
 

[1] Oracle® Enterprise Data Quality
Administration Guide  

11g (11.1.1.9)  

E55999-01

April 2015



Oracle Enterprise Data Quality Administration Guide, 11g (11.1.1.9)   

E55999-01

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................     v
Conventions .................................................................................................................................................    vi

1 Using Autorun to Execute Startup Tasks 

1.1 Understanding Autorun ............................................................................................................   1-1
1.2 Using the Autorun Chores.........................................................................................................   1-1
1.3 Using the Autorun Scripts .........................................................................................................   1-2
1.3.1 Examples ...............................................................................................................................   1-2
1.4 Understanding the Chore and Rules Schemas .......................................................................   1-4
1.4.1 Understanding the Chores Schema...................................................................................   1-4
1.4.2 Understanding the Rules Schema .....................................................................................   1-9

2 Configuring EDQ Email Notifications 

2.1 Using SMTP to Send Email Notifications................................................................................   2-1
2.2 Using JNDI to Send Email Notifications .................................................................................   2-1
2.3 Ensuring that Email is Configured...........................................................................................   2-2

3 Configuring Extended Attributes 

3.1 Understanding and Adding Extended Attributes .................................................................   3-1
3.1.1 Default Extended Attributes ..............................................................................................   3-2
3.1.2 Adding New Extended Attributes ....................................................................................   3-2
3.2 Configuring Data Entry Validation..........................................................................................   3-2
3.2.1 Checking Predefined List Restrictions..............................................................................   3-3
3.2.2 Checking Regular Expression Restriction........................................................................   3-3
3.3 Understanding Case Management Configuration Properties..............................................   3-5

4 Tuning EDQ Performance 

4.1 Understanding the Properties File ...........................................................................................   4-1
4.2 Tuning for Batch Processing......................................................................................................   4-2
4.3 Tuning for Real-Time Processing .............................................................................................   4-2
4.3.1 Tuning Batch Processing On Real-Time Systems ...........................................................   4-2



iv

4.3.2 Tuning Real-Time Thread Numbers.................................................................................   4-2
4.3.3 Tuning I/O Heavy Real-Time Processes..........................................................................   4-3
4.3.4 Example of Tuning Real-Time Processes .........................................................................   4-3
4.4 Tuning JVM Parameters.............................................................................................................   4-3
4.4.1 Setting the PermGen Space ................................................................................................   4-3
4.4.2 Setting the Maximum Heap Memory ...............................................................................   4-4
4.5 Tuning Database Parameters ....................................................................................................   4-4
4.6 Adjusting the Client Heap Size.................................................................................................   4-4

5  Using JMX Extensions to Monitor EDQ

5.1 Understanding JMX Binding.....................................................................................................   5-1
5.2 Understanding JMX Bean Naming...........................................................................................   5-2
5.2.1 Reviewing the Example ......................................................................................................   5-2
5.3 Monitoring Real-Time Processes ..............................................................................................   5-3
5.3.1 Monitoring the Real-Time Web Service MBeans ............................................................   5-3
5.3.2 Monitoring the Real-Time MBeans ...................................................................................   5-3

6 Using Triggers

6.1 Overview of the Triggers Functionality ..................................................................................   6-1
6.1.1 About Predefined Triggers.................................................................................................   6-1
6.1.2 About Custom Triggers ......................................................................................................   6-2
6.2 Required Skills to Use Triggers.................................................................................................   6-2
6.3 Storing Triggers...........................................................................................................................   6-2
6.4 Configuring Triggers Using the Script Trigger API ..............................................................   6-2
6.5 Extending the Configuration of Triggers Using Properties Files ........................................   6-4
6.6 Understanding EDQ Trigger Points.........................................................................................   6-4
6.7 Understanding TriggerInfo Methods.......................................................................................   6-6
6.8 Setting Trigger Levels.................................................................................................................   6-7
6.9 Using JMS in Triggers ................................................................................................................   6-8
6.10 Exposing Triggers in a Job Configuration...............................................................................   6-8
6.11 Trigger Examples ........................................................................................................................   6-9

7 Accessing EDQ Files Remotely 



v

Preface

This document describes how to administer and configure Oracle Enterprise Data 
Quality. You can perform a variety of administration tasks to extend the default EDQ 
configuration.

Audience
This document is intended for system administrators or application developers who 
are installing the Oracle Enterprise Data Quality. It is assumed that you have a basic 
understanding of core EDQ concepts, application server and web technology and have 
a general understanding of Linux, UNIX, and Windows platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Related Documents
For more information about EDQ, see the following documents in the Oracle 
Enterprise Data Quality documentation set.

EDQ Documentation Library
The following publications are provided to help you install and use EDQ:

■ Oracle Fusion Middleware Release Notes for Enterprise Data Quality 

■ Oracle Fusion Middleware Installing and Configuring Enterprise Data Quality

■ Oracle Fusion Middleware Administering Enterprise Data Quality

■ Oracle Fusion Middleware Understanding Enterprise Data Quality

■ Oracle Fusion Middleware Integrating Enterprise Data Quality With External Systems

■ Oracle Fusion Middleware Securing Oracle Enterprise Data Quality



vi

■ Oracle Enterprise Data Quality Address Verification Server Installation and Upgrade 
Guide

■ Oracle Enterprise Data Quality Address Verification Server Release Notes

Find the latest version of these guides and all of the Oracle product documentation at

http://http://docs.oracle.com

Online Help
Online help is provided for all Oracle Enterprise Data Quality user applications. It is 
accessed in each application by pressing the F1 key or by clicking the Help icons. The 
main nodes in the Director project browser have integrated links to help pages. To 
access them, either select a node and then press F1, or right-click on an object in the 
Project Browser and then select Help. The EDQ processors in the Director Tool Palette 
have integrated help topics, as well. To access them, right-click on a processor on the 
canvas and then select Processor Help, or left-click on a processor on the canvas or 
tool palette and then press F1. 

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



1

Using Autorun to Execute Startup Tasks 1-1

1Using Autorun to Execute Startup Tasks

[2] This chapter provides an introduction to the EDQ autorun functionality, which allows 
EDQ to load projects and run jobs when the application server starts up. It explains 
how the autorun functionality is configured, introduces the chore types that can be 
performed by using the autorun facility and provides examples of autorun scripts.

This chapter includes the following sections:

■ Understanding Autorun

■ Using the Autorun Chores

■ Using the Autorun Scripts

■ Understanding the Chore and Rules Schemas

1.1 Understanding Autorun
EDQ can be configured to do the following automatically at startup:

■ Perform a range of tasks when the application server starts up. Each task, which is 
composed of chores, can be configured to be performed every time the application 
server is started, or just once the next time the application server is started.

■ Load and apply purge rules that override the purge settings that are stored in the 
EDQ server. 

To use autorun processing, you place autorun scripts, written in XML, that specify 
tasks in one of two specific directories in the EDQ installation:

■ startup directory: Scripts in the startup directory are processed every time the 
EDQ application server starts up.

■ onceonly directory: Scripts in the onceonly directory are processed when the EDQ 
application server next starts up, and are then moved to the complete subdirectory 
within onceonly. Scripts in the complete directory are not processed on 
subsequent start ups.

When the application server starts up, EDQ checks the onceonly and startup 
directories for autorun scripts and processes any that are present.

The startup and onceonly directories are located in the EDQ autorun directory in the 
local configuration directory of the application server, oedq.local.home. 

1.2 Using the Autorun Chores
Various kinds of autorun chores are available in EDQ, each with a set of XML 
attributes specific to its function. The chore types and their available attributes are 



Using the Autorun Scripts

1-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

defined by the autorun file XML schema, see Section 1.4, "Understanding the Chore 
and Rules Schemas." The chores available are listed in the following table:

1.3 Using the Autorun Scripts
Autorun scripts are files that contain XML code. The main part of an autorun script 
consists of a list of chores, each bounded by <chores> tags. Each chore is of one of the 
autorun chore types listed in Section 1.2, "Using the Autorun Chores" and includes a 
set of attributes that specify the chore to be performed. The attributes available depend 
on the chore type selected. 

The XML schema that is used to structure autorun scripts is shown in full in 
Section 1.4, "Understanding the Chore and Rules Schemas." 

