

[1] Oracle® Fusion Middleware
Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack

11g Release 1 (11.1.1.9.0)

E17366-10

December 2014

Describes how to use Composite Application Validation
System initiators and simulators to test AIA service
integrations. Test initiators simulate service invocations and
simulators simulate service endpoints. Describes how to use
error handling and logging components, including error
notifications and trace and error logs, to support services
operating in an AIA ecosystem.

Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application
Integration Architecture Foundation Pack, 11g Release 1 (11.1.1.9.0)

E17366-10

Copyright © 2001, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... xiii

Audience... xiii
Oracle AIA Guides .. xiii
Related Documents ... xiii
Documentation Accessibility ... xiv
Enabling Accessibility Features for AIA Home.. xiv
Conventions ... xv

What's New in This Guide for Release 11.1.1.9 ... xvii

1 Introduction to the Composite Application Validation System

1.1 Describing the Purpose of the Composite Application Validation System 1-1
1.2 Describing Key Components of the CAVS Framework .. 1-2
1.3 Describing the CAVS Design Assumptions and Knowledge Prerequisites....................... 1-3

2 Preparing to Use the Composite Application Validation System

2.1 What Can I Test Using CAVS?.. 2-1
2.2 What Are the Oracle AIA Components That I Need to Test? .. 2-1
2.3 Which Message Exchange Pattern Is Being Used by the Components Being Tested? 2-2
2.3.1 Describing CAVS Process Flows for Testing the Synchronous Message Exchange

Pattern 2-2
2.3.2 Describing CAVS Process Flows for Testing the Asynchronous (Notify) Message

Exchange Pattern 2-4
2.3.3 Describing Flows for Testing the Asynchronous Two-Way Message Exchange Pattern .

2-5
2.4 Does the Scenario Need to be Unit or Flow Tested?.. 2-8
2.4.1 Describing a Unit Test Configuration... 2-8
2.4.2 Describing a Flow Test Configuration.. 2-8
2.4.3 Describing a Complex Flow Test Configuration... 2-9
2.5 Do I Have the Content I Need to Create the Definitions?... 2-9
2.5.1 How to Obtain Message XML Text from a BPEL Process .. 2-10

3 Introduction to Defining and Running CAVS Tests Using the CAVS UI

3.1 Describing the CAVS UI .. 3-1

iv

3.2 Overview of Defining and Running CAVS Tests... 3-3
3.3 How to Execute CAVS Definitions as Web Services ... 3-4

4 Creating and Modifying Test Definitions

4.1 How to Create a Test Definition ... 4-1
4.2 How to Modify a Test Definition.. 4-5
4.3 How to Provide Multiple Request and Response Message Sets in a Single Test Definition ...

4-12

5 Creating and Modifying Simulator Definitions

5.1 How to Create a Simulator Definition ... 5-1
5.2 How to Modify a Simulator Definition.. 5-4
5.2.1 Using WS-Addressing in Asynchronous Two-Way Simulator Definitions............. 5-10
5.3 How to Provide Multiple Request and Response Message Sets in a Single Simulator

Definition 5-12
5.4 How to Create a Simulator Definition that Supports Chatty Services............................. 5-14
5.5 How to Send Dynamic Responses in a Simulator Response ... 5-15

6 Searching for Test and Simulator Definitions

6.1 How to Search for and Work with Test and Simulator Definitions 6-1

7 Working with Group Definitions

7.1 How to Work with Group Definitions... 7-1
7.2 How to Create and Modify a Group Definition ... 7-2

8 Defining CAVS Routing Setup IDs

8.1 Introduction to CAVS Routing Setup IDs ... 8-1
8.2 How to Create CAVS Routing Setup IDs .. 8-3
8.3 How to Search for CAVS Routing Setup IDs.. 8-4
8.4 How to Modify Routing Setup IDs .. 8-6
8.5 How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs..... 8-7

9 Working with Test and Simulator Instances

9.1 How to Work with Test and Simulator Instances .. 9-1
9.2 How to View Test Instance Details .. 9-4
9.3 How to View Simulator Instance Details .. 9-8

10 Working with Group Instances

10.1 How to View Group Instances... 10-1
10.2 How to View Group Instance Details ... 10-2

11 Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test
Scenarios

11.1 Introduction to Purging CAVS-Related Cross-Reference Entries 11-1

v

11.2 How to Purge CAVS-Related Cross-Reference Entries to Enable Rerunning of Test
Scenarios 11-1

12 Exporting and Importing CAVS Definitions and Instances

12.1 How to Export and Import Definitions .. 12-1
12.2 How to Export Test and Simulator Instances .. 12-3
12.3 How to Export Group Instances .. 12-4

13 Introduction to Oracle AIA Error Handling

13.1 Introduction to the Error Handling Framework ... 13-1
13.1.1 Fault Categories .. 13-3
13.2 Introduction to Error Handling for Business Faults ... 13-4
13.3 Introduction to Error Handling for BPEL and Mediator System Faults.......................... 13-4
13.4 Introduction to Error Handling for Oracle B2B Errors... 13-5

14 Setting Up Error Handling

14.1 Introduction to Setting Up Error Handling ... 14-1
14.2 How to Create Error Handling User Roles .. 14-4
14.3 How to Associate Email Addresses with Error Handling User Roles 14-5
14.4 How to Configure Notification Details... 14-5
14.5 How to Set Up AIA Error Handling Configuration Details .. 14-5
14.5.1 What You Need to Know about Setting Up Error Handling Configurations 14-9

15 Using Error Notifications

15.1 Introduction to Error Notifications ... 15-1
15.2 Setting Up Error Notification Throttling .. 15-2
15.2.1 Introduction to Error Notification Throttling... 15-2
15.2.2 How to Enable Error Notification Throttling ... 15-3
15.2.3 How to Configure Error Notification Throttling Parameters 15-3
15.3 Customizing Error Notification Emails .. 15-5
15.3.1 Introduction to Error Notification Customization... 15-5
15.3.1.1 EMAIL Element ... 15-6
15.3.1.2 FYI_EMAIL Element ... 15-6
15.3.1.3 URL Element .. 15-7
15.3.1.4 EXT_URL Element... 15-7
15.3.2 How to Customize the Subject Line of Error Notification Emails............................. 15-8
15.3.3 How to Customize the Body Text of Error Notification Emails 15-9
15.3.4 How to Customize Additional URLs Provided in Error Notification Email Body Text...

15-11
15.4 Disabling Error Notifications ... 15-14

16 Using the Oracle BPM Worklist

16.1 Introduction to the Oracle BPM Worklist... 16-1
16.2 How to Enable the Oracle BPM Worklist ... 16-3
16.3 How to Use the Oracle BPM Worklist .. 16-3

vi

17 Using the AIA Message Resubmission Utility

17.1 Introduction to the AIA Message Resubmission Utility .. 17-1
17.2 Using the AIA Message Resubmission Utility User Interface... 17-2
17.3 Using the Command Line AIA Message Resubmission Utility.. 17-8
17.3.1 AQ Store Based Resubmission.. 17-8
17.3.2 WLS JMS based Resubmission.. 17-9
17.3.3 Resequencer Based Resubmission.. 17-11

18 Using Trace and Error Logs

18.1 Introduction to Trace and Error Logging ... 18-1
18.2 How to Enable Trace Logging.. 18-2
18.3 How to Set Trace Log Levels.. 18-2
18.4 How to Access Trace and Error Logs.. 18-3
18.4.1 Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console.................. 18-3
18.4.2 Searching for Oracle AIA Log Messages... 18-4
18.4.3 Accessing Oracle AIA Log XML Files.. 18-5

19 Accessing Oracle B2B Errors

19.1 Accessing B2B Error Reports.. 19-1

20 Using the Code Compliance Inspector

20.1 Overview... 20-1
20.1.1 Understanding the Terminology.. 20-2
20.1.2 Understanding the Delivered Catalogs ... 20-3
20.2 Invoking Code Compliance Inspector from JDeveloper.. 20-4
20.3 Running Code Compliance Inspector in JDeveloper.. 20-5
20.3.1 Understanding the Reports ... 20-10
20.3.1.1 Sharing the Reports ... 20-11
20.3.1.2 Integration with Oracle Enterprise Repository ... 20-11
20.3.1.3 Generating a Trend Analysis Chart .. 20-12
20.4 Invoking Code Compliance Inspector from a Command Line....................................... 20-12
20.5 Configuring Code Compliance Inspector .. 20-14
20.5.1 Considerations .. 20-16
20.6 Writing Custom Assertions for Code Compliance Inspector.. 20-16
20.6.1 Understanding the Assertion Structure .. 20-17
20.6.1.1 Assertion Parameters .. 20-20
20.6.2 Selecting an Appropriate Executor .. 20-20
20.6.3 Understanding Profile Assertions .. 20-20
20.6.4 Profile Assertion Properties .. 20-22
20.6.5 Using Properties from Profile Assertions in an Assertion.. 20-23
20.6.6 Writing Custom Assertions and Policies in a Policy File.. 20-24
20.6.7 Understanding the Custom AssertionCatalog File.. 20-25
20.6.8 Understanding the Custom Policies XML File ... 20-26
20.6.9 Delivered Assertions & Policies ... 20-26
20.6.10 Adding and Modifying Assertions in a Custom Assertion File 20-27
20.6.11 Adding and Modifying Assertions in a Custom Policies XML File 20-27

vii

20.6.12 Executing Newly Created and Customized Assertions.. 20-27
20.7 Executing Code Compliance Inspector for Integration Projects 20-28

A XML Structures of Exportable CAVS Definitions and Instances

A.1 Definition.xml... A-1
A.2 Instance.xml .. A-3

B Code Compliance Inspector: New Terminology & Available Assertion
Executors

B.1 New Terminology.. B-1
B.2 Delivered Assertions ... B-3
B.3 Assertion Parameters for the XPathExecutor... B-7
B.3.1 Mandatory Parameters List .. B-7
B.3.2 Optional Parameters List .. B-8
B.4 Assertion Parameters for the FSExecutor... B-10
B.4.1 Mandatory Parameters List ... B-11
B.4.2 Optional Parameters List .. B-11
B.5 Available Operations for the XPathExecutor .. B-11
B.6 Available Operations for the FSExecutor .. B-19

Index

viii

List of Examples

4–1 Request Message Format .. 4-12
4–2 Response Message Format.. 4-13
5–1 Request Message Format .. 5-13
5–2 Response Message Format.. 5-13
5–3 Request Message Format .. 5-15
5–4 Request SOAP Message Nodes.. 5-16
5–5 Response SOAP Message.. 5-16
5–6 Response Message Modified by CAVS... 5-17
15–1 AIAEHNotifications.xml .. 15-5
15–2 EMAIL Element in AIAEHNotifications.xml .. 15-6
15–3 FYI_EMAIL Element in AIAEHNotifications.xml .. 15-6
15–4 URL Element in AIAEHNotification.xml... 15-7
15–5 EXT_URL Element in AIAEHNotifications.xml.. 15-7
15–6 Customizing the Subject Line of Error Notification Emails .. 15-8
15–7 Customizing the Body Text of Error Notification Emails .. 15-10
15–8 Customizing Application Links in Body Text of Error Notification Emails 15-13
17–1 Sample ResubmissionParams.properties for AQ based Resubmission 17-8
17–2 Sample ResubmissionParams.properties for WLS JMS based Resubmission............... 17-10
17–3 Sample ResubmissionParams.properties for Resequencer based Resubmission......... 17-11
A–1 Definition.xml... A-1
A–2 Instance.xml .. A-3

ix

List of Figures

1–1 CAVS Test Definition ... 1-2
1–2 CAVS Simulator .. 1-3
2–1 Testing a Synchronous MEP Using a CAVS Test Definition.. 2-2
2–2 Testing a Synchronous MEP Using a CAVS Test Definition and Simulator Definition... 2-3
2–3 Testing a Synchronous MEP Using a CAVS Simulator Definition...................................... 2-3
2–4 Testing an Asynchronous (Notify) MEP Using a CAVS Test Definition............................ 2-4
2–5 Testing an Asynchronous (Notify) MEP Using a CAVS Test Definition and Simulator

Definition 2-5
2–6 Testing an Asynchronous (Notify) MEP Using a CAVS Simulator Definition 2-5
2–7 Testing an Asynchronous Two-Way MEP Using a CAVS Test Definition 2-6
2–8 Testing an Asynchronous Two-Way MEP Using a CAVS Test Definition and Simulator

Definition 2-7
2–9 Testing an Asynchronous Two-Way MEP Using a CAVS Simulator Definition 2-7
2–10 Unit Testing a Provider ABCS .. 2-8
2–11 Flow Testing a Scenario ... 2-8
2–12 Complex Flow Testing an EBF.. 2-9
3–1 Overview of CAVS Component Relationships .. 3-2
4–1 Create Test Page (1 of 2)... 4-2
4–2 Create Test Page (2 of 2)... 4-2
4–3 Modify Test Definition Page (1 of 5) .. 4-5
4–4 Modify Test Definition Page (2 of 5) .. 4-6
4–5 Modify Test Definition Page (3 of 5) .. 4-6
4–6 Modify Test Definition Page (4 of 5) .. 4-6
4–7 Modify Test Definition Page (5 of 5) .. 4-6
4–8 Providing Multiple Request and Response Message Sets in a Single Test Definition... 4-12
5–1 Create Simulator Page (1 of 2)... 5-2
5–2 Create Simulator Page (2 of 2)... 5-2
5–3 Modify Simulator Definition Page (1 of 5) .. 5-5
5–4 Modify Simulator Definition Page (2 of 5) .. 5-5
5–5 Modify Simulator Definition Page (3 of 5) .. 5-6
5–6 Modify Simulator Definition Page (4 of 5) .. 5-6
5–7 Modify Simulator Definition Page (5 of 5) .. 5-6
5–8 Modify Simulator Definition Page for WS-Addressing (1 of 5) .. 5-11
5–9 Modify Simulator Definition Page for WS-Addressing (2 of 5) .. 5-11
5–10 Modify Simulator Definition Page for WS-Addressing (3 of 5) .. 5-11
5–11 Modify Simulator Definition Page for WS-Addressing (4 of 5) .. 5-12
5–12 Modify Simulator Definition Page for WS-Addressing (5 of 5) .. 5-12
5–13 Providing Multiple Request and Response Message Sets in a Single Simulator Definition....

5-12
6–1 Definitions Page (1 of 2) ... 6-1
6–2 Definitions Page (2 of 2) ... 6-2
7–1 Group Definitions Page.. 7-1
7–2 Group Definition Detail Page (New Group Definition).. 7-2
7–3 Group Definition Detail Page (Existing Group Definition) .. 7-3
8–1 Sample Scenarios for Using CAVS Routing Setup IDs ... 8-2
8–2 Create Routing Setup Page.. 8-3
8–3 Routing Setup Page .. 8-5
8–4 Routing Setup Page .. 8-6
8–5 AIA Configuration Page .. 8-7
9–1 Instances Page.. 9-2
9–2 Test Instances Detail Page (1 of 4) .. 9-5
9–3 Test Instances Detail Page (2 of 4) .. 9-5
9–4 Test Instances Detail Page (3 of 4) .. 9-5
9–5 Test Instances Detail Page (4 of 4) .. 9-6

x

9–6 Simulator Instances Detail Page (1 of 4) .. 9-9
9–7 Simulator Instances Detail Page (2 of 4) .. 9-9
9–8 Simulator Instances Detail Page (3 of 4) .. 9-9
9–9 Simulator Instances Detail Page (4 of 4) ... 9-10
10–1 Group Instances Page.. 10-1
10–2 Group Instances Detail Page .. 10-3
12–1 Definitions Page ... 12-1
12–2 Instances Page... 12-3
12–3 Group Instances Page.. 12-4
13–1 Key Features of Error Handling Framework Components ... 13-2
13–2 Error Handling Framework Support for Capturing B2B Errors....................................... 13-6
14–1 Error Handling Setup Elements That Enable Error Notification Functionality 14-3
14–2 Error Handling Setup Elements That Enable Oracle Worklist Functionality 14-4
14–3 Error Notification Page (1 of 2) .. 14-6
14–4 Error Notification Page (2 of 2) .. 14-6
15–1 Sample Error Notification Email ... 15-2
15–2 Error Notification Page (1 of 2) .. 15-4
15–3 Error Notification Page (2 of 2) .. 15-4
15–4 Sample Error Notification Email Text Providing a Link to Flow Trace Details in the Oracle

Enterprise Manager Console 15-12
15–5 Fault Details on the Enterprise Manager Console Flow Trace Page 15-12
17–1 AIA Message Resubmission Utility Architecture ... 17-2
17–2 Search Error Messages Page (1 of 2).. 17-3
17–3 Search Error Messages Page (2 of 2).. 17-3
17–4 EM Flow Trace Page .. 17-6
17–5 Search Result Page ... 17-6
17–6 Advanced Search .. 17-7
17–7 Message ID Detail .. 17-7
18–1 Log Configuration Page .. 18-2
18–2 View Log File Page .. 18-4
18–3 Log Messages Page .. 18-5
20–1 Overall Code Compliance Report.. 20-2
20–2 Create External Tool Page... 20-4
20–3 Tools menu.. 20-5
20–4 Using the menu to run CCI .. 20-6
20–5 Code Compliance Page Elements .. 20-6
20–6 Setting Default Values... 20-8
20–7 Output Page Elements... 20-9
20–8 Sample Output Directory Structure for One PIP or Composites.................................... 20-10
20–9 Sample Output Directory Structure for Multiple PIPs... 20-11
20–10 Viewing reports in OER .. 20-11
20–11 Trend Chart in Excel.. 20-12
20–12 Assertion Structure .. 20-17
20–13 Assertion Structure Detail .. 20-18
20–14 XML Snippet ... 20-21
20–15 XML Snippet ... 20-23

xi

List of Tables

4–1 Create Test Page Elements.. 4-2
4–2 Create Test Page - Test Messages Group Box Elements... 4-4
4–3 Modify Definitions Page - Test Messages Group Box Elements... 4-7
4–4 Prefix and Namespace Selection Grid Elements ... 4-9
4–5 XPath Selection Grid Elements ... 4-10
4–6 Linked Simulator Definition Selection Grid Elements .. 4-11
4–7 Group Definition Selection Grid Elements ... 4-11
5–1 Create Simulator Page Elements.. 5-2
5–2 Test Messages Group Box Elements.. 5-4
5–3 Modify Simulator Definition Page Elements ... 5-7
5–4 Prefix and Namespace Selection Grid Elements ... 5-7
5–5 XPath Selection Grid Elements .. 5-8
5–6 Simulator Instance Selection Grid ... 5-9
5–7 Linked Test Definition Selection Grid.. 5-10
6–1 Search Definitions Group Box Elements .. 6-2
6–2 Search Result Selection Grid Elements ... 6-3
7–1 Search Group Definitions Group Box Elements.. 7-2
7–2 Search Result Selection Grid Elements ... 7-2
7–3 Group Definition Detail Page Elements for New and Existing Definitions...................... 7-3
7–4 Test Definition Selection Grid Elements... 7-4
7–5 Group Instance Selection Grid Elements.. 7-4
8–1 Create Routing Setup Page Elements.. 8-4
8–2 Routing Setup Page Elements .. 8-5
8–3 Routing Setup Actions Area Elements.. 8-6
8–4 Routing Setup Page Elements .. 8-7
9–1 Search Instances Group Box Elements.. 9-2
9–2 Search Result Selection Grid Elements ... 9-3
9–3 Test Instances Detail Page Elements ... 9-6
9–4 Test Messages Group Box Elements.. 9-7
9–5 Linked Simulator Instance Selection Grid Elements .. 9-8
9–6 Simulator Instances Detail Page Elements .. 9-10
9–7 Test Messages Group Box Elements... 9-11
9–8 Linked Test Instance Selection Page Elements ... 9-12
10–1 Search Group Instances Group Box Elements .. 10-2
10–2 Search Result Selection Grid Elements .. 10-2
10–3 Group Instances Detail Page Elements .. 10-3
13–1 Oracle B2B Error AQ Details ... 13-5
14–1 Error Notification Page Elements ... 14-7
17–1 Search Error Messages Page Elements... 17-4
17–2 Search Results Page Elements ... 17-5
18–1 Trace Log Levels of Severity.. 18-3
20–1 Terminology... 20-2
20–2 Code Compliance Page Elements... 20-7
20–3 Runtime Page Elements .. 20-8
20–4 Output Page Elements.. 20-9
20–5 Property Names and Values.. 20-15
20–6 AssertionSet Table .. 20-18
20–7 Assertion Table.. 20-18
20–8 Assertion Parameters.. 20-20
20–9 Elements and Attributes for Profile Assertions.. 20-21
20–10 Property Names .. 20-22
20–11 Available Parameters.. 20-23
20–12 Variables... 20-28

xii

B–1 New terminology .. B-1
B–2 Category :Coding Standards ... B-3
B–3 Category :Error Handling Standards ... B-3
B–4 Category :Loose Coupling Standards .. B-4
B–5 Category :Naming Standards.. B-4
B–6 Category :Performance Standards.. B-4
B–7 Category :Reusability Standards .. B-5
B–8 Category :Security Standards.. B-5
B–9 Category :WS-I BP Standards.. B-5
B–10 Mandatory Parameters for XPathExecutor ... B-7
B–11 Optional Parameters for XPathExecutor ... B-9
B–12 Mandatory Parameters for the FSExecutor ... B-11
B–13 Optional Parameters for the FSExecutor ... B-11
B–14 XpathListExistCheck .. B-12
B–15 XpathNotExistsCheck... B-12
B–16 XpathNodeCountLessThanCheck.. B-12
B–17 XpathNodeCountGreaterThanCheck .. B-13
B–18 XpathValuesLessThanCheck... B-13
B–19 XpathValuesLessThanEqualCheck - .. B-13
B–20 XpathValuesGreaterThanCheck ... B-14
B–21 XpathValuesGreaterThanEqualCheck... B-14
B–22 CompareNodeWithRegExXMLCheck ... B-14
B–23 CompareNodeListWithRegExXMLCheck .. B-15
B–24 XpathValuesEqualCheck ... B-15
B–25 XpathValuesNotEqualCheck... B-15
B–26 XpathValuesPatternMatchCheck.. B-16
B–27 XpathValuesNotMatchPatternCheck... B-16
B–28 XpathValueNotContainsCheck... B-17
B–29 XpathValueContainsCheck ... B-17
B–30 ExistsRegExXMLCheck.. B-18
B–31 NotExistsRegExXMLCheck ... B-18
B–32 FileExistCheck ... B-19
B–33 FileNotExistCheck .. B-19
B–34 FilesMatchPatternCheck .. B-20

xiii

Preface

Welcome to Oracle Fusion Middleware Infrastructure Components and Utilities User's
Guide. This document describes how to use Composite Application Validation System
initiators and simulators to test AIA service integrations. Test initiators simulate
service invocations and simulators simulate service endpoints. It describes how to use
error handling and logging components, including error notifications and trace and
error logs, to support services operating in an AIA ecosystem.

Audience
This document is intended for users of the components and utilities delivered with
Oracle Application Integration Architecture Foundation Pack.

Oracle AIA Guides
Oracle Application Integration Architecture (AIA) provides the following guides and
resources for this 11.1.1.9.0 release:

■ Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application
Integration Architecture Foundation Pack

■ Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application
Integration Architecture Foundation Pack

■ Oracle Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack

■ Oracle Fusion Middleware Reference Process Models User's Guide for Oracle Application
Integration Architecture Foundation Pack

■ Oracle Fusion Middleware Migration Guide for Oracle Application Integration
Architecture

■ Oracle Fusion Middleware Product-to-Guide Index for Oracle Application Integration
Architecture Foundation Pack

Related Documents
The following guides are relevant to Oracle AIA development activities and are
provided as a part of the overall Oracle Fusion Middleware 11.1.1.9.0 documentation
library:

■ Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business
Process Management Suite

xiv

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Security and Administrator's Guide for Web Services

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Enabling Accessibility Features for AIA Home
The Application Integration Architecture (AIA) Home page appears after installing
Oracle AIA Foundation Pack. For more information, see Oracle Fusion Middleware
Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation
Pack 11g Release 1 (11.1.1.9.0).

Users can set options to enable screen readers, high contrast colors, and large fonts:

■ Screen Reader: If you are using a screen reader, we recommend that you select the
Screen Reader option to ensure that your screen reader can access and read all
components of the application. When screen-reader mode is enabled, the
application displays a screen-reader optimized view of components. Screen-reader
mode may degrade, but not obscure, the display for sighted users. If this option is
not enabled, your screen reader may not be able to access and read all
components.

■ High Contrast Colors: Select the High Contrast Colors option to display the
application using high-contrast-friendly visual content. Enabling high-contrast
mode makes the application compatible with operating systems or browsers that
have high-contrast features enabled. For example, the application will change its
use of background images and background colors to prevent the loss of visual
information. Note that high-contrast mode is more beneficial if it is used in
conjunction with your browser's or operating system's high-contrast mode. Also,
you may find it beneficial to use the large-font mode along with the high-contrast
mode.

■ Large Fonts: Select the Large Font option to display the application using
browser-zoom-friendly content. Enabling large-font mode displays the application
using text and containers that are scalable in size. This makes the application
compatible with browsers that are set to larger font sizes and to work with
browser-zoom capabilities. If you are not using the browser-based large-font mode
or zoom capabilities, you should disable this option. Also, you may find it
beneficial to use the high-contrast mode along with the large-font mode. If this
option is not enabled, most text and many containers will use a fixed size to
provide a consistent look.

xv

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

xvii

What's New in This Guide for Release 11.1.1.9

This guide has no updates for release 11.1.1.9.

For a list of known issues (release notes), see the “Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack” at
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesind
ex-364630.html.

xviii

1

Introduction to the Composite Application Validation System 1-1

1Introduction to the Composite Application
Validation System

[2] This chapter describes the purpose and key components of the Composite Application
Validation System (CAVS). It also describes design assumptions and knowledge
prerequisites.

The CAVS is a framework that provides a structured approach to test integration of
Oracle Application Integration Architecture (Oracle AIA) services. The CAVS includes
test initiators that simulate web service invocations and simulators that simulate
service endpoints.

This chapter includes the following sections:

■ Describing the Purpose of the Composite Application Validation System

■ Describing Key Components of the CAVS Framework

■ Describing the CAVS Design Assumptions and Knowledge Prerequisites

1.1 Describing the Purpose of the Composite Application Validation
System

In the context of Oracle AIA, where there is a sequence of service invocations;
spanning Application Business Connector Services (ABCSs), Enterprise Business
Services (EBSs), Enterprise Business Flows (EBFs), and participating applications; the
CAVS test initiators and simulators enable a layered testing approach. Each
component in an integration can be thoroughly tested without having to account for
dependencies by using test initiators and simulators on either end.

Consequently, when you build an integration, you have the ability to add new
components to an already tested subset, allowing any errors to be constrained to the
new component or to the interface between the new component and the existing
component. This ability to isolate and test individual web services within an
integration provides the benefit of narrowing the test scope, thereby distancing the
service test from possible faults in other components.

Test initiators and simulators can be used independent of each other, thereby allowing
users to effectively substitute them for non-available Oracle AIA services or
participating applications.

The CAVS provides a repository that stores these test initiator and simulator
definitions created by the CAVS user, as well as an interactive user interface (UI) to
create and manage the same. Tests can be configured to run individually or in a
single-threaded batch.

Describing Key Components of the CAVS Framework

1-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

The CAVS provides value as a testing tool throughout the integration development life
cycle:

■ Development

Because integration developers working with Oracle AIA are dealing with
integrating disparate systems, they typically belong to different teams. To this end,
the CAVS provides an effective way to substitute dependencies, letting developers
focus on the functionality of their own service rather than being preoccupied with
integrations to other services.

■ Quality assurance

The CAVS allows quality assurance engineers to unit and flow test integrations,
thereby providing a way to easily certify different pieces of an integration. The
reusability of test definitions, simulators, and test groups help in regression testing
and provides a quick way to certify new versions of services.

1.2 Describing Key Components of the CAVS Framework
The CAVS framework operates using the following key components:

■ Test definition

■ Simulator definition

Test Definition
The CAVS test initiator reads test data and feeds it to the web service being tested. You
create the test data as a part of a test definition. The test definition is a configuration of
the test initiator and contains test execution instructions.

The CAVS user creates a definition using the CAVS UI to define the service endpoint
URL that must be invoked, as well as the request message that is passed along with
metadata about the test definition itself.

For more information about creating test definitions, see Chapter 4, "Creating and
Modifying Test Definitions."

The test initiator is a logical unit that executes test definitions to call the endpoint URL
defined and creates test instances. This call is no different from any other request
initiated by other clients. If the test definition Service Type value is set to Synchronous
or Asynchronous two-way, the actual response can be verified against predefined
response data to validate the accuracy of the response.

Figure 1–1 illustrates the high-level concept of the test initiator.

Figure 1–1 CAVS Test Definition

Describing the CAVS Design Assumptions and Knowledge Prerequisites

Introduction to the Composite Application Validation System 1-3

Simulator Definition
The CAVS simulator is used to simulate a web service. Simulators typically contain
predefined responses for a specific request. The CAVS users create several simulator
definitions, each for a specific set of input.

At run time, the CAVS simulator framework receives data from the service being
tested. Upon receiving the request, the CAVS locates the appropriate simulator
definition, validates the input against predefined request values, and then returns
predefined response data so that the web service being tested can continue processing.

For more information about creating simulator definitions, see Chapter 5, "Creating
and Modifying Simulator Definitions".

Figure 1–2 illustrates the high-level concept of the CAVS simulator:

Figure 1–2 CAVS Simulator

1.3 Describing the CAVS Design Assumptions and Knowledge
Prerequisites

The CAVS operates with the following design assumptions:

■ The CAVS assumes that the requester and provider ABCSs it is testing are
implemented using Business Process Execution Language (BPEL).

■ The CAVS is designed to initiate requests and simulate responses as Simple Object
Access Protocol (SOAP) messages using SOAP over HTTP. The request and
response messages that you define in test and simulator definitions must contain
the entire XML SOAP document, including the SOAP envelope, message header,
and body (payload).

■ The correlation logic between the test initiator and the response simulator is based
on timestamps only. For this reason, test and simulator instances generated in the
database schema is not always reconcilable, especially when the same web service
is invoked multiple times during a very short time period, as in during
performance testing.

■ The CAVS does not provide or authenticate security information for web services
that are initiated by a test initiator or received by a response simulator. However,
security information passed through the system by the web service can be used as
part of verification and validation logic.

■ When a participating application is involved in a CAVS testing flow, execution of
tests can potentially modify data in a participating application. Therefore,
consecutive running of the same test may not generate the same results. The CAVS
is not designed to prevent this kind of data tampering because it supports the
users intention to include a real participating application in the flow. The CAVS
has no control over modifications that are performed in participating applications.

Describing the CAVS Design Assumptions and Knowledge Prerequisites

1-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

This issue does not apply if your CAVS test scenario uses test definitions and
simulator definitions to replace all participating applications and other
dependencies. In this case, all cross-reference data is purged after the test scenario
has been executed. This enables rerunning of the test scenario.

For more information about how to make test scenarios rerunnable, see
Chapter 11, "Purging CAVS-Related Cross-Reference Entries to Enable Rerunning
of Test Scenarios."

To work effectively with the CAVS, users must have working knowledge of the
following concepts and technologies:

■ Oracle AIA

■ XML

■ XPath

■ SOAP

Note: CAVS cross-reference data is purged at the end of a test
execution when executing a test definition and at the end of a test
group execution when executing a test group definition. Therefore, if
you want to execute test definitions that are dependent on
cross-referencing data created by earlier test executions, ensure that
you include all dependent test definitions in a test group and execute
the test group.

2

Preparing to Use the Composite Application Validation System 2-1

2Preparing to Use the Composite Application
Validation System

[3] This chapter provides a high-level discussion of questions you should answer to help
gather requirements for the tests you want to create and run in the Composite
Application Validation System (CAVS).

Before you start creating and running tests in the CAVS, take the time to gather your
test requirements and plan your approach to using CAVS.

This chapter includes the following sections:

■ What Can I Test Using CAVS?

■ What Are the Oracle AIA Components That I Need to Test?

■ Which Message Exchange Pattern Is Being Used by the Components Being Tested?

■ Does the Scenario Need to be Unit or Flow Tested?

■ Do I Have the Content I Need to Create the Definitions?

2.1 What Can I Test Using CAVS?
The CAVS supports the following testing scenarios:

■ Create and execute test definitions against actual services in participating
applications.

■ Create and execute test definitions that call services that call simulators, which
simulate actual services in participating applications.

■ Use actual services in participating applications in cooperation with simulators to
simulate any unavailable services.

2.2 What Are the Oracle AIA Components That I Need to Test?
Examine the components involved in the scenario that you need to test. Which of the
following components does the scenario include?

■ Requester Application Business Connector Services (ABCSs)

■ Provider ABCSs

■ Enterprise Business Flows (EBFs)

■ Exposed services in participating applications

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

2-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

2.3 Which Message Exchange Pattern Is Being Used by the Components
Being Tested?

After you have assessed which components you want to test, identify the message
exchange pattern (MEP) being used by the components to help you determine which
types of CAVS test and simulator definitions you must create. Based on the sequence
of service calls and the MEPs employed, you can determine if you must use
synchronous, notify, or asynchronous two-way test definitions and simulator
definitions.

This section discusses CAVS process flows for testing the following MEPs:

■ Synchronous (request-and-response)

■ Asynchronous (notify)

■ Asynchronous (two-way)

2.3.1 Describing CAVS Process Flows for Testing the Synchronous Message Exchange
Pattern

The following diagrams describe CAVS process flows for testing a provider
Application Business Connector Service (ABCS) using a synchronous MEP.

These sample flows can also be used as the basis for testing other artifacts, such as
requester ABCSs, Enterprise Business Flows (EBFs), or provider services.

Synchronous MEP Testing Flow Using a Test Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and expects a message in response.

Figure 2–1 illustrates testing a synchronous MEP using a CAVS test definition.

Figure 2–1 Testing a Synchronous MEP Using a CAVS Test Definition

Note: The information in this chapter provides the CAVS processing
details that can inform your creation of test and simulator definitions
in the CAVS user interface (UI). As you prepare to define and run tests
for a particular web service, refer to the section in this chapter that
corresponds to the message exchange pattern of the service you want
to test.

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

Preparing to Use the Composite Application Validation System 2-3

Synchronous MEP Testing Flow Using a Test Definition and Simulator Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and expects a message in response.

The provider participating application is replaced by the CAVS simulator definition.
The provider ABCS is programmed to route to this simulator instead of the provider
participating application. The simulator definition contains a predefined request and
response message pair.

The simulator definition performs validations on message input from the provider
ABCS and sends the message back to the provider ABCS. The provider ABCS sends
the message back to the test definition, which validates this actual response against its
predefined expected response.

Figure 2–2 illustrates testing a synchronous MEP using CAVS test and simulator
definitions.

Figure 2–2 Testing a Synchronous MEP Using a CAVS Test Definition and Simulator
Definition

Synchronous MEP Testing Flow Using a Simulator Definition
The provider participating application is replaced by the CAVS simulator definition.
The provider ABCS is programmed to route to this simulator instead of the provider
participating application. The simulator definition contains a predefined request and
response message pair.

The simulator definition performs validations on message input from the provider
ABCS and sends the message back to the provider ABCS. The provider ABCS sends
the message back to requester participating application.

Figure 2–3 illustrates testing a synchronous MEP using a CAVS simulator definition.

Figure 2–3 Testing a Synchronous MEP Using a CAVS Simulator Definition

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

2-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

2.3.2 Describing CAVS Process Flows for Testing the Asynchronous (Notify) Message
Exchange Pattern

The following diagrams describe CAVS process flows for testing a provider ABCS
using an asynchronous (notify) MEP.

These sample flows can be also used as the basis for testing other artifacts, such as the
requester ABCS, EBF, or the provider service itself.

Asynchronous (Notify) MEP Testing Flow Using a Test Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and does not expect a message in response.

Figure 2–4 illustrates testing an asynchronous (notify) MEP using a CAVS test
definition.

Figure 2–4 Testing an Asynchronous (Notify) MEP Using a CAVS Test Definition

Asynchronous (Notify) MEP Testing Flow Using a Test Definition and Simulator
Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and does not expect a message in response.

The provider participating application is replaced by the CAVS simulator definition.
The provider ABCS is programmed to route to this simulator instead of the provider
participating application. The simulator definition contains a predefined expected
request message.

The simulator definition performs validations on message input from the provider
ABCS.

Figure 2–5 illustrates testing an asynchronous (notify) MEP using CAVS test and
simulator definitions.

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

Preparing to Use the Composite Application Validation System 2-5

Figure 2–5 Testing an Asynchronous (Notify) MEP Using a CAVS Test Definition and
Simulator Definition

Asynchronous (Notify) MEP Testing Flow Using a Simulator Definition
The provider participating application is replaced by the CAVS simulator definition.
The requester ABCS is programmed to route to this simulator instead of the provider
participating application. The simulator definition contains a predefined expected
request message.

The simulator definition performs validations on message input from the provider
ABCS.

Figure 2–6 illustrates testing an asynchronous (notify) MEP using a CAVS simulator
definition.

Figure 2–6 Testing an Asynchronous (Notify) MEP Using a CAVS Simulator Definition

2.3.3 Describing Flows for Testing the Asynchronous Two-Way Message Exchange
Pattern

The following diagrams describe CAVS process flows for testing a provider ABCS
using an asynchronous two-way MEP.

These sample flows can also be used as the basis for testing other artifacts, such as the
requester ABCS, EBF, or the provider service itself.

Asynchronous Two-Way MEP Testing Flow Using a Test Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and expects an eventual message in response. The test
definition includes a timeout value. If no response message is received within this
timeout value, the test definition experiences a timeout failure.

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

2-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 2–7 illustrates testing an asynchronous (two-way) MEP using a CAVS test
definition.

Figure 2–7 Testing an Asynchronous Two-Way MEP Using a CAVS Test Definition

Asynchronous Two-Way MEP Testing Flow Using a Test Definition and Simulator
Definition
The requester participating application is replaced by the CAVS test definition. The
test definition points to the URL of the requester ABCS. It uses a composed request
message to invoke the ABCS and expects an eventual message in response. The test
definition includes a timeout value. If no response message is received within this
timeout value, the test definition experiences a timeout failure.

The provider participating application is replaced by the CAVS simulator definition.
The provider ABCS is programmed to route to this simulator instead of the provider
participating application. The simulator definition contains a predefined request and
response message pair.

The simulator definition performs validations on message input from the provider
ABCS and sends the message back to the provider ABCS. The provider ABCS sends
the message back to the test definition, which validates this actual response against its
predefined expected response.

Figure 2–8 illustrates testing an asynchronous (two-way) MEP using CAVS test and
simulator definitions.

Which Message Exchange Pattern Is Being Used by the Components Being Tested?

