Assembler

179

1. Create a new Java class that extends the Assenbl er Event Adapt er.

For example:

public class ResultsListListener extends Assenbl er Event Adapter {

}

2. Override the methods that correspond to the events for which you wish to trigger custom processing logic:

public class ResultsListListener extends Assenbl er Event Adapter {

@verride

public void cartridgePreprocessStarting(Assenbl er Event event) {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {

For a list of Assembler events, see the Assembler event framework reference (page 12) or refer to the
Assembler APl Reference (Javadoc).

3. Add conditional logic to restrict processing to a specific cartridge handler:

public class Resul tsListListener extends Assenbl er Event Adapter {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {
if(event.getContentltem() != null &&

"Resul tsList". equal s(event.getContentlten().getType()){

4, Add processing logic.

The example below prefixes the max_pri ce property on a record with a dollar sign:

public class Resul tsListListener extends Assenbl er Event Adapter {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {
if(event.getContentlten() != null &&

"Resul tsList". equal s(event. get Contentlten().get Type()){
Resul t sLi st resultsList = (ResultsList) event.getContentlten();
for(Record record : resultsList.getRecords()){
Attribute price = record. getAttributes().get("product.nax_price");

180 5 Extending the Assembler

if(price !'=null){
for(int i =0 ; i < price.size(); i++){
price.set(i, "$" + price.get(i).toString());
}

After creating a new listener, you must register it by including it in the list of listeners for the
assenbl er Fact or y object.

About registering an event listener
You must register all event listeners with the Assenbl er Fact or y object.

The Assenbl er Fact or y takes event listeners as constructor arguments. These listeners are instantiated with
each Assenbl er object created by the factory class.

Optionally, you may also choose to use the Assenbl er . addAssenbl er Event Li st ener () method toadd a
listener for a single assembly request.

Example 5.1. Example

The example below uses the Resul t sLi st Li st ener defined in the previous topic, registered in the Discover
Electronics reference application.

The reference application uses the Assembler context file to configure global application properties. The
configuration bean for the Assenbl er Fact or y includes a list of listeners as constructor arguments:

<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor-arg>

</ constructor-arg>
<constructor - ar g>
<l-- List of listeners registered in the assenbler -->
<list>
<bean cl ass="com endeca. i nfront. Resul tsLi stListener" />
<bean cl ass="com endeca. i nfront. | ogger. SLF4JAssenbl er Event Logger" />
<bean
cl ass="com endeca. i nfront. assenbl er. event . request. Cont ent | t emAugnent Adapt er " >
<constructor-arg ref="springUility"/>
</ bean>

</list>
</ constructor-arg>
</ bean>

Sample Cartridges

This section contains sample cartridge customizations that demonstrate how to use the various cartridge
extension mechanisms to address different use cases.

5 Extending the Assembler 181

About using the sample cartridges

The sample cartridges are intended to demonstrate the cartridge extension mechanisms and provide a model
for your own cartridge customizations.

The sample code provided is written to be generic and easy to follow, rather than production-quality code.
Oracle recommends that you follow a few best practices when working with the examples:

+ Set up a new instance of the Discover Electronics application to use as a sandbox for deploying the sample
cartridges. This isolates the samples from the out-of-the-box configuration for Discover Electronics as well as
your own application.

+ Within your sandbox application, create a separate Spring context file for the custom cartridge handlers
described in this guide.

» When copying and pasting examples from this guide, pay attention to the end-of-line marker (=) that
indicates that a long line of text has been wrapped. Ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

The steps described for creating and deploying the components of the sample cartridges correspond to the
steps described in previous sections for the "Hello, World" cartridge. If you need additional information to
complete a particular step in deploying one of the sample cartridges, refer to the more detailed procedures for
the "Hello, World" example.

Setting up a test application based on Discover Electronics

Oracle recommends that you use a test application to test the sample cartridges instead of deploying them in
Discover Electronics or your own application.

Because a test application is for development use only, we do not need to deploy a live instance of the
application.

To deploy a copy of Discover Electronics to use as a test for the sample cartridges:
1. Deploy a new test application using the Deployment Template.

a. From a command prompt, navigate to %ENDECA_TOOLS_ROOT% depl oynment _t enpl at e\ bi n (on
Windows) or SENDECA TOOLS_ROOT/ depl oynent _t enpl at e/ bi n (on UNIX).

b. Run the deploy script:
+ On Windows: depl oy. bat --app ..\..\reference\di scover-data\depl oy. xni
*+ OnUNIX:depl oy.sh --app ../../reference/discover-datal/depl oy. xn

c. Specify the application name Test and specify the following ports when prompted:

Port Recommended value
Live Dgraph 15100
Authoring Dgraph 15102

182

5 Extending the Assembler

Port Recommended value

LogServer 15110

2. Provision the test application.
a. Ensure that the HTTP Service and Tools Service are running.

b. From a command prompt, navigate to <APP- DI R>\ cont r ol (on Windows) or <APP- DI R>/ cont r ol (on
UNIX).

c. Runinitialize_services.
d. Runl oad_basel i ne_test data.
e. Runbasel i ne_updat e.
3. Deploy a copy of the authoring instance of the Discover Electronics application.

a. Navigate to %ENDECA_TOOLS_ROOT% r ef er ence (on Windows) or $ENDECA_TOOLS_ROOT/ r ef er ence
(on UNIX).

b. Make a copy of the directory di scover - el ect r oni cs- aut hor i ng and save the copy with the name
sandbox in the same parent directory.

c. Navigate to thet est directory and then to the VEB- | NF subdirectory.
d. Open assenbl er - cont ext . xnl in a text editor.

e. Locate the CARTRI DGE SUPPORT section:

<l--
BRI HE RO HE ST
CARTRI DGE SUPPORT
#
The foll owi ng section configures managers and other supporting objects.
#

f. Inthe mdexResour ce bean, update the Dgraph port:

<bean i d="ndexResource" scope="request"

cl ass="com endeca. i nfront. navi gati on. nodel . MlexResour ce" >
<property nanme="appNane" val ue="${wor kbench. app. nane}" />
<property nane="host" val ue="| ocal host" />
<property nanme="port" val ue="15102" />
<property nane="ssl| Enabl ed" val ue="${ndex. ssl Enabl ed}" />
<property nane="recordSpecNane" val ue="comon.id" />

</ bean>

g. Locate the Cont ent Sour ces section:

<l--

~ Content Sources

5 Extending the Assembler 183

h. In the Cont ent Sour ce bean, update the application name:

<bean i d="Cont ent Sour ce""
cl ass="com endeca. i nfront. cont ent. sour ce. Wr kbenchCont ent Sour ce"

scope="si ngl eton" init-nethod="init" destroy-nmethod="destroy">
<property nane="storeFactory" ref="storeFactory"/>
<property nanme="defaul t Si t eRoot Pat h" ref="defaul t SiteRoot Path" />
<property nanme="appNane" val ue="${wor kbench. app. nane}"/>
<property nane="siteManager" ref="siteManager"/>

</ bean>

i. Intheaut hori ngMedi aSour ces bean, update the application name:

<bean i d="aut hori ngMedi aSour ces" class="java.util.ArrayList" lazy-init="true">
<constructor - ar g>
<list>
<bean cl ass="com endeca. i nfront. cartri dge. nodel . Medi aSour ceConfi g">
<property nanme="sour ceNane" val ue="I|FCRSource" />
<property nane="sourceVal ue" value="http://|ocal host:8006/ifcr/
sites/ Test/nmedia/" />
</ bean>
<bean cl ass="com endeca. i nfront. cartri dge. nodel . Medi aSour ceConfi g">
<property nanme="sourceNane" val ue="default" />
<property nanme="sourceVal ue" value="http://| ocal host:8006/ifcr/
sites/ Test/nmedia/" />

</ bean>
</list>
</ constructor-arg>

</ bean>

j. Save and close the file.

k. Navigate to YENDECA TOOLS_CONF% conf \ St andal one\ | ocal host (on Windows) or
$ENDECA_TOOLS_CONF/ conf / St andal one/ | ocal host (on UNIX).

I. Make a copy of di scover - aut hori ng. xm and save the copy with the name t est in the same directory.
m.Opentest. xnl in atext editor.

n. Change the value of docBase as follows:

docBase="${catal i na. base}/../../reference/test"

o. Restart the Tools Service.
4. Validate your new sandbox application:

a. Navigateto htt p: // <Wor kbenchHost >: 8006/ | ogi n and verify that Test displays as an option in the
Application drop-down.

b. Select the Test application and verify that the sample page content from Discover Electronics is available
in Experience Manager.

184 5 Extending the Assembler

c. In aseparate browser window, navigate to the newly deployed sandbox application, atht t p: / /
<Wor kbenchHost >: 8006/ t est and verify that it displays.

5. Optionally, update the Workbench configuration to use the test Web application for preview.
a. Ensure that you are logged in to the Test application in Workbench.
b. Select Application Configuration.

c. Specify the URL to the sandbox application (for example, ht t p: / / <Wr kbenchHost >: 8006/ t est) as the
Preview URL.

d. Preview a page from Experience Manager by selecting a page or content item and clicking Preview in the
upper right.

Creating a Spring context file for sample cartridges

Oracle recommends that you specify the configuration for the sample cartridges in a separate Spring context file
from the core cartridges.

To create a Spring context file for the sample cartridges:

1. Navigate to “ENDECA_TOOLS_ROOT% r ef er ence\ sandbox\ VEB- | NF (on Windows) or
$ENDECA_TOOLS_ROOT/ r ef er ence/ sandbox/ VEEB- | NF (on UNIX).

2. Open assenbl er - cont ext . xn in a text editor.

3. At the top of the file, add the following i nport:

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans
http://wwm. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
">
<bean
cl ass="org. springframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer">
<property nane="| ocati ons">
<list>
<val ue>WEB- | NF/ assenbl er. properti es</val ue>
</list>
</ property>
</ bean>

<i mport resource="endeca-url-config.xm"/>
<import resource="perf-I|ogging-config.xm"/>
<i nport resource="sanple-cartridge-config.xm" />

4. Delete the configuration for the "Hello, World" sample cartridge that we added in an earlier example.

<l--

~ BEAN: CartridgeHandl er_Hell o

-->

<bean i d="CartridgeHandl er _Hel | 0"

cl ass="com endeca. sanpl e. cartri dges. UppercaseCartri dgeHandl er"

5 Extending the Assembler 185

scope="prototype" />

5. Save and close the file.

6. Create a new file named sanpl e- cartri dge- confi g. xnl in the same directory with the following
contents:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schenmalLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<l--

~ BEAN: CartridgeHandl er_Hell o
-->

<bean i d="CartridgeHandl er _Hel | o"
cl ass="com endeca. sanpl e. cartri dges. Upper caseCartri dgeHandl er"
scope="prototype" />

</ beans>

7. Save and close the file.
8. Validate the new configuration by adding the "Hello, World" cartridge to your new sandbox application.

a. Copy the "Hello, World" directory and its contents (Hel | oWor | d\) from the Discover Electronics
application (<APP- DI R>\ confi g\ cartri dge_t enpl at es) to the sandbox application.

b. Upload the template to Workbench using the set _t enpl at es script.

¢. Using Experience Manager, add the cartridge to the default page of the sandbox application and save your
changes.

d. Verify that the Hel | 0. j sp renderer and Upper caseCart ri dgeHandl er are present in the sandbox
Web application. (These should have been included when you copied the Discover Electronics authoring
application.)

e. Refresh the sandbox application (ht t p: / / <Wr kbenchHost >: 8006/ sandbox) and verify that the text
you entered in Experience Manager displays, and has been converted to all-uppercase letters.

RSS Feed cartridge

In this example, we build a cartridge that displays items from an RSS feed.

This cartridge enables a business user to specify some basic information about an existing RSS feed in
Experience Manager. The cartridge handler fetches the RSS results and returns an output model to the client
suitable for rendering.

It demonstrates the following use cases:
+ Using a cartridge handler to fetch information from a source other than an MDEX Engine.

+ Using the business user configuration from Experience Manager as input into the assembly process and
returning a different output model from the configuration model.

In this cartridge, we create the following components:

186

5 Extending the Assembler

Component Description

cartridge template Enables the business user to specify the URL to an RSS feed and the number of
entries to display.

cartridge handler Fetches results from the RSS feed and returns a number of entries up to the value
specified by the business user or the number of entries in the feed, whichever is
lower.

cartridge renderer Displays the name of the feed with a link to the channel URL, and the title and

description of each entry with a link to the entry on the original site.

Creating the cartridge template
The business user needs to be able to configure the RSS Feed with a URL and the number of entries to display.
To create the RSS Feed template and add it to your application:
1. Create a new template based on the example below.

Since the number of entries is expected to be an integer, the example uses a Nunrer i ¢St epper Edi t or
for this property. It could also use a Sl i der Edi t or — both options guarantee that the value of the string
property is an integer. In the example, we specify a default value of 5 for the number of entries.

2. Create a directory with the name RssFeed in the templates directory of your application.
3. Save the template with the namet enpl at e. xm to the RssFeed directory of your application.
4. Upload the template using the set _t enpl at es script.
5. Add the cartridge to the default search and navigation page as in the example below.
Note

The sample renderer for this cartridge works best with RSS feeds that have brief descriptions with
no images or advertisements in the description field. A possible enhancement to this cartridge
would be to make displaying the description configurable.

6. Save your changes to the page.

The cartridge instance configuration is saved as XML. At this point, because there is no cartridge handler
specified for this cartridge, the same configuration is passed to the client as the response from the Assembler.

<Content|tem type="SecondaryCont ent ">
<Nane>RSS cartri dge</ Nane>
<Property nane="feedUrl">
<String>http://ww.w red. confrevi ews/feed/ </ String>
</ Property>
<Property name="nunEntries">
<String>5</String>
</ Property>
</ Contentlten>

The following shows the sample template for the RSS Feed cartridge:

5 Extending the Assembler 187

<Cont ent Tenpl ate xm ns="http://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
t ype="Secondar yCont ent " >
<Descri ption>A cartridge that displays entries froman RSS feed. </ Description>
<Thunbnai | Url >/ifcr/tool s/ xmgr/img/tenpl ate_t hunbnail s/ si debar_content.j pg</
Thunbnai | Ur | >
<Contentltenp
<Nanme>RSS cartri dge</ Nane>
<Property nanme="feedUrl">
<String/>
</ Property>
<Property name="nunkEntries">
<String>5</String>
</ Property>
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<editors: StringEditor propertyNanme="feedU " |abel ="Feed URL"
bot t onLabel =" The address of the RSS feed, such as http://ww. oracl e.confus/
corporate/press/rss/rss-pr.xm"/>
<edi tors: Nuneri cSt epper Edi t or propertyName="nunEntri es"
| abel =" Nunmber of entries to display" m nVal ue="1" naxVal ue="15"/>
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Creating the cartridge handler
The cartridge handler fetches the RSS results and returns an output model to the client suitable for rendering.
To create the RSS Feed cartridge handler and add it to the application:

1. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Abst r act Cartri dgeHandl er.

2. Compile the cartridge handler and add the compiled class to your application.

3. Configure the Assembler to use the RssFeedHand! er for the RSS Feed cartridge by adding the following to
the Spring context file:

<l--

~ BEAN: CartridgeHandl er _RssFeed

-->

<bean i d="CartridgeHandl er _RssFeed"

cl ass="com endeca. sanpl e. cartri dges. RssFeedHandl er"
scope="prototype" />

4, Restart the Tools Service.
5. Refresh the application.

The RSS feed does yet appear because we have not created the renderer. Nevertheless, you can validate that the
response model has been populated with the information that we want to display in the JSON view:

188 5 Extending the Assembler

"@ype": "RssFeed",

"nanme": "RSS cartridge",
"feedUrl": "http://ww.w red.confreviews/feed/",
"nunEntries": "5",
"chanTitl e": "Product Reviews",
"chanUrl": "http://ww.w red. confrevi ews",
"entries": [
{
"@ype": "rssEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omitted fromthis exanple)",
"itemUl": "(url omtted fromthis exanple)"
}
{
"@ype": "rssEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenflitle": "(title text omitted fromthis exanple)",
"itemUl": "(url omtted fromthis exanple)"
}
{
"@ype": "rssEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omitted fromthis exanple)",
"itemUl": "(url omtted fromthis exanple)"
}
{
"@ype": "rssEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenflitle": "(title text omitted fromthis exanple)",
"itemUl": "(url omtted fromthis exanple)"
}
{
"@ype": "rssEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenflitle": "(title text omitted fromthis exanple)",
"itemUl": "(url omtted fromthis exanple)"
}

The following shows the code for the sample RSS Feed cartridge handler:

package com endeca. sanpl e. cartri dges;

import com endeca.infront.assenbl er. Abstract Cartri dgeHandl er;
i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
i mport com endeca. i nfront.assenbl er. Contentltem

i mport com endeca. i nfront.assenbl er. Basi cContentltem

import java.net. URL;

inmport java.util.Arraylist;

i mport javax.xm . parsers. Docunent Bui | der Fact ory;

import javax.xm . parsers. Docunent Bui | der;

i mport org.w3c. dom Char act er Dat a;

i mport org.w3c.dom Docunent ;

i mport org.w3c. dom El enent ;

i mport org.w3c.dom Nodeli st;

i mport org.w3c. dom Node;

5 Extending the Assembler 189

public class RssFeedHandl er extends AbstractCartridgeHandl er {

public Contentltem process(Contentltem pContentltemn)
throws CartridgeHandl er Exception {

final String urlString = (String) pContentltemget("feedUrl");
final int nunEntries =
I nteger.parselnt((String)pContentltem get("nunEntries"));

try {
URL url = new URL(url String);

Docurent Bui | der Factory factory = Docunent Bui | der Fact ory. newl nst ance() ;
Docurnent Bui | der docBui |l der = factory. newDocunent Bui | der () ;
Document RssContents = docBuil der. parse(url.openStrean());

/1 get the channel info
El emrent channel =

(El ement) RssCont ent s. get El ement sByTagNane(" channel ").iten(0);
pContentltem put ("chanTitle", getEl ementVal ue(channel, "title"));
pContentltem put ("chanW ", getEl emrentVal ue(channel, "link"));

/1 get the entries and add themto a list
ArraylLi st<Contentltenr entries = new Arrayli st<Contentlten»(nunmkntries);
NodeLi st nodes = RssContents. get El ement sByTagNane("itenl);
for(int i=0; i<nunEntries; i++) {
El emrent el ement = (El ement)nodes.iten(i);
if (element!=null) {
Contentltementry = new BasicContentlten("rssEntry");
entry.put("itenfTitle", getEl enentValue(elenent, "title"));
entry.put("itemrl", getEl ementVal ue(el ement, "link"));
entry. put ("itenDesc", getEl ementVal ue(el ement, "description"));
entries.add(entry);
}
}
pContentltem put("entries", entries);
}
catch (Exception e) {
t hrow new Cartri dgeHandl er Exception(e);

}

return pContentltem
}

private static String getCharacterDat aFr onEl ement (El emrent e) {
try {
Node child = e.getFirstChild();
if(child instanceof CharacterData) {
CharacterData cd = (CharacterData) child;
return cd.getData();
}
}
cat ch(Exception ex) {
}

return

}

private static String getEl enent Val ue(El enent parent, String |abel) {
return get Charact er Dat aFr onEl enent (
(El enent) par ent . get El ement sByTagNane(| abel).item(0));

190 5 Extending the Assembler

Creating the cartridge renderer

The renderer displays a summary of the results with links that take the site visitor to the site that originated the
RSS feed.

To create a renderer for the RSS feed:

1. Create a new JSP page based on the example below.

2. Save the renderer to / VEB- | NF/ vi ews/ deskt op/ RssFeed/ RssFeed. j sp.
3. Refresh the application to see the result.

The results from the RSS feed display in the right sidebar.

5 Extending the Assembler 191

EF 50mm

$£373.00 Fr1.2L USM
Siess

Product Reviews
SCOR Wedges Tighten Up
Your Short Game

$1,029.00 A new line of golf clubs from

SCDR lets playez_rs replace
their standard 9 iron and

+ Add to wishlist their various wedges with a
set of clubs designed for
precision from 130 yards
and closer.

$1,113.00 Behold, It Folds
Sony's Tablet P has a

unigue folding design that

+ Add to wishist works well for games and
e-books. But it's a tough sell
for most users.
Mamma Mial

$914.00 When viewed purely as a

: monument to two-wheeled

speed, the Ducati 1199

+ Add to wishiist Panigale is about as good
as production superbikes
get.
A Mouse Small Enough for

$1,496.00 a Cat

The following shows the code for the sample RSS Feed renderer in JSP:

<%page | anguage="j ava" pageEncodi ng="UTF-8"
cont ent Type="t ext/ htm ; char set =UTF- 8" %

<% ncl ude file="/WEB-INF/vi ews/i ncl ude. jsp"%

<di v styl e="paddi ng: 2ex 0">
${conponent. chanTitl e}

192

5 Extending the Assembler

<c:forEach var="rssEntry" itens="${conponent.entries}">
<p>${rssEntry.itenfitle}

${rssEntry.itenDesc}</p>

</ c: forEach>
</ di v>

Custom Record Details cartridge with availability information

In this example, we extend the Record Details cartridge to display information about the availability of a

product.

It demonstrates the following use cases:

+ Extending one of the core cartridges

» Combining results from the MDEX Engine with information from another source during the pr ocess() phase

of the assembly cycle

+ Configuring a third-party service through Spring

In this cartridge, we create the following components:

Component

Description

cartridge handler

Extends the Recor dDet ai | sHandl er to add a property to the response model
containing availability information.

mock "availability
service"

Stands in for a real source of availability information such as an inventory system.

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. To enable the full functionality of this cartridge, the renderer should
be updated to display the availability information, however that is not demonstrated in this guide.

Creating the cartridge handler and supporting classes

The Avai | abi | i t yRecor dDet ai | sHandl er extends the core Recor dDet ai | sHandl er to call a simple mock
availability service to retrieve availability information about a particular record.

To create a cartridge handler that calls an availability service:

1. Create the following classes: Avai | abi | i ty, Avai | abilityService,andFi xedAvai | abi |l ityService
based on the examples below.

The Avai | abi | i t ySer vi ce defines an interface that returns availability information based on a record
identifier, and Fi xedAvai | abi | i t ySer vi ce provides a basic implementation of the interface.

2. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Recor dDet ai | sHandl er.

5 Extending the Assembler

193

The handler takes the results of the MDEX Engine query and adds an additional property that represents the
product availability.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the Avai | abi | i t yRecor dDet ai | sHandl er for the Record Details cartridge
by editing the Spring context file as in the following example.

Note

If you have created a sanpl e- cartri dge- confi g. xnl file for configuring the example cartridges,
copy the Car t ri dgeHand! er _Resul t sLi st bean from assenbl er - cont ext . xn to your sample
context file, comment out the version in assenbl er - cont ext . xn , and then modify the version in
your sample context file as indicated below.

<bean i d="CartridgeHandl er _RecordDet ai | s"
cl ass="com endeca. sanpl e. cartri dges. Avai | abi | i t yRecor dDet ai | sHandl er "
par ent =" Navi gati onCartri dgeHandl er" scope="prototype" >
<property nane="recordState" ref="recordState" />
<property nane="avail abilityService" ref="availabilityService" />
<property name="recordSpec" val ue="common.id" />
<property nane="avail abilityPropertyNane"
val ue="product.availability" />
</ bean>

<bean i d="avail abilityService"
cl ass="com endeca. sanpl e. cartri dges. Fi xedAvai | abi l i tyServi ce"
scope="si ngl eton" >
<l-- Inplenentation-specific configuration for the service
could be specified here -->
</ bean>

5. Restart the Tools Service.
6. Refresh the application and then click on any record to view its details page.

The availability property is now returned as part of the record details information:

{
"@ype": "RecordDetail sPageSl ot",
"nane": "Record Details Page",
"contentCol | ection": "Record Details Pages",
"ruleLimt": "1",
"contents": [
{
}

"recordDetails": {
"@ype": "RecordDetail s",
"record": {
"@l ass": "com endeca.infront.cartridge. nodel . Record",
"nunmRecords”: 1,
"attributes": {

"product.availability": [
" BACKORDER'

194

5 Extending the Assembler

I
b

"records": [...]

b

"nanme": "Record Details"

The renderer can now be updated to display availability information based on the value of this property.

The following shows the code for the availability service and its supporting classes:

package com endeca. sanpl e. cartri dges;

public enum Avail ability {
| MVEDI ATE,
WEEK,
DROP_SHI P,
BACKORDER,;

package com endeca. sanpl e. cartri dges;
public interface AvailabilityService {

Availability getAvailabilityFor(String identifier);

package com endeca. sanpl e. cartri dges;
public class FixedAvail abilityService inplenents AvailabilityService {

public Availability getAvailabilityFor(String identifier) {
try {
return Availability.valueO (identifier);
} catch (111 egal Argunent Exception e) {
return Avail ability. BACKORDER;
}

The following shows the code for the custom cartridge handler:

package com endeca. sanpl e. cartri dges;

i nport com endeca.infront.assenbl er. Cartri dgeHandl er Excepti on;
import com endeca.infront.cartridge. RecordDetails;
i mport com endeca.infront.cartridge. RecordDetail sConfi g;

5 Extending the Assembler 195

i mport com endeca.infront.cartridge. RecordDet ai | sHandl er;
import com endeca.infront.cartridge. nodel . Attribute;
i mport org.springfranmework. beans. factory. annot ati on. Requi r ed;

public class Avail abilityRecordDetail sHandl er extends RecordDetail sHandl er {

private AvailabilityService availabilityService;
private String recordSpec;
private String avail abilityPropertyNane;

@Requi red
public void setAvail abilityService(
Avai |l abi lityService availabilityService_) {
avail abilityService = availabilityService_;

}

@Requi red
public void setRecordSpec(String recordSpec_) {
recordSpec = recordSpec_;

}

@Rrequi r ed
public void setAvail abilityPropertyNane(
String availabilityPropertyName) {
avai |l abi | i tyPropertyName = avail abilityPropertyName_;
}

@verride
public RecordDetails process(RecordDetail sConfig detail sConfig)
throws CartridgeHandl er Exception {
RecordDet ai | s details = super. process(detail sConfig);
if (null == details) return null;
Attribute attr =
details.getRecord().getAttributes().get(recordSpec);
if (null == attr || 1 !=attr.size()) {
t hrow new Cartri dgeHandl er Excepti on("No record spec
avail abl e on record, or spec is multiassign");
}
Attribute<Availability> availability =
new Attribute<Availability>();
avail ability. add(
avail abi lityService. getAvailabilityFor(attr.toString()));
details.getRecord().getAttributes().put(availabilityPropertyNane,
availability);
return details;

Custom Results List with recommendations

In this example, we extend the Results List cartridge to boost certain products based on information from a
recommendation engine.

It demonstrates the following use cases:

+ Extending one of the core cartridges

196 5 Extending the Assembler

+ Using data from another source to modify the query to the MDEX Engine created during the pr epr ocess()
phase of the assembly cycle

+ Configuring a third-party service through Spring

In this cartridge, we create the following components:

Component Description

cartridge handler Extends the Resul t sLi st Handl er to retrieve a set of items to boost from a
recommendations engine and add a boost stratum to the MDEX Engine query.

mock recommendations | Stands in for a real source of recommendations.
service

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. Additionally, the response model for the customized cartridge is the
same as the default Results List (only with the records in a different order), so there is no need for changes to the
default renderer.

Creating the cartridge handler and supporting classes

The Recommendat i onsResul t sLi st Handl er extends the core Resul t sLi st Handl er to call a simple mock
recommendations service and boosts the recommended products.

To create a cartridge handler that boosts recommended records:

1. Create the interface Recormendat i onSer vi ce and the concrete implementation
Test Recommendat i onSer vi ce based on the examples below.

As a proof of concept, the recommendations service always returns the same recommendations from the
Discover Electronics data set.

2. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Resul t sLi st Handl er.

The handler retrieves a list of recommended records from the service and adds them to a boost stratum for
the MDEX Engine query. If the records are present in the results set, they are boosted to the top of the results
list.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the Reconmendat i onsResul t sLi st Handl er for the Results List cartridge
by editing the Spring context file as follows:

Note

If you have created a sanpl e- cartri dge- confi g. xnl file for configuring the example cartridges,
copy the Cart ri dgeHandl er _Resul t sLi st bean from assenbl er - cont ext . xm to your sample
context file, comment out the version in assenbl er - cont ext . xn , and then modify the version in
your sample context file as indicated below.

<bean i d="CartridgeHandl er _Resul t sList"

5 Extending the Assembler 197

cl ass="com endeca. sanpl e. cartri dges. Recommendat i onsResul t sLi st Handl er"
par ent =" Navi gati onCartri dgeHandl er" scope="pr ot otype">
<property nanme="contentltem nitializer">
<l-- additional elenments onmtted fromthis exanple -->
</ property>
<property nane="sort Opti ons">
<l-- additional elenments onmtted fromthis exanple -->
</ property>
<property nanme="reconmendati onServi ce" ref="recomendati onService" />
<property nanme="recordSpec" val ue="comon.id"/>
</ bean>

<bean i d="recommendat i onServi ce"
cl ass="com endeca. sanpl e. cartri dges. Test Recomrendat i onSer vi ce"
scope="si ngl eton" >
<l-- Inplenentation-specific configuration for the service
could be specified here -->
</ bean>

5. Restart the Tools Service.
6. Refresh the application.

The recommended records are boosted to the top of the results:

198 5 Extending the Assembler

Display: 10perpage - SoriBy. Relevance -
Canon
- PowerShot 595 $1,000.00
FowerZhot 385, 10MP, 3.8x Optical. 4x Add to Cart
Digital. 15x Combined Zoom, 7.62 cm _
(3.0 ") LCD, 3648 x 2048, 16:9, Zwart R

Trust

g Cuby Pro $918.00
Cuby Pro, Titanium, 1.3 Mp, 1280 x 1024, Add to Cart
UsSB 2.0

+ Add to wishlist

Pentax
K20D $907.00
K20D, 14.6 Megapixels
+ Add to wishlist
Fujifilm
- FinePix F50fd & 5D Card 1GB $991.00

FinePix F50fd Black & 5D Card 1GB Add to Cart

+ Add to wishlist

Kodak
E EasyShare M863 $964.00
1310094, EasyShare M863 Digital

Camera, 8.2 MP for prints up to 30 = 40

in. (76 = 102 cm), 3X optical zoom B
Pentax
Optio M40 $747.00

R}
_ Optio M40 Digital Camera Add to Cart
5 Extending

+ Add to wishlist

The following shows the code for the recommendations service interface and concrete implementation:

package com endeca. sanpl e. cartri dges;
inmport java.util.List;
public interface Recommendati onService {

public List<String> get RecomrendedProduct | ds();

}

package com endeca. sanpl e. cartri dges;

inmport java.util.Arrays;
inmport java.util.List;

public class Test Reconmendati onService
i mpl ements Recommendati onServi ce {
public static final List<String> IDS =
Arrays. asLi st ("5891932", "6001963", "1438066", "1581692",
"2708142", "1235424", "3422480");

public List<String> get RecommrendedProduct!ds() {
return | DS;

}

The following shows the code for the custom cartridge handler:

package com endeca. sanpl e. cartri dges;

inmport java.util.Arraylist;
import java.util.List;

i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
i mport com endeca.infront.cartridge. Resul tsLi st Config;

import com endeca.infront.cartridge. Resul tsLi st Handl er;

i mport com endeca. i nfront. navigation.nodel . CollectionFilter;

i mport com endeca. i nfront. navi gati on. nodel . PropertyFilter;

public class Recommendati onsResul t sLi st Handl er ext ends Resul t sLi st Handl er {
private Recommendati onServi ce reconmendati onServi ce;
private String recordSpec;

public String getRecordSpec() {
return recordSpec;

}

public void setRecordSpec(String recordSpec_) {
this.recordSpec = recordSpec_;

}

public void set Reconmendati onServi ce(
Recommendat i onServi ce recommendati onService_) {
recommendat i onServi ce = recomrendati onServi ce_;

200 5 Extending the Assembler

| **

* This cartridge will get the list of recomended products
* (by record spec) and explicitly boost each one of them using
* a PropertyFilter.

*/
@verride

public void preprocess(ResultsListConfig pContentltemn)
throws CartridgeHandl er Exception {
List<String> ids =
recommendat i onSer vi ce. get RecormendedPr oduct | ds() ;
Li st<Col I ectionFilter> boostFilters =
new ArraylLi st<Col | ectionFilter>(
ids.size());

for (String s :

ids) {

boost Fi |l ters. add(new Col | ectionFilter(new PropertyFilter(

}

recordSpec, s)));

pContent |t em set Boost Strat a(boostFilters);
super . preprocess(pContentlten;

"Hello, World" cartridge with layered color configuration

In this example, we extend the "Hello, World" example cartridge to demonstrate the layering of configuration

from several sources.

In this scenario, we can define a default color for the message in our "Hello, World" cartridge, which the business
user can override on a per-instance basis in Experience Manager. The site visitor can also select a preferred color

from the client application.

It demonstrates the following use cases:

+ Combining the default cartridge configuration, cartridge instance configuration, and request-based
configuration using the Conf i gl ni ti al i zer and Request Par amvar shal | er helper classes

+ Using a cartridge configuration bean

In this cartridge, we create the following components:

Component

Description

cartridge handler

Uses the Col or Confi gl niti al i zer to layer multiple sources of configuration
for message color.

cartridge configuration
bean

Provides a means of specifying default values for this cartridge via Spring.

cartridge renderer

Provides a drop-down list from which the site visitor can choose a color for the
message.

5 Extending the Assembler

201

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge.

Creating the cartridge handler and supporting classes

The cartridge handler combines the various sources of configuration for message color using the
Configlnitializer and Request Par anMar shal | er helper classes.

To create the "Hello, World" cartridge handler with color configuration and add it to the application:

1. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Abst r act Cartri dgeHandl er.

2. Create a configuration bean for this cartridge based on the example below. This enables us to define default
values for the cartridge properties in the Spring context file.

3. Compile the cartridge handler and configuration bean and add them to your application.

4. Configure the Assembler to use the Col or Conf i gHandl er for the "Hello, World" cartridge by editing the
Spring context file as follows:

<bean i d="CartridgeHandl er _Hel | 0"
cl ass="com endeca. sanpl e. cartri dges. Col or Confi gHandl er"
scope="pr ot ot ype" >
<property nanme="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer"
scope="si ngl eton">
<property name="defaul ts">
<bean cl ass="com endeca. sanpl e. cartri dges. Col or Confi g"
scope="si ngl eton">
<property nanme="nmessageCol or" val ue="#FF6600"/ >
</ bean>
</ property>
<property nanme="request Paramvarshal | er">
<bean
cl ass="com endeca. i nfront. cartri dge. Request Par anVar shal | er"
scope="si ngl et on" >
<property nane="httpServl et Request" ref="httpServl et Request"/>
<property name="request Map">
<I'THp>
<entry key="col or" val ue="nessageCol or"/ >
</ map>
</ property>
</ bean>
</ property>
</ bean>
</ property>
<property nanme="col or Opti ons">
<I'THp>
<entry key="Red" val ue="#FF0000"/ >
<entry key="Green" val ue="#00FF00"/ >
<entry key="Bl ue" val ue="#0000FF"/ >
<entry key="Bl ack" val ue="#000000"/>
</ map>
</ property>
</ bean>

5. Restart the Tools Service.

202 5 Extending the Assembler

6. Refresh the application.

The color options do not display yet because we have not updated the renderer, but you can validate that the
response model has been populated with the information that we want the renderer to use in the JSON view:

{
"@ype": "Hello",
"name": "Hello cartridge",
"message": "Hello, color world!'
"messageCol or": "#000OFF",
"colorOptions": [
{
"@ype": "colorOption",
"hexCode": "#FF0000",
"l abel ": "Red"
b
{
"@ype": "col orOption",
"hexCode": "#O00FF00",
"label": "G een"
b
{
"@ype": "col orOption",
"hexCode": "#O0000FF",
"l abel ": "Bl ue"
b
{
"@ype": "colorOption",
"hexCode": "#000000",
"l abel ": "Bl ack"
}
]
}

The following shows the code for the sample "Hello, World" cartridge handler with color configuration:

package com endec

i mport com endeca.
i mport com endeca.
i mport com endeca.
i mport com endeca.
i mport com endeca.

i mport com endeca

a.

sanpl e. cartri dges;

nfront. assenbl er

inmport java.util.Arraylist;
import java.util.Mp;

. Abstract Cartri dgeHandl er;
nfront. assenbl er.
nfront. assenbl er.
nfront. assenbl er.
nfront. assenbl er.
.sanpl e.cartridges.

