
Oracle Commerce
Content Acquisition System Relationship Discovery Guide

Version 11.2 • October 2015

Contents
Preface..7
About this guide..7
Who should use this guide...7
Conventions used in this guide..7
Contacting Oracle Support...7

Chapter 1: Introduction to Term Discovery...9
Overview of Relationship Discovery...9
Overview of Term Discovery..9
Overview of Cluster Discovery...11

Chapter 2: Configuration Guidelines for Term Extraction..............................13
Adding a Term Extractor manipulator..13
Term extraction workflow...14
Minimal term extraction configuration..14

Source input text property...15
Record specifier property name..15
Noun phrase grouping...16
Terms output property...17
All-terms destination property...17
Language..18
Supported languages..18

Configuration for the exclude list..19
Configuration for the main term extraction module..20

Update mode...20
Maximum number of input records...21

Configuration for candidate term identification...21
Input term property..22
Language specification of input records...22

Configuration for corpus-level filtering..23
Minimum and maximum occurrences in records..23
Minimum and maximum coverage settings...24
Threshold for the global informativeness of terms..24
Using regular expressions..24
Enabling debugging information for corpus-level filtering...25

Configuration for record-level filtering..25
Specifying a scoring threshold..26
Limiting the number of terms per record...26

Best practices for term filtering...27
Format of the source data..28

Chapter 3: Configuration Guidelines for Clustering.......................................31
Configuration for clusters...31
Clustering parameter descriptions...32
Tuning strategy for clusters..33

Chapter 4: Building the Front End of the Term Discovery Application.........35
Files to be changed..35
Adding global constants...35
Setting refinements in the controller file...36
Displaying refinements...37
Displaying clusters...37

Cluster properties..37
JSP code for displaying clusters...37
Clustering overlap properties..40

Displaying records and dimension refinements...40

iii

Chapter 5: Term Discovery Advanced Topics...41
Term filtering with pre-tagged records...41

Filtering only pre-existing terms..41
Filtering both sets of terms uniformly..42
Filtering only the new terms..42

Tuning aids for the filtering parameters..43
Using STATEFUL mode for tuning...43
Using corpus-filtering logging statistics...44

Appendix A: Term Discovery Sample Files...45
Modified nav_controls.jsp file...45
New nav_clusters.jsp file..49

Oracle Commerceiv

Copyright and disclaimer

Copyright © 2003, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth
in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible

v

for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers that have purchased support have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commercevi

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide describes the tasks involved in creating an Oracle Commerce Guided Search Relationship Discovery
application.

Who should use this guide
This guide is intended for developers responsible for creating a Relationship Discovery implementation.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

https://support.oracle.com

Chapter 1

Introduction to Term Discovery

This section provides overviews of the Guided Search Term Discovery and Guided Search Cluster Discovery
features.

Overview of Relationship Discovery
The Guided Search Relationship Discovery feature provides you with the ability to identify and extract key
relationships in documents, including documents consisting of unstructured text.

This guide describes how to implement the Guided Search Term Discovery and Guided Search Cluster
Discovery features, which are two major components of the Relationship Discovery solution. The third major
component, Guided Search Entity Discovery, is not documented in this guide; for information on this feature,
contact your Oracle Commerce Guided Search representative.

Note: The implementation of Term Discovery and Cluster Discovery requires that you must have
purchased a license for Relationship Discovery. The license package includes documentation that
describes how to enable the feature. Contact your Oracle Commerce Guided Search representative if
you are not certain whether you have a Relationship Discovery license.

The Term Discovery and Cluster Discovery components of Relationship Discovery have the capability to:
• Extract salient terms (noun phrases) from documents.
• Provide a scoring mechanism for the extracted terms, which determines whether a given term is retained.

Note that term scores are for internal use by the Guided Search software and therefore not exposed.
• Generate relevant terms on queries.
• Generate clusters of relevant terms.

Overview of Term Discovery
Term Discovery is the feature that extracts salient terms from source documents.

Term Discovery can be thought of as a two-part process:

1. Extracting terms from source documents (unstructured or structured) and scoring them according to their
relevancy. The scored terms are mapped to a Guided Search dimension, called a Term Discovery dimension
in this guide.

2. Presenting terms relevant to the current navigation state.

Extracting terms from documents

Term extraction is the process of tagging a Guided Search record with a list of its relevant terms. A term
represents a concept mentioned in the record’s source document, and is typically a noun phrase. The noun
phrase consists of one or more nouns, potentially with adjoining words. A relevant term is a term that bears
information for a document relative to the rest of the corpus.

During the term extraction process, term variants found in documents are stemmed for comparison and
aggregation, but the final representation of the term uses the dominant form (most frequent variant). Using the
dominant form allows the recovery of the preferred representation (singular/plural case, capitalization) of proper
nouns and brand names.

Term extraction is performed by CAS using a CAS term extractor manipulator. Configuration information on
term extraction is given in the Configuration Guidelines for Term Extraction chapter.

Maximum size of extracted terms

A noun phrase consists of a noun (or a sequence of nouns) with any associated modifiers. The modifiers are
limited to adjectives, adjective phrases, or nouns used as adjectives.

Programmatically, each word in a noun phrase is called a token. An extracted noun phrase can have a maximum
of 5 tokens; each token is limited to 200 characters. Therefore, a valid noun phrase has a maximum size of
1,000 characters.

The maximum size of a sentence in a document is 1,000 tokens (words). If the term extractor cannot determine
the sentence boundaries of text in the document, it splits the text into blocks of 1,000 tokens and then performs
text extraction on the blocks. In addition, the following WARN message will be entered in the term extraction
log:
Sentence boundaries could not be found for text beginning
with tokens t1 t2 t3 t4 t5

where t1 through t5 are the first 5 tokens of the problematic text.

If you are using OLT noun grouping, the rules in the list below are applied only when the noun group size is
more than 1000 characters. If the length of the noun group is less than or equal to 1000 characters, the noun
group is taken as is without any modification.

The term extractor treats invalid noun phrases as follows:
• If a noun phrase has more than 5 tokens, only the last 5 tokens are retained. For example, with a 7-token

noun phrase, the first 2 tokens are completely ignored by the term extractor and the last 5 tokens are
retained.

• Tokens that are over 200 characters are ignored.
• If a noun phrase includes an overly-long token, that token is ignored, and the precedent and antecedent

tokens are treated as separate noun phrases. For example, assume a 5-token noun phrase. Token 3 is
an overly-long token and the others are valid. In this case, Token 3 will be ignored and the term extractor
will return 2 noun phrases: the first noun phrase will consist of Tokens 1 and 2, and the second will consist
of Tokens 4 and 5.

Presenting relevant terms

Relevant terms are the most frequent terms available in the Term Discovery dimension. These terms are
returned from the documents in the current result set. All of the terms in the set belong to the same Term
Discovery dimension.

The Term Discovery dimension must have these two attributes:
• It must be a flat dimension (that is, a dimension that does not contain hierarchies).

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Introduction to Term Discovery | Overview of Term Discovery10

• It must not be a hidden dimension. (Configuring it as a hidden dimension will disable the Cluster Discovery
feature.)

Relevant terms are returned by the MDEX Engine as dimension value refinements. Programmatically, relevant
terms are DimVal objects. Therefore, application developers can use the same Presentation API methods on
relevant terms that can be used on normal dimension value refinements. For example, they can be returned
sorted using any ranking behavior supported for dimension value refinements.

Overview of Cluster Discovery
A cluster is a collection of relevant terms, providing a grouping of Guided Search records that share these
common terms.

All of the terms, which are dimension values, must come from the same dimension and must be a Term
Discovery dimension. Clusters can be generated only if the Term Discovery dimension is available for
refinements. This dimension cannot be hidden, and it must also be available from the navigation states for
which you want clusters. Therefore, your application must have this dimension globally available, instead of
having it available only when triggered by precedence rules.

The following features apply to the clusters:
• The MDEX Engine performs dynamic clustering. That is, when a user navigates the clustering tree, it is

re-clustered at any selection, allowing users to zoom into their data to practically any level.
• There is no limit in the number of records that can be clustered.
• Each cluster is represented by a list of terms, which provide to the user what is known as information scent:

the user is instantly aware of what each cluster contains. The user can quickly understand the implied
content of the clustered records.

• All clusters are designed to maximize two metrics: coherence -- each cluster has only closely related
records -- and distinctiveness -- two different clusters will have different records.

• Each cluster has high recall. A match partial technique is typically used on cluster selection, maximizing
the number of semantically related records that are returned.

For more information, see the Configuration Guidelines for Clustering chapter.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

11Introduction to Term Discovery | Overview of Cluster Discovery

Chapter 2

Configuration Guidelines for Term Extraction

This topic describes some guidelines for configuring term extraction.

Adding a Term Extractor manipulator
You add a Term Extractor manipulator to a data source on the Edit page of CAS Console. The manipulator
extracts terms from a given property on each record.

Term extraction is the process of tagging a record with a list of its relevant terms. A term represents a concept
mentioned in the record’s source document, and is typically a noun phrase. The noun phrase consists of one
or more nouns, potentially with adjoining words. In CAS, the Term Extractor manipulator uses the following
Oracle Language Technology (OLT) features to analyze a specific record property:

• Sentence recognition

Identifies breaks between sentences in text.

• Tokenization

Breaks a stream of text up into words, phrases, symbols, or other meaningful elements.

• Dynamic stemming

Determines the base (uniflected) form of a word. The process is based on dictionary entries and
language-specific rules.

• Parts of speech tagging

Tags a word in a text as belonging to a particular part of speech, based on its definition and its context.

• Noun phrase grouping

Identifies noun phrases in text using grammatical phrase grouping. You can use either OLT or custom
technology.

The terms are extracted into a property that you specify in the record. To add a Term Extractor manipulator
to a data source:

1. On the Data Sources page, click a data source name to access its acquisition steps.
2. Click Add Manipulator... and select Term Extractor.
3. Click Add.

The Manipulator Settings page displays.

4. In Name, specify a unique name for the manipulator to distinguish it from other manipulators in the data
source.
You can specify a name with alphanumeric characters, underscores, dashes, and periods. All other characters
are invalid for a name. If you change this value, you must run a full crawl.

5. Specify the following required configuration parameters:
• TEXT_PROP_NAME
• RECORD_SPEC_PROP_NAME
• Use OLT for NounGrouping
• OUTPUT_PROP_NAME
• ALL_TERMS_OUTPUT_PROP_NAME
• LANG
• State Directory path

If you modify any of these parameters except for LANG, you must run a full crawl. For information on these
parameters, see Minimum term extraction configuration.

6. You can specify an optional pass-through parameter.

7. Click Save.

The manipulator displays on the Acquisition Steps list.

Term extraction workflow
This topics gives an overview of the workflow of the term extractor.

Term extraction consists of three steps, each of which is optional:

1. Candidate Term Identification — Identify all terms that are candidates for a given document and then extract
those terms. This step is omitted if terms are being extracted from pre-tagged records.