Preparing to Use the Composite Application Validation System 2-7

Figure 2–8 Testing an Asynchronous Two-Way MEP Using a CAVS Test Definition and
Simulator Definition

Asynchronous Two-Way MEP Testing Flow Using a Simulator Definition
The provider ABCS is replaced by the CAVS simulator definition. The requester ABCS
is programmed to route to this simulator instead of having the flow reach the provider
ABCS.

The simulator definition contains a predefined request and response message pair, as
well as a user-defined delay value. The simulator definition delays its response by this
amount of time to simulate the asynchronous two-way nature of the provider
participating application.

The simulator definition performs validations on message input from the requester
ABCS and sends the message back to the requester ABCS.

Figure 2–9 illustrates testing an asynchronous (two-way) MEP using a CAVS simulator
definition.

Figure 2–9 Testing an Asynchronous Two-Way MEP Using a CAVS Simulator Definition

Does the Scenario Need to be Unit or Flow Tested?

2-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

2.4 Does the Scenario Need to be Unit or Flow Tested?
This section discusses different configurations for test and simulator definitions to
achieve unit and flow tests.

2.4.1 Describing a Unit Test Configuration
This section uses a synchronous provider ABCS as the focus of the test example.
However, this test configuration is not specific to message exchange patterns, so it can
also be applied to asynchronous (notify) and asynchronous two-way components.

To unit test a component, place a test definition before the component and a simulator
definition after it. This isolates the focus of the test to the single component.

Figure 2–10 illustrates how to unit test a provider ABCS.

Figure 2–10 Unit Testing a Provider ABCS

2.4.2 Describing a Flow Test Configuration
This section uses a synchronous provider ABCS as the focus of the test example.
However, this test configuration is not specific to message exchange patterns, so it can
also be applied to asynchronous (notify) and asynchronous two-way components.

After you have unit tested the components in a scenario, you can flow test the
scenario. To flow test a scenario, place a test definition before the requester ABCS at
the front of the scenario and a simulator definition after the provider ABCS at the end
of the scenario, as shown in Figure 2–11.

Figure 2–11 Flow Testing a Scenario

Do I Have the Content I Need to Create the Definitions?

Preparing to Use the Composite Application Validation System 2-9

2.4.3 Describing a Complex Flow Test Configuration
This section uses an EBF as the focus of the test example. However, this test
configuration is not specific to EBFs, so it can be applied to any service that conducts
chatty conversations.

You can place a test definition before the requester ABCS at the front of a scenario and
enable the EBF to make calls out to simulator definitions whenever required. You can
then go on to replace some of the provider applications with simulators at the end of
the scenario, as shown in Figure 2–12.

Figure 2–12 Complex Flow Testing an EBF

2.5 Do I Have the Content I Need to Create the Definitions?
After you know what to test and which CAVS definitions you must create, assess
whether you have all of the content you require to create the definitions.

To create your test definitions and simulator definitions, you primarily require request
and response XML text.

If you are creating a Test Definition (or an asynchronous two-way simulator), you
require the endpoint URL of the web service you are testing.

The endpoint URL value can be found in the WSDL of the web service that you want
to test.

When the endpoint URL is provided, the CAVS presents you with available SOAP
actions. After you select the required SOAP action, the CAVS automatically generates
the message stub for the service being called. You can then include data within the
XML tags generated.

In either case, you can use the BPEL Console to obtain request and response XML text.
Run the processes you are testing at least once with all participating applications and
services in place and with the desired results. The XML messages generated by this
successful run of the processes provides your request and response XML for test and
simulator definitions. The following section describes how to use the BPEL Console to
obtain these XML messages.

Do I Have the Content I Need to Create the Definitions?

2-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

2.5.1 How to Obtain Message XML Text from a BPEL Process

To obtain request and response message XML text:
1. Access the BPEL Console for your Oracle Application Integration Architecture

(Oracle AIA) implementation.

2. Click the Instances tab.

3. In the BPEL Process drop-down list box, select the BPEL process for which you are
creating a test definition and click Go.

BPEL process instances for the selected BPEL process display in the List of BPEL
Process Instances frame. Sort by Last Modified, if you want to access the most
recent instance.

4. Click the link for the instance you want to use for your request and response XML
message text.

5. Click the Flow link.

6. Obtain the Request Message XML text:

a. Click the receiveInput element to get your test definition request message
XML text.

b. Click the Copy details to clipboard link at the bottom of the pop-up box
displaying input Variable data.

c. Open an XML editor and paste the XML text into a blank document.

d. Remove the opening and closing inputVariable (XYZ_InputVariable, in the
case of a non-BPEL service, such as a participating application service) and
part elements.

e. Copy and paste the remaining XML text in the default SOAP envelope
provided in the Request Message field on the Test Definition page or
Simulator Definition page. Paste the XML text into the area indicated by the
Paste your SOAP Message Content here placeholder text.

7. Obtain the Response Message XML text:

a. Click the reply Output element to get your test definition response message
XML text.

b. Click the Copy details to clipboard link at the bottom of the pop-up box
displaying output Variable data.

Note: Obtaining response message XML text is only applicable
when testing synchronous and asynchronous two-way processes.

Note: If the instance you selected contains any faults, you may want
to consider selecting a different instance. However, if you are trying to
test fault messaging in the BPEL, you must select a BPEL process
instance that contains the fault.

Note: Obtaining response message XML text is only applicable when
testing a synchronous process.

Do I Have the Content I Need to Create the Definitions?

Preparing to Use the Composite Application Validation System 2-11

c. Open an XML editor and paste the XML text into a blank document.

d. Remove the opening and closing inputVariable (XYZ_InputVariable, in the
case of a non-BPEL service, such as a participating application service) and
part elements.

e. Copy and paste the remaining XML text in the default SOAP envelope
provided in the Response Message field on the Test Definition page or
Simulator Definition page.

Do I Have the Content I Need to Create the Definitions?

2-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

3

Introduction to Defining and Running CAVS Tests Using the CAVS UI 3-1

3Introduction to Defining and Running CAVS
Tests Using the CAVS UI

[4] This chapter describes the Composite Application Validation System (CAVS) user
interface (UI) and provides an overview of how to define and run tests. It also
provides instructions on how to execute CAVS definitions as web services.

This chapter includes the following sections:

■ Describing the CAVS UI

■ Overview of Defining and Running CAVS Tests

■ How to Execute CAVS Definitions as Web Services

3.1 Describing the CAVS UI
The CAVS allows you to configure test data, execute tests, review test results, and
migrate tests using the following UI components.

Test Definitions
A test definition is a configuration of a single execution of the test initiator service. The
test definition stores test data and test execution instructions. A test definition can be
executed alone, or in a single-threaded batch as a part of a group definition.

The values you set for a test definition and simulator definition are similar. The test
definition differs from the simulator definition in that it is an active participant in the
CAVS framework, initiating tests. The test definition carries the following values that
are not a part of the simulator definition. These values inform the active state of the
test definition:

■ Endpoint URL

■ SOAP Action

For more information about test definitions, see Chapter 4, "Creating and Modifying
Test Definitions."

If required by the business service pattern of the web service you are testing, you can
assign a simulator definition to the test definition.

Simulator Definitions
A simulator definition is a configuration of a single execution of response simulator
service. The simulator definition simulates a web service and receives data from the
tested web service and returns previously defined data so that the tested web service
can continue processing.

Describing the CAVS UI

3-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

The values you set for a simulator definition and test definition are similar. The
simulator definition differs from the test definition in that it is a passive participant in
the CAVS framework, awaiting initiation.

The simulator definition carries the following additional XPath attributes that are not
part of the test definition. These values participate in simulator definition request
matching:

■ Is Node Key

■ Key Node Value

For more information about simulator definitions, see Chapter 5, "Creating and
Modifying Simulator Definitions."

The success of the test is verified based on the simulator definition's previously
defined data being accurately returned and matched to the expected response results
defined in the test definition.

Group Definitions
A group definition is a configuration of a single execution of one or more test
definitions in a single-threaded batch.

Test Instances
A test instance captures the details of the execution of a test definition.

Simulator Instances
A simulator instance captures the details of the behavior of a simulator definition
during the execution of a test definition with which it is associated.

Group Instances
A group instance captures the details of the execution of a group definition.

Component Overview
Figure 3–1 provides a high-level overview of the relationships among the CAVS
components discussed in this section.

Figure 3–1 Overview of CAVS Component Relationships

Overview of Defining and Running CAVS Tests

Introduction to Defining and Running CAVS Tests Using the CAVS UI 3-3

3.2 Overview of Defining and Running CAVS Tests
This high-level procedure provides the steps involved in defining and running tests
using the CAVS UI.

To define and run tests using the CAVS UI:
1. Assess your test requirements and gather required content.

For more information, see Chapter 2, "Preparing to Use the Composite Application
Validation System."

2. Access the Create Test page to create your test definition if your test requires a test
definition.

For more information, see Chapter 4, "Creating and Modifying Test Definitions."

3. Access the Create Simulator page to create your simulator definition if your test
requires a simulator definition,.

For more information, see Chapter 5, "Creating and Modifying Simulator
Definitions."

4. Link the test and simulator definitions on either Modify Test Definition page or
Modify Simulator Definition page if your test requires a test definition and
simulator definition.

5. Create a group definition on the Create Group Definition page if your test requires
multiple (single-threaded) executions of the same or different test definitions.

For more information, see Chapter 7, "Working with Group Definitions."

6. Set the Application Business Connector Service (ABCS) being tested to route to the
response simulator if your test or group definition utilizes a simulator definition.
To do this:

a. Access the Routing Setup page.

b. Create a routing setup ID for the invoking service being tested.

c. Associate this routing setup ID with the test definition being used to test your
scenario.

For more information about routing setup IDs, see Chapter 8, "Defining CAVS
Routing Setup IDs."

Alternatively, you can quickly set up a routing configuration on the
Configurations page.

For more information about routing configurations, see Section 8.5, "How to Set
Up CAVS Routing Configurations Without Creating Routing Setup IDs."

7. To run a single test, access the test definition on the Definitions page or Modify
Test Definitions page to run the test.

For more information, see Chapter 6, "Searching for Test and Simulator
Definitions."

To run a group test, access the Group Definition page or Group Definition Detail
page to run the group test.

For more information, see Chapter 7, "Working with Group Definitions."

8. View the test results generated for the test instance on the Test Instances Detail
page after an individual test has been executed.

How to Execute CAVS Definitions as Web Services

3-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

If the test definition includes an associated simulator definition, view the
simulator instance on the Simulator Instances Detail page.

For more information, see Chapter 9, "Working with Test and Simulator Instances."

View the test results generated for the group instance on the Group Instance Detail
page after a group of tests has been executed.

For more information, see Chapter 10, "Working with Group Instances."

9. Reset the ABCS tested to return to routing to its usual production destination and
no longer route to the response simulator after testing is complete for a test that
involved a simulator definition for which you defined a routing configuration on
the Configurations page. To do this:

a. Access the Configurations page.

b. Clear the Route To CAVS option.

c. Click Reload.

For more information about routing configurations, see Section 8.5, "How to Set
Up CAVS Routing Configurations Without Creating Routing Setup IDs."

3.3 How to Execute CAVS Definitions as Web Services
The CAVS provides a web service that allows you to execute test definitions and test
group definitions without the use of the CAVS UI.

You can call this CAVS web service from any system:
http://<hostname>:<port>/AIAValidationSystemAPIService/AIAValidationSystemA
PIServiceSoapHttpPort.

This web service provides two operations:

■ executeDefinition

Executes a given test definition ID.

■ executeGroupDefinition

Executes a given test group definition ID.

Typically, these operations can be consumed by third-party testing tools or other
systems to execute test definitions and test group definitions whenever desired,
without the use of the CAVS UI.

The WSDL that defines the service contract is:
http://<hostname>:<port>/AIAValidationSystemAPIService/AIAValidationSystemA
PIServiceSoapHttpPort?wsdl.

4

Creating and Modifying Test Definitions 4-1

4Creating and Modifying Test Definitions

[5] This chapter describes how to create and modify test definitions and how to provide
multiple request and response message sets in a single test definition.

A test definition is a configuration of a single execution of the test initiator service. The
test definition stores test data and test execution instructions. A test definition can be
executed alone, or in a single-threaded batch as a part of a group definition.

This chapter includes the following sections:

■ Section 4.1, "How to Create a Test Definition"

■ Section 4.2, "How to Modify a Test Definition"

■ Section 4.3, "How to Provide Multiple Request and Response Message Sets in a
Single Test Definition"

4.1 How to Create a Test Definition

To create a test definition:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Definitions tab. Click the Create Test button.

The Create Test page displays, as shown in Figure 4–1 and Figure 4–2.

How to Create a Test Definition

4-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 4–1 Create Test Page (1 of 2)

Figure 4–2 Create Test Page (2 of 2)

2. On the Create Test page, use the page elements discussed in Table 4–1 to create test
definitions.

Table 4–1 Create Test Page Elements

Element Description

Id Upon saving the test definition, displays a unique key identifier
that is assigned to the test definition.

Name Enter a descriptive name that you want to use for the test
definition.

Type Displays the type of definition you chose to create. On the Create
Test page, this value will always be set to Test.

Service Type Select the business service pattern of the web service that you
want to test using the test definition: Synchronous
(request-and-reply), Notify (asynchronous request-only), or
Asynchronous two way.

Service Name Enter the name of the web service that you want to test using the
test definition. This is the name of the web service being called
by the URL provided in the Endpoint URL field.

How to Create a Test Definition

Creating and Modifying Test Definitions 4-3

Test Messages
Use the Test Messages group box to enter request and response XML message text. By
default, SOAP envelope XML text is provided in these fields. You can use the Get
Messages button to generate request and response stub messages based on selected
endpoint URL and operation values. Alternatively, you can paste XML text within this
default SOAP envelope or paste your own XML text already enclosed in an envelope
into these fields.

Elements available in the Test Messages group box are discussed in Table 4–2.

For more information about obtaining request and response XML message text, see
Section 2.5.1, "How to Obtain Message XML Text from a BPEL Process."

For more information about how to create test request and response messages that
hold multiple sets of test data in a single definition, see Section 4.3, "How to Provide
Multiple Request and Response Message Sets in a Single Test Definition."

Service Version Enter the version of the web service that you want to test using
the test definition. This is the version of the web service being
called by the URL provided in the Endpoint URL field.

Process Name Enter the name of the process that includes the web service that
you want to test using the test definition.

PIP Name (Process
Integration Pack name)

Enter the name of the PIP that includes the web service that you
want to test using the test definition.

Endpoint URL Enter the URL of the web service that you want to test using the
test definition. The endpoint URL value can be found in the
WSDL of the web service that you want to test.

Get Operations Click to display the list of operations supported by the WSDL
associated with the Endpoint URL value you provided.
Supported operations display in the Select WSDL Operations
window.

Select the operation that you want to test using the test
definition. The selected operation displays in the SOAP Action
field.

SOAP Action If you clicked Get Operations to select an operation in the Select
WSDL Operations window, the selected operation displays here.

Alternatively, you can manually enter the operation called by
the web service that you want to test using the test definition.
The value you enter must match an action provided in the
WSDL of the web service that you want to test.

Get Messages Click to generate a request stub message for the operation
specified in the SOAP Action field. For test definitions with the
Service Type field set to Synchronous, the response stub message
will also be generated.

Routing Setup Id Select a routing configuration that you want to use for the test.

For more information about routing configurations, see
Chapter 8, "Defining CAVS Routing Setup IDs."

Table 4–1 (Cont.) Create Test Page Elements

Element Description

How to Create a Test Definition

4-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Table 4–2 Create Test Page - Test Messages Group Box Elements

Element Description

Request Message Entering request message XML text for a test definition is
required, whether the Service Type field value is set to
Synchronous, Notify, or Asynchronous two way.

When you first access the Create Test page, the Request Message
text box is populated with a SOAP stub message.

You can use the Get Messages button to generate a request stub
message based on selected endpoint URL and operation values.

If you are manually entering your request message, the Paste
your SOAP Message Content here text in the stub message
indicates where you should paste your actual request message
text. This request message should mimic the XML message text
sent by the service that normally initiates the service.

If the Service Type field value is set to Synchronous or
Asynchronous two way, you may choose to not enter response
message XML text in this field. You do not need to enter
response message XML if you are manually entering XPath
values directly on the Modify Test Definition page or if the test
you are running does not require validation of the response
message. For example, your test may be focused on just
populating data.

Expected Response Message The ability to enter response message XML text is available
when the Service Type field value is set to Synchronous or
Asynchronous two way.

When you first access the Create Test page, the Expected
Response Message text box is populated with a SOAP stub
message.

If you are manually entering your request message, the Paste
your SOAP Message Content here text in the stub message
indicates where you should paste your actual response message
text. Enter a response message that is the expected response
message XML. This facilitates the generation of XPath values,
which are used to validate the actual response message returned
in the test. You may also choose to manually enter or modify the
XPath values directly on the Modify Test Definition page. If you
are manually entering XPath values, you do not need to enter
response message XML text.

For test definitions with the Service Type field set to
Synchronous, the response message stub will have been
generated when you clicked the Get Messages button during
request message generation.

When you enter response message XML text on this page, you
can click the Generate Xpath button on the Modify Test
Definition page to generate the XPath values that will be used to
validate the expected response message you entered on this
page against the actual response returned by the test.

The Expected Response Message text box is unavailable when
the Service Type field value is set to Notify.

Cancel Click to exit the page and return to the Definitions page.

Next Click to save entries on the Create Test page and go to the
Modify Test Definition page, where you can further edit your
test definition, generate XPaths, and execute the test.

Save and Return Click to save entries on the Create Test page and return to the
Definitions page.

How to Modify a Test Definition

Creating and Modifying Test Definitions 4-5

4.2 How to Modify a Test Definition

To modify a test definition:
1. Access the Modify Test Definition page, as shown in Figure 4–3, Figure 4–4,

Figure 4–5, Figure 4–6, and Figure 4–7.

To access the Modify Test Definition page, use one of the following navigation
paths:

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click the Create Test
button. Enter required values on the Create Test page and click Next.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click an Id link for an
unlocked test definition in the Search Result Selection grid on the Definitions
page.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Instances tab. Click a Definition Id link
for an unlocked test definition on the Instances page.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Instances tab. Click an instance ID link.
Click a Definition Id link for an unlocked test definition on the Test Instances
Detail page.

Figure 4–3 Modify Test Definition Page (1 of 5)

How to Modify a Test Definition

4-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 4–4 Modify Test Definition Page (2 of 5)

Figure 4–5 Modify Test Definition Page (3 of 5)

Figure 4–6 Modify Test Definition Page (4 of 5)

Figure 4–7 Modify Test Definition Page (5 of 5)

2. Use the page elements on the Modify Test Definition page to modify an existing
test definition and execute and manage existing test definitions.

The page displays values that have already defined for the test definition. You can
modify the values in editable fields.

How to Modify a Test Definition

Creating and Modifying Test Definitions 4-7

Most of the elements on this page also appear on the Create Test Definition page and
are documented in Section 4.1, "How to Create a Test Definition." Any additional
elements are discussed here.

The Time-out (msec) (in milliseconds) field displays only for a test definition with a
Service Type value of Asynchronous two way.

Enter the number of milliseconds that you want the test definition to remain available
for the asynchronous reply before timing out. If this length of time passes before the
asynchronous response is returned, a failure will be issued.

If your test includes a simulator definition, the Time-out (msec) value you provide
here must be greater than the Delay (msec) value defined on the simulator definition.

For more information about the Delay (msec) field, see Chapter 5, "Creating and
Modifying Simulator Definitions"

Test Messages
Use the Test Messages group box to generate XPath values based on provided
response XML message text. By default, SOAP envelope XML text is provided in these
fields. You can use the Get Messages button to generate request and response stub
messages based on selected endpoint URL and operation values. Alternatively, you
can paste XML text within this default SOAP envelope, or paste your own XML text
already enclosed in an envelope into these fields.

Available Test Message group box elements are discussed in Table 4–3.

For more information about obtaining request and response XML message text, see
Section 2.5.1, "How to Obtain Message XML Text from a BPEL Process."

For more information about how to create test request and response messages that
hold multiple sets of test data in a single definition, see Section 4.3, "How to Provide
Multiple Request and Response Message Sets in a Single Test Definition."

Table 4–3 Modify Definitions Page - Test Messages Group Box Elements

Element Description

Request Message If request message XML text was entered on the Create Test page, it
is accessible and editable on this page.

Entering request message XML text for a test definition is required,
whether the Service Type field value is set to Synchronous, Notify,
or Asynchronous two way.

You can use the Get Messages button to generate a request stub
message based on selected endpoint URL and operation values.

If you are manually entering your request message, the Paste your
SOAP Message Content here text in the stub message indicates where
you should paste your actual request message text. This request
message should mimic the XML message text sent by the service that
normally initiates the service.

How to Modify a Test Definition

4-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Request CorrelationId
Message

This field only displays for a test definition with the Service Type
field value set to Asynchronous two way. For this service type,
entering a correlation ID value ensures that when the asynchronous
response is actually received, the Composite Application Validation
System (CAVS) is able to correlate it to the correct request.

If your request message is an Enterprise Business Message (EBM),
leave this field blank, as the EBM header ID is automatically used as
the correlation ID. In this case, because the EBM header ID is used as
the correlation ID, do not use it as a key column in the simulator
definition, if applicable.

If your request message is not an EBM, you must enter a correlation
ID value. This correlation must be based on a unique key of the
message. For example, CreateOrder can use Order ID as the
correlation ID.

Click Lookup to access the Choose Request Correlation Id page,
where you can select a correlation ID from XPath variables available
in the message.

Expected Response
Message

The ability to enter response message XML text is available when the
Service Type field value is set to Synchronous or Asynchronous two
way.

If expected response message XML test was entered on the Create
Test page, it is accessible and editable on this page.

You can manually enter the response message text on this page, or
for test definitions with the Service Type field set to Synchronous,
you can use the Get Messages button to generate a response stub
message based on selected endpoint URL and operation values.

Entering the expected response message XML facilitates the
generation of XPath values, which are used to validate the actual
response message returned in the test. You may also choose to
manually enter or modify the XPath values directly on the Modify
Test Definition page. If you are manually entering XPath values, you
do not need to enter response message XML text.

When you enter response message XML text on this page, you can
click Generate Xpath button on the Modify Test Definition page to
generate the XPath values that will be used to validate the expected
response message you entered on this page against the actual
response returned by the test.

If the Service Type field value is set to Synchronous or
Asynchronous two way, you may choose to not enter response
message XML text in this field. You do not need to enter response
message XML if you are manually entering XPath values directly on
the Modify Test Definition or if the test you are running does not
require validation of the response message. For example, your test
may be focused on just populating data.

The Expected Response Message text box is unavailable when the
Service Type field value is set to Notify. In this case, a response
message is not a test requirement.

Generate Xpath Click to generate namespace and XPath values based on available
Endpoint URL and Response Message values.

After you have generated XPath values, consider deleting any rows
that will not be used in the testing effort.

The Generate Xpath button is unavailable when the Service Type
field value is set to Notify. In this case, a response message is not a
test requirement.

Table 4–3 (Cont.) Modify Definitions Page - Test Messages Group Box Elements

Element Description

How to Modify a Test Definition

Creating and Modifying Test Definitions 4-9

Prefix and Namespace Selection
Use the Prefix and Namespace Selection grid to define namespace data that will be
used in the XPath values defined in the XPath Selection grid. Elements available in the
Prefix and Namespace Selection grid are discussed in Table 4–4.

XPath Selection
Use the XPath Selection grid to work with XPath values that are used to compare the
actual response message returned in the test to the expected response message defined
in the Response Message text box on this page. The values in this grid use the
namespace values set in the Prefix and Namespace Selection grid.

A common adjustment you will likely need to make to XPath conditions and expected
node values in this grid is to generalize certain specific values, such as EBM IDs. For
example, an EBM ID is unique for each transaction, so your test definition will likely
not want to specify a particular EBM ID as response criteria. Instead, you may want to
generalize the criteria to just verify that the EBM ID is a number greater than zero or
use the Is Valid condition value.

Response Message
Correlation ID

This field only displays for a test definition with the Service Type
field value set to Asynchronous two way. For this service type,
entering a correlation ID value ensures that when the asynchronous
response is actually received, the CAVS is able to correlate it to the
correct request.

If your response message is an EBM, leave this field blank, as the
EBM header ID is automatically used as the correlation ID. In this
case, because the EBM header ID is used as the correlation ID, do not
use it as a key column in the simulator definition, if applicable. If
your response message is not an EBM, you must enter a correlation
ID value. This correlation must be based on a unique key of the
message. For example, CreateOrder can use Order ID as the
correlation ID.

Click Lookup to access the Choose Response Correlation Id page,
where you can select a correlation ID from XPath variables available
in the message.

Table 4–4 Prefix and Namespace Selection Grid Elements

Element Description

Delete Select one or more namespace rows and click Delete to execute the
deletion. This button only appears when namespace rows are present.

Create Click to manually add and populate a namespace row.

Prefix Prefix that should be used for the namespace.

Namespace Namespace to be used in the XPath data for the test definition.

Note: If you are entering XPath values manually, it is important to
maintain correlations with the values entered in the Prefix and
Namespace Selection grid. Each XPath node must have a prefix
(namespace alias) that has been defined in the Prefix and Namespace
Selection grid, unless it is an XPath expression.

Table 4–3 (Cont.) Modify Definitions Page - Test Messages Group Box Elements

Element Description

How to Modify a Test Definition

4-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

The XPath Selection grid is unavailable when the Service Type field value is set to
Notify. In this case, a response message is not a test requirement.

Elements available in the XPath Selection grid are discussed in Table 4–5.

Test Instance Selection
Select the Test Instances tab to display the Test Instance Selection grid, which displays
information about test instances generated using the test definition.

Click Id to access the test instance on the Test Instance Detail page.

For more information about the Test Instance Detail page, see Section 9.2, "How to
View Test Instance Details."

Linked Simulator Definition Selection
Select the Simulator Definitions tab to display the Linked Simulator Definition
Selection grid, which displays information about simulator definitions that are linked
to the selected test definition.

Table 4–5 XPath Selection Grid Elements

Element Description

Xpath When working with a test definition that contains multiple request and
response data sets, use the Xpath drop-down list box to select the data
set you want to use to run the test.

For more information about providing multiple data sets in a test
definition, see Section 4.3, "How to Provide Multiple Request and
Response Message Sets in a Single Test Definition."

Delete Select one or more XPath rows and click Delete to execute the deletion.
This button only appears when XPath rows are present.

Create Click to manually add and populate an XPath row.

XPath Sequence Id Indicates the sequence of the XPath expressions. This value is required.
This value is read-only when it has been generated using the Generate
Xpath button.

XPath XPath data to be used in the test definition. These values can include
XPath nodes and expressions. This value is read-only when it has been
generated using the Generate Xpath button.

Condition Select an available value:

■ Is Valid: The value provided in the XPath field is valid and no
Expected Node Value is supplied.

■ Equals To: The value provided in the XPath field is valid and an
Expected Node Value is supplied.

■ Not Equal To

■ Less Than

■ Greater Than

■ Less Than Equal

■ Greater Than Equal

■ Not Null

■ Expected Node Value

The value expected in the response XML message. When you use
the Generate Xpath button to generate XPath data, this value may
be populated, but can be modified as necessary. The Condition
field value is used to qualify this value.

How to Modify a Test Definition

Creating and Modifying Test Definitions 4-11

Available elements on the Simulator Definition tab are discussed in Table 4–6.

Group Definition Selection
Select the Group Definitions tab to display the Group Definition Selection grid, which
displays information about group definitions that include the test definition.

Elements available in the Group Definition Selection grid are discussed in Table 4–7.

Table 4–6 Linked Simulator Definition Selection Grid Elements

Element Description

Unassign Select one or more simulator definition rows that you want to
disassociate with the test definition. Click Unassign to execute the
disassociation.

Assign Click to access the Search Definitions - Simulator page, where you can
search for a simulator definition that you want to assign to the test
definition. Making this assignment facilitates reporting. After the test
definition runs and generates a test instance, all simulator instances
generated by the simulator definition associated with the test
definition will automatically be linked to the test instance.

After you have assigned a simulator definition using the Search
Definitions - Simulator page, the Modify Test Definition page appears,
and displays the selected simulator definition.

Refresh Click to refresh the Modify Test Definition page.

Simulator Definition
Id

Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

Table 4–7 Group Definition Selection Grid Elements

Element Description

Group Definition Id Click to access the group definition on the Group Definition Detail
page.

For more information about the Group Definition Detail page, see
Chapter 7, "Working with Group Definitions."

Group Name Displays the descriptive name assigned to the group definition.

Sequence Id within
Group

Displays the sequence in which the test definition is initiated by the
group definition.

Cancel Click to discard any updates you have made and return to the
Definitions page.

Actions Select the action you want to take with the test definition.

■ Execute: Select to execute the test definition. The status of the test
execution appears at the top of the page. When a test definition
has successfully executed, you can view details of the test instance
on the Test Instance Details page.

For more information about the Test Instance Details page, see
Chapter 9, "Working with Test and Simulator Instances."

■ Lock: Select to lock the test definition and view the test definition
on the View Test Definition page. A locked definition cannot be
edited.

■ Duplicate: Select to duplicate the test definition. The duplicate
definition is created using the exact values of the original, with
the exception of being given a unique Id value.

How to Provide Multiple Request and Response Message Sets in a Single Test Definition

4-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

4.3 How to Provide Multiple Request and Response Message Sets in a
Single Test Definition

You can create a test definition that contains multiple pairs of request and response
message data, as shown in Figure 4–8. This means that test definitions only need to be
created per usage requirements, not per test data requirements.

For example, if you want to test a process against five sets of test data, you can create a
single test definition to test the process and include in it all five sets of test data against
which you want the process to operate. This is as opposed to creating five separate test
definitions, one per combination of process and set of test data.

Figure 4–8 Providing Multiple Request and Response Message Sets in a Single Test
Definition

When multiple sets of test data are included in a test definition, each set will be
executed in sequence. Separate test instances will be generated for each set of data.
Test instances will reflect the success or failure of each segment of the test run using
each set of test data.

Request Message Format
Use the format shown in Example 4–1 to include multiple sets of request data in the
test definition.

The CAVSRequestInputs and CAVSRequestInput_1 envelope are autogenerated. Use
copy and paste commands to create more sets; CAVSRequestInput_2 and
CAVSRequestInput_3, for example.

Example 4–1 Request Message Format

<cavs:CAVSRequestInputs
xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">
<cavs:CAVSRequestInput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
 . . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>

Apply Click to apply and save any changes you have made to values on the
page.

Save Click to save entries on the page and go to the Definitions page.

For more information about the Definitions page, see Chapter 6,
"Searching for Test and Simulator Definitions."

Table 4–7 (Cont.) Group Definition Selection Grid Elements

Element Description

How to Provide Multiple Request and Response Message Sets in a Single Test Definition

Creating and Modifying Test Definitions 4-13

</soap:Envelope>
</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
 . . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_2>
</cavs:CAVSRequestInputs>

Response Message Format
Use the format shown in Example 4–2 to include multiple sets of response data in the
test definition.

Example 4–2 Response Message Format

<cavs:CAVSResponseOutput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
 . . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_1>

<cavs:CAVSResponseOutput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
 . . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_2>
</cavs:CAVSResponseOutputs>

After entering request and response data sets and clicking the Generate Xpath button
on the Modify Test Definition page, the XPath Selection grid provides access to the
Please select an Xpath drop-down list box, where you can select the set of test data
you want to use to run the test.

For more information about the Modify Test Definition page, see Section 4.2, "How to
Modify a Test Definition."

If your testing scenario includes simulator definitions, you can likewise create
simulator definitions that contain multiple request and response message sets that
work with the sets defined in your test definition.

For more information, see Section 5.3, "How to Provide Multiple Request and
Response Message Sets in a Single Simulator Definition."

How to Provide Multiple Request and Response Message Sets in a Single Test Definition

4-14 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

5

Creating and Modifying Simulator Definitions 5-1

5Creating and Modifying Simulator Definitions

[6] This chapter describes how to create and modify simulator definitions. It also provides
instructions for how to provide multiple request and response message sets in a single
simulator definition, how to create a simulator definition that supports chatty services,
and how to send dynamic responses in a simulator response.

A simulator definition is created by the Composite Application Validation System
(CAVS) user to simulate a particular service in an Oracle Application Integration
Architecture (AIA) integration or a participating application. A simulator receives data
from the tested web service and returns predefined data so that the tested web service
can continue processing.

This chapter includes the following sections:

■ Section 5.1, "How to Create a Simulator Definition"

■ Section 5.2, "How to Modify a Simulator Definition"

■ Section 5.3, "How to Provide Multiple Request and Response Message Sets in a
Single Simulator Definition"

■ Section 5.4, "How to Create a Simulator Definition that Supports Chatty Services"

■ Section 5.5, "How to Send Dynamic Responses in a Simulator Response"

5.1 How to Create a Simulator Definition

To create a simulator definition:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Definitions tab. Click the Create Simulator button.
The Create Simulator page displays, as shown in Figure 5–1 and Figure 5–2.

How to Create a Simulator Definition

5-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 5–1 Create Simulator Page (1 of 2)

Figure 5–2 Create Simulator Page (2 of 2)

2. Use the page elements on the Create Simulator page to create simulator
definitions. Available elements are discussed in Table 5–1.

Table 5–1 Create Simulator Page Elements

Element Description

Id Upon saving the simulator definition, a unique key identifier is
assigned to the simulator definition.

Name Enter the descriptive name you want to use for the simulator definition.

Type Displays the type of definition you have chosen to create. On the Create
Simulator page, this value will always be set to Simulator.

Service Type Select the business service pattern of the web service the simulator
definition is simulating.

■ Synchronous (request-and-reply)

■ Notify (asynchronous request-only)

■ Asynchronous two way

Service Name Enter the name of the web service that you want to simulate using the
simulator definition.

Service Version Enter the version of the web service you want simulate using the
simulator definition.

How to Create a Simulator Definition

Creating and Modifying Simulator Definitions 5-3

Test Messages
Use the Test Messages group box to generate XPath values based on provided request
XML message text. By default, SOAP envelope XML text is provided in these fields.
You can paste XML text within this default SOAP envelope, or paste your own XML
text already enclosed in an envelope into these fields.

For more information about how to create simulator request and response messages
that hold multiple sets of test data in a single definition, see Section 5.3, "How to
Provide Multiple Request and Response Message Sets in a Single Simulator
Definition."

For more information about how to create simulator request and response messages
that support chatty service conversations, see Section 5.4, "How to Create a Simulator
Definition that Supports Chatty Services."

Available elements in the Test Messages group box are discussed in Table 5–2.

Process Name Enter the name of the process that includes the web service that you
want to simulate using the simulator definition.

PIP Name (Process
Integration Pack
name)

Enter the name of the PIP that includes the web service that you want
to simulate using the simulator definition.

Use WS-Addressing For more information, see Section 5.2.1, "Using WS-Addressing in
Asynchronous Two-Way Simulator Definitions"

Table 5–1 (Cont.) Create Simulator Page Elements

Element Description

How to Modify a Simulator Definition

5-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

5.2 How to Modify a Simulator Definition

To modify a simulator definition:
1. Access the Modify Simulator Definition page, as shown in Figure 5–3, Figure 5–4,

Figure 5–5, Figure 5–6, and Figure 5–7.

Table 5–2 Test Messages Group Box Elements

Element Description

Expected Request
Message

Entering request message XML text facilitates the generation of XPath
values that are used to match a received request with this simulator's
expected request, as well as to validate values in this received request
message. That is, the XPath values you supply provide a signature for
the simulator definition that the simulator service attempts to match
with arriving request actions. In addition to enabling the simulator
service to match a test request with a simulator definition, the XPath
criteria you provide can also serve to validate data sent in the test
request.

If a simulator has been directly designated for use in the
AIAConfigurationProperties.xml using the Routing Configurations
page, the simulator definition will be identified directly. However, after
the simulator has been identified, there may be multiple requests
within it. If so, the XPath key field values provide an efficient search
method for request matching.

For more information about the Routing Configurations page, see
Chapter 8, "Defining CAVS Routing Setup IDs."

You can enter expected request message XML text on this page and
click the Generate Xpath button on the Modify Simulator Definition
page to generate XPath values used to validate the actual request sent
by the test definition. You may also choose to manually enter or modify
the XPath values directly on the Modify Simulator Definition page. You
do not need to enter request message XML if you are manually entering
XPath values directly on the Modify Simulator Definition page.

You may choose to copy and paste messages from the BPEL Console,
instead of manually entering them.

For more information, see Section 2.5.1, "How to Obtain Message XML
Text from a BPEL Process."

Response Message Entering response message XML text for a simulator definition is
required when the Service Type field value is set to Synchronous or
Asynchronous two way. Enter the XML text of the response message
that you want to use for the simulator definition. This response
message should mimic the actual response message that would be sent
by the service that the simulator definition is simulating.

This text box is hidden when the Service Type field value is set to
Notify. In this case, a response message is not a simulator requirement.

You may choose to copy and paste messages from the BPEL Console,
instead of manually entering them.

For more information, see Section 2.5.1, "How to Obtain Message XML
Text from a BPEL Process."

Cancel Click to discard any updates you have made and return to the
Definitions page.

Next Click to save entries on the Create Simulator page and go to the Modify
Simulator Definition page, where you can generate XPaths and further
edit and manage the simulator definition.

Save Click to save entries on the Create Simulator page and return to the
Definitions page.

How to Modify a Simulator Definition

Creating and Modifying Simulator Definitions 5-5

Access the page using one of the following navigation paths:

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click the Create
Simulator button. Enter required values on the Create Simulator page and
click Next.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click an Id link for an
unlocked simulator definition in the Search Result Selection grid on the
Definitions page.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Instances tab. Click a Definition Id link
for an unlocked simulator definition on the Instances page.

Figure 5–3 Modify Simulator Definition Page (1 of 5)

Figure 5–4 Modify Simulator Definition Page (2 of 5)

How to Modify a Simulator Definition

5-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 5–5 Modify Simulator Definition Page (3 of 5)

Figure 5–6 Modify Simulator Definition Page (4 of 5)

Figure 5–7 Modify Simulator Definition Page (5 of 5)

2. Use the page elements on the Modify Simulator Definition page to modify a
simulator definition. The page displays values you defined for the simulator
definition. You can modify the values in editable fields.

Most of the elements on this page also appear on the Create Simulator Definition
page and are documented in Section 5.1, "How to Create a Simulator Definition."
Any additional elements are discussed here in Table 5–3.

How to Modify a Simulator Definition

Creating and Modifying Simulator Definitions 5-7

Test Messages
For more information about the elements in the Test Messages group box, see
Section 5.1, "How to Create a Simulator Definition."

Prefix and Namespace Selection
Use the Prefix and Namespace Selection grid to define namespace data that will be
used in the XPath values defined in the XPath Selection grid.

Available elements in the Prefix and Namespace Selection grid are discussed in
Table 5–4.