Cartri dgeHandl er Excepti on;
Contentltem

Basi cContent|tem
Contentltemnitializer;
Col or Confi g;

public class Col or Confi gHandl er extends AbstractCartridgeHandl er {

private Contentltem nitializer mnitializer;

private Map<Stri ng,

String> nCol or Opti ons;

public void setContentltem nitializer(Contentltem nitializer initializer)

mnitializer

}

initializer;

5 Extending the Assembler

203

public void setCol or Opti ons(Map<String, String> col orOptions) {
mCol or Opti ons = col or Opti ons;
}

| **

* Returns the nerged configuration based on Spring defaults,
* Experience Manager configuration, and request paraneters
*/
@verride
public Contentlteminitialize(Contentltem pContentlten) {
/1 1f any configuration from Experience Manager is enpty, renove
/1 that property so we can use the default val ue
for (String key: pContentltem keySet()) {
if (((String)pContentltem get(key)).isEmpty())
pContentltem renove(key);

}
return mnitializer == null ? new Col or Config(pContentltemn)
mnitializer.initialize(pContentltem;
}
/**

* Returns the nmerged configuration and informati on about the col or options
* available to the site visitor.
*/
@verride
public Contentltem process(Contentltem pContentltem
throws CartridgeHandl er Exception {
int nunCol ors = nCol or Opti ons. si ze();
ArraylLi st<Contentltenr colors =
new Arrayli st<Contentl|tens(nuntCol ors);
if (nColorOptions != null && !nCol orOptions.isEnpty()) {
for (String key: nCol or Options. keySet()) {
Contentltem col or = new BasicContentlten("col orOption");
col or.put("label", key);
col or. put ("hexCode", ntCol or Opti ons. get (key));
col ors. add(col or);
}
pContent|tem put ("col or Opti ons", colors);
}
return pContentltem

}

The following code implements a basic bean that enables us to specify a default value for the message color in
the Spring configuration:

package com endeca. sanpl e. cartri dges;

i mport com endeca. i nfront.assenbl er. Basi cContentltem
import com endeca.infront.assenbl er.Contentltem

public class Col orConfig extends BasicContentltem {
public Col orConfig() {
super () ;

}

public ColorConfig(final String pType) {
super (pType);

204 5 Extending the Assembler

}

public Col orConfig(Contentltem pContentlten) {
super (pContentltem;
}

public String get MessageCol or () {
return get TypedProperty("nessageCol or");
}

public void set MessageCol or (String color) {
thi s. put ("nmessageCol or", color);
}
}

Creating the cartridge renderer

In this example we update the "Hello, World" renderer to add a control for the site visitor to select a color for the
message.

To add a drop-down for the site visitor to select a message color based on the options configured for this
cartridge:

1. Create a new JSP page based on the example below, or update the renderer you previously created by adding
the section in bold.

2. Save the renderer to / WEB- | NF/ vi ews/ deskt op/ Hel | o/ Hel | o. j sp.

3. Refresh the application to verify that the drop-down menu displays.

Hello, color
world!

Selectacolor -

The following shows the code for the sample "Hello, World" renderer with color choice drop-down in JSP:

<%page | anguage="j ava" pageEncodi ng="UTF- 8"
cont ent Type="t ext/ htnl ; char set =UTF- 8" %

<% ncl ude file="/WEB-INF/ vi ews/i ncl ude. jsp"%
<div style="border-style: dotted; border-w dth: 1px
border-col or: #999999; paddi ng: 10px 10px">
<div style="font-size: 150%
col or: ${conponent. nessageCol or}" >${ conponent . nessage}
</ div>
<div style="font-size: 80% padding: 5px Opx">
<sel ect onchange="location = this.options[this.selectedlndex].value">
<option val ue="">Sel ect a col or</option>
<c: forEach var="col orOpti on" itenms="${conponent. col or Options}">
<c:url value="<% request.getPathlnfo() %" var="col orAction">
<c: param name="col or" val ue="${col or Opti on. hexCode}" />
</c:iurl>
<option val ue="${col or Acti on}">${col or Opti on. | abel }</ opti on>

5 Extending the Assembler 205

</ c: forEach>
</ sel ect>
</ di v>
</ div>

Testing the "Hello, World" cartridge with layered color configuration

We can validate that the cartridge handler applies the different sources of configuration properly by
incrementally populating each source of the configuration.

To test the "Hello, World" cartridge:
1. In Experience Manager, remove any previously created instance of the Hello cartridge.

2. Insert a new instance of the cartridge on the default page and specify a message string, but do not select a
color.

3. Save the page.
4. Refresh the application.
The message displays using the default color, orange.
5. Going back to Experience Manager, now select a message color for this instance of the cartridge.
6. Refresh the application.
The message displays using the color configured in Experience Manager.
7. Using the drop-down list on the cartridge, select another color.

The drop-down control adds a col or parameter to the URL, which is parsed by the
Request Par anmar shal | er into the messageCol or property.

Developing Editors for Workbench

If you wish to expose configuration to your Content Administrator in Workbench, you should first check whether
the existing set of editors supports your requirements. If not, you may wish to develop a custom editor to suit
your needs.

Related links

+ Extending the Assembler (page 163)

+ Setting up the Experience Manager Editor SDK (page 207)

+ Flex prerequisites and resources (page 207)

+ About setting up a Flex development environment (page 207)

+ Developing Editors With the Experience Manager Editor SDK (page 209)

+ Specifying dependencies between editors (page 218)

206 5 Extending the Assembler

Setting up the Experience Manager Editor SDK

The Experience Manager Editor SDK is included with your Tools and Frameworks installation. This section
provides instructions for setting up a development environment for developing custom editors.

Flex prerequisites and resources
To develop editors with the Experience Manager Editor SDK, you must have the following components:

Flex development requirements

+ Flex SDK 4.5.x or Flash Builder — Flash Builder is an integrated editing and debugging environment offered
by Adobe. It requires a developer license. The raw SDK is open source and also available from Adobe. You can
consult the wiki at http://sourceforge.net/adobe/flexsdk/wiki/About/ for additional information.

Additionally, Oracle recommends using Apache Maven 3.0.4 to build your projects. Apache Maven is an open
source project hosted at http://maven.apache.org/.

Flex resources

Flex is an open source development framework created and maintained by Adobe. It supports common design
patterns and is based on MXML and ActionScript 3. If you are unfamiliar with Flex, you may find the following
resources helpful:

* http://www.adobe.com/products/flex.ntml — The Adobe Flex Web site provides an overview of the Flex
development framework and includes download links to the Flex SDK.

* http://help.adobe.com/en_US/Flex/4.0/UsingSDK/index.html — The Adobe Flex 4 resources page contains
links to Flex documentation, including the ActionScript 3.0 Reference and ActionScript 3.0 Developer's Guide.

About setting up a Flex development environment
Oracle recommends setting up a Flex development environment for creating your custom editors.

You can use a standalone installation of Flash Builder, or set up your development environment in Eclipse.
Setting up an Experience Manager SDK project in Eclipse requires the Flash Builder 4 plugin.

Configuring a Flash Builder 4.0 development environment

If you choose to develop using Flash Builder, you must use Flash Builder 4.0. In addition, the version of the Flex
SDK that Flash Builder uses to compile must be 4.5.0 or higher. You should compile your editors using the Halo
theme for visual consistency.

To configure a Flash Builder development environment:
1. Confirm that you are running version 4.0 with the Flex 4.5 SDK:

a. Start Flash Builder 4.0.
b. Navigate to Window — Preferences.

€ In the tree control on the left, navigate to Flash Builder - Installed Flex SDKs.

5 Extending the Assembler 207

http://sourceforge.net/adobe/flexsdk/wiki/About/
http://maven.apache.org/
http://www.adobe.com/products/flex.html
http://help.adobe.com/en_US/Flex/4.0/UsingSDK/index.html

Configuring Flex Framework dependencies as Runtime Shared Libraries (RSLs)

d. Verify that the Flex 4.5 entry appears and is selected in the list of Installed SDKs.

2. Update your project to use the Halo visual theme:

3. |n Flash Builder, navigate to Project — Properties — Flex Theme.

b. Select Halo.

c. Click OK to save your changes.

Experience Manager includes Flex Framework dependencies as Runtime Shared Libraries. Configure your editors
to use these same dependencies in order to avoid version conflicts.

The following dependencies ship with Tools and Frameworks and are included within the Endeca Configuration
Repository ati f cr/t ool s/ xnmgr . You should configure the resources below as Runtime Shared Libraries if they
are dependencies of your editor module:

com adobe. fl ex. franework. rpc-4.5. 1. 21328. swc

com adobe

com adobe.

com adobe.

com adobe.

com adobe.

com adobe.

com adobe.

com adobe.

com adobe.

.flex.

flex.

flex.

flex.

flex.

flex.

flex.

flex.

flex.

f ramewor k.

f r amewor k.

f ramewor k.

f ramewor k.

f ramewor k.

f ramewor k.

f ramewor k.

f r amewor k.

f ramewor k.

framework-4.5.1.21328. swc
t ext Layout-4.5. 1. 21328. swc
spark-4.5.1.21328. swc

spar kskins-4.5.1.21328. swc
charts-4.5.1.21328. swc
spark_dmv-4.5.1.21328. swc
osnf-4.5.1.21328. swc
nx-4.5.1.21328. swc

advancedgri ds-4.5. 1. 21328. swc

com adobe. f1 ex. franewor k. t ext Layout -4. 5. 1. 21328. swc

com endeca. Experi enceManager APl - 4. 0. 0. swf

To configure a dependency as a Runtime Shared Library:

1. Update your project to use the Exper i enceManager API - 4. 0. 0. swc and the Halo theme:

3. |n Flash Builder, navigate to Project — Properties — Flex Build Path.

b. Add the dependency..

For example, Tool sAndFr amewor ks\ 4. 0. 0\ edi t or _sdk\ | i bs\ Experi enceManager API - 4, 0. 0. swc.

c. Beneath the new SWCin the tree view, select Link Type: and click Edit....

d. Select Runtime shared library (RSL).

e. For the Deployment Path/URL:, enter the location of the dependency in the Endeca Configuration
Repository.

For example, /ifcr/tool s/ xmgr/ com endeca. Experi enceManager APl - 4. 0. 0. swf.

208

5 Extending the Assembler

f. Click OK.
g. Click OK to save your changes.
Installing the Experience Manager APl to a Maven repository

The Experience Manager Editor SDK includes a Maven script for installing the included API package into a Maven
repository.

These steps assume you have Maven 3.0.4 installed as part of your development environment.
To install the Experience Manager API package:

1. Navigate to the %ENDECA_TOOLS_ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven directory.
2. Open a command prompt.

3. Runtheinstall -api profile in the Maven POM file using the following command:

mvn -Pinstall -api

This installs Exper i enceManager API - 4. 0. 0. swc to your Maven repository.

Developing Editors With the Experience Manager Editor SDK

This chapter covers steps for developing your own editors using the Experience Manager Editor SDK.

About developing custom editors

As soon as you have set up your development environment, creating and using new editors consists of the
following general steps:

1. Configure external Flex Framework and Experience Manager APl dependencies as Runtime Shared Libraries
(RSLs).

2. Build your editor module and copy the SWF file to your <app di r>\confi g\i nport\configuration
\ t ool s\ xmgr\ nodul es directory.

3. Register your custom editor module and the included editors within your application's editor configuration
file.

4. Upload the editor module and editor configuration file to your deployed application by using the <app
dir>\control \set_editors_confi g script.

5. Add your editors to an existing cartridge template or create a new cartridge template that includes them.
Note

If you make changes to an existing cartridge, any saved cartridges that use the old template are
unchanged until you access them in Experience Manager. When accessed, they are updated with
default values specified in the cartridge template. For this reason, Oracle does not recommend
updating cartridges that are in widespread use throughout your application.

5 Extending the Assembler 209

6. Upload the cartridge template to your deployed application by using the <app dir>\control
\'set _t enpl at es script.

Note

When naming your editors, note that the package names com xngr and com endeca. xngr are
reserved for the Experience Manager product. Do not use them for custom editors.

Creating an editor module for custom editors

You must create an editor module to contain your custom editors. Oracle Experience Manager Extensions
includes a sample editor module that you can use as a reference.

In order to add your editors to the sanpl e_edi t or s. swf file, you must modify the sanpl e_edi t or s. nxni
editor registry to include them.

To create an editor module for custom editors:
1. Create an MXML registry file for your editor module.

For the sample editor project, this is edi t or _sdk\ r ef er ence\ bui | d\ naven\ src\ mai n\ f | ex
\sanpl e_edi tors. nxm .

2. Define the edi t or namespace within a root <edi t or : Edi t or Modul e> element:

<edi t or: Edi t or Modul e xm ns: mx="http://ww. adobe. conl 2006/ nxm "
xm ns: edi t or =" com endeca. t ool s. pagebui | der.editor.*">

</ edi t or: Edi t or Modul e>

3. Within the root <edi t or : Edi t or Mbdul e> element, add a <edi t or: r egi st er edEdi t or s> element that
contains an <nx: Arr ay>:

<edi t or: Edi t or Modul e xm ns: mx="http://ww. adobe. conl 2006/ nxmi "
xm ns: edi t or =" com endeca. t ool s. pagebui | der. editor.*">
<edi tor:registeredEditors>
<nx: Array>

</ mx: Array>
</ editor:registeredEditors>
</ edi t or: Edi t or Modul e>

4. Within the <mx: Arr ay> element, add an <edi t or: Edi t or Entry > element for each of your custom
editors:

<edi t or: Edi t or Modul e xm ns: mx="http://ww. adobe. conl 2006/ nxm "
xm ns: edi t or =" com endeca. t ool s. pagebui | der.editor.*">
<edi tor:registeredEditors>
<nx: Array>
<editor:EditorEntry/>
</ mx: Array>
</ editor:registeredEditors>
</ edi t or: Edi t or Modul e>

210 5 Extending the Assembler

5. Specify the following attributes:

Attribute Value

uri The editor namespace. This is used in your cartridge
templates and in the editor configuration file.

| ocal Nane The name to use for the editor in your cartridge
templates.
edi tor The fully qualified name of your editor.

<edi t or: Edi t or Modul e xm ns: mx="http://ww. adobe. com 2006/ nxmi "
xm ns: edi t or =" com endeca. t ool s. pagebui | der.editor.*">
<edi tor:registeredEditors>
<nx: Array>
<editor:EditorEntry
uri ="http://endeca. conl sanpl e/ 2010"
| ocal Name="MyCust onEdi t or "
edi t or="com endeca. t ool s. pagebui | der. sanpl es. edi tors. MyCust onEdi tor" />
</ nx: Array>
</ editor:registeredEditors>
</ edi t or: Edi t or Modul e>

6. Repeat Steps 4-5 for each editor you wish to register.
7. Save and close the file.
8. Build the editor module.
For the sample editor module, this consists of the following steps:
a. Navigate to the %ENDECA_TOOLS_ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven directory.

b. Build the sample editor module using the following command:

nmvn clean install

The sanpl e_edi t ors. swf file is output to the t ar get subdirectory.
9. Upload the editor module to your application:
a. Navigate to your build output directory.
For example, YENDECA_TOOLS ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven\t ar get .

b. Copy the editor SWF file to the conf i g\'i mport\ confi gurati on\ t ool s\ xmgr\ nodul es directory of
your deployed application.

If this directory does not exist, you must create it.

c. Navigate to the cont r ol directory of your deployed application.

5 Extending the Assembler 211

d. Runtheset _editors_confi g script.
Registering custom editors

You must modify the editor configuration file to register new editors with Experience Manager. The file,
edi t ors. xnl, is maintained in the Endeca Configuration Repository and stored locally within the <app dir>
\config\inport\configuration\tool s\ xngr directory.

Note

The steps below assume a default installation, with Workbench running on port 8006 of your local
machine.

To register a custom editor:

1. Navigate to the <app dir>\confi g\i nport\configuration\tool s\xngr directory of your deployed
application.

For the default Discover Electronics reference application, this is C: \ Endeca\ apps\ Di scover\ config
\i nport\configuration\tool s\ xmgr on Windows or/ usr/ | ocal / endeca/ apps/ Di scover/confi g/
i nport/configuration/tool s/ xngr on UNIX.

2. Opentheeditors. xm file.

3. Add an <Edi t or Mbdul e> element within the closing </ Edi t or Conf i g>tag, and set the ur| attribute to
your custom editor module.

For example:

<Edi tor Modul e url ="/ifcr/sites/Di scover/configuration/tools/xmgr/nodul es/
sanpl e_editors. swf">

</ Edi t or Modul e>
</ Edi t or Confi g>

4. To add additional editors, insert an <Edi t or > element inside the <Edi t or Modul e> element for each new
editor that you wish to include.

For example:

<Edi tor Modul e url="/ifcr/sites/Di scover/configuration/tools/xnmgr/mdul es/
sanpl e_edi tors. swf">
<Edi t or nane="http://endeca. com sanpl e/ 2010: Ri chText Edi t or " >
</ Edi t or >
</ Edi t or Modul e>
</ Edi t or Confi g>

5. To set default editor configuration, add an <Edi t or Conf i g> element within each <Edi t or > element:

For example:

212 5 Extending the Assembler

<Edi torModul e url="/ifcr/sites/ D scover/configuration/tools/xnmgr/nmodul es/
sanpl e_editors. swf">
<Edi tor nanme="http://endeca. conl sanpl e/ 2010: Ri chText Edi t or" >
<Edi tor Confi g sanpl e="customAttribute">
<Exanpl eCust onEdi t or XML foo="bar" size="10" resizeabl e="fal se" />
</ Edi t or Confi g>
</ Edi t or >
</ Edi t or Modul e>
</ Edi t or Confi g>

6. Save and close the file.
7. Navigate to the <app di r>\control directory of your deployed application.
8. Runtheset _edi t ors_confi g batch or shell script.

This script uploads the updated edi t or s. xn file and any editor modules in the <app di r>\config
\'i nport\ configuration\tool s\xmgr directory to the Endeca Configuration Repository.

About creating and uploading a cartridge template

To use your custom editors in Experience Manager, you need to create and upload a cartridge template that
includes the new editors. You can choose to create a new cartridge, or to modify an existing cartridge template.

After creating or modifying a cartridge to include your custom editors, you must upload it to your application..
You can accomplish this by moving the template to your deployed application's\ confi g\ i nport\t enpl at es
directory and running the cont r ol \ set _t enpl at es batch or shell script.

Example: The sample RichTextEditor

The Experience Manager editor SDK includes a sample Ri chText Edi t or and associated cartridge template that
you can use as a reference when developing your own editors.

The source code for the Ri chText Edi t or is available under edi t or _sdk\ r ef er ence\ bui | d\ maven\ src
\ nai n\ f| ex\ com endeca\ t ool s\ pagebui | der\ sanpl es\ edi t or s\ Ri chText Edi t or. mxm .

The sample Rich Text Box cartridge template

The Rich Text Box cartridge is provided as a sample cartridge that makes use of the Ri chText Edi t or . The
associated cartridge template is included with the Experience Manager Editor SDK.

The cartridge template is available under edi t or _sdk\ r ef er ence\ cartri dge_t enpl at es\ Sanpl eEdi t or
\'t enpl at e. xm . The cartridge uses a basic St ri ngEdi t or for the title box, and the Ri chText Edi t or to enter
and configure body text:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
t ype="Secondar yCont ent " >
<Descri ption>Di spl ays rich text.</Description>
<Thunbnai | Url >/ t hunbnai | s/ PageTenpl at e/ Text BoxSi debar. png</ Thunbnai | Ur | >
<Contentltenr
<Nanme>New Ri ch Text Box</ Name>
<Property nane="title">
<String/>
</ Property>
<Property nane="rich_text">
<String/>
</ Property>

5 Extending the Assembler 213

</ Content|tenr

<Edi t or Panel >
<Basi cCont ent | t enEdi t or >
<StringEditor propertyNane="title" |abel="Title" enabled="true" xm ns="editors"/>
<l-- default value for the optional height attribute for R chTextEditor is 400px

<!-- nmake sure not to make it any smaller or it will not render well -->
<Ri chText Edi tor propertyName="rich_text" xm ns="http://endeca. coni sanpl e/ 2010"
| abel =" Custom Editor" />
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Installing the sample editor module and cartridge template

The Experience Manager Editor SDK includes a sample editor module with a Rich Text editor that you can install
in your application.

Note

For example purposes this guide assumes that you are extending the default Discover Electronics
reference application, with Workbench running on port 8006 of your local machine.

To install the sample editor module and cartridge template:
1. Create a directory for custom editor modules:
a. Navigate to the <app dir>\config\inport\configuration\tool s\ xngr directory.

For the default Discover Electronics reference application, this is C: \ Endeca\ apps\ Di scover confi g
\'i nport\configuration\tool s\ xmgr on Windows, or/ usr/ | ocal / endeca/ apps/ Di scover/
config/inport/configuration/tools/xngr on UNIX.

b. Create a nodul es directory.
2. Build the sample editor module:
a. Navigate to the ¥ENDECA_TOOLS_ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven directory.

b. Build the sample editor module using the following command:

nmvn clean install

The sanpl e_edi t ors. swf file is output to the t ar get subdirectory.
c. Navigate to the %ENDECA_TOOLS_ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven\t ar get directory.

d. Copy the sanpl e_edi t ors. swf file to the <app di r>\confi g\i nport\configuration\tool s\ xngr
directory you created in Step 1.

3. Register the sample editors:

a. Open the sample editor configuration file, edi t or _sdk\ref erence\editors_config
\'sanmpl e_editors. xni.

214 5 Extending the Assembler

b. Open the editor configuration file for your application.

For the default Discover Electronics reference application, this is C: \ Endeca\ apps\ Di scover\config
\'i npor t\ configuration\tool s\xmgr on Windows, or/ usr /| ocal / endeca/ apps/ Di scover/
config/inport/configuration/tools/xmgr onUNIX..

c. Copy the <Edi t or Modul e> element from the sanpl e_edi t or s. xni file to the editor registry file:

<Edi torModul e url="/ifcr/sites/[site name]/configuration/tools/xngr/modul es/
sanpl e_editors. sw">
<Edi tor nanme="http://endeca. conl sanpl e/ 2010: Ri chText Edi tor" >
<Edi t or Confi g sanpl e="customAttri bute">
<Exanpl eCust onEdi t or XML foo="bar" size="10" resizeabl e="fal se" />
</ Edi t or Confi g>
</ Edi t or >
</ Edi t or Modul e>

The element should be parallel to the existing <Edi t or Modul e> element.

d. Replace[site name] with the name of your application:

<Edi tor Modul e url="/ifcr/sites/[site name]/configuration/tools/xngr/modul es/
sanpl e_editors. swf">

For the default Discover Electronics reference application, this is Di scover.
e. Save and close the file.
4. Upload your custom content:
a. Navigate to the <app di r>\control directory.
b. Runtheset editors_confi g batch or shell script.
This uploads the sanpl e_edi t ors. swf and edi t or s. xni files to the Endeca Configuration Repository.
5. Upload a template that includes the custom editor:

a. Copyedi tor_sdk\reference\cartridge_tenpl at es\ Sanpl eEdi t or directory to your <app dir>
\ config\inport\tenpl at es directory.

b. Navigate to the <app di r>\control directory.
c. Runtheset _t enpl at es batch or shell script.
This uploads the template files to the Endeca Configuration Repository.
About custom editors in multiple locales
If your implementation supports multiple locales, you can localize your custom editors.
You must do the following:
+ Modify your editor's pom xni file

 Create resource properties files that contain localized strings

5 Extending the Assembler 215

+ Modify the editor module
+ Add the get Message() function to your custom editors to retrieve the localized strings
Modifying the POM file to support multiple locales
You need to pass a list of locales and a directive to the compiler to retain the declarations of embedded resource
bundles to the compiler. The following task uses a POM file for passing this information.
1. Open the pom xn file in an editor.
For the sample editor project, this is under edi t or _sdk\ r ef er ence\ bui | d\ maven

2. Within the <confi gur ati on>element add a <l ocal esConpi | ed> element with a list of locales:

<configuration>
<l ocal esConpi | ed>
<l ocal e>en_US</ | ocal e>
<l ocal e>fr_FR</| ocal e>
<l ocal e>de_DE</| ocal e>
</l ocal esConpi | ed>
</ confi guration>

This example includes US, French, and German locales.

3. Specify a <keepAs3Metadatas> element to a declare embedded resources bundles. This allows the editor
container to detect the embedded resources automatically.

<confi guration>
<l ocal esConpi | ed>
<l ocal e>en_US</| ocal e>
<l ocal e>fr_FR</| ocal e>
<l ocal e>de_DE</| ocal e>
</l ocal esConpi | ed>
<keepAs3Met adat as>
<keepAs3Met adat a>Resour ceBundl| e</ keepAs3Met adat a>
</ keepAs3Met adat as>
</ confi guration>

4. Save and close thefile.
Resources properties files
You must create resource property files for each locale for storing localized strings.

Each locale is required to reside in its own directory. The default location is sr ¢/ mai n/ | ocal es/ <l ocal e>
where <l ocal e> isthe SO language and region code combination. For example sr ¢/ mai n/ | ocal es/
en_US/ com endeca/ t ool s/ pagebui | der s/ sanpl es/ Sanpl eResour ces. properti es indicates that US
values are stored in the properties file.

Here is an example of Sanpl eResour ces. properti es file contents:

edi tor. sanpl e. nessage=Ent er your message in the follow ng box.

216 5 Extending the Assembler

This localized content can be obtained by the custom editor using the getMessage() function to retrieve the
string from the properties file. See the following example:

<ext: Editor>
<l-- ... -->
<nx: Form tem i d="propertyltent
| abel ="{i nfo.tenpl at eConfi g. @ abel }"
| abel W dt h="135"
| abel Styl eNane="1| eft Col unmLabel "
required="fal se">
<nx: Label text="{local e. get Message("' editor.sanpl e. nessage')}" />
<nx: Ri chText Edi t or i d="propertyVal ueText | nput"
ht ml Text ="{property.string}"
change="property.string = propertyVal ueText | nput. htm Text;"
bor der Thi ckness="3"
font Fam | y="Verdana"/ >
</ nmx: Form tenm>
</ ext: Editor>

Modifying an editor module for muliple locales.
You must modify your editor module for custom editors to add locale support for to your SWF file.
To modify your editor module:
1. Open the MXML registry file for your editor module.

For the sample editor project, open edi t or _sdk\ r ef er ence\ bui | d\ naven\ src\ mai n\ f | ex
\sanmpl e_editors. nxm .

2. Within the <edi t or : Edi t or Modul e> element, add a <nx: Met adat a> declaration of one or more resource

bundles to be included in the SWF.

For example:

<edi t or: Edi t or Modul e xm ns: nx="http://ww. adobe. conf 2006/ nxm "
xm ns: edi t or =" com endeca. t ool s. pagebui | der.editor.*">
<nx: Met adat a>
[Resour ceBundl e("com endeca. t ool s. pagebui | der. sanpl es: Sanpl eResour ces")]
</ mx: Met adat a>
<edi tor:registeredEditors>
<nx: Array>
<editor:EditorEntry
uri="http://endeca. conf sanpl e/ 2010"
| ocal Name="Ri chText Edi t or "
edi t or="com endeca. t ool s. pagebui | der. sanpl es. editors. Ri chTextEditor" />
</ mx: Array>
</ editor:registeredEditors>
</ edi t or: Edi t or Modul e>

3. Save and close the file.
4. Rebuild the editor module.
For the sample editor module, this consists of the following steps:

a. Navigate to the “ENDECA_TOOLS_ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven directory.

5 Extending the Assembler

b. Build the sample editor module using the following command:

mvn clean install

The sanpl e_edi t ors. swf file is output to the t ar get subdirectory.
5. Upload the editor module to your application:

a. Navigate to your build output directory.

For example, YENDECA_TOOLS ROOT% edi t or _sdk\ r ef er ence\ bui | d\ maven\t ar get .

b. Copy the editor SWF file to the conf i g\i mport\ confi gurati on\t ool s\ xngr directory of your
deployed application.

If this directory does not exist, you must create it.
c. Navigate to the cont r ol directory of your deployed application.

d. Runtheset _editors_confi g script.

Specifying dependencies between editors

You can set up dependencies between editors in the same cartridge such that the behavior of one editor is
dependent upon a property that is bound to another editor in the cartridge.

In a typical editor definition you can specify whether the editor is enabled via the enabl ed attribute. Editors are
enabled by default. You can disable the editor by setting the value of enabl ed to f al se as follows:

<StringEditor propertyNanme="norelLi nkText" |abel ="Title" enabl ed="fal se"/>

In this case, the value of the associated property (in this case, nor eLi nkText) displays in the Content Details
Panel but cannot be updated by the user.

The enabled status of an editor can be updated dynamically based on the value of another property by
replacing the literal value of the enabl ed attribute (either t r ue or f al se) with an expression that is evaluated
to determine the editor's behavior. For example:

<StringEditor propertyNane="norelLi nkText" |abel ="Title" enabl ed="{show\breLink ==
true}"/>

In this case, the string editor that enables editing of the text for the "More" link is not enabled unless the
property showbr eLi nk (which is bound to another editor) is set to true. This kind of dependency enables
you to assemble complex editing interfaces out of simple property editors, without writing custom editors that
contain the dependency logic.

The following example shows a template with two editors, where the enabled state of one editor depends on
the value of the property bound to the other editor. In this case, the string editor is disabled by default (because
the value of showMor eLi nk is f al se by default) and is not enabled until the user selects the "Enable 'More' link"
option in the Boolean editor.

218

5 Extending the Assembler

<Cont ent Tenpl ate xm ns="htt p://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schema/ xavi a/ 2010"
xm ns: editors="edi tors"
type="Si debarltent id="Fl at Di nensi on">
<l-- additional elenments deleted fromthis exanple -->
<Contentltenp
<Nanme>Fl at Di nensi on Exanpl e</ Nanme>
<Property nanme="show\breLi nk" >
<Bool ean>f al se</ Bool ean>
</ Property>
<Property nanme="norelLi nkText">
<String>Show More Refinenents...</String>
</ Property>
</ Contentlten>
<Edi t or Panel >
<Basi cContent |t enEdi t or >
<edi t or s: Bool eanEdi t or propertyNane="show\br eLi nk"
| abel ="Enabl e ' More' |ink" enabl ed="true"/>
<StringEdi tor propertyNane="norelLi nkText"
| abel ="' More' link text" enabl ed="{show\brelLink == true}"/>
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

The editor dependency expression language

The value of an attribute is treated as an expression if it is contained within {curly braces}, otherwise it is treated
as a literal value.

There is no validation for editor dependency expressions within a template, however, if an expression contains
syntax errors, an | nval i dExpr essi onEr r or is thrown upon initialization of the editor. Currently, the only
attribute for which expressions are evaluated is the enabl ed attribute.

Allowed operands

The expression language enables you to evaluate an expression based on the value of a particular property in
the same cartridge by comparing it to either a Boolean or string literal.

Operand Description Example expression

property name The name of the property thatthe | {sort == 'static'}
editor depends on. The value of
this property is used during the
evaluation of the expression.

The property is treated as a
Boolean if it is specified as the
<Bool ean> type, otherwise it is
treated as a string.

true Treated as a Boolean literal. {show\br eLi nk == true}

fal se Treated as a Boolean literal. {showMbr eLi nk == fal se}

5 Extending the Assembler 219

Operand

'string in single quotes'

Description

Treated as a string literal.

Example expression

{sort == 'static'}

Allowed operators

The expression language provides the following comparison operators for use in editor dependency
expressions. Order of operations are respected in editor dependency expressions.

Operator Description Example expression

== Equality {sort == 'static'}

= Inequality {sort !="'static'}

| Logical OR {sort == 'static' || sort
== 'default'}

&& Logical AND {sort == 'price' && order
== 'desc'}

no oper at or

If the expression is a property
name, it evaluates to the value of
the property.

{ showibr eLi nk}

Logical NOT

{! showivbr eLi nk}

(and)

Groups expressions in order to
enforce a particular evaluation
order.

{showivbreLi nk == true &&
(sort == 'static' || sort
== "default')}

Escaping characters when specifying editor dependencies

Because the editor dependency expressions are embedded in XML, it is important to apply the appropriate
escaping to special characters within expressions.

The editor dependency language supports two different ways to escape special characters.

XML escaping

Use this style of escaping for handling characters that may lead to invalid XML.

Name Character Escape sequence Note
representation
ampersand & &anp; Required, otherwise the

XML document is invalid.

220

5 Extending the Assembler

Name Character Escape sequence Note
representation

less than sign < < Required, otherwise the
XML document is invalid.

quotation mark " ; Required. Quotation
marks designate the
attribute value in

XML. Since the editor
dependency expression
is defined in an attribute
value, the quotation
mark must be escaped
or the XML document is
invalid.

greater than sign > > ; Optional. While escaping
this character is not
required to ensure that
the XML is valid, Oracle
recommends that you
escape the greater than
sign as with the less than

sign.
apostrophe or single ' ' Optional. Since single
quotation mark quotes are also used to

designate string literals,
you must escape single
quotation marks within
a string literal. However,
for readability, Oracle
recommends that you
escape single quotes
using the alternative
sequence\ ' instead.

Non-XML escaping

Use this style of escaping for an alternate method of escaping the single quotation mark or for handling other
special characters.

Character name Escape sequence
single quotation mark \'
backslash \\
backspace \'b

5 Extending the Assembler 221

Character name Escape sequence
horizontal tab \'t
line feed (new line) \'n
vertical tab \v
form feed \
carriage return \r

The following examples show editor dependency expressions and their escaped forms.

Unescaped expression Escaped format
{sort == "price' && order == 'desc'} {sort == "price' &anp;&anp; order ==
"desc'}
{generateMet adata == 'Don't generate'} {generateMet adata == 'Don\'t generate'}
{wel comeMessage == 'Hello, <nane>!'} {wel coneMessage == 'Hell o,
&l t; nane>!"'}

Enforcing a specific value when the editor is disabled

In some cases, when an editor is dynamically enabled based on the value of another property, you want to
ensure that the associated property has a specific value when the editor is disabled.

Specifying a "disabled value" for an editor ensures that whenever the enabl ed expression evaluates to false
(that is, the editor is dynamically disabled), the associated property is set to the specified value. This can be
useful in the case where the value of the property associated with the editor should be set to a default value
whenever the editor is disabled.

The disabled value for an editor is optional. If no value is specified and an editor is disabled, then its property
retains its most recently set value (whether this was originally a default value or specified by the content
administrator in Experience Manager). The content administrator cannot update the value while the editor is
disabled, but it preserves the latest setting in the case that the content administrator re-enables the editor at a
later point.

To specify a default value for an editor:

1. Specify a di sabl edVal ue attribute in the editor definition.

<edi t or s: Radi oG oupEdi t or propertyNane="showDi sabl edRef i nenent s"
| abel =" Show ' Di sabl ed Refinenents'"
enabl ed="{sort == 'static'}"
di sabl edVal ue="f al se"/>

222

5 Extending the Assembler

As with default property values, ensure that the disabled value for the property meets the constraints defined
by the editor. For a choice editor or radio group editor, is must be one of the options defined for the editor in
a <choi ce> element. For a numeric editor, it must be between the minimum and maximum values for the
editor.

The following example shows a radio group editor configured with a disabled value.

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conf schema/ xavi a/ 2010"
xm ns: editors="edi tors"
type="Si debarltent id="Fl at Di mensi on">
<l-- additional elenments deleted fromthis exanple -->
<Contentltenr
<Nanme>New Text Link Flat Di mensi on</ Name>
<l-- additional elenments deleted fromthis exanple -->
<Property name="sort">
<String>defaul t</String>
</ Property>
<Property nanme="showDi sabl edRefi nenents" >
<String>fal se</ String>
</ Property>
<l-- additional elenents deleted fromthis exanple -->
</ Contentlten
<Edi t or Panel >
<Basi cContent |t enEdi t or >
<l-- additional elenments deleted fromthis exanple -->
<edi t ors: Choi ceEditor | abel ="Sorting Options" propertyNane="sort">
<choi ce | abel ="Di mensi on default" val ue="default"/>
<choi ce | abel =" Al phanureric" value="static"/>
<choi ce | abel ="By frequency" val ue="dynRank"/>
</ edi t ors: Choi ceEdi t or >
<edi t or s: Radi oG oupEdi t or propertyNane="showDi sabl edRefi nenent s
| abel =" Show ' Di sabl ed Refinenents'"
enabl ed="{sort == 'static'}"
di sabl edval ue="fal se">
<choi ce | abel ="Yes" val ue="true"/>
<choi ce | abel ="No" val ue="fal se"/>
</ edi t ors: Radi oG oupEdi t or >
<l-- additional elenments deleted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

When the Content Details Panel is first instantiated, the selected value for the radio group editor is f al se,
which displays with the label "No," and the editor is disabled, because the default value of the sor t property
is not equal to st at i c. If the content administrator selects "Alphanumeric" from the choice editor, the radio
group editor is enabled, and the content administrator can change the value of showDi sabl edRef i nement s
to t r ue. However, if the content administrator later selects a different value from the choice editor (either
"Dimension default" or "By frequency"), the radio group editor is once again disabled and the value of
showDi sabl edRef i nement s settof al se.