2. Corpus-level Filtering — Globally filter the extracted terms to determine a controlled vocabulary for the
corpus. This involves identifying terms that should be removed corpus-wide.

3. Record-level Filtering — Determine, for each record, what are the most relevant terms for it from the
controlled vocabulary. This involves identifying terms that should be removed from an individual record
(independent of terms that should be removed from the entire corpus, but possibly using corpus-level
information) and subsequently removing these terms from the tags on the record.

Note that steps 2 and 3 remove the terms that are judged by their score or by their presence on the exclude
list to be of low information value. The tagged terms on each record are a result of step 3.

This section provides configuration requirements for the term extraction modules. You supply the configuration
parameters as pass-through name/value pairs to the CAS manipulator.

Minimal term extraction configuration
The minimal term extraction configuration consists of the following required pass-through parameters.

These parameters are listed in the following table, with details in later sections.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Term extraction workflow14

Configuration ValueParameter

Source property to use as the source text for term extraction. No
default.

TEXT_PROP_NAME

The source property that is mapped to the Guided Search record
specifier property. No default.

RECORD_SPEC_PROP_NAME

Property determines if term extraction uses OLT (true) or legacy
code (false) for noun phrase grouping.

Use OLT for NounGrouping

The source property to use as the destination for tagged terms. No
default.

OUTPUT_PROP_NAME

Source property to use as the destination for all terms on a record.
No default.

ALL_TERMS_OUTPUT_PROP_NAME

Specifies the language ID to use on a global basis. No default.LANG

Directory path where term extraction state files should be stored.
The location should be Guide Search application specific. For
example: <ENDECA_APPS_DIR>/Discover/state/TE..

State Directory path

This configuration runs as follows:
• A baseline update (STATELESS mode) is performed.
• No corpus- or record-level filtering will be performed. As a result, all terms in the corpus are extracted and

all of them are tagged onto records.
• The expected language of the documents are specified in the LANG pass-through.

This configuration is the most permissive for term extraction. Although most sites prefer to perform some level
of corpus and record filtering, this minimal configuration might be useful with small data sets that have a
closely-related set of noun phrases in their documents.

Note: You must run a full crawl if any one of the minimum configuration parameters except LANG are
modified.

Source input text property
The TEXT_PROP_NAME pass-through specifies which pre-existing property on the input data record will be
used as the source for term extraction.

The TEXT_PROP_NAME pass-through is mandatory. Note that the value for this pass-through specifies a
source property, not a Guided Search property. This property will then be mapped to a dimension.

If you want to extract terms from multiple properties, a pipeline component must combine the text from the
multiple properties into one text property. The name of that text property is then used for the TEXT_PROP_NAME
pass-through.

Record specifier property name
The RECORD_SPEC_PROP_NAME pass-through specifies a source record property that is mapped to the
Endeca record specifier property in the implementation.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

15Configuration Guidelines for Term Extraction | Minimal term extraction configuration

The RECORD_SPEC_PROP_NAME pass-through is mandatory. Get the RECORD_SPEC_PROP_NAME
pass-through from the <ENDECA_APP>\config\cas\data-recordstore-config.xml file. This file is
used to set the definition for the Record Store and it contains the RECORD_SPEC_PROP_NAME property.

To find out the name of the record specifier source property:

1. Go to <ENDECA_APP>\config\cas\data-recordstore-config.xml file
2. Open the file in an editor.

For example, in the Discover reference application:
<recordStoreConfiguration xmlns="http://recordstore.itl.endeca.com/">
 <idPropertyName>common.id</idPropertyName>
</recordStoreConfiguration>

The common.id property is the property name that you must include in the RECORD_SPEC_PROP_NAME
pass-through of the CAS manipulator.

3. Use this name for the RECORD_SPEC_PROP_NAME pass-through.

Noun phrase grouping
You can use either custom noun phrase grouping or OLT for noun phrase grouping through the CAS manipulator
configuration.

In both options, OLT is used for tokenization, part-of-speech tagging, dynamic stemming, and sentence
recognition.

For the Use OLT for NounGrouping setting:
• A false value means custom logic is used for noun phrase grouping. This model helps you get similar

behavior as in Forge-based term extraction.

Note: Only English and French languages are supported by this model.

• A true value means that the OLT grammatical noun phrase grouping is used in this module. This model
supports over fifty languages including English and French. See Supported languages on page 18 for more
information on the supported languages.

Output comparison

This section compares the output of a false value (Forge-based term extraction) and a true value (OLT-based
term extraction in CAS). In OLT-based term extraction, noun groups are formed with better meaning and
context. The following example uses the same text given in both Forge-based term extraction and OLT-based
term extraction.

Here is the text:

Sachin Ramesh Tendulkar is a former Indian cricketer widely acknowledged as the
greatest batsmen of all time, popularly holding the title "God of Cricket" among
his fans. He is the only player to have scored one hundred international centuries.

The following table shows the noun groups that were extracted:

OLT-based term extraction using CASForge-based term extraction

Sachin Ramesh TendulkarSachin Ramesh Tendulkar

a former Indian cricketercricketer

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Minimal term extraction configuration16

OLT-based term extraction using CASForge-based term extraction

the greatest batsmen of all timegreatest batsmen

the titletitle

God of CricketGod

his fansfans

Terms output property
The OUTPUT_PROP_NAME pass-through specifies the property that holds the tagged terms (if any) for each
Endeca record.

The OUTPUT_PROP_NAME pass-through is mandatory. If the property does not already exist in the
implementation, then the term extractor will create it. After term extraction, this property is typically mapped to
a dimension via the property mapper.

All-terms destination property
The ALL_TERMS_OUTPUT_PROP_NAME pass-through specifies the property which gets all terms on a
record that pass corpus-level filtering.

The ALL_TERMS_OUTPUT_PROP_NAME pass-through is mandatory. The property gets all terms on a record
that pass corpus-level filtering regardless of whether they pass record-level filtering.

If the property does not already exist in the implementation, the term extractor will create it. When mapped to
a Guided Search property, record searches can be performed on this all-terms property (assuming it is configured
to be searchable).

The all-terms property is used for search purposes. For each record, the term extractor finds all of the terms
in the corpus-wide vocabulary that occur in that document (regardless of their relevance for that document)
and puts them in the all-terms property. By using this property for searches, stemming of the terms can be
performed.

For example, if the terms "search engine" and "search engines" appear in the corpus, they will be normalized
to the dominant form (e.g., as "search engine"). But if you want to find all records that contain either variant,
you cannot use Phrase search against the body text, because Phrase search does not locate stemmed variants.
Instead, Term Discovery ensures that both the dimension value name and the term stored in the all-terms
property is the dominant form.

The terms in the all-terms property are separated by using sep as the delimiter. The term extractor makes the
separator by doing (sep)+ until the separator is not a substring of any term in the corpus. Therefore, the
separator may be sep, sepsep, sepsepsep, and so on. For example, an article on Aldera, Spain might produce
the following all-terms property (named P_AllTerms) on the record (in the example, sepsep is the separator
for the property):
P_AllTerms: district sepsep Spain sepsep south coast sepsep
 coast sepsep town sepsep Aldera sepsep province sepsep
 Romans sepsep decline sepsep station sepsep hills sepsep
 Heracles sepsep temple sepsep colonies sepsep Tiberius

Because of the widespread use of this separator, you should add it to the stop word list. (Note that this is the
application’s stop word list, not the term exclude list.) Before doing so, first determine which form is the separator.
Run the corpus at least once to find what the separator is and then set that separator as a stop word. For
example, if "sep" is a valid term in the corpus, then it is likely that sepsep will the separator. Thus, you would

Oracle Commerce Content Acquisition System Relationship Discovery Guide

17Configuration Guidelines for Term Extraction | Minimal term extraction configuration

add "sepsep" (but not "sep") to the stop word list. Then, periodically monitor the corpus to make sure the
separator has not changed.

Language
The LANG pass-through parameter sets the language ID of input records on a global basis

The language ID is not case sensitive. For example, you can specify EN or en for English (American).

Supported languages
The LANG pass-through parameter takes one of the following language codes as input when Use OLT for
noun grouping is true.

Language CodeLanguage

arArabic

eu
Basque

beBelerusian

bsBosnian

bgBulgarian

caCatalan

zh-CNChinese (Simplified)

zh-TWChinese (Traditional)

hrCroatian

csCzech

daDanish

nlDutch

enEnglish (American)

en-GBEnglish (United Kingdom)

etEstonian

faFarsi/Persian

fiFinnish

frFrench (European)

fr-CAFrench (Canadian)

glGalician

deGerman

elGreek

heHebrew

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Minimal term extraction configuration18

Language CodeLanguage

huHungarian

idIndonesian

itItalian

jpJapanese

koKorean

lvLatvian

ltLithuanian

mkMacedonian

msMalay

nbNorwegian (Bokmal)

nnNorwegian (Nyorsk)

plPolish

ptPortuguese (European)

pt-BRPortuguese (Brazil)

roRomanian

ruRussian

srSerbian (Cyrillic)

sr-LatnSerbian (Latin)

skSlovak

slSlovenian

esSpanish

svSwedish

thThai

trTurkish

ukUkranian

ca-ES-valenciaValencian

viVietnamese

Configuration for the exclude list
The exclude list configuration contains a set of terms that are removed from the final list of extracted terms.

Excludes are compared against the canonical and all raw forms of a term; if it matches any, the term is excluded.
This is equivalent to canonicalizing the exclude term.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

19Configuration Guidelines for Term Extraction | Configuration for the exclude list

The exclude list configuration can be passed to the CAS term extraction manipulator by creating a new Record
Store of a supported type, for example de-limited or JDBC. You must load the data into the Record Store and
add the following pass through information in the manipulator configuration.

Configuration ValueParameter

Record Store instance name which contains exclude terms.Exclude List Record Store instance name

Property name of the record which contains exclude term in Exclude
List Record Store.

Exclude term property name

The format rules for the excluded terms list are as follows:
• The exclude list is not case sensitive.
• Apostrophes can be included as necessary. For example, enter i’m if you want that term to be excluded.

The list is processed after all terms have been extracted from the records.

In this brief example of a delimited exclude list file, EXCLUDE and RecordSpec are the headers -- multiple
headers are allowed. For the Exclude term property name property in the CAS term extraction manipulator,
you must pass EXCLUDE.
EXCLUDE,RecordSpec
- 12.1 megapixel,1
- 12 MP,2
The 12.1 megapixel sensor,4

Configuration for the main term extraction module
In addition to the parameters in the minimum configuration, this module requires the parameters listed in the
following table.

Configuration ValuePASS_THROUGH Element

The type of data update to perform: STATELESS (the default),
STATEFUL, or PARTIAL. Optional.

UPDATE_MODE

Integer that sets the maximum number of records to be processed.
Optional. Defaults to all records processed.

MAX_INPUT_RECORDS

Update mode
The UPDATE_MODE pass-through specifies which type of data update is being performed by the pipeline.