1.3.1 Examples
This section shows some examples of autorun scripts.

Example 1  
The following XML code shows a sample autorun script that instructs EDQ to:

■ Download the 23People.dxi file, overwriting any existing file with the same 
name.

■ Import the 23People project from the 23People.dxi file, overwriting any existing 
project with the same name. 

■ Run the 23People Excel.23People job with the rp1 run profile. Any run label 
specified in the profile will be ignored, because this is not a runopsjob chore.

<?xml version="1.0" encoding="UTF-8"?>
 <chores version="1">
  <!-- Get the dxi file -->
    <httpget overwrite="true" todir="dxiland" tofile="23People.dxi">
      <url>http://svn/repos/dev/trunk/benchmark/ benchmark/dxis/23People.dxi</url>
  </httpget>
  <!-- Import the project from the dxi -->
    <package direction="in" dir="dxiland" file="23People.dxi" overwrite="true">
      <node type="project" name="23People"/>

Chore Type What the Chore Does

httpget Downloads files from a web server. 

package Loads a project from a .dxi file into the server, or saves a project on the server 
into a .dxi file. If no nodes are specified then the contents of the whole file, 
including system level components, are loaded into the server. 

load Loads a file, for example a purge rules configuration file. This chore is valid 
only in the startup directory. See Example 3 for how to use the load chore 
with the Rules schema to load purge rules.

runjob Runs an existing job from Director. Any run labels in a run profile specified in 
this chore are ignored. (Use runopsjob to run a job based on a run label.)

runopsjob Runs an existing job from the EDQ Server Console and requires a run label to 
be set, either in the run profile or with the runlabel attribute. 

dbscript Runs a database script against the Director database. This kind of chore must 
only be used with extreme care, as inappropriately applied scripts may 
corrupt the underlying database. 

sleep Waits for a specified interval before proceeding. 



Using the Autorun Scripts

Using Autorun to Execute Startup Tasks 1-3

    </package>
    <!-- Run the jobs -->
    <runjob project="23People" job="23People Excel.23People" runprofile="rp1"
      waitforcompletion="true"/>
 </chores>

Example 2  
The following XML code shows a sample autorun script that shows four different 
ways to use a runjob or runopsjob chore to run a job.

<?xml version="1.0" encoding="UTF-8"?>
<chores version="1">
  <!-- runs a director job with no runlabel -->
  <runjob project="merge" job="tester" waitforlocks="false" 
    waitforcompletion="false" runprofile="x"/>
  <!-- runs an ops job with the runlabel from the runprofile -->
  <runopsjob project="merge" job="tester" waitforlocks="false"
    waitforcompletion="false" runprofile="x" />
  <!-- runs an ops job with the runlabel from the runlabel attribute-->
  <runopsjob project="merge" job="tester" waitforlocks="false"
     waitforcompletion="false" runprofile="x" runlabel="chooseme" />
  <!-- runs an ops job with the runlabel from the runlabel attribute-->
  <runopsjob project="merge" job="tester" waitforlocks="false"
     waitforcompletion="false" runlabel="onlychoice" />
</chores>

Example 3  
The following XML code shows how to use a load chore to load purge rules.

<?xml version="1.0" encoding="UTF-8" ?> 
<chores version="1">
  <load file="purgerules.xml" dir="autorun" type="purgeRules" /> 
</chores>

The following are the purge rules in the purgerules.xml file that is loaded in the chore 
specification: 

<?xml version="1.0" encoding="UTF-8" ?>
- <rules>
  - <rule displayName="testa" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project>aa</project>
      <job>12345</job>
      <runlabelMatcher regex="false" runlabel="ABCD" />
  </rule>
  - <rule displayName="testb" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project>aa</project>
      <job>ABCD</job>
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
- <rule displayName="testc" enabled="true">
  <purgePeriod period="2" unit="HOURS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="TEST" />
  </rule>
- <rule displayName="testd" enabled="true">
      <purgePeriod period="3" unit="WEEKS" />
      <project />



Understanding the Chore and Rules Schemas

1-4 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

      <job />
      <runlabelMatcher regex="true" runlabel="TEST" />
  </rule>
  - <rule displayName="teste" enabled="false">
      <purgePeriod period="999" unit="MONTHS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
  - <rule displayName="testf" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
  - <rule displayName="testg" enabled="true">
      <purgePeriod period="1" unit="DAYS" />
      <project />
      <job />
      <runlabelMatcher regex="false" runlabel="ABCD" />
  </rule>
</rules>

1.4 Understanding the Chore and Rules Schemas
This section shows the Chores and Rules XML schemas.

1.4.1 Understanding the Chores Schema
This schema explains the chores listed in Section 1.2.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 
  <!-- Chores -->
  <xs:element name="chores">
    <xs:complexType>
    
      <!-- 
      List of chores that need to be performed.  The chores will be performed 
      in the order
      specified in the xml file
      -->
      <xs:choice minOccurs="0" maxOccurs="unbounded">
 
        <xs:element name="httpget"     type="httpgetType"/>
        <xs:element name="package"     type="packageType"/>
        <xs:element name="runjob"      type="runjobType"/>
        <xs:element name="runopsjob"   type="runopsjobType"/>
        <xs:element name="dumpdb"      type="dumpdbType"/>
        <xs:element name="dbscript"    type="dbScriptType"/>
        <xs:element name="sleep"       type="sleepType"/>
        <xs:element name="load"        type="loadType"/>
      </xs:choice>
      
      <!-- Schema version number -->
      <xs:attribute name="version" type="xs:positiveInteger" use="required"/>
      
    </xs:complexType>
  </xs:element>



Understanding the Chore and Rules Schemas

Using Autorun to Execute Startup Tasks 1-5

 
  <!-- Base type for chores -->
  <xs:complexType name="choreType">
  
    <!-- Flag indicating whether we should wait for completion before moving 
    on to the next chore. -->
    <xs:attribute name="waitforcompletion" type="xs:boolean" 
    use="optional" default="true"/>
  </xs:complexType>
  
  <!-- HTTP Get chore.  Download the specified urls. -->
  <xs:complexType name="httpgetType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
      
        <xs:sequence minOccurs="1" maxOccurs="1">
          <!-- URL to download. -->
          <xs:element name="url" type="xs:string"/>
        </xs:sequence>
        
        <!-- Filename to download to. -->
        <xs:attribute name="tofile" type="xs:string" use="required"/>
        
        <!-- 
        Directory to download the files to.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="todir" type="xs:string" use="optional"/>
        
        <!-- If true existing files are overwritten, otherwise download is 
        not performed. -->
        <xs:attribute name="overwrite" type="xs:boolean" use="optional"
        default="true"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- dxi file control chore.  Import or export to/from a dxi file. -->
  <xs:complexType name="packageType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
 
        <!-- List of root level nodes to import/export.  
        An empty list indicates 'all'. -->      
        <xs:sequence minOccurs="0" maxOccurs="unbounded">
          <xs:element name="node" type="packageNodeType"/>
        </xs:sequence>
        
        <!-- dxi filename. -->
        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  
        Directory that the dxi is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   



Understanding the Chore and Rules Schemas

1-6 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!-- If true existing files/nodes are overwritten,
        otherwise no operation. -->
        <xs:attribute name="overwrite" type="xs:boolean" 
        use="optional" default="true"/>
        
        <!-- Direction: in=import out=export -->
        <xs:attribute name="direction" type="packageDirectionEnum"
        use="required"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- Package node for import or export from/to a dxi. -->
  <xs:complexType name="packageNodeType">
    
    <!-- the type of the node to process -->
    <xs:attribute name="type" type="nodeTypeEnum" use="required"/>
    
    <!-- the name of the node to process -->
    <xs:attribute name="name" type="xs:string" use="required"/>
  </xs:complexType>
 
  <!-- db script control chore.  Runs db script against the configuration 
database. -->
  <xs:complexType name="dbScriptType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- db script filename. -->
        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  
        Directory that the db script is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!-- The database to run the script against -->
        <xs:attribute name="database" type="databaseEnum" use="required"/>
                
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
    
  <!-- Invoke named job chore.  Run a named job -->
  <xs:complexType name="runjobType">
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- Project name -->
        <xs:attribute name="project" type="xs:string" use="required"/>
        
        <!-- Job name -->
        <xs:attribute name="job" type="xs:string" use="required"/>



