

Oracle® Communications

Provisioning

User Data Repository
REST Provisioning Interface Specification

Release 10.2
E67279-02

 CAUTION: Use only the Installation procedure included in the Install Kit.

Before installing any system, access My Oracle Support (https://support.oracle.com)
and review any Technical Service Bulletins (TSBs) that relate to this procedure.

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support
(CAS) can assist you with My Oracle Supportregistration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at
http://www.oracle.com/us/support/contact/index.html.

See more information on My Oracle Support in Appendix A.

https://support.oracle.com/
https://support.oracle.com/
http://www.oracle.com/us/support/contact/index.html

Oracle Communications UDR REST Provisioning Interface Specification, Release 10.2

Copyright ©2014, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the
AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of
The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Provisioning

3

Table of Contents

1 INTRODUCTION .. 10

1.1 Purpose and Scope ... 10

1.2 External References .. 10

1.3 Glossary .. 10

2 SYSTEM ARCHITECTURE .. 12

2.1 Overview ... 12

2.2 Provisioning Interface .. 13

2.3 REST Application Server (RAS) .. 14

2.4 Provisioning Clients ... 14

2.5 Security ... 14

2.5.1 Client Server IP Address White List .. 14

2.5.2 Secure Connection using TLS ... 15

2.5.2.1 TLS Certificates and Public/Private Key Pairs ... 15

2.5.2.2 Supported TLS Cipher Suites ... 16

2.6 Multiple Connections ... 17

2.7 Request Queue Management ... 17

2.8 Database Transactions ... 17

2.8.1 ACID-Compliance .. 18

2.8.1.1 Atomicity ... 18
2.8.1.2 Consistency .. 18

2.8.1.3 Isolation .. 18

2.8.1.4 Durability ... 18

2.9 Connection Management .. 18

2.9.1 Connections Allowed ... 18

2.9.2 Disable Provisioning .. 19

2.9.3 Idle Timeout ... 19

2.9.4 Maximum Simultaneous Connections ... 19

2.9.5 TCP Port Number .. 19

2.10 Behavior During Low Free System Memory .. 19

2.11 Congestion Control ... 19

2.12 Rest Conventions.. 20

2.12.1 HTTP(S) Request Headers ... 20
2.12.1.1 HTTP version .. 20

2.12.1.2 Accept Header .. 20

2.12.1.3 Transfer-Encoding Header ... 20

Provisioning

4

2.12.1.4 Requests with body content ... 20

2.12.2 HTTP(S) Status Codes and Error Messages .. 21

3 REST INTERFACE MESSAGE DEFINITIONS ... 24

3.1 Message Conventions ... 24

3.1.1 HTTP Method .. 24

3.1.2 Base URI ... 24

3.1.3 REST URL ... 24

3.1.3.1 Subscriber or Pool in URL .. 24

3.1.3.2 Opaque Data Operations in URL ... 24

3.1.3.3 Field in URL .. 25
3.1.3.4 Transparent Data Row Operations in URL ... 25

3.1.3.5 Transparent Data Row Field Operations in URL .. 25

3.1.4 URL Character Encoding ... 25

3.2 Case Sensitivity ... 25

3.3 XML Comments in a Request .. 26

3.4 List of Messages ... 26

4 UDR DATA MODEL ... 30

4.1 Subscriber Data .. 32

4.1.1 Subscriber Profile .. 32

4.1.2 Quota ... 34

4.1.3 State .. 35
4.1.4 Dynamic Quota .. 36

4.2 Pool Data .. 37

4.2.1 Pool Profile .. 37
4.2.2 Pool Quota ... 38

4.2.3 Pool State .. 38

4.2.4 Pool Dynamic Quota .. 39

4.3 Date/Timestamp Format .. 39

5 SUBSCRIBER PROVISIONING ... 40

5.1 Subscriber Profile Commands ... 40

5.1.1 Create Subscriber .. 40

5.1.2 Get Profile .. 45

5.1.3 Update Profile .. 47

5.1.4 Delete Profile ... 49

5.2 Subscriber Profile Field Commands .. 50

5.2.1 Add Field Value ... 51

Provisioning

5

5.2.2 Get Field .. 54

5.2.3 Get Field Value .. 56

5.2.4 Update Field .. 58
5.2.5 Update Multiple Fields ... 61

5.2.6 Delete Field.. 63

5.2.7 Delete Field Value ... 65

5.3 Subscriber Opaque Data Commands .. 68

5.3.1 Set Opaque Data ... 68

5.3.2 Get Opaque Data .. 71

5.3.3 Delete Opaque Data .. 73

5.4 Subscriber Data Row Commands ... 75

5.4.1 Set Row ... 76

5.4.2 Get Row ... 80

5.4.3 Delete Row .. 83

5.5 Subscriber Data Row Field Commands ... 85

5.5.1 Get Row Field .. 86

5.5.2 Get Row Field Value .. 88

5.5.3 Update Row Field .. 92

5.5.4 Delete Row Field ... 95

5.6 Subscriber Special Operation Commands ... 97

5.6.1 Reset Quota... 97

6 POOL PROVISIONING ... 101

6.1.1 Create Pool .. 101

6.1.2 Get Pool ... 103

6.1.3 Update Pool ... 105

6.1.4 Delete Pool .. 107

6.2 Pool Profile Field Commands .. 108

6.2.1 Add Field Value ... 109

6.2.2 Get Field .. 111
6.2.3 Get Field Value .. 112

6.2.4 Update Field .. 114

6.2.5 Update Multiple Fields ... 116

6.2.6 Delete Field.. 117

6.2.7 Delete Field Value ... 119

6.3 Pool Opaque Data Commands .. 121

6.3.1 Set Opaque Data ... 121

6.3.2 Get Opaque Data .. 124

Provisioning

6

6.3.3 Delete Opaque Data .. 126

6.4 Pool Data Row Commands ... 128

6.4.1 Set Row ... 128

6.4.2 Get Row ... 131

6.4.3 Delete Row .. 134

6.5 Pool Data Row Field Commands... 136

6.5.1 Get Row Field .. 136

6.5.2 Get Row Field Value .. 139

6.5.3 Update Row Field .. 142

6.5.4 Delete Row Field ... 144

6.6 Additional Pool Commands ... 146

6.6.1 Add Member to Pool .. 147

6.6.2 Remove Member from Pool ... 150
6.6.3 Get Pool Members ... 151

6.6.4 Get PoolID ... 154

Provisioning

7

List of Figures
Figure 1: User Data Repository High Level Architecture ... 13
Figure 2: Data Model ... 32

Provisioning

8

List of Tables
Table 1: Glossary ... 10
Table 2: TLS X.509 Certificate and Key PEM-encoded Files ... 16
Table 3: TLS Supported Cipher Suites .. 16
Table 4: HTTP(S) Status Codes ... 21
Table 5: Error Codes .. 21
Table 6: Summary of Subscriber Commands... 27
Table 7: Summary of Pool Commands .. 28
Table 8: Subscriber Profile Entity Definition ... 33
Table 9: Quota Entity Definition .. 34
Table 10: State Entity Definition .. 35
Table 11: Dynamic Quota Entity Definition ... 36
Table 12: Pool Profile Entity Definition ... 37
Table 13: Summary of Subscriber Profile Commands ... 40
Table 14: Create Subscriber Response Status/Error Codes ... 41
Table 15: Get Profile Response Status/Error Codes .. 46
Table 16: Update Profile Response Status/Error Codes .. 48
Table 17: Delete Profile Response Status/Error Codes ... 49
Table 18: Summary of Subscriber Profile Field Commands .. 50
Table 19: Add Field Value Response Status/Error Codes .. 52
Table 20: Get Field Response Status/Error Codes ... 54
Table 21: Get Field Value Response Status/Error Codes ... 57
Table 22: Update Field Response Status/Error Codes ... 59
Table 23: Update Multiple Fields Response Status/Error Codes ... 62
Table 24: Delete Field Response Status/Error Codes .. 64
Table 25: Delete Field Value Response Status/Error Codes .. 66
Table 26: Summary of Subscriber Opaque Data Commands .. 68
Table 27: Set Opaque Data Response Status/Error Codes .. 69
Table 28: Get Opaque Data Response Status/Error Codes ... 72
Table 29: Delete Opaque Data Response Status/Error Codes .. 74
Table 30: Summary of Subscriber Data Row Commands .. 76
Table 31: Set Row Response Status/Error Codes .. 77
Table 32: Get Row Response Status/Error Codes ... 81
Table 33: Delete Row Response Status/Error Codes ... 84
Table 34: Summary of Subscriber Data Row Field Commands ... 85
Table 35: Get Row Field Response Status/Error Codes ... 87
Table 36: Get Row Field Value Response Status/Error Codes ... 89
Table 37: Update Row Field Response Status/Error Codes ... 93
Table 38: Delete Row Field Response Status/Error Codes .. 96
Table 39: Summary of Subscriber Special Operation Commands ... 97
Table 40: Reset Quota Response Status/Error Codes ... 98
Table 41: Summary of Pool Profile Commands ... 101
Table 42: Create Pool Response Status/Error Codes .. 102
Table 43: Get Pool Response Status/Error Codes ... 104
Table 44: Update Pool Response Status/Error Codes ... 106
Table 45: Delete Pool Response Status/Error Codes ... 107
Table 46: Summary of Pool Profile Field Commands .. 108
Table 47: Add Field Value Response Status/Error Codes .. 109

Provisioning

9

Table 48: Get Field Response Status/Error Codes ... 111
Table 49: Get Field Value Response Status/Error Codes ... 113
Table 50: Update Field Response Status/Error Codes ... 115
Table 51: Update Multiple Fields Response Status/Error Codes ... 116
Table 52: Delete Field Response Status/Error Codes .. 118
Table 53: Delete Field Value Response Status/Error Codes .. 119
Table 54: Summary of Pool Opaque Data Commands .. 121
Table 55: Set Opaque Data Response Status/Error Codes .. 122
Table 56: Get Opaque Data Response Status/Error Codes ... 124
Table 57: Delete Opaque Data Response Status/Error Codes .. 127
Table 58: Summary of Pool Data Row Commands .. 128
Table 59: Set Row Response Status/Error Codes .. 129
Table 60: Get Row Response Status/Error Codes ... 132
Table 61: Delete Row Response Status/Error Codes ... 135
Table 62: Summary of Pool Data Row Field Commands ... 136
Table 63: Request URL Response Status/Error Codes ... 137
Table 64: Get Row Field Value Response Status/Error Codes ... 140
Table 65: Update Row Field Response Status/Error Codes ... 143
Table 66: Delete Row Field Response Status/Error Codes .. 145
Table 67: Summary of Additional Pool Commands ... 146
Table 68: Add Member to Pool Table 69 Response Status/Error Codes ... 147
Table 70: Remove Member from Pool Response Status/Error Codes .. 150
Table 71: Get Pool Members Response Status/Error Codes ... 152
Table 72: Get PoolID Response Status/Error Codes .. 155
Table 73: Bulk Import/Export variables ... 156

Provisioning

10

1 INTRODUCTION

1.1 Purpose and Scope
This document presents the REST Provisioning interface to be used by local and remote provisioning client
applications to administer the Provisioning Database of the Oracle Communications User Data Repository (UDR)
system. Through REST interfaces, an external provisioning system supplied and maintained by the network
operator can add, change, or delete subscriber/pool information in the UDR database.

The primary audience for this document includes customers, Oracle customer service, software development,
and product verification organizations, and any other Oracle personnel who have a need to use the REST
interface.

1.2 External References
The following external document references capture the source material used to create this document.

[1] IMS Sh interface; Signalling flows and message contents, 3GPP TS 29.328, Release 11

[2] Sh interface based on the Diameter protocol; Protocol details, 3GPP TS 29.329, Release 11

[3] User Data Convergence (UDC); Technical realization and information flows; Stage 2, 3GPP TS 23.335,
Release 11

1.3 Glossary
This section lists terms and acronyms specific to this document.

Table 1: Glossary

Acronym/Term Definition

ACID Atomic, Consistent, Isolatable, Durable

BLOB Binary Large Object

CFG Configuration Data—data for components and system identification and configuration

CPS Customer Provisioning System

DP Database Processor

FRS Feature Requirements Specification

FTP File Transfer Protocol

GUI Graphical User Interface

IMSI International Mobile Subscriber Identity, or IMSI [im-zee]

IP Internet Protocol

KPI Key Performance Indicator

MEAL Measurements, Events, Alarms, and Logs

http://www.3gpp.org/DynaReport/29328.htm
http://www.3gpp.org/DynaReport/29329.htm
http://www.3gpp.org/DynaReport/23335.htm

Provisioning

11

Acronym/Term Definition

MP Message Processor

MSISDN Mobile Subscriber ISDN Number

NA Not Applicable

NE Network Element

NPA Numbering Plan Area (Area Code)

OAMP Operations, Administration, Maintenance, and Provisioning

NOAMP Network OAMProvisioning

PCRF Policy Charging and Rules Function

PS Provisioning System

REST Representational State Transfer

SDO Subscriber Data Object

SEC Subscriber Entity Configuration

SNMP Simple Network Management Protocol

SOAM System Operation, Administration, and Maintenance

SPR Subscriber Profile Repository

TCP Transmission Control Protocol

UTC Coordinated Universal Time

VIP Virtual IP

XML Extensible Markup Language

Provisioning

12

2 SYSTEM ARCHITECTURE

2.1 Overview
Oracle Communications User Data Repository (UDR) performs the function of an SPR, which is a database
system that acts as a single logical repository that stores subscriber data. The subscriber data that traditionally
has been stored into the HSS, HLR, AuC, or application servers is stored in UDR as specified in 3GPP UDC
information model [3]. UDR facilitates the share and the provisioning of user related data throughout services of
3GPP system. Several Applications Front Ends, such as: one or more PCRF/HSS/HLR/AuCFEs can be served by
UDR.

The data stored in UDR can be permanent and temporary data. Permanent data is subscription data and relates
to the required information the system needs to know to perform the service. User identities (MSISDN, IMSI,
NAI and AccountId), service data (service profile) and authentication data are examples of the subscription data.
This kind of user data has a lifetime as long as the user is permitted to use the service and may be modified by
administration means. Temporary subscriber data is dynamic data which may be changed as a result of normal
operation of the system or traffic conditions (transparent data stored by application servers for service
execution, user status, usage, and so on).

Oracle Communications User Data Repository is a database system providing the storage and management of
subscriber policy control data for PCRF nodes with future upgradability to support additional types of nodes.
Subscriber/Pool data is created/retrieved/modified or deleted through the provisioning or by the Sh interface
peers (PCRF). The following subscriber/pool data is stored in Oracle Communications User Data Repository:

• Subscriber
• Profile
• Quota
• State
• Dynamic Quota
• Pool
• Pool Profile
• Pool Quota
• Pool State
• Pool Dynamic Quota

Figure 1 below illustrates a high level the Oracle Communications User Data Repository Architecture.

Figure 1 shows that Oracle Communications User Data Repository consists of several functional blocks. The
Message Processors (MP) provide support for a variety of protocols that entail the front-end signaling to peer
network nodes. The back-end UDR database resides on the N-OAMP servers. This release focuses on the
development of the Sh messaging interface for use with the UDR application.

As the product evolves forward, the subscriber profiles in UDR can be expanded to support data associated with
additional applications. Along with that, the MPs can be expanded to support additional Diameter interfaces
associated with these applications. The IPFE can be integrated with the product to facilitate signaling
distribution across multiple MP nodes.

The Network level OAMP server (NOAMP) provides the provisioning, configuration and maintenance functions
for all the network elements under it.

System level OAM server (SOAM) is a required functional block for each network element which gets data
replicated from NOAMP and in turn replicates the data to the message processors.

Provisioning

13

MP functions as the client-side of the network application, provides the network connectivity and hosts network
stack such as Diameter, SOAP, LDAP, SIP and SS7.

Figure 1: User Data Repository High Level Architecture

2.2 Provisioning Interface
The REST provisioning interface provides following data manipulation commands:

Subscriber:

• Subscriber Profile create/retrieve/modify/delete
• Subscriber Profile field add/retrieve/modify/delete
• Subscriber opaque data create/retrieve/modify/delete
• Quota, State, and Dynamic Quota
• Reset of Subscriber Quota opaque data

Pool:

• Pool Profile create/retrieve/modify/delete
• Pool Profile field add/retrieve/modify/delete
• Pool opaque data create/retrieve/modify/delete

Provisioning

14

• Pool Quota, Pool State and Pool Dynamic Quota
• Pool subscriber membership operations
• Add/remove from pool
• Get pool subscriber membership
• Get pool for subscriber

2.3 REST Application Server (RAS)
The application within the provisioning process interfacing to REST provisioning clients runs on every active
NOAMP server. The RAS is responsible for:

• Accepting and authorizing REST provisioning client connections
• Processing and responding to REST requests received from provisioning clients
• Performing provisioning requests directly on the database
• Updating the provisioning command log with requests received and responses sent

2.4 Provisioning Clients
The RAS provides connections to the Customer Provisioning Systems (CPS). These are independent information
systems supplied and maintained by the network operator to be used for provisioning the UDR system. Through
the RAS, the CPS may add, delete, change or retrieve information about any subscriber or pool.

CPSs use REST to send requests to manipulate and query data in the Provisioning Database. Provisioning Clients
establish TCP/IP connections to the RAS running on the active NOAMP using the VIP of the Primary NOAMP.

Provisioning clients must re-establish connections with the RAS using the VIP of the Primary UDR after the
switchover from the active Primary to the standby UDR server. Provisioning clients must redirect connections to
the VIP of the Secondary after switchover from the Primary UDR site to the Disaster Recover UDR site.

Provisioning clients must run a timeout for the response to a request, if a response is not sent. If a response is
not received, a client should drop the connection and re-establish a connection before trying again.

Provisioning clients are expected to re-send requests that resulted in a temporary error, or for which no
response was received.

2.5 Security
The following forms of security are provided for securing connections between the REST interface and
provisioning clients in an unsecure/untrusted network:

• Client server IP Address white list
• Secure Connections using TLS

2.5.1 Client Server IP Address White List
For securing connections between the REST interface and provisioning clients in an unsecure/untrusted
network, a list of authorized IP addresses is provided.

The system configuration process maintains a white list of server IP addresses and/or IP address ranges from
which clients are authorized to establish a TCP/IP connection from.

The RAS verifies provisioning connections by utilizing the authorized IP address list. Any connect request coming
from an IP address that is not on the list is denied (connection is immediately closed). All active connections
established from an IP address which is removed from the Authorized IP list are immediately closed.

Provisioning

15

2.5.2 Secure Connection using TLS
The RAS supports secure (encrypted) connections between provisioning clients and the RAS using Transport
Layer Security version 1.0 (TLSv1.0) protocol implemented using OpenSSL based on SSLeay library developed by
Eric A. Young and Tim J. Hudson.

TLS is an industry standard protocol for clients needing to establish secure (TCP-based) TLS-enabled network
connections. TLS provides data confidentiality, data integrity, and server and client authentication based on
digital certificates that comply with X.509v3 standard and public/private key pairs. These services are used to
stop a wide variety of network attacks including: Snooping, Tampering, Spoofing, Hijacking, and Capture-replay.