Table 5–3 Modify Simulator Definition Page Elements

Element Description

Actions Select the action you want to take with the simulator definition.

■ Lock: Select to lock the simulator definition and view the
simulator definition on the View Simulator Definition page. A
locked definition cannot be edited.

■ Duplicate: Select to duplicate the simulator definition. The
duplicate definition is created using the exact values of the
original, with the exception of being given a unique Id value.

Cancel Click to discard any updates you have made and return to the
Definitions page.

Apply Click to apply and save any changes you have made to values on the
page.

Save Click to save entries on the page and go to the Definitions page.

For more information, see Chapter 6, "Searching for Test and Simulator
Definitions."

Callback URL If you are creating a simulator with a Service Type of Asynchronous
two way, enter the URL of the web service that should be called back
by the simulator.

SOAP Action If you are creating a simulator with a Service Type of Asynchronous
two way, enter the operation of the callback URL.

Delay (msec) If you are creating a simulator with a Service Type of Asynchronous
two way, enter the number of milliseconds that you want the simulator
definition to wait before issuing the call back service invocation.

If you are using this simulator along with an asynchronous two-way
test definition, ensure that the Delay (msec) value you provide is less
than the Time-out (msec) value defined for any test definition.

For more information about the Time-out (msec) field, see Section 4.2,
"How to Modify a Test Definition."

Use WS-Addressing Selecting the WS-Addressing check box eliminates the need for you to
reconfigure the Callback URL on asynchronous simulator definitions
each time you want to call a different endpoint.

For more information, see Section 5.2.1, "Using WS-Addressing in
Asynchronous Two-Way Simulator Definitions"

Table 5–4 Prefix and Namespace Selection Grid Elements

Element Description

Delete Select one or more namespace rows and click Delete to execute the
deletion.

This button only appears when namespace rows are present.

How to Modify a Simulator Definition

5-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

XPath Selection
Use the XPath Selection grid to work with XPath values that are used to match the
simulator definition with arriving requests. XPath values can also be used to validate
data send in the test request. The values in this grid use the namespace values set in
the Prefix and Namespace Selection grid.

Available elements in the XPath Selection grid are discussed in Table 5–5.

Create Click to manually add and populate a namespace row.

Prefix Prefix that should be used for the namespace.

Namespace Namespace to be used in the XPath data for the simulator definition.

Note: If you are entering XPath values manually, it is important to
maintain correlations with the values entered in the Prefix and
Namespace Selection grid. Each XPath node must have a prefix that
has been defined in the Prefix and Namespace Selection grid, unless it
is an XPath expression.

Table 5–5 XPath Selection Grid Elements

Element Description

Delete Select one or more XPath rows and click Delete to execute the deletion.

This button only appears when XPath rows are present.

Create Click to add and manually populate an XPath row.

XPath Sequence Id Indicates the sequence of the XPath expressions. This value is required.
This value is read-only when it has been generated using the Generate
Xpath button.

Xpath XPath value used to help match the simulator definition with arriving
requests. These values can include XPath nodes and expressions. This
value is read-only when it has been generated using the Generate
Xpath button.

Is Node Key Select if the XPath node is a key value to be used in matching arriving
test requests with the simulator.

Table 5–4 (Cont.) Prefix and Namespace Selection Grid Elements

Element Description

How to Modify a Simulator Definition

Creating and Modifying Simulator Definitions 5-9

Simulator Instance Selection
Select the Simulator Instances tab to display the Simulator Instance Selection grid,
which displays information about simulator instances generated using the simulator
definition.

Available elements in the Simulator Instance Selection grid are discussed in Table 5–6.

Condition Select the condition you want to use:

■ Is Valid: The value provided in the XPath field is valid and no
Expected Node Value is supplied. If you are using WS-Addressing,
ensure that all of the WS-Addressing parameters pass the XPath
validations. Change the Condition for those expressions to Is Valid.

For more information, see Section 5.2.1, "Using WS-Addressing in
Asynchronous Two-Way Simulator Definitions".

■ Equals To: The value provided in the XPath field is valid and an
Expected Node Value is supplied.

■ Not Equal To

■ Less Than

■ Greater Than

■ Less Than Equal

■ Greater Than Equal

■ Not Null

Expected Node Value The value that the simulator expects to receive from the service that
invokes it. When the simulator is actually executed, this value is
compared with the actual value based on the validation condition
selected in the Condition field

When you use the Generate Xpath button to generate XPath data, this
value may be populated, but can be modified as necessary. The
Condition field value is used to qualify this value.

Table 5–6 Simulator Instance Selection Grid

Element Description

Refresh Click to refresh the Modify Simulator Definition page.

Id Click to display the selected instance ID on the Simulator Instances
Detail page.

For more information about the Simulator Instances Detail page, see
Section 9.3, "How to View Simulator Instance Details."

Status Displays the status of the simulator instance generated by the simulator
definition.

■ Initiated: The simulator instance has been initiated.

■ Ended: This status is only applicable to simulator instances that do
not involve validations. Indicates that the instance has ended.

■ Faulted: The simulator instance could not execute properly due to
exceptions or faults.

■ Failed: The simulator instance did not pass validation.

■ Passed: The simulator instance passed validation.

Start Date Displays the date and time at which the simulator instance was
initiated.

Table 5–5 (Cont.) XPath Selection Grid Elements

Element Description

How to Modify a Simulator Definition

5-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Test Definition Selection
Select the Test Definitions tab to display the Linked Test Definition Selection grid,
which displays information about test definitions associated with the simulator
definition.

Available elements in the Linked Test Definition Selection grid are discussed in
Table 5–7.

5.2.1 Using WS-Addressing in Asynchronous Two-Way Simulator Definitions
This section describes how to configure a WS-Addressing enabled simulator definition
for the Asynchronous Two-Way Message Exchange Pattern.

Adding support for Web Services Addressing (WS-Addressing) eliminates the need for
you to reconfigure the Callback URL on asynchronous simulator definitions each time
you want to call a different endpoint.

When you create or modify a simulator definition, you can use the Use
WS-Addressing check box to pull the WS-Address from the request and post the
delayed response to the specified address in the Callback URL. This enables you to
avoid the manual task of modifying the Callback URL with context information every
time there is a change or redeployment.

In an asynchronous request/reply pattern, a consumer that sends a request to the
provider as part of a request SOAP header can populate the replyToAddress to whom
the provider has to send the response, shown in Figure 5–8, Figure 5–9, Figure 5–10,
Figure 5–11, and Figure 5–12.

The fields for these pages are defined in Section 5.2, "How to Modify a Simulator
Definition".

End Date Displays the date and time at which the simulator instance ended.

Table 5–7 Linked Test Definition Selection Grid

Element Description

Delete Select one or more test definition rows that you want to delete and click
Delete to execute the deletion.

Assign Click to access the Search Definitions - Test page, where you can search
for a test definition to which you want to assign the simulator
definition.

Refresh Click to refresh the Modify Simulator Definition page.

Table 5–6 (Cont.) Simulator Instance Selection Grid

Element Description

How to Modify a Simulator Definition

Creating and Modifying Simulator Definitions 5-11

Figure 5–8 Modify Simulator Definition Page for WS-Addressing (1 of 5)

The highlighted text in Figure 5–8 and Figure 5–9 shows the replyToAddress and
SOAP header when using WS-Addressing.

Figure 5–9 Modify Simulator Definition Page for WS-Addressing (2 of 5)

Figure 5–10 Modify Simulator Definition Page for WS-Addressing (3 of 5)

How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition

5-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 5–11 Modify Simulator Definition Page for WS-Addressing (4 of 5)

If you are using WS-Addressing, ensure that all of the WS-Addressing parameters pass
the XPath validations. Change the Condition for those expressions to Is Valid. See
Figure 5–11.

Figure 5–12 Modify Simulator Definition Page for WS-Addressing (5 of 5)

5.3 How to Provide Multiple Request and Response Message Sets in a
Single Simulator Definition

You can create a simulator definition that contains multiple pairs of request and
response message data, as shown in Figure 5–13. This means that simulator definitions
only need to be created per usage requirements, not per test data requirements.

Figure 5–13 Providing Multiple Request and Response Message Sets in a Single
Simulator Definition

For example, if you want to simulate a service against five sets of test data, you can
create a single simulator definition to simulate the service and include in it all five sets

How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition

Creating and Modifying Simulator Definitions 5-13

of test data with which you can the service to operate. This is as opposed to creating
five separate simulator definitions, one per combination of service and set of test data.

When a simulator definition that includes multiple test data sets is invoked, the
appropriate data set is matched for use based on key attributes identified in the
request. At this point, the request validation and response provision can occur. Since
we would typically use such definitions to handle several sets of data, it is
recommended that you choose the same key values for every set of data.

Request Message Format
Use the format provided in Example 5–1 to include multiple sets of request data in the
simulator definition.

The CAVSRequestInputs and CAVSRequestInput_1 envelopes are autogenerated upon
the input of the endpoint URL value on the test definition. Use copy and paste
commands to create more sets, such as CAVSRequestInput_2 and CAVSRequestInput_3.

Example 5–1 Request Message Format

<cavs:CAVSRequestInputs
xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">
<cavs:CAVSRequestInput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
. . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
. . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_2>
</cavs:CAVSRequestInputs>

Response Message Format
Use the format shown in Example 5–2 to include multiple sets of response data in the
simulator definition.

Example 5–2 Response Message Format

<cavs:CAVSResponseOutput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
. . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_1>

How to Create a Simulator Definition that Supports Chatty Services

5-14 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

<cavs:CAVSResponseOutput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
. . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_2>
</cavs:CAVSResponseOutputs>

Envelope text is prepopulated. Enter actual message content within appropriate tags
provided within the envelopes.

After entering request and response data sets and clicking the Generate Xpath button
on the Modify Simulator Definition page, the XPath Selection grid provides access to
available XPath values and enables you to select the XPaths that must be treated as key
nodes.

For more information about the Modify Simulator Definition page, see Section 5.2,
"How to Modify a Simulator Definition."

If your testing scenario includes test definitions, you can likewise create test
definitions that contain multiple request and response message sets that work with the
sets defined in your simulator definition.

For more information, see Section 4.3, "How to Provide Multiple Request and
Response Message Sets in a Single Test Definition."

5.4 How to Create a Simulator Definition that Supports Chatty Services
You can create a simulator definition that can simulate multiple services, each with a
different schema.

In general, we recommend that you create simulators that simulate a single specific
service. However, in the case of chatty conversations, for the ease of maintenance, you
may choose to simulate all callouts of an Application Business Connector Service
(ABCS) using a single simulator definition.

Using this method, you have the advantage of using one simulator for a particular
ABCS, regardless of the number of callouts that need to be made. This method also
provides ease of maintenance because linked callouts can all be viewed and modified
in one place.

For example, in some integration scenarios, participating applications do not provide
services at the same level of granularity as operations in Enterprise Business Services
(EBSs). In these scenarios, a requester ABCS may need to adopt patterns such as
message enrichment, splitting, and aggregation and disaggregation as required by an
EBS. Likewise, a provider ABCS may need to adopt patterns as required by
participating application services.

These ABCSs, which are typically implemented using BPEL process, call out to several
services. To test this chatty ABCS using CAVS, there will likely be a need to replace the
services that the ABCS calls out to with several simulators. It will also be required that
these multiple request/response simulators be correlated, so that they accurately
emulate the transaction of the same entity.

When this type of simulator is called, CAVS initiates the following general flow:

1. Selects simulator definition.

How to Send Dynamic Responses in a Simulator Response

Creating and Modifying Simulator Definitions 5-15

2. Validates the first request message based on the selected simulator.

3. Returns the appropriate response message, if the selected simulator is a two-way
simulator.

4. Repeats steps 2 and 3 until the chatty service conversation is complete.

Request Message Format
Use the format shown in Example 5–3 to create a simulator definition that supports
chatty service conversations. This format provides the ability to specify a set of request
and response messages, along with success criteria for each of them. This format is the
same as that used for multiple requests and responses in a simulator definition.
However, in this case, the schemas for each set will be different.

Example 5–3 Request Message Format

<cavs:CAVSRequestInputs
xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">
<cavs:CAVSRequestInput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/Service1">
 <ns1:Service1Request>
. . .
 </ns1: Service1Request>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns2="http://xmlns.oracle.com/Service2">
 <ns2: Service2Request>
. . .
 </ns2: Service2Request>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_2>

After you have provided request and response messages, click the Generate Xpath
button on the Modify Simulator Definition page to generate XPath values. Modify the
generated XPath values, if necessary.

For more information about the Modify Simulator Definition page, see Section 5.2,
"How to Modify a Simulator Definition."

When this type of simulator is called, separate simulator instances are created for each
request and response pair. The evaluation of actual response versus expected response
is handled per instance created for the same simulator definition.

5.5 How to Send Dynamic Responses in a Simulator Response
CAVS simulator definitions are actually predefined request and response message sets.
In some cases, you may not know the values for all the fields in the request message.
Additionally, you may want to send these unknown dynamic values in a response to
the service that called the simulator.

For example, consider the Enterprise Business Message (EBM) ID. This value is
normally generated on the fly by AIA services. If you create a simulator that talks to

How to Send Dynamic Responses in a Simulator Response

5-16 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

this AIA service, you do not have a way to validate the value in the EBM ID field of
the request message because the value is dynamically generated.

You may to choose to avoid validations of this value by setting the CAVS XPath
validation for the EBM ID field to isValid. However, you may have a requirement in
which you need to send this dynamic value back in a particular field of the simulator
response. To meet this requirement, you can let the simulator pick the particular field
(such as EBM ID) in the request and send it back as a field in the response.

To send a dynamic response in a simulator response:
1. Map a field from the request message and add it to the response message. These

are two valid formats you can use:

■ #@#XPATH.{copy the XPath from request msg
Ex./soap:Envelop/soap:Body..}#@#

■ #@#SYSTEM.{SYSDATE}#@#

2. Before sending the response, the simulator will pick up this ID from the generated
XPath, substitute the actual value, and send it in the response.

The strings referenced above will form a part of the response message. To know
what the request message XPath values are, use the output that was generated by
clicking the Generate Xpath button.

For example, let's say that the request SOAP message has the nodes shown in
Example 5–4:

Example 5–4 Request SOAP Message Nodes

<corecom:PersonName>
 <corecom:FirstName>CAVS</corecom:FirstName>
 <corecom:MiddleName>FP</corecom:MiddleName>
 <corecom:FamilyName>AIA</corecom:FamilyName>
 <corecom:CreationDateTime></corecom:CreationDateTime>
</corecom:PersonName>

You would define your response SOAP message as shown in Example 5–5:

Example 5–5 Response SOAP Message

<corecom:PersonName>

<corecom:FirstName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCustomerParty
 ListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/

corecomx:Contact/corecomx:PersonName/corecomx:FamilyName}#@#2dot1</corecom:FirstNa
me>

<corecom:MiddleName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCustomerParty
ListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/corecomx:Contact/corecomx:Person
Name/corecomx:MiddleName}#@#</corecom:MiddleName>

<corecom:FamilyName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCustomerParty
ListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/corecomx:Contact/corecomx:Person
Name/corecomx:FirstName}#@#</corecom:FamilyName>
 <corecom:CreationDateTime>#@#SYSTEM.{SYSDATE}#@#</corecom:CreationDateTime>
</corecom:PersonName>

In this case, the response would be modified by the CAVS engine by copying values
from the request as shown in Example 5–6.

How to Send Dynamic Responses in a Simulator Response

Creating and Modifying Simulator Definitions 5-17

Example 5–6 Response Message Modified by CAVS

<corecom:PersonName>
 <corecom:FirstName>AIA2dot1</corecom:FirstName>
 <corecom:MiddleName>FP</corecom:MiddleName>
 <corecom:FamilyName>CAVS</corecom:FamilyName>
 <corecom:CreationDateTime>2008-05-12T15:26:43+05:30</corecom:CreationDateTime>
</corecom:PersonName>

Note: 2dot1 is a static string that is always appended to the
FamilyName value.

How to Send Dynamic Responses in a Simulator Response

5-18 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

6

Searching for Test and Simulator Definitions 6-1

6Searching for Test and Simulator Definitions

[7] This chapter describes how to search for and work with test and simulator definitions.

This chapter includes the following section Section 6.1, "How to Search for and Work
with Test and Simulator Definitions."

6.1 How to Search for and Work with Test and Simulator Definitions

To search for and work with test and simulator definitions:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Definitions tab. The Definitions page displays, as shown in Figure 6–1 and
Figure 6–2.

Figure 6–1 Definitions Page (1 of 2)

How to Search for and Work with Test and Simulator Definitions

6-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 6–2 Definitions Page (2 of 2)

2. Use the page elements on the Definitions page to search for, execute, migrate, and
manage existing test and simulator definitions. You can also access pages you can
use to create and modify test and simulator definitions.

Search Definitions
Use the Search Definitions group box to enter search criteria to find the test or
simulator definition you are searching for.

Available elements in the Search Definitions group box are discussed in Table 6–1.

Table 6–1 Search Definitions Group Box Elements

Element Description

Id Enter the unique key identifier assigned to the test or simulator
definition.

Name Enter the descriptive name assigned to the test or simulator definition.

Type Select the type of definition for which you are searching:

■ <Value Not Selected>: Select to display all definition types.

■ Test

■ Simulator

Service Type Select the business service pattern of the web service for which the
definition was created:

■ <Value Not Selected>: Select to display definitions for all service
types.

■ Synchronous

■ Notify

■ Asynchronous two way

Service Name Enter the name of the web service for which the definition was created.

Service Version Enter the version of the service for which the definition was created.
This is the web service whose URL is provided in the Endpoint URL
field.

Process Name Enter the name of the process that includes the web service for which
the definition was created.

PIP Name (Process
Integration Pack
name)

Enter the name of the Process Integration Pack that includes the web
service for which the definition was created.

Endpoint URL Enter the URL of the web service for which the definition was created.

SOAP Action Enter the operation called by the web service for which the definition
was created.

How to Search for and Work with Test and Simulator Definitions

Searching for Test and Simulator Definitions 6-3

Search Result Selection
Use the Search Result Selection grid to work with definitions returned in your search
results. Upon accessing this page, the grid displays all definitions.

Available elements in the Search Result Selection grid are discussed in Table 6–2.

State Select the state of the definition:

■ <Value Not Selected>: Select to display definitions in all states.

■ Locked

■ Unlocked

Search Click to execute a search for definitions using the search criteria entered
in the Search Definitions group box.

Table 6–2 Search Result Selection Grid Elements

Element Description

Execute Select one or more test definitions that you want to run and click
Execute to execute the test definition. When a test definition has
successfully executed, you can view details of the test instance
generated by the test execution on the Test Instance Details page.

For more information about the Test Instance Details page, see
Section 9.2, "How to View Test Instance Details."

Simulator definitions cannot be executed.

Delete Select one or more definitions that you want to delete and click Delete
to execute the deletion.

Duplicate Select one or more definitions that you want to duplicate and click
Duplicate to execute the duplication.

The duplicate definition is created using the exact values of the
original, with the exception of being assigned a unique ID value.

Lock Select one or more definitions that you want to lock and click Lock to
lock the definitions. A definition with its State value set to Locked
cannot be edited.

Unlock Select one or more definitions that you want to unlock and click
Unlock to unlock the definitions. An unlocked definition can be edited.
A definition with its State value set to Unlocked is editable.

Export For more information about exporting definitions and instances, see
Chapter 12, "Exporting and Importing CAVS Definitions and
Instances."

Change URL Select one or more test definitions for which you want to change the
endpoint URL value. Click Change URL to launch a pop-up window in
which you can enter the new endpoint URL value that you want to use
for the selected test definitions.

Create Test Click to access the Create Test page, where you can create a test
definition.

For more information about the Create Test page, see Section 4.1, "How
to Create a Test Definition."

Create Simulator Click to access the Create Simulator page, where you can create a
simulator definition.

For more information about the Create Simulator page, see Section 5.1,
"How to Create a Simulator Definition."

Table 6–1 (Cont.) Search Definitions Group Box Elements

Element Description

How to Search for and Work with Test and Simulator Definitions

6-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Import For more information about importing test definitions, see Chapter 12,
"Exporting and Importing CAVS Definitions and Instances."

Id Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see Section 4.2, "How to Modify a Test
Definition."

Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

For more information, see Section 5.2, "How to Modify a Simulator
Definition."

Table 6–2 (Cont.) Search Result Selection Grid Elements

Element Description

7

Working with Group Definitions 7-1

7Working with Group Definitions

[8] This chapter describes how to create, modify, and work with group definitions.

This chapter includes the following sections:

■ Section 7.1, "How to Work with Group Definitions"

■ Section 7.2, "How to Create and Modify a Group Definition"

7.1 How to Work with Group Definitions

To work with group definitions:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Group Definitions tab. The Group Definitions page displays as shown in
Figure 7–1.

Figure 7–1 Group Definitions Page

2. Use the page elements on the Group Definitions page to search for, execute, and
manage existing group definitions. You can also access a page you can use to
create and modify group definitions.

Search Group Definitions
Use the Search Group Definitions group box to enter search criteria to find the group
definition you are searching for.

Available elements in the Search Group Definitions group box are discussed in
Table 7–1.

How to Create and Modify a Group Definition

7-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Search Result Selection
Use the Search Result Selection grid to work with group definitions returned in your
search results. Upon accessing this page, the grid is populated by all group definitions.

Available elements in the Search Result Selection grid are discussed in Table 7–2.

7.2 How to Create and Modify a Group Definition

To create a group definition:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Group Definitions tab. Click the Create button. The Group Definition Detail page
for a new group definition displays as shown in Figure 7–2.

Figure 7–2 Group Definition Detail Page (New Group Definition)

Table 7–1 Search Group Definitions Group Box Elements

Element Description

Id Enter the unique key identifier assigned to the group definition.

Name Enter the descriptive name assigned to the group definition.

Process Name Enter the name of the process associated with the group definition.

PIP (Process
Integration Pack)
Name

Enter the name of the Process Integration Pack (PIP) associated with
the group definition.

Search Click to execute a search for group definitions using the search criteria
entered in the Search Group Definitions group box.

Table 7–2 Search Result Selection Grid Elements

Element Description

Execute Select one or more group definitions that you want to run and click
Execute to execute the group definition.

When a group definition has successfully executed, you can view
details of the group instance on the Group Instances Detail page.

For more information about the Group Instances Detail page, see
Section 10.2, "How to View Group Instance Details."

Delete Select one or more group definitions that you want to delete and click
Delete to execute the deletion.

Duplicate Select one or more group definitions that you want to duplicate and
click Duplicate to execute the duplication.

The duplicate group definition is created using the exact values of the
original, with the exception of being given a unique Id value.

Create Click to access the Group Definition Detail page, where you can create
a group definition

Id Click to access the Group Definition Detail page.

How to Create and Modify a Group Definition

Working with Group Definitions 7-3

2. Use the page elements on the Group Definition Detail page, as discussed in
Table 7–3, to create a group definition that combines one or more tests and
executes them in a single-threaded batch sequence.

3. Click Next to save entries and display further group definition details elements,
discussed in Table 7–3, on the Group Definition Detail page for the newly created
and existing group definitions.

To modify a group definition:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Group Definitions tab. Select a group definition Id link. The Group Definition
Detail page for existing group definitions displays as shown in Figure 7–3.

Figure 7–3 Group Definition Detail Page (Existing Group Definition)

2. Use the page elements on the Group Definition Detail page, as discussed in
Table 7–3, to modify an existing group definition.

Table 7–3 Group Definition Detail Page Elements for New and Existing Definitions

Element Description

Actions Select the action you want to take with the group definition.

■ Execute: Select to execute the group definition.

When a group definition has successfully executed, you can view
details of the test instance on the Group Instances page.

■ Duplicate: Select to duplicate the group definition. The duplicate
definition is created using the exact values of the original, with the
exception of being given a unique Group Definition Id value.

Cancel Click to discard updates to the page and return to the Group
Definitions page.

Next For a new group definition, click to save entries and display further
group definition details on the Group Definition Detail page.

This button does not appear for existing group definitions.

Apply Click to apply and save any changes you have made to values on the
page.

Save Click to save entries on the Group Definition Detail page and return to
the Group Definitions page.

How to Create and Modify a Group Definition

7-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Test Definition Selection
Select the Test Definitions tab to access the Test Definition Selection grid, where you
can associate test definitions with the group definition.

Available elements in the Test Definition Selection grid are discussed in Table 7–4.

Group Instance Selection
Select the Group Instances tab to display the Group Instance Selection grid, which
displays information about group instances generated by the group definition.

Available elements in the Group Instances Selection grid are discussed in Table 7–5.

Id Upon saving a new group definition, a unique key identifier is assigned
to the group definition.

For an existing group definition, displays the unique key identifier
assigned to the group definition.

Name For a new group definition, enter a descriptive name for the group
definition.

For an existing group definition, displays the descriptive name
assigned to the group definition.

Process Name For a new group definition, enter the name of the process you want to
associate with the group definition.

For an existing group definition, displays the process name associated
with the group definition. This value is editable.

PIP (Process
Integration Pack)
Name

For a new group definition, enter the name of the PIP you want to
associate with the group definition.

For an existing group definition, displays the PIP associated with the
group definition. This value is editable.

Table 7–4 Test Definition Selection Grid Elements

Element Description

Unassign Select one or more test definition rows that you want to disassociate
from the group definition. Click Unassign to execute the disassociation.

Assign Click to access the Search Definitions - Test page, where you can search
for a test definition that you want to assign to the simulator definition.

Refresh Click to refresh the Group Definition Detail page.

Definition Sequence
Id

Displays the sequence in which the test definition is initiated by the
group definition.

Definition Id Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see Section 4.2, "How to Modify a Test
Definition."

Table 7–5 Group Instance Selection Grid Elements

Element Description

Refresh Click to refresh the Group Definition Detail page.

Table 7–3 (Cont.) Group Definition Detail Page Elements for New and Existing

Element Description

How to Create and Modify a Group Definition

Working with Group Definitions 7-5

Id Click to access the Group Instances Detail page.

Start Date Displays the date and time at which the group instance was initiated.

Table 7–5 (Cont.) Group Instance Selection Grid Elements

Element Description

How to Create and Modify a Group Definition

7-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

8

Defining CAVS Routing Setup IDs 8-1

8Defining CAVS Routing Setup IDs

[9] This chapter provides an introduction to CAVS routing setup IDs, and how to create,
search, and modify them. It also provides information about setting up routing
configurations without creating routing setup IDs.

Composite Application Validation System (CAVS) routing setups are used when CAVS
test definitions call services that in turn, call CAVS simulators and when actual
applications and services call CAVS simulators instead of calling subsequent actual
services.

This chapter includes the following sections:

■ Section 8.1, "Introduction to CAVS Routing Setup IDs"

■ Section 8.2, "How to Create CAVS Routing Setup IDs"

■ Section 8.3, "How to Search for CAVS Routing Setup IDs"

■ Section 8.4, "How to Modify Routing Setup IDs"

■ Section 8.5, "How to Set Up CAVS Routing Configurations Without Creating
Routing Setup IDs"

8.1 Introduction to CAVS Routing Setup IDs
CAVS routing setup IDs are used to route the service calls to the CAVS simulators. Use
the pages covered in this chapter to set up CAVS routing setup IDs before executing
tests. These CAVS routing setup IDs are stored as RouteToCAVS properties in the
AIAConfigurationProperties.xml file in <AIA_HOME>/aia_instances/$INSTANCE_
NAME/AIAMetaData/config. This file is read during run time to determine whether
routing needs to be made to a CAVS simulator or to an actual system.

For example, you could create three routing setup IDs for the scenarios illustrated
below.

■ To test the requester Application Business Connector Service (ABCS) or when the
provider ABCS is not available, you would want the requester ABCS to call a
simulator instead of actual Oracle AIA services. For this scenario, create a routing
setup ID to set the RouteToCAVS property to TRUE on the requester ABCS. This
will ensure that the message is routed to the CAVS simulator, as indicated in red.

■ To test the provider ABCS or when the provider application is not available, you
would want the provider ABCS to call a simulator instead of an actual provider

Note: An actual participating application or test definition can be
used to invoke the requester ABCS.

Introduction to CAVS Routing Setup IDs

8-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

application service. For this scenario, create a routing setup ID to set the
RouteToCAVS property to TRUE on the provider ABCS. This will ensure that the
message is routed to the CAVS simulator, as indicated in blue.

■ To test the requester ABCS and the provider ABCS together, you would create a
routing setup ID to set the RouteToCAVS property to FALSE on the requester
ABCS so that it can go on to call the provider ABCS and TRUE on the provider
ABCS.

Figure 8–1 helps to illustrate the need for different routing setup IDs to test each of
these three scenarios. When creating test definitions that will be used to initiate these
test scenarios, CAVS enables you to associate the test definition with a specific routing
setup ID. This routing setup ID determines the configuration that is required and
automatically applies it before executing the test.

Figure 8–1 Sample Scenarios for Using CAVS Routing Setup IDs

For example, if these three test scenarios are grouped into a single test group for
execution, each test requires a different routing setup. In this case, you would create
three routing setup IDs, 1001, 1002, and 1003, for example.

Each routing setup ID is required by one of the scenarios. You assign routing setup ID
1001 to the test definition for scenario 1, 1002 to the test definition for scenario 2, and
so forth. When these three test definitions are executed as a part of the test group, the
CAVS system automatically applies routing setup IDs 1001, 1002, and 1003 when
executing the appropriate test definition. This eliminates the need to manually modify
routing configurations between test scenario executions.

If, for example, you did not associate routing setup ID 1002 with the test definition for
scenario 2, the test definition for scenario 2 would use routing setup ID 1001, because
it was the last applied routing setup ID.

For more information about assigning a routing setup ID to a test definition, see
Section 4.1, "How to Create a Test Definition."

Note: If there is more than one callout from the provider ABCS, the
CAVS user can have fine-grained control over the routing by setting
the routing at the PartnerLink level (and optionally at the operation
level). This is indicated in the figure.

How to Create CAVS Routing Setup IDs

Defining CAVS Routing Setup IDs 8-3

Another option for applying routings is to directly modify them on the Configuration
page.

For more information about the Configuration page, see Section 8.5, "How to Set Up
CAVS Routing Configurations Without Creating Routing Setup IDs."

8.2 How to Create CAVS Routing Setup IDs

To create CAVS routing setup IDs:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Routing Setup tab. Click the Create button. The Create Routing Setup page
displays as shown in Figure 8–2.

Figure 8–2 Create Routing Setup Page

2. Upon access, the Create Routing Setup page displays routing information for all
services with a RoutetoCAVS property defined in the
AIAConfigurationProperties.xml file in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config.

Use this page to perform a one-time setup of routing setup IDs that you can later
associate with test definitions using the SetupId field on the Create Test page. By
making this association, the required routing setup will be automatically applied
during the execution of the test definition.

For more information about the SetupId field, see Section 4.1, "How to Create a
Test Definition."

Data saved on this page is stored in a CAVS table, rather than in the
AIAConfigurationProperties.xml file.

For more information about how to quickly define a routing configuration that is
stored in AIAConfigurationProperties.xml, see Section 8.5, "How to Set Up CAVS
Routing Configurations Without Creating Routing Setup IDs."

How to Search for CAVS Routing Setup IDs

8-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Use the page elements on the Create Routing Setup page to create a new CAVS
routing.

Available elements on the Create Routing Setup page are discussed in Table 8–1.

8.3 How to Search for CAVS Routing Setup IDs

To search for CAVS routing setup IDs:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Routing Setup tab. The Routing Setup page
displays, as shown in Figure 8–3.

Table 8–1 Create Routing Setup Page Elements

Element Description

SetupId Upon saving, a sequentially generated ID is assigned to the routing
setup ID.

Description Enter a description of the routing setup ID you are creating.

InvokingServiceNam
e

Lists all services defined in the AIAConfigurationProperties.xml file in
<AIA_HOME>/aia_instances/$INSTANCE_
NAME/AIAMetaData/config.

PartnerLink The PartnerLink that is invoked by the service that you want to route to
the CAVS simulator.

Operation The operation of the PartnerLink that you want to route to the CAVS
simulator. Displays a value only when multiple operations on the
service are invoked using the same PartnerLink, typically when calling
an Enterprise Business Service.

RouteToCavs Select to indicate that the invoking service should route to the selected
CAVS simulator.

SimulatorId Click Add to access the Search Definitions page, where you can select
the simulator definition that you want an invoking service to route to.
Upon access, the page displays all available CAVS simulator definition
IDs. Select the simulator definition to which you want to route an
invoking service and click the Select button.

If a simulator definition has already been selected, the simulator ID
displays. Click Modify to select a different simulator ID. Click Clear to
clear the selection.

How to Search for CAVS Routing Setup IDs

Defining CAVS Routing Setup IDs 8-5

Figure 8–3 Routing Setup Page

2. Use the page elements on the Routing Setup page to search for an existing CAVS
routing setup ID, or access functionality to create and delete routings.

Available elements on the Routing Setup page are discussed in Table 8–2.

Table 8–2 Routing Setup Page Elements

Element Description

SetupId Enter the ID assigned to the routing setup ID you are searching for.

Description Enter description text used for the routing setup ID you are searching
for.

Search Click to execute a search for routing setup IDs using the search criteria
entered in the Search Routing Setups group box.

Delete Select one or more routing setup IDs that you want to delete and click
Delete to execute the deletion.

Create Click to access the Create Routing Setup page, where you can create a
routing setup ID.

For more information, see Section 8.2, "How to Create CAVS Routing
Setup IDs."

Apply Routing After you have created a new routing setup ID, you may apply it to
populate the AIAConfigurationProperties.xml file. To do this, select a
single routing setup ID and click Apply Routing.

If you apply the routing setup ID to the
AIAConfigurationProperties.xml file, it becomes a routing
configuration that is applied in all executions of the associated
invoking service, not just when the routing setup ID is referenced on a
test definition.

SetupId Click to access the Routing Setup page, where you can modify an
existing routing setup ID.

For more information the Routing Setup page, see Section 8.4, "How to
Modify Routing Setup IDs."

How to Modify Routing Setup IDs

8-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Routing Setup Actions
Available elements in the Routing Setup Actions area are discussed in Table 8–3.

8.4 How to Modify Routing Setup IDs

To modify routing setup IDs:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Routing Setup tab. Click a SetupId link. The
Routing Setup page displays as shown in Figure 8–4.

Figure 8–4 Routing Setup Page

2. Use the page elements on the Routing Setup page to modify existing routing
setups. Available elements are discussed in Table 8–4.

Data saved on this page is stored in a CAVS table, rather than in the
AIAConfigurationProperties.xml file.

If you want to apply the data to the AIAConfigurationProperties.xml file, you
must click Apply Routing for the routing setup ID on the Search Routing Setups
page.

For more information about the Apply Routings button, see Section 8.3, "How to
Search for CAVS Routing Setup IDs."

Table 8–3 Routing Setup Actions Area Elements

Element Description

Reset Routing Click to set all routing configurations to FALSE. This means that all
routings to simulators (RoutetoCAVS property settings) in the
AIAConfigurationProperties.xml file will be set to FALSE, whether you
have defined them through the Routing Setup pages or directly in the
file.

View Routing Click to access the Configuration page, where you can access a
read-only view of the last applied, or active, routing setup ID.

How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

Defining CAVS Routing Setup IDs 8-7

8.5 How to Set Up CAVS Routing Configurations Without Creating
Routing Setup IDs

To set up CAVS routing configurations without creating routing setup IDs:
1. Access the AIA Home Page. In the Setup area, click the Go button. Select the

Configuration tab. The AIA Configuration page displays as shown in Figure 8–5.

Figure 8–5 AIA Configuration Page

Table 8–4 Routing Setup Page Elements

Element Description

SetupId Displays the ID you assigned to routing setup ID on the Create Routing
Setup page.

Description If applicable, edit the routing setup ID description.

Invoking Service
Name

This is the service after which the service routing to CAVS should
happen.

PartnerLink The PartnerLink that is invoked by the service that you want to route to
the CAVS simulator.

Operation The operation of the PartnerLink that you want to route to the CAVS
simulator. Displays a value only when multiple operations on the
service are invoked using the same PartnerLink, typically when calling
an enterprise business service.

RouteToCavs Select to indicate that the invoking service should route to the selected
CAVS simulator.

SimulatorId Click the icon to access the Search Definitions page, where you can
select the simulator definition that you want an invoking service to
route to.

If a simulator definition has already been selected, the simulator ID
displays. Click Modify to select a different simulator ID. Click Clear to
clear the selection.

How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

8-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

2. Use this page to quickly set up a CAVS routing configuration without having to
create routing setup IDs. This is particularly useful when you are only interested
in using CAVS simulators without CAVS test definitions.

For example, you may only need to use the CAVS simulator feature for your
development purposes and you may not need to uptake the complexity involved
in setting up routing setup IDs. In this case, you can use this page to directly
modify service routing configurations in the AIAConfigurationProperties.xml file.

However, if you are using CAVS for extensive testing purposes, we recommend
that you use the Routing Setup pages to create your routing setup.

For more information about the Routing Setup page, see Section 8.2, "How to
Create CAVS Routing Setup IDs."

Note: If you use this page to modify these service routing
configurations, there is no need to manually reload the configurations.

9

Working with Test and Simulator Instances 9-1

9Working with Test and Simulator Instances

[10] This chapter describes how to work with test and simulator instances, how to view
test instance details, and how to view simulator instance details.

A test instance captures the details of the execution of a test definition. A simulator
instance captures the details of a simulator definition's behavior during the execution
of a test definition with which it is associated.

This chapter includes the following sections:

■ Section 9.1, "How to Work with Test and Simulator Instances"

■ Section 9.2, "How to View Test Instance Details"

■ Section 9.3, "How to View Simulator Instance Details"

9.1 How to Work with Test and Simulator Instances

To work with test and simulator instances:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Instances tab. The Instances page displays, as shown in Figure 9–1.

How to Work with Test and Simulator Instances

9-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 9–1 Instances Page

2. Use the page elements on the Instance page to search for test and simulator
instances. You can also access pages you can use to view test and simulator
instance details.

Search Instances
Use the Search Instances group box to enter search criteria to locate the instance you
are searching for.

Available elements in the Search Instances group box are discussed in Table 9–1.

Table 9–1 Search Instances Group Box Elements

Element Description

Id Enter the unique key assigned to the instance.

Definition Id Enter a definition ID associated with the definition that generated the
instance.

Name Enter the descriptive name given to the definition that generated the
instance.

Status Enter the status of the instance.

■ Ended: This status is only applicable to instances that do not
involve validations. Indicates that the instance has ended.

■ Faulted: The instance could not execute properly due to exceptions
or faults.

■ Failed: The instance did not pass validation.

■ Passed: The instance passed validation.

■ Delayed: For an asynchronous two-way test instance, indicates that
the test instance is still active and waiting for an asynchronous
reply.

How to Work with Test and Simulator Instances

Working with Test and Simulator Instances 9-3

Search Result Selection
Use the Search Result Selection grid to work with instances returned in your search
results. Upon accessing this page, the grid is populated by all instances.