Understanding the Chore and Rules Schemas

Using Autorun to Execute Startup Tasks 1-7

        
        <!-- Wait for locks flag - default to true -->
        <xs:attribute name="waitforlocks" type="xs:boolean" 
        use="optional" default="true"/>
        
        <!-- Optional run profile -->
        <xs:attribute name="runprofile" type="xs:string" use="optional"/>
        
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <xs:complexType name="runopsjobType">
    <xs:complexContent>
      <xs:extension base="runjobType">
      
        <!-- Optional run label (will override run profile run label if set) -->
        <xs:attribute name="runlabel" type="xs:string" use="optional"/>
        
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!--
    Dump the database.
  -->
  <xs:complexType name="dumpdbType">
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- Output JMP file for config database -->
        <xs:attribute name="configout" type="xs:string" use="required"/>
        
        <!-- Output JMP file for results database -->
        <xs:attribute name="resultsout" type="xs:string" use="required"/>
        
        <!--  
        Directory that the JMP files are written to
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!--
        TODO: Add some filtering to allow dumping of categories of data
        e.g. staged data, results data, case management data, etc.
        -->
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- Load a certain file to do a certain thing. Eg change purge rules. -->
  <xs:complexType name="loadType">
    <xs:complexContent>
      <xs:extension base="choreType">        
        <!-- type of action to run with file -->
        <xs:attribute name="type" type="loadTypeEnum" use="required"/>
        
        <!-- filename -->



Understanding the Chore and Rules Schemas

1-8 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  
        Directory that the file is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!--  Enumeration of databases  -->
  <xs:simpleType name="databaseEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="director"/>
        <xs:enumeration value="results"/>
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of valid node types -->
  <xs:simpleType name="nodeTypeEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="project"/>
      <!-- Probably need to do these sometime
      <xs:enumeration value="resource"/>
      <xs:enumeration value="datastore"/>
      -->
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of packaging direction. -->
  <xs:simpleType name="packageDirectionEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="in"/>
      <xs:enumeration value="out"/>
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of types of things that can be loaded. -->
  <xs:simpleType name="loadTypeEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="purgeRules"/>
      <!-- <xs:enumeration value="schedule"/> -->
    </xs:restriction>
  </xs:simpleType>
  
    <!-- Sleep chore.  Wait for a while before doing other autorun stuff -->
  <xs:complexType name="sleepType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- seconds to wait. -->
        <xs:attribute name="time" type="xs:integer" use="required"/>
 
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>



Understanding the Chore and Rules Schemas

Using Autorun to Execute Startup Tasks 1-9

  
</xs:schema>

1.4.2 Understanding the Rules Schema
This section describes the Rules schema, which provides the basis for structuring an 
XML script that specifies EDQ server purge rules. Use the load chore to load the script 
at EDQ startup.

<?xml version="1.0" encoding="UTF-8"?>
 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 
  <!-- Common types -->
  <!-- ============ -->
  <xs:include schemaLocation="urn:commontypes.xsd"/>
 
  <xs:element name="rules" type="rulesType">
    <!-- Rule name must be unique -->
    <xs:key name="rule.name">
      <xs:selector xpath="rules/rule"/>
      <xs:field    xpath="@name"/>
    </xs:key>
  </xs:element>
 
  <!--  Rules  -->
 
  <xs:complexType name="rulesType">
    <xs:sequence>
      <xs:element name="rule" type="ruleType" minOccurs="0"
        maxOccurs="unbounded"/>
    </xs:sequence>
    
    <xs:attribute name="schemaversion" type="xs:positiveInteger" 
       use="optional" default="1"/>
  </xs:complexType>
 
  <xs:complexType name="ruleType">
    <xs:sequence>
      <xs:element name="purgePeriod"     type="periodType"   minOccurs="1"
         maxOccurs="1"/>
      <xs:element name="project"         type="xs:string"    minOccurs="0"
         maxOccurs="1"/>
      <xs:element name="job"             type="xs:string"    minOccurs="0"
         maxOccurs="1"/>
      <xs:element name="runlabelMatcher" type="runlabelType" minOccurs="0"
         maxOccurs="1"/>
    </xs:sequence>
    
    <!-- name -->
    <xs:attribute name="displayName"    type="xs:string"  use="required"/>
    <!-- whether this rule should be applied -->
    <xs:attribute name="enabled" type="xs:boolean" use="required"/>
  </xs:complexType>
  
  <!-- Runlabel -->
  
  <xs:complexType name="runlabelType">
    <xs:attribute name="regex"    type="xs:boolean" use="required"/>
    <xs:attribute name="runlabel" type="xs:string"  use="required"/>



Understanding the Chore and Rules Schemas

1-10 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

  </xs:complexType>
 
  <!-- Purge Period -->
  
  <xs:complexType name="periodType">
    <xs:attribute name="period" type="xs:int" use="optional"/>
    <xs:attribute name="unit" type="periodUnitType" use="required"/>
  </xs:complexType>
 
  <!-- Purge Unit types -->
 
  <xs:simpleType name="periodUnitType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="IMMEDIATE"/>
      <xs:enumeration value="HOURS"/>
      <xs:enumeration value="DAYS"/>
      <xs:enumeration value="WEEKS"/>
      <xs:enumeration value="MONTHS"/>
      <xs:enumeration value="NEVER"/>
    </xs:restriction>
  </xs:simpleType>
 
</xs:schema>



2

Configuring EDQ Email Notifications 2-1

2Configuring EDQ Email Notifications

[3] This chapter describes how to configure EDQ to produce email notifications in a 
number of situations.

■ Using SMTP to Send Email Notifications

■ Using JNDI to Send Email Notifications

■ Ensuring that Email is Configured

Emails can be sent to EDQ users when relevant issues are created or changed, when 
relevant cases or alerts in Case Management are added or modified, or when relevant 
jobs are finished running. 

2.1 Using SMTP to Send Email Notifications
To send email notifications, the Simple Mail Transfer Protocol (SMTP) information for 
your EDQ installation must be entered in the mail.properties file. This file is stored 
in /oedq_home/notification/smtp. 

1. Copy the mail.properties file from its installed location of edq_
home/notification/smtp to the notification/smtp sub-directory of the local 
configuration directory (oedq_local_home by default).

/oedq_local_home/notification/smtp 

This file is in the standard Java mail.properties file format, as documented at 
the JavaMail API documentation website found at 
https://javamail.java.net/nonav/docs/api/.

2. Edit the mail.properties file as follows, supplying the name of your SMTP host 
at the site. 

enabled = true
mail.transport.protocol = smtp
mail.host = smtp.fully qualified domain name of mail host
mail.user = depends on client site
mail.password = depends on client site
from.address = edqserver@example.com

2.2 Using JNDI to Send Email Notifications
As an alternative to using SMTP, you can use a Java Naming and Directory Interface 
(JNDI) session by configuring the following properties:

session = JNDI name of session
from.address = edqserver@example.com 



Ensuring that Email is Configured

2-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

2.3 Ensuring that Email is Configured
To check that email notifications are working correctly, create a test issue in Director 
and assign it to a user with a configured email address. The user should receive an 
email with a link to the issue.

Note: For email notifications to work correctly, you must ensure that 
the from.address property is set to a valid email format for your site. 
You must also ensure that each of your users who will be receiving 
email notifications has an email address configured in their profile. 



3

Configuring Extended Attributes 3-1

3Configuring Extended Attributes

[4] This chapter describes how to configure extended attributes in EDQ Case 
Management.

This chapter includes the following sections:

■ Understanding and Adding Extended Attributes

■ Configuring Data Entry Validation

■ Understanding Case Management Configuration Properties

Case Management supports the manual investigation of results from data quality 
processes. Using Case Management, privileged users can manage and review 
matching results using highly configurable workflows. 

The complete set of Case Management extended attributes that are used on an EDQ 
server are configured in the flags.xml file in the oedq_local_home/casemanagement 
directory. This file must be modified to add new extended attributes, and to define 
rules for how these attributes are populated. 

An additional property file named flags.properties accompanies the base flags.xml 
file and specifies the labels for the extended attributes as they will appear in the 
graphical user interface (GUI). The settings in this file may be overridden for a specific 
client language by the creation of additional property files with an ISO 639-1 language 
code, such as flags_en.properties (for English) or flags_de.properties (for 
German). This language code is described at the ISO website found at 
http://www.iso.org/iso/home/standards/language_codes.htm.