The following capabilities of TLS address several fundamental concerns about communication over TCP/IP
networks:

• TLS server authentication allows a client application to confirm the identity of the server application.
The client application through TLS uses standard public-key cryptography to verify that certificate and
public key for the server are valid and has been signed by a trusted certificate authority (CA) that is
known to the client application.

• TLS client authentication allows a server application to confirm the identity of the client application. The
server application through TLS uses standard public-key cryptography to verify that the certificate and
public key for the client are valid and has been signed by a trusted certificate authority (CA) that is
known to the server application.

• An encrypted TLS connection requires all information being sent between the client and server
application to be encrypted. The sending application is responsible for encrypting the data and the
receiving application is responsible for decrypting the data. In addition to encrypting the data, TLS
provides message integrity. Message integrity provides a means to determine if the data has been
tampered with since it was sent by the partner application.

Depending on the operating RAS mode configured (secure or unsecure), provisioning clients can connect using
either unsecure or secure connections to the well-known TCP/TLS listening port for the RAS (configured using
the REST Secure Mode configuration variable using the UDR GUI).

A TLS-enabled connection is slower than an unsecure TCP/IP connection. This is a direct result of providing
adequate security. On a TLS-enabled connection, more data is transferred than normal. Data is transmitted in
packets, which contain information required by the TLS protocol as well as any padding required by the cipher
that is in use. There is also the overhead of encryption and decryption for each read and write performed on the
connection.

2.5.2.1 TLS Certificates and Public/Private Key Pairs

TLS-enabled connections require TLS certificates. Certificates rely on asymmetric encryption (or public-key
encryption) algorithms that have two encryption keys (a public key and a private key). A certificate owner can
show the certificate to another party as proof of identity. A certificate contains the public key for the owner. Any
data encrypted with this public key can be decrypted only using the corresponding, matching private key, which
is held by the owner of the certificate.

Oracle/Tekelec issues Privacy Enhanced Mail (PEM)-encoded TLS X.509v3 certificates and encryption keys to the
REST server and provisioning clients needing to establish a TLS-enabled connection with the REST server. These
files can be found on the UDR server under /usr/TKLC/udr/ssl. These files are copied to the server running the
provisioning client.

Provisioning

16

Table 2: TLS X.509 Certificate and Key PEM-encoded Files

Certificate and Key PEM-
encoded Files Description

tklcCaCert.pem Oracle self-signed un-trusted root Certification Authority (CA) X.509v3 certificate.

serverCert.pem The X.509v3 certificate and 2,048-bit RSA public key for the RAS digitally signed by
Oracle Certification Authority (CA) using SHA-1 message digest algorithm.

serverKey.nopass.pem
The corresponding 2,048-bit RSA private key without passphrase for the RAS
digitally signed by Oracle Certification Authority (CA) using SHA-1 message digest
algorithm.

clientCert.pem
The X.509v3 certificate and 2,048-bit RSA public key for the provisioning client
digitally signed by Oracle Certification Authority (CA) using SHA-1 message digest
algorithm.

clientKey.nopass.pem
The corresponding 2,048-bit RSA private key without passphrase for the
provisioning client digitally signed by Oracle Certification Authority (CA) using SHA-1
message digest algorithm.

Provisioning clients are required to send a TLS authenticating X.509v3 certificate when requested by the RAS
during the secure connection handshake protocol for mutual (two-way) authentication. If the provisioning client
does not submit a certificate that is issued/signed by Oracle Certification Authority (CA), it cannot establish a
secure connection with the RAS.

2.5.2.2 Supported TLS Cipher Suites

A cipher suite is a set/combination of lower-level algorithms that a TLS-enabled connection uses to do
authentication, key exchange, and stream encryption. The following table lists the set of TLS cipher suites from
the relevant specification and their OpenSSL equivalents that are supported by the RAS to secure a TLS-enabled
connection with provisioning clients. The cipher suites are listed and selected for use in the order of key
strength, from highest to lowest. This ensures that during the handshake protocol of a TLS-enabled connection,
cipher suite negotiation selects the most secure suite possible from the list of cipher suites the client wishes to
support, and if necessary, back off to the next most secure, and so on down the list.

NOTE: Cipher suites containing anonymous DH ciphers, low bit-size ciphers (those using 64 or 56 bit encryption
algorithms but excluding export cipher suites), export-crippled ciphers (including 40 and 56 bits algorithms), or
the MD5 hash algorithm are not supported due to their algorithms having known security vulnerabilities.

Table 3: TLS Supported Cipher Suites

Cipher Suite (RFC) OpenSSL
Equivalent

Key
Exchange

Signing/
Authentication

Encryption
(Bits)

MAC
(Hash)

Algorithms

TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA RSA RSA AES (256) SHA-1

TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-
SHA RSA RSA 3DES(168) SHA-1

TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA RSA RSA AES(128) SHA-1

Provisioning

17

Cipher Suite (RFC) OpenSSL
Equivalent

Key
Exchange

Signing/
Authentication

Encryption
(Bits)

MAC
(Hash)

Algorithms

TLS_KRB5_WITH_RC4_128_SHA KRB5-RC4-
SHA KRB5 KRB5 RC4(128) SHA-1

TLS_RSA_WITH_RC4_128_SHA RC4-SHA RSA RSA RC4(128) SHA-1

TLS_KRB5_WITH_3DES_EDE_CBC_SHA KRB5-DES-
CBC3-SHA KRB5 KRB5 3DES(168) SHA-1

2.6 Multiple Connections
The RAS supports multiple connections and each connection is considered persistent unless declared otherwise.
The HTTP persistent connections do not use separate keep-alive messages, they just allow multiple requests to
use a same TCP/IP connection. However, connections are closed after being idle for a time limit configured in
idle timeout (See section 2.9.3).

If the client does not want to maintain a connection for more than that request, it should send a Connection
header including the connection-token close. If either the client or the server sends the close token in the
Connection header, that request becomes the last one for the connection.

The provisioning client establishes a TCP/IP connection to RAS before sending the first REST command. After the
execution of the request, the RAS sends a response message back and keeps the connection alive as long as a
request comes before idle timeout.

In order to achieve the maximum provisioning TPS rate that the UDR REST interface is certified for, multiple
simultaneous provisioning connections are required.

• For example, if the certified maximum provisioning TPS rate is 200 TPS, and the Maximum REST
Connections (see 6.6.4Appendix A) is set to 100, then up to 100 connections may be required in order to
achieve 200 TPS. It is not possible to achieve the maximum provisioning TPS rate on a single connection.

2.7 Request Queue Management
If multiple clients simultaneously issues requests, each request is queued and processed in the order in which it
was received on a per connection basis. The client must wait for a response from one request before issuing
another.

Incoming requests, whether multiple requests from a single client or requests from multiple clients, are not
prioritized. Multiple requests from a single client are handled on a first-in, first-out basis. Requests are
processed in the order in which they are received.

All requests from a client sent on a single connection are processed by UDR serially. Multiple requests can be
sent without receiving a response, but each request is queued and not processed until the previous request has
completed. A client can send multiple requests across multiple connections, and these can run in parallel (but
requests on each connection are still processed serially).

2.8 Database Transactions
Each create, update, or delete request coming from REST interface triggers a unique database transaction, such
as a database transaction started by a request is committed before sending a response.

Provisioning

18

2.8.1 ACID-Compliance
The REST interface supports Atomicity, Consistency, Isolation and Durability (ACID)-compliant database
transactions which guarantee transactions are processed reliably.

2.8.1.1 Atomicity

Database manipulation requests are atomic. If one database manipulation request in a transaction fails, all of
the pending changes can be rolled back by the client, leaving the database as it was before the transaction was
initiated. However, the client also has the option to close the transaction, committing only the changes within
that transaction which were performed successfully. If any database errors are encountered while committing
the transaction, all updates are rolled back and the database is restored to its previous state.

2.8.1.2 Consistency

Data across all requests performed inside a transaction is consistent.

2.8.1.3 Isolation

All database changes made within a transaction by one client are not viewable by any other clients until the
changes are committed by closing the transaction. In other words, all database changes made within a
transaction cannot be seen by operations outside of the transaction.

2.8.1.4 Durability

After a transaction is committed and becomes durable, the transaction persists and is not undone. Durability is
achieved by completing the transaction with the persistent database system before acknowledging
commitment. Provisioning clients only receive SUCCESS responses for transactions that have been successfully
committed and have become durable.

The system recovers committed transaction updates in spite of system software or hardware failures. If a failure
(such as a loss of power) occurs in the middle of a transaction, the database returns to a consistent state when it
is restarted.

Data durability signifies the replication of the provisioned data to different parts of the system before a
response is provided for a provisioning transaction. The following additive configurable levels of durability are
supported:

• Durability to the disk on the active provisioning server (just 1)
• Durability to the local standby server memory (1 + 2)
• Durability to the active server memory at the Disaster Recovery site (1 + 2 + 3)

2.9 Connection Management
It is possible to enable/disable/limit the REST provisioning interface in a number of different ways.

2.9.1 Connections Allowed
The configuration variable Allow REST Provisioning Connections (see 6.6.4Appendix A) controls whether
REST interface connections are allowed to the configured port. If this variable is set to NOT_ALLOWED, then all
existing connections are immediately dropped. Alarm 13000) is raised. Any attempts to connect are rejected.

When Allow REST Provisioning Connections is set back to ALLOWED, the alarm is cleared, and connections
are accepted again.

Provisioning

19

2.9.2 Disable Provisioning
When the Oracle Communications User Data Repository GUI option to disable provisioning is selected, existing
connections remain up, and new connections are allowed. But, any provisioning request is rejected with a
SERVICE_UNAVAILABLE error indicating the service is unavailable.

For an example of a provisioning request/response when provisioning is disabled, see the last example in section
5.1.1.

2.9.3 Idle Timeout
HTTP connection between Provisioning client and RAS is handled persistent fashion. The configuration variable
REST Interface Idle Timeout (see Appendix A) indicates the time to wait before closing the connection due
to inactivity (such as no requests received).

2.9.4 Maximum Simultaneous Connections
The configuration variable Maximum REST Connections (see Appendix A) defines the maximum number of
simultaneous REST interface client connections.

2.9.5 TCP Port Number
The configuration variable REST Interface Port (see Appendix A) defines the REST interface TCP listening port.

2.10 Behavior during Low Free System Memory
If the amount of free system memory available to the database falls below a critical limit, then requests that
create or update data may fail with the error MSR4068. Before this happens, memory threshold alarms are
raised indicating the impending behavior if the critical level is reached.

The HTTP Status Code returned by the REST interface when the critical level has been reached is 507.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4068">errorText</error>

2.11 Congestion Control
If UDR starts to encounter congestion (based on high CPU usage), then based on the congestion level, UDR
rejects some requests (based on the HTTP method, see section 3.1.1).

If the minor CPU usage threshold is crossed (CL1), then UDR rejects GET requests

If the major CPU usage threshold is crossed (CL2), then UDR rejects GET and PUT requests

If the critical CPU usage threshold is crossed (CL3), then UDR rejects all requests

The HTTP Status Code returned by the REST interface when a request is rejected due to congestion is 503.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4097">errorText</error>

REST Interface Description
Oracle Communications User Data Repository provides an Application Programming Interface (API) for
programmatic management of subscriber data. This interface supports querying, creation, modification, and
deletion of subscriber and pool data.

Provisioning

20

The API is an XML over HTTP/HTTPS interface that is based on RESTful concepts. This section defines the
operations that can be performed using the REST interface.

2.12 Rest Conventions
The REST interface uses the following RESTful concepts:

• HTTP(S) headers
• HTTP(S) status codes
• Error message representation in the response content for all 4xx and 5xx codes.

2.12.1 HTTP(S) Request Headers
The following HTTP(S) requirements must be followed.

2.12.1.1 HTTP version

For non-secure HTTP requests, the client must set the header Request Version property to:

Request Version : HTTP/1.1

For secure HTTPS requests, the client must set the header Request Version property to:

Request Version : HTTPS TLS v1

2.12.1.2 Accept Header

Set the Accept header property to the correct MIME version using the following format:

Accept: application/camiant-msr-v1+xml <- version number is 1 or 2.0

or

Accept: application/camiant-msr-v2.0+xml

or

Accept :*/*

or

Accept :application/*

The Accept header must match the version supported by the client. This is true even for requests that do not
expect entity response data so that any error content is accepted.

Operations in Oracle Communications User Data Repository support both versions 1 and 2.0.

The Oracle Communications User Data Repository response to an incorrect MIME version is a Bad Request, for
example, with error code Invalid Accept: application/camiant-msr-v1+xml.

The Accept header is optional, and if omitted the value is treated as if the value “*/*” was supplied.

2.12.1.3 Transfer-Encoding Header

If a client wishes to use chunked transfer encoding, then the Transfer-Encoding header must be set to:

Transfer-Encoding: chunked

2.12.1.4 Requests with body content

Requests, which contain body contents, must set the Content-Type header property to:

Content-Type: application/camiant-msr-v2.0+xml

Provisioning

21

An XML blob for an entity supplied in body contents must begin with an XML version and encoding element as
below:

<?xml version="1.0" encoding="UTF-8"?>

2.12.2 HTTP(S) Status Codes and Error Messages
The REST interface uses standard HTTP(S) status codes in the response messages. Any operation in the REST
interface that results in an HTTP error response in the 4xx or 5xx range has response content that includes an
error message entity.

Table 4 provides a list of most common Status Codes that an operation may return under normal operating
conditions. A more detailed description of the response status codes are provided in each of the provisioning
command descriptions.

Table 4: HTTP(S) Status Codes

Status Code Description

200—OK Indicates the successful completion of request processing.

201—Created Used for new entities.

204—No Content The request completed successfully and no response content body is sent back to
the client.

400—Bad Request This indicates that there is a problem with how the request is formatted or that the
data in the request caused a validation error.

404—Not Found Indicates that the client tried to operate on a resource that did not exist.

409—Conflict Indicated that the client tried to operate on a resource where the operation was not
appropriate for that resource.

4xx—Other
Status codes in the 4xx range that are also client request issues. For example, the
client may be calling an operation that is not implemented/available or that is asking
for a mime type that is not supported.

500—Internal Server Error This error and other errors in the 5xx range indicate server problems.

503—Service Unavailable Indicates that the client tried to send a provisioning request when provisioning was
disabled.

507—Insufficient Storage Indicates that free system memory is low, and the database cannot store any new
data.

Besides the HTTP status codes, following additional error codes are provided for the 4xx and 5xx range of Status
Codes. Note that the “Description” column is for reference only, it is not included in the HTTP response.
Additional text may be included in the HTTP response in some cases, for some responses.

Table 5: Error Codes

Error Code Description

MSR4000 Invalid content request data supplied

Provisioning

22

Error Code Description

MSR4001 Subscriber/pool not found

MSR4002 Subscriber/pool/data field is not defined

MSR4003 A key is detected to be already in the system for another subscriber/pool

MSR4004 Unique key not found for subscriber/pool

MSR4005 Field does not support multiple values and value for field exists

MSR4049 Data type is not defined

MSR4050 Unknown key, the key provided in the request is invalid

MSR4051 The value provided for the field is invalid

MSR4053 Subscriber/pool exist, but the field value is incorrect

MSR4055 Subscriber is a member of a pool

MSR4056 Field is not updatable

MSR4057 Request only contains one field to update

MSR4058 Data type not found

MSR4059 Data row does not exist

MSR4060 Number of pool members exceeded

MSR4061 Specified pool does not exist

MSR4062 Subscriber is not a member of the pool

MSR4063 Entity cannot be reset

MSR4064 Occurrence constraint violation

MSR4065 Field is not set

MSR4066 Field value exists

MSR4067 Multiple matching rows found

MSR4068 Free system memory is low

MSR4069 At least one key is required

MSR4097 Request rejected due to system congestion

MSR4098 Provisioning is disabled

Provisioning

23

Error Code Description

MSR4099 Unexpected server error has occurred

MSR4103 A key is detected to be already in the system for an AE subscriber

This example defines both an error code and additional error text to explain the error.

<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4051">Field value not valid: Field: 'nextResetTime' Value:
'100'[MSISDN:9971701913]</error>

In the examples, the error text associated with the MSRxxxx is not included beacause the information varies
depending on the entity, key, or field values used.

Provisioning

24

3 REST INTERFACE MESSAGE DEFINITIONS
This section describes the syntax and parameters of XML requests and responses.

3.1 Message Conventions

3.1.1 HTTP Method
The POST, PUT, GET, and DELETE HTTP methods are used on the REST interface.

3.1.2 Base URI
The base URI ({baseURI}) that is the prefix for the documented URIs uses the following syntax:

http{s}://{DNS Name or IP address}:<IP Port>/rs

The curly brackets denote replacement variables and are not part of the actual operation syntax. Any
replacement variable data that contains any special characters must be encoded. The value in the curly brackets
can be determined by how Oracle Communications User Data Repository is installed in the network.

For example, if UDR is installed with the DNS name udr.oracle.com on a system with IP address 1.2.3.4, with a
port number of 8787, the base URI could be either:

http://udr.oracle.com:8787/rs

Or

https://1.2.3.4:8787/rs

3.1.3 REST URL
The REST interface uses the following XML conventions in the REST command URL.

3.1.3.1 Subscriber or Pool in URL

Keyword sub indicates subscriber operations and pool indicates pool operations

For example, for a subscriber:

DELETE {baseURI}/msr/sub/IMSI/302370123456789/field/inputVolume

And for a pool:

DELETE {baseURI}/msr/pool/100000/field/Custom12

3.1.3.2 Opaque Data Operations in URL

For opaque data operations the keyword data is used. The data type indicated in the URL can be any valid
opaque or transparent data type.

Opaque data operations can be performed on entities defined as opaque or transparent. An opaque data
operation works on the XML blob creating, getting, or deleting it the blob.

For example when deleting the Quota data for a subscriber:

DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota

Provisioning

25

3.1.3.3 Field in URL

For field operations on the subscriber profile, the keyword field is used. A Field in the URL can be any field,
including key fields.

For example, to delete the outputVolume field for a subscriber:

DELETE {baseURI}/msr/sub/IMSI/302370123456789/field/outputVolume

3.1.3.4 Transparent Data Row Operations in URL

For transparent data row based operations the keyword data is also used. The data type indicated in the URL
can be any valid transparent data type which is row based. The data row name is also supplied.

For example when deleting a row in Quota data for a subscriber:

DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth

3.1.3.5 Transparent Data Row Field Operations in URL

For transparent data row field based operations the keyword data is also used. The data type indicated in the
URL can be any valid transparent data type which is row based. The data row name and field name are also
supplied.

For example when deleting a row field in Quota data for a subscriber:

DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth/totalVolume

3.1.4 URL Character Encoding
It is allowed to encode restricted characters in the URL using the % (percent) character, such as %3B for a ;
(semicolon), but it is not permitted to use double encoding such as %253B in order to first quote the % (percent)
character.

3.2 Case Sensitivity
The URL constructs that REST requests are made up of (such as, msr, sub, pool, field, data, or
multipleFields) are case-sensitive. Exact case must be followed for all the commands described in this
document, or the request fails.