Available elements in the Search Result Selection grid are discussed in Table 9–2.

Type Select the type of instance for which you are searching.

■ <Value Not Selected>

■ Test

■ Simulator

Service Type Select the business service pattern of the web service associated with
the instance.

For example, if you are searching for a test instance, this is the business
service pattern of the web service tested by the test definition that
generated the test instance. If you are searching for a simulator
instance, this is the business service pattern of the web service
simulated by the simulator definition that generated the simulator
instance.

■ <Value Not Selected>

■ Synchronous

■ Notify

■ Asynchronous two way

Service Name Enter the name of the web service associated with the definition that
created the instance.

Service Version Enter the version of the web service associated with the definition that
created the instance.

Process Name Enter the name of the process associated with the definition that
created the instance.

PIP Name (Process
Integration Pack
name)

Enter the name of the Process Integration Pack (PIP) associated with
the definition that created the instance.

Start Date Enter a start date and time that you want to use as search criteria. The
search will look for all instances that were created on and after the
given date and time.

End Date Enter an end date and time that you want to use as search criteria. The
search will look for all instances that were created before and on the
given date and time.

Search Click to execute a search for instances using the search criteria entered
in the Search Instances group box.

Table 9–2 Search Result Selection Grid Elements

Element Description

Delete Select one or more instances that you want to delete and click the
Delete button to execute the deletion.

Export For more information about exporting instances, see Chapter 12,
"Exporting and Importing CAVS Definitions and Instances."

Id Click for a test instance to access the Test Instance Detail page.

Table 9–1 (Cont.) Search Instances Group Box Elements

Element Description

How to View Test Instance Details

9-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

9.2 How to View Test Instance Details

To view test instance details:
1. Access the Test Instances Detail page, as shown in Figure 9–2 and Figure 9–3.

To access the page, use one of the following navigation paths:

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click a test definition Id
link. The Modify Test Definition page displays. Select Execute in the Actions
drop-down list box.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Definitions tab. Click a test definition Id
link. The Modify Test Definition page displays. Click an instance Id link in the
Test Instances group box.

■ Access the AIA Home Page. In the Composite Application Validation System
area, click the Go button. Select the Instances tab. Click an instance Id link.

Definition Id Click for a simulator instance to access the Simulator Instance Detail
page.

For a test instance, click to access details about the test definition that
generated the test instance. An unlocked test definition displays on the
Modify Test Definition page. A locked test definition displays on the
View Test Definition page.

For more information, see Section 4.2, "How to Modify a Test
Definition."

For a simulator instance, click to access details about the simulator
definition that generated the simulator instance. An unlocked
simulator definition displays on the Modify Simulator Definition page.
A locked test definition displays on the View Simulator Definition
page.

For more information, see Section 5.2, "How to Modify a Simulator
Definition."

Table 9–2 (Cont.) Search Result Selection Grid Elements

Element Description

How to View Test Instance Details

Working with Test and Simulator Instances 9-5

Figure 9–2 Test Instances Detail Page (1 of 4)

Figure 9–3 Test Instances Detail Page (2 of 4)

Figure 9–4 Test Instances Detail Page (3 of 4)

How to View Test Instance Details

9-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 9–5 Test Instances Detail Page (4 of 4)

2. Use the page elements on the Test Instances Detail page, as discussed in Table 9–3,
to view the details of a test instance.

Table 9–3 Test Instances Detail Page Elements

Element Description

Cancel Click to discard any updates to the page and return to the Instances
page.

Apply Click to apply and save any updates you have made to the page.

Save Click to save any updates you have made to the page and go to the
Instances page.

Id Displays the unique ID assigned to the instance.

Definition Id Displays the ID of the test definition that generated the test instance.

Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see Section 4.2, "How to Modify a Test
Definition."

Name Displays the descriptive name associated with the test definition that
generated the instance.

Status Displays the status of the test instance.

■ Ended: This status is only applicable to test instances that do not
involve validations. Indicates that the instance has ended.

■ Faulted: The test instance could not execute properly due to
exceptions or faults.

■ Failed: The test instance did not pass validation.

■ Passed: The instance passed validation.

■ Delayed: For an asynchronous two-way test instance, indicates
that the test instance is still active and waiting for an asynchronous
reply.

Type Displays the type of definition that generated the test instance. On the
Test Instances Detail page, this value will always be Test.

How to View Test Instance Details

Working with Test and Simulator Instances 9-7

Test Messages
Use the elements in the Test Messages group box, as discussed in Table 9–4, to view
the request and response XML messages associated with the test definition that
generated the instance.

Prefix and Namespace Selection
Displays namespace data created for the test definition that generated the test instance.
This namespace data is used in the XPath values defined in the XPath Selection grid.

For more information about the Prefix and Namespace Selection grid, see Section 4.2,
"How to Modify a Test Definition."

Service Type Displays the business service pattern of the web service tested by the
test definition that generated the test instance.

■ Synchronous

■ Notify

■ Asynchronous two way

Service Name Displays the name of the web service tested by the test definition that
created the instance.

Service Version Displays the version of the web service tested by the test definition that
created the instance.

Process Name Displays the name of the process associated with the test definition that
created the instance.

PIP Name (Process
Integration Pack
name)

Displays the name of the PIP associated with the test definition that
created the instance.

Endpoint URL Displays the URL of the web service tested by the test definition that
created the instance.

SOAP Action Displays the operation called by the web service tested by the test
definition that created the instance.

Start Date Displays the date and time at which the test instance was initiated.

End Date Displays the date and time at which the test instance ended.

Table 9–4 Test Messages Group Box Elements

Element Description

Request Message Displays request message XML defined for the test definition that
generated the test instance.

For more information about the Request Message field, see Section 4.1,
"How to Create a Test Definition."

Actual Response
Message

Displays response message XML defined for the test definition that
generated the test instance.

For more information about the Response Message field, see
Section 4.1, "How to Create a Test Definition."

Table 9–3 (Cont.) Test Instances Detail Page Elements

Element Description

How to View Simulator Instance Details

9-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

XPath Selection
Displays XPath data created for the test definition that generated the test instance. The
values in this grid use the namespace values set in the Prefix and Namespace Selection
grid.

For more information about the XPath Selection grid, see Section 4.2, "How to Modify
a Test Definition."

Linked Simulator Instance Selection
Use the elements in Linked Simulator Instance Selection grid, as discussed in
Table 9–5, to work with associations between test instances and simulator instances.

If no correlation logic has been defined between the test definition and the simulator
definition, the test and simulator instances will not always be reconcilable, especially
when the same web service is invoked multiple times during a very short time period,
as in during performance testing.

However, if a simulator definition is associated with a test definition, any test
instances generated by the test definition will automatically reflect associations to
simulator instances generated by associated simulator definitions.

You can manually adjust these associations in this grid area.

9.3 How to View Simulator Instance Details

To view simulator instance details:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Instances tab. Click the Instance Id link for a
simulator instance. The Simulator Instances Detail page displays, as shown in
Figure 9–6, Figure 9–7, Figure 9–8, and Figure 9–9.

Table 9–5 Linked Simulator Instance Selection Grid Elements

Element Description

Unassign Select one or more simulator instance rows that you want to
disassociate with the test instance. Click the Unassign button to execute
the disassociation.

Assign Click to access the Search Instances - Simulator page, where you can
search for a simulator instance that you want to manually associate
with the test instance.

After you have associated a simulator instance with the test instance
using the Search Instances - Simulator page, the Test Instances Detail
page displays the selected simulator instance.

Refresh Click to refresh the Test Instances Detail page.

Id Click to access the Simulator Instances Detail page.

Definition Id Click to view details about the test definition that generated the test
instance.

An unlocked test definitions display on the Modify Test Definition
page. A locked test definition displays on the View Test Definition
page.

For more information, see Section 4.2, "How to Modify a Test
Definition."

How to View Simulator Instance Details

Working with Test and Simulator Instances 9-9

Figure 9–6 Simulator Instances Detail Page (1 of 4)

Figure 9–7 Simulator Instances Detail Page (2 of 4)

Figure 9–8 Simulator Instances Detail Page (3 of 4)

How to View Simulator Instance Details

9-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 9–9 Simulator Instances Detail Page (4 of 4)

2. Use the page elements on the Simulator Instances Detail page, as discussed in
Table 9–6, to view the details of a simulator instance.

Table 9–6 Simulator Instances Detail Page Elements

Element Description

Cancel Click to discard any updates to the page and return to the Instances
page.

Apply Click to apply and save any updates you have made to the page.

Save Click to save any updates you have made to the page and go to the
Instances page.

Id Displays the unique ID assigned to the instance.

Definition Id Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

Name Displays the descriptive name associated with the simulator definition
that generated the instance.

Status Displays the status of the simulator instance.

■ Initiated: The simulator instance has been initiated.

■ Ended: This status is only applicable to simulator instances that do
not involve validations. Indicates that the instance has ended.

■ Faulted: The simulator instance could not execute properly due to
exceptions or faults.

■ Failed: The simulator instance did not pass validation.

■ Passed: The simulator instance passed validation.

Type Displays the type of definition that generated the simulator instance.
On the Simulator Instances Detail page, this value will always be
Simulator.

Service Type Displays the business service pattern of the web service simulated by
the simulator definition that generated the instance.

■ Synchronous

■ Notify

■ Asynchronous two way

How to View Simulator Instance Details

Working with Test and Simulator Instances 9-11

Test Messages
Use the elements in the Test Messages group box, as discussed in Table 9–7, to view
the request and response XML messages associated with the simulator definition that
generated the instance.

Prefix and Namespace Selection
Displays namespace data created for the simulator definition that generated the
simulator instance. This namespace data is used in the XPath values defined in the
XPath Selection grid.

For more information about the Prefix and Namespace Selection grid, see Section 5.2,
"How to Modify a Simulator Definition."

XPath Selection
Displays XPath data created for the simulator definition that generated the instance.
The values in this grid use the namespace values set in the Prefix and Namespace
Selection grid.

For more information about the XPath Selection grid, see Section 5.2, "How to Modify
a Simulator Definition."

Linked Test Instance Selection
Displays the test instance with which the simulator instance is associated. This is a
one-to-one association.

Service Name Displays the name of the web service simulated by the simulator
definition that created the instance.

Service Version Displays the version of the web service simulated by the simulator
definition that created the instance.

Process Name Displays the name of the process associated with the simulator
definition that created the instance.

PIP Name (Process
Integration Pack
name)

Displays the name of the PIP associated with the simulator definition
that created the instance.

Start Date Displays the date and time at which the simulator instance was
initiated.

End Date Displays the date and time at which the simulator instance ended.

Table 9–7 Test Messages Group Box Elements

Element Description

Actual Request
Message

Displays request message XML defined for the simulator definition that
generated the instance.

For more information about the Request Message field, see Section 5.1,
"How to Create a Simulator Definition."

Response Message Displays response message XML defined for the simulator definition
that generated the instance.

For more information about the Response Message field, see
Section 5.1, "How to Create a Simulator Definition."

Table 9–6 (Cont.) Simulator Instances Detail Page Elements

Element Description

How to View Simulator Instance Details

9-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

If no correlation logic has been defined between the test definition and the simulator
definition, the test and simulator instances will not always be reconcilable, especially
when the same web service is invoked multiple times during a very short time period,
as in during performance testing.

However, if a simulator definition is associated with a test definition, any test
instances generated by the test definition will automatically reflect associations to
simulator instances generated by associated simulator definitions.

You can adjust the association between the simulator instance and a test instance using
the elements on the page, which are discussed in Table 9–8.

Table 9–8 Linked Test Instance Selection Page Elements

Element Description

Unassign Select the test instance ID that you want to disassociate from the
simulator instance and click the Unassign button to execute the
disassociation.

Assign Click to access the Search Instances - Test page, where you can search
for a test instance that you want to manually associate with the
simulator instance.

After you have associated a test instance with the simulator instance
using the Search Instances - Test page, the Simulator Instances Detail
page displays the selected test instance.

Refresh Click to refresh the Simulator Instances Detail page.

Id Click to display the selected test instance on the Test Instances Detail
page

Definition Id Displays the ID of the test definition that generated the test instance.

Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see Section 4.2, "How to Modify a Test
Definition."

10

Working with Group Instances 10-1

10Working with Group Instances

[11] This chapter describes how to view group instances and how to view group instance
details.

A group instance captures the details of the execution of a group definition.

This chapter includes the following sections:

■ Section 10.1, "How to View Group Instances"

■ Section 10.2, "How to View Group Instance Details"

10.1 How to View Group Instances

To view group instances:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Group Instances tab. The Group Instances page displays, as shown in Figure 10–1.

Figure 10–1 Group Instances Page

2. Use the page elements on the Group Instances page to search for group instances
and access a page you can use to view group instance details.

Search Group Instances
Use the elements in the Search Group Instances group box, as discussed in Table 10–1,
to enter search criteria to find the group instance you are searching for.

How to View Group Instance Details

10-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Search Result Selection
Use the elements in the Search Result Selection grid, as discussed in Table 10–2, to
work with group instances returned in your search results. Upon accessing this page,
the grid is populated by all group instances.

10.2 How to View Group Instance Details

To view group instance details:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Group Instances tab. Click a group instance Id link
on the Group Instances page. The Group Instances Detail page displays as shown
in Figure 10–2.

Table 10–1 Search Group Instances Group Box Elements

Element Description

Id Enter the unique key identifier assigned to the group instance.

Group Definition Id Enter the unique key ID assigned to the group definition that generated
the instance.

Name Enter a descriptive name assigned to the group definition.

Process Name Enter the name of the process associated with the group definition that
generated the instance.

PIP Name (process
integration pack)

Enter the name of the Process Integration Pack (PIP) associated with
the group definition that generated the instance.

Start Date Enter a start date and time that you want to use as search criteria. The
search will look for all group instances that were created on and after
the given date and time.

Search Click to execute a search for group instances using the search criteria
entered in the Search Group Instances group box.

Table 10–2 Search Result Selection Grid Elements

Element Description

Delete Select one or more group instances that you want to delete and click the
Delete button to execute the deletion.

Export For more information exporting group instances, see Chapter 12,
"Exporting and Importing CAVS Definitions and Instances."

Id Click to access the Group Instances Detail page.

Group Definition Id Click to access the Group Definition Detail page.

For more information about the Group Definition Detail page, see
Chapter 7, "Working with Group Definitions."

How to View Group Instance Details

Working with Group Instances 10-3

Figure 10–2 Group Instances Detail Page

2. Use the page elements on the Group Instances Detail page, as discussed in
Table 10–3, to view the details of a group instance.

Table 10–3 Group Instances Detail Page Elements

Element Description

Id Displays the unique key identifier assigned to the group instance.

Group Definition Id Click to access the Group Definition Detail page.

Name Displays the descriptive name assigned to the group definition.

Process Name Displays the name of the process associated with the group definition
that generated the instance.

PIP Name Enter the name of the PIP associated with the group definition that
generated the instance.

Start Date Displays the date and time at which the group instance was initiated.

Delete Select one or more test instance rows that you want to delete and click
the Delete button to execute the deletion.

Definition Sequence
Id

Indicates the sequence in which the test definitions were initiated by
the group definition that generated the group instance.

Definition Id Click to access the Modify Test Definition page.

For more information about the Modify Test Definition page, see
Section 4.2, "How to Modify a Test Definition."

Instance Id Click to access the Test Instances Detail page.

For more information about the Test Instances Detail page, see
Section 9.2, "How to View Test Instance Details."

Status Displays the status of the test instance in the group instance.

■ Initiated: The test instance has been initiated.

■ Ended: This status is only applicable to test instances that do not
involve validations. Indicates that the instance has ended.

■ Faulted: The test instance could not execute properly due to
exceptions or faults.

■ Failed: The test instance did not pass validation.

■ Passed: The instance passed validation.

Start Date Displays the date and time at which the test instance was initiated.

End Time Displays the date and time at which the test instance ended.

How to View Group Instance Details

10-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

11

Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios 11-1

11Purging CAVS-Related Cross-Reference
Entries to Enable Rerunning of Test Scenarios

[12] This chapter describes how to purge Composite Application Validation System
(CAVS)-related cross-reference entries to allow test scenarios to be rerun.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Purging CAVS-Related Cross-Reference Entries"

■ Section 11.2, "How to Purge CAVS-Related Cross-Reference Entries to Enable
Rerunning of Test Scenarios"

11.1 Introduction to Purging CAVS-Related Cross-Reference Entries
When a participating application is involved in a CAVS testing flow, execution of tests
can potentially modify data in a participating application. Therefore, consecutive
running of the same test may not generate the same results. The CAVS is not designed
to prevent this kind of data tampering because it supports the user s intention to
include a real participating application in the flow. The CAVS has no control over
modifications that are performed in participating applications.

However, this issue does not apply if your CAVS test scenario uses test definitions and
simulator definitions to replace all participating applications and other dependencies.
In this case, all cross-reference data is purged after the test scenario has been executed.
This enables rerunning of the test scenario.

11.2 How to Purge CAVS-Related Cross-Reference Entries to Enable
Rerunning of Test Scenarios

To purge CAVS-related cross-reference entries to enable rerunning of test
scenarios:
1. Process integration packs (PIPs) that are delivered to work with Oracle

Application Integration Architecture (AIA) Foundation Packs are delivered with
cross-reference systems in place. They are named CAVS_<XYZ>, where <XYZ> is
the participating application system.

For example, for systems EBIZ and SEBL, the PIP is delivered with cross-reference
systems CAVS_EBIZ and CAVS_SEBL.

2. For every system type defined on the Systems page for which you want to make
test scenarios rerunnable (<XYZ>), create a related CAVS system (CAVS_<XYZ>).
The System Type field value for the CAVS-related entry should match the name of
the system for which it is created.

How to Purge CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

11-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

For more information about the Systems page, see "Building AIA Integration
Flows" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

3. When testing a provider Application Business Connector Service (ABCS) in
isolation, the Enterprise Business Message (EBM) will be passed from the CAVS to
the provider ABCS with the
NamespacePrefixedEBMName/EBMHeader/Target/ID element set as CAVS_
<XYZ>.

4. When testing a requester ABCS in isolation, the element in the Application
Business Message (ABM) that normally contains the Internal ID value will now
contain the CAVS-specific Internal ID value set for the system on the Systems
page.

5. When testing an entire flow (requester ABCS-to-Enterprise Business Service [EBS]
-to-provider ABCS), you must set the Default.SystemID property of the provider
ABCS to CAVS_<XYZ>, where <XYZ> is the system.

a. To do this, edit the Default.SystemID property value in the
AIAConfigurationProperties.xml file in the <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config directory.

b. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to
AIAConfigurationProperties.xml, see "Building AIA Integration Flows" in
Oracle Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack.

c. You can now commence testing the entire flow.

Note: If the test scenario is an entire flow that includes multiple
instances of the same system, this approach will not work. In this case,
data created in the cross-reference will remain making the same test
case non-rerunnable.

12

Exporting and Importing CAVS Definitions and Instances 12-1

12Exporting and Importing CAVS Definitions and
Instances

[13] This chapter describes how to export and import Composite Application Validation
System (CAVS) definitions and instances.

This chapter includes the following sections:

■ Section 12.1, "How to Export and Import Definitions"

■ Section 12.2, "How to Export Test and Simulator Instances"

■ Section 12.3, "How to Export Group Instances"

12.1 How to Export and Import Definitions

To export and import CAVS definitions:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

Composite Application Validation System area, click the Go button. Select the
Definitions tab. The Definitions page displays, as shown in Figure 12–1.

Figure 12–1 Definitions Page

How to Export and Import Definitions

12-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Use the Export and Import buttons on this page to migrate test definitions,
simulator definitions, and any associated group definitions in XML flat-file format
between instances running on the same version of Foundation Pack.

Examples of uses for this export and import functionality include:

■ QA may want to certify a set of definitions that have been run in one build in
other builds.

■ Support analysts and customers may want to exchange definition files.

■ You may want to verify validity of new environments.

2. Select one or more definitions and click the Export button to initiate the export.
The following options display:

■ Export selected Definition(s) only

■ Export selected Definition(s) and associated Group Definition(s)

■ Export selected Definition(s), associated GroupDefinition(s) and Test
Definition(s) that belong to the associated GroupDefinition(s) but are not
selected

Select an option and click the Proceed button to create and save the definitions to a
location on your local system. The default file name for the exported definition(s)
is Definitions.xml.

If a test definition that you are exporting is associated with a routing setup ID, the
routing setup information will also be exported.

If that routing setup is associated with one or more simulator definitions, which
were provided when the Route To CAVS option was set to TRUE, then these
simulator definitions will also be exported.

For more information about the structure of the Definitions.xml file created by the
CAVS export definition feature, see Appendix A, "XML Structures of Exportable
CAVS Definitions and Instances."

3. Use the Import button to upload a test, simulator, or group definition in the XML
flat-file format generated by CAVS export functionality.

You can generate these files by clicking the Export button on this page. The
definition file to be uploaded must be accessible by the local system being used to
perform the upload.

Click the Import button and browse for the file you want to upload. The CAVS
validates the structure of the file being uploaded. If the structure is invalid, an
error will be raised.

If a test definition that you are importing is associated with a routing setup ID, the
routing setup information will also be imported.

If that routing setup is associated with one or more simulator definitions, which
were provided when the Route To CAVS option was set to TRUE, then these
simulator definitions will also be imported.

For more information about the valid structure of the Definitions.xml file created
by the CAVS export definition feature, see Appendix A, "XML Structures of
Exportable CAVS Definitions and Instances."

4. Imported definitions will still reference endpoint URLs pointing to tested web
services in the source system. You must update imported definition endpoint URL
values to point to tested web services in the target system. The CAVS enables you
to update these URLs directly on the following pages:

How to Export Test and Simulator Instances

Exporting and Importing CAVS Definitions and Instances 12-3

Click the Change URL button on this page to access the Modify Test Definitions
page, where you can update the Endpoint URL field value.

For more information about the Endpoint URL field, see Section 4.1, "How to
Create a Test Definition."

Because the sequential definition IDs assigned in the source system may not be valid
in the target system, new sequential definition IDs will be assigned by the target
system. As a result, associations between definitions will be severed in the target
system and will need to be reestablished.

Because test, simulator, and group instance details that may be associated with
definitions in the source system are not valid in the target system, they will not be
imported.

If the same definition is uploaded multiple times, multiple duplicate definitions will
be created in the target system.

For more information about the Definitions page, see Chapter 6, "Searching for Test
and Simulator Definitions."

12.2 How to Export Test and Simulator Instances

To export test and simulator instances:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Instances tab. The Instances page displays, as
shown in Figure 12–2.

For more information about the Instances page, see Chapter 9, "Working with Test
and Simulator Instances."

Figure 12–2 Instances Page

2. Use the Export feature to export instances in XML format. You can use XML-based
reporting tools to generate reports of test and simulator executions using these
XML files.

How to Export Group Instances

12-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Select one or more instances and click the Export button to initiate the export.

For more information about the structure of the Definitions.xml file created by the
CAVS export instance feature, see Appendix A, "XML Structures of Exportable
CAVS Definitions and Instances."

3. Click Save to create and save the definitions to a location on your local system.
The default file name for the exported definition(s) is Instances.xml.

12.3 How to Export Group Instances

To export group instances:
1. Access the AIA Home Page. In the Composite Application Validation System area,

click the Go button. Select the Group Instances tab. The Group Instances page
displays, as shown in Figure 12–3.

For more information about the Group Instances page, see Section 10.1, "How to
View Group Instances."

Figure 12–3 Group Instances Page

2. Select one or more group instances that you want to export and click the Export
button to execute the download.

For more information about the structure of the Definitions.xml file created by the
CAVS export definition feature, see Appendix A, "XML Structures of Exportable
CAVS Definitions and Instances."

13

Introduction to Oracle AIA Error Handling 13-1

13Introduction to Oracle AIA Error Handling

[14] This chapter provides an introduction to the Oracle AIA Error Handling Framework.
It also provides overviews about business faults, BPEL and Mediator system faults,
and Oracle B2B errors.

The Oracle AIA Error Handling Framework provides error handling and logging
components to support the needs of integration services operating in an Oracle
Application Integration Architecture (AIA) ecosystem.

This chapter includes the following sections:

■ Section 13.1, "Introduction to the Error Handling Framework"

■ Section 13.2, "Introduction to Error Handling for Business Faults"

■ Section 13.3, "Introduction to Error Handling for BPEL and Mediator System
Faults"

■ Section 13.4, "Introduction to Error Handling for Oracle B2B Errors"

13.1 Introduction to the Error Handling Framework
This section includes the following topic: Section 13.1.1, "Fault Categories."

Figure 13–1 provides a high-level overview of the Error Handling Framework.

Introduction to the Error Handling Framework

13-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 13–1 Key Features of Error Handling Framework Components

The AIA Error Handling Framework provides the following key features for
integration services operating in an AIA ecosystem.

Unified Error Handling Approach
■ Works across technologies, including BPEL and Mediator components,

business-to-business (B2B), and ODI.

■ Works across categories of faults, including business and system, runtime, and
technical faults.

■ Works across integration patterns.

■ Adopts the Oracle SOA Suite 11g tech stack.

Error Notifications
■ Error notifications are emailed to suitable actor roles, such as integration

administrators, and FYI roles, such as customer service representatives.

■ Provides visibility into error context.

■ Drill-down to the Oracle Enterprise Manager Console Flow Trace page from
the error notification email.

■ View errors in the context of an AIA flow trace.

■ Enables customization of error notification content.

■ Add key fields to the error notification body.

■ Add or remove fields from error notification content.

■ Issue error notifications to suitable Actor and FYI roles.

Introduction to the Error Handling Framework

Introduction to Oracle AIA Error Handling 13-3

■ Provide a link to Oracle BPM Worklist for error details, if desired.

■ Enables error notification throttling.

■ Control the number of error notifications issued for a specific error.

■ Regulate the issuance of error notifications by time interval and number of
errors.

Oracle BPM Worklist Integration
■ Centralized user interface to access error details that are assigned for resolution or

for informational purposes.

■ Accessible to administrators and end-users.

■ Decoupled from the Error Notification Framework.

■ Oracle BPM Worklist is not tied to error notifications.

■ Oracle BPM Worklist can be used as an optional component.

Error Logging
■ Logs messages non-intrusively in a consistent schema.

■ Logs can be searched, sorted, and filtered using Oracle Enterprise Manager.

B2B Error Handling
■ Errors in the Oracle B2B component of Oracle Fusion Middleware are routed to the

AIA Error Handling Framework.

■ The AIA fault definition captures B2B-specific details of a failed AIA flow.

Extensible Framework
■ Ability to extend error handling capabilities.

■ Automated error actions.

■ Ability to automatically acts upon the errored object to provide automated retry
actions, error notifications, and logging.

■ Error actions, including retry, rethrow, replay, abort, Java action, and
human-intervention.

13.1.1 Fault Categories
There are two categories of faults:

■ Business faults

Business faults are generated when there is a problem with the information being
processed. For example, a credit card number is invalid.

Error actions for business faults that are internal to BPEL are configured in catch
blocks. These are business faults that are thrown by a throw activity. Error
notifications and logging for these business faults are handled by
AIAAsyncErrorHandlingBPELProcess.

Error actions for business faults from external applications and services are
configured using the Composite Fault Policy Framework. These are business
errors that are returned by an invoked service or application when using a BPEL
invoke activity. Error notifications and logging for these business faults are
handled by oracle.apps.aia.core.eh.CompositeJavaAction.

Introduction to Error Handling for Business Faults

13-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

■ System faults

System faults occur as a result of problems within the running of the BPEL process
or Mediator service component. For example, data cannot be copied properly
because the variable name is incorrect or because of transformation errors.

Error actions for system faults are configured using the Composite Fault Policy
Framework. Error notifications and logging for system faults are handled by
oracle.apps.aia.core.eh.CompositeJavaAction.

13.2 Introduction to Error Handling for Business Faults
This section discusses error handling for two types of business faults:

■ Local business faults

■ Remote business faults

Local Business Faults
If a BPEL process or Mediator component needs to issue a business error, such as a
validation error, the process must be developed to issue the error explicitly, catch it in a
catch block, and invoke the AIAAsyncErrorHandlingBPELProcess. The input to the
process is a fault message in the AIA fault message schema. This is also true for
business errors for Oracle Data Integrator, Oracle Service Bus, third-party B2B, and
other external systems that want to leverage the AIA Error Handling and Logging
framework.

Remote Business Faults
If an invoked service or application responds to a request with a business fault, the
Oracle SOA Suite captures these types of errors using the Composite Fault Policy
Framework. The AIA Error Handling framework provides a custom Java action,
oracle.apps.aia.core.eh.CompositeJavaAction, which can be configured as the Java
action for all policies.

By configuring fault policies to include this Java action, the AIA Error Handling
framework can perform all necessary error logging and notifications.

For more information, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

13.3 Introduction to Error Handling for BPEL and Mediator System Faults
These types of errors are captured using the Composite Fault Policy Framework. The
AIA Error Handling framework provides a custom Java action,
oracle.apps.aia.core.eh.CompositeJavaAction, which can be configured as the Java
action for all policies.

By configuring fault policies to include this Java action, the AIA Error Handling
framework can perform all necessary error logging and notifications.

For more information, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

For more information about the Composite Fault Policy framework, see "Using Fault
Handling in a BPEL Process" in Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite.

Introduction to Error Handling for Oracle B2B Errors

Introduction to Oracle AIA Error Handling 13-5

13.4 Introduction to Error Handling for Oracle B2B Errors
The Oracle AIA Error Handling Framework is automatically triggered when there is
an error in Oracle B2B.

Oracle B2B can encounter errors while exchanging B2B documents with trading
partners. Some common reasons for errors in the Oracle B2B layer include the
following scenarios:

■ Failure of document schema validation in the B2B layer.

■ Incorrect or missing trading partner agreements in Oracle B2B.

■ Incorrect or missing document-type definitions in Oracle B2B.

■ Network errors or unavailability of a trading partner system.

■ Authentication failures, for example invalid digital certificates, and so forth.

When Oracle B2B encounters these system errors, its default behavior is to publish the
error to the Oracle Advanced Queuing (AQ) queue defined in the Oracle B2B
infrastructure schema.

The details of the AQ to which Oracle B2B posts errors are covered in Table 13–1.

Figure 13–2 illustrates the way in which the AIA error handling framework captures
B2B errors:

Note: Business process failures, such as an order being rejected by
the trading partner if the ordered item is not in stock, are not
considered to be Oracle B2B errors. Response or acknowledgment
messages from trading partner applications containing these failures
are treated as independent flows.

Table 13–1 Oracle B2B Error AQ Details

Queue Name IP_IN_QUEUE

Database Schema SH_SOAINFRA

Queue Consumer b2berroruser

Data Source jdbc/SOADatasource

Introduction to Error Handling for Oracle B2B Errors

13-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 13–2 Error Handling Framework Support for Capturing B2B Errors

These errors can be viewed in error reports available in the Oracle B2B console.

For more information about viewing Oracle B2B error reports, see Chapter 19,
"Accessing Oracle B2B Errors."

For Oracle B2B inbound and outbound flows, when an error occurs within the Oracle
B2B server and not in the AIA layer, the AIA fault has the capacity to capture only the
B2B-specific details.

Enterprise Business Message (EBM) details will not be available. However, in the case
of an error in an outbound flow, AIA is able to track the EBMID and include that
information in the fault.

14

Setting Up Error Handling 14-1

14Setting Up Error Handling

[15] This chapter provides an overview and discusses how to create user roles, associate
email addresses to user roles, configure notification details, and how to set up error
handling configuration details.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Setting Up Error Handling"

■ Section 14.2, "How to Create Error Handling User Roles"

■ Section 14.3, "How to Associate Email Addresses with Error Handling User Roles"

■ Section 14.4, "How to Configure Notification Details"

■ Section 14.5, "How to Set Up AIA Error Handling Configuration Details"

14.1 Introduction to Setting Up Error Handling
Setting up error handling involves configuring the following items:

■ Error notification enablement

Error notification functionality is enabled by default.

For more information about disabling error notification functionality, see
Section 15.4, "Disabling Error Notifications."

■ Oracle BPM Worklist enablement

Oracle BPM Worklist functionality is disabled by default.

For more information about enabling Oracle BPM Worklist functionality, see
Section 16.2, "How to Enable the Oracle BPM Worklist."

■ Error handling user roles

Create user roles in WebLogic Server Administration Console to receive error
notifications and Oracle BPM Worklist task assignments.

For more information, see Section 14.2, "How to Create Error Handling User
Roles."

■ Error handling user role email addresses

Use Oracle User Messaging Service to associate email addresses with error
handling user roles. Error notifications will be sent to the email addresses
specified.

For more information, see Section 14.3, "How to Associate Email Addresses with
Error Handling User Roles."

Introduction to Setting Up Error Handling

14-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

■ Notification configuration details

Configure details that enable error notification emails to be sent.

For more information, see Section 14.4, "How to Configure Notification Details."

■ Error handling configuration details

Define and modify error handling configuration details, including Error
Notification and Oracle Worklist roles and responsibilities for processes operating
in an Oracle Application Integration Architecture (AIA) ecosystem.

For more information, see Section 14.5, "How to Set Up AIA Error Handling
Configuration Details."

■ Error handling responsibilities

If you do not want to assign Actor and FYI user roles for specific error scenarios,
you can assign default Actor and FYI user roles in
AIAConfigurationProperties.xml.

For more information, see "Configuring Oracle AIA Processes for Error Handling
and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle
Application Integration Architecture Foundation Pack.

Figure 14–1 illustrates the way in which error handling setup elements enable Error
Notification functionality.

Introduction to Setting Up Error Handling

Setting Up Error Handling 14-3

Figure 14–1 Error Handling Setup Elements That Enable Error Notification Functionality

Figure 14–2 illustrates the way in which error handling setup elements enable Oracle
Worklist functionality.

How to Create Error Handling User Roles

14-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 14–2 Error Handling Setup Elements That Enable Oracle Worklist Functionality

14.2 How to Create Error Handling User Roles

To create error handling user roles:
1. Access the Oracle WebLogic Server Administration Console:

http://<host>:<port>/console.

2. In the Domain Structure menu, click Security Realms.

3. On the Summary of Security Realms page, select myrealm.

4. On the Settings for myrealm page, select the Users and Groups tab.

5. Select the Users tab.

6. Create and modify user roles for use with the Error Handling Framework. For
error handling notification and worklist functionality to work as designed, ensure
that you are using user roles and not groups.

For more information about setting up user roles, see "Using the Administration
Console to Manage Users, Groups, and Roles" in Oracle Fusion Middleware Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Note: Any user roles you create in the WebLogic Server
Administration Console are stored in the Oracle WebLogic Server’s
embedded LDAP server. You may integrate a third-party LDAP
solution to the embedded LDAP server.

How to Set Up AIA Error Handling Configuration Details

Setting Up Error Handling 14-5

For more information about Oracle WebLogic Server s embedded LDAP server, see
"Security Provider Databases" in Oracle Fusion Middleware Understanding Security for
Oracle WebLogic Server.

14.3 How to Associate Email Addresses with Error Handling User Roles

To associate email address with error handling user roles:
1. Access the My Messaging Channels page in the Oracle User Messaging Service

standalone user interface:
http://<soa-host>:<soa-port>/sdpmessaging/userprefs-ui.

For more information about creating, updating, and deleting a message channel,
see "How to Manage Messaging Channels" in Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

2. Associate an email address with an error handling user role.

For more information about creating user roles, see Section 14.2, "How to Create
Error Handling User Roles."

3. Ensure that the messaging channel name you enter corresponds to an error
handling user role name you have created according to information in
Section 14.2, "How to Create Error Handling User Roles."

14.4 How to Configure Notification Details

To configure notification details:
1. Set up workflow notification properties in the Oracle Enterprise Manager.

For more information about how to set up these properties, see "Configuring
Human Workflow Notification Properties" in Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management
Suite.

2. Configure an email messaging channel. This enables the messaging service to
resolve the email address when trying to send a notification to a user.

For more information about how to configure an email messaging channel, see the
Oracle WebLogic Communication Services Developer's Guide.

3. Set the sender address for email notifications to a valid email address. Set this
value in the FROM.EMAIL.ID property in the Error Handling Module section of the
AIAConfigurationProperties.xml file. For example:

<Property name="FROM.EMAIL.ID">Email:AIA-Error-Handling@oracle.com</Property>

For more information about requirements for working with
AIAConfigurationProperties.xml, see "How to Set Up AIA Workstation" in Oracle
Fusion Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

14.5 How to Set Up AIA Error Handling Configuration Details
This section includes the following topic: Section 14.5.1, "What You Need to Know
about Setting Up Error Handling Configurations."

How to Set Up AIA Error Handling Configuration Details

14-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

To set up AIA error handling configuration details:
1. Access the Error Notifications page. To access the page,

Access the AIA Home Page. In the Setup area, click the Go button. Select the Error
Notification tab. The Error Notification page displays as shown in Figure 14–3
and Figure 14–4.

Figure 14–3 Error Notification Page (1 of 2)

Figure 14–4 Error Notification Page (2 of 2)

2. Use the page elements to define and modify error handling configuration details
for processes operating in an Oracle AIA ecosystem, including Error Notification
and Oracle Worklist roles and Error Notification throttling parameters.

The error handling configurations you define on the Error Notifications page are
stored in the AIA_ERROR_NOTIFICATIONS table.

Note: For a given process, if no entry is found in the AIA_ERROR_
NOTIFICATIONS table, the Actor and FYI roles specified in
AIAConfigurationProperties.xml are used for Error Notifications and
Oracle Worklist assignments, if enabled. By default, the Actor role is
set to AIAIntegrationAdmin. Therefore, you are not required to
populate the AIA_ERROR_NOTIFICATIONS table unless there is an
explicit need.

How to Set Up AIA Error Handling Configuration Details

Setting Up Error Handling 14-7

For more information, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

Descriptions of key elements on the Error Notification page are discussed in
Table 14–1.

Table 14–1 Error Notification Page Elements

Element Description

ErrorCode For BPEL and Mediator process system error notifications, this is the
fault code.

For business errors using catch blocks, this is the business error code
you are catching. This is user-defined, for example, OUT_OF_INV.

The sample error code for system faults is
{http://schemas.oracle.com/bpel/extension}remoteFault and
{http://schemas.oracle.com/bpel/extension}bindingFault.

SystemCode This is the system code of the participating application.

ProcessName This is the business process in which the service is participating.

ServiceName For BPEL and Mediator services, this is the name of the service that
experiences the error for which you are defining error notification
details. For example, SampleBPELProcess.

NotificationRole If you have enabled Error Notifications, specify the user role that you
want to receive Actor error notifications for a process.

If you have enabled Oracle Worklist functionality, specify the role to
which you want to assign Actor tasks for a process.

The Actor role is responsible for taking action to correct the error that
generated the notification.