If Oracle Watchlist Screening is installed, these files may already exist. 

To ensure that Case Management publication works correctly, the flags.xml file is 
overwritten whenever a Case Source is imported using the Case Management 
Administration application. This is because Case Sources have a dependency on the 
format of the flags.xml file and requires the flags to be indexed and specified in the 
same way as on the server where the Case Source was defined. Oracle recommends 
that you back up the file before importing a Case Source in case there are any existing 
extended attributes in the flags.xml file on the server that need to be re-added once 
the import is complete. 

3.1 Understanding and Adding Extended Attributes
This section describes the different types of extended attributes and how to add them 
for use in Case Management.



Configuring Data Entry Validation

3-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

3.1.1 Default Extended Attributes
In an initial EDQ installation, the flags.xml file contains the following two extended 
attribute (flag) example definitions: 

<f:flag index="1" label="%escalation" type="boolean" default="false" 
notnull="true"/>

<f:flag index="2" label="%priority.score" type="number" readonly="true"/>

3.1.2 Adding New Extended Attributes
To add a new extended attribute, add a line immediately after the existing attribute 
definitions in the flags.xml file, following the same syntax as the existing lines and 
using the following notes for each property: 

There is a character limit of 80 characters for extended attributes with a type of 'string'. 
Values longer than this cannot be inserted as values. 

3.2 Configuring Data Entry Validation
You can restrict the format of user-specified data for an extended attribute. The 
restriction is checked when users edit extended attributes in the Case Management 
GUI, and when defining possible values to set for an extended attribute in the 
Workflow editor in Case Management Administration. 

The restriction is not checked when cases and alerts are written to Case Management 
from a process, so it is possible to write invalid values into an extended attribute. The 
invalid values will appear in error, with an appropriate error message. This designed 
behavior protects the system against unnecessary job failure. 

Restrictions are defined as part of the flags.xml file. There are two types of possible 
restrictions: 

Note: The order in which these properties appear in each line may 
not match this example. The order of properties is immaterial. Also, if 
Oracle Watchlist Screening is installed, the contents of the flags.xml 
file is different. 

Property Allowed Values Notes

index Integer Must be unique for each entry in the file

label Any The% character is used to indicate that the label for the 
UI should be retrieved from the flags.properties file 
for the client locale. If the% character is not used, the 
label will always be exactly as stated (in all languages).

type number, boolean, or 
string

Controls the data type of the column.

readonly true or false Controls whether or not privileged users can edit the 
value of the extended attribute when editing a Case or 
Alert

notnull true or false Controls whether or not Null values are allowed in the 
extended attribute. If this is undefined, Null values are 
allowed (the same as the 'false' setting).

default Any permissible 
value

Sets the default value of the extended attribute if not set 
to a specific value.



Configuring Data Entry Validation

Configuring Extended Attributes 3-3

■ Predefined list means that the data to be written is checked against a predefined 
list of allowed values. 

■ Regular expression means that the data to be written is checked against a regular 
expression. 

3.2.1 Checking Predefined List Restrictions
To check that the data being entered into the extended attribute matches a predefined 
list of possible values, add XML elements in the following format after the definition 
of the extended attribute (flag): 

<f:restrictions>
<f:predefined>
<f:value>first value</f:value>
<f:value>second value</f:value>
<f:value>third value</f:value>
</f:predefined>
</f:restrictions>
</f:flag>

For example, the following XML fragment defines a custom 'Status' extended attribute 
that allows only the values 'active' and 'inactive': 

<f:flag index="6" label="Status" type="string" readonly="false">
<f:restrictions>
<f:predefined>
<f:value>active</f:value>
<f:value>inactive</f:value>
</f:predefined>
</f:restrictions>
</f:flag>

The extended attribute appears with a list of the valid values in the Case Management 
Edit Case (or Edit Alert) dialog:

This image is a screen capture of the Case Management Edit Case (or Edit Alert) 
dialog. It shows the drop down menu for Status with the "active" selection highlighted.

***********************************************************************************************

3.2.2 Checking Regular Expression Restriction
To check that data being entered into the extended attribute matches a regular 
expression, add XML elements in the following format after the definition of the 
extended attribute (flag): 

<f:restrictions>
<f:regex ignorecase="false" matchby="w">
<f:value></f:value>

Tip: In this case, the user can specify a Null value for the Status 
field (as a 'notnull' condition was not set). 



Configuring Data Entry Validation

3-4 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

</f:regex>
</f:restrictions>

Where: the value property defines the regular expression, and the ignorecase and 
matchby properties defines how it is matched. The possible values for the matchby 
condition are as follows: 

For example, the following XML fragment defines a custom 'National ID' extended 
attribute that allows only values in the format NN-NN-NNN (2 digits, hyphen, 2 digits, 
hyphen, 3 digits): 

<f:flag index="7" label="National ID" type="string" readonly="false" 
notnull="true">
<f:restrictions>
<f:regex ignorecase="false" matchby="w">
<f:value>\d{2}-\d{2}-\d{3}</f:value>
</f:regex>
</f:restrictions>
</f:flag>

The following shows the error message displayed when a user attempts to add a value 
that does not match the regular expression: 

This screen capture shows the error message that is displayed when you attempt to 
add a value that does not match the regular expression.

***********************************************************************************************

It is also possible to customize this error message with the errormessage attribute. 
Either enter a simple text string to be displayed as the error message, or begin the 
string with a percent (%) symbol to direct the application to look in the 
flags.properties file for a localized value.

For example, the following XML fragment causes the e1.message error message to be 
retrieved from the flags.properties file when an error occurs:

<f:restrictions>
<f:regex ignorecase="false" matchby="w" errormessage="%e1.message">
<f:value>\d{3}-\d{2}-\d{4}</f:value>
</f:regex>
</f:restrictions>

Value Description

w WHOLE - The whole value must match the Regular Expression.

s STARTS - The beginning of the value must match the Regular Expression.

e ENDS - The end of the value must match the Regular Expression.

c CONTAINS - The value must contain a string that matches the Regular Expression.



Understanding Case Management Configuration Properties

Configuring Extended Attributes 3-5

3.3 Understanding Case Management Configuration Properties
This section lists the main parameters in director.properties that are used to 
configure Case Management.

Parameter Description0

case.management.fail
.on.long.flags 

This property controls the Case Management behavior when flag 
values that are longer than 80 characters are generated. If this 
property is set to true, the process will generate an error and will 
stop. If it is set to false, long flag values will be truncated and a 
warning will be written to the log file. This property is set to false 
by default.

cm.index.queue.limit This property controls the maximum size of the index queue limit. 

index.directory This property allows an absolute path for the Lucene index 
directories to be configured. By default, the index directories are 
always created within the localhome directory. In some 
circumstances, these directories can become very large, and storing 
them in a separate location may facilitate better management of disk 
space.



Understanding Case Management Configuration Properties

3-6 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality



4

Tuning EDQ Performance 4-1

4Tuning EDQ Performance

[5] This chapter describes the server properties that can be used to optimize the 
performance of the EDQ system and how these properties should be configured in 
various circumstances.

This chapter includes the following topics:

■ Understanding the Properties File

■ Tuning for Batch Processing

■ Tuning for Real-Time Processing

■ Tuning JVM Parameters

■ Tuning Database Parameters

■ Adjusting the Client Heap Size

EDQ has a large number of properties that are used to configure various aspects of the 
system. A relatively small number of these are used to control the performance 
characteristics of the system. 

Performance tuning in EDQ is often discussed in terms of CPU cores. In this chapter, 
this refers to the number of CPUs reported by the Java Virtual Machine as returned by 
a call to the Runtime.availableProcessors()method. 

4.1 Understanding the Properties File
The tuning controls are exposed as properties in the director.properties file. This 
file is found in the oedq_local_home configuration directory. 

The available tuning properties are as follows: 

runtime.threads This property determines the number of threads that will be used for 
each batch job which is invoked. The default value of this property is 
zero, meaning that the system should start one thread for each CPU 
core that is available. You can specify an explicit number of threads by 
supplying a positive, non-zero integer as the value of this property. For 
example, if you know that you want to start a total of four threads for 
each batch process, set runtime.threads to four. 

runtime.intervalth
reads 

This property determines the number of threads that will be used by 
each process when running in interval mode. This will also define the 
number of requests that can be processed simultaneously. The default 
behavior is to run a single thread for each process running in interval 
mode.



