
Oracle Commerce Guided Search
MDEX Engine Developer's Guide

Version 6.5.2• October 2015

Contents
Copyright and disclaimer..11
Preface..13
About this guide..13
Who should use this guide...13
Conventions used in this guide..13
Contacting Oracle Support...13

Part I: Overview of Oracle Commerce Guided Search Applications.............15

Chapter 1: About the MDEX Engine...17
MDEX Engine overview..17
About the Information Transformation Layer..18

Chapter 2: Assembler functionality..19
How the MDEX Engine Communicates with the Assembler...19

Part II: Record Features...21

Chapter 3: Working with Oracle Commerce Records.....................................23
Displaying Oracle Commerce records..23
Displaying record properties...25
Displaying dimension values for Oracle Commerce Guided Search records...28
Paging through a record set..30

Chapter 4: Sorting Oracle Commerce Records...33
About record sorting..33
Configuring precomputed sort...33
Changing the sort order with Dgidx flags..35
URL parameters for sorting...35
Sort API methods..36
Troubleshooting application sort problems...37
Performance impact for sorting...37
Using geospatial sorting..37

Chapter 5: Using Range Filters...43
About range filters...43
Configuring properties and dimensions for range filtering..43
URL parameters for range filters...44
Using multiple range filters..46
Examples of range filter parameters...46
Rendering the range filter results..47
Troubleshooting range filter problems..47
Performance impact for range filters...48

Chapter 6: Creating Aggregated Records...49
About aggregated records..49
Enabling record aggregation...49
Generating and displaying aggregated records..50
Aggregated record behavior...57
Refinement ranking of aggregated records...57

Chapter 7: Controlling Record Values with the Select Feature.....................59

iii

About the Select feature..59
Configuring the Select feature..59
URL query parameters for Select...60
Selecting keys in the application...60

Chapter 8: Using the Oracle Commerce Query Language.............................63
About the Oracle Commerce Query Language...63
Oracle Commerce Query Language syntax..64
Making Oracle Commerce Query Language requests..67
Record Relationship Navigation queries...68
Dimension value queries...72
Record search queries..74
Range filter queries...77
Dimension search queries..79
Oracle Commerce Query Language interaction with other features...80
Oracle Commerce Query Language per-query statistics log..84
Creating an Oracle Commerce Query Language pipeline..87

Chapter 9: Record Filters..91
About record filters..91
Record filter syntax...91
Enabling properties for use in record filters..94
Data configuration for file-based filters...94
Record filter result caching..95
URL query parameters for record filters..95
Record filter performance impact..96

Part III: Dimension and Property Features..99

Chapter 10: Property Types...101
Formats used for property types...101
Temporal properties..102

Chapter 11: Working with Dimensions...105
Displaying dimension groups..105
Displaying refinements..108
Displaying disabled refinements...116
Implementing dynamic refinement ranking...121
Displaying descriptors...127
Displaying refinement statistics...132
Displaying multiselect dimensions..136
Using hidden dimensions..140
Using inert dimension values..141
Displaying dimension value properties...143
Working with external dimensions..146

Chapter 12: Dimension Value Boost and Bury..147
About the dimension value boost and bury feature...147
Nrcs parameter...147
Stratification API methods...148
Retrieving the DGraph.Strata property...149
Interaction with disabled refinements..150

Chapter 13: Using Derived Properties..153
About derived properties...153
Configuring derived properties..153
Displaying derived properties..154

Chapter 14: Configuring Key Properties..157

Oracle Commerce Guided Searchiv

About key properties...157
Defining key properties...158
Automatic key properties...159
Key property API...159

Part IV: Basic Search Features...161

Chapter 15: Record Searches...163
Keyword search overview...163
Making properties or dimensions searchable...164
Hierarchical record searches..164
Adding search synonyms to dimension values...164
Features for controlling record search..165
Search query processing order...168
Tips for troubleshooting record search...171
Performance impact of record search...172

Chapter 16: Search Interfaces...173
About search interfaces..173
About implementing search interfaces..173
Options for enabling cross-field matches..174
Additional search interfaces options...175
Search interfaces and URL query parameters (Ntk)...175
Java examples of search interface methods...176
.NET examples of search interface properties..176
Tips for troubleshooting search interfaces..176

Chapter 17: Dimension Searches..177
About dimension search...177
Default dimension search...177
Compound dimension search...178
Enabling dimensions for dimension search..178
Ordering of dimension search results...179
Advanced dimension search parameters..181
Dgidx flags for dimension search..182
URL query parameters and dimension search...182
Methods for accessing dimension search results...187
Displaying refinement counts for dimension search...189
When to use dimension and record search..192
Performance impact of dimension search...193

Chapter 18: Record and Dimension Search Reports....................................195
Implementing search reports..195
Methods for search reports...195
Troubleshooting search reports..198

Chapter 19: Using Search Modes...201
List of search modes...201
Configuring search modes..203
URL query parameters for search modes...204
Search mode methods..205

Chapter 20: Using Boolean Search..207
About Boolean search...207
Example of Boolean query syntax..208
Examples of using the key restrict operator..209
About proximity search..209
Proximity operators and nested subexpressions..210
Boolean query semantics..211
Operator precedence..212

v

Contents

Interaction of Boolean search with other features...212
Error messages for Boolean search...213
Implementing Boolean search..214
URL query parameters for Boolean search..214
Methods for Boolean search...215
Troubleshooting Boolean search..216
Performance impact of Boolean search..216

Chapter 21: Using Phrase Search...217
About phrase search...217
About positional indexing..218
How punctuation is handled in phrase search..218
URL query parameters for phrase search...218
Performance impact of phrase search..219

Chapter 22: Using Snippeting in Record Searches......................................221
Excerpting Record Content through Snippeting..221
Snippet formatting and size..222
Snippet property names..223
About enabling and configuring snippeting...223
URL query parameters for snippeting...223
Reformatting a snippet for display in your Web application..224
Performance impact of snippeting..224
Tips and troubleshooting for snippeting..224

Chapter 23: Using Wildcard Search...225
About wildcard search...225
Interaction of wildcard search with other features...225
Ways to configure wildcard search...226
MDEX Engine flags for wildcard search..228
Presentation API development for wildcard search..229
Performance impact of wildcard search..229

Chapter 24: Search Characters...231
Using search characters...231
Query matching semantics...231
Categories of characters in indexed text...231
Search query processing..232
Implementing search characters...233
Dgidx flags for search characters...233
Presentation API development for search characters...233
MDEX Engine flags for search characters..234

Chapter 25: Examples of Query Matching Interaction..................................235
Record search without search characters enabled...235
Record search with search characters enabled..236
Record search with wildcard search enabled but without search characters...237
Record search with both wildcard search and search characters enabled...237

Chapter 26: Spelling Correction and Did You Mean.....................................239
About Spelling Correction and Did You Mean..239
Spelling modes..240
Disabling spelling correction on individual queries...240
Spelling dictionaries created by Dgidx..241
Configuring spelling in Developer Studio..242
Modifying the dictionary file ..243
About the admin?op=updateaspell operation...243
Enabling language-specific spelling correction...244
Dgidx flags for Spelling Correction..244
dgraph flags for enabling Spelling Correction and DYM...244
URL query parameters for Spelling Correction and DYM...245

Oracle Commerce Guided Searchvi

Spelling Correction and DYM API methods..246
dgraph tuning flags for Spelling Correction and Did You Mean..249
How dimension search treats number of results...252
Troubleshooting Spelling Correction and Did You Mean..252
Performance impact for Spelling Correction and Did You Mean..253
Compiling the Aspell dictionary...254
About word-break analysis..256

Chapter 27: Stemming and Thesaurus...257
Overview of Stemming and Thesaurus...257
About the Stemming feature...257
About the Thesaurus feature..263
Dgidx and dgraph flags for the Thesaurus..265
Interactions with other search features...266
Performance impact of Stemming and Thesaurus..267

Chapter 28: Automatic Phrasing..269
About Automatic Phrasing...269
Using Automatic Phrasing with Spelling Correction and DYM..270
Adding phrases to a project..271
Presentation API development for Automatic Phrasing..273
Tips and troubleshooting for Automatic Phrasing...278

Chapter 29: Stop Words..279
About stop words..279
Adding a sample list of stop words to an application..280

Chapter 30: Relevance Ranking..281
About the Relevance Ranking feature..281
Relevance Ranking modules..281
Relevance Ranking strategies..291
Implementing relevance ranking...292
Controlling relevance ranking at the query level...295
Relevance Ranking sample scenarios..299
Recommended strategies...301
Performance impact of Relevance Ranking..303

Chapter 31: Record Boost and Bury..305
About the record boost and bury feature..305
Enabling properties for filtering...305
The stratify relevance ranking module..306
Record boost/bury queries..307
Boost/bury sorting for Oracle Commerce records...308

Part V: Content Spotlighting and Merchandizing..311

Chapter 32: Promoting Records with Dynamic Business Rules.................313
Using dynamic business rules to promote records...313
Suggested workflow for using Oracle Commerce tools to promote records...319
Building the supporting constructs for a business rule..319
Grouping rules...321
Creating rules..322
Controlling rules when triggers and targets share dimension values..326
Working with keyword redirects..328
Presenting rule and keyword redirect results in a Web application..329
Filtering dynamic business rules...334
Performance impact of dynamic business rules...335
Applying relevance ranking to rule results..335
About overloading Supplement objects..336

vii

Contents

Chapter 33: Implementing User Profiles..337
About user profiles..337
Profile-based trigger scenario...337
User profile query parameters..338
API objects and method calls..338
Performance impact of user profiles...339

Part VI: Understanding and Debugging Query Results................................341

Chapter 34: Using Why Match...343
About the Why Match feature...343
Enabling Why Match...343
Why Match API...343
Why Match property format...344
Why Match performance impact...344

Chapter 35: Using Word Interpretation..347
About the Word Interpretation feature...347
Implementing Word Interpretation...347
Word Interpretation API methods..347
Troubleshooting Word Interpretation..349

Chapter 36: Using Why Rank..351
About the Why Rank feature...351
Enabling Why Rank...351
Why Rank API...351
Why Rank property format..352
Result information for relevance ranking modules..353
Why Rank performance impact...354

Chapter 37: Using Why Precedence Rule Fired..355
About the Why Precedence Rule Fired feature..355
Enabling Why Precedence Rule Fired..355
Why Precedence Rule Fired API..355
Why Precedence Rule Fired property format..356
Performance impact of Why Precedence Rule Fired..358

Part VII: Presentation API Basics...359

Chapter 38: Presentation API Overview...361
List of Guided Search APIs...361
Architecture of the Presentation API...361
One query, one page..363
About query result objects returned by the MDEX Engine..364

Chapter 39: Working with the Presentation API..369
Core classes of the Presentation API...369
Using the core objects to query the MDEX Engine...372
Four basic queries...373
Getting started with your own Web application...378
List of query exceptions..378

Chapter 40: Using the Reference Implementation..381
Reference implementation overview...381
The purpose of the reference implementation..381
Four primary modules...382
Non-MDEX Engine URL parameters..383

Oracle Commerce Guided Searchviii

About JavaScript files..384
Module maps...384
Module descriptions..390
Tips on using the UI reference implementation modules..393

Chapter 41: Running the Reference Implementations.................................395
The JSP diagnostic and debugging application..395
Running the ASP.NET reference implementation...398

Appendix A: Oracle Commerce URL Parameter Reference.........................401
About the Oracle Commerce URL query syntax..401
N (Navigation)..402
Nao (Aggregated Record Offset)...402
Ndr (Disabled Refinements)...403
Ne (Exposed Refinements)..404
Nf (Range Filter)...404
Nmpt (Merchandising Preview Time)...405
Nmrf (Merchandising Rule Filter)...406
No (Record Offset)...406
Np (Records per Aggregated Record)...407
Nr (Record Filter)..407
Nrc (Dynamic Refinement Ranking)...408
Nrcs (Dimension Value Stratification)..409
Nrk (Relevance Ranking Key)..409
Nrm (Relevance Ranking Match Mode)...410
Nrr (Relevance Ranking Strategy)...411
Nrs (Oracle Commerce Query Language Filter)..411
Nrt (Relevance Ranking Terms)...412
Ns (Sort Key)..412
Nso (Sort Order)...413
Ntk (Record Search Key)...414
Ntpc (Compute Phrasings)...415
Ntpr (Rewrite Query with an Alternative Phrasing)..415
Ntt (Record Search Terms)..416
Ntx (Record Search Mode)...416
Nty (Did You Mean)..417
Nu (Rollup Key)..417
Nx (Navigation Search Options)...418
R (Record)..418
A (Aggregated Record)..419
Af (Aggregated Record Range Filter)...419
An (Aggregated Record Descriptors)...420
Ar (Aggregated Record Filter)..420
Ars (Aggregated EQL Filter)...421
As (Aggregated Record Sort Key)..421
Au (Aggregated Record Rollup Key)..422
D (Dimension Search)..423
Df (Dimension Search Range Filter)..423
Di (Search Dimension)...424
Dk (Dimension Search Rank)...424
Dn (Dimension Search Scope)...425
Do (Search Result Offset)..425
Dp (Dimension Value Count)..426
Dr (Dimension Search Filter)..426
Drc (Refinement Configuration for Dimension Search)..427
Drs (Dimension Search EQL Filter)..428
Dx (Dimension Search Options)...429
Du (Rollup Key for Dimension Search)..430

Appendix B: MDEX Engine Logging Variables..431
About MDEX Engine logging variables..431

Logging variable operation syntax..431
Supported logging variables...432

ix

Contents

Appendix C: Diacritical Character to ASCII Character Mapping................433
Mapping table...433

Oracle Commerce Guided Searchx

Copyright and disclaimer

Copyright © 2003, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth
in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers that have purchased support have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide describes how to create an Oracle Commerce Guided Search application.

It assumes that you have read the Guided Search Concepts Guide and the Guided Search Getting Started
Guide and are familiar with the Guided Search terminology and basic concepts.

Who should use this guide
This guide is intended for developers who are writing applications using Oracle Commerce Guided Search.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

| Preface14

https://support.oracle.com

Part 1

Overview of Oracle Commerce Guided Search
Applications

• About the MDEX Engine
• Assembler functionality

Chapter 1

About the MDEX Engine

This section provides an overview of the functions that the MDEX Engine performs in an Oracle Commerce
Guided Search application.

MDEX Engine overview
The MDEX Engine is the indexing and query module used by Guided Search applications to retrieve information
that customers request.

The MDEX Engine stores indexes that were created by the Information Transformation Layer (ITL). After the
MDEX Engine stores the indexes, it receives client requests through the application tier, queries the indexes,
and then returns the results.

The MDEX Engine is stateless. This design requires that a complete query be sent to the MDEX Engine for
each request. The stateless design of the MDEX Engine facilitates the addition of MDEX Engine servers for
load balancing and redundancy. Because the MDEX Engine is stateless, any replica of an MDEX Engine on
one server can reply to queries independently of a replica on other MDEX Engine servers.

Adding replicas of MDEX Engines on additional servers improves query response time. Load balancers can
further improve total response time by distributing queries to a replica MDEX Engine on any of the additional
servers. Adding replicas also provides redundancy -- that is, if one server goes down, a replica of an MDEX
Engine provides redundancy by enabling other servers in the implementation to continue to reply to queries.

The MDEX Engine package contains the following components:

DescriptionMDEX Engine Component

The dgraph is the name of the process for the MDEX Engine.dgraph

A typical Guide Search application includes one or more dgraphs.

dgidx is the indexing program that reads the tagged records that were prepared
by Forge or CAS and creates the proprietary indexes for the MDEX Engine.

dgidx

The dgwordlist utility is used to manually compile the text-based worddat
dictionary into the binary spelldat dictionary. This enables use of the Aspell
dictionary module in the MDEX Engine.

dgwordlist

DescriptionMDEX Engine Component

The generateSSLCertificates utility creates SSL certificates. For
information about how to generate SSL certificates, refer to theOracle Commerce
Guided Search Security Guide.

generateSSLCertificates

About the Information Transformation Layer
The Information Transformation Layer transforms your source data into indexes for the MDEX Engine.

The transformation process does not change the content of your source data -- only its representation within
your application.

The Information Transformation Layer is an off-line process that performs two distinct functions: data processing
and indexing. You run the Information Transformation Layer components at intervals that are appropriate for
your business requirements.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

About the MDEX Engine | About the Information Transformation Layer18

Chapter 2

Assembler functionality

The Assembler includes code for querying an MDEX Engine and returning information in a format that a
front-end application can render for display on application pages. The Assembler acts as the central source
for information that appears on the application page, apart from labels and other static elements of the application
page templates.

How the MDEX Engine Communicates with the Assembler
The following figure illustrates the place of the Assembler in a Guided Search application:

As shown in the preceding diagram, the following things happen when the Assembler queries the MDEX Engine
to obtain the information that a customer requests through Guided Search:

1. A customer makes a request for information through your application page.
2. To pass the customer's request to the Assembler, your application invokes the assemble() method as

follows:

ContentItem result = assembler.assemble(contentItem)

3. The Assembler passes the request to the navigation cartridge handler.
4. The navigation cartridge handler invokes the Presentation API to pass the request to the MDEX Engine.
5. The MDEX Engine finds the requested information, filters and sorts it, and returns it to the navigation

cartridge handler.
6. The navigation cartridge handler returns to the Assembler a content item containing the requested information.
7. The Assembler combines this content item and other content items into a result content item. The result

content item is a tree of content items, each of which contains information to be displayed in a particular
cartridge.

8. The Assembler returns the result content item to your application.
9. In your application, the rendering code for each cartridge handler identifies the information in the result

content item that is to be displayed in the corresponding cartridge. The rendering code then converts this
information ("renders" it) into a form that can be displayed.

10. Your application returns the rendered information to the application page to be displayed.

An application page typically requires several queries to the MDEX engine to retrieve all the content that it will
display; these queries are made through a single call to the Assembler. The Assembler issues the individual
queries and assembles the individual responses into a single result content item.

The content item tree can contain content items from sources of information other than the MDEX Engine,
such as RSS feeds, Database Management Systems (DBMS), Data Asset Managers (DAMs) and Content
Management Systems (CMSs). Note, however, that the search features affecting the management of records,
dimensions, and properties, as described in this guide, are applied only to content that is processed by the
MDEX Engine. For information about how to use the Assembler to manage information from sources other
than the MDEX Engine, refer to the Assembler Developer's Guide.

For information about the Assembler API, refer to the Assembler API help (javadoc). The Assembler API can
be invoked directly in a Java environment, but it can also run as a RESTful service accessible by any language.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Assembler functionality | How the MDEX Engine Communicates with the Assembler20

Part 2

Record Features

• Working with Oracle Commerce Records
• Sorting Oracle Commerce Records
• Using Range Filters
• Creating Aggregated Records
• Controlling Record Values with the Select Feature
• Using the Oracle Commerce Query Language
• Record Filters

Chapter 3

Working with Oracle Commerce Records

This section describes how the MDEX engine manages Oracle Commerce records in your Web application.

Displaying Oracle Commerce records
This section describes how to display Oracle Commerce records, including their properties and dimension
values.

Displaying a list of Endeca records
A typical Guided Search application displays a list of Endeca records in the user's current navigation state.

The navigation state initially matches the user’s search query. The user can subsequently click named links
to subsets of the list of records in the current navigation state. The subsets are known as refinements.

For example, a search for "35mm film" might return, in addition to a list of brands of 35mm film, a list of
refinements such as "color" and "black and white". By clicking the refinement "color", the user refines the
navigation state and limits the list of film brands to color films. The user might then click the refinements "print
film" or "slide film" to limit the list of film brands to color films for either prints or slides.

The record list can be displayed as a table, with each row corresponding to a specific record. Each row displays
some identifying information about that specific record, such as a name, title, or identification number.

A list of records is returned by every query to the MDEX Engine. Your application can iterate through this list,
extract the identifying information for each record, and display a table that contains the results.

Displaying each record in the ERecList object
An MDEX Engine query returns a list of records in an ERecList (Oracle Commerce records) or AggrERecList
(aggregated Oracle Commerce records) object.

The lists of records are returned in a Navigation object. To retrieve lists from a Navigation object, use
these methods:

• To obtain an ERecList object, use the Navigation.getERecs() method (Java) or the
Navigation.ERecs property (.NET).

• To obtain an AggrERecList object, use the Navigation.getAggrERecs() method (Java) or the
Navigation.AggrERecs property (.NET).

Note that because the Java versions of ERecList and AggrERecList inherit from
java.util.AbstractList, all the iterator and indexing methods are available for these objects.

Examples of displaying records

The following code samples show how to obtain a record list, iterate through the list, and print out each record’s
Name property.

The number of records that are returned is controlled by:
• Java: the ENEQuery.setNavNumERecs() method
• .NET: the ENEQuery.NavNumERecs property

The default number of returned records is 10. These calls must be made before the query() method.

For aggregated Oracle Commerce records, use:
• Java: the ENEQuery.setNavNumAggrERecs() method
• .NET: the ENEQuery.NavNumAggrERecs property

The subset of records that are returned is determined by the combination of the offset specified in the
setNavERecsOffset()method (Java) or the NavERecsOffset property (.NET) and the number of records
specified in the setNavNumERecs() method (Java) or NavNumERecs property (.NET). For example, if the
offset is set to 50 and the setNavNumERecs() method is called with an argument of 35, the MDEX Engine
will return records 50 through 85.

Java example
// Make MDEX Engine request. usq contains user query
// string and nec is an ENEConnection object.
ENEQueryResults qr = nec.query(usq);
// Get navigation object result
Navigation nav = qr.getNavigation();
// Get record list
ERecList records = nav.getERecs();
// Loop through record list
ListIterator i = records.listIterator();
while (i.hasNext()) {
 ERec record = (ERec)i.next();
 PropertyMap recordProperties = record.getProperties();
 String propName = "";
 // If property has a value
 if (!((String)recordProperties.get("Name")).equals("")) {
 propName = (String)recordProperties.get("Name");
 out.print(propName);
 }
}

.NET example
// Make Navigation Engine request
ENEQueryResults qr = nec.Query(usq);
// Get Navigation object result
Navigation nav = qr.Navigation;
// Get records
ERecList recs = nav.ERecs;
// Loop over record list
for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for representative record

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Oracle Commerce Records | Displaying Oracle Commerce records24

 PropertyMap propsMap = rec.Properties;
 // Get and print Name property
 String propName = "";
 if (((String)propmap["Name"]) != "") {
 propName = (String)propmap["Name"];
 Response.Write propName;
 }
}

Performance impact when listing records
The number of records that the MDEX Engine returns will affect performance.

To reduce the number of records returned by the MDEX engine – and thus, to reduce the amount of time that
the MDEX engine requires to process requests – write your requests to return only the subset of records that
you are interested in displaying to the user.

To do this, use the setNavNumERecs() method (Java) or the NavNumERecs property (.NET) and the offset
specified in the setNavERecsOffset() method (Java) or the NavERecsOffset property (.NET).

Displaying record properties
The properties tagged on an Oracle Commerce record can be displayed with the record.

Properties are key/value pairs associated with Oracle Commerce records. Property values provide detailed
information about a record that your application can display when a user accesses a record by searching for
or navigating to it. Properties generally contain more detail about a record than dimension values, which are
used for navigation.

For example, a record can have properties named Product Description, Price, and Part Number, each with an
appropriate value. The values of these properties can be displayed when a user finds the record, but they are
too specific to be useful for navigation. A dimension named Price Range, however, can help a user navigate
to records with specific prices (stored as property values), which are displayed when the user finds the record.

Note: Properties are the key/value pairs from the raw data that have not been included for navigation
but which are displayed. Thus, each record, when displayed, includes a combined set of navigable data
(dimension values) and non-navigable data (properties).

Mapping and indexing record properties
How record properties are displayed depends on how they are mapped and indexed.

Mapping record properties

The property mapper processes the properties of the source data records that are read by the pipeline. You
can configure the property mapper to process source record properties in any of the following ways:

• Map the source data property to an existing Oracle Commerce dimension or a newly-created Oracle
Commerce dimension.

• Map the source data property to an existing Oracle Commerce property or a newly-created Oracle Commerce
property. You can also specify how the property is displayed.

• Ignore the source data property.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

25Working with Oracle Commerce Records | Displaying record properties

The property mapper is part of Developer Studio. See the Design Studio online help for information about how
to use the property mapper.

For information about how to add and configure Oracle Commerce properties, see the Platform Services Forge
Guide.

Indexing all properties with Dgidx

By default, the Dgidx indexing program ignores any record property that does not have a corresponding property
mapper and does not include it in the MDEX Engine indexes. If you use the Dgidx --nostrictattrs flag,
every property found on a record will be indexed.

The MDEX Engine dgraph program does not have configuration flags to control how properties are displayed.

Accessing properties from records
Properties can be accessed from any Oracle Commerce record returned from a navigation query (N parameter)
or a record query (R parameter).

To access a property directly on an ERec or AggrERec object, use the PropertyMap.getValues()method
(Java) or the PropertyMap.GetValues()method (.NET). These methods return a collection of all the values
in a record for a particular property.

The following examples show how to access record properties.

Java example
if (eneResults.containsNavigation()) {
 Navigation nav = eneResults.getNavigation();
 ERecList erl = nav.getERecs();
 for (int i=0; i < erl.size(); i++) {
 ERec erec = (ERec) erl.get(i);
 // Retrieve all properties from the record
 PropertyMap pmap = erec.getProperties();
 // Retrieve all values for the property named Colors
 Collection colors = pmap.getValues("Colors");
 Iterator it = colors.iterator();
 while (it.hasNext()) {
 String colorValue = (String)it.next();
 // Insert code to use the colorValue variable
 }
 }
}

.NET example
if (eneResults.ContainsNavigation()) {
 Navigation nav = eneResults.Navigation;
 ERecList recs = nav.ERecs;
 // Loop over record list
 for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 System.Collections.IList colors = propsMap.GetValues("Colors");
 // Retrieve all values for the Colors property
 for (int j =0; j < colors.Count; j++) {
 String colorValue = (String)colors[j];

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Oracle Commerce Records | Displaying record properties26

 // Insert code to use the colorValue variable
 }
 }
}

Properties returned by the MDEX Engine
This topic describes which mapped properties are returned by the MDEX engine in response to queries.

The MDEX Engine typically returns additional information with a user query request. This information depends
on the nature of the query.

Recall that for properties, you can specify two options in the Property Editor of Developer Studio, Show with
Record and Show with Record List.

When you specify Show with Record List, the corresponding RENDER_CONFIG.XML file is updated. This
indicates to the MDEX Engine which properties it must return as supplemental objects with the list of records.

In the case of mapped record properties, the MDEX Engine behaves as follows:
• It returns only those properties for which you specify Show with Record List in Developer Studio.

• It returns these properties consistently in record lists returned as a response to regular user queries, and
in record lists returned by the dynamic business rules. (Dynamic business rules enable merchandizing and
content spotlighting.)

Note: In terms of XML configuration settings, rule results from the MDEX Engine use the REN¬
DER_PROD_LIST setting from the RENDER_CONFIG.XML file.

Displaying all properties on all records
You can loop through all properties on all records and display their values.

When a Property object has been obtained, its name and value can be accessed through calls to these
methods:

• For Java, use the Property.getKey() and Property.getValue() methods.
• For .NET, use the Property.Key and Property.Value properties.

Java example
if (eneResults.containsNavigation()) {
 Navigation nav = eneResults.getNavigation();
 ERecList erl = nav.getERecs();
 for (int i=0; i < erl.size(); i++) {
 // Get an individual record
 ERec rec = (ERec) erl.get(i);
 // Get property map for record
 PropertyMap propsMap = rec.getProperties();
 // Get property iterator for record
 Iterator props = propsMap.entrySet().iterator();
 // Loop over properties iterator
 while (props.hasNext()) {
 // Get individual record property
 Property prop = (Property)props.next();
 // Display property name and value
 %><tr>

Oracle Commerce Guided Search MDEX Engine Developer's Guide

27Working with Oracle Commerce Records | Displaying record properties

 <td><%= prop.getKey() %>: </td>
 <td><%= prop.getValue() %></td>
 </tr><%
 }
 }
}

.NET example
Navigation nav = eneResults.Navigation;
ERecList recs = nav.ERecs;
// Loop over record list
for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 System.Collections.IList props = propmap.EntrySet;
 // Loop over properties iterator
 for (int j =0; j < props.Count; j++) {
 Property prop = (Property)props[j];
 // Display property name and value
 %><tr>
 <td><%= prop.Key %>: </td>
 <td><%= prop.Value %></td>
 </tr><%
 }
}

Displaying dimension values for Oracle Commerce Guided
Search records

The dimension values tagged on an Oracle Commerce record can be displayed with the record.

Each record’s dimension values can be displayed when the record appears in a record list or on an individual
record page. The latter case is the more common use of this feature, because record properties are also
available for display and are less expensive to use for this purpose.

A common purpose for displaying an individual record’s dimension values is to enable the end user to navigate
to a new record set based on a subset of dimension values displayed for the current record. For example, an
apparel application might have a record page for shirt ABC that displays the shirt’s dimension values:
Sleeve=short
fabric=100% cotton
Style=Oxford
Size=L

Each value has a checkbox next to it. Users can then check the boxes for the dimension values in which they
are interested; for example:
Sleeve=short
Style=Oxford
Size=L

When the user checks these dimension values, a record set is returned that includes shirt ABC along with all
other Large, short-sleeve, Oxford shirts (regardless of whether the shirt fabric is 100% cotton).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Oracle Commerce Records | Displaying dimension values for Oracle Commerce Guided Search
records

28

Configuring how dimensions are displayed
You create and configure dimensions using Developer Studio.

Dimensions and their hierarchy of values are created in Developer Studio Dimensions view, and are referenced
in a dimension adapter component. See the Platform Services Forge Guide for more information about creating
dimensions.

By default, dimension values are displayable for a record query result but not for a navigation query result.
This behavior can be changed in Developer Studio.

Dimension values are ranked in either Developer Studio or the dval_ranks.xml file. Note that in either case,
if dimension values are assigned ranks with values greater than 16,000,000, unpredictable ranking behavior
may result.

No Dgidx or dgraph flags are necessary to enable displaying dimension values.

Accessing dimensions from records
Dimension values can be accessed from any Oracle Commerce record returned from a record query (R
parameter).

If dimensions have been configured as in the previous section, they can also be accessed from records returned
from a navigation query (N parameter).

To access a dimension value directly on an ERec object, use:
• Java: the ERec.getDimValues() method
• .NET: the ERec.DimValues property

These return an AssocDimLocationsList object that contains all the values in a record for a particular
dimension.

The following code snippets show how to retrieve the dimension values from a list of records.

Java example
ERecList recs = eneResults.getERecs();
// Loop over record list to get the dimension values
for (int i=0; i < recs.size(); i++) {
 ERec rec = (ERec)recs.get(i);
 // Get list of tagged dimension location groups for record
 AssocDimLocationsList dims = (AssocDimLocationsList)rec.getDimValues();
 for (int j=0; j < dims.size(); j++) {
 // Get individual dimension and loop over its values
 AssocDimLocations dim = (AssocDimLocations)dims.get(j);
 for (int k=0; k < dim.size(); k++) {
 // Get attributes from a specific dim val
 DimLocation dimLoc = (DimLocation)dim.get(k);
 DimVal dval = dimLoc.getDimValue();
 String dimensionName = dval.getDimensionName();
 long dimensionId = dval.getDimensionId();
 String dimValName = dval.getName();
 long dimValId = dval.getId();
 // Enter code to display the dimension name and
 // dimension value name. The Dimension ID and
 // dimension value ID may be needed for URLs.
 }
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

29Working with Oracle Commerce Records | Displaying dimension values for Oracle Commerce Guided Search
records

.NET example
ERecList recs = eneResults.ERecs;
for (int i=0; i < recs.Count; i++) {
 ERec rec = (ERec)recs[i];
 // Get list of tagged dimension location groups for record
 AssocDimLocationsList dims = rec.DimValues;
 // Loop through dimensions
 for (int j=0; j < dims.Count; j++) {
 // Get individual dimension
 AssocDimLocations dim = (AssocDimLocations) dims[j];
 // Loop through each dim val in the dimension group
 for (int k=0; k < dim.Count; k++) {
 // Get specific dimension value and path
 DimLocation dimLoc = (DimLocation) dim[k];
 // Get dimension value
 DimVal dval = dimLoc.DimValue;
 String dimensionName = dval.DimensionName;
 Long dimensionId = dval.DimensionId;
 String dimValName = dval.Name;
 Long dimValId = dval.Id;
 // Enter code to display the dimension name and
 // dimension value name. The Dimension ID and
 // dimension value ID may be needed for URLs.
 }
 }
}

Performance impact of displaying dimensions
Displaying too many dimensions can degrade performance.

The main purpose of dimension values is to enable navigation through the records. Passing dimension values
through the system consumes more resources than passing properties. Therefore, the default behavior of the
MDEX Engine is to return dimension values on records only when a record query request has been made (not
for navigation query requests).

As mentioned above, this behavior can be changed. However, the developer should exercise caution when
passing dimension values through to the record list, because doing this with too many dimensions can degrade
performance.

Paging through a record set
A paging UI control is helpful when a query returns a large number of records.

An MDEX Engine query may return more records than can be displayed at one time. A common user interface
mechanism for overcoming this is to create pages of results, where each page displays a subset of the entire
result set.

In the following example of a user interface control for paging, Page 2 of 27 pages is currently being displayed:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Oracle Commerce Records | Paging through a record set30

Using the No parameter in queries
The offset into a record result set at which paging begins is specified by the query's No parameter, which has
the following syntax:
No=<number_of_records_offset>

The offset value specifies the first record that is returned in the query result. For example, if you want an
MDEX Engine query to return a list of records that starts at the 20th record, you would use this in the query:
No=20

If the No parameter is not specified, the offset defaults to zero.

Note: The ERecList object is one-based and the offset parameter is zero-based. For example, if there
are ten records displayed in the record list and parameter No=10 is in the navigation state, the ERecList
object returned will have records 11-20.

The paging functionality does not require any Developer Studio configuration, and no Dgidx or dgraph
flags are necessary.

Using paging control methods
The Presentation API includes several methods that you can use for paging.

The ENEQuery object is the initial access point for providing the paging controls for the entire record set. By
default, the navigation query returns a maximum of ten records to the Navigation object for display. To
override this setting, use:

• Java: the ENEQuery.setNavNumERecs() method
• .NET: the ENEQuery.NavNumERecs property

The default offset for a record set is zero, meaning that the first ten records are displayed. The default offset
can be overridden in one of two ways:

• Generate a URL with an explicit No parameter.
• For Java, use the ENEQuery.setNavERecsOffset() method. For .NET, use the
ENEQuery.NavERecsOffset property

To find out the offset used in the current navigation state, use the ENEQuery.getNavERecsOffset()method
(Java) or the ENEQuery.NavERecsOffset property (.NET). By adding one to the offset parameter, the
application can calculate the number of the first record on display.

To ascertain the total number of records being returned by the navigation query, use the
Navigation.getTotalNumERecs() method (Java) or the Navigation.TotalNumERecs property. If the
number of records returned is less than the number of records returned by the ENEQuery.setNavNumERecs()
method (Java) or the ENEQuery.NavNumERecs property (.NET), then no paging controls are needed.

The following table provides guidance about the paging logic necessary in your Web application to calculate
the previous, next, and last pages.

>|

Last

>

Next

<

Previous

|<

First

totNum - remainder (if remainder < 0)

totNum - navNum (if remainder = 0)

offset + navNumoffset - navNumset No = 0

Oracle Commerce Guided Search MDEX Engine Developer's Guide

31Working with Oracle Commerce Records | Paging through a record set

where:
• offset = Navigation.getERecsOffset() method (Java) or the Navigation.ERecsOffset property

(.NET)
• navNum = ENEQuery.getNavNumERecs() method (Java) or the ENEQuery.NavNumERecs property

(.NET)
• totNum = Navigation.getTotalNumERecs() method (Java) or the Navigation.TotalNumERecs

property (.NET)
• remainder = totNum / navNum

Note: When using paging controls, consider how paging should interact with other aspects of the
application. For example, if the user is paging through the record set and then decides to sort on a
property, should the No parameter be reset? The answer depends on the desired functionality of the
application.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Oracle Commerce Records | Paging through a record set32

Chapter 4

Sorting Oracle Commerce Records

The sorting functionality enables the user to define the order of Oracle Commerce records returned with each
navigation query.

About record sorting
When making a basic navigation request, the user may define a series of property/dimension and order
(ascending or descending) pairs.

If the user does not specify sort order as part of the query, the MDEX Engine returns query results in the same
order that Dgidx stores the records in the index file. For information on changing the order in which Dgidx
stores records, see the "Changing the sort order with Dgidx flags" topic later in this section.

All of the records corresponding to a particular navigation state are considered for sorting, not just the records
visible in the current request. For example, if a navigation state applies to 100 bottles of wine, all 100 bottles
are considered when sorting, even though only the first ten bottles may be returned with the current request.

Record sorting only affects the order of records. It does not affect the ordering of dimensions or dimension
values that are returned for query refinement.

Configuring precomputed sort
You can optimize a sort key for a precomputed sort.

Although users can sort on any record at any time, it is also possible to optimize a property or dimension for
sort in Developer Studio. This mainly controls the generation of a precomputed sort, and secondarily enables
the field to be returned in the API sort keys function. The sort key is an Oracle Commerce property or dimension
that exists in the data set. It can be numeric, alphabetical, or geospatial, and determines the type of sort that
occurs.

Configuring precomputed sort on a property

To configure precomputed sort on a property, check "Prepare sort offline" in the Property editor.

In addition, the property’s Type attribute, which you also set in the Property editor, affects sorting in the following
ways:

Records are sorted:If Type is set to this:

In alphabetical order.Alpha

In numeric order.Integer or Floating Point

In geospatial order (that is, according to the distance between the specified
geocode property and a given reference point).

Geocode

Deprecated. Do not use this type.File Path

Configuring precomputed sort on a dimension

To configure a precomputed sort on a dimension, check "Prepare sort offline" in the Dimension editor.

In addition, the dimension’s Refinements Sort Order setting, which you also set in the Dimension editor, affects
sorting in the following ways:

Records are sorted:If Refinements Sort Order is set to this:

In alphabetical order.Alpha

In numeric order.Integer or Floating Point

Numeric sort on semi-numeric and non-numeric dimension values

When numeric sorting is enabled for a dimension, all of the dimension values are assumed to consist of a
numeric (double) part, followed by an optional non-numeric part. That is to say, 3 is evaluated as <3.0, "">.
The non-numeric part is used as a secondary sort key when two or more numeric parts are equal. The
non-numeric parts are sorted so that an empty non-numeric part comes first in the sort order.

In some cases, a set of primarily numeric dimension values may contain semi-numeric values, such as 1.3A
(evaluated as <1.3, "A">, or non-numeric values, such as Other (evaluated as <0.0, "Other">. Numeric sort
on such dimension values works as follows:

• For semi-numeric dimension values, dimension values with non-numeric parts are sorted after matching
dimension values without non-numeric parts. For example, 1.3A appears after 1.3 when sorted.

• For non-numeric dimension values, the missing numeric part is treated as 0.0. In a data set containing the
word Other and the number 0, the system would compare 0 and Other as <0.0, ""> and <0.0, "Other"> and
sort 0 before Other.

Putting all of this together, a data set consisting of Other, 1.3A, 0, 3, and 1.3 would sort as follows:
0
Other
1.3
1.3A
3

Sorting behavior for records without a sort-key value

If an Oracle Commerce record does not include a value for the specified sort key, that record is sorted to the
bottom of the list, regardless of the sort order.

For example, the following record set is sorted by P_Year ascending. Note that Record 4 has no P_Year
property value.
Record 1 (P_Year 1998)
Record 2 (P_Year 2000)
Record 3 (P_Year 2003)
Record 4 (no P_Year property value)

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Sorting Oracle Commerce Records | Configuring precomputed sort34

If the sort order is reversed to P_Year descending, the new result set would appear in the following order:
Record 3 (P_Year 2003)
Record 2 (P_Year 2000)
Record 1 (P_Year 1998)
Record 4 (no P_Year property value)

Record 4, because it has no P_Year property value, will always appear last.

Changing the sort order with Dgidx flags
You can use an optional Dgidx flag to change the sort order.

No Dgidx flags are necessary to enable record sorting. If a property or dimension is properly enabled for sorting,
it is automatically indexed for sorting.

To change the order in which Dgidx stores records, you can specify a sort order and sort direction (ascending
or descending) by using the --sort flag with the following syntax:
--sort "key|dir"

where key is the name of a property or dimension on which to sort and dir is either asc for an ascending order
or desc for descending (if not specified, the order will be ascending).

You can also specify multiple sort keys in the format:
--sort "key_1|dir_1||key_2|dir_2||...||key_n|dir_n"

If you specify multiple sort keys, the records are sorted by the first sort key, with ties being resolved by the
second sort key, whose ties are resolved by the third sort key, and so on.

Note that if you are using the Oracle Commerce Application Controller (EAC) to control your environment, you
must omit the quotation marks from the --sort flag. Instead, use the following syntax:
--sort key_1|dir_1||key_2|dir_2||...||key_n|dir_n

There are no dgraph sort flags. If a property or dimension is properly enabled for sorting when indexed, it is
available for sorting when those index files are loaded into the MDEX Engine.

URL parameters for sorting
The Ns parameter is used for record sorting.

In order to sort records returned for a navigation query, you must append a sort key parameter (Ns) to the
query, using the following syntax:
Ns=sort-key-names[(geocode)][|order][||…]

The Ns parameter specifies a list of properties or dimensions by which to sort the records, and an optional list
of directions in which to sort. The records are sorted by the first sort key, with ties being resolved by the second
sort key, whose ties are resolved by the third sort key, and so on.

The optional order parameter specifies the order in which the property is sorted (0 indicates ascending, 1
indicates descending). The default sort order for a property is ascending. Whether the values for the sort key
are sorted alphabetically, numerically, or geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument to the sort key parameter
(noting that the sort key parameter must be a geocode property). Records are sorted by the distance from the
geocode reference point to the geocode point indicated by the property key.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

35Sorting Oracle Commerce Records | Changing the sort order with Dgidx flags

Sorting can only be performed when accompanying a navigation query. Therefore, the sort key (Ns) parameter
must accompany a basic navigation value parameter (N).

Valid Ns examples
N=0&Ns=Price
N=101&Ns=Price|1||Color
N=101&Ns=Price|1||Location(43,73)

Sort API methods
The Presentation API includes several methods that you can use for record sorting.

Because a record sort request is simply a variation of a basic navigation request, rendering the results of a
record sort request is identical to rendering the results of a navigation request.

However, there are specific objects and method calls that can be accessed from a Navigation object that
return a list of valid record sort properties, as shown in the examples below. (This data is only available from
navigation and record search requests.)

The ERecSortKeyList object is an array containing ERecSortKey objects. Use these calls to get the
ERecSortKey sort keys in use for this navigation:

• Java: Navigation.getSortKeys() method
• .NET: Navigation.SortKeys property

Each ERecSortKey object contains the name of a property or dimension that has been enabled for record
sorting, as well as a Boolean flag indexating whether the current request is being sorted by the given sort key,
and an integer indexating the direction of the current sort, if any (ASCENDING, DESCENDING, or NOT_ACTIVE).

The Navigation object also has a method which provides an ERecSortKeyList containing only the sort
keys used in the returned results:

• Java: getActiveSortKeys()
• .NET: GetActiveSortKeys()

Note that in order to get an active sort key that is not precomputed for sort, you must use:
• Java: the ENEQuery.getNavActiveSortKeys() method
• .NET: the ENEQuery.GetNavActiveSortKeys() method

Java example of methods that return sort properties
ERecSortKeyList keylist = nav.getSortKeys();
for (int i=0; i < keylist.size(); i++) {
 ERecSortKey key = keylist.getKey(i);
 String name = key.getName();
 int direction = key.getOrder();
}

.NET example of methods that return sort properties
ERecSortKeyList keylist = nav.SortKeys;
for (int i=0; i < keylist.Count; i++) {
 ERecSortKey key = keylist[i];
 String name = key.Name;
 int direction = key.GetOrder();
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Sorting Oracle Commerce Records | Sort API methods36

Troubleshooting application sort problems
This topic presents some approaches to solving sorting problems.

Although you can implement sorting without using the ERecSortKey objects and methods to retrieve a list of
valid keys, this approach does require that the application have its parameters coordinated with the data set.
The application must have the Ns parameters hard-coded, and will rely on the MDEX Engine having
corresponding parameters enabled. If a navigation request is made with an invalid Ns parameter, the MDEX
Engine returns an error.

If the records returned with a navigation request do not seem to respect the sort key parameter, there are
some potential problems:

• Was the property/dimension specified as a numeric when it is actually alphanumeric? Or vice versa? In
this case, the MDEX Engine returns a valid response, but the sorting may be incorrect.

• Was the specified property a derived property? Derived properties cannot be used for sorting records.
• If a record has multiple property values or dimension values for a single property or dimension, the MDEX

Engine sorts the records based on the first value associated with the key. If the application is displaying
the last value, the records will not appear to be sorted correctly. In general, properties and dimensions that
are enabled for sorting should only have one value assigned per record.

• If an application has properties and dimensions with the same name and a sort is requested by that name,
the MDEX Engine arbitrarily picks either the property or dimension for sorting. In general, using the same
name for a properties and dimensions should be avoided.

• If certain records in a record set lack a sort-key value, they will always appear last in a result set. Therefore,
if you reverse a sort order on a record set containing such records, the order of the entire record set will
not be reversed—the records without a sort-key value always sort at the end of the set.

Performance impact for sorting
Sorting records has an impact on performance.

Keep the following factors in mind when attempting to assess the performance impact of the sorting feature:
• Record sorting is a cached feature. That means that each dimension or property enabled for sorting

increases the size of the dgraph process. The specific size of the increase is related to the number of
records included in the data set. Therefore, only dimensions or properties that are specifically needed by
an application for sorting should be configured as such. Sorting gets slower as paging gets deeper.

• Because sorting is an indexed feature, each property enabled for sorting increases the size of both Dgidx
process as well as the MDEX Engine process. (The specific size of the increase is related to the number
of records included in the data set.) Therefore only properties that are specifically needed by an application
for sorting should be configured as such.

• In cases where the precomputed sort is rarely or never used (such as when the number of search results
is typically small), the memory can be saved.

Using geospatial sorting
You implement geospatial sorting by using geocode properties as sort keys.

Geocode properties represent latitude and longitude pairs to Oracle Commerce records.

Result sets that have geocode properties can be sorted by the distance of the values of the geocode properties
to a given reference point. They can also be filtered (using the Nf parameter) by these same values.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

37Sorting Oracle Commerce Records | Troubleshooting application sort problems

For example, if the records of a particular data set represent individual books that a large vendor has for sale
at a variety of locations, each book could be tagged with a geocode property (named Location) that holds the
store location information for that particular book. Users could then filter result sets to see only books that are
located within a given distance, and then sort those books so that the closest books display first.

A geocode property on an Oracle Commerce record may have more than one value. In this case, the MDEX
Engine compares the query’s reference point to all geocode values on the record and returns the record with
the closest distance to the reference point.

Configuring geospatial sorting
You can configure a geocode property and add a Perl manipulator to the pipeline if necessary.

Configuring a geocode property as the sort key

Use Developer Studio’s Property editor to configure a geocode property for record sort. In the Property editor,
the "Prepare sort offline" checkbox enables record sorting on the property.

Configuring the pipeline for a geocode property

Dgidx accepts geocode data in the form:

latvalue,lonvalue

where each is a double-precision floating-point value:
• latvalue is the latitude of the location in whole and fractional degrees. Positive values indicate north latitude

and negative values indicate south latitude.
• lonvalue is the longitude of the location in whole and fractional degrees. Positive values indicate east

longitude, and negative values indicate west longitude.

For example, Oracle Commerce’s main office is located at 42.365615 north latitude, 71.075647 west longitude.
This geocode should be supplied to Dgidx as:
42.365615,-71.075647

If the input data is not available in this format, it can be assembled from separate properties with a Perl
manipulator created in Developer Studio. The Method Override editor would have the following Perl code:
#Get the next record from the first record source.
my $rec = $this->record_sources(0)->next_record;
return undef unless $rec;
#Return an array of property values from the record.
my @pvals = @{$rec->pvals};
#Return the value of the Latitude property.
my @lat = grep {$_->name eq "Latitude"} @{$rec->pvals};
#Return the value of the Longitude property.
my @long = grep {$_->name eq "Longitude"} @{$rec->pvals};
#Exit if there is more than one Latitude property.
if (scalar (@lat) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Latitude property.");
}
#Exit if there is more than one Longitude property.
if (scalar (@long) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Longitude property.");
}
#Concatenate Latitude and Longitude into Location.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Sorting Oracle Commerce Records | Using geospatial sorting38

my $loc = $lat[0]->value . "," . $long[0]->value;
#Add new Location property to record.
my $pval = new EDF::PVal("Location", $loc);
$rec->add_pvals($pval);

return $rec;

URL parameters for geospatial sorting
The Ns parameter can specify a geocode property for record sorting.

As with general record sort, use the Ns parameter to specify a record sort based on the distance of a geocode
property from a given reference point. The Ns syntax for a geocode sort is:
Ns=geocode-property-name(geocode-reference-point)

The geocode-reference-point is expressed as a latitude and longitude pair in exactly the same comma-separated
format described in the previous topic. For example, if you want to sort on the distance from the value of the
geocode property Location to the location of Oracle Commerce’s main office, add the following sort specification
to the query URL:
Ns=Location(42.365615,-71.075647)

Geocode properties cannot be sorted except in relation to their distance to a reference point. So, for example,
the following specification is invalid and generates an error message:
Ns=Location

Geospatial sort API methods
The Presentation API includes methods that you can use for geospatial sorting.

The ERecSortKey class is used to specify all sort keys, including geocode sort keys.

To create a geocode sort key, use the four-parameter constructor:
ERecSortKey(String propertyName,
 boolean isAscending,
 double latitude,
 double longitude);

An ERecSortKey has accessor methods for the latitude and longitude of the reference location:
• Java: getReferenceLatitude() and getReferenceLongitude()

• .NET: GetReferenceLatitude() and GetReferenceLongitude()

Note that calling these methods on a non-geocode sort key causes an error.

The type of sort key (GEOCODE_SORT_KEY or ALPHA_NUM_SORT_KEY) can be determined using the getType()
method (Java) or the Type property (.NET).

The code samples below show the use of the accessor methods.

Although you can implement sorting without first retrieving a list of valid sorting keys from the result object,
this approach requires that the application have its parameters coordinated properly with the MDEX Engine.
The application will have the Ns parameters hard-coded, and will rely on the MDEX Engine to have corresponding
parameters. If a navigation request is made with an invalid Ns parameter, that request returns an error from
the MDEX Engine.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

39Sorting Oracle Commerce Records | Using geospatial sorting

Java example of geocode API methods
ERecSortKey sk = new ERecSortKey("Location", true, 43.0, -73.0);
// get sortKeyName == "Location"
String sortKeyName = sk.getName();
// get latitude == 43.0
double latitude = sk.getReferenceLatitude();
// get longitude == -73.0
double longitude = sk.getReferenceLongitude();
// get keyType == com.endeca.navigation.ERecSortKey.GEOCODE_SORT_KEY
int keyType = sk.getType();
// get sortOrder == com.endeca.navigation.ERecSortKey.ASCENDING
int sortOrder = sk.getOrder();

.NET example of geocode API methods
ERecSortKey sk = new ERecSortKey("Location", true, 43.0, -73.0);
// get sortKeyName == "Location"
string sortKeyName = sk.Name;
// get latitude == 43.0
double latitude = sk.GetReferenceLatitude();
// get longitude == -73.0
double longitude = sk.GetReferenceLongitude();
// get keyType == Endeca.Navigation.ERecSortKey.GEOCODE_SORT_KEY
int keyType = sk.Type;
// get sortOrder == com.endeca.navigation.ERecSortKey.ASCENDING
int sortOrder = sk.GetOrder();

Dynamic properties created by geocode sorts
When a geospatial sort is applied to a navigation query, the MDEX Engine creates a pair of dynamic properties
for each record returned.

The dynamic properties showing the distance (in kilometers and miles, respectively) between the record's
geocode address and that specified in the sort key.

The names of these properties use the format:
kilometers_to_key(latvalue,lonvalue)

miles_to_key(latvalue,lonvalue)

where key is the name of the geocode property, and latvalue and lonvalue are the values specified for the sort.

For example, if Location is the name of a geocode property, this Ns sort parameter:
Ns=Location(38.9,77)

will create these properties for the record that is tagged with the geocode value of 42.3,71:
kilometers_to_Location(38.900000,77.000000): 338.138890
miles_to_Location(38.900000,77.000000): 210.109700

These properties are not persistent and are informational only. There is no configuration associated with the
properties and they cannot be disabled. Note that applying both a geocode sort and a geocode range filter in
the same query causes both sets of dynamic properties to be generated.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Sorting Oracle Commerce Records | Using geospatial sorting40

Performance impact for geospatial sorting
Geospatial sorting affects query-time performance.

Geospatial sorting and filtering is a query-time operation. The computation time it requires increases as larger
sets of records are sorted and filtered. For best performance, it is preferable to apply these operations once
the set of records has been reduced by normal refinement or search.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

41Sorting Oracle Commerce Records | Using geospatial sorting

Chapter 5

Using Range Filters

You can use range filters for navigation queries.

About range filters
Range filter functionality enables a user, at request time, to specify an arbitrary, dynamic range of values that
are then used to limit the records returned for a navigation query.

The remaining refinement dimension values for the records in the result set are also returned. For example,
a range filter would be used if a user were querying for wines within a price range, say between $10 and $20.

It is important to remember that, similar to record search, range filters are simply modifiers for a navigation
query. The range filter acts in the same manner as a dimension value, even though it is not a specific
system-defined dimension value.

You can use a range filter in a query on record properties and on dimensions.

Configuring properties and dimensions for range filtering
Using range filters does not require Dgidx or dgraph configuration flags.

Range filters can be applied to either properties or dimensions of the following types:
• Properties of type Numeric (Integer, Floating point, DateTime) or type Geocode
• Dimensions of type Numeric that contain only Integer or Floating point values.

Note: Although dimensions do not have type, configuring a dimension's refinement sort order to be
numeric causes the dimension to be treated as numeric in range filters, so long as all values can be
parsed as integral or floating point values.

For values of properties and dimensions of type Floating point, you can specify values using both decimal
(0.00...68), and scientific notation (6.8e-10).

Use Developer Studio to configure the appropriate property type. For example, the following property is
configured to be of type Floating point:

Running queries with range filtering on dimensions is done with the same Nf parameter that is used for queries
with range filtering on properties.

For example, this is a query with a range filter on a dimension. In this example, the name of the dimension is
ContainsDigit and the records are numbers:
N=0&Nf=ContainsDigit|GT+8

This query returns all numbers that contain values greater than 8. As the example shows, running a query with
a range filter on a dimension makes sense only for dimensions with values of type Integer or Floating Point.

No Dgidx flags are necessary to enable range filters. All range filter computational work is done at request-time.

Likewise, no MDEX Engine configuration flags are necessary to enable range filters. All numeric properties
and dimensions and all geocode properties are automatically enabled for use in range filters.

URL parameters for range filters
The Nf parameter denotes a range filter request.

A range filter request requires an Nf parameter. However, because a range filter is actually a modifier for a
basic navigation request, it must be accompanied by a standard N navigation request (even if that basic
navigation request is empty).

Only records returned by the basic navigation request (N) are considered when evaluating the range filter.
(Range filters and navigation dimension values together form a Boolean AND request.)

The Nf parameter has the following syntax:
Nf=filter-key|function[+geo-ref]+value[+value]

The single range filter parameter specifies three separate components of a complete range filter:
• filter-key
• function
• value

filter-key is the name of a numeric property, geocode property, or numeric dimension. Only a single property
key can be specified per range filter.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Range Filters | URL parameters for range filters44

function is one of the following:
• LT (less than)
• LTEQ (less than or equal to)
• GT (greater than)
• GTEQ (greater than or equal to)
• BTWN (between)
• GCLT (less than, for geocode properties)
• GCGT (greater than, for geocode properties)
• GCBWTN (between, for geocode properties)

value is one or more numeric fields defining the actual range. The LT, LTEQ, GT, and GTEQ functions require
only a single value. The BTWN function requires two value settings, with the smaller value listed first and the
larger value listed next, separated by a plus sign (+) delimiter.

geo-ref is a geocode reference point that must be specified if one of the geocode functions has been specified
(GCLT, GCGT, GCBTWN). This is the only case where a geocode reference point may be specified. When a
geocode filter is specified, the records are filtered by the distance from the filter key (a geocode property) to
geo-ref (the geocode reference point).

URL parameters for geocode filters
When used with a geocode property, the Nf parameter specifies a range filter based on the distance of that
geocode property from a given reference point.

The Nf syntax for a geocode range filter is:
Nf=filter-key|function+lat,lon+value[+value]

filter-key is the name of a geocode property and function is the name of a geocode function.

lat and lon are a comma-separated latitude and longitude pair: latv is the latitude of the location in whole and
fractional degrees (positive values indicate north latitude and negative values indicate south latitude). lon is
the longitude of the location in whole and fractional degrees (positive values indicate east longitude and negative
values indicate west longitude). The records are filtered by the distance from the filter key to the latitude/longitude
pair.

The available geocode functions are:
• GCLT – The distance from the geocode property to the reference point is less than the given amount.
• GCGT – The distance from the geocode property to the reference point is greater than the given amount.
• GCBTWN – The distance from the geocode property to the reference point is between the two given amounts.

Distance limits in range filters are always expressed in kilometers.

For example, assume that the following parameter is added to the URL:
Nf=Location|GCLT+42.365615,-71.075647+10

The query will return only those records whose location (in the Location property) is less than 10 kilometers
from Oracle Commerce’s main office.

Dynamic properties created by geocode filters
When a geocode filter is applied to a navigation query, the MDEX Engine creates a pair of dynamic properties
for each record returned.

These dynamic properties are similar to those created from geocode sorts.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

45Using Range Filters | URL parameters for range filters

The properties show the distance (in kilometers and miles, respectively) between the record's geocode address
and that specified in the filter.

The property names are composed using the name of the geocode property or dimension and the values
specified in the geocode filter.

For example, if Location is the name of a geocode property, this Nf parameter:
Nf=Location|GCLT+38.9,77+500

will create these properties for the record that is tagged with the geocode value of 42.3,71:
kilometers_to_Location|GCLT 38.900000,77.000000 500.000000: 338.138890
miles_to_Location|GCLT 38.900000,77.000000 500.000000: 210.109700

The properties are not persistent and are informational only (that is, they indicate how far the record’s geocode
value is from the given reference point). There is no configuration associated with the properties and they
cannot be disabled. Note that applying both a geocode sort and a geocode range filter in the same query
causes both sets of dynamic properties to be generated.

Using multiple range filters
A query can contain multiple range filters.

In a more advanced application, users may want to filter against multiple range filters, each with a different
filter key and function. Such a request is implemented with the following query parameter syntax:
Nf=filter-key1|function1+value[+value]|filter-key2|function2+value[+value]

In this case, each range filter is evaluated separately, and only records that pass both filters (and match any
navigation parameters specified) are returned. For example, the following query is valid:
N=0&Nf=Price|BTWN+9+13|Score|GT+80

The user is searching for bottles of wine between $9 and $13 with a score rating greater than 80.

Examples of range filter parameters
This topic shows some valid and invalid examples of using the Nf parameter in queries.

Consider the following examples that use these four records:

Description propertyPrice propertyWine Type dimension valueRecord

Dark ruby in color, with extremely ripe…10Red (Dim Value 101)1

Dense, rich and complex describes this '96
California…

12Red (Dim Value 101)2

Dense and vegetal, with celery, pear, and spice
flavors…

19White (Dim Value 102)3

Big, ripe and generous, layered with honey…20Other (Dim Value 103)4

Example 1

Assume that the following query is created:
N=0&Nf=Price|GT+15

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Range Filters | Using multiple range filters46

This navigation request has a range filter specifying the Price property should be greater than 15 (with no
dimension values specified). The following Navigation object is returned:
2 records (records 3 and 4)
2 refinement dimension values (White and Other)

Example 2

This example uses the following query:
N=101&Nf=Price|LT+11

This navigation request specifies the Red dimension value (dimension value 101) and a range filter specifying
a price less than 11. The following Navigation object is returned:
1 record (record 1)
(No additional refinements)

Example 3

This query:
N=0&Nf=Price|BTWN+9+13

would return records 1 and 2 from the sample record set. Notice that the smaller value, 9, is listed before the
larger value, 13.

Invalid examples

The following query is invalid because it is missing the Navigation parameter (N):
Nf=Price|LT+9

This following query is incorrect because of an invalid dimension (the Food dimension is misspelled as Foo):
N=0&Nf=Foo|LT+11

The following query, which has an incorrect number of values for the GT function, is also incorrect:
N=0&Nf=Price|GT+20+30

Rendering the range filter results
The results of a range filter request can be rendered in the UI like any navigation request.

Because a range filter request is simply a variation of a basic navigation request, rendering the results of a
range filter request is identical to rendering the results of a navigation request.

Unlike the record search feature, however, there are no methods to access a list of valid range filter properties
or dimensions. This is because the properties and dimensions do not need to be explicitly identified as valid
for range filters in the same way that they need to be explicitly identified as valid for record search. Therefore,
specific properties and dimensions that a user is permitted to filter against must be correctly identified as
numeric or geocode in the instance configuration.

Troubleshooting range filter problems
This topic presents some approaches to solving range filter problems.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

47Using Range Filters | Rendering the range filter results

Similar to record search, the user-specified interaction of this feature enables a user to request a range that
does not match any records (as opposed to the system-controlled interaction of Guided Navigation in which
the MDEX Engine controls the refinement values presented to the user). Therefore, it is possible for a user to
make a dead-end request when using a range filter. Applications implementing range filters need to account
for this.

If a range filter request specifies a property or dimension that does not exist in the MDEX Engine, the query
throws an ENEConnectionException in the application. The MDEX Engine error log will output the following
message:
[Sun Dec 21 16:03:17 2008] [Error]
(PredicateFilter.cc::47) - Range filter does not specify a legal dimension
or property name.

If a range filter request does not specify numeric range values, the query also throws an
ENEConnectionException in the application. The MDEX Engine error log will output the following message:
[Sun Dec 21 17:09:27 2008] [Error]
(ValuePredicate.cc::128) - Error parsing numeric argument
<argument> in predicate filter.

If the specified property or dimension exists but is not configured as numeric or geocode, the query will not
throw an exception. But it is likely that no records will be correctly evaluated against the query and therefore
no results will be returned.

You should also be careful of dollar signs or other similar characters in property or dimension values that would
prevent a property or dimension from being defined as numeric.

Performance impact for range filters
Range filters impact the dgraph response times, but not memory usage.

Because range filters are not indexed, this feature does not impact the amount of memory needed by the
dgraph. However, because the feature is evaluated entirely at request time, the dgraph response times are
directly related to the number of records being evaluated for a given range filter request. You should test your
application to ensure that the resulting performance is compatible with the requirements of the deployment.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Range Filters | Performance impact for range filters48

Chapter 6

Creating Aggregated Records

The Oracle Commerce aggregated records feature enables the end user to group records by dimension or
property values.

About aggregated records
You can eliminate duplicate displays by combining, into a single aggregated record, the records that contain
the information in each separate display.

For example, an album by the same title may exist in several formats, with different prices. Each title is
represented in the MDEX Engine as a distinct Oracle Commerce record. When querying the MDEX Engine,
you may want to treat these instances as a single record. This is accomplished by combining the records for
the different formats into an Oracle Commerce aggregated record. The MDEX Engine to handles this aggregated
record as though it were a single record.

An aggregated record is based on a rollup key. A rollup key can be any property or dimension that has its
rollup attribute enabled.

From a performance perspective, aggregated Oracle Commerce records are not an expensive feature. However,
they should only be used when necessary, because they add organization and implementation complexity to
the application (particularly if the rollup key is different from the display information).

Enabling record aggregation
You enable aggregate Oracle Commerce record creation by enabling record rollups based on properties and
dimensions.

Proper configuration of this feature requires that the rollup key is a single assign value. That is, each record
should have at most one value from this dimension or property. If the value is not single assign, the first
(arbitrarily-chosen) value is used to create the aggregated record. This can cause the results to vary arbitrarily,
depending upon the navigation state of the user. In addition, features such as sort can change the grouping
of aggregated records that are assigned multiple values of the rollup key.

To enable a property or dimension for record rollup:

1. In Developer Studio, open the target property or dimension.
2. Enable the rollup feature as follows:

• For properties, check the Rollup checkbox in the General tab.

• For dimensions, check the Enable for rollup checkbox in the Advanced tab.

3. Click OK to save the change.

Generating and displaying aggregated records
This section provides detailed information about creating and displaying aggregated records.

The general procedure of generating and displaying aggregated records is as follows:

1. Determine which rollup keys are available to be used for an aggregated record navigation query.
2. Create an aggregated record navigation query by using one of the available rollup keys. This rollup key is

called the active rollup key, while all the other rollup keys are inactive.
3. Retrieve the list of aggregated records from the Navigation object and display their attributes.

These steps are discussed in detail in the following topics.

Determining the available rollup keys
The Presentation API has methods and properties to retrieve rollup keys.

Assuming that you have a navigation state, the following objects and calls are used to determine the available
rollup keys. These rollup keys can be used in subsequent queries to generate aggregated records:

• The Navigation.getRollupKeys() method (Java) and Navigation.RollupKeys property (.NET)
get the rollup keys applicable for this navigation query. The rollup keys are returned as an
ERecRollupKeyList object.

• The ERecRollupKeyList.size() method (Java) and ERecRollupKeyList.Count property (.NET)
get the number of rollup keys in the ERecRollupKeyList object.

• The ERecRollupKeyList.getKey()method (Java) and ERecRollupKeyList.Item property (.NET)
get the rollup key from the ERecRollupKeyList object, using a zero-based index. The rollup key is
returned as an ERecRollupKey object.

• The ERecRollupKey.getName() method (Java) and ERecRollupKey.Name property get the name of
the rollup key.

• The ERecRollupKey.isActive() method (Java) and the ERecRollupKey.IsActive() method
(.NET) return true if this rollup key was applied in the navigation query or false if it was not.

The rollup keys are retrieved from the Navigation object in an ERecRollupKeyList object. Each
ERecRollupKey in this list contains the name and active status of the rollup key:

• The name is used to specify the rollup key in a subsequent navigation or aggregated record query.
• The active status indicates whether the rollup key was applied to the current query.

The following code fragments show how to retrieve a list of rollup keys, iterate over them, and display the
names of keys that are active in the current navigation state.

Java example for getting rollup keys
// Get rollup keys from the Navigation object
ERecRollupKeyList rllupKeys = nav.getRollupKeys();
// Loop through rollup keys
for (int i=0; i< rllupKeys.size(); i++) {
 // Get a rollup key from the list
 ERecRollupKey rllupKey = rllupKeys.getKey(i);
 // Display the key name if the key is active.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Creating Aggregated Records | Generating and displaying aggregated records50

 if (rllupKey.isActive()) {
 %>Active rollup key: <%= rllupKey.getName() %><%
 }
}

.NET example for getting rollup keys
// Get rollup keys from the Navigation object
ERecRollupKeyList rllupKeys = nav.RollupKeys;
// Loop through rollup keys
for (int i=0; i< rllupKeys.Count; i++) {
 // Get a rollup key from the list
 ERecRollupKey rllupKey = (ERecRollupKey)rllupKeys[i];
 // Display the key name if the key is active.
 if (rllupKey.IsActive()) {
 %>Active rollup key: <%= rllupKey.Name %><%
 }
}

Creating aggregated record navigation queries
You can generate aggregated records with URL query parameters or with Presentation API methods.

Note that regardless of how many properties or dimensions you have enabled as rollup keys, you can specify
a maximum of one rollup key per navigation query.

Specifying the rollup key for the navigation query

To generate aggregated Oracle Commerce records, the query must be appended with an Nu parameter. The
value of the Nu parameter specifies a rollup key for the returned aggregated records, using the following syntax:
Nu=rollupkey

For example:
N=0&Nu=Winery

The records associated with the navigation query are grouped with respect to the rollup key prior to computing
the subset specified by the Nao parameter (that is, if Nu is specified, Nao applies to the aggregated records
rather than individual records). Aggregated records only apply to a navigation query. Therefore, the Nu query
parameter is only valid with an N parameter.

The equivalent API method to the Nu parameter is:
• Java: the ENEQuery.setNavRollupKey() method
• .NET: the ENEQuery.NavRollupKey property

Examples of these calls are:
// Java version
usq.setNavRollupKey("Winery");

// .NET version
usq.NavRollupKey("Winery");

When the aggregated record navigation query is made, the returned Navigation object which will contain
an AggrERecList object.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

51Creating Aggregated Records | Generating and displaying aggregated records

Setting the maximum number of returned records

You can use the Np parameter to control the maximum number of Oracle Commerce records returned in any
aggregated record. Set the parameter to 0 (zero) for no records, 1 for one record, or 2 for all records. For
example:
N=0&Np=2&Nu=Winery

The equivalent API method to the Np parameter is:
• Java: the ENEQuery.setNavERecsPerAggrERec() method
• .NET: the ENEQuery.NavERecsPerAggrERec property

Creating aggregated record queries
You can create aggregated record queries with URL query parameters or with Presentation API methods.

An aggregated record request is similar to an ordinary record request with these exceptions:
• If you are using URL query parameters, the A parameter is specified (instead of R). The value of the A

parameter is the record specifier of the aggregated record.
• If you are using the API, use the ENEQuery.setAggrERecSpec() method (Java) or the
ENEQuery.AggrERecSpec property (.NET) to specify the aggregated record to be queried for.

• The element returned is an aggregated record (not a record).

You can use the As parameter to specify a sort that determines the order of the representative records. You
can specify one or more sort keys with the As parameter. A sort key is a dimension or property name enabled
for sorting on the data set. Optionally, each sort key can specify a sort order of 0 (ascending sort, the default)
or 1 (descending sort). The As parameter is especially useful if you want to use the record boost and bury
feature with aggregated records.

Similar to an ordinary record, An (instead of N) is the user’s navigation state. Only records that satisfy this
navigation state are included in the aggregated record. In addition, the Au parameter must be used to specify
the aggregated record rollup key.

The following are two examples of queries using the An parameter:
An=0&A=32905&Au=Winery&As=Score

A=7&An=123&Au=ssn

For the API, the examples below show how the UrlGen class constructs the URL query string. Note the
following in the examples:

• The ENEQuery.setAggrERecSpec() method (Java) and the ENEQuery.AggrERecSpec property
(.NET) provide the aggregated record specifier to the A parameter.

• The ENEQuery.getNavDescriptors()method (Java) and the ENEQuery.NavDescriptors property
(.NET) get the navigation values for the An parameter.

• The ENEQuery.getNavRollupKey() method (Java) and the ENEQuery.NavRollupKey property
(.NET) get the name of the rollup key for the Au parameter.

Java example
// Create aggregated record request (start from empty request)
UrlGen urlg = new UrlGen("", "UTF-8");
urlg.addParam("A",aggrec.getSpec());
urlg.addParam("An",usq.getNavDescriptors().toString());
urlg.addParam("Au",usq.getNavRollupKey());
urlg.addParam("eneHost",(String)request.getAttribute("eneHost"));
urlg.addParam("enePort",(String)request.getAttribute("enePort"));

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Creating Aggregated Records | Generating and displaying aggregated records52

urlg.addParam("displayKey",String)request.getParameter("displayKey"));
urlg.addParam("sid",(String)request.getAttribute("sid"));
String url = CONTROLLER+"?"+urlg;
%><a href="<%= url %>">%>

.NET example
// Create aggregated record request (start from empty request)
urlg = new UrlGen("", "UTF-8");
urlg.AddParam("A", aggrec.Spec);
urlg.AddParam("An",usq.NavDescriptors.ToString());
urlg.AddParam("Au",usq.NavRollupKey);
urlg.AddParam("eneHost",(String)Request.QueryString["eneHost"]);
urlg.AddParam("enePort",(String)Request.QueryString["enePort"]);
urlg.AddParam("displayKey",(String)Request.QueryString["displayKey"]);
urlg.RemoveParam("sid");
urlg.AddParam("sid",(String)Request.QueryString["sid"]);
url = (String) Application["CONTROLLER"] + "?" + urlg.ToString();
%><a href="<%= url %>">%>

Getting aggregated records from record requests
The ENEQueryResults class has methods to retrieve aggregated record objects.

On an aggregated record request, the aggregated record is returned as an AggrERec object in the
ENEQueryResults object. Use these calls:

• The ENEQueryResults.containsAggrERec() method (Java) and the
ENEQueryResults.ContainsAggrERec()method (.NET) return true if the ENEQueryResults object
contains an aggregated record.

• The ENEQueryResults.getAggrERec() method (Java) and the ENEQueryResults.AggrERec
property (.NET) retrieve the AggrERec object from the ENEQueryResults object.

Java example
// Make MDEX Engine request
ENEQueryResults qr = nec.query(usq);
// Check for an AggrERec object in ENEQueryResults
if (qr.containsAggrERec()) {
 AggrERec aggRec = (AggrERec)qr.getAggrERec();
 ...
}

.NET example
// Make MDEX Engine request
ENEQueryResults qr = nec.Query(usq);
// Check for an AggrERec object in ENEQueryResults
if (qr.ContainsAggrERec()) {
 AggrERec aggRec = (AggrERec)qr.AggrERec;
 ...
}

Retrieving aggregated record lists from Navigation objects
The Navigation class calls can retrieve aggregated records.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

53Creating Aggregated Records | Generating and displaying aggregated records

On an aggregated record navigation query, a list of aggregated records (an AggrERecList object) is returned
in the Navigation object.

To retrieve a list of aggregated records returned by the navigation query, as an AggrERecList object, use:
• Java: the Navigation.getAggrERecs() method
• .NET: the Navigation.AggrERecs property

To get the number of aggregated records that matched the navigation query, use:
• Java: the Navigation.getTotalNumAggrERecs() method
• .NET: the Navigation.TotalNumAggrERecs property

Note that by default, the MDEX Engine returns a maximum of 10 aggregated records. To change this number,
use:

• Java: the ENEQuery.setNavNumAggrERecs() method
• .NET: the ENEQuery.NavNumAggrERecs property

Displaying aggregated record attributes
The AggrERec class calls can retrieve attributes of aggregated records.

After you retrieve an aggregated record, you can use the following AggrERec class calls:
• The getERecs() method (Java) and ERecs property (.NET) gets the Oracle Commerce records (ERec

objects) that are in this aggregated record.
• The getProperties() method (Java) and Properties property (.NET) return the properties (as a
PropertyMap object) of the aggregated record.

• The getRepresentative() method (Java) and Representative property (.NET) get the Oracle
Commerce record (ERec object) that is the representative record of this aggregated record.

• The getSpec() method (Java) and Spec property (.NET) get the specifier of the aggregated record to
be queried for.

• The getTotalNumERecs() method (Java) and TotalNumERecs property (.NET) return the number of
Oracle Commerce records (ERec objects) that are in this aggregated record.

The following code snippets illustrate these calls.

Java example
Navigation nav = qr.getNavigation();
// Get total number of aggregated records that matched the query
long nAggrRecs = nav.getTotalNumAggrERecs();
// Get the aggregated records from the Navigation object
AggrERecList aggrecs = nav.getAggrERecs();
// Loop over the aggregated record list
for (int i=0; i<aggrecs.size(); i++) {
 // Get individual aggregate record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get number of records in this aggregated record
 long recCount = aggrec.getTotalNumERecs();
 // Get the aggregated record's attributes
 String aggrSpec = aggrec.getSpec();
 PropertyMap propMap = aggrec.getProperties();
 ERecList recs = aggrec.getERecs();
 ERec repRec = aggrec.getRepresentative();
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Creating Aggregated Records | Generating and displaying aggregated records54

.NET example
Navigation nav = qr.Navigation;
// Get total number of aggregated records that matched the query
long nAggrRecs = nav.TotalNumAggrERecs;
// Get the aggregated records from the Navigation object
AggrERecList aggrecs = nav.AggrERecs;
// Loop over the aggregated record list
for (int i=0; i<aggrecs.Count; i++) {
 // Get individual aggregate record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get number of records in this aggregated record
 long recCount = aggrec.TotalNumERecs;
 // Get the aggregated record's attributes
 String aggrSpec = aggrec.Spec;
 PropertyMap propMap = aggrec.Properties;
 ERecList recs = aggRec.ERecs;
 ERec repRec = aggrec.Representative;
}

Displaying refinement counts for aggregated records
The dgraph.AggrBins property contains aggregated record statistics.

To enable dynamic statistics (aggregated record counts beneath a given refinement), use the --stat-abins
flag with the dgraph.

Statistics on aggregated records are returned as a property on each dimension value. For aggregated records,
this property is DGraph.AggrBins. In other words, to retrieve the aggregated record counts beneath a given
refinement, use the DGraph.AggrBins property.

The following code examples show how to retrieve the dynamic statistics for aggregated records.

Java example
DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.AggrBins") != null) {
 dstats = " ("+pmap.get("DGraph.AggrBins")+")";
 }
}

.NET example
DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref1 = (DimVal)dvl[i];
 PropertyMap pmap = ref.Properties;
 // Get dynamic stats
 String dstats = "";
 if (pmap["DGraph.AggrBins"] != null) {
 dstats = " ("+pmap["DGraph.AggrBins"]+")";
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

55Creating Aggregated Records | Generating and displaying aggregated records

Displaying the records in the aggregated record
A record in an aggregated record can be displayed like any other Oracle Commerce record.

You display the Oracle Commerce records (ERec objects) in an aggregated record with the same procedures
described in Chapter 5 ("Working with Oracle Commerce Records").

In the following examples, a list of aggregated records is retrieved from the Navigation object and the
properties of each representative record are displayed.

Java example
Get aggregated record list from the Navigation object
AggrERecList aggrecs = nav.getAggrERecs();
// Loop over aggregated record list
for (int i=0; i<aggrecs.size(); i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get representative record of this aggregated record
 ERec repRec = aggrec.getRepresentative();
 // Get property map for representative record
 PropertyMap repPropsMap = repRec.getProperties();
 // Get property iterator to loop over the property map
 Iterator repProps = repPropsMap.entrySet().iterator();
 // Display representative record properties
 while (repProps.hasNext()) {
 // Get a property
 Property prop = (Property)repProps.next();
 // Display name and value of the property
 %>
 <tr>
 <td>Property name: <%= prop.getKey() %></td>
 <td>Property value: <%= prop.getValue() %>
 </tr>
 <%
 }
}

.NET example
/ Get aggregated record list from the Navigation object
AggrERecList aggrecs = nav.AggrERecs;
// Loop over aggregated record list
for (int i=0; i<aggrecs.Count; i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get representative record of this aggregated record
 ERec repRec = aggrec.Representative;
 // Get property map for representative record
 PropertyMap repPropsMap = repRec.Properties;
 // Get property list for representative record
 System.Collections.Ilist repPropsList = repPropsMap.EntrySet;
 // Display representative record properties
 foreach (Property repProp in repPropsList) {
 %>
 <tr>
 <td>Property name: <%= repProp.Key %></td>
 <td>Property value: <%= repProp.Value %>
 </tr>
 <%

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Creating Aggregated Records | Generating and displaying aggregated records56

 }
}

Aggregated record behavior
Aggregated records behave differently than ordinary records.

Programmatically, an ordinary record is an ERec object while an aggregated record is an AggrERec object.

Two of the major differences between the two types of records are in their representative values and sorting
behavior:

• Representative values – Given a single record, evaluating the record’s information is straightforward.
However, aggregated records consist of many records, which can have different representative values.
Generally for display and other logic requiring record values, a single representative record from the
aggregated record is used. The representative record is the individual record that occurs first in order of
the underlying records in the aggregated record. This order is determined by either a specified sort key or
a relevance ranking strategy.

• Sort – The sort feature is first applied to all records in the data set (prior to aggregating the records). The
record at the top of this set is the record with the highest sort value. Given the sorted set of records,
aggregated records are created by iterating over the set in descending order, aggregating records with the
same rollup key. An aggregated record’s rank is equal to that of the highest ranking record in that aggregated
record set. The result is the same as aggregating all records on the rollup key, taking the highest value of
the sort key for these aggregated records and sorting the set based on this value.

Note: If you have a defined list of sort keys, the first key is the primary sort criterion, the second key
is the secondary sort criterion, and so on.

The presentation developer has more power over retrieving the representative values. The individual records
are returned with the aggregated record. Therefore, the developer has all the information necessary to correctly
represent aggregated records (at the cost of increased complexity). However, to achieve the desired sort
behavior, the MDEX Engine must be configured correctly, because the internals of this operation are not
exposed to the presentation developer.

Refinement ranking of aggregated records
The MDEX Engine uses the aggregated record counts beneath a given refinement for its refinement ranking
strategy only if they were computed for the query sent to the MDEX Engine.

The MDEX Engine computes refinement ranking based on statistics for the number of records beneath a given
refinement. In the case of aggregated records, refinement ranking depends on whether you have requested
the MDEX Engine to compute statistics for aggregated record counts beneath a given refinement.

The following statements describe the behavior:
• To enable dynamic statistics for aggregated records (aggregated record counts beneath a given refinement),

use the --stat-abins flag with the dgraph.
• To retrieve the aggregated record counts beneath a given refinement, use the DGraph.AggrBins property.
• If you specify --stat-abinswhen starting a dgraph and issue an aggregated query to the MDEX Engine,

it then computes counts for aggregated records beneath a given refinement, and generates refinement
ranking based on statistics computed for aggregated records.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

57Creating Aggregated Records | Aggregated record behavior

• If you specify --stat-abins and issue a non-aggregated query to the MDEX Engine, it only computes
counts for regular records (instead of aggregated record counts) beneath a given refinement, and generates
refinement ranking based on statistics computed for regular records.

• If you do not specify --stat-abins and issue an aggregated query to the MDEX Engine, it only computes
counts for regular records (instead of aggregated record counts) beneath a given refinement, and generates
refinement ranking based on statistics computed for regular records.

To summarize, the MDEX Engine uses the aggregated record counts beneath a given refinement for its
refinement ranking strategy only if they were computed. In all other cases, it uses only regular record counts
for refinement ranking.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Creating Aggregated Records | Refinement ranking of aggregated records58

Chapter 7

Controlling Record Values with the Select Feature

This section describes how to use the Select feature for selecting specific keys (Oracle Commerce properties
and/or dimensions) from the data so that only a subset of values is returned for Oracle Commerce records in
a query result set.

About the Select feature
Your application can return record sets based on specific keys.

A set of Oracle Commerce records is returned with every navigation query result. By default, each record
includes the values from all the keys (properties and dimensions) that have record page and record list attributes.
These attributes are set with the Show with Record (for record page) and Show with Record List (for record
list) checkboxes, as configured in Developer Studio.

However, if you do not want all the key values, you can control the characteristics of the records returned by
navigation queries by using the Select feature.

The Select feature enables you to select specific keys (Oracle Commerce properties and/or dimensions) from
the data so that only a subset of values will be transferred for Oracle Commerce records in a query result set.
The Select functionality allows the application developer to determine these keys dynamically, instead of at
dgraph startup. This selection overrides the default record page and record list fields.

A Web application that does not make use of all of the properties and dimension values on a record can be
more efficient by only requesting the values that it will use. The ability to limit what fields are returned is useful
for exporting bulk-format records and other scenarios. For example, if a record has properties that correspond
to the same data in a number of languages, the application can retrieve only the properties that correspond
to the current language. Or, the application may render the record list using tabs to display different sets of
data columns (e.g., one tab to view customer details and another to view order details without always returning
the data needed to populate both tabs).

This functionality prevents the transferring of unneeded properties and dimension values when they will not
be used by the front-end Web application. It therefore makes the application more efficient because the
unneeded data does not take up network bandwidth and memory on the application server.

The Select feature can also be used to specifically request fields that are not transferred by default.

Configuring the Select feature
No system configuration is required for the Select feature.

In other words, no instance configuration is required in Developer Studio and no Dgidx or dgraph flags are
required to enable selection of properties and dimensions. Any existing property or dimension can be selected.

URL query parameters for Select
There is no Select-specific URL query parameter.

A query for selected fields is the same as any valid navigation query. Therefore, the Navigation parameter (N)
is required for the request

Selecting keys in the application
With the Select feature, the Web application can specify which properties and dimensions should be returned
for the result record set from the navigation query.

The specific selection method used by the application depends on whether you have a Java or .NET
implementation.

Java selection method
Use the ENEQuery.setSelection() method for Java implementations.

For Java-based implementations, you specify the selection list by calling the setSelection() method of
the ENEQuery object. Use the following syntax:
ENEQuery.setSelection(FieldList selectFields)

where selectFields is a list of property or dimension names that should be returned with each record. You can
populate the FieldList object with string names (such as "P_WineType") or with Property or Dimension
objects. In the case of objects, the FieldList.addField() method automatically extracts the string name
from the object and adds it to the FieldList object.

During development, you can use the ENEQuery.getSelection() method (which returns a FieldList
object) to check which fields are set.

The FieldList object contains a list of Oracle Commerce property and/or dimension names for the query.
For details about the methods of the FieldList class, see the Oracle Commerce Javadocs for the Presentation
API.

Note: The setSelection() and getSelection() methods are also available in the UrlENEQuery
class.

Java Select example

The following is a simple Java example of setting an Oracle Commerce property and dimension for a navigation
query. When the ENEQueryResults object is returned, it will have a list of records that have been tagged
with the P_WineType property and the Designation dimension. You extract the records as with any record
query.
// Create a query
ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");
// Create an empty selection list
FieldList fList = new FieldList();

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Controlling Record Values with the Select Feature | URL query parameters for Select60

// Add an Oracle Commerce property to the list
fList.addField("P_WineType");
// Add an Oracle Commerce dimension to the list
fList.addField("Designation");
// Add the selection list to the query
usq.setSelection(fList);
// Make the MDEX Engine query
ENEQueryResults qr = nec.query(usq);

.NET selection property
Use the ENEQuery.Selection() property for Java implementations.

In a .NET application, the ENEQuery.Selection property is used to get and set the FieldList object. You
can add properties or dimensions to the FieldList object with the FieldList.AddField property.

Note: The Selection property is also available in the UrlENEQuery class.

.NET selection example

The following is a C# example of setting an Oracle Commerce property and dimension for a navigation query.
// Create a query
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");
// Create an empty selection list
FieldList fList = new FieldList();
// Add an Oracle Commerce property to the list
int i = fList.AddField("P_WineType");
// Add an Oracle Commerce dimension to the list
i = fList.AddField("Designation");
// Add the selection list to the query
usq.Selection = fList;
// Make the MDEX Engine query
ENEQueryResults qr = nec.query(usq);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

61Controlling Record Values with the Select Feature | Selecting keys in the application

Chapter 8

Using the Oracle Commerce Query Language

This section describes how to use the Oracle Commerce Query Language, which allows you to create various
types of record filters when making navigation queries for record search.

About the Oracle Commerce Query Language
The Oracle Commerce Query Language (EQL) contains a rich syntax that allows an application to build dynamic,
complex filters that define arbitrary subsets of the total record set and restrict search and navigation results to
those subsets.

Besides record search, these filters can also be used for dimension search. EQL is available as a core feature
of Oracle Commerce Guided Search with the capabilities listed in the next section, “Basic filtering capabilities”.
In addition, Record Relationship Navigation (RRN) (described in the topic “Record Relationship Navigation
module”) extends the MDEX Engine capability.

Basic filtering capabilities
You can use EQL to create an expression that can filter on different features.

These include:
• Dimension values
• Specific property values
• A defined range of property values (range filtering)
• A defined range of geocode property values (geospatial filtering)
• Text entered by the user (record search)

The language also supports standard Boolean operators (and, or, and not) to compose complex expressions.
In addition, EQL requests can be combined with other Oracle Commerce features, such as spelling
auto-correction, Did You Mean suggestions, and the sorting parameters (Ns and Nrk). details about these
interactions are provided in “Oracle Commerce Query Language and other features.”

Record Relationship Navigation module
The Record Relationship Navigation (RRN) module is intended for use with complex relational data.

This module is intended for sites that have different types of records, in which properties in one record type
have values that refer to properties in another record type. For example, an Author record type can have an

author_bookref property with the ID of a Book record type. In this case, you can leave the records uncombined
(when the pipeline is run) and then have the MDEX Engine apply a relationship filter among the record types
with an RRN request.

Among the benefits of query-time relationship filters are:
• Reduced memory footprint: With no need to combine different types of records in the pipeline, this will

reduce the memory footprint of the MDEX Engine, allowing more data to fit into a single engine.
• Reduced application complexity: With the MDEX Engine handling the data relationships, custom application

logic will be greatly simplified.
• Improved performance: RRN improves query performance by removing the need to query the MDEX Engine

multiple times, thereby reducing the data being transferred over the network.
For details about constructing these types of requests, see “Record Relationship Navigation queries.”