For Error Notifications or Oracle Worklist functionality, ensure that the
role you specify here has a corresponding entry in the Oracle WebLogic
Server Administration Console user store.

For more information, see Section 14.2, "How to Create Error Handling
User Roles."

For Error Notifications functionality, ensure that the user role has an
email address defined in the Oracle WebLogic User Messaging Service.

For more information, see Section 14.3, "How to Associate Email
Addresses with Error Handling User Roles."

FyiNotificationRole If you have enabled Error Notifications, specify the user role that you
want to receive FYI error notifications for a process.

If you have enabled Oracle BPM Worklist functionality, specify the role
to which you want to assign FYI tasks for a process.

This is the role that will be given information about the error, but will
not be responsible for taking any actions to correct the error that
generated the notification.

For Error Notifications or Oracle BPM Worklist functionality, ensure
that the role you specify here has a corresponding entry in your
implementation s user management store. By default, the AIA user
management store is WebLogic s embedded LDAP server.

For more information, see Section 14.2, "How to Create Error Handling
User Roles."

For Error Notifications functionality, ensure that the user role has an
email address defined in Oracle User Messaging Service preferences.

For more information, see Section 14.3, "How to Associate Email
Addresses with Error Handling User Roles."

How to Set Up AIA Error Handling Configuration Details

14-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

ErrorType The default value is AIA_EH_DEFAULT. Use this value if you want to
use the AIA default error listener as the consuming component for this
error notification.

Enter a unique value here if you are using extended error handling
functionality.

For more information about extending error handling, see "Configuring
Oracle AIA Processes for Error Handling and Trace Logging" in Oracle
Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack.

If you want to use default and extended error handling functionality in
a single error notification definition, add multiple Error Type values
separated by commas. For example, AIA_EH_DEFAULT, ORDER_FO,
where AIA_EH_DEFAULT is the default Oracle AIA follow-through
action, and ORDER_FO identifies the custom JMSCorrelationID for the
extended error handling implementation. The listeners and associated
actions for both of these error types will be executed at run time.

ErrorExtHandler
(error extension
handler)

The default value is ERRORHANDLER_EXT. Use this value for the
error notification if you are not using an extended handler and the fault
message will be generated based on the default fault message schema.

For more information about extending fault messages, see "Configuring
Oracle AIA Processes for Error Handling and Trace Logging" in Oracle
Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack.

If you are using an extended handler to extend the fault message for
this error notification, enter a unique value to identify the extension
handler that will be used to enrich the fault message.

AggrCountTot
(aggregation count
total)

Error notification throttling must be enabled before this field value can
be used to control the issuance of error notifications.

For more information, see Section 15.2.2, "How to Enable Error
Notification Throttling."

Enter the total number of error notifications you want the system to
suppress during a specific time interval for the given error scenario.
The count is valid only during the specified time interval.

An error notification email is issued for the first error during the time
interval. After reaching the count value, the count is reset to 0 and
another error notification email is issued.

StDatetime/EndDate
time

Error notification throttling must be enabled before these field values
can be used to control the issuance of error notifications.

For more information, see Section 15.2.2, "How to Enable Error
Notification Throttling."

Enter the start and end date-and-time intervals to which you want the
count value to apply.

For example, if you set the AggrCountTot field value to 100, the start
date and time to 30-Oct-2009 18:00:00, and the end date and time to
01-Nov-2009 17:00:00, one error notification email will be sent out on
the first occurrence of an error in the time interval. When the count
value entered in the AggrCountTot field is reached, the count is reset to
0 and another error notification email is issued.

The date and time values used to track the time interval are derived
from the database. The date and time displayed in the fields are
derived from your browser time. Hover over the field values to view
the database time.

Table 14–1 (Cont.) Error Notification Page Elements

Element Description

How to Set Up AIA Error Handling Configuration Details

Setting Up Error Handling 14-9

14.5.1 What You Need to Know about Setting Up Error Handling Configurations
The Error Handling Framework uses runtime values and the data you enter on this
page to execute the following hierarchical logic to determine the appropriate Error
Notification and Oracle BPM Worklist assignment roles for an error.

1. If all four runtime values (SYSTEM CODE, ERROR CODE, SERVICE NAME, and
PROCESS_NAME) are available and they map to an entry in this table, use the
specified roles.

2. If the ERROR CODE, SERVICE_NAME, and PROCESS_NAME are available and
map to an entry in this table, use the specified roles.

3. If the SERVICE_NAME and PROCESS_NAME are available and map to an entry
in this table, use the specified roles.

4. If the SERVICE_NAME is available and maps to an entry in this table, use the
specified roles.

5. If none of these values are available, the default values are fetched from the
AIAConfigurationProperties.xml file.

How to Set Up AIA Error Handling Configuration Details

14-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

15

Using Error Notifications 15-1

15Using Error Notifications

[16] This chapter provides an overview of error notifications and describes how to set up
notification throttling, how to customize notification emails, and how to disable error
notifications.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Error Notifications"

■ Section 15.2, "Setting Up Error Notification Throttling"

■ Section 15.3, "Customizing Error Notification Emails"

■ Section 15.4, "Disabling Error Notifications"

15.1 Introduction to Error Notifications
By default, error notification functionality is enabled. However, there are setup steps
that must be completed.

For more information about setting up error notifications, see Chapter 14, "Setting Up
Error Handling."

Error notification functionality generates and delivers email notifications to configured
user roles.

For more information about configuring user roles for error notifications, see
Section 14.2, "How to Create Error Handling User Roles" and Section 14.3, "How to
Associate Email Addresses with Error Handling User Roles."

You can define a user role to receive error notifications for a specific error scenario on
the Error Notifications page.

For more information, see Section 14.5, "How to Set Up AIA Error Handling
Configuration Details."

You can control the number of error notifications issued for an error scenario over a
specific interval of time using error notification throttling functionality.

For more information, see Section 15.2, "Setting Up Error Notification Throttling."

Figure 15–1 provides a sample error notification email.

Setting Up Error Notification Throttling

15-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Figure 15–1 Sample Error Notification Email

As delivered, error notification emails contain a link to the Oracle Enterprise Manager
Console, where recipients can view error information in the context of its flow trace. If
the Oracle BPM Worklist is also enabled, error notification emails also contain a link to
the Oracle BPM Worklist.

For more information about enabling the Oracle BPM Worklist, see Section 16.2, "How
to Enable the Oracle BPM Worklist."

Error notification actor and FYI emails are generated based on content and
configurations in AIAEHNotifications.xml file located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. You can customize email
content by editing this file.

For more information about customizing error notifications, see Section 15.3,
"Customizing Error Notification Emails."

15.2 Setting Up Error Notification Throttling
This section includes the following topics:

■ Section 15.2.1, "Introduction to Error Notification Throttling"

■ Section 15.2.2, "How to Enable Error Notification Throttling"

■ Section 15.2.3, "How to Configure Error Notification Throttling Parameters"

15.2.1 Introduction to Error Notification Throttling
The Error Handling Framework is capable of sending out an error notification email
each time an error scenario arises, however you may choose to use error notification
throttling functionality to control the number of error notification emails sent during a
specific time interval for a specific error scenario.

For example, if you know that a particular high-volume transaction will be down for
an extended period, you can configure notification throttling settings to control the
number of error notification emails that are sent for the error scenario during the
transaction s down-time. This will help you avoid the onslaught of error notification
emails that would have been triggered by the down-time had throttling configurations
not been set.

Setting Up Error Notification Throttling

Using Error Notifications 15-3

15.2.2 How to Enable Error Notification Throttling

Objective
Enable error notification throttling. By default, error notification throttling is disabled.

Prerequisites
Ensure that error notification functionality is enabled. By default, error notifications
are enabled. To verify that this functionality is enabled, access
AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIF property value is set to true.

Actor
Integration administrator

To enable error notification throttling:
1. Access AIAConfigurationProperties.xml in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set Property Name = EH.AGGR.NOTIFY to true.

If error notification throttling functionality is disabled by setting this property
value to false, an error notification email is issued each time an error scenario
arises.

3. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to
AIAConfigurationProperties.xml, see "Building AIA Integration Flows" in Oracle
Fusion Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

15.2.3 How to Configure Error Notification Throttling Parameters

Objective
Configure the parameters by which you want error notification throttling to occur for
an error scenario.

Prerequisites
■ Ensure that error notification functionality is enabled. By default, error

notifications are enabled. To verify that this functionality is enabled, access
AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

■ Ensure that error notification throttling is enabled.

For more information, see Section 15.2.2, "How to Enable Error Notification
Throttling."

Actor
Integration administrator

Setting Up Error Notification Throttling

15-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

To configure the parameters by which you want error notification throttling to
occur:
1. Access the AIA Home Page. In the Setup area, click the Go button. Select the Error

Notification tab. The Error Notification page displays as shown in Figure 15–2
and Figure 15–3.

Figure 15–2 Error Notification Page (1 of 2)

Figure 15–3 Error Notification Page (2 of 2)

2. For a given error scenario, defined by a set of ErrorCode, SystemId, ProcessName,
and ServiceName values, enter AggrCountTot, StDatetime, and EndDatetime
values.

■ In the AggrCountTot (aggregation count total) field, enter the total number of
error notifications you want the system to suppress during a specific time
interval for the given error scenario. The count is valid only during the
specified time interval.

An error notification email is issued for the first error during the time interval.
After reaching the count value, the count is reset to 0 and another error
notification email is issued.

■ In the StDatetime and EndDatetime fields, enter the start and end
date-and-time intervals to which you want the total count value to apply.

For example, if you set the AggrCountTot field value to 100, the start date and
time to 30-Oct-2009 18:00:00, and the end date and time to 01-Nov-2009
17:00:00, one error notification email will be sent out on the first occurrence of
an error in the time interval. When the count value entered in the

Customizing Error Notification Emails

Using Error Notifications 15-5

AggrCountTot field is reached, the count is reset to 0 and another error
notification email is issued.

The date and time values used to track the time interval are derived from the
database. The date and time displayed in the fields are derived from your
browser time. Hover over the field values to view the database time.

For more information about the options on the Error Notifications page, see
Section 14.5, "How to Set Up AIA Error Handling Configuration Details."

15.3 Customizing Error Notification Emails
This section includes the following topics:

■ Section 15.3.1, "Introduction to Error Notification Customization"

■ Section 15.3.2, "How to Customize the Subject Line of Error Notification Emails"

■ Section 15.3.3, "How to Customize the Body Text of Error Notification Emails"

■ Section 15.3.4, "How to Customize Additional URLs Provided in Error Notification
Email Body Text"

15.3.1 Introduction to Error Notification Customization
You can customize the subject line and body text of emails issued by error notification
functionality by editing the AIAEHNotifications.xml file located in <AIA_
HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. The text of the
file is shown in Example 15–1.

Example 15–1 AIAEHNotifications.xml

<?xml version="1.0" encoding="UTF-8"?>
<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify" version="1.0">
 <EMAIL>
 <SUBJECT>Error in AIA#@#XPATH.{/default:Fault/default:FaultNotification/default:
 FaultingService/default:ID}#@#Process</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA#@#XPATH.
{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
Process requires your attention. Please access the details from the url mentioned below.</BODY>
 </EMAIL>
 <FYI_EMAIL>
 <SUBJECT>Error in AIA#@#XPATH.{/default:Fault/default:FaultNotification/default:
 FaultingService/default:ID}#@# Process FYI</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA#@#XPATH.
 {/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </FYI_EMAIL>
 <URL>
 ===
 Please click on the following URL To view the instance details in the em console :
 ===
 @ http://$adminHost:$adminPort/em/faces/ai/soa/messageFlow?target=/Farm_$domainName/
 $domainName/$targetServer/#@#PROPS.{compositeName}#@#+[#@#PROPS.{composite
 Revision}#@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.{compositeDN}#@#/#@#PROPS.
 {compositeInstanceID}#@#

Note: These customizations will apply to all emails issued by error
notification functionality.

Customizing Error Notification Emails

15-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

 ===
 </URL>
 <EXT_URL>
 ==
 Please access the task in the Worklist Application :
 ==
 @ http://$managedHost:$managedPort/integration/worklistapp/faces/home.jspx
 ==
 </EXT_URL>
</AIAEHNotification>

All elements can be customized. All elements shown are required for error
notifications to work as designed, even if you choose to leave some of them blank.

15.3.1.1 EMAIL Element
Example 15–2 is an example of how you can customize the EMAIL element in
AIAEHNotifications.xml to provide content that appears in error notification emails to
Actor roles.

Example 15–2 EMAIL Element in AIAEHNotifications.xml

<EMAIL>
 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:FaultNotification/
 default:FaultingService/default:ID}#@#Process
 </SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in
 AIA#@#XPATH.{/default:Fault/default:FaultNotification/default:Faulting
 Service/default:ID}#@#Process requires your attention. Please access the
 details from the url mentioned below.
 </BODY>
</EMAIL>

The SUBJECT element provides the subject line of the error notification email. As
delivered, the subject line is set to reference the ID of the service that experienced the
error.

The BODY element provides the body text of the error notification email. As delivered,
the body text is set to reference the ID of the service that experienced the error.

15.3.1.2 FYI_EMAIL Element
Example 15–3 is an example of how you can customize the FYI_EMAIL element in
AIAEHNotifications.xml to provide content that appears in error notification emails to
FYI roles.

Example 15–3 FYI_EMAIL Element in AIAEHNotifications.xml

<FYI_EMAIL>
 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:FaultNotification/
 default:FaultingService/default:ID}#@#Process FYI
 </SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in
 AIA #@#XPATH.{/default:Fault/default:FaultNotification/default:Faulting
 Service/default:ID}#@#Process requires your attention. Please access the
 details from the url mentioned below.
 </BODY>
</FYI_EMAIL>

Customizing Error Notification Emails

Using Error Notifications 15-7

The SUBJECT element provides the subject line of the error notification email. As
delivered, the subject line is set to reference the ID of the service that experienced the
error.

The BODY element provides the body text of the error notification email. As delivered,
the body text is set to reference the ID of the service that experienced the error.

15.3.1.3 URL Element
As delivered, the URL element in AIAEHNotification.xml is used to provide a link to
the composite instance flow trace details in the Oracle Enterprise Manager Console for
your AIA implementation. You can customize this element to suit your
implementation needs.

$hostname, $adminport, and $domain tokens shown in Example 15–4 are populated
with implementation-specific values by the Oracle AIA Installer upon installation of
Foundation Pack.

Example 15–4 URL Element in AIAEHNotification.xml

<URL>
 ==
 Please click on the following URL to view instancedetails in the em console:
 ==
 @ http://$adminHost:$adminPort/em/faces/ai/soa/messageFlow?target=/Farm_
 $domainName/$domainName/$targetServer/#@#PROPS.{compositeName}
 #@#+[#@#PROPS.{composite Revision}#@#]%26type=oracle_soa_
 composite%26soaContext=#@#PROPS.{compositeDN}#@#/#@#PROPS.{composite
 InstanceID}#@#
 ==
</URL>

15.3.1.4 EXT_URL Element
As delivered, the EXT_URL (external system URL) element in AIAEHNotifications.xml
is used to provide a link to the Oracle BPM Worklist application, where, if enabled for
AIA, the user can view their assigned AIA error-related tasks. You can customize this
element to suit your implementation s needs.

$hostname and $port tokens shown in Example 15–5 are populated with
implementation-specific values by the Oracle AIA Installer upon installation of
Foundation Pack.

Example 15–5 EXT_URL Element in AIAEHNotifications.xml

<EXT_URL>
 ==
 Please access the task in the Worklist Application :
 ==
 @ http://$managedHost:$managedPort/integration/worklistapp/faces/home.jspx
 ==
</EXT_URL>

For more information about enabling Oracle BPM Worklist functionality, see
Section 16.2, "How to Enable the Oracle BPM Worklist."

Customizing Error Notification Emails

15-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

15.3.2 How to Customize the Subject Line of Error Notification Emails

Objective
Customize the subject line of error notification emails.

Prerequisites
Ensure that error notification functionality is enabled. By default, error notifications
are enabled. To verify that this functionality is enabled, access
AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

Actor
Integration administrator

To customize the subject line of error notification emails:
1. Access the AIAEHNotifications.xml file located in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the subject line used in error notification emails to Actor roles, edit
the values in the <EMAIL><SUBJECT> element. To customize the subject line used in
error notification emails to FYI roles, edit the values in the <FYI_EMAIL><SUBJECT>
element.

You can customize the subject line text to include multibyte characters for
translation to other languages. The encoding used is UTF-8. After customized, the
file must be uploaded to Oracle Meta Data Services (MDS).

For more information about uploading content to MDS, see "Updating MDS" in
Oracle Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack.

3. To customize the AIA fault message schema value being displayed in the subject
line, edit the XPATH value to use a different token. The token notation should use
this format: #@#XPATH.{ACTUAL_XPATH_VALUE}#@#. Error notification functionality
will parse this file and replace the tokens with dynamic content. Enter as many or
as few tokens as needed.

Example 15–6 is an example of how to customize the subject line of error
notification emails.

Example 15–6 Customizing the Subject Line of Error Notification Emails

<?xml version="1.0" encoding="UTF-8"?>
<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify" version="1.0">
 <EMAIL>
 <SUBJECT>Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA#@#XPATH.
 {/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </EMAIL>
 <FYI_EMAIL>
 <SUBJECT>Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process FYI</SUBJECT>

Customizing Error Notification Emails

Using Error Notifications 15-9

 <BODY>An error has occurred during the processing of AIA Integration Error in AIA#@#XPATH.
 {/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </FYI_EMAIL>
 <URL>
 ==
 Please click on the following URL To view the instancedetails in the em console :
 ==
 @ http://$adminHost:$adminPort/em/faces/ai/soa/messageFlow?target=/Farm_
 $domainName/$domainName/$targetServer/#@#PROPS.
 {compositeName}#@#+[#@#PROPS.{composite Revision}#@#]%26type=oracle_soa_
 composite%26soaContext=#@#PROPS.
 {compositeDN}#@#/#@#PROPS.{compositeInstanceID}#@#
 ==
 </URL>
 <EXT_URL>
 ==
 Please access the task in the Worklist Application :
 ==
 @ http://$managedHost:$managedPort/integration/worklistapp/faces/home.jspx
 ==
 </EXT_URL>
</AIAEHNotification>

For more information about the AIA fault message schema, see "Configuring
Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion
Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

4. If you have implemented fault message schema extensions, you can customize the
subject line to use these schema values as well.

For more information about extending the fault schema, see "Configuring Oracle
AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware
Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

5. Reload updates to the AIAEHNotifications.xml file.

For more information about reloading updates to AIAEHNotifications.xml, see
"Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

15.3.3 How to Customize the Body Text of Error Notification Emails

Objective
Customize the body text of error notification emails.

Prerequisites
Ensure that error notification functionality is enabled. By default, error notifications
are enabled. To verify that this functionality is enabled, access
AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

Actor
Integration administrator

Customizing Error Notification Emails

15-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

To customize the body text of error notification emails:
1. Access the AIAEHNotifications.xml file located in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the body text used in error notification emails to Actor roles, edit the
values in the <EMAIL><BODY> element. To customize the body text used in error
notification emails to FYI roles, edit the values in the <FYI_EMAIL><BODY> element.

You can customize the body text to include multibyte characters for translation to
other languages. The encoding used is UTF-8. After customized, the file must be
uploaded to Oracle Meta Data Services (MDS).

For more information about uploading content to MDS, see "Updating MDS" in
Oracle Fusion Middleware Developer's Guide for Oracle Application Integration
Architecture Foundation Pack.

3. To customize the AIA fault message schema values being displayed in the body
text, edit the XPATH value to use a different token. The token notation should use
this format: #@#XPATH.{ACTUAL_XPATH_VALUE}#@#. Error notification functionality
will parse this file and replace the tokens with dynamic content. Enter as many or
as few tokens as needed.

Example 15–7 is an example of how to customize the body text of an error
notification email.

Example 15–7 Customizing the Body Text of Error Notification Emails

<?xml version="1.0" encoding="UTF-8"?>
<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify" version="1.0">
 <EMAIL>
 <SUBJECT>Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}
 #@#Process</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </EMAIL>
 <FYI_EMAIL>
 <SUBJECT>Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}
 #@#ProcessFYI</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA
 #@#XPATH.{/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </FYI_EMAIL>
 <URL>
 ==
 Please click on the following URL To view the instancedetails in the em console :
 ==
 @ http://$adminHost:$adminPort/em/faces/ai/soa/messageFlow?target=/Farm_
 $domainName/$domainName/$targetServer/#@#PROPS.{compositeName}#@#+[#@#PROPS.{composite
 Revision}#@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.{compositeDN}#@#/#@#PROPS.
 {compositeInstanceID}#@#
 ==
 </URL>
 <EXT_URL>
 ==
 Please access the task in the Worklist Application :
 ==

Customizing Error Notification Emails

Using Error Notifications 15-11

 @ http://$managedHost:$managedPort/integration/worklistapp/faces/home.jspx
 ==
 </EXT_URL>
</AIAEHNotification>

For more information about the AIA fault message schema, see "Configuring
Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion
Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

4. If you have implemented fault message schema extensions, you can customize the
body text to use these schema values as well.

For more information about extending the fault schema, see "Configuring Oracle
AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware
Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

5. Reload updates to the AIAEHNotifications.xml file.

For more information about reloading updates to AIAEHNotifications.xml, see
"Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

15.3.4 How to Customize Additional URLs Provided in Error Notification Email Body
Text

Objective
Customize additional URLs provided in error notification email body text.

Prerequisites
■ Ensure that error notification functionality is enabled. By default, error

notifications are enabled. To verify that this functionality is enabled, access
AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

■ As delivered, error notification email body text includes a link to the Oracle BPM
Worklist. To enable users to access AIA-related error tasks in the Oracle BPM
Worklist, ensure that Oracle BPM Worklist functionality is enabled.

For more information about enabling Oracle BPM Worklist to work with AIA error
handling, see Section 16.2, "How to Enable the Oracle BPM Worklist."

Actor
Integration administrator

To customize application links in body text of error notification emails:
1. Access the AIAEHNotifications.xml file located in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the URLs provided in the error notification email body text, edit the
values in the <URL> and <EXT_URL> elements.

3. As delivered, the <URL> element provides a link to flow trace details for the
composite instance in the Oracle Enterprise Manager Console for your AIA
implementation. The flow trace provides details about all of the services,
references, and components across composites that are participating in the flow.

Customizing Error Notification Emails

15-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

For more information about viewing flow trace details in Oracle Enterprise
Manager, see "Viewing the Audit Trail and Process Flow of a BPEL Process Service
Component" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

Figure 15–4 shows a sample error notification email text, which provides a link to
flow trace details in the Oracle Enterprise Manager console.

Figure 15–4 Sample Error Notification Email Text Providing a Link to Flow Trace Details
in the Oracle Enterprise Manager Console

Figure 15–5 is an example of fault details being displayed on the Oracle Enterprise
Console Flow Trace page.

Figure 15–5 Fault Details on the Enterprise Manager Console Flow Trace Page

We deliver the following parameters that enable this drill-down into the Oracle
Enterprise Manager Console:

■ #@#PROPS.{compositeName}#@#

■ #@#PROPS.{compositeRevision}#@#

■ #@#PROPS.{compositeDN}#@#

Customizing Error Notification Emails

Using Error Notifications 15-13

■ #@#PROPS.{compositeInstanceID}#@#

For system errors configured in fault policy files, these parameters will be
automatically derived to build the URL for inclusion in the error notification
email. Specifically, by default, remote and binding faults are configured in the fault
policy file.

For business errors, you must configure impacted processes to populate the fault
message with the execution context ID (ECID). Error notification functionality will
derive these parameters to build the URL based on this ECID value.

For more information about programming guidelines to populate fault messages
with ECID value, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

4. As delivered, the <EXT_URL> element provides a link to the Oracle BPM Worklist,
as shown in Example 15–8.

If you are not using Oracle BPM Worklist as a part of your AIA implementation
and do not want error notification emails to include this link to Oracle BPM
Worklist, access AIAConfigurationProperties.xml located in <AIA_HOME>/aia_
instances/$INSTANCE_NAME/AIAMetaData/config and set the
EH.INVOKE.HWF property to false. This setting will remove any content
expressed in the <EXT_URL> element, including the Oracle BPM Worklist default
link, from error notification emails.

Example 15–8 Customizing Application Links in Body Text of Error Notification Emails

<?xml version="1.0" encoding="UTF-8"?>
<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify" version="1.0">
 <EMAIL>
 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:FaultNotification/default:
 FaultingService/default:ID}#@# Process</SUBJECT>
 <BODY>An error has occurred during the processing of AIA Integration Error in AIA #@#XPATH.
 {/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </EMAIL>
 <FYI_EMAIL>
 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:FaultNotification/default:
 FaultingService/default:ID}#@#Process FYI</SUBJECT>
 <BODY>An error has occurred during the processing of AIAIntegration Error in AIA #@#XPATH.
 {/default:Fault/default:FaultNotification/default:FaultingService/default:ID}#@#
 Process requires your attention. Please access the details from the url mentioned
 below.</BODY>
 </FYI_EMAIL>
 <URL>
 ==
 Please click on the following URL To view the instance details in the em console :
 ==
 @ http://$adminHost:$adminPort/em/faces/ai/soa/messageFlow?target=/Farm_
 $domainName/$domainName/$targetServer/#@#PROPS.{compositeName}#@#+[#@#PROPS.
 {composite Revision}#@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.
 {compositeDN}#@#/#@#PROPS.{compositeInstanceID}#@#
 ==
 </URL>
 <EXT_URL>
 ==
 Please access the task in the Worklist Application :
 ==

Disabling Error Notifications

15-14 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

 @ http://$managedHost:$managedPort/integration/worklistapp/faces/home.jspx
 ==
 </EXT_URL>
</AIAEHNotification>

5. Reload updates to the AIAEHNotifications.xml file.

For more information about reloading updates to AIAEHNotifications.xml, see
"Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

15.4 Disabling Error Notifications
By default, error notification functionality is enabled. You can disable this functionality
in AIAConfigurationProperties.xml.

To disable error notifications:
1. Access AIAConfigurationProperties.xml located in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set the EH.INVOKE.NOTIFY property value to false.

3. Reload updates to AIAConfigurationProperties.xml.

For more information about reloading updates to AIAEHNotifications.xml, see
"Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

When error notification functionality is disabled, the Error Handling Framework does
not issue error notification emails, but continues to log errors and assemble fault
messages in the AIA Error Topic.

While error notifications are disabled, the AIA fault message remains available for
input in the AIA Error Topic. This enables the Error Handling Framework to support a
fully customized error handling solution.

16

Using the Oracle BPM Worklist 16-1

16Using the Oracle BPM Worklist

[17] This chapter provides an overview of the Oracle BPM Worklist and describes how to
enable and use the BPM Worklist.

The Oracle BPM Worklist application is a user interface (UI) that Actor roles, such as
integration administrators, and FYI roles, such as customer service representatives
(CSRs), can use to access details about AIA ecosystem service errors that have been
assigned to them for resolution or for informational purposes only.

This chapter includes the following sections:

■ Section 16.1, "Introduction to the Oracle BPM Worklist"

■ Section 16.2, "How to Enable the Oracle BPM Worklist"

■ Section 16.3, "How to Use the Oracle BPM Worklist"

16.1 Introduction to the Oracle BPM Worklist
The Oracle BPM Worklist application can be used to provide an error console for the
Oracle Application Integration Architecture (AIA). You can enable this functionality in
AIAConfigurationProperties.xml.

For more information about enabling Oracle BPM Worklist functionality, see
Section 16.2, "How to Enable the Oracle BPM Worklist."

The Oracle BPM Worklist application is a user interface (UI) that Actor roles, such as
integration administrators, and FYI roles, such as customer service representatives
(CSRs), can use to access details about AIA ecosystem service errors that have been
assigned to them for resolution or for informational purposes only. Users will not
receive email notifications regarding Oracle BPM Worklist task assignments unless
error notifications are enabled.

For more information, see Chapter 15, "Using Error Notifications."

Based on their roles, users will be able to interact with the following types of tasks in
the Oracle BPM Worklist:

■ Single-approver task

Actor roles, such as integration administrators, are assigned single-approver tasks
in the Oracle BPM Worklist. Typically, this role is responsible for taking action to

Note: Oracle BPM Worklist functionality will be accessible even if
you have not enabled it to work with Oracle AIA. However, the
Oracle BPM Worklist will not include any AIA-specific error tasks.

Introduction to the Oracle BPM Worklist

16-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

resolve the error and must update the error task with activity and status details.
Therefore, for Actor roles, the Oracle BPM Worklist provides an editable UI.

■ FYI task

FYI roles, such as customer service representatives, are assigned FYI tasks in the
Oracle BPM Worklist. Typically, this role only needs a view of information about
the status of the errored end-to-end transaction. Therefore, for FYI roles, the Oracle
BPM Worklist provides a display-only UI. The FYI role is not responsible for
taking any particular action to resolve the error.

The Oracle BPM Worklist provides the following error details that can assist in the
troubleshooting process:

■ EBMID

■ EBMName

■ EBOName

■ Verb Code

■ Business Scope Reference ID

■ Business Scope Reference Instance ID

■ Enterprise Service Name

■ Enterprise Service Operation Name

■ Sender Reference ID

■ Sender Message ID

■ Sender Reference Transaction Code

■ Sender Object Identification ID

■ Context ID

■ EBOID

■ Reporting Date Time

■ Corrective Action

■ Fault Message Code

■ Fault Message Text

■ Severity

■ Stack

■ Faulting Service ID

■ Faulting Service Implementation Code

■ Faulting Service Instance ID

■ B2B Fault Element

■ B2BMReference/B2BMID

■ B2BMReference/B2BDocumentType/DocumentTypeCode

■ B2BMReference/B2BDocumentType/DocumentTypeVersion

■ B2BMReference/SenderTradingPartner/TradingPartnerID

■ B2BMReference/ReceiverTradingPartner/TradingPartnerID

How to Use the Oracle BPM Worklist

Using the Oracle BPM Worklist 16-3

16.2 How to Enable the Oracle BPM Worklist
By default, Oracle BPM Worklist functionality is disabled. You can enable this
functionality in AIAConfigurationProperties.xml.

To enable the Oracle BPM Worklist:
1. Access AIAConfigurationProperties.xml located in <AIA_HOME>/aia_

instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set the EH.INVOKE.HWF property value to true.

3. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to AIAConfigurationProperties.xml,
see "Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

The AIAReadJMSNotification BPEL process will now listen to the AIA Error Topic
Java message service (JMS) topic, which is populated by the Error Handling
Framework. Relevant errors will be aggregated by the AIAReadJMSNotification BPEL
process and displayed in the Oracle BPM Worklist.

If error notification is also enabled, error notification emails will contain a link to the
Oracle BPM Worklist.

For more information about error notifications, see Chapter 15, "Using Error
Notifications."

16.3 How to Use the Oracle BPM Worklist
After you have been assigned an AIA error task that you need to view or act upon to
resolve, you can use the details provided by the Oracle BPM Worklist to troubleshoot
the error.

Access the Oracle BPM Worklist: http://<host>:<SOA server
port>/integration/worklistapp.

Your assigned tasks display on the My Tasks page. You can filter your assigned tasks
using various criteria and search for assigned tasks by title, priority, and status. Click
an assigned task to access complete task details.

For more information, see "Using Oracle BPM Worklist" in Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

FYI user roles can view a task in read-only mode in the Oracle BPM Worklist.

Actor user roles can work on a task by acquiring the task. They can also enter
comments against the task and update the task status. For example, when the error has
been resolved, the user can set the task action to COMPLETED. Setting this value in
the Actions field completes the task.

For more information about message resubmission, see Chapter 17, "Using the AIA
Message Resubmission Utility."

How to Use the Oracle BPM Worklist

16-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

17

Using the AIA Message Resubmission Utility 17-1

17Using the AIA Message Resubmission Utility

[18] This chapter provides an overview and describes how to use the AIA Message
Resubmission Utility. The AIA Message Resubmission Utility enables users to
resubmit error messages based on these integration milestones: Queue, Topic,
Resequencer, or AQ.

This chapter includes the following sections:

■ Introduction to the AIA Message Resubmission Utility

■ Using the AIA Message Resubmission Utility User Interface

■ Using the Command Line AIA Message Resubmission Utility

17.1 Introduction to the AIA Message Resubmission Utility
To use the AIA Message Resubmission Utility, you must implement error handling
and recovery for the asynchronous message exchange pattern.

For more information, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

According to this implementation method, when a message cannot be delivered to a
service or component in the flow of a global transaction, the message is rolled back to
the appropriate source milestone. This source milestone corresponds to a Queue or a
Topic, a Resequencer, or AQ. It is here that the message will be persisted until it can be
resubmitted for delivery to the service or component.

At the same time, a fault is raised by the Error Handling framework and, if enabled,
error notifications and Oracle BPM Worklist tasks regarding the fault are created to
alert administrators.

For more information about the Oracle BPM Worklist, see Chapter 16, "Using the
Oracle BPM Worklist."

For more information about error notifications, see Chapter 15, "Using Error
Notifications."

Once notified, the most natural course of action is for the administrator to bring up the
failed service or component. After the service or component is back up and running,
the administrator can use the AIA message resubmission utility to recover the faulted
message from the source milestone. The AIA message resubmission utility changes the
state of the faulted message to the Ready state, enabling it to be picked up by the
consumer process.

Messages can be resubmitted by user interface or by command line in these ways:

Using the AIA Message Resubmission Utility User Interface

17-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

■ UI-based AIA Message Resubmission. For more information, see Section 17.2,
"Using the AIA Message Resubmission Utility User Interface".

■ Command line AIA Message Resubmission:

– Oracle AQ store-based resubmission. For more information, see Section 17.3.1,
"AQ Store Based Resubmission".

– WLS JMS store-based (can be configured with file system or database). For
more information, see Section 17.3.2, "WLS JMS based Resubmission".

– Resequencer-based. For more information, see Section 17.3.3, "Resequencer
Based Resubmission".

Figure 17–1 displays the architecture of the AIA message resubmission utility.

Figure 17–1 AIA Message Resubmission Utility Architecture

17.2 Using the AIA Message Resubmission Utility User Interface
This section discusses how to use the message resubmission utility user interface (UI)
to resubmit faulted messages. The UI is integrated into the AIA Home page.

Using the AIA Message Resubmission Utility User Interface

Using the AIA Message Resubmission Utility 17-3

The AIA message resubmission utility figures out the milestone that is involved in an
integration flow, based on the AIA Fault (canonical) and then resubmits any failed
messages by connecting to the actual milestone whether it is a WLS Queue, Topic,
Resequencer, or AQ.

The AIA message resubmission UI enables you query the error queue and filter for
failed messages of interest, helping you to choose candidates for resubmission.

You can search for faults based on filters like Execution Context ID, Message ID,
ErrorCode, Composite Name, Resource Type and other AIA context-related
parameters. The ability to search and filter based on ErrorCode, for example,
distinguishes system faults from business faults.

The UI also enables bulk resubmission of messages, and lets you quickly re-start a set
of integration flows and track their status.

You can still use the command line utility for error resubmission. For more
information, see Section 17.3, "Using the Command Line AIA Message Resubmission
Utility".

To search for and resubmit faults:
1. Access the Oracle Application Integration Architecture (AIA) Home Page. In the

AIA Message Resubmission Utility area, click the Go button. The Search Error
Messages page displays, as shown in Figure 17–2 and Figure 17–3.

Figure 17–2 Search Error Messages Page (1 of 2)

Figure 17–3 Search Error Messages Page (2 of 2)

2. On the Search page, use the page elements discussed in Table 17–1 to search for
faults.

Tip: You can submit a single row or multiple rows at a time. You can
also submit multiple rows of the same resource type at a time. To
select multiple rows, press the Ctrl key and click your mouse.

Using the AIA Message Resubmission Utility User Interface

17-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Table 17–1 Search Error Messages Page Elements

Element Description

Match Click the All or Any radio button if you want to match all or any
of the search criteria.

Advanced Click Advanced to open the advanced search window, shown in
Figure 17–6.

Saved Search You can save your own search criteria at any time, enabling you
to quickly search on status and other criteria, such as failed
messages, messages in process, ready for resubmission, or
resubmitted messages.

Execution Context ID A unique identifier used to correlate individual events as being
part of the same request execution flow.

Message ID A string value that uniquely identifies each message sent by a
WLS JMS provider/AQ/Resequencer.

Resource Type Choose from the list of available resource types: Queue, Topic or
Resequencer.

Resource Name Click the Resource Name lookup icon to see all of the available
Resource Names and Resource Types. The dialog box shows the
milestones that are configured in WLS and are automatically
fetched, making it easy to choose the correct resource.

Reported Date The reported date of an error message. You can filter error
messages from a specific date using this field.

Error Code For BPEL and Mediator process system error notifications, this is
the fault code.

For business errors using catch blocks, this is the business error
code you are catching. This is user-defined, for example, OUT_
OF_INV.

System Code This is the system code of the participating application.

Process Name This is the business process in which the service is participating.

Service Name For BPEL and Mediator services, this is the name of the service
that experiences the error for which you are defining error
notification details. For example, SampleBPELProcess.

Composite Instance ID Click the Composite Instance ID link to open the Enterprise
Manager (EM) flow trace page. The EM drill down page
displays the integration flow stack and all of the composites
involved in the process orchestration.

Status Statuses are: Ready for resubmission, Message is in process of
resubmission, Resubmitted, Failed.

Search Key Click the Search Key lookup icon to see all of the available
application context keys. The application context correlation
fields are automatically fetched and displayed.

The context information comes from the source participating
applications, for example, Siebel where an order is placed and an
OrderID is available. This field tracks and correlates the faulted
message in the integration layer.

Search Value This is the value for a selected application context key. For
example, "1001"(value of OrderID).

Search Click Search to see results in the Search Result page, shown in
Figure 17–3.

Reset Click Reset to clear all search fields.

Save Click Save to save your search criteria.

Using the AIA Message Resubmission Utility User Interface

Using the AIA Message Resubmission Utility 17-5

Search Results
Use the page elements on the Search Results page to view, submit, or delete messages.
Available elements are discussed in Table 17–2.

Finding Messages of Interest
You can use the Oracle EM Flow Trace page to review the integration flow stack and
all of the composites involved in a process orchestration, enabling you to narrow
down messages of interest.

Table 17–2 Search Results Page Elements

Element Description

View Click View and choose Columns, Manage Columns to add or
remove columns to your Search Result view.

Delete Select a fault and click the Delete button.

Submit Select a fault and click the Submit button.

Detach Click Detach to separate search the criteria pane and the Search
result pane.

Go Up or Go To Top Click the Go Up or Go to Top buttons to move through the list.

Show as Top button Click a message and then click Show as Top to move the
message to the top of the list.

Last Modified Date The the last modified date of an error message.

Message Order The order of an error message that is logged (the sequence
number).

Error Stamping This is the Error Type value used to stamp the
JMSCorrelationID. The JMSCorrelationID is used by the custom
error listener to identify fault messages that require its custom
error handling.