For example, the following is valid:

POST {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass

But the following is not:

POST {baseURI}/msr/Sub/MSISDN/33123654862/field/Entitlement/DayPass

Key names, and entity field names are not case-sensitive, for example keyName, fieldName and setFieldName.

Entity field values, key values, and row identifiers are case-sensitive, for example fieldValue, setFieldValue,
keyValue, and rowIdValue.

Entity names as specified in an opaqueDataName or transparentDataType are not case sensitive.

Examples:

• When accessing a fieldName defined as “inputVolume” in the SEC, then “inputvolume”,
“INPUTVOLUME” or “inputVolume” are valid field names. Field names do not have to be specified in a
request as they are defined in the SEC

• When a field is returned in a response, it is returned as defined in the SEC. For example, if the above
field is created using the name “INPUTVOLUME”, then it is returned in a response as “inputVolume”

Provisioning

26

• When a fieldValue is used to find a field (such as when using the “Delete Field Value” command), the
field value is case-sensitive. If a multi-value field contained the values “DayPass,Weekend,Evening” and
the Delete Field Value command was used to delete the value “WEEKEND”, then this would fail

• When an attribute in the XML blob contains the row identifier name—aka rowIdName (for example for
Quota, the element <quota name="AggregateLimit"> contains the attribute called “name”) the row
identifier name is not case-sensitive

• When a rowIdValue is used to find a row (such as when using the Get Row command), the row identifier
value is case-sensitive. If an entity contained a row called DayPass, and the Get Row command is used to
get the row DAYPASS, the command fails

• When a keyValue is specified in the URL (such as for an NAI), the value is case-sensitive. For example, for
a subscriber with an NAI of mum@foo.com, then Mum@foo.com or MUM@FOO.COM does not find the
subscriber

3.3 XML Comments in a Request
A REST request may not contain XML comments within the request or the content body, such as:

<!—-comment-->

If a request contains a comment, the request is rejected with the following error:

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4000">errorText</error>

3.4 List of Messages
The following table provides a list of operations/messages for subscriber data. Each row of the table represents
a command. Parameters required for each command are in the colored column. Any blank/uncolored column
represents unused parameter for corresponding command.

Provisioning

27

Table 6: Summary of Subscriber Commands

Operation
Data Command (Method) URL Main

Object Key Name Key
Value

subObject
Type

subObject
Name

subObject
Value

Field
Name

Field
Value

Additional
Input

Subscriber
Profile

Create Profile (POST)

{Base
URL}/msr sub

Request
Content

Get Profile (GET)

{keyName}

MSISDN,
NAI,
IMSI,
AccountId

{keyValu
e}

Update Profile (PUT) Request
Content

Delete Profile (DELETE)

Subscriber
Field

Add Field Value (POST)

field/

multipleFi
elds

 {fieldNa
me}

{fieldVal
ue}

Get Field (GET)

Get Field Value (GET) {fieldVal
ue} Update Field (PUT)

Delete Field (DELETE)

Delete Field Value
(DELETE)

{fieldVal
ue}

Subscriber
Opaque
Data

Set Opaque Data (PUT)

data {opaqueDataT
ype}

Request
Content

Get Opaque Data (GET)

 Delete Opaque Data
(DELETE)

Subscriber
Data Row

Set Row (PUT) {rowIdValu
e}

Request
Content

Get Row (GET)

Provisioning

28

Operation
Data Command (Method) URL Main

Object Key Name Key
Value

subObject
Type

subObject
Name

subObject
Value

Field
Name

Field
Value

Additional
Input

Delete Row (DELETE)

Reset Quota (POST)

Subscriber
Data Row
Field

Get Row Field (GET)

{fieldNa
me}

{FieldVal
ue}

Get Row Field Value (GET)

Update Row Field (PUT)

Delete Row Field (DELETE)

Delete Row Field
Value(DELETE)

The following table provides a list of operations/messages for pool data. Similar to the previous table, each row of the table represents a command.
Parameters required for each command are in the colored column. Any blank (uncolored) column represents unused parameter for corresponding
command.

Table 7: Summary of Pool Commands

Operation
Data Command (Method) URL Main

Object Key Name Key
Value

subObject
Type

subObject
Name

subObject
Value

Field
Name

Field
Value

Additional
Input

Pool
Profile

Create Pool (POST)

{Base URL}
/msr pool PoolID

Request
Content

Get Pool (GET)

{key
Value}

Update Pool (PUT) Request
Content

Delete Pool (DELETE)

Pool
Profile
Field

Add Field Value(POST) field/multi
pleFields {fieldNa

me}

{field
Value}

Get Field (GET)

Provisioning

29

Operation
Data Command (Method) URL Main

Object Key Name Key
Value

subObject
Type

subObject
Name

subObject
Value

Field
Name

Field
Value

Additional
Input

Get Field Value (GET) {field
Value} Update Field (PUT)

Delete Field (DELETE)

Delete Field Value
(DELETE)

{field
Value}

Pool
Opaque
Data

Set Opaque Data (PUT)

data {opaque
DataType}

Request
Content

Get Opaque Data (GET)

 Delete Opaque Data
(DELETE)

Pool Data
Row

Set Row (PUT)

{rowId
Value}

Request
Content

Get Row (GET)

Delete Row (DELETE)

Pool Data
Row Field

Get Row Field (GET)

{field
Name}

{Field
Value}

Get Row Field Value (GET)

Update Row Field (PUT)

Delete Row Field (DELETE)

Delete Row Field
Value(DELETE)

Provisioning

30

4 UDR DATA MODEL
The UDR is a system used for the storage and management of subscriber policy control data. The UDR functions
as a centralized repository of subscriber data for the PCRF.

The subscriber-related data includes:

• Profile/Subscriber Data

Pre-provisioned information that describes the capabilities of each subscriber. This data is typically
written (via a provisioning interface) by the OSS system and referenced (via the Sh interface) by the
PCRF.

• Quota

Information that represents the use of managed resources (quota, pass, top-up, and roll-over) by the
subscriber. Although the UDR provisioning interfaces allow quota data to be manipulated, this data is
typically written by the PCRF and only referenced using the provisioning interfaces.

• State

Subscriber-specific properties. Like quota, this data is typically written by the PCRF, and referenced
using the provisioning interfaces.

• Dynamic Quota

Dynamically configured information related to managed resources (pass, top-up, roll-over). This data
may be created or updated by either the provisioning interface or the Sh interface.

• Pool Membership

The pool to which the subscriber is associated. The current implementation allows a subscriber to be
associated with a single pool, although the intention is to extend this to multiple pools in the future.

The UDR can also be used to group subscribers using Pools. This feature allows wireless carriers to offer pooled
or family plans that allow multiple subscriber devices with different subscriber account IDs, such as MSISDN,
IMSI, or NAI to share one quota.

The pool-related data includes:

• Pool Profile

Pre-provisioned information that describes a pool

• Pool Quota

Information that represents managed resources used by the pool (quota, pass, top-up, and roll-over)

• Pool State

Pool-specific properties

• Pool Dynamic Quota

Dynamically configured information related to managed resources (pass, top-up, and roll-over)

• Pool Membership

List of subscribers that are associated with a pool

Provisioning

31

The data architecture supports multiple Network Applications. This flexibility is achieved though
implementation of a number of registers in a Subscriber Data Object (SDO) and storing the content as Binary
Large Objects (BLOB). An SDO exists for each individual subscriber, and an SDO exists for each pool.

The Index contains information on the following:

• Subscription
• A subscription exists for every individual subscriber
• Maps a subscription to the user identities through which it can be accessed
• Maps an individual subscription to the pool of which they are a member
• Pool Subscription
• A pool subscription exists for every pool
• Maps a pool subscription to the pool identity through which it can be accessed
• Maps a pool subscription to the individual subscriptions of the subscribers that are members of the pool
• User Identities
• Use to map a specific user identity to a subscription
• IMSI, MSISDN, NAI and AccountId map to an individual subscription
• PoolID maps to a pool
• Pool Membership
• Maps a pool to the list of the individual subscriber members

The Subscription Data Object (SDO) :

• An SDO record contains a list of registers, holding a different type of entity data in each register
• An SDO record exists for :
• Each individual subscriber
• Defined entities stored in the registers are :
• Profile
• Quota
• State
• Dynamic Quota
• Each pool
• Defined entities stored in the registers are :
• Pool Profile
• Pool Quota
• Pool State
• Pool Dynamic Quota

Provisioning applications can create, retrieve, modify, and delete subscriber/pool data. The indexing system
allows access to the Subscriber SDO via IMSI, MSISDN, NAI or AccountId. The pool SDO can be accessed via
PoolID.

A field within an entity can be defined as mandatory, or optional. A mandatory field must exist, and cannot be
deleted.

A field within an entity can have a default value. If an entity is created, and the field is not specified, it is created
with the default value.

A field within an entity can be defined so that after iit is created, it cannot be modified. Any attempt to update
the field after it is created fails.

Provisioning

32

A field within an entity can have a reset value. If a reset command is used on the entity, those fields with a
defined reset value are set to the defined value. This is only applicable to field values within a row for the Quota
entity.

This section describes the default UDR data model as defined in the Subscriber Entity Configuration (SEC). The
data model can be customized via the UDR GUI.

Figure 2: Data Model

4.1 Subscriber Data

4.1.1 Subscriber Profile
The Subscriber profile represents the identifying attributes associated with the user. In addition to the base
fields indicated their level of service, it also includes a set of custom fields that the provisioning system can use
to store information associated with the subscriber. The values in custom fields are generally set by the OSS and
are read by the PCRF for use in policies.

Index

IMSI MSISDN NAI AccountId PoolID

Individual Pool

Profile Quota

State Dynamic
Quota

Subscription

Pool Profile Pool Quota

Pool State Pool Dynamic
Quota

Individual Pool

Subscription Data Object (SDO)

Pool
Membership

Provisioning

33

The Subscriber profile supports the following sequence of attributes. Each record must have at least one of the
following key values: MSISDN, IMSI, NAI, and AccountId.

BillingDay must be defined with a default value if another value is not specified. The remaining fields are
optional, based on the description provided for each.

UDR supports an MSISDN with 8 to 15 numeric digits. A preceding + (plaus) symbol is not supported, and is
rejected.

Table 8: Subscriber Profile Entity Definition

Name (XML tag) Type Description

subscriber — Sequence (multiplicity = 1)

MSISDN String List of MSISDNs (8 to 15 numeric digits). A separate entry is included for each MSISDN
associated with the profile for the subscriber.

IMSI String List of IMSIs (10 to 15 numeric digits). A separate entry is included for each IMSI
associated with the profile for the subscriber.

NAI String List of NAIs (in format “user@domain”). A separate entry is included for each NAI
associated with the profile for the subscriber.

AccountId String Any string that can be used to identify the account for the subscriber (1 to 255
characters).

BillingDay String Allowed values are (0 to 31).

The day of the month (1 to 31) when the associated quota for the subscriber is reset.

0 indicates that the default value configured at the PCRF level is used. This is
automatically set in any record where BillingDay is not specified.

Entitlement String List of entitlements. A separate entry is included for each entitlement associated with the
profile for the subscriber.

Tier String Tier for the subscriber.

Custom1 String Fields used to store customer-specific data.

Custom2 String Fields used to store customer-specific data.

Custom3 String Fields used to store customer-specific data.

Custom4 String Fields used to store customer-specific data.

Custom5 String Fields used to store customer-specific data.

Custom6 String Fields used to store customer-specific data.

Custom7 String Fields used to store customer-specific data.

Custom8 String Fields used to store customer-specific data.

Custom9 String Fields used to store customer-specific data.

Custom10 String Fields used to store customer-specific data.

Custom11 String Fields used to store customer-specific data.

Provisioning

34

Name (XML tag) Type Description

Custom12 String Fields used to store customer-specific data.

Custom13 String Fields used to store customer-specific data.

Custom14 String Fields used to store customer-specific data.

Custom15 String Fields used to store customer-specific data.

Custom16 String Fields used to store customer-specific data.

Custom17 String Fields used to store customer-specific data.

Custom18 String Fields used to store customer-specific data.

Custom19 String Fields used to store customer-specific data.

Custom20 String Fields used to store customer-specific data.

4.1.2 Quota
The Quota entity is used by the PCRF to record the current resource usage associated with a subscriber. A quota
entity may contain multiple quota elements, each one tracking a different resource.

The Quota entity is associated with a subscriber record and supports the following sequence of attributes.

The Quota entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, only v3 of Quota is supported.

The default value given in the table is used either:

• When a Quota instance is created, and no value is supplied for the field. In this case, the field is created
with the value indicated

• When a Quota instance is reset using the “Reset Quota” command. If a field is defined as resettable, and
the field exists, then it is set to the value indicated. If the field does not exist in the Quota, it is not
created.

NOTE: If a resettable field does not exist, and the field is also defined as defaultable, then the field gets
created with the value indicated

Table 9: Quota Entity Definition

Name (XML tag) Type Default Value Description Quota
Versions

usage — — Sequence (multiplicity = 1) 1/2/3

version String — Version of the schema. 1/2/3

quota — — Sequence (multiplicity = N) 1/2/3

name String --- Quota name (identifier). 1/2/3

cid String --- Internal identifier used to identity a quota within
a subscriber profile.

1/2/3

time String Empty string “” This element tracks the time-based resource
consumption for a Quota.

1/2/3

Provisioning

35

Name (XML tag) Type Default Value Description Quota
Versions

totalVolume String “0” This element tracks the bandwidth volume-based
resource consumption for a Quota.

1/2/3

inputVolume String “0” This element tracks the upstream bandwidth
volume-based resource consumption for a
Quota.

1/2/3

outputVolume String “0” This element tracks the downstream bandwidth
volume-based resource consumption for a
Quota.

1/2/3

serviceSpecific String Empty string “” This element tracks service-specific resource
consumption for a Quota.

1/2/3

nextResetTime String Empty string “” When set, it indicates the time after which the
usage counters need to be reset.

See section 4.3 for format details.

1/2/3

Type String Empty string “” Type of the resource in use. 2/3

grantedTotalVolume String “0” Granted Total Volume represents the granted
total volume of all the subscribers in the pool for
pool quota. For individual quota, it represents
the granted volume to all the PDN connections
for that subscriber.

2/3

grantedInputVolume String “0” Granted Input Volume. 2/3

grantedOutputVolume String “0” Granted Output Volume. 2/3

grantedTime String Empty string “” Granted Total Time. 2/3

grantedServiceSpecific String Empty string “” Granted Service Specific Units. 2/3

QuotaState String Empty string “” State of the resource in use. 3

RefInstanceId String Empty string “” Instance-id of the associated provisioned pass,
top-up or roll-over.

3

4.1.3 State
The State entity is written by the PCRF to store the state of various properties managed as a part of the policy
for the subscriber. Each subscriber may have a state entity. Each state entity may contain multiple properties.

The State entity contains a version number. Different attributes maybe be present based on the version number
value of the entity being accessed. In UDR, there is only one version number of 1.

The State entity supports the following sequence of attributes:

Table 10: State Entity Definition

Name (XML tag) Type Description

state — Sequence (multiplicity is 1)

Provisioning

36

Name (XML tag) Type Description

version String Version of the schema.

property — Sequence (multiplicity is N)

name String The property name.

value String Value associated with the given property.

4.1.4 Dynamic Quota
The DynamicQuota entity records usage associated with passes, top-ups, and roll-overs. The DynamicQuota
entity is associated with the Subscriber profile and may be created or updated by either the PCRF or the OSS
system.

The DynamicQuota entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 1.

The DynamicQuota entity supports the following sequence of attributes:

Table 11: Dynamic Quota Entity Definition

Name (XML tag) Type Description

definition — Sequence (multiplicity is 1)

version String Version of the schema.

DynamicQuota — Sequence (multiplicity is N)

Type String Identifies the dynamic quota type.

name String The class identifier for a pass or top-up. This name is used to match top-ups
to quota definitions on the PCRF. This name is used in policy conditions and
actions on the PCRF.

InstanceId String A unique identifier to identify this instance of a dynamic quota object.

Priority String An integer represented as a string. This number allows service providers to
specify when one pass or top-up is used before another pass or top-up.

InitialTime String An integer represented as a string. The number of seconds initially granted
for the pass/top-up.

InitialTotalVolume String An integer represented as a string. The number of bytes of total volume
initially granted for the pass/top-up.

InitialInputVolume String An integer represented as a string. The number of bytes of input volume
initially granted for the pass/top-up.

InitialOutputVolume String An integer represented as a string. The number of bytes of output volume
initially granted for the pass/top-up.

InitialServiceSpecific String An integer represented as a string. The number of service specific units
initially granted for the pass/top-up.

activationdatetime String The date/time after which the pass or top-up may be active.

Provisioning

37

Name (XML tag) Type Description

See section 4.3 for format details.

expirationdatetime String The date/time after which the pass or top-up is considered to be exhausted

See section 4.3 for format details.

purchasedatetime String The date/time when a pass was purchased

See section 4.3 for format details.

Duration String The number of seconds after first use in which the pass must be used or
expired. If both Duration and expirationdatetime are present, the closest
expiration time is used.

InterimReportingInterval String The number of seconds after which the GGSN/DPI/Gateway should
revalidate quota grants with the PCRF.

4.2 Pool Data

4.2.1 Pool Profile
The Pool profile includes a set of custom fields that the provisioning system can use to store information
associated with the pool. The values in custom fields are generally set by the OSS and are read by the PCRF for
use in policies.

Each pool profile must have a unique key value called PoolID.

BillingDay must be defined with a default value if another value is not specified. The remaining fields are only
included in the record if they are specified when the record is created/updated.

The Pool profile record consists of the following sequence of attributes.

Table 12: Pool Profile Entity Definition

Name (XML tag) Type Description

pool — Sequence (multiplicity is 1)

PoolID String Pool identifier (1 to 22 numeric digits, minimum value of 1).

BillingDay Uint8 The day of the month (1 to 31) when the associated quota pool is reset.

0 indicates that the default value configured at the PCRF level is used.

BillingType String The billing frequency, monthly, weekly, daily.

Entitlement String List of entitlements. A separate entry is included for each entitlement associated with the
profile for the pool.

Tier String Tier for the pool.

Custom1 String Fields used to store customer-specific data.

Custom2 String Fields used to store customer-specific data.

Custom3 String Fields used to store customer-specific data.

Custom4 String Fields used to store customer-specific data.

Provisioning

38

Name (XML tag) Type Description

Custom5 String Fields used to store customer-specific data.

Custom6 String Fields used to store customer-specific data.

Custom7 String Fields used to store customer-specific data.

Custom8 String Fields used to store customer-specific data.

Custom9 String Fields used to store customer-specific data.

Custom10 String Fields used to store customer-specific data.

Custom11 String Fields used to store customer-specific data.

Custom12 String Fields used to store customer-specific data.

Custom13 String Fields used to store customer-specific data.

Custom14 String Fields used to store customer-specific data.

Custom15 String Fields used to store customer-specific data.

Custom16 String Fields used to store customer-specific data.

Custom17 String Fields used to store customer-specific data.

Custom18 String Fields used to store customer-specific data.

Custom19 String Fields used to store customer-specific data.