Oracle Commerce Query Language syntax
The following EBNF grammar describes the syntax for EQL filter expressions.
RecordPath ::= Collection "(" ")" "/" RecordStep
Collection ::= FnPrefix? "collection"
FnPrefix ::= "fn" ":"
RecordStep ::= "record" Predicate?
Predicate ::= "[" Expr "]"
Expr ::= OrExpr
OrExpr ::= AndExpr ("or" AndExpr)*
AndExpr ::= NotExpr ("and" NotExpr)*
NotExpr ::= PrimaryExpr | (FnPrefix? "not" "(" Expr ")")
PrimaryExpr ::= ParenExpr | TestExpr
ParenExpr ::= "(" Expr ")"
TestExpr ::= ComparisonExpr | FunctionCall
FunctionCall ::= TrueFunction | FalseFunction | MatchesFunction
TrueFunction ::= FnPrefix? "true" "(" ")"
FalseFunction ::= FnPrefix? "false" "(" ")"
MatchesFunction ::= "endeca" ":" "matches" "(" "." ","
 StringLiteral "," StringLiteral ("," StringLiteral (","
 StringLiteral ("," (TrueFunction | FalseFunction))?)?)?
 ")"
ComparisonExpr ::= LiteralComparison | JoinComparison
 | RangeComparison | GeospatialComparison
 | DimensionComparison
EqualityOperator ::= "=" | "!="
LiteralComparison ::= PropertyKey EqualityOperator Literal
JoinComparison ::= PropertyKey "=" PropertyPath
RangeComparison ::= PropertyKey RangeOperator NumericLiteral
GeospatialComparison ::= "endeca" ":" "distance" "("
 PropertyKey "," "endeca" ":" "geocode" "(" NumericLiteral ","
 NumericLiteral ")" ")" (">" | "<") NumericLiteral
DimensionComparison ::= DimensionKey EqualityOperator
 (DimValById | DimValPath) "//" "id"
DimValById ::= "endeca" ":" "dval-by-id" "(" IntegerLiteral ")"
DimValPath ::= Collection "(" "" "dimensions" "" ")"
 ("/" DValStep)*
DValStep ::= ("*" | "dval") "[" "name" "=" StringLiteral "]"
DimensionKey ::= NCName
PropertyPath ::= RecordPath "/" PropertyKey
PropertyKey ::= NCName
RangeOperator ::= "<" | "<=" | ">" | ">="

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language syntax64

Literal ::= NumericLiteral | StringLiteral
NumericLiteral ::= IntegerLiteral | DecimalLiteral
StringLiteral ::= '"' ('""' | [^"])* '"'
IntegerLiteral ::= [0-9]+
DecimalLiteral ::= ([0-9]+ "." [0-9]*) | ("." [0-9]+)

The EBNF uses these notations:
• + means 1 or more instances of a component
• ? means 0 or 1 instances
• * means 0 or more instances

The EBNF uses the same Basic EBNF notation as the W3C specification of XML, located at this URL:
http://www.w3.org/TR/xml/#sec-notation

Also, note these important items about the syntax:
• Keywords are case sensitive. For example, “endeca:matches” must be specified in lower case, as must

the and and or operators.
• The names of keywords are not reserved words across the Oracle Commerce namespace. For example,

if you have a property named collection, its name will not conflict with the name of the collection()
function.

• To use the double-quote character as a literal character (that is, for inclusion in a string literal), it must be
escaped by prepending it with a double-quote character.

These and other aspects of EQL will be discussed further in later sections of this section.

Negation operators
EQL provides two negation operators.

As the EBNF grammar shows, EQL provides two negation operators:
• The not operator
• The != operator

An example of the not operator is:
collection()/record[not(Recordtype = "author")]

An example of the != operator is:
collection()/record[Recordtype != "author"]

Although both operators look like they work the same, each in fact may return a different record set. Using the
above two sample queries:

• The not operator example returns any record which does not have a Recordtype property with value
"author" (including records which have no Recordtype properties at all).

• The != operator returns only records which have non-"author" Recordtype property values. This operator
excludes records which have no Recordtype properties.

The small (but noticeable) difference in the result sets may be a useful distinction for your application.

Using negation on properties

EQL supports filtering by the absence of assignments on records. By using the not operator, you can filter
down to the set of records which do not have a specific property assignment.

For example:
collection()/record[author_id]

Oracle Commerce Guided Search MDEX Engine Developer's Guide

65Using the Oracle Commerce Query Language | Oracle Commerce Query Language syntax

http://www.w3.org/TR/xml/#sec-notation

returns all records with the "author_id" property, while:
collection()/record[not (author_id)]

returns all records without the "author_id" property.

NCName format for properties and dimensions
With a few exceptions (noted when applicable), the names of Oracle Commerce properties and dimensions
used in EQL requests must be in an NCName format.

(This restriction does not apply to the names of non-root dimension values or to the names of search interfaces.)
The names are also case sensitive when used in EQL requests.

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

As defined in the W3C document, an NCName must start with either a letter or an underscore (but keep in
mind that the W3C definition of Letter includes many non-Latin characters). If the name has more than one
character, it must be followed by any combination of letters, digits, periods, dashes, underscores, combining
characters, and extenders. (See the W3C document for definitions of combining characters and extenders.)
The NCName cannot have colons or white space.

Take care when creating property names in Developer Studio, because that tool allows you to create names
that do not follow the NCName rules. For example, you can create property names that begin with digits and
contain colons and white space. Any names which do not comply with NCName formatting will generate a
warning when running your pipeline.

The property must also be explicitly enabled for use with record filters (not required for record search queries).
Dimension values are automatically enabled for use in record filtering expressions, and therefore do not require
any special configuration.

URL query parameters for the Oracle Commerce Query Language
The MDEX Engine URL query parameters listed in this topic are available to control the use of EQL requests.

• Nrs - The Nrs parameter specifies an EQL request that restricts the results of a navigation query. This
parameter links to the Java ENEQuery.setNavRecordStructureExpr() method and the .NET
ENEQuery.NavRecordStructureExpr property. The Nrs parameter has a dependency on the N
parameter, because a navigation query is being performed.

• Ars - The Ars parameter specifies an EQL request that restricts the results of an aggregated record query.
This parameter links to the Java ENEQuery.setAggrERecStructureExpr() method and the .NET
ENEQuery.AggrERecStructureExpr property. The Ars parameter has a dependency on the A
parameter, because an aggregated record query is being performed.

• Drs - The Drs parameter specifies an EQL request that restricts the set of records considered for a
dimension search. Only dimension values represented on at least one record satisfying the filter are returned
as search results. This parameter links to the Java
ENEQuery.setDimSearchNavRecordStructureExpr()method and the .NETENEQuery.DimSearch¬
NavRecordStructureExpr property. The Drs parameter has a dependency on the D parameter.

These parameters (including the EQL expression) must be URL-encoded. For example, this query:
collection()/record[Recordtype = "author"]

should be issued in this URL-encoded format:
collection%28%29/record%5BRecordtype%20%3D%20%22author%22%5D

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language syntax66

http://www.w3.org/TR/REC-xml-names/#NT-NCName

However, the examples in this chapter are not URL-encoded, in order to make them easier to understand.

Making Oracle Commerce Query Language requests
The collection() function is used to query the MDEX Engine for a set (that is, a collection) of Oracle
Commerce records, based on an expression that defines the records you want.

EQL allows you to make the following types of requests, all of which begin with the collection() function:
• Property value query
• Record Relationship Navigation query
• Dimension value query
• Record search query
• Range filter query

The basic syntax for the collection() function is:
fn:collection()/record[expression]

The fn: prefix is optional, and for the sake of brevity will not be used in the examples in this chapter. The
/record step indicates that Oracle Commerce records are being selected. The expression argument (which
is called the predicate) is an EQL expression that filters the total record set to the subset that you want. The
predicate can contain one or more collection() functions (multiple functions are nested).

Issuing the collection() function without a predicate (that is, without an expression) returns the total record
set because the query is not filtering the records. This query is therefore the same as issuing only an N=0
navigation query, which is a root navigation request.

The following sample query illustrates the use of the collection() function with the Nrs parameter:
controller.jsp?N=0&Nrs=collection()/record[book_id = 8492]

Because EQL is a filtering language, it does not have a built-in sorting option. Therefore, an EQL request
returns the record set using the MDEX Engine default sort order. You can, however, append a URL sorting
parameter, such as the Ns parameter or the Nrk, Nrt, Nrr, and Nrm set of parameters. For more information
about the interaction with other Oracle Commerce features, see “Oracle Commerce Query Language and
other features.”

Property value queries
Property value queries (also called literal comparison queries) return those records that have a property whose
value on the records is equal to a specified literal value.

The syntax for this type of query is:
collection()/record[propertyName = literalValue]

where:
• propertyName is the NCName of an Oracle Commerce property that is enabled for record filters. Dimension

names are not supported for this type of query.
• literalValue is a number (either integer or floating point) or a quoted string literal. Numbers are not

quoted. For a record to be returned, the value of literalValue must exactly match the value of prop¬
ertyName, including the case of the value for quoted string literals. Wildcards are not supported, even if
the property has been enabled for wildcard search.

Because it is a predicate, the expression must be enclosed within square brackets. Expressions can be nested.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

67Using the Oracle Commerce Query Language | Making Oracle Commerce Query Language requests

Note that you can use one of the negation operators described in the "Negation operators" topic.

Examples

The first example illustrates a simple property comparison query:
collection()/record[Recordtype = "author"]

This query returns all records that have a property named Recordtype whose value is “author”. If a
Recordtype property on a record has another value (such as “editor”), then that record is filtered out and
not returned.

The second example illustrates how to use the and operator:
collection()/record[author_nationality = "english"
 and author_deceased = "true"]

This query returns all Author records for English writers who are deceased.

Record Relationship Navigation queries
EQL allows you to issue a request against normalized records, using record-to-record relationship filter
expressions. These types of requests are called Record Relationship Navigation (RRN) queries.

If you have different record types in your source data, you can keep the records uncombined by using a Switch
join in your pipeline. Then, by issuing an RRN query, the MDEX Engine can apply a relationship filter to the
records at query time. Depending on how you have tagged the properties on the records, an RRN query can
return records of only one type or of multiple types.

For example, assume that you want to have three record types (Author records, Book records, and Editor
records). To define the record type, all the records have a property named Recordtype (the actual name
does not matter). Author records have this property set to “author”, Book records have it set to “book”,
and Editor records use a value of “editor”. In your pipeline, you use a Switch join to leave those records
uncombined. You can then filter Book records via relationship filters with Author and Editor records, but
the returned records (and their dimension refinements) will be Book records only. This means that any other
query parameters apply only to the record type that is returned.

Record Relationship Navigation query syntax
This topic describes the syntax of Record Relationship Navigation (RRN) queries.

The basic syntax for an RRN query is:
collection()/record[propertyKey1 = recordPath/propertyKey2]

where:
• propertyKey1 is the NCName of an Oracle Commerce property on a record type to be filtered. The

resulting records will have this property.
• recordPath is one or more collection()/record functions.
• propertyKey2 is the NCName of an Oracle Commerce property on another record type that will be

compared to propertyKey1. Records that satisfy the comparison will be added to the returned set of
records.

The forward slash (/) character is required between recordPath and propertyKey2 because propertyKey2
is a property step.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Record Relationship Navigation queries68

There are two ways to differentiate RRN queries from other types of EQL requests:
• RRN queries have a collection()/record function on the right side of the comparison operator in the

predicate.
• They include a property step.

The following example illustrates a basic relationship filter query:
collection()/record[author_bookref =
 collection()/record[book_year = "1843"]/book_id]

In this example, the author_bookref is a property of Author records, which means that Author records
are returned. These records are filtered by the book_year and book_id properties of the Book records. The
author_bookref property is a reference to the book_id property (which is being used as the property step).
Therefore, the query returns Author records for authors who wrote books that were published in 1843. There
is an inner collection()/record function (which uses book_year as its property key) on the right side
of the comparison expression.

The above query example is shown in a linear format. The query can also be made in a structured format,
such as the following:
collection()/record
[
 author_bookref = collection()/record
 [
 book_year = "1843"
]
 /book_id
]

This structured format will be used for most of the following examples, as it makes it easier to parse the query.

Relationship filter expressions work from the inside out (that is, the inner expressions are performed before
the outer ones). In this example, the MDEX Engine first processes the Book records to come up with a set of
Book records that have the book_year property set to “1843”. Then the book_id property values of the
Book records provide a list of IDs that are used as indexes to filter the Author records (that is, as comparisons
to the author_bookref property).

Record Relationship Navigation query examples
This topic contains examples of RRN queries.

The following examples assume that you have three record types in your source data: Author records, Book
records, and Editor records. While all records have several properties, the Author and Book records have
these properties that establish a relationship between the record types:

• Author records have an author_bookref property that references the book_id property of Book
records. In addition, Author records have an author_editorref property that references the editor_id
property of an Editor record.

• Book records have a book_authorref property that references the author_id property of Author
records.

Using these cross-record reference properties, an RRN query can apply relationship filters between the record
types.

RRN relationship filter examples
These examples illustrate how to build relationship filter queries.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

69Using the Oracle Commerce Query Language | Record Relationship Navigation queries

The user may first issue a query for Editor records for an editor named Jane Smith who works in the city of
Boston:
collection()/record
[
 editor_name = "Jane Smith"
 and
 editor_city = "Boston"
]

The query is then modified for Author records:
collection()/record
[
 author_editorref = collection()/record
 [
 editor_name = "Jane Smith"
 and
 editor_city = "Boston"
]
 /editor_id
]

The query returns all Author records filtered by the results of the Editor records. That is, the Author records
are filtered by the editor_id property of the Editor records (which are referenced by the author_editor¬
ref property in the Author records).

The next example query returns books by American authors:
collection()/record
[
 book_authorref = collection()/record
 [
 author_nationality = "american"
]
 /author_id
]

The next example query returns all books by authors who are still alive:
collection()/record
[
 book_authorref = collection()/record
 [
 author_deceased ="false"
]
 /author_id
]

The next example query combines the two previous examples, and also illustrates the use of the or operator.
Both inner collection()/record functions use the author_id property value results as indexes for the
Book records.
collection()/record
[
 book_authorref = collection()/record
 [
 author_nationality = "american"
]
 /author_id
 or
 book_authorref = collection()/record
 [

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Record Relationship Navigation queries70

 author_deceased="false"
]
 /author_id
]

The next example query returns the books written by authors who have had those books published in a
hard-cover format.
collection()/record
[
 book_authorref=collection()/record
 [
 author_bookref=collection()/record
 [
 book_cover = "hard"
]
 /book_id
]
 /author_id
]

The next query example extends the previous one by returning the books written by authors who have published
hard-cover books and have worked with an editor named "Jane Smith". The query also shows how to apply
relationship filters among all three record types.
collection()/record
[
 book_authorref=collection()/record
 [
 author_bookref=collection()/record
 [
 book_cover="hard"
]
 /book_id
 and
 author_editorref=collection()/record
 [
 editor_name="Jane Smith"
]
 /editor_id
]
 /author_id
]

In the final example, this powerful query returns all books written by the author of a play titled "The Island
Princess" (which was written by English playwright John Fletcher) and also all books that were written by
authors who co-wrote books with Fletcher. The result set will include plays that were written either by Fletcher
or by anyone who has ever co-authored a play with Fletcher.
collection()/record
[
 book_authorref = collection()/record
 [
 author_bookref = collection()/record
 [
 book_authorref = collection()/record
 [
 author_bookref = collection()/record
 [
 book_title = "The Island Princess"
]

Oracle Commerce Guided Search MDEX Engine Developer's Guide

71Using the Oracle Commerce Query Language | Record Relationship Navigation queries

 /book_id
]
 /author_id
]
 /book_id
]
 /author_id
]

Dimension value queries
Dimension value queries allow you to filter records by dimension values. The dimension value used for filtering
can be any dimension value in a flat dimension or in a dimension hierarchy.

Rules for the naming format of the dimension value are as follows:
• For a root dimension value (which has the same name as the dimension), the name must be in the NCName

format.
• For a non-root dimension value (such as a leaf), the name does not have to be in the NCName format.

There are two syntaxes for using dimension values to filter records, depending on whether you are specifying
a dimension value path or an explicit dimension value node.

Querying with dimension value paths
The syntax described in this topic specifies a dimension value path to the collection()/record function.

The path can specify just the root dimension value, or it can traverse part or all of a dimension hierarchy. The
query will return all records that are tagged with the specified dimension value and with descendants (if any)
of that dimension value.

Use the following steps to construct a dimension value path:

1. The path must start with the NCName of the dimension from which the dimension values will be filtered.
Tthe dimension name is not quoted and is case sensitive:[dimName = collection("dimensions")

2. It must then be followed by a slash-separated step specifier that uses the dval keyword (or the * keyword,
both are interchangeable) and the name of the root dimension value, which is the same name as the
dimension name. The name is case sensitive and must be within double quotes: /dval[name = "dval¬
Name"] or /*[name = "dvalName"].

3. Optionally, you can use one or more slash-separated step specifiers to specify a path to a dimension value
descendant. These step specifiers use the same syntax as described in the previous step. Names of
descendant dimension values do not have to be in the NCName format.

4. The dimension value path must be terminated with //id. The //id path terminator specifies that the path
be extended to any descendants of the last specified dvalName dimension value. The resulting syntax is:
collection()/record[dimName = collection("dimensions")/dval[name = "dval¬
Name"]//id.

Note that you can use one of the negation operators described in the "Negation operators" topic.

Query examples using dimension value paths
The examples in this topic illustrate how to construct dimension value paths using EQL syntax rules.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Dimension value queries72

The examples use the Genre dimension, which has this hierarchy:
Genre
 Fiction
 Classic
 Literature
 Science-fiction
 Non-fiction

The Fiction dimension value has two descendants (Classic and Science-fiction), while the Non-fiction dimension
value has no descendants (that is, it is a leaf dimension value).

The first example query is made against the dimension named Genre (the dimName argument). It uses one
step specifier for the root dimension value (also named Genre). The query returns all records that are tagged
with the Genre dimension value, including all its descendants (such as the Classic dimension value).
collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]//id
]

The next example query uses two step specifiers in the predicate. The dimension value path begins with the
dimension name (Genre), followed by the root dimension value name (also Genre), and finally the Fiction child
dimension value. The query returns all records that are tagged with the Fiction dimension value, including its
three descendants (Classic, Literature, and Science-fiction). Records tagged only with the Non-fiction dimension
value are not returned because it is not a descendant of Fiction.
collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Fiction"]//id
]

The next example query uses three step specifiers to drill down to the Classic dimension value, which is a
descendant of Fiction. The query returns all records that are tagged with the Classic dimension value or its
Literature descendant. The example also shows the use of * (instead of dval) in the step specifier.
collection()/record
[
 Genre =collection("dimensions")/*[name="Genre"]
 /*[name="Fiction"]/*[name="Classic"]//id
]

The final example shows how you can use the or operator to specify two dimension value paths. The query
returns records tagged with either the Science-fiction or Non-fiction dimension values. Using the and operator
in place of the or operator here would return records tagged with both the Science-fiction and Non-fiction
dimension values.
collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Fiction"]/dval[name="Science-fiction"]//id
 or
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Non-fiction"]//id
]

Querying with dimension value IDs
You can also query dimension value paths using the numerical ID of a dimension value, rather than its name.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

73Using the Oracle Commerce Query Language | Dimension value queries

In this case, the query returns records that are tagged with this dimension value and all of its descendants (if
any). This syntax does not use the "dimensions" argument to the collection() function, but it does use the
endeca:dval-by-id() helper function, as follows:
collection()/record[dimName = endeca:dval-by-id(dimValId)//id]

where:

• dimName is the NCName of the dimension from which the dimension values are filtered. The dimension
name is not quoted and is case sensitive.

• dimValId is the ID of the dimension value on the records that you want returned. dimValId can be any
dimension value in the dimension and is not quoted.

• //id is the path terminator that specifies that the path be extended to any descendants of dimValId.

You can also use the and or or operators, as shown in the second example below. You can also use one of
the negation operators described in the "Negation operators" topic.

Examples

The first query example selects records that are tagged with either the dimension value whose ID is 9 or its
descendants.
collection()/record
[
 Genre = endeca:dval-by-id(9)//id
]

The next query example uses an or operator to select records that are tagged with either dimension value 8
(or its descendants) or dimension value 11 (or its descendants).
collection()/record
[
 Genre = endeca:dval-by-id(8)//id
 or
 Genre = endeca:dval-by-id(11)//id
]

Record search queries
The endeca:matches() function allows a user to perform a keyword search against specific properties or
dimension values assigned to records. (Record search queries are also called text search queries.)

The resulting records that have matching properties or dimension values are returned, along with any valid
refinement dimension values. The search operation returns results that contain text matching all user search
terms (that is, the search is conjunctive by default). To perform a less restrictive search, use the matchMode
argument to specify a match mode other than MatchAll mode. Wildcard terms (using the * character) can
be specified if the search interface or property is configured for wildcards in Developer Studio.

Note the following about record search queries:

• The text search is case insensitive, including phrase search.
• Properties must be enabled for record search (in Developer Studio). Records with properties that are not

enabled for record search will not be returned in this type of query.
• For wildcard terms, properties must be enabled for wildcard search.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Record search queries74

The syntax for a record search query is:
collection()/record[endeca:matches(., "searchKey", "searchTerm", "matchMode",
"languageId", autoPhrase)]

The meanings of the arguments are as follows:

MeaningArgument

Required. The period is currently the only valid option. The period is the XPath
context item, which is the node currently being considered (that is, the node to apply
the function to). In effect, the context item is the record to search.

.

Required. The name of an Oracle Commerce property or search interface which
will be evaluated for the search. The name must be specified within a set of double

searchKey

quotes. Property names must use the NCName format and must be enabled for
record search. Search interface names do not have to use the NCName format.

Required. The term to search for (which may contain multiple words or phrases).
Specify the search term within a pair of double quotes. Phrase searches within

searchTerm

searchTerm must be enclosed within two pairs of double quotes in addition to the
pair enclosing the entire searchTerm entry. (This is because a pair of double
quotes is the XPath escape sequence for a single double quote character within a
string literal.)

For example, in "Melville ""Moby Dick"" hardcover", the phrase "Moby Dick" is
enclosed in two pairs of double quotes: these yield a single escaped pair which
indicates a phrase search for these words. In another example, """Tiny Tim""", the
outermost pair of double quotes delimits the full searchTerm value, while the two
inner pairs yield a single escaped pair to indicate a phrase search.

Note: To enable EQL parsing, use straight double-quote characters for
double quotes (rather than typographer’s double quotes, which the EQL
parser does not accept).

Optional. A match mode (also called a search mode) that specifies how restrictive
the match should be. The match mode must be specified within a set of double
quotes.

matchMode

The valid match modes are all (MatchAll mode; perform a conjunctive search by
matching all user search terms; this is the default), partial (MatchPartial mode;
match some of the search terms), any (MatchAny mode; results need match only
a single search term), allpartial (MatchAllPartial mode; first use MatchAll mode
and, if no results are returned, then use MatchPartial mode), allany (MatchAllAny
mode; first use MatchAll mode and, if no results are returned, then use MatchAny
mode), and partialmax (MatchPartialMax mode; first use MatchAll mode and, if
no results are returned, then return results matching all but one term, and so on).

Note: MatchBoolean is not supported, because EQL has its own powerful
set of query composition features such as the and, or, and not operators.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

75Using the Oracle Commerce Query Language | Record search queries

MeaningArgument

Optional. A per-query language ID, such as “fr” for French. The ID must be specified
within a set of double quotes. For a list of valid language IDs, see the topic “Using
language identifiers." The default language ID is the default for the MDEX Engine.

languageId

Optional. A TrueFunction or FalseFunction that sets the option for automatic-phrasing
query re-write. The default is false(), which disables automatic phrasing.

autoPhrase

Specifying true() enables automatic phrasing, which instructs the MDEX Engine
to compute a phrasing alternative for a query and then rewrite the query using that
phrase. For details about automatic phrasing (including adding phrases to the
project with Developer Studio), see the topic “Using automatic phrasing."

Record search query examples
This topic contains examples of record search queries.

The first query example searches for the name jane against the editor_name property of any record. Because
they are not specified, these defaults are used for the other arguments: MatchAll mode, language ID is the
MDEX Engine default, and automatic phrasing is disabled.
collection()/record
[
 endeca:matches(.,"editor_name","jane")
]

The next query example is identical to the first one, except that the wildcard term ja* is used for the search
term. If the editor_name property is wildcard-enabled, this search returns records in which the value of the
property has a value that begins with ja (such as “Jane” or “James”).
collection()/record
[
 endeca:matches(.,"editor_name","ja*")
]

The next query example searches for four individual terms against the "description" property of any records.
The partialmax argument specifies that the MatchPartialMax match mode be used for the search. The
language ID is English (as specified by the "en" argument) and automatic phrasing is disabled (because the
default setting is used). Because the MatchPartialMax match mode is specified, MatchAll results are returned
if they exist. If no such results exist, then results matching all but one terms are returned; otherwise, results
matching all but two terms are returned; and so forth.
collection()/record
[
 endeca:matches(.,"description",
 "sailor seafaring ship ocean","partialmax","en")
]

The next query example illustrates a phrase search. Any phrase term must be within a pair of double quotes,
as in the example ""Tiny Tim"". This is because a pair of double quotes is the XPath escape sequence for a
single double-quote character within a string literal. Thus, if the entire search term is a single phrase, there
are three sets of quotes, as in the example.
collection()/record
[

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Record search queries76

 endeca:matches(.,"description","""Tiny Tim""")
]

In the final query example, the use of the true() function enables the automatic phrasing option. This example
assumes that phrases have been added to the project with Developer Studio or Oracle Commerce Workbench.
The example also illustrates the use of the MatchAll match mode.
collection()/record
[
 endeca:matches(.,"description","story of","all","en",true())
]

Range filter queries
The EQL range filter functionality allows a user, at request time, to specify either a literal value or a geocode
value to limit the records returned for the query.

The remaining refinement dimension values for the records in the result set are also returned. The literal value
expressions are called basic range queries and the geocode value expressions are geospatial range queries.

Note: Do not confuse EQL range filters with the range filters implemented by the Nf parameter. Although
both types of range filters are similar in nature, EQL range filters are implemented differently, as described
below.

Supported property types for range filters
EQL range filters can be applied only to Oracle Commerce properties of certain types.

The following types are supported:
• Integer (for basic range filters)
• Floating point (for basic range filters)
• DateTime (for basic range filters)
• Geocode (for geospatial range filters)

No special configuration is required for these properties. However, the property name must follow the NCName
format. No Dgidx flags are necessary to enable range filters, as the range filter computational work is done at
request-time. Likewise, no dgraph flags are needed to enable EQL range filters.

Basic range filter syntax
This topic describes the syntax for EQL range filters.

The syntax for a basic range filter query is:
collection()/record[propName rangeOp numLiteral]

where:
• propName is the name (in an NCName format) of an Oracle Commerce property of type Integer or Floating

point.
• rangeOp is a range (relational) operator from the table below.
• numLiteral is a numerical literal value used for the comparison by the range operator.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

77Using the Oracle Commerce Query Language | Range filter queries

The property value of propName must be numeric in order that a successful comparison be made against the
numLiteral argument. The supported range operators are the following:

MeaningOperator

Less than. The value of the property is less than the numeric literal.<

Less than or equal to. The value of the property is less than the numeric literal
or equal to the numerical literal.

<=

Greater than or equal to. The value of the property is greater than the numeric
literal or equal to the numerical literal.

>

Greater than. The value of the property is greater than the numeric literal.>=

Range filter query examples
This topic contains examples of basic range filter queries.

The first query example uses the > operator to return any record that has an author_id property whose value
is greater than 100.
collection()/record
[
 author_id > 100
]

The next query example uses the >= operator to return Book records whose book_id property value is less
than or equal to 99. The example also shows the use of the and operator.
collection()/record
[
 Recordtype = "book"
 and
 book_id <= 99
]

The last query example shows an RRN query that uses a range filter expression in its predicate. Based on a
relationship filter applied to the Book and Author records, the query returns Book records (which have the
book_authorref property) of authors whose books have been edited by an editor whose ID is less than or
equal to 12.
collection()/record
[
 book_authorref = collection()/record
 [
 author_editorref <= 12
]
/author_id
]

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Range filter queries78

Geospatial range filter syntax
Geospatial range filter queries will filter records based on the distance of a geocode property from a given
reference point.

The reference point is a latitude/longitude pair of floating-point values that are arguments to the
endeca:geocode() function. These queries are triggered by the endeca:distance() function, which in
turn uses the endeca:geocode() function as one of two arguments in its predicate. The syntax for a geospatial
range query is:
collection()/record[endeca:distance(geoPropName,
endeca:geocode(latValue,lonValue)) rangeOp distLimit]

where:

• geoPropName is the name (in NCName format) of an Oracle Commerce geocode property.
• latValue is the latitude of the location in either an integer or a floating point value. Positive values indicate

north latitude and negative values indicate south latitude.
• lonValue is the longitude of the location either an integer or a floating point value. Positive values indicate

east longitude and negative values indicate west longitude.
• rangeOp is either the < (less than) or > (greater than) operator. These range operators specify that the

distance from the geocode property to the reference point is either less (<) or greater (>) than the given
distance limit (the distLimit argument).

• distLimit is a numerical literal value used for the comparison by the range operator. Distance limits are
always expressed in kilometers.

When the geospatial filter query is made, the records are filtered by the distance from the geocode property
to the geocode reference point (the latitude/longitude pair of values).

For example, Oracle Commerce’s main office is located at 42.365615 north latitude, 71.075647 west longitude.
Assuming a geocode property named Location, a geospatial filter query would look like this:
collection()/record
[
 endeca:distance(Location,
 endeca:geocode(42.365615,-71.075647)) < 10
]

The query returns only those records whose location (as specified in the Location property) is less than 10
kilometers from Oracle Commerce’s main office.

Dimension search queries
The Drs URL query parameter sets an EQL filter for a dimension search.

This filter restricts the scope of the records that will be considered for a dimension search. Only dimension
values represented on at least one record satisfying the filter are returned as search results.

Note the following about the Drs parameter:
• The syntax of Drs is identical to that of the Nrs parameter.
• Drs is dependent on the D parameter.

Because the Drs syntax is identical to that of Nrs, you can use the various EQL requests that are documented
earlier in this section.

The following example illustrates a dimension search query using an EQL filter:
N=0&D=novel&Drs=collection()/record[author_deceased = "false"]

Oracle Commerce Guided Search MDEX Engine Developer's Guide

79Using the Oracle Commerce Query Language | Dimension search queries

The query uses the D parameter to specify novel as the search term, while the Drs parameter sets a filter for
records in which the author_deceased property is set to false (that is, records of deceased authors).

Oracle Commerce Query Language interaction with other
features

Because EQL is a filtering language, it does not contain functionality to perform actions such as triggering
Content Spotlighting, sorting, or relevance ranking.

However, EQL is compatible with other query parameters to provide these features for queries. A brief summary
of these interactions is:

• Nrs is freely composable with the N, Ntt, Nr, and Nf filtering parameters. EQL filtering can be
conceptualized as occurring after record filtering in terms of side-effects such as spelling auto-correction.
This means that a record search within EQL, using the endeca:matches() function, cannot auto-correct
to a spelling suggestion outside of the record filter.

• Ordering and relevance ranking parameters (Ns, Nrk, Nrt, Nrr, Nrm) are composable with EQL filters or
other types of filters. The Nrk, Nrt, Nrr, and Nrm relevance ranking parameters take precedence over a
relevance ranking declaration with the Ntt and Ntx parameters.

The following table provides an overview of these interactions. The sections after the table provide more
information.

Parameter interactionWhy use this parameter
rather than Nrs?

Similar function in EQL?Parameter

The results of Nrs are
intersected with the results
of N.

Use N to trigger Content
Spotlighting and
refinement generation.

Yes. Dimension filtering
can be done in EQL.

N

Nr is a pre-filter. Only the
records that pass this filter

Use Nr for security
reasons or to explicitly

Yes. EQL can filter on
properties or dimensions.

Nr

are even considered in
Nrs.

exclude certain records
from being considered in
the rest of the query (e.g.,
for spelling suggestions).

Similar to N , the results of
Nrs are intersected with
the results of Ntt/Ntk.

Use Ntt/Ntk to trigger
Content Spotlighting, as
record search within Nrs
does not trigger it. Use

Yes. EQL provides the
ability to do record search.

Ntt, Ntk

Ntt/Ntk with Nty for
DYM spelling suggestions.
(Nrs record search does
support autocorrection, but
not DYM.)

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language interaction with other
features

80

Parameter interactionWhy use this parameter
rather than Nrs?

Similar function in EQL?Parameter

Similar to N, the results of
Nrs are intersected with
the results of Nf.

No reason to do so. EQL
actually provides greater
flexibility because range
filters within Nrs can be

Yes. EQL provides the
ability to do range filtering.

Nf

OR’ed, whereas Nf range
filters cannot. Similar to N,
the results of Nrs are
intersected with the results
of Nf.

As long as the property
specified in Ns exists on

N/ANo. EQL does not have
the ability to sort results.

Ns

the records being returned,
the Ns parameter will sort
the results.

As long as the dimensions
specified in Ne exist on the

N/ANo. EQL does not have
the ability to expose
dimensions.

Ne

records being returned, the
Ne parameter will expose
those dimensions.

This set of parameters
allow the ability to apply

N/ANo. EQL does not provide
the ability to relevance
rank the results.

Nrk, Nrt, Nrr, Nrm

relevance ranking to
results even if record
search does not exist.

The Nrc parameter lets
you modify refinement

N/ANo. EQL does not provide
the ability to modify
refinement configuration.

Nrc

configuration at query time
(for dynamic ranking,
statistics, and so on).

N parameter interaction
The Nrs parameter has a dependency on the N parameter.

This means that you must use N=0 if no navigation filter is intended. Note, however, that the presence of the
N parameter does not affect Nrs (for example, for such actions as spelling correction and automatic phrasing).

If the N parameter is used with one or more dimension value IDs, it can trigger Content Spotlighting, since
dimension filtering within Nrs does not trigger it. The resulting record set will be an intersection of both filters.
In this case, the dimension value IDs specified by the N parameter must belong to dimensions that exist for
the records being returned by Nrs.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

81Using the Oracle Commerce Query Language | Oracle Commerce Query Language interaction with other
features

For example, if the N parameter is filtering on Author Location but the Nrs parameter is returning only Book
records, then this intersection will result in zero records. In addition, during a query the Nrs parameter does
not trigger refinement generation for multi-select and hierarchical dimensions, while N does. Therefore, because
Nrs is ignored for purposes of refinement generation while N plays a key role, the N parameter should be used
instead of Nrs for parts of the query.

Nr record filter interactions
The Nr parameter sets a record filter for a navigation query.

When used with an EQL request, the Nr parameter acts as a prefilter. That is, it restricts the set of records
that are visible to the Nrs parameter. Because it is a prefilter, the Nr parameter is especially useful as a security
filter to control the records that a user can see. It is also useful to explicitly exclude certain records from being
considered in the rest of the query (for example, for spelling suggestions).

When using the Nr parameter, keep in mind that only the records that pass the Nr filter are even considered
in Nrs. For example, if you have Book records and Author records, both of these record types would have to
pass the Nr record filter logic in order for the Nrs parameter to determine relationships between Books and
Authors.

Nf range filter interactions
The Nf parameter enables range filter functionality.

Unlike a record filter, the Nf parameter does not act as a prefilter. Instead, when used with the Nrs parameter,
the resulting record set will be an intersection of the results of the Nf and Nrs parameters. That is, an Nf range
filter and an EQL filter together form an AND Boolean request. For more information about range filters, see
“Using Range Filters.”

Ntk and Ntt record search interaction
Ntk and Ntt are a set of parameters used for record search which act as a filter (not a prefilter).

Therefore, when used with the Nrs parameter, the resulting record set will be an intersection of the results of
the Nrs parameter and the Ntk/Ntt parameters. There are two main advantages of using these parameters
with the Nrs parameter:

• The Ntk/Ntt parameters can trigger Content Spotlighting, whereas the Nrs parameter cannot.
• The Ntk/Ntt parameters can return auxiliary information (such as DYM spelling suggestions and

supplemental objects), whereas the Nrs parameter cannot.
In addition, you can use other parameters that depend on Ntk, such as the Ntx parameter to specify a match
mode or a relevance ranking strategy.

Ns sorting interaction
You can append the Ns parameter to an EQL request to sort the returned record set by a property of the
records.

To do so, use the following syntax:
Ns=sort-key-name[|order]

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language interaction with other
features

82

The Ns parameter specifies the property or dimension by which to sort the records, and an optional list of
directions in which to sort. For example, this query:
Nrs=collection()/records[book_authorref = collection()
 /records[author_nationality = "american"]
 /author_id]&Ns=book_year

returns all books written by American authors and sorts the records by the year in which the book was written
(the book_year property). You can also add the optional order parameter to Ns to control the order in which
the property is sorted (0 is for an ascending sort while 1 is descending). The default sort order for a property
is ascending. For example, the above query returns the records in ascending order (from the earliest year to
the latest), while the following Ns syntax uses a descending sort order:
Ns=book_year|1

Nrk relevance ranking interaction
The Nrk, Nrt, Nrr, and Nrm set of parameters can be used to order the records of an EQL request, via a
specified relevance ranking strategy.

The following is an example of using these parameters:
Nrs=collection()/record[Recordtype = "book"]
 &Nrk=All&Nrt=novel&Nrr=maxfield&Nrm=matchall

The sample query returns all Book records (that is, all records that are tagged with the Recordtype property
set to “book”). The record set is ordered with the Maxfield relevance ranking module (specified via Nrr), which
uses the word novel (specified via Nrt). The search interface is specified via the Nrk parameter.

The Nrk, Nrt, Nrr, and Nrm parameters take precedence over the Ntk, Ntt, and Ntx parameters. That is,
if both sets of parameters are used in a query, the relevance ranking strategy specified by the Nrr parameter
will be used to order the records. For more information about these parameters, see the topic “Using the Nrk,
Nrt, Nrr, and Nrm parameters."

Ne exposed refinements interaction
The Ne parameter specifies which dimension (out of all valid dimensions returned in an EQL request) should
return actual refinement dimension values.

The behavior of the Ne parameter is the same for EQL request as for other types of navigation queries.

The following example shows the Ne parameter being specified with an EQL text search:
Nrs=collection()/record[endeca:matches(.,"description",
 "story","partialmax")]&Ne=6

In the query, 6 is the root dimension value ID for the Genre dimension. The query will return all dimensions
for records in which the term story appears in the description property, as well as the refinement dimension
values for the Genre dimension.

Spelling auto-correction and Did You Mean interaction
Spelling auto-correction for dimension search and record search automatically computes alternate spellings
for user query terms that are misspelled.

The Did You Mean (DYM) feature provides the user with explicit alternative suggestions for a keyword search.
Both features are fully explained in the "Implementing Spelling Correction and Did You Mean" section.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

83Using the Oracle Commerce Query Language | Oracle Commerce Query Language interaction with other
features

Both DYM and spelling auto-correction work normally when the Ntt parameter is used with Nrs. For example,
in the following query:
Nrs=collection()/record[Recordtype = "book"]
 &Ntk=description&Ntt=storye&Ntx=mode+matchall

the misspelled term storye is auto-corrected to story (assuming that the MDEX Engine was started with the
--spl flag).

If DYM is enabled instead of auto-correction (using the --dym flag), then the Nty=1 parameter can be used
in the query:
Nrs=collection()/record[Recordtype = "book"]
 &Ntk=description&Ntt=storye&Ntx=mode+matchall&Nty=1

In this case, no records are returned (assuming that the misspelled term storye is not in the data set), but the
term story is returned as a DYM suggestion.

If both spelling auto-correction and DYM are enabled, the spelling auto-correction feature will take precedence.
However, for a full text search with the endeca:matches() function, the spelling auto-correction feature will
work, but the DYM feature is not supported. For example, in this query:
collection()/record
[
 endeca:matches(.,"description","storye")
]

the misspelled term storye is auto-corrected to story if auto-correction is enabled. If DYM is enabled but
auto-correction is not, then no records are returned (again assuming that the misspelled term storye is not in
the data set).

Oracle Commerce Analytics interaction
The Oracle Commerce Analytics API can be used to request analytics operations based on the results of a
navigation query.

The analytics operations will work the same way as with navigation queries that do not use EQL.

Oracle Commerce Query Language per-query statistics log
The MDEX Engine can log information about the processing time of an EQL request.

The log entry is at the level of a time breakdown across the stages of query processing (including relationship
filters). This information will help you to identify and tune time-consuming queries.

Note: Only EQL requests produce statistics for this log. Therefore, you should enable this log only if
you are using EQL.

Implementing the per-query statistics log
The EQL per-query statistics log is turned off by default.

You can specify its creation by using the dgraph --log_stats flag:
--log_stats path

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language per-query statistics log84

The path argument sets the path and filename for the log.

This argument must be a filename, not a directory. If the file cannot be opened, no logging will be performed.
The log file uses an XML format, as shown in the following example that shows a log entry for this simple
query:
fn:collection()/record[author_nationality = "english"]

To read the file, you can open it with a text editor, such as TextPad.
<?xml version="1.0" encoding="UTF-8"?>
<Queries>
<Query xmlns="endeca:stats">

 <EndecaQueryLanguage>
 <Stats>
 <RecordPath query_string="fn:collection()/record[author_nationality =
"english"]">
 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.47705078125</Descendant>
 <Self unit="ms">0.194580078125</Self>
 <Total unit="ms">0.671630859375</Total>
 </TimeInfo>
 </StatInfo>
 <Predicate query_string="[author_nationality = "english"]">
 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.287841796875</Descendant>
 <Self unit="ms">0.189208984375</Self>
 <Total unit="ms">0.47705078125</Total>
 </TimeInfo>
 </StatInfo>
 <PropertyComparison query_string="author_nationality = "en¬
glish"">
 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.001953125</Descendant>
 <Self unit="ms">0.285888671875</Self>
 <Total unit="ms">0.287841796875</Total>
 </TimeInfo>
 </StatInfo>
 <StringLiteral query_string=""english"">
 <StatInfo number_of_records="0">
 <TimeInfo>
 <Descendant unit="ms">0</Descendant>
 <Self unit="ms">0.001953125</Self>
 <Total unit="ms">0.001953125</Total>
 </TimeInfo>
 </StatInfo>
 </StringLiteral>
 </PropertyComparison>
 </Predicate>
 </RecordPath>
 </Stats>
 </EndecaQueryLanguage>

</Query>
</Queries>

Oracle Commerce Guided Search MDEX Engine Developer's Guide

85Using the Oracle Commerce Query Language | Oracle Commerce Query Language per-query statistics log

Parts of the log file

The following table describes the meanings of the elements and attributes.

DescriptionElement/Attribute

Encapsulates the statistics for a given query (that is,
each query will have its own Query node).

Query

The record path of a collection() function.RecordPath

Lists the time spent processing the predicate part of a
query.

Predicate

Lists the time spent processing an expression part of
an query, such as PropertyComparison (property

otherNodes

or range filter query), StringLiteral (property value
query), MatchesExpr (text search query), and DVal¬
Comparison (dimension value query).

For RecordPath, this attribute lists the full query that
was issued. For the other elements, it lists the part of
the query for which statistics in that element are given.

query_string

Returns the number of records which satisfy the
query_string in a given node.

number_of_records

Encapsulates the TimeInfo and CacheInfo
information.

StatInfo

Encapsulates time-related information about the node.TimeInfo

The time, in milliseconds, spent in the descendants of
a given node.

Descendant

The total amount of time, in milliseconds, spent in this
node.

Self

The total amount of time, in milliseconds, spent in this
node and its descendants.

Total

Encapsulates information about cache hits, misses,
and insertions. Cache is checked only when a

CacheInfo

combined relationship filter and range comparison is
made.

Setting the logging threshold for queries
You can set the threshold above which statistics information for a query will be logged.

You do this by using the dgraph --log-stats-thresh flag. Note that this flag is dependent on the
--log_stats flag.

The syntax of the threshold flag is:
--log_stats_thresh value

The value argument is in milliseconds (1000 milliseconds = 1 second). However, the value can be specified
in seconds by adding a trailing s to the number.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Oracle Commerce Query Language per-query statistics log86

For example, this:
--log_stats_thresh 1s

is the same as:
--log_stat_thresh 1000

If the total execution time for an Oracle Commerce Query Language request (not the expression execution
time) is above this threshold, per-query performance information will be logged. The default for the threshold
is 1 minute (60000 milliseconds). That is, if you use the --log_stats flag but not the --log_stats_thresh
flag, a value of 1 minute will be used as the threshold for the queries.

Creating an Oracle Commerce Query Language pipeline
This section provides information about configuring the pipeline for an application that implements EQL.

Also included are requirements for the Oracle Commerce properties and dimensions.

Creating the dimensions and properties
Before an Oracle Commerce property can be used in EQL requests, the property must be configured
appropriately.

The details are as follows:
• One or more of the following must be true of the property:

• It is explicitly enabled for use with record filters.
• It is specified as a rollup key.
• It is specified as a record spec.
• It has one of the following types: double, integer, geocode, datetime, duration, or time.

• The property name must be in the NCName format, as explained in the topic “NCName format for properties
and dimensions.”

• If you want to allow wildcard terms for record searches, the property must be enabled for wildcard search.
To enable a property for record filters, open the property in the Developer Studio Property editor and check
the “Enable for record filters” attribute.

Use the Property editor’s Search tab to configure the property for record search and wildcard search. To use
dimensions in Oracle Commerce Query Language queries:

• All dimensions are automatically enabled for use in EQL record filter expressions, and therefore do not
need to be enabled for record filters.

• Dimension names (and therefore the names of root dimension values) must be in the NCName format.
Names of non-root dimension values, however, do not have to be in the NCName format.

If you are using a search interface with EQL requests, the name of the search interface does not have be an
NCName.

Configuring the pipeline for Switch joins
With one exception, the pipeline used for an application that implements EQL does not have any special
configuration requirements.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

87Using the Oracle Commerce Query Language | Creating an Oracle Commerce Query Language pipeline

The exception is if you purchased the RRN module and will be using it to apply relationship filters at query
time. In this case, you will probably be using a Switch join in the pipeline. Note that using a Switch join is not
mandatory for RRN queries, but you will use one if you want to keep different record types uncombined.

For example, the pipeline used in the application that provides the sample queries (for other sections of this
chapter) assumes that the data set has three types of records. The pipeline looks like this in Developer Studio’s
Pipeline Diagram:

The pipeline has three record adapters to load the three record types (Book records, Author records, and Editor
records). These are standard record adapters and do not require any special configuration.

The record assembler (named Switch) is used to implement a Switch join on the three sets of records. The
Sources tab is where you add the record sources for the record assembler, which are the three record adapters:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Oracle Commerce Query Language | Creating an Oracle Commerce Query Language pipeline88

The record assembler will process all the records from the three record adapters. However, the records are
never compared or combined. Because the three record types are not combined, you can use RRN queries
to apply relationship filters. For more information about these types of queries, see the topic “Record Relationship
Navigation queries."

Running the Oracle Commerce Query Language pipeline
No special configuration is needed for running an EQL pipeline.

You can run the pipeline with either the Oracle Commerce Application Controller (EAC) or control scripts. See
the Platform Services Application Controller Guide for details on provisioning your application. For information
about using control scripts, see the Platform Services Control System Guide.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

89Using the Oracle Commerce Query Language | Creating an Oracle Commerce Query Language pipeline

Chapter 9

Record Filters

This section describes how to implement record filters in your Oracle Commerce application.

About record filters
Record filters allow an Oracle Commerce application to define arbitrary subsets of the total record set and
dynamically restrict search and navigation results to these subsets.

For example, the catalog might be filtered to a subset of records appropriate to the specific end user or user
role. The records might be restricted to contain only those visible to the current user based on security policies.
Or, an application might allow end users to define their own custom record lists (that is, the set of parts related
to a specific project) and then restrict search and navigation based on a selected list. Record filters enable
these and many other application features that depend on applying Oracle Commerce search and navigation
to dynamically defined and selected subsets of the data.

If you specify a record filter, whether for security, custom catalogs, or any other reason, it is applied before
any search processing. The result is that the search query is performed as if the data set only contained records
allowed by the record filter.

Record filters support Boolean syntax using property values and dimension values as base predicates and
standard Boolean operators (AND, OR, and NOT) to compose complex expressions. For example, a filter can
consist of a list of part number property values joined in a multi-way OR expression. Or, a filter might consist
of a complex nested expression of ANDs, ORs, and NOTs on dimension IDs and property values.

Filter expressions can be saved and loaded from XML files, or passed directly as part of an MDEX Engine
query. In either case, when a filter is selected, the set of visible records is restricted to those matching the filter
expression. For example, record search queries will not return records outside the selected subset, and
refinement dimension values are restricted to lead only to records contained within the subset.

Finally, it is important to keep in mind that record filters are case-sensitive.

Record filter syntax
Record filters are specified with query-based or file-based expressions.

Record filters can be specified directly within an MDEX Engine query. For example, the complete Boolean
expression representing the desired record subset can be passed directly in an application URL.

In some cases, however, filter expressions require persistence (in the case where the application allows the
end user to define and save custom part lists) or may grow too large to be passed conveniently as part of the
query (in the case where a filter list containing thousands of part numbers). To handle cases such as these,
the MDEX Engine also supports file-based filter expressions.

File-based filter expressions are simply files stored in a defined location containing XML representations of
filter expressions. This section describes both the MDEX Engine query and XML syntaxes for filter expressions.

Query-level syntax
The query-level syntax supports prefix-oriented Boolean functions (AND, OR, and NOT), colon-separated
paths for dimension values and property values, and numeric dimension value IDs.

The following BNF grammar describes the syntax for query-level filter expressions:
<filter> ::= <and-expr>
 | <or-expr>
 | <not-expr>
 | <filter-expr>
 | <literal>
<and-expr> ::= AND(<filter-list>)
<or-expr> ::= OR(<filter-list>)
<not-expr> ::= NOT(<filter>)
<filter-expr> ::= FILTER(<string>)
<filter-list> ::= <filter>
 | <filter>,<filter-list>
<literal> ::= <pval>
 | <dval-id>
 | <dval-path>
<pval> ::= <prop-key>:<prop-value>
<prop-key> ::= <string>
<prop-value> ::= <string>
<dval-path> ::= <string>
 | <string>:<dval-path>
<dval-id> ::= <unsigned-int>
<string> ::= any character string

The following five special reserved characters must be prepended with an escape character (\) for inclusion
in a string:
() , : \

Using the FILTER operator

Aside from nested Boolean operations, a key aspect of query filter expressions is the ability to refer to file-based
filter expressions using the FILTER operator. For example, if a filter is stored in a file called MyFilter, that filter
can be selected as follows:
FILTER(MyFilter)

FILTER operators can be combined with normal Boolean operators to compose filter operations, as in this
example:
AND(FILTER(MyFilter),NOT(Manufacturer:Sony))

The expression selects records that are satisfied by the expression contained in the file MyFilter but that are
not assigned the value Sony to the Manufacturer property.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Filters | Record filter syntax92

Example of a query-level filter expression

The following example illustrates a basic filter expression that uses nested Boolean operations:
OR(AND(Manufacturer:Sony,1001),
 AND(Manufacturer:Aiwa,NOT(1002)), Manufacturer:Denon)

This expression will match the set of records satisfying any of the following statements:
• Value for the Manufacturer property is Sony and record assigned dimension value is 1001.
• Value for Manufacturer is Aiwa and record is not assigned dimension value 1002.
• Value for Manufacturer property is Denon.

XML syntax for file-based record filter expressions
The syntax for file-based record filter expressions closely mirrors the query level syntax, with some differences.

The file-based differences from the query-level syntax are:
• In place of the AND, OR, NOT, and FILTER operators, the FILTER_AND, FILTER_OR, FILTER_NOT, and

FILTER_NAME XML elements are used, respectively.
• In place of the property and dimension value syntax used for query expressions, the PROP, DVAL_ID, and

DVAL_PATH elements are used. Note that the DVAL_PATH element’s PATH attribute requires that paths
for dimension values and property values be separated by colons, not forward slashes.

• Instead of parentheses to enclose operand lists, normal XML element nesting (implicit in the locations of
element start and end tags) is used.

The full DTD for XML file-based record filter expressions is provided in the filter.dtd file packaged with
the Oracle Commerce software release.

Examples of file-based filter expressions

As an example, the following query-level expression:
OR(AND(Manufacturer:Sony,1001),
 AND(Manufacturer:Aiwa,NOT(1002)), Manufacturer:Denon)

is represented as a file-based expression using the following XML syntax:
<FILTER>
 <FILTER_OR>
 <FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Sony</PVAL></PROP>
 <DVAL_ID ID="1001"/>
 </FILTER_AND>
 <FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Aiwa</PVAL></PROP>
 <FILTER_NOT>
 <DVAL_ID ID="1002"/>
 </FILTER_NOT>
 </FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Denon</PVAL></PROP>
 </FILTER_OR>
</FILTER>

Just as file-based expressions can be composed with query expressions, file expressions can also be composed
within other file expressions. For example, the following query expression:
AND(FILTER(MyFilter),NOT(Manufacturer:Sony))

Oracle Commerce Guided Search MDEX Engine Developer's Guide

93Record Filters | Record filter syntax

can be represented as a file-based expression using the following XML:
<FILTER>
 <FILTER_AND>
 <FILTER_NAME NAME="MyFilter"/>
 <FILTER_NOT>
 <PROP NAME="Manufacturer"><PVAL>Sony</PVAL></PROP>
 </FILTER_NOT>
 </FILTER_AND>
</FILTER>

Enabling properties for use in record filters
Oracle Commerce Properties must be explicitly enabled for use in record filters.

Note that all dimension values are automatically enabled for use in record filter expressions.

To enable a property for use with record filters:

1. In Developer Studio, open the Properties view.
2. Double-click on the Oracle Commerce property that you want to configure.

The property is opened in the Property editor.
3. Check the Enable for record filters option, as in the following example.

4. Click OK to save your changes.

Data configuration for file-based filters
To use file-based filter expressions in an application, you must create a directory to contain record filter files
in the same location where the MDEX Engine index data will reside.

The name of this directory must be:
<index_prefix>.fcl

For example, if the MDEX Engine index data resides in the directory:
/usr/local/endeca/my_app/data/partition0/dgidx_output/

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Filters | Enabling properties for use in record filters94

and the index data prefix is:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index

then the directory created to contain record filter files must be:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index.fcl

Record filters that are needed by the application should be stored in this directory, which is searched
automatically when record filters are selected in an MDEX Engine query. For example, if in the above case
you create a filter file with the path:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index.fcl/MyFilter

then the filter expression stored in this file will be used when the query refers to the filter MyFilter.

For example, the URL query:
N=0&Nr=FILTER(MyFilter)

will use this file filter.

Record filter result caching
The MDEX Engine caches the results of file-based record filter evaluations for re-use.

The cached results are used on subsequent MDEX Engine queries as part of the global dynamic cache. The
cache replacement policy is to discard least recently-used (LRU) entries.

Note: The MDEX Engine only caches the results of file-based record filters, because these are generally
more costly to evaluate due to XML-parsing overhead.

URL query parameters for record filters
Three MDEX Engine URL query parameters are available to control the use of record filters.

The URL query parameters are as follows:

DescriptionParameter

Links to the Java ENEQuery.setNavRecordFilter() method and the .NET
ENEQuery.NavRecordFilter property. The Nr parameter can be used to specify a record
filter expression that will restrict the results of a navigation query.

Nr

Links to the Java ENEQuery.setAggrERecNavRecordFilter() method and the .NET
ENEQuery.AggrERecNavRecordFilter property. The Ar parameter can be used to specify

Ar

a record filter expression that will restrict the records contained in an aggregated-record result
returned by the MDEX Engine.

Links to the Java ENEQuery.setDimSearchNavRecordFilter() method and the .NET
ENEQuery.DimSearchNavRecordFilter property. The Dr parameter can be used to

Dr

specify a record filter expression that will restrict the universe of records considered for a
dimension search. Only dimension values represented on at least one record satisfying the
specified filter will be returned as search results.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

95Record Filters | Record filter result caching

Using the Nr query parameter

You can use the Nr parameter to perform a record query search so that only results tagged with a specified
dimension value are returned. For example, say you have a dimension tree that looks like this, where Sku is
the dimension root and 123, 456, and 789 are leaf dimension values:
Sku
 123
 456
 789
 ...

To perform a record query search so that results tagged with any of these dimension values is returned, use
the following:
Nr=OR(sku:123,OR(sku:456),OR(sku:789))

To perform a record query search so that only results tagged with the dimension value 123 are returned, use
the following:
Nr=sku:123

Examples of record filter query parameters
<application>?N=0&Nr=FILTER(MyFilter)

<application>?A=2496&An=0&Ar=OR(10001,20099)

<application>?D=Hawaii&Dn=0&Dr=NOT(Subject:Travel)

Record filter performance impact
Record filters can have an impact in some areas.

The evaluation of record filter expressions is based on the same indexing technology that supports navigation
queries in the MDEX Engine. Because of this, there is no additional memory or indexing cost associated with
using navigation dimension values in record filters.

Because expression evaluation is based on composition of indexed information, most expressions of moderate
size (that is, tens of terms/operators) do not add significantly to request processing time.

Furthermore, because the MDEX Engine caches the results of file-based record filter operations on an LRU
(least recently used) basis, the costs of expression evaluation are typically only incurred on the first use of a
file-based filter during a navigation session. However, some expected uses of record filters have known
performance bounds, which are described below.

Record filters can impact the following areas:
• Spelling auto-correction and spelling Did You Mean
• Memory cost
• Expression evaluation

Interaction with spelling auto-correction and spelling DYM
Record filters impose an extra cost on spelling auto-correction and spelling Did You Mean.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Filters | Record filter performance impact96

Memory cost
The use of properties in record filters incurs a memory cost.

The evaluation of record filter dimension value expressions is based on the same indexing technology that
supports navigation queries in the dgraph. Because of this, there is no additional memory or indexing cost
associated with using navigation dimension values in record filters. When using property values in record filter
expressions, additional memory and indexing cost is incurred because properties are not normally indexed for
navigation.

This feature is controlled in Developer Studio by the Enable for record filters setting on the Property editor.

Expression evaluation
Expression evaluation of large OR filters and large scale negation can impose a performance impact on the
system.

Because expression evaluation is based on composition of indexed information, most expressions of moderate
size (that is, tens of terms and operators) do not add significantly to request processing time. Furthermore,
because the dgraph caches the results of record filter operations, the costs of expression evaluation are typically
only incurred on the first use of a filter during a navigation session. However, some expected uses of record
filters have known performance bounds, which are described in the following two sections.

Large OR filters

One common use of record filters is the specification of lists of individual records to identify data subsets (for
example, custom part lists for individual customers, culled from a superset of parts for all customers).

The total cost of processing records can be broken down into two main parts: the parsing cost and the evaluation
cost. For large expressions such as these, which will commonly be stored as file-based filters, XML parsing
performance dominates total processing cost.

XML parsing cost is linear in the size of the filter expression, but incurs a much higher unit cost than actual
expression evaluation. Though lightweight, expression evaluation exhibits non-linear slowdown as the size of
the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for large result
sets. While the expression evaluation cost is reasonable into the low millions of records for large OR expressions,
parsing costs relative to total query execution time can become too large, even for smaller numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable performance
(10 seconds or more load time, depending on hardware platform). Lists with over one million records can take
a minute or more to load, depending on hardware. Because results are cached, load time is generally only an
issue on the first use of a filter during a session. However, long load times can cause other dgraph requests
to be delayed and should generally be avoided.

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions (that
is, AND with a positive property value), the cost of negation does not add significantly to the cost of expression
evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant. For example,
while still sub-second, top-level negation filtering (such as "NOT availability=FALSE") of a record set in the
millions does not allow high throughput (generally less than 10 operations per second).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

97Record Filters | Record filter performance impact

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions. For
example, in the case where you want to list only available products, the expression "availability=TRUE" will
yield better performance than "NOT availability=FALSE".

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Filters | Record filter performance impact98

Part 3

Dimension and Property Features

• Property Types
• Working with Dimensions
• Dimension Value Boost and Bury
• Using Derived Properties
• Configuring Key Properties

Chapter 10

Property Types

You can assign the following types of properties to records in the MDEX Engine: Alpha, Integer, Floating point,
Geocode, DateTime, Duration and Time. You assign property types in Developer Studio.

Formats used for property types
The MDEX Engine supports property types that use the following accepted formats:

DescriptionProperty type

Represents character strings.Alpha

Represents a 32-bit signed integer. Integer values accepted by the MDEX Engine on all
platforms can be up to the value of 2147483647.

Integer

Represents a floating point.Floating point

Represents a latitude and longitude pair used for geospatial filtering and sorting. Each
value is a double-precision floating-point value. The two values are comma-delimited.

The accepted format is: latvalue,lonvalue, where:

Geocode

• latvalue is the latitude of the location in whole and fractional degrees. Positive
values indicate north latitude and negative values indicate south latitude. Valid values
are between -90 and 90.

• lonvalue is the longitude of the location in whole and fractional degrees. Positive
values indicate east longitude, and negative values indicate west longitude. Valid
values are between -180 and 180.

For example, to indicate the Location geocode property located at 42.365615 north latitude,
71.075647 west longitude, specify: 42.365615,-71.075647

A 64-bit signed integer that represents the date and time in milliseconds since the epoch
(January 1, 1970).

DateTime

A 64-bit signed integer that represents a length of time in milliseconds.Duration

A 32-bit unsigned integer that represents the time of day in milliseconds.Time

Temporal properties
This section describes temporal property types supported in the MDEX Engine — Time, DateTime and Duration.

Defining Time and DateTime properties
Time, DateTime and Duration properties are supported in the MDEX Engine. You define them in Developer
Studio.

Note: The DateTime property is available in Developer Studio by default and does not require additional
configuration. However, Time and Duration property types are only enabled if you configure Developer
Studio for their use. For details, see the section "Configuring Developer Studio for the use of Time and
Duration Property Types" in the Oracle Commerce Developer Studio Installation Guide.

The Property editor provides three temporal property types:
• Time values represent a time of the day
• DateTime values represent a time of the day on a given date
• Duration values represent a length of time

In the example below, the Time property has been declared to be of the Time type, the TimeStamp property
has been declared to be of the DateTime type, and the DeliveryDelay property has been declared to be of the
Duration type:

Properties of type Time, DateTime, and Duration can be used for:
• Temporal sorting using the record sort feature of the MDEX Engine
• The ORDER BY operator of the Analytics API
• Time-based filtering using the range filter feature of the MDEX Engine
• The WHERE and HAVING operators in the Analytics API
• As inputs to time-specific operators in the Analytics API (TRUNC and EXTRACT)

For information about temporal properties in Analytics queries, and time-specific operators in the Analytics
API, see the MDEX Engine Analytics Guide.

Time properties
Time properties represent the time of day to a resolution of milliseconds.

A string value in a Time property, both on input to the MDEX Engine and when accessed through the Analytics
API, should contain an integer representing the number of milliseconds since the start of day, mid¬
night/12:00:00AM. Time properties are stored as 32-bit integers.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Property Types | Temporal properties102

For example, 1:00PM or 13:00 would be represented as 46800000 because:
13 hours *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second = 46800000

DateTime properties
DateTime properties represent the date and time to a resolution of milliseconds.

A string value in a DateTime property should contain an integer representing the number of milliseconds since
the epoch (January 1, 1970). Additionally, values must be in Coordinated Universal Time (UTC) and account
for the number of milliseconds since the epoch, in conformance with POSIX standards. DateTime values are
stored as 64-bit integers.

For example, August 26, 2004 1:00PM would be represented as 1093525200000 because:
12656 days *
24 hours / day *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second +
46800000 milliseconds (13 hrs) = 1093525200000

Duration properties
Duration properties represent lengths of time with a resolution of milliseconds.

A string value in a Duration property should contain an integer number of milliseconds. Duration values are
stored as 64-bit integers.

For example, 100 days would be represented as 8640000000 because:
100days *
24 hours / day *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second = 8640000000

Working with time and date properties
Like all Oracle Commerce property types (Alpha, Floating Point, Integer, and so on), time and date values are
handled during the data ingest process and in UI application code as strings, but are stored and manipulated
as typed data in the Oracle Commerce MDEX Engine.

For non-Alpha property types, this raises the question of data manipulation in the Forge pipeline and appropriate
presentation of typed data in the UI.

At data ingest time, inbound temporal data is unlikely to conform to the representations required by Oracle
Commerce temporal property types. But time and date classes for performing needed conversions are readily
available in the standard Java library (see java.text.DateFormat). These should be used (in the context
of a JavaManipulator Forge component) to convert inbound data in the data ingest pipeline.

For example, the following code performs simple input conversion on source date strings of the form "August
26, 2009" to Oracle Commerce DateTime property format:
String sourceDate = … // String of form "August 26, 2009"
DateFormat dateFmt = DateFormat.getDateInstance(DateFormat.LONG);
Date date = dateFmt.parse(sourceDate);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

103Property Types | Temporal properties

Long dateLong = new Long(date.getTime());
String dateDateTimeValue = dateLong.toString();

Similarly, in most cases the integer representation of times and dates supported by the Oracle Commerce
MDEX Engine is not suitable for application display. Again, the application should make use of standard library
components (such as java.util.Date and java.util.GregorianCalendar) to convert Oracle Commerce
dates for presentation.

For example, the following code performs a simple conversion of a DateTime value to a pretty-printable string:
String dateStr = … // Initialized to an Endeca DateTime value
long dateLong = Long.parseLong(dateStr);
Date date = new Date(dateLong);
String dateRenderString = date.toString();

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Property Types | Temporal properties104

Chapter 11

Working with Dimensions

This section provides information about how to handle and display Oracle Commerce dimensions in your Web
application.

Displaying dimension groups
Dimensions are part of dimension groups and both the group and its dimensions can be displayed.

Dimension groups provide a way to impose relationships on dimensions. By creating a dimension group, you
can organize dimensions for presentation purposes. Each explicit dimension group must be given a name; a
unique ID is generated when the data is indexed.

Each dimension can belong to only a single dimension group. If you do not assign a dimension to an explicit
dimension group, it is placed in an implicit dimension group of its own. These implicit groups have no name
and an ID of zero. For example, if your project has ten dimensions and no explicit group is set, the project
contains ten different groups with no names and with IDs of zero.

You use Developer Studio’s Dimension Group editor to create dimension groups, and its Dimension editor to
assign dimensions to groups. For details about these tasks, see the Developer Studio online help.

No Dgidx or dgraph flags are necessary to enable dimension groups. In addition, no MDEX Engine URL
parameters are required to access dimension group information.

Dimension group API methods
The Navigation and DimGroup classes have methods to access information about dimension groups.

The dimensions in a dimension group are encapsulated in a DimGroup object. In turn, a DimGroupList
object contains a list of dimension groups (DimGroup objects).

The next two sections show how to access the Navigation and DimGroupList objects for dimension group
information. The code samples show how to loop over a DimGroupList object, access each dimension group
in the object, and get each group’s name and ID.

Accessing the Navigation object

There are three calls on the Navigation object that access the DimGroupList object. All three return a
DimGroupList object that contains group names, group IDs, and the child dimensions:

PurposeAPI method or property

Gets an object that has information about the dimension groups
for the dimensions with descriptors in the current navigation state.

Java:
Navigation.getDescriptorDimGroups()

.NET:
Navigation.DescriptorDimGroups

Gets an object that contains the dimensions with refinements
available in the current navigation state.

Java:
Navigation.getRefinementDimGroups()

.NET:
Navigation.RefinementDimGroups

Gets an object that contains all of the information contained in
the above two calls.

Java:
Navigation.getIntegratedDimGroups()

.NET:
Navigation.IntegratedDimGroups

Accessing the DimGroupList object

Once the application has the DimGroupList object, it can render the dimension group information with these
methods and properties:

PurposeAPI method or property

Used on the DimGroupList object to initiate a loop over all the
dimension groups, implicit and explicit. Once this loop is initiated,
a DimGroup object is created.

Java: DimGroupList.size()

.NET: DimGroupList.Count

With these calls, the application is able to assess whether the
current group is implicit (having an ID of zero) or explicit (having
an ID greater than zero).

Java: DimGroup.getId()

.NET: DimGroup.Id

Used to access the name of the current dimension group. If this
returns a null object, then the current dimension group was
implicitly created.

Java: DimGroup.getName()

.NET: DimGroup.Name

Used in initiating a loop in order to access the dimensions in the
group.

Java: DimGroup.size()

.NET: DimGroup.Count

Used to access a specific dimension in the group without looping.
This method requires either a dimension ID or a dimension name
to be passed in.

Java: DimGroup.getDimension()

.NET: DimGroup.GetDimension

Java example of getting a dimension group ID and name
DimGroupList refDimGroups = nav.getRefinementDimGroups();
// Loop over the list of dimension groups
for (int i=0; i<refDimGroups.size(); i++) {
 // Get an individual dimension group
 DimGroup dg = (DimGroup)refDimGroups.get(i);
 long dimGroupId = dg.getId();
 // If ID is zero, group is implicit, otherwise get its name
 if (dimGroupId != 0) {
 String dimGroupName = dg.getName();

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying dimension groups106

 }
 for (int j=0; j<dg.size(); j++) {
 // retrieve refinement dimension values
 ...
 }
}

.NET example of getting a dimension group ID and name
DimGroupList refDimGroups = nav.RefinementDimGroups;
// Loop over the list of dimension groups
for (int i=0; i<refDimGroups.Count; i++) {
 // Get individual dimension group
 DimGroup dg = (DimGroup)refDimGroups[i];
 long dimGroupId = dg.Id;
 // If ID is zero, group is implicit, otherwise get its name
 if (dimGroupId != 0) {
 String dimGroupName = dg.Name;
 }
 for (int j=0; j<dg.Count; j++) {
 // retrieve refinement dimension values
 ...
 }
}

Notes on displaying dimension groups
This section contains information that further explains how dimension group data is displayed.

Dimension groups versus dimension hierarchy

Dimension groups enable the user to select values from each of the dimensions contained in them. If the
relationships made by a dimension group were instead created with hierarchy, once a value had been selected
from one of the branches, then the remaining dimension values would no longer be valid for refinement.

For example, in mutual funds data, a user may want to navigate on a variety of performance criteria. A
Performance dimension group that contains the YTD Total Returns, 1 Year Total Returns, and Five Year Total
Returns dimensions would enable the user to select criteria from all three dimensions. If the same relationship
had been created using dimension hierarchy, then once a selection had been made from the 1 Year Total
Returns branch, the other two branches would no longer be available for navigation.

Ranking and dimension groups

The display order of dimension groups is determined by the ranking of the individual dimensions within the
groups. A dimension group inherits the highest rank of its member dimensions. For example, if the highest-ranked
dimension in dimension group A has a rank of 5, and the highest-ranked dimension in group B has a rank of
7, then group B will be ordered before group A.

Dimension groups are also ranked relative to dimensions not within explicit groups. Continuing the previous
example, an implicit dimension with a rank of 6 would be ordered after dimension group B, but before group
A.

Dimensions with the same rank are ordered by name. It is important to note that dimension name, not dimension
group name, determines the display order in this situation: Dimension groups are ordered according to their
highest alphanumerically-ranked member dimensions. Therefore, dimension group Z, which contains dimension
H, will be ordered before dimension group A, which contains dimension I.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

107Working with Dimensions | Displaying dimension groups

For more information about ranking, see the Developer Studio online help.

Performance impact when displaying dimension groups

The use of dimension groups has minimal impact on performance.

Displaying refinements
Displaying dimensions and corresponding dimension values for query refinement is the core concept behind
Guided Navigation.

After a user creates a query using record search and/or dimension values, only valid remaining dimension
values are provided to the user to refine that query. This enables the user to reduce the number of matching
records without creating an invalid query.

Configuring dimensions for query refinement
No dimension configuration is necessary for query refinement.

Assuming that a dimension is created in Developer Studio and that the dimension is used to classify records,
the corresponding dimension values will be available to create or refine a query. The only exception is if a
dimension is flagged as hidden in Developer Studio.

If a dimension is created and used to classify records, but no records are classified with any corresponding
dimension values, that dimension will not be available as a refinement, because it is not related to the resulting
record set in any way.

Dgidx flags for refinement dimensions

There are no Dgidx flags necessary to enable displaying refinement dimensions. If a dimension has been
created and used to classify records, and has not been flagged as hidden, that dimension will automatically
be indexed as a possible refinement dimension.

MDEX Engine flags

There are no MDEX Engine configuration flags necessary to enable the basic displaying of dimension
refinements. However, there are some flags that control how and when these dimension refinements are
displayed. These flags are documented in the appropriate feature sections (such as dynamic ranking).

URL parameters for dimension refinement values
Use the Ne parameter to expose refinement dimension values.

Refinement dimension values are only returned with a valid navigation query. Therefore the N (Navigation)
parameter is required for any request that will render navigation refinements. The other parameter required in
most cases to render navigation refinements is the Ne (Exposed Refinements) parameter.

The Ne parameter specifies which dimension, out of all valid dimensions returned with a Navigation query,
should return actual refinement dimension values. Note that only the top-level refinement dimension values
are returned. If a dimension value is a parent, you can also use the Ne parameter with that dimension value
and return its child dimension values (again, only the top-level child dimension values are returned).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinements108

Keep in mind that the Ne parameter is an optional query parameter. The default query (where Ne is not used)
is intended to improve computational performance of the MDEX Engine, as well as reduce the resulting object
and final rendered page sizes.

For example, in a simple dataset, the query:
N=0

will return three dimensions (Wine Type, Year, and Score) but no refinement dimension values. This is faster
for the MDEX Engine to compute, and returns only three root dimension values.

However, the query:
N=0&Ne=6

(where 6 is the root dimension value ID for the Wine Type dimension) will return all three dimensions, as well
as the top-level refinement dimension values for the Wine Type dimension (such as Red, White, and Other).
This is slightly more expensive for the MDEX Engine to compute, and returns the three root dimension values
(Wine Type, Year, and Score) as well as the top-level refinement dimension values for Wine Type, but is
necessary for selecting a valid refinement.

A more advanced query option does not require the Ne parameter and returns all the top-level dimension value
refinements for all dimensions (instead of a single dimension). This option involves the use of the
ENEQuery.setNavAllRefinements() method (Java) or the ENEQuery.NavAllRefinements property
(.NET). If an application sets this call to true, the query:
N=0

will return three dimensions (Wine Type, Year, and Score) as well as all valid top-level refinement dimension
values for each of these dimensions (Red, White, Other for Wine Type; 1999, 2001, 2003 for Year; and 70-80,
80-90, 90-100 for Score).

This is the equivalent of the query:
N=0&Ne=6+2+9

(where 6, 2, and 9 are the root dimension value IDs for the three dimensions). This is the most expensive type
of query for the MDEX Engine to compute, and returns three root dimension values as well as the nine top-level
refinement dimension values, creating a larger network and page size strain. This method, however, is effective
for creating custom navigation solutions that require all possible refinement dimension values to be displayed
at all times.

Retrieving refinement dimensions
The first step in displaying refinements is to retrieve the dimensions that potentially have refinements.

Types of refinements

Refinement dimensions contain refinement dimension values for the current record set, including both standard
refinements and implicit refinements.

• Standard refinements (also called normal refinements) are refinements which, if selected, will refine the
record set.

• Implicit refinements are refinements which, if selected, will not alter the navigation state record set. (The
navigation state is the set of all dimension values selected in the current query context; the navigation state
record set consists of the records selected by the navigation state.)

Descriptor dimensions contain the dimension values (or descriptors) that were used to query for the current
record set. Integrated dimensions represent a consolidation of those dimensions that contain either descriptors
or refinement values for the current record set.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

109Working with Dimensions | Displaying refinements

Complete dimensions represent a consolidation of all dimensions that have at least one of the following: a
descriptor, a standard refinement, or an implicit refinement.

Retrieving a list of dimensions or dimension groups

Accessing refinement dimension values for a given Navigation query begins with accessing the Navigation
object from the query results object. Once an application has retrieved the Navigation object, there are a
number of methods for accessing dimensions that contain dimension values.

The following calls access dimensions directly:

PurposeAPI method or property

Returns a DimensionList object that has dimensions that
potentially still have refinements available with respect to this
query.

Java:
Navigation.getRefinementDimensions()

.NET:
Navigation.RefinementDimensions

Returns a DimensionList object that has the dimensions for
the descriptors for this navigation.

Java:
Navigation.getDescriptorDimensions()

.NET:
Navigation.DescriptorDimensions

Returns a DimensionList object that has the dimensions
integrated from the refinement dimensions and the descriptor
dimensions.

Java:
Navigation.getIntegratedDimensions()

.NET:
Navigation.IntegratedDimensions

Returns a DimensionList object that has the complete
dimensions integrated from the refinement dimensions, the
descriptor dimensions, and those that are completely implicit.

Java:
Navigation.getCompleteDimensions()

.NET:
Navigation.CompleteDimensions

The following calls access dimension groups directly:

PurposeAPI method or property

Returns a DimGroupList object that contains the dimensions
that potentially have refinements available in the current
navigation state.

Java:
Navigation.getRefinementDimGroups()

.NET:
Navigation.RefinementDimGroups

Returns a DimGroupList object that contains the dimension
groups of the dimensions for the descriptors for this navigation.

Java:
Navigation.getDescriptorDimGroups()

.NET:
Navigation.DescriptorDimGroups

Returns a DimGroupList object that contains the dimension
groups of the dimensions integrated from the refinement and
descriptor dimensions.

Java:
Navigation.getIntegratedDimGroups()

.NET:
Navigation.IntegratedDimGroups

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinements110

PurposeAPI method or property

Returns a DimGroupList object that contains the dimension
groups of the complete dimensions integrated from the refinement

Java:
Navigation.getCompleteDimGroups()

.NET:Navigation.CompleteDimGroups dimensions, the descriptor dimensions, and those that are
completely implicit.

Extracting refinement values
The Presentation API has methods that extract standard and implicit refinements from dimensions.

Extracting standard refinements from a dimension

When a refinement dimension has been retrieved, these calls can extract refinement information from the
dimension:

PurposeAPI method or property

Retrieves the dimension name.Java: Dimension.getName()

.NET: Dimension.Name

Retrieves the dimension ID. This ID can then be used with the
Ne query parameter to enable an application to expose
refinements for this dimension.

Java: Dimension.getId()

.NET: Dimension.Id

Retrieves a list of refinement dimension values. This list will be
empty unless the dimension has been specified by the Ne

Java: Dimension.getRefinements()

.NET: Dimension.Refinements parameter or the ENEQuery.setNavAllRefinements()
method (Java) or ENEQuery.NavAllRefinements property
(.NET) has been set to true. If the dimension has been specified,
however, and the refinements are exposed, this list will contain
dimension values that can be used to create valid refined
Navigation queries.

The following code samples show how to retrieve refinement dimension values from a navigation request
where a dimension has been identified in the Ne parameter.

Java example of extracting standard refinements
Navigation nav = ENEQueryResults.getNavigation();
DimensionList dl = nav.getRefinementDimensions();
for (int I=0; I < dl.size(); I++) {
 Dimension d = (Dimension)dl.get(I);
 DimValList refs = d.getRefinements();
 for (int J=0; J < refs.size(); J++) {
 DimVal ref = (DimVal)refs.get(J);
 String name = ref.getName();
 Long id = ref.getId();
 }
}

.NET example of extracting standard refinements
Navigation nav = ENEQueryResults.Navigation;
DimensionList dl = nav.RefinementDimensions;
for (int I=0; I < dl.Count; I++) {

Oracle Commerce Guided Search MDEX Engine Developer's Guide

111Working with Dimensions | Displaying refinements

 Dimension d = (Dimension)dl[I];
 DimValList refs = d.Refinements;
 for (int J=0; J < refs.Count; J++) {
 DimVal ref = (DimVal)refs[J];
 String name = ref.Name;
 Long id = ref.Id;
 }
}

Extracting implicit refinements from a dimension

If a dimension contains implicit refinements, they can be extracted from the dimension with:
• Java: Dimension.getImplicitLocations() method
• .NET: Dimension.ImplicitLocations property

The call returns a DimLocationList object, which (if not empty) encapsulates DimLocation objects that
contain the implicit dimension value (a DimVal object) and all of the dimension location’s ancestors (also
DimVal objects) up to, but not including, the dimension root.

You can also use these methods to test whether a dimension is fully implicit (that is, if the dimension has no
non-implicit refinements and has no descriptors):

• Java: Dimension.isImplicit()
• .NET: Dimension.IsImplicit()

The following code samples show how to test if a dimension is fully implicit and, if so, how to retrieve the implicit
refinement dimension values from that dimension.

Java example of extracting implicit refinements
Navigation nav = ENEQueryResults.getNavigation();
DimensionList compDims = nav.getCompleteDimensions();
for (int j=0; j<compDims.size(); ++j) {
 Dimension dim = (Dimension) compDims.get(j);
 if (dim.isImplicit()) {
 DimLocationList dimLocList = dim.getImplicitLocations();
 for (int i = 0; i < dimLocList.size(); i++) {
 %> Implicit dimension value: <%=
 ((DimLocation)dimLocList.get(i)).getDimValue().getName()
 %><%
 }
 }
}

.NET example of extracting implicit refinements
Navigation nav = ENEQueryResults.Navigation;
DimensionList compDims = nav.CompleteDimensions;
for (int j=0; j<compDims.Count; ++j) {
 Dimension dim = (Dimension) compDims[j];
 if (dim.IsImplicit()) {
 DimLocationList dimLocList = dim.ImplicitLocations;
 for (int i = 0; i < dimLocList.Count; i++) {
 %> Implicit dimension value: <%=
 ((DimLocation)dimLocList[i]).DimValue.Name %> <%
 }
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinements112

Creating a new query from refinement dimension values
Once refinement dimension values have been retrieved, these dimension values typically are used to create
additional refinement Navigation queries.

As an example of creating a new Navigation query, assume that this Red Wine query:
N=40

returns two refinement dimensions (Year and Score).

The application needs to create a new query from the current query results to expose the refinement dimension
values for the Year dimension. Using the Dimension.getId()method (Java) or the Dimension.Id property
(.NET), the application needs to build a link to a second request:
N=40&Ne=2

Now that we have results with actual refinement values exposed, we need to create a third query that combines
the current query (Red Wine) with the new refinement dimension value (1992). To create this new value for
the Navigation (N) parameter, use the ENEQueryToolkit class. The application creates a DimValIdList
object by using the following method with Navigation and DimVal parameters:

• Java: ENEQueryToolkit.selectRefinement(nav, ref)
• .NET: ENEQueryToolkit.SelectRefinement(nav, ref)

Calling the toString() method (Java) or the ToString() method (.NET) on this object will produce the
proper Navigation (N) parameter for this third query. If the refinement dimension value ID is 66 for the dimension
value 1992, the following query would be created for this refinement:
N=40+66

If you want to render implicit refinements differently than standard refinements, you can use this method to
determine if a refinement is implicit:

• Java: ENEQueryToolkit.isImplicitRefinement()
• .NET: ENEQueryToolkit.IsImplicitRefinement()

You can also use the procedure documented in the previous section, "Extracting implicit refinements from a
dimension."

Java example of creating refinement queries from current query results
DimVal ref = (DimVal)refs.get(J);
DimValIdList nParams =
 Navigation ENEQueryToolkit.selectRefinement(nav, ref);
%>
<a href="N=<%= nParams.toString() %>"><%= ref.getName() %>
<%

.NET example of creating refinement queries from current query results
DimVal ref = (DimVal)refs[J];
DimValIdList nParams =
 Navigation ENEQueryToolkit.SelectRefinement(nav,ref);
%>
<a href="N=<%= nParams.ToString() %>"><%= ref.Name %>
<%

Oracle Commerce Guided Search MDEX Engine Developer's Guide

113Working with Dimensions | Displaying refinements

Accessing dimensions with hierarchy
For dimensions that contain hierarchy, the refinement dimension object may contain additional information
that is useful when displaying refinement values for that dimension.

Ancestors

For ancestors, these calls return a list of dimension values that describe the path from the root of a dimension
to the current selection within the dimension:

• Java: Dimension.getAncestors() method
• .NET: Dimension.Ancestors property

For example, if a Wineries dimension contained four levels of hierarchy (Country, State, Region, Winery) and
the current query was at the region level (Sonoma Valley), the ancestor list would consist of the dimension
value United States first and the dimension value California second:
Wineries (root) > United States (ancestor) >
California (ancestor) > Sonoma Valley (descriptor)

Refinement dimension values, in this case specific wineries, may still exist for this dimension to refine the
query even further. Even though ancestors are normally used to describe selected dimension values, they can
also be used to help qualify a list of refinement dimension values. (The refinements are not just wineries, they
are United States > California > Sonoma Valley wineries.)

Refinement parent

The refinement parent dimension value is accessed with:
• Java: Dimension.getRefinementParent() method
• .NET: Dimension.RefinementParent property

These calls return the single dimension value directly above the list of refinements for a given dimension. (In
the Ancestors example above, the refinement parent would be Sonoma Valley.)

If no dimension values have already been selected for a given dimension, this refinement parent is the root
dimension value (Wineries). If a dimension value has already been selected for a given dimension with hierarchy,
this refinement parent is the descriptor dimension value (Sonoma Valley). This single call to retrieve either the
root or the descriptor makes creating navigation controls simpler. (There is no need to check whether a
hierarchical dimension has already been selected from or not.)

For a flat dimension with no hierarchy, the refinement parent will always be the dimension root, because there
would be no further refinements if a value had already been selected for the dimension.

Important note about hierarchy

Refinements for a given dimension can only be returned from the MDEX Engine on the same level within the
dimension. For example, the MDEX Engine could never return a list of refinement choices that included a mix
of countries, states, and regions. (The only exception is flat dimensions that are dynamically organized and/or
promoted by the MDEX Engine.)

But in all cases where hierarchy is explicitly defined for a dimension, only refinements on an equal level of
hierarchy will be returned for a given query.

Non-navigable refinements
There is a special type of refinement dimension value, found only in dimensions with either explicitly defined
or dynamically generated hierarchy, that is referred to as a non-navigable refinement dimension value.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinements114

These special values do not actually refine the records returned with a navigation request, but instead specify
a deeper level of hierarchy from which to display normal refinement dimension values.

For example, if the Wineries dimension contained 1000 wineries and there was no geographic information
from which to create meaningful hierarchy (as in the example above), the best option would be to have the
MDEX Engine create dynamic alphabetical hierarchy.

The first set of refinements that would be returned for this dimension would be non-navigable refinements
(such as A, B, C, etc.). When a user selects the refinement dimension value A, the resulting query would not
limit the record set to only bottles of wine whose winery begins with A. It would, however, return the same
record set but with only valid refinement wineries that begin with A. After selecting a specific winery, the resulting
query would then limit the record set to only wines from the selected winery.

By this definition, it is important to note that refinement dimension value IDs for non-navigable choices are not
valid Navigation (N) parameter values. Therefore, they should not be used with these methods:

• Java: ENEQueryToolkit.selectRefinement()
• .NET: ENEQueryToolkit.SelectRefinement()

(Note that these methods will ignore the request to refine based on a non-navigable refinement.) In order to
expose the next level of refinements, this non-navigable dimension value ID must be used with the Ne (Exposed
Refinements) parameter.

If a non-navigable refinement (or more than one) has been selected for a given dimension, the non-navigable
dimension values can be retrieved from the resulting dimension object with:

• Java: Dimension.getIntermediates()
• .NET: Dimension.Intermediates

Using ENEQueryToolkit.selectRefinement
This ENEQueryToolkit method is necessary for querying hierarchical dimensions.

When generating a new Navigation parameter for a refinement, it is important to use this method:
• Java: ENEQueryToolkit.selectRefinement()
• .NET: ENEQueryToolkit.SelectRefinement()

One reason for using this method is that it actually implements important business logic.

For example, the query Red Wine:
N=40

returns a refinement dimension value Merlot (ID=41).

Due to the hierarchical nature of the Wine Type dimension, the Merlot refinement is actually in the same
dimension as the dimension value in the current query. The new query that is generated by the
selectRefinement() method (SelectRefinement() in .NET), therefore, is:
N=40

It is not:
N=40+41

This is an important distinction: When querying hierarchical dimensions, only a single dimension value can be
used for each dimension within the Navigation (N) parameter. (Multi-select AND or OR dimensions can have
more than one dimension value in the Navigation parameter, but cannot be hierarchical.) Therefore, it is
important and safer to always use the selectRefinement() method (SelectRefinement() in .NET)
when creating new queries for refinement dimension values.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

115Working with Dimensions | Displaying refinements

Performance impact for displaying refinements
Run-time performance of the MDEX Engine is directly related to the number of refinement dimension values
being computed for display.

If any refinement dimension values are being computed by the MDEX Engine but not being displayed by the
application, stricter use of the Ne parameter is recommended. Obviously, dimensions containing large numbers
of refinements also affect performance.

The worst-case scenario for run-time performance is having a data set with a large number of dimensions,
each dimension containing a large number of refinement dimension values, and setting the
ENEQuery.setNavAllRefinements() method (Java) or ENEQuery.NavAllRefinements property
(.NET) to true. This would create a page with an overwhelming number of refinement choices for the user.

Displaying disabled refinements
You can display disabled refinements in the user interface of your front-end Oracle Commerce application.
These are refinements that are currently disabled in the navigation state but that would have been available
if the users didn't make some of the choices they have made by reaching a particular navigation state.

About disabled refinements
Disabled refinements represent those refinements that end users could reach if they were to remove some of
the top-level filters that have been already selected from their current navigation state.

A core capability of the MDEX Engine is the ability to provide meaningful navigation options to the users at
each step in the guided navigation process. As part of this approach, the MDEX Engine does not return "dead
ends" -- these are refinements under which no records are present. In other words, at each step in the guided
navigation, the users are presented with a list of refinements that are valid based on their current navigation
state.

In many front-end applications, it is desirable to have a user interface that enables users to see the impact of
their refinement selections. In particular, once the users make their initial selections of dimensions and refine
by one or more of them, it is often useful to see not only the refinements that are available at each step in the
navigation but also the disabled refinements that would have been available if some of the other selections
were made.

Such refinements are typically displayed in the front-end application as grayed out, that is, they are not valid
for clicking in the current state but could be valid if the navigation state were to change.

To configure disabled refinements, you do not need to change the Oracle Commerce project configuration
XML files used with Forge, Workbench, and Developer Studio. You also do not change any settings in Oracle
Commerce Workbench and Developer Studio. No changes are required to existing Forge pipelines. The index
format of the Dgidx output does not change.

You configure the display of the disabled refinements on a per query basis. You can do this using Presentation
API methods, or URL parameters. For information, see the topics in this section.

Configuring disabled refinements
Front-end application developers who wish to display disabled refinements need to introduce a specific front-end
application code that augments queries with the configuration for disabled refinements.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying disabled refinements116

The MDEX Engine computes the refinements that must be returned based on two navigation states:
• The base navigation state. This is the regular navigation state with some of the top-level filters removed.

Note: In this context, filters refer to the previously chosen range filters, record filters, EQL filters,
text searches, and dimensions (including multiselect-OR dimensions) that act as filters for the current
navigation state.

• The default navigation state. This is the navigation state against which the MDEX Engine computes all
operations other than those it needs to compute for returning disabled refinements.

The MDEX Engine computes disabled refinements using the following logic:
• It computes refinements as usual, based on the default navigation state.
• For each dimension that has valid refinements in the base navigation state, it computes the additional

disabled refinements that would be reachable from the base navigation state.