The UPDATE_MODE pass-through is optional. The three values for this pass-through are STATELESS,
STATEFUL, and PARTIAL. Note that if this pass-through is omitted, the term extractor performs a STATELESS
update.

STATELESS mode

STATELESS is analogous to a baseline update and performs the following actions:

1. Extracts terms from all records.
2. Performs corpus-level and record-level filtering on all records.
3. Emits all records.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for the main term extraction module20

4. Does not create state files.

STATEFUL mode

STATEFUL performs the following actions:

1. Extracts terms from new records only.
2. Performs corpus-level and record-level filtering on all records -- both previously processed records and

new records.
3. Emits all records -- both previous and new records.
4. Creates term state files.

PARTIAL mode

PARTIAL is analogous to a partial update and performs the following actions:

1. Extracts terms from new records only.
2. Performs record-level filtering on new records only. Corpus-level filtering is not performed at all, so the

previous corpus information is left as-is.
3. Emits new records only.
4. Does not create state files. Previous term state files are left as-is.

Notes on update modes

Keep the following notes in mind when using the update modes:
• STATELESS mode is recommended for sites that perform baseline updates exclusively.
• STATEFUL mode is recommended for sites that implement partial updates. That is, the baseline update

pipeline will use STATEFUL mode while the partial update pipeline will use PARTIAL mode.
• The STATELESS and STATEFUL modes do not need pre-existing state files in order to run.
• The PARTIAL mode does require the existence of the term state files. Therefore, a STATEFUL update

must be performed before a PARTIAL update.

Maximum number of input records
The MAX_INPUT_RECORDS pass-through specifies the maximum number of input records to be processed.
With the MAX_INPUT_RECORDS pass-through, only the specified number of records are read in and emitted.

The MAX_INPUT_RECORDS pass-through is optional. This pass-through is intended for development purposes
and should be omitted in a production environment so that all records are processed.

Configuration for candidate term identification
A set of pass-throughs is available to configure which terms are candidates for term extraction.

The following configuration parameters are used in addition to the parameters in the minimum configuration
when performing candidate term identification for terms:

Configuration ValuePASS_THROUGH Element

Source property to use as the source text for pre-tagged records.
Optional. No default.

INPUT_TERM_PROP_NAME

Oracle Commerce Content Acquisition System Relationship Discovery Guide

21Configuration Guidelines for Term Extraction | Configuration for candidate term identification

Configuration ValuePASS_THROUGH Element

Source property containing the language ID. Optional. No default.LANG_PROP_NAME

Specifies the language ID to use on a global basis. No default.LANG

Input term property
The INPUT_TERM_PROP_NAME pass-through is used for a corpus that contains pre-tagged records.

Pre-tagged records are source records with pre-existing terms that were generated by non-Guided Search
software. In this scenario, you do not want to extract new terms from the documents but do want to perform
corpus-level and/or record-level filtering on the pre-tagged terms.

This pass-through can be used in conjunction with the TEXT_PROP_NAME pass-through to combine the
pre-existing terms with the new extracted terms.

Language specification of input records
Two pass-through parameters set the language ID of input records on a global and per-record basis.

You can use the LANG and LANG_PROP_NAME pass-through parameters to specify the global language ID
and the per-record language ID of the input records. The language ID is not case sensitive for both pass-through
parameters. For example, you can specify EN or en for English (American).

Note that the LANG_PROP_NAME value takes precedence, and if not present, the value of LANG is used as
the language of the record.

Both can be specified in the CAS manipulator.

LANG pass-through

The LANG pass-through specifies the language ID to use on a global basis.

LANG_PROP_NAME pass-through

The LANG_PROP_NAME pass-through specifies the name of the record property that contains the language
ID for that record. If you do not specify this pass-through, the language ID for each record will default to the
value of the LANG pass-through. For example, if the value for LANG is en-GB, then the term extractor assumes
that all the records are in English - UK.

If you do specify the LANG_PROP_NAME pass-through, the term extractor will evaluate each record as follows:
• If the value of the LANG_PROP_NAME property matches the LANG setting, then terms are extracted from

the record in that language.
• If the value of the LANG_PROP_NAME property does not match the LANG setting, then terms are not

extracted from the record. That is, the record is ignored for purposes of term extraction, but the record is
otherwise processed by CAS. For example, if the value of LANG is fr (French - European) and the value
of the LANG_PROP_NAME property is en-GB (English - UK) for a given record, the terms extractor will
ignore that record.

• If the value of the LANG_PROP_NAME property is null or the record does not contain the
LANG_PROP_NAME property, the term extractor will assume that the language ID of the record is the
same as the LANG setting and therefore will attempt to extract terms from the record in that language.

If you have documents in multiple languages, the LANG_PROP_NAME pass-through is useful to ensure that
only records in the desired language (the LANG setting) are processed by the term extractor.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for candidate term identification22

Configuration for corpus-level filtering
A set of pass-through parameters is available to configure how corpus-level filtering is done.

In addition to the parameters in the minimum configuration, the following configuration parameters are used
for performing corpus-level filtering.

Configuration ValuePASS_THROUGH Element

Integer specifying the minimum number of records in which a term must
appear in order to be considered. Default is 0; minimum recommended value
is 2.

CORPUS_MIN_RECS

Integer specifying the maximum number of records in which a term must
appear in order to be considered. Default is unlimited.

CORPUS_MAX_RECS

Double specifying the minimum fraction of the corpus that must contain the
term. Default is Double.NEGATIVE_INFINITY; useful range is 0-1;
recommended value is 0.00005.

CORPUS_MIN_COVERAGE

Double specifying the maximum fraction of the corpus that must contain the
term. Default is Double.POSITIVE_INFINITY; useful range is 0-1;
recommended value is 0.2.

CORPUS_MAX_COVERAGE

Minimum global informativeness score a term must have to be considered.
Default is Double.NEGATIVE_INFINITY.

CORPUS_MIN_INFO_GAIN

Maximum global informativeness score a term must have to be considered.
Default is Double.POSITIVE_INFINITY.

CORPUS_MAX_INFO_GAIN

String that is a regular expression for terms that should be kept. No default.CORPUS_REGEX_KEEP

String that is a regular expression for terms that should be discarded. No
default.

CORPUS_REGEX_SKIP

If set to true, detailed information about corpus-level scoring is written to
the logs. Default is false.

CORPUS_DEBUG

Minimum and maximum occurrences in records
Two pass-throughs set the minimum and maximum number of records in a term can appear before it is
discarded.

The CORPUS_MIN_RECS parameter determines the minimum number of records in which a term can appear
before it can be considered. If a term appears in fewer records than the CORPUS_MIN_RECS setting, then
the term is discarded.

Setting a value less than 2 is not recommended, as it useless for clustering. In addition, a value of 2 or higher
means that singlets are eliminated.

Singlets are terms that appear in only one record. Singlets typically occur very frequently in a corpus, but
cannot be used for clustering, which uses cross-record statistics. Therefore, eliminating singlets reduces
memory use and computation time. Minimum occurrences should be set to at least 2 to remove singlets; higher
values will require a term to appear on more records. Note that large document sets have more term redundancy
and can have this parameter set to higher values, such as 3 or higher.

The CORPUS_MAX_RECS parameter sets the maximum number of records in which a term can appear. If it
appears in more records than the set value, then the term is discarded.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

23Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering

You can use both pass-throughs to create a window. For example, assume you have set these values:
CORPUS_MIN_RECS=5
CORPUS_MAX_RECS=20

The result would be that a term would be retained only if it appeared in at least 5 records but no more than 20
records.

Minimum and maximum coverage settings
Two pass-throughs set the minimum and maximum percentage of records that must contain a term.

The coverage pass-throughs correspond to the fraction of the records in the corpus which contain at least one
occurrence of the given term:

• CORPUS_MIN_COVERAGE sets the minimum fraction of the corpus that must contain the term.
• CORPUS_MAX_COVERAGE sets the maximum fraction of the corpus that must contain the term.

For example, if you want to keep only those terms that appear in between 5% and 25% of the corpus, you
would use these settings:
CORPUS_MIN_COVERAGE=0.05
CORPUS_MAX_COVERAGE=0.25

The useful range for both pass-throughs is 0-1, in which 1 is 100% of the corpus.

Threshold for the global informativeness of terms
Two pass-throughs set the scoring threshold for the global informativeness of a term.

The CORPUS_MIN_INFO_GAIN parameter sets the minimum scoring threshold when measuring the global
informativeness (info_gain) of a term. The useful range for CORPUS_MIN_INFO_GAIN is minus infinity to plus
infinity, although most terms tend to fall in the -5.0...+5.0 range. The terms with negative information gain are
likelier to contribute more noise than signal. Eliminating these globally uninformative terms saves considerable
memory and query compute time. The minimum info_gain setting can be increased to require higher global
informativeness—or, conversely, decreased to allow more terms to be retained. Setting
CORPUS_MIN_INFO_GAIN to 0 is usually adequate. Setting this parameter to values higher than 1.0-2.0 can
dramatically reduce the number of terms.

The CORPUS_MAX_INFO_GAIN parameter sets the maximum scoring threshold for the global informativeness
of a term. If the scoring for a term exceeds this threshold, the term is discarded.

Using regular expressions
Two pass-throughs allow you to use regular expressions to retain or discard terms.

The term extractor supports two pass-throughs that are used for matching character sequences against patterns
specified by regular expressions:

• CORPUS_REGEX_KEEP specifies a regular expression that a term must match in order to be retained.
• CORPUS_REGEX_SKIP specifies a regular expression that a term must not match in order to be retained.

You can use either or both pass-throughs. If both are used, then a term must pass both tests in order to be
retained (that is, if the term satisfies one pass-through but not the other, the term is discarded).

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering24

The term extractor implements Oracle’s java.util.regex package to parse and match the pattern of the
regular expression. Therefore, the supported regular-expression constructs are the same as those in the
documentation page for the java.util.regex.Pattern class at this URL:

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

This means that among the valid constructs you can use are:
• Escaped characters, such \t for the tab character.
• Character classes (simple, negation, range, intersection, subtraction). For example, [^abc] means match

any character except a, b, or c, while [a-zA-Z] means match any upper- or lower-case letter.
• Predefined character classes, such as \d for a digit or \s for a whitespace character.
• POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum} for

an alphanumeric character, and \p{Punct} for punctuation.
• Boundary matchers, such as ^ for the beginning of a line, $ for the end of a line, and \b for a word boundary.
• Logical operators, such as X|Y for either X or Y.

For a full list of valid constructs, see the Pattern class documentation page at the URL listed above.

The following is an example of a useful regular expression that uses the POSIX \p{Alnum} construct:
^\p{Alnum}[\p{Alnum}\.\-']+$

When used with the CORPUS_REGEX_KEEP pass-through, this regular expression will retain only terms that
have at least two characters, starts with an alphanumeric character, and contains only alphanumeric, period,
dash, apostrophe, and space characters. (The apostrophe is to retain terms such as O'Malley).