5 Extending the Assembler 223

224 5 Extending the Assembler

6 Template Property and Editor
Reference

This section describes how to define basic content properties and associated editing interfaces in Experience
Manager templates.

Editor property mapping reference

This section provides an overview of which property types are associated with the different Oracle Commerce
Suite editors.

Oracle Commerce Core Editors

The following core editors are included with all installations of Oracle Commerce:

Editor Property Functionality
Type
Bool eanEdi t or <Bool ean> Displays as a checkbox that the content administrator selects
or de-selects. Optionally, the editor may be set to a read-only
state.
Choi ceEdi t or <String> Displays as a dropdown with an optional default value. The

content administrator selects from a set of pre-defined values.

Dynami cSl ot Editor <String> Displays as a drop-down list for specifying a valid content
collection, and a numeric stepper for setting the evaluation
limit for that collection.

| magePr evi ew (None) Displays an image from a specified URL.

6 Template Property and Editor Reference 225

Editor Property Functionality
Type

Numer i cSt epper Edi tor | <String> Displays as a one-line text field with a pair of arrow buttons
for increasing or decreasing the value by a set amount. The
content administrator inputs or adjusts the value to any
number within the minimum and maximum boundaries
defined in the editor.

Radi oG oupEdi t or <String> Displays as a series of radio buttons with an optional default
value. The content administrator selects from a set of pre-
defined values.

Recor dLi st Edi t or <xavi a: Li st>

Displays as a button that launches the microbrowser

and allows the content administrator to select

the list of records that populates a <xavi a: I t em

cl ass="com endeca. i nfront.cartridge. RecordSpot| i ght Sel ecti on"/
> record selection property.

SliderEditor <String> Displays as a slider bar. The content administrator selects a
value by moving the slider along specified intervals within the
minimum and maximum boundaries defined in the editor.

Spot | i ght Sel ect i onEdi|t exavi a: | t em> Displays as a button that launches the Select Records dialog

and allows the content administrator to select the navigation

state or list of records that populates a <xavi a: I t em

cl ass="com endeca.infront.cartridge. RecordSpot|ight Sel ecti on"/
> record selection property.

StringEditor <String> Displays as a text field or text area. The content administrator
enters arbitrary string values. Optionally, the editor may be set
to a read-only state to display a fixed, default value.

Oracle Experience Manager Editors

The following editors are included in the Oracle Experience Manager package:

226 6 Template Property and Editor Reference

Editor Property Functionality
Type

Boost Bur yEdi t or <xavi a: Li st >| Displays as a three-pane, drag-and-drop interface consisting
of a central pane that lists available dimension refinements, a
left pane for boosted refinements, and a right pane for buried
refinements. The content administrator can filter the list of
available dimensions by searching against a text string.

The editor populates two <xavi a: Li st > properties, one for
boosted dimension refinements and one for buried dimension
refinements.

Boost Bur yRecor dEdi t or| <xavi a: Li st >| Displays as two panes, Boosted Records and Buried Records,
each with an Edit List button that launches the Select Records
dialog. The content administrator uses the Select Records
dialog to populate the lists of boosted and buried records.

The editor populates two <xavi a: Li st > properties, one for
boosted records and one for buried records.

Di mensi onLi st Edi tor | <xavi a: Li st >| Displays as two panels, one with a list of available dimensions
and one with a list of selected dimensions. The content
administrator can drag values back and forth between the two
lists.

Di nensi onSel ect or Edi tjoxSt ri ng> Displays as a dropdown. The content administrator selects a
value from the list of available dimensions retrieved from the
MDEX Engine.

The editor populates two <xavi a: St ri ng> properties, one for
the dimension name and one for the ID.

Di mval Li st Edi t or <xavi a: Li st >| Displays as two panels, one with a list of available dimension
refinements and one with a list of selected refinements. The
content administrator can drag values back and forth between
the two lists. Additionally, the list of available refinements
includes a search box for finding specific refinements in a large
data set.

Gui dedNavi gat i onEdi t gr<Cont ent | t enliBisplays as a button for launching the Generate Guided
Navigation wizard, which allows a content administrator to
select and order a set of dimensions in order to create multiple
Refinement Menu cartridges at once.

6 Template Property and Editor Reference 227

Editor

Property
Type

Functionality

Li nkBui | der Edi t or

<xavi a: ltenmp

Displays two radio buttons, one for specifying an External link
via a text field, and one for specifying an Internal (Relative) link.
The content administrator specifies a relative link by selecting a
servlet from a dropdown list, then launching the Select Records
dialog to navigate to a specific record or a navigation state.

The editor populates a<xavi a: | t em

cl ass=com endeca. i nfront. cartridge. nodel . Li nkBui | der/
> item property. For more information, see "Adding a Link

Builder."

Medi aEdi t or

<xavi a: ltenmp

Displays as a Media URL field, with an associated preview box
and Select and Clear buttons for launching the media editor

or clearing the current URL. The content administrator can
browse through media in the configured source repository, and
generate a link to a selected asset.

RecordStratificationE

dixavi a: Li st >

Displays as two panes, Boosted Records and Buried Records,
each with an Edit List button that launches the microbrowser.
The content administrator uses the microbrowser to populate
the lists of boosted and buried records.

The editor populates two <xavi a: Li st > properties, one for
boosted records and one for buried records.

Ri chText Edi t or

<String>

Displays as a text area with a configurable formatting toolbar.
The content administrator enters arbitrary string values and can
include markup to add text formatting and hyperlinks.

Sort Edi t or

<xavi a:ltenmp

Displays as a dropdown. The content administrator selects a
sort order from those configured in the editor.

The editor includes multiple <xavi a: | t em

cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on"/
> item properties that each specify an available sort option. For

more information, see "Adding a Sort editor."

Related links

» Basic content properties (page 229)

» Complex property editors

(page 244)

228

6 Template Property and Editor Reference

Editor label configuration reference

All editors share a set of common attributes that can be used to configure the appearance of the editor in
Experience Manager.

When adding an editor to a template, you can configure its appearance by setting the following attributes:

Attribute Description

| abel This attribute enables you to specify a more descriptive label for the editor
in Experience Manager. If no label is specified, the value of the associated
pr oper t yNane is used by default.

| abel Position The position of the label text. Valid values are "I ef t " (the default) and
"top".

bot t onLabel This attribute allows you to specify a descriptive label that appears below the
editor.

tooltip This attribute allows you to specify mouseover text for the editor.

Basic content properties

Content items properties must be one of several basic types. All configuration models are composed of the
same primitive property types.

The basic content property types are:
e <String>

* <Bool ean>

* <xavi a: List>

* <xavia:ltenp

The following example shows a several properties of various types.

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: editors="editors"
xm ns: xavi a="http:// endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent " >

<!-- additional elements omtted fromthis exanple -->

<Contentltenp

6 Template Property and Editor Reference 229

<Narme>Resul t s Li st </ Nane>
<Property nanme="boost Strata">
<xavi a: Li st/ >
</ Property>
<Property name="buryStrata">
<xavi a: Li st/ >
</ Property>
<Property name="sort Option">
<xavi a: |l tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on">
<xavi a: Property nanme="| abel ">Most Sal es</ xavi a: Property>
<xavi a: Property nane="sorts">
<xavi a: Li st>
<xavi a: I tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nane="key">product. anal ytics.total _sal es</
xavi a: Property>
<xavi a: Property nanme="descendi ng" >f al se</ xavi a: Property>
</xavi a:ltenp
</ xavi a: Li st >
</ xavi a: Property>
</xavi a:ltenp
</ Property>
<Property nanme="rel Rank">
<l-- Margin Bias -->

<String>nterns, maxfi el d, exact, stati c(product. anal yti cs. conversi on_rat e, descendi ng) </
String>
</ Property>
<Property nanme="recor dsPer Page" >
<String>10</String>
</ Property>
</ Contentlten>
<l-- additional elements omtted fromthis exanple -->
</ Cont ent Tenpl at e>

Adding a string property

String properties are very flexible and can be used to specify information such as text to display on a page, URLs
for banner images, or meta keywords for search engine optimization.

To add a string property to a template:
1. Inserta <St ri ng> element inside a <Pr oper t y> element.
2. Optionally, specify the default value for the property as the content of the <St ri ng> element.

The following example shows a variety of string properties:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: edi tors="edi tors"
type="Si debar Cont ent " >
<l-- additional elements omtted fromthis exanple -->
<Contentltenp

230 6 Template Property and Editor Reference

<Nanme>Di mensi on Navi gati on</ Nane>

<Property nanme="di nensi onNane" >
<String/>

</ Property>

<Property nanme="di nensi onl d">
<String/>

</ Property>

<Property name="sort">
<String>defaul t</String>

</ Property>

<Property name="show\or eLi nk">
<Bool ean>f al se</ Bool ean>

</ Property>

<Property name="noreLi nkText">
<String>Show Mre Refinenments...</String>

</ Property>

<Property nanme="nunRefi nenents">
<String>10</String>

</ Property>

<Property name="nmaxNunRefi nement s" >
<String>200</String>

</ Property>

<l-- additional elements omtted fromthis exanple -->
</ Content|tenr
<l-- additional elenments onmtted fromthis exanple -->

</ Cont ent Tenpl at e>

Adding a string editor

You add a string editor to enable configuration of string properties. The string editor displays in the Experience
Manager interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want to
constrain the input to a specific enumeration of values, use a choice editor.

To add a string editor to a template:
1. Insert an <St ri ngEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify label attributes and additional attributes for the editor:

Attribute Description

pr opert yNane Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the string editor.

enabl ed If set to f al se, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Set this to f al se only if you
specify a default value in the definition of the string
property. Editors are enabled by default.

6 Template Property and Editor Reference 231

Attribute Description

Wi dth The width in pixels of the text field presented in the
Experience Manager interface. The default width is
100% and scales with the screen width.

Note

You cannot specify a percent value in your
editor configuration. You must specify the
editor width in pixels.

hei ght The height in pixels of the text field presented in
the Experience Manager interface. The default
height for a single-row field is 24 pixels. Setting the
value to 34 pixels or higher creates a multiline text
area with word wrap enabled.

The following example shows a variety of editing options for string properties:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
type="Resul t sPage" >
<l-- additional elenments onmtted fromthis exanple -->
<Contentltenr
<Nanme>Thr ee- Col uimm Navi gati on Page</ Name>
<Property nane="title">
<String>Di scover Electronics</String>
</ Property>
<Property nanme="net aKeywor ds" >
<String>canera caneras el ectronics</String>
</ Property>
<Property nane="netaDescri pti on">
<String>Endeca eBusi ness reference application.</String>
</ Property>
<l-- additional elenments onmtted fromthis exanple -->
</ Contentlten>

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<G ouplLabel | abel ="Page netadata"/>
<editors: StringEditor propertyName="title" |abel="Title" enabled="true"/>
<editors: StringEditor propertyNane="netaKeywords" | abel ="Meta keywords"
enabl ed="true" hei ght="72"/>
<editors: StringEditor propertyName="netaDescription" |abel ="Meta description"
enabl ed="true" hei ght="72"/>
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Note

Neither Experience Manager nor the Assembler applies HTML escaping to strings. This enables
content administrators to specify HTML formatted text in Experience Manager and have it rendered
appropriately. If you intend to treat a string property as plain text, be sure to add HTML escaping to
your application logic in order to avoid invalid characters and non-standards-compliant HTML.

232 6 Template Property and Editor Reference

Adding a choice editor

A choice editor enables the user to select from predefined string values for a property that are presented in a
drop-down list.

Choice editors affect the value of a string property. For example, you might use a choice editor to provide
sorting options for dimension values in a Guided Navigation cartridge:

Search Result Settings (apply when user provides search terms)

Relevance ranking | Margin Bias v |
Navigation Result Setting Margin Bias : sear
Inventory Bias

First

By Price (Static)

Frequency

To add a choice editor:
1. Insert an <edi t or s: Choi ceEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

propert yNanme Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the choice editor.

editable If setto t r ue, this attribute allows Experience
Manager users to specify custom string values. By
default, choice editors are not editable.

enabl ed If set to f al se, the choice editor displays in
Experience Manager but the value cannot be
changed by the user. By default, choice editors are
enabled.

pr onpt Specifies a custom prompt. The default prompt is
an empty string.

tooltip If present, specifies optional help text to display in a
tool tip window. The default behavior is no tool tip.

wi dt h The width, in pixels, of the choice editor. By default,
the width of the editor adjusts to fit the longest
choice in the editor. Use this attribute if you want to
set a fixed width for the editor.

6 Template Property and Editor Reference 233

3. Specify one or more menu options for the choice editor by adding <choi ce> elements. <choi ce> takes the
following attributes:

Attribute Description

val ue Required. The string value to assign to the
associated property if this <choi ce> is selected.

| abel This attribute allows you to specify a more
descriptive label for this option in the drop down
list. If no label is specified, the val ue is used by
default. You must either specify a| abel for all
of the choices or none of them. You cannot have
labels for some choices and not others.

Note

If you choose to make a choice editor
editable (so that users can enter arbitrary
strings), you should not use the | abel
attribute for choices. Instead, the choice
editor should display the raw value of
the string so that users entering custom
values can see the expected format of the
string property.

4. Optionally, set a default value in the corresponding <Cont ent | t en> property.

For example, to specify the default sort order for a dimension as the default choice for a choice editor with
propertyName="sort":

<Property nane="rel rank">
<l-- Margin Bias -->

<String>nterns, maxfiel d, exact, stati c(product. anal ytics. conversion_rate, descendi ng) </
String>
</ Property>

Note

Ensure that the default value for the property is one of the options defined for the choice editor in a
<choi ce> element.

The following example shows a choice editor configured with a

default value. The selected value when the editor is first instantiated is

nt er ms, maxfi el d, exact, stati c(product.anal ytics. conversion_rate, descendi ng), which displays
with the label "Margin Bias" in the drop-down menu. Content administrators can select a different sort order.

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent " >

234

6 Template Property and Editor Reference

<l-- additional elenments onmtted fromthis exanple -->
<Contentltenr
<Name>Resul t s Li st </ Nane>
<l-- additional elenments onmtted fromthis exanple -->
<Property nanme="rel rank">
<l-- Margin Bias -->

<String>nterns, maxfi el d, exact, stati c(product. anal ytics. conversion_rate, descendi ng) </

String>
</ Property>
<l-- additional elements omtted fromthis exanple -->

</ Contentltenr

<Edi t or Panel >
<Basi cContent | t enEdi t or >

<l-- additional elenments onmtted fromthis exanple -->
<GrouplLabel | abel ="Search Result Settings (apply when user provides search
ternms)"/>

<edi t ors: Choi ceEdi tor propertyNanme="rel rank" | abel ="Rel evance ranki ng">
<choi ce | abel ="Margi n Bi as"
val ue="nt erms, naxfi el d, exact, stati c(product. anal yti cs. conversi on_rate, descending)" />
<choi ce | abel ="I nventory Bi as"
val ue="nt er ms, maxfi el d, exact, stati c(product.inventory.count, descending)" />
<choi ce | abel ="First" value="first" />
<choice | abel ="By Price (Static)" value="static(product.price)" />
<choi ce | abel ="Frequency" val ue="freq" />
</ edi t ors: Choi ceEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a radio group editor

A radio group editor is similar to the choice editor in that it enables the user to select from predefined string
values for a property. The choices are presented as a set of radio button controls.

Although radio buttons are often used for binary choices such as yes/no, the radio group editor can be used for
any scenario where the user must specify exactly one value out of a number of options. In order to enable the
more general use case, the radio group editor affects the value of a string property.

To add a radio group editor:

1. Insert an <edi t or s: Radi oG oupEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify label attributes and the additional attributes for the editor:

Attribute Description

propert yNanme Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the choice editor.

6 Template Property and Editor Reference 235

Attribute Description

enabl ed If set to f al se, the radio group editor displays

in Experience Manager but the value cannot be
changed by the user. By default, radio group editors
are enabled.

3. Specify one or more radio button options by adding <choi ce> elements. <choi ce> takes the following

attributes:

Attribute Description

val ue Required. The string value to assign to the
associated property if this <choi ce> is selected.

| abel This attribute allows you to specify a more
descriptive label for the radio button associated
with this option. If no label is specified, the val ue is
used by default.

4. Optionally, set a default value in the corresponding <Cont ent | t en» property.

For example, to specify the default value for a radio group editor with
proper t yNane="showhDi sabl edRef i nenent s":

<Property nanme="showD sabl edRefi nement s" >
<String>fal se</String>
</ Property>

Note

Ensure that the default value for the property is one of the options defined for the editor in a
<choi ce>element.

The following example shows a radio group editor configured with a default value. The selected value when the
editor is first instantiated is f al se, which displays with the label "No."

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: editors="edi tors"
type="Si debarlteni >

<l-- additional elements omtted fromthis exanple -->
<Contentltenp
<l-- additional elenents onmtted fromthis exanple -->

<Property name="showDi sabl edRefi nement s" >
<String>fal se</ String>
</ Property>
<l-- additional elements omtted fromthis exanple -->
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elements omtted fromthis exanple -->

236 6 Template Property and Editor Reference

<edi t or s: Radi oG oupEdi t or propertyNane="showDi sabl edRefi nenent s"
| abel =" Show ' Di sabl ed Refinements'" enabl ed="true">
<choi ce | abel ="Yes" val ue="true"/>
<choi ce | abel ="No" val ue="fal se"/>
</ edi t ors: Radi oG oupEdi t or >
<l-- additional elements onmtted fromthis exanple -->
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

About numeric properties
Numeric properties should be specified as string properties in the template.

Properties that are expected to have numeric values can be associated with editors that are designed to work
with numbers. These editors guarantee that the property is assigned a numeric value.

Adding a numeric stepper

A numeric stepper enables content administrators to select a numeric value from a set of possible values by
stepping through values or typing into an input field.

The numeric stepper provides a single-line input text field and a pair of arrow buttons for stepping through
values. If a user enters number that is not a multiple of the st epSi ze property or is not in the range between
the maximum and minimum properties, this property is set to the nearest valid value.

To add a numeric stepper to a template:
1. Insert an <edi t or s: Nuneri ¢St epper Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the string editor.

wi dt h The width, in pixels, of the editor. The default width
is 60.

hei ght The height, in pixels, of the editor. The default
height is 24.

mi nVal ue The minimum value of the property bound to this

editor. The ni nVal ue can be any number, including
a fractional value. The default minimum value is 0.

maxVal ue The maximum value of the property bound to this
editor. The maxVal ue can be any number, including
a fractional value. The default maximum value is 10.

6 Template Property and Editor Reference 237

Attribute Description

st epSi ze The increment by which the property value is
increased or decreased when a user clicks on the
up or down arrows. The value must be a multiple of
this number. The default step size is 1.

The following example shows the configuration for a numeric stepper:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http:// endeca. conl schenma/ xavi a/ 2010"
xm ns: editors="edi tors"
t ype="Si debar Cont ent " >
<l-- additional elenments onmtted fromthis exanple -->
<Contentltenr
<Nanme>Di mensi on Navi gati on</ Nane>
<l-- additional elenments onmtted fromthis exanple -->
<Property nanme="nunRefi nenents">
<String>10</String>
</ Property>
<Property nanme="nmaxNunmRefi nement s" >
<String>200</ String>
</ Property>
<!-- additional elements omtted fromthis exanple -->
</ Contentltenr
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<edi tors: Nuneri cSt epper Edi t or propertyNane="nunRefi nenent s"
| abel =" Max. Refinenents" nmaxVal ue="10000" enabl ed="true"/>

<l-- additional elenments onmtted fromthis exanple -->
<edi tors: Nuneri cSt epper Edi t or propertyNane="naxNunRefi nenent s"
| abel ="' More' Max. Refinenments" maxVal ue="100000" enabl ed="true"/>

</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a slider

A slider enables content administrators to select a numeric value by moving a slider between predefined
endpoint values.

The current value of the slider is determined by the relative location of the thumb between the end points of the
slider, corresponding to the slider's minimum and maximum values.

To add a slider to a template:
1. Insert an <edi t or s: Sl i der Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify label attributes and additional attributes for the editor:

238

6 Template Property and Editor Reference

Attribute Description

propert yNanme Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the string editor.

wi dth The width, in pixels, of the editor. The default width
is 160.

hei ght The height, in pixels, of the editor. The default
height is 36.

def aul t The default position of the slider thumb. By default,
the thumb is set to 0.

m nval ue The minimum value of the property bound to this
editor. The ni nVal ue can be any number, including
a fractional value. The default minimum value is 0.

maxVal ue The maximum value of the property bound to this

editor. The maxVal ue can be any number, including
a fractional value. The default maximum value is 10.

snapl nt erval

Specifies the increment value of the slider thumb

as the user moves the thumb. A value of 0 means
that the slider moves continuously between the
minimum and maximum values. The default value is
0.

ticklnterval

The spacing of the tick marks. A value of 0 displays
no tick marks. The default value is 0.

preci sion Number of decimal places to use for the property
value and data tip text. A value of 0 means all values
are rounded to the nearest integer. The default
value is 0.

| abel s An array of strings to use for the slider labels. These

labels display at the beginning and end of the track
and, if there are more than two values, spaced
evenly between the two ends. By default, the
beginning and end of the slider track are labeled

in Experience Manager with the minimum and
maximum values.

The following example shows the configuration for a slider:

<Cont ent Tenpl ate xm ns="http://endeca. conl sche
xm ns: editors="editors" type="Si deb
<l-- additional elements omtted fromthis e
<!-- Define the content p

<Contentltenr

ma/ cont ent -t enpl at e/ 2008"
arltent >

xanpl e -->

roperties -->

6 Template Property and Editor Reference

239

<l-- additional elenments onmtted fromthis exanple -->
<!-- define nunmeric properties as sinple string properties -->
<Property name="nunRefi nements">
<String>10</String>
</ Property>
</ Contentlten>
<l-- Define editors for nuneric properties -->
<Edi t or Panel >
<Basi cContent |t enEdi t or >
<l-- additional elenents onmtted fromthis exanple -->
<edi tors: SliderEditor propertyName="nunRefi nements"
| abel =" Nunber of refinenments" m nVal ue="10" maxVal ue="30"
snapl nterval ="5" ticklnterval ="5" | abel s="10, 15, 20, 25, 30"/ >
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Boolean property

Boolean properties represent a true or false value and can be used to enable or disable features in your
application.

To add a Boolean property to a template:
1. Insert a <Bool ean> element inside a <Pr oper t y> element.

2. Optionally, you can specify the default value for the property.

<Property nane="el i gi bl eFreeShi ppi ng" >
<Bool ean>t r ue</ Bool ean>
</ Property>

Any value other than the string "t r ue" (case insensitive) defaults to a value of f al se.

The following example shows the configuration of a Boolean property:

<Cont ent Tenpl ate xm ns="http://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: edi tors="editors"
t ype="Header Cont ent " >
<l-- additional elements omtted fromthis exanple -->
<Contentlten
<Narme>Sear ch Box</ Nane>
<Property nane="aut oSuggest Enabl ed" >
<Bool ean>f al se</ Bool ean>
</ Property>

<l-- additional elements omtted fromthis exanple -->
</ Content|ten
<l-- additional elenments onmtted fromthis exanple -->

</ Cont ent Tenpl at e>

Adding a Boolean editor

A Boolean editor provides a checkbox for Experience Manager users to specify the value of a Boolean property.

240 6 Template Property and Editor Reference

To add a Boolean editor:
1. Insert a <edi t or s: Bool eanEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr oper t yNanme Required. The nane of the Boolean property that
this editor is associated with. This property must
be declared in the same template as the Boolean
editor.

enabl ed If set to f al se, the checkbox displays in Experience
Manager but the value cannot be changed by the
user. By default, checkboxes are enabled.

The following example illustrates a checkbox for specifying whether auto-suggest search results should be
enabled, with a default value of f al se:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
t ype="Header Cont ent " >
<l-- additional elenments onmtted fromthis exanple -->
<Contentltenr
<Nanme>Sear ch Box</ Name>
<Property nane="aut oSuggest Enabl ed" >
<Bool ean>f al se</ Bool ean>
</ Property>
<l-- additional elenments onmtted fromthis exanple -->
</ Contentltenr
<Edi t or Panel >
<Basi cContent |t enEdi t or >
<G ouplLabel | abel =" Aut o- Suggest Configuration"/>
<edi t or s: Bool eanEdi t or propertyNanme="aut oSuggest Enabl ed"
| abel =" Enabl e Aut o- Suggest"
enabl ed="true"/>
<l-- additional elements omtted fromthis exanple -->
</ Basi cContent|tenEditor>
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding an item property

A property can consist of a collection of properties (key-value pairs) of any valid type.

Because item properties can be used for a variety of purposes, InFront does not include any generic editors for
working with items. However, editors intended for specific purposes may store their values in item properties.

To add an item property to a template:

6 Template Property and Editor Reference 241

1. Insert a <xavi a: | t en> element inside a <Pr oper t y> element.

. Specify the cl ass attribute with the fully qualified class name of the configuration model class that
corresponding to this item property.

3. Optionally, specify a default value by inserting a <xavi a: Pr oper t y> of type <St ri ng>, <Bool ean>,
<xavi a: Li st >, or<xavi a: | t en». (A <Pr oper t y> with no type specified is treated as a string by default.)

Note

Properties defined within <xavi a: I t em» must declare the Xavia namespace (i.e.,
<xavi a: Pr opert y> instead of <Pr operty>.

Following is an example of a template that uses an item with a default value:

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"

xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"

t ype="Mi nCont ent " >
<!-- additional elenments onmtted fromthis exanple -->
<Contentlten
<Name>Resul ts Li st </ Name>
<l-- additional elements onmtted fromthis exanple -->
<Property name="sort Qption">
<xavi a: | tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property nanme="1|abel ">Mdst Sal es</xavi a: Property>
<xavi a: Property nane="sorts">

<xavi a: Li st>
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Spec" >

<xavi a: Property nane="key">product. anal ytics.total _sal es</xavi a: Property>
<xavi a: Property nanme="ascendi ng">true</ xavi a: Property>
</xavi a:ltemr
</ xavi a: Li st >
</ xavi a: Property>
</xavi a:ltemr
</ Property>

<l-- additional elements omtted fromthis exanple -->
</ Contentlten>
<!-- additional elenments omtted fromthis exanple -->

</ Cont ent Tenpl at e>

Following is an example of a template that uses an item without a default value:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"

xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conf schenma/ xavi a/ 2010"

t ype="Si debar Cont ent " >

<l-- additional elements omtted fromthis exanple -->
<Contentltenp
<!-- additional elenments omtted fromthis exanple -->

<Property nanme="recordSel ecti on">
<xavi a: ltem cl ass="com endeca. i nfront. cartridge. RecordSpot|i ght Sel ection" /

>
</ Property>
<l-- additional elements onmtted fromthis exanple -->
</ Content|tenr
<!-- additional elements omtted fromthis exanple -->

242 6 Template Property and Editor Reference

</ Cont ent Tenpl at e>

Adding a group label

In the Experience Manager interface, group labels can serve as a visual cue that several properties are related.

Group labels are only used to provide additional context in the editing interface of Experience Manager and do
not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they need to
configure the cartridge. For example, if a template defines properties that are required in order to render the
content properly, you can indicate these with a descriptive group label so that the content administrator can
easily identify the required fields in Experience Manager.

The editor panel in Experience Manager includes a default heading of "Section settings." This heading includes
the required Name field and the read-only t ype of a template, as well as any properties that are defined before
the first group label.

To add a group label to the editor panel:

1. Insert the <Gr oupLabel > element inside <Basi cCont ent | t enEdi t or > as in the following example:

<Cont ent Tenpl ate xm ns="http://endeca. conl schema/ cont ent -t enpl at e/ 2008
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conf schenma/ xavi a/ 2010"
type="Si debar Cont ent " >
<l-- additional elements omtted fromthis exanple -->
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<G oupLabel | abel ="Define Spotlight"/>
<editors: StringEditor propertyName="title" |abel="Spotlight Title"
enabl ed="true"/>
<editors: StringEditor propertyName="nmaxNumRecords" | abel ="Max Nunber O
Records" enabl ed="fal se"/>
<edi tors: RecordLi st Edi t or propertyNanme="recordSel ecti on" | abel ="Spot|i ght
Recor ds" >
<Pr evi ewPr operty nane="product. nanme"/>
</ edi tors: RecordLi st Edi t or >
<editors: StringEditor propertyName="seeAl | Link" |abel="See Al Link"
enabl ed="true"/>
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

<G oupLabel > is an empty tag that allows you to specify the label text with the | abel attribute.

6 Template Property and Editor Reference 243

Complex property editors

This section describes editors that are designed for specific aspects of feature configuration.

About the microbrowser

The microbrowser is used in several editors in the core cartridges to enable a content administrator to specify a
set of records. It is deprecated in this release; use the Select Records dialog instead.

The microbrowser is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms, dimension
refinements, or a combination of both). The content administrator can then do one of two things:

+ Save the current filter state to designate a dynamic set of records.

+ Select specific records from that filter state (or other filter states) to designate a set of specific featured
records.

An instance of a microbrowser is usually bound to a list property, which contains items that represent either
refinements or record IDs.

The microbrowser communicates with the MDEX Engine to retrieve search and navigation results.
Note

In order to enable the microbrowser, ensure that you have enabled communication between
Experience Manager and the MDEX Engine. For instructions, see "Communicating with the MDEX
Engine" in the Tools and Frameworks Installation Guide.

Data service configuration reference

The microbrowser uses a data service to access MDEX Engine information. By default, the service is configured to
provide relevant record properties for the Discover Electronics reference application.

The data service is configured in the file <app di r>confi g\i mport\ confi guration\tool s\xngr_.json,
as shown below:

"nane": "dataservice",

"host": "nyhost. nydomai n. cont',
"port": "15002",
"recordSpecNanme": "comon.id",
"aggregationKey": "product.code",
"recordFilter": "",

"wi | dcar dSear chEnabl ed": fal se,
"recordNaneField": "",

"fields": {
"product.id": "",
"product.nanme": "plain",
"product.price": "currency",

"product . short_desc":

244 6 Template Property and Editor Reference

It specifies the following:

Key Value
name The name of the service, "dataservice".
host The hostname or IP address of your MDEX Engine server. By default, this is populated

with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run thei niti al i ze_servi ces script.

port The port that the MDEX Engine server listens on. By default, this is populated with the
same port as the authoring MDEX Engine.

r ecor dSpecName The dimension used as the record specifier. This must be a unique identifier.

aggr egat i onKey Optional. Enables aggregated records mode in the microbrowser, using the specified
property or dimension as the aggregation key when displaying and sorting records.
All records with the same value in the selected dimension or property are treated as a
single record.

recordFilter Optional. The property used to filter records for record boost and bury.

wi | dcar dSear chEnakDptional. Wildcard search is enabled by default. If your configuration does not index
dimensions by wildcard index, you must explicitly set this property to f al se.

recor dNaneFi el d | Optional. The property that should be used to represent the name of a record.

fields Each key in the array of key/value pairs specifies a property or dimension to display
as a column in the microbrowser. Optionally, you may specify a formatting value from
among the following:

+ pl ai n — no formatting. Used as the default if no format value is present.
« currency — adds a dollar ($) symbol before the value.

+ integer — removes the decimal point and any trailing digits, if present. This setting
does not round the integer value.

« html — attempts to handle markup tags within the content returned from the
MDEX Engine.

Running <app dir>\control\set_editors_configpushes changes to the Discover Electronics reference
application.

6 Template Property and Editor Reference 245

About the Select Records dialog

The Select Records dialog is used in several editors in the core cartridges to enable a content administrator to
specify a set of records.

The Select Records dialog is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms, dimension
refinements, or a combination of both). The content administrator can then do one of two things:

+ Save the current filter state to designate a dynamic set of records.

+ Select specific records from that filter state (or other filter states) to designate a set of specific featured
records.

An instance of a Select Records dialog is usually bound to a <Li st > property in a cartridge template,
which contains <I t em> properties that represent either dimension refinements or record IDs. The dialog
communicates with the MDEX Engine to retrieve search and navigation results.

Note

In order to enable the Select Records dialog, ensure that you have enabled communication between
Experience Manager and the MDEX Engine. For instructions, see "Communicating with the MDEX
Engine" in the Tools and Frameworks Installation Guide.

The following editors launch the Select Records dialog:
+ Link Builder editor
+ Boost-Bury Record editor

+ Spotlight Selection editor

Select Records data service configuration reference

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a configurable
data service. By default, the service is configured to provide relevant record properties for the Discover
Electronics reference application.

The service endecaBrowserService in configured in the file, <app di r>\confi g\i nport\confi guration
\'t ool s\ xngr\ _. j son, as shown below:

{
"name" : "endecaBrowser Service"
"host": "nyhost. nydomai n. cont',
"port": "15002",
"recDi spl ayNanmeProp" : "product.name",
"recSpecProp": "common.id",
"recAggregati onKey": "product.code",
"recFilter": "",
"recl mgUrl Prop" : "product.ing_url _thunbnail",
"recDi spl ayProps": ["product.nanme", "product.price", "product.short_desc"],
"t ext SearchKey": "Al",
"t ext Sear chMat chMbde" : " ALLPARTI AL"

}

It specifies the following:

246

6 Template Property and Editor Reference

Key Value

name The name of the service, "endecaBrowserService".

host The hostname or IP address of your MDEX Engine server. By default, this is populated
with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run thei niti al i ze_servi ces script.

port The port that the MDEX Engine server listens on. By default, this is populated with
the same port as the authoring MDEX Engine.

recDi spl ayNamePr op The dimension used as the record display name in the editor that launches the
dialog.

r ecSpecPr op The dimension used as the record specifier. This must be a unique identifier.

recAggr egati onkey Optional. Enables aggregated records mode in the Select Records dialog using the
specified property or dimension as the aggregation key when displaying and sorting
records. All records with the same value in the selected dimension or property are
treated as a single record.

recFilter Optional. The property used to filter records for record boost and bury.

recl ngUr | Prop Optional. The property used to retrieve the URL for the record thumbnail image.

recDi spl ayPr ops An array of record properties to display in the dialog.

t ext Sear chKey Optional. Specifies the search key to apply to text searches in the Select Records
dialog.

t ext Sear chMat chMbde Optional. Specifies the match mode to apply to text searches in the Select Records
dialog.

You can modify these values as necessary for your own application. Running <app di r >\ control
\ set _edi t ors_confi g pushes changes to the Discover Electronics reference application.

About the Dynamic Slot editor

The Dynamic Slot editor enables the content administrator to configure a section of an application page at
query time by specifying one or more content folders from which to return content.

The editor has no associated template configuration, although it launches a configuration dialog in Experience
Manager. When the content administrator edits the cartridge in Experience Manager, the editor queries the
Endeca Configuration Repository for a list of content folders. These results are refined based on the template
type or template ID restrictions entered by the content administrator.

6 Template Property and Editor Reference 247

Creating a cartridge template with a dynamic slot

You should configure a separate cartridge template for each template type that requires dynamic slot
functionality.

To create a cartridge template with a dynamic slot:

1. Insert a Cont ent | t emthat includes the following properties:
s ruleLimt
+ cont ent Pat hs — Include a nested <xavi a: Li st/ > element.
+ tenpl at eTypes — Include a nested <xavi a: Li st/ > element.
+ tenpl at el ds — Include a nested <xavi a: Li st/ > element.

For example:

<Contentltenr
<Nane>Si debar Sl ot </ Nanme>
<Property name="ruleLimt"/>
<Property name="cont ent Pat hs" ><xavi a: Li st/ ></ Property>
<Property nane="tenpl at eTypes" ><xavi a: Li st/ ></ Property>
<Property nanme="tenpl at el ds" ><xavi a: Li st/ ></ Property>
</ Contentlten

These properties are sent in as configuration to a Cont ent Sl ot Conf i g object that dynamically
populates the page with a suitable content item. For more information, seeAbout Contentinclude and
ContentSlotConfig objects (page 9).

2. Add any default values.

For example:

<Contentltenr
<Nane>Si debar Sl ot </ Name>
<Property nanme="rul eLi mt"><String>1</Stri ng></Property>
<Property name="cont ent Pat hs" ><xavi a: Li st/ ></ Property>
<Property nane="tenpl at eTypes" >
<xavi a: Li st >
<xavi a: St ri ng>Secondar yCont ent </ xavi a: Stri ng>
</ xavi a: Li st >
<Property nane="tenpl at el ds" ><xavi a: Li st/ ></ Property>
</ Contentltenr

3. Inthe Edi t or Panel , insert an <edi t or s: Dynani cSl ot Edi t or > element within a
<Basi cCont ent | t enEdi t or >:

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<edi t ors: Dynam cSl ot Edi t or/ >
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >

248 6 Template Property and Editor Reference

4. Save and close the template.
5. Upload the template to your application:
a. Navigate to your <app dir>\control directory.