Custom20 String Fields used to store customer-specific data.

4.2.2 Pool Quota
The PoolQuota entity records usage associated with quotas, passes, top-ups, and roll-overs associated with the
pool. The PoolQuota entity is associated with the Pool Profile and may be created or updated by either the
PCRF or the OSS system.

The PoolQuota entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, there is only version number of 3.

The PoolQuota entity attributes are the same as defined for the Quota entity in section 4.1.2.

4.2.3 Pool State
The PoolState entity is written by the PCRF to store the state of various properties managed as a part of the
policy for the pool. Each pool profile may have a PoolState entity. Each PoolState entity may contain multiple
properties.

The PoolState entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, there is only one version number of 1.

The PoolState entity attributes are the same as defined for the State entity in section 4.1.3.

Provisioning

39

4.2.4 Pool Dynamic Quota
The PoolDynamicQuota entity records usage associated with passes, top-ups, and roll-overs associated with the
pool. The PoolDynamicQuota entity is associated with the Pool Profile and may be created or updated by either
the PCRF or the OSS system.

The PoolDynamicQuota entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 1.

The PoolDynamicQuota entity attributes are the same as defined for the DynamicQuota entity in section 4.1.4.

4.3 Date/Timestamp Format
The Date/Timestamp format used by many fields is:

CCYY-MM-DDThh:mm:ss[<Z|<+|->hh:mm>]

This corresponds to either:

1. CCYY-MM-DDThh:mm:ss (local time)
2. CCYY-MM-DDThh:mm:ssZ (UTC time)
3. CCYY-MM-DDThh:mm:ss+hh:mm (positive offset from UTC)
4. CCYY-MM-DDThh:mm:ss-hh:mm (negative offset from UTC)

Where:

• CC = century
• YY = year
• MM = month
• DD = day
• T = Date/Time separator
• hh = hour
• mm = minutes
• ss = seconds
• Z = UTC (Coordinated Universal Time)
• +|- = time offset from UTC

The following are valid examples of a field in Date/Timestamp format:

• 2015-06-04T15:43:00 (local time)
• 2015-06-04T15:43:00Z (UTC time)
• 2015-06-04T15:43:00+02:00 (positive offset from UTC)
• 2015-06-04T15:43:00-05:00 (negative offset from UTC)

Provisioning

40

5 SUBSCRIBER PROVISIONING

5.1 Subscriber Profile Commands
Table 13: Summary of Subscriber Profile Commands

Command Description Keys Command Syntax
Create
Profile

Create a subscriber or
subscriber profile

MSISDN,
NAI, IMSI,
AccountId

POST {baseURI}/msr/sub

Get Profile Get subscriber profile data GET {baseURI}/msr/sub/keyName/keyValue

Update
Profile

Replace an existing
subscriber profile PUT {baseURI}/msr/sub/keyName/keyValue

Delete
Profile

Delete all subscriber profile
data and all opaque data
associated with the
subscriber

DELETE {baseURI}/msr/sub/keyName/keyValue

5.1.1 Create Subscriber

Description
This operation creates a subscriber profile using the field-value pairs that are specified in the request content.

Unlike other subscriber commands, keyName and keyValue are not specified in the URL. Request content
includes at least one key value (and up to 4 different key types), and field-value pairs, all as specified in the
Subscriber Entity Configuration.

Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or multiple
fieldNameX fields each containing a single value.

Prerequisites
A subscriber with any of the keys supplied in the profile must not exist

Request URL
POST {baseURI}/msr/sub

Request Content
A <subscriber> element that contains a <field> element for every field-value pair defined for the new
subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]

Provisioning

41

</subscriber>

• keyNameX: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValueX: Corresponding key field value assigned to keyNameX
• fieldNameX: A user defined field within the Subscriber Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

One key is mandatory. Any combination of key types are allowed. More than one occurrence of each key
type (such as, IMSI MSISDN NAI or AccountId) is supported, up to an engineering configured limit

Key/field order in the request is not important

Response Content
None.

Table 14: Create Subscriber Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Successfully created

400 MSR4000 Invalid content request data supplied

400 MSR4003 A key is detected to be already in the system for another subscriber

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

400 MSR4103 A key is detected to be already in the system for an AE subscriber

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A subscriber is created, with AccountId, MSISDN and IMSI keys. The BillingDay, Tier, Entitlement, and
Custom15 fields are set.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>

Provisioning

42

 <field name="Entitlement">DayPass,DayPassPlus</field>
 <field name="Custom15">allocate</field>
</subscriber>

Response 1
The request is successful, and the subscriber was created.

HTTP Status Code
201

Response Content
None.

Request 2
A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Location fields are set. Location is
not a valid field name for a subscriber.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141234567</field>
 <field name="IMSI">184126781623863</field>
 <field name="BillingDay">2</field>
 <field name="Location">Montreal</field>
</subscriber>

Response 2
The request fails. The error code indicates the field name is not valid.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4002">errorText</error>

Request 3
A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. A
subscriber exists with the given IMSI.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>

Provisioning

43

 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Response 3
The request fails. The error code indicates the key exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4003">errorText</error>

Request 4
A subscriber is created. The BillingDay and Entitlement fields are set. No key values are supplied.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
</subscriber>

Response 4
The request fails because no key values were supplied.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4004">errorText</error>

Request 5
A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Custom15 fields are set.

NOTE: Provisioning has been disabled.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Custom15">allocate</field>
</subscriber>

Provisioning

44

Response 5
The request fails, because provisioning has been disabled.

HTTP Status Code

503

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4098">errorText</error>

Request 6
A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. An AE
subscriber exists with the given IMSI and “enableAEKeyAlreadyExistsErrCode” option is set to TRUE.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Response 6
The request fails. The error code indicates the key exists for an AE subscriber.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4103">errorText</error>

Request 7
A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. An AE
subscriber exists with the given IMSI and “enableAEKeyAlreadyExistsErrCode” option is set to FALSE.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Provisioning

45

Response 7
The request fails. The error code indicates the key exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4003">errorText</error>

5.1.2 Get Profile

Description
This operation retrieves all field-value pairs created for a subscriber that is identified by the keyName and
keyValue.

A keyName and keyValue are required in the request in order to identify the subscriber. The response content
includes only valid field-value pairs which have been previously provisioned or created by default.

Prerequisites
A subscriber with a key of the keyName/keyValue supplied must exist.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName

Request Content
None.

Response Content
A <subscriber> element that contains a <field> element for every field-value pair defined for the
subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

Provisioning

46

• keyNameX: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValueX: Corresponding key field value assigned to keyNameX
• fieldNameX: A user defined field within the Subscriber Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

Key/field order in the response is not important

Table 15: Get Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully located the subscriber

400 MSR4051 Invalid value for a field

404 MSR4001 Could not find the subscriber by key

Examples

Request 1
The subscriber with the given AccountId is retrieved. The subscriber exists.

Request URL
GET {baseURI}/msr/sub/AccountId/10404723525

Request Content
None

Response 1
The request is successful, and the subscriber was retrieved.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
</subscriber>

Request 2
The subscriber with the given IMSI is retrieved. The subscriber does notexist.

Request URL
GET {baseURI}/msr/sub/IMSI/184126781623863

Provisioning

47

Request Content
None

Response 2
The request fails. The error code indicates the subscriber does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

5.1.3 Update Profile

Description
This operation replaces an existing subscriber profile, for the subscriber identified by keyName and keyValue.

All existing data for the subscriber is completely removed and replaced by the request content.

The key value specified by keyName and keyValue must be present in the request content.

Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or multiple
fieldNameX fields each containing a single value.

Prerequisites
A subscriber with a key of the keyName/keyValue supplied must exist.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName

Request Content
A <subscriber> element that contains a <field> element for every field-value pair defined for the existing
subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

Provisioning

48

• keyNameX: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValueX: Corresponding key field value assigned to keyNameX
• fieldNameX: A user defined field within the Subscriber Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

One key is mandatory. Any combination of key types are allowed. More than one occurrence of each key
type (such as IMSI MSISDN NAI or AccountId) is supported, up to an engineering configured limit

Key/field order in the request is not important

Response Content
None.

Table 16: Update Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The subscriber data was replaced successfully

400 MSR4000 Invalid content request data supplied

400 MSR4003 A key is detected to be already in the system for another subscriber

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4001 Could not find the subscriber by key

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A subscriber is updated using MSISDN. The AccountId, IMSI, BillingDay, Tier, and Entitlement fields are set.
The subscriber exists.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="IMSI">184569547984229</field>
 <field name="MSISDN">33123654862</field>
 <field name="BillingDay">12</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass,DayPassPlus</field>

Provisioning

49

</subscriber>

Response 1
The request is successful, and the subscriber was updated.

HTTP Status Code
204

Response Content
None.

5.1.4 Delete Profile

Description
This operation deletes all profile data (field-value pairs) and opaque data for the subscriber that is identified by
the keyName and keyValue.

Prerequisites
A subscriber with a key of the keyName/keyValue supplied must exist.

The subscriber must not be a member of a pool, or the request fails.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName

Request Content
None.

Response Content
None.

Table 17: Delete Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The subscriber was successfully deleted

404 MSR4001 Could not find the subscriber by key

409 MSR4055 Cannot delete, subscriber belongs to a pool

Examples

Request 1
The subscriber with the given MSISDN is deleted. The subscriber exists.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862

Provisioning

50

Request Content
None

Response 1
The request is successful.

HTTP Status Code
204

Response Content
None.

Request 2
The subscriber with the given NAI is deleted. The subscriber exists. The subscriber is a member of a pool.

Request URL
DELETE {baseURI}/msr/sub/NAI/mum@foo.com

Request Content
None

Response 2
The request fails, because the subscriber is a member of a pool.

HTTP Status Code
409

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

5.2 Subscriber Profile Field Commands

Table 18: Summary of Subscriber Profile Field Commands

Command Description Keys Command Syntax

Add Field
Value

Adds a value to the specified
field. This operation does
not affect any pre-existing
values for the field

MSISDN,
IMSI, NAI
or
AccountId

POST {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

Get Field Retrieve the values for the
specified field

GET {baseURI}/msr/sub/keyName/keyValue/
field/fieldname

Get Field
Value

Retrieve the single value for
the specified field (if set as
specified)

GET {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

Update
Field
Value

Updates field to the
specified value

PUT {baseURI}/msr/sub/
keyName/keyValue/field/fieldName/
fieldValue

Provisioning

51

Command Description Keys Command Syntax
Update
Multiple
Fields

Update multiple fields to the
specified values

PUT {baseURI}/msr/sub/keyName/keyValue/
multipleFields/fieldName1/
fieldValue1/fieldName2/fieldValue2/…

Delete
Field

Delete all the values for the
specified field

DELETE {baseURI}/msr/sub/keyName/keyValue/
field/fieldname

Delete
Field
Value

Delete a value for the
specified field

DELETE {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

5.2.1 Add Field Value

Description
This operation adds one or more values to the specified multi-value field for the subscriber identified by the
keyName and keyValue.

This operation can only be performed for the fields defined as multi-value field in the Subscriber Entity
Configuration. Any pre-existing values for the field are not affected.

All existing values are retained, and the new values specified are inserted. For example, if the current value of a
field was “a;b;c”, and this command was used with value “d”, after the update the field would have the value
“a;b;c;d”.

If a value being added exists, the request fails.

If the value is being added to a filed that does not exist, it is created.

The fieldValue is case-sensitive. An attempt to add the value “a” to current field value of “a;b;c” would fail, but
an attempt to add the value “A” would be successful and result in the field value being “a;b;c;A”

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must be a valid field in the Subscriber Profile, and must be a multi-value field.

The value fieldValue being added must notalready be present in the field.

Request URL
POST {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile
• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Provisioning

52

Response Content
None.

Table 19: Add Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully added field values

400 MSR4005 Field does not support multiple values

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4066 Field value exists

404 MSR4001 Subscriber is not found

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A request is made to add the value DayPass to the Entitlement field. The Entitlement field is a valid multi-
value field. The DayPass value is not already present in the Entitlement field.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass

Request Content
None

Response 1
The request is successful, and the value was added to the Entitlement field.

HTTP Status Code
200

Response Content
None.

Request 2
A request is made to add the values DayPass and HighSpeedData to the Entitlement field. The Entitlement
field is a valid multi-value field. The DayPass and HighSpeedData values are not already present in the
Entitlement field.

Request URL
POST {baseURI}/msr/sub/NAI/dad@op.com/field/Entitlement/DayPass;HighSpeedData

Provisioning

53

Request Content
None

Response 2
The request is successful, and the values were added to the Entitlement field.

HTTP Status Code
200

Response Content
None.

Request 3
A request is made to add the value Gold to the Tier field. The Tier field is not a valid multi-value field.

Request URL
POST {baseURI}/msr/sub/NAI/dad@op.com/field/Tier/Gold

Request Content
None

Response 3
The request fails because the Tier field is not a multi-value field.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4005">errorText</error>

Request 4
A request is made to update to add two additional MSISDN values. Currently, the subscriber only has the
MSISDN 15141234567.

Request URL
POST {baseURI}/msr/sub/MSISDN/5141234567/field/MSISDN/
 14161112222; 14505556666

Request Content
None

Response 4
The request is successful, and the two additional MSISDNs were added. The subscriber has three MSISDNs,
15141234567, 14161112222, and 14505556666

HTTP Status Code
200

Response Content
None.

Provisioning

54

5.2.2 Get Field

Description
This operation retrieves the values for the specified fields for the subscriber identified by the specified keyName
and keyValue.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/field/fieldName

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile

Request Content
None.

Response Content
A <subscriber> element that contains a <field> element for every field-value pair for the requested field
defined for the subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</subscriber>

• fieldName: The requested user defined field within the Subscriber Profile
• fieldValueX: Corresponding field value assigned to fieldName

For multi-value fields, more than one <field> element may be returned. One element per value.

Table 20: Get Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4002 Subscriber field is not defined

404 MSR4065 Field is not set

Provisioning

55

Examples

Request 1
A request is made to get the AccountId field for a subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/AccountId

Request Content
None

Response 1
The request is successful, and the requested value is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
</subscriber>

Request 2
A request is made to get the Entitlement field for a subscriber. The Entitlement field is a multi-value field.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement

Request Content
None

Response 2
The request is successful, and the requested value is returned. Two values are set for the multi-value field.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">HighSpeedData</field>
</subscriber>

Request 3
A request is made to get the Custom11 field for a subscriber. The field is valid, but is not set for the
subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Custom11

Provisioning

56

Request Content
None

Response 3
The request is successful, and an empty value is returned.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4065">errorText</error>

5.2.3 Get Field Value

Description
This operation retrieves the values for the specified field for the subscriber identified by the keyName and
keyValue in the request.

For a request where the presence of multiple values for a multi-value field is requested, a match is only
considered to have been made if the requested values form a subset of the values stored in the profile. That is, if
all of the values requested exist in the profile, return success, regardless of how many other values may exist in
the profile. If any or all of the values are not present as part of the profile, an error is returned.

Depending on the field entered, there may be multiple field-value pairs returned by this operation

The fieldValue is case-sensitive. An attempt to get the value “a” from a current field value of “a;b;c” would be
successful, but an attempt to get the value “A” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

The requested field must contain the values supplied in the fieldValue.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile
• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Provisioning

57

Response Content
A <subscriber> element that contains a <field> element for every field-value pair requested that matches
the value supplied for the existing subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="fieldName1">fieldValue1</field>
[
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

• fieldNameX: The requested user defined field within the Subscriber Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

For multi-value fields, more than one <field> element may be returned. One element per value.

Table 21: Get Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 - Requested field exists for subscriber with given value

400 MSR4053 Subscriber and field exist, but values do not match

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A request is made to get the AccountId field with the value 10404723525. The field exists and has the
specified value.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/AccountId/10404723525

Request Content
None

Response 1
The request is successful, and the requested value is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
</subscriber>

Provisioning

58

Request 2
A request is made to get the Entitlement field with the values DayPass and HighSpeedData. The Entitlement
field is a multi-value field. The field exists and has the specified values.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 2
The request is successful, and the requested values are returned. Two values are set for the multi-value
field.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">HighSpeedData</field>
</subscriber>

5.2.4 Update Field

Description
This operation updates a field to the specified value for the subscriber identified by the specified keyName and
keyValue.

This operation replaces the values of the field, which means that any existing values for the field are deleted
first. For multi-value fields, all previous values are erased and the new set of values is inserted. Adding values to
a current set is accomplished using Add Field Value.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must all be a valid field in the Subscriber Profile.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile

NOTE: A field name cannot be for a key value—such as IMSI, MSISDN, NAI, or AccountId

• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

Provisioning

59

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 22: Update Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Fields were successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A request is made to update the value of the Tier field to Silver.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/Tier/Silver

Request Content
None

Response 1
The request is successful, and the Tier field was updated.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update the Entitlement field with the values DayPass and HighSpeedData. The
Entitlement field is a multi-value field.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Provisioning

60

Response 2
The request is successful, and the Entitlement field was updated.

HTTP Status Code
201

Response Content
None.

Request 3
A request is made to update the value of the subscribers MSISDN to 15145551234.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/MSISDN/15145551234

Request Content
None

Response 3
The request is successful, and the MSISDN field was updated.

HTTP Status Code
201

Response Content
None.

Request 4
A request is made to update a subscriber, and replace the 3 existing IMSI values 302370123456789,
302370999888777, and 302370555555555 with a single value of 302370111111111.

Request URL
PUT {baseURI}/msr/sub/IMSI/302370123456789/field/IMSI/302370111111111

Request Content
None

Response 4
The request is successful, and the IMSI field was updated. The subscriber has a single IMSI of
302370111111111.

HTTP Status Code
201

Response Content
None.

Request 5
A request is made to update the value of the subscribers NAI to two values of mum@foo.com and
cust514@op.com .

Provisioning

61

Request URL
PUT {baseURI}/msr/sub/MSISDN/15141234567/field/NAI/mum@foo.com;cust514@op.com

Request Content
None

Response 5
The request is successful, and the NAI field was updated. The subscriber has two NAIs.

HTTP Status Code
201

Response Content
None.

5.2.5 Update Multiple Fields

Description
This operation updates 2 or 3 fields to the specified values for the subscriber identified by the specified
keyName and keyValue.

This operation replaces ("sets") the value of the field, which means that any existing values for the field are
deleted first. For multi-value fields, all previous values are erased and the new set of values is inserted. Adding
values to a current set is accomplished using Add Field Value.

This command allows the update of multiple fields in a single command for subscriber data.

ALL fields that can be modified in the "single field" request can also be modified in the "multiple fields" request.
Two or three fields can be updated at once. Updating only a single field results in an error.