For example: AIA_EH_DEFAULT, ORDER_FO

Composite Version The version of the composite that is deployed and active.

Service Engine The type of service engine. It can be a BPEL process, human
workflow, a decision service, Oracle mediator, or spring that
executes the business logic of their respective components
within the SOA composite application.

Composite Instance ID Click the Composite ID field to see the trace flow in Oracle
Enterprise Manager (EM). You must be logged in to EM to see
the trace flow.

Message ID Click the Message ID link to open a brand new page.

Business Context Click the Business Context button to open the search details
dialog which provides a search key and search value.

Status Statuses are: Ready for resubmission, Message is in process of
resubmission, Resubmitted, Failed.

Status Message The Status Message is displayed based on the status of the error
message.

Ready for resubmission - Message is in error state.

Resubmitted - Message is resubmitted to main queue.

Failed - Exception stack trace.

Using the AIA Message Resubmission Utility User Interface

17-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

You must already be logged in to Oracle EM.

1. Click the Composite Instance ID link to open the Flow Trace page in EM. This
page shows the flow of the message through various composite and component
instances as in Figure 17–4.

Figure 17–4 EM Flow Trace Page

2. After determining a message of interest, close this window. In the AIA Message
Resubmission Utility Search Results page, click on the message and then click
the Submit button. The Status changes to In Progress as in Figure 17–5.

Figure 17–5 Search Result Page

Using the AIA Message Resubmission Utility User Interface

Using the AIA Message Resubmission Utility 17-7

3. After the message has been submitted, click Composite Instance ID again to see
the EM page where you can see that resubmission has happened--notice that a
new set of activities were triggered in the flow trace.

Using the Advanced Search:
1. Click the Advanced button to open the Search Error Messages window, shown in

Figure 17–6. You can search on different criteria and click Search to initiate a
search. Click Reset to clear the criteria. Click Add Fields to add search fields.

Figure 17–6 Advanced Search

Viewing Message Detail:
1. From the Search Result page, click the Message ID to open the specific message

and get more detail, as in Figure 17–7.

Figure 17–7 Message ID Detail

Using the Command Line AIA Message Resubmission Utility

17-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

17.3 Using the Command Line AIA Message Resubmission Utility
Messages can be resubmitted by user interface or by command line.

For more information about using the UI, see Section 17.2, "Using the AIA Message
Resubmission Utility User Interface".

17.3.1 AQ Store Based Resubmission
1. For message resubmission scenarios that involve Oracle Advanced Queue, Topic,

internally the MSG_RESUBMIT stored procedure is used. This procedure assumes
that the message type is SYS.AQ$_JMS_MESSAGE.

If the message type being used is not SYS.AQ$_JMS_MESSAGE, change the data
type for the MSG variable in the MSG_RESUBMIT stored procedure and then
recompile the procedure. You can then use the Message Resubmission Utility for
resubmission based on message ID.

For more information about configuring a queue with AQ to support
resubmission, see "Configure AQ JMS Foreign Server Destinations" in Oracle
Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server.

2. Access the Oracle AIA log file, <DOMAIN_HOME>/servers/<SOA Server
Name>/logs/aia-error.log to look up the following values included in the
IntermediateMessageHop element for the message that requires resubmission:

■ SenderResourceTypeCode

■ SenderResourceID

■ SenderMessageID

For more information about these values in the context of the Oracle AIA fault
message schema, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

Alternatively, you can also look up the aia-error.log in the Oracle Enterprise
Manager.

a. Under WebLogic Domain, <domain name>, right-click the manage server
entry (usually soa_server1).

b. Navigate to Logs, View Log Messages. On the Log Message page, provide
search criteria (optional) and click the Search button.

For more information about viewing the Oracle AIA log in Oracle Enterprise
Manager, see Chapter 18, "Using Trace and Error Logs."

3. AIAResubmissionUtility is available under $AIA_HOME/util, so browse to
$AIA_HOME/util/AIAResubmissionUtility. Set all the required values in
ResubmissionParams.properties file.

Example 17–1 Sample ResubmissionParams.properties for AQ based Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001

Note: The messageID should be in normal format, and should not
start with ID : < >

Using the Command Line AIA Message Resubmission Utility

Using the AIA Message Resubmission Utility 17-9

jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=1
resourceName=AIA_SiebelCustomerJMSQueue
messageID=7109EDC5FFD9BA25E04014908FC62C90
forceResubmit=false

4. For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

5. Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the
following:

ant –f MessageResubmit.xml -logfile $AIA_
HOME/util/AIAResubmissionUtility/MessageResubmit.log

The MessageResubmit.xml script references the edited
ResubmissionParams.properties file. Based on the results of the command line
execution, the status for a specific message will be set in the back end. Statuses are:
Ready for resubmission, Message is in process of resubmission, Resubmitted,
Failed.

17.3.2 WLS JMS based Resubmission
1. Access the Oracle AIA log file, <DOMAIN_HOME>/servers/<SOA Server

Name>/logs/aia-error.log, to look up the following values included in the
IntermediateMessageHop element for the message that requires resubmission:

■ SenderResourceTypeCode

■ SenderResourceID

■ SenderMessageID

For more information about these values in the context of the Oracle AIA fault
message schema, see "Configuring Oracle AIA Processes for Error Handling and
Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

Alternatively, you can also look up the aia-error.log in the Oracle Enterprise
Manager.

a. Under WebLogic Domain, <domain name>, right-click the manage server
entry (usually soa_server1).

b. Navigate to Logs, View Log Messages. On the Log Message page, provide
search criteria (optional) and click the Search button.

Note: All of these properties are self explanatory in the
ResubmissionParams.properties file. For security reasons the
"Password" property should be deleted from the properties file after
the execution of the command line AIA Message Resubmission Utility.

Multiple message IDs of a particular composite can be set for the
messageID property with comma “,” as a delimiter. For example:
7109EDC5FFD9BA25E0401, 9EDC5FFD9BA25E04014908F.

Using the Command Line AIA Message Resubmission Utility

17-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

For more information about viewing the Oracle AIA log in Oracle Enterprise
Manager, see Chapter 18, "Using Trace and Error Logs."

2. You may optionally define jms.resourceCFJndi= and jms.errorResourceCFJndi=
property values in the ResubmissionParams.properties file. The default values for
the error jndi are fetched based on the resourceName that is provided in the
properties file by using the mbean infrastructure. The connection factories are
derived based on the naming standards. See the second list item below.

■ The jms.resourceCFJndi= property defines a resource-specific
ConnectionFactory that will be used to connect to the resource error queue. In
this context, a resource is a JMS queue or topic. This property cannot have
multiple values, even if you have multiple connection factories. You must
specify one ConnectionFactory to be used by the resubmission script.

■ If the resource name is AIASamples_Queue and the JNDI is
jndi/aia/AIASamples_Queue, the ConnectionFactory property value would be
jndi/aia/AIASamples_QueueCF.

■ The jms.errorResourceCFJndi= property defines a generic
ConnectionFactory that will be used to connect to all resource error queues
that are not explicitly defined using the jms.resourceCFJndi= property. If
you do not define this value, it automatically uses jms/aia/aiaErrorQueueCF
which is created during AIA Foundation Pack installation.

3. AIAResubmissionUtility is available under $AIA_HOME/util, so browse to
$AIA_HOME/util/AIAResubmissionUtility. Set all the required values in
ResubmissionParams.properties file.

Example 17–2 Sample ResubmissionParams.properties for WLS JMS based
Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001
jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=1
resourceName=AIA_SiebelCustomerJMSQueue
messageID=ID:<983029.1264581138423.0>
forceResubmit=false

4. For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

5. Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the
following:

ant -f MessageResubmit.xml -logfile $AIA_
HOME/util/AIAResubmissionUtility/MessageResubmit.log

Note: The messageID should be in the format ID : < >

Multiple message IDs of a particular composite can be set for the
messageID property with comma “,” as a delimiter. For example:
ID:<7109EDC5FFD9BA25E0401>, ID:<9EDC5FFD9BA25E04014908F>.

Using the Command Line AIA Message Resubmission Utility

Using the AIA Message Resubmission Utility 17-11

The MessageResubmit.xml script references the edited
ResubmissionParams.properties file. Based on the results of the command line
execution, the status for a specific message will be set in the back end. Statuses are:
Ready for resubmission, Message is in process of resubmission, Resubmitted,
Failed.

17.3.3 Resequencer Based Resubmission
1. Faults/rejected messages which are marked as Recovery Needed in the EM

Console can only be resubmitted using AIAResubmissionUtility. To get the list of
faulted/rejected messages in the EM Console, navigate to SOA, click on
corresponding domain and navigate to Faults and Rejected messages tab in the
middle pane.

2. Make a list of all faulted instances (which are marked as Recovery Needed).

3. Get the composite name and messageID/GroupID (xpath of the messageID is
defined at the design time of the resequencer) of the faulted instances.

4. AIAResubmissionUtility is available under $AIA_HOME/util. Navigate to $AIA_
HOME/util/AIAResubmissionUtility and set all the required values in
ResubmissionParams.properties file.

Example 17–3 Sample ResubmissionParams.properties for Resequencer based
Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001
jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=3
resourceName=default/JMSConsumer!1.0
messageID=7109EDC5FFD9BA25E0
forceResubmit=false

5. For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

6. Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the
following:

Note: All of these properties are self explanatory in the
ResubmissionParams.properties file. For security reasons the
"Password" property should be deleted from the properties file after
the execution of the command line AIA Message Resubmission Utility.

Note: The resourceName should be in the format
default/<compositeName>!<version>.

Multiple message IDs of a particular composite can be set for the
messageID property with comma “,” as a delimiter. For example:
7109EDC5FFD9BA25E0401, 9EDC5FFD9BA25E04014908F.

Using the Command Line AIA Message Resubmission Utility

17-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

ant –f MessageResubmit.xml -logfile $AIA_
HOME/util/AIAResubmissionUtility/MessageResubmit.log

The MessageResubmit.xml script references the edited
ResubmissionParams.properties file. Based on the results of the command line
execution, the status for a specific message will be set in the back end. Statuses are:
Ready for resubmission, Message is in process of resubmission, Resubmitted,
Failed.

Note: All of these properties are self explanatory in the
ResubmissionParams.properties file. For security reasons the
"Password" property should be deleted from the properties file after
the execution of the command line AIA Message Resubmission Utility.

18

Using Trace and Error Logs 18-1

18Using Trace and Error Logs

[19] This chapter provides an overview and describes how to enable trace logging, how to
set trace log levels, and how to access trace and error logs.

The Oracle Application Integration Architecture (AIA) enables you to generate trace
and error log files that provide a detailed view of services running in your AIA
ecosystem.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Trace and Error Logging"

■ Section 18.2, "How to Enable Trace Logging"

■ Section 18.3, "How to Set Trace Log Levels"

■ Section 18.4, "How to Access Trace and Error Logs"

18.1 Introduction to Trace and Error Logging
The Oracle Application Integration Architecture (AIA) enables you to generate trace
and error log files that provide a detailed view of services running in your AIA
ecosystem. These logs can be especially informative when troubleshooting service
processing issues.

■ Trace

Trace logs capture chronological recordings of a service's general activities. The
trace log is created by configuring the service to make an explicit call using the
trace logging custom XPath or Java API.

For more information, see "Configuring Oracle AIA Processes for Error Handling
and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle
Application Integration Architecture Foundation Pack.

■ Error

Error logs capture a recording of errors that occur during a service's activities. No
specific configurations are required to make BPEL and Mediator services eligible
for error logging. The Error Handling Framework is designed to trigger an error
logging event for errors occurring in any of the Oracle AIA services, whether they
are BPEL- or Mediator-based. The Error Handling Framework does this logging
non-intrusively.

How to Enable Trace Logging

18-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

18.2 How to Enable Trace Logging
Trace logging is enabled using configurations in the AIAConfigurationProperties.xml
file located in <AIA_HOME>/aia_instances/$INSTANCE_
NAME/AIAMetaData/config.

Logging can be set at the system or service level. The logging property set at the
service level overrides the property set at the system level.

To enable trace logging for the entire system:
1. Access the AIAConfigurationProperties.xml file.

2. Set the TRACE.LOG.ENABLED property at the system level to TRUE.

To enable trace logging for an individual service:
1. Access the AIAConfigurationProperties.xml file.

2. Set the TRACE.LOG.ENABLED property for the service to TRUE.

3. Reload updates to AIAConfigurationProperties.xml.

For more information about reloading updates to AIAConfigurationProperties.xml,
see "Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for
Oracle Application Integration Architecture Foundation Pack.

18.3 How to Set Trace Log Levels

To set trace log levels:
1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your
domain and select Logs, Log Configuration.

3. Select the Log Levels tab on the Log Configuration page, as shown in Figure 18–1.

Figure 18–1 Log Configuration Page

4. In the View drop-down list box, select Runtime Loggers.

5. In the Search drop-down list box, select All Categories. Enter aia in the Search
field and execute the search.

How to Access Trace and Error Logs

Using Trace and Error Logs 18-3

6. Locate Logger Name value oracle.aia -> oracle.aia.logging.trace and set the
Oracle Diagnostic Logging Level (Java Level) field value accordingly. The type
and amount of information written to trace log files is determined by the message
type and log level specified.

7. Select from one of the values listed in Table 18–1, ordered from highest to lowest
severity. The lower the severity level, the more information is written to the log
file.

18.4 How to Access Trace and Error Logs
This section includes the following topics:

■ Section 18.4.1, "Accessing Oracle AIA Logs in the Oracle Enterprise Manager
Console"

■ Section 18.4.2, "Searching for Oracle AIA Log Messages"

■ Section 18.4.3, "Accessing Oracle AIA Log XML Files"

18.4.1 Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console
Log files can be accessed using the Oracle Enterprise Manager user interface, in much
the same way that standard log files generated by various components of the Oracle
SOA Suite can be handled in Oracle Enterprise Manager. Using Oracle Enterprise
Manager as the user interface for the logs enables searching, sorting, and filtering of
logs.

To access Oracle AIA trace and error log files:
1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your
domain and select Logs, View Log Messages.

Table 18–1 Trace Log Levels of Severity

Severity Level Description

INCIDENT_
ERROR:1
(SEVERE+100)

A serious problem, such as one from which you cannot recover. The
problem may be caused by a bug in the product and should be reported
to Oracle Support.

ERROR:1 (SEVERE) A serious problem that requires immediate attention from the
administrator and is not caused by a bug in the product.

WARNING:1
(WARNING)

A potential problem, such as invalid parameter values or a specified
file that does not exist, that should be reviewed by the administrator.

NOTIFICATION:1
(INFO)

A major lifecycle event such as the activation or deactivation of a
primary subcomponent or feature.

NOTIFICATION:16
(CONFIG)

A finer level of granularity for reporting normal events.

TRACE:1 (FINE) Trace or debug information for events that are meaningful to end-users
of the product, such as public API entry or exit points.

TRACE:16 (FINER) Detailed trace or debug information that can help Oracle Support
diagnose problems with a particular subsystem.

TRACE:32 (FINEST) Very detailed trace or debug information that can help Oracle Support
diagnose problems with a particular subsystem.

How to Access Trace and Error Logs

18-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

3. Click the Target Log Files button. The error log file, aia-error.log, can be found
under ${domain.home}/servers/${weblogic.Name}/logs. The trace log file,
aia-trace.log, can be found under
${domain.home}/servers/${weblogic.Name}/logs.

4. To view a log file, select the file row and click the View Log File button, as shown
in Figure 18–2.

Figure 18–2 View Log File Page

5. To download a log file, select the file row and click the Download button.

18.4.2 Searching for Oracle AIA Log Messages

To search for Oracle AIA trace and error log messages:
1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your
domain and select Logs, View Log Messages.

3. Search for specific log messages using the search parameters available in the
Search area on the Log Messages page, as shown in Figure 18–3.

How to Access Trace and Error Logs

Using Trace and Error Logs 18-5

Figure 18–3 Log Messages Page

18.4.3 Accessing Oracle AIA Log XML Files
You can access Oracle AIA trace and error log XML files directly in the following
directories:

■ ${domain.home}/servers/${weblogic.Name}/logs/aia-error.log

■ ${domain.home}/servers/${weblogic.Name}/logs/aia-trace.log

How to Access Trace and Error Logs

18-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

19

Accessing Oracle B2B Errors 19-1

19Accessing Oracle B2B Errors

[20] This chapter describes how to access Oracle B2B error reports.

This chapter includes the following section: Section 19.1, "Accessing B2B Error
Reports."

19.1 Accessing B2B Error Reports

To access error reports about failed business-to-business (B2B) transactions in
the Oracle B2B console:
1. Access the Oracle B2B console: http://<soa-host>:<port>/b2b.

2. Log in using the B2B administrator user name and password.

3. Select the Reports tab.

4. Select the Errors tab.

5. Enter search criteria or leave fields blank. Click Search. after you have located the
failed message, you can use the B2B error monitor to:

■ View details about the error.

■ View the payload of the failed message.

■ Retry processing of the failed message.

For more information about Oracle B2B errors in Oracle Application Integration
Architecture (AIA), see "Introduction to Error Handling for Oracle B2B Errors" in
Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

Note: Business process failures, such as an order being rejected by
the trading partner if the ordered item is not in stock, are not
considered to be Oracle B2B errors. Response or acknowledgment
messages containing these failures are treated as independent flows

Accessing B2B Error Reports

19-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

20

Using the Code Compliance Inspector 20-1

20Using the Code Compliance Inspector

[21] This chapter provides an overview and describes how to use the Code Compliance
Inspector (CCI). Adherence to open standards and the enforcement of good coding
practices are key principles of SOA governance. CCI enables developers, architects,
and QA engineers to develop integration projects that are in compliance with open
standards and Oracle Application Integration Architecture (AIA) recommended best
practices for design and coding.

This chapter includes the following sections:

■ Overview

■ Invoking Code Compliance Inspector from JDeveloper

■ Running Code Compliance Inspector in JDeveloper

■ Invoking Code Compliance Inspector from a Command Line

■ Configuring Code Compliance Inspector

■ Writing Custom Assertions for Code Compliance Inspector

■ Executing Code Compliance Inspector for Integration Projects

20.1 Overview
The Code Compliance Inspector uses a pre-defined set of assertions that are based on
AIA Integration Developer guidelines and the Web Services Interoperability
Organization Basic Profile (WS-I BP) to check SOA projects for design consistency and
good coding and documentation practices. CCI qualifies code as Compliant,
Conformant, or Fully Conformant to be in sync The Open Group Architecture
Framework (TOGAF) standard guidelines based on the pass criteria of the highest
priority assertions.

CCI is available as a JDeveloper extension and as a command-line utility. Developers
will typically use the JDeveloper extension and will continuously check compliance on
JDeveloper projects as they develop. The command line utility can be used to check
compliance for large, multi-composite projects and produces a report that details the
level of compliance, pass and failure percentages, and groups results by Priority and
Policies.

CCI provides optional integration to Oracle Enterprise Repository (OER). When OER
is present, CCI can synchronize results to the repository, enabling users to access the
report from the OER console. Integrating compliance data into OER provides
repository users with information about whether composites are compliant into the
repository reports and individual asset metadata.

Overview

20-2 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

For more information about the optional integration with OER, see "Integration with
Code Compliance Inspector" in the Oracle Fusion Middleware Integration Guide for
Oracle Enterprise Repository.

Figure 20–1 shows an example of the overall Code Compliance Report.

Figure 20–1 Overall Code Compliance Report

For more information about AIA integration development guidelines, see the Oracle
Fusion Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack.

20.1.1 Understanding the Terminology
Table 20–1 describes the labels and concepts for Code Compliance Inspector. For more
information about new terminology, see Appendix B.1, "New Terminology".

Table 20–1 Terminology

New Name Description

Assertion Assertions can be defined once within the AssertionCatalog.xml
files and then used within one or more Policies in the
Policies.xml files.

For a list of the delivered assertions, see Section B.2, "Delivered
Assertions".

AssertionSet AssertionSet is informational only and is not surfaced in the
JDeveloper Extension or in the Code Compliance By Policy
Report.

AssertionCatalog.xml There are two files: AssertionCatalog-AIA-<version>.xml and
AssertionCatalog-WS-I-<version>.xml.

Category Category is part of an Assertion's definition in
AssertionCatalog.xml. Category is a tag within the definition of
an Assertion that is largely just informational. For this release,
existing Categories will become the Policy names; meaning that
all Assertions tagged with a particular category will appear in
the Policies.xml files using a Policy name that matches the
Category.

Policy Policies can be reused into more coarse-grained policy buckets
using the <depends name=> tag.

Overview

Using the Code Compliance Inspector 20-3

For more information, see Appendix B.1, "New Terminology".

20.1.2 Understanding the Delivered Catalogs
Code Compliance Inspector delivers two sets of Policies with CCI. The following
Catalogs contain the Policies and Assertions that are used to check compliance for the
AIA design and coding best practices:

■ AssertionsCatalog-AIA-<version>.xml

■ Policies-AIA-<version>.xml

The following Catalogs contain the Policies and Assertions that are used to check
compliance for the WS-I Basic Profile.

■ AssertionsCatalog-WS-I-<version>.xml

■ Policies-WS-I-<version>.xml

The AIA catalogs and policies are for AIA customers. The WS-I catalogs and policies
are for non-AIA composites. Assertions and policies are stored in these XML files. A
list of pre-defined assertions can be viewed in the packaged Assertion Catalog XML
files available under the ComplianceInspector/config directory.

The <version> placeholder represents the directory where assertions and policies are
located. Delivered catalogs are named 10.x or 11.x, replacing <version>.

You can create custom policies and assertions in an upgrade safe manner. For more
information, see Section 20.6, "Writing Custom Assertions for Code Compliance
Inspector".

Polices.xml There are two files: Policies-AIA-<version>.xml and
Policies-WS-I-<version>.xml. Within the Policies.xml provided
by Oracle, the policy name must match the Catalog names used
within the Assertions in the AssertionCatalog.xml. Customers
can modify the Policies.xml including renaming and
reorganizing the Policies & Assertions.

Priority Priorities are defined as:

■ Priority 1 assertions are the basic assertions that an
integration project has to satisfy 100% to be qualified as a
Compliant.

■ Priority 2 assertions are more stringent on certain design
time patterns and an integration project that meets these
assertions is qualified as Conformant.

■ Priority 3 assertions are the most stringent at the lowest
levels of the technology, and an integration project that
meets at least a certain threshold of these assertions is
qualified as Fully Conformant.

■ Priority 4 assertions are recently introduced assertions that
can be qualified as P3 or P2 or P1 assertions. For this release,
these assertions do not play a role in the qualification of an
integration project.

Table 20–1 (Cont.) Terminology

New Name Description

Invoking Code Compliance Inspector from JDeveloper

20-4 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.2 Invoking Code Compliance Inspector from JDeveloper
The External Tools menu option in JDeveloper provides a dialog that enables you to
execute tools by adding command line executables and parameters. By adding menu
and context menu options you can activate your extension.

Alternatively, you can download and install CCI as a JDeveloper extension from the
JDeveloper Update Center. For more information, see "How to Set Up JDeveloper for
AIA Development" in Oracle Fusion Middleware Developer's Guide for Oracle Application
Integration Architecture Foundation Pack.

To invoke CCI from JDeveloper:
1. Select External Tools from the Tools menu in JDeveloper.

2. Click New to create a link to the external tool (in this case, Code Compliance
Inspector).

3. Select External Program as the Tool Type, and click Next.

4. Click the Browse button, next to the Program Executable input field. Navigate to
the location where you unzipped Code Compliance Inspector.zip, then browse to
'ComplianceInspector/bin' directory. Select the Code Compliance Inspector.bat file
to open.

In the Arguments input field, give necessary arguments you need to run Code
Compliance Inspector.

For example: -inputDir ${project.dir} -outputDir d:\PAoutput, as shown in
Figure 20–2.

Figure 20–2 Create External Tool Page

5. Click Finish, and then click OK.

Note: ${project.dir} is a predefined variable in JDeveloper that refers
to the currently opened project directory. You can give any other
absolute path instead.

For more information about the Code Compliance Inspector
arguments list, see Section 20.4, "Invoking Code Compliance Inspector
from a Command Line".

Running Code Compliance Inspector in JDeveloper

Using the Code Compliance Inspector 20-5

6. Verify that the CheckCompliance option appears in the Tools menu as in
Figure 20–3.

Figure 20–3 Tools menu

Now you can run the Code Compliance Inspector from JDeveloper for the current
project.

20.3 Running Code Compliance Inspector in JDeveloper

To run Code Compliance Inspector:
1. You can download and install Code Compliance Inspector (CCI) as a JDeveloper

extension from the JDeveloper Update Center. To access the Update Center, within
JDeveloper, navigate to Help > Search For Updates.

For more information about downloading and installing the extension, see "How
to Set Up JDeveloper for AIA Development" in Oracle Fusion Middleware
Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

2. After installing the extension, run CCI by selecting a project and clicking the
Check Code Compliance button in the JDeveloper toolbar or by right-clicking a
project and selecting Check Code Compliance. These options are shown in
Figure 20–4.

Running Code Compliance Inspector in JDeveloper

20-6 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

Figure 20–4 Using the menu to run CCI

Finding and Fixing Compliance Issues
Figure 20–5 shows your projects and the compliance issues that have passed and
failed.

Figure 20–5 Code Compliance Page Elements

Use this page to find and fix compliance problems. Table 20–2 describes the page
elements.

Running Code Compliance Inspector in JDeveloper

Using the Code Compliance Inspector 20-7

Setting defaults:
Use Preferences Figure 20–6 to set default versions, directory locations, and so forth.

1. Click Check Compliance in the left-hand tree to view the Runtime tab.

Table 20–2 Code Compliance Page Elements

Element Description

Projects List Your projects are listed in the tree. Click to view in the xml tab.

Composite.xml tab Shows the XML for the selected project.

Composite.xml - Structure This tab shows the structure of the composite: services,
components, or references.

Compliance Results - Log Use this tab to correct and recheck compliance issues. The
buttons and fields are documented below.

Start Click to restart after correcting.

Stop Click to stop compliance checking in between processes.

Expand Click to show all policies or priorities in the left-hand tree.

Collapse Click to hide all policies or priorities in the left-hand tree.

Regular Expression Tool Use the Regular Expression Tool button to check the value of a
regular expression.

Click on the assertion name in the tree and then click More
Detail. Copy the XPath expression and paste it into the Regular
Expression field, enter the Matching information, and click
Validate.

You can use this tool instead of running the whole CCI if you
want.

Show/Hide Success Detail Toggles to show or hide successful or failed and not executed
processes.

Show/Hide Not Executed Toggle on or off to show only non executed processes.

Policy drop-down Select to view by Policy or Priority.

Failures, Success, Skipped,
Total

CCI displays the counts and a bar chart.

Skipped means that the assertion was not executed due any of
the following reasons:

1. Target artifacts are not available.

2. Assertion definition is incorrect.

Running Code Compliance Inspector in JDeveloper

20-8 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

Figure 20–6 Setting Default Values

Runtime page elements are defined in Table 20–3:

Table 20–3 Runtime Page Elements

Element Description

default.assertionCatalog The value of this property is used as the default value for the
-assertionFile switch. You can override the default value by
passing the -assertionFile switch during execution of CCI.

default.policiesFile The value of this property is used as the default value for the
-testFile switch. You can override the default value by passing
-testFile during execution of CCI.

env.VERSION This is the version against which the tool is going to run. The
value of this property can be overridden by introducing
environment variable with name VERSION.

filepath.hyperlink.enable The value of this property determines if the file paths in all
reports will appear as links for each file or if they will appear as
plain text. If set to true, the file paths will appear as links. If set
to false, the file paths will appear as plain text.

ignore.dirNames This property is a comma separated list of directories that
should not be included in the validating process. You can
provide a directory name as a regular expression.

jdev.ext.outputDir Determines where CCI will put the reports. When the extension
is first installed, the value here is blank. After CCI is first run,
this value will be replaced with the user's working directory.
CCI takes the value of the 'ide.work.dir' property and creates a
directory called 'CCI_Report' under it. This will be the default
value for 'jdev.ext.outputDir'.

logger.console.level The value of this property is used as the default value for the
console handler. CCI uses the console handler to show the
execution status messages to users.

Running Code Compliance Inspector in JDeveloper

Using the Code Compliance Inspector 20-9

For more information about these fields and to make other configurations, see
Section 20.5, "Configuring Code Compliance Inspector".

2. Click the Output tab. This tab enables you to set the output results of the html files
generated by CCI. Select the Value check box to generate files, or clear the check
box if you do not want to generate files. Page elements are defined in Table 20–4.

Figure 20–7 Output Page Elements

For more information about these fields and to make other configurations, see
Section 20.5, "Configuring Code Compliance Inspector".

logger.file.level The value of this property is used as the default value for the file
handler. CCI uses the file handler to write log information into
the checkCompliance.log file. You can limit the logging
information by setting various logger levels.

Table 20–4 Output Page Elements

Element Description

generate.output.AllHtmlFile

generate.output.assertCatAndPoliciesHtml

generate.assertion.summary

generate.output.compositeWise

generate.output.consolidatedMain

generate.output.policyWise

generate.output.priorityWise

generate.output.profileReport

generate.reports.zipFile

If the value property is true, then only
that report will be generated.

If the value is set to true, then only
HTML reports will be generated. If the
value is set to false, then no HTML
report will be generated.

Table 20–3 (Cont.) Runtime Page Elements

Element Description

Running Code Compliance Inspector in JDeveloper

20-10 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.3.1 Understanding the Reports
These are the html reports that CCI generates:

■ AssertionCatalog.html and Policies.html

■ ComplianceReportByPolicies.html

■ ComplianceReportByPriority.html

■ ComplianceReportCompositeIndex.html

■ ContextProfilesReport.html

After you run CCI in a command line against a single integration project (PIP) or a
directory of composites, the directory structure looks like Figure 20–8:

Figure 20–8 Sample Output Directory Structure for One PIP or Composites

Figure 20–9 shows the directory structure that CCI generates after you run it against
multiple integration projects (multiple PIPs):

Running Code Compliance Inspector in JDeveloper

Using the Code Compliance Inspector 20-11

Figure 20–9 Sample Output Directory Structure for Multiple PIPs

In both examples, index.html is the main consolidated report.

For more information about running CCI from the command line, see Section 20.4,
"Invoking Code Compliance Inspector from a Command Line".

20.3.1.1 Sharing the Reports
You can post report files to a server and share the compliance results with colleagues.
Copy the report files to an HTTP server and notify others of its location.

20.3.1.2 Integration with Oracle Enterprise Repository
Individual composites can be viewed in the OER asset detail page, as shown in
Figure 20–10.

Figure 20–10 Viewing reports in OER

For more information about the optional integration with OER, see "Integration with
Code Compliance Inspector" in the Oracle Fusion Middleware Integration Guide for
Oracle Enterprise Repository.

Invoking Code Compliance Inspector from a Command Line

20-12 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.3.1.3 Generating a Trend Analysis Chart
You can generate a trend analysis chart from AuditSummary.csv. The trend analysis
chart shows how a selected integration project has adhered to standards over various
timelines.

To generate a trend analysis chart:
1. Create a new Excel spreadsheet.

2. Import the AuditSummary.csv into cell A1 of the newly created spreadsheet.

3. Insert a new pivot chart from the Insert menu, and then select the range of source
data for which you want generate the chart in the popup wizard. (Note that you
can select all of the imported data from step 2, and can filter it later while
presenting the charts.)

4. In the Create Pivot table with pivot chart wizard choose the New Worksheet
option to generate the chart and table in the new spreadsheet.

5. You can see the PivotTable field List panel along with the empty pivot table and
chart sheet. Drag and drop the DATE field to the Axis field, the PIPNAME, and
GROUP VALUE field to the Legend field and the FAILED EXECUTIONS Field to
the Values from the Pivot Table Field List Panel.

6. Select the GROUP VALUE Filter and select ALL in the list.

Now you can see the trend chart as shown in Figure 20–11.

Figure 20–11 Trend Chart in Excel

20.4 Invoking Code Compliance Inspector from a Command Line
The CCI can be invoked from a command line or from JDeveloper.

Customers who have Oracle Enterprise Repository can also use CCI. For more
information, see "Integration with Code Compliance Inspector" in the Oracle Fusion
Middleware Integration Guide for Oracle Enterprise Repository.

Note: You can create different types of charts. For more information,
see the help in Excel.

Invoking Code Compliance Inspector from a Command Line

Using the Code Compliance Inspector 20-13

Invoke CCI with the checkCompliance.sh on Linux or checkCompliance.bat
command on Windows using the following switches:
■ -inputDir {Absolute path to the folder that contains composite(s)}

This is a mandatory switch indicating where the input directory is located. If the
-inputMetaFile switch is not specified, this input is not necessarily representative
of a single integration project. If the -inputMetaFile switch is provided, this
specifies the integration project root directory (the source folder containing the
integration project folder from AIA_HOME).

■ -outputDir {Output folder where the compliance report will be generated}

This is a mandatory switch to indicate where the output reports will be stored. For
example:

If your composites live here: /tmp/cci/composites/AIADemo

And you pass the output directory as: /tmp

Then CCI will put the produced files here: /tmp/AIADemo

■ -policiesFile {Policies file name}

Use this optional switch to indicate which policies file CCI should run against, for
example, Policies-AIA_11.x.xml. The file should be available under
ComplianceInspector/lib or ComplianceInspector/config (Tool class path) or
embedded in compliance.policy.engine.jar.

■ -policy {Policy name}

This is an optional switch to specify the policy to execute. If not given, the default
policy from Policies.xml will be executed.

■ -assertion {Assertion name}

Use this optional switch to indicate which assertion CCI should run against. This
will run the tool for a specific assertion that you have defined, for example,
ABCSTargetNameSpacesCheck.

■ -inputMetaFile {absolute path to the integration project MetaFile}

Use this optional switch if you want to run reports for a specific integration
project. The input metafile contains paths pointing to the specific directories that
Code Compliance Inspector needs to scan so that the output results are specific for
the integration project. This file contains the names of all of the services that are
used in a given integration project. When this option is specified, the -inputDir
switch will point to the integration project root directory since the input metafile
contains the directory path relative to this root. Here are some examples:

-inputDir=$AIA_HOME/aia -inputMetaFile <dir path of the
file>/GenerateScriptInput.xml

-inputDir=$AIA_HOME/aia -inputMetaFile <dir path of the file>/MyPIPDP.xml

■ -inputMetaFile ALL

Use this optional switch if you want to run reports for all of the integration
projects. When this option is specified, the -inputDir switch will point to the
integration project root directory since the input metafile contains the directory
path relative to this root.

For example: -inputDir=$AIA_HOME/aia -inputMetaFile ALL

Configuring Code Compliance Inspector

20-14 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

■ -version

The -version flag tells you which version of CCI (CCI build date and time) you are
using. This is an optional argument that displays the version information.

Examples of Invoking Code Compliance Inspector from a Command Line
Here are some examples for invoking the Code Compliance Inspector from a
command line:

■ Windows: checkCompliance.bat -inputDir D:\AIA\demo -outputDir
D:\ComplianceOut

■ Linux: sh checkCompliance.sh -inputDir /AIA/demo -outputDir
/ComplianceOut

With inputMetaFile for a specific integration project:
■ Windows: checkCompliance.bat -inputDir D:\AIAPIP\aia -inputMetaFile <dir

path of the file>/GenerateScriptInput.xml -outputDir D:\ComplianceOut

■ Linux: sh checkCompliance.sh -inputDir $AIA_HOME/aia -inputMetaFile <dir
path of the file>/GenerateScriptInput.xml -outputDir /ComplianceOut

With inputMetaFile for all of the integration projects:
■ Windows: checkCompliance.bat -inputDir D:\AIAPIP\aia -inputMetaFile ALL

-outputDir d:\ComplianceOut

■ Linux: sh checkCompliance.sh -inputDir $AIA_HOME/aia -inputMetaFile ALL
-outputDir d:\ComplianceOut

20.5 Configuring Code Compliance Inspector
You can change the default configuration of the Code Compliance Inspector using the
AuditorRuntime.properties file. This file can be found in the
ComplianceInspector/config directory.

Note: The -inputDir parameter should be the parent folder of the
location specified in //Service/@location element in the
GenerateInputScript.xml or //Composite/@compositedir in DP.xml.
The output directory contains ComplianceSummary.csv and
consolidated index.html. The integration project specific output will
be segregated according to Industry/Core PIPS.

Core PIPS will be placed under the <outputDir>/Core/<PIPName>.

Industry PIPS will be placed under
<outputDir>/Industry/<IndustryName>/<PIPName>.

For 10g PIPs, the GenerateScriptInput.xml must be placed under the
PIPS/Core/Setup/[PIP Name]/Install for Core PIPs and
PIPS/Industry/[Industry Name]/Setup/[PIP Name]/Install for
Industry specific PIPs for Code Compliance Inspector to process PIP
specific reports.

For 11g PIPs, [PIPName]DP.xml must be placed under the pips/[PIP
Name/DeploymentPlans for Code Compliance Inspector to process
PIP specific reports.

Configuring Code Compliance Inspector

Using the Code Compliance Inspector 20-15

For example, you can generate specific html reports using the "generate" configuration
properties in Table 20–5. Additionally, if you wanted to exclude directories from the
process, then you can use the audit.ignore property.

Note: If any property value contains ${another-property-name}, then
this value will be substituted by another property, mentioned inside
${}, of the same file.

Table 20–5 Property Names and Values

Property Name Property Values (examples) Description

env.VERSION 2.5 This is the version against which the tool is going to
run. The value of this property can be overridden by
introducing environment variable with name
VERSION.

default.policiesFil
e

Policies-AIA_.${env.VERSION}.xml The value of this property is used as the default
value for the -testFile switch. Users can override the
default value by passing -testFile during execution
of Code Compliance Inspector.

default.assertionC
atalog

AssertionCatalog-AIA_
${env.VERSION}.xml

The value of this property is used as the default
value for the -assertionFile switch. Users can
override the default value by passing the
-assertionFile switch during execution of Code
Compliance Inspector.

logger.console.lev
el

INFO The value of this property is used as the default
value for the console handler. Code Compliance
Inspector uses the console handler to show the
execution status messages to users.

logger.file.level INFO The value of this property is used as the default
value for the file handler. Code Compliance
Inspector uses the file handler to write log
information into the pipaudit.log file. Users can
limit the logging information by setting various
logger levels.

metafile.patterns GenerateInputScript.xml,
DeploymentPlan.xml

Code Compliance Inspector uses this property when
users pass the switch -inputMetaFile ALL. Code
Compliance Inspector will search metaFiles in given
input directory (using the -inputDir switch) based
on the property value.

metafile.compone
nts.xpaths

//Service/Location The input metafile contains paths pointing to the
specific directories that Code Compliance Inspector
needs to scan so that the output results are specific
to the PIP. In order to get a list of directories, Code
Compliance Inspector uses the property value as the
XPath to execute in the meta file.

metafile.logicalna
me.xpaths

//PIPName|//ComponentName In order to get the PIP Name, Code Compliance
Inspector uses property value as the XPath to
execute in the meta file.

metafile.locationN
ame

DeploymentPlans This is the directory name, where Code Compliance
Inspector will look for metaFiles. Install for 2.x and
DeploymentPlans for 10g.