The following is a another example that is fairly restrictive:
[^A-Za-z0-9\-\.]

When used with the CORPUS_REGEX_SKIP pass-through, this regular expression will retain only terms that
consist of alphanumeric, dash, period, and space characters.

Enabling debugging information for corpus-level filtering
The CORPUS_DEBUG pass-through enables the logging of debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to write detailed information about the
corpus-level filtering scores it assigns to terms. Temporarily setting this pass-through to true will help you to
tune corpus-level filtering.

Configuration for record-level filtering
Two pass-through parameters are available to configure record-level filtering for term extraction.

In addition to the parameters in the minimum configuration, the following configuration parameters are used
for performing record-level filtering. These pass-through parameters are optional. Note that if you chose OLT
noun phase grouping in the minimum configuration, you cannot use record-level filtering.

Configuration ValuePASS_THROUGH Element

Double that sets the minimum scoring fraction of the median to use. 1.1
is the recommended value; 0.0 is the default.

RECORD_FRACT_OF_MEDIAN

Sets a limit on the maximum number of terms that are tagged on a record.
Default is to have no limit.

RECORD_NTERMS

Oracle Commerce Content Acquisition System Relationship Discovery Guide

25Configuration Guidelines for Term Extraction | Configuration for record-level filtering

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Specifying a scoring threshold
The RECORD_FRACT_OF_MEDIAN sets a scoring threshold for record-level filtering.

CAS uses a scoring method in which terms that are more frequent in this document than across the corpus
are considered to be more relevant and thus are retained. Filtering occurs on the document-by-document
basis; in other words, each term is considered for inclusion or exclusion separately for each document in which
it occurs.

The distribution of scores for terms on a single record typically has very few high-scoring terms, followed by
a long, gently-sloped plateau of marginally informative terms, with a sudden drop-off of few uninformative
terms.

The RECORD_FRACT_OF_MEDIAN value lets you set a scoring threshold for the plateau; only terms that
score above this threshold are kept. RECORD_FRACT_OF_MEDIAN should be set to a value that expresses
the threshold as a fraction of the median score for terms on the document.

The recommended threshold is 1.1 (i.e., 10% higher than the median), which will keep only the highly-informative
terms. Higher values will tend to increase precision (the terms that are kept are more likely to be relevant) but
decrease recall (more likely to lose relevant terms). The default value of this threshold is 0.0, which allows all
terms through.

Limiting the number of terms per record
The RECORD_NTERMS pass-through sets a limit on the maximum number of terms that are tagged on a
record.

You can use the RECORD_NTERMS pass-through to implement one of two strategies to limit the number of
terms that are tagged on records:

• Set an absolute upper limit.
• Establish a cut-off window.

You cannot mix both strategies. In both strategies, CAS determines which terms have the highest relevance
for that record. Note that this pass-through is recommended mainly for collections that have large documents.

Setting a hard limit

To set an absolute upper limit, use the RECORD_NTERMS pass-through with only one integer value. Use this
version of the pass-through when you are certain about the number of terms you want per record and can
therefore set a hard limit. In this example, RECORD_NTERMS is set to a value of 8:

Using this setting, CAS determines which are the eight most relevant terms for this record and tag the record
with them.

Establishing a cut-off window

To establish a cut-off window, use the RECORD_NTERMS pass-through with a range of two integers, which
sets the lower and upper limits of a cut-off window. This windowing strategy establishes a window that will be
scanned for an optimal cut-off. This cut-off is where term informativeness drops off most precipitously. Use
this strategy when you want CAS to be sensitive to actual term informativeness rather than just using a hard
limit.

You can think of the term range as providing a fuzzy neighborhood to be used instead of a hard limit. For
example, instead of RECORD_NTERMS having a hard limit of 32, you can set it to a range of 24-36. This
range establishes a window where a record can have a minimum of 24 terms and a maximum of 36 terms.
CAS determines the optimal cut-off within that window for each record.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for record-level filtering26

For example, assume that 40 terms were extracted from Record A and also from Record B:
• For Record A, the optimal cut-off for the terms might be after term 26 (because of a sharp drop-off in

relevancy for terms 27-40). Therefore, Record A will have 26 terms tagged onto it.
• For Record B, the optimal cut-off for its set of terms might be after term 30. In this case, Record B will have

30 tagged terms.

When using the range version of this pass-through, keep the following in mind:
• The lowest recommended value for the lower limit is around 10. The reason is that the scores of the top

terms scores usually differ noticeably, and the largest score drop-off is likely to be found at the setting for
the lower limit. Thus, if the lower is less than 10, you should expect it to behave like the hard-limit version
of RECORD_NTERMS, which is misleading.

• The value for the upper limit should not be much larger than the value for the lower limit. If the difference
is too much, the number of terms assigned to each particular record will be essentially random (within the
cut-off window). The only way to have this number of terms relatively consistent is to use a lower- and
upper-limit pair that are not too far from each other.

Best practices for term filtering
This topic presents a best practices list for term extraction.

The best practices lists include the pass-through name and a recommended (best practices) value. If a
recommended value is not given, then the default value is also the recommended one.

The two important things to keep in mind are:
• When tuning corpus-level filtering, the number of documents is the main consideration.
• When tuning record-level filtering, the size of the text property is the main consideration.

Corpus-level filtering best practices

CORPUS_MIN_RECS

Recommendation: Values of less than 2 are not recommended in general, since they allow terms that are seen
only once in the entire corpus. If clustering is used, this value MUST be set to at least 2. Note that this parameter
works similarly to CORPUS_MIN_COVERAGE: terms that are seen less frequently than in CORPUS_MIN_RECS
are discarded, as are terms that are seen in less than CORPUS_MIN_COVERAGE * (number of documents
in the corpus).

CORPUS_MAX_RECS

Recommendation: As a general rule of thumb, this pass-through does not have to be used. If your number of
records can change, for example, through partial updates, Oracle recommends that you not use
CORPUS_MAX_RECS, because the statistics will change with the changed number of records. In this case,
you may want to use the CORPUS_MAX_COVERAGE pass-through instead.

CORPUS_MIN_COVERAGE

Recommendation: The useful range is 0-1. A value of 0.00005 is a good compromise, because the term
extractor will retain a term if it has been seen in at least one document out of 20,000.

This value will change with the nature of the data set. For example, a site with a data set with a lot of topical
diversity (such as news) can reduce this value and allow terms with lower coverage (however, one out of any
hundred thousand is probably the smallest reasonable value). If memory use is an issue, you should increase
this value.

CORPUS_MAX_COVERAGE

Oracle Commerce Content Acquisition System Relationship Discovery Guide

27Configuration Guidelines for Term Extraction | Best practices for term filtering

Recommendation: The useful range is 0-1. A value of 0.2 (which is 20% of the documents) is a good
compromise. If a term is seen in more than one out of five documents (i.e., 20%), it is probably too broad to
be useful. If terms that are tagged onto documents seem too generic, this number should be turned down. As
with CORPUS_MIN_COVERAGE, turning this number down, even slightly, should free memory.

CORPUS_REGEX_KEEP

Recommendation: A useful regular expression for terms to keep is:
^\p{Alnum}[\p{Alnum}\.\-']+$

This retains terms that have at least two characters, start with an alphanumeric character, and includes only
alphanumerics, spaces, periods, dashes, and single quotes.

Note: Each term must both match CORPUS_REGEXP_KEEP and not match CORPUS_REGEXP_SKIP
to be retained.

CORPUS_REGEX_SKIP

Recommendation: Use this pass-through only if you are certain of the format of the terms you want to discard.

CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN

Recommendation: Begin by setting CORPUS_MIN_INFO_GAIN to 0. Do not set CORPUS_MAX_INFO_GAIN
initially. Tune the other term extraction pass-throughs. Then, run a data set (or a subset) with CORPUS_DEBUG
set to true, which will print the list of terms that passed all the selection criteria. You can use this information
to adjust the selection criteria, which may include adjusting the CORPUS_MIN_INFO_GAIN and using the
CORPUS_MAX_INFO_GAIN pass-throughs.

If fewer generic terms are desired, increase the value of CORPUS_MIN_INFO_GAIN in small increments (0.5
or 1.0). If more generic terms are desired, decrease this value. CORPUS_DEBUG can be used to select a
particular value of CORPUS_MIN_INFO_GAIN.

CORPUS_DEBUG

Recommendation: Set this pass-through to true only when you are tuning the filtering parameters; otherwise,
do not use it.

Record-level filtering best practices

RECORD_NTERMS and RECORD_FRACT_OF_MEDIAN

Recommendation: The use of these pass-throughs depends on the length of text in the text property that
contains candidate terms. The two scenarios considered here are properties with either short text or long text.

For short text (such the P_Description property in the wine data set shipped with the sample reference
implementation), the recommendation is to not use these pass-throughs, which will keep all the terms.

For long text (such as news sites or sites with long articles), use the range version of RECORD_NTERMS to
set however many terms per record you want, say a range of 16-24 or, if more is wanted, a range of 24-30.
(Keep in mind that the lower limit should be greater than 10 and the upper limit should not be much large than
the lower limit.) Set RECORD_FRACT_OF_MEDIAN to 1.1 for relatively small documents, 1.2 for larger
documents, and 1.5 for very large documents.

Format of the source data
Terms can be extracted from either structured and unstructured source data.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Format of the source data28

In general, data and content acquisition will typically be used to retrieve the records used by the term extractor.
In particular, crawling (through the Oracle Commerce Web Crawler or the CAS Server) is a viable source of
content for term extraction.

The input must be as clean as possible and as similar to natural language as the original data allows. The
following list provides some recommendations about how to pre-process unstructured text that is fed to the
term extractor:

• Remove anything from the property that is sent to the term extractor that is not the main contents of the
document. For example, when dealing with news articles, it is a good idea to remove bylines, copyright
disclaimers, and so forth. When dealing with Web pages, the task is noticeably harder, because the
navigational elements, page headers and footers, guestbook links, ads, etc., all have to be removed. In
such extreme cases, one suggestion is to retain long sequences of sentences with correct
sentence-terminating punctuation that does not have many major HTML tags (H1, P, HR, DIV, SPAN, and
so on.) embedded: meaningful text is likely to satisfy this requirement, and items such as menus, ads, and
page elements are likely to fail it.

• Remove anything that is not natural language text. This includes HTML tags, other markup, and long
sequences of non-alpha characters (e.g., long sequences of dashes used as delimiters). Links to images,
URLs (that might be used in plain text, outside of HTML tags), and anything that is not in grammatically
correct language should be stripped. The same caveat applies to sequence of characters that are too long
to be meaningful terms. The term extractor will report and skip those overlong noun phrases. However, it
is useful to detect these upstream of the term extractor because their presence might indicate sections of
the documents that should be removed.

• Punctuation should be correctly spaced, especially when stripping HTML or adding sentence-terminating
punctuation. A sentence terminator is correctly interpreted only if it is followed by a space. For example:
Look at this.Or this.

should not be converted to:
Look at this.Or this.

but instead to:
Look at this. Or this.

