ORACLE

System Interface Module
(SIM) Manual

Simphony SIM Manual

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restric-
tions on use and disclosure and are protected by intellectual property laws. Except as expressly per-
mitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Govern-
ment end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, includ-
ing applications that may create a risk of personal injury. If you use this software or hardware in dan-
gerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trade-
marks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trade-
marks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trade-
marks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Cor-
poration and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Documentation
Oracle Hospitality product documentation is available on the Oracle Help Center
at http://docs.oracle.com/en/industries/hospitality/.

Revision History

Edition Month Year Software Version
1st November 2007 1.0
2nd May 2014 1.6 MR8
3rd August 2014 1.6 MR9
4th December 2015 1.7
5th September 2016 1.71

Simphony SIM Manual

http://docs.oracle.com/en/industries/hospitality/
http://docs.oracle.com/en/industries/hospitality/
http://docs.oracle.com/en/industries/hospitality/

Table of Contents

lable of Contents

Preface
AUGICTICE ...ttt bttt bbbt b et ettt e be et sa e X
Recognizing Abbreviations, Conventions, and Symbols..........c.ccoceeveevirinininnenennne xi

Chapter 1 - Understanding the SIM and ISL

Getting to Know the SIM and ISL.......cccooiiiiiiiiiinininteeeeeeseeee e 1-2
Features 0f the SIM.......c.oo ittt et 1-9
Creating SIM Applications with the ISLcccccoviiniinieieeeer e 1-14

Chapter 2 - Getting Started

Getting Started with the ISL and SIMcccocooiiiiininininiiieeeeeen 2-2
Message Formats and Interface Methodsc.ccevvivieniieeiienieniesieceeeeeeeeiene 2-3
Programming Simphony for SIMccccceviiniinieiieeeeee e 2-10

Chapter 3 - Script Writing Basics

Getting Started with SCript WIItINGcccvevieriieriieieeieeieereeee e ee e 3-2
WHRAL 1S @ SCTIPL? ..veieiieiieciiesieereese ettt et et e st e s b e s e e sae e e ssaessaesseesseensaensaens 3-3
CIEAtING SCIIPLS..eeuvieriierrierieesieerieetieteeteetestestestaesseesseesseesseesseesseesseassessseessesssesssenses 3-5
SCriPt WIIING SEYLE ..eeeviiieiieciieceeceee ettt ebe e esbeeeneas 3-9
Writing and EdIting SCIPLSccviieeiieiiiecieeeieesreeetee ettt e e e e e eve e 3-12
TESEING SCIIPLS .veeuveeiieieeieeieeieete st te sttt ettt et et e e eateeaeesatesaeesteesseeseenseenseenseans 3-13
DOCUMENEING SCIIPLS...eevierieiieiieieeieetisteeteseeseeseesseessaesseesseenseesseesesssesssesssessnes 3-15

Chapter 4 - Using Variables

Variables and ISLcccvevieiiiiieieieieeeee ettt sbe e enbeenne e 4-2
DAL TYPES -veeenvieeiiieiteeiee ettt ettt ettt e sat e e sttt ettt e sste e s bt eebeesnbeesabeesnteesnseesnseesnseeenneean 4-3
Relational and Logical OPeratorsc.ecvervierieeriieniieieereereeresresreesreeseeesesessaessenns 4-5
USET VaTIADIES......cviiiiiieiieciieeiie et et e stteestteeseveesveesebeesbeessbeesaseeessesensesessesessesenssean 4-9

Chapter 5 - ISL Printing

Getting Started with ISL Printingc.ccccvevieviiicieiiecienieseeseere e 5-2
Starting an ISL Print JOD........cooviiiiiiiiicceee et s 5-3
USING Print DITCCHIVES ...ccviiiiiieciieeiiieeie ettt et st e eve e sveeeveeeteeessaeeseaeessseensseennnas 5-6
USING Print DITECHIVESccviitiriiiiiiirieeiietesterieeetetesese ettt ettt 5-6

Simphony SIM Manual v

Table of Contents

Backup Printing.......cccveeiciieiiieiiieciie ettt etee st eebeeeveeebeeesreeeeveeensaeensneensaeens 5-9
REfeTence SIIINEScouveviriiriiiiiiere ettt st 5-10

Chapter 6 - ISL System Variables

SYStEM Variables.......cccuviiiiiiiiieieeie ettt ae e sbe e seb e eanas 6-2
Specifying System Variablesccocoveririerininiiitiieneieeteenesceee et 6-3
System Variable SUMMATYcc.covieriiririiieieneneeteee ettt 6-7
ISL System Variable REferenceccoocevvevierienienieiecie e 6-15

Chapter 7 - ISL Commands

COMIMANGS......viiitiieiieeiie ettt e eeteeete e et eeetbeestbe e tbeeseseeseseesabeessseaeaseesnsesasesesseanes 7-2
ISL File Input/Output COMMANAS.........ccervieriieriieriierieerireienreseresreseesseesseessaesseessennns 7-3
Using FOrmat SPECIfIErS.......ccviviiiieriiiiierie ettt e et ereebe s e eseesaesene e 7-5
ComMANd SUMIMATYccvverieriieriereereeteeresteseesseesseesseesseesseesseassesssesssesssessessseenns 7-16
ISL Command Referencecooieruieiiiiiiiiiieiiescereeste et 7-22

Chapter 8 - ISL Functions

FUNCHIONS ettt et e e e ee e e e e e e s eeaeeeeessaseaaeeeeessaesnaeeeessaannnnes 8-2
FUNCHION SUMMALY ..c.oviiiiieciie ettt ettt e tbeesebeessbeeesbeeenreans 8-3
ISL FUNCtion REFEIENCE ...ocooiiiiiiiiiieieeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e 8-4

Appendix A - ISL Error Messages

Error Message FOrmMat..........cooviiiiiiiiiiieiiee ettt et e e st eesntaee e A-2
EITOT IMESSAZES ..vvveeeuiiieeeiieeeeeitee ettt e e ettt e ettt e e sttteesateeessnateesensaeeesnssaeesnsseeesnnsanesnns A-5

Appendix B - TCP Interface Code

MICROS SIM TCP SEIVET.....eeitiiiieitiiiieieeieett ettt ettt ettt st st esaeesaeesieesaeens B-2
SAMPIE SIIM SEIVET ..eeeviieeiiieiiieiieesie ettt e ete e sve e sbeesbeesbeessbeessbeessbeesssaessseessseeas B-10
Sample MaKETIlecc.ooiiiiriiiiiiiieiee et B-11

Appendix C - ISL Quick Reference

D 1 I) 01U C-2
Relational and Logical OPerators.ceecveerveeiieieerieeieeiesiesiteseesieeereeseeeseeeseeeseeens C-3
SYSLEM VAITIaADIESveiiveiierieriieriierieeie ettt ete ettt sreesreesre e seesseesseesseensesnsesnnes C-5
FOrmat SPECIIETScvvevieiiiieiie ettt ettt ss e teetesnneensesnnens C-12
COMIMANAS ...ttt ettt e st et e st e bt es e e e beebeeneenaeseeneeneenean C-14
FUNCHIONS ..ttt st sb b eean C-22

Vi

Table of Contents

Appendix D - Key Types, Codes, and Names

Type 11 Function Key CategOriesc.evvvereerieriieriieriieieereereeeesnesenessressnesseesseesns D-2

Type 9 Keypad KeYS....couvieiiieiiieiie ettt ettt e et saveeeenas D-10
Appendix E - sendsim

SEIASIITL Lttt ettt ettt e b e b e bt e bt et e et e et e e bt e bt et e at e e bt e eateeaeeeaeenaeas E-2

Appendix F - Windows DLL Access

WiINAOWS DLL ACCESS ..uvvevierieiieriieiietieteeteereesreeressaeseresssessaesseesseessaesseesseessesssenns F-2

DLL EITOT MESSAZES ...vveeeuviieeiiiieeeiiieeeiieeeeeitteeestteeessaeeessseeesssseeesssseeesssseessssseees F-13
Appendix G - SIM Events

OVEIVIEW ..vvieviieeiieeteete et esteeteeebesbestbestaeataessbessaesssesssesssasseessaesseesseesseasseessenssesssensseans G-2

Quick Reference Tablecooouviiiiiiiiieiiei e et G4

SIM Confirm EVENLSccccviiiiiiiiieiiieciiesiee ettt tee e e eve e e beesreeesseeeneeenes G-7
Glossary

GLOSSATY ittt ettt e et e e ta e et e e taeesebeesabeessbeessseennseas Glossary-1

Simphony SIM Manual vii

Preface

Preface

In This Chapter

This manual describes the System Interface Module (SIM) of Simphony
and its proprietary Interface Script Language (ISL). This manual provides
information needed to develop an interface that facilitates
communications between Simphony and various third-party systems by
learning how to write scripts in ISL.