Tuning for Batch Processing

4-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

4.2 Tuning for Batch Processing
The default tuning settings provided with EDQ are appropriate for most systems that 
are primarily used for batch processing. Enough threads are started when running a 
job to use all available cores. If multiple jobs are started, the operating system can 
schedule the work for efficient sharing between the cores. It is best practice to allow 
the operating system to perform the scheduling of these kinds of workloads. 

4.3 Tuning for Real-Time Processing
When a production system is being used for a significant amount of real time 
processing, it should not be used for simultaneous batch and real time processing 
unless the real time response is not critical. Run batch processing only to process data 
that is required by the real time processes. 

4.3.1 Tuning Batch Processing On Real-Time Systems
If batch processing must be run on a system that is being used for real time processing, 
it is best practice to run the batch work when the real time processes are stopped, such 
as during a scheduled maintenance window. In this case, the default setting of 
runtime.threads is appropriate. 

If it is necessary to run batch processing while real time services are running, set 
runtime.threads to a value that is less than the total number of cores. By reducing the 
number of threads started for the batch processes, you prevent those processes from 
placing a load on all of the available cores when they run. Real time service requests 
that arrive when the batch is running will not be competing with it for CPU time. 

4.3.2 Tuning Real-Time Thread Numbers
For most production systems the default value of one for runtime.intervalthreads is 
not appropriate. The default setting implies that, for any given real-time service 
handled by a process running in interval mode, all requests will be processed 
sequentially. If four requests for the same service arrive simultaneously, and the 
average time to process a request is 100 ms, then the first message will be processed 
after 100 ms, the second after 200 ms, and so on. In addition, all the work will be 
performed by a single core, meaning that on a four-core machine three of the cores are 
idle. It is best practice to set runtime.intervalthreads to the same as the number of 
available cores. This configuration allows incoming requests to be processed 
simultaneously, resulting in a more efficient use of resources and a much faster 
turnaround speed. The default setting for  runtime.intervalthreads is adequate for 
development environments. 

workunitexecutor. 
outputThreads 

This property determines the number of threads that will be used to 
write data to the results database. These threads service the queue of 
results and output data for the whole system, and so are shared by all 
the processes which are running on the system. The default value of 
this property is zero, meaning that the system should use one output 
thread for each CPU core that is available. You can specify an explicit 
number of output threads by supplying a positive, non-zero integer as 
the value of this property. For example, if you know that you want to 
use a total of four threads for each batch process, set 
workunitexecutor.outputThreads to 4. 



Tuning JVM Parameters

Tuning EDQ Performance 4-3

4.3.3 Tuning I/O Heavy Real-Time Processes
If a process performs significant I/O, you can try increasing the value of 
runtime.intervalthreads above the number of available cores. When a process 
performs intensive I/O, there will be times when all the threads are waiting for disk 
activity to complete, leaving one or more cores idle. By using more active threads than 
there are cores, you ensure that when one thread stalls for I/O, another thread can 
utilize the core that the thread was using. 

4.3.4 Example of Tuning Real-Time Processes
In this example of how to tune real-time processes, a four-core Intel server is being 
used to support four different web services. The web services are CPU-intensive and 
perform minimal amounts of I/O. Some data used by the web services must be 
updated on a daily basis, which includes running a data preparation process in a batch 
mode. The web services receive intermittent sets of simultaneous requests. Overnight, 
the web services are stopped for maintenance and data preparation. 

In this scenario, it is appropriate to leave the runtime.threads property set to its 
default value of one thread per CPU core: in this case, four threads. With the goal of  
performing data preparation in the quickest possible time, and assuming the process is 
not likely to become I/O bound, you can set the runtime.intervalthreads property 
to four. Using the same number of threads as processes ensures that the maximum 
number of requests are processed at the same time. 

4.4 Tuning JVM Parameters
JVM parameters should be configured during the installation of EDQ. For more 
information, see Oracle Fusion Middleware Installing and Configuring Enterprise Data 
Quality. If it becomes necessary to tune these parameters post-installation to improve 
performance, follow the instructions in this section.  

4.4.1 Setting the PermGen Space
If the following error message is reported in the log file, it may be necessary to increase 
the maximum PermGen space available:

java.lang.OutOfMemoryError: PermGen space 

To do this, change the value against the -XX:MaxPermSize parameter on the JVM on 
the EDQ server. It will also be necessary to change the -XX:ReservedCodeCacheSize 
parameter proportionally. For example, if the MaxPermSize is doubled from 1024m to 
2048m, the ReservedCodeCacheSize should be doubled.

Note: Increasing the value of runtime.intervalthreads means that 
there will be a significant increase in the memory requirement, 
particularly at interval turnover. 

Note: All of the recommendations in this section are based on EDQ 
installations using the Java HotSpot Virtual Machine. Depending on 
the nature of the implementations, these recommendations may also 
apply to other JVMs.



Tuning Database Parameters

4-4 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

4.4.2 Setting the Maximum Heap Memory
If an OutOfMemory error message is generated in the log file, it may be necessary to 
increase the maximum heap space parameter, -Xmx. For most use cases, a setting of 
8GB is sufficient. However, large EDQ installations may require a higher max heap 
size, and therefore setting the -Xmx parameter to a value half that of the server memory 
is the normal recommendation. 

4.5 Tuning Database Parameters
The most significant database tuning parameter with respect to performance tuning 
within EDQ is workunitexecutor.outputThreads. This parameter determines the 
number of threads, and hence the number of database connections, that will be used to 
write results and staged data to the database. All processes that are running on the 
application server share this pool of threads, so there is a risk of processing becoming 
I/O bound in some circumstances. If there are processes that are particularly I/O 
intensive relative to their CPU usage, and the database machine is more powerful than 
the machine hosting the EDQ application server, it may be worth increasing the value 
of workunitexecutor.outputThreads. The additional database threads would use 
more connections to the database and put more load on the database. 

4.6 Adjusting the Client Heap Size
Under certain conditions, client heap size issues can occur; for example, when: 

■ attempting to export a large amount of data to a client-side Excel file, or 

■ opening up Match Review when there are many groups. 

EDQ allows the client heap size to be adjusted using a property in the 
blueprints.properties file. 

To double the default maximum client heap space for all Java Web Start client 
applications, create (or edit if it exists) the file blueprints.properties in the 
config/properties directory of the EDQ server to add the line: 

*.jvm.memory = 512m

To adjust the heap size for a specific application, replace the asterisk, *, with the 
blueprint name of the client application from the following list: 

■ director - (Director) 

■ matchreviewoverview - (Match Review) 

■ casemanager - (Case Management) 

■ casemanageradmin - (Case Management Administration) 

■ opsui - (Server Console) 

■ diff - (Configuration Analysis) 

■ issues - (Issue Manager) 

Note: Increasing this value will cause all connecting clients to change 
their heap sizes to 512MB. This could have a corresponding impact on 
client performance if other applications are in use. 



Adjusting the Client Heap Size

Tuning EDQ Performance 4-5

For example, to double the maximum client heap space for Director, add the following 
line: 

director.jvm.memory = 512m

When doubling the client heap space for more than one application, simply repeat the 
property; for example, for Director and Match Review: 

director.jvm.memory = 512m

matchreviewoverview.jvm.memory = 512m

Note: Dashboard is not a Java Web Start application, and therefore 
cannot be controlled using this property. 



Adjusting the Client Heap Size

4-6 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality



5

Using JMX Extensions to Monitor EDQ 5-1

5 Using JMX Extensions to Monitor EDQ

[6] This chapter describes theEDQ Java Management Extensions (JMX) interface that can 
be used to monitor and manage many details of its operation. JMX is a Java technology 
designed for remote administration and monitoring of Java components

This chapter includes the following topics:

■ Understanding JMX Binding

■ Understanding JMX Bean Naming

■ Monitoring Real-Time Processes

5.1 Understanding JMX Binding
EDQ can use either an internal JMX server or one that is provided in the WebLogic or 
Tomcat application server. This topic explains how to control which JMX server is 
used.

■ A default installation of EDQ on Apache Tomcat uses an internal JMX server. 

■ A default installation of EDQ on Oracle WebLogic Server uses the JMX tree in the 
WebLogic Server application server.   