• Convert non-sentence text into sentences. If, for example, a useful section of the document is written as
a list or a table (that is, separated with or <TD> tags), it is recommended to terminate such entries
with periods (or semicolons, depending on context), if they are not so terminated to begin with.

• Merge text fields, if needed. For example, if the document title is a separate property, it is useful to append
it to the main text property (terminating it with punctuation, if possible).

• Use the correct case for capitalized and non-capitalized text. If capitalization is not available, it makes a
best guess and this guess is better when dealing with lower-case text than with all upper-case text. If the
document text is in all upper case, it is advisable to convert it to all lower-case (or, possibly, all lower case
with initial capitalization for the first word in every sentence).

• Use correct spelling in Web pages, especially blogs. For documents written in informal language, it is
recommended that simple pattern replacement be done on most frequent terms (for example, "u" should
be replaced with "you").

Whenever possible, the text should be cleansed in the source data. However, you can add record manipulators
to the pipeline to perform pre-processing cleanup.

You can also use the CORPUS_REGEX_KEEP and CORPUS_REGEX_SKIP pass-throughs in the CAS
manipulator to control which extracted terms are kept or discarded. For details on how to construct regular
expressions with these pass-throughs, see the Using regular expressions topic of this chapter.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

29Configuration Guidelines for Term Extraction | Format of the source data

Chapter 3

Configuration Guidelines for Clustering

This section describes some guidelines for configuring cluster discovery.

Configuration for clusters
Cluster Discovery configuration is passed as a part of the MDEX Engine configuration from a CAS-based
application.

You must create the refinement configuration at
<EAC_APP>\config\mdex\<EAC_APP>.refinement_config.xml and make an entry for the configured
dimension.

In the following example of the refinement configuation file, P_Terms is the dimension that is mapped to the
extracted terms property - OUTPUT_PROP_NAME. The CLUSTERS tag contains the clustering parameters that
the MDEX Engine reads during indexing.
<EndecaApp>.refinement_config.xml

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE REFINEMENTS_CONFIG SYSTEM "refinement_config.dtd">
<REFINEMENTS_CONFIG>

......

<REFINEMENTS DVAL_COLLAPSE_THRESHOLD="" NAME="P_Terms" SORT_TYPE="ALPHA">
 <STATS NUM_RECORDS="FALSE"/>
 <DYNAMIC_RANKING COUNT="10" MORE="FALSE" TOP_REFINEMENTS_SORT="DEFAULT"
TYPE="FREQUENCY"/>
 </REFINEMENTS>

 <CLUSTERS COHERENCE="8" MAX_CLUSTERS="10" MAX_CLUSTER_OVERLAP="5" MAX_CLUS¬
TER_SIZE="5" MAX_REFINEMENT_PRECISION="0.250000" NAME="P_Terms" REC_SAM¬
PLE_SIZE="500"/>

The following topics provide descriptions of the parameters and some guidelines for tuning them.

Clustering parameter descriptions
This topic describes clustering parameters.

The list below describes the clustering parameters, including their range of values with defaults and
recommended values. The next topic in this section explains the rationale for the recommended values and
provides an order in which these parameters should be adjusted.

Sample size

Description: Clustering is done by examining term distribution across a sample of the result set. This parameter
governs how many records are sampled from the navigation state. Clustering processing time and memory
consumption are both roughly linear with this number; thus, lowering the value results in smaller memory
consumption and faster turnaround. However, statistical errors are likely to occur when the sample size is
small. Setting this value higher overcomes statistical errors for data sets where fewer terms are tagged onto
each record.

Range: Integer, 50-2000 (default: 500)

Recommended value: 500

Maximum clusters

Description: This parameter limits the number of clusters that are generated by the MDEX Engine.

Range: Integer, 2-10 (default: 10)

Recommended value: 6

Coherence

Description: This parameter governs the decision of whether a set of terms is coherent enough to form a cluster
(each cluster should have only closely related records). Low values are permissive (for example, not demanding
much coherence) and results in fewer larger clusters. High values are strict and result in smaller clusters. An
average value is recommended.

Range: Integer, 0-10 (default: 5)

Recommended value: 5

Maximum precision

Description: Terms that are extracted from sampled records are filtered by their precision p where p = number
of sampled records that this term is tagged onto divided by the number of all sampled records. Terms that
have too high a value of p are likely to be the search term or be synonymous with it or be too general to make
for a good clustering term. If you use the recommended tuning values of the term extractor, each term is tagged
to only roughly 1/3 of the records that contain this term in the text, which means that the search term, if present,
has p of roughly 0.33 - more or less stringent tuning of the term extractor changes this value. There usually is
a gap in the values of p between the search term and the more useful terms, which start at approximately p
= 0.25 and less.

Range: Float, 0.0 - 1.0 (default: 1.0)

Recommended value: 0.25

Maximum cluster size

Description: This parameter sets the maximum number of terms in a cluster. Each cluster has at least 2 terms.
Because of the match-partial cluster selection mechanism, the more terms there are in the cluster, the potentially

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Clustering | Clustering parameter descriptions32

higher its coverage is. On the other hand, the clusters that are too large take up too much space to display
and take too long for users to read.

Range: Integer, 2 - 10 (default: 10)

Recommended value: 8

Maximum cluster overlap

Description: If two clusters overlap (the record sets that each cluster maps to overlap), then the smaller one,
as measured by the estimated size of the record set it maps to, can be removed, depending on how big this
overlap is. This parameter dictates the overlap above which the smaller cluster is removed.

Clusters which overlap by more than this value are removed. Thus, the default setting of 10 means that clusters
that overlap by more than 10 out of 10 records are removed. Since this is impossible, this means that setting
of 10 disables cluster overlap filtering, which is most extreme level of coarseness for this filter. Tuning this
parameter down makes the cluster overlap more and more fine-grained. Thus, a value of 9 removes only the
clusters that greatly overlap; setting it to the recommended value of 5 removes only clusters overlapping
half-way or so (remember that the overlap is merely estimated). Setting this parameter to lower values (less
than 5) makes overlap filtering quite sensitive and removes clusters which overlap even by a small amount.
Note that clusters that do not overlap are never filtered.

Range: Integer, 0-10 (default: 10)

Recommended value: 5

Tuning strategy for clusters
This topic provides guidelines for tuning the clustering parameters.

The guidelines for the clusters tuning strategy include initial values that are used for the first trial clustering run
and recommended values. The tuning process involves changing the parameters from their initial values to
their recommended values, with certain variation dependent on the properties of the particular data set and
the application needs.

In general, the tuning strategy involves starting with the parameters at a permissive setting and then gradually
decreasing the value. You tune the parameters by observing their impact simultaneously on the results for
several different queries: no query or node 0, broad queries, narrow queries, single-term query, and multi-term
query. In other words, you should avoid tuning the parameters based on a specific query.

The following procedure is intended as a tool for gradual tuning. It allows you to observe the effect of changing
the parameters on several different queries at once. Use the suggested order. It maps to the order in which
these parameters impact the clustering algorithm, from upstream to downstream.

1: Number of records sampled from the navigation state

Recommended value: 500

Initial value: 500

Strategy: Start with the parameter set to 500, and increase it if you see that the terms at the bottom of your
related terms list (terms 100-120 or so) are seen in fewer than 3 records.

Note that the recommended value of 500 is for data sets with 20 or more terms tagged onto each record. Use
a higher value for data sets with fewer terms per record. If an average record has only 2 to 3 terms per record,
set this value to 2000. A good rule of thumb for this value is: when the 120 most frequent terms are sampled

Oracle Commerce Content Acquisition System Relationship Discovery Guide

33Configuration Guidelines for Clustering | Tuning strategy for clusters

for clustering, the 120th term should be present in at least 3 records. If it is present in fewer, this setting should
be increased.

2: Maximum refinement precision

Recommended value: 0.25

Initial value: 1.0

Strategy: Start with this value set to 1.0 (no precision filtering). Try several different queries and pick a level
of top useful precision that separates useful terms from the frequent but uninformative ones. Note that, typically,
only the values between 0.05 and 0.5 are useful.

3: Maximum number of terms per cluster

Recommended value: 6 - 8

Initial value: 10

Strategy: Start with a value of 10 to see all the terms that are getting into clusters. Reduce the value until the
clusters are small enough to fit into whatever real estate your UI provides. Using a value of 2 is not
recommended. Note that the cluster coverage and recall are reduced when the number of terms is reduced.

4: Cluster Coherence

Recommended value: 5

Initial value: 5

Strategy: Start with the default value of 5. If you see undesirable cluster splintering - several clusters that seem
to map to the same semantic areas - then this value should be decreased. On the other hand, if the cluster
set is missing some semantic areas, this value should be increased. Note that it is acceptable to have several
overlapping clusters remaining after tuning this value, because they are removed in the next step.

5: Maximum cluster overlap

Recommended value: 5

Initial value: 10

Strategy: Start with a value of 10, then decrease this parameter until the desired number of overlapping clusters
remains. In some cases, for example, depending on customer needs, some cluster overlap can be retained,
particularly if the smaller cluster is an especially coherent one).

6: Maximum number of clusters

Recommended value: 6

Initial value: 10

Strategy: Start with a value of 10 to see all the available clusters after all the other settings had been applied.
Reduce this number if you still see more clusters than permitted by the available UI space.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Configuration Guidelines for Clustering | Tuning strategy for clusters34

Chapter 4

Building the Front End of the Term Discovery
Application

This section provides information on how to change your front-end application to display terms and clusters.

Files to be changed
You can modify existing JSP files and add a new file.

The examples are based on the following JSP files that are shipped with the endeca_jspref reference
implementation:

• constants.jsp

• controller.jsp

• nav_controls.jsp

In addition, a new nav_clusters.jsp file is provided in Appendix A as an example of rendering clusters.

Adding global constants
The constants.jsp file sets global variables that can be used in any other page in the application.

It is a good practice to add global variables for handling the displaying of the terms dimension and the clusters.
Doing so will allow you to easily change display characteristics in one central file.

The following Java code is an example of a section that can be added to the constants.jsp file:
// Dimension name of the Term Discovery dimension.
// Make it null if you do NOT want term processing.
private static final String relTermsDimName = "Terms";

//Display name of the Term Discovery dimension.
private static final String relTermsDisplayString = "Term Discovery";

//The rootId of the Term Discovery dimension.
//Make it -1 if you do NOT want terms processing.
private static final long relTermsRootId = 2l;

// Handling for the all-terms property.
// Ignored if String is null.

private static final String P_AllTerms = "P_AllTerms";

// if true, a More... link shows after the term's short list.
// Should be false in production.
private static final boolean showTermsMore = false;

// If true, TD dimension and property show in record display
// Should be false in production.
private static final boolean showTermsInRecord = false;

The code sets up the following variables. These constants will be used in most of the JSP pages listed above.