All fields are updated at once in the DB. All fields and all values must be valid for the update to be successful. In
other words, as soon as one error is detected, processing the request is stopped (and return an error). For
example, if the third field fails validation, then none of the fields are updated.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The fields fieldNameX must all be valid fields in the Subscriber Profile.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/multipleFields/fieldName1/fieldValue1/
fieldName2/fieldValue2/[fieldName3/fieldValue3]

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldNameX: A user defined field within the Subscriber Profile

NOTE: A field name cannot be for a key value—such as IMSI, MSISDN, NAI, or AccountId

• fieldValueX: Corresponding field value assigned to fieldNameX

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

Provisioning

62

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 23: Update Multiple Fields Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Fields were successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

400 MSR4057 Request only contains one field to update

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A request is made to update the Entitlement field to YearPass, the Tier field to Silver, and the BillingDay field
to 11.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/multipleFields/Entitlement/YearPass/Tier/Silver/
BillingDay/11

Request Content
None

Response 1
The request is successful, and the Entitlement, Tier, and BillingDay fields were all updated.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update the MSISDN field to 15145551234, the Tier field to Silver, and the NAI field to
mum@foo.com.

Provisioning

63

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/multipleFields/MSISDN/15145551234/Tier/Silver/
NAI/mum@foo.com

Request Content
None

Response 2
The request is successful, and the MSISDN, Tier, and NAI fields were all updated.

HTTP Status Code
201

Response Content
None.

5.2.6 Delete Field

Description
This operation deletes the specified field for the subscriber identified by keyName and keyValue in the request.

If the field is a multi-value field then all values are deleted. Deletion of a field results in the removal of the field
from the subscriber profile. The field is not present, not just the value is empty.

The field being deleted does notneed to have a current value. It can be empty (deleted), and the request
succeeds.

If the field being deleted is mandatory, and is defined as having a default value, then the field is not removed,
but has the default value assigned.

If a key (such as IMSI, MSISDN, NAI, or AccountId) field is deleted for a subscriber, then afterwards, the
subscriber must still have at least one key type/value remaining or the request fails.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/field/fieldName

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile

Request Content
None.

Response Content
None.

Provisioning

64

Table 24: Delete Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4069 At least one key is required

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1
A request is made to delete the Tier field. The field is a valid Subscriber Profile field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Tier

Request Content
None

Response 1
The request is successful, and the field was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the IMSI key field. The subscriber has MSISDN and IMSI key fields.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/IMSI

Request Content
None

Response 2
The request is successful, and the IMSI key field was deleted.

HTTP Status Code
204

Provisioning

65

Response Content
None.

Request 3
A request is made to delete the MSISDN key field. The subscriber only has a single MSISDN key field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15145551234/field/MSISDN

Request Content
None

Response 3
The request fails, because the single MSISDN key field is the only existing key.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4069">errorText</error>

Request 4
A request is made to delete the MSISDN field. The subscriber has 2 MSISDN values, 15141234567 and
15145556666. The subscriber also has an IMSI value.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/MSISDN

Request Content
None

Response 4
The request is successful, and the MSISDN field is deleted. The subscriber does not have any MSISDN values,
and just has an IMSI

HTTP Status Code
204

Response Content
None.

5.2.7 Delete Field Value

Description
This operation deletes one or more values from the specified field for the subscriber identified by the keyName
and keyValue in the request.

This operation can only be perforemd for the fields defined as multi-value field in the Subscriber Entity
Configuration.

Provisioning

66

Each individual value is removed from the Subscriber Profile. If a supplied value does not exist, then it is ignored.
For example, if a profile contains values "a;b;c" and a request to delete "a;b" is made, this succeeds and the
profile is left with "c" as the value. If the profile contains "a;b;c" and a request is made to delete "c;d" the
request succeeds and the profile is left with "a;b" as the value.

If all values are removed, the field is removed from the subscriber profile (there is no XML element present).

The fieldValue is case-sensitive. An attempt to remove the value “a” from a current field value of “a;b;c” would
be successful, but an attempt to remove the value “A” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must be a valid field in the Subscriber Profile, and set to the value supplied to be removed
successfully.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• fieldName: A user defined field within the Subscriber Profile

NOTE: A field name cannot be for a key value—such as IMSI, MSISDN, NAI, or AccountId

• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 25: Delete Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested fields were successfully deleted

400 MSR4005 Field does not support multiple values

400 MSR4056 Field is not updatable

400 MSR4069 At least one key is required

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Provisioning

67

Examples

Request 1
A request is made to delete the values DayPass and HighSpeedData from the Entitlement field. The
Entitlement field is a multi-value field. The field exists and contains the specified values.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 1
The request is successful, and the values were deleted from the field.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the Tier field which has the value Gold. The Tier field is not a multi-value field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Tier/Gold

Request Content
None

Response 2
The request fails, because the Tier field is not a multi-value field.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4005">errorText</error>

Request 3
A request is made to delete the MSISDN fields with values of 14161112222 and 15141234567. The
subscriber has 3 MSISDN values, 15141234567, 14161112222, and 15145556666.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/MSISDN/14161112222;15141234567

Request Content
None

Provisioning

68

Response 3
The request is successful, and the MSISDN values 14161112222 and 15141234567 are deleted. The
subscriber has a single MSISDN of 15145556666.

HTTP Status Code
204

Response Content
None.

5.3 Subscriber Opaque Data Commands
The following commands perform opaque data operations. They can be used on entities defined as either
opaque or transparent. The opaque data operation operates on the entity at the XML blob level. The contents of
the entity is set, returned, or deleted.

Table 26: Summary of Subscriber Opaque Data Commands

Command Description Keys Command Syntax
Set
Opaque
Data

Create/update opaque data
of the specified type

MSISDN,
IMSI, NAI
or
AccountId

PUT {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

Get
Opaque
Data

Retrieve opaque data of the
specified type

GET {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

Delete
Opaque
Data

Delete opaque data of the
specified type

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

5.3.1 Set Opaque Data

Description
This operation updates (or creates if it not exists) the opaque data of the specified type for the subscriber
identified by the keyName and keyValue in the request.

The opaque data is provided in the request content.

The opaque data provided in an XML blob is always checked to be valid XML. If the entity is defined as
transparent in the SEC, then the XML blob is fully validated against the definition in the SEC. If either validation
check fails, then the request is rejected.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName

Provisioning

69

• opaqueDataType: A user defined type/name for the opaque data

Value is either quota, state, or dynamicquota

Request Content
A <subscriber> element that contains a <data> element, which contains the specified opaque data for the
identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</subscriber>

• opaqueDataType: A user defined type/name for the opaque data

Value is either quota, state, or dynamicquota

• cdataFieldValue: Contents of the XML data “blob”

The opaqueDataType in the request content is ignored, and is not validated. The opaqueDataType in the
URL is solely used to identify the opaque data type.

Response Content
None.

Table 27: Set Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Field is not defined for this data type

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

Examples

Request 1
A request is made to create the quota opaque data. The subscriber does not have an existing Quota entity.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Provisioning

70

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Response 1
The request is successful, and the Quota opaque data was created.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update the state opaque data. The subscriber already has an existing State entity.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="state">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>

Provisioning

71

 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</subscriber>

Response 2
The request is successful, and the State opaque data was updated.

HTTP Status Code
201

Response Content
None.

5.3.2 Get Opaque Data

Description
This operation retrieves the opaque data of the specified opaqueDataType for the subscriber identified by the
keyName and keyValue in the request.

The response contains the XML blob for the requested opaque data.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

The opaque data of the opaqueDataType must exist for the subscriber.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• opaqueDataType: A user defined type/name for the opaque data

Value is either quota, state, or dynamicquota

Request Content
None.

Response Content
A <subscriber> element that contains a <data> element, which contains the requested opaque data for
the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue

Provisioning

72

]]>
 </data>
</subscriber>

• opaqueDataType: A user defined type/name for the opaque data

Value is either quota, state, or dynamicquota

• cdataFieldValue: Contents of the XML data “blob”

Table 28: Get Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4053 Data type is not set for this subscriber

Examples

Request 1
A request is made to get the quota opaque data for a subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Request Content
None

Response 1
The request is successful, and the Quota opaque data is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>

Provisioning

73

 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Request 2
A request is made to get the state opaque data for a subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content
None

Response 2
The request is successful, and the State opaque data is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="state">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</subscriber>

5.3.3 Delete Opaque Data

Description
This operation deletes the opaque data of the specified opaqueDataType for the subscriber identified by the
keyName and keyValue in the request.

Only one opaque data type can be deleted per request.

Provisioning

74

If the opaque data of the opaqueDataType does not exist for the subscriber, this is not considered an error and a
successful result is returned.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• opaqueDataType: A user defined type/name for the opaque data

Value is either quota, state, or dynamicquota

Request Content
None.

Response Content
None.

Table 29: Delete Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data was successfully deleted

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

Examples

Request 1
A request is made to delete the quota opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Request Content
None

Response 1
The request is successful, and the Quota opaque data was deleted.

HTTP Status Code
204

Provisioning

75

Response Content
None.

Request 2
A request is made to delete the state opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content
None

Response 2
The request is successful, and the State opaque data was deleted.

HTTP Status Code
204

Response Content
None.

Request 3
A request is made to delete the state opaque data. The subscriber does not have any State opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content
None

Response 3
The request is successful, although no State opaque data was deleted.

HTTP Status Code
204

Response Content
None.

5.4 Subscriber Data Row Commands
A transparent data entity may contain data that is organized in “rows”. An example of a row is a specific quota
within the Quota entity.

The row commands allow operations (create/retrieve/update/delete) at the row level. The required row is
identified in the request by the RowIdValue.

Subscriber data row commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4099 error being returned.

Provisioning

76

Table 30: Summary of Subscriber Data Row Commands

Command Description Keys Command Syntax

Set Row Create/update data row in
data of the specified type. (MSISDN,

IMSI, NAI
or
AccountId)
and Row
Identifier

PUT {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

Get Row Retrieve data row from data
of the specified type.

GET {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

Delete
Row

Delete data row within data
of the specified type

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

5.4.1 Set Row

Description
This operation creates or updates an existing data row for the subscriber identified by the keyName and
keyValue.

The data row identifier field value is specified in rowIdValue. All fieldNameX fields specified are set within the
row.

If more than one existing row matches the requested rowIdValue, then the update request fails.

If the specified row does not exist, it is created. If the row does exist, it is updated/replaced.

The rowIdValue is case-sensitive. If a row already existed called “DayPass”, then an attempt to update an
existing row called “DAYPASS” would be successful, and two rows called “DayPass” and “DAYPASS” would be
present

If the transparent entity specified in entityName does not exist for the subscriber, it is created.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid transparent Entity in the Interface Entity Map table in the SEC.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the data blob

Request Content
<?xml version="1.0" encoding="UTF-8"?>
rowValue

• rowValue: Contents of the XML data “blob”, with the row data

NOTE: the rowValue is in the same format as the Quota entity, just containing a single row, the row
being added

Provisioning

77

The data contained within the rowValue contains the same rowIdValue as specified in the URL. The
rowIdValue in the URL is ignored, and is not validated. The rowIdValue in the request content is solely used
to identify the row.

Response Content
None.

Table 31: Set Row Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data row was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

Examples

Request 1
A request is made to create a data row in the quota transparent data for a subscriber. The data row
identifier field value is AggregateLimit. The subscriber does not have an existing Quota row called
AggregateLimit.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/AggregateLimit

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Provisioning

78

Response 1
The request is successful, and the data row AggregateLimit was created.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update a data row in the quota transparent data for a subscriber. The data row
identifier field Value is q1. The subscriber has an existing Quota row called Q1.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 2
The request is successful, and the data row Q1 was updated.

HTTP Status Code
201

Response Content
None.

Request 3
A request is made to update a data row in the quota transparent data for a subscriber. The data row
identifier field value is Weekday. Two instances of the Weekday data row exist.

Request URL

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>

Provisioning

79

 <version>3</version>
 <quota name="Weekday">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 3
The request fails, as more than one row called Weekday exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 4
A request is made to update a data row in the quota transparent data for a subscriber. The data row
identifier field value is Weekday. The subscriber does not have Quota transparent data.

Request URL

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 4
The request is successful, and the data row as well as the Quota entity is created.

HTTP Status Code
201

Provisioning

80

Response Content
None.

5.4.2 Get Row

Description
This operation retrieves a transparent data row for the subscriber identified by the keyName and keyValue. The
data row identifier is specified in rowIdValue.

All data rows that match the requested rowIdValue are returned.

The transparent data row identifier field value is specified in rowIdValue.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a row called
“DayPass” would be successful, but an attempt to get a row called “DAYPASS” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

A data row with the given identifier within the transparent data should exist for the subscriber.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob

Request Content
None.

Response Content
A <subscriber> element that contains a <data> element, which contains the specified transparent data
row (if it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataRowValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• cdataRowValue: Contents of the XML data “blob”, with the row data

Provisioning

81

Table 32: Get Row Response Status/Error Codes

HTTP Status
Code Error Code Description

200 - Requested data row exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to get the Q1 data row from the quota transparent data for a subscriber. The subscriber
has the Quota entity, and the Q1 data row exists.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
None

Response 1
The request is successful, and the Quota transparent data row requested is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Provisioning

82

Request 2
A request is made to get the Weekend data row from the quota transparent data for a subscriber. The
subscriber has the Quota entity, but and the Weekend data row does notexist.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekend

Request Content
None

Response 2
The request fails, as the data row does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 3
A request is made to get the Weekday data row from the quota transparent data for a subscriber. The
subscriber has the Quota entity. Two instances of the Weekday data row exist.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
None

Response 3
The request is successful, and the Quota transparent data rows requested are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekend">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>

Provisioning

83

 </quota>
 <quota name="Weekend">
 <cid>7682364872564782343</cid>
 <time>32</time>
 <totalVolume>250</totalVolume>
 <inputVolume>4570</inputVolume>
 <outputVolume>11230</outputVolume>
 <serviceSpecific>29</serviceSpecific>
 <nextResetTime>2010-06-01T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

5.4.3 Delete Row

Description
This operation deletes a transparent data row for the subscriber identified by the keyName and keyValue.

The transparent data row identifier field value is specified in rowIdValue.

If more than one row matches the requested rowIdValue, then all matching rows are deleted.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to delete a row called
“DayPass” would be successful, but an attempt to delete a row called “DAYPASS” would fail

The deletion of a non-existent data row is not considered an error.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob

Request Content
None.

Response Content
None.

Provisioning

84

Table 33: Delete Row Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data row was successfully deleted

400 MSR4064 Occurrence constraint violation

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Examples

Request 1
A request is made to delete the Q1 data row in the quota transparent data. The Q1 data row exists in the
Quota data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
None

Response 1
The request is successful, and the data row in the Quota transparent data was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the Weekend data row in the quota transparent data. The Weekend data row
does notexist in the Quota transparent data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekend

Request Content
None

Response 2
The request is successful, even though the Weekend Quota row does not exist.

HTTP Status Code
204

Provisioning

85

Response Content
None.

Request 3
A request is made to delete the Bonus data row in the quota transparent data The Quota opaque data is a
valid entity, but the requested subscriber does not contain any Quota opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Bonus

Request Content
None

Response 3
The request fails, because the specified subscriber does not contain Quota data.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

5.5 Subscriber Data Row Field Commands
A transparent data entity may contain data that is organized in “rows”. An example of a row is a specific quota
within the Quota entity.

The row/field commands allow operations (retrieve/update/delete) at the row/field level. The required row is
identified in the request by the rowIdValue, and the field is identified by the fieldName.

Subscriber data row field commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4099 error being returned.

Table 34: Summary of Subscriber Data Row Field Commands

Command Description Keys Command Syntax

Get Row

Field
Retrieve values for the
specified field

(MSISDN,
IMSI, NAI
or
AccountId)
and Row
Identifier
and Field
name

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName

Get Row
Field
Value

Retrieve a single value for
the specified field

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName/fieldValue

Update
Field

Update field to the specified
value

PUT {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName/fieldValue

Delete

Field
Delete all values for the
specified field

DELETE {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName

Provisioning

86

5.5.1 Get Row Field

Description
This operation retrieves a field within a transparent data row for the subscriber identified by the keyName and
keyValue.

All data rows that match the requested rowIdValue are returned.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a field in a row called
“DayPass” would be successful, but an attempt to get a field in a row called “DAYPASS” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

A data row with the given identifier within the transparent data should exist for the subscriber.

The field name specified must be a valid field for the Entity as defined in the SEC.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/
rowIdValue/fieldName

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row

Request Content
None.

Response Content
A <subscriber> element that contains a <data> element, which contains the specified transparent data
row field (if it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data

Provisioning

87

Value is quota for the Quota transparent data

• cdataRowFieldValue: Contents of the XML data “blob”, with the field from the row data

Table 35: Get Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

404 MSR4065 Field is not set

Examples

Request 1
A request is made to get the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume

Request Content
None

Response 1
The request is successful, and the requested field value is returned

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>

Provisioning

88

</subscriber>

Request 2
A request is made to get the outputVolume field in the Weekday data row of the quota transparent data for
a subscriber. Two instances of the Weekday data row exist.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/outputVolume

Request Content
None

Response 2
The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>980</outputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>2140</outputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

5.5.2 Get Row Field Value

Description
This operation retrieves a field with a given value, within a transparent data row for the subscriber identified by
the keyName and keyValue.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName. The field value is specified in fieldValue.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a field value in a row
called “DayPass” would be successful, but an attempt to get a field value in a row called “DAYPASS” would fail

The fieldValue is case-sensitive. An attempt to get the value “Data” from a current field value of “Data” would be
successful, but an attempt to get the value “DATA” would fail

Provisioning

89

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

A data row with the given identifier within the transparent data should exist for the subscriber.

The field name specified must be a valid field for the Entity as defined in the SEC.

The field value in fieldValue must match the specified value in the request.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/
fieldName/fieldValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row
• fieldValue: Corresponding field value assigned to fieldName

Request Content
None.

Response Content
A <subscriber> element that contains a <data> element, which contains the specified transparent data
row field (if it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• cdataRowFieldValue: Contents of the XML data “blob”, with the field from the row data

The response content is only present if the requested field is present in the transparent data row, and the
field is set to the supplied value.

Table 36: Get Row Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field/value exists for subscriber

Provisioning

90

HTTP Status
Code Error Code Description

400 MSR4053 Data row field value does not match

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to get the inputVolume field with the value of 980 in the Q1 data row of the quota
transparent data for a subscriber. The inputVolume field exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume/980

Request Content
None

Response 1
The request is successful, and the requested field with the specified value is returned

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Request 2
A request is made to get the outputVolume field with the value of 2000 in the Q4 data row of the quota
transparent data for a subscriber. The outputVolume field exists, but is set to the value 1500.

Provisioning

91

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/outputVolume/2000

Request Content
None

Response 2
The request fails, because the requested field does not have the supplied value.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4053">errorText</error>

Request 3
A request is made to get the inputVolume field with the value of 2330 in the Weekday data row of the quota
transparent data for a subscriber. Two instances of the Weekday data row exist. The inputVolume field exists
in both rows, and is set to the value 3220 in both rows.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/3220

Request Content
None

Response 3
The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Provisioning

92

Request 4
A request is made to get the inputVolume field with the value of 980 in the Weekday data row of the quota
transparent data for a subscriber. Two instances of the Weekday data row exist. The inputVolume field exists
in both rows, and in one row is set to the value 980, and in the other row it is set to the value 3220.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/980

Request Content
None

Response 4
The request is successful, and the field from the single matching Weekday row is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

5.5.3 Update Row Field

Description
This operation updates a fields within a transparent data row for the subscriber identified by the keyName and
keyValue.