The default configuration contains a Remote Method Invocation (RMI) registry, which 
is used by the EDQ command line interface as well as by JMX clients. The RMI 
listening port number is specified by the management.port property, defined in the 
director.properties file. The default is 8090. This property controls access to both 
the internal JMX Server and the RMI API that is used by the EDQ command line tools.

You can change the JMX configuration as follows: 

■ If you do not want to use the command line interface, and you want to have EDQ 
JMX Beans appear in the Tomcat application server JMX tree (not the internal JMX 
server), change the management.port property to 0: 

management.port=0

When management.port is set to zero, the RMI registry does not listen on any port. 
This means that the internal JMX Server will not be used and that the RMI API will 
also not be available. The command line tools will therefore not work if 
management.port is set to 0.

■ If you are using Oracle WebLogic Server, and you want to use the command line 
interface as well as have EDQ JMX Beans appear in the WebLogic Server JMX tree, 
add the following property to the director.properties file in the configuration 
directory. Retain the setting of 8090 for management.port so that the RMI API can 
be used by the command line tools.



Understanding JMX Bean Naming

5-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

management.jndiname=java:comp/env/jmx/runtime

5.2 Understanding JMX Bean Naming
The naming scheme used for the EDQ JMX Beans is designed to work well with 
Jconsole. However, other JMX Clients may require a modified naming scheme. 

The names used for the EDQ JMX Beans can be customized by writing and placing an 
appropriate JavaScript or Groovy file in the configuration directory and setting the 
management.namemaker.scriptfile property in the director.properties to indicate 
its existence 

5.2.1 Reviewing the Example
This example demonstrates how to modify the default EDQ JMX Bean naming scheme 
to add a type attribute to the end of the name. The type attribute will be based on the 
Java Bean class. 

1. Create a file named jmxnames.js in the configuration directory and add the 
following JavaScript to it: 

/**
* Adds a type attribute to the name of a JMX Beans.
* 
* @param beanclass The bean class name
* @param domain The domain name
* @param names The name strings 
* 
* @return The name string
*/
function objectNameFor(beanclass, domain, names) 
{
var type = beanclass == null ? "*" : 
beanclass.substring(beanclass.lastIndexOf('.') + 1); 
var out;
/*
* The names array always has 2 elements.
*/
out = domain + ":" + "component=" + escape(names[0]) + ",name=" + 
escape(names[1]);
for (var i = 2; i < names.length; i++)
{
var index = i-1
out += "," + "name" + index + "=" + escape(names[i]);
}
return out + ",type=" + type;
}

2. Add the following line to the director.properties file: 

management.namemaker.scriptfile = jmxnames.js

3. Restart the EDQ application server. 

The JMX Beans will now include a type qualifier at the end of their names. 



Monitoring Real-Time Processes

Using JMX Extensions to Monitor EDQ 5-3

5.3 Monitoring Real-Time Processes
EDQ is provided with a built-in JMX server that can be used to monitor many aspects 
of its operation. Many of the objects and resources that make up the EDQ application 
provide MBeans to the JMX server, including the real-time Web services.

5.3.1 Monitoring the Real-Time Web Service MBeans
Each real-time Web service registers an MBean for its reader and one for its writer in 
the JMX tree. 

Readers are registered at:

Runtime/Data/Buckets/Realtime/Projects/Project Name/readers/Web service name

Writers are registered at:

Runtime/Data/Buckets/Realtime/Projects/Project Name/writers/Web service name

In each case, the path to the MBean includes the name of the Web service that owns it 
and the project that contains the web service.

Global Web services (those deployed in a .jar file in the oedq_local_
home/webservices directory) have a different path name. Simply replace 
Projects/Project Name in the path above with Global.

The port for the internal JMX server is controlled by the management.port property, 
defined in the director.properties file.

5.3.2 Monitoring the Real-Time MBeans
A general JMX console, such as JConsole, can be used to interact with MBeans. Each 
MBean exposes:

■ Attributes, whose values can be read.

■ Operations that can be invoked to perform some action with the MBean.

■ An interface that allows clients to subscribe to notifications of events that occur on 
the MBean.

The EDQ real-time web service MBeans uses the following attributes:

closetime The time at which the bucket was last closed.

concurrent The current number of synchronous requests.

maxConcurrent The maximum number of concurrent synchronous requests since the 
bucket was opened.

maxConcurrentMax The maximum number of concurrent synchronous requests since 
startup.

messages The number of messages processed since the bucket was opened.

open Indicates whether the bucket is open or closed.

openCount The number of times the bucket has been opened since startup.

opentime The time when the bucket was last opened.

processtime The time when the last message was processed.

records The number of records processed since the bucket was opened.

threads The number of threads that used the bucket when it was last opened.



Monitoring Real-Time Processes

5-4 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

The EDQ real-time web service MBeans exposes the following operation:

totalMessages The number of messages processed since startup.

totalRecords The number of records processed since startup.

closedown Shutdown the reader or writer 
using this bucket.



6

Using Triggers 6-1

6Using Triggers

[7] This chapter describes how to use the trigger functionality in Oracle Enterprise Data 
Quality. This document describes where triggers are installed, how to call them, and 
how you can use them.

This chapter contains the following topics:

■ Overview of the Triggers Functionality

■ Required Skills to Use Triggers

■ Storing Triggers

■ Configuring Triggers Using the Script Trigger API

■ Extending the Configuration of Triggers Using Properties Files

■ Understanding EDQ Trigger Points

■ Understanding TriggerInfo Methods

■ Setting Trigger Levels

■ Using JMS in Triggers

■ Exposing Triggers in a Job Configuration

■ Trigger Examples

6.1 Overview of the Triggers Functionality
Triggers in Oracle Enterprise Data Quality are scripts (JavaScript or Groovy) that can 
be called at various trigger points in the EDQ system. There are two types of triggers: 
predefined triggers and custom triggers.

6.1.1 About Predefined Triggers
Predefined triggers are included with the EDQ installation. They are visible in the 
Director user interface and can be used in a job configuration to start the job, shut 
down web services, send email notifications, and run another job from within a job. 
Director users can set these triggers to run at the following trigger points: the start of a 
job, the end of a job, or both. You can learn more about predefined triggers in the 
Director online help system. 



Required Skills to Use Triggers

6-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

6.1.2 About Custom Triggers
Custom triggers can be written by someone skilled in Javascript or Groovy to extend 
the functionality of EDQ to achieve specific workflow objectives. You can use custom 
triggers to perform tasks such as: 

■ sending an email message

■ sending a JMS message

■ calling a web service

■ writing a file

■ sending a text message

You can run custom triggers at any of the following predefined trigger points:

■ Before running a job phase

■ After running a job phase

■ On making a match decision

■ On making a transition in Case Management

■ When a job completes

Each of these trigger point has a unique path and a set of defined arguments that are 
passed to the trigger through a special API. For more information, see Section 6.6, 
"Understanding EDQ Trigger Points."

Custom triggers are described in the rest of this document.

6.2 Required Skills to Use Triggers
Knowledge of Javascript or Groovy is required to create and deploy custom triggers in 
EDQ. 

6.3 Storing Triggers
Custom triggers must be stored in the triggers subdirectory of the EDQ config 
(configuration) directory.  New or updated triggers are loaded automatically without 
requiring a system restart.

6.4 Configuring Triggers Using the Script Trigger API
You can use the functions of the script API to create your triggers. These functions are 
defined in the trigger code. Although the examples in this document are JavaScript, 
the same API is available in Groovy.  

The following are descriptions of each function in this API. 

getPath()
Returns a string that defines the path that the trigger will handle. Each trigger point 
has a unique path. Any trigger that matches a given path is executed when the trigger 
point is reached. For more information about trigger points, see Section 6.6, 
"Understanding EDQ Trigger Points."