About top-level filters used for computing the base navigation state

Typically, the MDEX Engine computes refinements and other portions of the response that define the current
navigation state based on records that have passed various top-level filters. This section discusses top-level
filters, and explains how selections in each of them affect the base navigation state.

The top-level filters can be one of the following:
• Record filters
• EQL filters
• Range filters
• Text searches
• Dimension selections

The following diagram shows these filters:

When the front-end application users make their selections, they can choose items from each of these filters.
To compute results for the base navigation state, the MDEX Engine then decides whether to include or remove
these filters.

Within each of these filters, users can make multiple selections. For example, for a given Dimension 1, users
can make one or more selections, such as DS1, DS2, or DS3. Similarly, they can make more than one selection
with text search, or within a specific range filter. It is important to note how the granularity of these choices
affects the base navigation state: All selections (and not some) from a given dimension are removed from the
base navigation state. Similarly, all text searches and all range filters (and not some) are removed from the
base navigation state.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

117Working with Dimensions | Displaying disabled refinements

Java class and methods

Use the DisabledRefinementsConfig class to display disabled refinement results. The MDEX Engine
returns disabled refinements together with the query results.

The methods of this class enable you to specify various parts of the base navigation state. (The MDEX Engine
uses the base navigation state to compute disabled refinements.) For example, using the methods from this
class, you can specify the following parts of your current navigation state:

• Navigation selections from the dimension specified by the dimensionId

• EQL filters
• Range filters
• Text searches

In addition, the following two methods of the ENEQuery class are used for disabled refinements:
• ENEQuery.setNavDisabledRefinementsConfig() sets the disabled refinements configuration. A

null in disabled refinements configuration means that no disabled refinements will be returned.
• ENEQuery.getNavDisabledRefinementsConfig() retrieves the disabled refinements configuration.

Note: If you do not call these methods, the MDEX Engine does not return disabled refinements.

For more information about this class and methods, see the Oracle Commerce Presentation API for Java
Reference (Javadoc).

Java example

The following example illustrates the front-end application code required for returning disabled refinements
along with the query results:
ENEQuery query = new ENEQuery();

// ...
// Set up other query parameters appropriately
// ...

DisabledRefinementsConfig drCfg = new DisabledRefinementsConfig();
// Include text searches in base navigation state
drCfg.setTextSearchesInBase(true);
// Include navigation selections from the dimension with ID 100000 in base navi¬
gation state
drCfg.setDimensionInBase(100000, true);
// Provide the disabled refinements configuration
query.setNavDisabledRefinementsConfig(drCfg);

.NET class and methods
The DisabledRefinementsConfig class lets you configure disabled refinement results which are returned
with the query results.

In addition, use the following property of the ENEQuery class to configure the display of disabled
refinements:ENEQuery.Nav.DisabledRefinementsConfig

For more information about this class and property, see the Oracle Commerce API Guide for .NET.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying disabled refinements118

.NET example

The following example illustrates the front-end application code required for returning disabled refinements
along with the query results:
ENEQuery query = new ENEQuery();

// ...
// set up other query parameters appropriately
// ...

DisabledRefinementsConfig drCfg = new DisabledRefinementsConfig();
// Include text searches in base navigation state
drCfg.TextSearchInBase = true;
// Include navigation selections from the dimension with ID 100000 in base navi¬
gation state
drCfg.setDimensionInBase(100000, true);
// Provide the disabled refinements configuration
query.NavDisabledRefinementsConfig = drCfg;

URL query parameter for displaying disabled refinements
The Ndr parameter of the Oracle Commerce Navigation URL query syntax lets you display disabled refinements.

The Ndr parameter links to:
• Java: ENEQuery.setNavDisabledRefinementsConfig() method
• .NET: ENEQuery.NavDisabledRefinementsConfig property

The Ndr parameter has a dependency on the N parameter, because a navigation query is being performed.

Configuration settings for the Ndr parameter include:
• <basedimid> — an ID of a dimension that is to be included in the base navigation state.
• <eqlfilterinbase>— a true or false value indexating whether the EQL filter is part of the base navigation

state.
• <textsearchesinbase> — a true or false value indexating whether text searches are part of the base

navigation state.
• <rangefiltersinbase> — a true or false value indexating whether range filters are part of the base

navigation state.

When the Ndr parameter equals zero, no disabled refinement values are returned for any dimensions (which
improves performance).

Examples of queries with the Ndr parameter

The first example illustrates a query that lets you return disabled refinements. In this example, the Ndr portion
of the UrlENEQuery URL indicates that:

• Text search should be included in the base navigation state.
• The navigation selections from the dimension with ID 100000 should be included in the base navigation

state.
/graph?N=110001+210001&Ne=400000&Ntk=All&Ntt=television&Ndr=textsearchesin¬
base+true+basedimid+100000

Oracle Commerce Guided Search MDEX Engine Developer's Guide

119Working with Dimensions | Displaying disabled refinements

In the second example of a query, in addition to text searches, the EQL filters and range filters are also listed
(they are set to false):
N=134711+135689&Ntk=All&Ntt=television&Ndr=basedimid+100000+textsearchesin¬
base+true+eqlfilterinbase+false+rangefiltersinbase+false

Identifying disabled refinements from query output
Disabled refinements are returned in the same way regular refinements are returned. In addition, you can
identify from query output whether a particular dimension value is a disabled refinement.

In the Java API, you can identify the dimension value with the dgraph.DisabledRefinement property. You
can identify the value of this property by accessing the PropertyMap with the DimVal.getProperties()
method.

For example:
DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Determine whether this DimVal is a disabled refinement
 String disabled = "";
 if (pmap.get("DGraph.DisabledRefinement") != null) {
 disabled = " ("+pmap.get("DGraph.DisabledRefinement")+")";
 }
}

In the .NET API, to determine whether a dimension value is a disabled refinement, use the
Dimval.Properties property to obtain the dgraph.DisabledRefinement property. For example:
DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Determine whether this DimVal is a disabled refinement
 String disabled = "";
 if (pmap["DGraph.DisabledRefinement"] != null) {
 disabled = " ("+pmap["DGraph.DisabledRefinement"]+")";
 }
}

Interaction of disabled refinements with other navigation features
This feature has several interactions with other navigation features.

• Dimensions with hierarchy. Disabled refinements are not returned for hierarchical dimensions.
• Dynamic ranking. Any dimension that is dynamically ranked does not have disabled refinements returned

for it. In other words, to display disabled refinements, you need to turn off dynamic ranking.
• Implicit refinements. Using the --noimplicit flag to Dgidx disables computation of dimension values

for disabled refinements.

Performance impact of disabled refinements
Performance impact from enabling the display of disabled refinements falls into three categories. They are
discussed in the order of importance.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying disabled refinements120

• The cost of computation involved in determining the base and default navigation states.

The base and default navigation states are computed based on the top-level filters that may belong to
these states. These filters are text searches, range, EQL and record filters and selections from dimensions.
The types and numbers of these top-level filters in the base and default navigation states affect the MDEX
Engine processing involved in computing the default navigation state. The more filters exist in the current
navigation state, the more expensive is the task; some filters, such as EQL, are more expensive to take
into account than others.

• The trade off between using dynamic refinement ranking and disabled refinements.

In general, these two features pursue the opposite goals in the user interface — dynamic ranking enables
you to intelligently return less information to the users based on most popular dimension values, whereas
disabled refinements let you return more information to the users based on those refinements that are not
available in the current navigation state but would have been available if some of the selections were not
made by the users.

Therefore, carefully consider your choices for the user interface of your front-end application and decide
for which of your refinements you would like to have one of these user experiences:

• Dynamically ranked refinements
• Disabled refinements

If, for example, for some dimensions you want to have only the most popular dimension values returned,
you need dynamic ranking for those refinements. For it, you set the sampling size of records (with -
-esampin), which directly affects performance: the smaller the sampling, the quicker the computation.
However, for those dimensions, the MDEX Engine then does not compute (and therefore, does not return)
disabled refinements.

If, on the other hand, in your user experience you would like to show grayed out (disabled) refinements,
and your performance allows it, you can decide to enable them, instead of dynamic ranking for those
dimensions. This means that for those dimensions, you need to disable dynamic ranking. As a side effect,
this involves a performance cost, since computing refinements without dynamic ranking is more expensive.
In addition, with dynamic ranking disabled, the MDEX Engine will need to compute refinement counts for
more dimension values.

• The cost of navigation queries.

Disabled refinements computation slightly increases the navigation portion of your query processing. This
increase is roughly proportional to the number of dimensions for which you request the MDEX Engine to
return disabled refinements.

Implementing dynamic refinement ranking
A core capability of the MDEX Engine is the ability to dynamically order and present the most popular refinement
dimension values to the user.

When the dynamic refinement ranking feature is implemented, the refinement dimension values that are
returned for a query are pruned to those values that occur most frequently in the requested navigation state;
that is, the refinement dimension values that are most popular.

There are two ways that you can configure dynamic refinement ranking for your application:
• By configuring specific dimensions in Developer Studio.
• By using API calls for query-time control of dynamic refinement ranking. Note that by using these calls,

you can override the Developer Studio settings for a given dimension.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

121Working with Dimensions | Implementing dynamic refinement ranking

The following sections describe how to implement these methods.

Tie breaker for dynamic ranking

Dynamic ranking orders the refinement dimension values by:

1. refinement count (descending), then by
2. static rank assigned (descending), then by
3. dimension value id (descending)

If static ranking is not used, all refinement dimension values will have been assigned a static rank of 1 and the
dimension value Id will be the ultimate tie breaker. (Static ranking is also known as manual dimension value
ranking.) Therefore, you can control the dynamic ranking tie breaker by either assigning a static rank to the
dimension value or by controlling the dimension value ID assigned.

Configuring dynamic refinement ranking
Developer Studio enables you to configure dynamic refinement ranking on a per-dimension basis.

Make sure that you have created the dimension for which you want to enable dynamic refinement ranking.

To configure dynamic refinement ranking:

1. In Developer Studio, open the target dimension in the Dimension editor.
2. Click the Dynamic Ranking tab.
3. Check Enable dynamic ranking, as in this example.

4. Configure other dimension attributes. The following table lists the meanings of all the fields and checkboxes.
MeaningField

If checked, enables dynamic refinement ranking for this dimension.Enable dynamic ranking

Sets the number of most popular refinement dimension values to return.Maximum dimension
values to return

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Implementing dynamic refinement ranking122

MeaningField

Sets the sort method used for the returned refinement dimension values:Sort dimension values
• Alphabetically uses the sort order specified in the "Refinements sort

order" setting on the main part of the Dimension editor.
• Dynamically orders the most popular refinement values according to their

frequency of appearance within a data set. Dimension values that occur
more frequently are returned before those that occur less frequently.

If checked, when the actual number of refinement options exceeds the number
set in "Maximum dimension values to return", an additional child dimension

Generate "More..."
dimension value

value (called More) is returned for that dimension. If the user selects the More
option, the MDEX Engine returns all of the refinement options for that
dimension. If not checked, only the number of dimension values defined in
"Maximum dimension values to return" is displayed.

5. Click OK.

Using query-time control of dynamic refinement ranking
You can configure dynamic refinement ranking to be used on a per-query basis.

The Oracle Commerce Presentation API lets you configure dynamic refinement ranking to be switched on and
off on a per-query, per-dimension basis, including the number and sort order of refinements to return. This
control includes the ability to override the dynamic ranking settings in Developer Studio for a given dimension.

A use case for this dynamic refinement configuration feature would be an application that renders refinements
as a tag cloud. Such an application may adjust the size of the tag cloud at query time, depending on user
preferences or from which page the query originates.

You set the dynamic refinement configuration at the dimension value level that you want to control. That is,
dynamic ranking will be applied to that dimension value and all its children. For example, assume that you
have a dimension named Wine_Type that has three child dimension values, Red, White, and Sparkling,
which in turn have two child dimension values each. The dimension hierarchy would look like this:

You would set the dynamic refinement configurations depending on which level of the hierarchy you want to
order and present, for example:

• If you set the configuration on the root dimension value (which has the same name and ID as the dimension
itself), the refinements in the Red, White, and Sparkling dimension values will be returned.

• If there are multiple child dimension values, you can set a configuration on only one sibling. In this case,
the refinements from the other siblings will not be exposed. For example, if you set a dynamic refinement
configuration on the Red dimension value, only the refinements of the Merlot and Chiantidimension
values will be returned. The refinements from the White and Sparkling dimension values will be not be
shown, even if you explicitly set dynamic refinement configurations for them.

Keep the following items in mind when using this feature:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

123Working with Dimensions | Implementing dynamic refinement ranking

• The settings of the dynamic refinement configuration are not persistent. That is, after the query has been
processed by the MDEX Engine, the dynamic ranking settings for the dimension values revert to their
Developer Studio settings.

• Setting a dynamic refinement configuration will suppress the generation of a "More..." child dimension
value (assuming that the "Generate "More..." dimension value" option has been enabled for the dimension).
You can determine whether there are more refinements than the ones shown by checking the DGraph.More
property on the refinements' parent dimension value.

• The behavior of hidden dimensions is not changed by setting a dynamic refinement configuration on it.
That is, the MDEX Engine still will not return the dimension or any of its values as refinement options.

• This bullet discusses the interaction of dynamic refinement ranking with collapsible dimensions. By default,
the MDEX Engine considers only leaf dimension values for dynamic ranking, removing all intermediate
dimension hierarchy from consideration. With this default behavior, when a hierarchical dimension's mid-level
values (all except the root and leaf values) are configured as collapsible in Developer Studio, and when
the dimension is also set to use dynamic refinement ranking, the dimension collapses and displays only
leaf values for all navigation queries. The mid-level dimension values are never displayed regardless of
the number of leaf values present in the navigation state.

You can use the --dynrank_consider_collapsed flag to force the MDEX Engine to consider
intermediate collapsible dimension values as candidates for dynamic ranking.

URL query parameter for setting dynamic refinement ranking
The Nrc parameter sets the dynamic refinement configuration for the navigation query.

The Nrc parameter links to:
• Java: ENEQuery.setNavRefinementConfigs() method
• .NET: ENEQuery.NavRefinementConfigs property

The Nrc parameter has a dependency on the N parameter, because a navigation query is being performed.

Note: The Nrc parameter works only if dynamic refinement ranking has been enabled.

Nrc parameter syntax

The Nrc parameter will have one or more sets of dynamic refinement configurations, with each set being
delimited by the pipe character. Each dynamic refinement configuration must begin with the id setting, followed
by up to four additional settings, using this syntax:
id+dimvalid+exposed+bool+dynrank+setenable+dyncount+maxnum+dynorder+sortorder

The meanings of the individual settings are:
• id specifies the ID of the dimension value (the dimvalid argument) for which the configuration will be set.
• exposed specifies whether to expose the dimension value's refinements. The bool value is either true

(expose the refinements) or false (do not expose the refinements). The default is true. Note that this
setting does not have a corresponding setting in Developer Studio.

• dynrank specifies whether the dimension value has dynamic ranking enabled. The valid values are en¬
abled, disabled, or default. This setting corresponds to the "Enable dynamic ranking" setting in
Developer Studio.

• dyncount sets the maximum number of refinement dimension values to return. The valid values are either
default or an integer that is equal to or greater than 0. This setting corresponds to the "Maximum
dimension values to return" setting in Developer Studio.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Implementing dynamic refinement ranking124

• dynorder sets the sort method for the returned refinements. The valid values are static, dynamic, or
default. The static value corresponds to the "Alphabetically" value and the dynamic value corresponds
to the "Dynamically" value in the "Sort dimension values" setting in Developer Studio.

The omission of a setting (other than id) or specifying the value default results in using the setting in
Developer Studio.

Nrc example

The following example sets a dynamic ranking configuration for two dimension values with IDs of 134711 and
132830:
N=0&Nrc=id+134711+exposed+true+dynrank+enabled+dyncount
+default+dynorder+dynamic|id+132830+dyncount+7

Dimension value 134711 will have its refinements exposed, have dynamic ranking enabled, use the Developer
Studio setting for the maximum number of refinement values to return, and use a dynamic sorting order.
Dimension value 132830 will have its refinements exposed (because true is the default), return a maximum
of 7 refinement values, and use the Developer Studio values for the dynrank and dynorder settings.

Using refinement configuration API calls
You can use API calls to set the dynamic refinement configuration for the navigation query.

An alternative to the Nrc parameter is to use API calls to create and set the dynamic refinement configuration
for the navigation query. The general procedure is:

1. You first create a refinement configuration for each dimension value by using the calls of the
RefinementConfig class. Each refinement configuration will be a RefinementConfig object.

2. You then encapsulate the RefinementConfig objects in a RefinementConfigList object.
3. Finally, you set the refinement configuration list for the query by using the

ENEQuery.setNavRefinementConfigs()method (Java) or the ENEQuery.NavRefinementConfigs
property (.NET).

Creating a refinement configuration for a dimension value

The constructor of the RefinementConfig class takes the ID of a dimension value to create a
RefinementConfig object for that dimension value and its children (if any). You then use various setter calls
to set the specific configuration attributes. Note that these calls correspond to settings of the Nrc parameter.

Dynamic ranking for the dimension value is set by these RefinementConfig calls (which correspond to the
Nrc dynrank setting):

• Specifically enabled with the Java setDynamicRankingEnabled()method or the .NETDynamicRanking
property with an argument of ENABLED.

• Specifically disabled with the Java setDynamicRankingDisabled() method or the .NET
DynamicRanking property with an argument of DISABLED.

• Set to use the Developer Studio setting with the Java setDynamicRankingDefault() method or the
.NET DynamicRanking property with an argument of DEFAULT.

The RefinementConfig.setExposed() method (Java) or RefinementConfig.Exposed property
(.NET) specify whether to expose the dimension value's refinements. These calls correspond to the Nrc ex¬
posed setting.

The sort method for the returned dimension value is set by these RefinementConfig calls (which correspond
to the Nrc dynorder setting):

Oracle Commerce Guided Search MDEX Engine Developer's Guide

125Working with Dimensions | Implementing dynamic refinement ranking

• Set a dynamic sort order with the Java setDynamicRankOrderDynamic() method or the .NET
DynamicRankOrder property with an argument of DYNAMIC.

• Set a static sort order with the Java setDynamicRankOrderStatic() method or the .NET
DynamicRankOrder property with an argument of STATIC.

• Use the Developer Studio settings with the Java setDynamicRankOrderDefault()method or the .NET
DynamicRankOrder property with an argument of DEFAULT)

The maximum number of dimension values to return is set with the
RefinementConfig.setDynamicRefinementCount() method (Java) or the
RefinementConfig.DynamicRefinementCount property (.NET). Use an empty OptionalInt argument
to use the Developer Studio setting. These calls correspond to the Nrc dyncount setting.

The following is a simple Java example of setting a dynamic refinement configuration on the dimension value
with an ID of 7:
// create an empty refinement config list
RefinementConfigList refList = new RefinementConfigList();
// create a refinement config for dimval 7
RefinementConfig refConf = new RefinementConfig(7);
// enable dynamic refinement ranking for this dimval
refConf.setDynamicRankingEnabled();
// set a dynamic sort order
refConf.setDynamicRankOrderDynamic();
// expose the refinements
refConf.setExposed(true);
// set maximum number of returned refinements to 5
OptionalInt refCount = new OptionalInt(5);
refConfsetDynamicRefinementCount(refCount);
// add the refinement config to the list
refList.add(0, refConf);
// set the refinement config list in the query
usq.setNavRefinementConfigs(refList);

Setting the refinement configurations for the query

The constructor of the RefinementConfigList class will create an empty list. You then insert
RefinementConfig objects into the list with:

• Java: the add() method
• .NET: the Add property

You set the refinement configuration list for the query by using:
• Java: the ENEQuery.setNavRefinementConfigs() method
• .NET: the ENEQuery.NavRefinementConfigs property

Displaying the returned refinement values
The refinement dimension values can be displayed like any other dimension values.

Regardless of whether you used the Nrc parameter or the API calls for the dynamic refinement configuration,
you display the returned refinement dimension values in the same way as you display refinements.

As mentioned earlier, setting a dynamic refinement configuration on a dimension value will suppress the
generation of a "More..." child dimension value. You can determine whether there are more refinements by
checking the DGraph.More property on the refinements' parent dimension value:

• If the value of the DGraph.More property is 0 (zero), there are no more refinements to display.
• If the value of the DGraph.More property is 1 (one), there are more refinements to display.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Implementing dynamic refinement ranking126

Performance impact of dynamic refinement ranking
You can use the --esampmin option with the dgraph, to specify the minimum number of records to sample
during refinement computation.

For dynamic refinement ranking, the MDEX Engine first sorts the refinements by the dynamic counts assigned
to them, and then cuts to the value you specify in Developer Studio ("Maximum dimension values to return"
in the Dynamic Ranking tab of the Dimension editor). Those remaining values are sorted again, alpha- or
dynamic-based on your configuration ("Sort dimension values" in the Dynamic Ranking tab), and then finally
a "More" link is appended to the returned refinements.

The actual cut is not done using the actual refinement counts of the refinement, as that would be very expensive.
Instead, the records in your navigation state are sampled to see if they have a given value or not. After a given
number have been sampled, the list is sorted according to the sample counts, and then cut. This means that
even with the dynamic rank sorting, you could have the scenario where refinements with more records assigned
fall below the More link while others with less records assigned are included above the More link.

The sample size is configurable, but keep in mind that sampling the entire navigation state can be one of the
more performance intensive operations the engine does, so you should be very careful in tweaking the size.
This accomplished with the dgraph --esampmin option, which enables you to specify the minimum number
of records to sample during refinement computation. The default is 0.

For most applications, larger values for --esampmin reduce performance without improving dynamic refinement
ranking quality. For some applications with extremely large, non-hierarchical dimensions (if they cannot be
avoided), larger values can meaningfully improve dynamic refinement ranking quality with minor performance
cost.

Displaying descriptors
Displaying descriptors is the ability to display a summary of the navigation refinements that have been made
within the current navigation query.

Descriptors (also called selected dimension values) are the dimension values that were used to query for the
current record set. The display of these values can take various forms, dependent upon the application. They
could be displayed in a linear, navigation history format, or through a stacked list of values. With these values
displayed to the user, the user can also be given the ability to remove individual refinement values from their
navigation query, thereby increasing the scope of their search.

No Dgidx or dgraph flags are necessary to enable displaying descriptors. Any dimension value that has been
selected is available to be displayed.

URL parameters for descriptors
Selected dimension values are only returned with a valid navigation query.

Because descriptors (selected dimension values) are only returned with a valid navigation query, the Navigation
parameter (N) is required for any request that will render navigation selections:
N=dimension-value-id1+dimension-value-id2[+...]

The Navigation parameter is used to indicate the selections made to the MDEX Engine via this set of
dimension-value-ids. These selected dimension value IDs are the descriptors of the Navigation query. That
is, the descriptors are what describe a navigation query. The descriptors are what a user has already selected.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

127Working with Dimensions | Displaying descriptors

The only exception to this is the URL query:
N=0

where the descriptors consist of a single ID of zero that does not correspond to any dimension value. Instead
a dimension value ID of 0 indicates the absence of any descriptors. It indicates that no dimension values have
been selected. When a navigation query is issued with a descriptor of 0, there will be no selected dimension
values to render.

Note that the MDEX Engine combines selections from the same dimension into similar dimension objects. This
consolidation is why ancestors and descriptors exist, because they were independent selections, but then
combined into one dimension object that relates them by the dimension's hierarchy.

Performance impact for descriptors

Performance is rarely impacted by rendering the selected dimension values, because rendering selected
dimension values is merely a product of displaying what has already been computed. Like other features
related to navigation, performance of the system as a whole is dependent on the complexity and specifics of
the data and the dimension structure itself.

Retrieving descriptor dimension values
The Navigation and Dimension classes have methods for getting descriptor dimensions and their dimension
values.

To retrieve descriptor dimension values:

1. Access the Navigation object from the query results object.
2. After the application has retrieved the Navigation object, retrieve a list of dimensions (a DimensionList

object) that contain descriptors with:
DescriptionOption

Navigation.getDescriptorDimensions() methodJava

Navigation.DescriptorDimensions property.NET

These calls return descriptor dimension values.
An alternative way is to use:

DescriptionOption

Navigation.getDescriptorDimGroups() methodJava

Navigation.DescriptorDimGroups property.NET

These calls return a list of dimension groups (a DimGroupList object) instead of a list of dimensions.
Each dimension group then contains a list of one or more dimensions with descriptors.

If one of the descriptors is a hierarchical ancestor of another, the MDEX Engine consolidates descriptors
into single dimensions. The only exception to this is when a dimension is marked for multi-select. When
a dimension is marked for multi-select and or multi-select or, the consolidation is not made and
each descriptor gets its own dimension object.

3. Once a descriptor dimension has been retrieved, use these calls to extract various selected dimension
value information from the dimension:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying descriptors128

DescriptionOption

Retrieve the dimension value that has been selected from this
dimension.

Dimension.getDescriptor()
method (Java) and
Dimension.Descriptor property
(.NET)

Retrieve a list of the ancestors of the descriptor of this dimension.

Each member of this list is also a selected dimension value from
the same dimension as the descriptor. The distinction between

Dimension.getAncestors()method
(Java) and Dimension.Ancestors
property (.NET)

each member of this list and the descriptor is that each ancestor
is a hierarchical ancestor to the descriptor by the dimension
structure. These ancestors are ordered from parent to child.

Examples: retrieving and rendering descriptors

Java example of retrieving descriptors:
Navigation nav = ENEQueryResults.getNavigation();
// Get list of the dimensions with descriptors
DimensionList dl = nav.getDescriptorDimensions();
// Loop through the list
for (int I=0; I < dl.size(); I++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl.get(I);
 // Get the descriptor and then its name and ID
 DimVal desc = d.getDescriptor();
 String descName = desc.getName();
 long descId = desc.getId();
 // Get list of descriptor’s ancestors and their info
 DimValList ancs = d.getAncestors();
 for (int J=0; J < ancs.size(); J++) {
 DimVal anc = (DimVal)ancs.get(J);
 String ancName = anc.getName();
 long ancId = anc.getId();
 }
}

.NET example of retrieving descriptors:
Navigation nav = ENEQueryResults.Navigation;
// Get list of the dimensions with descriptors
DimensionList dl = nav.DescriptorDimensions;
// Loop through the list
for (int I=0; I < dl.Count; I++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl[I];
 // Get the descriptor and then its name and ID
 DimVal desc = d.Descriptor;
 string descName = desc.getName();
 long descId = desc.Id;
 // Get list of descriptor’s ancestors and their info
 DimValList ancs = d.Ancestors;
 for (int J=0; J < ancs.Count; J++) {
 DimVal anc = (DimVal)ancs[J];
 String ancName = anc.Name;
 long ancId = anc.Id;
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

129Working with Dimensions | Displaying descriptors

Java example of rendering descriptors:
<table>
<%
Navigation nav = ENEQueryResults.getNavigation();
DimensionList dl = nav.getDescriptorDimensions();
for (int I=0; I < dl.size(); I++) {
 Dimension d = (Dimension)dl.get(I);
 %> <tr>
 <%
 DimValList ancs = d.getAncestors();
 for (int J=0; J < ancs.size(); J++) {
 DimVal anc = (DimVal)ancs.get(J);
 %> <td><%= anc.getName() %>
<%
 }
 DimVal desc = d.getDescriptor();
 %> <td><%= desc.getName() %></td></tr>
 <%
}
%>
</table>

.NET example of rendering descriptors:
<table>
<%
Navigation nav = ENEQueryResults.Navigation;
DimensionList dl = nav.DescriptorDimensions;
for (int I=0; I < dl.Count; I++) {
 Dimension d = (Dimension)dl[I];
 %> <tr>
 <%
 DimValList ancs = d.Ancestors;
 for (int J=0; J < ancs.Count; J++) {
 DimVal anc = (DimVal)ancs[J];
 %> <td><%= anc.Name %>
<%
 }
 DimVal desc = d.Descriptor;
 %> <td><%= desc.Name %></td></tr>
 <%
}
%>
</table>

Creating a new query from selected dimension values
You can use selected dimension values to create additional queries.

The following two sections show how you can use the selected refinements to generate queries that remove
selected dimension values as well as select ancestors of the selected descriptors.

Removing descriptors from the navigation state

Once you have the selected dimension values, additional queries can be generated for the action of removing
a selection. A descriptor is a specific type of selected dimension value. The descriptor is the hierarchically
lowest selected dimension value for a dimension.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying descriptors130

One query that can be generated from the descriptor is the query where a descriptor is removed. You can use
the ENEQueryToolkit to generate the query where the descriptor is removed from the current query. You
pass in the Navigation object and the descriptor to generate the navigation query, as in these examples:
// Java version
DimValIdList removed = ENEQueryToolkit.removeDescriptor(nav, desc);

// .NET version
DimValIdList removed = ENEQueryToolkit.RemoveDescriptor(nav, desc);

The Java removeDescriptor() and .NET RemoveDescriptor() methods generate a DimValIdList
object. The object can be used as the Navigation (N) parameter for the additional query by calling the Java
toString() or .NET ToString() method of this object.

The following code snippets show how to create queries that remove descriptors.

Java example of creating queries that remove descriptors
// Get the descriptor from the dimension
DimVal desc = dim.getDescriptor();
// Remove the descriptor from the navigation
DimValIdList dParams = ENEQueryToolkit.removeDescriptor(nav,desc);
%>
<a href="/controller.jsp?N=<%= dParams.toString() %>">

<%

.NET example of creating queries that remove descriptors
// Get the descriptor from the dimension
DimVal desc = dim.Descriptor;
// Remove the descriptor from the navigation
DimValIdList dParams = ENEQueryToolkit.RemoveDescriptor(nav,desc);
%>
<a href="/controller.aspx?N=<%= dParams.ToString() %>">

<%

Selecting ancestors

Another query that you could generate from selected dimension values would be a query for selecting an
ancestor. An ancestor is any hierarchical ancestor of a dimension’s current descriptor. The resulting query
from selecting an ancestor is the existing navigation state with the current descriptor removed, and the ancestor
that is selected as the new descriptor. As with removing a descriptor, you would use the ENEQueryToolkit
class:
// Java version
DimValIdList selected = ENEQueryToolkit.selectAncestor(nav,anc,desc);

// .NET version
DimValIdList selected = ENEQueryToolkit.SelectAncestor(nav,anc,desc);

The Java selectAncestor() and .NET SelectAncestor() methods take the Navigation object, the
ancestor to select, and the descriptor as parameters.

Java example of selecting an ancestor as the new descriptor
// Get the ancestor
DimVal anc = (DimVal)ancestors.get(i);
// Use the ancestor in the navigation
DimValIdList sParams = ENEQueryToolkit.selectAncestor(nav,anc,desc);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

131Working with Dimensions | Displaying descriptors

%>
<a href="/controller.jsp?N=<%= sParams.toString() %>">
<%= anc.getName() %>
<%

.NET example of selecting an ancestor as the new descriptor
// Get the ancestor
DimVal anc = (DimVal)ancestors[i];
// Use the ancestor in the navigation
DimValIdList sParams = ENEQueryToolkit.SelectAncestor(nav,anc,desc);
%>
<a href="/controller.aspx?N=<%= sParams.ToString() %>">
<%= anc.Name %>
<%

Displaying refinement statistics
The application UI can display the number of records returned for refinements.

Dimension value statistics count the number of records (in the current navigation state) or aggregated records
beneath a given dimension value. These statistics are dynamically computed at run-time by the Oracle
Commerce MDEX Engine and are displayed in the user interface.

By providing the user with an indexation of the number of records (or aggregated records) that will be returned
for each refinement, dimension value statistics can enhance the Oracle Commerce application’s navigation
controls by providing more context at each point in the Oracle Commerce application.

A refinement count is the number of records that would be in the result set if you were to refine on a dimension
value.

Note that there is no special URL query parameter to request dimension value statistics. So long as there are
dimension values returned for a given request, dimension value statistics will be returned as a property attached
to each dimension value.

Enabling refinement statistics for dimensions
You configure refinement statistics for regular (non-aggregated) records in Developer Studio.

To configure dimensions for refinement statistics:

1. In Developer Studio, open the target dimension in the Dimension editor.
2. Click the Advanced tab.
3. Check Compute refinement statistics, as in this example.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinement statistics132

4. Click OK.

Only the configured dimensions will be considered for computation of dynamic dimension value statistics by
the Oracle Commerce MDEX Engine.

To enable refinement statistics for aggregated records (that is, those records that are rolled up into a single
record for display purposes), use the --stat-abins flag with the dgraph. You cannot enable refinement
statistics for aggregated records using Developer Studio.

Retrieving refinement counts for records
Record counts are returned in two dgraph properties.

To retrieve the counts for regular (non-aggregated) or aggregated records beneath a given refinement (dimension
value), use these dgraph properties:

• Counts for regular (non-aggregated) records on refinements are returned as a property on each dimension
value. For regular records, this property is DGraph.Bins.

• Counts for aggregated records are also returned as a property on each dimension value. For aggregated
records, this property is DGraph.AggrBins.

For a given Navigation object, request all refinements within each dimension with:
• Java: Dimension.getRefinements() method
• .NET: Dimension.Refinements property

The refinements are returned in a DimValList object.

For each refinement, the dimension value (DimVal object) that is a refinement beneath the dimension can be
returned with:

• Java: DimValList.getDimValue() method
• .NET: DimValList.Item property

To get a list of properties (PropertyMap object) associated with the dimension value, use:
• Java: DimVal.getProperties() method

Oracle Commerce Guided Search MDEX Engine Developer's Guide

133Working with Dimensions | Displaying refinement statistics

• .NET: DimVal.Properties property

Calling the PropertyMap.get() method (Java) or PropertyMap object (.NET) at this point, with the
DGraph.Bins or DGraph.AggrBins argument will return a list of values associated with that property. This
list should contain a single element, which is the count of non-aggregated or aggregated records beneath the
given dimension value.

The following code samples show how to retrieve the number of records beneath a given dimension value.
The examples retrieve the number of regular (non-aggregated) records, because they use the DGraph.Bins
argument for the calls. To retrieve the number of aggregated records, use the same code, but instead use the
DGraph.AggrBins argument.

Java example of getting the record counts beneath a refinement
DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = " ("+pmap.get("DGraph.Bins")+")";
 }
}

.NET example of getting the record counts beneath a refinement
DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Get dynamic stats
 String dstats = "";
 if (pmap["DGraph.Bins"] != null) {
 dstats = " ("+pmap["DGraph.Bins"]+")";
 }
}

Retrieving refinement counts for records that match descriptors
For each dimension that has been enabled to return refinement counts, the MDEX Engine returns refinement
counts for records that match descriptors. Descriptors are selected dimension values in this navigation state.

The refinement counts that the dgraph returns for descriptors are returned with the DGraph.Bins or
DGraph.AggrBins property on the descriptor DimVal object returned through the Oracle Commerce navigation
API.

The count represents the number of records (or aggregate records, in the case of DGraph.AggrBins) that
match this dimension value in the current navigation state.

• For a multi-AND or a single-select dimension, this number is the same as the number of matching records.
• For a multi-OR dimension, this number is smaller than the total number of matching records if there are

multiple selections from that dimension.

This capability of retrieving refinement counts for descriptors is the default behavior of the MDEX Engine. No
additional configuration (for example, dgraph command line options) is needed to enable this capability.

To access the refinement counts for descriptors:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying refinement statistics134

• Retrieve the list of dimensions with descriptors. To do this use the
Navigation.getDescriptorDimensions() method (Java), or the
Navigation.DescriptorDimensions property (.NET).

• For each dimension, retrieve the dimension value that has been selected from this dimension (the descriptor).
To do this, use the Dimension.getDescriptor()method (Java) or Dimension.Descriptor property
(.NET).

• Retrieve the PropertyMap object which represents the properties of the dimension value. To do this, use
the DimVal.getProperties() method (Java) or the DimVal.Properties property (.NET) on that
dimension value.

• Obtain a list of values associated with that property. Use the PropertyMap.get() method (Java) or
PropertyMap object (.NET) with the DGraph.Bins or DGraph.AggrBins argument.

This list should contain a single element which is the number of records (or aggregate records) that match
this dimension value in the current navigation state.

Java example of getting refinement counts for a descriptor
Navigation nav = ENEQueryResults.getNavigation();
// Get the list of dimensions with descriptors
DimensionList dl = nav.getDescriptorDimensions();
// Loop through the list
for (int i = 0; i < dl.size(); i++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl.get(i);
 // Get the descriptor and then its count(s)
 DimVal desc = d.getDescriptor();
 // Get the map of properties for the descriptor
 PropertyMap pmap = desc.getProperties();
 // Get the record count
 String recordCount = "";
 if (pmap.containsKey("DGraph.Bins")) {
 recordCount = " (" + pmap.get("DGraph.Bins") + ")";
 }
 // Get the aggregate record count
 String aggregateRecordCount = "";
 if (pmap.containsKey("DGraph.AggrBins")) {
 aggregateRecordCount = " (" + pmap.get("DGraph.AggrBins") + ")";
 }
}

.NET example of getting refinement counts for a descriptor
Navigation nav = ENEQueryResults.Navigation;
// Get the list of dimensions with descriptors
DimensionList dl = nav.DescriptorDimensions;
// Loop through the list
for(int i = 0; i < dl.Count; i++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl[i];
 // Get the descriptor and then its count(s)
 DimVal desc = d.Descriptor;
 // Get the map of properties for the descriptor
 PropertyMap pmap = desc.Properties;
 // Get the record count
 String recordCount = "";
 if (pmap["DGraph.Bins"] != null) {
 recordCount = " (" + pmap["DGraph.Bins"] + ")";
 }
 // Get the aggregate record count

Oracle Commerce Guided Search MDEX Engine Developer's Guide

135Working with Dimensions | Displaying refinement statistics

 String aggregateRecordCount = "";
 if (pmap["DGraph.AggrBins"] != null) {
 aggregateRecordCount = " (" + pmap["DGraph.Bins"] + ")";
 }
}

Performance impact of refinement counts
Dynamic statistics on regular and aggregated records are expensive computations for the Oracle Commerce
MDEX Engine.

You should only enable a dimension for dynamic statistics if you intend to use the statistics in your Oracle
Commerce-enabled front-end application. Similarly, you should only use the --stat-abins flag with the
dgraph to calculate aggregated record counts if you intend to use the statistics in your Oracle Commerce-enabled
front-end application. Because the dgraph does additional computation for additional statistics, there is a
performance cost for those that you are not using.

In applications where record counts or aggregated record counts are not used, these lookups are unnecessary.
The MDEX Engine takes more time to return navigation objects for which the number of dimension values per
record is high.

Note that Dgidx performance is not affected by dimension value statistics.

Displaying multiselect dimensions
The MDEX Engine supports two types of multiselect dimensions.

The default behavior of the Oracle Commerce MDEX Engine permits only a single dimension value from a
dimension to be added to the navigation state. This type of dimension is called a single-select dimension.

By default, after a user selects a leaf refinement from any single-select dimension, that dimension is removed
from the list of dimensions available for refinement in the query results. For example, after selecting "Apple"
from the Flavors dimension, the Flavors dimension is removed from the navigation controls.

However, sometimes it is useful to enable the user to select more than one dimension value from a dimension.
For example, you can give a user the ability to show wines that have a flavor of "Apple" and "Apricot". This
function is accomplished by tagging the dimension as a multiselect dimension. The MDEX Engine provides
support for two types of multiselect dimensions that apply Boolean logic to the dimension values selected:

• multiselect-AND

• multiselect-OR

The multiselect feature is only fully supported for flat dimensions (that is, dimensions that do not contain
hierarchy). In other words, multiselect-OR queries are restricted to leaf dimension values. In a flat dimension,
all possible refinements are leaf dimension values, so no extra configuration is necessary. In a hierarchical
dimension, you must configure all non-leaf dimension values to be inert (non-navigable) to prevent them from
appearing in the navigation query.

Configuring multiselect dimensions
You use Developer Studio to configure the multiselect feature for a dimension.

To configure a multiselect dimension:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying multiselect dimensions136

1. In Developer Studio, open the target dimension in the Dimension editor.
2. Click the Advanced tab.
3. In the Multiselect frame, select either Or or And, as in this example which configures a Multiselect-OR

dimension.

4. Click OK.

After you re-run Forge and Dgidx, the dimension will be enabled for multiselect queries.

Handling multiselect dimensions
The behavior of multiselect dimensions may require changes in the UI.

The fact that a dimension is tagged as multiselect should be transparent to the Presentation API developer.
There is no special Presentation API development required to enable multiselect dimensions. There are no
URL Query Parameters or API objects that are specific to multiselect dimensions.

However, the semantics of how the MDEX Engine interprets navigation queries and returns available refinements
changes once a dimension is tagged as multiselect. After tagging a dimension as multiselect, the MDEX Engine
will then enable multiple dimension values from the same dimension to be added to the navigation state.

The MDEX Engine behaves differently for the two types of multiselect dimensions:
• Multiselect-AND – The MDEX Engine treats the list of dimension values selected from a multiselect-AND

dimension as a Boolean AND operation. That is, the MDEX Engine will return all records that satisfy the
Boolean AND of all the dimension values selected from a multiselect-AND dimension (for example, all
records that have been tagged with "Apple" AND "Apricot"). The MDEX Engine will also continue to return
refinements for a multiselect-AND dimension. The list of available refinements will be the set of dimension
values that have not been chosen, and are still valid refinements for the results.

• Multiselect-OR – A multiselect-OR dimension is analogous to a multiselect-AND dimension, except that
a Boolean OR operation is performed instead (that is, all records that have been tagged with "Apple" OR
"Apricot"). Keep in mind that selections from the multiselect-OR dimension do not affect what is returned.
Though the result record set is determined using all selections in the navigation state, the MDEX Engine
chooses the set of multiselect-OR refinements by looking at the set of records and ignoring existing
selections from that multiselect-OR dimension. Also note that as more multiselect-OR dimension values

Oracle Commerce Guided Search MDEX Engine Developer's Guide

137Working with Dimensions | Displaying multiselect dimensions

are added to the navigation state, the set of record results gets larger instead of smaller, because adding
more terms to an OR expands the set of results that satisfy the query.

Comparing single-select and multiselect-OR dimensions

A comparison of single-select and multiselect-OR dimensions shows the difference in the generation of standard
and implicit refinements. The table shows these differences using a simplified case with only one selected
dimension value:

Multiselect-OR dimensionSingle-select dimension

Children of the selected dimension value are not
potential refinements, because selecting one would

Children of the current dimension value are potential
refinements because selecting one could reduce your

not expand the record set. Therefore, they are the
implicit selections.

record set. Those that would change your record set
if selected are standard refinements, while those that
would not change your record set if selected are implicit
refinements.

Ancestors of the selected dimension value are potential
refinements, because selecting one could expand your

Ancestors of the dimension value are not potential
refinements, because selecting one would not reduce
the record set. They are the implicit selections. record set. Those that would change your record set

if selected are standard refinements, while those that
would not change your record set if selected are implicit
refinements.

Dimension values in the subtrees rooted at the siblings
of the selected dimension value and its ancestors are

Dimension values in the subtrees rooted at the siblings
of the selected dimension value and its ancestors are

also potential refinements, because selecting one couldalso not potential refinements, because they
expand your record set. Those that would change yourcorrespond to record sets which are disjoint (or at least
record set if selected are standard refinements, whileuninteresting to the user, based on their selected
those that would not change your record set if selected
are implicit refinements.

dimension value.) Note that these dimension values
are not available as refinements in single-select
dimensions, but are accessible in multiselect-AND
dimensions.

The process of navigation in a single-select dimension can be conceptualized as walking up and down the
dimension value tree. Multiselect-OR dimensions, in constrast, are inverted with respect to refinement generation:
dimension values in the subtrees rooted at selections are implicit refinements, while all other dimension values
are potential refinements.

Avoiding dead-end query results

Be careful when rendering the selected dimension values of multiselect-OR dimensions. It is possible to create
an interface that might result in dead-ends when removing selected dimension values.

Consider this example: Dimension Alpha has been flagged as multiselect-OR, and contains dimension values
1 and 2. Dimension Beta contains dimension value 3.

Assume the user’s current query contains all three dimension values. The user’s current navigation state would
represent the query:
"Return all records tagged with (1 or 2) and 3"

If the user then removes one of the dimension values from Dimension Alpha, a dead end could be reached.
For example, if the user removes dimension value 1, the new query becomes:
"Return all records tagged with 2 and 3"

This could result in a dead end if no records are tagged with both dimension value 2 and 3.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying multiselect dimensions138

Due to this behavior, it is recommended that the UI be designed so that the user must be forced to remove all
dimension values from a multiselect-OR dimension when making changes to the list of selected dimension
values.

Refinement counts for multiselect-OR refinements

Refinement counts on a refinement that is multiselect-OR indicate how many records in the result set will be
tagged with the refinement if you select it. When there are no selections made yet, the refinement count is the
same as it would be for single select and multi select dimensions. However, for subsequent selections, the
refinement count may differ from the total number of records in the result set.

For example, suppose a Cuisine refinement is configured as multiselect-OR. In the data set, there are 2
records tagged with only a Chinese property, 3 records tagged with only a Japanese property, and 1 record
that has both of these properties.

Tagged with a Japanese propertyTagged with a Chinese propertyRecord

x1

x2

xx3

x4

x5

x6

If an application user has not made any refinement selections yet, the refinement counts are as follows:

Cuisine

[] Chinese (3)

[] Japanese (4)

The record result list for this navigation state includes records 1, 2, 3, 4, 5, and 6.

If an application user first selects only Chinese, the refinement count is as follows:

Cuisine

[x] Chinese

[] Japanese (4)

The record result list for this navigation state includes records 1, 2, and 3.

If an application user selects both Chinese and Japanese, as shown:

Cuisine

[x] Chinese

[x] Japanese

Then the record result list for this navigation state includes records 1, 2, 3, 4, 5, and 6.

Performance impact for multiselect dimensions

Refinements for multiselect-OR dimensions are more expensive than refinements from single-select dimensions.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

139Working with Dimensions | Displaying multiselect dimensions

When making decisions about when to tag a dimension as multiselect, keep the following in mind: Users will
take longer to refine the list of results, because each selection from a multiselect dimension still permits further
refinements within that dimension.

Using hidden dimensions
Hidden dimensions are not returned as refinement options.

A hidden dimension is like a regular dimension in that it is composed of dimension values that enable the user
to refine a set of records. It differs from a non-hidden dimension in its accessibility in the user interface.

If a dimension is marked as hidden, the MDEX Engine will not return the dimension or any of its values as a
refinement option in the navigation menu. However, if a given record is tagged with a value from a hidden
dimension, the MDEX Engine returns this value with a record query, assuming the dimension is configured to
render on the product page.

Although hidden dimensions are not rendered in UI navigation, records are still indexed with relevant values
from these dimensions. Therefore, a user is able to search for records based on values within hidden dimensions.

Configuring hidden dimensions
You use Developer Studio to configure a dimension as hidden.

To configure a hidden dimension:

1. In Developer Studio, open the target dimension in the Dimension editor.
2. In the General tab, check Hidden, as in this example.

3. Click OK.

There are no Dgidx or dgraph flags necessary to enable hidden dimensions. If a dimension was properly
specified as hidden in Developer Studio, it will automatically be indexed as a hidden dimension.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Using hidden dimensions140

Handling hidden dimensions in an application
The UI can add hidden dimensions to the navigation state.

As a rule, the Oracle Commerce MDEX Engine only returns hidden dimensions and their values for single
record requests and not for navigation requests. Hidden dimensions, when returned, are accessed in the same
manner as regular (non-hidden) dimensions.

Example of using a hidden dimension

Marking a dimension as hidden is useful in cases where the dimension is composed of numerous values and
returning these values as navigation options does not add useful navigation information. Consider, for example,
an Authors dimension in a bookstore. Scanning thousands of authors for a specific name is less useful than
simply using keyword search to find the desired author.

In this case, you would specify that the Authors dimension be hidden. The user will be able to perform a keyword
search on a particular author, but will not be able to browse on author names in order to find books by the
author. Also, once the user has located a desired book (either by keyword search or by navigating within other
dimensions), she may be interested in other books by the same author.

While the user would have been unable to refine her navigation by choosing an author, after finding a particular
book she can include that author in her navigation state, in effect creating a store of books by that author. (The
activity of adding or removing dimension values to or from the navigation state is known as pivoting.)

Performance impact of hidden dimensions

In cases where certain dimensions in an application are composed of many values (see the Authors dimension
example above), marking such dimensions as hidden will improve Oracle Commerce Presentation API and
Oracle Commerce MDEX Engine performance to the extent that queries on large dimensions will be limited,
reducing the processing cycles and amount of data the engine must return.

When a dimension is hidden, the precompute phase of indexing will be shortened because refinements from
hidden dimensions need not be computed.

Using inert dimension values
You can create and use inert dimension values, which are dimension values that are not navigable.

Marking a dimension value as inert makes it non-navigable. That is, the dimension value should not be included
in the navigation state.

From an end user perspective, the behavior of an inert dimension value is similar to the behavior of a dimension
within a dimension group: With dimension groups, the dimension group behaves like a dimension and the
dimension itself behaves like an inert child dimension value. When the user selects the dimension, the navigation
state is not changed, but instead the user is presented with the child dimension values. Similarly, when a user
selects an inert dimension value, the navigation state is not changed, but the children of the dimension value
are displayed for selection.

Whether or not a dimension value should be inert is a subjective design decision about the navigation flow
within a dimension. Two examples of when you might use inert dimension values are the following:

• You want the "More..." option to be displayed at the bottom of an otherwise long list. To do this, use
Developer Studio’s Dimension editor to enable dynamic ranking for the dimension and generate a "More…"
dimension value.

• You want to define other dimension values that provide additional information to users, but for which it is
not meaningful to filter items.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

141Working with Dimensions | Using inert dimension values

Configuring inert dimension values
You use Developer Studio to configure dimension values as inert (non-navigable).

To configure dimension values as inert:

1. In the Project tab of Developer Studio, double-click Dimensions to open the Dimensions view.
2. Select a dimension and click Edit. The Dimension editor is displayed.
3. Select a dimension and click Values. In the Dimension Values view, the Inert column indicates which

dimension values have been marked as inert.
4. Select a dimension value and click Edit. The Dimension Value editor is displayed.
5. Check Inert, as in this example.

6. Click OK. The Dimensions view is redisplayed, with a Yes indexator in the Inert column for the changed
dimension.

There are no Dgidx or dgraph flags necessary to mark a dimension value as inert. Once a dimension has been
marked as inert in Developer Studio, the Presentation API will be aware of its status.

Handling inert dimension values in an application
If you are using inert dimension values, the UI should check whether the DimVal object is navigable.

When sending the new navigation state to the MDEX Engine, the Oracle Commerce application should check
the value of the Java isNavigable() or .NET IsNavigable() method on each DimVal object. Only
dimension values that are navigable (that is, not inert) should be sent to the MDEX Engine, for example, via
the Java ENEQuery.setNavDescriptors() method or the ENEQuery.NavDescriptors property.

Setting the Inert attribute for a dimension value indicates to the Presentation API that the dimension value
should be inert. However, it is up to the front-end application to check for inert dimension values and handle
them in an appropriate manner.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Using inert dimension values142

The following code snippets show how a DimVal object is checked to determine if it is a navigable or inert
dimension value. In the example, the N parameter is added to the navigation request only if the dimension
value is navigable (not inert).

Java example of handling inert dimension values
// Get refinement list for a Dimension object
DimValList refs = dim.getRefinements();
// Loop over refinement list
for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal dimref = refs.getDimValue(k);//
 // Create request to select refinement value
 urlg = new UrlGen(request.getQueryString(), "UTF-8");
 // If refinement is navigable, change the Navigation parameter
 if (dimref.isNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.selectRefinement(nav,dimref)).toString());
 urlg.addParam("Ne",Long.toString(rootId));
 }
 // If refinement is non-navigable, change only the exposed
 // dimension parameter (leave the Navigation parameter as is)
 else {
 urlg.addParam("Ne",Long.toString(dimref.getId()));
 }
}

.NET example of handling inert dimension values
// Get refinement list for a Dimension object
DimValList refs = dim.Refinements;
// Loop over refinement list
for (int k=0; k < refs.Count; k++) {
 // Get refinement dimension value
 DimVal dimref = (DimVal)refs[k];
 // Create request to select refinement value
 urlg = new UrlGen(Request.Url.Query.Substring(1), "UTF-8");
 // If refinement is navigable, change the Navigation parameter
 if (dimref.IsNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.SelectRefinement(nav,dimref)).ToString());
 urlg.AddParam("Ne",rootId.ToString());
 }
 // If refinement is non-navigable, change only the exposed
 // dimension parameter (Leave the Navigation parameter as is)
 else {
 urlg.AddParam("Ne",dimref.Id.ToString());
 }
}

Displaying dimension value properties
Dimension value properties are used to pass data about dimension values to the Presentation API.

In most cases, the Presentation API uses the information to support display features. For example, a dimension
value property can contain the URL of an icon that is displayed next to the dimension value. The data stored
in dimension value properties is typically ignored by the MDEX Engine.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

143Working with Dimensions | Displaying dimension value properties

Configuring dimension value properties
You use Developer Studio to configure properties for dimension values.

To configure dimension value properties:

1. In the Project tab of Developer Studio, double-click Dimensions to open the Dimensions view.
2. Select a dimension and click Edit. The Dimension editor is displayed.
3. Select a dimension and click Values. In the Dimension Values view, the Properties column indicates which

dimension values have properties.
4. Select a dimension value to which you want to add a property and click Edit. The Dimension Value editor

is displayed.
5. Click Properties. The Properties editor is displayed.
6. Enter the name of the property in the Property field, the property's value in the Value field, and click Add

to add the property. The Property editor should look like this example.

7. You can add multiple properties. When you have finished adding properties, click OK. You are returned to
the Dimension Value editor.

8. In the Dimension Value editor, click OK. The Dimensions view is redisplayed, with the new property listed
in the Properties column for the changed dimension.

Note that no Dgidx or dgraph flags are necessary to enable the use of dimension value properties.

Accessing dimension value properties
The application can access the dimension value properties via PropertyMap objects.

After a dimension value (DimVal object) has been retrieved, the application can access the dimension value
properties by calling:

• Java: the DimVal.getProperties() method
• .NET: the DimVal.Properties property

Working with dimension value properties is similar to working with record properties. In both cases, the same
PropertyMap object is returned.

The following code fragments which show how to iterate through all properties of a dimension value.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Displaying dimension value properties144

Java example of accessing dimension value properties
// Loop over refinement list
// refs is a DimValList object
for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal ref = refs.getDimValue(k);
 // Get properties for refinement value
 PropertyMap pmap = ref.getProperties();
 // Get all property names and their values
 Iterator props = pmap.entrySet().iterator();
 while (props.hasNext()) {
 Property prop = (Property)props.next();
 String pkey = prop.getKey();
 String pval = prop.getValue();
 // Perform operation on pkey and/or pval
 }
}

.NET example of accessing dimension value properties
// Loop over refinement list
// refs is a DimValList object
for (int k=0; k < refs.Count; k++) {
 // Get refinement dimension value
 DimVal ref = refs[k];
 // Get properties for refinement value
 PropertyMap pmap = ref.Properties;
 // Get all property names and their values
 System.Collections.IList props = pmap.EntrySet;
 foreach (Property prop in props) {
 String pkey = prop.Key;
 String pval = prop.Value;
 // Perform operation on pkey and/or pval
 }
}

Getting specific properties by name

Note that instead of iterating through all properties for a given dimension value, you can also get specific
properties by name from the PropertyMap object, as shown in these examples.

Java example of getting a specific property
<%
// Get properties for refinement value
PropertyMap pmap = ref.getProperties();
// Get the desired property
String propVal = "";
if (pmap.get("DisplayColor") != null) {
 propVal = pmap.get("DisplayColor");
%>
 <FONT COLOR="<%= propVal %>">Best Buy
<%
}

.NET example of getting a specific property
<%
// Get properties for refinement value

Oracle Commerce Guided Search MDEX Engine Developer's Guide

145Working with Dimensions | Displaying dimension value properties

PropertyMap pmap = ref.Properties;
// Get the desired property
String propVal = "";
// If property has a value
if ((String)pmap["DisplayColor"] != "")
 propVal = (String)pmap["DisplayColor"];
%>
 <FONT COLOR="<%= propVal %>">Best Buy
<%
}

Performance impact for displaying dimension value properties
Dimension value properties could slightly increase the processing and/or querying time because additional
data is moved through the system, but this effect will generally be minimal.

If your Oracle Commerce application does complex formatting on the properties, this could slow down
page-loads, but ideally the information will be used to add formatting HTML or perform other trivial operations,
which will have minimal impact on performance.

Working with external dimensions
Oracle Commerce applications can use dimensions created outside of Developer Studio.

You can also import or otherwise access dimensions created or managed outside of Oracle Commerce
Developer Studio. For details, see the Platform Services Forge Guide.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with Dimensions | Working with external dimensions146

Chapter 12

Dimension Value Boost and Bury

This chapter describes the Dimension Value Boost and Bury feature.

About the dimension value boost and bury feature
Dimension value boost and bury is a mechanism by which the ranking of certain specific dimension values is
made higher or lower than others.

Dimension value boost and bury is a feature that enables users to re-order returned dimension values. With
dimension value boost , you can assign specific dimension values to ranked strata, with those in the highest
stratum being shown first, those in the second-ranked stratum shown next, and so on. With dimension value
bury , you can specify that specific dimension values should be ranked much lower relative to others. This
boost/bury mechanism therefore lets you manipulate ranking of returned dimension values in order to promote
or push certain types of records to the top or bottom of the results list.

The feature depends on the use of the Nrcs URL parameter or the related Presentation API methods. The
feature also works with the use of static refinement ranking as well as dynamic refinement ranking.

Use cases

This feature is especially suited for eCommerce sites, in which it can be used for two distinct use cases:
• Site promotion of a house brand (i.e., globally boost a dimension value over all pages). For example, a

site may have a private label that they would like to ensure always shows up as a refinement everywhere
on the site for business reasons.

• Landing page promotion of a single dimension value or refinement that is important to that category.
Assume, for example, a site that sells CDs. Willie Nelson has produced many records, some of which are
categorized as both country and rock. The site wants to promote (boost) Willie Nelson in the Country
category rather than in the Rock category.

Immediate consumers of this feature are sites using Oracle Commerce Workbench. Using Workbench, a
merchandiser defines a set of rules to fire and to boost or bury individual dimension values based on an end
user's navigation state.

Nrcs parameter
The Nrcs parameter sets the list of stratified dimension values for use during refinement ranking by the MDEX
Engine.

The Nrcs parameter groups specified dimension values into strata. The stratified dimension values specified
in the parameter are delimited by semi-colons (;) and each stratified dimension value is in the format:
stratumInt,dimvalID

where dimvalID is the ID of the dimension value and stratumInt is a signed integer that signifies the stratum
into which the dimension value will be placed.

The Nrcs parameter thus provides a mapping of dimension values to strata in the query:
• Boosted dimension values will use a strata of 1 or greater (> 0).
• Buried dimension values will use a strata of less than 0 (< 0).
• Dimension values that are not specified will be assigned the strata of 0.

You can define as many strata as you wish, but keep the following in mind:
• For boosted strata (i.e., strata defined with a positive >0 integer), numerically-higher strata are boosted

above numerically-lower strata. For example, dimension values in strata 2 are boosted above dimension
values in strata 1.

• Dimension values within a specific stratum are returned in an indeterminate manner. For example, if the
dimension values with IDs of 5000 and 6000 are assigned to a stratum, it is indeterminate as to which
dimension value (5000 or 6000) will be returned first from a query.

• Ties will be broken with whichever type of dynamic refinement ranking is in use (alphabetically or
dynamically).

Note that a dimension value will be stratified in the highest strata it matches, so boosting will have priority over
burying.

Nrcs example

In this example, three strata are defined (strata 2, strata 1, and strata -1):
Nrcs=2,3001;2,3002;1,4001;1,4002;1,4003;-1,5001;-1,5002

When the query is processed, the dimension values are returned in this order:

1. Dimension values 3001 and 3002 are boosted above all others (i.e., are in the highest-ranked stratum).
2. Dimension values 4001 and 4002 are returned next (i.e., are in the second-ranked stratum).
3. All non-assigned dimension values are returned as part of stratum 0 (i.e., are in the third-ranked stratum).
4. Finally, dimension values 5001 and 5002 are buried (i.e., are in the lowest-ranked stratum).

This example shows how you can construct a hierarchy for the returned dimension values, and control the
strata in which they are placed.

Nrcs setter methods

The Nrcs parameter is linked to these methods in the Presentation API:
• The ENEQuery.setNavStratifiedDimVals() method in the Java version of the API.
• The ENEQuery.NavStratifiedDimVals property in the .NET version of the API.

Stratification API methods
The Presentation API has methods that can programmatically set the dimension boost and bury configuration
in the query.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Value Boost and Bury | Stratification API methods148

ENEQuery class

The ENEQuery class has these stratification calls:
• The Java setNavStratifiedDimVals() method and .NET NavStratifiedDimVals setter property

set the list of stratified dimension values in the query for use during refinement ranking by the MDEX Engine.
These calls link to the Nrcs URL query parameter.

• The Java getNavStratifiedDimVals() method and .NET NavStratifiedDimVals getter property
retrieves the list of stratified dimension values.

StratifiedDimVal and StratifiedDimValList classes

A StratifiedDimVal object represents the assignment of a dimension value to a specific stratum for sorting.
The object thus contains:

• A long that specifies the ID of the dimension value.
• An integer that represents the stratum to which the dimension value is assigned. A positive integer indicates

that the dimension value will be boosted, while a negative integer indicates that the dimension value will
be buried.

A StratifiedDimValList object encapsulates a collection of StratifiedDimVal objects. The
StratifiedDimValList object is set in the ENEQuery object by the setNavStratifiedDimVals()
Java method and the NavStratifiedDimVals .NET property.

Example of using the API methods

The following Java example illustrates how to use these methods to send the dimension value boost and bury
configuration to the MDEX Engine:
// Create a query
ENEQuery usq = new ENEQuery();

// Create an empty stratified dimval list
StratifiedDimValList stratList = new StratifiedDimValList();

// Set dimval 3001 to be boosted and add it to stratList
StratifiedDimVal stratDval1 = new StratifiedDimVal(1,3001);
stratList.add(0,stratDval1);

// Set dimval 5001 to be buried and add it to stratList
StratifiedDimVal stratDval2 = new StratifiedDimVal(-1,5001);
stratList.add(1,stratDval2);

// Set the stratified dval list in the query object
usq.setNavStratifiedDimVals(stratList);
// Set other ENEQuery parameters
...

The example sets the dimension value with an ID of 3001 to be boosted and dimension value ID 5001 to be
buried. The .NET of this example

Retrieving the DGraph.Strata property
Dimension values that are stratified have the DGraph.Strata property set to include the strata value used
for sorting.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

149Dimension Value Boost and Bury | Retrieving the DGraph.Strata property

You can identify from query output whether a particular dimension value has been stratified by checking whether
the DGraph.Strata property exists and, if it exists, the stratum value. If the stratum value was specified as
"0" or not specified at all, then the property is not returned. Note that navigation descriptors that were stratified
will also have the DGraph.Strata property set.

In Java, you can identify the value of this property by accessing the dimension value's PropertyMap with the
DimVal.getProperties() method, as in this example:
DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Determine whether this DimVal is stratified
 String isStrat = "";
 if (pmap.get("DGraph.Strata") != null) {
 isStrat = " ("+pmap.get("dgraph.Strata")+")";
 }
}

The .NET version of the Presentation API uses the Dimval.Properties property:
DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Determine whether this DimVal is stratified
 String isStrat = "";
 if (pmap["DGraph.Strata"] != null) {
 isStrat = " ("+pmap["DGraph.Strata"]+")";
 }
}

Interaction with disabled refinements
The dimension value boost and bury feature works correctly with disabled refinements.

To illustrate the interaction of both features, assume that your query (with disabled refinements being enabled)
returns the following:
Dimension X:
 A (disabled)
 B
 C
 D (disabled)
 E
 F (disabled)

You then use the dimension value boost and bury feature. You decide to bury A and boost E and D. The same
disabled refinements query would now return:
Dimension X:
 D (disabled)
 E
 B
 C
 F (disabled)
 A (disabled)

When using these features in concert, you must be very careful to provide a consistent user experience in
your UI. It is very easy to create a situation where implicitly selecting a dimension value will cause a rule to

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Value Boost and Bury | Interaction with disabled refinements150

fire which may decide to boost or bury some dimension values. It is very important for the disabled refinements
features that the order of dimension values on the page remain the same in order to present a good user
experience. Changing the order (by using the boost and bury feature) may confuse the user. Therefore, in
general you should try to make sure your set of boosted and buried dimension values is the same in your
default and base navigation queries.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

151Dimension Value Boost and Bury | Interaction with disabled refinements

Chapter 13

Using Derived Properties

This section describes derived properties and their behavior.

About derived properties
A derived property is a property that is calculated by applying a function to properties or dimension values from
each member record of an aggregated record.

Derived properties are created by Forge, based on the configuration settings in the Derived_props.xml
file. After a derived property is created, the resultant derived property is assigned to the aggregated record.

Aggregated records are a prerequisite to derived properties. If you are not already familiar with specifying a
rollup key and creating aggregated records, see the "Creating Aggregated Records" chapter in this guide.

To illustrate how derived properties work, consider a book application for which only unique titles are to be
displayed. The books are available in several formats (various covers, special editions, and so on) and the
price varies by format. Specifying Title as the rollup key aggregates books of the same title, regardless of
format. To control the aggregated record’s representative price (for display purposes), use a derived property.

For example, the representative price can be the price of the aggregated record’s lowest priced member record.
The derived property used to obtain the price in this example would be configured to apply a minimum function
to the Price property.

Note: Derived properties cannot be used for record sorting.

Derived property performance impact

Some overhead is introduced to calculate derived properties. In most cases this should be negligible. However,
large numbers of derived properties and more importantly, aggregated records with many member records
may degrade performance.

Configuring derived properties
The DERIVED_PROP element in the Derived_props.xml file specifies a derived property.

The attributes of the DERIVED_PROP element are:
• DERIVE_FROM specifies the property or dimension from which the derived property will be calculated.

• FCN specifies the function to be applied to the DERIVE_FROM properties of the aggregated record. Valid
functions are MIN, MAX, AVG, or SUM. Any dimension or property type can be used with the MIN or MAX
functions. Only INTEGER or FLOAT properties may be used in AVG and SUM functions.

• NAME specifies the name of the derived property. This name can be the same as the DERIVE_FROM
attribute.

The following is an example of the XML element that defines the derived property described in the book example
above:
<DERIVED_PROP
 DERIVE_FROM="PRICE"
 FCN="MIN"
 NAME="LOW_PRICE"
/>

Similarly, a derived property can derive from dimension values, if the dimension name is specified in the DE¬
RIVE_FROM attribute. In addition, the function attribute (FCN) can be MAX, AVG, or SUM, depending on the
desired behavior.

Note: Developer Studio currently does not support configuring derived properties. The workaround is
to edit the Derived_props.xml file to add the DERIVED_PROP element. For information about De¬
rived_props.xml, refer to the Oracle Commerce Guide Search Platform Services XML Guide.

Troubleshooting derived properties

A derived property can derive from either a property or a dimension. The DERIVE_FROM attribute specifies
the property name or dimension name, respectively. Avoid name collisions between properties and dimensions,
as this is likely to be confusing.

Displaying derived properties
Displaying derived properties in the UI is similar to displaying regular properties.

The Presentation API’s semantics for a derived property are similar to those of regular properties, though there
are a few differences. Derived properties apply only to aggregated Oracle Commerce records. Therefore, the
MDEX Engine query must be properly formulated to include a rollup key.

Use the following calls to work with the aggregated record (an AggERec object):

PurposeAPI method or property

Returns a PropertyMap object that has the derived properties
of the aggregated record.

Java: AggERec.getProperties()

.NET: AggERec.Properties

Returns an ERec object that is the representative record of the
aggregated record.

Java: AggERec.getRepresentative()

.NET: AggERec.Representative

The following code examples demonstrate how to display the names and values of an aggregated record’s
derived properties.

Java example of displaying derived properties
// Get aggregated record list
AggrERecList aggrecs = nav.getAggrERecs();

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Derived Properties | Displaying derived properties154

for (int i=0; i<aggrecs.size(); i++) {
 // Get individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get all derived properties.
 PropertyMap derivedProps = aggrRec.getProperties();
 Iterator derivedPropIter = derivedProps.entrySet().iterator();
 // Loop over each derived property,
 // handle as an ordinary property.
 while (derivedPropIter.hasNext()) {
 Property prop = (Property) derivedPropIter.next();
 // Display property
 %>
 <tr>
 <td>Derived property name: <%= prop.getKey() %></td>
 <td>Derived property value: <%= prop.getValue() %></td>
 </tr>
 <%
 }
}

.NET example of displaying derived properties
Get aggregated record list
AggrERecList aggrecs = nav.AggrERecs;
// Loop over aggregated record list
 for (int i=0; i<aggrecs.Count; i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get all derived properties.
 PropertyMap derivedPropsMap = aggrec.Properties;
 // Get property list for agg record
 System.Collections.IList derivedPropsList = derivedPropsMap.EntrySet;
 // Loop over each derived property,
 // handle as an ordinary property.
 foreach (Property derivedProp in derivedPropsList) {
 // Display property
 %>
 <tr><td>Derived property name: <%= derivedProp.Key %></td>
 <td>Derived property value: <%= derivedProp.Value %></td></tr>
 <%
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

155Using Derived Properties | Displaying derived properties

Chapter 14

Configuring Key Properties

This section describes how to annotate property and dimension keys with metadata using key properties.

About key properties
Oracle Commerce analytics applications require the ability to manage and query meta-information about the
properties and dimensions in the data.

On a basic level, applications need the ability to determine the types (dimension, Alpha property, numeric
(floating point or Integer) property, time/date (Time, DateTime, Duration) property, and so on) of keys in the
data set.

For example, knowledge of the set of numeric properties enables the application to present reasonable end-user
choices for analytics measures. Knowledge of the set of date/time properties enables the application to present
the end-user with reasonable GROUP BY selections using date bucketing operators.

Dimension-level configuration is also useful at the application layer. Knowledge of the multi-select settings for
a dimension enables the application to present a tailored user interface for selecting refinements from that
dimension (for example, radio buttons for a single select dimension versus check boxes for a dimension enabled
for multi-select OR). Knowledge of the precedence rule configuration is useful for rendering dimension tree
views. Encoding such information as part of the data rather than hard-coding it into the application makes a
cleaner application design that requires less maintenance over time as the data changes.

In addition to product-level information about properties and dimensions, analytics applications require support
for managing user-level information about properties and dimensions. Examples of this include:

• Rendering text descriptions of properties and dimensions presented in the application. An example would
be mouse-over tool tips that describe the definition of the dimension or property.

• Management of “unit” information for properties. For example, a Price property might be in units of dollars,
euros, and so on. A Weight property might be in units of pounds, tons, kilograms, and so on. Knowledge
of the appropriate units for a property enables the application to render units on things like charts, while
also enabling the application to dynamically conditionalize analytics behavior (so that it would, for example,
multiply the euros property by the current conversion rate before adding it to the dollars property).

• General per-property and per-dimension application behavior controls. For example, if the data is stored
in a denormalized form, a nested GROUP BY may be required before using a property as an analytics
measure (for example, with denormalized transaction data, you must GROUP BY “CustomerId” before
computing average “Age” to avoid double counting).

The key property feature in the MDEX Engine addresses these needs. The key property feature enables
property and dimension keys to be annotated with metadata key/value pairs called key properties (since they

are properties of a dimension or property key). These key properties are configured as PROP elements in a
new XML file that is part of the application configuration.

In a traditional data warehousing environment, metadata from the warehouse could be exported to an XML
key properties file and propagated onwards to the application and rendered to the end user.

Access to key properties is provided to the application through new API methods: the application calls
ENEQuery.setNavKeyProperties to request key properties, then calls Navigation.getKeyProperties
to retrieve them.

In addition to developer-specified key properties, Navigation.getKeyProperties also returns automatically
generated key properties populated by the MDEX Engine. These indicate the type of the key (dimension, Alpha
property, Double property, and so on), features enabled for the key (such as sort or search), and other application
configuration settings.

Defining key properties
Key properties are defined in an XML file that is part of the application configuration:
<app_config>.key_props.xml.

A new, empty version of this file is created whenever a new Oracle Commerce Developer Studio project is
created. Editing this file and performing a Set Instance Configuration operation in Developer Studio causes
a new set of key properties to be loaded into the system.

The DTD for the <app_config>.key_props.xml is located in
$ENDECA_ROOT/conf/dtd/key_props.dtd. The contents of this DTD are:
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright (c) 2001-2014, Oracle, Inc.
 All rights reserved.
-->

<!ENTITY % common.dtd SYSTEM "common.dtd">
%common.dtd;

<!-- The KEY_PROPS top level element is the container for a set
 of KEY_PROP elements, each of which contains the
 "key properties" for a single dimension or property key.
-->
<!ELEMENT KEY_PROPS (COMMENT?, KEY_PROP*)>

<!-- A KEY_PROP element contains the list of property
 values associated with the dimension or property key
 specified by the NAME attribute.
-->
<!ELEMENT KEY_PROP (PROP*)>
<!ATTLIST KEY_PROP
 NAME CDATA #REQUIRED
>

Each KEY_PROPS element in the file corresponds to a single dimension or property and contains the key
properties for that dimension or property. Key properties that do not refer to a valid dimension or property name
are removed by the MDEX Engine at startup or configuration update time and are logged with error messages.

Here is an example of a key properties XML file:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE KEY_PROPS SYSTEM "key_props.dtd">

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Configuring Key Properties | Defining key properties158

<KEY_PROPS>
 <KEY_PROP NAME="Gross">
 <PROP NAME="Units"><PVAL>$</PVAL></PROP>
 <PROP NAME="Description">
 <PVAL>Total sale amount, exclusive of any deductions.
 </PVAL>
 </PROP>
 </KEY_PROP>

 <KEY_PROP NAME="Margin">
 <PROP NAME="Units"><PVAL>$</PVAL></PROP>
 <PROP NAME="Description">
 <PVAL>Difference between the Gross of the transaction
 and its Cost.</PVAL></PROP>
 </KEY_PROP>

</KEY_PROPS>

Automatic key properties
In addition to user-specified key properties, the Oracle Commerce MDEX Engine automatically populates the
following properties for each key: Endeca.Type, Endeca.RecordFilterable, Endeca.DimensionId,
Endeca.PrecedenceRule, and EndecaMultiSelect

DescriptionProperty

The type of the key. Value is one of: Dimension, String, Double,
Int, Geocode, Date, Time, DateTime, or RecordReference.

Endeca.Type

indicates whether this key is enabled for record filters. Value one
of: true or false.

Endeca.RecordFilterable

The ID of this dimension (only specified if Endeca.Type=Dimen¬
sion).

Endeca.DimensionId

indicates that a precedence rule exists with this dimension as the
target, and the indicated dimension as the source. Value:
Dimension ID of the source dimension.

Endeca.PrecedenceRule

If Endeca.Type=Dimension and this dimension is enabled for
multi-select, then this key property indicates the type of
multi-select supported. Value one of: OR or AND.

Endeca.MultiSelect

Key property API
Key properties can be requested as part of an Oracle Commerce Navigation query (ENEQuery).

By default, key properties are not returned by navigation requests to avoid extra communication when not
needed. To request key properties, use the ENEQuery.setNavKeyProperties method:
ENEQuery query = ...
query.setNavKeyProperties(KEY_PROPS_ALL);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

159Configuring Key Properties | Automatic key properties

To retrieve the key properties from the corresponding Navigation result, use the Navigation.getKeyProperties
method:
ENEQueryResults results = …
Map keyPropMap = results.getNavigation().getKeyProperties();

This method returns a Map from String key names to KeyProperties objects, which implement the
com.endeca.navigation.PropertyContainer interface, providing access to property values through
the same interface as an Oracle Commerce record (ERec object).

Example: rendering all key properties

For example, to render all of the key properties returned by the MDEX Engine, one could use the following
code sample:
Map keyProps = nav.getKeyProperties();
Iterator props = keyProps.values().iterator();
while (props.hasNext()) {
 KeyProperties prop = (KeyProperties)props.next();

 // Each key property has a key and a set of values
 String keyPropName = (String)prop.getKey();

 // Get the values which are stored as a PropertyMap
 PropertyMap propVals = (PropertyMap)prop.getProperties();
%>
 <tr><td <%= keyPropName %> </td></tr>
<%
 // Display properties
 Iterator containedProps = propVals.entrySet().iterator();
 // Iterate over the properties
 while (containedProps.hasNext()) {
 // Display property
 Property propMap = (Property)containedProps.next();
 String propKey = (String)propMap.getKey();
 String propVal = (String)propMap.getValue();
%>
<tr><td><%= propKey %>:</td><td><%= propVal %></td></tr>
<%
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Configuring Key Properties | Key property API160

Part 4

Basic Search Features

• Record Searches
• Search Interfaces
• Dimension Searches
• Record and Dimension Search Reports
• Using Search Modes
• Using Boolean Search
• Using Phrase Search
• Using Snippeting in Record Searches
• Using Wildcard Search
• Search Characters
• Examples of Query Matching Interaction
• Spelling Correction and Did You Mean
• Stemming and Thesaurus
• Automatic Phrasing
• Stop Words
• Relevance Ranking
• Record Boost and Bury

Chapter 15

Record Searches

This section is an introduction to record search, the Oracle Commerce equivalent of full-text search.

Keyword search overview
Users can perform two types of queries that perform searches based on keywords: record searches and
dimension searches.

Keyword search enables a user to perform a search against specific properties or dimension values assigned
to records. The resulting records that have matching properties or dimension values are returned, along with
any valid refinement dimension values.

Keyword search returns a complete Navigation object, which is the same object that is returned when a user
filters records by selecting a dimension value. The keyword search parameter acts as a record filter in the
same way that a dimension value does, even though it is not a specific dimension value.

Dimension searches return dimension values containing the search term(s) that the user has specified.
Dimension searches do not use search keys.

Example of keyword record search

For example, consider the following records:

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with extremely
ripe...

Antinori Toscana SolaiaRed (Dim Value 101)1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)4

Note: Other features affect the behavior of record search, such as spelling support, relevance ranking
of results, wildcard syntax, multiple property record searches, and property group record searches.
These are discussed in detail later in this document.

Making properties or dimensions searchable
The first step in implementing basic record search is to configure a property or dimension for record searching.

Hierarchical record searches
A record search is called hierarchical if it takes into consideration the ancestor dimension values of a specified
dimension value.

You can specify that a record search is to be hierarchical in Developer Studio.

Record searches are non-hierarchical by default – that is, they return only those records that are assigned a
dimension value whose text matches the search term.

The following example illustrates the difference between non-hierarchical and hierarchical record searches:

In the WineType dimension, the dimension value Red (with an ID of 12) is an ancestor of the dimension value
Merlot (ID of 13). Non-hierarchical and hierarchical record searches work as follows in the WineType
dimension:

• A non-hierarchical record search using the keyword merlot selects any records assigned the dimension
ID 13, but selects no records if the keyword is red merlot.

• A hierarchical search using the keyword red merlot selects the same records, that is, any records
assigned the dimension ID 13.

Adding search synonyms to dimension values
You can add synonyms to a dimension value so that searches on the synonyms will select the same records
as searches on the original dimension value.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Searches | Making properties or dimensions searchable164

When a dimension is used as the record search key, the text strings considered by record search for matching
are the individual names of the dimension values within the dimension. The dimension name is automatically
added as a searchable string.

Synonyms can be added only to child dimension values, and not to root dimension values.

Features for controlling record search
You can control the features related to record search either at indexing time or at run-time.

The following statements describe the aspects of record search behavior that you can control:
• To control indexing behavior, you can use phrase search, wildcard search or other advanced features of

record search. For more information, see sections about phrase search, wildcard search and sections
about the advanced search capabilities.

• To configure run-time record search behavior, you must create one or more search interfaces. For more
information, see Search Interfaces on page 173.

• Dgidx flags are not needed to enable record search. If a property or dimension was properly enabled for
record search, it will automatically be indexed for searching.

• Dgraph (MDEX Engine) configuration flags are not needed to enable record searching. If a property or
dimension was properly enabled for record searching during indexing, it will automatically be available for
record searching when index files are loaded into the MDEX Engine.

• Multiple MDEX Engine configuration flags are available to manage different controls for record search,
such as spelling support and relevance ranking. See specific feature sections for details.

URL query parameters for record search
A basic record search requires two request URL parameters, Ntk and Ntt. This topic describes Ntk and Ntt
and provides examples of their use.

The search key parameters are described as follows:
• Ntk=search_key . The search key parameter Ntk specifies the property or dimension that will be

examined by the search. Specify a property or dimension as a value for this parameter. (You can also
specify a search interface as a value for the Ntk parameter.)

• Ntt=search_term . The keyword parameter Ntt specifies the search term.

The URL query parameters for record searches have the following characteristics:

• The navigation dimension value (N) and the record search parameters (Ntk, Ntt) are joined by a Boolean
AND.

• Only records selected by the navigation dimension value (N) are examined by the record search.
• Record search parameters must accompany a standard navigation request, even if that basic navigation

request is empty (N=0).
• A request without a Navigation value (N) is invalid, even if a property key (Ntk) and keyword (Ntt) are

specified.

Examples of queries with Ntt and Ntk

For example, consider the following records:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

165Record Searches | Features for controlling record search

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with extremely
ripe...

Antinori Toscana SolaiaRed (Dim Value 101)1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)4

For example, the following query returns records 1 and 4, because the navigation request is empty (N=0)
<application>?N=0&Ntk=Description&Ntt=Ripe

However, the following query returns only record 1, because the navigation request (N=101) is already filtering
the record set to records 1 and 2:
<application>?N=101&Ntk=Description&Ntt=Ripe

The following query is invalid because it does not include a navigation request (N):
<application>?Ntk=Description&Ntt=Ripe

Methods for using multiple search keys and terms
In a more advanced application, users can search against multiple properties with multiple terms. To do this,
Ntk and Ntt are used together.

You can implement searching multiple properties using AND Boolean logic with Ntk and Ntt with the following
query:
Ntk=<property_key1>|<property_key2>
Ntt=<search_term1>|<search_term2>

In this query, each term is evaluated against the corresponding property. The returned record set represents
an intersection of the multiple searches.

Examples of searching multiple terms

For example, assume that a search for the term cherry returns 5,000 records while a search for peach
returns 2,000 records.

However, a multiple search for both terms:
<application>?N=0&Ntk=Description|Description&Ntt=cherry|peach

returns only 10 records if those 10 records are the only records in which both terms exist in the Description
property.

You can use any number of property keys, as long as it matches the number of search terms.

For example, consider the following records:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Searches | Features for controlling record search166

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with extremely
ripe...

Antinori Toscana SolaiaRed (Dim Value 101)1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)4

In this example, the following query:
<application>?N=0&Ntk=Description|Name&Ntt=Ripe|Solaia

returns only record 1.

The following query:
<application>?N=0&Ntk=Description|Name&Ntt=Ripe

is invalid, because the number of record search keys does not match the number of record search terms.

You can also use search interfaces to perform searches against multiple properties. For more information,
see the section about search interfaces. For information about performing more complex Boolean queries,
see topics about using Boolean search.

Methods for rendering results of record search requests
Rendering the results of a record search request is identical to rendering the results of a navigation request.
This is because a record search request is a variation of a basic navigation request.

Specific objects and method calls exist that can be accessed from a Navigation object and return a list of
valid record search keys. (This data is only available from a navigation request, not from a record or dimension
search request.)

Java example

A Java code example for rendering results of record search is shown below:
ERecSearchKeyList keylist = nav.getERecSearchKeys();
for (int i=0; i < keylist.size(); i++) {
 ERecSearchKey key = keylist.getKey(i);
 String name = key.getName();
 boolean active = key.isActive();
}

The ERecSearchKeyList object is a vector containing ERecSearchKey objects. Each ERecSearchKey
object contains the name of a property that has been enabled for record search, as well as a Boolean flag
indicating whether that property is currently being used as a search key.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

167Record Searches | Features for controlling record search

.NET example

A .NET code example for rendering results of record search is shown below:
ERecSearchKeyList keylist = nav.ERecSearchKeys;
for (int i=0; i < keylist.Count; i++) {
 ERecSearchKey key = (ERecSearchKey)keylist[i];
 String name = key.Name;
 Boolean active = key.IsActive();
}

The ERecSearchKeyList object is a vector containing ERecSearchKey objects. Each ERecSearchKey
object contains the name of a property that has been enabled for record search, as well as a Boolean flag
indicating whether that property is currently being used as a search key.

Search query processing order
This section summarizes how the MDEX Engine processes record search queries.

While this summary is not exhaustive, it covers the processing steps likely to occur is most application contexts.
The process outlined here assumes that other features (such as spelling correction and thesaurus) are being
used.

The MDEX Engine uses the following high-level steps to process record search queries:

1. Record filtering
2. Oracle Commerce Query Language (EQL) filtering
3. Tokenization
4. Auto correction (spelling correction and automatic phrasing)
5. Thesaurus expansion
6. Stemming
7. Primitive term and phrase lookup
8. Did you mean
9. Range filtering
10. Navigation filtering
11. Business rules and keyword redirects
12. Analytics
13. Relevance ranking

Note: For Boolean search queries, tokenization, auto correction, and thesaurus expansion are replaced
with a separate parsing phase.

Step 1: Record filtering
If a record filter is specified, whether for security, custom catalogs, or any other reason, the MDEX Engine
applies it before any search processing.

The result is that the search query is performed as if the data set only contained records permitted by the
record filter.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Searches | Search query processing order168

Step 2: Oracle Commerce Query Language filters
The Oracle Commerce Query Language (EQL) contains a rich syntax that enables an application to build
dynamic, complex filters that define arbitrary subsets of the total record set and restrict search and navigation
results to those subsets. If used, this feature is applied after record filtering.

Step 3: Tokenization
Tokenization is the process by which the MDEX Engine breaks up compound phrases in the search query
string into their constituent words or characters, producing a sequence of distinct query terms.

Step 4: Auto correction (spelling correction and automatic phrasing)
If spelling correction and automatic phrasing are enabled and triggered, the MDEX Engine implements them
as part of the record search processing.

If the spelling correction feature is enabled and triggered, the MDEX Engine creates spelling suggestions by
enumerating (for each query term) a set of alternatives, and considering some of the combinations of term
alternatives as whole-query alternatives.

Each of these whole-query alternatives is subject to thesaurus expansion and stemming.

For example, if the tokenized query is employee moral, then employeemay generate the set of alternatives
{employer, employee, employed}, while moral may generate the set of alternatives {moral, morale}.

The two query alternatives generated as spelling suggestions might be employer moral and employee
morale.

If automatic phrasing is enabled, then the MDEX Engine automatically combines distinct query terms that
match a phrase in the phrase dictionary into a search phrase.

Once distinct terms are grouped as an automatic phrase, the phrase is not subject to additional thesaurus
expansion and stemming.

For example, suppose the phrase dictionary contains two phrases Kenneth Cole and also blue jeans. If
the query is Kenneth Cole blue jeans, the alternative query might be "Kenneth Cole" "blue jeans".

Step 5: Thesaurus expansion
The tokenized query, as well as each query alternative generated by spelling suggestion, is expanded by the
MDEX Engine based on thesaurus matches. This topic describes the behavior of the thesaurus expansion
feature.

Thesaurus expansion replaces each expanded query term with an OR of alternatives.

For example, if the thesaurus expands pentium to intel and laptop to notebook, then the query pentium
laptop will be expanded to:
(pentium OR intel) AND (laptop OR notebook)

assuming the match mode is MatchAll.

The other match modes (with the exception of MatchBoolean) behave analogously.

If there is a multiple-word thesaurus match, then OR is used on the query itself to accommodate the various
ways of partitioning the query terms.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

169Record Searches | Search query processing order

For example, if high speed expands to performance, then the query high speed laptopwill be expanded
to:
(high AND speed AND (laptop OR notebook)) OR (performance
AND (laptop OR notebook))

Multiple-word thesaurus matches only apply when the words appear in exact sequence in the query. The
queries speed high laptop and high laptop speed do not activate the expansion to performance.

Step 6: Stemming
Query terms, unless they are delimited with quotation marks to be treated as exact phrases, are expanded by
the MDEX Engine using stemming.

The expansion for stemming applies even to terms that are the result of thesaurus expansion. A stemmed
query term is an OR expression of its word forms.

For example, if the query pentium laptop was thesaurus-expanded to:
(pentium OR intel) AND (laptop OR notebook)

it will be stemmed to:
(pentium OR intel) AND (laptop OR laptops OR notebook
OR notebooks)

assuming that only the improper nouns have plurals in the word form dictionary.

Step 7: Primitive term and phrase lookup
Primitive term and phrase lookup is the lowest level of search processing performed by the MDEX Engine.

The MDEX Engine evaluates each search term as is, and matches it to the set of documents containing that
precise word or phrase (given the tokenization rules) in the indexes being searched. Search is never
case-sensitive, even for phrases.

Step 8: Did You Mean
The MDEX Engine performs the "Did You Mean" processing as part of the record search processing.

"Did You Mean?" processing is analogous to the spelling correction and automatic phrasing processing, only
that the results are not included, but rather the spelling suggestions and automatic phrases themselves are
returned.

Step 9: Range filtering
Range filter functionality enables a user, at request time, to specify an arbitrary, dynamic range of values that
are then used to limit the records returned for a navigation query.

Because this step comes after "Did you mean?" processing, it reports the number of records before filtering.

Step 10: Navigation filtering
The MDEX Engine performs all filtering based on the navigation state after the search processing. This order
is important, because it ensures that the spelling suggestions remain consistent as the navigation state changes.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Searches | Search query processing order170

Step 11: Business rules and keyword redirects
Dynamic business rules employ a trigger and target mechanism to promote contextually relevant records to
application users as they search and navigate within a data set.

Keyword redirects are similar to dynamic business rules also use trigger and target values. However, keyword
redirects are used to redirect a user's search to a Web page (that is, a URL). These features are applied after
navigation filtering.

Note: Recommended practice is to use the Experience Manager, rather than using business rules and
user profiles directly. For detailed information about the Experience Manager, refer to the Workbench
User's Guide.