The transparent data row identifier field is value is specified in rowIdValue. The field name is specified in
fieldName.

If the specified field is valid, but does not exist, it is created.

If more than one existing row matches the requested rowIdValue, then the update request fails.

The rowIdValue is case-sensitive. If a row already existed called “DayPass”, then an attempt to update a field in a
row called “DayPass” would be successful, but an attempt to update a field in a row called “DAYPASS” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

A data row with the given identifier within the transparent data should exist for the subscriber.

Provisioning

93

The field name specified must be a valid field for the Entity as defined in the SEC. The field must be updatable.

Request URL
PUT
{baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/fieldName/fieldVal
ue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row
• fieldValue: Corresponding field value assigned to fieldName

Request Content
None.

Response Content
None.

Table 37: Update Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Requested transparent data row field was successfully created

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Provisioning

94

Examples

Request 1
A request is made to update the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume/0

Request Content
None

Response 1
The request is successful, and the field in the data row in the Quota transparent data was updated.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update the cid field in the Q1 data row in the quota transparent data. The cid field is
not allowed to be updated.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/cid/45678

Request Content
None

Response 2
The request fails, because the cid field cannot be updated.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4056">errorText</error>

Request 3
A request is made to update the inputVolume field in the Weekday data row of the quota transparent data
for a subscriber. Two instances of the Weekday data row exist.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/0

Request Content
None

Provisioning

95

Response 3
The request fails, as more than one row called Weekday exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

5.5.4 Delete Row Field

Description
This operation deletes a field within a transparent data row for the subscriber identified by the keyName and
keyValue.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

If more than one row matches the requested rowIdValue, then the delete request fails.

If the field with opaque data of the opaqueDataType does not exist, this is not considered an error and a
successful result is returned.

If the field being deleted is mandatory, and is defined as having a default value, then the field is not removed,
but has the default value assigned.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to delete a field in a row
called “DayPass” would be successful, but an attempt to delete a field in a row called “DAYPASS” would fail

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

A data row with the given identifier within the transparent data should exist for the subscriber.

The field name specified must be a valid field for the Entity as defined in the SEC. The field must be updatable.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/fieldName

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row

Request Content
None.

Provisioning

96

Response Content
None.

Table 38: Delete Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

400 MSR4064 Occurrence constraint violation

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to delete the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume

Request Content
None

Response 1
The request is successful, and the field in the data row in the Quota transparent data was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the inputVolume field in the Weekday data row of the quota transparent data
for a subscriber. Two instances of the Weekday data row exist.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume

Provisioning

97

Request Content
None

Response 2
The request fails, as more than one row called Weekday exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

5.6 Subscriber Special Operation Commands
A transparent data entity may contain data that is organized in “rows”. An example of a row is a specific quota
within the Quota entity.

The required row is identified in the request by the rowIdValue.

A specific instance of a quota (specified row) within the Quota transparent data entity can have its fields reset to
pre-defined values using a provisioning command.

Table 39: Summary of Subscriber Special Operation Commands

Command Description Keys Command Syntax

Reset
Quota

Reset the fields
within the specified
Quota

(MSISDN, IMSI,
NAI or AccountId)
and Row
Identifier

POST {BaseURI}/msr/sub/keyName/KeyValue/
data/transparentDataType/rowIdValue

5.6.1 Reset Quota

Description
This operation resets a particular quota row within the Quota transparent data associated with a subscriber.

If more than one row matches the requested rowIdValue, then the reset request fails.

If the subscriber has Quota transparent data, then the configured values within the specified quota row are
reset to the configured reset values.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to reset a quota row called
“DayPass” would be successful, but an attempt to reset a quota row called “DAYPASS” would fail.

When a Quota instance is reset using the “Reset Quota” command, each resettable field is set to its defined
reset value. If the field does not exist, it is not created. But, if a resettable field does not exist, and the field has a
default value, then the field is created with the default value.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The Quota transparent data must exist for the subscriber.

The specified Quota row must exist in the Quota transparent data.

Provisioning

98

Request URL
POST {BaseURI}/msr/sub/keyName/KeyValue/data/transparentDataType/rowIdValue

• keyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName
• transparentDataType: A user defined type/name for the transparent data

Value is quota for the Quota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob

Request Content
None.

Response Content
None.

Table 40: Reset Quota Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row was successfully reset

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

409 MSR4063 Entity cannot be reset

Examples

Request 1
A request is made to reset the Q1 Quota row for a subscriber. The subscriber has Quota transparent data,
and the Quota transparent data contains a Quota row called Q1.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
None

Response 1
The request is successful, and the specified Quota row was reset.

Provisioning

99

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to reset the Q1 Quota row for a subscriber. The subscriber does not have Quota
transparent data.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
None

Response 2
The request fails because the subscriber does not have Quota transparent data.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4049">errorText</error>

Request 3
A request is made to reset the Q6 Quota row for a subscriber. The subscriber has Quota transparent data,
but the Quota transparent data does notcontain a Quota row called Q6.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q6

Request Content
None

Response 3
The request fails, because the Q6 row does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 4
A request is made to reset the Weekday Quota row for a subscriber. The subscriber has Quota transparent
data, and the Quota transparent data contains two instances of the Weekday data row exist.

Provisioning

100

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
None

Response 4
The request fails, as more than one row called Weekday exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Provisioning

101

6 POOL PROVISIONING
Pools are used to group subscribers that share common data. Subscribers in a pool share all the entities of that
pool.

Provisioning clients can create, retrieve, modify, and delete pool data. Pool data is accessed via the PoolID value
associated with the pool.

Table 41: Summary of Pool Profile Commands

Command Description Keys Command Syntax
Create
Pool Create a pool profile — POST {baseURI}/msr/pool

Get Pool Get pool profile data

PoolID

GET {baseURI}/msr/pool/poolId

Update
Pool Replace an existing pool profile PUT {baseURI}/msr/pool/poolId

Delete
Pool

Delete all pool profile data and all
opaque data associated with the
pool

DELETE {baseURI}/msr/pool/poolId

6.1.1 Create Pool

Description
This operation creates a pool profile using the field-value pairs that are specified in the request content.

Unlike other pool commands, the key value (PoolID) is not specified in the URL. Request content includes poolId,
and field-value pairs, all as specified in the Subscriber Entity Configuration.

Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or multiple
fieldNameX fields each containing a single value.

Prerequisites
A pool with the supplied PoolID must not exist.

Request URL
POST {baseURI}/msr/pool

Request Content
A <pool> element that contains a <field> element for every field-value pair defined for the new pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">poolId</field>
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Provisioning

102

• fieldNameX: A user defined field within the Pool Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

PoolID/field order in the request is not important

Response Content
None.

Table 42: Create Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Successfully created

400 MSR4000 The field list does not contain at least one unique key

400 MSR4003 A key is detected to be already in the system for another pool

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Pool field is not defined

Examples

Request 1
A pool is created, with a PoolID key. The BillingDay, Tier, Entitlement, and Custom15 fields are set.

Request URL
POST {baseURI}/msr/pool

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">100000</field>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allocate</field>
</pool>

Response 1
The request is successful, and the pool was created.

HTTP Status Code
201

Response Content
None.

Provisioning

103

Request 2
A pool is created, with a PoolID key. The BillingDay and Entitlement fields are set. A pool exists with the
given PoolID.

Request URL
POST {baseURI}/msr/pool

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">100001</field>
 <field name="BillingDay">5</field>
 <field name="Entitlement">Weekpass,Daypass</field>
</pool>

Response 2
The request fails. The error code indicates the PoolID exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4004">errorText</error>

6.1.2 Get Pool

Description
This operation retrieves all field-value pairs created for a pool that is identified by the poolId.

The response content includes only valid field-value pairs which have been previously provisioned or created by
default.

Prerequisites
A pool with a key of the poolId supplied must exist.

Request URL
GET {baseURI}/msr/pool/poolId

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Request Content
None.

Response Content
A <pool> element that contains a <field> element for every field-value pair defined for the pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">poolId</field>
[
 <field name="fieldName1">fieldValue1</field>

Provisioning

104

 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field within the Pool Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

PoolID/field order in the request is not important

Table 43: Get Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully located the pool

404 MSR4001 Could not find the pool by PoolID

Examples

Request 1
The pool with the given PoolID is retrieved. The pool exists.

Request URL
GET {baseURI}/msr/pool/100000

Request Content
None

Response 1
The request is successful, and the pool was retrieved.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">100000</field>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
</pool>

Request 2
The pool with the given PoolID is retrieved. The pool does notexist.

Provisioning

105

Request URL
GET {baseURI}/msr/pool/222200

Request Content
None

Response 2
The request fails, as the pool does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

6.1.3 Update Pool

Description
This operation replaces an existing subscriber profile, for the pool identified by poolId.

With the exception of the PoolID, all existing data for the pool is completely removed and replaced by the
request content. Therefore, it is not necessary to include the PoolID from the URI in the request content
(although it is not an error if it is included).

If the PoolID is included in the content, and it is different from the value specified in the URL, the request fails.

Prerequisites
A pool with a key of the poolId supplied must exist.

Request URL
PUT {baseURI}/msr/pool/poolId

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Request Content
A <pool> element that contains a <field> element for every field-value pair defined for the pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
[
 <field name="PoolID">poolId</field>
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field within the Pool Profile

Provisioning

106

• fieldValueX: Corresponding field value assigned to fieldNameX

PoolID/field order in the request is not important

Response Content
None.

Table 44: Update Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The pool data was replaced successfully

400 MSR4000 Invalid content/payload

400 MSR4000 The PoolID supplied in URL and request content do not match

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4001 Could not find the pool by PoolID

404 MSR4002 Pool field is not defined

Examples

Request 1
A pool is updated. The BillingDay, Tier, Entitlement, and Custom15 fields are set. The pool exists.

Request URL
PUT {BaseURI}/msr/pool/100000

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
</pool>

Response 1
The request is successful, and the pool was updated.

HTTP Status Code
204

Response Content
None.

Provisioning

107

6.1.4 Delete Pool

Description
This operation deletes all pool profile data and opaque data for the pool that is identified by poolId.

Prerequisites
A pool with a key of the poolId supplied must exist.

The pool must not have any member subscribers, or the request fails.

Request URL
DELETE {baseURI}/msr/pool/poolId

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Request Content
None.

Response Content
None.

Table 45: Delete Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The pool was successfully deleted

404 MSR4001 Could not find the pool by PoolID

409 MSR4055 The pool could not be deleted as it has member subscribers

Examples

Request 1
The pool with the given PoolID is deleted. The pool exists, and has no member subscribers.

Request URL
DELETE {baseURI}/msr/pool/100000

Request Content
None

Response 1
The request is successful.

HTTP Status Code
204

Response Content
None.

Provisioning

108

Request 2
The pool with the given PoolID is deleted. The pool exists, but has member subscribers.

Request URL
DELETE {baseURI}/msr/pool/200000

Request Content
None

Response 2
The request fails, because the pool has member subscribers.

HTTP Status Code
409

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

6.2 Pool Profile Field Commands
Table 46: Summary of Pool Profile Field Commands

Command Description Keys Command Syntax

Add Field
Value

Adds a value to the specified
field. This operation does
not affect any pre-existing
values for the field

PoolID

POST {baseURI}/msr/pool/poolId/
field/fieldName/fieldValue

Get Field Retrieve values for the
specified field

GET {baseURI}/msr/pool/poolId/
field/fieldName

Get Field
Value

Retrieve the single value for
the specified field (if set as
specified)

GET {baseURI}/msr/pool/poolId/
field/fieldName/fieldValue

Update
Field
Value

Update field to the specified
value

PUT {baseURI}/msr/pool/poolId/
field/fieldName/fieldValue

Update
Multiple
Fields

Update multiple fields to the
specified values

PUT {baseURI}/msr/pool/poolId/
multipleFields/fieldName1/
fieldValue1/fieldName2/fieldValue2/…

Delete
Field

Delete all values for the
specified field

DELETE {baseURI}/msr/pool/poolId/
field/fieldName

Delete
Field
Value

Delete a value for the
specified field

DELETE {baseURI}/msr/pool/poolId/
field/fieldName/fieldValue

Provisioning

109

6.2.1 Add Field Value

Description
This operation adds a value to the specified multi-value field for the pool identified by poolId.

This operation can only be perforemed for the fields defined as multi-value field in the Subscriber Entity
Configuration. Any pre-existing values for the field are not affected.

All existing values are retained, and the new values specified are inserted. For example, if the current value of a
field was “a;b;c”, and this command was used with value “d”, after the update the field would have the value
“a;b;c;d”.

If a value being added exists, the request fails.

If the field to which the value is being added does not exist, it is created.

The fieldValue is case-sensitive. An attempt to add the value “a” to current field value of “a;b;c” would fail, but
an attempt to add the value “A” would be successful and result in the field value being “a;b;c;A”

Prerequisites
A pool with the PoolID of the poolId supplied must exist.

The field fieldName must be a valid field in the Pool Profile, and must be a multi-value field.

The value fieldValue being added must notalready be present in the field.

Request URL
POST {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Pool Profile
• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 47: Add Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully added field values

400 MSR4005 Field does not support multiple values

400 MSR4051 Invalid value for a field

Provisioning

110

HTTP Status
Code Error Code Description

400 MSR4056 Field is not updatable

400 MSR4066 Field value exists

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to add the value DayPass to the Entitlement field. The Entitlement field is a valid multi-
value field. The DayPass value is not already present in the Entitlement field.

Request URL
POST {baseURI}/msr/pool/100000/field/Entitlement/DayPass

Request Content
None

Response 1
The request is successful, and the value was added to the Entitlement field.

HTTP Status Code
200

Response Content
None.

Request 2
A request is made to add the values DayPass and HighSpeedData to the Entitlement field. The Entitlement
field is a valid multi-value field. The DayPass and HighSpeedData values are not already present in the
Entitlement field.

Request URL
POST {baseURI}/msr/pool/200000/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 2
The request is successful, and the values were added to the Entitlement field.

HTTP Status Code
200

Response Content
None.

Provisioning

111

6.2.2 Get Field

Description
This operation retrieves the values for the specified field for the pool identified by the poolId.

Depending on the field entered, there may be multiple field-value pairs returned by this operation.

Prerequisites
A pool with the PoolID of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

Request URL
GET {baseURI}/msr/pool/poolId/field/fieldName

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Pool Profile

Request Content
None.

Response Content
A <pool> element that contains a <field> element for every value defined for the specified field within the
pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</pool>

• fieldName: A user defined field within the Pool Profile
• fieldValueX: Corresponding field value assigned to fieldName

Table 48: Get Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for pool

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

404 MSR4065 Field is not set

Provisioning

112

Examples

Request 1
A request is made to get the Entitlement field for a pool.

Request URL
GET {BaseURI}/msr/pool/100000/field/Entitlement

Request Content
None

Response 1
The request is successful, and the requested value is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
</pool>

6.2.3 Get Field Value

Description
This operation retrieves the values for the specified field for the pool identified by the poolId in the request.

For a request where the presence of multiple values for a multi-value field is requested, a match is only
considered to have been made if the requested values form a subset of the values stored in the pool profile.
That is, if all of the values requested exist in the pool profile, return success, regardless of how many other
values may exist in the pool profile. If any or all of the values are not present as part of the pool profile, an error
is returned.

Depending on the field, there may be multiple field-value pairs returned by this operation.

The fieldValue is case-sensitive. An attempt to get the value “a” from a current field value of “a;b;c” would be
successful, but an attempt to get the value “A” would fail

Prerequisites
A pool with the PoolID of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

The field value in fieldValue must match the specified value in the request.

Request URL
GET {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Pool Profile

Provisioning

113

• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
A <pool> element that contains a <field> element for every field-value pair requested that matches the
value supplied for the pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</pool>

• fieldName: A user defined field within the Pool Profile
• fieldValueX: Corresponding field value assigned to fieldName

Table 49: Get Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for pool

400 MSR4053 Pool and field exist, but values do not match

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to get the Tier field with the value Gold. The field exists and has the specified value.

Request URL
GET {BaseURI}/msr/pool/200000/field/Tier/Gold

Request Content
None

Response 1
The request is successful, and the requested value is returned.

Provisioning

114

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Tier">Gold</field>
</pool>

Request 2
A request is made to get the Entitlement field with the values DayPass and HighSpeedData. The Entitlement
field is a multi-value field. The field exists and has the specified values.

Request URL
GET {baseURI}/msr/pool/300000/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 2
The request is successful, and the requested values are returned. Two values are set for the multi-value
field.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">HighSpeedData</field>
</pool>

6.2.4 Update Field

Description
This operation updates a field to the specified value for the pool identified by the specified poolId.

This operation replaces a set of values for a field, which means that any existing values for the field are deleted
first. For multi-value fields, all previous values are erased and the new set of values is inserted. Adding values to
a current set is accomplished using Add Field Value.

This command cannot be used to update the PoolID.

Prerequisites
A pool with the key of the poolId supplied must exist.

The field fieldName must all be a valid field in the Pool Profile.

Request URL
PUT {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Provisioning

115

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Pool Profile
• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 50: Update Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Field was successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to update the Entitlement field with the values DayPass and HighSpeedData. The
Entitlement field is a multi-value field.

Request URL
PUT {baseURI}/msr/pool/100000/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 1
The request is successful, and the Entitlement field was updated.

HTTP Status Code
201

Response Content
None.

Provisioning

116

6.2.5 Update Multiple Fields

Description
This operation updates fields to the specified values for the pool identified by the specified poolId.

This operation replaces the value set of the field, which means that any existing values for the field are deleted
first. For multi-value fields, all previous values are erased and the new set of values is inserted. Adding values
to a current set is accomplished using Add Field Value.

This command updates multiple fields in a single command for pool data. ALL fields that can be modified in the
"single field" request can also be modified in the "multiple fields" request. Two or three fields can be updated at
once. Updating only a single field results in an error.

All fields are updated at once in the DB. All fields and all values must be valid for the update to be successful. In
other words, as soon as one error is detected, processing the request is stopped (and return an error). For
example, if the third field fails validation, then none of the fields are updated.

This command cannot be used to update the PoolID.

Prerequisites
A pool with the key of the poolId supplied must exist.

The fields fieldNameX must all be valid fields in the Pool Profile.

Request URL
PUT
{baseURI}/msr/pool/poolId/multipleFields/fieldName1/fieldValue1/fieldName2/fieldValue2/
[fieldName3/fieldValue3]

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field within the Pool Profile
• fieldValueX: Corresponding field value assigned to fieldNameX

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 51: Update Multiple Fields Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Field was successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

Provisioning

117

HTTP Status
Code Error Code Description

400 MSR4057 Request only contains one field to update

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to update the Entitlement field to Weekend and YearPass, the Tier field to Silver, and the
BillingDay field to 11.

Request URL
PUT {baseURI}/msr/pool/300001/multipleFields/Entitlement/
Weekend;YearPass/Tier/Silver/BillingDay/11

Request Content
None.

Response 1
The request is successful, and the Entitlement, Tier, and BillingDay fields were all updated.

HTTP Status Code
201

Response Content
None.

6.2.6 Delete Field

Description
This operation deletes the specified field for the pool identified by poolId in the request.