For the Discover Electronics reference application, this is C: \ Endeca\ apps\ Di scover\ control on
Windows, or/ usr/ | ocal / endeca/ apps/ di scover/ control on UNIX.

b. Run the set _t enpl at es batch or shell script.
Note

You must configure a cartridge handler for your template in order to use it in Experience
Manager.

The following shows the sample template in the Discover Electronics application for a sidebar dynamic slot
cartridge. The slot is restricted to cartridges of type Secondar yCont ent .

<Cont ent Tenpl ate xm ns="http://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: editors="edi tors"
t ype="Secondar yCont ent " >

<Descri ption>%{tenpl ate. descri pti on} </ Descri pti on>
<Thunbnai | Url >t hunbnai | . png</ Thunbnai | Ur | >

<Contentltenr
<Nanme>Secondary Content Sl ot </ Name>
<Property nane="cont ent Pat hs" ><xavi a: Li st/ ></ Property>
<Property nanme="tenpl at eTypes" >
<xavi a: Li st>
<xavi a: Stri ng>Secondar yCont ent </ xavi a: Stri ng>
</ xavi a: Li st >
</ Property>
<Property nane="tenpl at el ds" ><xavi a: Li st/ ></ Property>
<Property name="rul eLi mt"><String>1</String></Property>
</ Contentltenr

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<edi t ors: Dynam cSl ot Edi t or/ >
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

You must specify a cartridge handler for each cartridge template that you configure as a dynamic slot.
Specifying a cartridge handler for a dynamic slot template

All dynamic slot cartridges can share the same cartridge handler, but each unique cartridge must be explicitly
configured to do so.

As soon as you have created a cartridge template that uses a dynamic slot, you must register a cartridge handler
for that template. This cartridge handler should inherit the Car t r i dgeHandl er _Cont ent Sl ot handler.

To specify a cartridge handler for a dynamic slot template:

6 Template Property and Editor Reference 249

1. Open the configuration file for your application framework.

In the Discover Electronics reference application, this is the Spring context configuration file located in
YENDECA TOOLS ROOT% r ef er ence\ di scover - el ectroni cs- aut hori ng\ VEB- | NF\ assenbl er -
context.xm .

2. Configure a cartridge handler for your template that inherits or extends the Cont ent Sl ot Handl er.

In the Spring implementation of the Assembler, this consists of adding a new Car t r i dgeHand! er bean for
your dynamic slot cartridge:

a. Setthei d attribute to Cartri dgeHandl er _<tenpl ate_i d>.
b. Set the par ent attribute to the Cartri dgeHandl er _Cont ent Sl ot handler.
c. Setthe scope attribute to pr ot ot ype to instantiate a new handler each time one is required.

This results in configuration similar to the following:

<bean i d="CartridgeHandl er _MyPageSl ot" parent="Cartri dgeHandl er _Content Sl ot"
scope="prototype"/>

3. Repeate as necessary for any other dynamic slot templates in your application.

4. Save and close the file.

Adding a Link Builder

The Link Builder editor allows the content administrator to specify a link to a static page, a single selected record,
or a navigation state.

The Link Builder uses the Select Records dialog to enable the content administrator to browse to a single record
or a particular navigation state in the data set (which may include search terms, dimension refinements, or a
combination of both). Alternately, the Link Builder also supports entering an absolute URL to a static resource.

To add a Link Builder to a template:

1. Insertan | t emproperty named | i nk, of class com endeca. i nfront. cartri dge. nodel . Li nkBui | der, as
in the following example:

<Property name="link">

<ltem cl ass="com endeca. i nfront. cartridge. nodel . Li nkBui | der" xm ns="http://
endeca. com schenwn/ xavi a/ 2010" >

</ltenr
</ Property>

2. Within the | t emproperty, insert three empty Pr oper t y elements named pat h, | i nkType, and
queryString:

<Property nanme="link">
<ltem cl ass="com endeca. i nfront. cartridge. nodel . Li nkBui | der" xm ns="http://
endeca. conl schenwa/ xavi a/ 2010" >
<Property nane="path"></Property>

250

6 Template Property and Editor Reference

<Property nanme="linkType"></Property>
<Property name="queryString"></Property>
</ltenp
</ Property>

These properties are populated by the Select Records dialog and processed by the cartridge handler into an
action string.

3. Insert a corresponding <edi t or s: Li nkBui | der Edi t or > element within <Basi cCont ent | t enEdi t or >.

4. Specify the pr oper t yNane attribute for the editor:

<edi tors: Li nkBui | der Edi t or propertyNanme="1ink" enabl ed="true"/>

5. Specify any additional label attributes for the editor:

<edi tors: Li nkBui | der Edi tor propertyNane="1ink" | abel ="Link Destination"
enabl ed="true"/>

The following shows an example of a template that includes a link builder editor:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent " >
<!-- additional elenments omtted fromthis exanple -->
<Contentltenr
<Name>Medi a banner </ Nane>
<!-- additional elenments omtted fromthis exanple -->
<Property name="link">
<Item cl ass="com endeca. i nfront. cartridge. nodel . Li nkBui | der" xm ns="http://
endeca. conf schena/ xavi a/ 2010" >
<Property name="path"></Property>

<Property name="1inkType"></Property>
<Property nane="queryString"></Property>
</ltenr
</ Property>
<!-- additional elenments omtted fromthis exanple -->

</ Contentltenpr

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elements onmtted fromthis exanple -->
<GroupLabel | abel ="Link Settings"/>
<edi t or s: Li nkBui | der Edi t or propertyNane="1ink" |abel ="Link Destination"
enabl ed="true"/>
<!-- additional elenments omtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

About configuring the Link Builder

The Link Builder must be configured with a path to a data service in order to display the Select Records dialog.

6 Template Property and Editor Reference 251

Below is the configuration for the Link Builder in the editor configuration file for the Discover Electronics
reference application, located at <app di r >\ confi g\i nport\configuration\tool s\xngr\editors.xm:

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- additional elements renoved fromthis exanple -->
<Edi t or Config xm ns="http://endeca. com schenw/ edi t or - confi g/ 2010" >
<Edi t or Modul e url ="/ifcr/tool s/ pbx/ nodul es/ editors. sw">
<l-- additional elements renoved fromthis exanple -->

<Edi t or nanme="edi tors: Li nkBui | der Edi t or" >

<Edi t or Confi g resourcePat h="/configuration/tool s/ xmgr/services/
endecaBr owser Servi ce. json" />

</ Edi t or>

</ Edi t or Modul e>

<l-- additional elenments renoved fromthis exanple -->

<d obal Edi t or Confi g></ d obal Edi t or Confi g>

</ Edi t or Confi g>

To publish and view changes to the editor configuration file, run the <app di r>\ contr ol
\ set _edi t ors_confi g script and clear your browser cache.

Deprecated configuration

The Link Builder formerly supported multiple nested configuration properties that applied to all instances of the
editor in an application. This configuration model is deprecated in the current release:

Property Description

host The hostname or IP address of the MDEX Engine server to use for the Select Records
dialog.

port The port on which the specified MDEX Engine server listens.

spec The name of the property that serves as the record spec in the data set. This must be
a unique identifier.

sear chKey The name of a property, dimension, or search interface against which searches are
performed.

rol | upKey The rollup key (used for aggregated records) to apply to all queries made via this
MDEX.

mat chMode The match mode to use for text searches. Valid values for this property follow the

syntax of URL parameters for search mode, without the node+mat ch prefix.

i mgUr | Property

properties

The property that specifies the location of the thumbnail image for a record.

A comma separated list of record properties that display for each record returned by
the content administrator's search and navigation state in the link builder Assembler
application.

Specifying a path to a data service overrides these settings.

252

6 Template Property and Editor Reference

Related links
+ Select Records data service configuration reference (page 246)

+ About the Select Records dialog (page 246)

About the Media editor

The Media editor allows the content administrator to select and link to media assets stored in a content
repository.

The media editor consists of an Experience Manager editor and a lightweight Web application that enables the
content administrator to browse and navigate across a set of media assets in order to more easily find specific
files.

The default Discover Electronics reference application stores media directly in the Endeca Configuration
Repository and uses a built-in asset browser to present these assets to the content administrator. You may also
initialize an MDEX Engine to index media asset metadata and URIs as records, making them available for Guided
Navigation in an enhanced Media Browser.

Note

The configuration repository provides an acceptable store for media files when used for preview
purposes in an authoring environment, but Oracle recommends serving media assets from a media or
content delivery server for production environments.

About the Media Browser

The default asset browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are using another system for managing media assets, you must stand up a
corresponding media MDEX Engine and enable the Media Browser in the editor configuration file.

Adding a Media editor

A Media editor allows a content administrator to link media into a cartridge. It can be combined with the Link
Builder in order to create images that link to destinations in your application, such as those used in site banners.

To add a Media editor to a template:

1. Insertan | t emproperty named nedi a, of class com endeca. i nfront. cartri dge. nodel . Medi albj ect,
as in the following example:

<Property nane="nedi a">

<l tem cl ass="com endeca. i nfront. cartridge. nodel . Medi aCbj ect” xm ns="http://
endeca. conl schenwa/ xavi a/ 2010" >

</ltemr
</ Property>

2. Within the | t emproperty, insert six empty Pr oper t y elements:
s ouri

*« contentWdth

6 Template Property and Editor Reference 253

+ cont ent Hei ght
* contentBytes
* content Type

* cont ent Sr cKey

<Property nanme="nedi a">
<ltem cl ass="com endeca. i nfront. cartridge. nodel . Medi aCbj ect” xm ns="http://
endeca. com schena/ xavi a/ 2010" >
<Property nanme="uri"></Property>
<Property name="cont ent Wdth"></Property>
<Property nane="cont ent Hei ght " ></ Property>
<Property nanme="cont ent Byt es" ></ Property>
<Property nanme="cont ent Type" ></ Property>
<Property nane="cont ent SrcKey" ></ Property>
</ltenpr
</ Property>

These properties are populated by the Select Records dialog and processed by the cartridge handler.
3. Insert a corresponding <edi t or s: Medi aEdi t or > element within <Basi cCont ent | t enEdi t or >.

4. Specify the pr oper t yNane attribute for the editor:

<edi t ors: Medi aEdi t or propertyNane="nedi a" enabl ed="true"/>

5. Specify any additional label attributes for the editor:

<edi tors: Medi aEdi t or propertyNanme="nedi a" | abel ="Media U l" enabl ed="true"/>

The following shows an example of a template that includes a media editor as part of a media banner cartridge:

<Cont ent Tenpl ate xm ns="http://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: edi tors="edi tors"
xm ns: xavi a="http://endeca. com schema/ xavi a/ 2010
t ype="Mai nCont ent " >
<l-- additional elenments onmtted fromthis exanple -->
<Contentlten
<Name>Medi a banner </ Name>
<l-- additional elenments onmtted fromthis exanple -->
<Property name="nedi a">
<l tem cl ass="com endeca. i nfront. cartridge. nodel . Medi aCbj ect" xm ns="http://
endeca. com schena/ xavi a/ 2010" >
<Property name="uri">/</Property>
<Property name="cont ent Wdt h"></Property>
<Property nane="cont ent Hei ght " ></ Property>
<Property nanme="cont ent Byt es" ></ Property>
<Property nanme="cont ent Type" ></ Property>
<Property nane="cont ent SrcKey" ></ Property>
</ltenr
</ Property>
</ Content|ten

254

6 Template Property and Editor Reference

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<G ouplLabel | abel ="Medi a"/>
<edi tors: Medi aEdi t or propertyNanme="nedi a" | abel ="Media U l" enabl ed="true"/>
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

In order to use the Media editor, if you are using the Endeca Configuration Repository as your media store, you
must upload any media files to the repository. If you are using an external digital asset management system
with a corresponding MDEX Engine, the matching application must be configured and running and the Media
Browser must be enabled.

Related links
+ Uploading media to the Endeca Configuration Repository (page 256)
About Media editor configuration

You can specify allowable media formats in the editor configuration file. You can also enable or disable the
Media Browser, and specify the MDEX Engine that it should query for media records.

The Discover Electronics reference application uses the Endeca Configuration Repository to store media and
accesses these resources through a default asset browser, rather than relying on the Media Browser and an
accompanying media MDEX Engine.

Below is the configuration for the Media editor in the editor configuration file, located at <app dir>\config
\inport\configuration\tool s\xnmgr\editors.xm:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- additional text renpved fromthis exanple -->
<Edi t or Confi g xm ns="http://endeca. com schenwn/ edi t or - confi g/ 2010" >
<Edi t or Modul e url="/ifcr/tool s/pbx/ nodul es/editors. swf">
<l-- additional elements renoved fromthis exanple -->
<Edi t or nane="editors: Medi aEdi t or" >
<Edi t or Confi g>
<useMedi aBr owser >f al se</ useMedi aBr owser >
<medi aRoot s>
<def aul t >htt p: // myhost . nydonai n. com 8006/i fcr/sites/Di scover/ medi a/
</ defaul t>
<medi aSour ce>htt p: // myhost. mydonai n. com 8006/ i fcr/sites/ Di scover/
nedi a/ </ nedi aSour ce>
</ medi aRoot s>
<mdexPort >17000</ mdexPort >
<nmdexHost >nyhost . nydonai n. conx/ ndexHost >
<vi deoFor mat s>f | v| f 4v| 3pg| nov| np4</ vi deoFor nat s>
<i mageFor mat s>j pg| j peg| png| gi f </ i mageFor mat s>
<nedi aURI >/ i fcr/sites/Di scover/ nmedi a/ </ medi aURIl >
</ Edi t or Confi g>
</ Edi t or >
<!-- additional elenments renoved fromthis exanple -->
</ Edi t or Modul e>
<d obal Edi t or Conf i g></ d obal Edi t or Confi g>
</ Edi t or Confi g>

6 Template Property and Editor Reference 255

This sets the following properties across all instances of the media editor in the application:

Property

Description

useMedi aBr owser

This property enables or disables the media browser. By default, it is set to f al se.

medi aRoot This property specifies the absolute URLs to available media repositories. It includes
anested def aul t property that points to the Endeca Configuration Repository, and
an additional property for each repository indexed by the media MDEX Engine. For
more information, see "About resolving media paths in content items."

def aul t The absolute URL to the Endeca Configuration Repository, used by the default asset

browser. The specified host and port should match those used by Workbench.

content source
(medi aSour ce)

An absolute URL to a media content source. In the reference data application,
records are assigned a medi a. r eposi t ory_i d property with a value of
nmedi aSour ce.

Your own data ingest process may assign different values for media served from
varying locations. In this case, each nedi a. r eposi t ory_i d value should have a
corresponding element in the editor configuration file that identifies the URL for
that content source.

ndexPor t

nmdexHost

For applications using the Media Browser, this is the hostname or IP address of the
media MDEX Engine server.

For applications using the Media Browser, this is the port on which the specified
media MDEX Engine server listens.

vi deoFor mat s

A pipe-delineated list of valid video formats. Any videos not matching a listed format
do not display in either the default asset browser or Media Browser.

i mgeFor nat s

A pipe-delineated list of valid image formats. Any images not matching a listed
format do not display in either the default asset browser or Media Browser.

medi aURI

The location of the media node within the Endeca Configuration Repository. This is
only used by the default asset browser.

Note

The default list of video and image formats includes only those that are supported by the included
renderers for the Discover Electronics reference application. If you wish to extend this list for your
own application, ensure that your cartridge renderers can handle additional formats, and that your
application includes logic for displaying them.

Uploading media to the Endeca Configuration Repository

If you wish to use the ECR as your media content source, you can upload assets directly to Experience Manager.
This is required if you aren't using the Media Browser and are instead using the default Flex-based asset
navigator for the media editor. It can also be useful in a development environment, where a separate media
server may not be worth the effort of maintaining.

256

6 Template Property and Editor Reference

All applications created using the Deployment Template include a set _nedi a script in the <app dir>
\ control directory. This script uploads media content from the <app di r >\ confi g\ nedi a directory to the
Endeca Configuration Repository. After uploading content, it becomes available for use in Experience Manager.

In general, you can store moderate amounts of media content in the Endeca Configuration Repository. Very
roughly speaking, a moderate amount of media content is approximately thousands of media files but not tens
of thousands of media files. This storage mechanism is intended as a convenience when you build an application
in a development environment.

If you have larger amounts of media content, Oracle recommends employing a digital asset management
system rather than uploading the media content into the Endeca Configuration Repository.

Here are a few specific guidelines to keep in mind before you upload media content to the Endeca Configuration
Repository:

+ Do not upload more than approximately 1 GB of media content per transaction. In this context, a transaction
is one run of set _nedi a.

+ Do not upload more than approximately 5000 files in one transaction. This guideline essentially means
you should not have more than approximately 5000 files stored in <app di r >\ confi g\ nedi a and its
subdirectories.

+ If you have more than approximately 1000 files to upload, create subdirectories under <app di r>\config
\ medi a and distribute the media files among the subdirectories. (One run of set _nedi a uploads all content
in all subdirectories.)

To upload media content for use in Experience Manager:
1. Ensure any new media content is stored locally in <app di r >\ confi g\ nedi a.
This may include image files, video files, and so on.
2. Ina command prompt, navigate to the <app di r>\ control directory of your deployed application.
This is located under your application directory. For example: C: \ Endeca\ apps\ Di scover\control .
3. Runthe set _nedi a script.
4. To verify that your media assets are available:
a. Log in to Workbench.
b. Open Experience Manager.
c. Select a cartridge that includes the Media editor.
d. Click the Select button to launch the Media editor and confirm that your media assets display.
About resolving media paths in content items

Links to media assets are resolved in the Media editor by combining configuration in the editor configuration
file with the nedi a. pat h property on the selected record. At runtime, these links are resolved against the media
sources specified in the Assembler context file.

About media root elements

You identify authoring content sources as nested elements within the <medi aRoot s> element in the editor
configuration file. The name of each such element corresponds to the value of the nedi a. repository_i d

6 Template Property and Editor Reference 257

property assigned to each record in your media MDEX Engine. The value of each element identifies the root
location of the authoring content source.

When a content administrator opens the Media Browser in Experience Manager, media assets are retrieved
for preview by appending the value of the nedi a. pat h property on the record to the corresponding content
source element within <medi aRoot s>. The nedi a. pat h is then saved to the content item when the content
administrator saves the cartridge configuration.

By keeping the relative location of your media assets consistent across environments, you can maintain separate
content sources for authoring and live environments without requiring content administrators to reconfigure
content items.

For example, assume the following element within <medi aRoot s> in the editor configuration file:

<myMedi aSour ce>ht t p: // myhost . mydomai n. com 8006/ myCMs/ Di scover/ medi a/ </ nyMedi aSour ce>

A media record with a nedi a. r eposi t ory_i d value of "myMedi aSour ce" and a medi a. pat h value of
"i mages/ f 0o. j pg" would resolve to:

http:// myhost. mydonai n. com 8006/ myCMS/ Di scover/ nedi a/ i mages/ f 0o. j pg

At runtime, the value of the nmedi a. pat h property is instead appended to the appropriate media source
configured in assenbl er - cont ext . xni :

<l--

~ Medi a Sources

<bean i d="aut hori ngMedi aSour ces" cl ass="java.util.ArrayList" lazy-init="true">
<constructor-arg>
<list>
<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property nanme="sourceNane" val ue="M/Medi aSource" />
<property nane="sourceVal ue" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr/sites/
${wor kbench. app. nane}/ nmedi a/" />
</ bean>
<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property nanme="sourceNane" val ue="default" />
<property nane="sourceVal ue" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr/sites/
${wor kbench. app. nane}/ nmedi a/" />
</ bean>
</list>
</ constructor-arg>
</ bean>

<bean id="1iveMedi aSources" class="java.util.ArraylList" lazy-init="true">
<constructor - ar g>
<list>
<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property nane="sour ceNane" val ue="M/Medi aSource" />
<property name="sourceVal ue" val ue="/imges/" />
</ bean>

258 6 Template Property and Editor Reference

<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property name="sourceNane" val ue="default" />
<property nane="sourceVal ue" val ue="/inmages/" />

</ bean>
</list>
</ constructor-arg>

</ bean>

In a live environment, the aforementioned media record would resolve to:

http:// myhost. mydomai n. com 8006/ myBi gger Fast er CM5/ Di scover/ nmedi a/ asset s/ i mages/ f 0o. j pg

Note

While the tooling, authoring, and live content sources can all differ, Oracle recommends configuring
the Media Browser to use the authoring content source.

Enabling the Media Browser

The default browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are serving media assets from an external content source, you must enable the
Media Browser and configure it to use your media MDEX Engine.

You can enable and configure the Media Browser by modifying the editor configuration file for your application.
To enable the Media Browser in the Media editor:

1. Navigate to the editor configuration file at <app di r>\ confi g\i nport\ confi gurati on\t ool s\ xngr
\editors.xn.

2. Locate the <Edi t or Conf i g> element for the Media editor:

<Edi t or nane="editors: Medi aEdi t or" >
<Edi t or Confi g>
<useMedi aBr owser >f al se</ useMedi aBr owser >
<medi aRoot s>
<def aul t >htt p: / / myhost . nydonai n. com 8006/ fcr/sites/Di scover/ medi al </
def aul t >
<medi aSour ce>htt p: // myhost . mydomai n. com 8006/ i fcr/sites/Di scover/ medi a/ </
medi aSour ce>
</ medi aRoot s>
<mdexPort >17000</ ndexPor t >
<nmdexHost >nynedi ahost . mydomai n. con</ ndexHost >
<vi deoFor mat s>f | v| f 4v| 3pg| nov| np4</ vi deoFor mat s>
<i mageFor mat s>j pg| j peg| png| gi f </ i mageFor mat s>
<medi aURI >/ i fcr/sites/ Di scover/ nedi a/ </ medi aURI >
</ Edi t or Confi g>
</ Edi t or >

3. Within the <Edi t or Conf i g> element, change the value of the <useMedi aBr owser > property tot r ue:

<useMedi aBr owser >t r ue</ useMedi aBr owser >

6 Template Property and Editor Reference 259

4. Include a content source element under <nedi aRoot s>that points to your media host.

The element name is a unique key that identifies a media host. Each record has a corresponding
medi a. r eposi t ory_i d property that identifies its content source. The relevant content source property
maps that source to a URL.

For example, in the CAS crawl configuration for the reference data application, each record is assigned a
medi a. reposi t ory_i d property with a value of medi aSour ce. The medi aSour ce property in the editor
configuration file specifies the URL:

<medi aRoot s>
<def aul t >htt p: // myhost . nydomai n. com 8006/ fcr/sites/Di scover/ medi a/ </ def aul t >
<medi aSour ce>ht t p: // myhost . mydonai n. com 8006/ i fcr/sites/Di scover/ medi a/ </

medi aSour ce>

</ medi aRoot s>

Note

The <def aul t > value is only used by the default asset browser. For more information, see "About
Media editor configuration" and "Media MDEX Engine schema definition."

5. Modify the <ndexPor t > and <ndexHost > elements to point to the host and port of the MDEX Engine
backing your media host.

6. Save and close the file.
7. Navigate to the <app di r>\control directory.

8. Runtheset _edi tors_confi g script to publish your changes to the Endeca Configuration Repository.

Related links
+ Using an MDEX Engine to index media assets (page 260)

Using an MDEX Engine to index media assets
If you are storing media resources in an independent content store, you can set up an MDEX Engine where
records represent media assets and include asset metadata and URIs. Storing this information as records allows
content administrators to navigate assets based on image size, modification date, or other attributes when

selecting media assets for a content item.

Tools and Frameworks includes a reference media MDEX application, including a CAS pipeline and Deployment
Template configuration.

Interaction between Experience Manager and the media MDEX Engine

The interactions between a media MDEX Engine, Experience Manager, and an Assembler application are
summarized below.

Interaction between a media MDEX Engine and Experience Manager

Experience Manager retrieves media asset information as follows:

260 6 Template Property and Editor Reference

r _,,1_» Media MDEX
edia Content Source 1 Engine

}C "_ﬁ‘)
A
LM

Media Content Source 2 |

= i A

Waorkbench

v

Experience
Manager

Assuming that an MDEX Engine exists with media records that adhere to the required data schema:

1. In Experience Manager, the Media Browser queries the media MDEX Engine for media records. This allows the
content administrator to select media assets by navigating across them with Guided Navigation.

2. The content administrator's configuration changes are published to the application each time a content item
is saved.

Interaction between the media content source and an Assembler application

In a production environment, the Assembler application can be configured to retrieve media assets from a
content delivery network or another media delivery server:

6 Template Property and Editor Reference 261

Content Delivery
Metwark

Web
Application

1. Media assets are uploaded from the media content source to the runtime content delivery network.
2. The application retrieves media from this content delivery network.

Note

The server hosting media assets can differ between authoring and live environments, as long as

the media path relative to the media root is consistent. In the case of the reference pipeline, the

authoring Discover Electronics Web application serves as the content source. For more information on
configuring content sources, see About Media editor configuration (page 255).

Overview of the reference data application

The Tools and Frameworks package includes a reference implementation of a media MDEX Engine that includes
a CAS crawl and Forge pipeline for crawling resources on the file system and indexing the corresponding
metadata and URIs. The Experience Manager can then query the MDEX Engine for record information.

The reference media application illustrates the schema requirements and configuration that you should use
when building your own media pipeline.

Software requirements

In addition to the hardware and software required for Oracle Tools and Frameworks, the data ingest process for
the reference data application requires the Oracle Content Acquisition System. You must have CAS installed on
the machine on which you are running the ITL process for the data application.

Reference CAS crawl
The crawl uses the following manipulators:

1. Directory Filter: Filters out directory records, so that only media files are output to the MDEX Engine.

262 6 Template Property and Editor Reference

2. Image Property Generator: Analyzes image binaries to determine their width and height. It adds
corresponding i mage. wi dt h and i mage. hei ght properties to each record.

3. Application Property Generator: Assigns a nedi a. appl i cat i on property based on the application
specified when running the Deployment Template. This allows the Media Browser to display only those
media assets that are relevant to the application that the content administrator is currently modifying in
Workbench.

4. Path Manipulator: Creates a nedi a. pat h property that contains the path to given asset with respect to the
media root.

Media MDEX Forge pipeline
The Forge pipeline for the reference data application reads data from the Record Store populated by the CAS
crawl and runs manipulators against the data to generate the required MDEX Engine schema.

Deploying the reference data application for Discover Electronics

The reference media MDEX Engine data application assumes an environment where all required Oracle
components are running on the same machine.

You must have the Oracle Content Acquisition System and Oracle Tools and Frameworks installed on the
machine onto which you wish to deploy the media MDEX Engine.

The reference data application runs an MDEX Engine with indexed media resources, and integrates with the
Discover Electronics reference application to expose the media records to a business user in the Media editor in
Experience Manager. The records include properties for metadata, such as image dimensions, making it easier to
narrow down a large quantity of media assets to those that fit the requirements for a cartridge in the front-end
application.

To deploy the reference data application:

1. Include the CAS manipulators for the reference data application as server plugins:
a. Navigate to the UCAS_ROOT% | i b\ cas- ser ver - pl ugi ns.
b. Create a directory named nedi aMDEX.

c. Navigate to the YENDECA_TOOLS ROOT% r ef er ence\ nedi a- ndex- cas\ cas\ nedi a- ndex-
mani pul at or s directory.

d. Copy the following JAR files to the UCAS_ROOT% | i b\ cas- ser ver - pl ugi ns\ medi aMDEX directory you
created in step 1b:

* nedi a- ndex- mani pul at or s-<versi on>.j ar
* guava-14.0.j ar
2. Restart the CAS Service.
3. Deploy the reference data application:
a. Open a command prompt or command shell.
Note

If you are running the Tools and Frameworks from the included batch files, you must run
Tool sAndFr amewor ks/ <ver si on>/ server/ bi n/ set env. bat to set the environment
variables for the current command window.

6 Template Property and Editor Reference 263

b. Navigate to the Tool sAndFr amewor ks\ <ver si on>\ depl oynent _t enpl at e\ bi n directory.

c. Rundepl oy. bat ordepl oy. sh with the following options:

depl oy --app <Endeca Directory>/ Tool sAndFr amewor ks/ <ver si on>/ r ef er ence/ nedi a- ndex-
cas/ depl oy. xm

d. Confirm the Platform Services installation directory.
e. Enter n to skip installation of a base application.
f. Specify medi a as the application name.
g. Specify the application directory.
Typically, this is C: \ Endeca\ apps on Windows, or/ usr/ | ocal / endeca/ apps on UNIX.
h. Specify the EAC port previously used for the Discover Electronics reference application.
By default, this is port 8888.
i. Specify the port that Workbench runs on.
By default, this is port 8006.
j. Specify a Dgraph port.
Note
This must be a different port from any other Dgraphs used for other applications.

By default, this is port 17000. If you change this value, you must also update the configuration for the
Medi aEdi t or inthe confi g\i nport\ configuration\tool s\ xngr\editors.xnl file after deploying
the application.

k. Specify the CAS installation directory.

I. Specify the CAS version.

m. Enter the port that CAS runs on.
By default, this is port 8500.

n. Enter the name of the application in which you wish to enable media browsing.
For the Discover Electronics reference application this should be Di scover.

o. Enter the absolute path to the location on disk where media assets are stored.

This is the file path that the Content Acquisition System crawls to index the files. In a default Discover
Electronics deployment it is C: \ Endeca\ apps\ Di scover\ confi g\ nedi a on Windows, orusr /| ocal /
endeca/ apps/ Di scover/ confi g/ medi a on Unix.

4. Provision the application with the EAC and run a baseline update:

a. Navigate to the cont r ol directory of the deployed media application.

264

6 Template Property and Editor Reference

b. Runtheinitialize_services scriptto provision the application in the EAC.

c. Runthebasel i ne_updat e script to crawl the directory specified in Step 4 and index the assets in the
MDEX Engine.

Pipeline configuration for a media crawl

In order for the Media Browser in Experience Manager to have sufficient information for forming content XML,
any pipeline that you configure for a media MDEX Engine must define specific properties and dimensions.

Required properties

The following properties are required for the Media Browser to function correctly:

Field Description

record.id A unique identifier for each of the media items.

medi a. nane The filename of the media asset.

medi a. pat h The file path, relative to the root of the content source.

nmedi a.repository_id The logical host of the content source. The value of this property is mapped

to configuration elements for the Media editor in the editor configuration
file, which in turn contain the path to the content source. For additional
information, see "About Media editor configuration.”

nmedi a. appl i cation The EAC application that the specified media asset is associated with. The
Media editor in Experience Manager filters entries in the Media Browser based
on which application the content administrator is currently editing.

nedi a. si ze The binary size of the media asset, in bytes.

i mage. hei ght The height of the media asset, if it is an image. The renderer for the Media
editor uses this information to scale images appropriately.

i mage. wi dth The width of the media asset, if it is an image. The renderer for the Media
editor uses this information to scale images appropriately.

Properties and dimensions provided in the reference data application

Optionally, additional properties and dimensions can be displayed in the Media Browser. The reference
implementation of a media MDEX Engine includes the following such fields:

Field Type Description

nedia.file_type Property The MIME type of the media asset. This enables filtering by
media type and file extension in the Media Browser.

6 Template Property and Editor Reference 265

Field Type Description

nmedi a. | ast _nodi fi cati on_Bagperty The date and time that the file was last modified prior to
being crawled by the Content Acquisition System.

fileType Dimension A searchable dimension based on nedi a. fi | e_t ype values.

hei ght ,wi dt h Dimension Searchable dimensions based oni mage. hei ght and
i mage. wi dt h values.

application Dimension A searchable dimension based on nedi a. appl i cati on
values.

If you configure your own media MDEX Engine that includes properties or dimensions not listed above, they
become available for Guided Navigation in the Media Browser. However, any such properties are not saved to
content XML once a media asset has been selected.

Search interface requirements

The Media Browser requires a defined search interface named "All" that includes all searchable properties
and dimensions in the data set. Additionally, the Media Browser in the reference application uses the
"MatchAllPartial" search mode.

Adding a Boost-Bury Record editor

The Boost-Bury Record editor enables a content administrator to specify certain records to display either at the
top or bottom of the list of results for a page.

The Boost-Bury Record editor uses the Select Records dialog to enable the content administrator to specify
either an ordered list of record IDs or a set of refinements that define the set of records to be boosted or buried.

Note

The Boost-Bury Record editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Boost-Bury Record editor:
1. Insert an <edi t or s: Boost Bur yRecor dEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNanme Required. The nane of the item property that
represents the records to be boosted to the top of
the results. This property must be declared in the
same template as the Record Stratification editor.

266 6 Template Property and Editor Reference

Attribute Description

buryProperty Required. The nane of the list property that
represents the records to be buried at the bottom
of the results. This property must be declared in the
same template as the Record Stratification editor.

The following shows an example of a template that includes a Boost-Bury Record editor:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="editors"
xm ns: xavi a="http://endeca. conf schema/ xavi a/ 2010"
type="Mai nCont ent " >
<!-- additional elements omtted fromthis exanple -->
<Contentltenp
<Name>Resul t s Li st </ Nane>
<Property nanme="boost Strata">
<xavi a: Li st/ >
</ Property>
<Property name="buryStrata">
<xavi a: Li st/ >
</ Property>
<!-- additional elements omtted fromthis exanple -->
</ Contentlten>

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<edi tors: editors: Boost BuryRecor dEdi t or propertyNanme="boost Strata"
buryProperty="buryStrata" |abel ="Custoni ze Results List" />
<l-- additional elenments onmtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Related links
+ Select Records data service configuration reference (page 246)

» About the Select Records dialog (page 246)

Adding a Guided Navigation editor

The Guided Navigation editor enables a content administrator to quickly create a navigation menu through the
use of the Generate Guided Navigation wizard.

Note

The Guided Navigation editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A content administrator can use the Generate Guided Navigation button to trigger the Generate Guided
Navigation wizard. The wizard allows them to select and order a set of dimensions to add as Refinement Menu
cartridges. Alternately, they can choose to add, order, and configure the cartridges manually.

6 Template Property and Editor Reference 267

To add a Guided Navigation editor:
1. Insert an <edi t or s: GQui dedNavi gat i onEdi t or > element within <Basi cCont ent | t enEdi t or >.
2. SetapropertyNane attribute on the <edi t or s: Gui dedNavi gat i onEdi t or > element.

This must be set to the nane of the Cont ent | t enLi st property that represents the list of Refinement Menu
content items. The property must be declared in the same template.

3. Insertan <edi t or s: Cont ent | t emMappi ng> element within the editor.
4. Map the content item name to the dimension property that should populate it.

This determines the name of the Refinement Menu content items created by the Generate Guided Navigation
wizard.

a. Include an <endeca: Nane/ > element within </ endeca: Cont ent | t enVappi ng>:

<endeca: Cont ent | t emVappi ng>
<endeca: Nare/ >
</ endeca: Cont ent | t emvappi ng>

b. Specify the dimension property to use for the content item name in a di mensi onPr oper t y attribute:

<endeca: Cont ent | t emVappi ng>
<endeca: Nane di nensi onProperty="di spl ay_nanme" />
</ endeca: Cont ent | t emVappi ng>

c. Specify the dimension name as a fallback value.

The Generate Guided Navigation wizard uses the first non-nul | value when naming a newly-created
content item.

<endeca: Cont ent | t emVappi ng>
<endeca: Nane di mensi onProperty="di spl ay_nane" />
<endeca: Nane di mensi onProperty="endeca: nane" />
</ endeca: Cont ent | t emVappi ng>

5. Map the di nensi onNane and di mensi onl D properties to the dimension properties that populate them:

<endeca: Cont ent | t emVappi ng>
<endeca: Nane di mensi onProperty="di spl ay_nane" />
<endeca: Nane di nensi onProperty="endeca: nane" />
<endeca: Property name="di nensi onNanme" di mensi onProperty="endeca: nane" />
<endeca: Property name="di nensi onl d" di nensi onProperty="endeca:identifier" />
</ endeca: Cont ent | t emVappi ng>

The following shows an example of a template that includes a guided navigation editor:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: endeca="edi tors" type="SecondaryContent">
<Descri ption>Creates a contai ner for navigation cartridges. </ Description>

268 6 Template Property and Editor Reference

<Thunbnai | Url >/ifcr/tool s/ xmgr/ing/tenpl ate_t hunbnai |l s/ Secondary_Gui dedNav. png</
Thunbnai | Ur | >

<Contentltenp
<Nanme>Navi gat i on Cont ai ner </ Nane>
<Property nanme="navi gation">
<Contentltenli st type="Navigation" />
</ Property>
</ Contentlten>

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<endeca: Gui dedNavi gati onEdi t or propertyNane="navi gati on"
| abel ="" >
<endeca: Cont ent | t emVappi ng>
<l-- additional elenments onmtted fromthis exanple -->
<endeca: Nane di mensi onProperty="di spl ay_nane" />
<endeca: Nane di mensi onProperty="endeca: nane" />
<endeca: Property nane="di nensi onNane"
di nensi onPropert y="endeca: nane" />
<endeca: Property nane="di nensi onl d"
di mensi onProperty="endeca:identifier" />
</ endeca: Cont ent | t emvappi ng>
</ endeca: Qui dedNavi gati onEdi t or >
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Dimension Selector

A Dimension Selector enables a content administrator to specify a dimension by name.