Step 12: Analytics
Oracle Commerce Analytics builds on the core capabilities of the Oracle Commerce MDEX Engine to enable
applications that examine aggregate information such as trends, statistics, analytical visualizations, comparisons,
and so on, all within the Guided Navigation interface. If Analytics is used, it is applied near the end of processing.

For more information about this feature, see the MDEX Engine Analytics Guide.

Step 13: Relevance ranking
Relevance ranking is the last step in the MDEX Engine processing for the record search. Each of the
navigation-filtered search results is assigned a relevance score, and the results are sorted in descending order
of relevance.

Tips for troubleshooting record search
This topic includes tips for troubleshooting record search.

Due to the user-specified interaction of this feature (as opposed to the system-controlled interaction of Guided
Navigation in which the MDEX Engine controls the refinement values presented to the user), a user is enabled
to submit a keyword search that does not match any records.

Therefore, it is possible for a user to make a dead-end request with zero results when using record search.
Applications utilizing record search need to account for this. Even though there are objects and methods
accessed from the Navigation object that enumerate search-enabled Oracle Commerce properties, these
are normally used for debugging purposes that do not explicitly know this information for a given data set.

In production systems, these Oracle Commerce properties are typically hard-coded at the application level,
because the application requires specific search keys to be used for specific functionality.

If an Oracle Commerce property is not enabled for record searching but an application attempts to perform a
record search against this property, the MDEX Engine successfully returns a null result set.

The MDEX Engine error log, however, outputs the following message: In fulltext search: [Wed Sep
3 12:28:02 2007] [Warning] Invalid fulltext search key "Description" requested.

The -v flag to the MDEX Engine causes the MDEX Engine to output detailed information about its record
search configuration. If you are unsure whether the MDEX Engine is recognizing a particular parameter, start
it with the -v flag and check the output.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

171Record Searches | Tips for troubleshooting record search

Finally, while implementing record search by enabling record properties for searching is the normal approach,
dimension values can also be enabled for record searching. The dimension name then replaces the property
key as the value for the Ntk parameter in the MDEX Engine query. The resulting navigation request contains
any record that is tagged with a dimension value from the specified dimension that matches the search terms.

Performance impact of record search
Because record searching is an indexed feature, each property enabled for record searching increases the
size of both the Dgidx process and the dgraph (MDEX Engine) process.

The specific size of the increase is related to the size of the unique word list generated by the specific property
in the data set. Therefore, only properties that are specifically needed by an application for record searching
should be configured as such.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Searches | Performance impact of record search172

Chapter 16

Search Interfaces

A search interface is a named collection of properties and dimensions, each of which is enabled for record
search.

About search interfaces
A search interface enables you to control record search behavior for groups of one or more properties and
dimensions.

A search interface may also contain:
• A number or attributes, such as name, cross-field information, and so on.

• An ordered collection of one or more ranking strategies.

Some of the features that can be specified for a search interface include:
• Relevance ranking
• Matching across multiple properties and dimensions
• Keyword in context results
• Partial match

You can use a search interface to control the behavior of search against a single property or dimension, or to
simultaneously search across multiple properties and dimensions.

For example, if a data set contains both an Actor property and Director dimension, a search interface can
provide the user the ability to search for a person’s name in both. A search interface’s name is used just like
a normal property or dimension when performing record searches. By default, a record search query on a
search interface returns results that match any of the properties or dimensions in the interface.

About implementing search interfaces
You implement search interfaces in Developer Studio’s Search Interface editor.

Before implementing search interfaces, make sure that all the properties or dimensions that are going to be
included in a search interface have already been enabled for record search.

If you are implementing wildcard search in a search interface, search interfaces can contain a mixture of
wildcard-enabled and non-wildcard-enabled members (although only the former will return wildcard-expanded
results).

After indexing the data with the new search interface, the new key may be used for record searches.

Options for enabling cross-field matches
The enable Cross-field Matches attribute of Search Interface editor in Developer Studio specifies when the
MDEX Engine should try to match search queries across dimension or property boundaries.

The three settings for enable Cross-field Matches are:

DescriptionSetting

The MDEX Engine always looks for matches across dimension or property boundaries, in
addition to matches within a dimension or property.

Always

If you choose to use cross-field matching, the Always setting is recommended and is the
default.

For example, in the Sony camera user query, if enable Cross-field Matches is set to Always,
the MDEX Engine returns all matches with Brand = Sony and Product_Type = camera.

The MDEX Engine does not look across boundaries for matches.Never

The MDEX Engine only tries to match queries across dimension or property boundaries if it
fails to find any matches within a single dimension or property.

On Failure

Note: In most cases, the Always setting provides better results than the On Failure
setting.

By default, record search queries using a search interface return the union of the results from the same record
search query performed against each of the interface members.

For example, a search interface named MoviePeople includes actor and director properties. Searching
for deniro against this interface returns the union of records that results from searching for deniro against
the actor property and against the director property.

Less frequently, you may wish to enable a match to span multiple properties and dimensions. For example,
in the same MoviePeople search interface, a query for clint eastwood returns records where either an
actor property or a director property is assigned a value containing the words clint and eastwood.
This behavior is useful for this query, where the search terms all relate to a single concept (the actor/director
Clint Eastwood).

However, in some cases returning a union of the results from the same record search query performed against
each search interface member is unnecessarily limiting. For example, in a home electronics catalog application,
a customer searching for Sony camera might be interested in a broad range of products, but this record
search would return only the few products that have the terms Sony and camera in the product name.

In such cases, you can use the attribute in the Search Interface editor in Developer Studio, when you create
a search interface. The enable Cross-field Matches attribute specifies when the MDEX Engine should try to
match search queries across dimension or property boundaries, but within the members of the search interface.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Search Interfaces | Options for enabling cross-field matches174

How cross-field matches work in multi-assign cases

When a search interface member (that is, a searchable dimension or property) is multi-assigned on a record,
the multi-assigns are treated by the MDEX Engine as separate matches, just as if they were values from
different properties. A search that matches two or more terms in separate multi-assign values for the same
property is treated as a cross-field match by the MDEX Engine.

For example, assume a record has the following property values:
P_Tag: Sachin Tendulkar
P_Tag: Jersey

A search against P_Tag for "sachin tendulkar jersey" is treated as a cross-field match, even though all results
were found in the same property (P_Tag).

Additional search interfaces options
You can specify other match-related options in the Search Interface editor in Developer Studio.

For example, you can specify the following options:
• A relevance ranking strategy that is associated with a search interface.

• Partial matching, which permits matches on subsets of the query.

• Complex Boolean search queries.

Search interfaces and URL query parameters (Ntk)
Use the name of the search interface as the value for the Ntk parameter, just as you would use a normal
property or dimension.

No additional MDEX Engine URL query parameters are required to perform a record search using a search
interface.

By default, using a search interface in a search performs a logical OR on the properties/dimensions in the
interface.

For example, if a data set contains both an Actor property and Director dimension, a search interface can
provide the user the ability to search for a person’s name in both.

In this example, a search on the MoviePeople search interface returns records that match the Actor property
OR the Director property.

The following two queries are not equivalent:
Ntk=actor|director&Ntt=deniro|deniro
Ntk=moviepeople&Ntt=deniro

• The first query performs a logical AND. This query only returns records where actor AND director
contain deniro.

• The second query performs a logical OR.

Note: The Nrk URL parameter also requires a search interface.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

175Search Interfaces | Additional search interfaces options

Java examples of search interface methods
To obtain a list of valid search interfaces in Java, use the Navigation.getERecCompoundSearchKeys()
method.

The following example shows how the Navigation.getERecCompoundSearchKeys() method can be
used to obtain a list of search interface keys:
ERecCompoundSearchKeyList keylist =
 nav.getERecCompoundSearchKeys();
for (int i=0; i < keylist.size(); i++) {
// Get specific search interface key
 ERecCompoundSearchKey key = keylist.getKey(i);
 String name = key.getName();
 boolean active = key.isActive();
}

Note: Search interface keys are not returned in calls to the Navigation.getERecSearchKeys()
method, which returns only basic record properties and dimensions.

.NET examples of search interface properties
To obtain a list of valid search interfaces in .NET, use the Navigation.ERecCompoundSearchKeys property.

The following example shows how the Navigation.ERecCompoundSearchKeys property can be used to
obtain a list of search interface keys:
ERecCompoundSearchKeyList keylist = nav.ERecCompoundSearchKeys;
for (int i=0; i < keylist.Count; i++) {
// Get specific search interface key
 ERecCompoundSearchKey key =
 (ERecCompoundSearchKey) keylist.Key(i);
 String name = key.Name;
 boolean active = key.IsActive();
}

Note: Search interface keys are not returned in calls to the Navigation.ERecSearchKeys property,
which returns only basic record properties and dimensions.

Tips for troubleshooting search interfaces
All the tips for troubleshooting basic record search are also useful for troubleshooting record search that uses
search interfaces. To get the most out of the search interfaces feature, make sure to set your search interfaces
to contain the relevant searchable fields.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Search Interfaces | Java examples of search interface methods176

Chapter 17

Dimension Searches

There are two types of dimension search, default dimension search and compound dimension search.

About dimension search
Both default dimension search and compound dimension search enable users to perform keyword searches
across dimensions for dimension values with matching names.

The result of a dimension search is a results object that contains dimension values.

The application can present these dimension values to the end-user, enabling the user to select them and
create a new navigation request.

Depending on the type of dimension search that you are using, dimension values are organized by:
• Dimension (default dimension search)

• Sets of dimension values (compound dimension search)

All configuration settings described for the dimension search are performed in the Developer Studio.

Default dimension search
Default dimension search returns a list of dimension values, organized by dimension, that match the user’s
search terms.

A dimension value must match all of a user’s search terms to be considered a valid result when using default
dimension search.

Example of default dimension search

For example, a default dimension search for red might return:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Dimension valuesDimension

Drink with red meatDrinkability

Compound dimension search
Compound dimension search enables the MDEX Engine to return combinations of dimension values, called
navigation states, that match a search query (in addition to single dimension values).

For example, the compound dimension search query:
1996 + merlot

could return a result such as:
{Year: 1996, Varietal: Merlot}

Note: Compound dimension search reduces to default dimension search for single-term queries, because
any navigation state that minimally covers a single-term query will contain only one dimension value.

Compound dimension search results are navigation states that satisfy the following three properties:
• Validity. A navigation state is valid if it leads to actual records.

For example, the navigation state {Year: 1996, Varietal: Cabernet} is valid if, and only if, there
is at least one record that is assigned both dimension values.

• Coverage. A navigation state covers a query if the union of its dimension values accounts for all of the
terms in the query, possibly by way of query expansion (such as stemming, thesaurus, or spelling correction).

In other words, each dimension value in the navigation state must match at least one of the search terms.
(We assume here that the query mode is MatchAll. The semantics for other match modes are discussed
in other topics.)

For example, the navigation state {Year: 1996, Varietal: Cabernet} is not a cover for the query
1996 + merlot, because the query term merlot is not accounted for by any of its dimension values.

• Minimalism. A navigation state is a minimal cover of the query if removing any of its dimension values
would cause it to no longer cover as many query terms.

For example, the navigation state {Year: 1996, Varietal: Merlot, Flavor: Oak} is a cover,
but it is not a minimal cover, because removing the dimension value Flavor: Oak leaves us with a cover.

Enabling dimensions for dimension search
The dimension values are enabled for the dimension search differently, depending on the type of the dimension
search that you use.

In particular:
• Default dimension search.

All dimensions are always enabled for the default dimension search. That is, all dimensions are searched
by the MDEX Engine in the default dimension search.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | Compound dimension search178

Unlike record search (which is disabled by default and therefore must be configured), there are no special
configuration settings necessary to enable all dimensions for the default dimension search.

• Compound dimension search.

If you use the --compoundDimSearch flag for Dgidx, all dimensions are enabled for the compound
dimension search, that is they are searched by the MDEX Engine in the compound dimension search.

In addition, you must set a Boolean flag on the ENEQuery object using these methods:
• Java: setDimSearchCompound() method

• .NET: DimSearchCompound property

Ordering of dimension search results
Dimension search results are ordered differently, depending on whether you have used the default dimension
search or compound dimension search.

Ordering of results for default dimension search
The ordering of dimensions is determined by the statically defined dimension ranks.

Default dimension search results consist of dimension values grouped by dimension.

The ordering of dimension values, within each dimension, is based either on static dimension value ranks or
on relevance ranking, if the latter is enabled.

Note: Relevance ranking must be explicitly requested (Dk=1) in order for the MDEX Engine to return
ranked results rather than alphabetically sorted results. For more information, see the topic "Ranking
results" later in this chapter.

Example of ordering results for default dimension search

In this example:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

the Wine_Type dimension has a rank of 30, Wineries is ranked 20, and Drinkability is ranked 10.

The dimension values in the Wineries dimension are ranked as follows:
• Green & Red dimension value has a rank 3.

• Red Hill is ranked 2.

• Red Rocks is ranked 1.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

179Dimension Searches | Ordering of dimension search results

Ordering of results for compound dimension search
This topic explains how compound dimension search results are ordered and contains examples of ordering.

Compound dimension search results are sets of dimension values that represent navigation states.

Technically, these groups are multisets, because a multiselect-AND dimension may be listed more than once
in the set. For example, the navigation state {Actor: Steve Martin, Actor: Goldie Hawn} is listed
in the {Actor, Actor} group.

The sets are ordered according to the following criteria:
• The primary sort is the number of dimensions represented in the navigation state. The fewer the number

of dimensions, the higher the rank.

For example, a result with dimension values from two dimensions would be returned before one that
contained results from three.

• The secondary sort is lexicographical (alphanumeric), based on dimension ranks. The ordering of dimension
values within each navigation state is based either on static dimension ranks (again lexicographic) or on
relevance ranking, if the latter is enabled.

Example of ordering compound dimension search results

For example, consider a compound dimension search whose results are placed in the following groups:
{Actor}
{Director}
{Actor, Director}
{Actor, Director, Genre}
{Director, Genre}
{Title}

Assume that the static dimension ranks correspond to alphabetical order:
Actor < Director < Genre < Title

The compound dimension search result groups are ordered as follows:
{Actor}
{Director}
{Title}
{Actor, Director}
{Director, Genre}
{Actor, Director, Genre}

Filtering results that have no records
You can filter out unused dimension values from your dimension search results in the MDEX Engine at query
time.

Dimension search can return dimension values that have no associated records. Depending on your application,
you may not want your users to see such dimension search results. In such cases, you can filter out unused
dimension values, using the dimension search ability to search within a navigation state.

You can do this in two ways:
• Call these method and property, passing in a DimValIdList consisting only of the value 0 (zero):

• Java: the ENEQuery.setDimSearchNavDescriptors() method

• .NET: the ENEQuery.DimSearchNavDescriptors property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | Ordering of dimension search results180

• Use the Dn URL query parameter, setting the value to zero.

In other words, instead of performing the query:
D=Hampton+Bays

use the query:
D=Hampton+Bays&Dn=0

You can code this into your application by adding &Dn=0 any time you set the dimension search query.
Because the work is done in the MDEX Engine, no UI modification to suppress results is required.

Advanced dimension search parameters
Advanced dimension search parameters give an application greater control over the matching dimension
values returned. Standard dimension search returns all matching dimension values across all dimensions.

Advanced dimension search parameters enable the application to do the following:
• Request only the first n dimension values for each dimension. An additional parameter enables you to

page through any additional matching dimension values after displaying the first n dimension values.

• Specify a single dimension within which to search.

• Restrict dimension search to searching within a given navigation state. The MDEX Engine returns only
those matching dimension values that, when used to refine the specified navigation state, create a valid
navigation request.

Disabling dimension search for synonyms

In some cases, you may decide that the text associated with a particular synonym is not appropriate for
producing dimension search results.

Enabling hierarchical dimension search

By default, a dimension search considers only the text in individual dimension value synonyms when performing
query matching. If you want dimension search to consider ancestor dimension values when matching a
dimension search query, you must enable hierarchical dimension search in Developer Studio.

Returning the highest ancestor dimension

In the Dimension Search Configuration editor in Developer Studio you can specify that the results of a
dimension search return only the highest ancestor dimension value.

For example, if both red zinfandel and red wine match a search query for red and you check Return
Highest Ancestor Dimension, only the red wine dimension value is returned (assuming the red wine is
the ancestor of red zinfandel). If the setting is not checked, then both dimension values are returned.

Searching inert dimension values

If Include Inert Dimension Values is checked in the Dimension Search Configuration editor in Developer
Studio, then certain non-navigable dimension values (such as dimension roots) are also returned as the result
of a dimension search query.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

181Dimension Searches | Advanced dimension search parameters

Dgidx flags for dimension search
Depending on the type of dimension search you use (default or compound dimension search), Dgidx requires
different settings.

Dgidx flags for default dimension search

To make all dimension values available for the default dimension search, Dgidx does not require special flags.
If a dimension value is properly created and used to classify a record in the data set, it is automatically indexed
and enabled for the default dimension search.

Although all dimension values are enabled for the default dimension search, you can prevent certain dimension
values from being added to the dimension search index, by filtering results with dimension values that have
no associated records.

You can also limit the default dimension search to one dimension by using the Di parameter and specifying
a single dimension for it.

Dgidx flags for compound dimension search

To make dimension values available for the compound dimension search, run the indexing using the--com¬
poundDimSearch flag for Dgidx. Otherwise, compound dimension search will not be used by the MDEX
Engine.

Although all dimension values are enabled for the compound dimension search if the--compoundDimSearch
flag is used for Dgidx, you can limit the compound dimension search to a list of dimensions, by using the Di
parameter and specifying a list of dimension value IDs for it.

Note: Do not confuse indexing for dimension search with the Dgidx flags necessary to enable record
search.

URL query parameters and dimension search
While a basic dimension search can be executed with a single parameter, an advanced dimension search
query can have many different modifiers to control the resulting dimension values returned. This section
contains examples of using these parameters.

As a rule of thumb, for any dimension that could contain more than 100 possible results, use one of the more
advanced dimension search parameters to help control the results returned from the MDEX Engine. Without
these controls, the size of the resulting object could cause slow response times between an application and
the MDEX Engine.

Creating a default dimension search query
A default dimension search query contains a single parameter, D that specifies the keyword(s) to search with.

Each keyword can be plus- or space-delimited and should be URL encoded.

For example:
D=<string>+<string>…

Without any additional query modifiers, this dimension search is performed across all dimensions, and any/all
matching dimension values in any/all dimensions (including hidden dimensions) are returned.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | Dgidx flags for dimension search182

To create a default dimension search query:

Create a query of this type with the D parameter: D=<string>+<string>….
For example, create a query:
D=red

This query returns the following results, even if the Wineries dimension is hidden:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

Creating a compound dimension search query
Compound search queries use the same dimension search URL parameters as default dimension search
queries (D, Dn, Di, and so forth). Enabling and creating a compound dimension search query is a three-step
process.

To enable and create a compound dimension search query:

1. Specify the --compoundDimSearch flag when running Dgidx.
2. Call the following method (Java) or property (.NET), before submitting the query:

Method or propertyPlatform

ENEQuery.setDimSearchCompound()Java

ENEQuery.DimSearchCompound.NET

3. Build the dimension search query using the same dimension search URL parameters as a default dimension
search query (D, Dn, Di, and so forth).

Example query with a compound dimension search

The following is an example of a compound dimension search query (assuming the above three-step process
is performed to enable this query).

This query:
D=red+1996

returns the following results:

Dimension valuesDimension

[Red, 1996]Wine_Type, Year

[Green & Red, 1996], [Red Hill, 1996]Wineries, Year

Note: Only valid navigation requests are returned as results. This example implies that there are 1996
wines from Green & Red, and from Red Hill, but not from Red Rocks.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

183Dimension Searches | URL query parameters and dimension search

Returning all possible dimension values in a dimension search
There may be limited use cases where you want create a query that returns all dimension values in all
dimensions. In this case, you can specify * (an asterisk) as the string value to the Dimension (D) parameter,
for example, D=*. This feature does not require you to select "Enable wildcard search" for the dimension values
to be returned in the query. The parameter D=* is compatible with other additional dimension search parameters
such as Di and Dn.

Limiting results of default dimension search and compound dimension search
Dimension search queries, either default dimension search or compound dimension search, could potentially
contain many results. You can limit the number of returned results by using the Search Dimension (Di)
parameter.

The Di parameter depends on the Dimension Search (D) parameter.

As a general rule, if a dimension could contain more than 100 possible results, use one of the more advanced
dimension search parameters to help control the results returned from the MDEX Engine. Without these
controls, the size of the result object could cause slow response times between an application and the MDEX
Engine.

To limit the results of either a dimension search or compound dimension search:

In a query, specify a list of dimension IDs separated by plus signs (+) for the value of the Di parameter.
The order of the IDs is unimportant.

For default dimension search, the results are limited to the specified dimension IDs. For compound dimension
search, every result returned has exactly one value from each dimension ID specified in Di. This restricts a
compound dimension search to the intersection of the specified dimensions (as opposed to the compound
dimension search across all dimensions).

Example of a compound dimension search query

For example, the following compound dimension search query limits the number of returned results.

In this query, the Winery dimension has an ID of 11 and the Year dimension has an ID of 12:
D=red+1996&Di=11+12

This query returns only the following results:

Dimension valuesDimension

[Green & Red, 1996], [Red Hill, 1996]Wineries, Year

Setting the number of results
Another way to limit dimension search results (an alternative to using the Di parameter only) is to limit the
number of dimension values to return with each dimension, using the numresults option of the Drc parameter.

The Drc parameter depends on the Dimension Search (D) parameter.

Note: The Drc parameter is not supported with compound dimension search.

To limit the number of dimension values to return with each dimension:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | URL query parameters and dimension search184

1. In a query, specify the Drc parameter, the numresults option to the parameter, and an integer value that
represents the maximum dimension value count to return.

For example, the following query:
D=red&Drc=id+11+numresults+1

returns only the following results:

Dimension valuesDimension

RedWine_type

Green & RedWineries

Drink with red meatDrinkability

2. Optionally, use the Refinement Configuration for Dimension Search parameter (Drc) with the numresults
option and the id option.
In this case only the first n dimension values for the specified dimension are returned.

For example, the following query that contains a dimension search where the Winery dimension has an
ID of 11:
D=red&Drc=numresults+1|id+11

returns only the following results:

Dimension valuesDimension

Green & RedWineries

Enabling result paging
To enable an application to page through dimension search results, use the numresults option of the
Refinement Configuration for Dimension Search parameter (Drc) in conjunction with the Search Results Offset
parameter (Do).

To enable paging through the dimension search results:

1. Use the Do parameter, Do=int , where int is an integer.
This enables an application to view n dimension search results at a time.
For example, for n=5, the first query asks for only five results with no offset, the second query in the page
set asks for five results with an offset of five, the third query asks for five results with an offset of ten, and
so on.

2. (Optional but recommended). Use the Search Results Offset parameter (Do) in conjunction with both the
Drc and Di parameters.
Similar to other advanced dimension search parameters, the Search Results Offset parameter (Do) is
dependent on the Dimension Search parameter. Although it is not enforced, the Search Results Offset
parameter is most frequently used in conjunction with both the Drc and Di parameters.
For example, the following dimension search query with these parameters:
D=red&Drc=numresults+1&Di=11&Do=2

returns only the following results:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

185Dimension Searches | URL query parameters and dimension search

Dimension valuesDimension

Red RocksWineries

Ranking results
To rank the results of the default dimension search, use the Dk parameter.

To rank the results of the default dimension search:

Use the Dk parameter.

This simple ranking rule, when applied to the results of a default dimension search, enforces a dynamic
order on the dimension values.

The dimension search ranking rule favors a combination of exact matches and frequency.

For example,
Dk=0 or 1

By default, matching dimension values are returned in the order that they would appear in the dimension
for refining a navigation request.

It is important to note that this ranking rule is not the same as the more extensive ranking rules used to
modify a record search request.

Note: Compound dimension search results cannot be dynamically ranked, so the Dk parameter is
ignored for compound search results.

Searching within a navigation state
To limit a search to only valid dimension values within results of dimension search, use the Dimension Search
Scope parameter, Dn.

The Dimension Search Scope parameter (Dn) is useful in conjunction with the other dimension search
parameters to limit a search to only valid dimension values that can be combined with a specified navigation
request to form a valid refinement request.

This is different from specifying a single dimension to search within. Think of this as a search within results for
dimension search.

To search within a navigation state:

Use the Dimension Search Scope parameter (Dn).

For example:
Dn=<dimension value id>+<dimension value id>

For example, in this configuration:

Dimension valuesDimension

RedWine_type

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | URL query parameters and dimension search186

Dimension valuesDimension

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

if neither the Red Rocks nor the Red Hill winery dimension values are valid refinements for the Wine
Types: Red Wine navigation query, then the following query:
D=red&Dn=40

where the Red Wine dimension value has an ID of 40, returns only the dimension Wineries and the dimension
values Green & Red.

Methods for accessing dimension search results
To access dimension search results, use ENEQueryResults. containsDimensionSearch() (Java) and
ENEQueryResults. ContainsDimensionSearch(), as shown in examples in this topic.

If a valid dimension search request has been made, the following method calls for the query result object will
evaluate to true:

• Java: ENEQueryResults. containsDimensionSearch() method call

• .NET: ENEQueryResults. ContainsDimensionSearch() method call

However, regardless of how the dimension search request is created to control the number of dimension value
results returned, the same objects and methods are used to access those results.

Any matching dimension values are organized by dimension (or dimension list, in the compound dimension
search case), and each specific match contains methods to access other values that describe the hierarchy
of that dimension value within the dimension.

For this reason, the results are actually dimension locations instead of dimension values. Dimension locations
contain a single dimension value, as well as a list of ancestor dimension values.

For example, if a resulting dimension value is merlot, it will not only be returned in the Wine Types dimension,
but it will be contained in a dimension location that contains the dimension value red, because red is an
ancestor of merlot.

Java example

The following code sample in Java shows how to access dimension search results:
ENEQuery usq = new ENEQuery(request.getQueryString(), "UTF-8");
// Set query so that compound dimension search is enabled
usq.setDimSearchCompound(true);
ENEQueryResults qr = nec.query(usq);
// If query results object contains dimension search results
if (qr.containsDimensionSearch()) {
 // Get dimension search results object
 DimensionSearchResult dsr = qr.getDimensionSearch();
 // Get results grouped by dimension groups
 DimensionSearchResultGroupList dsrgl = dsr.getResults();
 // Loop over result dimension groups
 for (int i=0; i < dsrgl.size(); i++) {
 // Get individual result dimension group
 DimensionSearchResultGroup dsrg =

Oracle Commerce Guided Search MDEX Engine Developer's Guide

187Dimension Searches | Methods for accessing dimension search results

 (DimensionSearchResultGroup)dsrgl.get(i);
 // Get roots for dimension group
 DimValList roots = dsrg.getRoots();
 // Loop over dimension group roots
 for (int j=0; j < roots.size(); j++) {
 // Get dimension root
 DimVal root = (DimVal)roots.get(j);
 // Display dimension root
 %><%= root.getName() %><%
 }
 // Loop over results in group
 for (int j=0; j< dsrg.getTotalNumResults(); j++) {
 // Get individual result
 DimLocationList dll = (DimLocationList)dsrg.get(j);
 // Loop over dimlocations in result
 for (int k=0; k<dll.size(); k++) {
 // Get individual dimlocation from result
 DimLocation dl = (DimLocation)dll.get(k);
 // Get ancestors list
 DimValList ancs = dl.getAncestors();
 // Loop over ancestors for results
 for (int l=0; l < ancs.size(); l++) {
 // Get ancestor and display its name
 DimVal anc = (DimVal)ancs.get(l);
 %><%= anc.getName() %> > <%
 }
 %><%= dl.getDimValue().getName() %><%
 }
 }
 }
}

.NET example

The following code sample in .NET shows how to access dimension search results:
ENEQuery usq = new ENEQuery(queryString, "UTF-8");
// Set query so that compound dimension search is enabled
usq.DimSearchCompound = true;
ENEQueryResults qr = nec.Query(usq);
// If query results object contains dimension search results
if (qr.ContainsDimensionSearch()) {
 // Get dimension search results object
 DimensionSearchResult dsr = qr.DimensionSearch;
 // Get results grouped by dimension groups
 DimensionSearchResultGroupList dsrgl = dsr.Results;
 // Loop over result dimension groups
 for (int i=0; i < dsrgl.Count; i++) {
 // Get individual result dimension group
 DimensionSearchResultGroup dsrg =
 (DimensionSearchResultGroup)dsrgl[i];
 // Get roots for dimension group
 DimValList roots = dsrg.Roots;
 // Loop over dimension group roots
 for (int j=0; j < roots.Count; j++) {
 // Get dimension root
 DimVal root = (DimVal)roots[j];
 // Display dimension root
 %><%= root.Name %><%
 }
 // Loop over results in group

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | Methods for accessing dimension search results188

 for (int k=0; k< dsrg.TotalNumResults; k++) {
 // Get individual result
 DimLocationList dll = (DimLocationList)dsrg[k];
 // Loop over dimlocations in result
 for (int m=0; m<dll.Count; m++) {
 // Get individual dimlocation from result
 DimLocation dl = (DimLocation)dll[m];
 // Get ancestors list
 DimValList ancs = dl.Ancestors;
 // Loop over ancestors for results
 for (int n=0; l < ancs.Count; n++) {
 // Get ancestor and display its name
 DimVal anc = (DimVal)ancs[n];
 %><%= anc.Name %> > <%
 }
 %><%= dl.DimValue.Name %><%
 }
 }
 }
}

Displaying refinement counts for dimension search
A front-end application can display refinement counts for dimension values returned by a dimension search.
Refinement counts can provide more context in an Oracle Commerce application by providing the user with
the number of records (or aggregated records) associated with a given dimension value.

Enabling refinement counts for dimension search
You enable refinement counts for a dimension search on a per-query basis using the Drc (Refinement
Configuration for Dimension Search) query parameter. The Drc parameter has a configuration option to enable
refinement counts (the showcounts setting). You can specify a list of dimension values by Id for the show¬
counts setting, or you can omit the Id value to enable refinement counts globally for all dimension values in
an application.

No Developer Studio configuration or dgraph flags are required to enable this feature. For details and examples
of Drc, see Drc (Refinement Configuration for Dimension Search) on page 427.

Retrieving refinement counts for dimension search
Record counts are returned in two dgraph properties.

To retrieve the counts for regular (non-aggregated) or aggregated records beneath a given refinement (dimension
value), use these dgraph properties:

• Counts for regular (non-aggregated) records are returned as a property on each dimension value. For
regular records, this property is DGraph.Bins.

• Counts for aggregated records are also returned as a property on each dimension value. For aggregated
records, this property is DGraph.AggrBins.

For a given DimensionSearchResult object, request all dimension search results with:
• Java: DimensionSearchResult.getDimensionSearch() method

Oracle Commerce Guided Search MDEX Engine Developer's Guide

189Dimension Searches | Displaying refinement counts for dimension search

• .NET: DimensionSearchResult.DimensionSearch property
The dimension search results for a given dimension are returned in a DimensionSearchResultGroup
object.

For each dimension value in the group, you can return a DimLocation object from a DimLocationList.
You can then return the DimVal object with:

• Java: DimValList.getDimValue() method
• .NET: DimValList.Item property

To get a list of properties (PropertyMap object) associated with the dimension value, use:
• Java: DimVal.getProperties() method
• .NET: DimVal.Properties property

Calling the PropertyMap.get() method (Java) or PropertyMap object (.NET) at this point, with the
DGraph.Bins or DGraph.AggrBins argument will return a list of values associated with that property. This
list should contain a single element, which is the count of non-aggregated or aggregated records beneath the
given dimension value.

Java examples

This example gets the refinement counts for all the dimension values. Assume that the refinement counts are
enabled globally for all dimension values.
if (results.containsDimensionSearch()) {
 DimensionSearchResult result = results.getDimensionSearch();
 DimensionSearchResultGroupList groups = result.getResults();

 for (DimensionSearchResultGroup g :
 (List<DimensionSearchResultGroup>)groups) {
 for (DimLocationList l : (List<DimLocationList>)g) {
 DimLocation loc = (DimLocation)l.get(0);
 DimVal dimVal = loc.getDimValue();
 PropertyMap pmap = dimVal.getProperties();
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = "(" + pmap.get("DGraph.Bins") + ")";
 }
 }
 }
}

This example gets the refinement counts for all the dimension values in a dimension that has an id of 800000.
if (results.containsDimensionSearch()) {
 DimensionSearchResult result = results.getDimensionSearch();
 DimensionSearchResultGroup group = result.getDimensionSearchResultGroup(800000);

 for (DimLocationList l : (List<DimLocationList>)group) {
 DimLocation loc = (DimLocation)l.get(0);
 DimVal dimVal = loc.getDimValue();
 PropertyMap pmap = dimVal.getProperties();
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = "(" + pmap.get("DGraph.Bins") + ")";
 }
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | Displaying refinement counts for dimension search190

.NET examples

This example gets the refinement counts for all the dimension values. Assume that the refinement counts are
enabled globally for all dimension values.
if (results.ContainsDimensionSearch()) {
 DimensionSearchResult result = results.DimensionSearch;
 DimensionSearchResultGroupList groups = result.Results;
 for (int gg = 0; gg < groups.Count; ++gg) {
 DimensionSearchResultGroup group = (DimensionSearchResultGroup)groups[gg];

 for (int ii = 0; ii < group.Count; ++ii) {
 DimLocationList l = (DimLocationList)group[ii];
 DimLocation loc = (DimLocation)l[0];
 DimVal dimVal = loc.DimValue;
 PropertyMap pmap = dimVal.Properties;
 String dstats = "";
 if (pmap["DGraph.Bins"] != null) {
 dstats = " ("+pmap["DGraph.Bins"]+")";
 }
 }
 }
}

This example gets the refinement counts for all the dimension values in a dimension that has an id of 800000.
if (results.ContainsDimensionSearch()) {
 DimensionSearchResult result = results.DimensionSearch;
 DimensionSearchResultGroup group = result.GetDimensionSearchResultGroup(800000);

 for (int i = 0; i < group.Count; i++) {
 DimLocationList l = (DimLocationList)group[ii];
 DimLocation loc = (DimLocation)l[0];
 DimVal dimVal = loc.DimValue;
 PropertyMap pmap = dimVal.Properties;
 String dstats = "";
 if (pmap["DGraph.Bins"] != null) {
 dstats = " ("+pmap["DGraph.Bins"]+")";
 }
 }
}

Performance impact of refinement counts for dimension search
Dimension search is generally not an expensive feature, and adding counts to a dimension search query adds
only modest costs to query processing. However, there can be feature interaction issues that increase
performance costs.

In particular, Type Ahead search may impose small but potentially noticeable performance costs. Remember
that Type Ahead search performs dimension search queries for each character that an application user types.
Adding refinement counts to each dimension search query slows overall performance because of rapid query
processing. You may have to experiment to determine whether this performance cost has any noticeable
impact for your application.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

191Dimension Searches | Displaying refinement counts for dimension search

When to use dimension and record search
Dimension search is sometimes confused with record search. This topic provides examples of when to use
each type of search.

Being clear about the differences between the two basic types of keyword search (record search and dimension
search) is important before attempting to create a solution for a specific business problem. Use the following
recommendations:

When to useType of keyword
search

In general, datasets with little descriptive text and extensive dimension values that
represent the most frequently searched terms (for example, autos) are a good fit
for dimension search.

Dimension search

Keyword searches are usually oriented towards such keywords, as for example,
make, model, year, and so on, which would probably be included in the list of
dimensions.

For example, searching for Ford would return a single dimension value from the
Make dimension.

Datasets with descriptive text or names (such as news articles) are better suited for
record search. This is because a reasonable set of dimension values for such a
dataset cannot be expected to cover all the terms required to handle keyword search.

Record search

In such cases, record search enables an application to search directly against record
text (such as the body of an article).

Note: Read the rest of this topic for additional recommendations.

For many commerce applications, a combination of dimension search and record search is actually the best
solution. In this case, separate dimension search and record search queries are executed simultaneously for
the same keywords, as demonstrated in the reference implementation:

• If a dimension value matches, the user is given the opportunity to select that dimension value in place of
the record search query to produce results that have actually been classified.

• If no dimension values match, the user is still left with the matching records for a record search query.

Keep in mind that navigation queries and dimension search queries are completely independent. In the scenario
described above where both queries are executed simultaneously, neither query affects the other.

Record search is a variation of a navigation query. Record search could return results even though dimension
search does not, and visa-versa.

For example, the following query is valid but contains two completely independent types of results:
N=40&D=red

In this query, the ENEQueryResults.containsDimensionSearch() method (Java), and the
ENEQueryResults.ContainsDimensionSearch() method (.NET), as well as the
ENEQueryResults.containsNavigation() method (Java), and the
ENEQueryResults.ContainsNavigation()method (.NET) evaluate to true for the query results object.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Dimension Searches | When to use dimension and record search192

The Navigation object is the same as if the query were only N=40. The dimension search results object is
the same as if the query were only D=red. By that reasoning, the following query also contains two independent
types of results:
N=40&Ntk=Name&Ntt=red&D=red

One final consideration in selecting what type of search solution to implement: Unless compound dimension
search is enabled, dimension search is only used for finding a single dimension value. Therefore, multiple
keywords are still used to find a single dimension value.

For example, red+1996 returns the Red dimension value, and the 1996 dimension value. It only returns a
single dimension value that matches both of those terms, if one exists.

Refer to the "Using Boolean Search" section for details about performing Boolean queries with dimension
search, for example, red+or+1996, which returns both the red dimension value and the 1996 dimension
value.

Compound dimension search is most appropriate where multiple terms are used to search for combinations
of concepts, such as D=red+1996. Record search may also be appropriate, and is described in the section
about record search.

Performance impact of dimension search
This topic discusses dimension search and its impact on MDEX Engine performance.

Creating the additional index structures for compound dimension search may result in a moderate increase in
indexing time, particularly if there are a large number of dimensions.

The runtime performance of dimension search directly corresponds to the number of dimension values and
the size of the resulting set of matching dimension values. But in general, this feature performs at a much
higher number of operations per second than navigation requests.

The most common performance problem is when the resulting set of dimension values is exceptionally large
(greater than 1,000), thus creating a large results page. This is when the advanced dimension search parameters
should be used to limit the number of results per request.

Compound dimension search requests are generally more expensive than non-compound requests, and are
comparable in performance to record search requests:

• If you submit a default dimension search query, the query is generally very fast.
• If you submit a compound dimension search query, performance is not as fast as for the default dimension

search.
In both cases, the query will be faster if you limit the results by using any of the advanced dimension search
parameters. For example, you can use the Di parameter to specify the specific dimension (in the case of the
default dimension search), or a list of dimension value IDs (in the case of compound dimension search) for
which you expect matches returned by the MDEX Engine.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

193Dimension Searches | Performance impact of dimension search

Chapter 18

Record and Dimension Search Reports

The record and dimension search reports provide API-level access to summary information about search
queries. This information includes the number of results, spelling suggestions, and query expansion useful for
highlighting.

Implementing search reports
The search reports do not require any work in Developer Studio, and no Dgidx or MDEX Engine configuration
flags are necessary to enable this feature. Moreover, there are no URL query parameters to enable search
reports.

Methods for search reports
The MDEX Engine returns search reports as ESearchReport objects.

• For a dimension search, a single ESearchReport object is returned.

• For a record search, one ESearchReport object is returned for each search key.

Retrieving search reports
To retrieve search reports, use getESearchReportsComplete() methods (Java) and
ESearchReportsComplete properties (.NET) on the DimensionSearchResult and Navigation classes.

Both the DimensionSearchResult and Navigation classes have getESearchReportsComplete()
methods (Java), and ESearchReportsComplete properties (.NET) that return a Map (Java), and an IDic¬
tionary (.NET) of search keys to a List of ESearchReport objects. In the dimension search case, the
single search report is associated with the literal string Dimension Search.

You can also use these methods/properties if you have performed a multiple search (that is, using the Ntk
and Ntt parameters with two or more search keys and terms). These accessors return a Map (Java) and an
IDictionary (.NET) of List (Java) and IList (.NET) objects that contain ESearchReports objects.

Accessing information in search reports
An ESearchReport object provides access to summary information about the search through accessor
methods (Java), and properties (.NET). This topic contains code examples for accessing summary information
in search reports.

The report provides basic information about the search through the following ESearchReport methods
(Java), and properties (.NET):

DescriptionMethod (Java) or property (.NET)

Returns the search key used in the current search.Java: getKey()

NET: Key

Returns the search terms as a single String.Java: getTerms()

.NET: Terms

Returns the number of results that matched the search query.
For record searches, this is the number of records. For dimension
searches, this is the number of matching dimension values.

Java: getNumMatchingResults()

.NET: NumMatchingResults

Match mode information is available through the following ESearchReport methods (Java), or properties
(.NET):

DescriptionMethod (Java) or property (.NET)

Returns the requested match mode.Java: getSearchMode()

NET: SearchMode

Returns the selected match mode.Java: getMatchedMode()

This is different than getSearchMode() (Java) and
SearchMode (.NET) in that getMatchedMode() (Java) and

.NET: MatchedMode

MatchedMode (.NET) return the match mode that was actually
selected by the MDEX Engine as opposed to the match mode
that was requested in the query.

Returns the number of search terms that were successfully
matched.

Java: getNumMatchedTerms()

.NET: NumMatchedTerms

Word interpretation information, which is useful for highlighting or informing users about query expansion, is
available through the ESearchReport.getWordInterps() method (Java), and
ESearchReport.WordInterps property (.NET). The method and property return a PropertyMap that
associates words or phrases with their expansions.

Spelling correction information is available through two ESearchReport methods (Java), and properties
(.NET):

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record and Dimension Search Reports | Methods for search reports196

DescriptionMethod (Java) or property (.NET)

Is used for autosuggest (alternate spelling correction) results and
returns a List (Java), and an IList (.NET) of
ESearchAutoSuggestion objects.

Java: getAutoSuggestions

NET: AutoSuggestions

Is used for "Did You Mean" results and returns a List an IList of
ESearchDYMSuggestion objects.

Java: getDYMSuggestions

.NET: DYMSuggestions

The ESearchAutoSuggestion, and ESearchDYMSuggestion classes have getTerms()method (Java),
and Terms property (.NET) that return the suggestion as a string.

The ESearchDYMSuggestion class also includes a getNumMatchingResults() method (Java), and
NumMatchingResults property (.NET) that return the number of results associated with the "Did You Mean"
suggestion. For more information about these features, see the section on the "Did You Mean" feature.

Finally, the following ESearchReport calls report error or warning information:
• The getTruncatedTerms()method (Java) and TruncatedTerms property (.NET) return the truncated

query terms (as a single string), if the query was truncated. If the number of search terms is too large, the
MDEX Engine truncates the query for performance reasons. This method or property return the new set
of search terms after the truncation.

• The isValid() method (Java and .NET) returns true if the search query is valid.

If false is returned, use getErrorMessage() (Java), and ErrorMessage (.NET) to get the error
message.

• The getErrorMessage()method (Java), and ErrorMessage property (.NET) return the error message
for an invalid query.

Java example

The following code snippet in Java shows how to access information in an ESearchReport object:
// Get the Map of Lists ESearchReport objects
Map recSrchRpts = nav.getESearchReportsComplete();

// Declare the search key being sought
String desiredKey = "my_search_interface";
if (recSrchRpts.containsKey(desiredKey)) {

 // Get the list of ERecSearchReports for the desired search key
 List srchReportList = (List)recSrchRpts.get(desiredKey);

 for (Iterator i = srchReportList.iterator(); i.hasNext()) {
 ESearchReport srchReport = (ESearchReport)i.next();

 // Get the search term submitted for this search report
 String srchTerms = srchReport.getTerms();

 // Get the number of matching results
 long numMatchingResults = srchReport.getNumMatchingResults();

 // Get the match mode that was used for this search
 ESearchReport.Mode mode = srchReport.getMatchedMode();

 // Display a message if MatchAll mode was used

Oracle Commerce Guided Search MDEX Engine Developer's Guide

197Record and Dimension Search Reports | Methods for search reports

 // by the MDEX Engine
 String matchallMsg = "";
 if (mode == ESearchReport.MODE_ALL) {
 matchallMsg = "MatchAll mode was used";
 }

 // Print or log the message
 ...
 }
}

.NET Example

The following code snippet in .NET shows how to access information in an ESearchReport object:
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;

// Declare the search key being sought
String desiredKey = "my_search_interface";

if (recSrchRpts.Contains(desiredKey)) {
 // Get the ERecSearchReport for the desired search key
 IList srchReportList = (IList)recSrchRpts[desiredKey];

 foreach (object ob in srchReportList) {
 ESearchReport srchReport = (ESearchReport)ob;

 // Get the search term submitted for this search report
 String srchTerms = srchReport.Terms;

 // Get the number of matching results
 long numMatchingResults = srchReport.NumMatchingResults;

 // Get the match mode that was used for this search
 ESearchReport.Mode mode = srchReport.MatchedMode;

 // Display a message if MatchAll mode was used by
 // Navigation Engine
 String matchallMessage = "";
 if (mode == ESearchReport.MODE_ALL) {
 matchallMessage = "MatchAll mode was used";
 }

 // Print or log the message
 ...
 }
}

Troubleshooting search reports
The tokenization used for substitutions depends on the configuration of search characters.

If word interpretation is to be used to facilitate highlighting variants of search keywords that appear in displayed
search results, then the application should consider that words or phrases appearing in substitutions may not
include white space, punctuation, or other configured search characters.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record and Dimension Search Reports | Troubleshooting search reports198

Note: Search reports have no impact on performance.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

199Record and Dimension Search Reports | Troubleshooting search reports

Chapter 19

Using Search Modes

By default, Oracle Commerce search operations return results that contain text matching all user search terms.
In other words, search is conjunctive by default. However, in some cases a less restrictive matching is desirable,
so that results are returned that contain fewer user search terms. This section describes how to enable the
MatchAny and MatchPartial modes for record search and dimension search operations.

List of search modes
The search mode can be specified independently for each record search operation contained in a navigation
query, as well as for the dimension search query.

Valid search modes are the following:

DescriptionSearch mode

Match all user search terms (that is, perform a conjunctive search). This is the default
mode.

MatchAll

Match some user search terms.MatchPartial

Match at least one user search term.MatchAny

Match all user search terms if possible, otherwise match at least one.MatchAllAny

MatchAllAny is not recommended in cases where queries can exceed two words. For
example, a query on womens small brown shoes would return results on each of these
four words and thus be essentially useless. In general, MatchAllPartial is a better strategy.

Match all user search terms if possible, otherwise match some.MatchAllPartial

Because you can configure this mode to match at least two or three words in a multi-word
query, MatchAllPartial is generally a better choice than MatchAllAny.

Match a maximal subset of user search terms.MatchPartialMax

Match using a Boolean query.MatchBoolean

MatchAll mode
In MatchAll mode (the default mode), results must contain text matching each user search query term.

MatchPartial mode
In MatchPartial mode, results must contain text matching at least a certain number of user search query terms,
according to the rules listed in this topic.

In MatchPartial mode, results must contain text matching search query terms, according to the following rules:
• TheMatch at least setting specifies the minimum number of user query terms that each result must match.

If there are not enough terms in the original query to satisfy this rule, then the entire query must match.

• The Omit at most setting specifies the maximum number of user query terms that can be ignored in the
user query. If Omit at most value is set to zero, any number of words can be ignored.

You can specify both of these settings in Developer Studio.

In MatchPartial mode, result sets always include all of the results that a MatchAll query have produced, and
possibly additional results as well.

Interaction of MatchPartial mode and stop words
The presence of a stop word in a query reduces the minimum term count requirement for a document to match
when MatchPartial mode is used. The example in this topic explains the interaction between stop words and
MatchPartial mode.

The Oracle Commerce MDEX Engine treats stop words in a query as terms that match every document in the
entire document set when counting how many terms must match a given query.

Therefore, the presence of a stop word in a query reduces the minimum term count requirement for a document
to match by one, the presence of two stop words reduces it by two, and so on.

In practical terms, it means the result set may be both larger and more general than expected.

For example, consider a four-term query (such as Medical Society of America) against a search interface
configured to enable MatchPartial modes to require three terms to match. If one of those four terms (in this
case of) is a stop word, only two of the other terms have to match, meaning results such as Botanical
Society of America or Medical Society Reunion would be included in the set.

MatchAny mode
In MatchAny mode, results need only match a single user search term.

A MatchAny result set always includes all of the results that a MatchAll or MatchPartial query have produced,
and possibly additional results as well.

Note: MatchAny is not recommended for use with record search in typical catalog applications.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Search Modes | List of search modes202

MatchAllPartial mode
In MatchAllPartial mode, the MDEX Engine first uses MatchAll mode to return results matching all search
terms, if any are available.

If no such MatchAll results are available, the MDEX Engine returns the results that MatchPartial would have
produced. This enables a more conservative matching policy than MatchPartial, because high-quality conjunctive
results are returned if they exist and MatchPartial results are used as a fallback on conjunctive misses.

This behavior, however, can be affected if cross-field matches are applied to the search interface. A search
that matches "any" or "partial" inside of the same-field might be returned before a search that matches "all" of
the terms but has to cross field boundaries to do so.

In addition, spell correction can also alter the results. A search that matches any or partial spell-corrected in
a same field may return before a non-spell-corrected search that matches all terms in different fields. To the
user, this looks like there were no records matching all of the terms, even though there may be many that
match cross-field.

Note: MatchAllPartial is recommended for record search in a typical catalog application. The default
configuration for Partial, which works well, can be adjusted to be more inclusive or conservative.

MatchAllAny mode
In MatchAllAny mode, the MDEX Engine first uses MatchAll mode to return results matching all search terms,
if any are available.

If no such MatchAll results are available, the MDEX Engine returns the results that MatchAny would have
produced.

Note: MatchAllAny is useful for dimension search.

MatchPartialMax mode
MatchPartialMax mode is a variant of the MatchAllPartial mode: MatchAll results are returned if they exist.

If no such MatchAll results exist, then results matching all but one terms are returned; otherwise, results
matching all but two terms are returned; and so forth.

MatchPartialMax mode is subject to the Match at least and Omit at most settings used in the MatchPartial
mode. Hence, a MatchPartialMax result set includes results if (and only if) the corresponding MatchPartial
result set includes results, and it contains a subset of the MatchPartial results (possibly the entire set).

MatchBoolean mode
The MatchBoolean search mode implements Boolean search, which enables users to specify complex
expressions that describe the exact search criteria with which they would like to search.

Configuring search modes
This topic summarizes options that you can use to implement search modes.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

203Using Search Modes | Configuring search modes

No Forge or Dgidx configuration is required to enable the MatchAll, MatchAny, or MatchAnyAll search modes.
MatchPartial, MatchAllPartial, and MatchPartialMax are configured as URL query parameters. In Developer
Studio, you configure the minimum number of words for partial match modes and maximum number of words
that may be omitted for partial match modes.

No MDEX Engine configuration flags are needed to enable search modes.

URL query parameters for search modes
You can use Ntx and Dx parameters with search modes. This topic contains code examples.

By using the following syntax, the search mode can be specified independently for each record search operation
contained in a navigation query:
Ntx=mode+matchmode-1|mode+matchmode-2|...

where matchmode is the name of one of the search modes (such as matchallpartial).

The syntax for a dimension search query is similar:
Dx=mode+matchmode

Using the syntax above, each search query can be enabled for any of the listed modes.

Two sample queries are:
<application>?N=0&Ntk=Brand&Ntt=Nike+Adidas
&Ntx=mode+matchallany

<application>?D=Nike+sneakers&Dx=mode+matchany

Query examples with search modes
The MatchAny mode can be used in combination with multiple record searches to achieve Boolean-query
effects using a simplified interface.

For example, the following query:
Ntk=Brand|Color&Ntt=Polo+Sport|red+blue&Ntx=mode+
matchall|mode+matchany

could be used to search for items with a Brand property matching Polo AND Sport, and with a Color
property matching either red OR blue.

In some cases, it is useful to contrast the MatchAny versus MatchAll mode for combined record search and
dimension search operations. For example, the following query in a movie database:
N=0&Ntk=AllText&Ntt=Gere+Roberts&D=Gere+Roberts&Dx=
mode+matchany

would return records matching both Gere AND Roberts (such as Pretty Woman), but would return dimension
values containing either Gere OR Roberts (such as Richard Gere and Julia Roberts).

The MatchPartial mode can be thought of as being the union of several conjunctive queries. For example, if
Match At Least and Omit At Most both have the default value of two in Developer Studio, then the following
query:
N=0&Ntk=AllText&Ntt=brown+leather+jacket&Ntx=mode+matchpartial

would return records matching either brown and leather, or leather and jacket, or brown and jacket.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Search Modes | URL query parameters for search modes204

On the other hand, if Match At Least is one and Omit At Most is two, then the same query would return
records matching either brown or leather or jacket—the same behavior as MatchAny.

Search mode methods
There are no objects types or method calls associated with search queries that use a match mode. Results
returned are the same as for default MatchAll search queries.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

205Using Search Modes | Search mode methods

Chapter 20

Using Boolean Search

This section describes how to enable Boolean search for record search and dimension search.

About Boolean search
The MatchBoolean search mode implements Boolean search, which enables users to specify complex
expressions that describe the exact search criteria with which they would like to search.

Oracle Commerce search operations use the MatchAll mode by default, which results in conjunctive searches.
However, users often want more precise control over their exact search query.

For example, there is no way to formulate the query that expresses the request: "Show me all records
that match either red or blue and also match the word car."

For example, the query (red OR blue) AND car would express the request described above. The OR in this
query is a disjunctive operator and results in a hit on all records that match either red or blue. This set is then
intersected with the set of results for the word car and the result of that operation is returned from the MDEX
Engine.

Unlike the MatchAll and MatchAny modes, Boolean search also lets users specify negation in their queries.

For example, the query camcorder AND NOT digitalwill search for all Oracle Commerce records that
have the word camcorder and will then remove all records that have the word digital from that set before
returning the result.

The set of Boolean operators implemented by the MDEX Engine are:
• AND

• OR

• NOT

• NEAR, used for unordered proximity search
• ONEAR, used for ordered proximity search

In addition, you can use parentheses to create sub-expressions such as:
red AND NOT (blue OR green)

As with other search query modes, you can run Boolean search queries against search interfaces also; however,
they may only be run against a single search interface.

Finally, the colon (:) character is a key restrict operator that you can use to limit a search to a single property
or dimension regardless of whether or not these properties or dimensions are included in the same search
interface.

Related Links
Example of Boolean query syntax on page 208

The complete grammar for expressing Boolean queries, in a BNF-like format, is included in this topic.
Examples of using the key restrict operator on page 209

This topic uses examples to explain how to use the key restrict operator (:) in queries that contain
Boolean search.

Example of Boolean query syntax
The complete grammar for expressing Boolean queries, in a BNF-like format, is included in this topic.

The following sample code expresses Boolean queries, in a BNF-like format:
orexpr: andexpr ;
 | andexpr OR orexpr ;
andexpr: parenexpr ;
 | parenexpr andexpr ;
 | parenexpr AND andexpr ;
 | parenexpr andnotexpr ;
andnotexpr: AND NOT orexpr ;
 | NOT orexpr ;
parenexpr: LPAREN orexpr RPAREN ;
 | terms ;
terms: word_or_phrase KEY_RESTRICT keyexpr ;
 | word_or_phrase NEAR/NUM word_or_phrase ;
 | word_or_phrase ONEAR/NUM word_or_phrase ;
 | multiple_word_or_phrase ;
multiple_word_or_phrase: word_or_phrase ;
 | word_or_phrase multiple_word_or_phrase ;
keyexpr: LPAREN nr_orexpr RPAREN ;
 | word_or_phrase ;
nr_orexpr: nr_andexpr ;
 | nr_andexpr OR nr_orexpr ;
nr_andexpr: nr_parenexpr ;
 | nr_parenexpr nr_andexpr ;
 | nr_parenexpr AND nr_andexpr ;
 | nr_parenexpr nr_andnotexpr ;
nr_andnotexpr: AND NOT nr_orexpr ;
 | NOT nr_orexpr ;
nr_notexpr: nr_parenexpr ;
 | NOT nr_parenexpr ;
nr_parenexpr: LPAREN nr_orexpr RPAREN ;
 | nr_terms ;
nr_terms: multiple_word_or_phrase ;
word_or_phrase: word ;
 | phrase ;

AND: '[Aa]' '[Nn]' '[Dd]' ;
OR: '[Oo]' '[Rr]' ;
NOT: '[Nn]' '[Oo]' '[Tt]' ;
NEAR: '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;
ONEAR: '[Oo]' '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;

NUM: '[0-9] ;
 | NUM NUM ;
LPAREN: '(' ;

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Boolean Search | Example of Boolean query syntax208

RPAREN: ')' ;
KEY_RESTRICT: ':' ;

Examples of using the key restrict operator
This topic uses examples to explain how to use the key restrict operator (:) in queries that contain Boolean
search.

If you have two properties, Actor and Director, you can issue a query which involves a Boolean expression
consisting of both the Actor and Director properties (for example, "Search for records where the
director was DeNiro and the actor does not include Pacino."). The two properties do not
need to be included in the same search interface.

Users can successfully conduct a search on this using the following query which will execute the desired result:
Actor: Deniro AND NOT Director: Pacino

This is useful because it enables you to search for properties that are outside of the search interface
configuration.

The key restrict operator (:) binds only to the words or expressions adjacent to it. The resulting search is
case-sensitive. For example, the query:
car maker : aston martin

will search for the word car against the specified search interface, the word aston against the property or
dimension named maker, and martin against the specified search interface.

If the intention was to search against the property or dimension named "car maker", you must alter the query
to one of the following:

• "car maker" : aston martin

This query searches for the word aston against the property or dimension car maker, while it searches
for martin against the specified search interface.

• "car maker" : (aston martin)

This query does a conjunctive (MatchAll) search for the words aston martin against the property or
dimension car maker.

• "car maker" : "aston martin"

This query searches for the phrase aston martin against the property or dimension car maker.

About proximity search
The proximity operators, NEAR and ONEAR, let users search for a pair of terms that must occur within a given
distance from each other in a document.

The document is matched if both terms are present in the document, and if the terms are within the specified
number of words from each other.

Wildcards are not supported in term specifications.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

209Using Boolean Search | Examples of using the key restrict operator

The syntax for using the proximity operators is as follows:
term1 NEAR/num term2
term1 ONEAR/num term2

In this example:
• Each term (term1 and term2) can be a single word or a multi-word phrase (which must be specified within

quotation marks).
• The num parameter is an integer that specifies the maximum number of words between the two terms.

That is, if num is 5, then term1 and term2 can be separated by no more than five words.

Example of using NEAR for unordered matching
Use the NEAR operator for unordered proximity searches.

That is, term1 can appear within num words before or after term2 in the document.

For example, if a user specifies:
"Mark Twain" NEAR/8 Hartford

Then both of these sentences will be considered matches:
"Mark Twain wrote some of his best books in Hartford."
 "Tour the Hartford, Connecticut home where Mark Twain lived
 and worked from 1874 to 1891."

Phrases are treated as one word. In the first sentence, for example, the software starts counting with the word
"wrote" (not "Twain").

Example of using ONEAR for ordered matching
Use the ONEAR operator for ordered proximity searches.

term1 must appear within num words before term2 in the document.

For example, if a user specifies:
"Mark Twain" NEAR/8 Hartford

The following sentence:
"Tour the Hartford,
Connecticut home where Mark Twain lived and
 worked from 1874 to 1891."

would not be considered a match because the word "Hartford" must appear after the phrase "Mark
Twain" in the text (assuming that the next eight words are not "Hartford").

Proximity operators and nested subexpressions
This topic contains examples of using proximity operators with nested subexpressions.

Using the two proximity operators as sub-expressions to the other Boolean operators is supported. For example,
the expression:
(chardonnay NEAR/5 California) AND Sonoma

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Boolean Search | Proximity operators and nested subexpressions210

is a valid expression because NEAR is being used as a sub-expression to the AND operator.

However, you cannot use the non-proximity operators (AND, OR, NOT) as sub-expressions to the NEAR and
ONEAR operators.

For example, the expression:
(chardonnay OR merlot) NEAR/5 California

is not a valid expression.

This invalid expression, however, could be specified as:
(chardonnay NEAR/5 California) OR (merlot NEAR/5 California)

The proximity operators are therefore leaf operators. That is, they accept only words and phrases as
sub-expressions, but not the other Boolean operators.

Using proximity operators with the key restrict operator also has the same limitations when used as
sub-expressions.

For example, the query:
("car maker" : aston) NEAR/3 martin

is not valid.

However, the following format for a key restrict operator is acceptable:
"car maker" : (aston NEAR/3 martin)

For other support limitations, see the topic about interaction of Boolean search with other features.

Boolean query semantics
This topic discusses the meaning of AND, OR, AND NOT, and other operators enabled in Boolean search queries.

The following statements describe semantics of Boolean query operators:
• The AND operator executes an intersection of its two operands.
• The OR operator executes a union of the two operands.
• The AND NOT operator executes a set subtract, subtracting the second operand from the first.
• The parentheses operators have two meanings, depending on their usage:

• They can either be used to group sub-expressions, as in "(red or blue) and car"

• Or, they can be used as AND operators in themselves.

For example, the query "(red or blue) car" automatically treats the ")" as a ") AND". Thus
the query would be treated as "(red or blue) and car".

The same is true for usage of the left parenthesis.

• Words or phrases grouped together without any explicit operators (such as "red car or blue bicy¬
cle") are also queried conjunctively.

Thus the example query would return the results for "(red and car) or (blue and bicycle)".
Similarly, "red car" "blue bicycle" will return the results for"red car" AND "blue bicycle".

• As the examples demonstrate, operator names are not case sensitive, although field names are.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

211Using Boolean Search | Boolean query semantics

Operator precedence
The NOT operator has the highest precedence, followed by the AND operator, followed by the OR operator. You
can always control the precedence by using parentheses.

For example, the expression "A OR B AND C NOT D" is interpreted as "A OR (B AND C AND (NOT
D))".

Interaction of Boolean search with other features
The following table describes whether various features are supported for queries that execute a Boolean search
(including the proximity operators).

CommentsSupport with
Boolean search

Feature

YesStemming

NoThesaurus
matching

Auto-correct and "Did You Mean" are not supported.NoMisspelling
correction

NoRelevance
ranking

Yes for the AND
operator only.

Geospatial
filters and
range filters

Proximity operators do not support wildcards.Yes for the AND, OR,
and NOT operators.

Wildcard
search

Stop words are treated as normal words and are not filtered from queries.NoStop words

YesPhrase
search

YesWhy did it
match

YesWord interp

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Boolean Search | Operator precedence212

Error messages for Boolean search
Syntactically invalid queries generate error messages described in this topic.

CommentsError messageSample
query

The final result set is not
enabled to be the result
of a negation operation.

Top-level negation is not enabled.NOT sony

Unexpected end of expression.(

Neither clause of an OR
expression can be the

The <first | second> clause of the OR at position
<position> is a negation. Neither clause of an OR
expression may be a negation.

Sony OR
NOT Aiwa

result of a negation
operation.

Unexpected end of expression.Sony OR

Unexpected end of expression.Sony AND

Unexpected end of expression. Expecting an opening
left parenthesis, a word, or a phrase.

Sony NOT

Unexpected end of expression. Expecting closing
right parenthesis.

(Sony

The key restrict operator may not be used within
another key restrict expression.

Manufactur¬
er:(Sony
OR Item:
Camera)

Unexpected end of expression. The key restrict
operator must be followed by a word, a phrase, or
a left parenthesis.

Manufactur¬
er:

The key restrict operator must be followed by a
word, a phrase, or a left parenthesis.

Manufactur¬
er:OR

The search index name
must exactly match the

Unknown search index name "Foo" used for restrict
operator

Foo:Sony

search index name used
in the data.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

213Using Boolean Search | Error messages for Boolean search

CommentsError messageSample
query

Repeated operators are
an error.

Expecting a term or phrase.Sony AND
OR Aiwa

Implementing Boolean search
Except for proximity search, no Forge or Dgidx configuration is required to enable Boolean search mode.

Properties and dimensions should be configured appropriately for record search and/or dimension search as
described in the documentation for those features.

There are no MDEX Engine configuration flags necessary to enable Boolean search mode.

URL query parameters for Boolean search
To specify a Boolean search query, use the Ntx (for record search), and Dx (for dimension search) URL query
parameters.

• Record search.

To specify a Boolean search for each record search operation contained in a navigation query, use the
following URL query syntax with Ntx:
Ntx=mode+matchboolean|...

• Dimension search.

To specify a Boolean search for a dimension search query, use the following URL query syntax with Dx:
Dx=mode+matchboolean

You can specify the search mode independently for each record search operation contained in a navigation
query, and for the dimension search query.

Using the syntax above, you can enable each search query for MatchAll mode (which is the default if no mode
is specified), MatchAny mode, or MatchBoolean mode. These are the mode definitions:

• In MatchAll mode, results must contain text matching each user search query term in at least one location.

• In MatchAny mode, results need only match a single user search term.

• In MatchBoolean mode, the results must satisfy the specified Boolean expression.

Additional examples of queries with Boolean search

The following are example queries:
<application>?N=0&Ntk=Brand&Ntt=Nike+or+Adidas
&Ntx=mode+matchboolean

<application>?N=0&Ntk=Title&Ntt=Japan+or+UK+not+USA
&Ntx=mode+matchboolean

<application>?D=solid+not+mahogany&Dx=mode+matchboolean

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Boolean Search | Implementing Boolean search214

Methods for Boolean search
This topic contains examples of code in Java and .NET for obtaining Boolean search information in an
ESearchReport object.

There are no object types or method calls associated with MatchBoolean search query processing. Results
are returned the same as for default MatchAll search queries.

However, results returned by the MDEX Engine for MatchBoolean URL query parameters contain the following
information in the Record Search Report supplement (ESearchReport object):

• Whether or not the Boolean query is valid. Use the ESearchReport.isValid() method to determine
this.

• If the query is invalid, an error message is returned. Use ESearchReport.getErrorMessage() (Java),
and ESearchReport.ErrorMessage (.NET) to obtain an error message (in English) that is suitable for
display directly to the user.

Java example

The following code sample in Java shows how to obtain the information in the ESearchReport object:
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReportsComplete();
if (recSrchRpts.size() > 0) {

// Get the user's search key
String searchKey = request.getParameter("Ntk");
if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the List of ERecSearchReports for the search key
 List srchRptList = (List)recSrchRpts.get(searchKey);
 for (Iterator i = srchRptList.iterator(); i.hasNext()) {
 ESearchReport srchRpt = ESearchReport(i.next());
 // Check if the search is valid
 if (! srchRpt.isValid()) {
 // If invalid search, get the error message
 String errorMessage = srchRpt.getErrorMessage();
 // Print or log the message
 ...
 }
 }
 }
 }
}

.NET Example

The following code sample in .NET shows how to obtain the information in the ESearchReport object:
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReportsComplete;

// Get the user's search key
String searchKey = Request.QueryString["Ntk"];

if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the List of ERecSearchReports for the search key
 IList srchRptList = (IList)recSrchRpts[searchKey];
 foreach (object ob in srchReportList) {

Oracle Commerce Guided Search MDEX Engine Developer's Guide

215Using Boolean Search | Methods for Boolean search

 ESearchReport srchReport = (ESearchReport)ob;

 // Check if the search is valid
 if (! srchRpt.isValid()) {

 // If invalid search, get the error message
 String errorMessage = srchRpt.ErrorMessage;

 // Print or log the message
 ...
 }
 }
 }
}

Troubleshooting Boolean search
If you encounter unexpected behavior while using Boolean search, use the dgraph -v flag when starting the
MDEX Engine. This flag prints detailed output to standard error describing its execution of the Boolean query.

Performance impact of Boolean search
The performance of Boolean search is a function of the number of records associated with each term in the
query and also the number of terms and operators in the query.

As the number of records increases and as the number of terms and operators increase, queries become more
expensive.

The performance of proximity searches is as follows:
• Searches using the proximity operators are slower than searches using the other Boolean operators.

• Proximity searches that operate on phrases are slower than other proximity searches and slower than
normal phrase searches.

• Searches using the NEAR operator are about twice as slow as searches using the ONEAR operator (because
word positioning must be calculated forwards and backwards from the target term).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Boolean Search | Troubleshooting Boolean search216

Chapter 21

Using Phrase Search

Phrase search enables users to specify a literal string to be searched. This section discusses how to use
phrase search.

About phrase search
Phrase search enables users to enter queries for text matching of an ordered sequence of one or more specific
words.

By default, an MDEX Engine search query matches any text containing all of the search terms entered by the
user. Order and location of the search words in the matching text is not considered. For example, a search for
John Smith returns matches against text containing the string John Smith and also against text containing
the string Jane Smith and John Doe.

In some cases, the user may want location and order to be considered when matching searches. If one were
searching for documents written by John Smith, one would want hits containing the text John Smith in the
author field, but not results containing Jane Smith and John Doe.

Phrase search enables the user to put double-quote characters around the search term, thus specifying a
literal string to be searched. Results of a phrase search contain all of the words specified in the user’s search
(not stemming, spelling, or thesaurus equivalents) in the exact order specified.

For example, if the user enters the phrase query "run fast", the search finds text containing the string run
fast, but not text containing strings such as fast run, run very fast, or running fast, which might
be returned by a normal non-phrase query.

Additionally, phase search queries do not ignore stop words. For example, if the word the is configured as a
stop word, a phrase search for "the car" does not return results containing simply car (not preceded by
the).

Also, phrase search permits stop words to be disabled. For example, if the is a stop word, a phrase search
for "the" can retrieve text containing the word the.

Because phrase searches only consider exact matches for contained words, phrase search also provides a
means to return only true matches for a particular word, avoiding matches due to features such as stemming,
thesaurus, and spelling.

For example, a normal search for the word corkscrewmight also return results containing the text corkscrews
or wine opener. Performing a phrase search for the word “corkscrew” only returns results containing the
word corkscrew verbatim.

About positional indexing
To enable faster phrase search performance and faster relevance ranking with the Phrase module, your project
builds index data out of word positions. This is called positional indexing.

Dgidx creates a positional index for both properties and dimension values.

Phrase search is automatically enabled in the MDEX Engine at all times. However, the default operation of
phrase search examines potential matching text to verify the presence of the requested phrase query string.
This examination process can be slow if the text data is large (perhaps containing long description property
values) or offline (in the case of document text).

The MDEX Engine uses positional index data to improve performance in these scenarios. Positional indexing
improves the performance of multi-word phrase search, proximity search, and certain relevance ranking
modules. The thesaurus uses phrase search, so positional indexing improves the performance of multi-word
thesaurus expansions as well. Positional indexing is enabled by default for Oracle Commerce properties and
dimensions and cannot be disabled with Developer Studio.

How punctuation is handled in phrase search
Unless they are included as special characters, all punctuation characters are stripped out, during both indexing
and query processing. When punctuation is stripped out during query processing, the previously connected
terms have to remain in their original order.

URL query parameters for phrase search
You can request phrase matching by enclosing a set of one or more search terms in quotation marks (ASCII
character decimal 34, or hexadecimal 0x22). You can include phrase search queries in either record search
or dimension search operations and combine phrase search with non-phrase search terms or other phrase
terms.

Examples of phrase search queries

The following are examples of phrase search queries:
• A record searh for phrase cd player is as follows:
N=0&Ntk=All&Ntt=%22cd+player%22

• A record searh for records containing phrase cd player and the word sony is as follows:
N=0&Ntk=All&Ntt=%22cd+player%22+sony

• A record search for records containing phrase cd player and also phrase optical output is as
follows:
N=0&Ntk=All&Ntt=%22cd+player%22+%22optical+output%22

• A dimension search for dimension values containing the phrase Samuel Clemens is as follows:
D=%22Samuel+Clemens%22

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Phrase Search | About positional indexing218

Performance impact of phrase search
Phrase search queries are generally more expensive to process than normal conjunctive search queries.

In addition to the work associated with a conjunctive query, a phrase search operation must verify the presence
of the exact requested phrase.

The cost of phrase search operations depends mostly on how frequently the query words appear in the data.
Searches for phrases containing relatively infrequent words (such as proper names) are generally very rapid,
because the base conjunctive search narrows the results to a small set of candidate hits, and within these hits
relatively few possible match positions need to be considered.

On the other hand, searches for phrases containing only very common words are more expensive. For example,
consider a search for the phrase "to be or not to be" on a large collection of documents. Because all
of these words are quite common, the base conjunctive search does not narrow the set of candidate hit
documents significantly. Then, within each candidate result document, numerous possible word positions need
to be scanned, because these words tend to be frequently reused within a single document.

Even very difficult queries (such as "to be or not to be") are handled by the MDEX Engine within a few
seconds (depending on hardware), and possibly faster on moderate sized data sets. Obviously, if such queries
are expected to be very common, adequate hardware must be employed to ensure sufficient throughput. In
most applications, phrase searches tend to be used far less frequently than normal searches. Also, most
phrase searches performed tend to contain at least one information-rich, low-frequency word, enabling results
to be returned rapidly (that is, in less than a second).

You can use the --phrase_max <num> flag for the dgraph to specify the maximum number of words in each
phrase for text search. Using this flag improves performance of text search with phrases. The default number
is 10. If the maximum number of words in a phrase is exceeded, the phrase is truncated to the maximum word
count and a warning is logged.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

219Using Phrase Search | Performance impact of phrase search

Chapter 22

Using Snippeting in Record Searches

This section describes how to use snippeting. Snippeting provides the ability to return an excerpt from a record
in context, as a result of a user query.

Excerpting Record Content through Snippeting
The snippeting feature (also referred to as keyword in context or KWIC) provides the ability to return an excerpt
from a record—called a snippet—to an application user who performs a record search query.

A snippet contains the search terms that the user provided along with a portion of the term’s surrounding
content to provide context. A Web application displays these snippets on the record list page of a query’s
results. With the added context, users can more quickly choose the individual records they are interested in.

A snippet can be based on the term itself or on any thesaurus or spell-correction equivalents. At least one
instance of a term or equivalent is highlighted per snippet, regardless of the number of times the term or its
equivalents appear in the snippet. A thesaurus or spell-corrected alternative may be highlighted instead of the
term itself, even if both appear within the snippet.

You enable snippeting on individual members (fields) in a search interface that typically have many lines of
content. For example, fields such as Description, Abstract, DocumentBody, and so on are good candidates to
provide snippeting results.

The result of a query with snippeting enabled contains at least one snippet in which enough terms are highlighted
to satisfy the user's query. That is, if it is an AND query, the result contains at least one of each term, and if it
is an OR query, it contains at least one of the alternatives.

For example, if a user searches for intense in a wine catalog, the record list for this query has many records
that match intense. A snippet for each matching record displays on a record list page:

Note: Snippet properties, unlike other Oracle Commerce properties, are not created, configured, or
mapped using Developer Studio. A dynamically generated snippet property is not tagged to an Oracle
Commerce record. The snippet property appears with a record only on a record list page.

Snippet formatting and size
A snippet consists of search terms, surrounding context words, and ellipses.

A snippet can contain any number of search terms bracketed by <endeca_term></endeca_term> tags.
The tags call out search terms and enable you more easily to reformat the terms for display in your Web
application.

The snippet size is the total number of search terms and surrounding context words. You can configure the
total number of words in a snippet In order to adhere to the size setting for a snippet, it is possible that the
MDEX Engine may omit some search terms and context words from a snippet. This situation becomes more
likely if an application user provides a large number of search terms and the maximum snippet size is
comparatively small.

A snippet consists of one or more segments. If there are multiple segments, they are delimited by ellipses in
between them. Ellipses (...) indicate that there is text omitted from the snippet occurring before or after the
ellipses.

Example of a snippet

For example, here is a snippet made up of two segments with a maximum size set at 20 words. The snippet
resulted from a search for the search terms, Scotland and British, which are enclosed within <ende¬
ca_term> tags.
...in Edinburgh <endeca_term>Scotland</endeca_term>, and has
been employed by Ford for 25 years...He first joined Ford's
<endeca_term>British</endeca_term> operation. Mazda motor...

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Snippeting in Record Searches | Snippet formatting and size222

Snippet property names
The MDEX Engine dynamically creates new snippet properties by appending .Snippet to the original name
of the search interface members (fields) that you enabled for snippeting.

For example, if you enable snippeting for properties named Description and Reviews, the MDEX Engine creates
new properties named Description.Snippet and Reviews.Snippet and returns these properties with
the result set for a user’s record search.

About enabling and configuring snippeting
You enable the snippeting feature in the Member Options dialog box, which is accessed from the Search
Interface editor in Developer Studio.

Each member of a search interface is enabled and configured separately. In other words, snippeting results
are enabled and configured for each member of a search interface and not for all members of a single search
interface.

Note: A search interface member is a dimension or property that has been enabled for search and that
has been added to the Selected members pane of the Search Interface editor.

You can enable and configure any number of individual search interface members. Each member that you
enable produces its own snippet. Enabling a member in one search interface does not affect that member if
it appears in other search interfaces. For example, enabling the Description property for Search Interface A
does not affect the Description property in Search Interface B.

URL query parameters for snippeting
You can configure snippeting on a per query basis by using the Ntx URL query parameter, the snip operator
of Ntx, and key/value pairs that indicate which field to snippet and how many words to return in a snippet.
This section contains examples of record search queries with snippeting.

Providing these values in a URL overrides any configuration options specified in a Developer Studio project
file.

You can disable snippeting on a per query basis by using the nosnip+true operator of Ntx. The nosnip+true
operator globally disables all snippets for any search interface member you enabled.

Examples of queries with snippeting

You can include snippeting only in record search operations. The following are examples of snippeting in
queries:

• In a record search for records containing the word blue, snippet the description property with a
maximum size of thirty words:
N=0&Ntk=description&Ntt=blue&Ntx=snip+description:30

• In a record search for records containing the words shirt and blue, snippet the title property with a
maximum size of ten words and the description property with a maximum size of thirty words:
N=0&Ntk=title|description&Ntt=shirt|blue&Ntx=snip+title:10|snip+description:30

Oracle Commerce Guided Search MDEX Engine Developer's Guide

223Using Snippeting in Record Searches | Snippet property names

• In a record search for records containing the word blue, disable snippet results for the query:
N=0&Ntk=description&Ntt=blue&Ntx=nosnip+true

Reformatting a snippet for display in your Web application
After the MDEX Engine returns a snippet property to your application, you can remove or replace the <ende¬
ca_term> tags from the snippet before displaying it in a record list page.

To reformat a snippet for display in a front-end Web application:

Add application code to replace the <endeca_term> tags in a snippet property with an HTML formatting
tag, such as (bold), to highlight search terms in a snippet.

Your Web application can display the snippet as a property on a record list page like other Oracle Commerce
properties. For details, see the section about Displaying Oracle Commerce records.

Performance impact of snippeting
The snippeting feature does not have a performance impact during Data Foundry processing. However, enabling
snippeting does affect query runtime performance.

There is no effect on Forge or Dgidx processing time or indexing space requirements on your hard disk.

You can minimize the performance impact on query runtime by limiting the number of words in a property that
the MDEX Engine evaluates to identify the snippet. This approach is especially useful in cases where a
snippet-enabled property stores large amounts of text.

Provide the --snip_cutoff <num words> flag to the dgraph to restrict the number of words that the MDEX
Engine evaluates in a property.

For example, --snip_cutoff 300 evaluates the first 300 words of the property to identify the snippet.

Note: If the --snip_cutoff dgraph flag is not specified, or is specified without a value, the snippeting
feature defaults to a cutoff value of 500 words.

Tips and troubleshooting for snippeting
If a snippet is too short and you are not seeing enough context words in it, open the Member Options editor
in Developer Studio and increase the value for Maximum snippet size. The default value is 25 words.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Snippeting in Record Searches | Reformatting a snippet for display in your Web application224

Chapter 23

Using Wildcard Search

Wildcard search enables users to match query terms to fragments of words in indexed text. This section
discusses how to use wildcard search.

About wildcard search
Wildcard search is the ability to match user query terms to fragments of words in indexed text.

Normally, Oracle Commerce search operations (such as record search and dimension search) match user
query terms to entire words in the indexed text. For example, searching for the word run only returns results
containing the specific word run. Text containing run as a substring of larger words (such as running or
overrun) does not result in matches.

With wildcard search enabled, the user can enter queries containing the special asterisk or star operator (*).
The asterisk operator matches any string of zero or more characters. Users can enter a search term such as
run, which will match any text containing the string run, even if it occurs in the middle of a larger word such
as brunt.

Wildcard search is useful for performing text search on data fields such as part numbers, ISBNs, and SKUs.
Unlike cases where search is performed against normal linguistic text, in searches against data fields it may
be convenient or even necessary for the user to enter partial string values. details about how data fields that
include punctuation characters are processed are provided in this section.

For example, suppose users were searching a database of integrated circuits for Intel 486 CPU chips. The
database might contain records with part numbers such as 80486SX and 80486DX, because these are the
full part numbers specified by the manufacturer. But to end users, these chips are known by the more generic
number 486. In such cases, wildcard search is a natural feature to bridge the gap between user terminology
and the source data.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words that are shorter
than 1024 characters. Words that are longer than 1024 characters are not indexed for wildcard search.

Interaction of wildcard search with other features
The table in this topic describes whether various features are supported for queries that execute a wildcard
search.

CommentsSupport with
wildcard search

Feature

NoStemming

NoThesaurus matching

Auto-correct and "Did You Mean" are not supported.NoMisspelling correction

YesRelevance ranking

YesBoolean search

NoSnippeting

NoPhrase search

YesWhy did it match

YesWord interp

Ways to configure wildcard search
You use Developer Studio to configure wildcard search in your application, using one of these dialogs: the
Dimension and Property editors, the Dimension Search Configuration editor, and the Search Interface
editor. The following topics provide details about these configuration options.

Configuring wildcard search with Dimension and Property editors
The Dimension and Property editors of Developer Studio enable you to permit wildcard searches for any
Oracle Commerce property or dimension.

Before you can enable wildcard search with Dimension and Property editors, you must first:
• Select the property or dimension for which you want to permit wildcard search.

• Check the Enable Record Search option in both editors for the specified Oracle Commerce property or
dimension.

Note: If you use this method, you will only affect records enabled for search, but not dimensions
enabled for search. (For dimensions enabled for search, you can permit wildcard search for ALL
dimensions at once.)

To configure wildcard search in Dimension and Property editors:

1. In Developer Studio, go to Dimension or Property editor and select a Search tab.
2. In the Search tab, check Enable Wildcard Search option, as shown in the following example:

Note: This configuration affects only a single property or dimension that you have selected. For a
dimension, it only affects record search for that dimension.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Wildcard Search | Ways to configure wildcard search226

Configuring wildcard search with the Dimension Search Configuration editor
The Dimension Search Configuration editor in Developer Studio lets you configure wildcard search for all
dimensions in your project.

Unlike the option for enabling wildcard search in the Search tab of the Dimension editor, which affects only
a single dimension, the Dimension Search Configuration editor globally sets the options for all dimensions
in a project.

Note: When you enable wildcard search for all dimensions in a project, this affects your results when
you perform dimension search (that is, this does not apply to record search. For record search, you
enable wildcard search per each property or dimension.)

To configure wildcard search with Dimension Search Configuration editor:

Check the Enable Wildcard Search option, as shown in the following example:

Configuring wildcard search with the Search Interface editor
You can enable wildcard matching for a search interface by adding one or more wildcard-enabled properties
and dimensions to the search interface.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

227Using Wildcard Search | Ways to configure wildcard search

Use the Search Interface editor in Developer Studio to add the desired properties and dimensions. Wildcard
search can be partially enabled for a search interface. That is, some members of the search interface are
wildcard-enabled while the others are not.

Searches against a partially wildcard-enabled search interface follow these rules:
• The search results from a given member follow the rules of its configuration. That is, results from a

wildcard-enabled member follow the rules of wildcard search while results from non-wildcard members
follow the rules for non-wildcard searches.

• The final result is a union of the results of all the members (whether or not they are wildcard-enabled).

You should keep these rules in mind when analyzing search results. For example, assume that in a partially
wildcard-enabled search interface, Property-W is wildcard-enabled while Property-X is not. In addition,
the asterisk (*) is not configured as a search character. A record search issued for woo* against that search
interface may return the following results:

• Property-W returns records with woo, wood, and wool.

• Property-X only returns records with woo, because the query against this property treats the asterisk
as a word break. However, it does not return records with wool and wood, even though records with those
words exist.

However, because the returned record set is a union, the user will see all the records. A possible source of
confusion might be that if snippeting is enabled, the records from Property-X will not have wood and wool
highlighted (if they exist), while the records from Property-W will have all the search terms highlighted.

To enable wildcard search with the Search Interface editor in Developer Studio:

1. Add the desired properties and dimensions to the search interface.
2. Enable wildcard search for members of the search interface.

Wildcard search can be partially enabled for a search interface. That is, some members of the search
interface are wildcard-enabled while the others are not.

Note: If you have a partially wildcard-enabled search interface, the MDEX Engine logs an informational
message similar to the following example: Search interface "MySearch" has some fields
that have wildcard search enabled and others that do not. A wildcard search
will behave differently when applied to wildcard enabled fields than when
applied to other fields in this search interface (see the documentation for
more details). Fields with wildcard indexing enabled: "Authors" "Titles"
Fields with wildcard indexing disabled: "Price". The message is only for informational
purposes and does not affect the search operation.

MDEX Engine flags for wildcard search
There is no MDEX Engine configuration required to enable wildcard search. If wildcarding is enabled in
Developer Studio, the MDEX Engine automatically enables the use of the asterisk operator (*) in appropriate
search queries.

The following considerations apply to wildcard search queries that contain punctuation, such as abc*.d*f:

The MDEX Engine rejects and does not process queries that contain only wildcard characters and punctuation
or spaces, such as *., * *. Queries with wildcards only are also rejected.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Wildcard Search | MDEX Engine flags for wildcard search228

The maximum number of matching terms for a wildcard expression is 100 by default. You can modify this value
with the --wildcard_max flag for the dgraph.

If a search query includes a wildcard expression that matches too many terms, the search returns results for
the top frequent terms and the is_valid flag is set to false in the record search report.

To retrieve the error message, use the ESearchReport.getErrorMessage() method (Java), or
ESearchReport.ErrorMessage property (.NET).

In case of wildcard search with punctuation, you may want to increase --wildcard_max, if you would like
to increase the number of returned matched results. For more information about tuning this parameter, see
the MDEX Engine Performance Tuning Guide.

Other flags or attributes that existed in previous releases for tuning wildcard search are deprecated starting
with the version 6.1.2 and ignored by the MDEX Engine.

Presentation API development for wildcard search
No specific Presentation API development is required to use wildcard search.

If wildcard search is enabled during indexing, users can enter search queries containing asterisk operators to
request partial matching.

There are no special MDEX Engine URL parameters, method calls, or object types associated with wildcard
search.

Whereas the simplest use of wildcard search requires users to explicitly include asterisk operators in their
search queries, some applications automate the inclusion of asterisk operators as a convenience, or control
the use of asterisk operators using higher-level interface elements.

For example, an application might render a radio button next to the search box with options to select Whole-word
Match or Substring Match. In Substring Match mode, the application might automatically add asterisk operators
onto the ends of all user search terms. Interfaces such as this make wildcard search more easily accessible
to less sophisticated user communities to which use of the asterisk operator might be unfamiliar.

Performance impact of wildcard search
To optimize performance of wildcard search, use the following recommendations.

• Account for increased time needed for indexing. In general, if wildcard search is enabled in the MDEX
Engine (even if it is not used by the users), it increases the time and disk space required for indexing.
Therefore, consider first the business requirements for your Oracle Commerce application to decide whether
you need to use wildcard search.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words that are
shorter than 1024 characters. Words that are longer than 1024 characters are not indexed for wildcard
search.

• Do not use "low information" queries. For optimal performance, Oracle recommends using wildcard
search queries with at least 2-3 non-wildcarded characters in them, such as abc* and ab*de, and avoiding
wildcard searches with one non-wildcarded character, such as a*. Wildcard queries with extremely low
information, such as a*, require a significant amount of time to process. Queries that contain only wildcards,
or only wildcards and punctuation or spaces, such as *. or * *, are rejected by the MDEX Engine.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

229Using Wildcard Search | Presentation API development for wildcard search

• Analyze the format of your typical wildcard query cases. This lets you be aware of performance
implications associated with one specific wildcard search pattern.

For example, it is useful to know that if search queries contain only wildcards and punctuation, such as
., the MDEX Engine rejects them for performance reasons and returns no results.

Do you have queries that contain punctuation syntax in between strings of text, such as ab*c.def*?

For strings with punctuation, the MDEX Engine generates lists of words that match each of the
punctuation-separated wildcard expressions. Only in this case, the MDEX Engine uses the --wild¬
card_max <count> setting to optimize its performance.

Increasing the --wildcard_max <count> improves the completeness of results returned by wildcard
search for strings with punctuation, but negatively affects performance. Thus you may want to find the
number that provides a reasonable trade-off. For more detailed information on this type of tuning, see the
MDEX Engine Performance Tuning Guide.

Note: You enable wildcard search in Developer Studio.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Wildcard Search | Performance impact of wildcard search230

Chapter 24

Search Characters

This section describes the semantics of matching search queries to result text.

Using search characters
The Oracle Commerce MDEX Engine supports configurable handling of punctuation and other non-alphanumeric
characters in search queries.

This section does the following:
• Describes the semantics of matching search queries to result text (that is, records in record search or

dimension values in dimension search) when either the query or result text contains non-alphanumeric
characters.

• Explains how you can control this behavior using the search characters feature of the Oracle Commerce
MDEX Engine.

• Provides information about features supporting special handling for ISO-Latin1 and Windows CP1252
international characters during search indexing and query processing.

Note: Modifying search characters has no effect on Chinese, Japanese, or Korean language tokenization.

Query matching semantics
The semantics of matching search queries to text containing special non-alphanumeric characters in the Oracle
Commerce MDEX Engine is based on indexing various forms of source text containing such characters.

Basically, user query terms are required to match exactly against indexed forms of the words in the source
text to result in matches. Thus, to understand the behavior of query matching in the presence of
non-alphanumeric characters, one must understand the set of forms indexed for source text.

Categories of characters in indexed text
The Oracle Commerce system divides characters in indexed text into three categories:

• Alphanumeric characters including ASCII characters as well as non-punctuation characters in ISO-Latin1
and Windows CP1252.