This function is a regular expression. For example, the path /log/com\.datanomic\..* 
would match any  logging path where the logger name contains the string datanomic 



Configuring Triggers Using the Script Trigger API

Using Triggers 6-3

(in other words, any logger defined in EDQ, the word  "datanomic" being another 
name for EDQ).

run(path, id, env, arg1, arg2 ...)
Executes the trigger. For more information about what is returned by the trigger API 
for each of these variables, see Section 6.6, "Understanding EDQ Trigger Points."

path
The path of the trigger, for example /runtime/engine/interval/end.

id
The trigger ID. The ID is set when the trigger is configured in the Director user 
interface. The ID is null for simple triggers.

env
The trigger environment in the form of one or more key/value pairs, for example 
env.project = project name. The env input is specific to the trigger point. These 
values are exposed as properties of the env object in the script. Most trigger points 
will pass in the associated EDQ project ID and project name.

arg
Extra arguments that are specific to the trigger point. For example, the Interval 
end trigger point returns the following: Task context object, process options, 
interval number (>= 1), execution statistics.

filter(path, env)
(Optional function) Filters out the trigger before it can be executed. Use this filter to 
avoid the overhead of executing a trigger that will not be needed.  Return true to 
enable the trigger or false to disable it.

path
The path of the trigger.

env
The trigger environment in the form of one or more key/value pairs. The env 
input is specific to the trigger point. These values are exposed as properties of the 
env object in the script. Most trigger points will pass in the associated EDQ project 
ID and project name. In the following example, the trigger is enabled only if the 
associated project is named "My project."

function filter(path, env) {
  return env.project == 'My project';
}

getLevel()
(Optional function) Returns the maximum level the trigger will accept.  For example, 
the following statement allows the trigger to accept all levels, regardless of other 
settings in the trigger system. For more information about setting levels, see 
Section 6.8, "Setting Trigger Levels."

function getLevel() {
  return Level.SEVERE;
}

getTriggerNames(path, env) 
(Optional function) Returns an array of TriggerName objects for display in the Director 
user interface. For more information, see Section 6.10, "Exposing Triggers in a Job 



Extending the Configuration of Triggers Using Properties Files

6-4 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

Configuration." Getting trigger names and exposing them in the Director interface is 
only possible with the job configuration screen. 

6.5 Extending the Configuration of Triggers Using Properties Files
You can specify additional configuration for script triggers in properties files.  Access 
to these properties is by means of a predefined object named config, which is 
available in all triggers. The base directory in EDQ for these properties files is the 
subdirectory config within the triggers directory. The following are useful methods 
for the config object.

config.get TriggerConfigFiles(base, pattern)
Returns an array of file objects whose names match a search pattern within a specified 
directory in the triggers/config directory.

base
The name of a directory within the triggers/config directory.

pattern
A regular expression (regex) that defines the search pattern to match. 

config.loadProps(file)
Loads a specified Java properties file and return it as a JavaScript object.

file
The name of the Java properties file.

6.6 Understanding EDQ Trigger Points
This section describes the trigger points within EDQ at which you can call custom 
triggers.

Log Message
Called whenever a log message is generated in the system.

Syslog Message
Called whenever a high-level syslog log message is generated. The source argument 
is a Java object that contains details of the event source. It can be converted to string 
for display.

Component Description

Path /log/loggername

Env null

Arguments java.util.logging.LogRecord

Component Description

Path /syslog

Env env.event = event_name

env.source = event_source_as_string

Arguments event_name, source, message



Understanding EDQ Trigger Points

Using Triggers 6-5

Process start
Called when a process starts. The arguments are Java objects that contain information 
on the process configuration.

Process end
Called when a process stops. The arguments are Java objects that contain information 
on the process configuration.

Interval end
Called at the end of a normal process or at the end of each interval of a process that is 
run in interval mode. Returns statistics on the number of records executed, etc.

Before job phase
Called in a job configuration for 'pre phase'  execution.

Component Description

Path /runtime/engine/task/start

Env env.project = project_name

env.projectID = project_ID

env.missionname = job_name

env.processname = process_name

Arguments Task_context_object, process_options

Component Description

Path /runtime/engine/task/end

Env env.project = project_name

env.projectID = project_ID

env.missionname = job_name

env.processname = process_name

Arguments Task_context_object, process_options

Component Description

Path /runtime/engine/interval/end

Env env.project = project_name

env.projectID = project_ID

env.missionname = job_name

env.processname = process_name

Arguments Task_context_object, process_options, 
interval_number (>= 1), execution_
statistics

Component Description

Path /missions/phase/pre



Understanding TriggerInfo Methods

6-6 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

After job phase
Called in a job configuration for 'post phase'  execution.

On match decision
Called when EDQ must make a decision about a potential match. This is known as a 
relationship decision trigger. Relationship triggers can include methods that return the 
relationship and decision data needed to perform matching. This trigger point is 
specific to Match Review.

6.7 Understanding TriggerInfo Methods
This section explains each of the methods that are associated with the TriggerInfo 
trigger point. These methods are specific to the TriggerInfo trigger point for use in 
Match Review.

Env env.project = project_name

env.projectID = project_ID

env.missionname = job_name

env.processname = process_name

Arguments None

Component Description

Path /missions/phase/post

Env env.project = project_name

env.projectID = project_ID

env.missionname = job_name

env.processname = process_name

Arguments None

Component Description

Path /matchreview/relationship/decision/

Env env.project = project_name

Arguments A list of TriggerInfo methods. Each contains 
data for one relationship. See Section 6.7 for 
decriptions of these methods.

Table 6–1 Methods Associated with the TriggerInfo Trigger Point

Method Data Returned Description

getPreviousMatchStatus() String Returns the match status prior to the 
decision.

getPreviousRealtionshipR
eviewStatus()

String Returns the relationship review status 
prior to the decision.

getRelationshipId() Integer Returns the relationship ID.

getRecordId() Integer Returns the ID of the first record.

getInputId() Integer Returns the ID of the first input.

Component Description



Setting Trigger Levels

Using Triggers 6-7

6.8 Setting Trigger Levels
Every trigger point has an associated level, which is a java.util.logging.Level 
value. By default trigger calls with a level lower than INFO are ignored.

One way to modify the level is to create a file named levels.properties in the 
triggers subdirectory of the config directory.  This file can contain both a default 
level and one or more override levels for individual paths. Example 6–1 sets the 
default level to FINE and sets the level for the path /runtime/engine/.* to FINER.  You 
can define your own prefix for the pattern and level properties.

Example 6–1 Setting Trigger Levels

default = fine
runtime.pattern = /runtime/engine/.*
runtime.level   = finer

Another way to modify the level is to define a getLevel function in the trigger. See 
Section 6.4 for a description.

getRelatedRecordId() Integer Returns the ID of the second record.

getRelatedInputId() Integer Returns the ID of the second input.

getReviewStatus() String Returns the review status of the new 
relationship.

getMatchStatus() String Returns the new match status.

getRuleName() String Returns the name of the rule that 
generated the relationship.

getCommentUser() String Returns the user name of the person that 
made the comment.

getReviewComment() String Returns any comment that was made.

getCommentDate() Date Returns the date and time that the 
comment was made (if comment is 
present).

getReviewedUser() String Returns the name of the user who 
performed the review.

getReviewDate() Date Returns the date and time that the review 
was performed.

SourceAttribute 
getRecordSourceAttribute
s() 

List Returns all the source attributes 
(columns) that make up the first record.

SourceAttribute 
getRelatedRecordSourceAt
tributes()

List Returns all the source attributes 
(columns) that make up the second 
record.

getRecordAttributeValue(
SourceAttribute sa)

Value Returns the value of the given source 
attribute (column) of the first record.

getRelatedRecordAttribut
eValue(SourceAttribute 
sa)

Value Returns the value of the given source 
attribute (column) of the second record.

Table 6–1 (Cont.) Methods Associated with the TriggerInfo Trigger Point

Method Data Returned Description



Using JMS in Triggers

6-8 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

6.9 Using JMS in Triggers
To enable Java Message Service (JMS)  within a trigger file, follow these steps.

1. Load the internal JavaScript JMS library.

addLibrary("jms");

2. Load properties that define the JMS configuration. These properties are 
augmented with the JMS settings from the standard realtime.properties file that 
is shipped in the EDQ configuration directory. The default version of this file 
defines properties for the open-source ActiveMQ message broker that is bundled 
with EDQ. At minimum, the trigger should supply a value for the destination 
property, which names the JMS topic or queue to use.