Note

The Dimension Selector communicates with the MDEX Engine. In order to enable the Dimension
Selector, ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

To add a Dimension Selector:
1. Insert an <edi t or s: Di nensi onSel ect or Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

propert yName Required. The nane of the string property that
represents the dimension name. This property must
be declared in the same template as the Dimension
Selector.

6 Template Property and Editor Reference 269

Attribute Description

i dProperty Required. The nane of the string property that
represents the dimension id. This property must be
declared in the same template as the Dimension
Selector.

enabl ed If set to f al se, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Use this option only if you
specify a default value in the definition of the
dimension name and dimension ID properties.
Editors are enabled by default.

The following shows an example of a template that includes a dimension selector:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
xm ns: editors="edi tors"
type="Navi gation">
<Descri pti on>Di spl ays Endeca Facet Navigation in a Text Link Rendering. For Fl at
Di nensi ons only. </ Descri ption>
<Thunbnai | Url >/ifcr/tool s/ xnmgr/ing/tenpl ate_t hunbnai | s/ di nensi on_navi gati on. j pg</
Thunbnai | Ur | >
<Contentltene
<Nanme>Di mensi on Navi gati on</ Nane>
<Property nanme="di nensi onNane" >
<String/>
</ Property>
<!-- additional elements omtted fromthis exanple -->
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<edi t ors: Di nensi onSel ect or Edi t or propertyNane="di mensi onNane"
i dPr operty="di nmensi onl d"
| abel =" Di mensi on Name" enabl ed="true"/>
<l-- additional elements onmtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Related links

+ Select Records data service configuration reference (page 246)

+ About the Select Records dialog (page 246)

Adding a Dimension List editor

The Dimension List editor enables a content administrator to select a list of dimensions from the application
data set. The templates included with the reference application use this editor to specify which dimensions
should be available for display in a dimension search auto-suggest panel or a dimension search results panel.

270 6 Template Property and Editor Reference

Note

The Dimension List editor communicates with the MDEX Engine. In order to enable the editor, ensure
that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Dimension List editor:
1. Insert an <edi t or s: Di nensi onLi st Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The nane of the List property that
represents the selected dimension values. The
property must be declared in the same template.

The following shows an example of a template that includes a dimension list editor:

<Cont ent Tenpl ate xm ns="htt p://endeca. conf schenma/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http:// endeca. conl schena/ xavi a/ 2010"
xm ns: editors="edi tors" type="Mi nContent">
<Descri pti on>Di spl ays di nensi on search results. </ Description>
<Thunbnai | Url >/ifcr/tool s/ xnmgr/inmg/tenplate_thunbnails/
Mai n_Di nensi onSear chResul t s. png</ Thunbnai | Ur | >
<Contentltenp
<Nare>Di nensi on Search Resul t s</ Nane>
<l-- additional elenments onmtted fromthis exanple -->
<Property nane="di nensi onLi st">
<xavi a: Li st/ >
</ Property>
<l-- additional elements onmtted fromthis exanple -->
</ Content|tenr

<Edi t or Panel >
<Basi cCont ent | t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<edi t or s: Di nensi onLi st Edi t or propertyNanme="di nensi onLi st"
| abel =" Di nensi ons Sear ched"
enabl ed="true"/>
<l-- additional elements onmtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Dimension Value Boost-Bury editor

The boost-bury editor enables a content administrator to specify certain dimension values to display either at
the top or bottom of the list of refinements for a particular dimension.

6 Template Property and Editor Reference 271

In order to enable a Dimension Value Boost-Bury editor, the cartridge template must include a di mensi onl d
property with an associated editor or a default value. This specifies the dimension to which the boost-bury
editor applies.

Note

The Dimension Value Boost-Bury editor makes use of an auto-suggest dimension search component
to enable the content administrator to quickly find the relevant dimension values. In order for this
component to display partial matches as the user types in the search box, ensure that wildcard search
is enabled for dimension searches in your MDEX Engine configuration.

To add a Dimension Value Boost-Bury editor:
1. Insert an <edi t or s: Boost Bur yEdi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

propert yNanme Required. The nane of the list property that
represents the list of dimension values to be
boosted to the top of the list of refinements. This
property must be declared in the same template as
the boost-bury editor.

di nensi onld Required. The ID of the dimension that contains the
dimension refinements to boost or bury.

boost Property Required. The nane of the list property that
represents the list of dimension values to be
boosted to the top of the refinement list. This
property must be declared in the same template as
the boost-bury editor.

buryProperty Required. The nane of the list property that
represents the list of dimension values to be
buried at the bottom of the list of refinements. This
property must be declared in the same template as
the boost-bury editor.

enabl ed If set to f al se, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Use this option only if you
specify a default value for the boost Li st and

bur yLi st properties. Editors are enabled by
default.

The following shows an example of a template that includes a dimension value boost-bury editor:

<Cont ent Tenpl ate xm ns="htt p://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http://endeca. conf schenma/ xavi a/ 2010"
xm ns: editors="edi tors"

272 6 Template Property and Editor Reference

type="Navi gati on">
<Descri pti on>Di spl ays Endeca Facet Navigation in a Text Link Rendering. For Fl at
Di nensi ons only. </ Descri ption>
<Thunbnai | Url >/ifcr/tool s/ xmgr/inmg/tenplate_t hunbnail s/ di mensi on_navi gati on. j pg</
Thunbnai | Ur | >
<Contentltenp
<Nanme>Di mensi on Navi gati on</ Nane>
<Property nanme="di nensi onNane" >
<String/>
</ Property>
<Property nanme="di nensi onl d">
<String/>
</ Property>
<l-- additional elements omtted fromthis exanple -->
<Property nane="boost Refi nenents">
<xavi a: Li st/ >
</ Property>
<Property nanme="buryRefinenments">
<xavi a: Li st/ >
</ Property>
</ Contentlten>
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elements onmtted fromthis exanple -->
<edi t or s: Boost Bur yEdi t or propertyNane="boost Refi nenent s"
buryProperty="buryRefi nenents"
| abel =" Boost and Bury" di nensi onl dProperty="di mensi onl d" enabl ed="true"/>
<l-- additional elenments onmtted fromthis exanple -->
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Dimension Value List editor

The Dimension Value List editor enables a content administrator to select a list of dimension values from the
application data set.

Note

The Dimension Value List editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Dimension Value List editor:
1. Insert an <edi t or s: Di nval Li st Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNanme Required. The nane of the List property that
represents the selected dimension values. The
property must be declared in the same template.

6 Template Property and Editor Reference 273

Attribute Description

di mensi onl d Required. The ID of the dimension that the editor
applies to.

The following shows an example of a Refinement Menu template that uses two Dimension Value List editors to
specify boosted and buried refinements, instead of a Dimension Value Boost-Bury editor:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: xavi a="http:// endeca. conl schenma/ xavi a/ 2010"
xm ns: editors="edi tors"
t ype="Navi gation">
<Descri pti on>Di spl ays Endeca Facet Navigation in a Text Link Rendering. For Flat
Di mensi ons only. </ Descri ption>
<Thunbnai | Url >/ifcr/tool s/ xnmgr/imy/tenpl ate_t hunbnai | s/ di nensi on_navi gati on. j pg</
Thunbnai | Ur |l >
<Contentltenp
<Nanme>Di mensi on Navi gati on</ Nane>
<l-- additional elenments onmtted fromthis exanple -->
<Property nane="di nensi onl d">
<String/>
</ Property>
<l-- additional elements omtted fromthis exanple -->
<Property nane="boost Refi nenents">
<xavi a: Li st/ >
</ Property>
<Property nane="buryRefi nements">
<xavi a: Li st/ >
</ Property>
</ Contentltenr
<Edi t or Panel >
<Basi cContent | t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->

<G ouplLabel | abel ="Boost and Bury D nensi on Refinenents"/>
<edi t ors: Di nval Li st Edi tor di mensi onl dProperty="di nensi onl d"

propertyNanme="boost Ref i nenments" | abel = "Boost Records"/>
<edi t ors: Di nval Li st Edi t or di mensi onl dProperty="di nensi onl d"
propertyNane="buryRefi nenents" | abel = "Bury Records"/>
<l-- additional elements omtted fromthis exanple -->

</ Basi cContent |t entEdi t or>
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding an Image Preview

An image preview retrieves an image from a URL and displays it in the Experience Manager interface.

You can construct an image preview URL from a hard-coded value, or from any number of String properties.
Image preview supports JPEG, GIF, and PNG image formats.

Note

If images are hosted on a different server from Workbench, you may have to configure a cross-domain
policy file to enable Flash player to access those resources.

274

6 Template Property and Editor Reference

To add an image preview to a template:

1. Insert an <l magePr evi ew> element within <Basi cCont ent | t enEdi t or >.

2. Specify attributes for the image preview:

Attribute

Description

ur | Expression

maxHei ght

maxW dt h

di splayUrl

Required. The source of the image URL. You can
construct ur | Expr essi on from any number of
string properties, or you can enter a static value.

The height in pixels of the image preview presented
in the Experience Manager interface. The default
value is 100.

The width in pixels of the image preview presented
in the Experience Manager interface. The default
value is 300.

A Boolean indicating whether to display the
resolved URL. The default value ist r ue.

If you are using more than one string property to compose the URL, you may want to use a <G oupLabel > to
indicate to Experience Manager users that these properties are related.

The following examples show options for constructing an image preview.

6 Template Property and Editor Reference

275

<Cont ent Tenpl ate ... >
<Contentltenp
<Nanme>Di nensi on Navi gati on</ Name>

</ Contentltenr
<Edi t or Panel >
<Basi cContent | t enEdi t or >

<l magePrevi ew
ur | Expr essi on=
| abel =" Banner | mage"
maxW dt h="200"
maxHei ght =" 100" />

</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

<Cont ent Tenpl ate ... >

<Contentltenr
<Nanme>Di mensi on Navi gati on</ Nane>
<Property nanme="i mage_src">

<String/>

</ Property>

</ Contentlten>

<Edi t or Panel >
<Basi cContent |t enEdi t or >

<l magePr evi ew
ur| Expressi on=""
| abel =" Banner | nage"
maxW dt h="200"
maxHei ght =" 100" />

</ Basi cContent | t enEdi t or >
</ Edi t or Panel >

</ Cont ent Tenpl at e>
Add a corresponding <St ri ngEdi t or > to the <Edi t or Panel >, and set the value of ur | Expr essi on to the

<Cont ent Tenpl ate ... >

<Contentltenp
<Nanme>Di mensi on Navi gati on</ Nane>
<Property nane="i nage_src">

<String/ >

</ Property>

</ Content|ten>

<Edi t or Panel >
<Basi cContent | t enEdi t or >

<StringEdi tor propertyNane="image_src" |abel ="|I mage nanme" enabl ed="true"/>
<l magePr evi ew

url Expression="http://1 ocal host: 8006/ Di scover/{i mage_src}"

| abel =" Banner | mage"

maxW dt h="200"

maxHei ght =" 100" />

</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

276 6 Template Property and Editor Reference

Adding a Record Stratification editor

The Record Stratification editor enables a content administrator to specify certain records to display either at the
top or bottom of the list of results for a page.

The Record Stratification editor uses the microbrowser to enable the content administrator to specify either an
ordered list of record IDs or a set of refinements that define the set of records to be boosted or buried.

Note

The Record Stratification editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Record Stratification editor:
1. Insertan <edi t ors: RecordStrati fi cati onEdit or >element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yName Required. The nane of the item property that
represents the records to be boosted to the top of
the results. This property must be declared in the
same template as the Record Stratification editor.

buryProperty Required. The nane of the list property that
represents the records to be buried at the bottom
of the results. This property must be declared in the
same template as the Record Stratification editor.

The following shows an example of a template that includes a record stratification editor:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="editors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent " >
<l-- additional elements omtted fromthis exanple -->
<Contentltenr
<Narme>Resul ts Li st </ Nane>
<Property nanme="boost Strata">
<xavi a: Li st/ >
</ Property>
<Property name="buryStrata">
<xavi a: Li st/ >
</ Property>
<!-- additional elements omtted fromthis exanple -->
</ Content|tenr

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<editors: RecordStratificationEditor propertyNanme="boostStrata"
buryProperty="buryStrata" |abel ="Custoni ze Results List" />

6 Template Property and Editor Reference 277

<l-- additional elenments onmtted fromthis exanple -->
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Rich Text editor

The Rich Text editor provides a text field and formatting toolbar that allows a content administrator to include
formatted text and hyperlinks in a content item.

To add a Rich Text editor to a template:

1. Inserta <St ri ng> element inside a <Pr oper t y> element.

2. Optionally, specify the default value for the property as the content of the <St ri ng> element.

3. Insert a corresponding <edi t or s: Ri chText Edi t or > element within <Basi cCont ent | t enEdi t or >.

4. Specify the pr oper t yName attribute for the editor:

<editors: Ri chText Edi tor propertyNanme="description" enabl ed="true"/>

5. Specify any additional label attributes for the editor:

<editors: Ri chText Edi t or propertyName="description" |abel ="Descri pti on"
enabl ed="true"/>

6. Specify the height and toolbar configuration for the editor:

<editors: Ri chText Edi tor propertyName="description" |abel ="Descri pti on"
enabl ed="true" hei ght="200" tool bar="]

{ nane: 'docunent', items : ['Source'] },
{ name: 'clipboard, itens :
["Cut',' Copy','Paste','PasteText','PasteFromrd','-"',"'Undo',"'Redo'] },
{ nane: 'insert', items : ['lImage',' Table',' Horizontal Rule',"' Special Char'] },
{ nane: 'paragraph', itens :
["NunmberedList','BulletedList','-","Qutdent',"'Indent',"'-","JustifylLeft"',
"JustifyCenter','JustifyRight','JustifyBlock'] },
{ name: 'links', items : ['Link',"Unlink'," Anchor'] },
e
{ nane: 'basicstyles', itens :
["Bold,'Italic',"Underline',"Strike',"'Subscript',"'Superscript'] },
{ nanme: 'styles', itenms : ['Styles','Format','Font','FontSize'] },
{ nane: 'colors', items : ['TextColor'] }
171>
Note

The Rich Text editor is an implementation of the open source CKEditor WYSIWYG Rich Text editor.
For more information about toolbar buttons and their functionality, see the documentation for
version 4.x of the CKEditor at http://docs.ckeditor.com/#%21/guide/dev_toolbar.

278 6 Template Property and Editor Reference

http://docs.ckeditor.com/#%21/guide/dev_toolbar

The following shows an example of a template that includes a rich text editor:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mi nCont ent " >
<l-- additional elements omtted fromthis exanple -->
<Contentltene
<Nane>Cat egor yDescri pti on</ Name>
<Property nanme="description">
<String></String>
</ Property>
</ Contentlten

<Edi t or Panel >
<Basi cContent | t enEdi t or >
<G ouplLabel | abel ="Contents"/>
<editors: RichText Edi tor propertyName="description" |abel ="Descri pti on"
enabl ed="true" hei ght="200"

t ool bar ="
{ nane: ‘'docunent’, itenms : ['Source'] },
{ name: 'clipboard, itens :
["Cut',' Copy','Paste','PasteText',"'PasteFromArd','-"',"'Undo',"'Redo'] },
{ nanme: ‘'insert', itens :
["Inmage', "' Table',' Horizontal Rul e',' Special Char'] 1},
{ name: 'paragraph', itens :
[" NunberedList', ' BulletedList','-","Qutdent',"'Indent',"'-",

"JustifylLeft', ' JustifyCenter','JustifyRight','JustifyBlock'] },

{ name: 'links', itenms : ['Link',"Unlink',"' Anchor'] },
v
{ name: 'basicstyles', itens :
["Bold ,"Italic',"Underline',"Strike',"'Subscript','Superscript'] },
{ name: 'styles', itens :
["Styles','Format',' Font','FontSize'] },
{ nanme: 'colors', itenms : ['TextColor'] }
11>

</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Record List editor

The Record List editor uses the microbrowser to enable a content administrator to designate specific records to
spotlight in a section, or to specify a query to return a dynamic list of records. This editor is deprecated.

Note

The Record List editor communicates with the MDEX Engine. In order to enable the editor, ensure that
you have enabled communication between Experience Manager and the MDEX Engine.

A Record List editor is bound to a Recor dSpot | i ght Sel ect i on property, which can contain either a list of
record IDs (for featured records) or a set of refinements (for dynamic records).

To add a Record List editor to a template:

6 Template Property and Editor Reference 279

1. Insert an | t emproperty of class com endeca. i nfront. cartri dge. Recor dSpot | i ght Sel ecti on named
recor dSel ecti on as in the following example:

<Property nane="recordSel ecti on">
<xavi a: ltem cl ass="com endeca. i nfront. cartri dge. RecordSpot | i ght Sel ecti on" />
</ Property>

2. Insert an <edi t or s: Recor dLi st Edi t or > element within <Basi cCont ent | t enEdi t or >,

3. Specify label attributes and the additional attributes for the editor:

Attribute Description

pr opert yNanme Required. The nane of the record selection property
that represents the records to be spotlighted. This
property must be declared in the same template as
the Record Stratification editor.

4. Insert a <Pr evi ewPr oper t y> element within <edi t or s: RecordStrati fi cati onEdi t or > with the
following attribute:

Attribute Description

name The name of the record property to display in the
Content Details Panel indicating which records have
been selected for boost or bury.

The following shows an example of a template that includes a record list editor:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Si debar Cont ent " >
<!-- additional elenments omtted fromthis exanple -->
<Contentltenr
<Nanme>Spot | i ght records</ Name>
<!-- additional elenments omtted fromthis exanple -->
<Property nanme="recordSel ecti on">
<xavi a: ltem cl ass="com endeca. i nfront. cartridge. RecordSpot|i ght Sel ection" /

</ Property>
<l-- additional elenments onmtted fromthis exanple -->

</ Content|tenr

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<G ouplLabel | abel ="Define Spotlight"/>
<l-- additional elenments onmtted fromthis exanple -->
<edi tors: RecordLi st Edi t or propertyNanme="recordSel ecti on"
| abel =" Spot | i ght Records">
<Pr evi ewPr operty nanme="product. nanme"/>
</ edi tors: RecordLi st Edi t or >

280 6 Template Property and Editor Reference

<l-- additional elenments onmtted fromthis exanple -->
</ Basi cContent |t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Specifying record sort options

The sort Opt i on property of the results list cartridge enables the content administrator to specify a default sort
order to apply to the results list when a site visitor reaches the page via navigation.

The available default sort options are defined in the Sort editor definition, which enables the content
administrator to select from a predefined set of sort orders. The sort options that are available to the site visitor
to apply to the results list are configured in the cartridge handler for this cartridge.

To specify sort options for the record list:

1. Insert an item property of class com endeca. i nf r ont . navi gat i on. nodel . Sort Opti on named
sort Opti on:

<Property name="sort Option">
<xavi a: |l tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on"/ >
</ Property>

2. Optionally, specify a default value for the property. The Sor t Opt i on model includes the following properties:

Property Name Description

| abel A descriptive label that displays in a drop-down
menu in Experience Manager.

sorts A list of one or more items of class
com endeca. i nfront. navi gati on. nodel . Sort Spec.
Each Sor t Spec has two properties:

+ key — A string representing the name of an
Endeca property or dimension on which to sort

+ descendi ng — A Boolean value representing
the sort direction

The following shows an example of a template that specifies a default sort option:

<Cont ent Tenpl ate xm ns="http://endeca. conl schena/ cont ent -t enpl at e/ 2008"

xm ns: editors="editors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent " >

<l-- additional elements omtted fromthis exanple -->

<Contentlten
<Narme>Resul t s Li st </ Nane>
<l-- additional elements omtted fromthis exanple -->
<Property nanme="sort Qption">

<xavi a: I tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on">

6 Template Property and Editor Reference 281

<xavi a: Property nanme="| abel ">Most Sal es</ xavi a: Property>
<xavi a: Property nane="sorts">
<xavi a: Li st >
<xavi a: I tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nane="key">product. anal ytics.total _sal es</xavi a: Property>
<xavi a: Property nane="ascendi ng">true</ xavi a: Property>
</ xavi a: ltemr
</ xavi a: Li st>
</ xavi a: Property>
</ xavi a: ltemr
</ Property>

<l-- additional elenments onmtted fromthis exanple -->
</ Content|tenr
<l-- additional elements omtted fromthis exanple -->

</ Cont ent Tenpl at e>

Adding a Sort editor

A Sort editor enables the content administrator to choose a sort order (sort key and direction) to apply to a list of
records.

Within the results list cartridge, this sort order (along with any boost/bury that is configured for the page)

is applied to the results list by default when the end user first arrives at a page. If additional sort options are
specified for this cartridge, the end user can select an alternate sort order and later return to the default ordering
as specified by the content administrator.

To add a Sort editor:
1. Insert an <edi t or s: Sort Edi t or > element within <Basi cCont ent | t enEdi t or >.

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The nane of the item property that
represents the default sort option. This property
must be declared in the same template as the Sort
editor.

3. Specify one or more items of class com endeca. i nfront . navi gati on. nodel . Sort Opt i on from which
the content administrator can select.

The following shows an example of a template that includes a sort editor:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"

xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schena/ xavi a/ 2010"
t ype="Mai nCont ent" >

<l-- additional elenments onmtted fromthis exanple -->

<Contentltenp
<Name>Resul t s Li st </ Nane>
<l-- additional elenments onmtted fromthis exanple -->

282 6 Template Property and Editor Reference

<Property nanme="sortOption">
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property nanme="1|abel ">Myst Sal es</xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: Li st>
<xavi a: | tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nanme="key">product. anal yti cs.total _sal es</xavi a: Property>
<xavi a: Property nanme="ascendi ng">true</ xavi a: Property>
</xavi a:ltemr
</ xavi a: Li st >
</ xavi a: Property>
</xavi a:ltemr
</ Property>
<!-- additional elements omtted fromthis exanple -->
</ Contentlten>

<Edi t or Panel >
<Basi cContent |t enEdi t or >
<l-- additional elenments onmtted fromthis exanple -->
<G ouplLabel | abel ="Navi gation Result Settings (apply when user does not provide
search terns)"/>
<editors: SortEditor propertyNanme="sortOption" |abel ="Default Sort">
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property name="1|abel ">Def aul t </ xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: List />
</ xavi a: Property>
</xavi a: |l temr
<xavi a: |l tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on" >
<xavi a: Property nanme="|abel ">Myst Sal es</xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: Li st>
<xavi a: | tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nanme="key">product. anal ytics.total _sal es</
xavi a: Property>
<xavi a: Property nane="ascendi ng">true</ xavi a: Property>
</xavi a: ltemr
</ xavi a: Li st >
</ xavi a: Property>
</xavi a: |l temr
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property name="| abel ">Best Conversi on Rate</xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: Li st>
<xavi a: | tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nanme="key" >product. anal yti cs. conversi on_r at e</
xavi a: Property>
<xavi a: Property nane="ascendi ng">true</ xavi a: Property>
</xavi a: |l temr
</ xavi a: Li st >
</ xavi a: Property>
</xavi a: |l temr
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property nane="| abel ">Pri ce (Ascendi ng) </ xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: Li st>
<xavi a: | tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nane="key">product. pri ce</ xavi a: Property>
<xavi a: Property nanme="ascendi ng">true</ xavi a: Property>
</xavi a: ltemr

6 Template Property and Editor Reference 283

</ xavi a: Li st >
</ xavi a: Property>
</xavi a: | temr
<xavi a: ltem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Opti on">
<xavi a: Property nane="| abel ">Pri ce (Descendi ng) </ xavi a: Property>
<xavi a: Property name="sorts">
<xavi a: Li st >
<xavi a: |l tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Spec" >
<xavi a: Property nane="key">product. pri ce</xavi a: Property>
<xavi a: Property nanme="ascendi ng" >f al se</ xavi a: Property>
</xavi a:ltenp
</ xavi a: Li st >
</ xavi a: Property>
</xavi a:ltenp
</ editors: SortEditor>
</ Basi cContent | t enEdi t or >
</ Edi t or Panel >
</ Cont ent Tenpl at e>

Adding a Spotlight Selection editor

The Spotlight Selection editor uses the Select Records dialog to enable a content administrator to designate
specific records to spotlight in a section, or to specify a query to return a dynamic list of records.

Note

The Spotlight Selection editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A Spotlight Selection editor is bound to a Recor dSpot | i ght Sel ect i on property, which can contain either a
list of record IDs (for featured records) or a set of dimension refinements (for dynamic records).

To add a Spotlight Selection editor to a template:
1. Insertan | t emproperty of class com endeca. i nfront. cartri dge. Recor dSpot | i ght Sel ecti on.

In the following example, this is the r ecor dSel ect i on property:

<Property nanme="recordSel ecti on">
<xavi a: |l tem cl ass="com endeca. i nfront. cartridge. RecordSpot|i ght Sel ection" />
</ Property>

2. Inserta St ri ng property that stores the maximum number of records to display in the spotlight.

In the following example, this is the maxNunRecor ds property:

<Property nane="nmaxNunmRecor ds" >
<String>10</String>
</ Property>

3. Insert a Bool ean property that controls the display of the "See All" link.

In the following example, this is the showSeeAl | Li nk property:

284 6 Template Property and Editor Reference

<Property nane="showSeeAl | Li nk">
<Bool ean>f al se</ Bool ean>
</ Property>

4. Inserta St ri ng property to contain the text for the "See All" link.

In the following example, this is the seeAl | Li nkText property:

<Property nane="seeAl | Li nkText">
<String />
</ Property>

5. Insertan <edi t or s: Recor dSpot | i ght Sel ect i onEdi t or > element within <Basi cCont ent | t enEdi t or >.

6. Specify label attributes and map the editor to the associated properties:

Attribute Description

pr opert yNane Required. The nane of the record selection property
that represents the selected records or navigation
state. This property must be declared in the same
template as the record selection editor.

maxNunRecor ds Required. Specifies the maximum number of
records to display in the spotlight.

showSeeAl | Li nk Required. Controls the display of the "See All" link.

seeAl | Li nkText Required. Specifies the text for the "See All" link.

The following shows an example of a template that includes a spotlight selection editor:

<Cont ent Tenpl ate xm ns="http://endeca. conf schema/ cont ent -t enpl at e/ 2008"
xm ns: editors="edi tors"
xm ns: xavi a="http://endeca. conl schenma/ xavi a/ 2010"
t ype="Secondar yCont ent " >
<Descri pti on>Di spl ays sel ected records in seconday content area.</Description>
<Thunbnai | Url >/ifcr/tool s/ xmgr/img/tenplate_t hunbnail s/
Secondary_Recor dSpot | i ght. png</ Thunbnai | Url >
<Contentltenp
<Nanme>Spot | i ght Recor ds</ Nane>
<Property nane="title">
<String>Feat ured Caneras</String>
</ Property>
<Property nanme="nmaxNumRecor ds" >
<String>10</String>
</ Property>
<Property nanme="recordSel ecti on">
<xavi a: ltem cl ass="com endeca. i nfront. cartridge. RecordSpot!i ght Sel ection" /

</ Property>
<Property nane="showSeeAl | Li nk">

6 Template Property and Editor Reference 285

<Bool ean>f al se</ Bool ean>

</ Property>

<Property nane="seeAl | Li nkText">

<String />
</ Property>
</ Contentlten>

<Edi t or Panel >

<Basi cContent | t enEdi t or >

<G ouplLabel

| abel ="Define Spotlight"/>

<editors: StringEditor propertyName="title" |abel="Spotlight Title"

enabl ed="true"/>

<edi tors: Spotlight Sel ecti onEdi tor propertyNane="recordSel ecti on"
| abel =" Spot | i ght Records"

maxNunRecor ds="nmaxNunRecor ds"

seeAl | Li nkText ="seeAl | Li nkText" />
</ Basi cContent | t enEdi t or >

</ Edi t or Panel >
</ Cont ent Tenpl at e>

showSeeAl | Li nk="showSeeAl | Li nk"

Related links

+ Select Records data service configuration reference (page 246)

+ About the Select Records dialog (page 246)

Application feature property reference

Query configuration mappings

This is an overview of the mappings between features in a front-end application and their associated
configuration properties.

Global configuration for the features below is typically set in the Assembler context file on the class and
property specified in the table.

Feature URL Global Configuration Cartridge Handl er(s)
Parameter | <cl ass>. <property>

Navigation query N FilterState. navi gationFiltersUrl NavigationStat eBuil der

Refinement display in | Nrnc Ref i nement MenuConfi g. r ef i neneRefsiShemwent Menu

menu

Enable "Show More
Refinements" link

"Show More"
dimension IDs

Ref i nement MenuConf i g. showivbr|eRef i nenent Menu

Navi gat i onCont ai ner. showivbr el svi gat i onCont ai ner

286

6 Template Property and Editor Reference

Feature URL Global Configuration Cartridge Handl er(s)

Parameter | <cl ass>. <property>
Record details R Def aul t Resul t sLi st Config Ur| Navi gat i onSt at eBui | der
Record offset No Resul t sLi st Confi g. of f set Resul t sLi st
Records to show per - - Resul t sLi st Confi g. subRecor dsHeeAggr €lgadtRecor d
aggregate record
Record filter Nr FilterState.recordFilters Ur | Navi gat i onSt at eBui | der
Records per page Nr pp Resul t sLi st Confi g. recor dsPer/Faggul t sLi st
Record search key Nt k FilterState. SearchFilters. keyResul tsLi st,

Di nensi onSear chResul t

Aggregate record A - - Ur | Navi gat i onSt at eBui | der
selection
Aggregate record Nao Resul t sLi st Confi g. of f set Resul t sLi st
offset
Aggregate record - - FilterState. rol | upKey Ur | Navi gat i onSt at eBui | der
rollup key
Why Rank whyr ank Resul t sLi st Confi g. whyRankEnabResiul t sLi st
Why Match whymat ch Resul t sLi st Confi g. whyMat chEnaRé=ual t sLi st
Why Precedence Rule | whypr ecedendef ilnehiened/enu. whyPr ecedenceReéfdFemeht Menu,
Fired Navi gat i onCont ai ner . whyPr ecedsaciedat ied Ceat ai ner
Range filter Nf FilterState.rangeFilters Ur | Navi gat i onSt at eBui | der
Geocoderangefilter | Nfg FilterState.rangeFilters Ur | Navi gat i onSt at eBui | der

Set preview time

Endeca_Ti m

eUser State. date

Relevance ranking Nr m FilterState. SearchFilters. VatRédMldesLi st

Match Mode

Relevance ranking - - Resul t sLi st Confi g. r el RankSt rjaResyl, t sLi st

strategy Di mensi onSear chResul t sConfi g. r el RankSt r at egy

Relevance ranking Nr t - - - -

search terms

Relevance ranking Nr k - - Resul t sLi st

search key

EQL filter Nr s FilterState.eqlFilter Ur | Navi gat i onSt at eBui | der
Sort key Ns Resul t sLi st Confi g. sort Opti on,Resul tsLi st,

Ref i nement Menu. sort

Ref i nemrent Menu

6 Template Property and Editor Reference

287

Feature URL Global Configuration Cartridge Handl er(s)
Parameter | <cl ass>. <property>

Sort order

Compute phrasings Nt p Sear chAdj ust ment sConf i g. phr aslérSuigayeisgatoindmetbdteeBui | der

Rewrite query with

alternate phrasing

Search terms Nt t FilterState. SearchFilters.terldsl Navi gati onSt at eBui | der

Search mode Nt x FilterState. SearchFilters. matdhNga\e gati onSt at eBui | der

"Did You Mean" Nty Sear chAdj ust ment sConf i g. spel|l Suggsit g aniEmasd &tdeBui | der

Signal dimension Dy

search

Dimension search Nt t with See Nt t See Nt t

term Dy=1

Dimension search Nf with See Nf See Nf

range filter Dy=1

Enable dimension - - Di mensi onSear chResul t Confi g.|rBil iRamki onSear chResul t Handl er

search relevance

ranking

Dimension search Nwith See N SeeN

scope Dy=1

Dimension search - - - - - -

result offset

Dimension search - - Di mensi onSear chResul t Conf i g.|nieixiRerssil o sHea ik meesilonHand| er

dimVal count

Dimension search Nr with See Nr See Nr

record filter Dy=1

Dimension search - - Di mensi onSear chResul t Conf i g.|sbiovwSusing is&mahd leResul t Handl er

refinement

configuration

Dimension search Nr s with SeeNrs SeeNrs

EQL filter Dy=1

Dimension search
options

288

6 Template Property and Editor Reference

Adding a list property

A property can consist of an ordered list of strings, Booleans, items, or other lists.

Because lists can be used for a variety of purposes, Oracle Guided Search does not include any generic editors
for working with lists. However, editors intended for specific purposes may store their values in list properties.

To add a list property to a template:
1. Insert a <xavi a: Li st > element inside a <Pr oper t y> element.

2. Optionally, specify a default value by inserting either <St r i ng>, <Bool ean>, <xavi a: Li st >, or
<xavi a: | t en» elements.

Following is an example of a template that uses lists both with and without default values:

<Cont ent Tenpl ate xm ns="http://endeca. conf schena/ cont ent -t enpl at e/ 2008"
xm ns: edi tors="edi t ors"
xm ns: xavi a="http:// endeca. conl schena/ xavi a/ 2010"
t ype="Mi nCont ent " >
<l-- additional elenments onmtted fromthis exanple -->
<Contentltenp

<Name>Resul t s Li st </ Nane>
<Property nanme="boostStrata">

<xavi a: Li st/ >
</ Property>
<Property name="buryStrata">

<xavi a: Li st/ >
</ Property>
<Property nanme="sortOption">

<xavi a: | tem cl ass="com endeca. i nfront . navi gati on. nodel . Sort Opti on" >
<xavi a: Property nane="1| abel ">Mdst Sal es</xavi a: Property>
<xavi a: Property nanme="sorts">
<xavi a: Li st>
<xavi a: | tem cl ass="com endeca. i nfront. navi gati on. nodel . Sort Spec" >
<xavi a: Property nanme="key">product. anal yti cs.total _sal es</xavi a: Property>
<xavi a: Property nanme="ascendi ng">true</ xavi a: Property>
</xavi a:ltenmr
</ xavi a: Li st >
</ xavi a: Property>
</xavi a:ltemr

</ Property>

<l-- additional elements omtted fromthis exanple -->
</ Content|tenr
<l-- additional elenments onmtted fromthis exanple -->

</ Cont ent Tenpl at e>

6 Template Property and Editor Reference 289

290 6 Template Property and Editor Reference

7 Navigation Cartridge Configuration
Reference

This appendix provides an overview of the configuration models for the included navigation cartridges. You
should review this information if you use these cartridges in your Assembler application to communicate with
an MDEX Engine.

Related links
+ Navigation cartridge URL parameter reference (page 291)
+ About the navigation cartridge configuration models (page 311)

+ Request Event Attributes (page 346)

Navigation cartridge URL parameter reference

This section provides a reference to URL parameters in the navigation cartridges. The documented parameter
names are configured in the Assembler, and your application can include additional parameters if you choose to
extend the Request Par anMar shal | er class or its cartridge-specific subclasses.

About this section

The tables in this section describe the Endeca navigation cartridge query parameters. They include the following
information:

URL parameter description format

Parameter The query parameter, which is case-sensitive.

Name The common name for the query parameter.

Type and format The valid value type for the query parameter, as well as the format for listing
multiple parameters, if applicable.

7 Navigation Cartridge Configuration Reference 291

Object

The associated object in the Assembler API.

Description

A description of the parameter's functionality.

Dependencies

Additional query parameters that are required to give this parameter context.

Core URL query parameters

The URL query parameters that define the search and navigation objects passed into the MDEX Engine
Navigation API are configured on the Ur | Navi gat i onSt at eBui | der object. By default, the Assembler is
configured to use the following parameters:

URL Parameter

Feature

N Navigation filter

Nt t Record search terms

Nt k Record search key

Nt x Record search match mode
Nf Range filter

Nf g Geocode filter

Nr Record filter

Nrs EQL filter

Rsel Featured Records selector
R Record

A Aggregate record

Nt p Auto-phrasing

Nt | Language ID

Note

To execute an aggregate record query using the A parameter, you must specify an aggregated record
rollup key. Oracle recommends setting this key in your global application configuration; for example, in
the Discover Electronics reference application, it is configured in the Assembler context file.

These parameters are described in detail in the following sections. The examples provided are for the Discover
Electronics reference application.

292

7 Navigation Cartridge Configuration Reference

N (Navigation)

The N parameter sets the navigation field for a query.