If the field is multi-value field then all values are deleted. Deletion of a field results removal of the field from the
pool profile. The field is not present, not just the value is empty.

The field being deleted does not need to have a current value. It can be empty (deleted) already, and the
request succeeds.

This command cannot be used to delete the PoolID.

If the field being deleted is mandatory, and is defined as having a default value, then the field is not removed,
but has the default value assigned.

Prerequisites
A pool with the key of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

Request URL
DELETE {baseURI}/msr/pool/poolId/field/fieldName

Provisioning

118

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Subscriber Profile

Request Content
None.

Response Content
None.

Table 52: Delete Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to delete the Entitlement field. The field is a valid Pool Profile field.

Request URL
DELETE {BaseURI}/msr/pool/100000/field/Entitlement

Request Content
None

Response 1
The request is successful, and the field was deleted.

HTTP Status Code
204

Response Content
None.

Provisioning

119

6.2.7 Delete Field Value

Description
This operation deletes a single value from the specified field for the pool profile identified by the poolId in the
request.

This operation can only be perforemd for the fields defined as multi-value field in the Subscriber Entity
Configuration.

Each individual value is removed from the Pool Profile. If a supplied value does not exist, then it is ignored. For
example, if a profile contains values "a;b;c" and a request to delete "a;b" is made, this succeeds and the profile
is left with "c" as the value. If the profile contains "a;b;c" and a request is made to delete "c;d" the request
succeeds and the profile is left with "a;b" as the value.

If all values are removed, the field is removed from the Pool Profile (there is no XML element present).

The fieldValue is case-sensitive. An attempt to remove the value “a” from a current field value of “a;b;c” would
be successful, but an attempt to remove the value “A” would fail

Prerequisites
A pool with the key of the poolId supplied must exist.

The field fieldName must be a valid field in the Pool Profile, and set to the value supplied to be removed
successfully.

Request URL
DELETE {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• fieldName: A user defined field within the Pool Profile
• fieldValue: Corresponding field value assigned to fieldName

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, “a;b;c”

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients

Request Content
None.

Response Content
None.

Table 53: Delete Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested fields were successfully deleted

400 MSR4005 Field does not support multiple values

400 MSR4056 Field is not updatable

Provisioning

120

HTTP Status
Code Error Code Description

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1
A request is made to delete the values DayPass and WeekendPass from the Entitlement field. The
Entitlement field is a multi-value field. The Entitlement field exists, but only contains the DayPass value, and
not the WeekendPass value.

Request URL
DELETE {baseURI}/msr/pool/200003/field/Entitlement/DayPass;WeekendPass

Request Content
None

Response 1
The request is successful, because the Entitlement field does not contain the WeekendPass value.

HTTP Status Code
204

Request Content
None

Request 2
A request is made to delete the values DayPass and HighSpeedData from the Entitlement field. The
Entitlement field is a multi-value field. The field exists and contains the specified values.

Request URL
DELETE {baseURI}/msr/pool/300003/field/Entitlement/DayPass;HighSpeedData

Request Content
None

Response 2
The request is successful, and the values were deleted from the field.

HTTP Status Code
204

Response Content
None.

Provisioning

121

6.3 Pool Opaque Data Commands
Table 54: Summary of Pool Opaque Data Commands

Command Description Keys Command Syntax
Set
Opaque
Data

Create/update opaque
data of the specified type

PoolID

PUT
{baseURI}/msr/pool/poolId/data/opaqueDataType

Get
Opaque
Data

Retrieve opaque data of
the specified type

GET
{baseURI}/msr/pool/poolId/data/opaqueDataType

Delete
Opaque
Data

Delete opaque data of the
specified type

DELETE
{baseURI}/msr/pool/poolId/data/opaqueDataType

6.3.1 Set Opaque Data

Description
This operation updates (or creates if it not exists) the opaque data of the specified type for the pool identified by
the poolId in the request.

The opaque data is provided in the request content.

The opaque data provided in an XML blob is always checked to be valid XML. If the entity is defined as
transparent in the SEC, then the XML blob is fully validated against the definition in the SEC. If either validation
check fails, then the request is rejected.

Prerequisites
A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid pooled Entity in the Interface Entity Map table in the SEC.

Request URL
PUT {baseURI}/msr/pool/poolId/data/opaqueDataType

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data

Value is either poolquota, poolstate, or pooldynamicquota

Request Content
A <pool> element that contains a <data> element, which contains the specified opaque data for the
identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</pool>

Provisioning

122

• opaqueDataType: A user defined type/name for the opaque data

Value is either poolquota, poolstate, or pooldynamicquota

• cdataFieldValue: Contents of the XML data “blob”

The opaqueDataType in the request content is ignored, and is not validated. The opaqueDataType in the
URL is solely used to identify the opaque data type.

Response Content
None.

Table 55: Set Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Field is not defined for this data type

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

Example

Request 1
A request is made to create the poolquota opaque data. The pool does not have an existing PoolQuota
entity.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>

Provisioning

123

 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Response 1
The request is successful, and the PoolQuota opaque data was created.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update the poolstate opaque data. The pool already has an existing PoolState entity.

Request URL
PUT {baseURI}/msr/pool/100002/data/poolstate

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolstate">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</pool>

Response 2
The request is successful, and the PoolState opaque data was updated.

HTTP Status Code
201

Provisioning

124

Response Content
None.

6.3.2 Get Opaque Data

Description
This operation retrieves the opaque data of the specified opaqueDataType for the pool identified by the poolId
in the request.

The response contains the XML blob for the requested opaque data.

Prerequisites
A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid pooled Entity in the Interface Entity Map table in the SEC.

The opaque data of the opaqueDataType must exist for the pool.

Request URL
GET {baseURI}/msr/pool/poolId/data/opaqueDataType

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data

Value is either poolquota, poolstate, or pooldynamicquota

Request Content
None.

Response Content
A <pool> element that contains a <data> element, which contains the requested opaque data for the
identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</pool>

• opaqueDataType: A user defined type/name for the opaque data

Value is either poolquota, poolstate, or pooldynamicquota

• cdataFieldValue: Contents of the XML data “blob”

Table 56: Get Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested opaque data exists for pool

Provisioning

125

HTTP Status
Code Error Code Description

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4053 Data type is not set for this pool

Example

Request 1
A request is made to get the poolquota opaque data for a pool.

Request URL
GET {baseURI}/msr/pool/100001/data/poolquota

Request Content
None

Response 1
The request is successful, and the PoolQuota opaque data is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Request 2
A request is made to get the poolstate opaque data for a pool.

Request URL
GET {baseURI}/msr/pool/100004/data/poolstate

Provisioning

126

Request Content
None

Response 2
The request is successful, and the PoolState opaque data is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolstate">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</pool>

6.3.3 Delete Opaque Data

Description
This operation deletes the opaque data of the specified opaqueDataType for the pool identified by the poolId in
the request.

Only one opaque data type can be deleted per request.

If the opaque data of the opaqueDataType does not exist for the pool, this is not considered an error and a
successful result is returned.

Prerequisites
A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid Entity in the Interface Entity Map table in the SEC.

Request URL
DELETE {baseURI}/msr/pool/poolId/data/opaqueDataType

Provisioning

127

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data

Value is either poolquota, poolstate, or pooldynamicquota

Request Content
None.

Response Content
None.

Table 57: Delete Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Opaque data was successfully deleted

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

Example

Request 1
A request is made to delete the pooldynamicquota opaque data.

Request URL
DELETE {baseURI}/msr/pool/500005/data/pooldynamicquota

Request Content
None

Response 1
The request is successful, and the PoolDynamicQuota opaque data was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the poolstate opaque data. The PoolState opaque data is a valid entity, but the
requested pool does not contain any PoolState opaque data.

Request URL
DELETE {baseURI}/msr/pool/600006/data/poolstate

Request Content
None

Provisioning

128

Response 2
The request is successful, although no PoolState opaque data was deleted.

HTTP Status Code
204

Response Content
None.

6.4 Pool Data Row Commands
A transparent data entity may contain data that is organized in “rows”. An example of a row is a specific quota
within the PoolQuota entity.

The row commands allow operations (create/retrieve/update/delete) at the row level. The required row is
identified in the request by the RowIdValue.

Pool data row commands may only be performed on entities defined as transparent in the SEC. Attempting to
perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an MSR4099 error
being returned.

Table 58: Summary of Pool Data Row Commands

Command Description Keys Command Syntax

Set Row Create/update data row in
data of the specified type.

PoolID and
Row
Identifier

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

Get Row Retrieve data row from data
of the specified type.

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

Delete
Row

Delete data row within data
of the specified type

DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

6.4.1 Set Row

Description
This operation creates or updates an existing data row for the pool identified by the poolId.

The data row identifier field value is specified in rowIdValue. All fieldNameX fields specified are set within the
row.

If more than one existing row matches the requested rowIdValue, then the update request fails.

If the specified row does not exist, it is created. If the row does exist, it is updated/replaced.

The rowIdValue is case-sensitive. If a row already existed called “DayPass”, then an attempt to update an
existing row called “DAYPASS” would be successful, and two rows called “DayPass” and “DAYPASS” would be
present

If the transparent entity specified in entityName does not exist for the pool, it is created

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

Provisioning

129

Request URL
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the data blob

Request Content
<?xml version="1.0" encoding="UTF-8"?>
rowValue

• rowValue: Contents of the XML data “blob”, with the row data

NOTE: The rowValue is of the same format as a PoolQuota entity, just containing a single row, the row
being added

The data contained within the rowValue contains the same rowIdValue as specified in the URL. The
rowIdValue in the URL is ignored, and is not validated. The rowIdValue in the request content is solely used
to identify the row.

Response Content
None.

Table 59: Set Row Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data row was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching rows found

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

Provisioning

130

Examples

Request 1
A request is made to create a data row in the poolquota transparent data for a pool. The data row identifier
field value is AggregateLimit. The pool does not have an existing PoolQuota row called AggregateLimit.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota/AggregateLimit

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 1
The request is successful, and the data row AggregateLimit was created.

HTTP Status Code
201

Response Content
None.

Request 2
A request is made to update a data row in the poolquota transparent data for a pool. The data row identifier
field Value is pQ1. The pool has an existing PoolQuota row called PQ1.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>

Provisioning

131

</usage>

Response 2
The request is successful, and the data row PQ1 was updated.

HTTP Status Code
201

Response Content
None.

6.4.2 Get Row

Description
This operation retrieves a transparent data row for the pool identified by the poolId. The data row identifier is
specified in rowIdValue.

All data rows that match the requested rowIdValue are returned.

The transparent data row identifier field value is specified in rowIdValue.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a row called
“DayPass” would be successful, but an attempt to get a row called “DAYPASS” would fail

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

A data row with the given identifier within the transparent data should exist for the pool.

Request URL
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob

Request Content
None.

Response Content
A <pool> element that contains a <data> element, which contains the specified transparent data row (if it
exists) for the identifiedpool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowValue

Provisioning

132

]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• cdataRowValue: Contents of the XML data “blob”, with the row data

Table 60: Get Row Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row exists for pool

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to get the PQ1 data row from the poolquota transparent data for a pool. The pool has the
PoolQuota entity, and the PQ1 data row exists.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content
None

Response 1
The request is successful, and the PoolQuota transparent data row requested is returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>

Provisioning

133

 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Request 2
A request is made to get the Weekend data row from the poolquota transparent data for a pool. The pool
has the PoolQuota entity, but and the Weekend data row does notexist.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/Weekend

Request Content
None

Response 2
The request fails, as the data row does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 3
A request is made to get the Weekday data row from the poolquota transparent data for a pool. The pool
has the PoolQuota entity. Two instances of the Weekday data row exist.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/Weekday

Request Content
None

Response 3
The request is successful, and the PoolQuota transparent data rows requested are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>

Provisioning

134

 <version>3</version>
 <quota name="Weekend">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
 <quota name="Weekend">
 <cid>7682364872564782343</cid>
 <time>32</time>
 <totalVolume>250</totalVolume>
 <inputVolume>4570</inputVolume>
 <outputVolume>11230</outputVolume>
 <serviceSpecific>29</serviceSpecific>
 <nextResetTime>2010-06-01T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

6.4.3 Delete Row

Description
This operation deletes a transparent data row for the pool identified by the poolId.

The transparent data row identifier field value is specified in rowIdValue.

If more than one row matches the requested rowIdValue, then all matching rows are deleted.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to delete a row called
“DayPass” would be successful, but an attempt to delete a row called “DAYPASS” would fail

The deletion of a non-existent data row is not considered an error.

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

Request URL
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob

Provisioning

135

Request Content
None.

Response Content
None.

Table 61: Delete Row Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data row was successfully deleted

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Examples

Request 1
A request is made to delete the PQ1 data row in the poolquota transparent data. The PQ1 data row exists in
the PoolQuota data.

Request URL
DELETE {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content
None

Response 1
The request is successful, and the data row in the PoolQuota transparent data was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the Weekend data row in the poolquota transparent data. The Weekend data
row does notexist in the PoolQuota transparent data.

Request URL
DELETE {baseURI}/msr/pool/100000/data/poolquota/Weekend

Request Content
None

Provisioning

136

Response 2
The request is successful, even though the Weekend PoolQuota row does not exist.

HTTP Status Code
204

Response Content
None.

6.5 Pool Data Row Field Commands
A transparent data entity may contain data that is organized in “rows”. An example of a row is a specific quota
within the PoolQuota entity.

The row/field commands allow operations (retrieve/update/delete) at the row/field level. The required row is
identified in the request by the rowIdValue, and the field is identified by the fieldName.

Pool data row field commands may only be performed on entities defined as transparent in the SEC. Attempting
to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an MSR4099
error being returned.

Table 62: Summary of Pool Data Row Field Commands

Command Description Keys Command Syntax
Get Row
Field

Retrieve values for the
specified field

PoolID and
Row
Identifier
and Field
name

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/fieldName

Get Row
Field
Value

Retrieve a single value for
the specified field

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/
fieldName/fieldValue

Update
Field

Update field to the specified
value

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/
fieldName/fieldValue

Delete
Field

Delete all values for the
specified field

DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/fieldName

6.5.1 Get Row Field

Description
This operation retrieves a field within a transparent data row for the pool identified by the poolId.

All data rows that match the requested rowIdValue are returned.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a field in a row called
“DayPass” would be successful, but an attempt to get a field in a row called “DAYPASS” would fail

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

Provisioning

137

A data row with the given identifier within the transparent data should exist for the pool.

The field name specified must be a valid field for the Entity as defined in the SEC.

Request URL
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row

Request Content
None.

Response Content
A <pool> element that contains a <data> element, which contains the specified transparent data row field
(if it exists) for the identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• cdataRowFieldValue: Contents of the XML data “blob”, with the field from the row data

Table 63: Request URL Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field exists for pool

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

404 MSR4065 Field is not set

Provisioning

138

Examples

Request 1
A request is made to get the inputVolume field in the PQ1 data row of the pooluota transparent data for a
pool.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume

Request Content
None

Response 1
The request is successful, and the requested field value is returned

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Request 2
A request is made to get the outputVolume field in the Weekday data row of the poolquota transparent data
for a pool. Two instances of the Weekday data row exist.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/Weekday/outputVolume

Request Content
None

Response 2
The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>

Provisioning

139

<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>980</outputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>2140</outputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

6.5.2 Get Row Field Value

Description
This operation retrieves a field with a given value, within a transparent data row for the pool identified by the
poolId.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName. The field value is specified in fieldValue.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to get a field value in a row
called “DayPass” would be successful, but an attempt to get a field value in a row called “DAYPASS” would fail

The fieldValue is case-sensitive. An attempt to get the value “Data” from a current field value of “Data” would be
successful, but an attempt to get the value “DATA” would fail

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

A data row with the given identifier within the transparent data should exist for the pool.

The field name specified must be a valid field for the Entity as defined in the SEC.

The field value in fieldValue must match the specified value in the request.

Request URL
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row
• fieldValue: Corresponding field value assigned to fieldName

Provisioning

140

Request Content
None.

Response Content
A <pool> element that contains a <data> element, which contains the specified transparent data row field
(if it exists) for the identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• cdataRowFieldValue: Contents of the XML data “blob”, with the field from the row data

The response content is only present if the requested field is present in the transparent data row, and the
field is set to the supplied value.

Table 64: Get Row Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field/value exists for pool

400 MSR4053 Data row field value does not match

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to get the inputVolume field with the value of 980 in the PQ1 data row of the poolquota
transparent data for a pool. The inputVolume field exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume/980

Request Content
None

Provisioning

141

Response 1
The request is successful, and the requested field with the specified value is returned

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Request 2
A request is made to get the outputVolume field with the value of 2000 in the PQ4 data row of the
poolquota transparent data for a pool. The outputVolume field exists, but is set to the value 1500.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/outputVolume/2000

Request Content
None

Response 2
The request fails because the requested field does not have the supplied value.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4053">errorText</error>

Request 3
A request is made to get the inputVolume field with the value of 2330 in the Weekday data row of the
poolquota transparent data for a pool. Two instances of the Weekday data row exist. The inputVolume field
exists in both rows, and is set to the value 3220 in both rows.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume/3220

Request Content
None

Provisioning

142

Response 3
The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

6.5.3 Update Row Field

Description
This operation updates a fields within a transparent data row for the pool identified by the poolId.

The transparent data row identifier field is value is specified in rowIdValue. The field name is specified in
fieldName.

If the specified field is valid, but does not exist, it is created.

If more than one existing row matches the requested rowIdValue, then the update request fails.

The rowIdValue is case-sensitive. If a row already existed called “DayPass”, then an attempt to update a field in a
row called “DayPass” would be successful, but an attempt to update a field in a row called “DAYPASS” would fail

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

A data row with the given identifier within the transparent data should exist for the pool.

The field name specified must be a valid field for the Entity as defined in the SEC. The field must be updatable.

Request URL
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName/fieldValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Provisioning

143

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row
• fieldValue: Corresponding field value assigned to fieldName

Request Content
None.

Response Content
None.

Table 65: Update Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Requested transparent data row field was successfully created

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1
A request is made to update the inputVolume field in the PQ1 data row of the poolquota transparent data
for a pool.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume/0

Request Content
None

Response 1
The request is successful, and the field in the data row in the PoolQuota transparent data was updated.

HTTP Status Code
201

Provisioning

144

Response Content
None.

Request 2
A request is made to update the cid field in the PQ1 data row in the poolquota transparent data. The cid
field is not allowed to be updated.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/PQ1/cid/45678

Request Content
None

Response 2
The request fails, because the cid field cannot be updated.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4056">errorText</error>

Request 3
A request is made to update the inputVolume field in the Weekday data row of the quota transparent data
for a pool. Two instances of the Weekday data row exist.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume/0

Request Content
None

6.5.4 Delete Row Field

Description
This operation deletes a field within a transparent data row for the pool identified by the poolId.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

If more than one row matches the requested rowIdValue, then the delete request fails.

If the field with opaque data of the opaqueDataType does not exist, this is not considered an error and a
successful result is returned.

If the field being deleted is mandatory, and is defined as having a default value, then the field is not removed,
but has the default value assigned.