AUAICIICE ...ttt ettt ettt e e e et X
Recognizing Abbreviations, Conventions, and Symbols.................... xi

Simphony SIM Manual

Preface
Audience

Audience

* Programmers
® MIS Personnel

* Installers/Programmers

What should the reader already know?

* How to program high-level languages, such as BASIC or C/C++
* How to implement an interface

* How to program a Simphony database

Preface
Recognizing Abbreviations, Conventions, and Symbols

Recognizing Abbreviations, Conventions,
and Symbols

This section describes the abbreviations, conventions, and symbols that are used
throughout this manual.

Abbreviations

Certain phrases, as listed below, are abbreviated to make reading easier.

This abbreviation... refers to...

Interface a software interface developed by a third party for the
purpose of facilitating communications with
Simphony

Operator anyone operating an Oracle MICROS Workstation,

including employees, cashiers, managers, servers

System Simphony

Third-party System any other system interfacing with the Simphony

Conventions

The typographic conventions explained below make following written
instructions simpler.

This typographic described | which is used | is shown in the
convention... as... to denote... following
example(s)...
three dots in a | that part of a startprint
column program or script
has been
intentionally .
omitted endprint

Simphony SIM Manual Xi

Recognizing Abbreviations, Conventions, and Symbols

This typographic described | which is used | is shown in the
convention... as... to denote... following
example(s)...
| the pipe alist of options | [GE | LE | GT | LT]
symbol where only one
option may be
selected
[Note: A pipe is
not allowed
within an ISL
command or
function syntax.]
__H an hexadecimal 30H
alphanumeric | numbers
string with an
“H” suffix
boldface words * commands or | cleararray
appearing in a functions that | kitchen msg
bold type font are the focus
of the
or discussion
DbResetTtls
* items that (UINT...)
must be
BoldFace entered
exactly as they
appear
boldface function and GetHex
words with command names
mixed WindowClose
uppercase and
lowercase
letters and no
spaces
ellipses... three dots that similar [.prompt_expression...]
following a elements may
word or word | follow
series
[keys] a keyname keys on a PC or | [Enter]
inside brackets | workstation
keyboard [Tab]

Preface

Recognizing Abbreviations, Conventions, and Symbols

This typographic described | which is used | is shown in the
convention... as... to denote... following
example(s)...
Placeholder italicized information the | ResetType,
words user must supply | expression,
or file num
[placeholder]
italicized information the [expression]
words user must supply,
between but WITHOUT
brackets the brackets
“Prompts” words or prompts, text “Press Enter to
phrases in strings, and confirm”
quotes chapter names
“MM/DD/YY”
text a non-propor- | code, program cleararray

tional font

output, and error
messages

kitchen_msg

under_score

an underlined
space
appearing
between
words

argument names
made up of two
or more
connected words

ver_rsp

kitchen msg

UPPER CASE

words shown
in all capital
letters

modules,
fieldnames, type
definitions,
system variables,
messages, and
certain key
words

27FLEDEF.H
@CHK_OPEN_TIM
E

EMPL_DEF
SECOND

LAST CHK_NUM

Simphony SIM Manual

Xiii

Preface
Recognizing Abbreviations, Conventions, and Symbols

Symbols

Note: This symbol is used to bring special attention to a

“— related feature.
oy

Sl 2 Tip: This symbol is used to indicate a special tip for using the
= = current feature.
N

/ \\\\

\\\\\ 1l

Warning: This symbol indicates that care should be exercised
when programming a feature or performing an action.

Xiv

Understanding the SIM and ISL

Chapter 1

Understanding the SIM
and ISL

In This Chapter

This chapter contains an overview of the System Interface Module (SIM)
and the Interface Script Language (ISL).

Getting to Know the SIM and ISL..........cccoeeviienienienieeee e, 1-2
Features of the SIM......c.coiiiiiiii e 1-9
Creating SIM Applications with the ISLcccccovviiviiniinieireeen, 1-14

Simphony SIM Manual

1-1

Understanding the SIM and ISL
Getting to Know the SIM and ISL

Getting to Know the SIM and ISL

The System Interface Module (SIM) extends the standard operation and
functionality of Simphony through the Oracle Hospitality proprietary Interface
Script Language (ISL). The SIM and ISL work together to provide establishments
with the capability to enhance daily operations quickly and easily.

In this section, SIM and ISL will be introduced and how this module and script
language work together will be explained.

What is the System Interface Module?

The SIM is the component of the Simphony allows the Simphony to interface to a
variety of third-party systems. A special script language known as the ISL
provides access to the SIM.

A property or enterprise will primarily use the SIM to communicate with third-
party systems, such as a Property Management System (PMS) or pizza delivery
system, by means of a special interface, called a SIM Interface. The user must
develop a SIM Interface to facilitate the exchange of messages between the
Simphony and the third-party system.

Note: There will be properties and enterprises where SIM
“— applications do not require communicating with a third-party
system. In these cases, a SIM Interface is not required.

What is a SIM Interface?

A SIM Interface is any software developed for the purpose of exchanging
messages between a third-party system and the System Interface Module of
Simphony.

For example, to develop a SIM Interface, use the same type of message formats
and interface methods that would be employed to create a PMS Interface.
Furthermore, SIM Interface must be enabled by setting up a link in the Simphony
database, the same way PMS Interface would be enabled.

Understanding the SIM and ISL
Getting to Know the SIM and ISL

Accessing the SIM

A proprietary Oracle Hospitality interpreted language known as the ISL,
facilitates access to the SIM. Through scripts composed with elements of the ISL,
users can direct the SIM to execute a series of instructions, called events. SIM
events are discussed later in this section.

Enabling the SIM

Although using the ISL is the method by which the user instructs the SIM to
perform various functions, Simphony must be programmed to recognize and
interpret the instructions contained in the script. Through database programming,
a link between the script and the SIM Interface is formed, thereby, enabling the
SIM. Once enabled, the SIM can carry out the instructions in the script if, at the
workstation, an operator initiates an event by pressing a specially programmed
key.

What is the Interface Script Language?

The ISL is a proprietary Oracle Hospitality interpreted language used to create
small programs, called scripts. Contained in these scripts are the instructions that
tell the SIM what to do.

The ISL includes easy-to-learn, easy-to-use language elements, including a
repertory of commands, functions, and system variables, as well as simple
statement formats. Users manipulate these language elements to create
instructions that are executed when the script is run.

Users with programming experience and familiarity with script writing will
quickly adapt to the ISL. And, although ISL is designed for use by systems
developers, POS installers, and MIS staff, users with a strong knowledge of
programming concepts and building blocks will also find the ISL easy to access.

Simphony SIM Manual 1-3

Understanding the SIM and ISL
Getting to Know the SIM and ISL

Characteristics of the ISL

Like BASIC

ISL has been designed to closely resemble BASIC (or variants) in its
structured, linear structure: The flow of scripts will be in a step-by-step
structure but unlike BASIC, each line of the script does not need to be
numbered. Like BASIC and other structured languages, the ISL supports
decision-making language elements such as If...Else, and loop constructs
using the For...EndFor and Forever...EndFor.

Language Elements and Components

A myriad of language elements, common to most interpreted languages,
comprise the ISL to help build SIM applications. Among the language
elements comprising the ISL are commands, functions, system variables,
operators, and format specifiers. All of which will be used in script writing.

Numerous commands comprise the foundation of the ISL, allowing the
designer to:

* Control the flow of instructions in the script
* Define and manipulate variable information

* Facilitate communications between a third-party system and
Simphony

* Process input and output
* Handle a variety of file processing operations
* Send data to print devices

ISL functions enhance text handling and formatting facilities.

These additional elements are also provided:

¢ System variables, for reading selected definition and totals
information from the database and setting certain system parameters

* Operators, relational and logical (Boolean), that perform
mathematical actions on variable and constant operands

* Format specifiers, which when used with commands, allow the
specification of the format of input and output data where permitted

1-4

Understanding the SIM and ISL
Getting to Know the SIM and ISL

For detailed descriptions about each component of a specific language
element, refer to the chapters listed below.

Language Element Where to Go
Commands See “ISL Commands” on page 7-1
Functions See “ISL Functions” on page 8-1
System Variables See “ISL System Variables” on page 6-1
Operators See “Using Variables” on page 4-1
Format Specifiers See “Using Format Specifiers” on page 7-5

Event Procedures

ISL is also event-oriented. An event procedure is a group of statements and
commands that is defined by the ISL Event...EndEvent commands. The scripts
provide a frame-like structure for sequences of events.