Parameter N

Name Navigation

Type and format <di nensi on val ue id>+<di mensi on val ue id>+<di nensi on val ue id>..
Object FilterState

Description A unique combination of dimension value IDs. A value of zero indicates the root

navigation object.

Dependencies

(none)

Example 7.1. Examples

The following example is for an all-inclusive search, as it does not refine the results by any dimension value:

N=0

The following example returns products with an average review rating of 5:

N=100021

Note

The Discover Electronics reference application has Search Engine Optimization enabled by default,
which encodes the above URL value to N- 256d. For more information about creating optimized URLs,
see Building optimized URLs (page 126)and the Sitemap Generator Developer's Guide.

Ntt (Record Search Terms)

The Nt t parameter sets the actual terms of a record search for a navigation query.

Parameter Nt t

Name Record Search Terms

Type and format <string>+<string> | <string> | <string>+<string>+<string>..
Object FilterState. SearchFilter

7 Navigation Cartridge Configuration Reference

293

Description Sets the terms of the record search for a navigation query. Each term is delimited by a
plus sign (+). Each set of terms is delimited by a pipe (|).
Note

There is no explicit text search descriptor APl object, so your application
logic must extract search terms from the query if you wish to display them
in Breadcrumbs or a similar search tracker.

Dependencies NNt k; Nt t should have the same number of terms as Nt k has keys.

Example 7.2. Examples

The following example returns records with a match for the term "zoom":

N=0&Nt t =zoom

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. Note that the combined terms count as a single "search term" for the
purposes of query syntax:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver

Note

The Discover Electronics reference application is configured to use a default search key of "All" in the
Spring context definition file for the Assembler, so it will accept a Record Search terms URL parameter
(Nt t) without an accompanying Record Search key (Nt k) parameter.

Ntk (Record Search Key)

The Nt k parameter sets which dimension, property, or search interface is evaluated for a record search query.

Parameter Nt k

Name Record Search Key

Type and format <search key> | <search key>..

Object FilterState. SearchFilter

Description Sets the keys of the record search for the navigation query. Multiple keys are
delimited by a vertical pipe (|). A search key can be a search interface defined in the
MDEX Engine, a valid dimension name, or the name of a property enabled for record
search in the data set.

294 7 Navigation Cartridge Configuration Reference

Dependencies

N, Nt t ; Nt k should have the same number of keys as Nt t has terms.

Example 7.3. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. Note that the combined terms count as a single "search term" for the

purposes of query syntax:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver

The following example returns records with a match for the term "cameras” in the pr oduct . descri pti on
record property OR a match for the term "silver" in the camer a. col or record property. Note that these are
evaluated as separate terms, and that each search term is associated with the search key that appears in the

same location in the sequence:

N=0&Nt k=pr oduct . descri pti on| canmer a. col or &\t t =caner as| si |l ver

Note

The Discover Electronics reference application is configured to use a default search key of "All" in the
Spring context definition file for the Assembler, so it will accept a Record Search terms URL parameter
(Nt t) without an accompanying Record Search key (Nt k) parameter.

Ntx (Record Search Match Mode)

The Nt x parameter sets the options for record search in the navigation query.

Parameter Nt x

Name Record Search Mode

Type and format <string> | <string>..

Object FilterState. SearchFilter

Description Sets the options for record search in the navigation query. Multiple values are

Dependencies

separated with a vertical pipe (|) character.

N, Nt t, Ntk

7 Navigation Cartridge Configuration Reference

295

Example 7.4. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. It overrides the default match mode with "MatchAllAny":

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver &\t x=nat chal | any

Nf (Range Filter)

The Nf parameter sets the range filters for the navigation query.

Parameter Nf
Name Range Filter
Type and format <search key>|[LT| LTEQ GT| GTEQ +<nuneric val ue> || [Anot her range

filter]..

<search key>| BTWA+<nuneri c val ue>+<nuneric val ue>...

Object FilterState. RangeFilter

Description Sets the range filters for the navigation query on properties or on dimensions.
Multiple range filters are separated with a double vertical pipe (||) delimiter.

Accepts property and dimension values of Numeric type (Integer, Floating point,
DateTime). For values of type Floating point, you can specify values using both
decimal (0.00...68), and scientific notation (6.8e-10).

Dependencies N

296 7 Navigation Cartridge Configuration Reference

Example 7.5. Examples

The following example returns products with a price below $25:

N=0?Nf =pr oduct . pri ce| LT+25

The following example returns products with a price between $50 and $100 (inclusive):

N=0?Nf =pr oduct . pri ce| BTW+50+100

It is equivalent to specifying a "greater than or equal to" filter in combination with a "less than or equal to" filter:

N=0?Nf =pr oduct . pri ce| GTEQ+50]| | product . pri ce| LTEQ+100

Nfg (Geocode Filter)

The Nf g parameter sets a geocode filter for the navigation query, with radius in kilometers.

Parameter Nf g

Name Geocode Filter

Type and format <key>| <l ati t ude>| <l ongi t ude>| <r adi us>

Object FilterState. GeoFilter

Description Filters records by evaluating the geocode location contained in the key property

to see if it falls within the circular area defined by a central point at | at i t ude,
| ongi t ude with the specified r adi us in kilometers.

Positive | at i t ude values are interpreted as °N of the equator, and positive
| ongi t ude values are interpreted as °E of the Prime Meridian.

Dependencies

Examples

The following example checks store geocodes within 10 km of the Statue of Liberty in NYC, NY:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446]| 10

Nr (Record Filter)

The Nr parameter sets a record filter on a navigation query.

7 Navigation Cartridge Configuration Reference 297

Parameter Nr

Name Record Filter

Type and format <string>

Object FilterState. RangeFilter

Description This parameter can be used to specify a record filter expression that restricts the
results of a navigation query. Record filter syntax is described in the MDEX Engine
Development Guide.

Dependencies N

Example 7.6. Examples

A general syntax example is given below:

N=0&Nr =AND(132831, pr opert yA: val ueX, OR(pr opert yB: val ueY, propertyC: val uez))

The following example only includes records that are tagged as products, and it excludes any products that are
not in stock:

N=0&Nr =AND((conmon. r ecor d_t ype: product), NOT(product . i nventory. count: 0))

Nrs (Endeca Query Language Filter)

The Nr s parameter sets an EQL record filter on a navigation query. Using EQL enables you to specify multiple
filters (such as a geocode range filter, a dimension value filter, and a record search filter) as part of the same
query parameter.

Parameter Nrs

Name Endeca Query Language Filter
Type and format <string>

Object FilterState. RangeFilter

298 7 Navigation Cartridge Configuration Reference

Description

Dependencies

Sets the Endeca Query Language expression for the navigation query. The expression
acts as a filter to restrict the results of the query. Endeca Query Language syntax is
documented in the MDEX Engine Development Guide.

Note

The Nr s parameter must be URL-encoded. For clarity’s sake, however, the
examples below are not URL-encoded.

Example 7.7. Examples

Consider the sample Geocode Filter discussed earlier, which matches records at stores within 10 km of the
Statue of Liberty in NYC, NY:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446]| 10

Combining the above with a record filter that excludes out-of-stock records results in the following:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446] 10&Nr =NOT(pr oduct . i nvent ory. count: 0))

The above functionality can be duplicated with a single EQL query parameter by using the following expression:

N=0&Nr s=col | ecti on()/record[product.inventory.count!=0 and
endeca: di st ance(st ore. geocode, endeca: geocode(40. 6893, - 74. 0446)) <10]

R (Record)

The Rparameter specifies a single Endeca record to return from the MDEX Engine.

Parameter R

Name Record

Type and format <record id>

Object RecordSt ate

Description Query to obtain a single record from the MDEX Engine.

Dependencies

(none)

7 Navigation Cartridge Configuration Reference 299

Examples

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because the
application is configured with a global aggregate record rollup key, all records are treated as aggregated records,
so the RURL query parameter has no effect:

R=1469273

Rsel (Featured Records Selector)

Examples

The Rsel parameter restricts the search results list to a set of records specified by record ID.

Parameter Rsel

Name Featured Records Selector

Type and format <record | D> <record | D> <record |D>..

Object FilterState

Description A comma-delineated list of record IDs. Search results are restricted to only those

records specified as values for this query parameter.

Dependencies

R

The following example restricts the results list to the Z980 and Digital IXUS 85 IS cameras:

R=0?Rsel =1469273, 1980692

A (Aggregated Record)

The A parameter specifies a single aggregated record to return from the MDEX Engine.

Parameter A

Name Aggregated Record

Type and format <aggregated record id>

Object RecordSt at e

Description Query to obtain a single aggregated record from the MDEX Engine.

300

7 Navigation Cartridge Configuration Reference

Dependencies

(none)

Example 7.8. Example

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because the
application serves record detail pages using the / det ai | servlet with a record-specific path, it has no effect:

A=1469273

Ntp (Auto-Phrasing)

The Nt p parameter sets whether the MDEX Engine applies computed alternative phrasings for the current query.

Parameter Nt p

Name Auto-Phrasing

Type and format [0] 1]

Object FilterState

Description Set to 1 to enable auto-phrasing, or 0 to disable it. If enabled, the MDEX Engine

both computes and applies alternate query phrasings. If disabled, the MDEX
Engine does not apply alternate query phrasings, but may compute them if
Sear chSuggest i onMlexQuery. phr aseSuggest i onEnabl ed=t r ue.

Dependencies

NLNE £, NE k

Examples

The following example searches the product description field for "auto focus" as a phrase, rather than searching
the terms "auto" and "focus":

N=0?Nt k=pr oduct . descri pti on&Nt t =aut o+f ocus&Nt p=1

Ntl (Language ID)

The Nt | parameter sets the language ID to pass in to the MDEX Engine.

Parameter

Name

Nt |

Language ID

7 Navigation Cartridge Configuration Reference 301

Type and format <l SO 639 | anguage code>

Object FilterState

Description Specifies a language to cause the MDEX Engine to perform language-specific
operations, such as invoking the correct stemming and phrasing dictionaries. For a
list of supported languages, see the MDEX Engine Development Guide.

Dependencies N

Examples

The following example specifies British English:

Nt | =en- GB

Cartridge-specific URL query parameters
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters. This section covers the URL query parameters

for the core cartridges included with Tools and Frameworks.

By default, the Assembler is configured to use the following parameters:

URL Cartridge Feature
Parameter
Dy Dimension Search Results | Enables or disables the display of returned dimension

refinements.

Nt p Search Adjustments Specifies whether to display automatic phrasing; core
parameter, see Ntp (Auto-Phrasing) (page 301).

Nty Search Adjustments Specifies whether to display automatic spelling correction / "Did
You Mean"

Nr nc Refinement Menu, The Nr nt parameter takes multiple arguments allow you to
Navigation Container configure dimension refinement behavior in a cartridge.

Nr pp Results List Records per page

Ns Results List Sort key and sort order

No Results List Record offset (used for paging)

Nr t Results List Relevance Ranking search terms

Nr k Results List Relevance Ranking search key

302 7 Navigation Cartridge Configuration Reference

URL Cartridge Feature

Parameter

Nrm Results List Relevance Ranking strategy

whymat ch Results List Includes record matching information if query debugging is
enabled

whyr ank Results List Includes record ranking information if query debugging is
enabled

These parameters are described in detail in the following sections. For additional information about the

URL query parameters for the core cartridges, refer to the Assembler APl Reference (Javadoc) for the relevant
Request Par amMar shal | er subclass. These classes define the URL parameters that each cartridge accepts, and
their mappings to properties on the cartridge configuration model.

Dy (Dimension Search)

The Dy parameter controls the display of the Dimension Search Results cartridge.

Parameter Dy

Name Dimension Search

Type and format [0] 1]

Object Di mensi onSear chResul t sConfi g

Description Set to 1 to enable cartridge display, or 0 to disable it.
Dependencies NN t

Example 7.9. Examples

The following example returns records with a match for the term "Silver," with the Dimension Search Results
cartridge enabled:

N=0&Nt t =Si | ver &Dy=1

Nty (Auto-Correct / DYM)

The Nt y parameter controls the display of auto-correct and "Did You Mean" results in the Search Adjustments
cartridge.

7 Navigation Cartridge Configuration Reference 303

Parameter Nty

Name Auto-Correct / "Did You Mean"

Type and format [0] 1]

Object Sear chAdj ust nent sConfi g

Description Set to 1 to enable display, or 0 to disable it.

Dependencies NNt t

Example 7.10. Examples

The following example returns records with a match for the term "Sliver," with auto-correct enabled to correct
the query to "silver":

N=0&Nt t =Sl i ver &Nt y=1

Nrmc (Refinement Menu Config)

The Nr nt parameter takes multiple arguments that configure dimension refinement behavior in the Refinement
Menu cartridge.

Because the Navigation Container cartridge returns a list of Ref i nement Menu objects, it takes the same Nr nt
URL parameter as the Refinement Menu cartridge.

Parameter Nr nc

Name Refinement Menu Config

Type and format <Di mensi on | D>+show. [al | | some| none] | <di mension | D>+show [all|
sone| none] ...

Object Ref i nement MenuConfi g

Description The Nr nt parameter takes the following values:

Dependencies

+ <Di mensi on | D> — Required. The ID of the dimension you wish to configure.

« +show [al | | sone| none] — Required; the value is passed to the
r ef i nement sShown property on the Ref i nenment MenuConf i g object, and
controls how many dimension refinements to display.

Configuration for multiple dimensions is separated with a vertical pipe (|) character.

7 Navigation Cartridge Configuration Reference

Example 7.11. Examples

The following modifies the Refinement Menu to display all of the dimension refinements for the "Features”
dimension, and hides all refinements for the "Color" dimension:

N=0?Nr nt=100031+show: al | | | 101908+show. hone

Results List cartridge URL query parameters

The following URL query parameters determine the display of search results in the Results List cartridge. They
are typically set in the front-end application by the end user.

Nrpp (Records Per Page)

The Nr pp parameter limits the records returned from the MDEX Engine.

Parameter Nr pp

Name Records Per Page

Type and format <i nt eger >

Object Resul t sLi st Confi g

Description Sets the maximum number of records to include in the Resul t sLi st object.

Dependencies

N

Example 7.12. Examples

The following example shows ten records per page:

N=0&Nr pp=10

Ns (Sort Key and Sort Order)

The Ns parameter controls sorting options for the current query. It enables the end user to override default
sorting behavior on a per-query basis.

Parameter Ns

Name Sort Key and Sort Order

Type and format <sort key>[<geocode reference>]|[0]1] || <sort key>|[0]1]..
Object Resul t sLi st Config

7 Navigation Cartridge Configuration Reference 305

Description

The <sort key> specifies the property or dimension to sort by. Optionally, each
key can be followed by a suffix of "| 1" to indicate descending sort order, or "| 0" to
indicate ascending order (the default).

Multiple entries are separated with a double vertical pipe (| |), and each entry after
the first applies its sorting within the strata created by preceding entries.

To sort records by a geocode property, add the optional geocode argument to the
parameter (the <sort key> must be a geocode property). Records are sorted by the
distance from the geocode reference point to the geocode point indicated by the
<sort key>value.

Dependencies

Example 7.13. Examples

The following settings sort query results by product rating in descending order (higher rated products first). For
each rating, it then sorts by price in ascending order (cheaper products first):

N=0&Ns=pr oduct . rati ng| 0| | product. pri ce

The following example sorts records with a st or e. geocode property based on proximity to the Statue of

Liberty in NYC, NY:

N=0&Ns=st or e. geocode| 40. 6893, - 74. 0446

No (Record Offset)

The No parameter sets the record offset in the query results list.

Parameter No

Name Record Offset

Type and format <i nt eger >

Object Resul t sLi st Config

Description Offsets the results set by the number of records specified. The offset is applied to a

zero-based index; If No=20, the list of records starts at record 21. If an offset is greater
than the number of items in a navigation object’s record list, an empty record list is
returned.

Dependencies

NN pp

306

7 Navigation Cartridge Configuration Reference

Example 7.14. Examples

The following example displays the second page of a results set (since the results list is configured to display 36
records per page, and is offset by that amount to start at the 37th record):

N=0&Nr pp=36&No=36

Nrt (Relevance Ranking Search Terms)
The Nrt parameter optionally sets search terms for a Relevance Ranking enabled record search query.

You can apply Relevance Ranking to a subset of your MDEX Engine query by specifying the desired terms in the
Nrt parameter.

Note

If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nr k), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Nt t and Nt k) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

Parameter Nr t

Name Relevance Ranking Search Terms

Type and format <string>+t<string>+<string>..

Object Resul t sLi st Config

Description Sets the terms of the record search for a navigation query with relevance ranking.

Each term is delimited by a plus sign (+).

Note

Unlike the Nt t parameter, Nrt does not support using multiple sets of
terms.

Dependencies N, Nr k. Additionally, you must set the r el Rank St r at egy on the cartridge.

7 Navigation Cartridge Configuration Reference 307

Example 7.15. Examples

Because the Discover Electronics application uses Spring as a configuration mechanism, the cartridge-wide
default values for Relevance Ranking in the Results List cartridge are specified in the r ef er ence\ di scover -
el ect roni cs- aut hor i ng\ WEB- | NF\ assenbl er - cont ext . xni file:

<bean i d="CartridgeHandl er _Resul tsList"
cl ass="com endeca. infront.cartridge. Resul t sLi st Handl er"
par ent =" Navi gati onCartri dgeHandl er" scope="pr ot otype">
<property nane="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property nanme="defaul ts">
<bean cl ass="com endeca. infront.cartridge. Resul tsLi st Confi g"
scope="si ngl et on" >
<l-- additional configuration onmtted fromthis exanple -->
<property nanme="rel RankKey" val ue="All" />
<property nanme="rel RankMat chMbde" val ue="ALLPARTI AL" />
<property nane="rel RankStrat egy"
val ue="nterns, maxfi el d, exact, stati c(product. anal ytics. conversion_rate, descending)" />

<!-- additional configuration omtted fromthis exanple -->
</ bean>
</ property>
<!-- additional configuration omtted fromthis exanple -->
</ bean>
</ property>
<!-- additional configuration omtted fromthis exanple -->

</ bean>

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge
level:

N=0&Nt k=pr oduct . descri pti on&\t t =camner as+si | ver

Nrk (Relevance Ranking Search Key)

The Nr k parameter sets which dimension, property, or search interface is evaluated for a Relevance Ranking
enabled record search query.

Note

If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nr k), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Nt t and Nt k) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

Parameter Nr k

Name Relevance Ranking Search Key

308 7 Navigation Cartridge Configuration Reference

Type and format

<search key>

Object

Resul t sLi st Confi g

Description

Dependencies

Sets the search key for the record search query. This must be a navigable dimension,
property name, or search interface defined in the MDEX Engine.

N, Nr t . Additionally, you must set the r el RankSt r at egy on the cartridge.

Example 7.16. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge

level:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si |l ver

Nrm (Relevance Ranking Match Mode)

The Nr mparameter sets the relevance ranking strategy for ranking the results of the record search.

You can override the default Relevance Ranking strategy on a per-query basis by using the Nr mparameter. For
additional information about match modes, see the MDEX Engine Basic Development Guide.

Parameter Nr m

Name Relevance Ranking Strategy

Type and format <string>

Object Resul t sLi st Config

Description Sets the options for record search in a relevance ranking enabled query.

Note

Unlike the Nt x parameter, Nr mdoes not support using multiple match
modes.

Dependencies

N, both Nrt and Nr k, OR both Nt t and Nt k. Additionally, you must set the
rel RankSt r at egy on the cartridge.

7 Navigation Cartridge Configuration Reference 309

Example 7.17. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge
level. It overrides the default "MatchAllPartial" match mode with "MatchAllAny":

N=0&Nt k=pr oduct . descri pti on&N\t t =caner as+si | ver &\r memat chal | any

whymatch (Record Match Info)
The whymat ch parameter controls the logging of record match information about a per-query basis.

This property enables you to include record matching information about a per-query basis, rather than at the
cartridge handler level.

Parameter whymat ch
Name Record match debugging information
Type and format [0] 1]
Object Resul t sLi st Config
Description Set to 1 to include record matching information, or 0 to disable it.
Dependencies N, as well as either Nt t and Nt k or Nrt and Nr k.
Additionally, you must have query debugging enabled in your application.

Example 7.18. Examples

The following example returns record matching information for a search against "silver cameras.":

N=0&Nt k=pr oduct . descri pti on&N\t t =si | ver +caner as&whynat ch=1

A portion of the response (serialized to JSON) is shown below. The DG aph. WayDi dI t Mat ch key contains the
relevant debugging information:

" DG aph. WhyDi dl t Mat ch": [
"product.long_desc: The high-quality 10.0 Megapi xel Digital I XUS 870 IS -
finished in gold or silver -
commands attention.

Advanced conpression technol ogi es reduce file size, to free up valuable extra
menmory. (Stenm ng)"

I

whyrank (Record Rank Info)

The whyr ank parameter controls the logging of relevance ranking information about a per-query basis.

310 7 Navigation Cartridge Configuration Reference

This property enables you to include record relevance ranking information about a per-query basis, rather than
at the cartridge handler level.

Parameter whyr ank
Name Record ranking debugging information
Type and format [0] 1]
Object Resul t sLi st Confi g
Description Set to 1 to include record ranking information, or 0 to disable it.
Dependencies N, as well as either Nt t and Nt k or Nrt and Nr k.
Additionally, you must have query debugging enabled in your application.

Example 7.19. Examples

The following example returns record ranking information for a search against "silver cameras.":

N=0&Nt k=pr oduct . descri pti on&\t t =si | ver +canmer as&whyr ank=1

A portion of the response (serialized to JSON) is shown below. The DGr aph. WyRank key contains the relevant
debugging information:

" DGraph. WhyRank": [
"stratify": [
eval uationTi me: "0.00048828125"
stratumRank: "3"
stratunDesc: "no match"

About the navigation cartridge configuration models

This section describes the configuration models for the navigation cartridges.

You can use these models as a reference when developing your own cartridges and cartridge handlers.
Generally, Oracle recommends adhering to a similar approach and dividing configuration inputs to a cartridge
across the following categories (ordered from lowest to highest priority):

+ Application-wide default configuration — For the navigation cartridges, these values are configured in the
Spring context file.

7 Navigation Cartridge Configuration Reference 311

+ Template-specific default configuration — These values are included in the cartridge template XML.

+ Instance configuration — These values are configured by the business user in Experience Manager or Rule
Manager.

+ End user inputs — For the navigation cartridges, these values are passed in as URL parameters.

Overview of the navigation cartridge configuration models

The behavior of the navigation cartridges depends on multiple sources of configuration. The data from these
source is combined into a configuration model within thei ni ti al i ze() method of each associated cartridge
handler in the Assembler.

Navigation cartridge configuration falls into the following categories, in ascending order of priority:
+ Default cartridge configuration, which is specified in the Spring context file for the Assembler application

+ Cartridge instance configuration, which is specified by the content administrator in Experience Manager or
Rule Manager

+ Request-based configuration, which is specified by the end user in the client application

Additionally, while it is not represented in the cartridge configuration model, configuration in the MDEX Engine
impacts the behavior of the navigation cartridges.

Request-based configuration overrides the cartridge instance configuration, which overrides the cartridge-level
defaults, which override default feature behavior configured in the MDEX Engine.

The core cartridges typically consist of a strongly typed configuration model, a response model, and a cartridge
handler that processes the configuration model into the response model. By convention, they are named as
follows:

Class name Description

<CartridgeName>Config The configuration model for the cartridge. For the core cartridges, the
properties of this class represent all the configuration parameters that
the cartridge handler needs to do its processing. It does not include
configuration that can only be specified in the MDEX Engine or pass-
through properties that are used by the reference application renderers
without any modification by the cartridge handler.

<Cartri dgeNane>Handl er The handler that processes a cartridge. The core cartridge handlers
are responsible for layering the default configuration, instance
configuration, and request-based configuration during processing.

<CartridgeName> The response model produced by the cartridge handler. Cartridge
response models may include objects that are reused among cartridges.
For example, the Resul t sLi st and Recor dSpot | i ght both contain
Recor d objects.

For details about the implementations of these classes for specific cartridges, refer to the Assembler API Reference
(Javadoc).

312 7 Navigation Cartridge Configuration Reference

Default cartridge configuration

You can specify default configuration settings for the navigation cartridges in the reference implementation by
adding values to the cartridge handler configuration in the Spring context file.

Cartridge handler configuration (including default configuration values) is specified as part of the Spring
context file for the Assembler. In the Discover Electronics application, this is defined in WEB- | NF/ assenbl er -
context.xml .

You specify the cartridge handler for a specific cartridge by defining a bean whose ID follows the format
CartridgeHandl er _<Cartri dgeType>, where the <Car t ri dgeType> is thei d of the corresponding
cartridge template. For example, the cartridge handler for the Breadcrumbs cartridge is defined in the
CartridgeHandl er _Br eadcr unbs bean. You can map more than one cartridge to the same cartridge handler.

Typically, you specify the default configuration for a cartridge by definingacontent I tem ni ti al i zer
property within the cartridge handler. The value of this property is a bean whose class implements the
ContentItem nitializer interface. The core cartridges use the Confi gl ni ti al i zer class, which provides
a default implementation for merging the default, instance, and request-based configuration for a cartridge.
Within thecontent I tem ni ti al i zer bean, the def aul t s property (if defined) must be a bean whose class is
a Cont ent | t emrepresenting the cartridge configuration model to use as a default.

For information about the properties available in the configuration model for the core cartridges, refer to the
Assembler APl Reference (Javadoc) for the relevant configuration model class.

The following shows an example of default configuration for a Record Spotlight cartridge. The def aul t s
property of the Confi gl ni ti al i zer bean is aninstance of Recor dSpot | i ght Conf i g that has been initialized
with a set of default values for the f i el dNames property.

<bean i d="CartridgeHandl er _RecordSpotlight"
cl ass="com endeca.infront.cartri dge. RecordSpot! i ght Handl er"
par ent =" Navi gati onCartri dgeHandl er"
scope="pr ot ot ype" >
<property name="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property nane="defaul ts">
<bean cl ass="com endeca. i nfront.cartridge. RecordSpot|i ght Config"
scope="si ngl et on" >
<property nanme="fi el dNanes" >
<list>
<val ue>product . nanme</ val ue>
<val ue>pr oduct . br and. nane</ val ue>
<val ue>pr oduct . pri ce</ val ue>
<val ue>product. m n_pri ce</val ue>
<val ue>pr oduct. max_pri ce</val ue>
<val ue>product.ing_url _t hunbnai | </ val ue>
<val ue>product . revi ew. avg_rati ng</val ue>

</list>
</ property>
</ bean>
</ property>
</ bean>
</ property>

</ bean>

7 Navigation Cartridge Configuration Reference 313

Feature configuration in the MDEX Engine

There are two subcategories of MDEX Engine-level feature configuration: dynamic configuration that can be
updated in a running MDEX Engine without re-indexing, and static configuration that must be specified at index
time.

Dynamic configuration includes search interfaces, thesaurus, and automatic phrasing. Static configuration
includes features such as such as stop words or precedence rules. Updating static configuration requires that
you re-run the data ingest process before the changes can take effect. For detailed information about feature
configuration in the MDEX Engine, refer to the MDEX Engine Basic Development Guide and the MDEX Engine
Development Guide.

In addition, some features depend on certain Dgraph and Dgidx flags to enable or configure their functionality.
For information about Dgraph and Dgidx flags, refer to the Oracle Commerce Administrator's Guide.

Cartridge instance configuration

The content administrator can configure each instance of a cartridge using Experience Manager in Workbench.
The cartridge instance configuration is passed in as the argument to thei ni ti al i ze() method of the
cartridge handler.

You define which aspects of a cartridge are configurable in Workbench via the cartridge template. Typically this
is a subset of the properties in the configuration model. The sample templates provided as part of the Discover
Electronics application are intended to cover the majority of use cases.

Cartridge templates for the reference application are included in the r ef er ence\ di scover - dat a
\cartridge_t enpl at es directory, or <app di r>\config\cartridge_tenpl at es directory for a deployed
application.

You can customize the templates for the core cartridges by adding properties to a template in addition to
those required by the configuration model. These additional properties can either be processed by a custom
cartridge handler implementation or passed through directly to the response model. Some of the templates in
the Discover Electronics application define pass-through properties; these are described in the sections on the
specific cartridges.

For details about configuring properties and editors in a cartridge template, refer to the "Template Property and
Editor Reference" appendix in this guide.

Note

If you have purchased Oracle Guided Search only and do not have Oracle Experience Manager, most
of the core cartridges are not available for configuration in Workbench. Of the core cartridges, only
the Record Spotlight cartridge is available in Rule Manager. Custom cartridges that use primitive
properties only (typically as pass-through properties) can also be configured in Rule Manager. The
remaining cartridges can be configured with application-wide default values in the Spring context file
for the Assembler.

Related links
« Template Property and Editor Reference (page 225)
Request-based configuration

For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters.

314 7 Navigation Cartridge Configuration Reference

To enable per-request configuration based on URL parameters, the cont ent I t e ni ti al i zer bean of the
cartridge handler can specify ar equest Par amar shal | er bean whose class is Request Par anvar shal | er or
a subclass. Request Par amvar shal | er is a helper class that parses request parameters into properties of the
cartridge configuration model.

For information about the URL query parameters that apply to the core cartridges, refer to the Assembler
API Reference (Javadoc) for the relevant Request Par amivar shal | er subclass. These classes define the URL
parameters that the cartridge accepts and their mappings to properties on the configuration model.

Search cartridges

The Discover Electronics application includes reference implementations of several commonly-used search
features. The configuration models for these features are described in the following section.

Search box

The Search Box cartridge enables the site visitor to enter search terms and view record results. If dimension
search is enabled, dimension search results may also be displayed. A content administrator can configure Search
Box behavior such as whether to apply search adjustments or display auto-suggest search results.

The response model for this cartridge is Sear chBox.

The Search Box cartridge does not make use of a configuration model or a cartridge handler; properties
specified in the cartridge template and in the end user's search request are passed through to the renderer.

The renderer for this cartridge makes use of a JavaScript module, endeca- aut o- suggest . j s, to display the
auto-suggest panel for search suggestions.

MDEX Engine configuration for the Search Box cartridge

Because the Search Box enables keyword search for records and dimension values, most search configuration
affects the behavior of this cartridge. This section focuses on record search configuration.

Dynamic configuration

The main aspects of search-related configuration that can be updated without re-indexing are the search
interfaces for an application. Search interfaces specify a collection of properties and dimensions against which
text searches are performed, and may also specify a default relevance ranking strategy. For information about
creating search interfaces, refer to the MDEX Engine Basic Development Guide.

The properties and dimensions within a search interface must be enabled for record search as part of the data
ingest process. For information about enabling properties and dimensions for search, refer to the Developer

Studio Help.

Search results are also affected by thesaurus configuration that a content administrator can specify in
Workbench.

Static configuration

Aspects of search behavior that must be specified at index time include stop words, stemming, and search
characters.

« stop words are commonly occurring words (like "the") that are ignored for keyword search.

7 Navigation Cartridge Configuration Reference 315

« stemming broadens search results to include root words and variants of root words.

« search characters configuration enables you to designate certain non-alphanumeric characters as significant
for search.

For information about configuring these features, refer to the MDEX Engine Basic Development Guide.
Template configuration for the Search Box cartridge

The Search Box cartridge does not include a configuration model or a cartridge handler; instead, template
configuration is passed through to the cartridge renderer.

The Search Box cartridge template includes properties that impact auto-suggest behavior. The auto-suggest
panel itself is implemented as a configurable dynamic slot, and is configured separately.

The Search Box cartridge template includes the following configurable pass-through properties:

Property name Description

cont ent Col | ecti on This property specifies the content collection that should be used to
populate the dynamic slot for the auto-suggest panel.

m nAut oSuggest | nput Lengt h This property specifies how many characters a user must type before
the auto-suggest panel displays.

rul eLimit This property sets the number of content items to return when
populating the auto-suggest panel dynamic slot. It is limited by the
evaluation limit of the specified cont ent Col | ect i on. The actual
number of auto-suggest content items displayed is also limited by the
rendering code, which only supports rendering a single auto-suggest
panel by default.

Note

If you do not want to provide the option of enabling auto-suggest search results in Experience
Manager, remove the properties and editors from the template, and remove the JavaScript module
from the component.

Related links
» Auto-suggest search results (page 316)
Auto-suggest search results

Auto-suggest search results display as the site visitor types in the search box, rather than displaying after the
visitor has completed the search. In the Discover Electronics reference application, the auto-suggest panel is
implemented as a content item that populates a dynamic slot in the Search Box cartridge.

In addition to configuring the auto-suggest feature on the Search Box cartridge, a content administrator must
also configure the display of different types of search suggestions. This section describes the cartridges that can
be configured within the auto-suggest panel.

316 7 Navigation Cartridge Configuration Reference

Currently, the only auto-suggest cartridge in the Discover Electronics reference application is one that displays
dimension search results. It returns the same response model as the Dimension Search cartridge. Other possible
uses for auto-suggest cartridges include those for Popular Searches, Featured Categories, and Product Search.

MDEX Engine configuration that impacts search results also applies to auto-suggest results. For example,
enabling or disabling wildcard search on dimension search will affect the dimensions returned for a dimension
search auto-suggest panel.

The JavaScript component of the Search Box in the Discover Electronics application acts as the renderer for the
auto-suggest panel.

Template configuration for the auto-suggest panel

The cartridge template for the auto-suggest panel itself includes a dynamic content slot, with no other
configuration.

Configuration model for the Auto-Suggest Dimension Search Results cartridge

The Auto-Suggest Dimension Search Results cartridge uses the same configuration model as the Dimension
Search Results cartridge.

The configuration model for this cartridge is Di nensi onSear chResul t sConf i g. For an overview of this
model, see "Configuration model for the Dimension Search Results cartridge" or refer to the Assembler API
documentation (Javadoc).

Related links
+ Configuration model for the Dimension Search Results cartridge (page 318)
Cartridge handler configuration for the Auto-Suggest Search Results cartridge

Because the Auto-Suggest Dimension Search Results cartridge uses the same configuration model as the
Dimension Search Results cartridge, it also shares the same cartridge handler.

The cartridge handler configuration maps the Dimension Search Auto-Suggest cartridge to the
Di mensi onSear chResul t sHandl er . There are no application-wide default values set for this cartridge.

Related links
» Search box (page 315)
Template configuration for the Auto-Suggest Dimension Search Results cartridge

The Auto-Suggest Dimension Search Results cartridge populates the dynamic slot in the Auto-Suggest panel.
The cartridge template is similar to the Dimension Search Results template.

The Auto-Suggest Dimension Search Results cartridge template allows a content administrator to configure the
following properties on the configuration model:

« maxResults
« di nensi onLi st
* maxResul t sPer Di nensi on

* showCount sEnabl ed

7 Navigation Cartridge Configuration Reference 317

In addition, the cartridge template includes the following pass-through properties:

Property name Description
title Optional. A header that displays above the dimension search results.
di spl ayl mage If set to true, a thumbnail image displays next to each dimension value.

The URL of the image must be the value of a dimension value property
namedi ng_t hunbnai | _url.

Note

If there is no such property on dimension values in the data
set, remove this option and its associated editor from the
template to disable this feature.

Dimension search results

The Dimension Search Results cartridge displays refinement links based on the names of dimension values that
match the search keywords entered by the site visitor.

The dimension search results display in a panel after the site visitor performs the search. These results provide
suggestions for additional navigation refinements based on the search terms.

The response model for this cartridge is Di nensi onSear chResul t s. It contains a list of
Di mensi onSear chGr oup objects that in turn contain di mensi onSear chVval ues that provide refinement links.

Configuration model for the Dimension Search Results cartridge

The Dimension Search Results cartridge configuration model controls the number, ranking, and display of
returned results.

The configuration model for this cartridge is Di mensi onSear chResul t sConf i g. It includes the following

properties:

Property name Description

enabl ed Enables or disables the display of returned dimension refinements. By
default, this property is f al se. It is enabled via URL request by setting
the Dy URL parameter to 1.

maxResul ts Specifies the maximum number of dimension value results across all
dimensions to display.

maxResul t sPer Di mensi on Specifies the maximum number of dimension values to display per
dimension.

di mensi onLi st Specifies the dimensions on which to perform dimension search.
The results display based on the order in which the dimensions are
specified, up to the maximum number of suggestions.

318 7 Navigation Cartridge Configuration Reference

Property name Description

showCount sEnabl ed Specifies whether to display refinement counts in dimension search
results.
r el Rank Optional. Specifies a relevance ranking string to use for dimension

search, such as "first,static(nbins,desc)". If you do not set this property,
dimension value relevance ranking is set to the default (alpha, numeric,
or manual) defined in Developer Studio.

MDEX Engine configuration for dimension search results

Different aspects of dimension search can be configured on a global or per-dimension basis.