PurposeGlobal Variable

Sets the name of the Guided Search dimension for Term Discovery.relTermsDimName

Sets the name that will be displayed in application pages for the Term
Discovery dimension.

relTermsDisplayString

Sets the root ID of the Term Discovery dimension.relTermsRootId

Sets the name of the Guided Search property that contains all the terms.P_AllTerms

Sets whether a More... link is shown for terms.showRelTermsMore

Setting refinements in the controller file
The controller.jsp module is the entry point into the Guided Search application.

The controller file receives the browser request from the application server, formulates the query, and sends
the query to the MDEX Engine.

The following code should be added to the controller.jsp file:
if (relTermsRootId >= 0 && usq.containsNavQuery()
 && request.getParameter("Ne") == null) {
 DimValIdList dvl = new DimValIdList();
 dvl.addDimValueId(relTermsRootId);
 usq.setNavExposedRefinements(dvl);
}

The code can be added after the ENEQuery object named usq is created.

The code first tests that three conditions are true:
• The relTermsRootId global variable is set to a value greater than 0.
• The ENEQuery.containsNavQuery() method determines that the current query is a navigation query.
• The request does not include the Ne URL parameter, which determines which dimension navigation

refinements are exposed.

If all three conditions are true, then the code performs three actions:

1. Creates an empty DimValIdList object.
2. Uses the DimValIdList.addDimValueId() method to add the ID of the Term Discovery dimension to

the list.
3. Uses the ENEQuery.setNavExposedRefinements() method to set the refinements that are

exposed/returned with the navigation query.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Setting refinements in the controller file36

In step 3, the dimension ID of the Term Discovery dimension is given as the argument, which means that this
dimension will be the parent of the refinements that should be returned with the query. The returned refinements
will be the terms.

Displaying refinements
The terms in a Term Discovery dimension are returned as dimension value refinements.

These refinements are displayed according to the coding in the nav_controls.jsp file. Because a number
of changes are required to handle the Term Discovery refinements, the modified file is included in Appendix
A.

Displaying clusters
The information for each cluster is returned from the MDEX Engine in a Supplement object that accompanies
the result of a navigation query.

The Supplement objects are encapsulated in a SupplementList object.

Cluster properties
Each cluster (Supplement object) contains a PropertyMap object.

The PropertyMap object in turn contains the following cluster-related properties (as key/value pairs):

ValueKey Name

The name of the Term Discovery dimension from which this cluster was
generated.

Dgraph.SeeAlsoCluster

The zero-based rank of this cluster (0 for the first cluster, 1 for the second
cluster, and so on).

ClusterRank

A number indicating the number of terms in this cluster.NTerms

The term at rank I within this cluster. Note that there will be as many Term_i
entries as there are terms in the cluster.

Term_i (where I is 0, 1 ...
NTerms-1)

JSP code for displaying clusters
You can add a new nav_clusters.jsp file for rendering clusters.

Appendix A of this guide includes a new nav_clusters.jsp file that can be used as a template for rendering
cluster contents. This file should be included at the end of the nav_controls.jsp file. Note that it is
recommended that you display clusters only if there are two or more.

The highlights of this file are as follows:

1. Get all the Supplement objects from the Navigation object, which will be encapsulated in a Supple¬
mentList object (note that the list can also include non-cluster Supplement objects):
SupplementList navsups = nav.getSupplements();

Oracle Commerce Content Acquisition System Relationship Discovery Guide

37Building the Front End of the Term Discovery Application | Displaying refinements

2. Within a For loop (labeled supLoop), get a Supplement object and then get that object’s properties:
Supplement sup = (Supplement)navsups.get(I);
PropertyMap propsMap = sup.getProperties();

3. Get the value of the Dgraph.SeeAlsoCluster property:
String clustersPropName = (String)propsMap.get("DGraph.SeeAlsoCluster");

4. Test the value returned from the Dgraph.SeeAlsoCluster property. If it is null, then this Supplement
object is not a cluster and we should loop back to step 2; if the value is non-null, then this is a cluster and
we continue to step 5:
if (clustersPropName != null)

5. If this is the first discovered cluster, then the clustersOn variable will be set to false. Therefore, first
display the Cluster Discovery header and then set the clustersOn variable to true (so that the header
will not be displayed again):
if (!clustersOn) {
 // display title
 ...
 clustersOn = true;
}

6. Get the ranking (ClusterRank property) of the cluster and the number of terms (NTerms property) it
contains. The returned string values are then transformed to integers:
String rankString = (String)propsMap.get("ClusterRank");
String nTermsString = (String)propsMap.get("NTerms");
int rank;
int nTerms;
try {
 rank = Integer.parseInt(rankString);
 nTerms = Integer.parseInt(nTermsString);
}

7. Within a For loop, retrieve the terms from the NTerms property and format them by separating them with
commas and spaces. The list of terms will then be:
StringBuffer termsSB = new StringBuffer();
StringBuffer termsSBSpace = new StringBuffer();
for (int iTerm = 0; iTerm < nTerms; ++iTerm) {
 String term = (String)propsMap.get("Term_"+iTerm);
 ...
 if (termsSB.length() != 0) {
 termsSB.append(", ");
 termsSBSpace.append(" ");
 }
 termsSB.append(term);
 termsSBSpace.append('"').append(term).append('"');
}

8. For a given cluster, begin to create a UrlENEQuery request (using the current request), in case the user
wants to click on that cluster. Also get the current navigation searches (as an ERecSearchList) to
determine if the cluster selection is already active in the searches.
UrlENEQuery newq = new UrlENEQuery(request.getQueryString(),"UTF-8");
ERecSearchList searches = newq.getNavERecSearches();

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Displaying clusters38

9. Create a new search (an ERecSearch object), using the clusterPartial search interface as the search
key, the list of related terms (in the clusterSpace variable) as the terms for the search, and mode
matchpartial as the search option (which specifies MatchPartial as the search mode).
ERecSearch newSearch = new ERecSearch("clustersPartial",
 clusterSpace, "mode matchpartial");

10. Test whether the current navigation searches are null or do not contain the new search (from step 9). If the
test is true, then the new search can be added to the UrlENEQuery request; if it is false, do not add the
new search because the cluster selection is already active.
if (searches == null || !searches.contains(newSearch)) {
 ...
 searches.add(newSearch);
 newq.setNavERecSearches(searches);
 ...
}

11. Loop back to step 2 to get another Supplement object. The loop is done when all the objects in the Sup¬
plementList have been retrieved.

12. Display the clusters, which are stored as a list of strings in the clusterStrings variable. The
clusterUrls variable is a list of the cluster URLs:
for (int I = 0; I < clusterStrings.size(); ++I) {
 %><tr><td></td>
 <td width="100%">
 > <a href="<%= clusterUrls.get(I) %>">

 <%= clusterStrings.get(I) %>
 </td></tr><%
}

The following is an abbreviated example of the JSP reference implementation showing the clusters rendered
by the nav_clusters.jsp file. Clicking on a cluster link will execute the partial match query built by steps
8-10.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

39Building the Front End of the Term Discovery Application | Displaying clusters

Clustering overlap properties
Clustering overlap information is also returned by the MDEX Engine.

The PropertyMap object (in the cluster Supplement) also includes the following set of properties that provide
clustering overlap information.

ValueKey Name

The name of the Term Discovery dimension from which this cluster was
generated.

Dgraph.SeeAlsoClusterOverlaps

A number indicating the number of clusters that were returned by the
MDEX Engine.

NClusters

The cluster overlap numbers for a given cluster. Note that the cluster
number (the I value) corresponds to the ClusterRank value in the
DGraph.SeeAlsoCluster object.

Cluster_i (where I is 0, 1, ...
NClusters-1)

These properties provide a square matrix that has the cluster overlap numbers. In the matrix, number (I,
j) is the estimated number of records (from the records sampled from the navigation states) that are covered
by both cluster I and cluster j.

Note that from the definition it follows that diagonal numbers (I, I) have the estimated number of records covered
by each particular cluster. These diagonal numbers tend to decrease, because of the way that the Cluster
Discovery software sorts clusters (by decreasing estimated coverage).

This information can be used in application-specific ways, for example, by an application page that presents
a graphical depiction of the clusters.

Displaying records and dimension refinements
Records and refinements from a Term Discovery dimension are displayed like other dimensions.

There is no difference in displaying refinement dimension values from a Term Discovery dimension than from
regular dimensions. Information about displaying refinements is found in the MDEX Engine Development
Guide, in the chapter titled “Working with Dimensions.”

Likewise, the process of displaying Guided Search records generated from Term Discovery refinements is the
same as with any Guided Search record. For details, see the chapter titled “Working with Endeca Records” in
the MDEX Engine Development Guide.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Displaying records and dimension refinements40

Chapter 5

Term Discovery Advanced Topics

This section discusses advanced topics for Term Discovery applications.

Term filtering with pre-tagged records
The Term Discovery software can apply filtering to documents that have already been tagged.

The use case described in this scenario involves a corpus in which the documents are tagged with pre-existing
terms that were generated and maintained by an external process -- not by the Guided Search term extraction
software. The goal is to apply corpus-level and record-level filtering to these terms, just as though they had
been identified as candidates by the term extractor itself.

There are three variations of this use case:
• Filtering only of pre-tagged terms: no new terms are extracted from the records, but you want filtering to

be performed on the pre-tagged terms.
• Uniform filtering of both sets of terms: the term extractor extracts new terms and combines them with the

pre-tagged terms. The same filters are applied to both sets of terms equally.
• Filtering only one of the sets of terms: new terms are extracted from the records by the term extractor. Only

the newly-extracted terms are filtered, but the pre-tagged terms are not. After filtering, both sets of terms
are combined into one output property and tagged on the records.

Note: In all cases, the pre-tagged source property must contain only one term as its value. Any given
record can have multiple instances of this property.

Filtering only pre-existing terms
This use case assumes that the source records have already been tagged with terms.

In this use case, you want to perform corpus- and/or record-level filtering on these pre-tagged terms. However,
you do not want the term extractor to extract any more terms from the records.

The CAS manipulator that will perform filtering on the pre-tagged terms should have the following configuration
values for the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Configuration ValuePASS_THROUGH Element

Set to the name of a non-existent property, so that no new terms are
extracted.

TEXT_PROP_NAME

Set it to the name of the source property containing the pre-tagged terms.INPUT_TERM_PROP_NAME

Set it to the name of the property that is the destination for the pre-existing
terms on the Guided Search record.

OUTPUT_PROP_NAME

As required by the application.corpus-level pass-throughs

As required by the application.record-level pass-throughs

Filtering both sets of terms uniformly
This use case assumes that you want to perform term extraction on a data set that already has pre-tagged
terms.

In this use case, you want to combine both sets of terms and have the same filtering applied to them.

The CAS manipulator that will perform uniform filtering on both sets of terms should have the following
configuration values for the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Set to the name of the source text property from which new terms will be
extracted.

TEXT_PROP_NAME

Set to the name of the source property containing the pre-tagged terms.INPUT_TERM_PROP_NAME

Set to the name of the property that is the destination for both newly-tagged
terms and pre-existing terms.