In order to start an event, the event must be initiated with a specially programmed
key or by a message response received from a third-party system. Once an event is
initiated successfully, the SIM stops processing the script until another event is
initiated.

For example, the event shown below performs the following set of tasks:
* Displays an ISL-defined window on the screen of the workstation,
* Prompts an operator to enter a room number, and

* Sends the room number and the number of the Transaction Employee to a
third-party system (e.g., PMS).

event ing : 1 // Execute when SIM Inquiry key 1
// is pressed
var room num : N5 // Declare local variable
window 2, 19, “Room Inquiry” // Create input window
display 2, 2, “Enter Room Number” // Issue operator prompt
input room num, “ ™ // Accept input
txmsg room num, Q@tremp // Transmit room number and Transaction
// Employee to third-party system
waitforrxmsg // Wait for response from third-party
endevent

* After the third-party system acknowledges receipt of the data, the event ends.

If the operator at the workstation were to initiate another event, the SIM would
begin processing the script again but until then, the SIM waits for the next
instruction.

Simphony SIM

Manual 1-5

Understanding the SIM and ISL
Getting to Know the SIM and ISL

Script Writing

What is a Script File?

The means by which the ISL issues instructions to the SIM is through small
programs known as scripts. A script is an ASCII text file that can be created in any
common text editor, such as Microsoft Notepad. These scripts can contain one or
more events to implement SIM applications.

A single script must be maintained for each SIM Interface defined for a system.
The script is linked to a SIM Interface through Simphony database programming.
Once this relationship has been formed through database programming, the script
can be executed by Simphony. For specific programming requirements, refer to
“Programming Simphony for SIM” on page 2-10.

Being Familiar With Script Writing...

Script writing is a common way to issue instructions to a computer. However,
scripts written with the proprietary Oracle Hospitality ISL have a specific format
and include elements unique to this language. Consequently, Oracle Hospitality
recommends that users familiarize themselves with the unique language elements
and script structure before writing the first script. Refer to “Script Writing Basics”
on page 1-1.

Being New to Script Writing...

This manual also contains a brief introduction to this method of automating
operations. If the programmer has never used scripts before, Oracle Hospitality
recommends reviewing this introductory material. For further details, refer to
“Script Writing Basics” on page 1-1.

How the ISL Accesses the SIM

The SIM can be accessed through instructions executed by a small program called
a script, written with the Interface Script Language (ISL). Within a script, there
may be several events, each defined to perform different tasks.

Initiating an Event

Instructions within events in the script tell the SIM what tasks to perform. In order
to carry out these instructions, the SIM first must be told to execute them. An
event can be initiated within a script in one of the following three ways:

® The operator may press a SIM Inquiry key, programmed in the Simphony
database to initiate an event.

Understanding the SIM and ISL
Getting to Know the SIM and ISL

® The operator may press a SIM Tender key, programmed in the Simphony
database to initiate an event.

* A third-party system, interfaced to Simphony, can respond to a message sent
to it by the SIM.

Pressing a SIM Inquiry or Tender Key

The flowchart on the next page illustrates what happens when an operator at a
workstation presses a SIM Inquiry or SIM Tender key.

* First, the SIM verifies certain required parameters within the Simphony
database.

* After verifying that certain programming options and links are set up, the SIM
searches for the script.

* Once the SIM finds the correct script, it looks for a valid event, linked to the
SIM Inquiry or SIM Tender key, that the operator pressed to initiate the whole
process.

* Finally, after locating a valid event, the SIM runs the script and executes the
instructions contained in the event.

Simphony SIM Manual 1-7

Understanding the SIM and ISL
Getting to Know the SIM and ISL

Interfacing with a Third-party System

Several communications commands and system variables can be issued by events
in the script. These commands and system variables can be used to send messages
to a third-party system. In turn, the third-party system acknowledges these
messages and responds over an interface method (i.e., TTY or TCP/IP) using a
message format recognized by Simphony. Message formats and interface methods
supported by the SIM are described in “Message Formats and Interface Methods”
on page 2-3.

During this exchange, the SIM Interface acts as the go-between for both systems
by shuttling the messages back and forth. A simplified version of the exchange
goes like this:

* Simphony will transmit a message to a third-party system with a TxMsg
command statement in a script.

* The SIM Interface will put the message in a format that is acceptable to the
third-party system.

* Then, the third-party system will acknowledge the message and send back a
response, such as data requested by the SIM.

* The SIM Interface will forward the response to Simphony in a message
format acceptable to the POS: either fixed format or ISL format.

Understanding the SIM and ISL
Features of the SIM

Features of the SIM

The SIM provides a variety of features to help create functional and useful SIM
applications with the ISL. The main features of the SIM include support for:

¢ Common communications message formats and interface methods for
development of SIM Interfaces

* A variety of methods of displaying, capturing, and printing information

* The standard communications protocol that is required to interface Simphony
with a third-party system, such as a PMS or delivery system

¢ Comprehensive file I/O processing operations

Message Formats and Interface Methods

For developing a SIM Interface, the ISL handles two types of message formats:
fixed format and ISL format. Both of these message formats can be sent over
two different interface methods, including an asynchronous serial interface
(Host TTY ports) and TCP-based interface.

A discussion of both the message formats and interface methods is in “Message
Formats and Interface Methods™ on page 2-3.

Methods of Displaying, Capturing, and
Printing Data

Processing input and output, as well as printing data are the mainstay of most POS
transactions. Consequently, the SIM handles a variety of input and output
operations.

For displaying data, the Liquid Crystal Display (LCD) of a workstation is used as
the platform for screen output.

Input data can be captured via the use of a touchscreen, a PC keyboard, a barcode
reader, or a magnetic card reader.

The SIM controls printing with a versatile set of print commands and system
variables, also called print directives.

Simphony SIM Manual 1-9

Understanding the SIM and ISL
Features of the SIM

The Liquid Crystal Display and Touchscreens

A script can be designed to display information in several places on the Liquid
Crystal Display (LCD) of a workstation, including ISL-defined windows, the
prompt line, and the last entry line.

s Simphony POS Operations g - a

/ prompt line _,l Enter phone number ‘
33160

_
last entry line Customer Info =

Phone Number: [
Customer name:
Address Line 3:
Address Line 2.

Instructions:

ISL-defined window —

[[Full Senvice m33160 I i I |
A v 4 b 4 st | N | A
e lTe Tl 21 : Sl e
S [I [(o e = e [[
M| N|o|P| a| R|VE| 4| 5| s
s| t]ul|l v|w] x 1] 2| 3
| o= e] o o

Windows

Probably the most common place to both enter and display data is an ISL-
defined window. Windows are drawn to the programmer’s specifications and
appear in front of the transaction detail and summary sections of the screen.

The Prompt Line

To help users step through operations more easily, user prompts can be
provided on the prompt line. Also know as BOB, the Blue Option Bar.

The Last Entry Line

Error messages can be programmed to appear in the last entry line, to alert
users of problems that occur while executing a script file.

Touchscreens

The SIM can make touchscreens pop up if they are defined by the Touchscreen
Style module in the Simphony database within the Enterprise Management
Console (EMC) or by the ISL Touchscreen Commands.

1-10

Understanding the SIM and ISL
Features of the SIM

Programmed Touchscreens

Programmed touchscreens are already defined in the Touchscreens module of
the Simphony database within the EMC. A programmed touchscreen that
might pop up in an event is alpha or alphanumeric. For example, if an event
prompts an operator to enter the name of a customer, the operator will need to
enter the customer’s name. The next statement in the event should be to
display the workstation’s default alpha touchscreen, so the operator can enter
the customer’s name.

ISL-Defined Touchscreens

To accommodate those instances where a programmed touchscreen is not
appropriate, Oracle Hospitality provides several commands that let the ISL
display touchscreens built within the script, or touchscreens created on-the-
fly. An ISL-defined touchscreen comes in handy when function keys are
needed for a very specific purpose and there is not a programmed touchscreen
to accommodate the need.

For example, a user may be prompted to respond to a Yes-No question: The
script instructs the SIM to display touchscreen keys [Yes] and [No].
Depending on which key the operator selects, additional instructions are
carried out. For example, if the operator chooses [Yes], output from the
transaction is sent to a KDS instead of the remote roll printer.

Data Entry

The entry of data is accepted from a PC keyboard, a touchscreen, a barcode
reader, or a magnetic card reader. Normally, scripts that instruct an operator to
collect data, such as name and address information, require entry using one of
these methods.

Touchscreen

Data entry from a touchscreen is accepted, when required by the SIM during
the execution of a script.