Writing Custom Assertions for Code Compliance Inspector

20-16 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.5.1 Considerations
Code Compliance Inspector reads the target namespace of a BPEL or ESB process and
uses it as metadata to derive AIA-related information like application name, service
name, service operation, industry, version, and so forth. So if the process target
namespace has not been coded as per the standards, checks will not work correctly.

Running Code Compliance Inspector with inputDir as a mapped network drive (for
example, a ClearCase mapped drive) can cause performance issues. The currently
recommended method is to run Code Compliance Inspector against a local source
folder.

20.6 Writing Custom Assertions for Code Compliance Inspector
Code Compliance Inspector uses the AssertionCatalog-<version>.xml file that contains
assertions in a "native" assertion language, in XML format. The following sections
describe assertions, assertion executors, policies, and assertion and policies files.

To create a custom assertion and to execute it, follow these steps:

1. Understand the structure of the assertion.

2. Select the appropriate assertion executor and operation.

3. Write assertion definitions and parameters required by the executor operation.

4. Include the newly created assertion in a policy in the Policies.xml.

generate.output.c
onsolidatedMain

generate.output.p
rofileReport

generate.output.as
sertCatAndPolicie
sHtml

generate.output.p
riorityWise

generate.output.p
olicyWise

generate.output.c
ompositeWise

true/false If the value is set to true, then HTML reports will be
generated.

If the value is set to false, then no HTML reports
will be generated.

audit.ignore.dirN
ames

ade_path,SCA-INF This property is a comma separated list of directory
names, which should not be included in the audit
process. Users can give dirname as a regular
expression too.

generate.reports.zi
pFile

true/false This flag decides whether Code Compliance
Inspector generates the zip file for reports in output
directory or not.

Note: In order for the Download zipped reports link to work, make
sure that ComplianceReports.zip file is found in the same directory
where index.html file is.

Table 20–5 (Cont.) Property Names and Values

Property Name Property Values (examples) Description

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-17

20.6.1 Understanding the Assertion Structure
Figure 20–12 shows the structure of an assertion catalog file. An assertion catalog file
primarily consists of AssertionSets. These AssertionSets in turn contain different
assertions and common properties associated with the assertions.

Figure 20–12 Assertion Structure

Figure 20–12 is an example of the assertion structure at a high level. To see the
elements in more detail, open the AssertionCatalog-<version>.xml file using an XML
editor and it should look like Figure 20–13. The elements are described in the tables
that follow.

Writing Custom Assertions for Code Compliance Inspector

20-18 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

Figure 20–13 Assertion Structure Detail

Table 20–6 and Table 20–7 show the elements and attributes that make up
AssertionSets and Assertions:

Table 20–6 AssertionSet Table

Element Description

name The name of the assertion set. This is helpful if you want to
group the assertions in different categories.

Property Property consists of two attributes: name and value. These name
value pairs are used to define properties that are shared by a few
assertions within the AssertionSet. One such example is the
XPath prefixes. There are many prefixes that are shared by all of
the assertions written for XPathExecutor. So these prefixes form
a property at the AssertionSet level that is used by all assertions.

Assertion AssertionSet can contain various assertions. The Assertion Table
describes various elements and attributes that make an
Assertion.

Table 20–7 Assertion Table

Element Description

name The name of the assertion. Note that since we do not use any ID,
the assertion name must be a unique name. This acts as an
identifier for an assertion.

description The description of an assertion is a plain text description of what
the assertion checks. This helps an end user understand what is
actually checked and what needs to be done in order to achieve
compliance.

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-19

executor The assertion engine executes the assertions using executors. In
simple terms, executors provide the base infrastructure for an
assertion developer to write assertions. Various operations can
be performed on executors. For example, XpathExecutor
provides the assertion writer with different operations that he
can perform on an XPath. For more information, see
Appendix B, "Code Compliance Inspector: New Terminology &
Available Assertion Executors" which provides detailed
information about the executors shipped with Code Compliance
Inspector.

operation The name of any one the executor operations supported by the
executors that are shipped with Code Compliance Inspector.
Each executor has a set of operations. For more information, see
Appendix B, "Code Compliance Inspector: New Terminology &
Available Assertion Executors" which provides detailed
information about the executors and operations shipped with
Code Compliance Inspector.

fileType Every assertion works on either a file or a directory. fileType
attribute gives a user flexibility to perform compliance checks on
specific types of files. For example, fileType="*.wsdl" means that
only files with .wsdl extensions are picked for the execution of a
particular assertion. You can also only select folders with the
help of a special character "*'. So FileType="*" selects only those
folders.

Note that FileType="*" is dependent on the executor. For
example, you cannot use FileType="*" with XpathExecutor since
you cannot perform XPath operations on a folder whereas you
can use it with FSExecutor to perform file related operations.

category Category is an attribute used to categorize the compliance
results. When there are a lot of assertions, it is easy to maintain
them if they are grouped. Category is used to group a set of
assertions. It is a free text attribute. The compliance results can
be viewed based on a category.

priority Priority is another attribute to group the output of audit results.
Numbers can be entered here since sorting is done on results.
The priority of the assertion is based on its importance. For
example, priority="1" is critical-all composites must comply with
this assertion and produce only Compliant nodes in the _
Audit.xml file.

context Context is used for additional filtering of the matching files
found in the input. For example, as an assertion writer you want
to audit only utility BPEL processes for a certain assertion.
Assuming that all utility processes have 'util' in the process
name, you can specify filetype="*.bpel" and context="util". This
selects only the utility bpel processes for auditing.

Table 20–7 (Cont.) Assertion Table

Element Description

Writing Custom Assertions for Code Compliance Inspector

20-20 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.6.1.1 Assertion Parameters
Param is the element used to hold the assertion parameters. These are the parameters
that are passed on to the executor during the execution of the Assertion. Any
substitutions are performed before the parameters are sent for assertion execution.

<Param name=" " default=" " value=" "/>

20.6.2 Selecting an Appropriate Executor
An assertion executor is the underlying infrastructure provided by the Code
Compliance Inspector to write new assertions. All of the assertions are executed by
one of the executors that Code Compliance Inspector provides. These executors
provide a common mechanism to execute checks. They expose different operations (as
methods) that can be executed when supplied with a set of arguments (the
XpathExecutor performs different XPath related operations on an XML file). For
example, you can check if a value at a particular XPath location matches an input
string and so on. Currently you can only write assertions using existing executors.

For more information, see Appendix B, "Code Compliance Inspector: New
Terminology & Available Assertion Executors" to select the appropriate operations that
will help you write your own assertion.

20.6.3 Understanding Profile Assertions
Profile Assertions are used to derive information that can be used by assertions during
runtime. Profile Assertions are used to derive properties and associate them to files.
These properties can then be used in assertions. Here is an example that shows how to
write a Profile Assertion and what it contains.

The XML snippet in Figure 20–14 illustrates a sample profile assertion.

Note: Code Compliance Inspector executes a new assertion when the
Policies-<version>.xml file has an 'Assertion' element with 'name'
attribute set to be a new Assertion name. The 'Assertion' element is a
child of the 'Policy' element, which is a placeholder for multiple
assertions grouped together. While testing a new assertion, you can
use UnitPolicy before a new test to find a place under the appropriate
Policy.

For more information, see Section 20.6.6, "Writing Custom Assertions
and Policies in a Policy File".

Table 20–8 Assertion Parameters

Parameter Description

name The name of the parameter.

default The default value that needs to be passed.

value Variable or expression, the result of which will give the value of this
parameter. If null, then the value in the "default" attribute will be
considered to be an actual value.

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-21

Figure 20–14 XML Snippet

Things to note about profile assertions:

■ They are executed before any other assertions (with tag "Assertion") are executed.

■ They derive property values and associate these properties to a set of files. Files to
be associated can be controlled using a property named "assignTo1."

■ All profile assertions must be included in an assertionset named "Bootstrap." Code
Compliance Inspector executes all the profile assertions under the assertionset
"Bootstrap" before executing any of the assertions. This can be compared to the
functioning of a bootstrap class loader in Java.

■ Executors used in profile assertions are different from the ones used in assertions.

■ Apart from using the derived properties in assertions, these properties can also be
used to analyze information about projects. All of the profile properties are written
to a XML file named {Input dir name}_PDesc.xml which is generated in same
folder that contains compliance reports. You can find out more information about
your file or apply some custom style sheets to analyze the information.

Table 20–9 shows the elements and attributes that make profile assertions:

Table 20–9 Elements and Attributes for Profile Assertions

Elements and Attributes Description

name This is the name of the profile assertion. Note that since we do
not use any ID, the profile assertion name must be a unique
name. This acts as an identifier for a profile assertion.

description The description of an assertion is a plain text description of what
the assertion checks. This helps an assertion writer understand
the purpose of the profile assertion.

executor Profile Assertions are executed by executors. These are different
from the assertion executors. For example, XMLProfiler helps us
derive all profiling information from XML files using simple
XPaths.

Currently, the only available executor is XMLProfiler.

fileType Every profile assertion works on either a file or a directory. The
fileType attribute gives users the flexibility to derive information
from specific types of files. For example, fileType="*.wsdl"
means that only files with a .wsdl extension are picked for the
execution of a particular profile assertion.

Note that since XMLProfiler is the only available executor, even
though the fileType can be of any extension, it must ultimately
be an XML file.

Writing Custom Assertions for Code Compliance Inspector

20-22 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.6.4 Profile Assertion Properties
Property is the element used to hold the profile assertion parameters. These are the
parameters that are derived by the profile assertion executor and made available to
assertions.

<Property name=" " file=" " value=" " xpath=""/>
Table 20–10 provides Property parameters.

category Category is only used for categorizing the profile assertions.

priority If different profiles act on the same file and have the same
parameter name, then the value will be derived for the assertion
that has a higher priority.

Ideally this should be avoided. It's better to have different
parameter names in different profiles.

include The include attribute is used for filtering along with the fileType
attribute. You can use the parameter values derived from one of
the parameters in the profile assertion for filtering. The format to
use is {paramName:paramValue}.

For example, include="{ServiceType:ABCSImpl}" will make sure
that the profiler derives the parameter ServiceType first from the
list of parameters, and only if the value is ABCSImpl, it will
further process the profile assertion.

exclude The exclude attribute is used to filter files that are not to be
included. Suppose you want to exclude all 'ABCSImpl' files, then
exclude="{ServiceType:ABCSImpl}" will make sure that the
profiler derives the parameter ServiceType first from the list of
parameters and if the value matches 'ABCSImpl', it will not
further process the profile assertion.

Table 20–10 Property Names

Property Name Description

Name The name of the parameter.

Xpath XPath in case the value is derived from an XPath using an XML
file. For example:

<Property name="ServiceNameId"
xpath="//BPELSuitcase/BPELProcess/@id"/>

File The file from which the parameter must be derived. This can use
a derived value as well.

Examples:

<Property name="ServiceImplFile"
xpath="//BPELSuitcase/BPELProcess/@src"/>

<Property name="ReceivePLinkName" file="${ServiceImplFile}"
xpath="//bpel:receive[@createInstance='yes']/@partnerLink"/>

Table 20–9 (Cont.) Elements and Attributes for Profile Assertions

Elements and Attributes Description

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-23

Certain parameters are available to every profile assertion by default. Table 20–11
shows the available parameters:

20.6.5 Using Properties from Profile Assertions in an Assertion
As described in previous sections, properties can be assigned to files using profile
assertions. This section describes how to use them in an assertion.

Here is a sample assertion that uses the ServiceType property derived from the profile
assertion from the above section (Profile : ESBServiceProfileHarvester).

The XML snippet in Figure 20–15 shows a sample assertion that uses a derived
property.

Figure 20–15 XML Snippet

The assertion above tries to use the context="ABCSImpl,{MEP:SYNC_REQ_
RESPONSE}"

Review this part in the example: {MEP:SYNC_REQ_RESPONSE}

The first part 'ABCSImpl' tells the assertion to filter out all of the *.bpel files that have
ABCSImpl in the name.)

MEP is the property name and SYNC_REQ_RESPONSE is the property value to check
for.

So during the assertion execution, only those .esbsvc files that have a MEP of value
"SYNC_REQ_RESPONSE" are picked up for audit. The primary intention is a second

Value The value for a property can be derived without the use of an
XPath. It can be a hard coded value or a derivation using
previously derived values.

Example:

<Property name="ServiceImplFilePath"
value="${pwd}/${ServiceImplFile}"/>

Table 20–11 Available Parameters

Parameter Description

Pwd Present working directory for the file selected to be profiled.
Similar to pwd in unix.

Pwf Present working file for the file selected to be profiled. Similar to
pwf in unix.

Table 20–10 (Cont.) Property Names

Property Name Description

Writing Custom Assertions for Code Compliance Inspector

20-24 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

level filtering since sometimes you are not be able to write assertions purely relying on
the naming of the files and filetypes.

20.6.6 Writing Custom Assertions and Policies in a Policy File
An assertion in a Policies-<version>.xml file is an invocation of an assertion from an
assertion catalog by passing parameters to override it if required.

The simplest form of an assertion looks like this:

 <Assertion name="NoHardWiringUnamePwdInEndpointURICheck"/>

The value of the attribute "name" must be the same name as that given in the "name"
attribute of an assertion in the AssertionCatalog.xml file. Here no parameter values are
passed from the assertion in the Policies.xml file and the default values from the
assertion are taken.

Here is an example where the assertion in the Policies.xml file passes parameters to
override for execution of an assertion.

Consider the sample assertion below:

<Assertion name="DocumentMinLengthCheck " description=" " executor=" " fileType="
" category=" " priority=" " context=" ">
 <Param name=" minLength" default=" 20" value=" "/>
</Assertion>

An assertion in policies.xml file can be written against the assertion in assertion
catalog as:

 <Assertion name="DocumentMinLengthCheck ">
<Param name=" minLength" value=" 30" />
 </Assertion>

During the execution of the above test, the default value '20' for parameter minLength
is overridden by '30'.

A policy is an element used to group assertions. The compliance results of the Code
Compliance Inspector are also grouped by policies along with priority and category.
So the grouping of assertions with the help of policies is helpful in terms of
prioritizing the compliance results.

Here is an example of a policy:

<Policy name="FaultPolicyRelatedSuite">
 <Assertion name="FaultPolicyEnabledforABCSAndEBFCheck"/>
 <Assertion name="FaultPolicyFileExistsInABCSAndEBFCheck"/>
</Policy>

The attribute 'name' has to have a unique value. For example, the policy name has to
be unique in a Policies-<version>.xml file.

A policy can also invoke other policies. This is used for the purpose of grouping. If
you have already grouped assertions under policy elements according to some
criterion and now you want a wrapper policy that holds these policies under one
parent policy, here is how to do that:

<Policy name="AllPolicy">
 <depends policyName="ABCSsecuritySuite"/>
 <depends policyName="SeedDataAndConfigSuite"/>
 <depends policyName="ESBProjectContentSuite"/>
 <depends policyName="BPELProjectContentSuite"/>
 <Assertion name="FaultPolicyEnabledforABCSAndEBFCheck"/>

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-25

 <Assertion name="FaultPolicyFileExistsInABCSAndEBFCheck"/>
</Policy>

For the reference mechanism stated above, the element 'depends' is used. The attribute
'policyName' in the element must contain the name of the policy.

Also note that the policy 'AllPolicy' contains both 'depends' and 'Test' elements. This
signifies that the policy can invoke other policies as well as tests. If you execute Code
Compliance Inspector passing -policy AllPolicy, this command will execute all policies
and tests from the above example.

20.6.7 Understanding the Custom AssertionCatalog File
An AssertionCatalog file is an XML file found either in the Code Compliance
Inspector's classpath (ComplianceInspector/config) or embedded in the
compliance.policy.engine.jar. The jar can be found at the following location:
[CodeComplianceInspector install folder]/ ComplianceInspector/lib.

The AssertionCatalog XML file found in the ComplianceInspector/config takes
precedence over the one found in the jar file. The assertion file delivered by Oracle is
called AssertionsCatalog.<version>.xml. This delivered AssertionCatalog.xml file can
have a corresponding optional (Custom_ <<base assertion catalog file name>>)
custom assertion XML file found in the ComplianceInspector/config. Additionally,
users can create an assertion xml by copying and renaming the Custom_
AssertionCatalog-AIA_10.x.xml found in the ComplianceInspector/samples folder.

The AssertionCatalog.xml file contains Oracle delivered assertions that are executed
by the Code Compliance Inspector. A new assertion or an override for existing
assertions can be added to the Custom assertion xml file by inserting a new
"Assertion" node as a child node of the "AssertionSet" element that with attribute
name value same as original assertionset name. For example:

<AssertionSet name="OraleAIAAssertions"
xmlns="http://www.oracle.com/aia/PIPvalidator">

After changes to the assertion file have been made, a new Custom_
AssertionsCatalog-<version>.xml file has to be placed at the following location:

[CodeComplianceInspector install folder]/ ComplianceInspector/config.

In order for a new assertion added to the Custom_AssertionsCatalog-<version>.xml to
be executed, a corresponding Assertion needs to be added in the Custom_
Policies-<version>. xml file. For more information about how to add a new test to a
customer policy xml file, see Section 20.6.8, "Understanding the Custom Policies XML
File".

There are three ways to override a delivered assertion:

1. Add the assertion to a custom assertion XML file found in the
ComplianceInspector/config and modify the values for the parameters in the
assertion. In this case, there is no need to have a test added to the custom policy
XML file because there is already one in the delivered policy XML file found in the
jar. By default, tests from the delivered policy XML file do not pass override
parameters.

2. Add the test to a custom policy XML file found in the
ComplianceInspector/config for an assertion you are going to override. Pass
parameters with override values from the test for those parameters that have

Writing Custom Assertions for Code Compliance Inspector

20-26 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

variables defined in the assertion. In this case, there is no need to have an assertion
added to the custom assertion XML file.

3. As a less practical way of doing it, it is possible to have a combination of the above
two methods where some parameters are overridden by passing them from the
test in the custom policy XML file while others are overridden by directly
changing them in the assertion added to the custom assertion XML file.

20.6.8 Understanding the Custom Policies XML File
A Policies.xml file is an XML file found either in the Code Compliance Inspector's
classpath (ComplianceInspector/config) or embedded in the
compliance.policy.engine.jar. The jar can be found at the following location:
[CodeComplianceInspector install folder]/ComplianceInspector/lib. The Policies.xml
file found in the ComplianceInspector/config takes precedence over the one found in
the jar file. Oracle delivers a Policies-<version>.xml file for each major SOA release, for
example 10g, 11g.

The delivered Policies.xml file contains a top level element called 'Validator.' This also
has an attribute called 'default'. The value in the default attribute dictates which policy
must be invoked by default when Code Compliance Inspector is run. This value can be
overridden by the user while running Code Compliance Inspector by giving the
'-policy' option and the name of the policy. Here is an example:

<Validator xmlns="http://www.oracle.com/aia/PIPvalidator" default="all">

The delivered Policy.xml file can have a corresponding optional (Custom_<<base
policy file name>>) custom policy file found in the ComplianceInspector/config.
Users can create a customer policy by copying and renaming Custom_Policies-AIA_
10.x.xml found in the ComplianceInspector/samples.

The Custom_policies xml file contains an overriding or new set of Assertions that need
to be executed by Code Compliance Inspector in addition to those already found in the
delivered Policies.xml. A new Assertion can be added by adding an Assertion node
under an existing Policy. This way, the new Assertion will be executed under this
policy in addition to existing assertions from this policy found in the delivered
Policies.xml file.

In summary, the delivered Policies-AIA_11.x.xml file contains assertions that are
executed when Code Compliance Inspector runs. An assertion from Policies-AIA_
11.x.xml invokes an assertion from AssertionCatalog-AIA_11.x.xml. Parameters can be
passed from an Assertion in Policies file to an Assertion in AssertionCatalog file if
required. So, only those assertions from AssertionCatalog-AIA_11.x.xml for which
there is a corresponding assertion in the Policies-AIA_11.x.xml are executed. Note that
the same assertion can be invoked by multiple policies. This can be used if there is a
need to pass different values to the same parameters of the same assertion. This will
override the default values for these parameters.

20.6.9 Delivered Assertions & Policies
Oracle delivers dedicated Policies XML and Assertion Catalog XML files for every
release. You can download release-specific Policies XML and Assertion Catalog XML
files from the ComplianceInspector/lib directory. The dedicated release-specific files
can be passed to Code Compliance Inspector using the -policiesFile command line
option, accepting the policies xml file name as an argument. When you pass the
-policiesFile, Code Compliance Inspector will try to identify the assertion catalog file
name based on the policies file naming convention.

Writing Custom Assertions for Code Compliance Inspector

Using the Code Compliance Inspector 20-27

To avoid any annotations and merge/patch problems, we recommend that you only
make changes in custom Policies XML and/or Assertion Catalog XML files that the
engine will read as overriding files. Code Compliance Inspector will automatically
identify custom files based on file naming patterns from the same location where
Oracle delivered base test and assertion files are found, for example, in
ComplianceInspector/config.

Some examples for policy and assertion file name matching patterns are:

Policies-AIA_11.x.xml (Custom_ Policies-AIA_11.x.xml)
AssertionCatalog-AIA_11.x.xml (Custom_ AssertionCatalog-AIA_11.x.xml)

For examples of adding and modifying assertions and policies, see the Custom_
AssertionCatalog-AIA_10.x.xml and Custom_ Policies-AIA_10.x.xml files found in the
ComplianceInspector/sample folder.

20.6.10 Adding and Modifying Assertions in a Custom Assertion File
To add a new assertion for execution by Code Compliance Inspector, add it in the
Custom Assertion file. A corresponding assertion needs to be added in the Custom
Policies XML file in order for a new assertion to be executed.

To customize the Oracle delivered assertion, copy this assertion from the base
Assertion file and paste it in the Custom Assertion file. Edit the parameters of the
assertion as needed in the Custom Assertion file.

To remove an assertion from execution by Code Compliance Inspector, copy the
assertion from the base Assertion file and paste it in the Custom Assertion file. Replace
the value for the executor attribute of the pasted assertion to, for example,
NAExecutor.

20.6.11 Adding and Modifying Assertions in a Custom Policies XML File
To add a new assertion under the existing policy, add an assertion node under the
existing policy element in Policies XML file. To customize an Oracle delivered
assertion, copy the assertion from the base Policies XML file and paste it in the Custom
Policies XML file. Edit parameters as needed in the Custom Policies XML file.

To remove a test from execution by Code Compliance Inspector, copy the test from the
base Policies XML file and paste it in the Custom Policies XML file. Add an active
attribute with the value set to false, for example:

<assertion name="ABCSTargetNsCheck" active="false">.

The Assertions.html and Policy.html files found in the <<output directory>>/reports
folder will have a different text style to display a new or customized assertion
executed by Code Compliance Inspector.

20.6.12 Executing Newly Created and Customized Assertions
In order to execute newly created or customized assertions, make sure that the base
and custom Assertion and Policies XML files are found in the
ComplianceInspector/config folder. Code Compliance Inspector will automatically
detect base and custom files and execute new assertions in addition to those available
in the base Assertion file as well as customized assertions.

Executing Code Compliance Inspector for Integration Projects

20-28 Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

20.7 Executing Code Compliance Inspector for Integration Projects
This section describes how to host technical compliance reports in a central location for
all of the integration projects in a release vehicle. Currently these files can only be
executed on Linux.

File name: $CCI_Home/ComplianceInspector/bin/aia_setEnv.sh
This file is used to set up environment variable values to execute the Code Compliance
Inspector. Table 20–12 describes the variables.

Table 20–12 Variables

Variable Description

VERSION This variable is used to specify the release number. For example:
2.5 or 3.1.

INPUTDIR This variable is used to specify the path of the root directory
where the AIA source is available.

Example: /scratch/aia/AIASource/RV2.5/aia

REPORT_STAGING_HOME This variable is used to specify the directory location where
reports will be generated by the tool.

Example: /scratch/aia/AIAReports_stage

REPORT_PRODUC_HOME This variable is used to specify the directory where reports are
copied to be viewed by report viewers.

Example: /scratch/aia/AIAReports

AIA_HOME This variable is used to specify the directory where the Code
Compliance Inspector is installed.

Example: /scratch/aia/

A

XML Structures of Exportable CAVS Definitions and Instances A-1

AXML Structures of Exportable CAVS
Definitions and Instances

[22] This appendix provides XML structures of exportable Composite Application
Validation System (CAVS) definitions and instances.

This appendix includes the following sections:

■ Section A.1, "Definition.xml"

■ Section A.2, "Instance.xml"

A.1 Definition.xml
The structure of the Definitions.xml file created by the CAVS definition export feature
is shown in Example A–1.

This export feature should be used to migrate definitions between instances running
on the same version of Oracle Application Integration Architecture (AIA) Foundation
Pack.

Use this structure as a reference if you receive a validation error when importing
definitions.

Edit this structure to create new definitions for importing to an Foundation Pack
instance.

For more information about the definition export and import feature, see Chapter 12,
"Exporting and Importing CAVS Definitions and Instances."

Example A–1 Definition.xml

<DefinitionsList>

<!-- The section below is for one test/simulator definition. This includes all definition details
as well as XPATH conditions set by the user.
For each definition the section below will be repeated -->

<DefinitionsViewRORow>
 <DefinitionId>[Definition ID that was set in the previous environment. During import, the
 target system will generate a new ID for this field]</DefinitionId>
 <Type>[Test|Simulator]</Type>
 <Description>[String. Description of the test or simulator]</Description>
 <State>[Locked|Unlocked]</State>
 <ServiceType>[Synchronous|Notify|Asynchronous two way]</ServiceType>
 <UrlEndpoint>[URL]</UrlEndpoint>
 <SoapAction>[String. Valid soap action from the wsdl of the above URL]</SoapAction>
 <SoapTransportType>[HTTP]</SoapTransportType>

Definition.xml

A-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

 <MessageRequest>[SOAP Message. Request message along with CAVS SOAP
 envelopes]</MessageRequest>
 <MessageResponse>[SOAP Message. Response message along with CAVS SOAP
 envelopes]</MessageResponse>
 <Delay>[Integer greater than -1. Only in the case of ServiceType Asynchronous two way]</Delay>
 <ServiceName>[String]</ServiceName>
 <ServiceVersion>[String]</ServiceVersion>
 <ProcessName>[String]</ProcessName>
 <PipName>[String]</PipName>
 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>
 <AuditedBy>[oc4jadmin]</AuditedBy>
 <!-- Namespace details from the request/response message. There can be more than one occurrence
 of the section below -->
 <NsXpathsForDefinitionsRO>
 <DefinitionNsXpathsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <NamespaceAlias>[String. namespace alias]</NamespaceAlias>
 <Namespace>[valid namespace URL]</Namespace>
 </DefinitionNsXpathsViewRORow>
 </NsXpathsForDefinitionsRO>
 <!-- XPATH variables and values. There can be more than one occurrence of the section below
 -->
 <XpathsForDefinitionsRO>
 <DefinitionXpathsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <XpathSeqId>[Non negative Integer]</XpathSeqId>
 <Xpath>[XPATH expression]</Xpath>
 <IsNodeText>[0|1.Applicable only for Simulator Definitions]</IsNodeText>
 <IsNodeKey>[0|1. Applicable only for Simulator Definitions]</IsNodeKey>
 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>
 <IsSystemGenerated>[0|1]</IsSystemGenerated>
 </DefinitionXpathsViewRORow>
 </XpathsForDefinitionsRO>
</DefinitionsViewRORow>

<!-- The section below is for one group test definition. This includes all definition details as
well as references to Test definitions that are mentioned above.
For each such group definition the section below will be repeated -->

<GroupDefinitions>
 <!-- There can be more than one occurrences of the section below -->
<GroupDefinitionsViewRORow>
 <GroupDefinitionId>[Group Definition ID that was set in the previous environment. During import
 the target system will generate a new ID for this field]
</GroupDefinitionId>
 <Description>[String]</Description>
 <ProcessName>[String]</ProcessName>
 <PipName>[String]</PipName>
 <GDDefinitionsViewRO>
 <!-- There can be more than one occurrences of the section below -->
 <GDDefinitionsViewRORow>
 <GroupDefinitionId>[Group Definition ID set above]</GroupDefinitionId>
 <SeqId>[Non negative Integer]</SeqId>
 <DefinitionId>[One of the Definition ID set in the DefinitionsViewRORow
 section]</DefinitionId>
 <DefinitionSeqId>[Non negative Integer]</DefinitionSeqId>
 <ServiceType>[Synchronous|Notify|Asynchronous two way]</ServiceType>
 <SoapTransportType>[HTTP]</SoapTransportType>
 </GDDefinitionsViewRORow>
 </GDDefinitionsViewRO>

Instance.xml

XML Structures of Exportable CAVS Definitions and Instances A-3

 </GroupDefinitionsViewRORow>
</GroupDefinitions>
</DefinitionsList>

A.2 Instance.xml
The structure of the Instance.xml file created by the CAVS instance export feature is
shown in Example A–2.

This export feature can be used to export a test or group instance in XML format that
can be used with XML reporting tools to generate reports of test executions.

For more information about the instance export feature, see Chapter 12, "Exporting
and Importing CAVS Definitions and Instances."

Example A–2 Instance.xml

<InstancesList><?xml version = '1.0' encoding = 'UTF-8'?>
<InstancesViewRORow>
<!-- There would be more occurrences of this if more instances are exported--!>
 <InstanceId>[Instance ID that was assigned by the environment in which the instance was
 run]</InstanceId>
 <Type>[Test|Simulator|Group</Type>
 <Status>[Status of the instances being exported] </Status>
 <StartedOn>[Date and time at which the instance started]</StartedOn>
 <EndedOn>[Date and time at which the instance ended]</EndedOn>
 <IsStaled>[0|1]</IsStaled>
 <DefinitionId>[Definition ID of the definition that generated the instance]</DefinitionId>
 <Description>[Description of the definition ID that generated the instance]</Description>
 <ServiceType>Synchronous|Asynchronous two-way|Asynchronous (notify)</ServiceType>
 <SoapAction>[String. Valid SOAP action for the WSDL defined for the definition
 ID]</SoapAction>
 <SoapTransportType>HTTP</SoapTransportType>
 <MessageRequest>actual request message</MessageRequest>
 <MessageResponse>actual response message</MessageResponse>
 <DefinitionsViewRO>
 <DefinitionsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <Type>[Type mentioned above] </Type>
 <Description>[Description mentioned above]</Description>
 <State>[Locked|Unlocked]</State>
 <ServiceType>[Service Type mentioned above] </ServiceType>
 <SoapAction>[SOAP Action mentioned above] </SoapAction>
 <SoapTransportType>HTTP</SoapTransportType>
 <MessageRequest>[Request message defined in the corresponding Test or Simulator
 definition]</MessageRequest>
 <MessageResponse>[Response message defined in the corresponding Test or Simulator
 definition]</MessageResponse>
 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>
 <AuditedBy>[oc4jadmin]</AuditedBy>
 </DefinitionsViewRORow>
 </DefinitionsViewRO>
 <InstanceXpathsViewRO>
 <InstanceXpathsViewRORow>
 <InstanceId>[Instance ID assigned to the instance}</InstanceId>
 <XpathSeqId>[Non-negative integer] </XpathSeqId>
 <Status>[Status of the instance] </Status>
 <Xpath>/soap:Envelope</Xpath>
 <IsNodeKey>[0|1. Applicable only for Simulator Definitions]</IsNodeKey>

Instance.xml

A-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>
 </InstanceXpathsViewRORow>
 </InstanceXpathsViewRO>
 <InstanceNsXpathsViewRO>
 <InstanceNsXpathsViewRORow>
 <InstanceId>[Instance ID assigned to the instance] </InstanceId>
 <NamespaceAlias>[String]</NamespaceAlias>
 <Namespace>[Valid namespace URL]</Namespace>
 </InstanceNsXpathsViewRORow>
 </InstanceNsXpathsViewRO>
</InstancesViewRORow></InstancesList>

B

Code Compliance Inspector: New Terminology & Available Assertion Executors B-1

BCode Compliance Inspector: New Terminology
& Available Assertion Executors

[23] This appendix describes the new terminology, delivered assertions, and the available
assertion executors for the Code Compliance Inspector tool.

There are two executors for CCI:

■ XPathExecutor: contains all of the XPath related operations. For example,
"XpathExistsCheck" and "XpathNodeCountEqualCheck"

■ FSExecutor: contains all of the file system related operations. For example,
"FileExistCheck" and "FilesMatchPatternCheck"

This appendix includes the following sections:

■ New Terminology

■ Delivered Assertions

■ Assertion Parameters for the XPathExecutor

■ Assertion Parameters for the FSExecutor

■ Available Operations for the XPathExecutor

■ Available Operations for the FSExecutor

B.1 New Terminology
The Code Compliance Inspector was previously called the Process Integration Pack
(PIP) Auditor. The new labels and concepts for Code Compliance Inspector are
described in Table B–1.

Table B–1 New terminology

Old Name New Name Description

PIP Auditor Code Compliance
Inspector

Run the Code Compliance Inspector to check for
good coding practices.

Rule Assertion Assertion replaces the <Rule> tag within the old
Rules.xml. Assertions can be defined once within
the AssertionCatalog.xml files and then used
within one or more Policies in the Policies.xml
files.

RuleSet AssertionSet AssertionSet replaces the <Ruleset> tag within the
old Rules.xml. AssertionSet is informational only
and is not surfaced in the JDeveloper Extension or
in the Code Compliance By Policy Report.

New Terminology

B-2 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Rules.xml AssertionCatalog.xm
l

There are two files:
AssertionCatalog-AIA-<version>.xml and
AssertionCatalog-WS-I-<version>.xml.

Category Category Category is part of an Assertion's definition in
AssertionCatalog.xml. Category is a tag within the
definition of an Assertion, that is largely just
informational. For this release, existing categories
will become the Policy names; meaning that all
Assertions tagged with a particular category will
appear in the Policies.xml files using a Policy name
that matches the Category.

TestSuite Policy Replaces the <TestSuite name= > tag in the old
TestSuite.xml with <Policy name= >; Policies can
be reused into more coarse-grained policy buckets
using the <depends name=> tag.

Test Assertion Replaces the <Test rulename= > tag in the old
TestSuite.xml.

TestSuite.xml Polices.xml There are two files: Policies-AIA-<version>.xml
and Policies-WS-I-<version>.xml. Within the
Policies.xml provided by Oracle, the policy name
should match the Catalog names used within the
Assertions in the AssertionCatalog.xml. Customers
can modify the Policies.xml including renaming
and reorganizing the Policies & Assertions.

pipaudit CheckCompliance Command line utility.

Priority Priority This term remains the same. Priorities are defined
as:

■ Priority 1 assertions are the basic assertions
that an integration project has to satisfy 100%
to be qualified as a Compliant.

■ Priority 2 assertions are more stringent on
certain design time patterns and an
integration project that meets these assertions
is qualified as Conformant.

■ Priority 3 assertions are the most stringent at
the lowest levels of the technology, and an
integration project that meets at least a certain
threshold of these assertions is qualified as
Fully Conformant.

■ Priority 4 assertions are recently introduced
assertions that can be qualified as P3 or P2 or
P1 assertions. For this release, these assertions
do not play a role in the qualification of an
integration project.

Priority levels are additive in nature, so passing
Priority 2 (conformant) means that you need to
pass Priority 1 (compliance) as well. A detailed list
of pre-defined assertions can be viewed in the
packaged Assertion Catalog XML files available
under the ComplianceInspector/config directory.

Table B–1 (Cont.) New terminology

Old Name New Name Description

Delivered Assertions

Code Compliance Inspector: New Terminology & Available Assertion Executors B-3

B.2 Delivered Assertions
The following tables show the delivered assertions. These pre-defined assertions can
be viewed in the packaged Assertion Catalog XML files located in the
ComplianceInspector/config directory.

Table B–2 Category :Coding Standards

Assertion Priority Description

NoTargetSysIdHardWiringInDVMLookupCheck 1 The Target SystemId must not be hardwired in
DVM lookups when used in XSL. The syntax used
should be: orcl:lookupValue('DVM_
NAME',$DVMSourceCol,XPATH,$DVMTargetCol,''
) where DVM_NAME can contain alphanumeric
and underscore characters and XPATH can contain
any XPATH expression.

Note: the targetId column can be one of the
following: 1) Any Xpath. 2) 'COMMON' 3) a
variable that does not contain a hard coded string
value. 4) Xpath function.

NoTargetSysIdHardWiringInXREFLookupCheck 1 The Target SystemId must not be hardwired in
XREF lookups when used in XSL. The syntax used
should be: xref:lookupXRef('XREF_
NAME',$XREFSourceCol,XPATH,$XREFTargetCol,
true()|false()) where XREF_NAME can contain
alphanumeric and underscore characters and
XPATH can contain any XPATH expression.

Note: the targetId column can be one of the
following: 1) Any Xpath. 2) 'COMMON' 3) a
variable that does not contain a hard coded string
value. 4) Xpath function.

TXNEnableInASyncDelayed 2 This check is for an Async Delayed Response
service. It must participate in a global transaction.

TXNEnableInFireForget 2 This check is for a Fire and Forget service. It must
participate in a global transaction.

TonkenizedReferencesInXSLCheck 2 All http URLs that point to an http server location
must be tokenized with ${hostname} and ${port}.

NameSpacePrefixesNamingInBPELCheck 3 In a BPEL process, namespace prefixes must follow
naming standard guidelines. The ns1, ns2 prefixes
which are generated by default are not allowed.

Table B–3 Category :Error Handling Standards

Assertion Priority Description

CatchBlockBindingFaultExistInBPELCheck 2 Catch block has to be defined for BindingFault in
BPEL process.

CatchBlockRemoteFaultExistInBPELCheck 2 Catch block has to be defined for RemoteFault in
BPEL process.

Delivered Assertions

B-4 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

Table B–4 Category :Loose Coupling Standards

Assertion Priority Description

TonkenizedReferencesInBpelCheck 2 All http URLs that point to an http server location
must be tokenized with ${hostname} and ${port}.

TonkenizedReferencesInCompositeCheck 2 All http URLs that point to an http server location
must be tokenized with ${hostname} and ${port}.

TonkenizedReferencesInWSDLCheck 2 All http URLs that point to an http server location
must be tokenized with ${hostname} and ${port}.

Table B–5 Category :Naming Standards

Assertion Priority Description

BPELAssignActivityNamingCheck 3 Change the default JDeveloper generated name for
the 'assign' activity.

BPELInvokeActivityNamingCheck 3 Change the default JDeveloper generated name for
the 'invoke' activity.

BPELReceiveActivityCheck 3 Change the default JDeveloper generated name for
the 'receive' activity.