Dynamic configuration

You can specify global dimension search behavior in the Dimension Search Configuration editor in Developer
Studio. Oracle recommends enabling wildcard search for dimensions, especially if you are using the Auto-
Suggest Dimension Search cartridge or the Dimension Value Boost-Bury editor. Wildcard search enables partial
matches to be returned for searches in addition to full word matches (for example, a search for "pink" would also
return "gray/pink") which is useful for displaying suggestions while the user is typing search terms.

Additional options include whether to return only the highest ancestor dimension value, and whether to return
inert dimension values in dimension search results. For more information about global dimension configuration,
refer to the Developer Studio Help.

Static configuration

You can configure dimension-specific search behavior in the Dimension editor in Developer Studio. This includes
whether to search across the entire dimension hierarchy rather than only individual dimension values and

also enables you to specify dimension value synonyms to be used for search. For more information about per-
dimension configuration, refer to the Developer Studio Help.

Cartridge handler configuration for Dimension Search Results
The Dimension Search Results cartridge handler extends the Navi gati onCar t ri dgeHandl er.

The cartridge handler uses the Di nensi onSear chResul t sConfi gl ni ti al i zer to merge the layered
configuration. The included r equest Par aniVar shal | er bean enables URL request-based configuration for the
cartridge, which is required for dynamically enabling the feature.

Template configuration for the Dimension Search Results cartridge

The Dimension Search Results cartridge template allows a content administrator to configure how many results
should be displayed to the end user, and how they should display. The cartridge template also includes two
pass-through properties that are passed directly to the cartridge renderer.

The Dimension Search Results cartridge template allows a content administrator to configure the following
properties on the configuration model:

« maxResults

« di nensi onLi st

7 Navigation Cartridge Configuration Reference 319

* maxResul t sPer Di nensi on

* showCount sEnabl ed

In addition, the cartridge template includes the following pass-through properties:

Property name

Description

title

Optional. A header that displays above the dimension search results.

di spl ayl nage

If set to true, a thumbnail image displays next to each dimension value.
The URL of the image must be the value of a dimension value property
named i mg_t hunbnai | _url .

Note

If there is no such property on dimension values in the data
set, remove this option and its associated editor from the
template to disable this feature.

URL request parameters for the Dimension Search Results cartridge

The display of the Dimension Search Results cartridge on a page is controlled by setting the value of the
enabl ed property on the cartridge configuration model at runtime via the Dy URL parameter.

The cartridge renderer in the reference implementation sets the Dy parameter to 1 in all cases. While this is
equivalent to setting the property to t r ue in the cartridge handler configuration, or as a non-editable property
in the cartridge template, the intent is to demonstrate where the logic belongs in the application.

Property name URL Description
Parameter
enabl ed Dy Enables or disables the display of returned dimension refinements.

Setting Dy=1 sets the property tot r ue.

Search adjustments

Search adjustments include automatic spelling correction, automatic phrasing, and Did You Mean functionality.

The response model for this cartridge is Sear chAdj ust nent s.

The behavior of the spelling correction and Did You Mean features are configured at the MDEX Engine level.
The Search Adjustments cartridge enables content administrators to specify whether or not search adjustments
messaging displays on a page; it does not have any configuration options in Experience Manager.

Configuration model for the Search Adjustments cartridge

The Search Adjustments cartridge configuration model enables you to enable or disable automatic phrasing and
automatic spelling correction. If query debugging features are enabled in your application, you can also enable
or disable debugging information about Word Interpretation.

320

7 Navigation Cartridge Configuration Reference

The configuration model for this cartridge is Sear chAdj ust ermt sConf i g. It includes the following properties:

Property name Description

phr aseSuggest i onEnab| &pecifies whether to enable automatic phrasing. Defaults to t r ue. Set via URL
request by setting the Nt p URL parameter to 1.

spel | Suggest i onEnabl e8pecifies whether to enable automatic spelling correction. Defaults to f al se. Set
via URL request by setting the Nt y URL parameter to 1.

showverdl nterp If query debugging features are enabled, this property enables debugging
information about word or phrase subsitutions as a map that can be accessed via
Sear chAdj ust ment s. get | nt er pr et edTer ms() . For additional information,
see "About query debugging results in the reference application."

MDEX Engine configuration for the Search Adjustments cartridge

Search adjustments features are configured at indexing and at Dgraph startup.

Dynamic configuration

You can specify a list of phrases to be automatically applied to text search queries in Developer Studio. For more
information about configuring automatic phrasing, refer to the MDEX Engine Development Guide.

Static configuration

You can configure the constraints on the spelling dictionaries for record search and dimension search in

the Spelling editor in Developer Studio. These settings determine the size of the spelling dictionary that is
generated at indexing time. Larger spelling dictionaries lead to slower performance of spelling correction

at query time; setting more restrictive constraints on the contents of the spelling dictionary can lead to
improved query performance. For more information about tuning the size of the spelling dictionary, refer to the
Performance Tuning Guide.

Dgidx flags

You specify the spelling mode as a flag to Dgidx. Generally, applications that only need to correct normal English
words can enable just the default Aspell module. Applications that need to correct international words, or other
non-English/non-word terms (such as part numbers) should enable the Espell module. For more information
about spelling modes and the associated Dgidx flags, refer to the MDEX Engine Development Guide.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:

<dgi dx id="Dgi dx" host-id="1TLHost" >
<properties>

7 Navigation Cartridge Configuration Reference 321

<property nanme="nunlLogBackups" val ue="10" />
<property nanme="num ndexBackups" val ue="3" />
</ properties>
<args>
<ar g>-v</ arg>
<ar g>- - conpoundDi nSear ch</ ar g>
</ args>
<l og-di r>./1 ogs/ dgi dxs/ Dgi dx</ | og-di r>
<i nput-dir>./datal/forge_output</input-dir>
<out put - di r >. / dat a/ dgi dx_out put </ out put-dir>
<tenp-dir>./datal/tenp</tenp-dir>
<run-aspel | >t rue</run-aspel | >
</ dgi dx>

Dgraph flags

You enable spelling correction and Did You Mean through Dgraph flags. Additional Dgraph flags provide
advanced tuning options for the spelling adjustment features that affect performance and behavioral
characteristics, such as the threshold for the number of hits at or above which spelling corrections or Did You
Mean suggestions are not generated. For more information on Dgraph flags for search adjustment tuning, refer
to the MDEX Engine Development Guide.

Note

Auto-correct should be relatively conservative. You only want the engine to complete the correction
when there is a high degree of confidence. For more aggressive suggestions, it is best to use Did You
Mean.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:

L e e L L e T L

d obal Dgraph Settings - inherited by all dgraph conponents
#
-->
<dgr aph- def aul t s>
<properties>
<!-- additional elenments renoved fromthis exanple -->
</ properties>
<directories>
<!-- additional elenments renoved fromthis exanple -->
</directories>
<args>
<ar g>--threads</ arg>
<ar g>2</ arg>
<ar g>- - whymat ch</ ar g>
<ar g>--spl </ ar g>
<ar g>- - dynx/ ar g>
<ar g>--dym_ht hr esh</ ar g>
<ar g>5</ ar g>
<ar g>- - dym nsug</ ar g>
<arg>3</arg>
<ar g>- - st at - abi ns</ ar g>
</ args>
<startup-timeout>120</startup-ti meout >
</ dgr aph- def aul t s>

322 7 Navigation Cartridge Configuration Reference

Cartridge handler configuration for Search Adjustments

The Search Adjustments cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-
wide default configuration in the Assembler context file allows you to enable or disable the word interpretation
debugging feature.

The cartridge handler usesacontent | t eml ni ti al i zer to merge the layered configuration. The included
r equest Par amvar shal | er bean enables URL request-based configuration for the cartridge, which is required
for dynamically disabling or enabling automatic phrase suggestions and spelling correction.

Related links
+ About implementing automatic phrasing (page 323)
Template configuration for the Search Adjustments cartridge

The cartridge template for the Search Adjustments cartridge does not include any configurable properties. A
content administrator can add the cartridge to a page in order to enable the display of Search Adjustments, but
cannot otherwise configure cartridge behavior.

URL request parameters for the Search Adjustments cartridge

Automatic phrasing and spelling correction are controlled by setting the value of their respective properties on
the cartridge configuration model at runtime via the Nt p and Nt y URL parameters.

The cartridge renderer in the reference implementation sets both parameters to 1 in all cases. While this is
equivalent to setting the properties in the cartridge handler configuration, or in the cartridge template, the
intent is to demonstrate where the logic belongs in the application.

Property name URL Description
Parameter
phr aseSuggest i onENapl ed Specifies whether to enable automatic phrasing.
spel | Suggest i onEndbyed Specifies whether to enable automatic spelling correction.

About implementing automatic phrasing

You can configure the MDEX Engine to consider certain combinations of words in a text search as a phrase
search and specify whether to apply phrasing automatically to a site visitor's text search queries.

The high level steps for enabling automatic phrasing are:
+ Enabling the MDEX Engine to compute phrases

+ Configuring the default behavior of the Assembler application as to whether or not to automatically apply
computed phrases

+ Adding application logic to enable Did You Mean suggestions or override the default automatic phrasing
behavior in certain situations

7 Navigation Cartridge Configuration Reference 323

You enable the MDEX Engine to compute phrases that can be applied to a site visitor's text search by creating a
phrase dictionary. For information about creating a phrase dictionary, refer to the section on Automatic Phrasing
in the MDEX Engine Developer's Guide.

You can configure the default behavior of the Assembler application as to whether to automatically rewrite a
text search as a phrase search or keep it as a search for individual keywords using the following property on the
Filter State object:

Property Description

aut oPhr aseEnabl ed If set to t r ue, instructs the MDEX Engine to compute phrases that can
be applied to a text search and automatically rewrite the query using
the phrased version. Automatic phrasing is enabled by default.

The aut oPhr aseEnabl ed setting on the default Filter State can be overridden at query time using the URL
parameter aut ophr ase. If the value of aut ophr ase is 1, then computed phrases are automatically applied to
the query. If the value is 0 then phrases may still be computed, but are not automatically applied to the query.

The Filter State configuration in the Assembler context file for the Discover Electronics reference application is
shown below:

<bean i d="navi gationStateBuil der" scope="request"
cl ass="com endeca. i nfront. navi gati on. url . Url Navi gati onSt at eBui | der" >
<l-- additional elenents renoved fromthis exanple -->
<property nane="defaultFilterState">
<bean scope="si ngl et on"
cl ass="com endeca. i nfront. navi gati on.nodel . FilterState">
<property name="rol | upKey" val ue="product.code" />
<property nanme="aut oPhraseEnabl ed" val ue="true" />

<!-- <property name="securityFilter" value="" /> -->
<!-- <property name="|anguagel d* val ue="en" /> -->
</ bean>
</ property>
<!-- additional elements renoved fromthis exanple -->

</ bean>

For Oracle Commerce Experience Manager, if your application contains multiple sites, Oracle recommends using
afilterState. xnl fileinstead of the Filter State configuration in the Assembler context file. For example, a
filterState. xnl filein/pages/DiscoverElectronics/ might contain the following aut ophr ase property:

<l tem cl ass="com endeca. i nfront. navi gati on. nodel . FilterState" xm ns="http://endeca.com
schema/ xavi a/ 2010" >
<Property nane="aut oPhr aseEnabl ed" >
<Bool ean>t r ue</ Bool ean >
</ Property>
</ltem

Interaction with the Did You Mean feature

Whether automatic phrasing is applied or not, you can specify whether to return a "Did You Mean" link for the
alternate version using the Nt y URL parameter. For example, if phrasing was automatically applied, the Did You
Mean suggestion would provide a link to the unphrased version of the query, and vice versa. If the value of Nt y

324 7 Navigation Cartridge Configuration Reference

is 1, then the Assembler returns suggestions for the alternate form of the query. If the value is 0, no suggestions
are returned.

Note

The Nt y parameter controls Did You Mean suggestions for regular text search as well as for automatic
phrasing.

Phrase search scenario: Automatically applying phrases

In the Discover Electronics application, the default behavior is to automatically apply phrases to text search
queries and to return the unphrased version as a search suggestion.

Your Selections Your search for manual focus was adjusted to

mrch Did you mean manual focus (497 resulis) ?

manual focus "manual
focus™

Elear Al 10 perpage - Relevance -

In this scenario, aut oPhr aseEnabl ed is set to t r ue on the default Filter State object, and the Search Box
cartridge sets Nt y=1 on the text search query. The user has two choices:

+ Select the Did You Mean suggestion to search for the keywords separately, rather than as a phrase. This link
sends the same query with the URL parameter Nt p=0 to override the Filter State configuration, and also sets
Nt y=0 since we do not need to suggest the phrased version of the query after the user has decided to use the
unphrased version.

» Make another selection on the page, such as clicking on a refinement or advancing to the next page of results.
This signifies acceptance of the automatically applied phrase, so we keep aut oPhr aseEnabl ed=t r ue from
the Default Filter State and suppress further suggestions by setting Nt y=0.

These outcomes are summarized in the following table:

User action Autophrase Did You Mean Result
setting (Nt p) setting (Nt y)
Initial search true Nty=1 Phrase is automatically applied to the

text search. A Did You Mean suggestion is
offered for the unphrased version.

Select Did You Mean | Nt p=0 Nt y=0 Phrase is not applied to the search. No

suggestion suggestion is offered.

Make another follow- | true Nt y=0 Phrase continues to be automatically

on selection applied. Suggestions are no longer
offered.

Phrase search scenario: Phrases as a search suggestion

You can configure the application not to apply phrases by default, but to return phrases as a search suggestion.

7 Navigation Cartridge Configuration Reference 325

Showing 1 =10 of 120 tems 2345>

Your Selections Did you mean “"manual focus” (120 results) 7

aarrh

Showing 1 - 10 of 487 items 2345
manual focus

Clear &

10 per page - Relevance -

In this scenario, aut oPhr aseEnabl ed is set to f al se on the default Filter State object, and the Search Box
cartridge sets Nt y=1 on the text search query. The user has two choices:

+ Select the Did You Mean suggestion to consider the text search as a phrase. This link sends the same query
with the URL parameter Nt p=1 to override the default Filter State configuration, and also sets Nt y=0 since
we do not need to suggest the unphrased version of the query after the user has decided to use the phrased
version.

+ Make another selection on the page, such as clicking on a refinement or advancing to the next page of
results. This signifies acceptance of the unphrased query, so we keep aut oPhr aseEnabl ed set to f al se and
suppress further suggestions by setting Nt y=0.

These outcomes are summarized in the following table:

User action Autophrase setting Did You Mean Result
(Nt p) setting (Nt y)
Initial search fal se Nty=1 Phrase is not applied to the

text search. A Did You Mean
suggestion is offered for the
phrased version.

Select Did You Mean Nt p=1 Nt y=0 Phrase is automatically applied

suggestion to the search. No suggestion is
offered.

Make another follow- | fal se Nt y=0 Text search continues to

on selection be treated as individual

keywords instead of as a phrase.
Suggestions are no longer offered.

Keyword redirects

Content administrators can configure keyword redirects that redirect a front-end user to a new page if the user's
search terms match the set keyword.

When an end user enters a search term that matches a keyword redirect, the Assembler returns the redirect URI
with the response model. The Assembler response can be limited to the redirect URI, or it can also return the
results for the user's search term.

The content administrator specifies a search term, match mode, and redirect URI on the Keyword Redirects page
in Workbench.

326 7 Navigation Cartridge Configuration Reference

Cartridge handler configuration for keyword redirects

The Assembler APl includes a Redi r ect Awar eCont ent | ncl udeHand! er that implements keyword redirect
functionality.

The cartridge handler takes the following two properties:

+ defaul t Ful | Assenbl eOnRedi rect — A Boolean that specifies whether to return search results in addition
to the redirect URI when making an assenbl e() call. Defaults to f al se. If you do not necessarily wish to
execute a redirect (for cases where the redirect URI is displayed as a link, or may be skipped entirely if the user
is not on a specific device), you must set this property to t r ue.

+ defaul t Redi rect Col | ecti on — A string that contains the name of the keyword redirect collection in the
Endeca Configuration Repository. Setting a null or empty value for this property disables keyword redirect
functionality.

The cartridge handler configuration in the Assembler context file for Discover Electronics is shown below:

<l--

~ BEAN: CartridgeHandl er _Contentl ncl ude
~ Used by the assenbl er service when keyword redirects are not enabl ed
-->
<bean i d="CartridgeHandl er _Contentl ncl ude"
cl ass="com endeca. i nfront. content. Content| ncl udeHandl er"
scope="pr ot ot ype" >
<property nanme="content Source" ref="content Source" />
<property nanme="siteState" ref="siteState"/>
<property nanme="user State" ref="%${user.state.ref}"/>
</ bean>

<l--

~ BEAN: CartridgeHandl er _Redi rect Anar eCont ent | ncl ude
~ For root calls to the assenbl er when keyword redirects are desired
-->
<bean i d="Cartri dgeHandl er _Redi r ect Awar eCont ent | ncl ude"
cl ass="com endeca.infront.cartridge. Redi r ect Awar eCont ent | ncl udeHandl er"
scope="pr ot ot ype">
<property name="content Source" ref="content Source" />
<property nane="content Broker" ref="content Request Broker" />
<property nanme="navi gationState" ref="navigationState" />
<property nanme="defaul t Ful | Assenbl eOnRedi rect" val ue="fal se"/>
<property nane="siteState" ref="siteState"/>
<property nanme="user State" ref="${user.state.ref}"/>
</ bean>

Note

The redirect-aware version of the cartridge is included in the Navigation JAR rather than the core
Assembler JAR because it relies on keyword redirects, which are interpreted by the MDEX Engine. The
standard Content Include cartridge and classes do not have this dependency, and are packaged with
the core JAR file.

Content XML for keyword redirects

You can override the default settings for the f ul | Assenbl eOnRedi r ect orredirect Col | ecti on properties
by setting new values in the content XML that is retrieved by the Redi r ect Awar eCont ent I ncl udeHandl er.

7 Navigation Cartridge Configuration Reference 327

The primary use case for setting these properties on content XML is for deployments running the Assembler
service. Keyword redirects are programatically enabled in the service, so by default the feature is explicitly
disabled for services where it does not apply (Dimension Search and Record Details) by including an element in
the content XML that sets r edi r ect Col | ect i on to a null value.

Note

If you are creating your Assembler application in Java, you can disable keyword redirects by using the
Cont ent I ncl ude class instead of Redi r ect Awar eCont ent | ncl ude for those services where you
wish to disable the feature.

About using keyword redirects with the Assembler service

The Assembler service in the Discover Electronics application implements the
com endeca. i nfront. assenbl er. servl et. Abstract Assenbl er Ser vl et abstract class. Keyword redirect
configuration is configured in the application's web. xni file.

The JSON and XML servlets in the Discover Electronics reference application are configured inr ef er ence
\ di scover - servi ce\ VEB- | NF\ web. xm :

<servl et>
<servl et - name>JsonAssenbl er Ser vi ceSer vl et </ servl et - name>
<servl et-cl ass>com endeca. i nfront. assenbl er. servl et. spring. Spri ngAssenbl er Servl et </
servl et -cl ass>
<init-paranmr
<par am nane>assenbl er Fact oryl D</ par am nane>
<par am val ue>assenbl er Fact or y</ par am val ue>
</init-paranm
<init-paranmr
<par am nanme>r esponseW it er | D</ par am namne>
<par am val ue>j sonResponseW i t er </ par am val ue>
</init-paranm>
<i nit-paranp
<par am nanme>enabl eKeywor dRedi r ect s</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranr
</ servlet>

When the application queries the Assembler service, the redirect URI is returned as part of the response.

About handling keyword redirects in an application

In order to execute a redirect, an application must include logic for handling the URI components returned from
the Assembler. You must use the Redi r ect Awar eCont ent | ncl ude class for any content items that require
keyword redirect functionality.

The assenbl e. j sp service uses the Redi r ect Awar eCont ent | ncl ude class to enable keyword redirects, as
shown below:

<Y%page
i mport="com endeca. i nfront. cartridge. Redi rect Awar eCont ent | ncl ude" %

328

7 Navigation Cartridge Configuration Reference

Assenbl er Factory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean("assenbl er Factory");
Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er () ;

//Retrieve the content for the given content uri
Contentltem contentltem = new Redi rect Awar eCont ent | ncl ude("/ browse" + contentUri);

/1 Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten);

The Assembler response

When an end user enters a search term that matches a keyword redirect configured in Workbench, the
Assembler response includes a Cont ent | t emwith the necessary information for creating a destination URI.

The following example shows a JSON response in an Experience Manager implementation from the Guided
Search service when f ul | Assenbl eOnRedi rect isfal se:

{

endeca: si t eRoot Pat h: "/ pages"”,

endeca: content Path: "/servi ces/ gui dedsearch",

endeca: assenbl er Request | nf or mati on:

{
@ype: "Assenbl er Request Event",
endeca: assenbl yStart Ti nest anp: 1341943119538,
endeca: assenbl yFi ni shTi mest anp: 1341943119546,
endeca: cont ent Pat h: "/ gui dedsearch",
endeca: request | d":"140252272098164091",
endeca: sessi onld: "FF9D21355A3CBB9DFF75614DD7D2948D",
endeca: siteRoot Path: "/services"

b

endeca: redirect:

{
@ype: "Redirect",
link: {

@l ass: "com endeca.infront.cartridge. nodel. Ul Action",
url: "/browse/ caneras/_/ N-25y6"

}

}

}

The keyword redirect information is included in the Cont ent | t emwith the key endeca: r edi r ect . The value
specifies an Act i on object with the destination URI, which may be either relative or absolute.

In an Oracle Commerce Guided Search implementation (without Experience Manager), the site root path and
content path in the JSON response would be the following:

endeca: si teRoot Path: "/services",
endeca: cont ent Pat h: "/ gui dedsearch",

Using the Assembler response

You must retrieve and use the information from the Assembler response in your application to execute a
keyword redirect. In the Discover Electronics reference application, this is accomplished in the assenbl e. j sp
service:

7 Navigation Cartridge Configuration Reference

329

<Y@taglib prefix="util" uri="/WEB-INF/tlds/functions.tld"
%
<U@taglib prefix="c" uri="http://java.sun.conljsp/jstl/core" %

/1 Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten);

request.setAttri bute("conponent"”, responseContentlten);
request.setAttribute("root Component”, responseContentlten);

Map map = (Map) request.getAttribute("conponent");
i f (map. contai nsKey("endeca:redirect")) {
request.setAttribute("action", ((Contentltemn
map. get ("endeca: redirect")).get("link"));
%
<c:redirect url="%{util:getUrl ForAction(action)}"/>
<%

For more information about Act i on objects in an Assembler application, see "Working with Application URLs,"
or consult the Assembler APl Reference (Javadoc).

Guided Navigation cartridges

The following sections provide an overview of the configuration models for Guided Navigation features included
with Tools and Frameworks and implemented in Discover Electronics.

Refinement menu

The Refinement Menu cartridge displays dimension values within a single dimension for Guided Navigation. It
supports dimension value boost and bury.

The response model for this cartridge is Ref i nenent Menu, which contains a list of Ref i nement objects.

Dimension value boost and bury

Dimension value boost and bury is a feature that enables re-ordering of dimension values within a particular
dimension for Guided Navigation. With dimension value boost, you can assign specific dimension values to
ranked strata, with those in the highest stratum being shown first, those in the second-ranked stratum shown
next, and so on. With dimension value bury, you can assign specific dimension values to strata that are ranked
much lower relative to others. This boost/bury mechanism therefore lets you manipulate ranking of returned
dimension values in order to promote or push certain refinements to the top or bottom of the navigation menu.

The Refinement Menu cartridge enables the content administrator to specify an ordered list of dimension values
to boost and an ordered list of dimension values to bury. Each dimension value is translated into its own stratum
in the query that returns refinements so as to preserve the exact order of refinements specified by the content
administrator.

For more information about dimension value boost and bury, refer to the MDEX Engine Basic Development Guide.

330

7 Navigation Cartridge Configuration Reference

Configuration model for the Refinement Menu cartridge
The Refinement Menu cartridge configuration model allows you to configure sorting, "Show More..." link
behavior, and boosted and buried refinements. Additionally, it includes a whyPr ecedenceRul eFi r ed property

that can be used for debugging precedence rule behavior in your application.

The configuration model for this cartridge is Ref i nement MenuConf i g. It includes the following properties:

Property name Description

di mensi onl d A string representing the id of the dimension being configured.

boost Ref i nenent § An ordered list of dimension value refinements to display at the top of the list.

bur yRef i nement s | An ordered list of dimension value refinements to display at the bottom of the list.

sort The base sort order of dimension values within this dimension. This property should
have one of the following values:

« defaul t — Sort dimension values according to the application configuration for this
dimension.

+ static — Sortdimension values in alphabetic or numeric order, depending on the
dimension configuration.

+ dynRank — Sort dimension values so that the refinements with the highest number
of records display first.

showMor eLi nk A Boolean indicating whether to enable a link to show more refinements than are
displayed by default.

nor eLi nkText A string representing the text to use for the "show more refinements" link.

| essLi nkText A string representing the text to use for the "show fewer refinements" link.

nunRefi nements | A string representing the number of refinements to display by default, or when a user
clicks the "show fewer refinements" link.

maxNunRef i nement|sA string representing the maximum number of refinements to display when a user
clicks the "show more refinements" link.

r ef i nement sShown A string that sets the amount of refinements to return, from the following values:
* none — returns no refinements.
+ sone — returns nunRef i nenent s refinements.

+ al |l — returns maxNunRef i nenent s refinements.

show\or e (Deprecated) A Boolean indicating whether to display the maxNunRef i nement s
number of menu items. When this value is f al se, the number of menu items generated
is limited by nunRef i nenent s, and a "show more refinements" link is generated.

This value should be set using showMbr el ds URL parameter when the "show more
refinements" link is selected.

7 Navigation Cartridge Configuration Reference 331

Property name Description

useShowhbr el dsPar@meprecated) A Boolean that sets whether to use the showbr el ds URL parameter
when determining how many refinements to display. If f al se, the showior e property
on the Ref i nement MenuConf i g object is used instead. If this property is settot r ue,
refinements cannot be collapsed. Defaults to t r ue.

why Pr ecedenceRul|elfiquedy debugging features are enabled, this property enables debugging information
about why precedence rules fired on a query in a DG aph. WhyPr ecedenceRul eFi r ed
property for each root dimension value. For additional information, see "About query
debugging results in the reference application.”

Notes on sorting

The st at i ¢ sort option is described as "Alphanumeric” sorting in the Experience Manager user interface for
the default Refinement Menu cartridge. Dimension values are ordered alphanumerically within a dimension by
default, however it is possible to manually specify a dimension order (for example, using the Dimension Values
editor in Developer Studio). This custom dimension value order is used when st at i ¢ sorting is specified. To
ensure alphanumeric sorting of dimension values, do not specify a custom dimension value order.

Dynamic refinement ranking is incompatible with displaying disabled refinements for a dimension. In the
default Refinement Menu cartridge, the option to show disabled refinements is not available unless the content
administrator has explicitly selected st at i ¢ sorting.

MDEX Engine configuration for Guided Navigation

No special configuration is necessary to enable Guided Navigation, however, there is some static configuration
that affects the display of refinements.

Static configuration
In the Dimension editor in Developer Studio, you can configure dimensions to be:

+ multiselect — A multiselect dimension enables a user to select more than one refinement at the same time.
You can specify whether the navigation results when multiple refinements are selected are treated as a
Boolean AND or Boolean OR on a per-dimension basis.

+ hidden — A hidden dimension does not display in Guided Navigation; however, users can still search for
records based on their dimension values in a hidden dimension.

You can also configure the following refinement behavior on a per-dimension basis:

+ dynamic refinement ranking — Dynamic ranking returns refinements based on their popularity (number of
associated record results for each refinement). This is a default setting that can be overridden by the content
administrator in Experience Manager.

+ refinement statistics — Enabling refinement statistics returns the number records (or aggregated records) are
associated with each refinement so that this information can be displayed in the application.

Additionally, you can designate specific dimension values as inert. For more information about these
configuration options, refer to the MDEX Engine Basic Development Guide.

332 7 Navigation Cartridge Configuration Reference

Cartridge handler configuration for the Refinement Menu cartridge

The Refinement Menu cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-wide
default configuration in the Assembler context file determines the behavior of collapsed dimensions and "show
more" and "show less" links, and can be set to enable or disable the precedence rule debugging feature if query
debugging features are enabled.

The cartridge handler usesacont ent I t em ni ti al i zer to merge the layered configuration. The included

r equest Par amvar shal | er bean enables URL request-based configuration for the cartridge, which is required
for disabling or enabling the full list of refinement results returned when the end user clicks the "show more
refinements" link.

Template configuration for the Refinement Menu cartridge

The Refinement Menu cartridge template allows a content administrator to configure which dimension to query
for the cartridge and how many results should display. It also allows control over boosted and buried dimension
refinements, in order to modify the order in which dimensions display to the end user.

The Refinement Menu cartridge template allows a content administrator to configure the following properties
on the configuration model:

» dinensionld

* sort

* showMbr eLi nk

» noreLi nkText

» | essLi nkText

* nunRefinenments

* maxNunRef i nenent s
* boost Refi nerment s
* buryRefinenents

In addition, the cartridge template includes the following pass-through property:

Property name Description

di mensi onNane The nane of the string property that represents the dimension name. This is
required by the Dimension Selector editor to enable a content administrator
to select a dimension by name, rather than by ID.

URL request parameters for the Refinement Menu cartridge

You can configure the Refinement Menu cartridge at runtime by setting the value of the
DYNAM C_REFI NEMENT_MENU_CONFI Gproperty on the Refi nenent MenuRequest Par amvar shal | er via the
Nr e URL parameter.

The sample cartridge renderer includes logic for displaying the maxNunRef i nement s number of results when a
user clicks on the "show more refinements" link.

7 Navigation Cartridge Configuration Reference 333

Property name URL parameter Description

DYNAM C_REFI NEMENF nWENU_CONFI G | The Nr nt parameter takes multiple arguments allow you to
configure dimension refinement behavior in the cartridge.

show\br e Showbr el ds (Deprecated) A Boolean indicating whether to display the
maxNunRef i nement s number of menu items. Use the

r ef i nement sShown property if you are refactoring your code or
developing a new application.

About Nr nt URL parameter syntax

The Nr nt parameter takes the following values:
+ Dimension ID — Required. The ID of the dimension you wish to configure.

+ +show <val ue>— Required; <val ue> is the value to pass to ther ef i nenent sShown property on the
configuration object.

The configuration for each dimension is separated by a vertical pipe, as in the example below:

20001+show: al | | 20002+show:. sone

Note

You can also use the notation used with the Presentation API, for example: Nr c=i d+10074+expand
+t r ue+nor e+t r ue. For more information about this notation, see the MDEX Engine Basic Development
Guide.

Navigation Container

The Navigation Container is provided as an alternative the refinement menu cartridge for implementations
using Oracle Guided Search with the packaged services. It enables you to retrieve the full list of available
dimension refinements for a dimension query.

The response model for the Navigation Container includes a list of Ref i nement Menu objects that each include
the records within a dimension refinement. The Navi gat i onCont ai ner Handl er handles the "show more
refinements" link and associated link Action for each of these refinements, and also controls whether to display
debugging information.

Configuration model for the Navigation Container

The Navigation Container configuration model includes the Li st <St r i ng> property of dimension

IDs that are returned with the response model. Since it is a dimension navigation feature, it includes a
whyPr ecedenceRul eFi r ed property that can be used for debugging precedence rule behavior in your
application.

The configuration model for this cartridge is Navi gat i onCont ai ner Conf i g. It includes the following
properties:

334

7 Navigation Cartridge Configuration Reference

Property name

showMor el ds

Description

A List of dimension IDs to return as expanded lists of available refinements.
Any dimension refinements not included in this List are returned in the default,
shorter form output by the MDEX Engine.

nor eLi nkText

| essLi nkText

A string representing the text to use for the "show more refinements" link. The
same string is used for each of the included dimension refinements.

A string representing the text to use for the "show fewer refinements" link. The
same string is used for each of the included dimension refinements.

r ef i nement s ShownBy Def

aliBoolean indicating whether the refinement menus should be fully expanded.
Defaults to t r ue. When using a dataset that includes dimensions with a large
number of refinements, you should set this to f al se.

r ef i nement sShown

useShowwbr el dsPar am

A string that sets the amount of refinements to return on each refinement menu,

from the following values:
* none — returns no refinements.

+ sone — returns nunRef i nenent s refinements.

(Deprecated) A Boolean that sets whether to use the showivor el ds URL
parameter when determining how many refinements to display. If f al se, the
showhor e property on the Ref i nement MenuConf i g object is used instead. If
this property is set to t r ue, refinements cannot be collapsed. Defaults to t r ue.

whyPr ecedenceRul eFireg

2df query debugging features are enabled, this property enables

debugging information about why precedence rules fired on a query in a
DG aph. WhyPr ecedenceRul eFi r ed property for each root dimension value.

For additional information, see "About query debugging results in the reference

application."

Cartridge handler configuration for the Navigation Container

The Navigation Container handler extends the Navi gat i onCart ri dgeHandl er . The application-wide default
configuration in the Assembler context file determines the behavior of collapsed dimensions and "show more"

and "show less" links, and can be set to enable or disable the precedence rule debugging feature if query

debugging features are enabled.

The cartridge handler usesacontent I t em ni ti al i zer to merge the layered configuration. The included

r equest Par amvar shal | er bean enables URL request-based configuration for the cartridge, which is required

for modifying the properties on the response model through URL parameters.

URL request parameters for the Navigation Container

Because the Navigation Container returns a list of Ref i nement Menu objects, it takes the same Nr nt URL

parameter as the Refinement Menu cartridge.

7 Navigation Cartridge Configuration Reference

335

Property name URL parameter Description

DYNAM C_REFI NEMENT_MENU NEGNFI G The Nr nt parameter takes multiple arguments allow
you to configure dimension refinement behavior in the
cartridge.

whyPr ecedenceRul eFi red| whyPrecedenceRul gHigeary debugging is enabled for the

reference application, this property allows

you to include debugging information about

why precedence rules fired on a query in a

DG aph. Wy Pr ecedenceRul eFi r ed property for each
dimension value.

For details on configuring the Nr nc parameter, see "URL request parameters for the Refinement Menu
cartridge."

Breadcrumbs

The Breadcrumbs cartridge displays the parameters defining the search or navigation state for the current set of
search results.

The response model for this cartridge is Br eadcr unbs, which may contain Sear chBr eadcr unb,

Ref i nement Br eadcr unb,RangeFi | t er Br eadcr unb, and GeoFi | t er Br eadcr unb objects as appropriate.
Each breadcrumb contains information about search or navigation selections that the end user has made, and
provides links to remove that selection from the filter state.

The Breadcrumbs cartridge does not have any associated Experience Manager configuration options or MDEX
Engine configuration.

Cartridge handler configuration for Breadcrumbs

The Breadcrumbs cartridge handler extends the Navi gat i onCar t ri dgeHand! er, but otherwise does not
require any additional configuration.

Results cartridges

Results list

The following sections provide an overview of the configuration models for features that display search results
in the reference implementation.

The Results List cartridge displays search and navigation results in a list view.

The response model for this cartridge is Resul t sLi st , which contains a list of Recor d objects and
Sort Opt i onLabel objects that enable the end user to select from a set of pre-defined sort orders.

About the order of records in the record list

The order of records returned by the MDEX Engine is determined by a sort key or relevance ranking strategy
depending on the type of query that returns the results.

336

7 Navigation Cartridge Configuration Reference

Relevance ranking is applied when the query includes a text search. Record sorting is applied to all other queries
including navigation queries. The sort options that are available to the end user in the application represent
static sort orders that are not based on relevance to any search terms.

Record boost and bury

Record boost and bury is a feature that enables fine-grained re-ordering of records within search or navigation
results. With record boost, you can assign records to ranked strata, with those in the highest stratum being
shown first, those in the second-ranked stratum shown next, and so on. With record bury, you can assign
records to strata that are ranked much lower relative to others. This boost/bury mechanism therefore lets you
manipulate ranking of returned record results in order to promote or push certain records to the top or bottom
of the results list. The records in each stratum are defined as a set of specific records or a navigation state that
the records must satisfy. A record is assigned to the highest stratum whose definition it matches, so boosting
takes precedence over burying. Record boost and bury apply regardless of whether the records returned are the
results of a search or navigation query.

The core Results List cartridge enables the content administrator to specify one set of records to boost

and one set of records to bury. Boost and bury are applied to the result list before any additional sorting or
relevance ranking modules. For more information about record boost and bury, refer to the MDEX Engine Basic
Development Guide.

Configuration model for the Results List cartridge
The Results List configuration model allows you to configure the number and sorting of records returned by a
search or navigation query. Additionally, it includes why Mat chEnabl ed and whyRankEnabl ed properties that

can be used for debugging the set of records returned for a query.