• Non-alphanumeric search characters (configured using the search characters feature, as described below).
• Other non-alphanumeric characters (this category is the default for all non-alphanumeric characters not

explicitly configured to be in group 2).

During data processing, each word in the source text (that is, searchable properties for record search, dimension
values for dimension search) is indexed based on the alternatives for handling characters from the three
categories, which is described in subsequent topics.

Indexing alphanumeric characters
Alphanumeric characters are included in all forms.

Because Oracle Commerce search operations are not case sensitive, alphabetic characters are always included
in lowercase form, a technique commonly referred to as case folding.

Indexing search characters
Search characters are non-alphanumeric characters that are specified as searchable.

Search characters are included as part of the token.

Indexing non-alphanumeric characters
The way non-alphanumeric characters that are not defined as search characters are treated depends on
whether they are considered punctuation characters or symbols.

• Non-alphanumeric characters considered to be punctuation are treated as white space. In a multi-word
search with the words separated by punctuation characters, word order is preserved as if it were a phrase
search. The following characters are considered to be punctuation: ! @ # & () – [{ }] : ; ', ? / *

• Non-alphanumeric characters that are considered to be symbols are also treated as white space. However,
unlike punctuation characters, they do not preserve word order in a multi-word search. If a symbol character
is adjacent to a punctuation character, the symbol character is ignored. That is to say, the combination of
the symbol character and the punctuation character is treated the same as the punctuation character alone.
For example, a search on ice-cream would return the same results as a phrase search for "ice cream",
while a search for ice~cream would return the same results as simply searching for ice cream. A search
on ice-~cream would behave the same way as a search on ice-cream. Symbol characters include the
following: ` ~ $ ^ + = < > “

Search query processing
The semantics of matching search query terms to result text containing non-alphanumeric characters are
described in this topic.

• During query processing, each user query term is transformed to replace all non-alphanumeric characters
that are not marked as search characters with delimiters (spaces).

• Non-alphanumeric characters considered to be punctuation (! @ # & () – [{ }] : ; ', ? / *) are treated
as white space and preserve word order. This means that the equivalent of a quoted phrase search is
generated. For that reason, all search features that are incompatible with quoted phrase search, such
as spelling correction, stemming, and thesaurus expansion, are not activated. (For details, see the
"Using Phrase Search" chapter.)

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Search Characters | Search query processing232

• Non-alphanumeric characters that are considered to be symbols (` ~ $ ^ + = < > “) are also treated as
white space. However, unlike punctuation characters, they do not preserve word order in a multi-word
search.

• Alphabetic characters in the user query are replaced with lowercase equivalents, to ensure that they match
against case-folded indexed strings.

• Each query term in the transformed query must exactly match some indexed string from the given source
text for the text to be considered a hit.

As noted above, when parsing user-entered search terms, a query with non-searchable characters is transformed
to replace all non-alphanumeric characters (that are not marked as search characters) with white space, but
the treatment of word order depends on whether the character in question is considered to be a punctuation
character or a symbol. The search behavior preserves the word order and proximity of the search term only
in the case of punctuation characters.

For example, a search query for ice-cream will replace the hyphen (a punctuation character) with white space
and return only records with this text:

• ice-cream
• ice cream

Records with this text are not returned because the word order and word proximity of text does not match the
original query term:

• cream ice
• ice in the cream container

However, assuming the match mode is MatchAll, a search for ice~cream would return non-contiguous results
for [ice AND cream].

Implementing search characters
Search indexing distinguishes between alphanumeric characters and non-alphanumeric characters and supports
the ability to mark some non-alphanumeric characters as significant for search operations.

You mark a non-alphanumeric character as a search character in the Search Characters editor in Developer
Studio.

Note: Search characters are configured globally for all search operations. For example, adding the plus
(+) character marks it as a search character for dimension search, record search, record search group,
and navigation state search operations.

Dgidx flags for search characters
There are no Dgidx flags that are necessary to enable the search characters feature. Dgidx automatically
detects the configured search characters.

Presentation API development for search characters
The search characters feature does not require any Presentation API development.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

233Search Characters | Implementing search characters

There are no relevant MDEX Engine parameters to control this feature, nor does this feature introduce any
additional method calls or object types.

MDEX Engine flags for search characters
There are no MDEX Engine flags necessary to enable the search characters feature. The MDEX Engine
automatically detects the additional search characters.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Search Characters | MDEX Engine flags for search characters234

Chapter 25

Examples of Query Matching Interaction

The following examples of query matching interaction use record search, but the general matching concepts
apply in all other search features supported by the MDEX Engine. The tables below illustrate the combined
effects of various features by exposing text matches for given record search queries. In all cases we assume
MatchAll search mode.

Record search without search characters enabled
In this example, the hyphen (-) is not specified as a search character.

In this table, 1 through 4 represent the text, while a through d represent the query.

d) "ice cream"c) icecreamb) ice-creama) ice cream

YesIf word-break
analysis is used, this

YesYes1. ice cream

alternate form will be
included for
consideration as a
spelling correction. It
will be ranked for
quality and
considered alongside
other results when
the query is
executed.

YesYesIf word-break
analysis is used, this

If word-break
analysis is used, this

2. icecream

alternate form will bealternate form will be
included forincluded for
consideration as aconsideration as a
spelling correction. Itspelling correction. It
will be ranked forwill be ranked for
quality andquality and
considered alongsideconsidered alongside
other results whenother results when

the query is
executed.

the query is
executed.

YesIf word-break
analysis is used, this

YesYes3. ice-cream

alternate form will be
included for
consideration as a
spelling correction. It
will be ranked for
quality and
considered alongside
other results when
the query is
executed.

NoNoNoYes. Note that by
using Phrase

4. cream ice

relevance ranking,
the priority of this
text would be
lowered.

Note: Keep in mind that although an alternate form is considered for spelling correction, the form will
be discarded if the original terms return enough results.

Record search with search characters enabled
In this example, the hyphen (-) has been specified as a search character.

In this table, 1 through 4 represent the text, while a through d represent the query.

d) "ice cream"c) icecreamb) ice-creama) ice cream

YesYes, if word-break
analysis is used.

NoYes1. ice cream

NoYesYes, if espell is
enabled and the

Yes, if word-break
analysis is used.

2. icecream

--spellnum Dgidx
option is enabled.

NoYes, if espell is
enabled and the

YesNo3. ice-cream

--spellnum Dgidx
option is enabled.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Examples of Query Matching Interaction | Record search with search characters enabled236

NoNoNoYes4. cream ice

Record searchwith wildcard search enabled but without search
characters

In this example, the hyphen (-) has not been specified as a search character, and wildcards are used in the
queries.

In this table, 1 through 4 represent the text, while a through e represent the query.

e) ic*rea*d) "ice crea*"c) icecrea*b) ice-crea*a) ice crea*

NoNoYes, if
word-break
analysis is used.

YesYes1. ice cream

YesNoYesYes, if
word-break
analysis is used.

Yes, if
word-break
analysis is used.

2. icecream

NoNoYes, if
word-break
analysis is used.

YesYes3. ice-cream

NoNoNoNoYes. Note that
by using Phrase

4. cream ice

relevance
ranking, the
priority of this
text would be
lowered.

Record search with both wildcard search and search characters
enabled

In this example, the hyphen (-) has been specified as a search character, and wildcards are used in the queries.

In this table, 1 through 4 represent the text, while a through e represent the query.

e) ic*rea*d) "ice crea*"c) icecrea*b) ice-crea*a) ice crea*

Oracle Commerce Guided Search MDEX Engine Developer's Guide

237Examples of Query Matching Interaction | Record search with wildcard search enabled but without search
characters

NoNoYes, if
word-break
analysis is used.

NoYes1. ice cream

YesNoYesNoYes, if
word-break
analysis is used.

2. icecream

YesNoNoYesNo3. ice-cream

NoNoNoNoYes4. cream ice

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Examples of Query Matching Interaction | Record search with both wildcard search and search characters
enabled

238

Chapter 26

Spelling Correction and Did You Mean

This section describes how to implement the Spelling Correction and Did You Mean features of the Oracle
Commerce MDEX Engine.

About Spelling Correction and Did You Mean
The Spelling Correction and Did You Mean features of the Oracle Commerce MDEX Engine enable search
queries to return expected results when the spelling used in query terms does not match the spelling used in
the result text (that is, when the user misspells search terms).

Spelling Correction operates by computing alternate spellings for user query terms, evaluating the likelihood
that these alternate spellings are the best interpretation, and then using the best alternate spell-corrected query
forms to return extra search results. For example, a user might search for records containing the text Abrham
Lincoln. With spelling correction enabled, the Oracle Commerce MDEX Engine will return the expected results:
those containing the text Abraham Lincoln.

The list of alternate spellings that can be used for spelling correction is known as the spelling dictionary.

Did You Mean (DYM) functionality enables an application to suggest alternatives to search terms that users
enter. For example, if users search for valle in the sample wine data, they get six results. The terms valley and
vale, however, are much more prevalent (2,414 results and 20 results respectively.) When this feature is
enabled, the MDEX Engine responds with the six results for valle, but also suggests that valley or vale may
be what the user intended. If multiple suggestions are returned, they are sorted and presented according to
the closeness of the match.

The Oracle Commerce MDEX Engine supports two complementary forms of Spelling Correction:
• Auto-correction for record search and dimension search.
• Explicit spelling suggestions for record search (the "Did you mean?" dialog box).

Either or both features can be used in a single application, and all are supported by the same underlying
spelling engine and Spelling Correction modules.

The behavior of Oracle Commerce spelling correction features is application-aware, because the spelling
dictionary for a given data set is derived directly from the indexed source text, populated with the words found
in all searchable dimension values and properties. For example, in a set of records containing computer
equipment, a search for graphi might spell-correct to graphics. In a different data set for sporting equipment,
the same search might spell-correct to graphite.

Oracle Commerce Spelling Correction features include a number of tuning parameters to control performance,
behavior, and result presentation. This section describes the steps necessary to enable spelling correction for

record and/or dimension search, and provides a reference to the tuning parameters provided to allow applications
to obtain various behavior and performance trade-offs from the spelling engine.

Spelling modes
Oracle Commerce spelling features compute contextual suggestions at the full query level.

That is, suggestions may include one or more corrected query terms, which can depend on context such as
other words used in the query. To determine these full query suggestions, the MDEX Engine relies on low-level
spelling modules to compute single-word suggestions, that is, words similar to a given user query term and
contained within the application-specific dictionary.

Aspell and Espell spelling modules

The MDEX Engine supports two internal spelling modules, either or both of which can be used by an application:
• Aspell is the default module. It supports sound-alike corrections (using English phonetic rules). It does

not support corrections to non-alphabetic/non-ASCII terms (such as café, 1234, or A&M).
• Espell is a non-phonetic module. It supports non-phonetic (edit-distance-based) correction of any term.

Generally, applications that only need to correct normal English words can enable just the default Aspell
module. Applications that need to correct international words, or other non-English/non-word terms (such as
part numbers) should enable the Espell module.

In certain cases (such as an English-language application that also needs to correct part numbers), both Aspell
and Espell can be enabled.

Supported spelling modes

Module selection is performed at index time through the selection of a spelling mode. The supported spelling
modes are (the options below represent command line options you can specify to Dgidx):

• aspell – Use only the Aspell module. This is the default mode.
• espell – Use only the Espell module.
• aspell_OR_espell – Segment the dictionary so that Aspell is loaded with all ASCII alphabetic words

and Espell is loaded with other terms. Use Aspell when attempting to correct ASCII alphabetic words; use
Espell to correct other words.

• aspell_AND_espell – Load each module with the full application dictionary. Use both modules to correct
any word, selecting the best suggestions from the union of the results.

• disable – Disable the Spelling Correction feature.

Disabling spelling correction on individual queries
This topic describes how to disable spelling correction and DYM suggestions on individual queries.

You may discover that it is desirable to disable spelling correction in order to reduce the cost of running some
queries in performance-sensitive applications. For example:

• Queries where the MDEX Engine needs to perform matching on a very large number of terms all of which
need to be ranked for spelling correction suggestions.

• Queries using terms derived directly from the raw data. For example, if your end users are searching for
terms that are unique to their field, it may be desirable to disable spelling correction suggestions for those
terms.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Spelling modes240

To disable spelling correction for a particular query:

Use a query configuration option, spell, with a parameter nospell.
This option has the following characteristics:

• Works for both record and dimension search.
• Disables both Aspell and Espell spelling correction modes.
• Disables spelling correction and DYM suggestions.
• Requires spelling to be enabled in Dgidx or in the dgraph. Otherwise, this option has no effect.
• Requires that you provide a nospell parameter to it. Providing a parameter other than nospell results

in a warning in the error log, and spelling correction proceeds as if the option were not provided to the
MDEX Engine.

• Reduces the performance cost of a particular query. You can include this option in your front-end
application for particular queries if you observe that disabling spelling correction is beneficial for increasing
performance of your application overall. However, there is no need to modify your existing application
if you don't observe a performance penalty from using spelling correction.

Examples

In the presentation API, use the spell+nospell option with Ntx and Dx parameters.

For example, to disable spelling correction for a dimension search query for "blue suede shoes", change
the query from this syntax:
D=blue+suede+shoes&Dx=mode+matchallpartial

To the following syntax:
D=blue+suede+shoes&Dx=mode+matchallpartial+spell+nospell

In the dgraph URL, specify the spell+nospell value to the opts parameter. For example, change this type
of query from this syntax:
/search?terms=blue+suede+shoes&opts=mode+matchallpartial

To the following syntax:
/search?terms=blue+suede+shoes&opts=mode+matchallpartial+spell+nospell

In the Java Presentation API, you can disable spelling for a specific query as shown in this example:
ENEQuery nequery = new ENEQuery();
nequery.setDimSearchTerms("blue suede shoes");
nequery.setDimSearchOpts("spell nospell");

In the .NET API, you can disable spelling for a specific query as shown in this example:
ENEQuery nequery = new ENEQuery();
nequery.DimSearchTerms = "blue suede shoes";
nequery.DimSearchOpts = "spell nospell";

Spelling dictionaries created by Dgidx
No index configuration setup is strictly necessary to enable spelling correction.

By default, all words contained in searchable dimensions and properties will be considered as possible spell
correction recommendations. But in practice, to achieve the best possible spelling correction behavior and

Oracle Commerce Guided Search MDEX Engine Developer's Guide

241Spelling Correction and Did You Mean | Spelling dictionaries created by Dgidx

performance, it is typically necessary to configure bounds on the list of words available for spelling correction,
commonly known as the dictionary.

The application-specific spelling dictionary is created by Dgidx. As Dgidx creates search indexes of property
and dimension value text, it accumulates lists of words available for spelling correction by the Aspell module
into the following file:

• <db_prefix>.worddat (for the Aspell module only)

where <db_prefix> is the output index prefix.

Note: The <db_prefix>.worddat file for the Aspell module is reloaded into the MDEX Engine each
time you run the admin?op=updateaspell administrative command. This command enables you to
make updates to the Aspell spelling dictionary without stopping and restarting the dgraph.

This file contains application-specific dictionary words separated by new-line characters. Duplicate words listed
in these files are ignored.

This file is automatically compiled by the Dgidx during the indexing operation.

Configuring spelling in Developer Studio
You can set constraints for the spelling dictionaries in Developer Studio.

By default, Dgidx examines dimensions and properties enabled for search and adds words that are larger than
3 characters and smaller than 16 characters to the dictionary. However, because performance of spelling
correction in the MDEX Engine depends heavily on the size of the dictionary, you can set constraints on the
contents of the dictionary. For example, you might choose to either increase the default from a minimum of 3
characters or reduce the default from a maximum of 16 characters. These configuration settings are useful for
improving the performance of spell-corrected search operations at runtime.

These configuration options can be used to tune and improve the types of spelling corrections produced by
the MDEX Engine. For example, setting the minimum number of word occurrences can direct the attention of
the spelling correction algorithm away from infrequent terms and towards more popular (frequently occurring)
terms, which might be deemed more likely to correspond to intended user search terms.

To configure spelling dictionary entries:

1. In the Project Explorer, expand Search Configuration.
2. Double-click Spelling to display the Spelling editor.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Configuring spelling in Developer Studio242

3. You can separately configure entries in the dictionary based for dimension search and record search.
Therefore, select either the Dimension Search tab or the Record Search tab.
In this example, the Dimension Search tab is selected.

4. Set the constraints for adding words to the spelling dictionary:
DescriptionField

Sets the minimum number of times the word must appear in your
source data before the word should be included in the spelling
dictionary.

it occurs at least n times

Sets the minimum (n1) and maximum (n2) lengths of a word for
inclusion in the dictionary.

and is between n1 and n2
characters long

5. If desired, select the other tab and set the constraints for that type of search.
6. Click OK.
7. Choose Save from the File menu to save the project changes.

Modifying the dictionary file
You can modify or replace the Aspell dictionary file. Use the admin?op=updateaspell operation for the
dgraph which causes updates to the Aspell dictionary file.

While the dictionary files automatically generated by Dgidx are generally adequate for most applications
(especially when using a reasonable value for the minimum number of word occurrences), additional
improvements in application-specific spelling behavior can be achieved through modification or replacement
of the automatic dictionary file (Aspell module only).

For example, in applications with a specific set of technical terminology that requires focused spelling correction,
you can replace the automatic dictionary with a manually-generated list of technical terms combined with a
simple list of common words (such as /usr/dict/words on many UNIX systems).

About the admin?op=updateaspell operation
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for spelling
correction from the data corpus without stopping and restarting the MDEX Engine.

The admin?op=updateaspell operation performs the following actions:
• Crawls the text search index for all terms
• Compiles a text version of the aspell word list
• Converts this word list to the binary format required by aspell
• Causes the dgraph to finish processing all existing preceding queries and temporarily stop processing

incoming queries
• Replaces the previous binary format word list with the updated binary format word list
• Reloads the aspell spelling dictionary
• Causes the dgraph to resume processing queries waiting in the queue

The dgraph applies the updated settings without needing to restart.

Only one admin?op=updateaspell operation can be processed at a time.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

243Spelling Correction and Did You Mean | Modifying the dictionary file

The admin?op=updateaspell operation returns output similar to the following in the dgraph error log:

...
aspell update ran successfully.
...

Note: If you start the dgraph with the -v flag, the output also contains a line similar to the following:
Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

Enabling language-specific spelling correction
If your application involves multiple languages, you may want to enable language-specific spelling correction.

For information about how to enable this feature, see the "Using Internationalized Data" section.

Dgidx flags for Spelling Correction
The spelling mode can be selected using the Dgidx --spellmode flag.

The default spelling mode is aspell, which enables only the Aspell module.

The full set of supported spelling modes is:
• --spellmode aspell

• --spellmode espell

• --spellmode aspell_OR_espell

• --spellmode aspell_AND_espell

• --spellmode disable

Behaviors for these modes are described in the "Spelling modes" topic. If a spelling mode that includes use
of the Espell module is enabled, an additional Dgidx flag, --spellnum, can be used to control the contents
of the Espell dictionary.

The default is to disable --spellnum. With this flag enabled, the Espell dictionary will be allowed to contain
non-word terms. A word term is one that contains only ASCII alphabetic characters and ISO-Latin1 word
characters listed in Appendix C. In default mode, non-word terms are not allowed in the Espell dictionary.

Note: Auto-correct should be relatively conservative. You only want the engine to complete the correction
when there is a high degree of confidence. For more aggressive suggestions, it is best to use Did You
Mean.

dgraph flags for enabling Spelling Correction and DYM
Four dgraph flags enable the use of the Spelling Correction and DYM features. You can also use the ad¬
min?op=updateaspell operation on the dgraph to update the Aspell spelling dictionary while running partial
updates (without having to stop and restart the MDEX Engine).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Enabling language-specific spelling correction244

dgraph --spellpath flag

To enable use of spelling features in the MDEX Engine, you must first use the --spellpath flag to specify
the path to the directory containing the spelling support files.

If you are using the Oracle Commerce Application Controller to provision and run the dgraph, then this flag is
set automatically. By default, the dgraph component looks for the Aspell spelling support files in its input
directory (that is, the Dgidx output directory). If you want to specify an alternative location, you can do so using
the spellPath element in the WSDL, or by specifying arguments to the dgraph in Oracle Commerce
Workbench.

If you need to, you can specify the --spellpath parameter yourself. The value of the --spellpath parameter
typically matches the value specified for --out on the dgwordlist program.

Note the following about the --spellpath flag:
• The directory passed to the --spellpath flag must be an absolute path. Paths relative to the current

working directory are not allowed. This directory must have write permissions enabled for the user starting
the MDEX Engine process.

• The --spellpath option on the MDEX Engine is required for spelling features to be enabled, but this
flag does not activate any spelling features on its own. Additional flags are required to enable actual spelling
correction in the MDEX Engine.

Additional dgraph flags to enable spelling correction

The following MDEX Engine flags enable the supported spelling features. Any or all of these options can be
specified in combination, because they control independent features.

Spelling featuredgraph flag

Enables automatic spelling correction (autosuggest) for record and dimension
searches.

--spl

Enables explicit spelling suggestions (Did You Mean) for record search operations--dym

Sets the maximum number (num) of variants to be considered when computing
any spelling correction (autosuggest). The default value is 32.

--spell_bdgt num

If --spl and --dym are both specified, explicit spelling suggestions are guaranteed not to reuse suggestions
already consumed by automatic spelling correction (autosuggest). For example, the MDEX Engine will not
explicitly suggest "Did you mean 'Chardonnay'?" if it has already automatically included record search results
matching Chardonnay.

Spelling corrections generated by the MDEX Engine are determined by considering alternate versions of the
user query. The computation and scoring of alternate queries takes time and can decrease performance,
especially in the case of search queries with many terms. To limit the amount of spelling work performed for
any single search query, use the --spell_bdgt flag to place a maximum on the number of variants considered
for all spelling and Did You Mean corrections.

For information about other spelling-related flags, see the dgraph Flags topic in the Oracle Commerce
Administrator's Guide.

URL query parameters for Spelling Correction and DYM
DYM suggestions are enabled by the Nty parameter.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

245Spelling Correction and Did You Mean | URL query parameters for Spelling Correction and DYM

No special URL query parameters are required for the dimension search and record search auto-correction
features (--spl options). These features automatically engage when appropriate, given configuration settings
and the user’s query.

Note:

To disable spelling correction on individual queries, you can use the Ntx and Dx parameters with the
spell+nospell option specified.

Did You Mean suggestions for record search require the use of the Nty=1URL query parameter. For example:
<application>?N=0&Ntk=Description&Ntt=sony&Nty=1

Setting Nty=0 (or omitting the Nty parameter) prevents Did You Mean suggestions from being returned. This
allows an application to control the generation of suggestions after click-through from a previous suggestion.

Spelling Correction and DYM API methods
There are no modifications that are strictly necessary in the Presentation API code to support spelling correction.
However, there are API calls that return information about automatic spelling correction and DYM objects.

Spelling corrected results for both dimension search and record search operations are returned as normal
search results.

Note: You can disable spelling correction suggestions (autosuggest), auto-correct suggestions and
DYM suggestions on individual queries using the "spell nospell" option in nequery.setDim¬
SearchOpts parameter of the ENEQuery method (Java), or in nequery.DimSearchOpts property
(.NET). For more information, see the topic on disabling spelling correction on individual queries.

Optionally, applications can display information about automatic spelling corrections or Did You Mean
suggestions for dimension or record search operations using the automatically-generated ESearchReport
objects returned by the MDEX Engine.

For example, consider the following query, which performs two record search operations (a search for cdd in
the AllText search interface and a search for sny in the Manufacturer search interface):
<application>?N=0&Ntk=AllText|Manufacturer&Ntt=cdd|sny&Nty=1

The Java Navigation.getESearchReportsComplete() method and the .NET
Navigation.ESearchReportsComplete property return a map of search keys to a list of ESearchReport
objects that provides access to the information listed in the following two tables.

Returned valueESearchReport Java method

AllTextgetKey()

CddgetTerms()

MatchAllgetSearchMode()

MatchAllgetMatchedMode()

122getNumMatchingResults()

CdgetAutoSuggestions().get(0).getTerms()

CcdgetDYMSuggestions().get(0).getTerms()

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Spelling Correction and DYM API methods246

Returned valueESearchReport Java method

6getDYMSuggestions().get(0).getNumMatchingResults()

CdpgetDYMSuggestions().get(1).getTerms()

7getDYMSuggestions().get(1).getNumMatchingResults()

ManufacturergetKey()

SnygetTerms()

MatchAllgetSearchMode()

MatchAllgetMatchedMode()

121getNumMatchingResults()

SonygetAutoSuggestions().get(0).getTerms()

Returned valueESearchReport .NET property

AllTextKey

CddTerms

MatchAllSearchMode

MatchAllMatchedMode

122NumMatchingResults

CdAutoSuggestions[(0)].Terms

CcdDYMSuggestions[(0)].Terms

6DYMSuggestions[(0)].NumMatchingResults

CdpDYMSuggestions[(1)].Terms

7DYMSuggestions[(1)].NumMatchingResults

ManufacturerKey

SnyTerms

MatchAllSearchMode

MatchAllMatchedMode

121NumMatchingResults

SonyAutoSuggestions[(0)].Terms

Note that the auto-correct spelling corrections and the explicit Did You Mean suggestions are grouped with
related record search operations. (In this case, cd is the spelling correction for cdd and sony is the spelling
correction for sny.)

Java example of displaying autocorrect messages
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {

Oracle Commerce Guided Search MDEX Engine Developer's Guide

247Spelling Correction and Did You Mean | Spelling Correction and DYM API methods

 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport srchRpt = (ESearchReport)recSrchRpts.get(searchKey);
 // Get the List of auto-correct values
 List autoCorrectList = srchRpt.getAutoSuggestions();
 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.size() > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug = (ESearchAutoSuggestion)autoCor¬
rectList.get(0);
 // Display autocorrect message
 %>Corrected to <%= autoSug.getTerms() %>
 }
 }
 }
}

.NET example of displaying autocorrect messages
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key
String searchKey = Request.QueryString["Ntk"];
if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = recSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of auto-correct objects
 IList autoCorrectList = searchReport.AutoSuggestions;
 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.Count > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug = (ESearchAutoSuggestion)autoCorrectList[0];

 // Display autocorrect message
 %>Corrected to <%= autoSug.Terms %>
 }
 }
}

Java example of creating links for Did You Mean suggestions
// Get the Map of ESearchReport objects
Map dymRecSrchRpts = nav.getESearchReports();
if (dymRecSrchRpts.size() > 0) {
 // Get the user's search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (dymRecSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the user's search key
 ESearchReport searchReport = (ESearchReport) dymRecSrchRpts.get(searchKey);

 // Get the List of Did You Mean objects
 List dymList = searchReport.getDYMSuggestions();
 // If the list contains Did You Mean objects, provide a
 // link to search on the first suggested term

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Spelling Correction and DYM API methods248

 if (dymList.size() > 0) {
 // Get the Did You Mean object
 ESearchDYMSuggestion dymSug = (ESearchDYMSuggestion)dymList.get(0);
 String sug_val = dymSug.getTerms();
 if (sug_val != null){
 // Display didyoumean link
 %>Did You Mean: <%= sug_val %>
 }
 }
 }
 }
}

.NET example of creating links for Did You Mean suggestions
dd
// Get the Dictionary of ESearchReport objects
IDictionary dymRecSrchRpts = nav.ESearchReports;
// Get the user’s search key
String dymSearchKey = Request.QueryString["Ntk"];
if (dymSearchKey != null) {
 if (dymRecSrchRpts.Contains(dymSearchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = dymRecSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of DYM objects
 IList dymList = searchReport.DYMSuggestions;
 // If the list contains DYM objects, print the value
 // of the first suggested term
 if (dymList.Count > 0) {
 // Get the DYM object
 ESearchDYMSuggestion dymSug = (ESearchDYMSuggestion)dymList[0];
 String sug_val = dymSug.Terms;
 String sug_num = dymSug.NumMatchingResults.ToString();
 // Display DYM message
 if (sug_val != null){
 %>Did You Mean: <%= sug_val %>
 }
 }
 }
}

dgraph tuning flags for Spelling Correction and Did You Mean
The MDEX Engine provides a number of advanced tuning options that allow you to achieve various performance
and behavioral effects in the Spelling Correction feature.

An explanation of these tuning parameters relies on an understanding of the internal process used by the
MDEX Engine to generate spelling suggestions.

At a high level, the spelling engine performs the following steps to generate alternate spelling suggestions for
a given query:

1. If the user query generates more than a certain number of hits, then do not generate suggestions. This
threshold number of hits is the hthresh parameter.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

249Spelling Correction and Did You Mean | dgraph tuning flags for Spelling Correction and Did You Mean

2. For each word in the user’s search query, compute the N most similar words in the data set from a spelling
similarity perspective (N words are computed for each user query term). This number is set internally and
is not user-configurable.

3. For each word in the user’s search query, from the set of N most similar spelling words determined in step
2, pick the M most likely replacement words (where M<=N), based on a scoring process that combines
factors such as spelling similarity and word frequency (number of hits). This narrows the set of possible
spelling replacements for each user query word to M. This number is set internally and is not
user-configurable.

4. Consider combinations of these replacements for the user query words, limiting consideration to only
combinations that gain more than a threshold percentage number of hits relative to the user’s original query,
without reducing the number of query terms matched. This gain threshold percent is set internally and is
not user-configurable.

5. Scoring each such alternate query using a combination of factors such as spelling similarity of words used
and the number of hits generated by the query, select the K best queries and use them as suggestions. K
(the maximum number of replacement queries to generate) is called the nsug parameter.

6. Finally, consider alternate queries computed by changing the word divisions in the user’s query, with the
word-break analysis feature. Using the same scoring technique and limits on suggested queries described
in steps 4 and 5, include alternate word-break queries in the final suggestion set.

User-configurable parameters

The following table summarizes the user-configurable parameters described in the above process:

DescriptionParameter

Specifies the threshold number of hits at or above which spelling suggestions will not
be generated. That is, above this threshold, the spelling feature is disabled, allowing

hthresh

correctly spelled queries to return only actual (non-spell-corrected) results. Results
that don’t match all query terms don’t count toward the hthresh threshold. For example,
if you have a 1000 results which are all partial matches (they match only a proper
subset of the query terms) and hthresh is set to 1, then spelling correction will still
engage because you have 0 full matches. Note that the case where results only match
a proper subset of the query terms can only occur when the match mode is set
appropriately to allow such partial matches (matchany, matchpartial, matchpar¬
tialmax, and so on).

Specifies the maximum number of alternate spelling queries to generate for a single
user search query.

nsug

Specifies the threshold spelling similarity score for words considered by the spelling
correction engine. Scores are based on a scale where 100 points corresponds

sthresh

approximately to an edit distance of 1. The cost associated with correcting a query
term is higher if the term corresponds to an actual word in the data. That is, correcting
modem to model is considered a more significant edit than correcting modek to model,
if modem occurs as a word in the data but modek does not. The threshold applies to
the entire query; for multi-word queries, the edit scores associated with correcting
multiple words are added together, and the sum cannot exceed the threshold. For
details about the interaction of the --spl_sthresh and --dym_sthresh settings,
see the section below.

Specifies that cross-property matches are considered valid when scoring replacement
queries. By default, hits that result from applying some queries terms to one text field

glom

on a record and other terms to a different text field are not counted. In some cases,
these results are desirable and should be considered when computing spelling
suggestions.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | dgraph tuning flags for Spelling Correction and Did You Mean250

DescriptionParameter

Specifies that the word-break analysis portion of the spelling correction process
described above is disabled.

nobrk

Each of these parameters can be specified independently for each of the spelling correction features:
• For record and dimension search auto-correct, the --spl_ prefix is used (for example, --spl_nsug).

The flag --spl by itself enables auto-suggest spelling corrections for record search and dimension search.
• For explicit suggestions, the --dym_ prefix is used (for example, --dym_nsug). The flag --dym by itself

enables Did You Mean explicit query spelling suggestions for record search queries.
• For parameters that apply to all of the above, the --spell_ prefix is used.

For additional configuration of the word-break analysis feature (beyond disabling it with --spell_nobrk),
use the following --wb_ flags:

• --wb_noibrk disables the insertion of breaks in word-break analysis.
• --wb_norbrk disables the removal of breaks in word-break analysis.
• --wb_maxbrks specifies the maximum number of word breaks to be added to or removed from a query.

The default is one.
• --wb_minbrklen specifies the minimum length of a new term created by word-break analysis. The default

is two.

Summary of the Spelling Correction and Did You Mean options

The following table summarizes the complete set of options:

Available dgraph flagsFeature

--spl, --spl_hthresh, --spl_nsug, --spl_sthreshRecord Search and Dimension
Search

--dym, --dym_hthresh, --dym_nsug, --dym_sthreshDid You Mean

--spell_glom

Note that the --spell_glom option does not apply to dimension search,
because cross-property matching is inherently incompatible with the

Record Search and Did You Mean

dimension search feature. Dimension search matches always represent
a single dimension value.

--spell_nobrk, --wb_noibrk, --wb_norbrk, --wb_maxbrks, --wb_minbrklenRecord Search, Dimension
Search, and Did You Mean

Note: Terms that appear in the corpus more than 2×max(spl_hthresh, dym_hthresh) are never corrected,
because such terms are unlikely to be misspelled.

Interaction of --spl_sthresh and --dym_sthresh

The --spl_sthresh and --dym_sthresh flags are used to set the threshold spelling correction score for
words used by the auto-correct or DYM engines, respectively. This is the threshold at which the engine will
consider the suggestion. Words that qualify have a score below a given threshold. The higher the edit distance
for a term, the higher the score. The default for --spl_sthresh is 125, and the default for --dym_sthresh
is 175.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

251Spelling Correction and Did You Mean | dgraph tuning flags for Spelling Correction and Did You Mean

Based on these default values, if a particular suggestion has a score of 100, it can be used for either DYM or
auto-correct, and if it has a score of 200, it is not used by either. If the suggested word has a score better (that
is, lower) than the default DYM threshold of 175, but not good enough (that is, higher) than the default
auto-correct threshold of 125, it qualifies only for DYM.

A higher value for either of these settings generally results in more suggestions being generated for a misspelled
word. In an example query against the sample wine data, changing the --dym_sthresh value from 175 to
225 increased the number of terms considered for DYM from one to ten. However, raising scores too high
could result in a lot of noise. That is to say, it is generally a good thing if nonsense strings used as search
terms receive neither auto-correct nor DYM suggestions.

How dimension search treats number of results
Dimension search results may vary if spelling correction is performed.

An important note applies to the options and behavior associated with dimension search spelling correction:
in situations where the number of results is evaluated by an option or in the scoring of words or queries
performed by the spelling engine, dimension search uses an alternate definition of number of results. Instead
of using the simple number of hits returned to the user as this value (which is perfectly reasonable in the case
of record search), dimension search instead uses the number of records associated with the set of dimension
value search results computed for a given query.

In other words, dimension search follows an additional level of indirection to weight the dimension value results
computed by spelling suggestion queries according to the number of records that these dimension values
would lead to if selected in a navigation query. This alternate definition of number or results allows consistent
behavior between spelling corrections computed for dimension and record search operations when given the
same query terms.

Troubleshooting Spelling Correction and Did You Mean
This topic provides some corrective solutions for spelling correction problems.

If spell-corrected results are not returned for words with expected spell-corrected options in the data, check
the potential problems described in this topic.

When debugging spelling behavior, pay close attention to the errors of the dgraph on startup, at which point
problems in spelling configuration are typically reported.

Did You Mean and stop words interaction

Did You Mean can in some cases correct a word to one on the stop words list.

Did You Mean and query configuration

If a record search query produces Did You Mean options, each DYM query has the same configuration as the
initial record search query. For example, if the record search query had Allow cross field matches set to On
Failure, then the DYM query also runs with cross field matching set to On Failure.

Interaction of Aspell, Espell and DYM

This section is relevant to you if you are using aspell_AND_espell mode with DYM enabled. It describes
the interaction of both spelling modes with DYM and explains why in some instances, suggestions that should
have been found by Aspell or Espell are not considered by DYM. In other words, you may observe that in some

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | How dimension search treats number of results252

instances user-entered words with misspellings in them do not return DYM suggestions, if the aspell_AND_es¬
pell mode is used.

The following statements describe the reasons behind this behavior in more detail:
• Both spelling modes, Aspell or Espell, work by generating a list of suggestion results. These suggestions

are weighted based on the lowest score, according to a scoring algorithm.
• Aspell and Espell generate scores based on different scoring algorithms (described below in this section).
• When both modes are used, as is the case with aspell_AND_espell, DYM uses the union of the scored

suggestions provided by each spelling mode, and keeps the top 10 terms from the combined list, based
on the lowest scores.

• As a result, some suggestions found by Espell (that could have been relevant) do not pass the scoring
criteria in the combined list, and are thus not considered by DYM.

• The following statements discuss how scores are calculated for each of the spelling engines (Aspell and
Espell):

• For information about the GNU Aspell scoring algorithm, see the documentation for this open source
product.

• The Espell scoring algorithm uses the following formula:
(85 - num_matching_characters_in_prefix)* edit_distance

The parameter edit_distance specifies a regular Levenshtein distance (see the Internet for more
information). In edit_distance, character swaps, insertions and deletions count as an edit distance
of 1.

The num_matching_characters_in_prefix is a number of all matching characters before a
mismatch occurs. For example, for the term "java", this number is 2 (matching "j" and "a"); for the term
"jsva", this number is 1 (matching only "j").

The directory specified for the --spellpath flag
• The directory specified in the --spellpath flag to the MDEX Engine must be an absolute path. If a relative

path is used, an error message is sent to the standard error output in the format:
[Warning] OptiSpell couldn't open pwli file
"<--spell param>/<db_prefix>-aspell.pwli"
'Permission denied'

• The directory specified for the --spellpath flag must either be writable or already contain a valid .pwli
file that contains an absolute path to the spelldat binary dictionary file. Check the permissions on this
directory. If the directory is not writable or does not contain a valid .pwli file, an error is issued as in the
previous example.

Performance impact for Spelling Correction and Did You Mean
Spelling correction performance is impacted by the size of the dictionary in use.

Spell-corrected keyword searches with many words, in systems with very large dictionaries, can take a
disproportionately long time to process relative to other MDEX Engine requests. Those searches can cause
requests that immediately follow such a search to wait while the spelling recommendations are being sought
and considered.

Because of this, it is important to carefully analyze the performance of the system together with application
requirements prior to production application deployment.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

253Spelling Correction and Did You Mean | Performance impact for Spelling Correction and Did You Mean

Consider also whether performance could be improved if you disable spelling correction on individual queries.
For information about disabling spelling correction on individual queries, see the topic in this guide.

Related Links
Disabling spelling correction on individual queries on page 240

This topic describes how to disable spelling correction and DYM suggestions on individual queries.

Compiling the Aspell dictionary
The Aspell dictionary must be compiled before it can used by the MDEX Engine.

The Espell dictionary is automatically compiled at index time, and requires no further processing. But if the
selected spelling mode includes use of the Aspell module, the Aspell dictionary must be compiled. If you are
manually compiling this file, perform this step after indexing but before starting the MDEX Engine.

Compilation transforms the text-based dictionary into a binary dictionary file suitable for use by Aspell module
in the MDEX Engine. This indexed form of the dictionary is contained in a file with a name of the form
<dbPath>-aspell.spelldat.

Use one of the following ways to compile the dictionary file:
• Automatically, by running the admin?op=updateaspell administrative operation. For information about

this operation, see the topic in this section.
• Manually, by running the dgwordlist utility script.
• Automatically, by letting the Oracle Commerce Application Controller create them implicitly in the Dgidx

component.

Related Links
About the admin?op=updateaspell operation on page 243

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus without stopping and restarting the MDEX Engine.

Compiling the dictionary manually on page 254
The dgwordlist utility script is provided to compile the Aspell dictionary.

Compiling the dictionary with EAC on page 255
The Dgidx component contains a run-aspell setting that specifies Aspell as the spelling correction
mode for the implementation.

Compiling the dictionary manually
The dgwordlist utility script is provided to compile the Aspell dictionary.

To manually compile the text-based worddat dictionary into the binary spelldat dictionary, you must use
the utility script dgwordlist (on UNIX; on Windows, it is dgwordlist.exe).

The usage for dgwordlist is:
dgwordlist [--out <output_dir>] [--aspell <aspell_location>]
 [--datfiles <aspell_dat_files_location>] [--help]
 [--version] <dbPath>

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | Compiling the Aspell dictionary254

DescriptionArgument for
dgwordlist

Specifies the directory where the resulting binary spelldat dictionary file is placed.
If not specified, this defaults to the same directory where the input index files reside
(<dbPath>).

--out

Deprecated.

If you specify this flag, it is ignored. The dgwordlist utility no longer needs to know
the location of the Aspell dictionary indexing program.

--aspell

In previous releases, this flag specified the location of Aspell. This parameter could
also be omitted if aspell (or aspell.exe on Windows) was in the current path.

Specifies the input directory location containing the spelling support files. These support
files contain information such as language and character set configuration (these files

--datfiles

end with .map or .dat extensions). If not specified, this defaults to the same directory
where the input index files reside (<dbPath>).

Specifies a prefix path to the input index data, including the text-based worddat
dictionary file. This should match the index prefix given to Dgidx.

<dbPath>

Prints the version information and exits.--version

Prints the command usage and exits.--help

In typical operational configurations, the binary spelldat dictionary file created by dgwordlist and the
.map and/or .dat files located in the --datfiles directory are placed in the same directory as the indexed
data prior to starting the MDEX Engine.

Example of running dgwordlist
$ cp /usr/local/endeca/6.1.3/lib/aspell/* ./final_output
$ /usr/local/endeca/6.1.3/bin/dgwordlist
/usr/local/endeca/6.1.3/bin/aspell ./final_output/wine
Creating "./final_output/wine-aspell.spelldat"

Related Links
About the admin?op=updateaspell operation on page 243

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus without stopping and restarting the MDEX Engine.

Compiling the dictionary with EAC
The Dgidx component contains a run-aspell setting that specifies Aspell as the spelling correction mode
for the implementation.

The default value of run-aspell is true; that is, it compiles the dictionary file for you by default and copies
the Aspell files into its output directory, where the dgraph can access them.

If you do not want the spelling dictionary to be created, you must set run-aspell to false in the Dgidx
component. You can change this setting either by directly editing your Endeca Application Controller provisioning
file, or by editing the arguments for the Dgidx component located in Oracle Commerce Workbench on the EAC
Administration Console page.

Related Links

Oracle Commerce Guided Search MDEX Engine Developer's Guide

255Spelling Correction and Did You Mean | Compiling the Aspell dictionary

About the admin?op=updateaspell operation on page 243
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus without stopping and restarting the MDEX Engine.

About word-break analysis
Word-break analysis allows the Spelling Correction feature to consider alternate queries computed by changing
the word divisions in the user’s query.

For example, if the query is Back Street Boys, word-break analysis could instruct the MDEX Engine to consider
the alternate Backstreet Boys.

When word-break analysis is applied to a query, it requires that the substrings that the term is broken up into
appear in the data in succession.

For example, starting with the query box17, word-break analysis would find box 17, as well as box-17, assuming
that the hyphen (-) has not been specified as a search character. However, it would not find 17 old boxes,
because the target terms do not appear in order.

Disabling word-break analysis
You can disable the word-break analysis feature with a dgraph flag.

Word-break analysis is enabled by default, as are its associated parameters. You can disable word-break
analysis by starting the MDEX Engine with the --spell_nobrk flag.

Word-break analysis configuration parameters
You configure the details of word-break analysis with four dgraph flags.

Keep in mind that word-break analysis must be enabled in order for these flags to have any effect.

The four dgraph flags are as follows:
• To control the maximum number of word breaks to be added to or removed from a query, use the
--wb_maxbrks flag. The default is one.

• To specify the minimum length for a new term created by word-break analysis, use the --wb_minbrklen
flag. The default is two.

• To disable the ability of word-break analysis to remove breaks from the original term, use the --wb_norbrk
flag.

• To disable the ability of word-break analysis to add breaks to the original term, use the --wb_noibrk flag.

Performance impact of word-break analysis
The performance impact of word-break analysis can be considerable, depending on your data.

Seemingly small deviations from default values (such as increasing the value of --wb_maxbrks from one to
two) can have a significant impact, because they greatly increase the workload on the MDEX Engine. Oracle
suggests that you tune this feature carefully and test its impact thoroughly before exposing it in a production
environment.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Spelling Correction and Did You Mean | About word-break analysis256

Chapter 27

Stemming and Thesaurus

This section describes how to implement the Stemming and Thesaurus features of the Oracle Commerce
MDEX Engine.

Overview of Stemming and Thesaurus
The Stemming and Thesaurus features enable keyword search query terms or phrases to match alternate
forms of the query terms or phrases:

• Stemming enables the MDEX engine to consider alternate forms of individual words as equivalent for the
purpose of search query matching. For example, it is often desirable for singular nouns to match their plural
forms in the searchable text, and vice versa.

• Thesaurus enables the MDEX engine to match words or phrases in user queries to synonymous or related
words or phrases. For example, a thesaurus entry can allow searches for Mark Twain to match text
containing the phrase Samuel Clemens.

Both the Thesaurus and Stemming features rely on defining equivalent textual forms that are used to match
user queries to searchable text data. Because these features are based on similar concepts, and because
they are typically configured to operate in conjunction to achieve desired query matching effects, both features
and their interactions are discussed in one section.

About the Stemming feature
The Stemming feature broadens search results to include root words and variants of root words.

Stemming enables words with a common root (such as the singular and plural forms of nouns) to be used
interchangeably by searches. For example, through stemming, search results for the word shirt will include
the plural form shirts, while a search for shirts will include the singular form shirt.

Stemming equivalences are defined among variant forms of the same word, but not among different words,
even when these are synonymous. For example, stemming enables the variant forms automobile and
automobiles to be considered equivalent, but not to define an equivalence between synonymous words such
as vehicle and automobile. Equivalences between different words with the same or similar meanings are
defined by Thesaurus.

Stemming equivalences are strictly two-way (that is, all-to-all). For example, if there is a stemming entry for
the word truck, then searches for truck will always return matches for both the singular form (truck) and its
plural form (trucks), and searches for trucks will also return matches for truck.

In contrast, the Thesaurus feature supports one-way mappings in addition to two-way mappings. For more
information, see About the Thesaurus feature on page 263.

Note: The MDEX Engine supports stemming for multiple languages. For details about stemming and
non-English data, refer to the Oracle Commerce Internationalization Guide.

Types of stemming matches and sort order (Latin1 languages)
When stemming is enabled for a Latin1 language, a search on a given term (T) can produce one or more of
these results:

• Literal matches: Any occurrence of T always produce a match.
• Stem form matches: Matches occur on the stem form of T (assuming that T is not a stem form). For example,

if T is children, then child (the stem form) also matches.
• Inflected form matches: Matches occur on all inflected forms of the stem form of T. For example, if T is the

verb ran (as in This horse ran in the Kentucky Derby), then matches include the stem form (run) and
inflected forms (such as runs and running). (Note that the Latin 1 analyzer does not by default support
stemming for inflected English verb forms. For information about how to customized the wordforms file to
support stemming for English verb forms, see Supplementing the default static stemming dictionaries (Latin
1) on page 259.)

The order of the returned results depends on the sorting configuration:
• If relevance ranking is enabled and the Interpreted (interp) module is used, literal matches will always have

higher priority than stem form and inflected form matches.
• If relevance ranking is not enabled but you have set a record sort order, the results will come back in that

sort order.
• If relevance ranking is not enabled and there is no record sort order, the order of the results is completely

arbitrary.

Enabling stemming
Stemming is enabled in Developer Studio for a subset of supported languages listed in the Stemming editor.

Additional ISO-639 languages are supported but not listed in the Stemming editor. For details about enabling
stemming with other international languages, refer to the Oracle Commerce Internationalization Guide.

Note: Configuring stemming in Developer Studio overwrites any custom stemming dictionaries you may
have created and specified for selected languages in your application, as well as overwriting any settings
passed in to the dgraph through the --lang flag. You should not use the Developer Studio Stemming
editor in combination with manually-configured settings.

To enable stemming:

1. Open the project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Stemming to display the Stemming editor.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stemming and Thesaurus | About the Stemming feature258

4. Check one or more of the language check boxes on the list.
5. Click OK.

To disable stemming, use the above procedure, but uncheck the languages for which you do not want stemming.

Supplementing the default static stemming dictionaries (Latin 1)
You can modify the default stemming dictionaries by running Dgidx with the --stemming-updates flag and
specifying an XML file that contains the updates to the dictionary that you want to make. The update file can
include both additions and deletions. Dgidx processes the file by adding and deleting entries in the static
stemming dictionary file.

The default static stemming dictionary files are stored in Endeca\MDEX\version\conf\stemming (on
Windows) and /usr/local/endeca/MDEX/version/conf/stemming (on UNIX).

For most supported languages, the stemming directory contains two types of stemming dictionaries per
language. One dictionary (<RFC 3066 Language Code>_word_forms_collection.xml) contains
stemming entries that support accented characters for the particular <RFC 3066 Language Code>.

The other dictionary (<RFC 3066 Language Code>-x-folded_word_forms_collection.xml)
contains stemming entries in which all accented characters have been folded down (removed) for the particular
<language_code>. If present, this is the static stemming dictionary that is used if you specify --diacritic-
folding. For details about how to map accented characters to unaccented characters, refer to the Oracle
Commerce Guided Search Internationalization Guide.

Adding entries to a static stemming dictionary

Each entry in a static stemming dictionary is defined by an <ADD_WORD_FORMS> element and its sub-element
<WORD_FORMS_COLLECTION>. For example, the following entry adds apple and its plural form apples to
the static stemming dictionary:
<!DOCTYPE WORD_FORMS_COLLECTION_UPDATES SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <ADD_WORD_FORMS>
 <WORD_FORMS_COLLECTION>
 <WORD_FORMS>
 <WORD_FORM>apple</WORD_FORM>
 <WORD_FORM>apples</WORD_FORM>
 </WORD_FORMS>
 </WORD_FORMS_COLLECTION>

Oracle Commerce Guided Search MDEX Engine Developer's Guide

259Stemming and Thesaurus | About the Stemming feature

 </ADD_WORD_FORMS>
</WORD_FORMS_COLLECTION_UPDATES>

Deleting entries from a static stemming dictionary

You specify stemming entries to delete in a <REMOVE_WORD_FORMS_KEYS> element. All word forms that
correspond to that key are deleted. For example, the following XML deletes aalborg and all of its stemmed
variants from the static stemming dictionary:
<!DOCTYPE WORD_FORMS_COLLECTION_UPDATES SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <REMOVE_WORD_FORMS_KEYS>
 <WORD_FORM>aalborg</WORD_FORM>
 </REMOVE_WORD_FORMS_KEYS>
</WORD_FORMS_COLLECTION_UPDATES>

Combining deletes and adds

You can also specify a combination of deletes and adds. Deletes are processed before adds. For example,
the following XML removes aachen and then adds it and several stemmed variants of it.
<!DOCTYPE WORD_FORMS_COLLECTION_UPDATES SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <REMOVE_WORD_FORMS_KEYS>
 <WORD_FORM>aachen</WORD_FORM>
 </REMOVE_WORD_FORMS_KEYS>
 <ADD_WORD_FORMS>
 <WORD_FORMS_COLLECTION>
 <WORD_FORMS>
 <WORD_FORM>aachen</WORD_FORM>
 <WORD_FORM>aachens</WORD_FORM>
 <WORD_FORM>aachenes</WORD_FORM>
 </WORD_FORMS>
 </WORD_FORMS_COLLECTION>
 </ADD_WORD_FORMS>
</WORD_FORMS_COLLECTION_UPDATES>

Syntax of the stemming update file name

The syntax of the stemming update file name is as follows:

user_specified.<RFC 3066 Language Code>.xml

where
• user_specified is any string that is relevant to your application or static stemming dictionary, for

example myAppStemmingChanges.

• RFC 3066 Language Code is a two-character language code, of the static stemming dictionary you
want to update, for example,en or en-us. See ISO 639-1 for the full list of two-character codes and RFC
3066 for the two-character sub tag for region.

Processing the update file

To process the stemming update file, run Dgidx with the --stemming-updates flag and specify the XML file
that contains the stemming updates.

For example:
dgidx --stemming-updates myAppStemmingChanges.en.xml

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stemming and Thesaurus | About the Stemming feature260

Conflicts during updates

When Dgidx merges the changes in an update file into the static stemming dictionary, there may be conflicts
in cases where the variant for one root in the static stemming dictionary is the same as a variant for another
root in the update file. Any duplicate variants of different root words constitute a conflict.

In this case, Dgidx throws a warning about conflicting variants and rejects the variant that was specified in the
update file.

Adding a custom static stemming dictionary
If your application requires a stemming language that is not available in the Stemming editor of Developer
Studio, you can create and add a custom stemming dictionary. A custom stemming dictionary is available in
addition to any stemming selections you may have enabled in Developer Studio. For example, you can enable
English and Dutch, and then add an additional custom stemming dictionary for Swahili.

Although you can create any number of custom stemming dictionaries, only one custom stemming dictionary
can be loaded into the MDEX Engine. You indicate which custom stemming dictionary to load with the --lang
flag to Dgidx.

To add a custom stemming dictionary:

1. Create a custom dictionary file with stemming entries. For sample XML, see the XML schema of any default
stemming dictionary stored in <install path>\MDEX\<version>\conf\stemming.
For example, this simplified file contains one term and one stemmed variant:
<?xml version="1.0"?>

<!DOCTYPE WORD_FORMS_COLLECTION_SYSTEM "word_forms_collection.dtd.">

<WORD_FORMS_COLLECTION>

<WORD_FORMS>

<WORD_FORM>swahiliterm</WORD_FORM>

<WORD_FORM>swahiliterms</WORD_FORM>

</WORD_FORMS>

</WORD_FORMS_COLLECTION>

2. When you have created the custom stemming dictionary, save the XML file with one of the following name
formats:

• If the dictionary contains unaccented characters and you use the Dgidx flag --diacritic-folding,
save the file as <RFC 3066 Language Code>-x-folded_word_forms_collection.xml.

• If the dictionary contains accented characters and you are not using the Dgidx flag --diacritic-
folding, save the file as <RFC 3066 Language Code>_word_forms_collection.xml.

For example, the XML above would be saved as sw_word_forms_collection.xml where sw is the
ISO639-1 language code for Swahili.

3. Place the XML file in <install path>\MDEX\<version>\conf\stemming\custom.
4. Specify the --lang flag to Dgidx with a <lang id> argument that matches the language code of the

custom stemming dictionary file.
In the example above that uses a Swahili (sw) dictionary, you would specify:
dgidx --lang sw

Oracle Commerce Guided Search MDEX Engine Developer's Guide

261Stemming and Thesaurus | About the Stemming feature

Replacing a default static stemming dictionary with a custom stemming
dictionary

Rather than supplement a default stemming dictionary, you may chose to entirely replace a default stemming
dictionary with a custom a stemming dictionary.

To replace a default stemming dictionary with a custom stemming dictionary:

1. Create a custom dictionary file with stemming entries. For example XML, see the XML schema of any
default stemming dictionary stored in <install path>\MDEX\<version>\conf\stemming.
For example, this simplified English stemming dictionary contains one term and one stemmed variant:
<?xml version="1.0"?>

<!ELEMENT WORD_FORMS_COLLECTION_UPDATES (COMMENT?, RE¬
MOVE_WORD_FORMS_KEYS*,ADD_WORD_FORMS*)>

<WORD_FORMS_COLLECTION>

<WORD_FORMS>

<WORD_FORM>car</WORD_FORM>

<WORD_FORM>cars</WORD_FORM>

</WORD_FORMS>

</WORD_FORMS_COLLECTION>

2. When you have created the custom stemming dictionary, save the XML file with one of the following name
formats:

• If the dictionary contains unaccented characters and you use the Dgidx flag --diacritic-folding,
save the file as <RFC 3066 Language Code>-x-folded_word_forms_collection.xml.

• If the dictionary contains accented characters and you are not using the Dgidx flag --diacritic-
folding, save the file as <RFC 3066 Language Code>_word_forms_collection.xml.

For example, the XML above would be saved as en_word_forms_collection.xml where en is the
ISO639-1 code for English.

3. Place the XML file in <install path>\MDEX\<version>\conf\stemming\custom.
4. Open your project in Developer Studio.
5. In the Project Explorer, expand Search Configuration.
6. Double-click Stemming to display the Stemming editor.
7. Un-check the language you want to replace.
8. Click OK.
9. Specify the --lang flag to Dgidx with a <lang id> argument that matches the language code of the

custom stemming dictionary file.
In the example above that uses an English (en) dictionary, you would specify:
dgidx --lang en

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stemming and Thesaurus | About the Stemming feature262

About the Thesaurus feature
The Thesaurus feature enables you to configure search terms in queries to match words or concepts that are
synonymous or similar in meaning.

For example, if you define a thesaurus entry that maps the words automobile and car to each other, a search
for automobile can return automobile and car.

The thesaurus supports specifying multi-word equivalences. For example, the Thesaurus might specify that
the phrase Mark Twain is interchangeable with the phrase Samuel Clemens. It is also possible to mix the
number of words in the phrase-forms for a single equivalence. For example, you can specify that wine opener
is equivalent to corkscrew.

Multi-word equivalences are matched on a phrase basis. For example, if a thesaurus equivalence between
wine opener and corkscrew is defined, then a search for corkscrew will match the text stainless steel wine
opener, but will not match the text an effective opener for wine casks.

Thesaurus equivalences can be either one-way or two-way:
• One-way mapping specifies only one direction of equivalence. That is, one "From" term is mapped to one

or more "To" terms, but none of the "To" terms are mapped to the "From" term. Only one "From" term can
be specified in a one-way Thesaurus entry.

In most cases, a one-way Thesaurus entry maps a term with a broad range of meanings to one or more
terms with specific meanings. For example, a one-way Thesaurus entry can map the general term "Red
wine" to a number of different, more specific terms, such as "Merlot", "Shiraz", and "Bordeaux". In such a
case, the reverse mappings would not be useful to the customer; someone searching for a bottle of Merlot,
for example, is not likely to be interested in red wines other than Merlot. These one-way mappings can be
defined in Thesaurus.xml as follows:
<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>Red wine</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>Merlot</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Shiraz</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Bordeaux</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

The terms to which a one-way Thesaurus entry maps a search term must be in your catalog, but not the
search term itself. Thus, in the preceding example, the search term "Red wine" need not be in your catalog,
but the terms "Merlot", "Shiraz", and "Bordeaux" must be in order to appear in the results list.

• Two-way (or all-to-all) mapping means that the direction of a word mapping is equivalent between the
words. For example, a two-way mapping between stove, range, and oven means that a search for one of
these words will return all results matching any of these words (that is, the mapping marks the forms as
strictly interchangeable).

When you define a two-way mapping, you do not specify "From" or "To" terms. Instead, you specify two
or more terms that are mapped to each other, as follows:
<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

Unlike the Stemming module, the Thesaurus feature enables you to define multiple equivalences for a single
word or phrase. These multiple equivalences are considered independent.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

263Stemming and Thesaurus | About the Thesaurus feature

For example, we might define one equivalence between football and NFL, and another between football and
soccer. With these two equivalences, a search for NFL will return hits for NFL and hits for football, a search
for soccer will return hits for soccer and football, and a search for football will return all of the hits for football,
NFL, and soccer. However, searches for NFL will not return hits for soccer (and vice versa).

This non-transitive nature of the thesaurus is useful for defining equivalences containing ambiguous terms
such as football. The word football is sometimes used interchangeably with soccer, but in other cases football
refers to American football, which is played professionally in the NFL. In other words, the term football is
ambiguous.

When you define equivalences for ambiguous terms, you do not want their specific meanings to overlap into
one another. People searching for soccer do not want hits for NFL, but they may want at least some of the hits
associated with the more general term football.

Thesaurus entries are essentially used to produce alternate forms of the user query, which in turn are used to
produce additional query results. As a rule, the MDEX Engine will expand the user query into the maximum
possible set of alternate queries based on the available thesaurus entries.

This behavior is particularly important in the presence of overlapping thesaurus forms. For example, suppose
that you define an equivalence between red wine and vino rosso, and a second equivalence between wine
opener and corkscrew. The query red wine opener might match the thesaurus entries in two different ways:
red wine could be mapped to vino rosso based on the first entry; or wine opener could be mapped to corkscrew
based on the second entry.

Using the maximal-expansion rule, this issue is resolved by expanding to all possible queries. In other words,
the MDEX Engine returns hits for all of the queries: red wine opener, vino rosso opener, and red corkscrew.

Adding thesaurus entries
Thesaurus entries are added in Developer Studio.

To add a one-way or two-way thesaurus entry:

1. Open the project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Thesaurus to display the Thesaurus view.

4. Click New and select either One Way or Two Way.
5. Configure the entry in the Thesaurus Entry dialog:

• For a one-way entry: type in one term in the "From" field, add one or more "To" terms, and click OK.
• For a two-way entry: add two or more "To" terms and click OK.

6. Save the project.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stemming and Thesaurus | About the Thesaurus feature264

The Thesaurus view also allows you to modify and delete existing thesaurus entries.

Troubleshooting the thesaurus
The following thesaurus clean-up rules should be observed to avoid performance problems related to expensive
and non-useful thesaurus search query expansions.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki can refer
to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki = pants, then
a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such as:
top = shirt = sweater = vest

This increases the number of results the user has to go through while reducing the overall accuracy of the
items returned. In this instance, better results are attained by creating individual one-way thesaurus entries
between the general term top and each of the more-specific terms.

• A thesaurus entry should never include a term that is a substring of another term in the entry.

For example, consider the two-way equivalency:
Adam and Eve = Eve

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would have
gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam and Eve) or
Eve, causing the Adam and part of the query to be ignored.

• Stop words such as and or the should not be used in single-word thesaurus forms. For example, if the has
been configured as a stop word, an equivalency between thee and the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are handled
as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

• Avoid multi-word thesaurus forms where single-word forms are appropriate. In particular, avoid multi-word
forms that are not phrases that users are likely to type, or to which phrase expansion is likely to provide
relevant additional results.

For example, the two-way thesaurus entry:
Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D. 939)

should be replaced with the single-word form:
Aethelstan = Athelstan

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus entry:
Pikes Peak -> Pike’s Peak

should be used only if the apostrophe (') is enabled as a search character.

Dgidx and dgraph flags for the Thesaurus
No Dgidx flags are needed to configure the Thesaurus features.

Thesaurus entries are automatically enabled for use during text indexing and during MDEX Engine search
query processing. In addition, there is no MDEX Engine configuration necessary to configure thesaurus
information.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

265Stemming and Thesaurus | Dgidx and dgraph flags for the Thesaurus

The dgraph --thesaurus_cutoff flag can be used to tune performance associated with thesaurus expansion.
By default, this flag is set to 3, meaning that if a search query contains more than 3 words that appear in "From"
entries, none of the query terms are expanded.

No Presentation API development is necessary to use the Thesaurus feature.

Interactions with other search features
As core features of the MDEX Engine search subsystem, Stemming and the Thesaurus have interactions with
other search features.

The following sections describe the types of interactions between the various search features.

Search characters (Latin 1 only)

The search character set configured for the application dictates the set of available characters for stemming
and thesaurus entries. By default, only alphanumeric characters may be used in stemming and thesaurus
entries. Additional punctuation and other special characters may be enabled for use in stemming and thesaurus
entries by adding these characters to the search character set.

The MDEX Engine matches user query terms to thesaurus forms using the following rule: all alphanumeric
and search characters must match against the stemming and thesaurus forms exactly; other characters in the
user search query are treated as word delimiters.

Spelling

Spelling correction is a closely-related feature to stemming and thesaurus functionality, because spelling
auto-correction essentially provides an additional mechanism for computing alternate versions of the user
query. In the MDEX Engine, spelling is handled as a higher-level feature than stemming and thesaurus. That
is, spelling correction considers only the raw form of the user query when producing alternate query forms.

Alternate spell-corrected queries are then subject to all of the normal stemming and thesaurus processing.
For example, if the user enters the query telvision and this query is spell-corrected to television, the results
will also include results for the alternate forms televisions, tv, and tvs.

Note that in some cases, the Thesaurus feature is used as a replacement or in addition to the system's standard
spelling correction features. In general, this technique is discouraged. The vast majority of actual misspelled
user queries can be handled correctly by the Spelling Correction subsystem. But in some rare cases, the
Spelling Correction feature cannot correct a particular misspelled query of interest; in these cases it is common
to add a thesaurus entry to handle the correction. If at all possible, such entries should be avoided as they can
lead to undesirable feature interactions.

Stop words

Stop words are words configured to be ignored by the MDEX Engine search query engine. A stop word list
typically includes words that occur too frequently in the data to be useful (for example, the word bottle in a
wine data set), as well as words that are too general (such as clothing in an apparel-only data set).

If the is marked as a stopword, then a query for the computer will match to text containing the word computer,
but possibly missing the word the.

Stop words are not currently expanded by the stemming and thesaurus equivalence set. For example, suppose
you mark item as a stopword and also include a thesaurus equivalence between the words item and items.
This will not automatically mark the word items as a stopword; such expansions must be applied manually.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stemming and Thesaurus | Interactions with other search features266

Stop words are respected when matching thesaurus entries to user queries. For example, suppose you define
an equivalence between Muhammad Ali and Cassius Clay and also mark M as a stopword (it is not uncommon
to mark all or most single letter words as stopwords). In this case, a query for Cassius M. Clay would match
the thesaurus entry and return results for Muhammad Ali as expected.

Phrase search

A phrase search is a search query that contains one or more multi-word phrases enclosed in quotation marks.
The words inside phrase-query terms are interpreted strictly literally and are not subject to stemming or
thesaurus processing. For example, if you define a thesaurus equivalence between Jennifer Lopez and JLo,
normal (unquoted) searches for Jennifer Lopez will also return results for JLo, but a quoted phrase search for
"Jennifer Lopez" will not return the additional JLo results.

Relevance Ranking

It is typically desirable to return results for the actual user query ahead of results for stemming and/or thesaurus
transformed versions of the query. This type of result ordering is supported by the Relevance Ranking modules.
The module that is affected by thesaurus expansion and stemming is Interp. The module that is not affected
by thesaurus and stemming is Freq.

Performance impact of Stemming and Thesaurus
Stemming and thesaurus equivalences generally add little or no time to data processing and indexing, and
introduce little space overhead (beyond the space required to store the raw string forms of the equivalences).

In terms of online processing, both features will expand the set of results for typical user queries. While this
generally slows search performance (search operations require an amount of time that grows linearly with the
number of results), typically these additional results are a required part of the application behavior and cannot
be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low, but could
slow performance in cases where a large thesaurus (tens of thousands of entries) is asked to process long
search queries (dozens of terms). Typical applications exhibit neither extremely large thesauri nor very long
user search queries.

Because matching for stemming entries is performed on a single-word basis, the cost for stemming-oriented
query expansion does not grow with the size of the stemming database or with the length of the query. However,
the stemming performance of a specific language is affected by the degree to which the language is inflected.
For example, German words are much more inflected than English ones, and a query term can expand into a
much larger set of compound words of which its stem is a component.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

267Stemming and Thesaurus | Performance impact of Stemming and Thesaurus

Chapter 28

Automatic Phrasing

This section describes how to implement the Automatic Phrasing feature of the Oracle Commerce MDEX
Engine.

About Automatic Phrasing
When an application user provides individual search terms in a query, the Automatic Phrasing feature groups
those individual terms into a search phrase and returns query results for the phrase.

Automatic phrasing enables you to make searches more accurate and to eliminate irrelevant results. It does
this by disabling features that increase the number of possible matches for the search term that the user enters.
These features include thesaurus entries, stemming, and spelling correction.

For example, if automatic phrasing is enabled and a user enters "blue shoe" as search terms, MDEX looks for
the phrase "blue shoe" in your phrase dictionary. If "blue shoe" exists in your phrase dictionary, the query will
match only the exact phrase "blue shoe". It will not match any thesaurus entries, it will not perform stemming
(matching "shoes", for example), and it will not perform spelling correction. It will not match the words in the
phrase separately, or in any other order; that is, it will not match "shoe blue". Automatic phrasing also eliminates
cross-field matching.

For example, if you use the phrase "dress shoes" as your search term, the query results will not include separate
products that have "dress" and "shoes" in their individual description fields.

Note: You enable automatic phrasing through the element <property name="autoPhraseEnabled"
value="true" /> in assembler-context.xml.

The "Did You Mean?" feature will remain enabled, however, enabling you to choose alternate search phrases
if you have configured them. For example, if you have configured the phrase "blue suede shoes", you will be
prompted to select or reject this alternate search term.

This feature is available only for record search.

The Automatic Phrasing feature works by:

1. Comparing individual search terms in a query to a list of application-specific search phrases. The list of
search phrases are stored in a project’s phrase dictionary.

2. Grouping the search terms into search phrases.
3. Returning query results that are either based on the automatically-phrased query, or returning results based

on the original unphrased query along with automatically-phrased Did You Mean (DYM) alternatives.

Implementation scenarios

Step 3 above suggests the two typical implementation scenarios to choose from when using Automatic Phrasing:
• Process an automatically-phrased form of the query and suggest the original unphrased query as a DYM

alternative.

In this scenario, the Automatic Phrasing feature rewrites the original query’s search terms into a phrased
query before processing it. If you are also using DYM, you can display the unphrased alternative so the
user can opt-out of Automatic Phrasing and select their original query, if desired.

For example, an application user searches a wine catalog for the unquoted terms low tannin. The MDEX
Engine compares the search terms against the phrase dictionary, finds a phrase entry for "low tannin", and
processes the phrased query as "low tannin". The MDEX Engine returns 3 records for the phrased query
"low tannin" rather than 16 records for the user’s original unphrased query low tannin. However, the Web
application also presents a "Did you mean low tannin?" option, so the user may opt-out of Automatic
Phrasing, if desired.

• Process the original query and suggest an automatically-phrased form of the query as a DYM alternative.

In this scenario, the Automatic Phrasing feature processes the unphrased query as entered and determines
if a phrased form of the query exists. If a phrased form is available, the Web application displays an
automatically-phrased alternative as a Did You Mean option. The user can opt-in to Automatic Phrasing,
if desired.

For example, an application user searches a wine catalog for the unquoted terms low tannin. The MDEX
Engine returns 16 records for the user’s unphrased query low tannin. The Web application also presents
a Did you mean "low tannin"? option so the user may opt-in to Automatic Phrasing, if desired.

Tasks for implementation

There are two tasks to implement Automatic Phrasing:
• Add phrases to your project using Developer Studio.
• Add Presentation API code to your Web application to support either of the two implementation scenarios

described above.

Using Automatic Phrasing with Spelling Correction and DYM
You should enable the MDEX Engine for both Spelling Correction and Did You Mean.

If you want spelling corrected automatic phrases, the Spelling Correction feature ensures search terms are
corrected before the terms are automatically phrased. The DYM feature provides users the choice to opt-in or
opt-out of Automatic Phrasing.

The Oracle Commerce MDEX Engine applies spelling correction to a query before automatically phrasing the
terms. This processing order means, for example, if a user misspells the query as Napa Valle, the MDEX
Engine first spell corrects it to Napa Valley and then automatically phrases to "Napa Valley". Without Spelling
Correction enabled, Automatic Phrasing would typically not find a matching phrase in the phrase dictionary.

If you implement Automatic Phrasing to rewrite the query using an automatic phrase, then enabling DYM allows
users a way to opt-out of Automatic Phrasing if they want to. On the other hand, if you implement Automatic
Phrasing to process the original query and suggest automatically-phrased alternatives, then enabling DYM
allows users to take advantage of automatically-phrased alternatives as follow-up queries.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Automatic Phrasing | Using Automatic Phrasing with Spelling Correction and DYM270

Automatic Phrasing and query expansion

Once individual search terms in a query are grouped as a phrase, the phrase is not subject to thesaurus
expansion or stemming by the MDEX Engine.

Adding phrases to a project
This section describes the two methods of adding phrases to your project.

There are two ways to include phrases in your Developer Studio project:
• Import phrases from an XML file.
• Choose dimension names and extract phrases from the dimension values.

After you add phrases and update your instance configuration, the MDEX Engine builds the phrase dictionary.
You cannot view the phrases in Developer Studio. However, after adding phrases and saving your project,
you can examine the phrases contained in a project’s phrase dictionary by using a text editor to open the
phrases.xml project file. Directly modifying phrases.xml is not supported.

Importing phrases from an XML file
You import an XML file of phrases using the Import Phrases dialog box in Developer Studio.

The import phrases XML file must conform to phrase_import.dtd, found in the Oracle Commerce MDEX
Engine conf/dtd directory. Here is a simple example of a phrase file that conforms to phrase_import.dtd:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE PHRASE_IMPORT SYSTEM "phrase_import.dtd">
<PHRASE_IMPORT>
 <PHRASE>Napa Valley</PHRASE>
 <PHRASE>low tannin</PHRASE>
</PHRASE_IMPORT>

To import phrases from an XML file:

1. Create the phrases XML file, using the format in the example above. You can create the file in any way you
like. For example, you can type phrases into the file using an XML editor, or you can perform an XSLT
transform on a phrase file in another format, and so on.
To maintain naming consistency with other Oracle Commerce project files and their corresponding DTD
files, you may choose to name your file phrase_import.xml.

2. Open your project in Developer Studio.
3. In the Project Explorer, expand Search Configuration.
4. Double-click Automatic Phrasing to display the Automatic Phrasing editor.
5. Click the Import Phrases... button.
6. In the Import Phrases dialog box, either type the path to your phrases file or click the Browse button to

locate the file.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

271Automatic Phrasing | Adding phrases to a project

7. Click OK on the Import Phrases dialog box.
The Messages pane displays the number of phrases read in from the XML file.

8. Click OK on the Automatic Phrasing dialog box.
9. Select Save from the File menu.

The project's phrases.xml configuration file is updated with the new phrases.

Keep in mind that if you import a newer version of an import_phrases.xml file, the most recent import
overwrites phrases from any previous import. All phrases you want to import should be contained in a single
XML file.

Extracting phrases from dimension names
Using Developer Studio, you can add phrases to your project based on the dimension values of any dimension
you choose.

The MDEX Engine adds each multi-term dimension value in a selected dimension to the phrase dictionary.
Single-term dimension values are not included. For example, if you import a WineType dimension from a wine
catalog, the MDEX Engine creates a phrase entry for multi-term names such as "Pinot Noir" but not for
single-term names such as "Merlot".

To extract phrases from dimension names:

1. Open your project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Automatic Phrasing to display the Automatic Phrasing editor.
4. Select a dimension from the All dimensions panel and add it to the Selected dimensions panel by clicking

Add. The editor should look like this example:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Automatic Phrasing | Adding phrases to a project272

5. If desired, repeat step 4 to add more dimensions.
6. Click OK on the Automatic Phrasing dialog box.
7. Select Save from the File menu.

The project's phrases.xml configuration file is updated with the dimension names. Note that imported phrases
are not overwritten by this procedure.

Adding search characters
If you have phrases that include punctuation, add those punctuation marks as search characters.

Adding the punctuation marks ensures that the MDEX Engine includes the punctuation when tokenizing the
query, and therefore the MDEX Engine can match search terms with punctuation to phrases with punctuation.

For example, suppose you add phrases based on a Winery dimension, and consequently the Winery name
"Anderson & Brothers" exists in your phrase dictionary. You should create a search character for the ampersand
(&).

Presentation API development for Automatic Phrasing
The ENEQuery class has calls that handle Automatic Phrasing.

The Automatic Phrasing feature requires that the MDEX Engine compute whether an automatic phrase is
available for a particular query’s search terms.

The MDEX Engine computes the available phrases when setting the Java
setNavERecSearchComputeAlternativePhrasings() method and the .NET
NavERecSearchComputeAlternativePhrasings property to true in the ENEQuery object.

You can then optionally submit the phrased query to the MDEX Engine, instead of the user’s original query,
by calling the Java setNavERecSearchRewriteQueryToAnAlternativePhrasing() method or the
.NET NavERecSearchRewriteQueryToAnAlternativePhrasing property with a value of true.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

273Automatic Phrasing | Presentation API development for Automatic Phrasing

You can also call these methods by sending the necessary URL query parameters to the MDEX Engine via
the URLENEQuery class, as shown in the next section.

When the MDEX Engine returns query results, your Web application displays whether the results were spell
corrected, automatically phrased, or have DYM alternatives. Each of these Web application tasks are described
in the sections below.

URL query parameters for Automatic Phrasing
Automatic Phrasing has two associated URL query parameters: Ntpc and Ntpr.

Both Ntpc and Ntpr are Boolean parameters that are enabled by setting to 1 and disabled by setting to 0.

The Ntpc parameter

Adding the Ntpc=1 parameter instructs the MDEX Engine to compute phrasing alternatives for a query. Using
this parameter alone, the MDEX Engine processes the original query and not any of the automatic phrasings
computed by the MDEX Engine.

Here is an example URL that processes a user’s query napa valleywithout phrasing and provides an alternative
automatic phrasing, Did you mean "napa valley"?:
<application>?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1

If you omit Ntpc=1 or set Ntpc=0, then automatic phrasing is disabled.

The Ntpr parameter

The Ntpr parameter instructs the MDEX Engine to rewrite the query using the available automatic phrase
computed by Ntpc. The Ntpr parameter depends on the presence of Ntpc=1.

Here is an example URL that automatically phrases the user’s query napa valley to "napa valley" and processes
the phrased query. The Web application may also provide an unphrased alternative, so users can submit their
original unphrased query (for example, "Did you mean napa valley?"):
<application>?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1&Ntpr=1

If you omit Ntpr=1 or set Ntpr=0, then the query is not re-written using an automatic phrasing alternative.
You can omit Ntpr=1 and still use the Ntpc=1 parameter to compute an available alternative for display as
a DYM option.

Displaying spell-corrected and auto-phrased messages
To display messages for spell-corrected and automatically-phrased queries, your Web application code should
be similar to these examples.

Java example
// Get the Map of lists of ESearchReport objects
Map recSrchRpts = nav.getESearchReportsComplete();
if (recSrchRpts.size() > 0) {
 // Get the user's search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReports for the search key
 List srchRptList = (List)recSrchRpts.get(searchKey);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Automatic Phrasing | Presentation API development for Automatic Phrasing274

 // for each report, display appropriate info
 for (Iterator i = srchRptList.Iterator(); i.hasNext();) {
 ESearchReport srchRpt = (ESearchReport)i.next();

 // Get the List of auto-correct values
 List autoCorrectList = searchReport.getAutoSuggestions();

 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.size() > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug =
 (ESearchAutoSuggestion)autoCorrectList.get(0);

 // Display appropriate autocorrect message
 if (autoSug.didSuggestionIncludeSpellingCorrection() &&
 !autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected to <%= autoSug.getTerms() %> <%
 }
 else if(autoSug.didSuggestionIncludeSpellingCorrection() &&
 autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected and then phrased
 to <%= autoSug.getTerms() %> <%
 }
 else if(!autoSug.didSuggestionIncludeSpellingCorrection()&&
 autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Phrased to <%= autoSug.getTerms() %> <%
 }
 }
 }
 }
 }
}

.NET example
// Get the Dictionary of lists of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReportsComplete;

// Get the user's search key
String searchKey = Request.QueryString["Ntk"];

if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the list of Search Report objects
 IList srchReportList = (IList)recSrchRpts[searchKey];

 // for each report, display appropriate info
 foreach (object ob in srchReportList) {
 ESearchReport searchReport = (ESearchReport)ob;

 // Get the List of auto correct objects
 IList autoCorrectList = searchReport.AutoSuggestions;

 // If the list contains auto correct objects,
 // print the value of the first corrected term
 if (autoCorrectList.Count > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug =
 (ESearchAutoSuggestion)autoCorrectList[0];

Oracle Commerce Guided Search MDEX Engine Developer's Guide

275Automatic Phrasing | Presentation API development for Automatic Phrasing

 // Display appropriate autocorrect message
 if (autoSug.GetDidSuggestionIncludeSpellingCorrection() &&
 !autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected to <%= autoSug %> <%
 else if (autoSug.GetDidSuggestionIncludeSpellingCorrection() &&
 autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected and phrased to
 <%= autoSug.getTerms() %> <%
 }
 else if (!autoSug.GetDidSuggestionIncludeSpellingCorrection()&&
 autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Phrased to <%= autoSug.getTerms() %> <%
 }
 }
 }
}

Displaying DYM alternatives
To create a link for each Did You Mean alternative, your Web application code should look similar to these
examples.

Note that it is important to display all the DYM alternatives (rather than just the first DYM alternative) because
the user’s desired query may not be the first alternative in the list of returned DYM options.

Java example
// Get the Map of ESearchReport objects
Map dymRecSrchRpts = nav.getESearchReports();
 if (dymRecSrchRpts.size() > 0) {
 // Get the user's search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (dymRecSrchRpts.containsKey(searchKey)) {
 // Get the List of ERecSearchReports for the user's search key
 List searchReportList = (List)dymRecSrchRpts.get(searchKey);

 // for each report, get the list of Did You Mean objects
 for (Iterator i = searchReportList.Iterator(); i.hasNext();) {
 ESearchReport searchReport = (ESearchReport)i.next();

 // Get the List of Did You Mean objects
 List dymList = searchReport.getDYMSuggestions();
 // Get all Did You Mean objects to display each available
 // DYM alternative.
 for (Iterator j = dymList.Iterator(); j.hasNext();) {
 ESearchDYMSuggestion dymSug =
 (ESearchDYMSuggestion)j.next();
 String sug_val = dymSug.getTerms();
 String sug_num =
 String.valueOf(dymSug.getNumMatchingResults());
 String sug_sid = (String)request.getAttribute("sid");
 if (sug_val != null) {
 ...
 // Adjust URL parameters to create new search query
 UrlGen urlg =
 new UrlGen(request.getQueryString(), "UTF-8");
 urlg.removeParam("Ntt");

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Automatic Phrasing | Presentation API development for Automatic Phrasing276

 urlg.addParam("Ntt", sug_val);
 urlg.removeParam("Ntpc");
 urlg.addParam("Ntpc", "1");
 urlg.removeParam("Ntpr");
 urlg.addParam("Ntpr", "0");
 String url = CONTROLLER+"?"+urlg;
 // Display Did You Mean link for each DYM alternative
 %>Did You Mean <a href="<%=url%>">
 <%= sug_val %><%
 }
 }
 }
 }
 }
 }

.NET example
// Get the Dictionary of ESearchReport objects
IDictionary dymRecSrchRpts = nav.ESearchReports;

// Get the user's search key
String dymSearchKey = Request.QueryString["Ntk"];
if (dymSearchKey != null) {
 if (dymRecSrchRpts.Contains(dymSearchKey)) {
 // Get the list of Search Report objects
 IList srchReportList = (IList)recSrchRpts[searchKey];

 // for each report, display all its DYM suggestions
 foreach (object srObj in srchReportList) {
 // Get the List of Did You Mean objects
 IList dymList = ((ESearchReport)srObj).DYMSuggestions;
 foreach (object dymObj in dymList) {
 ESearchDYMSuggestion dymSug = (ESearchDYMSuggestion)dymObj;
 String sug_val = dymSug.Terms;
 String sug_num = dymSug.NumMatchingResults.ToString();
 // Adjust URL parameters to create new search query
 UrlGen urlg =
 new UrlGen(Request.Url.Query.Substring(1),"UTF-8");
 urlg.RemoveParam("Ntt");
 urlg.AddParam("Ntt", sug_val);
 urlg.RemoveParam("Ntpc");
 urlg.AddParam("Ntpc", "1");
 urlg.RemoveParam("Ntpr");
 urlg.AddParam("Ntpr", "0");
 urlg.AddParam("sid",Request.QueryString["sid"]);
 String url = Application["CONTROLLER"].ToString()+"?"+urlg;
 // Display Did You Mean message and link
 // for each DYM option
 %>Did You Mean <a href="<%= url %>">
 <%= sug_val %>?<%
 }
 }
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

277Automatic Phrasing | Presentation API development for Automatic Phrasing

Tips and troubleshooting for Automatic Phrasing
The following sections provide tips and troubleshooting guidance about using the Automatic Phrasing feature.

Examining how a phrased query was processed

If automatically-phrased query results are not what you expected, you can run the dgraph with the
--wordinterp flag to show how the MDEX Engine processed the query.

Single-word phrases

You can include a single word in your phrases_import.xml file and treat the word as a phrase in your
project. This may be useful if you do not want stemming or thesaurus expansion applied to single-word query
terms. You cannot include single word phrases by extracting them from dimension values using the Phrases
dialog box. They have to be imported from your phrases_import.xml file.

Extending user phrases

The MDEX Engine does not extend phrases a user provides to match a phrase in the phrase dictionary. For
example, if a user provides the query A "BC" D and "BCD" is in the phrase dictionary, the MDEX Engine does
not extend the user’s original phrasing of "BC" to "BCD".

Term order is significant in phrases

Phrases are matched only if search terms are provided in the same exact order and with the same exact terms
as the phrase in the phrase dictionary. For example, if "weekend bag" is in the phrase dictionary, the MDEX
Engine does not automatically phrase the search terms weekend getaway bag or bag, weekend to match
weekend bag.

Possible dead ends

If an application automatically phrases search terms, it is possible a query may not produce results when it
seemingly should have. Specifically, one way in which a dead-end query can occur is when a search phrase
is displayed as a DYM link with results and navigation state filtering excludes the results.

For example, suppose a car sales application is set up to process a user’s original query and display any
automatic phrase alternatives as DYM options. Further suppose a user navigates toCars > Less than $15,000
and then provides the search terms luxury package. The search terms match the phrase "luxury package" in
the phrase dictionary.

The user receives query results for Cars > Less than $15,000 and results that matched some occurrences
of the terms luxury and package. However, if the user clicks the Did you mean "luxury package"? link, then no
results are available because the navigation state Cars > Less than $15,000 excludes them.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Automatic Phrasing | Tips and troubleshooting for Automatic Phrasing278

Chapter 29

Stop Words

This section describes how to implement the Stop Words feature of the Oracle Commerce MDEX Engine.

About stop words
Stop words are words that are ignored by the Oracle Commerce MDEX Engine when the words are part of a
keyword search. Typically, common words (like "the", "a", "as", etc.) are included in a stop word list and also
terms that are very common in your data set.

For example, if your data set consists of lists of books, you might want to add the word "book" itself to the stop
word list, because a search on that word would return an impractically large set of records. In addition, a stop
word list can include the extraneous words contained in a typical question, allowing the query to focus on what
the application user is really searching for.

Specifying stop words

There are two ways to specify stop words. You specify stop words manually in Developer Studio, and you can
include one of the sample lists of stop words that are installed with the MDEX Engine.

Sample stop word lists

There is one sample list per language that the MDEX Engine supports. The sample lists are installed into
MDEX\<version>\olt\lang\stopword_samples directory.

The MDEX Engine provides stop word files for the following languages: Catalan, Chinese (Simplified), Chinese
(Traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hungarian, Italian, Japanese, Korean,
Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Thai, and Turkish. The language is identified in
the file name by the <language code> value in stop_words.<language code>.xml.

Notes:

• Stop words are counted in any search mode that calculates results based on number of matching terms.
However, the Oracle Commerce MDEX Engine reduces the minimum term match and maximum word omit
requirement by the number of stop words contained in the query.

• Did You Mean can in some cases correct a word to one on the stop words list.
• The --diacritic-folding flag removes accent characters from stop words and prevents accented

stop words from being returned in query results. For example, if für is a stop word, and you specify the
--diacritic-folding flag, then that flag treats the stop word as fur. Any queries that search for fur
will not return results.

Adding a sample list of stop words to an application
The MDEX Engine installation includes sample lists of stop words for each language that the MDEX Engine
supports. If desired, you can incorporate one sample list of stop words into your application. The sample list
can provide either the full set of stop words for your application, or it can provide a starting point that you add
to using Developer Studio.

If you are using Developer Studio to create stop words, be sure to copy the sample list into your project before
manually adding any stop words. The copy operation replaces the stop words created using Developer Studio.

To add a sample list of stop words to an application:

1. Locate the olt\lang\stopword_samples directory in the MDEX Engine installation directory.
For example, in a default Windows installation, this is
C:\Endeca\MDEX\<version>\olt\lang\stopword_samples.

2. In the stopword_samples directory, locate a sample file for the language of the records in your application.
3. Copy the sample file to the <app dir>\config\pipeline directory.
4. Rename the file from stop_words.<language code>.xml to <app prefix>.stop_words.xml

This step replaces the old stop words file.

5. Optionally, you can manually add stop words to the sample list using Developer Studio. To do so:
a) Start Developer Studio.
b) Open the Oracle Commerce project in the <app dir>\config\pipeline directory.
c) Double click the Stop Words editor.

(Developer Studio loads the sample list of stop words and displays them in the Stop Words editor.)
d) Create additional stop words as necessary.

6. When you are adding the sample list of stop words, save and closet the project, then run a baseline update
to process them using Dgidx.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Stop Words | Adding a sample list of stop words to an application280

Chapter 30

Relevance Ranking

This section describes the tasks involved in implementing the Relevance Ranking feature of the Oracle
Commerce MDEX Engine.

About the Relevance Ranking feature
Relevance Ranking controls the order in which search results are displayed to the end user of an Oracle
Commerce application.

Application users are often unwilling to page through large result sets. For this reason, you need to be able to
display the more important search results before the less important results. The Relevance Ranking feature
enables you to do this.

Relevance ranking can control the order in which results from both record search and dimension search queries
are displayed. However, while relevance ranking for record search can be configured with Developer Studio,
relevance ranking for dimension search cannot. (You assign relevance ranking for dimension search through
the RELRANK_STRATEGY attribute of dimsearch_config.xml, or at query time by specifying the Dx and
Dk parameters of the UrlENEQuery.)

The importance of a search result is generally an application-specific concept. The Relevance Ranking feature
provides a flexible, configurable set of result ranking modules. These modules can be used in combinations
(called ranking strategies) to produce a wide range of relevance ranking effects. Because Relevance Ranking
is a complex and powerful feature, Oracle Commerce provides recommended strategies that you can use as
a point of departure for further development. For details, see Recommended strategies on page 301.

Relevance Ranking modules
Relevance Ranking modules are the building blocks from which you build the relevance ranking strategies that
you apply to your search interfaces.