OUTPUT_PROP_NAME

As required by the application.corpus-level pass-throughs

As required by the application.record-level pass-throughs

When the term extractor runs, both newly-extracted terms and pre-tagged terms are output to the same
OUTPUT_PROP_NAME property. As a result, the same corpus- and record-filtering is applied to all terms.

Filtering only the new terms
This use case assumes that new terms are extracted from the records by the term extractor, but are not
immediately combined with the pre-tagged terms.

In this use case, the newly-extracted terms are not combined at first with the pre-tagged terms. Instead, only
the newly-extracted terms are filtered, and the pre-tagged terms are not. After filtering, both sets of terms are
combined into one output property and tagged on the Guided Search records.

The CAS manipulator that will perform this type of filtering should have the following configuration values for
the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Term Discovery Advanced Topics | Term filtering with pre-tagged records42

Configuration ValuePASS_THROUGH Element

Set to the name of the source text property from which new terms will be
extracted.

TEXT_PROP_NAME

Set to the name of the source property containing the pre-tagged terms.
That is, the destination for the new terms will be the same property as the
pre-existing terms.

OUTPUT_PROP_NAME

As required by the application.corpus-level pass-throughs

As required by the application.record-level pass-throughs

Note that the INPUT_TERM_PROP_NAME pass-through is not used. As a result, the pre-existing terms are
not filtered, but are used as is.

When the term extractor runs, only the newly-extracted terms are filtered with the corpus- and record-level
pass-throughs. The filtered terms are then output to the OUTPUT_PROP_NAME property, which is the name of
the property with the pre-existing terms. As a result, the same corpus- and record-filtering is applied to all
terms. Note that if duplicate values are created for the OUTPUT_PROP_NAME property, they are removed by
the property mapper.

Tuning aids for the filtering parameters
This section discusses two tuning aids that will help you when you are tuning the parameters for the corpus-
and record-level pass-throughs.

The two tuning aids are:
• STATEFUL update mode
• Corpus-verbose logs

Using STATEFUL mode for tuning
You can use STATEFUL mode to tune the values you set for the corpus-level and record-level pass-throughs
in the CAS manipulator.

Before you begin, make sure the baseline pipeline has the UPDATE_MODE pass-through set to STATEFUL
mode.

The general procedure for using STATEFUL mode for tuning is:

1. Generate a baseline update, index the records, and start the MDEX Engine.
2. Run searches against the P_AllTerms property and check the quality of the clusters.
3. Adjust the corpus-level and/or record-level parameters.
4. Add a MAX_INPUT_RECORDS pass-through set to 0 (zero) to the CAS manipulator.
5. Generate another baseline update. The update will be much faster because no terms will be extracted.

However, a full corpus- and record-level filtering operation will be performed.
6. Repeat the above steps (except step 4) until you are satisfied with the results.

When you finish, be sure to remove the MAX_INPUT_RECORDS pass-through so all your source records will
be processed.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

43Term Discovery Advanced Topics | Tuning aids for the filtering parameters

Using corpus-filtering logging statistics
The CORPUS_DEBUG pass-through is helpful for generating debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to log detailed information about the scores
that it assigns to terms. Temporarily setting this pass-through helps you tune corpus-level filtering.

The log entries contain four fields of information:

InformationLog Entry

The term (noun phrase) that was extracted and filtered.term

The number of documents in which this term occurs at least once. You can use the
RECORD_NTERMS pass-through to set a limit on the number of documents in which
a term can occur.

count

The coverage score, which is a percentage of all the corpus documents in which this
term was found. You can use the CORPUS_MIN_COVERAGE and
CORPUS_MAX_COVERAGE pass-throughs to adjust the percentage.

coverage

the info_gain score, which is a measure of the global informativeness of the term. The
CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN pass-throughs will affect
this score.

info_gain

An example of a term log entry is:
term: airport count: 60 coverage: 0.04 info_gain: 1.614589

In this example, the term airport was found in 60 documents, which is 0.04 (4%) of the 1500-document
corpus, and a global informativeness score of 1.614589 was given to the term.

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Term Discovery Advanced Topics | Tuning aids for the filtering parameters44

Appendix A

Term Discovery Sample Files

This appendix section contains two JSP files.

Modified nav_controls.jsp file
This sample nav_controls.jsp file is used for the Relationship Discovery UI.

The following nav_controls.jsp file has been modified to display refinements from the Terms Discovery
dimension. Added or modified code is highlighted in bold face.
<%--
DESCRIPTION:
This module displays basic, standard navigation controls. It
is mainly used for debugging purposes and as a starting point for
no-frills navigation solutions. It only displays refinement dimensions,
so this module should be used in conjunction with nav_breadcrumbs.

Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL
---%>

<table border="0" cellspacing="0" cellpadding="0" width="100%">
 <tr><td colspan="2" bgcolor="orange">
 nav_controls:</td></tr>
 <tr><td colspan="2"></td></tr>
 <%
 // Get refinement dimension groups
 DimGroupList refDimensionGroups = nav.getRefinementDimGroups();
 // Get descriptor dimensions
 DimensionList descDimensionsNC = nav.getDescriptorDimensions();
 // Output message if no refinement options left
 if (refDimensionGroups.size() == 0) {
 %>
 <tr><td colspan="2">
 <i>No Additional Query
Parameters Available</i></td></tr>
 <%
 }
 // Output message if no refinement options have been made
 else if (descDimensionsNC.size() == 0) {
 %>
 <tr><td colspan="2">
 <i>Query Parameters:</i></td></tr>
 <tr><td colspan="2"></td></tr>
 <%

 }
 // Header if additional query parameters available
 else {
 %>
 <tr><td colspan="2">
 <i>Additional Query Parameters:</i></td></tr>
 <tr><td colspan="2"></td></tr>
 <%
 }
 // Loop over dimension groups
 for (int i=0; i<refDimensionGroups.size(); i++) {
 // Get dimension group object
 DimGroup dg = (DimGroup)refDimensionGroups.get(i);
 // If group is explicit (not default group), display group
 if (dg.isExplicit()) {
 %>
 <tr><td colspan="2"></td></tr>
 <tr><td colspan="2">
 <%= dg.getName() %></td></tr>
 <%
 }
 // Loop over dimensions in group
 for (int j=0; j<dg.size(); j++) {
 // Get dimension object
 Dimension dim = (Dimension)dg.get(j);
 // Get root for dimension
 DimVal root = dim.getRoot();
 // Get id of root
 long rootId = root.getId();

// special handling for Term Discovery dimension
 final boolean isRelTerms = dim.getName().equals(relTermsDimName);
 // Get refinement list for dimension
 DimValList refs = dim.getRefinements();
 // Create request to expose dimension values
 UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));

// Expand dimension
 if (!isRelTerms && refs.size() == 0) {
 urlg.addParam("Ne",Long.toString(rootId)+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 // Close dimension
 else {
 urlg.removeParam("Ne");
 }
 String url = CONTROLLER+"?"+urlg;
 // Display dimension (open row here, close later)

if (!isRelTerms) {
 %>
 <tr><td colspan="2"><a href="<%= url %>">

 <%= dim.getName() %>
 <%
 }
 else {
 %>

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Term Discovery Sample Files | Modified nav_controls.jsp file46

 <tr><td colspan="2" bgcolor="orange">

 <%=relTermsDisplayString %></td></tr>
 <%
 }

 // Get intermediate list for dimension
 DimValList ints = dim.getIntermediates();
 // Loop over intermediate list
 for (int k=0; k < ints.size(); k++) {
 // Get intermediate dimension value
 DimVal intermediate = ints.getDimValue(k);
 // Display intermediate
 %> >
 <%= intermediate.getName() %><%
 }
 // Close nav row
 %></td></tr><%
 String refinementsColor = "blue";

Set activeDiscTerms = new HashSet();
 if (isRelTerms) {
 String ntk = (String)request.getParameter("Ntk");
 String ntx = (String)request.getParameter("Ntx");
 if (ntk != null && ntk.equals(P_AllTerms) &&
 "mode matchall".equals(ntx))
 {
 String discTerm = (String)request.getParameter("Ntt");
 if (discTerm != null) {
 if (discTerm.length() >= 3 &&
 discTerm.charAt(0) == '"' &&
 discTerm.charAt(discTerm.length()-1) == '"')
 {
 // remove quotes
 discTerm = discTerm.substring(1, discTerm.length()-1);
 }
 activeDiscTerms.add(discTerm);
 }
 }
 } // if (isRelTerms)

 %><%
 // Loop over refinement list
 for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal ref = refs.getDimValue(k);
 // Get properties for refinement value
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = " ("+pmap.get("DGraph.Bins")+")";
 }
 %><%
 // Create request to select refinement value
 urlg = new UrlGen(request.getQueryString(), "UTF-8");
 boolean displayRefinement=true;

if (isRelTerms &&
 (!ref.getName().equals("More...") || !showRelTermsMore))
 {
 if (ref.getName().equals("More...") ||
 ENEQueryToolkit.isImplicitRefinement(dim, ref) ||

Oracle Commerce Content Acquisition System Relationship Discovery Guide

47Term Discovery Sample Files | Modified nav_controls.jsp file

 activeDiscTerms.contains(ref.getName()))
 {
 displayRefinement = false;
 }
 else {
 urlg.addParam("Ntk","clustersPartial");
 urlg.addParam("Ntt","\""+ref.getName()+"\"");
 urlg.addParam("Ntx","mode matchall");
 urlg.removeParam("No");
 urlg.removeParam("Nao");
 urlg.removeParam("Nty");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));
 url = CONTROLLER+"?"+urlg;
 }
 %><%
 } else {
 // If refinement is navigable, change the Navigation parameter
 if (ref.isNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.selectRefinement(nav,ref)).toString());
 urlg.addParam("Ne",Long.toString(rootId)+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 // If refinement is non-navigable, change only the
 // exposed dimension parameter
 // (Leave the Navigation parameter as is)
 else {
 urlg.addParam("Ne",Long.toString(ref.getId())+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 urlg.removeParam("No");
 urlg.removeParam("Nao");
 urlg.removeParam("Nty");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));
 url = CONTROLLER+"?"+urlg;
 }
 // Display refinement
 if (displayRefinement) {
 %>
 <tr><td></td>
 <td width="100%"><a href="<%= url %>">
 <font face="arial" size="1" color="<%=refinementsColor%>">
 <%= ref.getName() %>
 <%= dstats %>
 </td></tr>
 <%
 }
 } // end of: Loop over refinement list
 } // end of: Loop over dimensions in group
 // If group is explicit (not default group), display spacer
 if (dg.isExplicit()) {

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Term Discovery Sample Files | Modified nav_controls.jsp file48

 %>
 <tr><td colspan="2"></td></tr>
 <%
 }

 } // end of: Loop over dimension groups
 %>
 <tr><td colspan="2"></td></tr>
</table>

<%-- Display Clusters Controls --%>
<%@ include file="nav_clusters.jsp" %>

<%-- Display Range Filter Controls --%>
<%@ include file="nav_range_controls.jsp" %>

New nav_clusters.jsp file
This nav_clusters.jsp sample file is used to render clusters that are generated by the Cluster Discovery
feature.