To support data entry from the touchscreen, the ISL includes commands for
displaying a programmed or ISL-defined touchscreen when one is required.
Normally, the script should display a touchscreen in order for the operator to
select data from it. The data could be menu items, in which case, the script
should pop up a sales transaction type touchscreen. Or, the script could direct
the operator to enter the customer’s name, in which case, an alpha touchscreen
should pop up for the operator to use.

Simphony SIM Manual 1-11

Understanding the SIM and ISL
Features of the SIM

Magnetic Card Reader

Data that can be stored as track data on a magnetic card is also accessible by
the SIM. Usually, track data includes the cardholder’s name, a reference
number, such as a credit card account number, and an expiration date. For
instance, the account number of a country club member could be stored as
track data, allowing the operator to capture it from the POS by swiping the
member’s card through the magnetic card reader.

Printing
Printing and backup printing are accomplished by the ISL through the use of
several ISL commands and a variety of ISL system variables.

Print Commands and Print Directives

Print commands start print jobs, while the system variables, also called print
directives, change the print characteristics of generated text. The print
directives change the print type, similar to how standard parallel printer
escape sequences work. For instance, if printing some text in red ink is
desired, it can be accomplished with a print directive.

Type of Printers Supported

All output can be generated at roll printers and Kitchen Display Systems
(KDS). For the WS4(+) only, the ISL accommodates printing to a laser or dot
matrix printer that is connected to its parallel port and is configured for the
Extended Line Printing option.

Interfacing with Third-party Systems

Communications are handled by the SIM through a variety of commands that
support the exchange of messages between a third-party system and Simphony.

The type of messages sent back and forth between these two systems will
typically include blocks of data. For instance, the third-party system may be used
as a repository for data, such as customer name and address information in a
customer database. This data might be used by Simphony to verify information in
the third-party database with information input from the POS side.

In order for Simphony to send and accept data from a third-party system, a SIM
Interface must be developed and enabled using the interface methods supported
by the SIM, and the messages must be put in a format accepted by the SIM.

1-12

Understanding the SIM and ISL
Features of the SIM

ISL File Handling

File processing operations found in other programming languages are also
supported by the ISL. Files can be opened, and while open, read and write
operations can be performed, then close the file. For example, an application at a
country club may involve checking a file for a member account number, retrieving
it, and adding it to a guest check. But, if the member’s account number is not
found in the file, this feature allows the ISL to assign an account number for the
new member, with the next available account number in the file.

Simphony SIM Manual 1-13

Understanding the SIM and ISL
Creating SIM Applications with the ISL

Creating SIM Applications with the ISL

The ISL is the gateway to the System Interface Module (SIM) of the Simphony
software. When the ISL is used correctly, this powerful script language can be
harnessed to build useful and practical SIM applications for all types of POS
environments, including restaurants, bars, hotels, country clubs, etc.

Benefits of SIM Applications

The impact of SIM applications on these POS environments will be immediate,
especially when used to make certain POS transactions and functions easier for
operators to perform. Such applications have the added benefit of making
Simphony easier and simpler to use, thus, improving overall customer service.

Equally important, is the fact that creating SIM applications also enable the user
to expand the capabilities of Simphony. With these applications, Simphony can be
taken beyond its traditional function and improve existing features. For example,
guest charge posting could be made faster, user prompting and System messaging
could be improved, and customers can be tracked through the collection of
information, like names and addresses. Whether simple or complex, when
implemented properly, these types of SIM applications can make the system a
more powerful tool for users.

Types of SIM Applications

Although SIM applications can emphasize a variety of features, the applications
likely to implement might involve such features as:

* Collecting and saving data for future retrieval or tracking, such as tracking
customer sales in order to generate coupons, as rewards or incentives for
frequent diners

e Expediting certain POS operations, like automatically applying a discount to a
guest check when certain conditions are met

* Communicating with a third-party system, such as a Pizza Delivery System

* Writing to and reading from files, as in the case of verifying input with
information in a file stored on disk

* Printing and posting information to checks in ways that the system may not be
programmed to do so, like generating messages with special instructions for
kitchen staff

1-14

Understanding the SIM and ISL
Creating SIM Applications with the ISL

In this section, there are several real-world examples of SIM applications,
implementing a combination of SIM features. These examples are provided to
give an idea of the type of SIM applications that can be created with the ISL. Keep
in mind: These are only examples, and implementations of similar SIM
applications can vary.

Generating Coupons for Customers

The collection of data, such as customer information, is easily handled by the
SIM. Such data can be captured and used by a third-party delivery system,
interfaced with Simphony, allowing the entry and recall of customer name and
address information.

Since customer sales and other data can be tracked this way, the ISL makes it easy
to develop SIM applications that create rewards for customers. Most common are
rewards in the form of coupons and other incentives. Customers redeem these
coupons for cash, gifts, reduced purchase price, etc.

Frequent Diners

Customers who frequently patronize an establishment are often targeted to receive
rewards and incentives for their continued loyalty. At the fictional restaurant, a
Birthday Club is one of the incentive programs offered to frequent diners.

Assume that a third-party database exists with pertinent information about
frequent diners, such as name, account number, birthdate, etc., for sales tracking
purposes. In addition, also assume that the restaurant issues frequent diners a
special VIP card, including an account number and birthdate as track datal.
Whenever the frequent diner visits the restaurant, the diner must present their VIP
card so the server can credit sales to the frequent diner’s account.

1. This term refers to information stored on the magnetic stripe of a credit card. The information is often stored
on separate areas of the magnetic stripe, called tracks. For example, the account number and birthdate in
this example are stored on Track 2 of the magnetic stripe.

Simphony SIM Manual 1-15

Understanding the SIM and ISL
Creating SIM Applications with the ISL

Generating a Birthday Coupon

A server generates a “Birthday Coupon” based on the information that the
restaurant is tracking. The coupon is redeemable for a free appetizer upon the
customer’s next visit. At this restaurant, the Birthday Club works like this:

* Using the birthdate read by a magnetic card reader from the VIP card track
data', Simphony checks it against the current system date. If the birthdate is
equal to the system date, then Simphony will automatically issue a Birthday
Coupon when the server closes the guest check.

* When presenting the guest check, the server also gives the diner the “Birthday
Coupon.”

Interfacing with a Pizza Delivery System

One of the important features of the ISL is its ability to support an interface
between Simphony and a third-party system. Such an interface allows both
systems to communicate with each other by handling the exchange of messages
between the systems.

For example over a SIM Interface, Simphony captures customer information input
on the POS side, then the information is sent to the third-party delivery system. A
SIM Interface enables the operator to retrieve this information from the delivery
system’s database, as needed, through a query or search.

Guest Check Information Detail

Information that might be captured and stored in a third-party database includes
the name and address information, the customer’s telephone number, as well as
directions to the customer’s residence. When a customer telephones the pizzeria,
an operator uses the customer’s telephone number to access any existing
information in the pizza delivery system’s database.

As an added benefit, this SIM application also prints this customer information on
the guest check. For instance, the directions to the customer’s residence prints on
the check for the delivery person to reference.

1. This term refers to information stored on the magnetic stripe of a credit card. The information is often stored
on separate areas of the magnetic stripe, called tracks. For example, the account number and birthdate in
this example are stored on Track 2 of the magnetic stripe.

1-16

Understanding the SIM and ISL
Creating SIM Applications with the ISL

Previous Order History

In addition to name and address information, a customer’s order history is also
information that the third-party system maintains. By retrieving previous order
history, the operator eliminates the additional steps required to post order
information, namely menu items, to a guest check. If the customer always orders a
large pepperoni and mushroom pizza, these items can be retrieved from the third-
party database, and posted to the check, without directly accessing the menu item
keys again. In a fast-paced environment like a pizza delivery operation, where
quick turnaround is critical, eliminating steps in the order entry process is a real
advantage.

Collecting Customer Information for a
Membership List

Many implementations of SIM applications collect data, such as name and
address information or guest history. Collecting and storing this information can
be retrieved for later use.

The ISL can be used to handle these functions in one of two ways, including:

* Use ISL file I/O capabilities to read from and write to files that are stored on
the same PC running Simphony.

¢ Interface with a third-party system, as described in the pizza delivery system
example on page 16, to send data to and retrieve it from another system.

Although both options enable the storage and retrieval data, the first option allows
faster access data, since no communications overhead is involved.

Reading Data From a File

One implementation of the file I/O option is to collect customer data and add it to
a membership list, which is kept in a file. The application requires that an operator
at a country club, for example, enters name and address information in Simphony.
Behind the scenes, the ISL opens the file and writes this new information to it, or
verifies existing information, then closes it.

The country club uses this file to verify membership information. For instance, by
reading this file, operators determine whether the customer’s membership dues
are current, or whether the member is entitled to certain privileges, such as
running a tab at the country club’s bar.