The configuration model for this cartridge is Resul t sLi st Conf i g. It includes the following properties:

Property name Description

r ecor dsPer Page An integer that controls the number of results to display per page. This value can be set
using Nr pp URL parameter.

recor dDi spl ayFi el dNString that specifies the field that stores the record's logical name.

sort Option An enumerated list of sort options on the results list available to the site visitor. Each
item in this list is a Sor t Opt i onConf i g with the following properties:

+ | abel — A descriptive label that displays to the site visitor in the client application

« val ue — A sort order specified in the format <key>| <di r ect i on>, where key is
the name of the property or dimension on which to sort, and the direction is 0 for
ascending and 1 for descending. An empty string represents the default sort order
specified by the content administrator in Experience Manager.

You can set this value via the Ns URL parameter.

sor t Request Par anetAebtring that specifies the selected Sort.

i ncl udePr econput edSBobkean that specifies whether to return precomputed sorts. Defaults to f al se. If
you do not set this to t r ue, any calls to the get Pr econput edSor t s() method return
an empty list.

7 Navigation Cartridge Configuration Reference 337

Property name Description

rel RankStrategy (Optional) The Relevance Ranking Strategy. If you specify a Relevance Ranking Strategy
without setting r el RankTer ns, r el RankKey, or r el RankMat chMbde, your Relevance
Ranking strategy will apply to the results from the current search filter. This setting is
ignored if an end user explicitly selects a sort.

r el RankKey (Optional) The Relevance Ranking key to use with the selected Relevance Ranking
strategy. This can be a search interface, dimension, or property set in the MDEX Engine.
You must setar el RankSt r at egy and r el RankTer ns if you specify a value for this

property.

rel RankTer ns (Optional) Relevance Ranking terms, delimited by a + sign. These can be different from
the terms in the search filter. You must set a r el RankSt r at egy and r el RankKey if
you specify a value for this property.

r el RankMat chMode (Optional) The match mode that determines the subset of results to apply Relevance
Ranking to. You must set ar el RankSt r at egy if you specify a value for this property.

boost Strat a An ordered list of Col | ect i onFi | t er s that enable items to be boosted to the top of
the results list. This setting is ignored if an end user explicitly selects a sort.

buryStrata An ordered list of Col | ect i onFi | t er s that enable items to be buried at the bottom
of the results list. This setting is ignored if an end user explicitly selects a sort.

subRecor dsPer Aggr ddeet miRexber of sub-records to return for any aggregate records in the results list. This
property should have one of the following values:

+ ZERO— Sub-records are not returned.
+ ONE — A single representative record is returned.
* ALL — All sub-records are returned.

The default value is ONE. For best performance, Oracle recommends that you use ZERO
or ONE.

of f set An integer record offset for the result list. This property defaults to 0 and is used for
paging. This value can be set using No URL parameter.

fi el dNanes A list of record fields to pass through from each record to the Recor d output model of
the Resul t sLi st Handl er.

subRecor dFi el dNamd®r aggregate records, a list of sub-record fields to pass through from each sub-record
to the Recor d output model of the Resul t sLi st Handl er.

whyMat chEnabl ed If query debugging features are enabled, this property enables debugging information
about why each record matched the search and navigation state. For additional
information, see "About query debugging results in the reference application."

whyRankEnabl ed If query debugging features are enabled, this property enables debugging information
about why each record was ranked in the given order. For additional information, see
"About query debugging results in the reference application."

338 7 Navigation Cartridge Configuration Reference

Note

You only need to set the r el RankKey, r el RankTer ms and r el RankMat chMode properties if you wish
to apply relevance ranking to values other than those specified in the search filter, or to the results of
an EQL expression.

MDEX Engine configuration for the Results List cartridge

Your MDEX Engine configuration for your application allows you to configure which properties and dimensions
should display in the results list view, optimize certain properties to use for sorting records, and specify a default
sort order.

Dynamic configuration

In the Property and Dimension editors in Developer Studio, you can specify which properties and dimensions
are returned for the record with the record list. This configuration can be overridden in the cartridge handler
configuration. For more information about configuring the display of properties and dimensions for the record
list, refer to the Developer Studio Help.

Static configuration

Although you can sort on any property or dimension at query time, it is also possible to optimize a property
or dimension for sorting in Developer Studio. This controls the generation of a precomputed sort, which you
can retrieve on the Resul t sLi st Conf i g object by using the get Pr econput edSor t s() method. For more
information about precomputed sorts, refer to the MDEX Engine Basic Development Guide.

Dgidx flags

You can specify the default sort order for records as a flag in Dgidx. For more information about Dgidx flags and
sorting, refer to the MDEX Engine Basic Development Guide.

The Deployment Template configuration for the Discover Electronics reference application does not specify a
default sort key.

Cartridge handler configuration for the Results List cartridge

The Results List cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-wide default
configuration in the Assembler context file specifies default sort options, relevance ranking strategy, and record
and sub-record properties to pass through to the cartridge handler response model. It also allows you to enable
or disable debugging features if query debugging features are enabled.

The cartridge handler usesacontent | t eml ni ti al i zer to merge the layered configuration. The included
request Par amvar shal | er bean enables URL request-based configuration for the cartridge.

Template configuration for the Results List cartridge

The Results List template allows a content administrator to configure the main results of a search or navigation
query based on the site visitor's filter state. Configuration options include sort order, boost/bury, and number of
records to display per page.

The Results List cartridge template allows a content administrator to configure the following properties on the
configuration model:

* recordsPer Page

7 Navigation Cartridge Configuration Reference 339

* sortOption
* rel Rank
* boostStrata

* buryStrata

URL request parameters for the Results List cartridge

End user configuration is passed to the configuration model as URL parameters. This allows application end
users to specify how records should be displayed and sorted in order to customize their navigation experience.

For most of the properties on the configuration model, the cartridge renderer in the reference implementation
respects the values set at the cartridge handler or template level. The of f set value is used to control paging

display.
Property URL Description
Parameter

r ecor dsPer Page Nr pp The cartridge renderer uses this property to enable an application end
user to set their own limit on records to display per page.

sort Option Ns This parameter enables you to override sort options on a per-query
basis.

of f set No This parameter enables you to control record display when paging.

r el RankKey Nr k (Optional) The Relevance Ranking key. You must set a
r el RankSt r at egy on the cartridge to use this parameter. You must
also specify r el RankTer ns.

rel RankTer ns Nr t (Optional) Relevance Ranking terms, delimited by a + sign. You must set
arel RankSt r at egy on the cartridge to use this parameter. You must
also specify a r el RankKey.

rel RankMat chMbde | Nrm (Optional) The match mode that determines the subset of results
to apply Relevance Ranking to. You must set ar el RankSt r at egy,
r el RankKey, and r el RankTer ns if you specify a value for this
property.

whyMat chEnabl ed | whymat ch If query debugging is enabled for the reference application, this
property enables you to include record matching information about a
per-query basis, rather than at the cartridge handler level.

whyRankEnabl ed whyr ank If query debugging is enabled for the reference application, this

property enables you to include record ranking information about a
per-query basis, rather than at the cartridge handler level.

Note

The Nr k, Nrt, and Nr mparameters take precedence over any relevance ranking declaration in the Nt k,
Nt t, and Nt x parameters.

340

7 Navigation Cartridge Configuration Reference

Enabling snippeting in record results

The Assembler can return snippets (an excerpt from a record property that contains the user's search terms and
the surrounding context) for display in results lists.

Snippeting is configured as part of a search interface. You can enable snippeting on one or more properties in a
search interface, typically properties that contain multiple lines of text.

To enable snippeting:
1. Enable snippeting on one or more properties in the relevant search interface.
For more information about configuring snippeting, refer to the MDEX Engine Basic Development Guide.

2. In the Results List cartridge handler configuration, specify the relevant snippet property in the list of
fiel dNames.

For example, if you enabled the property pr oduct . short _desc for snippeting, you would specify the
property pr oduct . short _desc. Sni ppet, as in the following example:

<bean i d="resul tsLi st Def aul t Confi g" scope="pr ot otype"
cl ass="com endeca.infront.cartri dge. Resul tsLi st Confi g">
<property name="fi el dNanes" >
<list>
<val ue>product . i d</val ue>
<val ue>pr oduct . code</ val ue>
<val ue>product . nane</ val ue>
<val ue>product . br and. nane</ val ue>
<val ue>pr oduct . short _desc</val ue>
<val ue>product. short_desc. Sni ppet </ val ue>
<val ue>product . pri ce</ val ue>
<val ue>product. m n_pri ce</val ue>
<val ue>pr oduct. max_pri ce</val ue>
<val ue>product.inmg_url _t hunbnail </ val ue>
<val ue>pr oduct . revi ew. avg_r ati ng</ val ue>
<val ue>product . revi ew. count </ val ue>
</list>
</ property>
<l-- additional elenents onmtted fromthis exanple -->
</ bean>

The snippet is returned as a string property on the response model for each record for display by the renderer.

Record details cartridges

The following section provides an overview of the configuration model for record detail features in the reference
implementation.

Record details page
The Record Details page displays detailed information about a specific record.
The response model for this cartridge is Recor dDet ai | s, which contains a single Recor d.

The rendering logic for a record details page is expected to be highly customized for each site, in order to
display the relevant record information and provide additional functionality such as bookmarking or initiating a
purchase transaction.

7 Navigation Cartridge Configuration Reference 34

Configuration model for the Record Details cartridge

The Record Details configuration model allows you to configure which properties on the record should be
passed through to the output model of the cartridge handler, so that the renderer can display them.

The configuration model for this cartridge is Recor dDet ai | sConf i g. It includes the following properties:

Property name Description

fiel dNanes A list of record fields to pass through from the record to the Recor d output model
of the Recor dDet ai | sHandl er.

subRecor dFi el dNames For aggregate records, a list of sub-record fields to pass through from each sub-
record to the Recor d output model of the Recor dDet ai | sHandl er.

MDEX Engine configuration for the Record Details page

No special configuration is required the display of record details, but you can specify what information you want
to display on the record page.

Dynamic configuration

You can specify which properties and dimensions are returned with the record for a record details page in
Developer Studio. For more information about configuring the display of properties and dimensions for record
details, refer to the Developer Studio Help.

Cartridge handler configuration for the Record Details cartridge

The Record Details cartridge handler extends the Navi gat i onCart ri dgeHandl er, but otherwise does not
require any additional configuration.

Template configuration for the Record Details cartridge

The Record Details cartridge in the Discover Electronics application does not require any configuration in
Experience Manager. The cartridge can be placed on a Record Details page to display detailed information about
arecord.

Content and spotlighting cartridges

The following sections provide an overview of the configuration models for features that enable content
spotlighting in the reference implementation.

Record Spotlight

The Record Spotlight cartridge can promote either specific featured records or a set of dynamic records based
on a navigation state.

342 7 Navigation Cartridge Configuration Reference

The response model for this cartridge is Recor dSpot | i ght, which includes a list of Recor d objects and an
optional action to show all records (in the case of a dynamic record spotlight).

Configuration model for the Record Spotlight cartridge

The Record Spotlight configuration model allows you to configure the selected records and "See All" link within
a record spotlight, as well as the record fields to pass through to the cartridge response model.

The configuration model for this cartridge is Recor dSpot | i ght Conf i g. It includes the following properties:

Property name

Description

maxNunRecor ds

A string representing the maximum number of records that this spotlight can
contain. If the content administrator designates specific records in the Experience
Manager, the number of records cannot exceed the value of mexNunRecor ds. If
the content administrator specifies a query, the Assembler returns no more than
this number of records.

recordSel ection

showSeeAl | Li nk

A Recor dSpot | i ght Sel ect i on object that represents the records selected for
spotlighting. This includes the specified filter state, sort options, and result limit.

A Boolean that determines whether to display the "See All" link. The link requires a
value for seeAl | Li nkText in order to display.

seeAl | Li nkText

A string representing the display text for a link that represents the navigation
state of a dynamic record spotlight. If this string is not configured, no link is
generated for the client application.

fi el dNanes

A list of record fields to pass through from the record to the Recor d output model
of the Recor dSpot | i ght Handl er.

subRecor dFi el dNanes

For aggregate records, a list of sub-record fields to pass through from each sub-
record to the Recor d output model of the Recor dSpot | i ght Handl er.

MDEX Engine configuration for a spotlight

You can configure which properties and dimensions can be displayed in a spotlight.

Dynamic configuration

Although the content administrator can designate the records for a spotlight either by specifying a search

and navigation query or by specifying individual record IDs, the Assembler query that fetches the spotlighted
records is always a navigation query (using records in the specific record case). Therefore, the configuration that
determines which properties and dimensions are returned with the record for spotlighting is "show with record
list." This configuration can be overridden in the cartridge handler configuration. For more information about
configuring the display of properties and dimensions for the record list, refer to the Developer Studio Help.

Related links

« MDEX Engine configuration for the Results List cartridge (page 339)

7 Navigation Cartridge Configuration Reference 343

Cartridge handler configuration for the Record Spotlight cartridge

The Record Spotlight cartridge handler extends the Navi gat i onCart ri dgeHandl er . The application-wide
default configuration in the Assembler context file specifies record properties to pass through to the cartridge
handler response model.

Template configuration for a record spotlight

A Record Spotlight cartridge enables a content administrator to specify a set of contextually relevant records to
spotlight on a particular page.

The Record Spotlight cartridge template allows a content administrator to configure the following properties on
the configuration model:

* maxNunRecor ds

* recordSel ection

* showSeeAl | Li nk

* seeAll Li nkText

These properties are configured using the Spotlight Selection editor.

In addition, the cartridge template includes the following pass-through property:

Property name Description

title A title that the content administrator can specify to display for this cartridge
in the front-end application.

Media Banner

The Media Banner cartridge displays video or images to the site user and can be configured to link to a static
page, a single record, or a specified navigation state.

The response model for this cartridge is Medi aBanner, which includes a Medi aCbj ect and an Act i onLabel
that contains a destination link.

Configuration model for the Media Banner cartridge

The configuration model for the Media Banner cartridge includes a media object and an associated link.

The configuration model for this cartridge is Medi aBanner Conf i g. It includes the following properties:

Property name Description

nedi a The Medi aObj ect representing the image or video asset to display in the
application.

l'i nk The Li nkBui | der object used to construct a link to a navigation state or a static
page within the application.

344

7 Navigation Cartridge Configuration Reference

MDEX Engine configuration for a media banner

No special configuration is required for the media banner, but your MDEX Engine configuration will affect the
display of records in the link selector when setting a navigation state or choosing a specified record.

Dynamic configuration

You can specify how records are sorted and which properties and dimensions are returned with a record in
Developer Studio. For more information about configuring record sorting and display, refer to the Developer
Studio Help.

Cartridge handler configuration for the Media Banner cartridge

The Media Banner cartridge handler extends the Navi gat i onCart ri dgeHandl er, but otherwise does not
require any additional configuration.

Template configuration for the Media Banner cartridge

The Media Banner enables the content administrator to use the media selector and link editor to create a media
banner that links to a specified page, selected record, or dynamic navigation state.

The Media Banner cartridge template allows a content administrator to configure the following properties on
the configuration model:

* media
* link

In addition, the cartridge template includes the following pass-through property:

Property name Description

i mageAl t (Optional) The alt-text to display when the end user hovers over the media asset in
the application.

For detailed information about the properties within the medi a and | i nk properties, consult the Javadoc for the
Medi atbj ect and Li nkBui | der classes.

Dynamic triggering cartridges

The following sections contain information about features related to triggering content items based on the
user's context.

The dynamic slot feature is typically used to trigger a cartridge independently from the page that contains
it, although the Discover Electronics application uses the same mechanism to trigger entire pages by
programmatically creating a content slot configuration and passing it to the Assembler.

About dynamic slots

A dynamic slot is a generic mechanism that enables content administrators to manage the content for specific
sections of an Experience Manager-driven page independently from the overall page.

7 Navigation Cartridge Configuration Reference 345

There two main scenarios for using dynamic slots:

+ To share content across different pages. In this case, the triggers on the content items that populate the
slot are more general or orthogonal to the trigger criteria for the page. For example, a header cartridge may
be shared across an entire site if it is referenced from every page and has an "Applies at all locations" trigger.
A promotion may be configured with a user segment trigger and display when a site visitor who belongs
to the specified user segment browses to any of the pages that references the collection that contains the
promotion.

+ To create variants of a page. In this case, the triggers on the content items that populate the slot are more
specific than the trigger criteria for the page. (Typically, they would "inherit" the parent content item's triggers
and add additional criteria for the variable content.)

Following are some specific use cases for dynamic slots:

+ A brand manager needs to control the banner images that display throughout the site. This is a different
person from the merchandiser who typically manages pages in Experience Manager.

+ A brand manager needs to be able to specify the images that display at a particular navigation state (for
example, Digital Cameras > Samsung) even if there is no specific landing page for that navigation state.

+ A merchandiser wishes to display promotions in the menu area based on more specific trigger criteria than
those that apply to the page as a whole. For example, one could create a page to use as a base for all "Digital
Cameras" pages, and populate the menu sections with more specific content based on the brand, price range,
or other dimensions. This model enables content reuse for most of the content within a page with page-
specific overrides for subsections as needed. It removes the need to create many individual pages for each
specific combination of triggers.

+ A merchandiser wishes to display promotions in the menu area based on trigger criteria that are simply
different from those on the page as a whole. For example, there might be a "Back to School" special for a
particular time frame that applies to all pages within a category or even the entire site. This model enables
content reuse for individual sections across a variety of pages. The reusable sections are managed in a central
location so that updates immediately take effect across all the pages that include the reused content, rather
than having to edit each one manually.

Dynamic slot prerequisites

The dynamic slot feature enables content administrators to populate a section of a content item with content
from a different collection in Experience Manager. As a prerequisite, your application must include a collection
with the appropriate content type for populating an administrator's dynamic slot cartridge.

Note

If a content administrator attempts to populate a dynamic slot in a given collection with a content item
from the same collection and creates a circular reference, the Assembler detects the conflict during
preprocessing and returns the content item with an @r r or property.

Request Event Attributes

The Request Event and Navi gat i onEvent W apper classes support getting and setting common search
and navigation information about a request event. This Appendix provides a reference table of out-of-the-box
attributes that you can retrieve or set on a Request Event object.

346 7 Navigation Cartridge Configuration Reference

Base request event attributes

The following describes the base schema for an Assembler request event.

The Request Event class includes getter and setter methods for each of these attributes.

Attribute Type Description
endeca: request|d String | The unique identifier for a request. To retrieve this information,
you must register an implementation of Request | dPr ovi der in
the request event adapter constructor.
endeca: sessionld String | The unique identifier for a browser session. To retrieve
this information, you must register an implementation of
Sessi onl dProvi der in the request event adapter constructor.
endeca: assenbl ySt ar t Ti mgsk ang The time (in milliseconds from POSIX Epoch) that the
assenbl e() method started
endeca: assenbl yFi ni shTi nelsbagp The time (in milliseconds from POSIX Epoch) that the
assenbl e() method finished

Navigation cartridge request event attributes

The following describes the schema for an Assembler navigation cartridge request event. These fields are in
addition to those described for the base request.

The Navi gat i onEvent W apper class includes getter and setter methods for each of these attributes.

Attribute Type Description
endeca: aut ocorrect To String The suggested auto-correct term, if it triggers for the request.
endeca: cont ent Pat h String The content path of the page corresponding to the request.
endeca: di dYouMeanTo Li st The suggested "Did You Mean" term, if it triggers for the
<String> | request.
endeca: di nensi ons Li st The dimension names selected for navigation.
<String>
endeca: di nensi onVal ues | Li st The dimension value names selected for navigation.
<String>
7 Navigation Cartridge Configuration Reference 347

Attribute Type Description

endeca: eneTi ne Long The time, in milliseconds, that it takes the MDEX Engine to run
the query.
endeca: nunRecor ds Long The number of records returned for the request.
endeca: nunRef i nenent s I nt eger The number of selected refinements.
endeca: r ecor dNanes Li st The names of the records returned by the request.
<String>

To populate this attribute, the r ecor dDi spl ayFi el dNane
property on the Resul t sLi st Conf i g object must be set to
the name of the field that contains record names.

endeca: r ecor dSpec String The record specifier for a selected record.

endeca: r equest Type Request TypeThe type of request. Possible values are:
* T-Root navigation
+ N-Navigation only
+ S-Search only
+ SN - Search, then navigation
R - Record detail

« UNKNOWN - Unknown

endeca: sear chKey String The search key for the current navigation state.

endeca: sear chMbde String The search mode for the request.

endeca: searchTer ns String The search terms for the request.

endeca: si t eRoot Pat h String The site root path of the page corresponding to the request.
endeca: sort Key Li st The sort keys for the request. Each key is a St r i ng with the

<String> | formatfi el dNane| <Descendi ng| Ascendi ng> .

endeca: spotlights Li st The list of spotlights triggered for the request.
<String>

348 7 Navigation Cartridge Configuration Reference

	Assembler Application Developer's Guide
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	1 About the Assembler
	Introduction to the Assembler
	What is the Assembler?
	Assembler Libraries
	The Role of the Assembler in an Oracle Commerce Application
	Basic Assembler concepts
	About Content Items
	About Cartridges and Cartridge Templates
	About Cartridge Handlers
	Example: The Results List Cartridge

	Configuring Assembler applications in Experience Manager
	Assembler Search and Guided Navigation Features
	Example: The Results List cartridge
	Default Cartridge Configuration
	Instance Configuration
	Request-Based Configuration

	Assembler Architectural Overview
	The Assembler processing model
	Example
	About content items
	About ContentInclude and ContentSlotConfig objects
	Defining a ContentInclude object
	Defining a ContentSlotConfig object

	About nesting content items

	About serialization and de-serialization
	The Assembler eventing framework
	Assembler event framework reference
	Event payload

	About Assembler error handling
	Error handling in the Assembler service

	About cartridges and content items
	About cartridges
	Structure of cartridges

	2 Designing an Assembler Application
	Planning an Assembler Application
	About planning your application sitemap
	About page types
	About page structure and content types
	About mapping pages to services
	Creating a page

	About content folders
	Content folders example
	Creating a content folder
	About moving content folders

	About sites
	Site storage
	Site Awareness

	Creating Experience Manager Templates
	About creating templates
	Anatomy of a template
	About the template XML schema
	The template schema
	The Xavia schema
	The editors schema

	Template identifiers
	About the type of a template
	Setting a template type

	Specifying the description and thumbnail image for a template
	About using thumbnail images in Experience Manager

	Specifying the default name for a cartridge
	Defining the content properties and editing interface
	Template properties
	Defining the editing interface for properties
	Configuring editor default values
	Specifying editor-specific configuration

	Structural properties
	Adding a content item property
	Adding a content item list property
	About cartridge selectors

	About keyword redirects groups
	Implementing keyword redirects in templates
	Associating keyword redirect groups with pages

	About multiple locales
	Managing Experience Manager Templates
	Updating Experience Manager templates
	Troubleshooting problems with uploading templates
	Schema validation

	Troubleshooting invalid templates

	About modifying templates that are used by existing pages
	Managing template changes

	Retrieving the current templates from Experience Manager

	3 Developing an Assembler Application
	Deploying the Assembler
	Assembler environment requirements
	Port usage
	Threads
	About authoring and production environments

	Assembler dependencies
	About deploying the Assembler
	Assembler configuration
	Assembler factory
	About configuring cartridge handlers
	HTTP servlet request access
	Search and navigation request configuration
	MDEX resource configuration
	Navigation state builder configuration
	Filtering requests
	Combining site-based filters and URL filters
	Site state builder configuration

	About configuring cartridge handlers that make search and navigation queries
	About configuring cartridges to retrieve dynamic content

	About configuring the Assembler servlet
	Response writers
	Reference implementations

	Invoking the Assembler
	Invoking the Assembler in Java
	Invoking the Assembler with a ContentInclude item
	Invoking the Assembler with a ContentSlotConfig item

	Querying the Assembler Service
	Querying the Assembler Service in a multiple site deployment
	Making dynamic content queries to the Assembler servlet
	The Assembler servlet response format

	About building an Assembler query string
	About retrieving Assembler results using the packaged services
	The Dimension Search Service
	The Record Details Service
	The Guided Search Service
	Configuring dynamic content for the Guided Search Service
	Handling the Guided Search Service response

	About retrieving content item properties from packaged services
	Retrieving information from the Assembler response

	About handling the Assembler response
	About rendering the Assembler response

	Implementing Multichannel Applications
	Overview of multichannel applications with the Assembler
	About creating templates for mobile channels

	Tuning an Assembler application
	Enabling the preview application for Workbench
	About the preview application
	Enabling your Java application for preview
	Adding Preview resources
	Enabling auditing and editing
	Device-specific auditing and editing
	Decorating the page
	Enabling non-Java applications for preview
	Preview CSS
	Standard Web page
	RequireJS (AMD-based) Web page
	addContentItemId(pElement, pContentItem)
	initialize(pContentItem, pCallback)
	addContentItem(pContentItem, pElement, pParentElement)
	removeContentItem(pElement)
	addHotspots(pElement, pTraverseDom)
	removeHotspots(pElement, pTraverseDom)
	on(pEvent, pListener, pScope)
	off(pEvent, pListener)

	Enabling your preview application
	Changing the preview link service
	Managing the preview application in Workbench
	Formatting the Assembler Service URL

	Testing your preview application
	Disabling preview

	Configuring logging for an Assembler Application
	Configuring the RequestEventInitializer and the MdexQueryInfoInitializer
	Instantiating a ContentItemAugmentAdapter
	Instantiating a LogServerAdapter
	Dgraph request logs
	Customizing logging information
	Customizing session ID information
	Customizing request ID information
	Configuring the Log4J logger
	Configuring logging for custom events
	About request events
	The NavigationEventWrapper class

	About request event adapters
	The SessionIdProvider interface
	The RequestIdProvider interface
	Request event adapters in the reference application
	About registering a request event adapter
	Request event adapter configuration in the reference application

	Request event adapters in the reference application

	Client side click events

	Configuring cartridge performance logging
	Debugging MDEX Engine query results
	Query debugging features
	Enabling query debugging features
	URL parameters for query debugging features
	Query debugging results in the reference application

	4 Optimizing Application URLs
	About the URL optimization classes
	Package contents
	Introduction to URL optimization
	Overview of URL optimization capabilities
	Integration of keywords into the URL string
	Canonicalizing the URL string
	Configuring the word separator string
	Moving URL parameters out of the query string
	Encoding Parameters

	URL canonicalization

	Working with Application URLs
	About application URLs
	About Actions
	Action fields
	Using action fields

	About using Actions with the packaged services

	Working with URL parameters
	URL configuration in the reference application
	Configuring URL parameters
	Configuration for navigation and record paths
	URL formatter configuration
	The basic URL formatter
	The SEO URL formatter

	About working with canonical links
	The Canonical Link Builder
	Output content items

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files
	URL transitioning

	Building optimized URLs
	Core URL optimization classes
	UrlState
	UrlFormatter
	QueryBuilder

	Overview of building URLs using the URL optimization classes
	Parsing an incoming query and sending it to an MDEX Engine
	Informing the UrlState of the navigation state
	Creating link URLs from a UrlState

	Configuring URLs
	Anatomy of an optimized URL
	General URL References
	Optimized URLs
	misc-path
	path-param-separator
	path-params
	query string

	About the URL configuration file
	Creating a URL configuration file
	About optimizing the misc-path
	navStateFormatter
	navStateCanonicalizer
	erecFormatter
	aggrERecFormatter
	Formatting misc-path strings in optimized URLs
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Sort direction
	Sort method

	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving parameters out of the query string
	Encoding parameters
	Removing session-scope parameters
	Passing non-parameters to the API
	Moving parameters out of the query string
	Encoding parameters
	Removing session-scope parameters
	About passing non-parameters to the API

	Using the URL configuration file with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Using the URL configuration file with the Sitemap Generator

	5 Extending the Assembler
	Extending and Developing Cartridges
	Cartridge Basics
	First steps with a new cartridge
	Adding a basic renderer
	Elements of the example cartridge
	The cartridge template
	The cartridge instance configuration
	The cartridge renderer

	Overview of cartridge extension points
	Customizing the Experience Manager interface
	Adding embedded user assistance to a cartridge
	Using the core Experience Manager editors
	About custom editors

	About Cartridge Handlers and the Assembler
	About the CartridgeHandler interface
	About initializing the cartridge configuration
	About the NavigationCartridgeHandler class

	Implementing a cartridge handler
	Cartridge handler development scenarios

	About using event listeners to extend the navigation cartridges
	Creating an event listener
	About registering an event listener

	Sample Cartridges
	About using the sample cartridges
	Setting up a test application based on Discover Electronics
	Creating a Spring context file for sample cartridges

	RSS Feed cartridge
	Creating the cartridge template
	Creating the cartridge handler
	Creating the cartridge renderer

	Custom Record Details cartridge with availability information
	Creating the cartridge handler and supporting classes

	Custom Results List with recommendations
	Creating the cartridge handler and supporting classes

	"Hello, World" cartridge with layered color configuration
	Creating the cartridge handler and supporting classes
	Creating the cartridge renderer
	Testing the "Hello, World" cartridge with layered color configuration

	Developing Editors for Workbench
	Setting up the Experience Manager Editor SDK
	Flex prerequisites and resources
	Flex development requirements
	Flex resources

	About setting up a Flex development environment
	Configuring a Flash Builder 4.0 development environment
	Configuring Flex Framework dependencies as Runtime Shared Libraries (RSLs)
	Installing the Experience Manager API to a Maven repository

	Developing Editors With the Experience Manager Editor SDK
	About developing custom editors
	Creating an editor module for custom editors
	Registering custom editors
	About creating and uploading a cartridge template
	Example: The sample RichTextEditor
	The sample Rich Text Box cartridge template
	Installing the sample editor module and cartridge template

	About custom editors in multiple locales
	Modifying the POM file to support multiple locales
	Resources properties files
	Modifying an editor module for muliple locales.

	Specifying dependencies between editors
	The editor dependency expression language
	Allowed operands
	Allowed operators

	Escaping characters when specifying editor dependencies
	XML escaping
	Non-XML escaping

	Enforcing a specific value when the editor is disabled

	6 Template Property and Editor Reference
	Editor property mapping reference
	Oracle Commerce Core Editors
	Oracle Experience Manager Editors

	Editor label configuration reference
	Basic content properties
	Adding a string property
	Adding a string editor
	Adding a choice editor
	Adding a radio group editor

	About numeric properties
	Adding a numeric stepper
	Adding a slider

	Adding a Boolean property
	Adding a Boolean editor

	Adding an item property

	Adding a group label
	Complex property editors
	About the microbrowser
	Data service configuration reference

	About the Select Records dialog
	Select Records data service configuration reference

	About the Dynamic Slot editor
	Creating a cartridge template with a dynamic slot
	Specifying a cartridge handler for a dynamic slot template

	Adding a Link Builder
	About configuring the Link Builder
	Deprecated configuration

	About the Media editor
	About the Media Browser
	Adding a Media editor
	About Media editor configuration

	Uploading media to the Endeca Configuration Repository
	About resolving media paths in content items
	About media root elements

	Enabling the Media Browser
	Using an MDEX Engine to index media assets
	Interaction between Experience Manager and the media MDEX Engine
	Interaction between a media MDEX Engine and Experience Manager
	Interaction between the media content source and an Assembler application

	Overview of the reference data application
	Software requirements
	Reference CAS crawl
	Media MDEX Forge pipeline
	Deploying the reference data application for Discover Electronics

	Pipeline configuration for a media crawl
	Required properties
	Properties and dimensions provided in the reference data application
	Search interface requirements

	Adding a Boost-Bury Record editor
	Adding a Guided Navigation editor
	Adding a Dimension Selector
	Adding a Dimension List editor
	Adding a Dimension Value Boost-Bury editor
	Adding a Dimension Value List editor
	Adding an Image Preview
	Adding a Record Stratification editor
	Adding a Rich Text editor
	Adding a Record List editor
	Specifying record sort options

	Adding a Sort editor
	Adding a Spotlight Selection editor

	Application feature property reference
	Query configuration mappings

	Adding a list property

	7 Navigation Cartridge Configuration Reference
	Navigation cartridge URL parameter reference
	About this section
	URL parameter description format

	Core URL query parameters
	N (Navigation)
	Ntt (Record Search Terms)
	Ntk (Record Search Key)
	Ntx (Record Search Match Mode)
	Nf (Range Filter)
	Nfg (Geocode Filter)
	Examples

	Nr (Record Filter)
	Nrs (Endeca Query Language Filter)
	R (Record)
	Examples

	Rsel (Featured Records Selector)
	Examples

	A (Aggregated Record)
	Ntp (Auto-Phrasing)
	Examples

	Ntl (Language ID)
	Examples

	Cartridge-specific URL query parameters
	Dy (Dimension Search)
	Nty (Auto-Correct / DYM)
	Nrmc (Refinement Menu Config)
	Results List cartridge URL query parameters
	Nrpp (Records Per Page)
	Ns (Sort Key and Sort Order)
	No (Record Offset)
	Nrt (Relevance Ranking Search Terms)
	Nrk (Relevance Ranking Search Key)
	Nrm (Relevance Ranking Match Mode)
	whymatch (Record Match Info)
	whyrank (Record Rank Info)

	About the navigation cartridge configuration models
	Overview of the navigation cartridge configuration models
	Default cartridge configuration
	Feature configuration in the MDEX Engine

	Cartridge instance configuration
	Request-based configuration

	Search cartridges
	Search box
	MDEX Engine configuration for the Search Box cartridge
	Dynamic configuration
	Static configuration

	Template configuration for the Search Box cartridge

	Auto-suggest search results
	Template configuration for the auto-suggest panel
	Configuration model for the Auto-Suggest Dimension Search Results cartridge
	Cartridge handler configuration for the Auto-Suggest Search Results cartridge
	Template configuration for the Auto-Suggest Dimension Search Results cartridge

	Dimension search results
	Configuration model for the Dimension Search Results cartridge
	MDEX Engine configuration for dimension search results
	Dynamic configuration
	Static configuration

	Cartridge handler configuration for Dimension Search Results
	Template configuration for the Dimension Search Results cartridge
	URL request parameters for the Dimension Search Results cartridge

	Search adjustments
	Configuration model for the Search Adjustments cartridge
	MDEX Engine configuration for the Search Adjustments cartridge
	Dynamic configuration
	Static configuration
	Dgidx flags
	Dgraph flags

	Cartridge handler configuration for Search Adjustments
	Template configuration for the Search Adjustments cartridge
	URL request parameters for the Search Adjustments cartridge
	About implementing automatic phrasing
	Interaction with the Did You Mean feature

	Phrase search scenario: Automatically applying phrases
	Phrase search scenario: Phrases as a search suggestion

	Keyword redirects
	Cartridge handler configuration for keyword redirects
	Content XML for keyword redirects
	About using keyword redirects with the Assembler service
	About handling keyword redirects in an application
	The Assembler response
	Using the Assembler response

	Guided Navigation cartridges
	Refinement menu
	Dimension value boost and bury
	Configuration model for the Refinement Menu cartridge
	Notes on sorting

	MDEX Engine configuration for Guided Navigation
	Static configuration

	Cartridge handler configuration for the Refinement Menu cartridge
	Template configuration for the Refinement Menu cartridge
	URL request parameters for the Refinement Menu cartridge
	About Nrmc URL parameter syntax

	Navigation Container
	Configuration model for the Navigation Container
	Cartridge handler configuration for the Navigation Container
	URL request parameters for the Navigation Container

	Breadcrumbs
	Cartridge handler configuration for Breadcrumbs

	Results cartridges
	Results list
	About the order of records in the record list
	Record boost and bury
	Configuration model for the Results List cartridge
	MDEX Engine configuration for the Results List cartridge
	Dynamic configuration
	Static configuration
	Dgidx flags

	Cartridge handler configuration for the Results List cartridge
	Template configuration for the Results List cartridge
	URL request parameters for the Results List cartridge
	Enabling snippeting in record results

	Record details cartridges
	Record details page
	Configuration model for the Record Details cartridge
	MDEX Engine configuration for the Record Details page
	Dynamic configuration

	Cartridge handler configuration for the Record Details cartridge
	Template configuration for the Record Details cartridge

	Content and spotlighting cartridges
	Record Spotlight
	Configuration model for the Record Spotlight cartridge
	MDEX Engine configuration for a spotlight
	Dynamic configuration

	Cartridge handler configuration for the Record Spotlight cartridge
	Template configuration for a record spotlight

	Media Banner
	Configuration model for the Media Banner cartridge
	MDEX Engine configuration for a media banner
	Dynamic configuration

	Cartridge handler configuration for the Media Banner cartridge
	Template configuration for the Media Banner cartridge

	Dynamic triggering cartridges
	About dynamic slots
	Dynamic slot prerequisites

	Request Event Attributes
	Base request event attributes
	Navigation cartridge request event attributes