This section describes the available set of Relevance Ranking modules and their scoring behaviors.

Note: Some modules are listed in the Developer Studio interface by their abbreviated spellings, such
as "Interp" for Interpreted.

Exact
The Exact module groups results into three strata based on how well they match the query string:

• The highest stratum contains results whose complete text matches the user’s query exactly.
• The middle stratum contains results that contain the user’s query as a subphrase.
• The lowest stratum contains other hits (such as normal conjunctive matches). Any match that would not

be a match without query expansion lands in the lowest stratum. Also in this stratum are records that do
not contain relevance ranking terms (such as those specified in the Nrr query parameter).

Note: The Exact module is computationally expensive, especially on large text fields. It is intended for
use only on small text fields (such as dimension values or small property values like part IDs). This
module should not be used with large or offline documents (such as FILE or ENCODED_FILE properties).
Use of this module in these cases will result in very poor performance and/or application failures due to
request timeouts. The Phrase module, with and without approximation turned on, does similar but less
sophisticated ranking that can be used as a higher performance substitute.

Field
The Field module ranks documents based on the search interface field with the highest priority in which it
matched.

Only the best field in which a match occurs is considered. The Field module is often used in relevance ranking
strategies for catalog applications, because the category or product name is typically a good match. Field
assigns a score to each result based on the static rank of the dimension or property member or members of
the search interface that caused the document to match the query. In Developer Studio, static field ranks are
assigned based on the order in which members of a search interface are listed in the Search Interfaces view.
The first (left-most) member has the highest rank.

By default, matches caused by cross-field matching are assigned a score of zero. The score for cross-field
matches can be set explicitly in Developer Studio by moving the <<CROSS_FIELD>> indexator up or down in
the Selected Members list of the Search Interface editor. The <<CROSS_FIELD>> indexator is available only
for search interfaces that have the Field module and are configured to support cross-field matches. All non-zero
ranks must be non-equal and only their order matters.

For example, a search interface might contain both Title and DocumentContent properties, where hits on Title
are considered more important than hits on DocumentContent (which in turn are considered more important
than <<CROSS_FIELD>> matches). Such a ranking is implemented by assigning the highest rank to Title, the
next highest rank to DocumentContent, and setting the <<CROSS_FIELD>> indexator at the bottom of the
Selected Members list in the Search Interface editor.

Note: The Field module is only valid for record search operations. This module assigns a score of zero
to all results for other types of search requests. In addition, Field treats all matches the same, whether
or not they are due to query expansion.

First
Designed primarily for use with unstructured data, the First module ranks documents by how close the query
terms are to the beginning of the document.

The First module groups its results into variably-sized strata. The strata are not the same size, because while
the first word is probably more relevant than the tenth word, the 301st is probably not so much more relevant

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking modules282

than the 310th word. This module takes advantage of the fact that the closer something is to the beginning of
a document, the more likely it is to be relevant.

The First module works as follows:
• When the query has a single term, First’s behavior is straight-forward: it retrieves the first absolute position

of the word in the document, then calculates which stratum contains that position. The score for this
document is based upon that stratum; earlier strata are better than later strata.

• When the query has multiple terms, First behaves as follows: The first absolute position for each of the
query terms is determined, and then the median position of these positions is calculated. This median is
treated as the position of this query in the document and can be used with stratification as described in the
single word case.

• With query expansion (using stemming, spelling correction, or the thesaurus), the First module treats
expanded terms as if they occurred in the source query. For example, the phrase glucose intolerencewould
be corrected to glucose intolerance (with intolerence spell-corrected to intolerance). First then continues
as it does in the non-expansion case. The first position of each term is computed and the median of these
is taken.

• In a partially matched query, where only some of the query terms cause a document to match, First behaves
as if the intersection of terms that occur in the document and terms that occur in the original query were
the entire query. For example, if the query cat bird dog is partially matched to a document on the terms
cat and bird, then the document is scored as if the query were cat bird. If no terms match, then the document
is scored in the lowest strata.

• The First relevance ranking module is supported for wildcard queries.

Note: The First module does not work with Boolean searches and cross-field matching. It assigns all
such matches a score of zero.

Frequency
The Frequency (Freq) module provides result scoring based on the frequency (number of occurrences) of the
user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the Freq module for a result record is the sum of the frequencies of all user search
terms in all fields (properties or dimensions in the search interface in question) that match a sufficient number
of terms. The number of terms depends on the match mode, such as all terms in a MatchAll query, a sufficient
number of terms in a MatchPartial query, and so on. Cross-field match records are assigned a score of zero.
Total scores are capped at 1024; in other words, if the sum of frequencies of the user search terms in all
matching fields is greater than or equal to 1024, the record gets a score of 1024 from the Freq module.

For example, suppose we have the following record:
{Title="test record", Abstract="this is a test", Text="one test this is"}

A MatchAll search for test this would cause Freq to assign a score of 4, since this and test occur a total of 4
times in the fields that match all search terms (Abstract and Text, in this case). The number of phrase
occurrences (just one in the Text field) doesn't matter, only the sum of the individual word occurrences. Also
note that the occurrence of test in the Title field does not contribute to the score, since that field did not match
all of the terms.

A MatchAll search for one record would hit this record, assuming that cross field matching was enabled. But
the record would get a score of zero from Freq, because no single field matches all of the terms. Freq ignores
matches due to query expansion (that is, such matches are given a rank of 0).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

283Relevance Ranking | Relevance Ranking modules

Glom
The Glom module ranks single-field matches ahead of cross-field matches and also ahead of non-matches
(records that do not contain the search term).

This module serves as a useful tie-breaker function in combination with the Maximum Field module. It is only
useful in conjunction with record search operations. If you want a strategy that ranks single-field matches first,
cross-field matches second, and no matches third, then use the Glom module followed by the Nterms (Number
of Terms) module.

Note: Glom treats all matches the same, whether or not they are due to query expansion.

Glom interaction with search modes

The Glom module considers a single-field match to be one in which a single field has enough terms to satisfy
the conditions of the match mode. For this reason, in MatchAny search mode, cross-field matches are impossible,
because a single term is sufficient to create a match. Every match is considered to be a single-field match,
even if there were several search terms.

For MatchPartial search mode, if the required number of matches is two, the Glom module considers a record
to be a single-field match if it has at least one field that contains two or more or the search terms. You cannot
rank results based on how many terms match within a single field.

Interpreted
Interpreted (Interp) is a general-purpose module that assigns a score to each result record based on the query
processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute matching, spelling correction, thesaurus,
and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches. For more information, see "Using Search
Modes".

2. Within the above strata, all single-field matches are ranked ahead of all cross-field matches. For more
information, see "About Search Interfaces".

3. Within the above strata, all non-spelling-corrected matches are ranked above all spelling-corrected matches.
See the topic "Using Spelling Correction and Did You Mean" for more information.

4. Within the above strata, all thesaurus matches are ranked below all non-thesaurus matches. See the topic
"Using Stemming and Thesaurus" for more information.

5. Within the above strata, all stemming matches are ranked below all non-stemming matches. See "Using
Stemming and Thesaurus" for more information.

Note: Because the Interpreted module comprises the matching techniques of the Spell, Glom, Stem,
and Thesaurus modules, there is no need to add them to your strategy individually as well if you are
using Interpreted.

Maximum Field
The Maximum Field (Maxfield) module behaves identically to the Field module, except in how it scores cross-field
matches.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking modules284

Unlike Field, which assigns a static score to cross-field matches, Maximum Field selects the score of the
highest-ranked field that contributed to the match.

Note the following:
• Because Maximum Field defines the score for cross-field matches dynamically, it does not make use of

the <<CROSS_FIELD>> indexator set in the Search Interface editor.
• Maximum Field is only valid for record search operations. This module assigns a score of zero to all results

for other types of search requests.
• Maximum Field treats all matches the same, whether or not they are due to query expansion.

Number of Fields
The Number of Fields (Numfields) module ranks results based on the number of fields in the associated search
interface in which a match occurs.

Note that we are counting whole-field rather than cross-field matches. Therefore, a result that matches two
fields matches each field completely, while a cross-field match typically does not match any field completely.

Note: Numfields treats all matches the same, whether or not they are due to query expansion. The
Numfields module is only useful in conjunction with record search operations.

Number of Terms
The Number of Terms (or Nterms) module ranks matches according to how many query terms they match.

For example, in a three-word query, results that match all three words will be ranked above results that match
only two, which will be ranked above results that match only one, which will be ranked above results that had
no matches.

Note the following:
• The Nterms module is only applicable to search modes where results can vary in how many query terms

they match. These include MatchAny, MatchPartial, MatchAllAny, and MatchAllPartial.
• Nterms treats all matches the same, whether or not they are due to query expansion.

Phrase
The Phrase module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms scattered
throughout the text.

Records that have the phrase are ranked higher than records which do not contain the phrase.

Configuring the Phrase module
The Phrase module has a variety of options that you use to customize its behavior.

The Phrase options are:
• Rank based on length of subphrases
• Use approximate subphrase/phrase matching
• Apply spell correction, thesaurus, and stemming

Oracle Commerce Guided Search MDEX Engine Developer's Guide

285Relevance Ranking | Relevance Ranking modules

When you add the Phrase module in the Relevance Ranking Modules editor, you are presented with the
following editor that allows you to set these options.

Ranking based on length of subphrases
When you configure the Phrase module, you have the option of enabling subphrasing.

Subphrasing ranks results based on the length of their subphrase matches. In other words, results that match
three terms are considered more relevant than results that match two terms, and so on.

A subphrase is defined as a contiguous subset of the query terms the user entered, in the order that he or she
entered them. For example, the query "fax cover sheets" contains the subphrases "fax", "cover", "sheets", "fax
cover", "cover sheets", and "fax cover sheets", but not "fax sheets".

Content contained inside nested quotes in a phrase is treated as one term. For example, consider the following
phrase:
the question is "to be or not to be"

The quoted text ("to be or not to be") is treated as one query term, so this example consists of four query terms
even though it has a total of nine words.

When subphrasing is not enabled, results are ranked into two strata: those that matched the entire phrase and
those that did not.

Using approximate matching
Approximate matching provides higher-performance matching, as compared to the standard Phrase module,
with somewhat less exact results.

With approximate matching enabled, the Phrase module looks at a limited number of positions in each result
that a phrase match could possibly exist, rather than all the positions. Only this limited number of possible
occurrences is considered, regardless of whether there are later occurrences that are better, more relevant
matches.

The approximate setting is appropriate in cases where the runtime performance of the standard Phrase module
is inadequate because of large result contents and/or high site load.

Applying spelling correction, thesaurus, and stemming
Applying spelling correction, thesaurus, and stemming adjustments to the original phrase is generically known
as query expansion.

With query expansion enabled, the Phrase module ranks results that match a phrase’s expanded forms in the
same stratum as results that match the original phrase.

Consider the following example:
• A thesaurus entry exists that expands "US" to "United States".
• The user queries for "US government".

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking modules286

The query "US government" is expanded to "United States government" for matching purposes, but the Phrase
module gives a score of two to any results matching "United States government" because the original,
unexpanded version of the query, "US government", only had two terms.

Summary of Phrase option interactions
The three configuration settings for the Phrase module can be used in a variety of combinations for different
effects.

The following matrix describes the behavior of each combination.

DescriptionExpansionApproximateSubphrase

Default. Ranks results into two strata: those that match the user’s
query as a whole phrase, and those that do not.

OffOffOff

Ranks results into two strata: those that match the original, or an
extended version, of the query as a whole phrase, and those that
do not.

OnOffOff

Ranks results into two strata: those that match the original query as
a whole phrase, and those that do not. Look only at the first possible
phrase match within each record.

OffOnOff

Ranks results into two strata: those that match the original, or an
extended version, of the query as a whole phrase, and those that

OnOnOff

do not. Look only at the first possible phrase match within each
record.

Ranks results into N strata where N equals the length of the query
and each result’s score equals the length of its matched subphrase.

OffOffOn

Ranks results into N strata where N equals the length of the query
and each result’s score equals the length of its matched subphrase.

OnOffOn

Extend subphrases to facilitate matching but rank based on the
length of the original subphrase (before extension).

Note: This combination can have a negative performance
impact on query throughput.

Ranks results into N strata where N equals the length of the query
and each result’s score equals the length of its matched subphrase.
Look only at the first possible phrase match within each record.

OffOnOn

Ranks results into N strata where N equals the length of the query
and each result’s score equals the length of its matched subphrase.

OnOnOn

Expand the query to facilitate matching but rank based on the length
of the original subphrase (before extension). Look only at the first
possible phrase match within each record.

Note: You should only use one Phrase module in any given search interface and set all of your options
in it.

Effect of search modes on Phrase behavior
Oracle Commerce provides a variety of search modes to facilitate matching during search (MatchAny, MatchAll,
MatchPartial, and so on).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

287Relevance Ranking | Relevance Ranking modules

These modes only determine which results match a user’s query, they have no effect on how the results are
ranked after the matches have been found. Therefore, the Phrase module works as described in this section,
regardless of search mode. The one exception to this rule is MatchBoolean. Phrase, like the other relevance
ranking modules, is never applied to the results of MatchBoolean queries.

Results with multiple matches
If a single result has multiple subphrase matches, either within the same field or in several different fields, the
result is slotted into a stratum based on the length of the longest subphrase match.

Stop words and Phrase behavior
When using the Phrase module, stop words are always treated like non-stop word terms and stratified
accordingly.

For example, the query “raining cats and dogs” will result in a rank of two for a result containing “fat cats and
hungry dogs” and a rank of three for a result containing “fat cats and dogs” (this example assumes subphrase
is enabled).

Cross-field matches and Phrase behavior
An entire phrase, or subphrase, must appear in a single field in order for it to be considered a match.

(In other words, matches created by concatenating fields are not considered by the Phrase module.)

Treatment of wildcards with the Phrase module
The Phrase module translates each wildcard in a query into a generic placeholder for a single term.

For example, the query “sparkling w* wine” becomes “sparkling * wine” during phrase relevance ranking, where
“*” indicates a single term. This generic wildcard replacement causes slightly different behavior depending on
whether subphrasing is enabled.

When subphrasing is not enabled, all results that match the generic version of the wildcard phrase exactly are
still placed into the first stratum. It is important, however, to understand what constitutes a matching result from
the Phrase module’s point of view.

Consider the search query “sparkling w* wine” with the MatchAny mode enabled. In MatchAny mode, search
results only need to contain one of the requested terms to be valid, so a list of search results for this query
could contain phrases that look like this:
sparkling white wine
sparkling refreshing wine
sparkling wet wine
sparkling soda
wine cooler

When phrase relevance ranking is applied to these search results, the Phrase module looks for matches to
“sparkling * wine” not “sparkling w* wine.” Therefore, there are three results—”sparkling white wine,” “sparkling
refreshing wine,” and “sparkling wet wine”—that are considered phrase matches for the purposes of ranking.
These results are placed in the first stratum. The other two results are placed in the second stratum.

When subphrasing is enabled, the behavior becomes a bit more complex. Again, we have to remember that
wildcards become generic placeholders and match any single term in a result. This means that any subphrase
that is adjacent to a wildcard will, by definition, match at least one additional term (the wildcard). Because of

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking modules288

this behavior, subphrases break down differently. The subphrases for “cold sparkling w* wine” break down
into the following (note that w* changes to *):
cold
sparkling *
* wine
cold sparkling *
sparkling * wine
cold sparkling * wine

Notice that the subphrases “sparkling,” “wine,” and “cold sparkling” are not included in this list. Because these
subphrases are adjacent to the wildcard, we know that the subphrases will match at least one additional term.
Therefore, these subphrases are subsumed by the “sparkling *”, “* wine”, and “cold sparkling *” subphrases.

Like regular subphrase, stratification is based on the number of terms in the subphrase, and the wildcard
placeholders are counted toward the length of the subphrase. To continue the example above, results that
contain “cold” get a score of one, results that contain “sparkling *” get a score of two, and so on. Again, this is
the case even if the matching result phrases are different, for example, “sparkling white” and “sparkling soda.”

Finally, it is important to note that, while the wildcard can be replaced by any term, a term must still exist. In
other words, search results that contain the phrase “sparkling wine” are not acceptable matches for the phrase
“sparkling * wine” because there is no term to substitute for the wildcard. Conversely, the phrase “sparkling
cold white wine” is also not a match because each wildcard can be replaced by one, and only one, term. Even
when wildcards are present, results must contain the correct number of terms, in the correct order, for them
to be considered phrase matches by the Phrase module.

Notes about the Phrase module
Keep the following points in mind when using the Phrase module.

• If a query contains only one word, then that word constitutes the entire phrase and all of the matching
results will be put into one stratum (score = 1). However, the module can rank the results into two strata:
one for records that contain the phrase and a lower-ranking stratum for records that do not contain the
phrase.

• Because of the way hyphenated words are positionally indexed, Oracle recommends that you enable
subphrase if your results contain hyphenated words.

Proximity
Designed primarily for use with unstructured data, the Proximity module ranks how close the query terms are
to each other in a document by counting the number of intervening words.

Like the First module, this module groups its results into variable sized strata, because the difference in
significance of an interval of one word and one of two words is usually greater than the difference in significance
of an interval of 21 words and 22. If no terms match, the document is placed in the lowest stratum.

Single words and phrases get assigned to the best stratum because there are no intervening words. When
the query has multiple terms, Proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.
2. The smallest range that includes at least one instance of each of the query terms is calculated. This range’s

length is given in number of words. The score for each document is the strata that contains the difference
of the range’s length and the number of terms in the query; smaller differences are better than larger
differences.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

289Relevance Ranking | Relevance Ranking modules

Under query expansion (that is, stemming, spelling correction, and the thesaurus), the expanded terms are
treated as if they were in the query, so the proximity metric is computed using the locations of the expanded
terms in the matching document.

For example, if a user searches for big cats and a document contains the sentence, "Big Bird likes his cat"
(stemming takes cats to cat), then the proximity metric is computed just as if the sentence were, "Big Bird likes
his cats."

Proximity scores partially matched queries as if the query only contained the matching terms. For example, if
a user searches for cat dog fish and a document is partially matched that contains only cat and fish, then the
document is scored as if the query cat fish had been entered.

Note: Proximity does not work with Boolean searches, cross-field matching, or wildcard search. It assigns
all such matches a score of zero.

Spell
The Spell module ranks spelling-corrected matches below other kinds of matches.

Spell assigns a rank of 0 to matches from spelling correction, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Static
The Static module assigns a static or constant data-specific value to each search result, depending on the
type of search operation performed and depending on optional parameters that can be passed to the module.

For record search operations, the first parameter to the module specifies a property, which will define the sort
order assigned by the module. The second parameter can be specified as ascending or descending to indicate
the sort order to use for the specified property.

For example, using the module Static(Availability,descending)would sort result records in descending
order with respect to their assignments from the Availability property. Using the module
Static(Title,ascending)would sort result records in ascending order by their Title property assignments.

In a catalog application, setting the static module by Price, descending leads to more expensive products being
displayed first.

For dimension search, the first parameter can be specified as nbins, depth, or rank:
• Specifying nbins causes the static module to sort result dimension values by the number of associated

records in the full data set.
• Specifying depth causes the static module to sort result dimension values by their depth in the dimension

hierarchy.
• Specifying rank causes dimension values to be sorted by the ranks assigned to them for the application.

Stratify
The Stratify module is used to boost or bury records in the result set.

The Stratify module takes one or more EQL (Oracle Commerce Query Language) expressions and groups
results into strata, based on how well they match the record search (with the Ntx parameter). Records are
placed in the stratum associated with the first EQL expression they match. The first stratum is the highest

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking modules290

ranked, the next stratum is next-highest ranked, and so forth. If an asterisk is specified instead of an EQL
expression, unmatched records are placed in the corresponding stratum.

The Stratify module can also be used for record boost and bury sort operations. In this usage, you must specify
Endeca.stratify as the name for the Ns parameter.

The Stratify module is the basic component of the record boost and bury feature.

Stem
The Stem module ranks matches due to stemming below other kinds of matches.

Stem assigns a rank of 0 to matches from stemming, and a rank of 1 from all other sources. That is, it ignores
all other sorts of query expansion.

Thesaurus
The Thesaurus module ranks matches due to thesaurus entries below other sorts of matches.

Thesaurus assigns a rank of 0 to matches from the thesaurus, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Weighted Frequency
Like the Frequency module, the Weighted Frequency (Wfreq) module scores results based on the frequency
of user query terms in the result.

Additionally, the Weighted Frequency module weights the individual query term frequencies for each result by
the information content (overall frequency in the complete data set) of each query term. Less frequent query
terms (that is, terms that would result in fewer search results) are weighted more heavily than more frequently
occurring terms.

Note: The Weighted Frequency module ignores matches due to query expansion (that is, such matches
are given a rank of 0).

Relevance Ranking strategies
Relevance Ranking modules define the primitive search result ordering functions provided by the MDEX Engine.
These primitive modules can be combined to compose more complex ordering behaviors called Relevance
Ranking strategies.

You may also define and apply a strategy that consists of a single module, rather than a group of modules.

A Relevance Ranking strategy is essentially an ordered list of relevance ranking modules and (in a URL
relevance ranking string) references to other relevance ranking strategies. The scores assigned by a strategy
are composed from the scores assigned by its constituent modules. This composite score is constructed so
that records are first ordered by the first module. After that, ties are broken by the subsequent modules in
order. If any ties remain after all modules have run, the ties are resolved by the default sort. If after that any
ties still remain, the order of records is determined by the system.

Relevance Ranking strategies are used in two main contexts in the MDEX Engine:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

291Relevance Ranking | Relevance Ranking strategies

• In Developer Studio, you apply Relevance Ranking to a search interface via the Search Interface editor
and the Relevance Ranking Modules editor, both of which are documented in Developer Studio online
help.

• At the MDEX Engine query level, Relevance Ranking strategies can be selected to override the default
specified for the selected search interface. This allows Relevance Ranking behavior to be fully customized
on a per-query basis. For details, see the "URL query parameters for relevance ranking" topic.

Implementing relevance ranking
Developer Studio allows you to create and control relevance ranking for record search.

You can apply record search relevance ranking as you are creating a search interface, or afterwards. A search
interface is a named group of at least one dimension and/or property. You create search interfaces so you can
apply behavior like relevance ranking across a group. For more information about search interfaces, see "About
Search Interfaces".

Adding a Static module
Keep the following in mind when you add a Static module to the ranking strategy.

The Static module is the only one that you can add multiple times. The interface prevents the addition of multiple
instances of the other modules. In addition, adding a Static module launches the Edit Static Relevance Rank
Module editor. Use this editor to add the required parameters (dimension or property name and sort order).

Ranking order for Field and Maximum Field modules
The Field and Maximum Field modules ranks results based on which member property or dimension of the
selected search interface caused the match.

Higher relevance-ranked values correspond to greater importance. This behavior means that the Field and
Maximum Field modules will score results caused by higher-ranked properties and dimensions ahead of those
caused by lower-ranked properties and dimensions.

To change the relevance ranking behavior for these modules, you would move the search interface members
to the appropriate position in the Search Interface editor’s Selected Members list, using the Up and Down
arrows.

Cross-field matching for the Field module
For search interfaces that allow cross-field matches and have a Field module, you can configure the static
score assigned to cross-field matches by the Field module on an individual search interface.

You might do this if you considered cross-field matches better than description-only matches.

Such a search interface would appear similar to this example in the Search Interface editor:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Implementing relevance ranking292

In the example, note the presence of the <<CROSS-FIELD>> indexator in the Selected Members list. This
indexator is present only in search interfaces with Always or On Failure cross-field matches and a ranking
strategy that includes a Field module.

How relevance ranking score ties between search interfaces are resolved
In the case of multiple search interfaces and relevance ranking score ties, ties are broken based on the
relevance ranking sort strategy of the search interface with the highest relevance ranking score for a given
record.

If two different records belong to different search interfaces, the record from the search interface specified
earlier in the query comes first.

Implementing relevance ranking strategies for dimension search
MDEX Engine configuration is not required to configure a relevance ranking strategy for record search.

To define the relevance ranking strategy for dimension search operations, modify the RELRANK_STRATEGY
attribute of dimsearch_config.xml. This attribute specifies the name of a relevance ranking strategy for
dimension search. The content of this attribute should be a relevance ranking string, as in the following examples:
exact,static(rank,descending)
interp,exact

For details about the format of the relevance ranking string, see the "URL query parameters for relevance
ranking" topic.

The default ranking strategy for dimension search operations, which is applied if you do not make any changes
to it, is:
interp,exact,static

The default ranking strategy for record search operations is no strategy. That is, unless you explicitly establish
a relevance ranking strategy, none is used.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

293Relevance Ranking | Implementing relevance ranking

Retrieving the relevance ranking for records
The dgraph --stat-brel flag creates a dynamic property on each record named DGraph.BinRelevanceR¬
ank. The value of this property reflects the relevance rank assigned to a record in full text search.

The Java ERec.getProperties() method and the .NET ERec.Properties property return a list of
properties (PropertyMap object) associated with the record. At this point, calling the Java
PropertyMap.get() method or the .NET PropertyMap object with the DGraph.BinRelevanceRank
argument returns the value of the property.

The following code samples show how to retrieve the DGraph.BinRelevanceRank for a given record.

Java example
// get the record list from the navigation object
ERecList recs = nav.getERecs();
// loop over record list
for (int i=0; i<recs.size(); i++) {
 // get individual record
 ERec rec = (ERec)recs.get(i);
 // get property map for record
 PropertyMap propsMap = rec.getProperties();
 // Check for a non-null relevance rank property
 if (propsMap.get("DGraph.BinRelevanceRank") != null) {
 String rankNum =
 (String)propsMap.get("DGraph.BinRelevanceRank");
 %>Relevance ranking for this record:
 <%= rankNum %>
 <%
 } // end of if
} // end of for loop iteration

.NET example
// get the record list from the navigation object
ERecList recs = nav.ERecs;
// loop over record list
for (int i=0; i<recs.Count; i++) {
 // get individual record
 ERec rec = (ERec)recs[i];
 // get property map for record
 PropertyMap propsMap = rec.Properties;
 // Check for a non-null relevance rank property
 String rankNum = "";
 if (propsMap["DGraph.BinRelevanceRank"] != null) {
 rankNum = (String)propsMap["DGraph.BinRelevanceRank"];
 %>Relevance ranking for this record:
 <%= rankNum %>
 <%
 } // end of if
} // end of for loop iteration

Interpreting the values of DGraph.BinRelevanceRank

The MDEX Engine sorts records for relevance ranking using a more granular algorithm than the number you
retrieve with DGraph.BinRelevanceRank.

If, for example, you need to interpret the values of the DGraph.BinRelevanceRank property for two different
records, it is helpful to know that while these values roughly represent the sorting used for relevance-ranked

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Implementing relevance ranking294

records, they are not as precise as the internal sorting numbers the MDEX Engine actually uses to sort the
records.

For example, you may see the same DGraph.BinRelevanceRank value for two records that are sorted
slightly differently. When interpreting the results of DGraph.BinRelevanceRank for two different records,
consider these values as providing rough guidance only on whether one record has a significantly higher
relevance rank than the other. However, if the value of DGraph.BinRelevanceRank is the same, this does
not mean that the records are sorted the same, since the underlying sorting mechanism in the MDEX Engine
is more precise. It is important to note that the MDEX Engine always returns consistent results and consistently
interprets tie breaks in sorting, if they occur.

Controlling relevance ranking at the query level
At the MDEX Engine query level, relevance ranking strategies can be selected to override the default specified
for the selected search interface.

This allows relevance ranking behavior to be fully customized on a per-query basis. MDEX Engine URL
relevance ranking strategy strings must contain one or more relevance ranking module names. Module names
can be any of these pre-defined modules:

• exact
• field (useful for record search only)
• first
• freq
• glom (useful for record search only)
• interp
• maxfield (useful for record search only)
• nterms
• numfields (useful for record search only)
• phrase (for details about using phrase, see the section below)
• proximity
• spell
• stem
• thesaurus
• static (for details about using static, see the section below)
• wfreq

Module names are delimited by comma (,) characters. No other stray characters (such as spaces) are allowed.
Module names are listed in descending order of priority.

Exact module, First module, Nterms module, and Proximity module details

The Exact, First, Nterms, and Proximity modules can take one parameter named considerFieldRanks. If
specified, the considerFieldRanks parameter indicates that the module should further sort records according
to field ranking scores, after the records have been sorted according to the standard behavior of the module.

For example, if you specify exact without the parameter in a query, records that are an exact match are sorted
into a strata that is higher than non-exact matches. Within each strata, the records are only sorted according
to the default sort order or a specified sort key.

If you add the considerFieldRanks parameter to URL query syntax and specify exact(considerFiel¬
dRanks), the records within each strata are sorted so that those with higher field ranking scores are more
relevant than those with lower field ranking scores within the same strata.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

295Relevance Ranking | Controlling relevance ranking at the query level

Freq module and Numfields module details

The Freq module and also the Numfields module can take one parameter named considerFieldRanks. If
specified, the considerFieldRanks parameter indicates that the module should further sort records according
to ranking scores that are calculated across multiple fields, after the records have been sorted according to
the standard behavior of the module. For these modules, cross-field matches are weighted such that matches
in higher ranked fields contribute more than matches in lower ranked fields.

Phrase module details

The Phrase module can take up to four parameters:
• approximate - enables approximate matching.
• considerFieldRanks - enables further sorting according to the field rank score of the match. If specified,

the considerFieldRanks parameter indicates that the module should further sort records according to
field ranking scores, after the records have been sorted according to the standard behavior of the module.

• query_expansion - enables query expansion.
• subphrase - enables subphrase matching

The presence of a parameter indicates that the feature should be enabled, and the parameters can be in any
order. For example: phrase(subphrase,approximate,query_expansion)

Static module details

The Static module takes two parameters. For record search, the first parameter is a property or dimension to
use for assigning static scores (based on sort order) and the second is the sort order: ascending (ascend is
an accepted abbreviation) or descending (or descend). The default is ascending. The parameters must be a
comma-separated list enclosed in parentheses. For example: static(Price,ascending)

For dimension search, the first parameter can be specified as nbins, depth, or rank:
• Specifying nbins causes the static module to sort result dimension values by the number of associated

records in the full data set.
• Depth causes the static module to sort result dimension values by their depth in the dimension hierarchy.
• Rank causes dimension values to be sorted by the ranks assigned to them for the application. In cases

when there are ties, (for example, if you specify nbins and the number of associated records is the same),
the system ranks dimension search results based on the dimension value IDs.

Valid relevance ranking strings

The following are examples of valid relevance ranking strategy strings:
• exact

• exact(considerFieldRanks)

• field,phrase,interp

• static(Price,ascending)

• static(Availability,descending),exact,static(Price,ascending)

• field,MyStrategy,exact (assuming that MyStrategy is the name of a valid search interface with a
relevance ranking strategy)

• phrase(approximate,subphrase)

URL query parameters for relevance ranking
URL query parameters allow you to communicate with the Presentation API from your client browser.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Controlling relevance ranking at the query level296

There are two sets of URL query parameters that allow you to specify relevance ranking modules that will
order the returned record set:

• Dk, Dx, and Ntx parameters.
• Nrk, Nrt, and Nrr parameters.

Note that all of these parameters must be specified together. These sets of URL parameters are described in
the following two sections.

Using the Dk, Dx, and Ntx parameters
This topic describes the use of query parameters with relevance ranking.

The following query parameters affect relevance ranking:
Dk=<0|1>
Dx=rel+strategy
Ntx=rel+strategy

For the Dx and Ntx parameters, the rel option sets the relevance ranking strategy. For a list of valid module
names to use in the strategy, see the "Controlling relevance ranking at the query level" topic.

Relevance ranking for record search operations is automatic. Results are returned in descending order of
relevance as long as a relevance ranking strategy is enabled (either in the URL or as the default for the selected
search interface) and if the user has not selected an explicit record sort operation in the record search request.
If the user has requested an explicit sort ordering, relevance rank ordering for results does not apply.

For dimension search operations, relevance ranking is enabled by the Dk parameter. The value of this (optional)
parameter can be set to zero or one:

• If the value is set to one, the dimension search results will be returned in relevance-ranked order
• If the value is set to zero, the results will be returned in their default order

The default value if the parameter is omitted is zero (that is, relevance ranking is not enabled).

For both dimension search and record search operations, the relevance ranking strategy used for the current
request can be selected using the search option URL parameters (Dx and Ntx) as in the following examples:
<application>?D=mark+twain&Dk=1
&Dx=rel+exact,static(rank,descending)

<application>?N=0&Ntk=All&Ntt=polo+shirt
&Ntx=mode+matchany+rel+MyStrategy

The second example assumes that MyStrategy was defined in Developer Studio, and is specified via the rel
option (which sets the relevance ranking option. The example also uses the mode option (which requests
"match any word" query matching).

Using URL-defined strategies (as in the first example) can be especially useful during development, when you
want to compare the results of multiple strategies quickly. Once you have determined what strategy works
best, you can define the strategy in a search interface in Developer Studio.

Using the Nrk, Nrt, Nrr, and Nrm parameters
You can use the following set of parameters to order the records of a record search via a specified relevance
ranking strategy.

The parameters are:
Nrk=search-interface
Nrt=relrank-terms

Oracle Commerce Guided Search MDEX Engine Developer's Guide

297Relevance Ranking | Controlling relevance ranking at the query level

Nrr=relrank-strategy
Nrm=relrank-matchmode

All of these parameters must be specified together. None of the parameters allow the use of a pipe character
(|) to specify multiple sets of arguments.

The definition of the parameters is as follows:
• Nrk sets the search interface to use in the navigation query for a record search. Only search interfaces

can be specified; Oracle Commerce properties and dimensions cannot be used. Note that the search
interface does not need to have a relevance ranking strategy defined in it.

• Nrt sets one or more terms that will be used by the relevance ranking module to order the records. For
multiple terms, each term is delimited by a plus (+) sign. Note that these relevance ranking terms can be
different from the search terms (as set by the Ntt parameter, for example).

• Nrr sets the relevance ranking strategy to be used to rank the results of the record search. For a list of
valid module names to use in the relrank-strategy argument, see the "Controlling relevance ranking at the
query level" topic.

• Nrm sets the relevance ranking match mode to be used to rank the results of the record search. With the
exception of MatchBoolean, all of the search mode values listed in "Using Search Modes" are valid for use
with the Nrm parameter. Attempting to use MatchBoolean with the Nrm parameter will cause the record
search results to be returned without relevance ranking and a warning to be issued to the dgraph log.

All four parameters link to the Java ENEQuery.setNavRelRankERecRank() method and the .NET
ENEQuery.NavRelRankERecRank property. Note that these parameters have a dependency on the N
parameter, because a navigation query is being performed.

Because the Nrt parameter lets you specify relevance ranking terms (and not search terms), you have the
freedom to perform a record search based on one set of terms (for example, merlot and 2003) and then have
the record set ordered by another set of terms (for example, pear). This behavior is different from that of the
Ntx parameter, which uses the terms of the Ntt parameter to order the record set (in other words, the same
set of search terms are also used to perform relevance ranking).

The following is an example of using these parameters:
<application>?N=0&Ntk=P_Description&Ntt=sonoma
&Nrk=All&Nrt=citrus&Nrr=maxfield&Nrm=matchall

In the example, a record search is first performed for the word sonoma against the P_Description property.
Then Nrk specifies that the search interface named All be used. Nrr specifies that the Maxfield relevance
ranking module use the word citrus (specified via Nrt) as the term by which the records are ordered, using the
match mode specified by Nrm.

Note: The Nrk, Nrt, Nrr, and Nrm parameters take precedence over the Ntk, Ntt, and Ntx parameters.
That is, if both sets of parameters are used in a query, the relevance ranking strategy specified by the
Nrr parameter will be used to order the records.

Using relevance ranking methods
Because relevance ranking only affects the order of results (and not the content of results), there are no special
objects or rendering techniques associated with relevance ranking.

Remember, though, that this ordering can have significant impact on how quickly results are rendered.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Controlling relevance ranking at the query level298

Relevance Ranking sample scenarios
This section contains two examples of relevance ranking behavior to further illustrate the capabilities of this
feature.

In the first example, we first look at the effects of various relevance ranking strategies on a small sample data
set that supports record search, examining the range of possible result orderings possible using only a limited
set of ranking modules.

In the second example, we look at how adding a simple relevance ranking strategy can affect user results in
the reference implementation.

Note: These extremely simple scenarios are provided for illustrative purposes only. For more realistic
examples, see the "Recommended strategies" topic. Also note that in many relevance ranking scenarios
you can set considerFieldRanks for tie breaking. This setting is not useful for Dimension search
because all searchable dimension value synonyms are in the same field.

Example 1: Using a small data set
This scenario shows the effects of various relevance ranking strategies on a small data set.

This example illustrates the richness of relevance ranking tuning possible with the modular Oracle Commerce
relevance ranking system: using two modules on a data set of three records, we found that all four possible
combinations of the modules into strategies resulted in different orderings, all of which were different from the
default ordering.

The example uses the following example record set:

Author propertyTitle propertyRecord

Mark Twain and other authorsGreat Short Stories1

William Lyon PhelpsMark Twain2

Mark TwainTom Sawyer3

Creating the search interface in Developer Studio

In Oracle Commerce Developer Studio, we have defined a search interface named Books that contains both
Title and Author properties. The relevance rank is determined by the order in which the dimensions or properties
appear in the Selected Members list.

Assume that we have not defined an explicit default sort order for the records, in which case their default order
is determined by the system.

Without relevance ranking

Suppose that the user enters a record search query against the Books search interface for Mark Twain. All
three of the records are matches, because each record has at least one searchable property value containing
at least one occurrence of both the words Mark and Twain. But in what order should the results be presented
to the application user? Without relevance ranking enabled, the results are returned in their default order: 1,
2, 3.

If relevance ranking were enabled, the order depends on the relevance ranking strategy selected.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

299Relevance Ranking | Relevance Ranking sample scenarios

With an Exact ranking strategy

Suppose we have selected the Exact relevance ranking strategy, either by assigning this as the default strategy
for the Books search interface in Developer Studio or by using URL-level search options.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other matches.
Because records 2 and 3 have properties whose complete values exactly match the user query Mark Twain,
these results would be returned ahead of record 1, with the tie being broken by the default sort set by the
system (remember that we have not defined a default sort).

With an Exact ranking strategy and the considerFieldRanks parameter

Suppose we have selected the Exact relevance ranking strategy and also specified the considerFieldRanks
parameter in the query URL. Also, suppose that the Title property has a higher field rank value than Author
for any search matches.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other matches.
Because records 2 and 3 have properties whose complete values exactly match the user query Mark Twain,
these results would be returned ahead of record 1. And further, because we specified considerFieldRanks,
record 2 would be returned ahead of record 3.

With a Field ranking strategy

Now, assume that we have selected the Field relevance ranking strategy.

The order of results would be based only on which property caused the match, with Author matches being
prioritized over Title matches. Because records 1 and 3 match on Author, these are returned ahead of record
2 (again, with ties broken by the default sort imposed by the system).

With a Field,Exact ranking strategy

Now, consider using a combination of these two strategies: Field,Exact.

In this case, the primary sort is determined by the first module, Field, which again dictates that records 1 and
3 should be returned ahead of record 2. But in this case, the Field tie between records 1 and 3 is resolved by
the Exact module, which prioritizes record 3 ahead of record 1. Thus, the order of results returned is: 3, 1, 2.

With an Exact,Field ranking strategy

Finally, consider combining the same two modules but in a different priority order: Exact,Field.

In this case, the primary sort is determined by the Exact module, which again prioritizes records 2 and 3 ahead
of record 1. In this case, the Exact tie between records 2 and 3 is resolved by the Field module, which orders
record 3 ahead of record 2 because record 3 is an Author match. Thus, the order of results returned is: 3, 2,
1.

Example 2: UI reference implementation
This scenario shows how adding a relevance ranking module can change the order of the returned records.

This example, which is somewhat more realistically scaled, uses the sample wine data in the UI reference
implementation. It demonstrates how relevance ranking can affect the results displayed to your users.

In this scenario, we use the thesaurus and relevance ranking features to enable end users’ access to Flavor
results similar to the one they searched on, while still seeing exact matches first.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Relevance Ranking sample scenarios300

First, in Developer Studio, we establish the following two-way thesaurus entries:
{ cab : cabernet }
{ cinnamon : spice : nutmeg }
{ tangy : tart : sour : vinegary }
{ dusty : earthy }

Before applying these thesaurus equivalencies, if we search on the Dusty flavor, 83 records are returned, and
if we search on the Earthy flavor, 3,814 records are returned.

After applying these thesaurus equivalencies, if we search on the Dusty property, results for both Dusty and
Earthy are returned. (Because some records are flagged with both the Dusty and Earthy descriptors, the
number of records is not an exact total of the two.)

Relevant propertyWine (by order returned)

EarthyA Tribute Sonoma Mountain

EarthyAgainst the Wall California

DustyAglianico Irpinia Rubrato

EarthyAglianico Sannio

Because the application is sorting on Name in ascending order, the Dusty and Earthy results are intermingled.
That is, the first two results are for Earthy and the third is for Dusty, even though we searched on Dusty,
because the two Earthy records came before the Dusty one when the records were sorted in alphabetical
order.

Now, suppose that while we want our users to see the synonymous entries, we want records that exactly match
the search term Dusty to be returned first. We therefore would use the Interpreted ranking module to ensure
that outcome.

Relevant propertyWine (by order returned)

DustyAglianico Irpinia Rubrato

DustyBandol Cuvee Speciale La Miguoa

DustyBeaujolais-Villages Reserve du Chateau de Montmelas

DustyBeauzeaux Winemaker’s Collection Napa Valley

With the Interpreted ranking strategy, the results are different. When we search on Dusty, we see the records
that matched for Dusty sorted in alphabetical order, followed by those that matched for Earthy. The wine
Aglianico Irpinia Rubrato, which was returned third in the previous example, is now returned first.

Recommended strategies
This section provides some recommended strategies that depend on the implementation type.

Relevance ranking behavior is complex and powerful and requires careful, iterative development. Typically,
selection of the ideal relevance ranking strategy for a given application depends on extensive experimentation
during application development. The set of possible result ranking strategies is extremely rich, and because
setting ranking strategies is highly dependent on the quantity and type of data you are working with, a strategy
that works well in one situation could be unsatisfactory in another.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

301Relevance Ranking | Recommended strategies

For this reason, Oracle provides recommended strategies for different types of implementations and suggests
that you use them as a point of departure in creating your own strategies. The following sections describe
recommended general strategies for each product in detail.

Note: These recommendations are not meant to overrule custom strategies developed for your application
by Oracle Services.

Testing your strategies

When testing your own strategies, it is a good idea to try searching on diverse examples: single word terms,
multi-word terms that you know are an exact match for records in your data, and multi-word terms that contain
additional words as well as the ones in your data. In this way you will see the full range of relevance ranking
effects.

Recommended strategy for retail catalog data
This topic describes a good starting strategy to try if you are a retailer working with a catalog data set.

The strategy assumes the following:
• The search mode is MatchAllPartial. By using this mode, you ensure that a user’s search would return a

two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.
• The strategy is based on a search interface with members such as Category, Name, and Description, in

that order. The order is significant because a match on the first member ranks more highly than a cross-field
match or match on the second or third member. (For details, see "About Search Interfaces").

The strategy is as follows:
• NTerms
• MaxField
• Glom
• Exact
• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. Next, MaxField puts cross-field matches as high in priority as possible, to the point where they could tie

with non-cross-field matches.
3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from

MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.
4. Applying the Exact module means that an exact match in a highly-ranked member of the search interface

is placed higher than a partial or cross-field match.
5. Optionally, the Static module can be used to sort remaining ties by criteria such as Price or SalesRank.

Recommended strategy for document repositories
This topic describes a good starting strategy to try if you are working with a document repository.

The strategy assumes the following:
• The search mode is MatchAllPartial. By using this mode, you ensure that a user’s search would return a

two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Recommended strategies302

• The strategy is based on a search interface with members such as Title, Summary, and DocumentText,
in that order. The order is significant because a match on the first member ranks more highly than a
cross-field match or match on the second or third member.

The strategy is as follows:
• NTerms
• MaxField
• Glom
• Phrase (with or without approximate matching enabled)
• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. Next, MaxField puts cross-field matches as high in priority as possible, to the point where they could tie

with non-cross-field matches.
3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from

MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.
4. Applying the Phrase module ensures that results containing the user’s query as an exact phrase are given

a higher priority than matching containing the user’s search terms sprinkled throughout the text.
5. Optionally, the Static module can be used to sort the remaining ties by criteria such as ReleaseDate or

Popularity.

Performance impact of Relevance Ranking
Relevance ranking can impose a significant computational cost in the context of affected search operations
(that is, operations where relevance ranking is actually enabled).

You can minimize the performance impact of relevance ranking in your implementation by making module
substitutions when appropriate, and by ordering the modules you do select sensibly within your relevance
ranking strategy.

Making module substitutions
Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance ranking
depends heavily on the set of ranking modules used.

In general, modules that do not perform text evaluation introduce significantly lower computational costs than
text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and the
number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.
• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost modules,

presented in the order of decreasing cost.
• WFreq can also be costly in some situations.
• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms, Interp,

Numfields, Maxfields and Field) are generally relatively cheap.

In order to maximize the performance of your relevance ranking strategy, consider a less expensive way to
get similar results. For example, replacing Exact with Phrase may improve performance in some cases with
relatively little impact on results.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

303Relevance Ranking | Performance impact of Relevance Ranking

Note: Choose the set of modules used for relevance ranking most carefully when the data set is large
or contains large/offline file content that is used for search operations.

Ordering modules sensibly
Relevance ranking modules are only evaluated as needed.

When higher-priority ranking modules determine the order of records, lower-priority modules do not need to
be calculated. This can have a dramatic impact on performance when higher-cost modules have a lower priority
than a lower-cost module.

While you have the freedom to order modules as you like, for best performance, make sure that the cheaper
modules are placed before the more expensive ones in your strategy.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Relevance Ranking | Performance impact of Relevance Ranking304

Chapter 31

Record Boost and Bury

Record boost and bury is a mechanism by which specific records can be made to rank higher or lower than
other records in a results list.

About the record boost and bury feature
Record boost makes specific records rank higher than others. Record bury makes specific records rank
lower than others.

The feature depends on the use of the stratify relevance ranking module.

Feature assumptions and limitations

The following applies to the record boost and bury feature:
• EQL (Oracle Commerce Query Language) is the language to use for defining which records are to be

boosted or buried.
• Using an EQL statement, you can specify a set of records to be returned at the top of the results list.
• Using an EQL statement, you can specify a set of records to be returned at the bottom of the results list.
• Record boost and bury functionality is available even when no record search is performed.
• Record boost and bury is supported by the Java and .NET versions of the Presentation API.

Some use-case assumptions are:
• This feature is expected to be used predominately with Oracle Commerce Workbench .
• A common usage pattern will be to specify the records to be boosted/buried dynamically (per-query).

Typically, this will be done through Workbench and Experience Manager, where a second query will be
performed when boost/bury is used.

• Typical expectation is that only a handful of records will be boosted, that is, less than a page worth.
• The number of records buried may be higher, but ordering within this group is less important.
• If implemented for aggregated records, it is the base record ordering which will be affected by boost/bury.
• A record will be stratified in the highest strata it matches, so boosting will have priority over burying.

Enabling properties for filtering
Oracle Commerce properties must be explicitly enabled for use in record boost/bury filters.

Note that all dimension values are automatically enabled for use in record filter expressions.

To enable a property for use with record boost/bury filters:

1. In Developer Studio, open the Properties view.
2. Double-click on the Oracle Commerce property that you want to configure.

The property is opened in the Property editor.
3. Check the Enable for record filters option, as in the following example.

4. Click OK to save your changes.

The stratify relevance ranking module
The stratify relevance ranking module is used to boost or bury records in the result set.

The stratify relevance ranking module ranks records by stratifying them into groups defined by EQL
expressions. The module can be used:

• in record search options, via the Ntx URL query parameter or the ERecSearch class.
• as a component of a sort specification given as the default sort or in the API via the NsURL query parameter

or the ENEQuery.setNavActiveSortKeys() method.

The stratifymodule takes an ordered list of one or more EQL expressions that are used for boosting/burying
records. The following example shows one EQL expression for the module:
N=0&Ntx=mode+matchall+rel+stratify(collection()/record[Score>95],*)&Ntk=Wine¬
Type&Ntt=merlot

This record search example queries for the term merlot in WineType values. Any record that has a Score
value of greater than 95 will be boosted in relation to other records.

Note: When used for sort operations, you must prepend the Endeca prefix to the stratify module
name for use in the sort specification (i.e., use Endeca.stratify as the name).

EQL expressions and record strata

Each EQL expression used in the stratify statement corresponds to a stratum, as does the set of records
which do not match any expression, producing k + 1 strata (where k is the number of EQL expressions).
Records are placed in the stratum associated with the first EQL expression they match. The first stratum is
the highest ranked, the next stratum is next-highest ranked, and so forth. Note a record will be stratified in the
highest strata it matches, so boosting will have priority over burying.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Boost and Bury | The stratify relevance ranking module306

If a record matches none of the specified EQL expressions, it is assigned to the unmatched stratum. By default,
the unmatched stratum is ranked below all strata. However, you can change the rank of the unmatched stratum
by specifying an asterisk (*) in the list of EQL expressions. In this case, the asterisk stands for the unmatched
stratum.

The rules for using an asterisk to specify the unmatched stratum are:
• If an asterisk is specified instead of an EQL expression, unmatched records are placed in the stratum that

corresponds to the asterisk.
• If no asterisk is specified, unmatched records are placed in a stratum lower than any expression's stratum.
• Only one asterisk can be used. If more than one asterisk is specified, the first one will be used and the rest

ignored.

This Ntx snippet shows the use of an asterisk in the query:
N=0&Ntx=rel+stratify(collection()/record[Score>90],*,collection()/record[Score<50])

The query will produce three strata of records:
• The highest-ranked stratum will be records whose Score value is greater than 90.
• The lowest-ranked stratum will be records whose Score value is less than 50.
• All other records will be placed in the unmatched stratum (indicated by the asterisk), which is the

middle-ranked stratum.

Note that the EQL expressions must be URL-encoded. For example, this query:
collection()/record[status = 4]

should be issued in this URL-encoded format:
collection%28%29/record%5Bstatus%20%3D%204%5D

However, the examples in this chapter are not URL-encoded, in order to make them easier to understand.

Record boost/bury queries
Record queries can use the stratify relevance ranking module for boosting or burying records.

The stratify relevance ranking module can be specified in record search options, through the Ntx URL
query parameter or the ERecSearch class.

Using the Ntx URL parameter

For record searches, the format for using the NtxURL parameter with the rel option to specify the stratify
relevance ranking module is:
Ntx=rel+stratify(EQLexpressions)

where EQLexpressions is one or more of the EQL expressions documented in the "Using the Oracle Commerce
Query Language" chapter in the MDEX Engine Developer's Guide.

This example uses an EQL property value query with the and operator:
N=0&Ntx=mode+matchall+rel+stratify(collection()/record[P_Region="Tuscany" and
P_Score>98],*)
&Ntk=P_WineType&Ntt=red

The results will boost red wine records that are from Tuscany and have a rating score of 98 or greater. These
records are placed in the highest stratum and all other records are placed in the unmatched stratum.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

307Record Boost and Bury | Record boost/bury queries

Using the ERecSearch class

You can use the three-argument version of the ERecSearch constructor to create a record search query. The
third argument can specify the use of the stratify module. The ERecSearch class is available in both the
Java and .NET versions of the Presentation API.

The following example illustrates how to construct such a query using Java:
// Create query
ENEQuery usq = new UrlENEQuery(request.getQueryString(), "UTF-8");

// Create a record search query for red wines in the P_WineType property
// and boost records from the Tuscany region
String key = "P_WineType";
String term = "red";
String opt = "Ntx=rel+stratify(collection()/record[P_Region="Tuscany"],*)";
// Use the 3-argument version of the ERecSearch constructor
ERecSearch eSearch = new ERecSearch(key, term, opt);
// Add the search to the ENEQuery
ERecSearchList eList = new ERecSearchList();

eList.add(0, eSearch);
usq.setNavERecSearches(eList);
...
// Make ENE request
ENEQueryResults qr = nec.query(usq);

Boost/bury sorting for Oracle Commerce records
The record boost and bury feature can used to sort record results for queries.

The Endeca.stratify relevance ranking module can be specified in record search options, through the Ns
URL query parameter or the API methods.

Note: When used for sorting, you must prepend the Endeca prefix to the stratify module name.

Using the Ns URL parameter

The format for using the Ns URL parameter with the rel option to specify the stratify relevance ranking
module is:
Ns=Endeca.stratify(EQLexpressions)

where EQLexpressions is one or more of the EQL expressions. Note that you must prepend the Endeca prefix
to the module name.

For example, assume you wanted to promote Spanish wines. This N=0 root node query returns all the records,
with the Spanish wines boosted into the first stratum (that is, they are displayed first to the user):
N=0&Ns=Endeca.stratify(collection()/record[P_Region="Spain"],*)

And if you wanted to boost your highly-rated Spanish wines, the query would look like this:
N=0&Ns=Endeca.stratify(collection()/record[P_Region="Spain" and P_Score>90],*)

The query results will boost Spanish wines that have a rating score of 91 or greater. These records are placed
in the highest stratum and all other records are placed in the unmatched stratum.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Record Boost and Bury | Boost/bury sorting for Oracle Commerce records308

Using API methods

You can use the single-argument version of the ERecSortKey constructor to create a new relevance rank
key that specifies the Endeca.stratify module. After adding the ERecSortKey object to an
ERecSortKeyList, you can set it in the query with the Java ENEQuery.setNavActiveSortKeys() and
the .NET ENEQuery.SetNavActiveSortKeys methods in the Presentation API.

The following Java sample code shows now to use these methods:
String stratKey = "Endeca.stratify(collection()/record[P_Region="Spain"],*)";
ERecSortKey stratSort = new ERecSortKey(stratKey);
ERecSortKeyList stratList = new ERecSortKeyList();
stratList.add(0, stratSort);
usq.setNavActiveSortKeys(stratList);

Oracle Commerce Guided Search MDEX Engine Developer's Guide

309Record Boost and Bury | Boost/bury sorting for Oracle Commerce records

Part 5

Content Spotlighting and Merchandizing

• Promoting Records with Dynamic Business Rules
• Implementing User Profiles

Chapter 32

Promoting Records with Dynamic Business Rules

Recommended practice is to use the Oracle Commerce Experience Manager, rather than directly managing
business rules and user profiles, in all new application development. For information about the Experience
Manager, refer to the Workbench User's Guide.

Using dynamic business rules to promote records
The rules and their supporting constructs define when to promote records, which records may be promoted,
and also indicate how to display the records to application users.

Note: This chapter applies to applications using the dynamic business rules feature as configured in
Developer Studio, Oracle Commerce Workbench 2.1.x with Rule Manager, and the Oracle Commerce
Presentation API.

• If your application is based on Workbench 2.1.x with Page Builder and the Content Assembler API,
read the Page Builder Developer's Guide and the Content Assembler Developer's Guide.

• If your application is based on Oracle Commerce Experience Manager 3.1.x and the Oracle Commerce
Assembler API, read the Assembler Application Developer's Guide.

This feature can be referred to in two ways, depending on the nature of your data:
• In a retail catalog application, this activity is called merchandising, because the Oracle Commerce records

you promote often represent product data.
• In a document repository, this activity is called content spotlighting, because the Oracle Commerce records

you promote often represent some type of document (HTML, DOC, TXT, XLS, and so on).

You implement merchandising and content spotlighting using dynamic business rules. Here is a simple
merchandising example using a wine data set:

1. An application user enters a query with the search term Bordeaux.
2. This search term triggers a rule that is set up to promote wines tagged as Best Buys.
3. In addition to returning standard query results for term Bordeaux, the rule instructs the MDEX Engine to

dynamically generate a subset of records that are tagged with both the Best Buy and Bordeaux properties.
4. The Web application displays the standard query results that match Bordeaux, as well as some number of

the rule results in an area of the screen set aside for “Best Buy” records. These are the promoted records.

Note: For the sake of simplicity, this document uses “promoting records” to generically describe both
merchandising and content spotlighting.

Comparing dynamic business rules to content management publishing
Oracle Commerce’s record promotion works differently from traditional content management systems (CMS),
where you select an individual record for promotion, place it on a template or page, and then publish it to a
Web site.

Oracle Commerce’s record promotion is dynamic, or rule based. In rule-based record promotion, a dynamic
business rule specifies how to query for records to promote, and not necessarily what the specific records are.

This means that, as your users navigate or search, they continue to see relevant results, because appropriate
rules are in place. Also, as records in your data set change, new and relevant records are returned by the
same dynamic business rule. The rule remains the same, even though the promoted records may change.

In a traditional CMS scenario, if Wine A is “Recommended,” it is identified as such and published onto a static
page. If you need to update the list of recommended wines to remove Wine A and add Wine B to the static
page, you must manually remove Wine A, add Wine B, and publish the changes.

With Oracle Commerce’s dynamic record promotion, the effect is much broader and requires much less
maintenance. A rule is created to promote wines tagged as “Recommended,” and the search results page is
designed to render promoted wines. In this scenario, a rule promotes recommended Wine A on any number
of pages in the result set. In addition, removing Wine A and adding Wine B is simply a matter of updating the
source data to reflect that Wine B is now included and tagged as “Recommended.” After making this change,
the same rule can promote Wine B on any number of pages in the result set, without adjusting or modifying
the rule or the pages.

Dynamic business rule constructs
Two constructs make up a dynamic business rule: a trigger and a target.

A trigger is a set of conditions that must exist in a query for a rule to fire. A single trigger may include a
combination of dimension values and keywords. A single dynamic business rule may have one or more triggers.
When a user’s query contains a condition that triggers a rule, the MDEX Engine evaluates the rule and returns
a set of records that are candidates for promotion to application users.

A target specifies which records are eligible for promotion to application users. A target may include dimension
values, custom properties, and featured records. For example, dimension values in a trigger are used to identify
a set of records that are candidates for promotion to application users.

Three additional constructs support rules:
• Zone—specifies a collection of rules to ensure that rule results are produced in case a single rule does not

provide a result.
• Style—specifies the minimum and maximum number of records a rule can return. A style also specifies

any property templates associated with a rule. Rule properties are key/value pairs that are typically used
to return supplementary information with promoted record pages. For example, a property key might be
set to “SpecialOffer” and its value set to “BannerAd.gif”. A rule’s style is passed back along with the rule’s
results, to the Web application. The Web application uses the style as an indexator for how to render the
rule’s results. The code to render the rule’s results is part of the Web application, not the style itself.

• Rule Group —provides a means to logically organize large numbers of rules into categories. This organization
facilitates editing by multiple business users.

The core of a dynamic business rule is its trigger and target values. The target identifies a set of records that
are candidates for promotion to application users. The zone and style settings associated with a rule work
together to restrict the candidates to a smaller subset of records that the Web application then promotes.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records314

Query rules and results
Once you implement dynamic business rules in your application, each query a user makes is compared to
each rule to determine if the query triggers a rule.

If a user's query triggers a rule, the MDEX Engine returns several types of results:
• Standard record results for the query.
• Promoted records specified by the triggered rule’s target.
• Any rule properties specified for the rule.

Two examples of promoting records
The following sections explain two examples of using dynamic business rules to promote Oracle Commerce
records.

The first example shows how a single rule provides merchandising results when an application user navigates
to a dimension value in a data set. The scope of the merchandising coverage is somewhat limited by using
just one rule.

The second example builds on the first by providing more broad merchandising coverage. In this example, an
application user triggers two additional dynamic business rules by navigating to the root dimension value for
the application. These two additional rules ensure that merchandising results are always presented to application
users.

An example with one rule promoting records
This example illustrates the "Recommended Chardonnays" rule.

This simple example demonstrates a basic record promotion scenario where an application user navigates to
Wine_Type > White, and a dynamic business rule called “Recommended Chardonnays” promotes chardonnays
that have been tagged as Highly Recommended. From a merchandising perspective, the marketing assumption
is that users who are interested in white wines are also likely to be interested in highly recommended
chardonnays.

The “Recommended Chardonnays” rule is set up as follows: The rule’s trigger, which specifies when to promote
records, is the dimension value Wine_Type > White. The rule’s target, which specifies which records to promote,
is a combination of two dimension values, Wine_Type > White > Chardonnay and Designation > Highly
Recommended. The style associated with this rule is configured to provide a minimum of at least one promoted
record and a maximum of exactly one record. The zone associated with this rule is configured to allow only
one rule to produce rule results.

The “Recommended Chardonnays” rule is set up as follows:
• The rule’s trigger, which specifies when to promote records, is the dimension value Wine_Type > White.
• The rule’s target, which specifies which records to promote, is a combination of two dimension values,

Wine_Type > White > Chardonnay and Designation > Highly Recommended.
• The style associated with this rule is configured to provide a minimum of at least one promoted record and

a maximum of exactly one record.
• The zone associated with this rule is configured to allow only one rule to produce rule results.

When an application user navigates to Wine_Type > White in the application, the rule is triggered. The MDEX
Engine evaluates the rule and returns promoted records from the combination of the Chardonnay and Highly
Recommended dimension values. There may be a number of records that match these two dimension values,
so zone and style settings restrict the number of records actually promoted to one.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

315Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records

The promoted record, along with the user’s query and standard query results, are called out in the following
graphic:

An example with three rules
The following example expands on the previous one by adding two rules called “Best Buys” and “Highly
Recommended” to the rule to promote highly recommended chardonnays.

These rules promote wines tagged with a Best Buy property and a Highly Recommended property, respectively.
Together, the three rules promote records to expose a broader set of potential wine purchases.

The “Best Buys” rule is set up as follows:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records316

• The rule’s trigger is set to the Web application’s root dimension value. In other words, the trigger always
applies.

• The rule’s target is the dimension value named Best Buy.
• The style associated with this rule is configured to provide a minimum of four promoted records and a

maximum of eight records.
• The zone associated with this rule is configured to allow only one rule to produce rule results.

The “Highly Recommended” rule is set up as follows:
• The rule’s trigger is set to the Web application’s root dimension value. In other words, the trigger always

applies.
• The rule’s target is the dimension value named Highly Recommended.
• The style associated with this rule is configured to provide a minimum of at least one promoted record and

a maximum of three records.
• There is the only rule associated with the zone, so no other rules are available to produce results; for details

about how zones can be used when more rules are available, see the topic “Ensuring promoted records
are always produced."

When an application user navigates to Wine_Type > White, the “Recommended Chardonnays” rule fires and
provides rule results as described in “An example with one rule promoting records”. In addition, the Highly
Recommended and Best Buys rules also fire and provide results because their triggers always apply to any
navigation query. The promoted records for each of the three rules, along with the user’s query and standard
query results, are called out in the following graphic:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

317Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records318

Suggested workflow for using Oracle Commerce tools to
promote records

You can build dynamic business rules and their constructs in Developer Studio.

In addition, business users can use Oracle Commerce Workbench to perform any of the following rule-related
tasks:

• Create a new dynamic business rule.
• Modify an existing rule.
• Test a rule to a preview application and preview its results.

Because either tool can modify a project, the tasks involved in promoting records require coordination between
the pipeline developer and the business user. The recommended workflow is as follows:

1. A pipeline developer uses Developer Studio in a development environment to create the supporting constructs
(zones, styles, rule groups, and so on) for rule and perhaps small number of dynamic business rules as
placeholders or test rules.

2. An application developer creates the Web application including rendering code for each style.
3. The pipeline developer makes the project available to business users by sending the configuration to Oracle

Commerce Workbench (with the option Set instance configuration).
4. A business user starts Oracle Commerce Workbench to access the project, create new rules, modify rules,

and test the rules as necessary.

For general information about using Oracle Commerce tools and sharing projects, see the Oracle Commerce
Workbench Administrator’s Guide.

Note: Any changes to the constructs that support rules such as changes to zones, styles, rule groups,
and property templates have to be performed in Oracle Commerce Developer Studio.

Incremental implementation of business rules
Because this is a complex features to implement, the best approach for developing your dynamic business
rules is to adopt an incremental approach as you and business users of Oracle Commerce Workbench coordinate
tasks.

It is also helpful to define the purpose of each dynamic business rule in the abstract (before implementing it
in Developer Studio or Workbench) so that everyone knows what to expect when the rule is implemented. If
rules are only loosely defined when implemented, they may have unexpected side effects.

Begin with a single, simple business rule to become familiar with the core functionality. Later, you can add
more advanced elements, along with additional rules, rule groups, zones, and styles. As you build the complexity
of how you promote records, you will have to coordinate the tasks you do in Developer Studio (for example,
zone and style definitions) with the work that is done in Oracle Commerce Workbench.

Building the supporting constructs for a business rule
The records identified by a rule’s target are candidates for promotion and may or may not all be promoted in
a Web application. It is a combination of zone and style settings that work together to effectively restrict which
rule results are actually promoted to application users.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

319Promoting Records with Dynamic Business Rules | Suggested workflow for using Oracle Commerce tools to
promote records

A zone identifies a collection of rules to ensure at least one rule always produces records to promote. A style
controls the minimum and maximum number of results to display, defines any property templates, and indicates
how to display the rule results to the Web application. The following topics describe zone and style usage in
detail.

Ensuring promoted records are always produced
You ensure promoted records are always produced by creating a zone in Developer Studio to associate with
a number of dynamic business rules.

A zone is a logical collection of rules that allows you to have multiple rules available, in case a single rule does
not produce a result. The rules in a zone ensure that the screen space dedicated to displaying promoted
records is always populated. A zone has a rule limit that dictates how many rules may successfully return rule
results.

For example, if three rules are assigned to a certain zone but the “Rule limit” is set to one, only the first rule to
successfully provide rule results is evaluated. Any remaining rules in the zone are ignored.

Creating styles for dynamic business rules
You create a style in the Styles view of Oracle Commerce Developer Studio.

A style serves three functions:
• It controls the minimum and maximum number of records that may be promoted by a rule
• It defines property templates, which facilitate consistent property usage between pipeline developers and

business users of Oracle Commerce Workbench
• It indicates to a Web application which rendering code should be used to display a rule’s results

Using styles to control the number of promoted records
Styles can be used to affect the number of promoted records in two scenarios.

The first case is when a rule produces less than the minimum number of records. For example, if the “Best
Buys” rule produces only two records to promote and that rule is assigned a style that has Minimum Records
set to three, the rule does not return any results.

The second case is when a rule produces more than the maximum. For example, if the “Best Buys” rule
produces 20 records, and the Maximum Records value for that rule’s style is five, only the first five records are
returned. If a rule produces a set of records that fall between the minimum and maximum settings, the style
has no effect on the rule’s results.

Performance and the maximum records setting
The Maximum Records setting for a style prevents dynamic business rules from returning a large set of matching
records, potentially overloading the network, memory, and page size limits for a query.

For example, if Maximum Records is set to 1000, then 1000 records could potentially be returned with each
query, causing significant performance degradation.

Ensuring consistent property usage with property templates
Rule properties are key/value pairs typically used to return supplementary information with promoted record
pages.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Building the supporting constructs for a business rule320

For example, a property key might be set to "SpecialOffer" and its value set to "BannerAd.gif".

As Oracle Commerce Workbench users and Developer Studio users share a project with rule properties, it is
easy for a key to be mis-typed. If this happens, then the supplementary information represented by a property
does not get promoted correctly in a Web application. To address this, you can optionally create property
templates for a style. Property templates ensure that property keys are used consistently when pipeline
developers and Oracle Commerce Workbench users share project development tasks.

If you add a property template to a style in Oracle Commerce Developer Studio, that template is visible in
Oracle Commerce Workbench in the form of a pre-defined property key with an empty value. Oracle Commerce
Workbench users are allowed to add a value for the key when editing any rule that uses the template’s associated
style. Oracle Commerce Workbench users are not allowed to edit the key itself.

Furthermore, pipeline developers can restrict Oracle Commerce Workbench users to creating new properties
based only on property templates, thereby minimizing potential mistakes or conflicts with property keys. For
example, a pipeline developer can add a property template called “WeeklyBannerAd” and then make the project
available to Oracle Commerce Workbench users. Once the project is loaded in Workbench, a property template
is available with a populated key called "WeeklyBannerAd" and an empty value. The Oracle Commerce
Workbench user provides the property value. In this way, property templates reduce simple project-sharing
mistakes such as creating a similar, but not identical property called "weeklybannerad".

Note: Property templates are associated with styles in Developer Studio, not rules. Therefore, they are
not available for use on the Properties tab of the Rule editor.

Grouping rules
Rule groups complement zones and styles in supporting dynamic business rules.

Rule groups serve two functions:
• They provide a means to logically organize rules into categories to facilitate creating and editing rules.
• They allow multiple users to access dynamic business rule simultaneously.

A rule group provides a means to organize a large number of rules into smaller logical categories, which usually
affect distinct (non-overlapping) parts of a Web site.

For example, a retail application might organize rules that affect the electronics and jewelry portions of a Web
site into a group for Electronics Rules and another group for Jewelry Rules. A rule group also enables multiple
business users to access rule groups simultaneously. Each Workbench user can access a single rule group
at a time. Once a user selects a rule group, Workbench prevents other users from editing that group until the
user returns to the selection list or closes the browser window.

Prioritizing rule groups
In the same way that you can modify the priority of a rule within a group, you can also modify the priority of a
rule group with respect to other rule groups.

The MDEX Engine evaluates rules first by group order, as shown in the Rules view of Developer Studio or
Oracle Commerce Workbench, and then by their order within a given group.

For example, if Group_B is ordered before Group_A, the rules in Group_B will be evaluated first, followed by
the rules in Group_A. Rule evaluation proceeds in this way until a zone’s Rule Limit value is satisfied. This

Oracle Commerce Guided Search MDEX Engine Developer's Guide

321Promoting Records with Dynamic Business Rules | Grouping rules

relationship is shown in the graphic below. In it, suppose zone 1 has a Rule Limit setting of 2. Because of the
order of group B is before group A, rules 1 and 2 satisfy the Rule Limit rather than rules 4 and 5.
Group B
 Rule 1, Zone 1
 Rule 2, Zone 1
 Rule 3, Zone 2
Group A
 Rule 4, Zone 1
 Rule 5, Zone 1
 Rule 6, Zone 2

If you want to further prioritize the rules within a particular rule group, see the topic “Prioritizing rules."

Interaction between rules and rule groups
When creating or editing rule groups, keep in mind the following interactions between rules and rule groups.

• Rules may be moved from one rule group to another. However a rule can appear in only one group.
• A rule group may be empty (that is, it does not have to contain rules).
• The order of rule groups with respect to other rule groups may be changed.

Creating rules
After you have created your zones and styles, you can start creating the rules themselves.

An application has at least one rule group by default. Developer Studio groups all rules in this default group.
As mentioned in the topic “Suggested workflow using Oracle Commerce tools to promote records," a developer
usually creates the preliminary rules and the other constructs in Developer Studio, and then hands off the
project to a business user to fine tune the rules and created additional rules in Workbench. However, the
business user can use Workbench to perform any of the tasks described in the following sections that are
related to creating a rule. For details, see Workbench Help.

Specifying when to promote records
You indicate when to promote records by specifying a trigger on the Triggers tab of the Rule editor.

A trigger can be made up of any combination of dimension values and keywords or phrases that identify when
the MDEX Engine fires a dynamic business rule.

Note: A phrase represents terms surrounded in quotes.

If a user’s query contains the dimension values you specify in a trigger, the MDEX Engine fires that rule. For
example, in a wine data set, you could set up a rule that is triggered when a user clicks Red. If the user clicks
White, the MDEX Engine does not fire the rule. If the user clicks Red, the MDEX Engine fires the rule and
returns any promoted records.

If a user’s query contains the keyword or phrase you specify in a trigger, the MDEX Engine fires that rule.
Keywords in a trigger require that the zone associated with the rule have “Valid for search” enabled on the
Zone editor in Developer Studio. Keywords in a trigger also require a match mode that specifies how the query
keyword should match in order to fire the rule. There are three match modes:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Creating rules322

• Phrase—A user’s query must match all of the words of the keyword value, in the same order, for the rule
to fire.

• All—A user’s query must match all of the keywords in a trigger, without regard for order, for the rule to fire.
• Exact—A user’s query must exactly match the keyword or words for the rule to fire. Unlike the other two

modes, a user’s query must exactly match the keywords in the number of words and cannot be a superset
of the keywords.

Note: All modes allow the rule to fire if the spelling auto-correction and auto-phrasing, and/or stemming
corrections of a user's query match the keywords or the phrase (terms surrounded in quotes).

In addition to triggers, a user profile can also be associated with a rule to restrict when to promote records. A
user-profile is a label, such as premium_subscriber, that identifies an application user. If a user who has such
a profile makes a query, the query triggers the associated rule. For more information, see the topic “Implementing
User Profiles."

Multiple triggers
A rule may have any number of triggers. Adding more than one trigger to a rule is very useful if you want to
promote the same records from multiple locations in your application.

Each trigger can describe a different location where a user's query can trigger a rule; however, the rule promotes
records from a single target location.

Global triggers
Triggers can also be empty (no specified dimension values or keywords) on the Triggers tab.

In this case, there are two options to determine when an empty trigger fires a rule:
• Applies everywhere—Any navigation query and any keyword search in the application triggers the rule.
• Applies only at root—Any navigation query and any keyword search from the root dimension value only

(N=0) triggers the rule.

Specifying a time trigger to promote records
You can further control when to promote records with time triggers.

A time trigger is a date/time value that you specify on the Time Trigger tab of the Rule editor. A time trigger
specified on this tab indicates the time at which to start the rule’s trigger and the time at which the trigger ends.
Any matching query that occurs between these two values triggers the rule.

A time trigger is useful if you want to promote records for a particular period of time. For example, you might
create a rule called “This Weekend Only Sale” whose time trigger starts Friday at midnight and expires on
Sunday at 6 p.m. Only a start time value is required for a time trigger. If you do not specify an expiration time,
the rule can be triggered indefinitely.

Previewing the results of a time trigger
You can test a time trigger using the Preview feature which is available on the Rule Manager page of Oracle
Commerce Workbench.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

323Promoting Records with Dynamic Business Rules | Creating rules

In Oracle Commerce Workbench, you can specify a preview time that allows you to preview the results of
dynamic business rules as if it were the preview time, rather than the time indicated by the system clock. Once
you set a preview time and trigger a rule, you can examine the results to ensure the rule promotes the records
that you expected it to. The Preview feature is available to Oracle Commerce Workbench users who have
Approve, Edit, or View permissions.

Note that temporarily setting the MDEX Engine with a preview time affects only dynamic business rules. The
preview time change does not affect any other aspect of the engine, nor does the preview time affect any
scheduled updates between now and then, changes to thesaurus entries, changes to automatic phrasing,
changes to keyword redirects, and so on. For example, setting the preview time a week ahead does not return
records scheduled to be updated between now and a week ahead.

The MDEX Engine supports the use of a parameter called the merchandising preview time parameter as a
way to test the results of dynamic business rules that have time triggers. Setting a preview time with the
parameter affects only the query that uses the parameter. All other queries are unaffected.

You set a preview time in the MDEX Engine using the Java setNavMerchPreviewTime() method or the .NET
NavMerchPreviewTime property in the ENEQuery object. This call requires a string value as input. The format
requirement of the string is described in the topic “MDEX Engine URL query parameters for promoting records
and testing time triggers.”

You can also set this method by sending the necessary URL query parameters to the MDEX Engine via the
UrlENEQuery class. For details, see “MDEX Engine URL query parameters for promoting records and testing
time triggers”.

Synchronizing time zone settings
The start time and expiration time values do not specify time zones.

The server clock that runs your Web application identifies the time zone for the start and expiration times. If
your application is distributed on multiple servers, you must synchronize the server clocks to ensure the time
triggers are coordinated.

Specifying which records to promote
You indicate which records to promote by specifying a target on the Target tab of the Rule editor.

A target is a collection of one or more dimension values. These dimension values identify a set of records that
are all candidates for promotion. Zone and style settings further control the specific records that are actually
promoted to a user.

Adding custom properties to a rule
You can optionally promote custom properties by creating key/value pairs on the Properties tab of the Rule
editor.

Rule properties are typically used to return supplementary information with promoted record pages. Properties
could specify editorial copy, point to rule-specific images, and so on. For example, a property name might be
set to “SpecialOffer” and its value set to “BannerAd.gif.” You can add multiple properties to a dynamic business
rule. These properties are accessed with the same method calls used to access system-defined properties
that are included in a rule’s results, such as a rule’s zone and style.

For details, see “Adding Web application code to extract rule and keyword redirect results”.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Creating rules324

Adding static records in rule results
In addition to defining a rule’s dimension value targets and custom properties, you can optionally specify any
number of static records to promote.

These static records are called featured records, and you specify them on the Featured Records tab of the
Rule editor. You access featured records in your Web application using the same methods you use to access
dynamically generated records. For details, see the topic “Adding Web application code to extract rule and
keyword redirect results." The MDEX Engine treats featured records differently than dynamically generated
records. In particular, featured records are not subject to any of the following:

• Record order sorting by sort key
• Uniqueness constraints
• Maximum record limits

Order of featured records
The General tab of the Rule editor allows you to specify a sort order for dynamically generated records that
the MDEX Engine returns.

This sort order does not apply to featured records. Featured records are returned in a Supplement object in
the same order that you specified them on the Featured Records tab. The featured records occur at the
beginning of the record list for the rule’s results and are followed by any dynamically generated records. The
dynamically generated records are sorted according to your specified sort options.

No uniqueness constraints
The Zones editor allows you to indicate whether rule results are unique (across zones) by a specified property
or dimension value.

This uniqueness constraint does not apply to featured records even if uniqueness is enabled for dynamically
generated rule results. For example, if you enabled “Color” to be the unique property for record results and
you have two dynamically generated records with “Blue” as property value, then the MDEX Engine excludes
the second record as a duplicate. On the other hand, if you have the same scenario but the two records are
featured results not dynamically generated results, the MDEX Engine returns both records.

No maximum record limits
The style associated with a rule allows you to set a maximum number of records that the MDEX Engine may
return as rule results.

This Maximum Records value does not apply to featured records. For example, if the Maximum Records value
is set to three and you specify five featured records, the MDEX Engine returns all five records. Also, the MDEX
Engine returns featured records before dynamically generated records, and the featured records count toward
the maximum limit. Consequently, the number of featured records could restrict the number of dynamically
generated rule results.

Sorting rules in the Rules view
The dynamic business rules you create in Developer Studio appear in the Rules view.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

325Promoting Records with Dynamic Business Rules | Creating rules

To make rules easier to find and work with, they can be sorted by name (in alphabetical ascending or descending
order) or by priority. The procedure described below changes the way rules are sorted in Rules view only.
Sorting does not affect the priority used when processing the rules. Prioritizing rules in Developer Studio is
described in the topic “Prioritizing rules."

Prioritizing rules
In addition to sorting rules by name or priority, you can also modify a rule’s priority in the Rules view of Developer
Studio.

Priority is indicated by a rule’s position in the Rules view, relative to the position of other rules when you have
sorted the rules by priority. You modify the relative priority of a rule by moving it up or down in the Rules view.

A rule’s priority affects the order in which the MDEX Engine evaluates the rule. The MDEX Engine evaluates
rules that are higher in the Rules view before those that are positioned lower. By increasing the priority of a
rule, you increase the likelihood that the rule is triggered before another, and in turn, increase the likelihood
that the rule promotes records before others. It is important to consider rule priority in conjunction with the
settings you specify in the Zone editor.

For example, suppose a zone has “Rule limit” set to three. If you have ten rules available for the zone, the
MDEX Engine evaluates the rules, in the order they appear in the Rules view, and returns results from only
the first three that have valid results. In addition, the “Shuffle rules” check box on the Zone editor overrides
the priority order you specify in the Rules view. When you check “Shuffle rules”, the MDEX Engine randomly
evaluates the rules associated with a zone. If you set up rule groups, you can modify the priority of a rule within
a group and modify the priority of a group with respect to other groups. For details, see “Prioritizing rule groups”.

Controlling rules when triggers and targets share dimension
values

The self-pivot feature controls business rules where the trigger and target of the business rule contain one or
more identical dimension values.

When enabled, self-pivot allows a business rule to fire even if the user navigates to a location which explicitly
contains a dimension value already in the rule target. For example, if a rule is defined as:

TargetTrigger

Price < $10(No location specified -- this rule applies everywhere)

Region > Napa

And a user navigates to Wine Type > Red, Region > Napa, the rule still fires, despite the fact that the user is
already viewing a results list for wines from the Napa region.

When self-pivot is disabled for a rule, the rule does not fire if its targets contain the same dimension values as
the user's navigation state. For example, if a rule is defined as:

TargetTrigger

Price < $10(No location specified -- this rule applies everywhere)

Region > Napa

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Controlling rules when triggers and targets share dimension
values

326

And a user navigates to Wine Type > Red, Region > Napa, the rule does not fire because the user is already
viewing a results list for wines from the Napa region.

Setting self-pivot to false does not necessarily remove all duplicates from search and merchandising results.
For example, if a rule is defined as:

TargetTrigger

Price > $10-$20Wine Type > Red

And a user navigates to Wine Type > Red, the user’s navigation state does not include a dimension value from
the target and the rule fires. However, because the results list contains all red wines including those in the
$10-$20 range, it is still possible to get duplicate results in the merchandising and search results list.

Self-pivot is enabled by default for each new rule created in Workbench, and the option is not displayed in
Workbench. However, you can change the default and set the check box to display on the Triggers tab of the
Rule Manager page in Oracle Commerce Workbench. Once the check box is available, you can change
self-pivot settings separately for each rule. The option is still available for rules created or modified in Developer
Studio; changing the default setting does not affect Developer Studio behavior.

Changing the default self-pivot setting when running the Oracle Commerce
HTTP service from the command line

Self-pivot is enabled by default for each new rule created in Oracle Commerce Workbench, and the option is
not displayed in Oracle Commerce Workbench.

In order to change the default behavior, you must set a Java parameter. Once the parameter is set (regardless
of the value given for the default) the self-pivot check box displays on the Triggers tab of the Rule Manager
page in Oracle Commerce Workbench. Previously existing rules are not affected by this change, and this
procedure does not affect the behavior of Developer Studio.

To change the default self-pivot setting when running the Oracle Commerce HTTP service from the command
line:

1. Stop the Oracle Commerce Tools Service.
2. Navigate to %ENDECA_TOOLS_ROOT%\server\bin (on Windows) or $ENDECA_TOOLS_ROOT/server/bin

(on UNIX).
3. Open the setenv.bat file (on Windows) or setenv.sh (on UNIX).
4. Below "set JAVA_OPTS" add:

• (On Windows) CATALINA_OPTS=-Dself-pivot-default=true
• (On UNIX) CATALINA_OPTS=-Dself-pivot-default=true export CATALINA_OPTS

To set the default value as disabled, use: -Dself-pivot-default=false
5. Save and close the file.
6. Run %ENDECA_TOOLS_ROOT%\server\bin\setenv.bat (on Windows) or

$ENDECA_TOOLS_ROOT/server/bin/setenv.sh (on UNIX).

The self-pivot check box is now exposed on the Triggers tab of the Rule Manager page in Oracle Commerce
Workbench. The check box defaults to the value specified in the setenv file.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

327Promoting Records with Dynamic Business Rules | Controlling rules when triggers and targets share dimension
values

Changing the default self-pivot setting when running the Oracle Commerce
Tools Service as a Windows service

Self-pivot is enabled by default for each new rule created in Oracle Commerce Workbench, and the option is
not displayed in Oracle Commerce Workbench.

In order to change the default behavior, you must set a Java parameter. Once the parameter is set (regardless
of the value given for the default) the self-pivot check box displays on the Triggers tab of the Rule Manager
page in Oracle Commerce Workbench. Previously existing rules are not affected by this change, and this
procedure does not affect the behavior of Developer Studio.

To enable self-pivot when running the Oracle Commerce Tools Service as a Windows service:

1. Stop the Oracle Commerce Tools Service.
2. Run the Registry Editor: go to Start > Run and type regedit.
3. Navigate to HKEY_LOCAL_MACHINE > SOFTWARE > Apache Software Foundation > Procrun version >

EndecaHTTPService > Parameters > Java.
4. Right click Options.
5. Choose Modify. The Edit Multi-String dialog box displays.
6. Choose Modify. The Edit Multi-String dialog box displays.

(To set the default value as disabled, use: -Dself-pivot-default=false.)
7. Click OK.
8. Start the Oracle Commerce Tools Service.

The self-pivot check box is now exposed on the Triggers tab of the Rule Manager page in Oracle Commerce
Workbench. The check box defaults to the value specified in the Registry Editor.

Working with keyword redirects
Conceptually, keyword redirects are similar to dynamic business rules in that both have trigger and target
values.

However, keyword redirects are used to redirect a user's search to a Web page (that is, a URL).

The trigger of a keyword redirect is one or more search terms; the target of a keyword redirect is a URL. If a
user searches with a search term that triggers the keyword redirect, then the redirect URL displays in the
application. For example, you can create a keyword trigger of "delivery" and a redirect URL of
http://shipping.acme.com. Or you might create a keyword redirect with a keyword trigger of "stores" and a
redirect URL of http://www.acme.com/store_finder.htm.

You organize keyword redirects into keyword redirect groups in the same way and for the same reasons that
you organize dynamic business rules into rule groups. Groups provide logical organization and multi-user
access in Oracle Commerce Workbench. For details about how groups work, see the topic “Grouping rules."
You can create keyword redirects in both Developer Studio and Oracle Commerce Workbench. For details,
see the Oracle Commerce Developer Studio Help and the Oracle Commerce Workbench Help.

Displaying keyword redirects in your web application requires application coding that is very similar to the
coding required to display rule results. The MDEX Engine returns keyword redirect information (the URL to
display) to the web application in a Supplement object just like dynamic business rule results. The Supplement
object contains a DGraph.KeywordRedirectUrl property whose value is the redirect URL. The application
developer chooses what to display from the Supplement object by rendering the DGraph.KeywordRedirectUrl
property rather than rendering merchandising results. In this way, the application developer codes the redirect
URL to take precedence over merchandising results.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Working with keyword redirects328

Presenting rule and keyword redirect results in aWeb application
The MDEX Engine returns rule results keyword redirect results to a Web application in a Supplement object.

To display these results to Web application users, an application developer writes code that extracts the results
from the Supplement object and displays the results in the application.

Before explaining how these tasks are accomplished, it is helpful to briefly describe the process from the point
at which a user makes a query to the point when an application displays the rule results:

1. A user submits a query that triggers a dynamic business rule or keyword redirect.
2. When a query triggers a rule or keyword redirect, the MDEX Engine evaluates the it and returns rule results

in a single Supplement object per rule or per keyword redirect.
3. Web application code extracts the results from the Supplement object.
4. Custom rendering code in your application defines how to display the rule or keyword redirect results.

The following sections describe query parameter requirements and application and rendering code requirements.

MDEX Engine URL query parameters for promoting records and testing time
triggers

The MDEX Engine evaluates dynamic business rules and keyword redirects only for navigation queries.

This evaluation also occurs with variations of navigation queries, such as record search, range filters, and so
on. Dynamic business rules are not evaluated for record, aggregated record, or dimension search queries.
Therefore, a query must include a navigation parameter (N) in order to potentially trigger a rule. No other
specific query parameters are required.

To preview the results of a rule with a time trigger, you add the merchandising preview time parameter (Nmpt)
and provide a string value that represents the time at which you want to preview the application. The format
of the date/time value should correspond to the following W3C format:
YYYY-MM-DDTHH:MM

The letter T is a separator between the day value and the hour value. Time zone information is omitted. Here
is an example URL that sets the date/time to October 15, 2008 at 6 p.m.:
/controller.jsp?N=0&Nmpt=2008-10-15T18:00&Ne=1000

Note: The merchandising preview time parameter supports string values that occur after midnight,
January 1, 1970 and before January 19, 2038. Values outside this range (either before or after the range)
are ignored. Also, values that are invalid for any reason are ignored.

Adding Web application code to extract rule and keyword redirect results
You must add code to your Web application that extracts rule results or keyword redirect results from the
Supplement objects that the MDEX Engine returns.

Supplement objects are children of the Navigation object and are accessed via the Java getSupplements()
method or the .NET Supplements property for the Navigation object. The Java getSupplements() method and
the .NET Supplements property return a SupplementList object that contains some number of Supplement
objects. For example, the following sample code gets all Supplement objects from the Navigation object.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

329Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a Web
application

Java example
// Get Supplement list from Navigation object
SupplementList sups = nav.getSupplements();
// Loop over the Supplement list
for (int i=0; i<sups.size(); i++) {
 // Get individual Supplement
 Supplement sup = (Supplement)sups.get(i);
...
}

.NET example
// Get Supplement list from Navigation object
SupplementList sups = nav.Supplements;
// Loop over the Supplement list
for (int i=0; i<sups.Count; i++) {
 // Get individual Supplement
 Supplement sup = (Supplement)sups[i];
...
}

Composition of the Supplement object
Each Supplement object may contain three types of data: records, navigation references, and properties.