Simphony SIM Manual 1-17

Understanding the SIM and ISL
Creating SIM Applications with the ISL

Customizing Output

Printing is an essential POS function that can be expanded to accommodate the
unique preferences of a property. Simphony comes equipped with many different
programming options that affect how things are printed, where they print, and
when they will print. With the ISL, printing can be further customized for a
property by extending the functionality of Simphony beyond its normal
programmable limits.

The ISL’s special printing abilities in the previous examples, such as printing
customer information on guest checks and generating coupons for customers has
been previously mentioned. Now let’s examine how servers’ can save time when
they must send special instructions to kitchen staff about orders.

Sending Special Messages to the Kitchen

The SIM application allows an operator to pick a message from a list, then send
the message to the kitchen. The pick list includes messages frequently sent to the
kitchen, which is a feature that current programming options for number lookups
(NLUs) do not support.

A remote roll printer in the kitchen generates the following message on a chit:

Server's Name

FROM IRIS «

Message

2NOV2007

CANCEL ORDER
Chk 124 Tbl 5A/2

Creating Raffle Tickets

Another good example of how the special printing capabilities of the ISL can be
used, is creating output other than guest checks, remote order chits, customer
receipts, etc.

Earlier in this section, how to generate a coupon with the ISL was described. Now,
let’s create a raffle ticket for hotel guests.

This application requires that the Simphony interface with a PMS. The application
performs a common PMS task: collecting a guest’s name and room number when
the operator closes a guest check in one of the hotel’s food and beverage outlets.

1-18

Understanding the SIM and ISL
Creating SIM Applications with the ISL

For this application, the ISL verifies the input with data already stored in the PMS
database. Based on how many times the guest has patronized the hotel’s four star
restaurant, for example, a raffle ticket chit is generated after the guest check
prints.

The raffle ticket includes an excursion option, which was selected from a pick list
of others, as well as the guest’s name and room number. The ISL also
automatically assigns a ticket number to the chit.

Ticket Number

RAFFLE TICKET
0250

11_1 8_07 Room Number

Mann, Peter Room 4564

VACATION FOR TWO]» Excursion Option
BAHAMAS

Guest's Name

Thank You for Dining
at the Oracle Cafe

Such a chit cannot be generated by Simphony using current programming options.
However, the ISL makes it possible to print output that is outside the traditional
realm of a POS.

Simphony SIM Manual 1-19

Getting Started

Chapter 2

Getting Started

In This Chapter

This chapter contains a description of the message formats and interface
methods that must be used to develop a SIM Interface. Also included, is a
description of the Simphony database programming required to enable
the SIM and a SIM Interface.

Getting Started with the ISL and SIMccccoveeeiieciiieie e, 2-2

Message Formats and Interface Methods..........cccccveevveviieniienieninennnne, 2-3

Programming Simphony for SIMcccceviiiiiiiiiiieeecee e, 2-10
Simphony SIM Manual 2-1

Getting Started
Getting Started with the ISL and SIM

Getting Started with the ISL and SIM

Understanding exactly what purpose the System Interface Module (SIM) and the
Interface Script Language (ISL) serve, as well as how they interact, are the first
steps that should be taken toward learning how to create SIM applications.
Chapter One answers these questions about the SIM and the ISL.

This chapter focuses on the steps that must be taken in order to implement the
SIM applications successfully. In this chapter, the following is described:

* What communications message formats and interface methods are available
for developing a SIM Interface

e How to enable the SIM and a SIM Interface

Developing the SIM Interface

If creating SIM applications that require communicating with a third-party
system, such as a PMS or delivery system, a SIM Interface must be developed.
This interface must utilize supported message formats and interface methods to
facilitate communications between Simphony and the third-party system. In
“Message Formats and Interface Methods” on page 2-3, the message formats and
interface methods to apply when creating the SIM Interface is discussed.

Enabling SIM and a SIM Interface

There is specific Simphony database programming that must be defined to enable
the SIM and SIM Interface and execute a script successfully. In this chapter, these
requirements are summarized in “Programming Simphony for SIM” on page 2-
10.

Getting Started
Message Formats and Interface Methods

Message Formats and Interface Methods

To develop the SIM Interface, use the message formats and the interface methods
described in this section.

Message Formats

There are two classes of message format: fixed format and ISL format.

Note: Both formats over the same type of interface can be
“V used. For example, the ISL format can be used over both a
TTY- and a TCP-based SIM Interface.

>

Fixed Message Format

Support for this message format allows a PMS compatible fixed-format messages
to communicate with Simphony via a SIM Interface. However, Oracle Hospitality
recommends that the ISL message format be used unless fixed-format messages
are a requirement of the third-party system.

This recommendation is made since the fixed content of this message format
provides a limited set of information. For instance, a fixed message must always
contain four sales itemizers, four tax itemizers, etc. [f a PMS needs access to eight
sale itemizers, for example, then this message format cannot be changed to
accommodate eight sales itemizers. The ISL message format provides much more
flexibility.

Consequently, the fixed message format should only be used in cases where the
third-party system requires fixed-format style compatibility due to pre-existing
PMS installations.

Message Format

The format of the message is as follows:

SOH ID STX Data ETX Checksum EOT

Simphony SIM Manual 2-3

Getting Started
Message Formats and Interface Methods

ISL Message Format

Messages defined using the ISL are structured like fixed messages, except that the
Data segment of a fixed message is broken out into two segments in the ISL
message: Application_Sequence and Application Data.

However, the segments of the ISL message are enveloped using control
characters. IBM PC character codes, an ASCII superset, provide support for
international characters.

The format of the ISL message is as follows:
SOH ID STX FS Application_Sequence Application_Data ETX Checksum EOT

A description of each message segment follows.

SOH

The SOH character (start of header) serves as a message lead-in character that
identifies the start of a new message. The SOH character is represented by the
7-bit hexadecimal value 01H, plus a parity bit, if applicable.

ID

This is the POS Source ID segment that includes information about the
workstation. The workstation initiates the message and identifies the
interface.

The format of this segment is as follows:

Field Length Format Remarks
POS Workstation 9 Bytes |2 or9 ASCIIL May contain leading spaces
Number Digits or zeroes and is between 1
and 999999999, depending
on 2/9 digit ID in the

Interface module. Standard
interface format is 2 digits.

Interface Name 16 Bytes | 16 ASCII Uses IBM PC character set.
Characters

STX

The STX character (start of text) serves as a data field lead-in character that
identifies the start of the message data block. The STX character is
represented by the 7-bit hexadecimal value 02H, plus a parity bit, if
applicable.

Getting Started
Message Formats and Interface Methods

FS

The FS character (field separator) identifies this message as a SIM message
data block. The FS character is represented by the 7-bit hexadecimal value
1CH, plus a parity bit, if applicable.

Application_Sequence

The Application Sequence segment comprises a two-digit sequence number
and a retransmission flag. Each POS workstation application increments its
own sequence number with each message. When a message is being
retransmitted, the same sequence number will be used as the original
message. In addition, a retransmit flag character is provided.

The format of this segment is as follows:

Field Length Format Remarks
Applications 2 Bytes |2 ASCII Digits | May contain leading spaces
Sequence Number or zeroes and is between 00

and 99.
Retransmission 1 Byte Space or ‘R’ ‘R’ character (ASCII 52H)
Flag Character is placed in this field if this
is a retransmitted message.

The Application_Sequence number is initially set to “01”” when the
application starts. The application rolls the sequence number back to “01”
after “99.”

If the third-party system receives a message containing the same sequence
number as the previous message and the retransmit flag is set, the third-party
should retransmit the last response.

Application_Data

Both the TxMsg and RxMsg commands define the Application Data

segment. The total size of the message can be 32K from the SOH to the EOT.
There are a maximum of 37 bytes overhead, which means that the maximum
byte count of all the fields and field separators is 32768 - 37, or 32731 bytes.

Note: When the asynchronous serial interface messages are
~7 not limited, it is recommended that they be no more than 1024
bytes in length, so that the interface remains responsive.

Multiple fields can comprise this segment. Individual fields within the
Application _Data segment are separated by the ASCII field separator
character (1CH), inserted by the ISL.

Simphony SIM Manual 2-5

Getting Started

Message Formats and Interface Methods

In addition, the first field within the receive message Application Data
segment defines the name of the ISL procedure to execute when processing
the response message. The detail description of the RxMsg command
describes the relationship between the command and the Application Data
segment of an ISL. message.

ETX

The ETX character (end of text) serves as a data field lead-out character that
identifies the end of the message data block. The ETX character is represented
by the 7-bit hexadecimal value 03H, plus a parity bit, if applicable.