3. Create a JMS object.

var jms = JMS.open(props);

4. Send a text message.

jms.send(str)

5. Send a JMS map message built from a script object.

jms.sendMap(jsobj)

6. Create a text message. Properties and header values can be set on the message 
before transmission.

var msg = jms.createTextMessage(str)

7. Create a map message. Properties and header values can be set on the message 
before transmission.

var msg = jms.createMapMessage(jsobj)

8. Send a message that was created by one of the two preceding methods.

jms.sendMessage(msg)

6.10 Exposing Triggers in a Job Configuration
Triggers are selected for use in a job when configuring a job phase in Director. They 
can be set to run before or after a job phase. To make triggers available for selection on 
the configuration screen, each trigger must be able to return a list of names. This 
allows one trigger to perform multiple tasks as needed.

A trigger name has the following components: 

■ an internal ID that is passed to the trigger run function. See Section 6.4 for a 
description of this function.

■  a visible label

■ a group name

Trigger names with the same group are shown as a single node in the job configuration 
screen.

To create a new trigger name:
var n1 = new TriggerName(id, label)
n1.group = "My group";



Trigger Examples

Using Triggers 6-9

To return trigger names from a trigger:
To return trigger names, use the getTriggerNames function as shown in this example.

function getTriggerNames(path, env) {
  var n1 = new TriggerName(id1, label1);
  var n2 = new TriggerName(id2, label2);
  ...
  n1.group = "My group";
  n2.group = "My group";
  ...
  return [n1, n2 ...]
}

See Section 6.4 for more information about getTriggerNames.

6.11 Trigger Examples
The following are examples of how you can use custom triggers.

Example 1  Use a Trigger to Send Log Messages Via JMS
In this example, the logging library imports a logging object that can be used to format 
and output the message. The JMS properties file is loaded from 
triggers/config/jms/jms.properties in the EDQ configuration directory.

// Test trigger for task running with JMS
addLibrary("logging");
addLibrary("jms");
 
function getPath() {
  return "/log/com\.datanomic\..*";
}
function run(path, id, env, logrecord) {
 
  var pfiles = config.getTriggerConfigFiles("jms", 
                           "jms\\.properties");
 
  if (pfiles.length > 0) {
    var props = config.loadProps(pfiles[0]);
 
    var jms = JMS.open(props);
    var msg = logging.format(logrecord);
    var len = msg.length;

// Remove trailing newlines
 
    while (len > 0) {
      var c = msg.charAt(len - 1);
 
      if (c != '\n' && c != '\r') {
        break;
      }
 
      len--;
    }

Note: The examples in this document are JavaScript, but the same 
API is available in Groovy.



Trigger Examples

6-10 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality

    jms.send(msg.substring(0, len));
    jms.close();
  }
}

Example 2  Use a Trigger to Send Syslog Messages Via JMS
In this example, the special id directive on the first line (#! id : syslog) defines the 
internal ID of the trigger.  If there is more than one trigger definition with the same ID, 
the later one replaces the former one. In a standard EDQ install, there is a predefined 
syslog trigger that logs messages through the standard logging API. Adding the id 
directive in this example causes the JMS syslog trigger to replace the predefined 
trigger.

#! id : syslog
 
// Test trigger for task running with JMS
 
addLibrary("logging");
addLibrary("jms");
 
function getPath() {
  return "/syslog";
}
 
function getLevel() {
  return Level.SEVERE;
}

function run(path, id, env, level, event, source, message) {
 
  var pfiles = config.getTriggerConfigFiles("jms", 
                "jms\\.properties");
  var props  = null;
 
  if (pfiles.length == 0) {
    logger.log(Level.WARNING, "syslogger called but no properties");
  } else {
 
    props = config.loadProps(pfiles[0]);
 
    var jms    = JMS.open(props);
    var xml    = <syslog 
level={level}><source>{source}</source><message>{message}</message></syslog>
 
    logger.log(Level.INFO, "xml = {0}", xml.toXMLString());
    jms.send(xml.toXMLString());
    jms.close();
  }
}

Example 3  Use a Trigger for Mission Phase Notification
In this example, a couple of trigger names are defined and are exposed to the job 
configuration screen.  The trigger writes a log message in this example, but it could 
also be configured to send JMS notifications.

// Test trigger for misssion phase notification
 
addLibrary("logging");
 



Trigger Examples

Using Triggers 6-11

function getPath() {
  return "/missions/phase/.*";
}
 
function run(path, id, env) {
 logger.log(Level.INFO, "phase called with path {0} and id {1}", path, id);
}

function getTriggerNames(path, env) {
  var n1 = new TriggerName("logme", "logme2");
  n1.group = "logmegroup";
 
  var n2 = new TriggerName("n2", "n2");
  n2.group = "logmegroup";
  return [n1, n2];
}



Trigger Examples

6-12 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality



7

Accessing EDQ Files Remotely 7-1

7Accessing EDQ Files Remotely

[8] This chapter describes how to access certain directories in the EDQ directory.

EDQ is supplied with internal File Transfer Protocol (FTP) and Secure File Transfer 
Protocol (SFTP) servers. These servers enable remote access to the configuration file 
area and landing area files.

The FTP server can be accessed with a third-party FTP client using any valid EDQ 
username and password, connecting to the port specified by the ftpserver.port in 
the director.properties file. 

The SFTP server is controlled by the sshd.port property in director.properties. The 
default value is 2222. 

The following directories are available via the FTP and SFTP servers: 

Directory Description

config This corresponds to the EDQ base configuration directory (edqhome). 

config1 This corresponds to the EDQ local configuration directory 
(edq.local.home).

landingarea This corresponds to the landingarea directory in the EDQ installation. 

projectlandingarea This corresponds to the project specific landing areas in the EDQ 
installation. 

commands This corresponds to the commandarea directory in the EDQ base 
configuration directory (edqhome). 

commands1 This corresponds to the commandarea directory in the EDQ local 
configuration directory (oedq_local_home).



7-2 Oracle Fusion Middleware Administering Oracle Enterprise Data Quality


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using Autorun to Execute Startup Tasks
	1.1 Understanding Autorun
	1.2 Using the Autorun Chores
	1.3 Using the Autorun Scripts
	1.3.1 Examples

	1.4 Understanding the Chore and Rules Schemas
	1.4.1 Understanding the Chores Schema
	1.4.2 Understanding the Rules Schema


	2 Configuring EDQ Email Notifications
	2.1 Using SMTP to Send Email Notifications
	2.2 Using JNDI to Send Email Notifications
	2.3 Ensuring that Email is Configured

	3 Configuring Extended Attributes
	3.1 Understanding and Adding Extended Attributes
	3.1.1 Default Extended Attributes
	3.1.2 Adding New Extended Attributes

	3.2 Configuring Data Entry Validation
	3.2.1 Checking Predefined List Restrictions
	3.2.2 Checking Regular Expression Restriction

	3.3 Understanding Case Management Configuration Properties

	4 Tuning EDQ Performance
	4.1 Understanding the Properties File
	4.2 Tuning for Batch Processing
	4.3 Tuning for Real-Time Processing
	4.3.1 Tuning Batch Processing On Real-Time Systems
	4.3.2 Tuning Real-Time Thread Numbers
	4.3.3 Tuning I/O Heavy Real-Time Processes
	4.3.4 Example of Tuning Real-Time Processes

	4.4 Tuning JVM Parameters
	4.4.1 Setting the PermGen Space
	4.4.2 Setting the Maximum Heap Memory

	4.5 Tuning Database Parameters
	4.6 Adjusting the Client Heap Size

	5 Using JMX Extensions to Monitor EDQ
	5.1 Understanding JMX Binding
	5.2 Understanding JMX Bean Naming
	5.2.1 Reviewing the Example

	5.3 Monitoring Real-Time Processes
	5.3.1 Monitoring the Real-Time Web Service MBeans
	5.3.2 Monitoring the Real-Time MBeans


	6 Using Triggers
	6.1 Overview of the Triggers Functionality
	6.1.1 About Predefined Triggers
	6.1.2 About Custom Triggers

	6.2 Required Skills to Use Triggers
	6.3 Storing Triggers
	6.4 Configuring Triggers Using the Script Trigger API
	6.5 Extending the Configuration of Triggers Using Properties Files
	6.6 Understanding EDQ Trigger Points
	6.7 Understanding TriggerInfo Methods
	6.8 Setting Trigger Levels
	6.9 Using JMS in Triggers
	6.10 Exposing Triggers in a Job Configuration
	6.11 Trigger Examples

	7 Accessing EDQ Files Remotely