BPELReplyActivityNamingCheck 3 Change the default JDeveloper generated name for
the 'reply' activity.

BPELScopeActivityCheck 3 Change the default JDeveloper generated name for
the 'scope' activity.

Table B–6 Category :Performance Standards

Assertion Priority Description

CompletionPersistPolicyCheck 1 The bpel.config.completionPersistPolicy property
configures how the instance data is saved. For
synch transient processes, the value for this
property should be 'faulted.' Only the faulted
instances will be saved.

SynchAuditLogLevelCheck 1 The bpel.config.auditLavel property configures
how the BPEL service engine will capture audit
details. For Synch Transient processes, the value for
this property should be 'faulted.'

Delivered Assertions

Code Compliance Inspector: New Terminology & Available Assertion Executors B-5

Table B–7 Category :Reusability Standards

Assertion Priority Description

NoLocalSchemasInBPELCheck 2 The BPEL Process folder must not contain any
schema files. All Utility schemas must be accessed
from a web server.

NoLocalAdaptersInBPELCheck 3 Adapters should be defined as ESB services. This
helps in Endpoint Virtualization. Also, BPEL
processes gain homogeneity, focusing on business
problems rather than protocol transformations.

NoSchemaElementsDefinedInWSDLCheck 3 WSDLs should use schema imports. All schema
elements must be defined in XSD.

Table B–8 Category :Security Standards

Assertion Priority Description

NoPlinkusageForSettingWSSecPropCheck 1 BPEL processes must not use property for passing
the username and password for ws-security.
OWSM should be used for all web services
invocation authentication purposes.

NoUnamePwdInDVMCheck 1 DVM stores must not store credentials. They
should not contain UserName and Password
values. OWSM should be used for all web services
invocation authentication purposes.

Table B–9 Category :WS-I BP Standards

Assertion Priority Description

SchemaImportUsedforXSDOnlyCheck 3 WSDL import elements must not be used to
import other kinds of XML schemas. WSDL
imports must only import WSDLs. This check is to
ensure compatibility with the WS interoperability
basic profile 1.0.

SchemaImportsOnlyInsideSchemaCheck 3 XML Schema 'import' statements must be within
the xsd:schema element of the types element.

SchemaNodeOnlyInsideWsdlTypesCheck 3 XML Schema elements must be within the
xsd:types element of the types element.

SchemaTargetNamespaceExistCheck 3 All xsd:schema elements contained in a wsdl:types
element must have a targetNamespace attribute
with a valid and non-null value, unless the
xsd:schema element has xsd:import and/or
xsd:annotation as its only child element(s).

SchemaTargetNamespaceMatchingCheck 3 WSDLs must not import WSDLs that have a
different targetNamespace in the definition. This
assertion assumes that inputDir contains the
AIAMetaData directory.

SchemaXSDFileRootSchemaCheck 3 XSD files must import XSD files that have schema
as a root node in the location of xsd:import. This
assertion assumes that inputDir contains the
AIAMetaData directory .

Delivered Assertions

B-6 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

UTFEncodingUsedinSchemaCheck 3 Schema definitions must use UTF-8 or UTF-16
encoding. UTF encoding can be specified in the
processing instruction of an XML. The assertion
looks for the existence of UTF in the processing
instructions. This check is to ensure compatibility
with the WS interoperability basic profile 1.0.

UTFEncodingUsedinWSDLCheck 3 WSDL description must use UTF-8 or UTF-16
encoding. UTF encoding can be specified in the
processing instruction of an xml. The assertion
looks for the existence of UTF in the processing
instruction. This check is to ensure compatibility
with the WS interoperability basic profile 1.0.

WSDLDocumentationIsFirstChildCheck 3 The wsdl:documentation element may be present
as the first child element of wsdl:import, wsdl:part
and wsdl:definitions in addition to the elements
cited in the WSDL1.1 specification.

WSDLFileRootDefinitionsCheck 3 WSDLs must import WSDL files that have
definitions as a root node in the location of
wsdl:import. This assertion assumes that inputDir
contains the AIAMetaData directory.

WSDLImportLocationNotEmptyCheck 3 The location attribute of all wsdl:import elements
must be non-empty.

WSDLImportNoRelativeURIInNSCheck 3 The namespace attribute of wsdl:import must not
be a relative URI. The URI should be an absolute
URI as per URI standards. This check is to ensure
compatibility with the WS interoperability basic
profile 1.0.

WSDLImportOnlyPrecededByDocCheck 3 All WSDL import elements must only be preceded
by WSDL documentation element in a WSDL file.
This check is to ensure compatibility with the WS
interoperability basic profile 1.0.

WSDLImportUsedforWSDLOnlyCheck 3 WSDL import element must not be used to import
other kinds of XML schemas. WSDL import must
only import WSDLs. This check is to ensure
compatibility with WS interoperability basic
profile 1.0.

WSDLImportsOnlyInsideDefinitionCheck 3 All WSDL 'import' statements must be within
wsdl:definition elements.

WSDLOperationMustHaveInputCheck 3 Solicit-Response and Notification type operations
must not be used in a wsdl:portType definition.
For example, output messages should always be
after input messages.

WSDLOperationNameMustBeUniqueCheck 3 All wsdl:portType elements must have operations
with distinct values for their name
attributes(overloading).

WSDLPartMustNotUseElementAndTypeCheck 3 A wsdl:message element must not specify both
'type' and 'element' attributes on the same
wsdl:part element.

WSDLTargetNamespaceMatchingCheck 3 WSDLs must not import other WSDLs that have
different targetNamespace in definitions. This
assertion assumes that inputDir contains the
AIAMetaData directory.

Table B–9 (Cont.) Category :WS-I BP Standards

Assertion Priority Description

Assertion Parameters for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-7

B.3 Assertion Parameters for the XPathExecutor
The following tables describe the mandatory and optional parameters for the
XPathExecutor.

B.3.1 Mandatory Parameters List
Table B–10 describes the mandatory parameters.

WSDLTypesOnlyPrecededByDocAndImportChe
ck

3 All WSDL types elements must only be preceded
by WSDL documentation element or wsdl import
in a WSDL file. This check is to ensure
compatibility with the WS interoperability basic
profile 1.0.

XMLversionUsageInSchemaCheck 3 XSD files must use XML version 1.0. The XML
version can be specified in the processing
instructions of an XML. The assertion looks for the
existence of version in the processing instructions.
This check is to ensure compatibility with WS
interoperability basic profile 1.0.

XMLversionUsageInWSDLCheck 3 WSDL files must use XML version 1.0. The XML
version can be specified in the processing
instructions of an XML. The assertion looks for the
existence of version in the processing instructions.
This check is to ensure compatibility with WS
interoperability basic profile 1.0.

Table B–10 Mandatory Parameters for XPathExecutor

Param
Name Description

Default
Value Example Failure Situation

Xpath.search XPath to be
executed on a
particular
document

No default //xsl:variable/@na
me

XPath execution failure
exception

xpath.names
pace.prefixes

The list of
delimited values
of namespace
prefixes that are
used for a
particular XPath
expression
execution.

No default 'bpel="http://sche
mas.xmlsoap.org/
ws/2003/03/busin
ess-process/";
xsl="http://www.
w3.org/1999/XSL/
Transform";
aiacfg="http://xml
ns.oracle.com/aia/
core/config/V1";
wsdl="http://sche
mas.xmlsoap.org/
wsdl/";
xsd="http://www.
w3.org/2001/XML
Schema";
xsd="http://www.
w3.org/2001/XML
Schema";

XPath execution failure
exception

Table B–9 (Cont.) Category :WS-I BP Standards

Assertion Priority Description

Assertion Parameters for the XPathExecutor

B-8 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

B.3.2 Optional Parameters List
Table B–11 describes the optional parameters.

assertCondit
ion

If the Assertion
level attribute
"operation" is not
present then this
param value will
be the valid
executor
operation name.
Otherwise, this
can be used as a
sub-operation
value.

No default XpathValuesPattern
MatchCheck

Unsupported operation
exception

xpath.match.
regxpattern

Assertion value No default [a-zA-Z_0-9]*

The regular
expression says that
a variable name can
contain only
alphanumeric
characters with
underscores.

Error depending on the
comparison type

Table B–10 (Cont.) Mandatory Parameters for XPathExecutor

Param
Name Description

Default
Value Example Failure Situation

Assertion Parameters for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-9

Table B–11 Optional Parameters for XPathExecutor

Param
Name Description

Default
Value Example Failure Situation

xpath.notexi
st.ignore

Every XPath
operation
assumes that the
comparison
between the
XPath execution
result and the
assertValue can
only be made if
the output
NodeList
returned after
evaluating the
Xpath contains at
least one node
(the default
behavior except
for the
'XpathExists' and
'XpathNotExists'
operations). The
default behavior
of
non-compliance
is reported if the
XPath does not
return any
nodes.)

False We have a test
saying "all
compensate
activities in BPEL
should start with a
prefix of
compensate". Now
if we do not have
any compensate
activities in a BPEL
file, Code
Compliance
Inspector reports a
non-compliance. If
we specify
xpath.notexist.ignor
e="true", then the
test would be
considered a
success by Code
Compliance
Inspector.

--

xml.external.
filename

There are
situations when
the assertValue is
more than just a
mere String. The
value can be an
entire XML
fragment, which
contains regEx
patterns. In this
case, a compare
file argument
specifies the file
and the XPath
specifies the
fragment within
the file.

No default Used to compare
standard code
snippets.

<Param
name="xml.external
.filename"
value="${faultXML}
"
default="AIAStdCo
de.xml"/>

--

Assertion Parameters for the FSExecutor

B-10 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

B.4 Assertion Parameters for the FSExecutor
The following tables describe the mandatory and optional parameters for the
FSExecutor.

xml.external.
search.xpath

Xml.external.sear
ch.xpath is
always used with
xml.external.filen
ame. As
mentioned
above, this XPath
helps us identify
the XML
fragment for
comparison.

-- <Param
name="xml.external
.search.xpath"
value="//EBMHea
derPopulation/core
com:EBMHeader/P
4/corecom:Message
ProcessingInstructi
on"/>

This is used with
the
xml.external.filena
me param above.

When we apply the
XPath
(Xml.external.searc
h.xpath) on the file
(Xml.external.filena
me) we get an XML
fragment for
comparison. In the
above example, the
MessageProcessingI
nstruction returned
by evaluating
XPath on selected
files is evaluated
against
MessageProcessingI
nstruction returned
by evaluating
Xml.external.search
.xpath on the file
Xml.external.filena
me.

--

xml.node.ma
tch.mode

Special
operations, if
any, to be
executed to
derive the
assertValue.
Otherwise, the
default behavior
is executed
which is stated in
the default
section

Default:
String

It converts
the NodeList
from
Resultant
XPath to
string
(ConvertNo
deListToStir
ng)

Currently, the only
supported type is
length. By default,
when nothing is
specified, it
converts the
resultant NodeList
to String.

--

Table B–11 (Cont.) Optional Parameters for XPathExecutor

Param
Name Description

Default
Value Example Failure Situation

Available Operations for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-11

B.4.1 Mandatory Parameters List
Table B–12 describes the mandatory parameters.

B.4.2 Optional Parameters List
Table B–13 describes the optional parameters.

B.5 Available Operations for the XPathExecutor
The following tables describe the available operations for the XPathExecutor.

XpathListExistCheck
Checks for the existence of the nodes in the given XPath List. Every XPath in the list
should have at least one node. This is very similar to the XpathExist operation except
that we can check for multiple XPaths.

Table B–12 Mandatory Parameters for the FSExecutor

Param
Name Description

Default
Value Example Failure Situation

assertCondit
ion

Any one of the
operations
supported by the
FSExecutor. See
the Available
Operations for
FSExecutor
section.

No default FileNotExistCheck Unsupported
Operation exception

filename.sea
rch.regxpatte
rn

Regular
expression for
selecting
matching files.

No default a-zA-Z_0-9_
/]*(EBF)((V)[0-9]*)?
?.wsdl

Invalid Regular
expression

Table B–13 Optional Parameters for the FSExecutor

Param
Name Description

Default
Value Example Failure Situation

filename.mat
ch.regxpatter
n

Assertion value
(String)

No default InputFilePattern_
(c|C)ustom.xsl

--

filecontent.e
xclude.regxp
attern

Exclude of file
for which content
matched with
this pattern
(Regular
Expression)

No default .*(c|C)ustom.xsl --

filename.excl
ude.regxpatt
ern

Exclude of file
for which
filename
matched with
this pattern
(Regular
Expression)

No default .*(JMSProducer|Ou
tboundHeader).*.w
sdl

--

Available Operations for the XPathExecutor

B-12 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

XpathNotExistsCheck
Checks for the existence of the nodes in the given XPath List. Every XPath in the list
should have at least one node. This is very similar to the XpathExist operation except
that we can check for multiple XPaths.

XpathNodeCountLessThanCheck
Checks if the number of nodes found at the XPath is less than the assert value.

Table B–14 XpathListExistCheck

Operation Description Comments

Xpath.search XPath where zero nodes are
expected

-

Xpath.namespace.prefixes - -

Xpath.1.search - /A/B

Xpath.2.search - And so on... We can check for 'n'
XPaths in this manner (xpathn)

xml.local.imports.resovable - -

xml.remote.imports.resovable - -

local.metadir - -

Table B–15 XpathNotExistsCheck

Operation Description Comments

Xpath.search XPath where zero nodes are
expected

-

Xpath.namespace.prefixes - -

xml.local.imports.resovable - Same as the one in XpathExists.

xml.remote.imports.resovable - -

local.metadir - -

Table B–16 XpathNodeCountLessThanCheck

Operation Description Comments

Xpath.search XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Maximum number of nodes that can
be present for the XPath. Note that if
your intended value is 'n' then the
assert value is its 'n+1'.

All BPEL processes, which follow
SYNC Request Response pattern,
should not have more than 6
extension points.

So assert value would be '7'.

Available Operations for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-13

XpathNodeCountGreaterThanCheck
Checks if the number of nodes found at the XPath is less than the assert value.

XpathValuesLessThanCheck
Checks if the value in the XPath is less than the assert value.

XpathValuesLessThanEqualCheck
Checks if the value in the XPath is less than or equal to the assert value.

XpathValuesGreaterThanCheck
Checks if the value in the XPath is greater than the assert value.

Table B–17 XpathNodeCountGreaterThanCheck

Operation Description Comments

Xpath.search XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Minimum number of nodes that can
be present for the XPath. Note that if
your intended value is 'n' then the
assert value is its 'n-1'.

All BPEL processes, which follow
SYNC Request Response pattern,
should have minimum of 4
extension points.

So assert value would be '3'.

Table B–18 XpathValuesLessThanCheck

Operation Description Comments

Xpath.search

-

XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Maximum number that the value
from the XPath can have. Note that if
your intended value is 'n' then the
assert value is its 'n+1'.

All BPEL processes, which follow
SYNC Request Response pattern,
should not have more than 6
extension points.

So assert value would be '7'.

Table B–19 XpathValuesLessThanEqualCheck -

Operation Description Comments

Xpath.search XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Maximum number that the value
from XPath can have.

-

Available Operations for the XPathExecutor

B-14 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

XpathValuesGreaterThanEqualCheck
Checks if the value in the XPath is greater than or equal to the assert value.

CompareNodeWithRegExXMLCheck
Checks if the node returned by the XPath matches the XML snippet from a file. Note
that it is a regular expression comparison and the snippet can contain regular
expressions.

Table B–20 XpathValuesGreaterThanCheck

Operation Description Comments

Xpath.search XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Minimum number of nodes that can
be present for the XPath. Note that if
your intended value is 'n' then the
assert value is its 'n-1'.

All BPEL processes, which follow
SYNC Request Response pattern,
should have minimum of 4
extension points.

So assert value would be '3'.

Table B–21 XpathValuesGreaterThanEqualCheck

Operation Description Comments

Xpath.search XPath for which node count is
checked.

-

Xpath.namespace.prefixes - -

xpath.match.regxpattern Minimum number of nodes that can
be present for the XPath.

-

Table B–22 CompareNodeWithRegExXMLCheck

Operation Description Comments

Xpath.search XPath for the node, which has to be
checked.

-

xpath.namespace.prefixes - -

xml.external.filename The XML file where the snippet for
comparison lies.

"ABCS WSDL should be
documented as per AIA
Documentation standards." The file
AIAStdCode.xml for example
contains all the XML snippets. So
this file is the xml.external.filename

xml.external.search.xpath //ABCSwsdlDoc/wsdl:documentati
on

XPath to derive the XML snippet
from the xml.external.filename XML
file.

This XPath will separate out just the
documentation snippet from the
XML.

Available Operations for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-15

CompareNodeListWithRegExXMLCheck
Checks if every node from the NodeList returned by the XPath matches the XML
snippet from a file. Note that it is a regular expression comparison and the snippet can
contain regular expressions. This can be used when multiple nodes from a file have to
be checked against the same XML snippet.

XpathValuesEqualCheck
Checks if the string value of every node from the NodeList returned by the XPath
matches the string value specified in the assert value.

XpathValuesNotEqualCheck
Checks if the string value of every node from the NodeList returned by the XPath does
not match the string value specified in the assert value.

Table B–23 CompareNodeListWithRegExXMLCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returne
from this XPath should be complia
to the XML snippet derived using
xml.external.filename and
xml.external.search.xpath.

xpath.namespace.prefixes - -

xml.external.filename The XML file where the snippet for
comparison lies.

"Catch blocks are defined as per AI
Error Handling Guidelines." The fi
AIAStdCode.xml for example
contains all the XML snippets. So
this file is the xml.external.filenam

xml.external.search.xpath XPath to derive the XML snippet
from the xml.external.filename XML
file.

//catch

This XPath will separate out just th
documentation snippet from the
XML.

Table B–24 XpathValuesEqualCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returne
from this XPath should be complia
to the assert value.

xpath.namespace.prefixes - -

xpath.match.regxpattern String value to check against. -

xpath.notexist.ignore - -

Table B–25 XpathValuesNotEqualCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returne
from this XPath should be complian
to the assert value.

Available Operations for the XPathExecutor

B-16 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

XpathValuesPatternMatchCheck
Checks if the string value of every node from the NodeList returned by the XPath
matches the regular expression pattern specified in the assert value.

XpathValuesNotMatchPatternCheck
Checks if the string value of every node from the NodeList returned by the XPath does
not match the regular expression pattern specified in the assert value. This does the
exact opposite check of XpathValuesPatternMatch.

xpath.namespace.prefixes - -

xpath.match.regxpattern String value to check against. -

xpath.notexist.ignore - -

Table B–26 XpathValuesPatternMatchCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returned
from this XPath should be compliant
to the assert value.

xpath.namespace.prefixes - -

xpath.match.regxpattern Regular expression pattern to check
against.

"All Assign activities in a BPEL
process should start with a prefix of
Assign followed by activity name".
The pattern would look like:
(Assign){1}(_)??(([a-zA-Z])([a-zA-Z_
0-9])*)

xpath.notexist.ignore - -

Table B–27 XpathValuesNotMatchPatternCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returned
from this XPath should be compliant
to the assert value.

xpath.namespace.prefixes - -

xpath.match.regxpattern Regular expression pattern to check
against.

 "Target node should not be
populated during ABM to EBM
transformation in Requester
ABCSImpl."

The following pattern would ensure
that no hard coding of target ID is
present. :([a-zA-Z_0-9\s]*)

xpath.notexist.ignore - -

Table B–25 (Cont.) XpathValuesNotEqualCheck

Operation Description Comments

Available Operations for the XPathExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-17

XpathValueNotContainsCheck
Checks if the string value of every node from the NodeList returned by the XPath does
not contain the string specified in the assert value.

XpathValueContainsCheck
Checks if the string value of every node from the NodeList returned by the XPath
contains the string specified in the assert value.

ExistsRegExXMLCheck
Iterates through the children of the node specified by xml.external.filename and
xml.external.search.xpath. Checks if every node in NodeList returned by executing
xml.external.search.xpath on xml.external.filename, exists in the NodeList returned by
executing xpath on the policies file. Note that CompareNodeWithRegExXML checks
against the xml.external.filename. The behavior is reverse in this operation. This
operation iterates through all the children of the node from xml.external.filename and
makes sure each one of them is present in the NodeList from XPath.

Table B–28 XpathValueNotContainsCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returne
from this XPath should be complia
to the assert value.

xpath.namespace.prefixes - -

xpath.match.regxpattern String value to check against. "DVM stores should have no
credentials stored.."

The following pattern would ensur
that no tokens that are generally
used to store credentials are used i
DVMs.:UserName;Password;unam
pwd;username;password

xpath.notexist.ignore - -

Table B–29 XpathValueContainsCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which has to
be checked.

Every node from NodeList returne
from this XPath should be complia
to the assert value.

xpath.namespace.prefixes - -

xpath.match.regxpattern String value to check against. -

xpath.notexist.ignore - -

Available Operations for the XPathExecutor

B-18 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

NotExistsRegExXMLCheck
Iterates through children of node specified by xml.external.filename and
xml.external.search.xpath. Checks if every node in NodeList returned by executing
xml.external.search.xpath on xml.external.filename, does not exist in the NodeList
returned by executing the XPath on the policies file. Note that this does the exact
reverse of ExistsRegExXML.

Table B–30 ExistsRegExXMLCheck

Operation Description Comments

Xpath.search XPath for the NodeList,
which has to be checked.

Every node from NodeList returned from this XPath
should contain all the children of the node derived from
xml.external.filename and xml.external.search.xpath.

xpath.namespace.prefixes - -

xml.external.filename String value to check
against.

"Ensure MessageProcessingInstruction is populated fully
in ReqABM_to_EBM xsl".

xml.external.search.xpath - -

xml.node.match.mode - 1: (NODE_MUST) This is the default option. All the
elements are considered for comparison. Any missing
elements are reported for non-compliance.

2: (NODE_IGNORE). If xml.node.match.mode is
specified as 2, then missing nodes are not considered for
comparison. For example, consider an XML structure
with A as a parent and B and C as children
(<A><C/>). When xml.node.match.mode=1
and if node B or C is absent all together, then
non-compliance is reported. If we want to change this
default behavior to report a compliance, then we should
specify xml.node.match.mode=2. Note that if a node is
present then it should conform to the regular expression
specified.

3: (NODE_OPTIONAL). This lets us pick and choose
what differences we would want to ignore. We can add
an attribute minoccurs="0" in any element that we
would want to skip comparison when not found. For
example, consider an XML structure where A is a parent
element and has 2 children B and C
(<A><C/>). If we want a scenario where
missing B's should be reported as compliance where as
missing C's should be reported as non-compliance then
this is how we can achieve it through
xml.node.match.mode: <A><B
minoccurs="0"/><C/>

xpath.notexist.ignore - -

Table B–31 NotExistsRegExXMLCheck

Operation Description Comments

Xpath.search XPath for the NodeList, which
has to be checked.

Every node from NodeList returned from
this XPath should contain all the children of
the node derived from
xml.external.filename and
xml.external.search.xpath.

xpath.namespace.prefixes - -

Available Operations for the FSExecutor

Code Compliance Inspector: New Terminology & Available Assertion Executors B-19

B.6 Available Operations for the FSExecutor
The following tables describe the available operations for the FSExecutor

FileExistCheck
Checks if a file of particular pattern exists in the selected directory.

FileNotExistCheck
Checks if a file of particular pattern does not exist in the selected directory.

xml.external.filename String value to check against. -

xml.external.search.xpath - Example of this would be say we want to
make sure double notifications are not sen
as part of error handling. So we could chec
for the non-existence of certain error
handling code snippets in some of the catc
blocks.

xml.node.match.mode - See the table description for
ExistsRegExXML for more information.

xpath.error.path - This would be helpful if we would want to
show the user the node, which is not
supposed to exist. For example, if we wan
to show the user the catch block that
contains the redundant call, this is how we
can do it:

<Param name="xpath.error.path"
default="@faultName"/>

xpath.notexist.ignore - -

Table B–32 FileExistCheck

Operation Description Comments

filename.search.regxpattern Pattern of the file to be selected. If you want to check for the existence of a
config file, for example,
AIAConfigurations.xml in every ABCS
integration project, then you can select
FileType="*" and context="ABCS" and the
provide "AIAConfigurations.xml" in this
param value.

Table B–33 FileNotExistCheck

Operation Description Comments

filename.search.regxpattern Pattern of the file to be selected. If you want to check for the non-existence
a local schema in every ABCS integration
project, then you can select FileType="*" an
context="ABCS" and then provide "*.xsd"
this param value.

Table B–31 (Cont.) NotExistsRegExXMLCheck

Operation Description Comments

Available Operations for the FSExecutor

B-20 Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide

FilesMatchPatternCheck
Checks if the selected file name matches a particular pattern.

Table B–34 FilesMatchPatternCheck

Operation Description Comments

filename.search.regxpattern Pattern of the file to be selected. If you want to check for the existence of an
extension WSDL in every ABCS integration
project, then you can select FileType="*" and
context="ABCS" and then provide
".*(ABCSImpl)((V)[0-9]*)??.wsdl" in this
param value.

filename.match.regxpattern The pattern the file name should
be checked against.

If you want to assert that the extension file
selected matches a particular naming
pattern, for example:
".*(ABCSImpl)Extension.wsdl"

Index-1

Index

A
asynchronous (notify) MEP testing flow

simulator definition, 2-5
test definition, 2-4

asynchronous (two-way) MEP testing flow
simulator definition, 2-7
test definition, 2-5

B
B2B errors, accessing, 19-1
BPEL process, obtaining message XML, 2-10

C
CAVS

asynchronous (notify) testing flows, 2-4
asynchronous (two-way) testing flows, 2-5
complex flow testing, 2-8
creating routing setup IDs, 8-3
creating simulator definitions, 5-1
creating test definitions, 4-1
definitions export structure, A-1
design assumptions, 1-3
exporting definitions, 12-1
exporting group instances, 12-4
exporting simulator instances, 12-3
exporting test instances, 12-3
flow testing, 2-8
group definitions, 3-1, 7-1
group instances, 3-1
importing definitions, 12-1
instances export structure, A-1
key components, 1-2
knowledge prerequisites, 1-3
modifying routing setup IDs, 8-6
modifying simulator definitions, 5-4
modifying test definitions, 4-5
obtaining message XML, 2-10
overview of defining tests, 3-3
overview of running tests, 3-3
process flows, 2-2
purging cross-reference entries, 11-1
routing setup IDs, 8-1
searching for routing setup IDs, 8-4

setting up routing configurations, 8-7
simulator definition key component, 1-3
simulator definitions, 3-1
simulator instances, 3-1
synchronous testing flows, 2-2
test definition key component, 1-2
test definitions, 3-1
test instances, 3-1
test requirements, 2-1
test scenarios, 2-1
unit testing, 2-8
web services, 3-4
working with group instances, 10-1
working with simulator instances, 9-1
working with test instances, 9-1

Code Compliance Inspector
using, 20-1

complex flow testing
using CAVS, 2-8

Composite Application Validation System
See CAVS

cross-references, purging CAVS-related, 11-1

D
definition export structure, A-1
dynamic responses, sending in simulator

response, 5-15

E
error handling

accessing B2B errors, 19-1
associating email addresses with user roles, 14-5
BPEL system faults, 13-4
configuring, 14-5
configuring notification details, 14-5
configuring notification throttling

parameters, 15-3
creating user roles, 14-4
customizing notification email URLs, 15-11
customizing notification emails, 15-5
disabling notifications, 15-14
enabling notification throttling, 15-3
fault categories, 13-3
for B2B faults, 13-5

Index-2

for business faults, 13-4
key features, 13-2
mediator system faults, 13-4
notification throttling overview, 15-2
notifications, 15-1
setting up, 14-1
setting up notification throttling, 15-2
using the Message Resubmission Utility, 17-1
using the Oracle BPM Worklist, 16-1

Error Handling Framework
See also error handling

Error Handling Framework overview, 13-1
error logging

accessing logs, 18-3
enabling, 18-2
overview, 18-1

error notifications
configuring, 14-5
configuring throttling parameters, 15-3
customizing body text of emails, 15-9
customizing email subject line, 15-8
customizing emails, 15-5
customizing URLs, 15-11
disabling, 15-14
enabling throttling, 15-3
overview, 15-1
setting up throttling, 15-2
throttling overview, 15-2

F
faults

B2B, 13-5
BPEL system, 13-4
business, 13-3
mediator system, 13-4
system, 13-3

flow testing using CAVS, 2-8
formats

request message, 4-12
response message, 4-13

G
gathering test requirements, 2-1
group definitions, 3-1

creating, 7-2
group instance selection, 7-4
modifying, 7-2
search group, 7-1
test definition selection, 7-4
working with, 7-1

group instances, 3-1
exporting, 12-4
viewing, 10-1
viewing details, 10-2

I
instances, export structure, A-1

K
key components

simulator definition, 1-3
test definition, 1-2

L
logging

accessing trace and error logs, 18-3
searching for messages, 18-4
using trace and error logs, 18-1

M
message exchange pattern

asynchronous (notify) process flow, 2-4
process flows, 2-2

Message Resubmission
using the UI, 17-2

Message Resubmission Utility
overview, 17-1

message sets
multiple requests and responses, 4-12
provide multiple requests and responses in

simulator definition, 5-12
request message format, 4-12
response message formats, 4-13

message XML, obtaining from a BPEL process, 2-10

N
notification details, configuring for error

handling, 14-5

O
Oracle BPM Worklist

enabling, 16-3
overview, 16-1
using, 16-3

P
PIP Auditor

see Code Compliance Inspector, B-1
process flows, testing the asynchronous (notify)

MEP, 2-4

R
routing setup IDs

creating, 8-3
defining, 8-1
modifying, 8-6
routing setup actions, 8-6
searching for, 8-4

S
simulator definitions, 1-3, 3-1

asynchronous (notify) MEP testing flow, 2-4, 2-5

Index-3

asynchronous (two-way) MEP testing flow, 2-6,
2-7

creating, 5-1
modifying, 5-4
providing multiple request and response message

sets, 5-12
searching for, 6-1
supporting chatty services, 5-14
synchronous MEP testing flow, 2-3
working with, 6-1

simulator instances, 3-1
exporting, 12-3
viewing details, 9-8
working with, 9-1

simulator responses, sending dynamic
responses, 5-15

synchronous MEP testing flow
simulator definitions, 2-3
test definitions, 2-3

T
test definitions, 1-2, 3-1

asynchronous (notify) MEP testing flow, 2-4
asynchronous (two-way) MEP testing flow, 2-5,

2-6
creating, 4-1
exporting, 12-1
importing, 12-1
modifying, 4-5
provide multiple request and response message

sets, 4-12
searching for, 6-1
synchronous MEP testing flow, 2-2, 2-3
working with, 6-1

test instances, 3-1
exporting, 12-3
viewing details, 9-4
working with, 9-1

test requirements, gathering, 2-1
testing flows

asynchronous (notify) testing flows, 2-4
asynchronous (two-way), 2-5
synchronous, 2-2

tests
defining in CAVS, 3-3
running in CAVS, 3-3

trace logging
accessing logs, 18-3
overview, 18-1
setting levels, 18-2

U
unit testing using CAVS, 2-8
user roles

associating email addresses, 14-5
creating for error handling, 14-4

W
web service for CAVS, 3-4
WS-Addressing

using, 5-10

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Oracle AIA Guides
	Related Documents
	Documentation Accessibility
	Enabling Accessibility Features for AIA Home
	Conventions

	What's New in This Guide for Release 11.1.1.9
	1 Introduction to the Composite Application Validation System
	1.1 Describing the Purpose of the Composite Application Validation System
	1.2 Describing Key Components of the CAVS Framework
	1.3 Describing the CAVS Design Assumptions and Knowledge Prerequisites

	2 Preparing to Use the Composite Application Validation System
	2.1 What Can I Test Using CAVS?
	2.2 What Are the Oracle AIA Components That I Need to Test?
	2.3 Which Message Exchange Pattern Is Being Used by the Components Being Tested?
	2.3.1 Describing CAVS Process Flows for Testing the Synchronous Message Exchange Pattern
	2.3.2 Describing CAVS Process Flows for Testing the Asynchronous (Notify) Message Exchange Pattern
	2.3.3 Describing Flows for Testing the Asynchronous Two-Way Message Exchange Pattern

	2.4 Does the Scenario Need to be Unit or Flow Tested?
	2.4.1 Describing a Unit Test Configuration
	2.4.2 Describing a Flow Test Configuration
	2.4.3 Describing a Complex Flow Test Configuration

	2.5 Do I Have the Content I Need to Create the Definitions?
	2.5.1 How to Obtain Message XML Text from a BPEL Process

	3 Introduction to Defining and Running CAVS Tests Using the CAVS UI
	3.1 Describing the CAVS UI
	3.2 Overview of Defining and Running CAVS Tests
	3.3 How to Execute CAVS Definitions as Web Services

	4 Creating and Modifying Test Definitions
	4.1 How to Create a Test Definition
	4.2 How to Modify a Test Definition
	4.3 How to Provide Multiple Request and Response Message Sets in a Single Test Definition

	5 Creating and Modifying Simulator Definitions
	5.1 How to Create a Simulator Definition
	5.2 How to Modify a Simulator Definition
	5.2.1 Using WS-Addressing in Asynchronous Two-Way Simulator Definitions

	5.3 How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition
	5.4 How to Create a Simulator Definition that Supports Chatty Services
	5.5 How to Send Dynamic Responses in a Simulator Response

	6 Searching for Test and Simulator Definitions
	6.1 How to Search for and Work with Test and Simulator Definitions

	7 Working with Group Definitions
	7.1 How to Work with Group Definitions
	7.2 How to Create and Modify a Group Definition

	8 Defining CAVS Routing Setup IDs
	8.1 Introduction to CAVS Routing Setup IDs
	8.2 How to Create CAVS Routing Setup IDs
	8.3 How to Search for CAVS Routing Setup IDs
	8.4 How to Modify Routing Setup IDs
	8.5 How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

	9 Working with Test and Simulator Instances
	9.1 How to Work with Test and Simulator Instances
	9.2 How to View Test Instance Details
	9.3 How to View Simulator Instance Details

	10 Working with Group Instances
	10.1 How to View Group Instances
	10.2 How to View Group Instance Details

	11 Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios
	11.1 Introduction to Purging CAVS-Related Cross-Reference Entries
	11.2 How to Purge CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

	12 Exporting and Importing CAVS Definitions and Instances
	12.1 How to Export and Import Definitions
	12.2 How to Export Test and Simulator Instances
	12.3 How to Export Group Instances

	13 Introduction to Oracle AIA Error Handling
	13.1 Introduction to the Error Handling Framework
	13.1.1 Fault Categories

	13.2 Introduction to Error Handling for Business Faults
	13.3 Introduction to Error Handling for BPEL and Mediator System Faults
	13.4 Introduction to Error Handling for Oracle B2B Errors

	14 Setting Up Error Handling
	14.1 Introduction to Setting Up Error Handling
	14.2 How to Create Error Handling User Roles
	14.3 How to Associate Email Addresses with Error Handling User Roles
	14.4 How to Configure Notification Details
	14.5 How to Set Up AIA Error Handling Configuration Details
	14.5.1 What You Need to Know about Setting Up Error Handling Configurations

	15 Using Error Notifications
	15.1 Introduction to Error Notifications
	15.2 Setting Up Error Notification Throttling
	15.2.1 Introduction to Error Notification Throttling
	15.2.2 How to Enable Error Notification Throttling
	15.2.3 How to Configure Error Notification Throttling Parameters

	15.3 Customizing Error Notification Emails
	15.3.1 Introduction to Error Notification Customization
	15.3.1.1 EMAIL Element
	15.3.1.2 FYI_EMAIL Element
	15.3.1.3 URL Element
	15.3.1.4 EXT_URL Element

	15.3.2 How to Customize the Subject Line of Error Notification Emails
	15.3.3 How to Customize the Body Text of Error Notification Emails
	15.3.4 How to Customize Additional URLs Provided in Error Notification Email Body Text

	15.4 Disabling Error Notifications

	16 Using the Oracle BPM Worklist
	16.1 Introduction to the Oracle BPM Worklist
	16.2 How to Enable the Oracle BPM Worklist
	16.3 How to Use the Oracle BPM Worklist

	17 Using the AIA Message Resubmission Utility
	17.1 Introduction to the AIA Message Resubmission Utility
	17.2 Using the AIA Message Resubmission Utility User Interface
	17.3 Using the Command Line AIA Message Resubmission Utility
	17.3.1 AQ Store Based Resubmission
	17.3.2 WLS JMS based Resubmission
	17.3.3 Resequencer Based Resubmission

	18 Using Trace and Error Logs
	18.1 Introduction to Trace and Error Logging
	18.2 How to Enable Trace Logging
	18.3 How to Set Trace Log Levels
	18.4 How to Access Trace and Error Logs
	18.4.1 Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console
	18.4.2 Searching for Oracle AIA Log Messages
	18.4.3 Accessing Oracle AIA Log XML Files

	19 Accessing Oracle B2B Errors
	19.1 Accessing B2B Error Reports

	20 Using the Code Compliance Inspector
	20.1 Overview
	20.1.1 Understanding the Terminology
	20.1.2 Understanding the Delivered Catalogs

	20.2 Invoking Code Compliance Inspector from JDeveloper
	20.3 Running Code Compliance Inspector in JDeveloper
	20.3.1 Understanding the Reports
	20.3.1.1 Sharing the Reports
	20.3.1.2 Integration with Oracle Enterprise Repository
	20.3.1.3 Generating a Trend Analysis Chart

	20.4 Invoking Code Compliance Inspector from a Command Line
	20.5 Configuring Code Compliance Inspector
	20.5.1 Considerations

	20.6 Writing Custom Assertions for Code Compliance Inspector
	20.6.1 Understanding the Assertion Structure
	20.6.1.1 Assertion Parameters

	20.6.2 Selecting an Appropriate Executor
	20.6.3 Understanding Profile Assertions
	20.6.4 Profile Assertion Properties
	20.6.5 Using Properties from Profile Assertions in an Assertion
	20.6.6 Writing Custom Assertions and Policies in a Policy File
	20.6.7 Understanding the Custom AssertionCatalog File
	20.6.8 Understanding the Custom Policies XML File
	20.6.9 Delivered Assertions & Policies
	20.6.10 Adding and Modifying Assertions in a Custom Assertion File
	20.6.11 Adding and Modifying Assertions in a Custom Policies XML File
	20.6.12 Executing Newly Created and Customized Assertions

	20.7 Executing Code Compliance Inspector for Integration Projects
	A.1 Definition.xml
	A.2 Instance.xml
	B.1 New Terminology
	B.2 Delivered Assertions
	B.3 Assertion Parameters for the XPathExecutor
	B.3.1 Mandatory Parameters List
	B.3.2 Optional Parameters List

	B.4 Assertion Parameters for the FSExecutor
	B.4.1 Mandatory Parameters List
	B.4.2 Optional Parameters List

	B.5 Available Operations for the XPathExecutor
	B.6 Available Operations for the FSExecutor

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