Checksum

The Checksum field is only used when communicating over an asynchronous
serial interface. A TCP-based SIM Interface will ignore this field, so it can be
omitted from the message format. When the Checksum is part of the message,
however, format it as follows:

Field Length Format Remarks
Checksum 4 Bytes |4 ASCII Hex | Contains ASCII characters
characters in the range 30H - 39H and
41H - 46H (0-9 and
A-F).

The Checksum is the 16-bit binary addition (excluding parity, if applicable) of
all characters after the SOH, up to and including the ETX character. The
Checksum is initially set to zero. For transmission, the Checksum is
represented as four ASCII-Hex characters.

EOoT

The End of Transmission character (EOT) identifies the end of the message. It
is represented by the hexadecimal value 04H, plus a parity bit, if applicable.

Getting Started
Message Formats and Interface Methods

Interface Methods

The SIM supports two types of interface: an asynchronous serial interface and a
TCP-based interface. Both interface methods support the Simphony-compatibility
fixed-format message and the ISL message format.

Note: Both the fixed and ISL formats may be used over the

“— same interface and, since Simphony supports multiple
interfaces per Revenue Center, any combination of these
interfaces may be used within a Revenue Center:

Asynchronous Serial Interface

This type of interface method supports communications with a third-party system
over an Asynchronous Communications Adaptor (COM port) installed in the PC
that controls Simphony.

This interface is widely used to implement a PMS Interface to facilitate
communications between Simphony and a PMS. With the introduction of SIM,
this interface method can also be a choice for implementing a SIM Interface.

Asynchronous Serial Interface Specifications

Specifications for developing an asynchronous serial interface are defined in
the 71700/2000/4700/8700 PMS Interface Specifications Manual. Refer to this
manual for more information about this type of interface method.

Configuring a TTY Interface in the Simphony Database

If using this type of interface, the Enterprise Management Console (EMC)
Hardware | Interface module must be configured in order to enable the
interface.

To enable a TTY interface:

1. Add an interface record.
2. Select TTY in the Comm Type field.

3. Enter the device name in the Comms Name field. For example, type:
* tty2a (which represents the TTY device), or

* workstation (which indicates that the workstation is directly
connected to the PMS)

4. Choose the appropriate number of digits for the interface by enabling
or disabling this option:
ON = Use 9 digits for Terminal IDs; OFF = Use 2 Digits for Terminal IDs

Simphony SIM Manual 2-7

Getting Started

Message Formats and Interface Methods

TCP Interface

This interface is designed to connect Simphony to Windows®-based systems and
other systems using the TCP/IP networking protocol. This interface can also be
used to facilitate communications between the POS application and third-party
applications that reside on the same Windows platform as the Simphony software.

This interface is also compatible with many forms of local area networks (LANS),
including Ethernet, Token Ring, FDDI, Arcnet, PPP, etc.

Configuring a TCP Host in Simphony

If using this type of interface, the Enterprise Management Console (EMC)
Hardware | Interface module must be configured in order to enable the
interface.

To enable a TCP interface:

1. Add an interface record.

2. Select TCP in the Comm Type field.
3. Enter the TCP Host Name.
4

. Choose the appropriate number of digits for the interface by enabling
or disabling this option:
ON = Use 9 digits for Terminal IDs; OFF = Use 2 Digits for Terminal IDs

TCP Connection

The SIM connects to the TCP port as a client. The SIM Server should accept
TCP connections from the Simphony POS client on the port “micros-sim.” If
this service is not defined, the port number 5009 should be used as the default.

Error-Handling

If the receiving system detects an error in the message or some other
applications-related error, it should provide an appropriate error message
response to the POS application. In addition, if using the fixed message
format, response messages should handle error messages. As such, to support
these conditions, the ISL should define specific error responses.

Pinging

The TCP connection has a typical “keep-alive” time-out of two hours. In
order to detect a “down” interface more quickly and re-establish the
connection, the SIM periodically sends a “ping” message to the server about
every five minutes. The server should detect the ping message and return the
message in its original format.

The format of the ping message should be as follows:

SOH ID STX ETX EOT

2-8

Getting Started
Message Formats and Interface Methods

The ID source segment contains a null address: the POS wokrstation number
will be zero and the interface name will contain spaces.

TCP Interface Code Example
Several programming aides are provided in “TCP Interface Code” on page B-
1. Two samples of code are provided to implement a TCP Interface: a SIM

TCP Server and a SIM Server.

2-9

Simphony SIM Manual

Getting Started
Programming Simphony for SIM

Programming Simphony for SIM

After creating a SIM Interface, the Simphony database must be programmed to
* Enable the System Interface Module (SIM)

* Activate the SIM Interface through an Interface link

* Link the scripts to the appropriate SIM Interface

To perform the tasks described above, complete the programming action steps in
this section. This section includes a quick reference programming chart to help

experienced Simphony programmers get started quickly. More in-depth
descriptions of the programming action steps are also in this section.

Prerequisites

In order to effectively implement the programming action steps described in this
section, the programmer should have an understanding of:

* Simphony database structure

* POS database programming concepts

2-10

Getting Started
Programming Simphony for SIM

Database Programming Quick Reference

For quick reference, the table below outlines the action steps that must be
completed in order to program the database. Each of these action steps is
discussed briefly on pages 2-12 through 2-14.

Action Steps EMC Modules/ Procedure
Programs Affected

1 | Define Interface module Define the interfaces.
Interface

2 |Name and | None Assign the filename pms###.isl to
Store script file, where ### is the object
Script number assigned to the PMS.

Store pms###.isl in

\Micros\Simphony\etc

3 | Link the RVC Parameters module Define PMS for RVC; use object

ISL Script number to name the script.
File to an PMS object number
Interface pmst.isI

4 | Create SIM | Touchscreen Design Define key; see table on
Inquiry module page 2-13.
Key

5 | Create SIM | Tender Media module Create new tender key or use
Tender Key | Touchscreen Design existing tender key, and

module

* Enable PMS Option Use ISL
TMED Procedure Instead of
PMS Interface.

Assign Interface to key.

Simphony SIM Manual 2-11

Getting Started

Programming Simphony for SIM

Database Programming Action Steps

This section discusses these action steps in a summary fashion.

Step 1: Define the Interface
EMC Module: Interface module

Add a record for each interface connected to Simphony. Make a note of the
interface object number, this object number will be used to define the script
filename in Step 2.

Step 2: Name and Store Scripts

Name the script pms###.isl, where “###” is the Interface object number in
the Simphony Interface module. For example, the file for Interface object
number 4 must be called pms4.isl. There should be no leading zeros in the
numeric portion of the filename.

-OR-

Give the script any name, up to eight characters long, and then add the .isl
extension. Remember the .isl extension does not need to be added when
configuring this name in the Interface module’s ISL Script Name field. The
system assumes the extension.

Store the script in the \Micros\Simphony\etc directory. If the filename is
defined in the Interface table, the SIM will first look for that file; if the
filename is blank, then the SIM will look for pms###.isl. If the SIM cannot
find pms###.isl in that directory when an event is initiated, the SIM will look
for the default script \Micros\Simphony\etc\script.isl instead. In the instance
when pms###.isl or script.isl cannot be found, the SIM will issue an error.

2-12

Getting Started
Programming Simphony for SIM

Step 3: Link Scripts to a SIM Interface

Database Module: RVC Parameters module

Enable an Interface link that corresponds to the Interface object number
assigned to the script in Step 4. Each Revenue Center supports multiple SIM
Interfaces, all of which can be defined in the Interface module through an
interface link.

Step 4: Create a SIM Inquiry Key

Database Module: Touchscreens module
Create a SIM Inquiry key to initiate a corresponding event in a script.

Pressing a SIM Inquiry key is one of the three ways to initiate an ISL event. The
key is linked to the event with a function key code that tells the SIM two things:

®* Where to look for the event and
* Which event to execute.

The SIM key codes are programmed in the Touchscreen Design module. There are
20 valid keys for each of the PMS Computer links available in a Revenue Center.

For example, assuming that an Event Inq: 4 exists in the script pms1.isl, one can
determine from the table below that the event should be linked to SIM 1 Inquiry
Key 4, and assigned to function key code 924.