The rowIdValue is case-sensitive. If a row existed called “DayPass”, then an attempt to delete a field in a row
called “DayPass” would be successful, but an attempt to delete a field in a row called “DAYPASS” would fail

Provisioning

145

Prerequisites
A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent Entity in the Interface Entity Map table in
the SEC.

A data row with the given identifier within the transparent data should exist for the pool.

The field name specified must be a valid field for the Entity as defined in the SEC. The field must be updatable.

Request URL
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data

Value is poolquota for the PoolQuota transparent data

• rowIdValue: The row name value that identifies the row within the transparent data blob
• fieldName: A user defined field within the transparent data row

Request Content
None.

Response Content
None.

Table 66: Delete Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Provisioning

146

Examples

Request 1
A request is made to delete the inputVolume field in the PQ1 data row of the poolquota transparent data for
a pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume

Request Content
None

Response 1
The request is successful, and the field in the data row in the PoolQuota transparent data was deleted.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to delete the inputVolume field in the Weekday data row of the poolquota transparent
data for a pool. Two instances of the Weekday data row exist.

Request URL
DELETE {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume

Request Content
None

Response 2
The request fails, as more than one row called Weekday exists.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

6.6 Additional Pool Commands
Table 67: Summary of Additional Pool Commands

Command Description Keys Command Syntax
Add
Member
to Pool

Add subscriber to a Pool PoolID and
(MSISDN,
IMSI, NAI
or
AccountId)

POST {BaseURI}/msr/pool/poolId/member/
subKeyName/subKeyValue

Remove
Member
from Pool

Remove subscriber from a
Pool

DELETE {BaseURI}/msr/pool/poolId/member/
subKeyName/subKeyValue

Provisioning

147

Command Description Keys Command Syntax
Get Pool
Members

Retrieve pool member
subscribers by PoolID PoolID GET {BaseURI}/msr/pool/poolId/member

Get PoolID
Retrieve PoolID for
specified member
subscriber

(MSISDN,
IMSI, NAI
or
AccountId

GET {BaseURI}/msr/sub/subKeyName/
subKeyValue/pool

6.6.1 Add Member to Pool

Description
This operation adds a Subscriber to a Pool.

Prerequisites
A pool with the key of the poolId supplied must exist.

A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must not already be a member of a pool.

The pool must have less than the maximum number of member subscribers allowed.

Request URL
POST {BaseURI}/msr/pool/poolId/member/subKeyName/subKeyValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• subKeyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• subKeyValue: Corresponding key field value assigned to keyName

Request Content
None.

Response Content
None.

Table 68: Add Member to Pool Table 69 Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Subscriber successfully added to pool

400 MSR4060 Number of pool members exceeded

404 MSR4001 Subscriber is not found

404 MSR4061 Specified pool does not exist

409 MSR4055 Subscriber is already a member of a pool

Provisioning

148

Examples

Request 1
A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is not
already a member of a pool.

Request URL
POST {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content
None

Response 1
The request is successful, and the subscriber is added to the pool.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to add a subscriber to a pool. The subscriber exists, but the pool does not.

Request URL
POST {BaseURI}/msr/pool/100009/member/IMSI/184569547984229

Request Content
None

Response 2
The request fails because the pool does not exist.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4061">errorText</error>

Request 3
A request is made to add a subscriber to a pool. The pool exists, but the subscriber does not.

Request URL
POST {BaseURI}/msr/pool/900000/member/NAI/mum@foo.com

Request Content
None

Response 3
The request fails because the subscriber does not exist.

Provisioning

149

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

Request 4
A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is
already a member of a pool.

Request URL
POST {BaseURI}/msr/pool/100000/member/AccountId/10404723525

Request Content
None

Response 4
The request fails because the subscriber is already a member of a pool.

HTTP Status Code
409

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

Request 5
A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is not
a member of a pool. The pool already has the maximum number of members allowed.

Request URL
POST {BaseURI}/msr/pool/100000/member/MSISDN/15141234567

Request Content
None

Response 5
The request fails because the pool has the maximum number of members allowed.

HTTP Status Code
400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4060">errorText</error>

Provisioning

150

6.6.2 Remove Member from Pool

Description
This operation removes a Subscriber from a Pool.

Prerequisites
A pool with the key of the poolId supplied must exist.

A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must be a member of the specified pool.

Request URL
DELETE {BaseURI}/msr/pool/poolId/member/subKeyName/subKeyValue

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

• subKeyName: A key field within the Subscriber Profile

Value is either IMSI, MSISDN, NAI, or AccountId

• subKeyValue: Corresponding key field value assigned to keyName

Request Content
None.

Response Content
None.

Table 70: Remove Member from Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Subscriber successfully removed from pool

404 MSR4001 Subscriber is not found

404 MSR4061 Specified pool does not exist

404 MSR4062 Subscriber is not a member of the given pool

Examples

Request 1
A request is made to remove a subscriber from a pool. Both the pool and the subscriber exist. The subscriber
is a member of the pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content
None

Provisioning

151

Response 1
The request is successful, and the subscriber is removed from the pool.

HTTP Status Code
204

Response Content
None.

Request 2
A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is
nota member of the pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content
None

Response 2
The request fails because the subscriber is not a member of the pool.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4062">errorText</error>

6.6.3 Get Pool Members

Description
This operation gets the list of Subscriber members of a Pool by poolId.

Prerequisites
A pool with the key of the poolId supplied must exist.

Request URL
GET {BaseURI}/msr/pool/poolId/member

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Request Content
None.

Response Content
A <members> element that contains a <member> element for every subscriber that is a member of the pool.
The <member> element is optional. There can be zero, one or many <member> elements. It is only present if
the pool has member subscribers. One instance is present for every subscriber that is a member of the pool.
A <member> element contains details about a single subscriber, containing all known user identities for that

Provisioning

152

subscriber, one user identity per <id> element. There can be one or many <id> elements per <member>
element.

<members>
[
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
[
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
 :
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
</members>

• keyNameX: A key field for the member subscriber

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValueX: Corresponding key field value assigned to keyNameX

Table 71: Get Pool Members Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Pool exists, and membership returned OK

404 MSR4061 Specified pool does not exist

Provisioning

153

Examples

Request 1
A request is made to get the list of subscribers for a pool.

Request URL
GET {BaseURI}/msr/pool/100000/member

Request Content
None

Response 1
The request is successful, and the 3 member subscribers are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 <id><name>NAI</name><value>dad@operator.com</value></id>
 </member>
 <member>
 <id><name>MSISDN</name><value>380561234777</value></id>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
 <member>
 <id><name>NAI</name><value>joe@wireless.com</value></id>
 <id><name>NAI</name><value>p12321@mynet.com</value></id>
 </member>
</members>

Request 2
A request is made to get the list of subscribers for a pool. The pool exists, but has no member subscribers.

Request URL
GET {BaseURI}/msr/pool/200000/member

Request Content
None

Response 2
The request is successful, and no member subscribers are returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>

Provisioning

154

</members>

Request 3
A request is made to get the list of subscribers for a pool. The pool does not exist.

Request URL
GET {BaseURI}/msr/pool/300000/member

Request Content
None

Response 3
The request fails, because the pool was not found.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4061">errorText</error>

6.6.4 Get PoolID

Description
This operation gets the PoolID related to a subscriber, based on the given user identity of the subscriber.

Prerequisites
A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must be a member of a pool.

Request URL
GET {BaseURI}/msr/sub/keyName/keyValue/pool

• keyName: A key field for the member subscriber

Value is either IMSI, MSISDN, NAI, or AccountId

• keyValue: Corresponding key field value assigned to keyName

Request Content
None.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">poolId</field>
</pool>

• poolId: PoolID value of the pool. Numeric value, 1 to 22 digits in length

Values: 1 to 9999999999999999999999

Provisioning

155

Table 72: Get PoolID Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Subscriber pool membership successfully returned

404 MSR4001 Subscriber is not found

404 MSR4062 Subscriber is not a member of a pool

Examples

Request 1
A request is made to get the PoolID for a subscriber. The subscriber is a member of a pool.

Request URL
GET {BaseURI}/msr/sub/MSISDN/380561234567/pool

Request Content
None

Response 1
The request is successful, and the PoolID value was returned.

HTTP Status Code
200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="PoolID">100000</field>
</pool>

Request 2
A request is made to get the PoolID for a subscriber. The subscriber is nota member of a pool.

Request URL
GET {BaseURI}/msr/sub/NAI/joe@foo.com/pool

Request Content
None

Response 2
The request fails, because the subscriber is not a member of a pool.

HTTP Status Code
404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4062">errorText</error>

Provisioning

156

APPENDIX A REST INTERFACE SYSTEM VARIABLES
The REST interface has a set of system variables that affect its operation as it runs. REST interface variables
(Table 73) can be set using the UDR GUI and can be changed at runtime to effect dynamic server
reconfiguration.

Table 73: Bulk Import/Export variables

Parameter Description

REST Interface Port

REST Interface TCP Listening Port.

NOTE: Changes to the TCP listening port do not take effect until
the udrprov process is restarted. Also, you must specify a different
port than the SOAP interface.

Default is 8787; Range is 0 to 65535

REST Interface Idle Timeout

The maximum time (in seconds) that an open REST connection
remains active without a request being sent, before the
connection is dropped.

Default is 1200; Range is 1 to 86400

Maximum REST Connections
Maximum number of simultaneous REST Interface client
connections.

Default is 100; Range is 1 to 100

Allow REST Connections
Whether or not to allow incoming provisioning connections on the
REST Interface.

Default is checked

REST Secure Mode

Whether the REST Interface operates in secure mode (using TLS),
or unsecure mode (plain text).

NOTE: Changes to the Secure Mode do not take effect until the
udrprov process is restarted.

Default is Unsecure

Transaction Durability Timeout*

The amount of time (in seconds) allowed between a transaction
being committed and it becoming durable. If Transaction
Durability Timeout lapse, DURABILITY_TIMEOUT response is sent
to the originating client. The associated request is resent to ensure
that the request was committed.

Default is 5; Range is 2 is 3600

Compatibility Mode*
Indicates whether backwards compatibility is enabled.

NOTE: Change to Compatibility Mode may cause the existing
provisioning connections to be dropped. Default is R10+

Provisioning

157

APPENDIX B LEGACY SPR COMPATIBILITY MODE
UDR can be configured to run in a compatibility mode with the legacy SPR.

When the Compatibility Mode system option (see Appendix A), which is configurable by the UDR GUI is set to
“R10+” then UDR functions as described in the main body of this document. When Compatibility Mode is set
to “R9.x”, then the differences contained in this appendix apply.

Enabling this configuration option results in the format of some request/responses being different to the default
UDR behavior. This appendix lists the different request/responses that enabling the option applies to.

B.1 Get Row Response Format
UDR returns a data row in the format it is defined/stored (either “Field Based” or “Element Based”). The legacy
SPR returns a (Quota) data row in “Element Based” format, even though the Quota entity is “Element Based”.

When configured in legacy SPR mode, UDR returns the (Quota) data row in “Field Based” format, within the
CDATA. For example:

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <field name="cid"/>
 <field name="time"/>
 <field name="totalVolume">0</field>
 <field name="inputVolume">0</field>
 <field name="outputVolume">0</field>
 <field name="serviceSpecific"/>
 <field name="nextResetTime"/>
 <field name="Type">quota</field>
 <field name="grantedTotalVolume">0</field>
 <field name="grantedInputVolume">0</field>
 <field name="grantedOutputVolume">0</field>
 <field name="grantedTime"/>
 <field name="grantedServiceSpecific"/>
 <field name="QuotaState">Valid/Inactive</field>
 <field name="RefInstanceId"/>
 <field name="name">test</field>
</usage>
]]>
 </data>
</subscriber>

If more than one matching row is found, then multiple <quota> rows are returned.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>

Provisioning

158

 <version>3</version>
 :
</usage>
]]>
 </data>
</subscriber>

<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 :
</usage>
]]>
 </data>
</subscriber>

Provisioning

159

APPENDIX C MY ORACLE SUPPORT
My Oracle Support (https://support.oracle.com) is your initial point of contact for all product support and
training needs. A representative at Customer Access Support (CAS) can assist you with My Oracle Support
registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline for your
local country from the list at http://www.oracle.com/us/support/contact/index.html. When calling, make the
selections in the sequence on the Support telephone menu:

1. Select 2 for New Service Request
2. Select 3 for Hardware, Networking and Solaris Operating System Support
3. Select 2 for Non-technical issue

You are connected to a live agent who can assist you with My Oracle Support registration and provide Support
Identifiers. Mention you are a Tekelec Customer new to My Oracle Support.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

https://support.oracle.com/
http://www.oracle.com/us/support/contact/index.html

Provisioning

160

APPENDIX D CUSTOMER TRAINING
Oracle University offers expert training on Oracle Communications solutions for service providers and
enterprises. Verify that your staff has the skills to configure, customize, administer, and operate your
communications solutions, so that your business can realize all of the benefits that these rich solutions offer.

Visit the Oracle University web site to view and register for Oracle Communications training:
education.oracle.com/communication.

To reach Oracle University:

• In the US, dial 800-529-0165.
• In Canada, dial 866-825-9790.
• In Germany, dial 0180 2000 526 (toll free) or +49 8914301200 (International).
• In Spain, dial +34 91 6267 792.
• In the United Kingdom, dial 0845 777 7 711 (toll free) or +44 11 89 726 500 (International).

For the appropriate country or region contact phone number for the rest of the world, visit Oracle University at
www.oracle.com/education/contacts.

http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getFamilyPage?p_family_id=41&p_mode=Training&sc=WWOU14047594MPP002C005
http://www.oracle.com/education/contacts

Provisioning

161

APPENDIX E LOCATE PRODUCT DOCUMENTATION ON THE ORACLE TECHNOLOGY
NETWORK SITE

Oracle customer documentation is available on the web at the Oracle Help Center (OHC) site,
http://docs.oracle.com. You do not have to register to access these documents. Viewing these files requires
Adobe Acrobat Reader, which can be downloaded at www.adobe.com.

1. Go to the Oracle Help Center site at http://docs.oracle.com.
2. Click Applications.
3. Select Apps A-Z.
4. Click Communications.
5. In the Network Session Delivery and Control Infrastructure section, click User Data Repository.
6. Click release number.
7. To download a file to your location, click the download icon.

http://docs.oracle.com/
http://www.adobe.com/
http://docs.oracle.com/
https://docs.oracle.com/en/industries/communications/user-data-repository/index.html

	Oracle® Communications
	Provisioning
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Purpose and Scope
	1.2 External References
	1.3 Glossary

	2 System Architecture
	2.1 Overview
	2.2 Provisioning Interface
	2.3 REST Application Server (RAS)
	2.4 Provisioning Clients
	2.5 Security
	2.5.1 Client Server IP Address White List
	2.5.2 Secure Connection using TLS
	2.5.2.1 TLS Certificates and Public/Private Key Pairs
	2.5.2.2 Supported TLS Cipher Suites

	2.6 Multiple Connections
	2.7 Request Queue Management
	2.8 Database Transactions
	2.8.1 ACID-Compliance
	2.8.1.1 Atomicity
	2.8.1.2 Consistency
	2.8.1.3 Isolation
	2.8.1.4 Durability

	2.9 Connection Management
	2.9.1 Connections Allowed
	2.9.2 Disable Provisioning
	2.9.3 Idle Timeout
	2.9.4 Maximum Simultaneous Connections
	2.9.5 TCP Port Number

	2.10 Behavior during Low Free System Memory
	2.11 Congestion Control
	2.12 Rest Conventions
	2.12.1 HTTP(S) Request Headers
	2.12.1.1 HTTP version
	2.12.1.2 Accept Header
	2.12.1.3 Transfer-Encoding Header
	2.12.1.4 Requests with body content

	2.12.2 HTTP(S) Status Codes and Error Messages

	3 REST Interface Message Definitions
	3.1 Message Conventions
	3.1.1 HTTP Method
	3.1.2 Base URI
	3.1.3 REST URL
	3.1.3.1 Subscriber or Pool in URL
	3.1.3.2 Opaque Data Operations in URL
	3.1.3.3 Field in URL
	3.1.3.4 Transparent Data Row Operations in URL
	3.1.3.5 Transparent Data Row Field Operations in URL

	3.1.4 URL Character Encoding

	3.2 Case Sensitivity
	3.3 XML Comments in a Request
	3.4 List of Messages

	4 UDR Data Model
	4.1 Subscriber Data
	4.1.1 Subscriber Profile
	4.1.2 Quota
	4.1.3 State
	4.1.4 Dynamic Quota

	4.2 Pool Data
	4.2.1 Pool Profile
	4.2.2 Pool Quota
	4.2.3 Pool State
	4.2.4 Pool Dynamic Quota

	4.3 Date/Timestamp Format

	5 Subscriber Provisioning
	5.1 Subscriber Profile Commands
	5.1.1 Create Subscriber
	5.1.2 Get Profile
	5.1.3 Update Profile
	5.1.4 Delete Profile

	5.2 Subscriber Profile Field Commands
	5.2.1 Add Field Value
	5.2.2 Get Field
	5.2.3 Get Field Value
	5.2.4 Update Field
	5.2.5 Update Multiple Fields
	5.2.6 Delete Field
	5.2.7 Delete Field Value

	5.3 Subscriber Opaque Data Commands
	5.3.1 Set Opaque Data
	5.3.2 Get Opaque Data
	5.3.3 Delete Opaque Data

	5.4 Subscriber Data Row Commands
	5.4.1 Set Row
	5.4.2 Get Row
	5.4.3 Delete Row

	5.5 Subscriber Data Row Field Commands
	5.5.1 Get Row Field
	5.5.2 Get Row Field Value
	5.5.3 Update Row Field
	5.5.4 Delete Row Field

	5.6 Subscriber Special Operation Commands
	5.6.1 Reset Quota

	6 Pool Provisioning
	6.1.1 Create Pool
	6.1.2 Get Pool
	6.1.3 Update Pool
	6.1.4 Delete Pool
	6.2 Pool Profile Field Commands
	6.2.1 Add Field Value
	6.2.2 Get Field
	6.2.3 Get Field Value
	6.2.4 Update Field
	6.2.5 Update Multiple Fields
	6.2.6 Delete Field
	6.2.7 Delete Field Value

	6.3 Pool Opaque Data Commands
	6.3.1 Set Opaque Data
	6.3.2 Get Opaque Data
	6.3.3 Delete Opaque Data

	6.4 Pool Data Row Commands
	6.4.1 Set Row
	6.4.2 Get Row
	6.4.3 Delete Row

	6.5 Pool Data Row Field Commands
	6.5.1 Get Row Field
	6.5.2 Get Row Field Value
	6.5.3 Update Row Field
	6.5.4 Delete Row Field

	6.6 Additional Pool Commands
	6.6.1 Add Member to Pool
	6.6.2 Remove Member from Pool
	6.6.3 Get Pool Members
	6.6.4 Get PoolID
	Appendix A REST Interface System Variables
	Appendix B Legacy SPR Compatibility Mode
	B.1 Get Row Response Format

	Appendix C My Oracle Support
	Appendix D Customer Training
	Appendix E Locate Product Documentation on the Oracle Technology Network Site