• Records—Each dynamic business rule’s Supplement object has one or more records attached to it. These
records are structurally identical to the records found in navigation record results. These code snippets get
all records from a Supplement object. See the sample code sections below for more detail.
// Java example:
// Get record list from a Supplement
ERecList supRecs = sup.getERecs();
// Loop over the ERecList and get each record
for (int j=0; j<supRecs.size(); j++) {
 ERec rec = (ERec)supRecs.get(j);
...
}

//.NET example:
// Get record list from a Supplement
ERecList supRecs = sup.ERecs;
// Loop over the ERecList and get each record
for (int j=0; j<supRecs.Count; j++) {
 ERec rec = (ERec)supRecs[j];
...
}

• Navigation reference—Each Supplement object also contains a single reference to a navigation query.
This navigation reference is a collection of dimension values. These dimension values create a navigation
query that may be used to direct a user to a new location (usually the full result set that the promoted
records were sampled from.) This is useful if you want to create a link from the rule’s title that displays the
full result set of promoted records. These code snippets get the navigation reference from a Supplement
object. See the sample code sections below for more detail.
// Java example:
// Get navigation reference list
NavigationRefsList refs = sup.getNavigationRefs();
// Loop over the references

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a Web
application

330

for (int j=0; j<refs.size(); j++) {
 DimValList ref = (DimValList)refs.get(j);
 // Loop over dimension vals for each nav reference
 for (int k=0; k<ref.size(); k++) {
 DimVal val = (DimVal)ref.get(k);
 ...
 }
}

// .NET example:
// Get navigation reference list
NavigationRefsList refs = sup.NavigationRefs;
// Loop over the references
for (int j=0; j<refs.Count; j++) {
 DimValList dimref = (DimValList)refs[j];
 // Loop over dimension vals for each nav reference
 for (int k=0; k<dimref.Count; k++) {
 DimVal val = (DimVal)dimref[k];
 ...
 }
}

• Properties—Each Supplement object contains multiple properties, and each property consists of a key/value
pair. Properties are rule-specific, and are used to specify the style, zone, title, a redirect URL and so on.
These code snippets get all the properties from a Supplement object. See the sample code sections below
for more detail.
// Java example:
// Get property map from the Supplement
PropertyMap propsMap = sup.getProperties();
Iterator props = propsMap.entrySet().iterator();
// Loop over properties
while (props.hasNext()) {
 // Get individual property
 Property prop = (Property)props.next();
 ...
}

// .NET example:
// Get property map from the Supplement
PropertyMap propsMap2 = sup.Properties;
System.Collections.IList props = propsMap2.EntrySet;
// Loop over properties
for (int j =0; j < props.Count; j++) {
 // Get individual property
 Property prop = (Property)props[j];
 ...
}

Properties in a business rule's Supplement object
There are a number of important properties for each business rule’s Supplement object.

They include the following:
• Title—The title of a rule as specified on the Name field of the Rule editor.
• Style—The name of the style associated with the rule, as specified in the Style drop-down list of the Rule

editor’s General tab, or if the object represents a keyword redirect, the style is an empty string.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

331Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a Web
application

• Style Title—The title of the style (different than the name of the style) associated with the rule, as specified
in the Title field on the Style editor.

• Zone—The name of the zone the rule is associated with, as specified by the Zone drop-down list of the
Rule editor’s General tab. If the object represents a keyword redirect, the zone is an empty string.

• DGraph.KeywordRedirectUrl—The string representing the URL redirect link for a keyword.
• DGraph.SeeAlsoMerchId—The rule ID. This ID is system-defined, not user-defined.
• DGraph.SeeAlsoPivotCount—This count specifies the total number of matching records that were available

when evaluating the target for this rule. This count is likely to be greater than the actual number of records
returned with the Supplement object, since only the top N records are returned for a given business rule
style.

• DGraph.SeeAlsoMerchSort—If a sort order has been specified for a rule, the property or dimension name
of the sort key is listed in this property.

• DGraph.SeeAlsoMerchSortOrder—If a sort key is specified, the sort direction applied for the key is also
listed.

In addition to the properties listed above, you can create custom properties that on the Properties tab of the
Rule editor. Custom properties also appear in a Supplement object. For details, see the topic “Adding custom
properties to a rule."

Extracting rule results from Supplement objects
You can use the following sample code to assist you in extracting rule results from Supplement objects.

 // Get properties
 PropertyMap supPropMap = sup.getProperties();
 String sProp=null;
 // Check if object is merchandising or
 // content spotlighting result
 if ((supPropMap.get("DGraph.SeeAlsoMerchId") != null) &&
 (supPropMap.get("Style") != null) &&
 (supPropMap.get("Zone") != null)) {
 boolean hasMerch = true;
 // Get record list
 ERecList recs = sup.getERecs();
 for (int j=0; j < recs.Size(); j++) {
 // Get record
 ERec rec = (ERec)recs.get(j);
 // Get record Properties
 PropertyMap recPropsMap = rec.getProperties();
 // Get value of property (e.g. Name) from current record
 sProp =(String)recPropsMap.get("Name");
 }
 // Set target link using first Navigation Reference
 NavigationRefsList nrl = sup.getNavigationRefs();
 DimValList dvl = (DimValList)nrl.get(0);
 // Loop over dimension values to build new target query
 StringBuffer sbNavParam = new StringBuffer ();
 for (int j=0; j < dvl.size(); j++) {
 DimVal dv = (DimVal)dvl.get(j)
 // Add delimiter and id
 sbNavParam.append(dv.getId());
 sbNavParam.append(" ");
 // Get specific rule properties
 String style = (String)supPropMap.get("Style");
 String title = (String)supPropMap.get("Title");
 String zone = (String)supPropMap.get("Zone");

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a Web
application

332

 // This is an example of a custom Property Template
 // defined in the Style
 String customText = (String)supPropMap.get("CustomText");
 Test output in JSP page
 %>%=sProp %>
<%
 %>Navigation:<%=sbNavParam.toString()%>
<%
 %>Style:<%=style%>
<%
 %>Title:<%=title%>
<%
 %>Zone:<%=zone%>
<%
 %>Text:<%=customText%>
<%
 }
}
%>

.NET example
// Get supplement list
SupplementList sups = nav.Supplements;
// Loop over Supplement objects
for (int i=0; i<sups.Count; i++) {
 // Get Supplement object
 Supplement sup = (Supplement)merchList[i];
 // Get properties
 PropertyMap supPropMap = sup.Properties;
 // Check if Supplement object is merchandising
 // or content spotlighting
 if ((supPropMap["DGraph.SeeAlsoMerchId"] != null) &&
 (supPropMap["Style"] != null) &&
 (supPropMap["Zone"] != null) &&
 (Request.QueryString["hideMerch"] == null)) {
 // Get Record List
 ERecList supRecs = sup.ERecs;
 // Loop over records
 for (int j=0; j<supRecs.Count; j++) {
 // Get record
 ERec rec = (ERec)supRecs[j];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 // Get value of name prop from current record
 String name = (String)propsMap["Name"];
 }
 // Set target link using first navigation reference
 NavigationRefsList nrl = sup.NavigationRefs;
 DimValList dvl = (DimValList)nrl[0];
 // Loop over dimension values to build new target query
 String newNavParam;
 for (int k=0; k<dvl.Count; k++) {
 DimVal dv = (DimVal)dvl[k];
 // Add delimiter and id
 newNavParam += " "+dv.Id;
 }
 // Get specific rule properties
 String style = supPropMap["Style"];
 String title = supPropMap["Title"];
 String zone = supPropMap["Zone"];
 String customText = supPropMap["CustomText"];
 }
}

Oracle Commerce Guided Search MDEX Engine Developer's Guide

333Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a Web
application

Adding Web application code to render rule results
In addition to Web application code that extracts rule results from Supplement objects, you must also add
application code to render the rule results on screen.

(Rendering is the process of converting the rule results into displayable elements in your Web application
pages.) Rendering rule results is a Web application-specific development task. The reference implementations
come with three arbitrary styles of rendering business rule results, but most applications require their own
custom development that is typically keyed on the Title, Style, Zone, and other custom properties. For details,
see the topic “Adding Web application code to extract rule and keyword redirect results."

Filtering dynamic business rules
Dynamic business rule filters allow an Oracle Commerce application to define arbitrary subsets of dynamic
business rules and restrict merchandising results to only the records that can be promoted by these subsets.

If you filter for a particular subset of dynamic business rules, only those rules are active and available in the
dgraph to fire in response to user queries. Rule filters support Boolean syntax using property names, property
values, rule IDs, and standard Boolean operators (AND, OR, and NOT) to compose complex combinations of
property names, property values, and rule IDs.

For example, a rule filter can consist of a list of workflow approval states in a multi-way OR expression. Such
a filter could filter rules that have a workflow state of pending OR approved. You specify a rule filter using the
Java ENEQuery.setNavMerchRuleFilter() method and the .NET ENEQuery.NavMerchRuleFilter property, and
you pass the filter directly to the dgraph as part of an MDEX Engine query.

Rule filter syntax
The syntax for rule filters supports prefix-oriented Boolean operators (AND, OR, and NOT) and uses
comma-separated name/value pairs to specify properties and numeric rule IDs. The wildcard operator (*) is
also supported.

Here are the syntax requirements for specifying rule filters:
• The following special characters cannot be a part of a property name or value: () : , *
• Property names are separated from property values with a colon (:). The example <application>?N=0&Nm¬
rf=state:approved filters for rules where state property has a value of approved.

• Name/value pairs are separated from other name/value pairs by a comma. The example <applica¬
tion>?N=0&Nmrf=or(state:pending,state:approved) filters for rules where state property is
either approved or pending.

• Rule IDs are specified by their numeric value. The example <application>?N=0&Nmrf=5 filters for a
rule whose ID is 5.

• Multiple rule IDs, just like multiple name/value pairs, are also separated by a comma. The example <ap¬
plication>?N=0&Nmrf=or(1,5,8) filters for rules where the value of the rule ID is either 1, 5, or 8.

• Boolean operators (AND, OR, and NOT) are available to compose complex combinations of property
names, property values, and rule IDs. The example<application>?N=0&Nmrf=and(image_path:/com¬
mon/images/book.jpg,alt_text:*) filters for rules where the value of the image_path property is
book.jpg and alt_text contains any value including null.

• Wildcard operators can substitute for any property value (not property name). The example <applica¬
tion>?N=0&Nmrf=and(not(state:*),not(alt_text:*)) filters for rules that contain no value for
both the state property and alt_text property.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | Filtering dynamic business rules334

Additional Boolean usage information
• Boolean operators are not case-sensitive.
• Boolean operators are reserved words, so property names or values such as "and," "or," and "not" are not

valid in rule filters. However, properties can contain any superset of the Boolean operators such as "andrew",
"bread and butter", or "not yellow".

• Although the Boolean operators in rule filters are not case-sensitive, property names and values in the
filter are case sensitive.

MDEX URL query parameters for rule filters
The Nmrf query parameter controls the use of a rule filter.

Nmrf links to the Java ENEQuery.setNavMerchRuleFilter() method and the .NET
ENEQuery.NavMerchRuleFilter property. The Nmrf parameter specifies the rule filter syntax that restricts
which rules can promote records for a navigation query.

Performance impact of dynamic business rules
Dynamic business rules require very little data processing or indexing, so they do not impact Forge performance,
Dgidx performance, or the MDEX Engine memory footprint.

However, because the MDEX Engine evaluates dynamic business rules at query time, rules affect the
response-time performance of the MDEX Engine. The larger the number of rules, the longer the evaluation
and response time. Evaluating more than twenty rules per query can have a noticeable effect on response
time. For this reason, you should monitor and limit the number of rules that the MDEX Engine evaluates for
each query.

In addition to large numbers of rules slowing performance, query response time is also slower if the MDEX
Engine returns a large number of records. You can minimize this issue by setting a low value for the Maximum
Records setting in the Style editor for a rule.

Rules without explicit triggers
Dynamic business rules without explicit triggers also affect response time performance because the MDEX
Engine evaluates the rules for every navigation query.

Applying relevance ranking to rule results
In some cases, it is a good idea to apply relevance ranking to a rule’s results.

For example, if a user performs a record search for Mondavi, the results in the Highly Rated rule can be ordered
according to their relevance ranking score for the term Mondavi. In order to create this effect, there are three
requirements:

• The navigation query that is triggering the rule must contain record search parameters (Ntt and Ntk).
Likewise, the zone that the rule is assigned to must be identified as Valid for search. (Otherwise, the rule
will not be triggered.)

• The rule’s target must be marked to Augment Navigation State.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

335Promoting Records with Dynamic Business Rules | Performance impact of dynamic business rules

• The rule must not have any sort parameters specified. If the rule has an explicit sort parameter, that
parameter overrides relevance ranking. Sort parameters for a rule are set on the General tab of the Rule
editor.

If these three requirements are met, then the relevance ranking rules specified with MDEX Engine startup
options are used to rank specific business rules when triggered with a record search request (a keyword
trigger).

About overloading Supplement objects
Recall that dynamic business rule results are returned to an application in Supplement objects.

Each rule that returns results does so via a single Supplement object for that rule. However, not all Supplement
objects contain rule results.

Supplement objects are also used to support “Did You Mean” suggestions, record search reports, and so on.
In other words, a Supplement object can act as a container for a variety of features in an application. One
Supplement object instance cannot contain results for two features. For example, one Supplement object
cannot contain both rule results and also “Did You Mean” suggestions. For that reason, if you combine dynamic
business rules with these additional features, you should check each Supplement object for specific properties
such as DGraph.SeeAlsoMerchId to identify which Supplement object contains rule results.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Promoting Records with Dynamic Business Rules | About overloading Supplement objects336

Chapter 33

Implementing User Profiles

Recommended practice is to use the Oracle Experience Manager, rather than directly managing business
rules and user profiles, in all new application development. For information about the Experience Manager,
refer to the Workbench User's Guide.

About user profiles
A user profile is a character-string-typed name that identifies a class of end users.

User profiles enable applications built on the Oracle Commerce Information Access Platform to tailor the
content displayed to an end user based on that user’s identity.

User profiles can be used to trigger dynamic business rules, where such rules are optionally constructed with
an additional trigger attribute corresponding to a user profile. Oracle Commerce Guided Search can accept
information about the end user, and use that information to trigger pre-configured rules and behaviors.

You set up user profiles in Developer Studio. Both Developer Studio and Oracle Commerce Workbench allow
a user profile to be associated with a business rule’s trigger.

This feature discusses how you create user profiles and then implement them as dynamic business rule triggers.
Before reading further, make sure you are comfortable with the information in the "Promoting Records with
Dynamic Business Rules" section.

Note: Each business rule is allowed to have at most one user profile trigger.

Profile-based trigger scenario
This topic shows how a dynamic business rule would utilize a user profile.

In the following scenario, an online clothing retailer wants to set up a dynamic business rule that says: "For
young women who are browsing stretch t-shirts, also recommend cropped pants." We follow the shopping
experience of a customer named Jane.

In order to set up this rule, a few configuration steps are necessary:

1. In Oracle Commerce Developer Studio, the retailer creates a user profile called young_woman, which
corresponds to the set of customers who are female and are between the ages of 16 and 25.

2. In Oracle Commerce Workbench, a dynamic business rule that uses the profile as a trigger is created, as
shown below. No complex Boolean logic programming is necessary here. The business user simply selects
a user profile from a set of available profiles to create the business rule.
young_woman X DVAL(stretch t-shirt) => DVAL(cropped pants)

3. In the Web application that’s driving the customer’s experience, there needs to be logic that identifies the
user and tests to see if he or she meets the requirements to be classified as a young_woman. Alternatively,
the profile young_woman may already be stored along with Jane’s information (such as age, address, and
income) in a database or LDAP server.

The user’s experience would go something like this:

1. Jane accesses the clothing retailer’s Web site and is identified by a cookie on her computer. By looking up
a few database tables, the application knows that it has interacted with her before. The database indicates
that she is 19 years old and female.

At this point, the database may also indicate the user profiles that she belongs to: young_woman,
r_and_b_music_fan, college_student. Alternatively, the application logic may test against her
information to see which profiles she belongs to, as follows: "Jane is between 16 and 25 years old and she
is female, so she belongs in the young_woman profile."

2. As Jane is browsing the site, the Oracle Commerce MDEX Engine is driving her catalog experience. As
each query is being sent to the Oracle Commerce MDEX Engine, it is augmented with user profile information.
Here is some sample Java code:
profileSet.add("young_woman");
eneQuery.setProfiles(profileSet);

3. As Jane clicks on a stretch t-shirt link, the Oracle Commerce MDEX Engine realizes that a dynamic business
rule has been triggered: young_woman X DVAL(stretch t-shirt). Therefore, it returns a cropped
pants record in one of the dynamic business rule zones.

4. Jane sees a picture of cropped pants in a box labeled, "You also might like..."

User profile query parameters
There are no URL MDEX query parameters associated with user profiles.

In many live application scenarios, the URL query is exposed to the end user, and it is usually not appropriate
for end users to see or change the user profiles with which they have been tagged.

API objects and method calls
These Java and .NET code samples demonstrate how to implement user profiles in the Web application.

In the following code samples, the application recognizes the end user as Jane Smith, looks up some database
tables and determines that she is 19 years old, female, a college student and likes R&B music. These
characteristics map to the following Oracle Commerce user profiles created in Oracle Commerce Developer
Studio:

• young_woman

• r_and_b_music_fan

• college_student

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Implementing User Profiles | User profile query parameters338

User profiles can be any string. The user profiles supplied to ENEQuery must exactly match those configured
in Oracle Commerce Developer Studio.

Java example of implementing user profiles
// User profiles can be any string. The user profiles must
// exactly match those configured in Developer Studio.
// Add this import statement at the top of your file:
// import java.util.*;
Set profiles = new HashSet();
// Collect all the profiles into a single Set object.
profiles.add("young_woman");
profiles.add("r_and_b_music_fan");
profiles.add("college_student");
// Augment the query with the profile information.
eneQuery.setProfiles(profiles);

.NET example of implementing user profiles
// Make sure you have the following statement at the top
// of your file:
// using System.Collections.Specialized;
StringCollection profiles = new StringCollection();
// Collect all the profiles into a single StringCollection object.
profiles.Add("young_woman");
profiles.Add("r_and_b_music_fan");
profiles.Add("college_student");
// Augment the query with the profile information.
eneQuery.Profiles = profiles;

Performance impact of user profiles
An application using this feature may experience additional memory costs due to user profiles being set in an
ENEQuery object.

In addition, the application may require additional Java ENEConnection.query() or .NET
HttpENEConnection.Query() response time, because the MDEX Engine must do additional work to receive
profile information and check if business rules fire. However, in typical application scenarios that set one to
five user profile strings of at most 20 characters in the ENEQuery object, the performance impact is insignificant.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

339Implementing User Profiles | Performance impact of user profiles

Part 6

Understanding and Debugging Query Results

• Using Why Match
• Using Word Interpretation
• Using Why Rank
• Using Why Precedence Rule Fired

Chapter 34

Using Why Match

This section describes the tasks involved in implementing the Why Match feature of the Oracle Commerce
MDEX Engine.

About the Why Match feature
The Why Match functionality allows an application developer to debug queries by examining which property
value of a record matched a record search query and why it matched.

With Why Match enabled in an application, records returned as part of a record search query are augmented
with extra dynamically generated properties that provide information about which record properties were
involved in search matching.

Enabling Why Match
You enable Why Match on a per-query basis using the Nx (Navigation Search Options) query parameter. No
Developer Studio configuration or dgraph flags are required to enable this feature.

However, because Why Match applies only to record search navigation requests, dynamically-generated
properties only appear in records that are the result of a record search navigation query. Records in non-search
navigation results do not contain Why Match properties.

Why Match API
The MDEX Engine returns match information for each record as a DGraph.WhyMatch property in the search
results.

The following code samples show how to extract and display the DGraph.WhyMatch property from a record.

Java example
// Retrieve properties from record
PropertyMap propsMap = rec.getProperties();
// Get the WhyMatch property value
String wm = (String) propsMap.get("DGraph.WhyMatch");
// Display the WM value if one exists
if (wm != null) {

 %>This record matched on <%= wm %>
 <%
}

.NET example
// Retrieve properties from record
PropertyMap propsMap = rec.Properties;
// Get the WhyMatch property value
String wm = propsMap["DGraph.WhyMatch"].ToString();
// Display the WM value if one exists
if (wm != null) {
 %>This record matched on <%= wm %>
 <%
}

Why Match property format
The DGraph.WhyMatch property value has a three-part format that is made up of a list of fields where the
terms matched, a list of the terms that matched, and several possible query expansions that may have been
applied to the during processing.

The DGraph.WhyMatch property is returned as a JSON object with the following format: :
[{fields: [<FieldName>, <FieldName>, ...], terms:[
 {term:<TermName>, expansions:[{type:<TypeName>},
 {type:<TypeName>}, ...]},
 {term:<TermName>, expansions:[{type:<TypeName>},
 {type:<TypeName>}, ...]}]}
 ...]

where the supported expansion types (i.e. the <TypeName> values) are as follows:
• Stemming – returned results based on the stemming dictionaries available in the MDEX Engine.
• Thesaurus – returned augmented results based on thesaurus entries added in Developer Studio or Oracle

Commerce Workbench.
• Spell-corrected – returned spell-corrected results using application-specific dictionary words.

The availability of these values depends on which search features have been enabled in the MDEX Engine.

For example, suppose there is a matchpartial query for "nueve uno firefighter" that produces a single-field
match in "Spanish", a cross-field match in Spanish and English (i.e. "one" appears in English via thesaurus
from uno), and firefighter is not in any field. The following DGraph.WhyMatch property value is returned:
[{fields:[Spanish], terms:[{term:nueve,expansions:[]},
 {term:uno,expansions:[]}]},
 {fields:[Spanish,English], terms:[{term:nueve,expansions:[]},
 {term:uno, expansions:[{type:Thesaurus}]}]}]

Why Match performance impact
The response times for MDEX Engine requests that include Why Match properties are more expensive than
requests without this feature. The performance cost increases as the number of records returned with the
DGraph.WhyMatch property increases.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Why Match | Why Match property format344

This feature is intended for development environments to record matching. The feature is not intended for
production environments and is not particularly optimized for performance.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

345Using Why Match | Why Match performance impact

Chapter 35

Using Word Interpretation

This section describes the tasks involved in implementing the Word Interpretation feature of the Oracle
Commerce MDEX Engine.

About the Word Interpretation feature
The Word Interpretation feature reports word or phrase substitutions made during text search processing.

The Word Interpretation feature is particularly useful for highlighting variants of search keywords that appear
in displayed search results. These variants may result from stemming, thesaurus expansion, or spelling
correction.

Implementing Word Interpretation
The --wordinterp flag to the dgraph command must be set to enable the Word Interpretation feature.

The Word Interpretation feature does not require any work in Developer Studio. There are no Dgidx flags
necessary to enable this feature, nor are there any MDEX Engine URL query parameters.

Word Interpretation API methods
The MDEX Engine returns word interpretation match information in ESearchReport objects.

This word interpretation information is useful for highlighting or informing users about query expansion.

The Java ESearchReport.getWordInterps() method and the .NET ESearchReport.WordInterps
property return the set of word interpretations used in the current text search. Each word interpretation is a
key/value pair corresponding to the original search term and its interpretation by the MDEX Engine.

In this thesaurus example, assume that you have added the following one-way thesaurus entry:
cab > cabernet

If a search for the term cab finds a match for cabernet, a single word interpretation will be returned with this
key/value pair:
Key="cab" Value="cabernet"

When there are multiple substitutions for a given word or phrase, they are comma-separated; for example:
Key="cell phone" Value="mobile phone, wireless phone"

In this Automatic Phrasing example, a search for the terms Napa Valley are automatically phrased to "Napa
Valley". A key/value word interpretation is returned with the original search terms as the key and the phrased
terms in double quotes as the value.
Key=Napa Valley Value="Napa Valley"

The following code snippets show how to retrieve word interpretation match information.

Java example
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport searchReport = (ESearchReport)recSrchRpts.get(searchKey);
 // Get the PropertyMap of word interpretations
 PropertyMap wordMap = searchReport.getWordInterps();
 // Get property iterator
 Iterator props = wordMap.entrySet().iterator();
 // Loop over properties
 while (props.hasNext()) {
 // Get individual property
 Property prop = (Property)props.next();
 String propKey = (String)prop.getKey();
 String propVal = (String)prop.getValue();
 // Display word interpretation information
 %><tr>
 <td>Original term: <%= propKey %></td>
 <td>Interpreted as: <%= propVal %></td>
 </tr><%
 }
 }
 }
}

.NET example
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key
String searchKey = Request.QueryString["Ntk"];
if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = recSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the PropertyMap of word interperations
 PropertyMap wordMap = searchReport.WordInterps;
 // Get property iterator
 System.Collections.IList props = wordMap.EntrySet;
 // Loop over properties
 for (int j =0; j < props.Count; j++) {
 // Get individual property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Word Interpretation | Word Interpretation API methods348

 Property prop = (Property)props[j];
 String propKey = prop.Key.ToString();
 String propVal = prop.Value.ToString();
 // Display word interpretation information
 %><tr>
 <td>Original term: <%= propKey %></td>
 <td>Interpreted as: <%= propVal %></td>
 </tr><%
 }
 }
}

Troubleshooting Word Interpretation
This topic provides some corrective solutions for word interpretation problems.

The tokenization used for substitutions depends on the configuration of search characters. If word interpretation
is to be used to facilitate highlighting variants of search keywords that appear in displayed search results, then
the application should consider that words or phrases appearing in substitutions may not include white space,
punctuation, or other configured search characters.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

349Using Word Interpretation | Troubleshooting Word Interpretation

Chapter 36

Using Why Rank

This section describes the tasks involved in implementing the Why Rank feature of the Oracle Commerce
MDEX Engine.

About the Why Rank feature
The Why Rank feature returns information that describes which relevance ranking modules were evaluated
during a query and describes how query results were ranked. This information allows an application developer
to debug relevance ranking behavior.

With Why Rank enabled in an application, the MDEX Engine returns records that are augmented with additional
dynamically generated properties. The MDEX Engine also a returns summary information (in a Supplement
object) about relevance ranking for a query. The properties provide information that describe which relevance
ranking modules ordered the results and indicate why a particular record was ranked in the way that it was.

Enabling Why Rank
You enable Why Rank on a per-query basis using the Nx (Navigation Search Options) query parameter or the
Dx (Dimension Search Options) query parameter. No Developer Studio configuration or dgraph flags are
required to enable this feature.

Why Rank API
The MDEX Engine returns relevance ranking information as a DGraph.WhyRank property on each record in
the search results. The MDEX Engine also returns summary information for all record results in a Supplement
object. (Note that the information available in a Supplement object is not available if you are using the MAX
API.)

Per record match information

The following code samples show how to extract and display the DGraph.WhyMatch property from a record.

Java example
// Retrieve properties from record
PropertyMap propsMap = rec.getProperties();

// Get the WhyRank property value
String wr = (String) propsMap.get("DGraph.WhyRank");

// Display the WR value if one exists
if (wr != null) {
 %>This record was ranked by <%= wr %>
 <%
}

.NET example
// Retrieve properties from record
PropertyMap propsMap = rec.Properties;

// Get the WhyRank property value
String wr = propsMap["DGraph.WhyRank"].ToString();

// Display the WR value if one exists
if (wr != null) {
 %>This record was ranked by <%= wr %>
 <%
}

Summary match information

The Supplement object contains a "Why Summaries" property whose value is general summary information
for ranking of all the records returned in a query. This information includes the number of relevance ranking
modules that were evaluated, the number of strata per module, processing time per module, and so on.

Why Rank property format
The DGraph.WhyRank property value has a multi-part format that is made up of a list of relevance ranking
modules that were evaluated and strata information for each module. Strata information includes the evaluation
time, rank, description, records per strata, and so on.

The DGraph.WhyRank property is returned as a JSON object with the following format:
[
 { "<RankerName>" : { "evaluationTime" : "<number>", "stratumRank" : "<number>",
 "stratumDesc" : "<Description>", "rankedField" : "<FieldName>" }},
 ...
]

where the <RankerName> values are any of supported relevance ranking modules. The specific number of
<RankerName> values depends on the relevance ranking modules you enabled in the MDEX Engine and how
many of them were used to evaluate the current record.

Note: If a query produces only one record in a result set, the DGraph.WhyRank property is empty
because no relevance ranking was applied.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Why Rank | Why Rank property format352

Here is an example of a query and a DGraph.WhyRank property from a record in the result set. Suppose
there is a query submitted to an MDEX Engine using the following query parameters:
N=0&Ntk=NoEssay&Ntt=one+two&Ntx=rel+phrase(considerFieldRanks)&Nx=whyrank. The query
produces a result set where one of the records contains the following DGraph.WhyRank property:
<Property Key="DGraph.WhyRank" Value="[{ "phrase" : { "evaluationTime" : "0",
"stratumRank" : "20", "stratumDesc" : "phrase match", "rankedField" : "English"
}}]">

Result information for relevance ranking modules
In addition to the basic reporting properties that are common to each DGraph.WhyRank property, there are
also optional reporting properties that may be included in DGraph.WhyRank depending on the relevance
ranking module.

The basic reporting properties in DGraph.WhyRank that are common to all relevance ranking modules include:
• evaluationTime - the time spent evaluating this relevance ranking module.
• stratumRank - a value indexating which stratum a record is placed in.
• stratumDesc - the description of the relevance ranking module (often, the name of the module, or a

description of options for the module).

The following table lists the optional reporting properties that are specific to each relevance ranking module.

Additional DGraph.WhyRank PropertiesRelevanceRankModule
Name

rankedField - field name for the highest ranked exact or subphrase match
described in stratumDesc.

Exact

rankedField - field name for the highest ranked field match.Field

rankedField - field name of the highest ranked field described in stratumDesc.First

perFieldCount - field-by-field count of occurrences in the format "<X1> in
<field1-name>, <X2> in <field2-name>, ...".

Freq

None.Glom

rankedField - field name of the highest ranked field described in stratumDesc.Interp

rankedField - field name of the highest ranked field described in stratumDesc.MaxFields

None.NTerms

fieldsMatched - if considerFieldRanks is enabled for the module, then
fieldsMatched is a comma-separated list of: <field-name> + "(" + <field-rank>

NumFields

+ ")". Otherwise, fieldsMatched is a comma-separated list of the field names
that matched.

rankedField - field name of the highest ranked field (if a phrase match).Phrase

rankedField - field name of the highest ranked field (if a field match).Proximity

rankedField - field name of a field match that is not a spell corrected match.Spell

Static • fieldCompared - name of field sorted by. If there are multiple fields, names
are pipe '|' delimited.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

353Using Why Rank | Result information for relevance ranking modules

Additional DGraph.WhyRank PropertiesRelevanceRankModule
Name

• directionCompared - direction ("ascending" or "descending") of the sort. If
there are multiple fields, directions are pipe '|' delimited

• fieldType - corresponding field type ("integer", "dimension", "string", etc). If
there are multiple fields, types are '|' delimited.

Note: The Static module does not return either the evaluationTime or
the stratumRank properties.

None.Stratify

rankedField - field name of a field match that is not a stemmed match.Stem

rankedField - field name of a field match that is not a thesaurus matchThesaurus

None.WeightedFreq

Why Rank performance impact
The response times for MDEX Engine requests that include Why Rank properties are more expensive than
requests without this feature. The performance cost increases as the number of records returned with the
DGraph.WhyRank property increases.

This feature is intended for development environments to troubleshoot relevance ranking. The feature is not
intended for production environments and is not particularly optimized for performance.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Why Rank | Why Rank performance impact354

Chapter 37

Using Why Precedence Rule Fired

This section describes the tasks involved in implementing the Why Precedence Rule Fired feature of the Oracle
Commerce MDEX Engine.

About the Why Precedence Rule Fired feature
The Why Precedence Rule Fired feature returns information that explains why a precedence rule fired. This
information allows an application developer to debug how dimensions are displayed using precedence rules.

With the feature enabled in an application, the root dimension values that the MDEX Engine returns are
augmented with additional dynamically generated properties. The properties provide information that describe
how the precedence rule was triggered (explicitly or implicitly), which dimension ID and name triggered the
precedence rule, and the type of precedence rule (standard, leaf, or default).

Enabling Why Precedence Rule Fired
You enable Why Precedence Rule Fired on a per-query basis using the Nx (Navigation Search Options) query
parameter. No Developer Studio configuration or dgraph flags are required to enable this feature.

Why Precedence Rule Fired API
The MDEX Engine returns information about why a precedence rule fired as a DGraph.WhyPrecedenceRule¬
Fired property on each root dimension value.

The following code samples show how to extract and display the DGraph.WhyPrecedenceRuleFired
property from a root dimension value.

Java example
// Retrieve the results object.
Navigation result = results.getNavigation();

// Retrieve the refinements.
DimensionList l = result.getRefinementDimensions();

// Retrieve the dimension with ID 80000.

Dimension d = l.getDimension(800000);

// Retrieve the root dval for the dimension.
DimVal root = d.getRoot();
PropertyMap propsMap = root.getProperties();

// Get the WhyPrecedenceRuleFired property value
String wprf = (String) propsMap.get("DGraph.WhyPrecedenceRuleFired");

// Display the value if one exists
if (wprf != null) {

 //Do something
}

.NET example
// Retrieve the results object.
Navigation result = results.Navigation;

// Retrieve the refinements.
DimensionList l = result.RefinementDimensions;

// Retrieve the dimension with ID 80000.
Dimension d = l.GetDimension(800000);

// Retrieve the root dval for the dimension.
DimVal root = d.Root;
PropertyMap propsMap = root.Properties;

// Get the WhyPrecedenceRuleFired property value
String wprf = propsMap["DGraph.WhyPrecedenceRuleFired"].ToString();

// Display the value if one exists
if (wprf != null) {

 //Do something
}

Why Precedence Rule Fired property format
The DGraph.WhyPrecedenceRuleFired property value has a multi-part format that is made up of a list of
trigger reasons and trigger values that were evaluated for each precedence rule.

The DGraph.WhyPrecedenceRuleFired property is returned as a JSON object with the following format:
[
 { "triggerReason" : "<Reason>", "triggerDimensionValues" : ["<DimensionID>, ...
 "], "ruleType" : "<Type>", "sourceDimension" : "<DimensionName>",
 "sourceDimensionValue" : "<DimensionID>" },
 ...
]

The following table describes the reporting values in the DGraph.WhyPrecedenceRuleFired property. The
specific reporting values depend on the precedence rules in the MDEX Engine and how many rules the MDEX
Engine evaluated for the current set of available refinement dimensions.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Why Precedence Rule Fired | Why Precedence Rule Fired property format356

DescriptionReporting Value

The triggerReason can have any of the following values:<Reason>
• explicit - The precedence rule triggered because a user explicitly

selected a trigger dimension value in a navigation query. The trig¬
gerDimensionValues is a list of dimension IDs that triggered the
rule.

• explicitSelection - The precedence rule triggered because an
user explicitly selected a target dimension value, and there are more
refinements available. The triggerDimensionValues is a list of
dimension IDs that triggered the rule.

• implicit - The precedence rule triggered because a user implicitly
selected a trigger dimension value. For example, it is implicit because
a user could select a dimension value that resulted from a text search
rather selecting a refinement from a navigation query. The trig¬
gerDimensionValues is a list of dimension IDs that triggered the
rule.

• implicitSelection - The precedence rule triggered because a
user implicitly selected a target dimension value, and there are more
refinements available.

• default - The precedence rule triggered because it is a default rule
that is set up to always trigger. (Forge creates default rules during
automatic property mapping.)

The triggerDimensionValues is followed by a list of integers
representing the dimension IDs.

<DimensionID>

The ruleType can have any of the following values:<Type>
• standard - Standard precedence rules display the target dimension

if the source dimension value or its descendants are in the navigation
state.

• leaf - Leaf precedence rules display the target dimension only after
leaf descendants of the source dimension value have been selected.

A string representing the name of the dimension.<DimensionName>

The DGraph.WhyPrecedenceRuleFired property may contain any number of triggerReason reporting
values. However, there is one exception in the case where the value of triggerReason is default. In that
case, there would be a single triggerReason value.

Here is an example query that contains at least the following two URL query parameters:
N=310002&Nx=whyprecedencerulefired. The value of 310002 is the dimension value ID that triggers a
precedence rule for dimension 300000. The query produces a result with a root dimension value that contains
the following DGraph.WhyPrecedenceRuleFired property:
<Dimension Id=300000 Name=Number of Digits>
 <Root>
 <DimVal Name="Number of Digits" Id=300000>
 <PropertyList Size=1>
 <Property Key="DGraph.WhyPrecedenceRuleFired" Value="[{ "trigger¬

Oracle Commerce Guided Search MDEX Engine Developer's Guide

357Using Why Precedence Rule Fired | Why Precedence Rule Fired property format

Reason" : "explicitSelection", "triggerDimensionValues" : [310002] }]">

Performance impact of Why Precedence Rule Fired
The Why Precedence Rule Fired feature is intended for a production environment. The response times for
MDEX Engine requests that include DGraph.WhyPrecedenceRuleFired properties are slightly more
expensive than requests without this feature. In general, the feature adds performance throughput costs that
are typically observed to be less than 5%.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using Why Precedence Rule Fired | Performance impact of Why Precedence Rule Fired358

Part 7

Presentation API Basics

• Presentation API Overview
• Working with the Presentation API
• Using the Reference Implementation
• Running the Reference Implementations

Chapter 38

Presentation API Overview

The information about the Presentation API provided in this section is for the use of developers who must
maintain existing applications that invoke the Presentation API directly, or who want to create functionality that
is not included in the product by default. Oracle recommends that all new front-end application development
use the Assembler API instead of the Presentation API.

List of Guided Search APIs
Depending on the packages you installed, your Guided Search installation includes one or more sets of APIs.

The Guided Search software packages contain the following API sets:
• The Presentation API. Although it is possible to invoke this API directly, Oracle recommends that you use

the Assembler API instead. For information about how to use the Assembler, see the Assembler Developer's
Guide.

• The Logging API that is used by the Logging and Reporting System. This API is part of Platform Services.
For more information, see the Platform Services Log Server and Report Generator Guide.

• Security-related methods that implement secure Guided Search implementations. For more information,
see the Guided Search Security Guide.

Architecture of the Presentation API
The Presentation API enables Web based Guided Search applications to communicate with the MDEX Engine.

The online portion of a typical Guided Search application has the following components:
• The MDEX Engine, which receives and processes query requests.
• The Presentation API, which you use to query the MDEX Engine and manipulate the query results.
• A Web application in the form of a set of application modules, which receive client requests and pass them

to the MDEX Engine through the Presentation API.

The following diagram illustrates the data flow between these components for a typical Guided Search application
that uses the Presentation API:

In this diagram, the following actions take place:

1. A client browser makes a request.
2. The Web application server receives the request and passes it to the application modules.
3. The application modules pass the request to the MDEX Engine, by means of the Presentation API.
4. The MDEX Engine executes the query and returns its results.
5. The application modules use Presentation API method calls to retrieve and manipulate the query results.
6. The application modules format the query results and return them to the client browser, through the Web

application server.

Note: For security reasons, you should never enable Web browsers to connect directly to your MDEX
Engine. Browsers should always connect to your application through an application server.

About Web application modules
The Web application modules are responsible for receiving client requests and passing those requests to the
MDEX Engine, by means of the Presentation API.

You build custom application modules for each Guided Search application. These modules can take many
forms, depending on your application’s requirements.

The Guided Search software package includes a set of sample UI reference implementations that you can
refer to when building your own application modules.

Regardless of how you choose to build them, the application modules must perform the following functions:
• Receive requests from client browsers through the Web application server.
• Pass the client request to the MDEX Engine.
• Retrieve the MDEX Engine query.
• Format the query results and return them to the client browser.

Methods for transforming requests into queries
Application modules transform client browser requests into MDEX Engine queries.

Before Web application modules can send a request from a client browser to the MDEX Engine, the modules
must transform the request into an MDEX Engine query.

To make this transformation, the application modules extract the MDEX Engine-specific parameters from the
original client request. In some cases, the modules also edit the extracted parameters or add additional
parameters, as necessary.

The following diagram illustrates how a client browser request is transformed into an MDEX Engine query:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Presentation API Overview | Architecture of the Presentation API362

Techniques for passing request parameters
Several techniques exist for passing the query request parameters from the client browser request to the
application modules.

You can use one of the following techniques:
• Embed parameters in the URL that the client browser sends.
• Send parameters in a cookie along with the client request.
• Include parameters in a server-side session object.

For example, in the UI reference implementations that are included with the Oracle Commerce Platform Services
package, client request parameters are embedded directly in the URL. This technique eases development and
ensures load balancing, redundancy and statelessness.

One query, one page
The data that the MDEX Engine returns in response to a query includes all of the information that the application
modules need to build an entire page for a typical application.

The MDEX Engine returns the following objects in response to a query request:
• Indexed records
• Follow-on query information
• Supplemental information, such as merchandising information, or information that enables the "Did You

Mean" functionality

This enables the MDEX Engine to reduce the number of queries required to build an entire page, and thus to
improve performance. The performance improvement is gained by using the processing for one section of a
page to build the rest of the page.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

363Presentation API Overview | One query, one page

For example, separate requests for record search information and navigation control information can be
redundant. (Of course, you can make as many queries to the MDEX Engine as you want to build your pages,
if the application design warrants it.)

The Presentation API for Java and .NET
The Presentation API exists in the form of Java classes or .NET objects.

The Presentation API is managed by a Web application server of your choice. One or the other of the two
forms of the Presentation API will be suitable for your chosen environment:

• For Java, the Presentation API is a collection of Java classes in a single .jar file.
• For .NET, the Presentation API is a set of .NET objects in a single assembly.

About query result objects returned by the MDEX Engine
The MDEX Engine returns its results for all query types—navigation, record search, dimension search, and
so on—in the form of a top-level object that is contained in an ENEQueryResults object. These top-level
objects are complex objects that contain additional member objects.

The following diagram illustrates the relationship between an ENEQueryResultsobject, top-level object, and
members of the top-level object:

About top-level object types
The parameters in the MDEX Engine query determine the type of top-level object that is returned in response
to the query.

You use Presentation API method calls to retrieve and manipulate data from a top-level object and any of its
members.

Top-level object types include the following:
• Navigation objects contain information about the user’s current location in the dimension hierarchy, and

the records that are associated with that location. Navigation objects also contain the information required
to build any follow-on queries.

Note: Both navigation queries and record search queries return Navigation objects.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Presentation API Overview | About query result objects returned by the MDEX Engine364

• Record object contain full information about individual records in the data set. This information includes
the record’s properties, as well as its tagged dimension values.

• Aggregated record objects contain information about aggregated records. An aggregated record is a
collection of individual records that have been rolled up based on a rollup key (a property or dimension
name).

• Dimension search objects contain the results of a dimension search.

Example of a top-level object
The Oracle Commerce record object returned by the MDEX Engine encapsulates information about dimensions
that have been tagged to the Oracle Commerce record.

The following diagram shows the structure of a generic Oracle Commerce record object:

This diagram illustrates that Oracle Commerce record objects contain all the information associated with an
Oracle Commerce record, including:

• A list of the dimensions that contain dimension values that have been tagged to the record.
• Information about each individual dimension, including:

• Dimension root.
• Tagged dimension value(s).
• Ancestors for the tagged dimension value(s), if any exist.

Note: The combination of a tagged dimension value and its ancestors is called a dimension
location.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

365Presentation API Overview | About query result objects returned by the MDEX Engine

You can use the dimension hierarchy information in an Oracle Commerce record object to build follow-on
navigation queries. For example, you can incorporate Find Similar functionality into your application by building
a navigation query from the tagged dimension values for the current record.

Example of a record object for the wine data
To better understand a record object returned by the MDEX Engine, we can look at an example of a record
object for Bottle A from a wine store.

In this example, our wine store data consists of two dimensions, one for Wine Type and another for Flavor.

The wine data can be represented logically in a hierarchy of dimension values, as follows:

The wine data can be represented as records that correspond to physical bottles of wine, as follows:

In this example, you can see that Bottle A has been tagged with two dimension values from the Flavor dimension.
This means that Bottle A has two dimension locations within the Flavor dimension.

The following illustration shows the record object for Bottle A:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Presentation API Overview | About query result objects returned by the MDEX Engine366

Obtaining additional object information
Understanding the contents of top-level objects is crucial to using and manipulating the MDEX Engine query
results.

Refer to one of the following, depending on your platform, for detailed information about the top-level objects
and all their members:

• Presentation API for Java Reference (Javadoc)

• Presentation API for .NET (HTML Help)

Oracle Commerce Guided Search MDEX Engine Developer's Guide

367Presentation API Overview | About query result objects returned by the MDEX Engine

Chapter 39

Working with the Presentation API

This section describes how to use the Presentation API classes in a Web application module.

Core classes of the Presentation API
To query the MDEX Engine and access the resulting data, use three core classes of the Presentation API:
HttpENEConnection, ENEQuery, and ENEQueryResults.

The Presentation API is based on three core classes:
• The HttpENEConnection class establishes connections with the MDEX Engine.
• The ENEQuery class builds the query to be sent to the MDEX Engine.
• The ENEQueryResults class contains the results of the MDEX Engine query.

This diagram illustrates the relationship between three core classes:

HttpENEConnection
The HttpENEConnection class functions as a repository for the hostname and port configuration for the
MDEX Engine that you want to query.

The signature for an HttpENEConnection constructor looks like this:
//Create an ENEConnection
ENEConnection nec = new HttpENEConnection(eneHost, enePort);

HttpENEConnection is one of two implementations of the ENEConnection interface for Java and
IENEConnection for .NET. This interface defines a query() method in Java, and a Query() method in
.NET for all implementing classes.

Note: The other implementation of this interface is AuthHttpENEConnection.

In Java, you call the query() method on an ENEConnection object to establish a connection with an MDEX
Engine and send it a query.

In .NET, you call the Query() method on an HttpENEConnection object to establish a connection with an
MDEX Engine and send it a query.

Note: The instantiation of an HttpENEConnection object does not open a persistent connection to
the MDEX Engine, nor does it initiate an HTTP socket connection. Instead, each issuance of the
HttpENEConnection object's query() method in Java or Query() method in .NET opens an HTTP
socket connection. This connection is closed after the query results have been returned. For some
queries, multiple connections are opened for multiple MDEX Engine requests.

Changing the timeout setting for HttpENEConnection
If a connection to the MDEX Engine experiences a timeout, the default timeout period is 90 seconds. You can
change the timeout setting for the HttpWebRequest objects (used by HttpENEConnection) to return.

By default, it takes 90 seconds for the HttpWebRequest objects (used by HttpENEConnection) to return,
after an MDEX Engine connection timeout.

To change this default timeout for all HttpWebRequest objects inside web.config, modify the httpRuntime
section as shown in the following example:
<system.web>
 <httpRuntime executionTimeout="00:00:30"/>
</system.web>

This change sets up a timeout of 30 seconds for a query request to time out.

ENEQuery and UrlENEQuery
You use the ENEQuery class, or its subclass UrlENEQuery, to create an MDEX Engine query.

Creating the query with UrlENEQuery
You use the UrlENEQuery class to parse MDEX Engine-specific parameters from the browser request query
string into MDEX Engine query parameters.

The code to accomplish this task looks like the following:

• Java:
//Create a query from the browser request query string
 ENEQuery nequery = new UrlENEQuery(request.getQueryString(), "UTF-8");

The browser request query string resides in the HTTPServletRequest object from the
javax.servlet.http package.

• .NET:
//Create a query from the browser request query string
 ENEQuery nequery = new UrlENEQuery(Request.QueryString.ToString(), "UTF-8");

Note: The browser request query string resides in the HttpRequest object from the System.Web
namespace in ASP.NET. ASP.NET exposes the HttpRequest object as the intrinsic request object.

The UrlENEQuery class ignores non-MDEX Engine-specific parameters, so this class is still safe to use when
additional application-specific parameters are needed (as long as they don’t conflict with the MDEX Engine
URL parameter namespace).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with the Presentation API | Core classes of the Presentation API370

Creating an empty ENEQuery object and populating it

Alternatively, you can use the ENEQuery class to instantiate an empty ENEQuery object, and then populate
it with MDEX Engine query parameters using a variety of setter methods in Java, or ENEQuery properties
in .NET.

The code to accomplish this task is similar to the example below:
• Java:
//Create an empty ENEQuery object and populate it using setter methods
ENEQuery nequery = new ENEQuery();
nequery.setNavDescriptors(dimensionValueIDs);
nequery.setERec(recordID);
...

• .NET:
//Create an empty ENEQuery object and populate it using properties
ENEQuery nequery = new ENEQuery();
nequery.NavDescriptors = dimensionValueIDs
nequery.ERec = recordID
...

Creating MDEX Engine queries from state information

You can use the ENEQuery class to construct a query from any source of state information, including non-Oracle
Commerce URL parameters, cookies, server-side session objects, and so forth. These are all application
design decisions and have no impact on the final MDEX Engine query or its results.

The following are all valid ways of creating an MDEX Engine query:

• Java:
ENEQuery nequery = new UrlENEQuery("N=123", "UTF-8");

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList("123");
nequery.setNavDescriptors(descriptors);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors =
 new DimValIdList((String)session.getAttribute("<variableName>");
nequery.setNavDescriptors(descriptors);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList(request.getParameter("N"));
nequery.setNavDescriptors(descriptors);

• .NET:
ENEQuery nequery = new UrlENEQuery("N=123", "UTF-8");

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList("123");
nequery.NavDescriptors = descriptors;

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList(Request.QueryString["N"]);
nequery.NavDescriptors = descriptors;

Oracle Commerce Guided Search MDEX Engine Developer's Guide

371Working with the Presentation API | Core classes of the Presentation API

Executing MDEX Engine queries
The ENEConnection query() method in Java, and the HttpENEConnection Query() method in .NET
use an ENEQuery object as its argument when they query the MDEX Engine.

The code to execute an MDEX Engine query looks like this:

Java Example
//Execute the MDEX Engine query
ENEQueryResults qr = eneConnectionObject.query(eneQueryObject);

.NET Example
//Execute the Navigation Engine query
ENEQueryResults qr = eneConnectionObject.Query(eneQueryObject);

ENEQueryResults
An ENEQueryResults object contains the results returned by the MDEX Engine.

An ENEQueryResults object can contain any type of object returned by the MDEX Engine. The type of object
that is returned corresponds to the type of query that was sent to the MDEX Engine. See "Four basic queries"
for more information.

Using the core objects to query the MDEX Engine
To build an MDEX Engine query and execute it, you use the three core classes of the Presentation API. Code
examples in this topic show you how to build and execute a query.

The code to build and execute a query would look similar to the following:

Java Example
//Create an ENEConnection
ENEConnection nec = new HttpENEConnection(eneHost, enePort);

//Create a query from the browser request query string
ENEQuery nequery = new UrlENEQuery(request.getQueryString(),
 "UTF-8");

//Execute the MDEX Engine query
ENEQueryResults results = nec.query(nequery);

//Additional Presentation API calls to retrieve query results
...

.NET Example
//Create an ENEConnection
HttpENEConnection nec = new HttpENEConnection(eneHost, enePort);

//Create a query from the browser request query string
ENEQuery nequery = new
UrlENEQuery(Request.QueryString.ToString(), "UTF-8");

//Execute the Navigation Engine query

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with the Presentation API | Using the core objects to query the MDEX Engine372

ENEQueryResults results = nec.Query(nequery);

//Additional Presentation API calls to retrieve query results
...

Four basic queries
While the queries you send to an MDEX Engine can become quite complex, there are four basic queries that
you should be familiar with.

These queries, and the type of objects they return, are listed below. Keep in mind that all of the returned objects
are contained in the ENEQueryResults object:

Returned object (type)Basic query

NavigationNavigation query

ERecRecord query

DimensionSearchResultDimension search query

AggrERecAggregated record query

You create the four basic queries using both UrlENEQuery and ENEQuery classes.

Building a basic query with the UrlENEQuery class
In order to create an MDEX Engine query based on a client browser request, the request URL must contain
MDEX Engine-specific query parameters. While the number of parameters that the UrlENEQuery class can
interpret is large, only a few of these parameters are required for the four basic queries.

The parameters that the UrlENEQuery class needs for the four basic queries are listed in this table:

Note: Controller.jsp or Controller.aspx in the examples below refer to the point of entry into
the UI reference implementation.

URL query string exampleParameter definitionURLparamBasic query
type

Java: controller.jsp?N=0 con¬
troller.jsp?N=123+456

The IDs of the dimension values
to be used for a navigation
query, or N=0 for the root
navigation request.

NNavigation

.NET: controller.aspx?N=0 con¬
troller.aspx?N=123+456

Java: controller.jsp?R=12345The specifier (string-based ID)
of the record to be returned.

RRecord
search .NET: controller.aspx?R=12345

Oracle Commerce Guided Search MDEX Engine Developer's Guide

373Working with the Presentation API | Four basic queries

URL query string exampleParameter definitionURLparamBasic query
type

Java: controller.jsp?D=red+wineThe dimension search terms.DDimension
search .NET: controller.aspx?D=red+wine

Java: con¬
troller.jsp?A=123&An=456+789&Au=Name

A: The specifier (string-based ID)
of the aggregated Oracle
Commerce record to be
returned.

A,An ,AuAggregated
record search

.NET: controller.aspx?A=123&
An=456+789&Au=Name

An: The navigation descriptors
that describe the record set from
which the aggregated record is
created.

Au: The rollup key used to
create the aggregated record.

You can combine the four basic queries in one URL, with the restriction that each type of query can appear
only once per URL. Each basic query, however, has no impact on the other queries. Combining queries in the
URL is used exclusively for performance improvement because it reduces the number of independent queries
that are queued up waiting for the MDEX Engine.

Building a basic query with the ENEQuery class
To create a query manually, you instantiate an empty ENEQuery object and then use the ENEQuery setter
methods (Java), or properties (.NET) to specify query parameters.

The number of setter methods (Java), or properties (.NET) available is large, but only a few are required to
create a basic query with ENEQuery.

The methods and properties required for ENEQueryare listed in the table below:

Required methods (Java) or properties (.NET)Basic query type

Java: setNavDescriptors(DimValIdList descriptors)Navigation

.NET: NavDescriptors

Java: setERecSpec(String recordSpec)Record search

.NET: ERecSpec

Note: A recordSpec, or record specifier, is a string-based identifier.

Java: setDimSearchTerms(String terms)Dimension search

.NET: DimSearchTerms

Java:Aggregated record

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with the Presentation API | Four basic queries374

Required methods (Java) or properties (.NET)Basic query type

setAggrERecSpec(String aggregatedRecordSpec),setAggrERecNavDescrip¬
tors(DimValIdList descriptors), setAggrERecRollupKey(String key)

.NET: AggrERecSpec, AggrERecNavDescriptors, AggrERecRollupKey

ENEQuery naming convention
Each ENEQuery setter and getter method in Java, and property in .NET follow a naming convention that
provides a quick way to determine the type of results the ENEQuery object will yield.

For example, setNavRecordFilter() in Java and NavRecordFilter in .NET are modifiers for a navigation
request, and navigation requests return Navigation objects.

The table describes methods and properties, their corresponding returned object types, and examples showing
usage in Java and .NET.

Note: See the Presentation API for Java Reference (Javadoc) and API Reference for .NET (HTML Help)
for complete information about all Presentation API classes, method (Java), and properties (.NET).

ExamplesReturned object (type)Method (Java) or property
(.NET) convention

Java: setERecs(), setERecSpec()ERecJava: setERec...()

.NET: ERec... .NET: ERecs, ERecSpec

Java: setNavNumERecs()NavigationJava: setNav...()

.NET: Nav... .NET: NavNumERecs

Java: setDimSearchTerms()DimensionSearchResultJava: setDimSearch...()

.NET: DimSearchTerms.NET: DimSearch...
Note: This object has
been deprecated.

Java: setAggrERecRollupKey()AggrERecJava: setAggrERec...()

.NET: AggrERec... .NET: AggrERecRollupKey

Methods of accessing data in basic query results
To access data in query results, you can use ENEQueryResults methods in Java and properties in .NET.

There is a distinct correlation between the MDEX Engine parameters passed in the URL (or the setter
methods (Java) and ENEQuery properties (.NET) used), and the methods or properties you can use to access
data in the ENEQueryResults object.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

375Working with the Presentation API | Four basic queries

For example, by including an N parameter in your query, a Navigation object is returned as part of the
ENEQueryResults, and you use the getNavigation() method in Java on the ENEQueryResults object,
or the ENEQueryResults object’s Navigation property in .NET to access that Navigation object.

You can use these ENEQueryResults methods or properties:If you used this to create your query:

Java: getNavigation()N or

.NET: NavigationJava: setNavDescriptors()

.NET: NavDescriptors

Java: getERecSpec()R or

.NET: ERecSpecJava: setERecSpec()

.NET: ERecSpec

Java: getDimensionSearch()D or

.NET: DimensionSearchJava: setDimSearchTerms()

.NET: DimSearchTerms

Java: getAggrERecSpec()A, An, Au or

.NET: AggrERecSpecJava:

setAggrERecSpec()

setAggrERecNavDescriptors()

setAggrERecRollupKey()

.NET:

AggrERecSpec

AggrERecNavDescriptors

AggrERecRollupKey

Methods of determining types of queries passed to the MDEX Engine
To determine what type of query is being passed or has been passed to the MDEX Engine, you can use
contains methods on both the ENEQuery and ENEQueryResults objects.

Your query uses:If these methods evaluate to true:

N orJava:

ENEQuery object: containsNavQuery() Java: setNavDescriptors()

ENEQueryResults object: containsNavi¬
gation()

.NET: NavDescriptors

.NET:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with the Presentation API | Four basic queries376

Your query uses:If these methods evaluate to true:

ENEQuery object: containsNavQuery()

ENEQueryResults object: ENEQueryRe¬
sults object:ContainsNavigation()

R orJava:

ENEQuery object: containsERecQuery() Java: setERecSpec()

ENEQueryResults object: contain¬
sERec()

.NET: ERecSpec

.NET:

ENEQuery object: ContainsERecQuery()

ENEQueryResults object: Contain¬
sERec()

D orJava:

ENEQuery object: ENEQuery object:con¬
tainsDimSearchQuery()

Java: setDimSearchTerms()

.NET: DimSearchTerms
ENEQueryResults object: ENEQueryRe¬
sults object:containsDimension¬
Search()

.NET:

ENEQuery object: ENEQuery object:Con¬
tainsDimSearchQuery()

ENEQueryResults object: ENEQueryRe¬
sults object:ContainsDimension¬
Search()

A, An, Au orJava:

ENEQuery object: containsAggrERec¬
Query()

Java:

setAggrERecSpec()
ENEQueryResultsobject: containsAggr¬
ERec()

.NET:

setAggrERecNavDescriptors()

setAggrERecRollupKey()

.NET:
ENEQuery object: ContainsAggrERec¬
Query() AggrERecSpec

AggrERecNavDescriptorsENEQueryResults object: ContainsAggr¬
ERec()

AggrERecRollupKey

Oracle Commerce Guided Search MDEX Engine Developer's Guide

377Working with the Presentation API | Four basic queries

Getting started with your own Web application
This section provides basic information about how to create a Guided Search application.

This section refers to the UI reference implementation, which is a sample Web application included with the
Platform Services package.

To start building your own application:

1. Define your architecture.
Without relying on the UI reference implementation, define what your application’s architecture requirements
are.
In Java, if you need to create JavaBeans or command classes, have a good definition of those requirements
independent of the current structure and architecture of the reference implementation.

2. Determine your page and page element definitions.
Again, this should be done without relying on the UI reference implementation. Most applications have a
navigation page and a record page, but each application has its own requirements. A typical navigation
page includes some sort of results section and query controls section, but this is also entirely dependent
on the application design. Whatever the resulting design is, produce a list of all required elements and the
pages they are associated with.

3. Evaluate each page element and decide which UI reference implementation module, if any, is the closest
match to the functionality required.
For example, if you have a dimension search results section, the misc_dimsearch_results module
may be a good starting point. Keep in mind that the UI reference implementation does not use all of the
Presentation API objects. You may need a component that has no closely corresponding reference module.
In this case, you need to develop this component from scratch or based on significant adjustments to an
existing module.

4. Create a new application framework (that is, an "empty" application) and begin building each required
element.
Refer to the corresponding UI reference implementation modules as necessary. If a new element is very
similar to an existing module, you may be able to start from that module’s framework and simply add
supporting HTML. If the new element is significantly different, however, you may want to use the existing
module as a guide only and construct the new code from scratch.

List of query exceptions
The ENEConnection query() method in Java and the HttpENEConnection Query() method in .NET throw an
exception if they encounter an error while attempting to query the MDEX Engine.

The following table describes the exceptions that can be thrown:

DescriptionException

Indicates an exception from the MDEX Engine. This
means that ENEConnection was able to contact the

ENEException

MDEX Engine but the MDEX Engine responded with
an error.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Working with the Presentation API | Getting started with your own Web application378

DescriptionException

Indicates an authentication exception from the MDEX
Engine. This means that ENEConnection was able

ENEAuthenticationException

to contact the MDEX Engine but the MDEX Engine
responded with an authentication error.

Indicates any connection problems in this method.ENEQueryException

Indicates a communication error in the
ENEConnection with the MDEX Engine.

ENEConnectionException

Indicates that the query() method in Java, and the
Query() method in .NET were called using an empty

EmptyENEQueryException

ENEQuery object. This exception occurs because the
ENEQuery object did not express any requests to the
MDEX Engine.

Indicates that the ENEQuery object does not contain
all the necessary query parameters.

PartialENEQueryException

Indicates an error while parsing a browser request
query string into individual MDEX Engine query
parameters.

UrlENEQueryParseException

Indicates the presence of incompatible modules in the
Guided Search application (discovered while attempting

VersionMismatchException

to process a query). Most often this exception signals
a version mismatch between the Presentation API and
the MDEX Engine itself.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

379Working with the Presentation API | List of query exceptions

Chapter 40

Using the Reference Implementation

This section describes the reference implementation, its components, and what you need to know to use it.

Reference implementation overview
The Guided Search distribution includes a reference implementation that provides skeleton examples of typical
navigation, record, and aggregated record pages and the components that make up these pages.

The reference implementation provides examples of modules, such as navigation controls, navigation descriptors,
and a record set. It is intended as a guide for creating MDEX Engine queries and building pages from the query
results. As such, you should feel free to use modules that are appropriate for your application’s requirements
and ignore those that aren’t.

Each reference implementation module has a banner with the module name located prominently at the top.

In Java, the banner is orange.

In .NET, the banner is red.

All modules that have dependencies are named in such a way as to indicate the dependency. For example,
the nav_records_header module is dependent on the nav_records module, which is dependent on the
nav module.

Dependencies exist only between modules that have a parent-child relationship. Modules that have no
parent-child relationship have no dependencies on each other and you can remove or modify them independently
of each other. See "Module maps" for a visual representation of the parent-child dependencies.

The purpose of the reference implementation
In order to use the reference implementation appropriately, it is important to understand what the reference
implementation is and is not.

The reference implementation is:
• A good code base for copying snippets of Presentation API calls.
• An excellent data inspection and data debugging application.
• A good template from which to build a rapid Guided Search prototype.

The Java version

The Java version of the reference implementation is not:
• A good web application architecture example.
• A good place for copying snippets of HTML.

The UI reference implementation is built using a significantly different architecture than that you would use for
a production-ready implementation. It does not use Java beans or classes, it has a heavy amount of in-line
Java, and a relatively small amount of HTML. We chose this architecture in an effort to help you better visualize
the ENEQueryResults object and its nested member objects. By merging in the Java code normally reserved
for classes and using a small amount of HTML in each module, we hoped to create a streamlined, easier-to-read
example of how the ENEQueryResults object is manipulated.

The .NET version
The .NET version of the reference implementation is not:

• A good web application architecture example.
• A good place for copying snippets of HTML.

The .NET version of the UI reference implementation is built using the ASP .NET architecture.

Four primary modules
The UI reference implementation has four primary modules.

These modules are:
• controller

• nav

• rec

• agg_rec

The controller module

The controller.jsp (Java) and controller.aspx(.NET) module is the entry point into the UI reference
implementation. It receives the browser request from the application server, formulates the MDEX Engine
query, establishes a connection with the MDEX Engine and sends the query. Based on the contents of the
query results, the controller module determines whether the request was a navigation, a record, or an
aggregated record request. For navigation requests, controller forwards the request to the nav module.

The nav module

The nav.jsp (Java) and nav.aspx (.NET) module, using other included nav modules, renders the main
navigation page, including the navigation controls, navigation descriptors, and a record set.

The rec module

For record requests, controller forwards the request to the rec.jsp (Java) and rec.aspx (.NET) module
which, along with its child rec_* modules, is responsible for rendering a record page for a single record.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | Four primary modules382

The agg_rec module

For aggregated record requests, controller forwards the request to the agg_rec.jsp (Java) and
agg_rec.aspx (.NET) module which, again, along with its child agg_rec_* modules, renders a page for an
aggregated record.

Non-MDEX Engine URL parameters
Although we have attempted to keep the UI reference implementation as pure as possible, it is still necessary
to use some non-MDEX Engine URL parameters to maintain application state independent of the MDEX Engine
query.

It is important, when building your own application, that you remove these parameters (unless they are required
by your application). For example, if the MDEX Engine location is specified in a configuration file, it is no longer
necessary to maintain or support the eneHost and enePort parameters.

The non-MDEX Engine URL parameters that are used in the UI reference implementation are described in
the following table:

DescriptionParameter

Used by the misc_ene_switch module to
dynamically set the MDEX Engine hostname with each
request.

eneHost

This parameter is particularly useful during
development, but should be removed from a production
deployment.

Used by the misc_ene_switch module to
dynamically set the MDEX Engine port with each
request.

enePort

As with eneHost, this parameter is particularly useful
during development, but should be removed from a
production deployment.

Used by nav_records and nav_supplemental to
identify the property key that should be used to
represent the name of a record.

displayKey

This parameter is useful for data inspection where
different data sets may require different property keys
to name the records.

You should remove the displayKey parameter from
a production deployment as the record names should
never change.

Provides a simple means of hiding properties for each
record in the nav_records module.

hideProps

Oracle Commerce Guided Search MDEX Engine Developer's Guide

383Using the Reference Implementation | Non-MDEX Engine URL parameters

DescriptionParameter

Provides a simple means of hiding the data that is
returned with each supplemental object in the
nav_supplemental module.

hideSups

Provides a simple means of hiding the data that is
returned with each supplemental merchandising object
in the nav_merch module.

hideMerch

About JavaScript files
The UI reference implementation includes several JavaScript files to support modules that use forms.

These JavaScript files contain functions that combine the URL from the current browser request with form data
to create the new browser requests. The JavaScript was written to avoid the use of complicated forms that
use hidden elements to maintain the MDEX Engine parameters from the current browser request.

The two modules that use JavaScript are:
• Java: misc_ene_switch.jsp

.NET:misc_ene_switch.aspx

• Java: misc_searchbox.jsp

.NET: misc_searchbox.aspx

The JavaScript files that support these modules are misc_ene_switch.js and misc_searchbox.js,
respectively.

In addition, both JavaScript files use standard functions contained in a utility JavaScript file called util.js.

The use of JavaScript is completely optional. Using the ENEQuery alternatives, you can create a form-posting
solution that avoids the use of JavaScript altogether. You must remember, however, that if you create your
query using one of these alternatives, you are potentially left in a state where the browser request URL no
longer reflects the ENEQuery. In this instance, the JavaScript returned with the page will not be useful, because
it references a browser request that has since been modified. Given this caveat, Oracle recommends that you
use only he JavaScript files when:

• You use the UrlENEQuery class to build your query.
• You use redirect calls in the controllermodule to redirect the modified request back to the controller

module using the new parameters. See comments in the controller.jsp (Java), and controller.aspx
(.NET) files for more details.

Module maps
The following diagrams show the relationship between the various UI reference implementation modules. The
diagrams are broken into the four primary modules for Java and .NET.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | About JavaScript files384

Java module maps

The controller.jsp (Java) module is the entry point into the UI reference implementation. It receives the
browser request from the application server, formulates the MDEX Engine query, establishes a connection
with the MDEX Engine and sends the query. Based on the contents of the query results, the controller
module determines whether the request was a navigation, a record, or an aggregated record request. For
navigation requests, controller forwards the request to the nav module.

The following diagram shows the controller module map:

The nav.jsp (Java), using other included nav modules, renders the main navigation page, including the
navigation controls, navigation descriptors, and a record set.

The following diagram shows the nav module map:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

385Using the Reference Implementation | Module maps

For record requests, controller forwards the request to the rec.jsp (Java) module which, along with its child
rec_* modules, is responsible for rendering a record page for a single record.

The following diagram shows the rec module map:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | Module maps386

For aggregated record requests, controller forwards the request to the agg_rec.jsp (Java) module
which, again, along with its child agg_rec_* modules, renders a page for an aggregated record.

The following diagram shows the agg_rec module map:

.NET module maps

The following diagram shows the controller module map:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

387Using the Reference Implementation | Module maps

The following diagram shows the nav module map:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | Module maps388

The following diagram shows the rec module map:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

389Using the Reference Implementation | Module maps

The following diagram shows the agg_rec module map:

Module descriptions
The table in this topic provides brief descriptions of the UI reference implementation modules.

Refer to the comments in the individual module files for more detailed information. Reference implementation
module files are located in:

• Java:
• $ENDECA_REFERENCE_DIR/endeca_jspref on UNIX
• %ENDECA_REFERENCE_DIR%\endeca_jspref on Windows

• .NET:

ENDECA_REFERENCE_DIR\endeca_ASP.NETref

Note: In the following table, the module names do not contain file extensions. Unless otherwise noted,
it is assumed that the modules are present in both Java and .NET environments, and that the file
extensions are .jsp for Java and .aspx for .NET. Some modules have specific file extensions; this in
indicated in the module name. Similarly, some modules are specific to Java or .NET environments only;
this is indicated in the module description.

DescriptionModule

Initiates the primary MDEX Engine query and determines which type of
page to render (navigation, record, or aggregated record).

controller

In Java only: Functions as a repository for variables that do not change
across requests.

constants.jsp

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | Module descriptions390

DescriptionModule

Functions as a repository for special event handlers that are run
automatically when certain ASP events occur.

global.asax

Handles error conditions.error

A general-use page header used by all page types (navigation, record,
aggregated record, and error).

misc_header

A general-use page footer used by all page types (navigation, record,
aggregated record, and error).

misc_footer

A collection of utility routines used by various JavaScript functions to
create new queries from browser request URLs.

util.js

Adds logging and reporting capability to your application. This module
contains the key/value pairs required by each Oracle Commerce report
element.

logging_functions

Render the MDEX Engine switching widget that enables you to
dynamically change the MDEX Engine hostname and port.

misc_ene_switch and

misc_ene_switch.js

Creates the main navigation page, including navigation controls,
navigation descriptors, and a record set.

nav

Displays autocorrection for the user’s search terms.nav_autocorrect

Displays alternative suggestions for the user’s search terms.nav_didyoumean

Displays basic navigation controls. This module should be used in
conjunction with nav_breadcrumbs_stack

nav_controls

Renders a set of controls that enable you to filter record results according
to a specified range. Works with numeric properties only.

nav_range_controls and
nav_range_controls.js

Display the navigation descriptors for the current query.nav_breadcrumbs_stack

Displays merchandising-specific supplemental objects, if any exist, that
accompany the results of a navigation query.

nav_merch

Displays supplemental objects, if any exist, that accompany the results
of a navigation query.

nav_supplemental

Oracle Commerce Guided Search MDEX Engine Developer's Guide

391Using the Reference Implementation | Module descriptions

DescriptionModule

Renders the record set results for the current query in a non-formatted
display.

nav_records

Displays a record count and other controls to handle the record set
display. Also displays an aggregated record count when records have
been aggregated.

nav_records_header

Displays controls for paging through the record set, when applicable.nav_records_paging

Renders a list of records that have been aggregated based on a rollup
key.

nav_agg_records

Displays a record count and other controls to handle the record set
display along with an aggregated record count.

nav_agg_records_header

Displays controls for paging through a list of aggregated records, when
applicable.

nav_agg_records_paging

Render a basic searchbox widget.misc_searchbox and

misc_searchbox.js

Displays the results of a dimension search.misc_dimsearch_results

Displays a record page for an individual record.rec

Displays the dimension values that have been tagged to the current
record.

rec_dimvals_trees

Displays the properties for the current record.rec_properties

Displays an aggregated record page for one aggregated record.agg_rec

Displays the properties associated with an aggregated record’s
representative record. Displays properties derived from performing
calculations on the aggregated record’s constituent records.

agg_rec_properties

Displays the constituent records associated with the current aggregated
record.

agg_rec_records

Implements integration of the Coremetrics Online Analytics product.coremetrics

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Using the Reference Implementation | Module descriptions392

Tips on using the UI reference implementation modules
This topic contains notes to keep in mind as you are working with the reference modules.

Consider the following characteristics:
• The page components produced by each module are wrapped in <table> tags.
• Some of the child modules have dependencies on their parents (for example, the nav_records module

relies on the nav module to retrieve a Navigation object). The module maps provide visual representation
of module dependencies.

• There are no dependencies across unrelated features (for example, there are no dependencies between
the nav_controls and nav_records modules).

• All modules reside in the same directory.
• JavaScript routines are provided on a per module basis for those modules with form elements

(misc_ene_switch, misc_searchbox, and nav_range_controls).
• There are no cascading stylesheets.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

393Using the Reference Implementation | Tips on using the UI reference implementation modules

Chapter 41

Running the Reference Implementations

You can use the sample reference implementation (a Web application) to verify that your Guided Search
components are installed and working properly. The reference applications are included as part of the Platform
Services package. Updated APIs for the reference applications are distributed with the Presentation API.

The JSP diagnostic and debugging application
The JSP diagnostic and debugging application can be installed in an application server with J2EE support
such as Apache Tomcat. This application is suitable only for use as a debugging and diagnostic tool. Oracle
recommends that you not use it as the basis for application development.

Setting up the JSP application on Windows
While this section assumes that you use the Tomcat server, you can use other application servers.

The JSP application depends on several paths related to the Tomcat Web server and Java SDK. This section
assumes the following paths in your environment:

C:\jakarta-tomcat-versionThe location of the Tomcat installation

C:\j2sdk-versionThe location of the Java SDK installation

In the following procedures, adjust the paths as needed for your environment.

To set up the JSP application:

1. Copy the reference implementation user interface directory %ENDECA_REFERENCE_DIR%\endeca_jspref
into the C:\jakarta-tomcat-version\webapps directory.
The %ENDECA_REFERENCE_DIR% variable is set as part of the Platform Services installation.

2. (Optional.) Navigate to C:\jakarta-tomcat-version\conf and open the server.xml file in a text
editor. You can modify the file as follows:
a) Change the port that Tomcat listens on for a shutdown command from its default of 8005:

<Server port="8005" shutdown="SHUTDOWN">

b) Change the Tomcat HTTP listening port from its default of 8080:
<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector port="8080" ...

c) Save and close the server.xml file.

3. If your version of Java requires it, make sure that the JAVA_HOME environment variable is set to the location
of the Java SDK directory. For example, the location might be C:\j2sdk-version .

Note: See the Tomcat documentation for more information about your version of the Tomcat server
to check if it requires a JAVA_HOME environment variable.

To set the JAVA_HOME environment variable:

a) From the Windows Control Panel, select System.
b) Go to the Advanced tab and select Environment Variables.
c) In the System Properties section, locate and select JAVA_HOME.

If JAVA_HOME does not exist, select New, and then in the Variable Name field, enter JAVA_HOME

d) In the Variable Value field, enter the path of the Java SDK directory and click OK.
e) Click OK to close the Environment Variables window.
f) Click OK to close the System Properties window.

4. Copy the following file from the PresentationAPI\<version>\java\lib directory to
C:\jakarta-tomcat-version\webapps\endeca_jspref\WEB-INF\lib:

• endeca_navigation.jar (Presentation API)

5. Copy the following file from the $ENDECA_ROOT/lib/java/ directory to C:\jakarta-tomcat-ver¬
sion\webapps\endeca_jspref\WEB-INF\lib:

• endeca_logging.jar (Logging API)

6. Copy the following Report Generator file from the %ENDECA_ROOT%\lib\java directory to
C:\jakarta-tomcat-version\webapps\endeca_jspref\WEB-INF\lib:

• rg.jar

7. Start the Tomcat server. See the Tomcat documentation for specific instructions.

The JSP application is set up and you can now use it for diagnostics and debugging.

Setting up the JSP reference implementation on UNIX
While this section assumes that you use the Tomcat server, you can use other application servers.

The JSP reference implementation depends on several paths related to the Tomcat Web server and Java
SDK. This section assumes the following path names:

/usr/local/tomcat-versionThe location of the Tomcat installation

/usr/local/j2sdk-versionThe location of the Java SDK installation

Note: The Java SDK installation must consist of the entire JDK, and not just the location of a copied or
linked Java binary.

To set up the JSP reference implementation:

1. Copy the reference implementation from $ENDECA_REFERENCE_DIR/endeca_jspref to the Tomcat
/webapps directory (for example, /usr/local/tomcat-version/webapps).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Running the Reference Implementations | The JSP diagnostic and debugging application396

The $ENDECA_REFERENCE_DIR variable is set as part of the Platform Services installation.

2. (Optional.) Go to the /usr/local/tomcat-version/conf directory and open the server.xml file in
a text editor. You can modify the file as follows:
a) Change the port that Tomcat listens on for a shutdown command from its default of 8005:

<Server port="8005" shutdown="SHUTDOWN">

b) Change the Tomcat HTTP listening port from its default of 8080:
<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector port="8080" ...

c) Save and close the server.xml file.

3. Set the appropriate Tomcat environment variables.

• For csh and similar shells, set:
setenv JAVA_HOME /usr/local/j2sdk-version
setenv CATALINA_BASE /usr/local/tomcat-version

• For bash, set:
export JAVA_HOME=/usr/local/j2sdk-version
export CATALINA_BASE=/usr/local/tomcat-version

Generally these commands should be placed in a script run at the startup of the shell so that the variables
are set for future use.

4. Copy the following file from the PresentationAPI/<version>/java/lib directory to
/usr/local/tomcat-version/webapps/endeca_jspref/WEB-INF/lib:

• endeca_navigation.jar (Presentation API)

5. Copy the following file from the $ENDECA_ROOT/lib/java/ directory to
/usr/local/tomcat-version/webapps/endeca_jspref/WEB-INF/lib:

• endeca_logging.jar (Logging API)

6. Copy the following Report Generator file from the $ENDECA_ROOT/lib/java directory to
/usr/local/tomcat-version/webapps/endeca_jspref/WEB-INF/lib:

• rg.jar

7. Start the Tomcat server.

The JSP reference implementation is set up and you can now test your Guided Search installation with it.

Enabling the Analytics controls in the JSP reference implementation
The JSP reference implementation includes a set of Analytics controls that are not displayed by default. These
controls are useful for learning about, developing, and debugging Analytics statements.

These instructions pertain to the JSP reference implementation that runs under the Tools Service. If your JSP
reference is running on a standalone Tomcat, use the same instructions, substituting the path names in your
Tomcat installation for the ones below

To enable the Analytics controls in the JSP reference implementation:

1. After installing the Workbench package, place CordaEmbedder.jar in this directory:

Oracle Commerce Guided Search MDEX Engine Developer's Guide

397Running the Reference Implementations | The JSP diagnostic and debugging application

Windows: %ENDECA_TOOLS_ROOT%\server\webapps\endeca_jspref\WEB-INF\lib•
• UNIX: $ENDECA_TOOLS_ROOT/server/webapps/endeca_jspref/WEB-INF/lib

Note: This file is available as part of the Corda Server installation package and is required by the
reference implementation even if you do not intend to use charts.

2. Edit the web.xml file (which is in the WEB-INF directory from step 1) and add the definition of the eneAn¬
alyticsEnabled parameter, as in this example:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- This file identifies these directories as containing
a Web application. -->
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <context-param>
 <param-name>eneAnalyticsEnabled</param-name>
 <param-value>1</param-value>
 <description>Flag to enable Oracle Commerce Analytics controls</descrip¬
tion>
 </context-param>
</web-app>

3. Restart the Tools Service.
4. In a Web browser, navigate to the JSP reference implementation. The Analytics controls will be visible.

Verifying your installation with the JSP reference application
After you have successfully run a baseline update and started the Guided Search components, you can use
the JSP reference implementation to navigate and search your data.

The JSP reference application is installed as part of Workbench installation and runs in the Tools Service.

To verify a Guided Search setup with the JSP reference application:

1. Open a Web browser.
2. In the Address box, enter the following URL:

http://WorkbenchHost:8006/endeca_jspref

Replace WorkbenchHost with the name of the machine that is running Workbench. If you used a different
port when you configured Workbench, substitute that port for 8006.
This URL brings you to a page with a link called ENDECA-JSP Reference Implementation.

3. Click the ENDECA-JSP Reference Implementation link.
4. Enter the host name and port of the machine that the MDEX Engine is running on. For example, enter

localhost and 15000. Click Go.

You should see the reference implementation displaying application data.

Running the ASP.NET reference implementation
The ASP.NET reference implementation runs in IIS 6.0 on Windows Server 2003 64-bit systems, and requires
some configuration before you deploy the application.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Running the Reference Implementations | Running the ASP.NET reference implementation398

Configuring the 64-bit version of ASP.NET
Before you set up the reference application, make sure you have enabled the 64-bit version of ASP.NET.

The ASP.NET reference implementation supports versions 2.0 SP1, 3.0, and 3.5 of ASP.NET.

To install the 64-bit version of ASP.NET:

1. From a command prompt, issue the following command to disable 32-bit mode:
cscript %SYSTEMDRIVE%\inetpub\adminscripts\adsutil.vbs SET W3SVC/AppPools/En¬
able32bitAppOnWin64 0

2. Issue the following command to install the 64-bit version of ASP.NET 2.0 and to install the script maps at
the IIS root:
%SYSTEMROOT%\Microsoft.NET\Framework64\v2.0.50727\aspnet_regiis.exe -i

Note: The .NET DLLs packaged with this release are compiled using the 64-bit version of the .NET
Framework. They should be compatible with .NET Frameworks 2.0 SP1, 3.0, and 3.5.

Setting up the ASP.NET reference implementation
In this section we assume that you are using IIS 6.0 and .NET 2.0. The reference implementation supports
versions 2.0 SP1, 3.0, and 3.5 of ASP.NET.

You must make sure that the 64-bit version of ASP.NET is configured and that you have enabled the ASP
pages as an extension in the Microsoft IIS before proceeding with setup of the ASP.NET reference
implementation.

To set up the ASP.NET reference implementation:

1. Copy all the Endeca.Navigation.*.dll files from PresentationAPI\<version>\dotNet\lib to:
C:\Endeca\PlatformServices\reference\endeca_ASP.NETref\bin.

2. Copy the Endeca.Logging.dll file from $ENDECA_ROOT/lib/Endeca.NET/ to: C:\Endeca\Plat¬
formServices\reference\endeca_ASP.NETref\bin.

3. Modify the following IIS settings:
a) From the Windows Control Panel, select Administrative Tools > Internet Information Services.
b) In the Internet Information Services tree pane, expand the machine icon for the local machine.
c) Right-click Default Website.
d) Select New > Virtual Directory.

Note: If you are using IIS 7, you should create an Application rather than a Virtual Directory.

e) Fill in the following fields in the Virtual Directory Creation wizard as follows:

ValueField

endeca_ASP.NETrefVirtual Directory Alias

Browse to the location of the ASP.NET reference
implementation. The default location is:

Website Content Directory

c:\Endeca\PlatformServices\reference\
endeca_ASP.NETref

Leave the default settings in place.Access Permissions

Oracle Commerce Guided Search MDEX Engine Developer's Guide

399Running the Reference Implementations | Running the ASP.NET reference implementation

The Virtual Directory Creation wizard opens.
f) Click Next, then click Finish.
g) In the IIS Manager MMC snap-in, to set the virtual directory name as an application name, right-click

the virtual directory, and select Virtual Directory > Application settings > Create. The application
name can be set to any name, and you can use the alias you used for the virtual directory as an example.
Set Execute Permissions to Scripts Only.

h) Close the Internet Information Services window.

The ASP.NET reference implementation is set up and you can now test your Guided Search installation with
it.

Testing your Guided Search installation with the ASP.NET reference
implementation

After you have set up the ASP.NET reference implementation, you can test your Guided Search installation
with it.

To test the Guided Search installation with the ASP.NET reference implementation:

1. Open Internet Explorer.
2. Navigate to the following location: http://EndecaServerNameorIP/endeca_ASP.NETref

EndecaServerNameorIP refers to the machine on which you set up the reference application.
For example, assuming that you use the default IIS port of 80: http://localhost/endeca_ASP.NETref

3. From here, click Oracle Commerce .NET Reference Implementation to launch the ASP.NET Reference
Implementation.
The ASP.NET Reference Implementation asks you for a host and port of the MDEX Engine server.

4. Enter the host name as the server name or IP of the machine on which you installed the MDEX Engine.
5. Enter the port number you specified for the MDEX server in the Deployment Template AppConfig.xml

or in the remote_index.script control script. This is the port on which the MDEX Engine accepts
queries.

6. Click Go.
The ASP.NET reference implementation opens.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Running the Reference Implementations | Running the ASP.NET reference implementation400

Appendix A

Oracle Commerce URL Parameter Reference

This appendix provides a reference to the URL-based syntax for navigation, record, aggregated record, and
dimension search queries.

About the Oracle Commerce URL query syntax
The Oracle Commerce query syntax defines how the client browser communicates with the Presentation API.

This appendix describes two methods:
• URL parameters
• ENEQuery setter methods (Java) and properies (.NET)

URL parameter description format

The tables in this appendix describe the Oracle Commerce query parameters, using the following characteristics:

The query parameter, which is case-sensitive.Parameter

The common name for the query parameter.Name

The corresponding ENEQuery Java setter method for the parameter.Java setter method

The corresponding ENEQuery .NET setter property for the parameter..NET setter property

The type of valid value for the query parameter.Type

The basic MDEX result object that this parameter is associated with.Description

A description of the query parameter, including information about its arguments.Object

Additional query parameters that are required to give this parameter context.Dependency

In addition, an example of the query parameter use is given after the table.

About primary parameters

The following parameters are primary parameters:
• N (Navigation)
• R (Record)
• A (Aggregated Record)
• An (Aggregated Record Descriptors)

• Au (Aggregated Record Rollup Key)
• D (Dimension Search)

All other parameters are secondary. In order to use the secondary parameters in a query, you must include
the primary parameters associated with that query type. For example, you cannot use a Dimension Search
Scope (Dn) parameter without a Dimension Search (D) parameter

Note that the A, An, and Au parameters are mandatory for all aggregated record queries and must always be
used together.

N (Navigation)
The N parameter sets the navigation field for a query.

NParameter

NavigationName

ENEQuery.setNavDescriptors()Java setter method

ENEQuery.NavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

A unique combination of dimension value IDs that defines each navigation object. The
root navigation object is indicated when zero is the only value in the parameter.

Description

NavigationObject

noneDependency

Examples
/controller.php?N=0

/controller.php?N=132831+154283

Nao (Aggregated Record Offset)
The Nao parameter sets the navigation aggregated record list offset.

NaoParameter

Aggregated Record OffsetName

ENEQuery.setNavAggrERecsOffset()Java setter method

ENEQuery.NavAggrERecsOffset.NET setter property

intType

Specifies a number indexating the starting index of an aggregated record list. This
parameter is similar to No (Record Offset) but for aggregated records.

Description

NavigationObject

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | N (Navigation)402

N, NuDependency

Examples
/controller.php?N=0&Nao=3&Nu=ssn

/controller.php?N=132831+154283&Nao=15&Nu=ssn

Ndr (Disabled Refinements)
The Ndr parameter lets you display disabled refinements.

NdrParameter

Disabled RefinementsName

setNavDisabledRefinementsConfigJava setter method

NavDisabledRefinementsConfig.NET setter property

<basedimid>+<textsearchesinbase>+<true/false>+<eqlfilterin¬
base>+<true/false><rangefiltersinbase>+<true/false>+...

Type

Determines which dimension refinements are not available for navigation in the current
navigation state but would have been available if the top-level navigation filters, such

Description

as previously chosen dimensions, range filters, EQL filters, text filters or text searches
were to be removed from this navigation state.

Configuration settings include:
• <basedimid>— an ID of a dimension that is to be included in the base navigation

state.
• <eqlfilterinbase> — a true or false value indexating whether the EQL filter

is part of the base navigation state.
• <textsearchesinbase> — a true or false value indexating whether text

searches are part of the base navigation state.
• <rangefiltersinbase>— a true or false value indexating whether range filters

are part of the base navigation state.

When the Ndr parameter equals zero, no disabled refinement values are returned for
any dimensions (which improves performance).

NavigationObject

NDependency

Examples

The first example illustrates a query that enables disabled refinements to be returned. In this example, the
Ndr portion of the UrlENEQuery URL indicates that:

• Text search should be included in the base navigation state.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

403Oracle Commerce URL Parameter Reference | Ndr (Disabled Refinements)

• The navigation selections from the dimension with ID 100000 should be included in the base navigation
state.

/graph?N=110001+210001&Ne=400000&Ntk=All&Ntt=television&Ndr=textsearchesin¬
base+true+basedimid+100000

In the second example of a query, in addition to text searches, the EQL filters and range filters are also listed
(they are set to false):
N=134711+135689&Ntk=All&Ntt=television&Ndr=basedimid+100000+textsearchesin¬
base+true+eqlfilterinbase+false+rangefiltersinbase+false

Ne (Exposed Refinements)
The Ne parameter sets the dimension navigation refinements that will be exposed.

NeParameter

Exposed RefinementsName

ENEQuery.setNavExposedRefinements()Java setter method

ENEQuery.NavExposedRefinements.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Determines which dimension navigation refinements are exposed. When the Ne
parameter equals zero, no refinement values are returned for any dimensions (which

Description

improves performance). When this parameter contains valid dimension value IDs,
refinement values are only returned for that dimension.

NavigationObject

NDependency

Examples
/controller.php?N=132831+154283&Ne=0

/controller.php?N=132831+154283&Ne=134711

Nf (Range Filter)
The Nf parameter sets the range filters for the navigation query.

NfParameter

Range FilterName

ENEQuery.setNavRangeFilters()Java setter method

ENEQuery.NavRangeFilters.NET setter property

<string>|[[LT|LTEQ|GT|GTEQ] <numeric value> |BTWN <numeric value> <numeric
value>]

Type

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Ne (Exposed Refinements)404

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the range filters for the navigation query on properties, or for the navigation query
on dimensions. If your application is built on the Assembler, you must separate multiple

Description

range filters with a double vertical pipe (||) delimiter. If you are using the Presentation
API, use a single pipe (|) delimiter, instead.

Accepts property and dimension values of Numeric type (Integer, Floating point,
DateTime), or Geocode type. For values of type Floating point, you can specify values
using both decimal (0.00...68), and scientific notation (6.8e-10).

NavigationObject

NDependency

Examples
/controller.php?N=0&Nf=Price|GT+15

/controller.php?N=0&Nf=Price|BTWN+9+13

/controller.php?N=0&Nf=Location|GCLT+42.365615,-71.075647+10

Nmpt (Merchandising Preview Time)
The Nmpt parameter sets a preview time for the application.

NmptParameter

Merchandising Preview TimeName

ENEQuery.setNavMerchPreviewTime()Java setter method

ENEQuery.NavMerchPreviewTime.NET setter property

<string> value of the form:
YYYY-MM-DDTHH:MM

Type

The letter T is a separator between the day value and the hour value. Time zone
information is omitted.