SIM Inquiry Corre- RVC/ Sample PMS Sample
Keys sponding PMS Object Number | File Name
Key Codes | Record # and Name

SIM 1Inq1-20 |920-939 1 #1 / Fidelio System | pmsl.isl

SIM 21Inq1-20 |940-959 2 #2 / Property Mgmt | pms2.isl
System X

SIM31Inq1-20 |960-979 3 #14 / Property Mgmt | pms14.isl
System Y

SIM41Inq 1-20 | 980 -999 4 No PMS Link none

SIM51Inq1-20 |1000-1019 |5 No PMS Link none

SIM6Inqg1-20 |1020-1039 |6 No PMS Link none

SIM71Inq1-20 | 1040-1059 |7 No PMS Link none

SIM81Inq 1-20 | 1060-1079 |8 No PMS Link none

Simphony SIM Manual

2-13

Getting Started
Programming Simphony for SIM

Step 5: Create a SIM Tender Key

Database Modules: 7ender Media module
Touchscreen Design module

Create a Tender key to initiate a corresponding ISL tender event in a script.

Another way to initiate an event is by pressing a SIM Tender key. Like SIM
Inquiry keys, SIM Tender keys must be linked to a corresponding event
procedure. In the case of the a SIM Tender key, the tender/media event is the only
valid event initiated by this key.

Note: The tender event must be executed while in a
“’ transaction, i.e., while a guest check is open.

To program a SIM Tender:

* Select a Tender key to act as a SIM Tender. If necessary, create a new tender
in the Tender Media module.

* Link the key to a SIM Interface, defined by its PMS Computer link, by

* Enabling the PMS Option, Use ISL TMED Procedure Instead of
PMS Interface in the Tender Media module.

* Assigning a PMS Record Number to the key in the Tender Media
module.

* Link the tender event to the SIM Tender key by using the object number
assigned to it in the Tender Media module. For example, if the Cash key is
defined as object number 10 in the Tender Media module, then use this object
number in the Event Tmed command syntax (i.e., Event Tmed : 10).

2-14

Script Writing Basics

Chapter 3

Script Writing Basics

In This Chapter

For those users who are new to script writing or need to familiarize
themselves with script writing conventions, this chapter discusses some
basic script writing concepts to apply when creating scripts.

Getting Started with Script Writingcccceevveevieevie e 3-2
WHhat 1S @ SCTIPL? .oovveeeieiieieeieeeeee ettt e 3-3
Creating SCIIPLS....vieeiieiiieeiiecieerte et e sreeereesbeesreeebeeeereessseessseeennes 3-5
Script WITHNG StYIE....ccuvirvieiieriierieeieeieeiteieere et ere e eees 3-9
Writing and Editing SCIIPtS......cccveeciieeiiieiiiecieecie et 3-12
TEStING SCIIPLS.evvereieriieriieiietieieeteeteetesreseresteesseesseessaeseessesssesssesnnes 3-13
DoCUMENtING SCTIPLS....eeeriiiiiierieeiieeeeeriteeseeesreeesiteesreesreesseessreens 3-15

Simphony SIM Manual

3-1

Script Writing Basics
Getting Started with Script Writing

Getting Started with Script Writing

This section introduces the process of script writing, a tool used to create SIM
scripts.

This section provides the specific conventions and formats needed in order to
write scripts with the ISL. This section also includes the information needed to
begin using scripts for the first time.

Specifically, this chapter covers:

* What a script is

* Why use scripts

* What the parts of a script are

* How to write a script

* What is proper script writing style

* How to test a script

* How to document the script for others

* How to encrypt the scripts

Script Writing Basics
What is a Script?

What is a Script?

The means by which the ISL issues instructions to the SIM is through small
programs known as scripts. A script is an ASCII text file that the programmer
creates in any common text editor, such as Windows® Notepad. These scripts can
contain one or more events to implement SIM applications.

A separate script must be maintained for each SIM Interface defined for a system.
The script is linked to a SIM Interface through Simphony database programming.
Once this relationship is formed through database programming, the script can be
executed by the SIM. For specific programming requirements, refer to
“Programming Simphony for SIM” on page 2-10.

Structure of a Script

The basic structure of scripts should be written in a format similar to the sample
script below. When writing the script, keep the following structure in mind. A
brief description of each part follows the diagram.

// This is a sample script. <«—— Comments
var trans_type < Global Variable Declaration
event inq : 1 < Event Declaration
var cnt : N3 < Local Variable Declaration
window 2, 19 < Commands
endevent < End Event

A

Subroutine Declaration

sub sort_list

var temp_name : A24 <«— Local Variable Declaration

Commands

A

startprint

End Subroutine

A

endsub

Comments—Comments are used to document the purpose and scope of events
included in the script. Place comments anywhere in the script, but make sure each
comment line is preceded by two backslash characters “//”” (see page 3-9).

Global variable declarations—Global variables are initialized at the beginning
of each script and maintained for the duration of the script.

Simphony SIM Manual 3-3

Script Writing Basics
What is a Script?

Event declaration—ISL is event-oriented. Almost all ISL statements will be
contained in events or subroutines, called by those events (see page 7-58). There
are five types of events:

* Event Inq—This event executes when a SIM Inquiry key is used.
¢ Event Tmed—This event is executed when a SIM Tender key is used.

¢ Event RxMsg—This event is executed when a response is received from the
third-party system.

* Event Final_Tender—This event is executed whenever the last tender event
has occurred, but before a check has closed.

* Event Print_Header and Print_Trailer—This event is executed whenever
certain control characters are programmed in the RVC Descriptors module
within the Enterprise Management Console (EMC).

Local variable declaration commands—Local variables are purged after each
event completes execution; the event terminates after an EndEvent, ExitCancel,
ExitContinue, or any other command that causes the event to stop executing,
successfully or not.

Subroutine declaration—Subroutine procedures are called from other event or
subroutine procedures, allowing common code to be used by multiple events. As a
script writing convention, Oracle Hospitality recommends that all subroutines be
placed after all events in the script. Subroutines are described on page 7-166.

34

Script Writing Basics
Creating Scripts

Creating Scripts

Scripts consist of one or more events. Each event within the script represents a
task that the SIM should perform. For instance, Chapter 1 discusses several
different types of SIM applications. Each of these applications can exist as
separate events within the same script.

Guidelines for Creating Scripts

When beginning to develop the SIM applications, use the guidelines below to
create the script.

* Understand the tasks that the script will perform.

* Outline the structure of the script. In plain English, write down the
steps needed to automate in each event. Carefully, note each detail
about the tasks that the event will accomplish.

* Write a brief description of the task each event or subroutine
performs. For future reference, this description should appear as a
comment before each event and subroutine in the script.

* Note any input and output. Does the user enter data? Does a guest
check, remote order chit, etc. need to be generated?

¢ Think about what assumptions being made about the environment.
For instance, if the application applies a discount to a check total
greater than or equal to $50.00, test for this case in the script before
applying the discount.

* Protect against the user. The event should not allow users to get stuck
or to perform a task that they should not. For example, if input is
requested from an operator and the operator gives incorrect input,
then an error should be issued to force the operator to enter the
requested information.

¢ Determine what variables (global, local) need to be declared. For a discussion
of user variables, refer to “Using Variables” on page 4-1.

* Determine whether some of the events in the script perform similar tasks. If
they do, consider creating a subroutine to save time in writing the script and to
make the script process instructions more efficiently.

* Translate the instructions written into one or more lines of code.

* Consult the ISL Quick Reference beginning on page 8-1 to determine

Simphony SIM Manual 3-5

Script Writing Basics
Creating Scripts

what commands, functions, and system variables allow the desired
task to be performed.

Learn what considerations are involved in writing ISL statements.
“Script Writing Style” on page 3-9 covers these guidelines.

Review the detail descriptions of the required language elements. The
examples provided with detail descriptions can be helpful as
templates from which ISL statements can be built.

Script Writing Basics
Creating Scripts

Examples of Scripts

Charge Denial

This script places a window with the title “Charge Denied” on the screen, and
provides text in it with the reason why the charge was denied. The operator is then
prompted to enter the [Clear] key before cancelling the operation.

event rxmsg : denial msg
var reason text : a32

rxmsg reason_text

window 3, 34, “Charge Denied”
display 2,@CENTER, reason_text

waitforclear
exitcancel
endevent

Charge Posting

This script posts a charge to a PMS system and waits for the response.

var guest id:a20

event tmed : 1

input guest id, “Guest posting,
txmsg “CHG_POSTING”, guest id,

waitforrxmsg
endevent

event rxmsg : chg posting
var status : al, message

rxmsg status, message, temp tndttl

if status=“p”
saverefinfo message
@TNDTTL = temp tndttl
exitcontinue

endif

if status = “D”
exitcancel message

endif
if status = “E”
exitwitherror message
endif
endevent

//PMS room charge key is
// Tender key #1

enter name or room #”
@TNDTTL, @CHKNUM, @RVC

temp tndttl : $12

//Posting approved

//Charge declined.