This file should be included in the nav_controls.jsp file.
<%--
DESCRIPTION:
This module demonstrates the Cluster Discovery feature.
It displays clusters received as Supplemental Objects, makes them
selectable, and, upon selection, generates a search based on
the selected clusters.

This module is included in the nav_controls.jsp module.

Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL
---%>
<%
// Get supplemental list
SupplementList navsups = nav.getSupplements();
boolean clustersOn = false;

// lazily allocated:
List<String> clusterUrls = null;
List<String> clusterStrings = null;

// Loop over cluster supplemental objects
supLoop:
for (int i = 0; i < navsups.size(); ++i) {
 // Get individual see also object
 Supplement sup = (Supplement)navsups.get(i);
 // Get property map
 PropertyMap propsMap = sup.getProperties();

 String clustersPropName = (String)propsMap.get("DGraph.SeeAlsoCluster");
 if (clustersPropName != null) {
 if (!clustersOn) {
 // display title
 %>
 <table border="0" cellspacing="0" cellpadding="0" width="100%">
 <tr><td colspan="5" bgcolor="orange">

Oracle Commerce Content Acquisition System Relationship Discovery Guide

49Term Discovery Sample Files | New nav_clusters.jsp file

 Cluster Discovery</td></tr>
 <tr><td colspan="5"></td></tr>
 <%
 clustersOn = true;
 } // end of if !clustersOn
 String rankString = (String)propsMap.get("ClusterRank");
 String nTermsString = (String)propsMap.get("NTerms");
 int rank;
 int nTerms;
 try {
 rank = Integer.parseInt(rankString);
 nTerms = Integer.parseInt(nTermsString);
 } catch (NumberFormatException e) {
 // add code here to log error
 continue supLoop;
 } // end of catch

 StringBuffer termsSB = new StringBuffer();
 StringBuffer termsSBSpace = new StringBuffer();
 for (int iTerm = 0; iTerm < nTerms; ++iTerm) {
 String term = (String)propsMap.get("Term_"+iTerm);
 if (term == null) {
 // add code to log error
 continue supLoop;
 }
 if (termsSB.length() != 0) {
 termsSB.append(", ");
 termsSBSpace.append(" ");
 } // end of if termsSB.length
 termsSB.append(term);
 termsSBSpace.append('"').append(term).append('"');
 } // end of for terms
 String clusterX = termsSB.toString();
 String clusterSpace = termsSBSpace.toString();
 // Create request to follow a cluster selection
 // (unless cluster selection already active in the searches)
 UrlENEQuery newq = new UrlENEQuery(request.getQueryString(), "UTF-8");
 ERecSearchList searches = newq.getNavERecSearches();
 ERecSearch newSearch = new ERecSearch("All", clusterSpace,
 "mode matchpartial");

 if (searches == null || !searches.contains(newSearch)) {
 if (searches == null)
 searches = new ERecSearchList();
 if (clusterUrls == null) {
 clusterUrls = new ArrayList<String>();
 clusterStrings = new ArrayList<String>();
 } // end of if clusterUrls
 searches.add(newSearch);
 newq.setNavERecSearches(searches);
 UrlGen hostportq = new UrlGen("", "UTF-8");
 hostportq.addParam("eneHost",
 (String)request.getAttribute("eneHost"));
 hostportq.addParam("enePort",
 (String)request.getAttribute("enePort"));
 String url = CONTROLLER + "?" + hostportq.toString() +
 "&" + UrlENEQuery.toQueryString(newq, "UTF-8");
 clusterUrls.add(url);
 clusterStrings.add(clusterX);
 } // end of if searches

Oracle Commerce Content Acquisition System Relationship Discovery Guide

Term Discovery Sample Files | New nav_clusters.jsp file50

 } // end of if clusterPropName != null
} // end of if clusterPropName != null

if (clusterStrings != null && clusterStrings.size() > 1) {
 // display clusters only if at least 2.
 for (int i = 0; i < clusterStrings.size(); ++i) {
 %>
 <tr><td></td>
 <td width="100%">
 > <a href="<%= clusterUrls.get(i) %>">

 <%= clusterStrings.get(i) %>
 </td></tr>
 <%
 } // end of for clusterStrings
} // end of if clusterStrings

if (clustersOn) {
 // close table
 %>
 <tr><td colspan="2"></td></tr>
 </table>
 <%
}%> // end of if clusterOn

Oracle Commerce Content Acquisition System Relationship Discovery Guide

51Term Discovery Sample Files | New nav_clusters.jsp file

Index

A
ALL_TERMS_OUTPUT_PROP_NAME pass-through

definition 17

B
baseline updates, mode for 20
best practices for term filtering 27

C
clusters

configuration parameters 32
configuring 31
JSP code for rendering 37
overlap properties 40
overview 11
properties in Supplement objects 37
tuning strategy 33

constants.jsp file
adding global constants 35
setting refinements 36

CORPUS_DEBUG pass-through
used for tuning 44

CORPUS_MAX_COVERAGE pass-through
recommended setting 28

CORPUS_MAX_INFO_GAIN pass-through
recommended setting 28

CORPUS_MAX_RECS pass-through
recommended setting 27

CORPUS_MIN_COVERAGE pass-through
definition 24
recommended setting 27

CORPUS_MIN_INFO_GAIN pass-through
definition 24
recommended setting 28

CORPUS_MIN_RECS pass-through
definition 23
recommended setting 27

CORPUS_REGEX_KEEP pass-through
definition 24
recommended setting 28

CORPUS_REGEX_SKIP pass-through
definition 24
recommended setting 28

corpus-level filtering
best practices 27
configuration parameters 23
for new terms only 42
for pre-tagged and extracted terms 42
for pre-tagged terms 41

coverage score for terms 44

D
destination property for tagged terms 17

E
exclude list for term extraction 19

F
filtering applied to pre-tagged records 41
format of source data 29

G
global constants for the front-end application 35
global informativeness of terms, threshold for 24
global language ID for documents, setting 22
Guided Search Cluster Discovery, overview of 11
Guided Search Term Discovery, overview of 10

I
info_gain score for terms 24, 44
INPUT_TERM_PROP_NAME pass-through

definition 22
filtering pre-tagged records 41, 42

J
JSP code for rendering clusters 37

L
LANG pass-through

definition 22
LANG_PROP_NAME pass-through

definition 22

M
MAX_INPUT_RECORDS pass-through

definition 21
minimal configuration for term extraction 15

N
nav_clusters.jsp sample file 49
nav_controls.jsp sample file 45
noun phrases, size of 10

O
OUTPUT_PROP_NAME pass-through

definition 17
overlap properties for clusters 40

P
PARTIAL mode definition 21
partial updates for Term Discovery

mode setting 21
pass-throughs for term extraction

ALL_TERMS_OUTPUT_PROP_NAME 17
CORPUS_MAX_COVERAGE 24
CORPUS_MIN_COVERAGE 24
CORPUS_MIN_INFO_GAIN 24
CORPUS_MIN_RECS 23
CORPUS_REGEX_KEEP 24
CORPUS_REGEX_SKIP 24
INPUT_TERM_PROP_NAME 22
LANG_PROP_NAME 22
MAX_INPUT_RECORDS 21
minimal configuration 15
OUTPUT_PROP_NAME 17
RECORD_FRACT_OF_MEDIAN 26
RECORD_NTERMS 26
RECORD_SPEC_PROP_NAME 16
TEXT_PROP_NAME 15
UPDATE_MODE 20

pipeline for Term Discovery
exclude list record adapter 19

pre-tagged records for Term Discovery
corpus-level and record-level filtering 41
filtering for new terms only 42
filtering for pre-tagged and extracted terms 42
use cases 41

R
record adapters

exclude list 19
RECORD_FRACT_OF_MEDIAN pass-through

definition 26
recommended setting 28

RECORD_NTERMS pass-through
definition 26
recommended setting 28

RECORD_SPEC_PROP_NAME pass-through 16
record-level filtering

best practices 28
configuration parameters 25

record-level filtering (continued)
for new terms only 42
for pre-tagged and extracted terms 42
for pre-tagged terms 41
setting scoring threshold 26

refinements
displaying in a Term Discovery dimension 40
displaying in nav_controls.jsp 37
setting in controller file 36

regular expressions for term extraction 24
Relationship Discovery, overview of 9
relevant terms, definition of 10
restricting input records for term extraction 21

S
scoring threshold for record-level filtering, setting 26
search property for all extracted terms 17
singlet terms, eliminating 23
source property for term extraction 15
STATEFUL mode

definition 21
for tuning filtering pass-throughs 43

STATELESS mode for baseline updates 20
strategies to limit terms on records 26
Supplement objects for clusters 37

T
Term Discovery application

exclude list record adapter 19
global constants for UI 35

Term Discovery dimension
displaying records 40
displaying refinements 40

term extraction
format of source data 29
minimal configuration 15
overview 10
relevant terms 10

terms tagged on records, limiting 26
TEXT_PROP_NAME pass-through

definition 15
tuning strategy for clusters 33

U
UI for Term Discovery application 35
UPDATE_MODE pass-through

values 20

Oracle Commerce54

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to Term Discovery
	Overview of Relationship Discovery
	Overview of Term Discovery
	Overview of Cluster Discovery

	Configuration Guidelines for Term Extraction
	Adding a Term Extractor manipulator
	Term extraction workflow
	Minimal term extraction configuration
	Source input text property
	Record specifier property name
	Noun phrase grouping
	Terms output property
	All-terms destination property
	Language
	Supported languages

	Configuration for the exclude list
	Configuration for the main term extraction module
	Update mode
	Maximum number of input records

	Configuration for candidate term identification
	Input term property
	Language specification of input records

	Configuration for corpus-level filtering
	Minimum and maximum occurrences in records
	Minimum and maximum coverage settings
	Threshold for the global informativeness of terms
	Using regular expressions
	Enabling debugging information for corpus-level filtering

	Configuration for record-level filtering
	Specifying a scoring threshold
	Limiting the number of terms per record

	Best practices for term filtering
	Format of the source data

	Configuration Guidelines for Clustering
	Configuration for clusters
	Clustering parameter descriptions
	Tuning strategy for clusters

	Building the Front End of the Term Discovery Application
	Files to be changed
	Adding global constants
	Setting refinements in the controller file
	Displaying refinements
	Displaying clusters
	Cluster properties
	JSP code for displaying clusters
	Clustering overlap properties

	Displaying records and dimension refinements

	Term Discovery Advanced Topics
	Term filtering with pre-tagged records
	Filtering only pre-existing terms
	Filtering both sets of terms uniformly
	Filtering only the new terms

	Tuning aids for the filtering parameters
	Using STATEFUL mode for tuning
	Using corpus-filtering logging statistics

	Term Discovery Sample Files
	Modified nav_controls.jsp file
	New nav_clusters.jsp file

	Index