Sets a preview time that overrides the clock of the MDEX Engine. Enables the user
to preview the results of dynamic business rules that have time values associated with
their triggers. This is a testing convenience for rules with time triggers.

Description

NavigationObject

NDependency

Example
/controller.php?N=0&Nmpt=2006-10-15T18:00&Ne=1000

Oracle Commerce Guided Search MDEX Engine Developer's Guide

405Oracle Commerce URL Parameter Reference | Nmpt (Merchandising Preview Time)

Nmrf (Merchandising Rule Filter)
The Nmrf parameter sets a dynamic business rule filter for the navigation query.

NmrfParameter

Merchandising Rule FilterName

ENEQuery.setNavMerchRuleFilter()Java setter method

ENEQuery.NavMerchRuleFilter.NET setter property

This filter can include strings, integers, separator characters, Boolean operators,
wildcard operators, and Oracle Commerce property values.

Type

This parameter can be used to specify a rule filter that restricts the results of a
navigation query to only the records that can be promoted by rules that match the
filter.

Description

NavigationObject

NDependency

Examples
/controller.php?N=0&Nmrf=or(state:pending,state:approved)

/controller.php?N=0&Nmrf=or(1,5,8)

When Nmrf is present in the query, all rules that successfully triggered for that nav state, even if INACTIVE,
are returned. If you do not use an Nmrf filter, the ACTIVE/INACTIVE property on the rules is honored, and
INACTIVE rules do not get returned.

The workaround is to append a filter for the ACTIVE state in the Nmrf filter to prevent inactive rules from being
applied; for example:
Nmrf=AND(endeca.internal.workflow.state:ACTIVE,16)

The filter above returns only the rule with a state of ACTIVE and a rule ID of 16.

No (Record Offset)
The No parameter sets the navigation record list offset.

NoParameter

Record OffsetName

ENEQuery.setNavERecsOffset()Java setter method

ENEQuery.NavERecsOffset.NET setter property

intType

The offset defines the starting index for a navigation object’s record list. If the No
parameter is 20, the list of items returned in a navigation object’s record list will begin
with item 21. (Offset is a zero-based index.)

Description

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Nmrf (Merchandising Rule Filter)406

This parameter enables users to page through a long result set, either directly or step
by step. If an offset is greater than the number of items in a navigation object’s record
list, then the record list returned will be empty.

NavigationObject

NDependency

Example
/controller.php?N=132831+154283&No=20

Np (Records per Aggregated Record)
The Np parameter sets the maximum number of records to be returned in each aggregated record.

NpParameter

Records per Aggregated RecordName

ENEQuery.setNavERecsPerAggrERec()Java setter method

ENEQuery.NavERecsPerAggrERec.NET setter property

0, 1, or 2Type

Specifies the number of records to be returned with an aggregated record:Description
• A value of 0 means that no records are returned with each aggregated record.
• A value of 1 means that a single representative record is returned with each

aggregate record.
• A value of 2 means that all records are returned with each aggregated record.

To improve performance, use 0 or 1.

NavigationObject

N, NuDependency

Example
/controller.php?N=0&Nu=ssn&Np=0

Nr (Record Filter)
The Nr parameter sets a record filter on a navigation query.

NrParameter

Record FilterName

ENEQuery.setNavRecordFilter()Java setter method

ENEQuery.NavRecordFilter.NET setter property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

407Oracle Commerce URL Parameter Reference | Np (Records per Aggregated Record)

<string>Type

This parameter can be used to specify a record filter expression that will restrict the
results of a navigation query.

Description

NavigationObject

NDependency

Examples
/controller.php?N=0&Nr=FILTER(MyFilter)

/controller.php?N=0&Nr=OR(sku:123,OR(sku:456),OR(sku:789))

Nrc (Dynamic Refinement Ranking)
The Nrc parameter sets a dynamic refinement configuration for the navigation query.

NrcParameter

Dynamic Refinement RankingName

ENEQuery.setNavRefinementConfigs()Java setter method

ENEQuery.NavRefinementConfigs.NET setter property

<string>+<string>+<string>...Type

Sets one or more dynamic refinement configurations for the navigation query. Each
dynamic refinement configuration is delimited by the pipe character and must have
the id setting.

Description

The configuration settings are:
• id indicates the dimension value ID
• exposed either true if the dimension value's refinements are exposed or false if

not
• showcounts indicates whether to show counts for a dimension value's

refinements. Valid values are true to indicate counts are shown and false to
indicate counts are not shown.

• synonyms indicates whether to show synonyms for a navigation query. Valid
values are true to show synonyms and false to not show synonyms.

• dynrank whether the dimension value has Dynamic Ranking enabled: enabled,
disabled, or default

• dyncount maximum number of dimension values to return: either default or an
integer >= 0

• dynorder sort order: static, dynamic, or default
Omitting a setting or specifying default results in using the setting in Developer
Studio.

NavigationObject

NDependency

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Nrc (Dynamic Refinement Ranking)408

Example
/controller.php?N=0&Nrc=id+134711+exposed+true+dynrank+enabled+dyncount+de¬
fault+dynorder+dynamic+showcounts+true|id+132830+dyncount+7

This example returns synonyms for the dimension value with an id of 700000 and does not return synonyms
for the dimension value with an id 800000.
/controller.php?N=0&Nrc=id+700000+synonyms+true|id+800000+synonyms+false

Nrcs (Dimension Value Stratification)
The Nrcs parameter sets the list of stratified dimension values for use during refinement ranking by the MDEX
Engine.

NrcsParameter

Dimension Value StratificationName

ENEQuery.setNavStratifiedDimVals()Java setter method

ENEQuery.NavStratifiedDimVals.NET setter property

int,int;int,int;...Type

Sets the stratification configuration for a list of dimension values. The stratified
dimension values are delimited by semi-colons (;) and each stratified dimension value
is in the format:
stratumInt,dimvalID

Description

where dimvalID is the ID of the dimension value and stratumnt is a signed integer that
signifies that stratum into which the dimension value will be placed. For stratumInt, a
positive integer will boost the dimension value while a negative integer will bury it.
Dimension values that are not specified will be assigned the strata of 0.

NavigationObject

NDependency

Example
/controller.php?N=0&Nrcs=2,4001;2,3429;1,4057;1,4806;1,4207;-1,5408;-1,4809

Nrk (Relevance Ranking Key)
The Nrk parameter sets the search interface to be used when using relevance ranking in a record search.

NrkParameter

Relevance Ranking KeyName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<search interface>Type

Oracle Commerce Guided Search MDEX Engine Developer's Guide

409Oracle Commerce URL Parameter Reference | Nrcs (Dimension Value Stratification)

Sets the search interface to be used when using relevance ranking in a record search.
Note that the search interface is not required to have a relevance ranking strategy
implemented.

Description

Dimension names or property names are not supported for this parameter, only search
interfaces. In addition, this parameter does not support multiple search interfaces;
therefore, the use of a pipe (|) is not enabled.

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk, Ntt,
and Ntx.

NavigationObject

N, Nrt, NrrDependency

Example
/controller.php?N=0&Ntk=P_Desc&Ntt=sonoma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Nrm (Relevance Ranking Match Mode)
The Nrm parameter sets the relevance ranking match mode to be used to rank the results of the record search.

NrmParameter

Relevance Ranking Match ModeName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>Type

With the exception of MatchBoolean, all of the search modes are valid for use: MatchAll,
MatchPartial, MatchAny, MatchAllAny, MatchAllPartial, and MatchPartialMax.

Description

Attempting to use MatchBoolean with this parameter causes the record search results
to be returned without relevance ranking.

This parameter does not support multiple match modes; therefore, the use of a pipe
(|) is not enableed.

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk, Ntt,
and Ntx.

NavigationObject

N, Nrk, Nrt, NrrDependency

Example
/controller.php?N=0&Ntk=P_Desc&Ntt=sonoma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Nrm (Relevance Ranking Match Mode)410

Nrr (Relevance Ranking Strategy)
The Nrr parameter sets the relevance ranking strategy to be used to rank the results of the record search.

NrrParameter

Relevance Ranking StrategyName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>Type

Sets the relevance ranking strategy to be used to rank the results of the record search.
The valid id module names that can be used are: exact, field, first, freq, glom, interp,

Description

maxfield, nterms, numfields, phrase, proximity, spell, compound, stem, thesaurus,
and static.

This parameter does not support multiple relevance ranking strategies; therefore, the
use of a pipe (|) is not enabled.

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk, Ntt,
and Ntx.

NavigationObject

N, Nrk, NrtDependency

Example
/controller.php?N=0&Ntk=P_Desc&Ntt=sonoma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Nrs (Oracle Commerce Query Language Filter)
The Nrs parameter sets an EQL record filter on a navigation query.

NrsParameter

Oracle Commerce Query Language FilterName

ENEQuery.setNavRecordStructureExpr()Java setter method

ENEQuery.NavRecordStructureExpr.NET setter property

<string>Type

Sets the Oracle Commerce Query Language expression for the navigation query. The
expression will act as a filter to restrict the results of the query.

Description

The Nrs parameter must be URL-encoded. For clarity’s sake, however, the example
below is not URL-encoded.

NavigationObject

NDependency

Oracle Commerce Guided Search MDEX Engine Developer's Guide

411Oracle Commerce URL Parameter Reference | Nrr (Relevance Ranking Strategy)

Examples
/controller.php?N=0&Nrs=collection()/record[type="book"]

Nrt (Relevance Ranking Terms)
The Nrt parameter sets the terms by which the relevance ranking module will order the results of the record
search.

NrtParameter

Relevance Ranking TermsName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>+<string>+<string>...Type

Sets the terms by which the relevance ranking module will order the records. Each
term is delimited by a plus sign (+). Note that these terms can be different from the
search terms used in the record search.

Description

This parameter does not support multiple sets of terms; therefore, the use of a pipe
(|) is not enabled.

The Nrt parameter must be used with the Nrk parameter (which sets the search
interface) and the Nrr parameter (which indicates the relevance ranking strategy to
use for ordering the record set).

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk, Ntt,
and Ntx.

NavigationObject

N, Nrk, NrrDependency

Example
/controller.php?N=0&Ntk=P_Desc&Ntt=sonoma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Ns (Sort Key)
The Ns parameter sets the list of keys that will be used to sort records.

NsParameter

Sort KeyName

ENEQuery.setNavActiveSortKeys()Java setter method

ENEQuery.NavActiveSortKeys.NET setter property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Nrt (Relevance Ranking Terms)412

Ns=sort-key-names[(geocode)][|sort order][||…]Type

Specifies a list of properties or dimensions (sort keys) by which to sort the records,
and an optional list of directions in which to sort.

Description

In other words, in order to sort records returned for a navigation query, you must
append a sort key parameter (Ns) to the query, using the following syntax:
Ns=sort-key-names[(geocode)][|sort order][||…]

A sort key is a dimension or property name enabled for sorting on the data set.
Optionally, each sort key can specify a sort order of 0 (ascending sort, the default) or
1 (descending sort). The records are sorted by the first sort key, with ties being resolved
by the second sort key, whose ties are resolved by the third sort key, and so on.

Whether the values for the sort key are sorted alphabetically, numerically, or
geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument to the
sort key parameter (noting that the sort key parameter must be a geocode property).
Records are sorted by the distance from the geocode reference point to the geocode
point indicated by the property key.

Sorting can only be performed when accompanying a navigation query. Therefore,
the sort key (Ns) parameter must accompany a basic navigation value parameter (N).

NavigationObject

NDependency

Examples
N=132831+154283&Ns=Price|1

N=0&Ns=Price
N=101&Ns=Price|1||Color
N=101&Ns=Price|1||Location(43,73)

Nso (Sort Order)
The Nso parameter sets the sort order for the record list of the navigation object.

NsoParameter

Sort OrderName

ENEQuery.setNavSortOrder()Java setter method

ENEQuery.NavSortOrder.NET setter property

0 or 1Type

Specifies the sort order for a navigation object’s record list:Description

• A value of 0 indicates an ascending sort, which is the default if the Nso parameter
is not present.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

413Oracle Commerce URL Parameter Reference | Nso (Sort Order)

• A value of 1 indicates a descending sort.

Note that previously, a sort key was specified with the Ns=key parameter and a sort
order was specified with Nso=1. The Nso parameter has been deprecated. Now, the
preferred way of specifying the sort order is also through the Ns parameter, using
Ns=key|1.

NavigationObject

N, NsDependency

Example
/controller.php?N=132831+154283&Ns=Price&Nso=1

Ntk (Record Search Key)
The Ntk parameter sets which dimension, property, or search interface will be evaluated when searching.

NtkParameter

Record Search KeyName

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<search key>Type

Sets the keys of the record search for the navigation query. The keys are delimited
by a pipe (|). Search keys can be either valid dimension names or property names

Description

enabled for record search in the data set. The search key can also be a search
interface.

The Ntk parameter must be used with the Ntt parameter, which indicates the search
terms for each key. In addition, Ntt should have the same number of term sets as
Ntk has keys.

Note that there is no explicit text search descriptor API object, so displays of text
search descriptors need to be extracted from the current query.

NavigationObject

N, Ntt.Dependency

Examples
/controller.php?N=0&Ntk=DESCRIP&Ntt=merlot+1996

/controller.php?N=132831&Ntk=DESCRIP&Ntt=merlot+1996

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Ntk (Record Search Key)414

Ntpc (Compute Phrasings)
The Ntpc parameter sets whether the MDEX Engine computes alternative phrasings for the current query.

NtpcParameter

Compute PhrasingsName

ENEQuery.setNavERecSearchComputeAlternativePhrasings()Java setter method

ENEQuery.NavERecSearchComputeAlternativePhrasings.NET setter property

0 or 1Type

Specifies whether to turn on the computed alternative phrasings feature for a record
search (a value of 1) or to turn it off (a value of 0). 0 is the default.

Description

NavigationObject

N, Ntk, Ntt. Nty is also a dependency if Did You Mean and automatic phrasing are
being used.

Dependency

Example
/controller.php?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1

Ntpr (Rewrite Query with an Alternative Phrasing)
The Ntpc parameter sets whether the MDEX Engine uses one of the alternative phrasings it has computed.

NtprParameter

Rewrite Query with an Alternative PhrasingName

ENEQuery.setNavERecSearchRewriteQueryToAnAlternativePhrasing()Java setter method

ENEQuery.NavERecSearchRewriteQueryToAnAlternativePhrasing.NET setter property

0 or 1Type

Sets whether the MDEX Engine uses one of the alternative phrasings it has computed
instead of the end user's original query when computing the set of documents to return.

Description

1 instructs the MDEX Engine to use a computed alternative phrasing, while 0 (the
default) instructs it to use the user’s original query.

NavigationObject

N, Ntk, Ntt, Ntpc. Nty is also a dependency if Did You Mean and automatic phrasing
are being used.

Dependency

Example
/controller.php?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1&Ntpr=1

Oracle Commerce Guided Search MDEX Engine Developer's Guide

415Oracle Commerce URL Parameter Reference | Ntpc (Compute Phrasings)

Ntt (Record Search Terms)
The Ntt parameter sets the actual terms of a record search for a navigation query.

NttParameter

Record Search TermsName

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<string>+<string>+<string>...Type

Sets the terms of the record search for a navigation query. Each term is delimited by
a plus sign (+). Each set of terms is delimited by a pipe (|).

Description

The Ntt parameter must be used with the Ntk parameter, which indicates which keys
of the records to search. In addition, Ntt should have the same number of term sets
as Ntk has keys.

Note that there is no explicit text search descriptor API object, so displays of text
search descriptors need to be extracted from the current query.

NavigationObject

N, Ntk.Dependency

Examples
/controller.php?N=0&Ntk=DESCRIP&Ntt=merlot+1996

/controller.php?N=132831&Ntk=DESCRIP&Ntt=merlot+1996

Ntx (Record Search Mode)
The Ntx parameter sets the options for record search in the navigation query.

NtxParameter

Record Search ModeName

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<string>+<string>+<string>...Type

Sets the options for record search in the navigation query. The options include:Description

• mode for specifying a search mode.
• rel for specifying a relevance ranking module.
• spell+nospell for disabling spelling correction and DYM suggestions on

individual queries.
• snip and nosnip operators for enabling or disabling the snippeting feature,

specifying a field to snippet, and configuring how many words to return in a snippet.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Ntt (Record Search Terms)416

NavigationObject

N, Ntk, NttDependency

Examples
/controller.php?N=0&Ntk=Brand&Ntt=Nike+Adidas&Ntx=mode+matchallany+rel+MyStrategy

/controller.php?N=0&Ntk=Brand&Ntt=Nike+Adidas&Ntx=mode+spell+nospell

Nty (Did You Mean)
The Nty parameter sets the Did You Mean feature for record search in the navigation query.

NtyParameter

Did You MeanName

ENEQuery.setNavERecSearchDidYouMean()Java setter method

ENEQuery.NavERecSearchDidYouMean.NET setter property

0 or 1Type

Sets whether the record search should turn on the "Did You Mean" feature. This
parameter is only used if a full-text query is being made with the navigation. The default
value is 0 (off).

Description

NavigationObject

N, Ntk, NttDependency

Example
/controller.php?N=0&Ntk=DESC&Ntt=merlot+1996&Nty=1

Nu (Rollup Key)
The Nu parameter sets the rollup key for aggregated records.

NuParameter

Rollup KeyName

ENEQuery.setNavRollupKey()Java setter method

ENEQuery.NavRollupKey.NET setter property

<dimension or property key>Type

Specifies the dimension or property by which records in a navigation object’s record
list should be aggregated. By setting a key with this parameter, aggregated Oracle

Description

Commerce records (AggERec objects) will be returned by the navigation query instead
of Oracle Commerce records (ERec objects). Note that the rollup attribute of the
property or dimension must be set in Developer Studio.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

417Oracle Commerce URL Parameter Reference | Nty (Did You Mean)

NavigationObject

NDependency

Examples
/controller.php?N=0&Nu=ssn

/controller.php?N=13283&Nu=ssn

Nx (Navigation Search Options)
The Nx parameter sets the options that navigation search uses (excluding options such as record search).

NxParameter

Navigation Search OptionsName

ENEQuery.setNavOpts()Java setter method

ENEQuery.NavOpts.NET setter property

<string>+<string>+<string>...Type

Sets the navigation search options used to enable Why Match, Why Rank, and Why
Precedence Rule Fired.

Description

Valid string values include:
• whymatch — a string indexating that Why Match is enabled for the query.
• whyrank — a string indexating that Why Rank is enabled for the query.
• whyprecedencerulefired — a string indexating that Why Precedence Rule

Fired is enabled for the query.

Navigation SearchObject

NDependency

Examples

This simple example enables Why Did It Match:
/controller.php?N=0&Nx=whymatch

This simple example enables Why Rank:
/controller.php?N=0&Nx=whyrank

This simple example enables Why Precedence Rule Fired:
/controller.php?N=500&Nx=whyprecedencerulefired

R (Record)
The R parameter sets the ID of the record to be queried for.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Nx (Navigation Search Options)418

RParameter

RecordName

ENEQuery.setERecs()Java setter method

ENEQuery.ERecs.NET setter property

<record ID>Type

Query to obtain a single specific Oracle Commerce record.Description

Record (ERec)Object

noneDependency

Example
/controller.php?R=7

A (Aggregated Record)
The A parameter sets the ID of an aggregated record to be queried for.

AParameter

Aggregated RecordName

ENEQuery.setAggrERecSpec()Java setter method

ENEQuery.AggrERecSpec.NET setter property

<agg record ID>Type

Query to obtain a single aggregated record from the MDEX Engine.Description

Aggregated Record (AggrERec)Object

An, Au (Note that A, An, and Au are all considered primary parameters and must be
used together.)

Dependency

Example
/controller.php?A=7&An=123&Au=ssn

Af (Aggregated Record Range Filter)
The Af parameter sets the aggregated record range filters for the navigation query..

AfParameter

Aggregated Record Range FilterName

ENEQuery.setAggERecNavRangeFilters()Java setter method

ENEQuery.AggERecNavRangeFilters.NET setter property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

419Oracle Commerce URL Parameter Reference | A (Aggregated Record)

<string>|[[LT|LTEQ|GT|GTEQ] <numeric value> |BTWN <numeric value> <numeric
value>]

Type

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the aggregated record navigation range filters. Multiple filters are delimited by
vertical pipes (|).

Description

Aggregated Record (AggrERec)Object

A, An, AuDependency

Example
/controller.php?A=7&An=123&Au=ssn&Af=Base|GT+100000

An (Aggregated Record Descriptors)
The An parameter sets the navigation values which the aggregated record will be aggregated in relation to.

AnParameter

Aggregated Record DescriptorsName

ENEQuery.setAggrERecNavDescriptors()Java setter method

ENEQuery.AggrERecNavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Sets the aggregated record navigation values for the query. An and Au define the
record set from which the aggregated record was created.

Description

Aggregated Record (AggrERec)Object

A, Au (Note that A, An, and Au are all considered primary parameters and must be
used together.)

Dependency

Example
/controller.php?A=7&An=123&Au=ssn

Ar (Aggregated Record Filter)
The An parameter sets the aggregated record navigation record filter.

ArParameter

Aggregated Record FilterName

ENEQuery.setAggERecNavRecordFilter()Java setter method

ENEQuery.AggERecNavRecordFilter.NET setter property

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | An (Aggregated Record Descriptors)420

<string>Type

Sets the aggregated record navigation record filter. This filter expression restricts the
records contained in an aggregated record result returned by the MDEX Engine.

Description

Aggregated Record (AggrERec)Object

A, AnDependency

Example
/controller.php?A=2496&An=0&Au=sku&Ar=OR(10001,20099)

Ars (Aggregated EQL Filter)
The Ars parameter sets an aggregated record EQL filter.

ArsParameter

Aggregated EQL FilterName

ENEQuery.setAggrERecStructureExpr()Java setter method

ENEQuery.AggrERecStructureExpr.NET setter property

<string>Type

Sets the Oracle Commerce Query Language expression for aggregated record query.
The expression will act as a filter to restrict the results of the query.

Description

The Ars parameter must be URL-encoded. For clarity’s sake, however, the example
below is not URL-encoded.

Aggregated Record (AggrERec)Object

ADependency

Example
/controller.php?An=0&A=1&Au=author_nationality
&Ars=collection()/record[recordtype = "author" and not(author_name="kurt von¬
negut")]

As (Aggregated Record Sort Key)
The As parameter sets the list of keys that will be used to sort representative records in an aggregated record
details query.

AsParameter

Aggregated Record Sort KeyName

ENEQuery.setAggrERecActiveSortKeys()Java setter method

Oracle Commerce Guided Search MDEX Engine Developer's Guide

421Oracle Commerce URL Parameter Reference | Ars (Aggregated EQL Filter)

ENEQuery.AggrERecActiveSortKeys.NET setter property

As=sort-key-names[(geocode)][|sort order][||…]Type

Specifies a list of properties or dimensions (sort keys) by which to sort the
representative records, and an optional list of directions in which to sort.

Description

In other words, in order to sort representative records in aggregated records, you
must append a sort key parameter (As) to the aggregated record query, using the
following syntax:
As=sort-key-names[(geocode)][|sort order][||…]

A sort key is a dimension or property name enabled for sorting on the data set.
Optionally, each sort key can specify a sort order of 0 (ascending sort, the default)
or 1 (descending sort). The records are sorted by the first sort key, with ties being
resolved by the second sort key, whose ties are resolved by the third sort key, and
so on.

Whether the values for the sort key are sorted alphabetically, numerically, or
geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument to
the sort key parameter (noting that the sort key parameter must be a geocode
property). Records are sorted by the distance from the geocode reference point to
the geocode point indicated by the property key.

Aggregated Record (AggrERec)Object

A, AnDependency

Example
/controller.php?A=7&An=123&Au=ssn&As=Price|1

Au (Aggregated Record Rollup Key)
The Au parameter sets the rollup key for aggregated records.

AuParameter

Aggregated Record Rollup KeyName

ENEQuery.setAggrERecRollupKey()Java setter method

ENEQuery.AggrERecRollupKey.NET setter property

<dimension or property key>Type

Sets the aggregated record rollup key (a property or dimension) with which the
aggregated record is derived. Note that the rollup attribute of the property or dimension
must be set in Developer Studio.

Description

Aggregated Record (AggrERec)Object

A, AnDependency

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Au (Aggregated Record Rollup Key)422

Example
/controller.php?A=7&An=123&Au=ssn

D (Dimension Search)
The D parameter sets the dimension search query terms.

DParameter

Dimension SearchName

ENEQuery.setDimSearchTerms()Java setter method

ENEQuery.DimSearchTerms.NET setter property

<string>+<string>+<string>...Type

Query to obtain the set of dimension values whose names match the search term(s).Description

DimensionSearchResultObject

noneDependency

Examples
/controller.php?D=Merlot

/controller.php?D=Red+White

Df (Dimension Search Range Filter)
The Df parameter sets the navigation range filters that restrict the dimension search.

DfParameter

Dimension Search Range FilterName

ENEQuery.setDimSearchNavRangeFilters()Java setter method

ENEQuery.DimSearchNavRangeFilters.NET setter property

<string>|[[LT|LTEQ|GT|GTEQ] <number> |BTWN <number> <number>]Type

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the dimension search to be applied to dimension values for those records that
passed the range filter used for this property. Multiple filters are vertical pipe (|)
delimited.

Description

Dimension Value SearchObject

DDependency

Oracle Commerce Guided Search MDEX Engine Developer's Guide

423Oracle Commerce URL Parameter Reference | D (Dimension Search)

Example
/controller.php?D=Merlot&Df=Price|LT+11

Di (Search Dimension)
The Di parameter sets the dimensions for a dimension search to search against.

DiParameter

Search DimensionName

ENEQuery.setDimSearchDimensions()Java setter method

ENEQuery.DimSearchDimensions.NET setter property

<dimension id> or <dimension id>+<dimension id>...Type

The Di parameter can be used with two types of dimension search:Description

• Default dimension search
• Compound dimension search

Note that by default, all dimensions are enabled for default dimension search. If you
use Dgidx --compoundDimSearch flag, all dimensions are enabled for compound
dimension search.

If used for default dimension search, specify one or more dimension IDs for the Di
parameter. The MDEX Engine returns matches only from the dimensions you specify
(as opposed to the default behavior of searching across all dimensions).

If used for the compound dimension search, specify a list of dimension IDs for the Di
parameter. This way, you are requiring that every result returned has exactly one
value from each dimension ID specified in Di. This restricts your compound dimension
search to the intersection of the specified dimensions (as opposed to the compound
dimension search across all dimensions).

Dimension Value SearchObject

DDependency

Examples
/controller.php?D=Merlot&Di=11378

/controller.php?D=red+1996&Di=11+12

Dk (Dimension Search Rank)
The Dk parameter sets how the dimension search results are sorted.

DkParameter

Dimension Search RankName

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Di (Search Dimension)424

ENEQuery.setDimSearchRankResults()Java setter method

ENEQuery.DimSearchRankResults.NET setter property

0 or 1Type

Sets the dimension search behavior used to rank results:Description
• If set to 0, default dimension value ranking (alpha, numeric or manual as set in

Developer Studio) is used to order dimension search results. This is the default.
• If set to 1, relevance ranking is used to sort dimension search results.

Dimension Value SearchObject

DDependency

Example
/controller.php?D=Merlot&Dk=1

Dn (Dimension Search Scope)
The Dn parameter sets a navigation state that reduces the scope of a dimension value search.

DnParameter

Dimension Search ScopeName

ENEQuery.setDimSearchNavDescriptors()Java setter method

ENEQuery.DimSearchNavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Specifies the navigation values that describe a navigation state that restrict the number
of values that can be searched from.

The Dn parameter takes a single dimension value for a given single-select dimension,
and multiple dimension values for a given multiselect dimension.

Description

When the search query is combined with this parameter, the MDEX Engine returns
dimension values that create valid navigation objects.

Dimension Value SearchObject

DDependency

Example
/controller.php?D=Merlot&Dn=132831

Do (Search Result Offset)
The Do parameter sets the dimension search results offset.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

425Oracle Commerce URL Parameter Reference | Dn (Dimension Search Scope)

DoParameter

Dimension Search OffsetName

ENEQuery.setDimSearchResultsOffset()Java setter method

ENEQuery.DimSearchResultsOffset.NET setter property

intType

Specifies the offset with which the dimension search will begin returning results per
dimension. For example, you could specify an offset of 5 to look at a single dimension
five results at a time.

Description

Dimension Value SearchObject

D, Di, DpDependency

Example
/controller.php?D=Merlot&Di=11378&Dp=3&Do=3

Dp (Dimension Value Count)
The Dp parameter has been deprecated in MDEX Engine 6.3.0. Use the numresults configuration setting
of the Drc parameter instead.

The Dp parameter sets the number of dimension value matches to return per dimension.

DpParameter

Dimension Value CountName

ENEQuery.setDimSearchNumDimValues()Java setter method

ENEQuery.DimSearchNumDimValues.NET setter property

intType

Sets the number of dimension value matches to return per dimension. If you do a
dimension search, you normally get all of the results back. If you only want to see the
first three, for example, specify 3 for the Dp parameter.

Description

Dimension Value SearchObject

D, DiDependency

Example
/controller.php?D=Merlot&Di=11378&Dp=3

Dr (Dimension Search Filter)
The Dr parameter sets the record filter for the dimension search navigation query.

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Dp (Dimension Value Count)426

DrParameter

Dimension Search FilterName

ENEQuery.setDimSearchNavRecordFilter()Java setter method

ENEQuery.DimSearchNavRecordFilter.NET setter property

<string>Type

Sets the dimension search navigation record filter. This filter restricts the scope of the
records that will be considered for a dimension search. Only dimension values

Description

represented on at least one record satisfying the specified filter are returned as search
results.

Dimension Value SearchObject

DDependency

Example
/controller.php?D=Hawaii&Dn=0&Dr=NOT(Subject:Travel)

Drc (Refinement Configuration for Dimension Search)
The Drc parameter sets refinement configuration options for a dimension search query.

Note: The Drc parameter is not supported with compound dimension search.

DrcParameter

Refinement Configuration for Dimension SearchName

ENEQuery.setDimSearchRefinementConfigs()Java setter method

ENEQuery.DimSearchRefinementConfigs.NET setter property

<string>+<string>+<string>...Type

Sets one or more dynamic refinement configurations for a dimension search query.
Each refinement configuration option is delimited by the pipe character.

Description

The configuration settings are:
• id specifies a dimension value ID for the numresults, showcounts, and syn¬
onyms options. The id setting is not valid with maxdepth or includeinert.

• numresults specifies the maximum number of dimension values to return for a
specified id. Valid values are integers greater than or equal to zero. If an id
setting is omitted, then the numresults setting applies to all dimensions as a
global setting.

• showcounts indicates whether to show the number of refinement counts for a
specified id. Valid values are true to return counts and false to not return
counts. If you omit an id setting, then the showcounts setting applies to all
dimension values (a global setting).

Oracle Commerce Guided Search MDEX Engine Developer's Guide

427Oracle Commerce URL Parameter Reference | Drc (Refinement Configuration for Dimension Search)

• synonyms indicates whether to show synonyms for a dimension value's
refinements. Valid values are true to show synonyms and false to not show
synonyms. If you omit id setting, then the synonyms setting applies to all
dimension values (a global setting).

• maxdepth indicates the maximum depth of dimension values to return. Valid
values are 0 and 1. Specifying 0 returns either the root dimension value or values
specified in with the Di parameter. Specifying 1 returns the root dimension value
and the next level of the dimension hierarchy. If you omit maxdepth, all dimension
values are returned by default (This is same as unlimited depth.) The maxdepth
setting is a global setting for Drc; it cannot be restricted with the id setting.

• includeinert indicates whether to return dimension values that are inert. Valid
values are truewhich returns inert dimension values and falsewhich does not.
The default is false. The includeinert setting is a global setting for Drc; it
cannot be restricted with the id setting.

DimensionSearchResultObject

DDependency

Examples

This example shows refinement counts for dimension values 134711 and 132830.
/controller.php?D=1*&Drc=id+134711+showcounts+true|id+132830+showcounts+false

This example shows refinement counts for all dimension values except dimension value 600000.
/controller.php?D=1*&Drc=showcounts+true|id+600000+showcounts+false

This example returns up to 10 dimension values per dimension for all dimension values except 600000 which
returns up to 15 dimension values.
/controller.php?D=1*&Drc=numresults+10|id+600000+numresults+15

This example returns the synonyms for a dimension value with an id of 700000.
/controller.php?D=*&Di=700000&Drc=id+700000+synonyms+true

This example returns dimension values to a maximum depth of 1 for three dimensions indicated with the Di
parameter.
/controller.php?D=*&Di=500000+400000+300000&Drc=maxdepth+1

Drs (Dimension Search EQL Filter)
The Drs parameter sets the dimension search EQL filter.

DrsParameter

Dimension Search EQL FilterName

ENEQuery.setDimSearchNavRecordStructureExpr()Java setter method

ENEQuery.DimSearchNavRecordStructureExpr.NET setter property

<string>Type

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Drs (Dimension Search EQL Filter)428

Sets the Oracle Commerce Query Language filter for a dimension search. This filter
restricts the scope of the records that will be considered for a dimension search. Only

Description

dimension values represented on at least one record satisfying the specified filter are
returned as search results.

Note that the Drs parameter must be URL-encoded. For clarity’s sake, however, the
example below is not URL-encoded.

Dimension Value SearchObject

DDependency

Example
/controller.php?D=classic&Drs=collection()/record

Dx (Dimension Search Options)
The Dx parameter sets the options for dimension search.

DxParameter

Dimension Search OptionsName

ENEQuery.setDimSearchOpts()Java setter method

ENEQuery.DimSearchOpts.NET setter property

<string>+<string>+<string>...Type

Sets the dimension search options used in search mode and relevance ranking. The
options include:

Description

• mode for specifying a search mode.
• rel for specifying a relevance ranking module.
• spell+nospell for disabling spelling correction and DYM suggestions on

individual queries.
• whyrank to indicate that Why Rank is enabled for the query.

Dimension Value SearchObject

D, DkDependency

Examples
/controller.php?D=mark+twain&Dk=1&Dx=rel+exact,static(rank,descending)

This example shows how to disable spelling correction for a dimension search query for "blue suede
shoes":
/controller.php?D=blue+suede+shoes&Dx=mode+matchallpartial+spell+nospell

Oracle Commerce Guided Search MDEX Engine Developer's Guide

429Oracle Commerce URL Parameter Reference | Dx (Dimension Search Options)

Du (Rollup Key for Dimension Search)
The Du parameter sets the property or dimension to use as the rollup key for aggregated records in a dimension
search query.

DuParameter

Rollup Key for Dimension SearchName

ENEQuery.setDimSearchRollupKey()Java setter method

ENEQuery.DimSearchRollupKey.NET setter property

<dimension or property key>Type

Specifies the dimension or property by which records are rolled up. This parameter
has no meaning unless counts are enabled with Drc.

Note that the rollup attribute of the property or dimension must be set in Developer
Studio.

Description

DimensionSearchResultObject

D and DrcDependency

Examples
/controller.php?D=Merlot&Drc=id+1000+showcounts+true&Du=P_Winery

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Oracle Commerce URL Parameter Reference | Du (Rollup Key for Dimension Search)430

Appendix B

MDEX Engine Logging Variables

This section describes the MDEX Engine logging variables.

About MDEX Engine logging variables
The MDEX Engine logging variables can be used with the log-enable and log-disable URL config operations
to toggle logging verbosity for specified features.

This makes it possible to get detailed information about MDEX Engine processing, to help diagnose unexpected
application behavior or performance problems, without stopping and restarting the dgraph or requiring a
configuration update.

Logging variable operation syntax
MDEX Engine logging variables are toggled using the /config?op=log-enable&name=<variable-name>
and /config?op=log-disable&name=<variable-name> operations.

You can include multiple logging variables in a single request. Unrecognized logging variables generate
warnings.

For example, this operation:
/config?op=log-enable&name=merchverbose

turns on verbose logging for the dynamic business rule feature, while this operation:
config?op=log-enable&name=textsearchrelrankverbose&name=textsearchspellverbose

turns on verbose logging for both the text search relevance ranking and spelling features.

However, this operation:
config?op=log-enable&name=allmylogs

returns an “unsupported logging setting” message.

In addition, the following operations are supported:
• /config?op=log-status returns a list of all logging variables with their values (true or false).
• /config?op=log-enable and /config?op=log-disable with no arguments return the same thing

as log-status.
• The special name all can be used with /config?op=log-enable or /config?op=log-disable

to set all logging variables.

Supported logging variables
The following table describes the supported logging variables.

Logging variable names are not case sensitive

DescriptionVariable

Enables verbose mode.verbose

Prints information about each request to stdout.requestverbose

Show verbose messages while processing updates.updateverbose

Enables verbose information about record filter
performance.

recordfilterperfverbose

Enables verbose debugging messages during
merchandising rule processing.

merchverbose

Enables verbose information about relevance ranking
during search query processing.

textsearchrelrankverbose

Enables verbose output for spelling correction features.textsearchspellverbose

Enables verbose performance debugging messages
during core dgraph navigation computations.

dgraphperfverbose

Enables refinement verbose/debugging messages.dgraphrefinementgroupverbose

Oracle Commerce Guided Search MDEX Engine Developer's Guide

MDEX Engine Logging Variables | About MDEX Engine logging variables432

Appendix C

Diacritical Character to ASCII Character Mapping

The --diacritic-folding flag on Dgidx maps accented characters to their simple ASCII equivalent as
listed in the table below (characters not listed are not affected by the --diacritic-folding option).

Mapping table
Note that capital characters are mapped to lower case equivalents because Oracle Commerce Guided Search
indexing is always case-folded.

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital A, grave accentaÀ192

Capital A, acute accentaÁ193

Capital A, circumflex accentaÂ194

Capital A, tildeaÃ195

Capital A, dieresis or umlaut markaÄ196

Capital A, ringaÅ197

Capital AE diphthongaÆ198

Capital C, cedillacÇ199

Capital E, grave accenteÈ200

Capital E, acute accenteÉ201

Capital E, circumflex accenteÊ202

Capital E, dieresis or umlaut markeË203

Capital I, grave accentiÌ204

Capital I, acute accentiÍ205

Capital I, circumflex accentiÎ206

Capital I, dieresis or umlaut markiÏ207

Capital Eth, IcelandiceÐ208

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital N, tildenÑ209

Capital O, grave accentoÒ210

Capital O, acute accentoÓ211

Capital O, circumflex accentoÔ212

Capital O, tildeoÕ213

Capital O, dieresis or umlaut markoÖ214

Capital O, slashoØ216

Capital U, grave accentuÙ217

Capital U, acute accentuÚ218

Capital U, circumflex accentuÛ219

Capital U, dieresis or umlaut markuÜ220

Capital Y, acute accentyÝ221

Capital thorn, IcelandicpÞ222

Small sharp s, Germansß223

Small a, grave accentaà224

Small a, acute accentaá225

Small a, circumflex accentaâ226

Small a, tildeaã227

Small a, dieresis or umlaut markaä228

Small a, ringaå229

Small ae diphthongaæ230

Small c, cedillacç231

Small e, grave accenteè232

Small e, acute accenteé233

Small e, circumflex accenteê234

Small e, dieresis or umlaut markeë235

Small i, grave accentiì236

Small i, acute accentií237

Small i, circumflex accentiî238

Small i, dieresis or umlaut markiï239

Small eth, Icelandiceð240

Small n, tildenñ241

Small o, grave accentoò242

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Diacritical Character to ASCII Character Mapping | Mapping table434

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Small o, acute accentoó243

Small o, circumflex accentoô244

Small o, tildeoõ245

Small o, dieresis or umlaut markoö246

Small o, slashoø248

Small u, grave accentuù249

Small u, acute accentuú250

Small u, circumflex accentuû251

Small u, dieresis or umlaut markuü252

Small y, acute accentyý253

Small thorn, Icelandicpþ254

Small y, dieresis or umlaut markyÿ255

DescriptionASCIImap characterISO Latin 1
Extended A
character

ISO Latin1 Extended
A decimal code

Capital A, macron accentaĀ256

Small a, macron accentaā257

Capital A, breve accentaĂ258

Small a, breve accentaă259

Capital A, ogonek accentaĄ260

Small a, ogonek accentaą261

Capital C, acute accentcĆ262

Small c, acute accentcć263

Capital C, circumflex accentcĈ264

Small c, circumflex accentcĉ265

Capital C, dot accentcĊ266

Small c, dot accentcċ267

Capital C, caron accentcČ268

Small c, caron accentcč269

Capital D, caron accentdĎ270

Small d, caron accentdď271

Capital D, with stroke accentdĐ272

Small d, with stroke accentdđ273

Oracle Commerce Guided Search MDEX Engine Developer's Guide

435Diacritical Character to ASCII Character Mapping | Mapping table

DescriptionASCIImap characterISO Latin 1
Extended A
character

ISO Latin1 Extended
A decimal code

Capital E, macron accenteĒ274

Small e, macron accenteē275

Capital E, breve accenteĔ276

Small e, breve accenteĕ277

Capital E, dot accenteĖ278

Small e, dot accenteė279

Capital E, ogonek accenteĘ280

Small e, ogonek accenteę281

Capital E, caron accenteĚ282

Small e, caron accenteě283

Capital G, circumflex accentgĜ284

Small g, circumflex accentgĝ285

Capital G, breve accentgĞ286

Small g, breve accentgğ287

Capital G, dot accentgĠ288

Small g, dot accentgġ289

Capital G, cedilla accentgĢ290

Small g, cedilla accentgģ291

Capital H, circumflex accenthĤ292

Small h, circumflex accenthĥ293

Capital H, with stroke accenthĦ294

Small h, with stroke accenthħ295

Capital I, tilde accentiĨ296

Small I, tilde accentiĩ297

Capital I, macron accentiĪ298

Small i, macron accentiī299

Capital I, breve accentiĬ300

Small i, breve accentiĭ301

Capital I, ogonek accentiĮ302

Small i, ogonek accentiį303

Capital I, dot accentiİ304

Small dotless iiı305

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Diacritical Character to ASCII Character Mapping | Mapping table436

DescriptionASCIImap characterISO Latin 1
Extended A
character

ISO Latin1 Extended
A decimal code

Capital ligature IJiĲ306

Small ligature IJiĳ307

Capital J, circumflex accentjĴ308

Small j, circumflex accentjĵ309

Capital K, cedilla accentkĶ310

Small k, cedilla accentkķ311

Small Krakĸ312

Capital L, acute accentlĹ313

Small l, acute accentlĺ314

Capital L, cedilla accentlĻ315

Small l, cedilla accentlļ316

Capital L, caron accentlĽ317

Small L, caron accentlľ318

Capital L, middle dot accentlĿ319

Small l, middle dot accentlŀ320

Capital L, with stroke accentlŁ321

Small l, with stroke accentlł322

Capital N, acute accentnŃ323

Small n, acute accentnń324

Capital N, cedilla accentnŅ325

Small n, cedilla accentnņ326

Capital N, caron accentnŇ327

Small n, caron accentnň328

Small N, preceded by apostrophenŉ329

Capital EngnŊ330

Small Engnŋ331

Capital O, macron accentoŌ332

Small o, macron accentoō333

Capital O, breve accentoŎ334

Small o, breve accentoŏ335

Capital O, with double acute accentoŐ336

Small O, with double acute accentoő337

Oracle Commerce Guided Search MDEX Engine Developer's Guide

437Diacritical Character to ASCII Character Mapping | Mapping table

DescriptionASCIImap characterISO Latin 1
Extended A
character

ISO Latin1 Extended
A decimal code

Capital Ligature OEoŒ338

Small Ligature OEoœ339

Capital R, acute accentrŔ340

Small R, acute accentrŕ341

Capital R, cedilla accentrŖ342

Small r, cedilla accentrŗ343

Capital R, caron accentrŘ344

Small r, caron accentrř345

Capital S, acute accentsŚ346

Small s, acute accentsś347

Capital S, circumflex accentsŜ348

Small s, circumflex accentsŝ349

Capital S, cedilla accentsŞ350

Small s, cedilla accentsş351

Capital S, caron accentsŠ352

Small s, caron accentsš353

Capital T, cedilla accenttŢ354

Small t, cedilla accenttţ355

Capital T, caron accenttŤ356

Small t, caron accenttť357

Capital T, with stroke accenttŦ358

Small t, with stroke accenttŧ359

Capital U, tilde accentuŨ360

Small u, tilde accentuũ361

Capital U, macron accentuŪ362

Small u, macron accentuū363

Capital U, breve accentuŬ364

Small u, breve accentuŭ365

Capital U with ring aboveuŮ366

Small u with ring aboveuů367

Capital U, double acute accentuŰ368

Small u, double acute accentuű369

Oracle Commerce Guided Search MDEX Engine Developer's Guide

Diacritical Character to ASCII Character Mapping | Mapping table438

DescriptionASCIImap characterISO Latin 1
Extended A
character

ISO Latin1 Extended
A decimal code

Capital U, ogonek accentuŲ370

Small u, ogonek accentuų371

Capital W, circumflex accentwŴ372

Small w, circumflex accentwŵ373

Capital Y, circumflex accentyŶ374

Small y, circumflex accentyŷ375

Capital Y, diaeresis accentyŸ376

Capital Z, acute accentzŹ377

Small z, acute accentzź378

Capital Z, dot accentzŻ379

Small Z, dot accentzż380

Capital Z, caron accentzŽ381

Small z, caron accentzž382

Small long ssſ383

Related Links

Oracle Commerce Guided Search MDEX Engine Developer's Guide

439Diacritical Character to ASCII Character Mapping | Mapping table

Index
.NET reference implementation

setting up 399
testing with 400

A
A (Aggregated Record) parameter 52, 419
adding

custom properties to a rule 324
static records in rule results 325
static records to business rule results 325

adding sample stop words 280
Af (Aggregated Record Range Filter) parameter 419
agg_rec module 383, 387
aggregated records

creating record queries 52
getting from ENEQueryResults objects 53
methods for rollup keys 50
overview 49
ranking of refinements 57
refinement counts 55
retrieving attributes from AggrERec object 54
retrieving from Navigation object 54
setting maximum number 52
sorting 52
specifying rollup key for queries 51

alphanumeric characters, indexing 232
An (Aggregated Record Descriptors) parameter 52, 420
ancestors, getting dimension 114
Ar (Aggregated Record Filter) parameter 95, 420
Ars (Aggregated EQL Filter) parameter 421
As (Aggregated Record Sort Key) parameter 421
As (Aggregated Record Sort) parameter 52
Aspell dictionary

about 240
compiling with dgwordlist 254
compiling with EAC 255
modifying 243
updateaspell admin operation 243

aspell_AND_espell and Did You Mean interaction 252
Au (Aggregated Record Rollup Key) parameter 52, 422
automatic key properties 159
automatic phrasing 169
Automatic Phrasing

about 269
API methods 273
extracting phrases from dimensions 272
importing phrases 271
troubleshooting 278
URL query parameters 274
use with Spelling Correction and DYM 270
using punctuation 273

B
basic filtering capabilities of EQL 63
basic queries

aggregated Oracle Commerce record 373
dimension search 373
navigation 373
Oracle Commerce record 373

Boolean search
about 207
error messages 213
examples of using the key restrict operator (:) 209
interaction with other features 212
operator precedence 212
proximity search 209
semantics 211
syntax 208
URL query parameters 214

Boolean syntax for record filters 91
boost and bury, See dimension value boost
browser requests transformed into MDEX Engine queries 362
building an Oracle Commerce-enabled Web application 378
business rules

about triggers 322
adding code to render results 334
adding custom properties to 324
and relevance ranking 335
building supporting constructs for 320
controlling triggers and targets 326
creating 322
filtering 334
global triggers 323
incremental adoption 319
interaction between rules and rule groups 322
keyword redirects 328
multiple triggers 323
order of featured records 325
overloading the Supplement object 336
performance impact of 335
presenting results in your Web application 329
previewing time triggers 324
prioritizing 326
properties in a Supplement object 331
record limits 325
rule filter syntax 334
rule groups 321
rules without explicit triggers 335
self-pivot 326
sorting 326
specifying which records to promote 324
styles 320
Supplement object 330
synchronizing time zones 324
the Maximum Record setting 320

business rules (continued)
time triggers 323
uniqueness constraints 325
using property templates 321
using styles to control number of promoted records 320

business rules and keyword redirects 171

C
caching for record filters 95
categories of characters in indexed text 231
changing

self-pivot from the command line 327
self-pivot when running as a Windows service 328

characters
indexing alphanumeric 232
indexing search 232

characters, indexing non-alphanumeric 232
complete dimensions 110
compound dimension search

about 178
enabling 179
enabling and creating a query 183
enabling with Dgidx flag 182
example of ordering results 180
flags in Dgidx 179
limiting results 184

compoundDimSearch flag 179
configuring

dimension search 178
snippeting 223

content spotlighting, about 313
controller module 382, 385
creating a query for default dimension search 182
creating styles for business rules 320
cross-field matching 174

D
D (Dimension Search) parameter 423
DateTime properties 103
dead ends, See disabled refinements
dead-end query results, avoiding 138
default dimension search

about 177
creating a query 182
enabling 178
enabling for dimensions 182
example of ordering results 179

derived properties
about 153
configuring 153
performance impact 153
Presentation API methods 154

DERIVED_PROP element 153
descriptor dimensions 109
descriptors

creating new queries from 131
displaying 127

descriptors (continued)
performance impact 128
removing from navigation state 130
retrieving dimension values 128
URL parameters 127

Developer Studio
enabling hierarchical record search 164

Df (Dimension Search Range Filter) parameter 423
Dgidx

--compoundDimSearch flag 179
--nostrictattrs flag 26
--sort flag 35
flags for search characters 233

dgraph.Aggrbins property for aggregated record counts 55,
133, 189
dgraph.Bins property for regular record counts 133, 189
dgraph.Strata property 150
DGraph.WhyPrecedenceRuleFired property 355
DGraph.WhyRank property 343, 351
dgwordlist utility for Aspell dictionary 254
Di (Search Dimension) parameter 424
dictionaries created by Dgidx 241
did you mean 170
Did You Mean feature, See Spelling Correction and DYM
dimension groups

API methods 105
displaying 105
performance impact 108
ranking 107
versus dimension hierarchy 107

dimension refinements
displaying 108
extracting 111
Ne parameter for 108
retrieving values for 110

dimension search
about 177
compound, about 177
default, about 177
enabling dimensions for it 178
enabling paging 185
filtering results 180
limiting results 184
limiting results of queries 184
ordering of results 179
performance impact 193
ranking results 186
reports 195
searching within a navigation state 186
troubleshooting 192
URL query parameters 182
when to use 192

dimension search results from spelling corrections 252
dimension value boost

API methods 149
dgraph.Strata property 150
interaction with disabled refinements 150
Nrcs parameter 148
overview 147

Oracle Commerce Guided Search442

Index

dimension value properties
about 143
accessing 144
configuring 144
performance impact 146

dimension values
boost and bury feature 147
numeric sort on non-numeric values 34

dimension values used with rule triggers and targets 326
dimensions

accessing hierarchy 114
configuring for record sort 34
extracting implicit refinements from 112
extracting standard refinements from 111
hidden 140
multiselect 136
performance impact when displaying 30
working with external 146

disabled refinements 116
.NET API 117
configuring with the Presentation API 117
identifying from query output 120
interaction with dimension value boost feature 150
interaction with navigation features 120
Java API 117
performance impact 121
URL parameter 119

disabling
spelling correction, per query 240

displayKey parameter 383
Dk (Dimension Search Rank) parameter 424
Dn (Dimension Search Scope) parameter 425
Do (Dimension Search Offset) parameter 426
Dp (Dimension Value Count) parameter 426
Dr (Dimension Record Filter) parameter 95
Dr (Dimension Search Filter) parameter 427
Drc (Refinement Configuration for Dimension Search)
parameter 427
Drs (Dimension Search EQL Filter) parameter 428
Du (Rollup Key for Dimension Search) parameter 430
Duration properties 103
Dx (Dimension Search Options) parameter 429
dynamic business rules

compared to content management publishing 314
constructs 314
query rules and results 315
single-rule example 315
using 313

dynamic refinement ranking
about 121
API calls 125
configuring in Developer Studio 122
displaying 126
Nrc parameter 124
query-time control 123

E
enabling compound dimension search 182

Endeca Application Controller
compiling Aspell dictionary 255

Endeca.stratify sort module 308
eneHost parameter 383
enePort parameter 383
ENEQuery class

building a basic query with 374
introduced 369

ENEQueryResults class
described 372
introduced 369

ERecList object, displaying records in 23
Espell module 240
example

record search with search characters enabled 236
record search with wildcard and search characters 237
record search with wildcard but not search characters
237
record search without search characters enabled 235

expression evaluation of record filters 97
external dimensions 146
extracting

rules and keyword redirect results 329

F
filtering business rules 334
filtering results from dimension searches 180

G
geocode sorting

URL parameters for filters 45
use with Ns parameter 35

geospatial sorting
API methods 39
dynamically-created properties 40
Ns parameter 39
overview 37
performance impact 41
Perl manipulator 38

grayed out refinements 116
Guided Search APIs 361

H
hidden dimensions

about 140
configuring 140
example 141
handling in an application 141
performance impact 141

hideMerch parameter 384
hideProps parameter 383
hideSups parameter 384
hierarchical record search 164
HttpENEConnection class 369

443

Index

I
implementing

search characters 233
Boolean search 214
phrase search 217
search modes 204
wildcard search 225, 226
wildcard search for a search interface 228
wildcard search, globally 227

implicit dimension refinements
about 109
extracting 112

incremental adoption of business rules 319
indexing

search characters 232
non-alphanumeric characters 232

inert dimension values
about 141
configuring 142
handling in an application 142

Information Transformation Layer 18

J
JSP reference implementation

setting up, on UNIX 396
setting up, on Windows 395

K
key properties

about 157
API 159
automatic 159
defining 158

key-based record sets
about 59
URL query parameters 60

keyword redirects 328
presenting results 329

L
large OR filter performance impact 97
logging variables

MDEX Engine 431
operation syntax 431
supported variables for 432

M
mapping record properties 25
MatchPartial mode and stop words 202
MDEX Engine 168

logging variables for 431
flags for search characters 234
package overview 17

MDEX Engine (continued)
query result objects 364
spelling correction flags 245

MDEX Engine queries
building with the ENEQuery class 374
building with the UrlENEQuery class 370, 371, 373
creating 370
creating with ENEQuery from state information 371
exceptions 378
executing 372
four basic queries 373
results 372
using the core objects 372
working with results 375, 376

MDEX Engine query
aggregated Oracle Commerce record objects 365
creating from a client browser request 362
dimension search objects 365
navigation objects 364
record objects 365

memory costs of record filters 97
merchandising, about 313
multi-select OR

refinement counts 139
multiselect dimensions

avoiding dead-end query results 138
configuring 136
displaying 136
handling in applications 137
performance impact 139

N
N (Navigation) parameter 402
N parameter interaction with EQL 81
Nao (Aggregated Record Offset) parameter 402
nav module 382, 385
navigation filtering 171
NCName format and EQL 66
Ndr (Disabled Refinements) parameter 403
Ne (Exposed Refinements) parameter 108, 404
Ne exposed refinements interaction with EQL 83
NEAR Boolean operator 210
Nf (Range Filter) parameter 44, 45, 404
Nf range filter interactions with EQL 82
Nmpt (Merchandising Preview Time) parameter 405
Nmrf (Merchandising Rule Filter) parameter 406
No (Record Offset) parameter 31, 406
non-alphanumeric characters, indexing 232
non-MDEX Engine parameters in UI reference
implementations 383
non-navigable dimension values, using 141
Np (Records per Aggregated Record) parameter 52, 407
Nr (Record Filter) parameter 95, 407
Nr record filter interactions with EQL 82
Nrc (Dynamic Refinement Ranking) parameter 124, 408
Nrcs (Dimension Value Stratification) parameter 148, 409
Nrk (Relevance Ranking Key) parameter 409
Nrk relevance ranking interaction with EQL 83

Oracle Commerce Guided Search444

Index

Nrm (Relevance Ranking Match Mode) parameter 410
Nrr (Relevance Ranking Strategy) parameter 411
Nrs (Oracle Commerce Query Language Filter) parameter
411
Nrt (Relevance Ranking Terms) parameter 412
Ns (Sort Key) parameter 35, 308, 412
Ns sorting interaction with EQL 82
Nso (Sort Order) parameter 413
Ntk (Record Search Key) parameter 414
Ntk and Ntt record search interaction with EQL 82
Ntpc (Compute Phrasings) parameter 415
Ntpr (Rewrite Query with an Alternative Phrasing) parameter
415
Ntt (Record Search Terms) parameter 416
Ntx (Record Search Mode) parameter 307, 416
Nty (Did You Mean) parameter 417
Nu (Rollup Key) parameter 51, 417
numeric sort and non-numeric dimension values 34
Nx (Navigation Search Options) parameter 418

O
one-way thesaurus entries 263
ONEAR Boolean operator 210
operation syntax for MDEX Engine logging variables 431
Oracle Commerce Analytics and EQL 84
Oracle Commerce Presentation API

ENEQuery class 370
ENEQueryResults class 372
HttpENEConnection class 369
UrlENEQuery class 370

Oracle Commerce Query Language
about 63
and dimension value IDs 74
and dimension value paths 72, 73
and range filter queries 77
and record search queries 74
and RRN queries 68
basic filtering capabilities 63
basic range filter syntax 77
creating the pipeline 87
dimension search queries 79
dimension value queries 72
geospatial range filter syntax 79
implementing the per-query statistics log 84
interaction with other features 80
making requests 67
N parameter interaction 81
NCName format with 66
Ne exposed refinements interaction 83
Nf range filter interactions 82
Nr record filter interactions 82
Nrk relevance ranking interaction 83
Ns sorting interaction 82
Ntk and Ntt record search interaction 82
Oracle Commerce Analytics interaction 84
per-query statistics log 84
pipeline dimensions and properties 87
pipeline Switch joins 88

Oracle Commerce Query Language (continued)
property value queries 67
range filter query examples 78
record search query examples 76
running the pipeline 89
setting the logging threshold 86
supported property types for range filters 77
syntax 65
URL query parameters for 66
spelling correction and DYM interaction 83

Oracle Commerce records
boost and bury feature 305
paging through a record set 30
sorting 33

order of featured business rule records 325
ordering

compound dimension search results 180
default dimension search results 179
results of dimension search 179

overview
MDEX Engine package 17

P
paging

in dimension search results 185
through a record set 30

per-query statistics log for EQL 84
performance impact

derived properties 153
descriptors 128
dimension groups 108
dimension search 193
dimension value properties 146
disabled refinements 121
displaying dimensions 30
displaying refinements 116
dynamic refinement ranking 127
geospatial sorting 41
hidden dimensions 141
multiselect dimensions 139
phrase search 219
range filters 48
record search 172
refinement statistics 136
snippeting 224
sorting records 37
wildcard search 229

performance impact of business rules 335
phrase search

examples of queries 218
implementing 217
performance impact 219
URL query parameters 218

pipeline for EQL, creating 87
positional indexing, about 218
Presentation API

architecture 361
Web application modules 362

445

Index

primitive term and phrase lookup 170
prioritizing

business rule groups 321
business rules 326

processing order for record search queries 168
promoting business rules with property templates 321
promoting records

building business rules 320
constructs behind 314
ensuring records are always produced 320
example with three rules 316
examples 315
incremental adoption of business rules 319
keyword redirects 328
query rules and results 315
rule groups 321
single-rule example 315
suggested workflow 319
Supplement object 330
targets 324
time triggers 323
URL query parameters for 329
using styles to limit the number of promoted records 320

properties
accessing 26
configuring for record sort 33
dimension value 143
displaying 25
indexing 26
mapping 25
returned as supplemental objects by the MDEX Engine
27
types supported in the MDEX Engine 101

property templates for business rules 321
property value queries for EQL 67

Q
queries

examples of limiting results with compound dimension
search 184
examples with compound dimension search 183

query expansion, configuring 286
query matching interaction examples
query matching semantics 231
Query method (.NET) 369
query method (Java) 369

R
R (Record) parameter 419
range filtering 170
range filters

configuring properties and dimensions for 43
dynamically-created properties 46
Nf parameter examples 46
overview 43
performance impact 48
rendering results 47

range filters (continued)
troubleshooting 48
URL parameter 44
using multiple 46

ranking results for dimension search 186
rec module 382, 386
record boost and bury

enabling properties 305
Ntx parameter 307
overview 121, 305
sorting 308
stratify relevance ranking 306

record filtering during record searches 168
record filters

about 91
caching in MDEX Engine 95
data configuration 94
enabling properties for use 94, 305
expression evaluation 97
large scale negation 97
memory cost 97
performance impact 96
query syntax 92
syntax 91
URL query parameters 95

record limits for business rules 325
Record Relationship Navigation filters 70
Record Relationship Navigation module 63
Record Relationship Navigation queries 68

examples 69
syntax for 68

record search
about 163
against multiple terms 167
auto correction 169
enabling for dimensions or properties 164
examples 166
features for controlling it 165
MDEX Engine processing logic 168
methods for rendering results 167
performance impact 172
reports 195
stemming 170
thesaurus expansion 169
tokenization 169
troubleshooting 171
URL query parameters 165
when to use 192

reference application
verifying the installation 398

reference implementation
.NET 399
JSP 395

reference implementations
primary modules 382
UI 381

refinement counts
for multi-select OR refinements 139

refinement dimensions
creating a new query from a value 113

Oracle Commerce Guided Search446

Index

refinement dimensions (continued)
displaying counts 132
performance impact of 116
query-time control of dynamic ranking 123
retrieving values for 110

refinement ranking
record boost and bury 121

refinement statistics
displaying 132
enabling 132
performance impact 136
retrieving 133, 189
retrieving for records that match descriptors 134

refinements
disabled 116
grayed out 116

Relevance Ranking
and business rules 335
about 281
Exact module 282
Field module 282
First module 283
Frequency module 283
Glom module 284
Interpreted module 284
list of modules 281
Maximum Field module 285
Number of Fields module 285
Number of Terms module 285
performance impact 303
Phrase module 285
Proximity module 289
recommended strategies 301
resolving tied scores 293
sample scenarios 299
Spell module 290
Static module 290
Stem module 291
Stratify module 291
Thesaurus module 291
URL query parameters 297
Weighted Frequency module 291

rendering results for record search 167
reports for record and dimension search 195
request parameters

extracting, Endeca-specific 362
methods for passing to the application modules 363

requests, making EQL 67
rollup keys, determining available 50
rule filters

URL query parameters for 335
syntax for business rules 334

rule groups
for business rules 321
interaction with rules 322
prioritizing 321

rule triggers 322
global 323
multiple 323
previewing time 324

rule triggers (continued)
time 323

rules
adding custom properties to 324
adding static records to results 325
creating 322
presenting results 329
specifying which records to promote 324
synchronizing time zones 324

S
search characters

categories of characters 231
implementing 233
indexing specified search characters 232
MDEX Engine flags for 234
Presentation API development for 234
query matching semantics 231
Dgidx flags for 233
indexing alphanumeric 232
using 231

search interface
about 173
configuring wildcard search for it 228

search interfaces
cross-field matching 174
implementing 173
methods in Java 176
properties in .NET 176
troubleshooting 176
URL query parameters 175

search modes
about
examples 204
implementing 204
list of, valid 201
MatchAll 202
MatchAllAny 203
MatchAllPartial 203
MatchAny 202
MatchBoolean mode 203
MatchPartial mode 202
MatchPartialMax mode 203
methods 205
URL query parameters 204

search query processing 232
search query processing order 168
search reports

implementing 195
list of methods and properties 196
methods used 195
retrieving 195
troubleshooting 198

Select feature for record sets 59
self-pivot

changing as a Windows service 328
changing from the command line 327
in business rules 326

447

Index

snippeting
about 221
configuring 223
disabling 223
examples of queries 223
performance impact 224
reformatting for display 224
tips 224
URL query parameters 223

sorting business rules 326
sorting records

API methods 36
changing sort order 35
geospatial sort 37
Ns parameter for queries 35
numeric sort on non-numeric values 34
overview 33
performance impact 37
record boost and bury 308
troubleshooting problems 37
with no sort key 34

spelling correction 169
disabling per query 240

Spelling Correction and DYM
about 239
API methods 246
Aspell and Espell modules 240
compiling Aspell dictionary manually 254
compiling Aspell dictionary with EAC 255
configuring in Developer Studio 242
Dgidx flags 244
dgraph flags 245
modifying Aspell dictionary 243
performance impact 253
supported spelling modes 240
troubleshooting 252
URL query parameters 246
use with Automatic Phrasing 270
using word-break analysis 256
with EQL 83

stemming 170
stemming and thesaurus

about 257
about the thesaurus 263
adding thesaurus entries 264
enabling stemming 258
interaction with other features 266
performance impact 267
sort order of stemmed results 258
troubleshooting the thesaurus 265

stop words
about 279
and Did You Mean 252

stop words and MatchPartial mode 202
stratify relevance ranking module 306
styles

for business rules 320
the Maximum Record setting 320
using to control number of promoted records 320

suggested workflow for promoting records 319

Supplement object 330
overloading 336
properties for a business rule 331

synchronizing business rule time zones 324
synonyms used for search 165
syntax

for EQL 65
record filters 91

T
targets

about 324
controlling 326

taxonomies, external 146
temporal properties, about 102
testing

with JSP reference application 398
thesaurus, See stemming and thesaurus
thesaurus expansion 169
time and date properties

defining 102
working with 103

Time properties 102
tokenization in record search 169
triggers

about 322
controlling 326
global 323
multiple 323
previewing time 324
rules without explicit 335
time 323
URL query parameters for testing 329

troubleshooting record search 171
two-way thesaurus entries 263

U
UI reference implementation

intended usage 381
Javascript in 384
module descriptions 390
module maps (.NET) 387
module maps (Java) 385
non-MDEX Engine parameters in 383
tips on using 393

uniqueness constraints for business rules 325
URL parameters

A 52
A (Aggregated Record) 419
Af (Aggregated Record Range Filter) 419
An 52
An (Aggregated Record Descriptors) 420
Ar (Aggregated Record Filter) 420
Ars (Aggregated EQL Filter) 421
As 52
As (Aggregated Record Sort Key) 421
Au 52

Oracle Commerce Guided Search448

Index

URL parameters (continued)
Au (Aggregated Record Rollup Key) 422
D (Dimension Search) 423
Df (Dimension Search Range Filter) 423
Di (Search Dimension) 424
Dk (Dimension Search Rank) 424
Dn (Dimension Search Scope) 425
Do (Dimension Search Offset) 426
Dp (Dimension Value Count) 426
Dr (Dimension Search Filter) 427
Drs (Dimension Search EQL Filter) 428
Du (Rollup Key for Dimension Search) 430
Dx (Dimension Search Options) 429
geocode range filters 45
N (Navigation) 402
Nao (Aggregated Record Offset) 402
Ndr (Disabled Refinements) 403
Ne (Exposed Refinements) 108, 404
Nf (Range Filter) 404
Nmpt (Merchandising Preview Time) 405
Nmrf (Merchandising Rule Filter) 406
No (Record Offset) 406
non-MDEX Engine-specific 383
Np 52
Np (Records per Aggregated Record) 407
Nr (Record Filter) 407
Nrc (Dynamic Refinement Ranking) 124, 408
Nrc (Refinement Configuration for Dimension Search)
427
Nrcs (Dimension Value Stratification) 409
Nrk (Relevance Ranking Key) 409
Nrm (Relevance Ranking Match Mode) 410
Nrr (Relevance Ranking Strategy) 411
Nrs (Oracle Commerce Query Language Filter) 411
Nrt (Relevance Ranking Terms) 412
Ns (Sort Key) 412
Nso (Sort Order) 413
Ntk (Record Search Key) 414
Ntpc (Compute Phrasings) 415
Ntpr (Rewrite Query with an Alternative Phrasing) 415
Ntt (Record Search Terms) 416
Ntx (Record Search Mode) 416
Nty (Did You Mean) 417
Nu 51
Nu (Rollup Key) 417
Nx (Navigation Search Options) 418
R (Record) 419
range filters 44
sorting record 35

URL query parameters
for business rule filters 335
for EQL 66
for promoting records 329
for testing time triggers 329
Automatic Phrasing 274
Boolean search 214
for dimension search 182
key-based record sets 60
phrase search 218
record filters 95

URL query parameters (continued)
record search 165
relevance ranking 297
search interfaces 175
search modes 204
snippeting 223

UrlENEQuery class 370, 373
user profiles

about 337
API objects and calls 339
Developer Studio configuration 337
performance impact 339
scenario 337

V
variables supported in MDEX Engine logging 432
verifying installation

with JSP reference application 398

W
Web application

adding code for keyword redirect results 329
adding code to extract business rules 329
adding code to render business rule results 334

Web applications
building for Oracle Commerce implementation 378
modules 362
primary functions 362

Why Match
about 343
URL query parameters 343

Why Precedence Rule Fired
about 355
format of dgraph property 355
URL query parameters 355

Why Rank
about 351
format of dgraph property 343, 351
URL query parameters 351

wildcard search
about 225
configuring 226
configuring for a search interface 228
configuring globally 227
false positive matches and performance 228
front-end application tips 229
implementing 225
interaction with other features 226
performance impact 229
retrieving error messages 228

Word Interpretation
about 347
API methods 347
implementing 347
troubleshooting 349

word-break analysis
about 256

449

Index

word-break analysis (continued)
configuration flags 256
disabling 256

word-break analysis (continued)
performance impact 256

Oracle Commerce Guided Search450

Index

	Contents
	Copyright and disclaimer
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Overview of Oracle Commerce Guided Search Applications
	About the MDEX Engine
	MDEX Engine overview
	About the Information Transformation Layer

	Assembler functionality
	How the MDEX Engine Communicates with the Assembler

	Record Features
	Working with Oracle Commerce Records
	Displaying Oracle Commerce records
	Displaying a list of Endeca records
	Displaying each record in the ERecList object
	Performance impact when listing records

	Displaying record properties
	Mapping and indexing record properties
	Accessing properties from records
	Properties returned by the MDEX Engine
	Displaying all properties on all records

	Displaying dimension values for Oracle Commerce Guided Search records
	Configuring how dimensions are displayed
	Accessing dimensions from records
	Performance impact of displaying dimensions

	Paging through a record set
	Using the No parameter in queries
	Using paging control methods

	Sorting Oracle Commerce Records
	About record sorting
	Configuring precomputed sort
	Changing the sort order with Dgidx flags
	URL parameters for sorting
	Sort API methods
	Troubleshooting application sort problems
	Performance impact for sorting
	Using geospatial sorting
	Configuring geospatial sorting
	URL parameters for geospatial sorting
	Geospatial sort API methods
	Dynamic properties created by geocode sorts
	Performance impact for geospatial sorting

	Using Range Filters
	About range filters
	Configuring properties and dimensions for range filtering
	URL parameters for range filters
	URL parameters for geocode filters
	Dynamic properties created by geocode filters

	Using multiple range filters
	Examples of range filter parameters
	Rendering the range filter results
	Troubleshooting range filter problems
	Performance impact for range filters

	Creating Aggregated Records
	About aggregated records
	Enabling record aggregation
	Generating and displaying aggregated records
	Determining the available rollup keys
	Creating aggregated record navigation queries
	Creating aggregated record queries
	Getting aggregated records from record requests
	Retrieving aggregated record lists from Navigation objects
	Displaying aggregated record attributes
	Displaying refinement counts for aggregated records
	Displaying the records in the aggregated record

	Aggregated record behavior
	Refinement ranking of aggregated records

	Controlling Record Values with the Select Feature
	About the Select feature
	Configuring the Select feature
	URL query parameters for Select
	Selecting keys in the application
	Java selection method
	.NET selection property

	Using the Oracle Commerce Query Language
	About the Oracle Commerce Query Language
	Basic filtering capabilities
	Record Relationship Navigation module

	Oracle Commerce Query Language syntax
	Negation operators
	NCName format for properties and dimensions
	URL query parameters for the Oracle Commerce Query Language

	Making Oracle Commerce Query Language requests
	Property value queries

	Record Relationship Navigation queries
	Record Relationship Navigation query syntax
	Record Relationship Navigation query examples
	RRN relationship filter examples

	Dimension value queries
	Querying with dimension value paths
	Query examples using dimension value paths
	Querying with dimension value IDs

	Record search queries
	Record search query examples

	Range filter queries
	Supported property types for range filters
	Basic range filter syntax
	Range filter query examples
	Geospatial range filter syntax

	Dimension search queries
	Oracle Commerce Query Language interaction with other features
	N parameter interaction
	Nr record filter interactions
	Nf range filter interactions
	Ntk and Ntt record search interaction
	Ns sorting interaction
	Nrk relevance ranking interaction
	Ne exposed refinements interaction
	Spelling auto-correction and Did You Mean interaction
	Oracle Commerce Analytics interaction

	Oracle Commerce Query Language per-query statistics log
	Implementing the per-query statistics log
	Setting the logging threshold for queries

	Creating an Oracle Commerce Query Language pipeline
	Creating the dimensions and properties
	Configuring the pipeline for Switch joins
	Running the Oracle Commerce Query Language pipeline

	Record Filters
	About record filters
	Record filter syntax
	Query-level syntax
	XML syntax for file-based record filter expressions

	Enabling properties for use in record filters
	Data configuration for file-based filters
	Record filter result caching
	URL query parameters for record filters
	Record filter performance impact
	Interaction with spelling auto-correction and spelling DYM
	Memory cost
	Expression evaluation

	Dimension and Property Features
	Property Types
	Formats used for property types
	Temporal properties
	Defining Time and DateTime properties
	Time properties
	DateTime properties
	Duration properties
	Working with time and date properties

	Working with Dimensions
	Displaying dimension groups
	Dimension group API methods
	Notes on displaying dimension groups

	Displaying refinements
	Configuring dimensions for query refinement
	URL parameters for dimension refinement values
	Retrieving refinement dimensions
	Extracting refinement values
	Creating a new query from refinement dimension values
	Accessing dimensions with hierarchy
	Non-navigable refinements
	Using ENEQueryToolkit.selectRefinement
	Performance impact for displaying refinements

	Displaying disabled refinements
	About disabled refinements
	Configuring disabled refinements
	URL query parameter for displaying disabled refinements
	Identifying disabled refinements from query output
	Interaction of disabled refinements with other navigation features
	Performance impact of disabled refinements

	Implementing dynamic refinement ranking
	Configuring dynamic refinement ranking
	Using query-time control of dynamic refinement ranking
	URL query parameter for setting dynamic refinement ranking
	Using refinement configuration API calls
	Displaying the returned refinement values
	Performance impact of dynamic refinement ranking

	Displaying descriptors
	URL parameters for descriptors
	Retrieving descriptor dimension values
	Creating a new query from selected dimension values

	Displaying refinement statistics
	Enabling refinement statistics for dimensions
	Retrieving refinement counts for records
	Retrieving refinement counts for records that match descriptors
	Performance impact of refinement counts

	Displaying multiselect dimensions
	Configuring multiselect dimensions
	Handling multiselect dimensions

	Using hidden dimensions
	Configuring hidden dimensions
	Handling hidden dimensions in an application

	Using inert dimension values
	Configuring inert dimension values
	Handling inert dimension values in an application

	Displaying dimension value properties
	Configuring dimension value properties
	Accessing dimension value properties
	Performance impact for displaying dimension value properties

	Working with external dimensions

	Dimension Value Boost and Bury
	About the dimension value boost and bury feature
	Nrcs parameter
	Stratification API methods
	Retrieving the DGraph.Strata property
	Interaction with disabled refinements

	Using Derived Properties
	About derived properties
	Configuring derived properties
	Displaying derived properties

	Configuring Key Properties
	About key properties
	Defining key properties
	Automatic key properties
	Key property API

	Basic Search Features
	Record Searches
	Keyword search overview
	Making properties or dimensions searchable
	Hierarchical record searches
	Adding search synonyms to dimension values
	Features for controlling record search
	URL query parameters for record search
	Methods for using multiple search keys and terms
	Methods for rendering results of record search requests

	Search query processing order
	Step 1: Record filtering
	Step 2: Oracle Commerce Query Language filters
	Step 3: Tokenization
	Step 4: Auto correction (spelling correction and automatic phrasing)
	Step 5: Thesaurus expansion
	Step 6: Stemming
	Step 7: Primitive term and phrase lookup
	Step 8: Did You Mean
	Step 9: Range filtering
	Step 10: Navigation filtering
	Step 11: Business rules and keyword redirects
	Step 12: Analytics
	Step 13: Relevance ranking

	Tips for troubleshooting record search
	Performance impact of record search

	Search Interfaces
	About search interfaces
	About implementing search interfaces
	Options for enabling cross-field matches
	Additional search interfaces options
	Search interfaces and URL query parameters (Ntk)
	Java examples of search interface methods
	.NET examples of search interface properties
	Tips for troubleshooting search interfaces

	Dimension Searches
	About dimension search
	Default dimension search
	Compound dimension search
	Enabling dimensions for dimension search
	Ordering of dimension search results
	Ordering of results for default dimension search
	Ordering of results for compound dimension search
	Filtering results that have no records

	Advanced dimension search parameters
	Dgidx flags for dimension search
	URL query parameters and dimension search
	Creating a default dimension search query
	Creating a compound dimension search query
	Returning all possible dimension values in a dimension search
	Limiting results of default dimension search and compound dimension search
	Setting the number of results
	Enabling result paging
	Ranking results
	Searching within a navigation state

	Methods for accessing dimension search results
	Displaying refinement counts for dimension search
	Enabling refinement counts for dimension search
	Retrieving refinement counts for dimension search
	Performance impact of refinement counts for dimension search

	When to use dimension and record search
	Performance impact of dimension search

	Record and Dimension Search Reports
	Implementing search reports
	Methods for search reports
	Retrieving search reports
	Accessing information in search reports

	Troubleshooting search reports

	Using Search Modes
	List of search modes
	MatchAll mode
	MatchPartial mode
	Interaction of MatchPartial mode and stop words
	MatchAny mode
	MatchAllPartial mode
	MatchAllAny mode
	MatchPartialMax mode
	MatchBoolean mode

	Configuring search modes
	URL query parameters for search modes
	Query examples with search modes

	Search mode methods

	Using Boolean Search
	About Boolean search
	Example of Boolean query syntax
	Examples of using the key restrict operator
	About proximity search
	Example of using NEAR for unordered matching
	Example of using ONEAR for ordered matching

	Proximity operators and nested subexpressions
	Boolean query semantics
	Operator precedence
	Interaction of Boolean search with other features
	Error messages for Boolean search
	Implementing Boolean search
	URL query parameters for Boolean search
	Methods for Boolean search
	Troubleshooting Boolean search
	Performance impact of Boolean search

	Using Phrase Search
	About phrase search
	About positional indexing
	How punctuation is handled in phrase search
	URL query parameters for phrase search
	Performance impact of phrase search

	Using Snippeting in Record Searches
	Excerpting Record Content through Snippeting
	Snippet formatting and size
	Snippet property names
	About enabling and configuring snippeting
	URL query parameters for snippeting
	Reformatting a snippet for display in your Web application
	Performance impact of snippeting
	Tips and troubleshooting for snippeting

	Using Wildcard Search
	About wildcard search
	Interaction of wildcard search with other features
	Ways to configure wildcard search
	Configuring wildcard search with Dimension and Property editors
	Configuring wildcard search with the Dimension Search Configuration editor
	Configuring wildcard search with the Search Interface editor

	MDEX Engine flags for wildcard search
	Presentation API development for wildcard search
	Performance impact of wildcard search

	Search Characters
	Using search characters
	Query matching semantics
	Categories of characters in indexed text
	Indexing alphanumeric characters
	Indexing search characters
	Indexing non-alphanumeric characters

	Search query processing
	Implementing search characters
	Dgidx flags for search characters
	Presentation API development for search characters
	MDEX Engine flags for search characters

	Examples of Query Matching Interaction
	Record search without search characters enabled
	Record search with search characters enabled
	Record search with wildcard search enabled but without search characters
	Record search with both wildcard search and search characters enabled

	Spelling Correction and Did You Mean
	About Spelling Correction and Did You Mean
	Spelling modes
	Disabling spelling correction on individual queries
	Spelling dictionaries created by Dgidx
	Configuring spelling in Developer Studio
	Modifying the dictionary file
	About the admin?op=updateaspell operation
	Enabling language-specific spelling correction
	Dgidx flags for Spelling Correction
	dgraph flags for enabling Spelling Correction and DYM
	URL query parameters for Spelling Correction and DYM
	Spelling Correction and DYM API methods
	dgraph tuning flags for Spelling Correction and Did You Mean
	How dimension search treats number of results
	Troubleshooting Spelling Correction and Did You Mean
	Performance impact for Spelling Correction and Did You Mean
	Compiling the Aspell dictionary
	Compiling the dictionary manually
	Compiling the dictionary with EAC

	About word-break analysis
	Disabling word-break analysis
	Word-break analysis configuration parameters
	Performance impact of word-break analysis

	Stemming and Thesaurus
	Overview of Stemming and Thesaurus
	About the Stemming feature
	Types of stemming matches and sort order (Latin1 languages)
	Enabling stemming
	Supplementing the default static stemming dictionaries (Latin 1)
	Adding a custom static stemming dictionary
	Replacing a default static stemming dictionary with a custom stemming dictionary

	About the Thesaurus feature
	Adding thesaurus entries
	Troubleshooting the thesaurus

	Dgidx and dgraph flags for the Thesaurus
	Interactions with other search features
	Performance impact of Stemming and Thesaurus

	Automatic Phrasing
	About Automatic Phrasing
	Using Automatic Phrasing with Spelling Correction and DYM
	Adding phrases to a project
	Importing phrases from an XML file
	Extracting phrases from dimension names
	Adding search characters

	Presentation API development for Automatic Phrasing
	URL query parameters for Automatic Phrasing
	Displaying spell-corrected and auto-phrased messages
	Displaying DYM alternatives

	Tips and troubleshooting for Automatic Phrasing

	Stop Words
	About stop words
	Adding a sample list of stop words to an application

	Relevance Ranking
	About the Relevance Ranking feature
	Relevance Ranking modules
	Exact
	Field
	First
	Frequency
	Glom
	Interpreted
	Maximum Field
	Number of Fields
	Number of Terms
	Phrase
	Configuring the Phrase module
	Ranking based on length of subphrases
	Using approximate matching
	Applying spelling correction, thesaurus, and stemming
	Summary of Phrase option interactions

	Effect of search modes on Phrase behavior
	Results with multiple matches
	Stop words and Phrase behavior
	Cross-field matches and Phrase behavior
	Treatment of wildcards with the Phrase module
	Notes about the Phrase module

	Proximity
	Spell
	Static
	Stratify
	Stem
	Thesaurus
	Weighted Frequency

	Relevance Ranking strategies
	Implementing relevance ranking
	Adding a Static module
	Ranking order for Field and Maximum Field modules
	Cross-field matching for the Field module
	How relevance ranking score ties between search interfaces are resolved
	Implementing relevance ranking strategies for dimension search
	Retrieving the relevance ranking for records

	Controlling relevance ranking at the query level
	URL query parameters for relevance ranking
	Using the Dk, Dx, and Ntx parameters
	Using the Nrk, Nrt, Nrr, and Nrm parameters

	Using relevance ranking methods

	Relevance Ranking sample scenarios
	Example 1: Using a small data set
	Example 2: UI reference implementation

	Recommended strategies
	Recommended strategy for retail catalog data
	Recommended strategy for document repositories

	Performance impact of Relevance Ranking
	Making module substitutions
	Ordering modules sensibly

	Record Boost and Bury
	About the record boost and bury feature
	Enabling properties for filtering
	The stratify relevance ranking module
	Record boost/bury queries
	Boost/bury sorting for Oracle Commerce records

	Content Spotlighting and Merchandizing
	Promoting Records with Dynamic Business Rules
	Using dynamic business rules to promote records
	Comparing dynamic business rules to content management publishing
	Dynamic business rule constructs
	Query rules and results
	Two examples of promoting records
	An example with one rule promoting records
	An example with three rules

	Suggested workflow for using Oracle Commerce tools to promote records
	Incremental implementation of business rules

	Building the supporting constructs for a business rule
	Ensuring promoted records are always produced
	Creating styles for dynamic business rules
	Using styles to control the number of promoted records
	Performance and the maximum records setting
	Ensuring consistent property usage with property templates

	Grouping rules
	Prioritizing rule groups
	Interaction between rules and rule groups

	Creating rules
	Specifying when to promote records
	Multiple triggers
	Global triggers
	Specifying a time trigger to promote records
	Previewing the results of a time trigger
	Synchronizing time zone settings
	Specifying which records to promote
	Adding custom properties to a rule
	Adding static records in rule results
	Order of featured records
	No uniqueness constraints
	No maximum record limits
	Sorting rules in the Rules view
	Prioritizing rules

	Controlling rules when triggers and targets share dimension values
	Changing the default self-pivot setting when running the Oracle Commerce HTTP service from the command line
	Changing the default self-pivot setting when running the Oracle Commerce Tools Service as a Windows service

	Working with keyword redirects
	Presenting rule and keyword redirect results in a Web application
	MDEX Engine URL query parameters for promoting records and testing time triggers
	Adding Web application code to extract rule and keyword redirect results
	Composition of the Supplement object
	Properties in a business rule's Supplement object
	Extracting rule results from Supplement objects
	Adding Web application code to render rule results

	Filtering dynamic business rules
	Rule filter syntax
	MDEX URL query parameters for rule filters

	Performance impact of dynamic business rules
	Rules without explicit triggers

	Applying relevance ranking to rule results
	About overloading Supplement objects

	Implementing User Profiles
	About user profiles
	Profile-based trigger scenario
	User profile query parameters
	API objects and method calls
	Performance impact of user profiles

	Understanding and Debugging Query Results
	Using Why Match
	About the Why Match feature
	Enabling Why Match
	Why Match API
	Why Match property format
	Why Match performance impact

	Using Word Interpretation
	About the Word Interpretation feature
	Implementing Word Interpretation
	Word Interpretation API methods
	Troubleshooting Word Interpretation

	Using Why Rank
	About the Why Rank feature
	Enabling Why Rank
	Why Rank API
	Why Rank property format
	Result information for relevance ranking modules
	Why Rank performance impact

	Using Why Precedence Rule Fired
	About the Why Precedence Rule Fired feature
	Enabling Why Precedence Rule Fired
	Why Precedence Rule Fired API
	Why Precedence Rule Fired property format
	Performance impact of Why Precedence Rule Fired

	Presentation API Basics
	Presentation API Overview
	List of Guided Search APIs
	Architecture of the Presentation API
	About Web application modules
	Methods for transforming requests into queries
	Techniques for passing request parameters

	One query, one page
	The Presentation API for Java and .NET

	About query result objects returned by the MDEX Engine
	About top-level object types
	Example of a top-level object
	Example of a record object for the wine data
	Obtaining additional object information

	Working with the Presentation API
	Core classes of the Presentation API
	HttpENEConnection
	Changing the timeout setting for HttpENEConnection

	ENEQuery and UrlENEQuery
	Creating the query with UrlENEQuery
	Executing MDEX Engine queries

	ENEQueryResults

	Using the core objects to query the MDEX Engine
	Four basic queries
	Building a basic query with the UrlENEQuery class
	Building a basic query with the ENEQuery class
	ENEQuery naming convention
	Methods of accessing data in basic query results
	Methods of determining types of queries passed to the MDEX Engine

	Getting started with your own Web application
	List of query exceptions

	Using the Reference Implementation
	Reference implementation overview
	The purpose of the reference implementation
	Four primary modules
	Non-MDEX Engine URL parameters
	About JavaScript files
	Module maps
	Module descriptions
	Tips on using the UI reference implementation modules

	Running the Reference Implementations
	The JSP diagnostic and debugging application
	Setting up the JSP application on Windows
	Setting up the JSP reference implementation on UNIX
	Enabling the Analytics controls in the JSP reference implementation
	Verifying your installation with the JSP reference application

	Running the ASP.NET reference implementation
	Configuring the 64-bit version of ASP.NET
	Setting up the ASP.NET reference implementation
	Testing your Guided Search installation with the ASP.NET reference implementation

	Oracle Commerce URL Parameter Reference
	About the Oracle Commerce URL query syntax
	N (Navigation)
	Nao (Aggregated Record Offset)
	Ndr (Disabled Refinements)
	Ne (Exposed Refinements)
	Nf (Range Filter)
	Nmpt (Merchandising Preview Time)
	Nmrf (Merchandising Rule Filter)
	No (Record Offset)
	Np (Records per Aggregated Record)
	Nr (Record Filter)
	Nrc (Dynamic Refinement Ranking)
	Nrcs (Dimension Value Stratification)
	Nrk (Relevance Ranking Key)
	Nrm (Relevance Ranking Match Mode)
	Nrr (Relevance Ranking Strategy)
	Nrs (Oracle Commerce Query Language Filter)
	Nrt (Relevance Ranking Terms)
	Ns (Sort Key)
	Nso (Sort Order)
	Ntk (Record Search Key)
	Ntpc (Compute Phrasings)
	Ntpr (Rewrite Query with an Alternative Phrasing)
	Ntt (Record Search Terms)
	Ntx (Record Search Mode)
	Nty (Did You Mean)
	Nu (Rollup Key)
	Nx (Navigation Search Options)
	R (Record)
	A (Aggregated Record)
	Af (Aggregated Record Range Filter)
	An (Aggregated Record Descriptors)
	Ar (Aggregated Record Filter)
	Ars (Aggregated EQL Filter)
	As (Aggregated Record Sort Key)
	Au (Aggregated Record Rollup Key)
	D (Dimension Search)
	Df (Dimension Search Range Filter)
	Di (Search Dimension)
	Dk (Dimension Search Rank)
	Dn (Dimension Search Scope)
	Do (Search Result Offset)
	Dp (Dimension Value Count)
	Dr (Dimension Search Filter)
	Drc (Refinement Configuration for Dimension Search)
	Drs (Dimension Search EQL Filter)
	Dx (Dimension Search Options)
	Du (Rollup Key for Dimension Search)

	MDEX Engine Logging Variables
	About MDEX Engine logging variables
	Logging variable operation syntax
	Supported logging variables

	Diacritical Character to ASCII Character Mapping
	Mapping table

	Index