//Error

Simphony SIM Manual

Script Writing Basics
Creating Scripts

Address and Phone Number Entry

This example prompts the operator to enter a customer’s address and phone

number.

var phone num

N7

//Global variable,
// number around.

keep phone

event ing 1 //Use Inquiry key #1 to get guest info.
var cust name A32
var addrl A32
var addr2 A32
var addr3 A32
var special instructions A32

window 7, 50,
display 2,2,
displayinput
display 3,2,
displayinput
display 4,2,
displayinput
display 5,2,
displayinput
display 4,2,
displayinput
display 7,2,
displayinput
windowinput

txmsg phone num,

“Customer Info”

“Phone Number:”
2, 18, phone num{:###-####},
“Customer name:”

“Enter phone number”
3,18, cust _name, “Enter customer’s name”

“Address Line 1:”

4,18,addrl, “Enter address”

“Address Line 2:”

5,18,addr2, “Enter address”
“Address Line 3:”

6,18,addr3, “Enter address”
“Instructions:”
7,18,special instructions, “Enter instructions”

addrl, addr2, addr3, \

cust_name,

special instructions

waitforrxMsg
endevent

event rxmsg

var status

rxmsg status,

phone num
var phone num

nlo0
al

phone_ num

if status = “N”
exitwitherror “Phone Number Not Found “
endif
window 3, 12
display 2, @CENTER, phone num
waitforenter

endevent

Script Writing Basics
Script Writing Style

Script Writing Style

Before beginning to write the first script, review the style conventions in this
section. For readability, apply these conventions in the script writing.

Case

ISL statements are not case sensitive and the use of case in examples is purely for
clarity and the author’s choice of style. However, quoted strings are case sensitive.

Length of Variables

The maximum character length for all variable names (user variables, subroutines,
etc.) is 255.

Comments (//)

Declarations and commands will always be on their own line and should be the
first non-white space characters. A comment may be placed on a line by
beginning the comment with “//” characters. All characters to the right of the
comment identifier ““//”” are ignored. For example:

Window 2,19, “ROOM INQUIRY” //Create window
Display 2,2, “Enter Room Number” //Prompt for room number

A comment may reside on its own line or to the right of a command and its
arguments. Lines should be terminated with an ASCII carriage return, or an
ASCII linefeed, or a carriage return/line feed pair.

Continuation Lines (\)

A line continuation character “\” is provided to allow commands to continue from
one line to the next. For example, a command that overflows several lines might
be:

TxMsg fieldl, field2, field3, field4, \
field5, field6, field7, field8, field9

Simphony SIM Manual 3-9

Script Writing Basics
Script Writing Style

It is not possible to break apart a string with a line continuation character:

Correct:

errormessage “Choose a number between 1 ”,\
“and 10”7

Incorrect:

errormessage “Choose a number between 1\
and 10”7

Line continuation characters may not be followed by comments or any other
commands.

Whitespace

Whitespace in ISL is defined as spaces or tab characters inserted into a program to
either separate commands from their arguments or to improve program
readability. For example, the programmer might find it easier to write:

numrow = (((num guest - 1) * 2) + header)
instead of:
numrow= (((num_guest-1) *2) +header)

Whitespace can be placed anywhere in a script between two distinct language
elements. Language elements are: commands, functions, system variables, user-
defined variables, input/output specifiers, comments (//), relational and boolean
operators, and commas. A language element is an indivisible piece of information
which, if broken apart with whitespace, will generate an ISL “token” error. For a
complete listing of error messages, please see Appendix B.

For example, the number -125.99 cannot be written as - 125. 9 9. The command
WaitForClear cannot be written as Wait For Clear.

The table below and on the next page shows the incorrect and correct ways of
using whitespace:

ISL Language Incorrect Use of Correct Use of
Whitespace Whitespace
Within a variable name num _ columns =1 num_columns = 1
Within a command or load ky bd macro 1:12 | loadkybdmacro 1 : 12
function name
Within a numeric value -198. 45 -198.45

3-10

Script Writing Basics

Script Writing Style

ISL Language Incorrect Use of Correct Use of
Whitespace Whitespace

Within a command format | A 12 Al2
specifier

NS5 N5

$ 12 $12
Within a comment // comment... // comment...
delimiter
Within double-character a< >b a<>b
relational operators

count< =35 count <= 5

Joe > =Richard Joe >= Richard
Between the @ and a (@ TNDTTL @TNDTTL
System Variable name @ YEAR @YEAR

The following table shows examples of where whitespace increases program

readability:

No Whitespace

With Whitespace

var count[10]:N5

var count[10] : N5

display 1,2,"Room is ",room

display 1, 2, "Room is ", room

txmsg "CHG",guest,@tndttl+1.00

txmsg "CHG", guest, @tndttl + 1.00

Simphony SIM Manual

3-11

Script Writing Basics
Writing and Editing Scripts

Writing and Editing Scripts

Scripts should be composed in an ASCII text file and saved with the appropriate
file naming convention discussed “Programming Simphony for SIM” on page 2-
10.

Note: There is no need to compile the script, or process it in
“’ any other way before the SIM can read the script.

Avoiding Errors

To avoid errors when writing and editing scripts, follow these basic guidelines:

* Verify that the script was named using the correct conventions (see page 3-9).
Also make sure it is in the proper directory.

® Check the Simphony database programming.
* Review the structure of the script.
* Are all global variables declared at the beginning of the script?

* Within each event, have all local variables been declared before
issuing the first command?

* Are the subroutines that are called in events also within the same
script? Does the called subroutine have the same name as the actual
subroutine?

* Look at the programming style. See “Script Writing Style” on page 3-9.

* Check that events correspond to the correct SIM Inquiry or SIM Tender keys
initiating the event or tender event, respectively. For further details about
creating these keys, refer to “Programming Simphony for SIM” on page 2-10.

® Check the script for syntax errors. For instance, make sure that if a command
has a corresponding command ending the task, include it. For example, the
Event command must be used with the EndEvent command, which should
always be the last line of an event procedure.

3-12

Script Writing Basics
Testing Scripts

Testing Scripts

Before using the SIM application in a live environment, Oracle Hospitality
recommends testing it for errors first.

Detecting Errors in Logic

When the script is run, any errors in syntax are detected by the SIM, and an ISL
error message is displayed. However, some errors in logic may not be caught by
running the script.

Scripts make no assumptions, so execute the instructions exactly as specified. It is
possible to run a script and detect no syntax-errors, but still have problems with
the logic. Therefore, Oracle Hospitality recommends that each task be stepped
through in the script.

Stepping Through the Script

Follow these steps to test the script:
* Print the script for reference.

* Mark through each step of the script as it is tested and correct it. This
procedure helps track the steps that tested.

¢ Confirm that the script has the correct filename, to link it to the appropriate
SIM interface, and that it is in the correct directory.

* Execute each event in the script. Remember, an event can be initiated in three
ways: by pressing a SIM Inquiry key, by pressing a SIM Tender key, or by
responding to a message sent by an interfaced third-party system.

* Make sure that the SIM Inquiry or SIM Tender key pressed executes
the correct event. The key should be linked to a corresponding event
in the script.

¢ Test whether communications are active between the two systems and
that each system responds appropriately to messages sent to it by the

other.

* Test each step of the event, such as the flow and logic of If...EndIf and For
loop statements.

® Check any assumptions made in the script. For instance, if a condition

Simphony SIM Manual 3-13

Script Writing Basics
Testing Scripts

must exist in order for the next step to occur, check the condition. The
programmer might need to display an error message or perform
another step until this condition is met.

Check the logic of each task. For example, if the script collects data
from the user before querying a third-party database, make sure that
the script prompts the user for data entry before starting the query.

Correct any detected syntax errors. The ISL error message will
provide the number of the line in the script where the error is found.

Verify inputs and outputs. For example, if the script calls for a coupon
to be generated when an operator closes a guest check, test for this
case.

3-14

Script Writing Basics
Documenting Scripts

Documenting Scripts

Oracle Hospitality highly recommends that a readme.doc file be created to store
as a companion to the script. This document should include vital information
pertaining to what is required to run the script.

README.DOC File Contents

The README.DOC file should contain the following:
* The SIM version for which the script was developed
* The type of interface (TCP-based, etc.) for which the script is intended

* The required database programming for tender/media and inquiry keys (their
numbers must match their Event declarations)

* Any required touchscreen configurations
* Any required macro key programming
* Any other considerations

* A vendor contact name and telephone/fax number to use in case additional
support is needed

The file below is an example of a readme.doc file that should accompany a script.

README.DOC File Name and Location

The documentation should be located in an ASCII-formatted file with the name
x...x.doc, where x...x is the same as the script. For example, the readme.doc file for
pmsl.isl should be named pms1.doc. The readme.doc file should be placed in the
\Micros\Simphony!\etc directory.

Simphony SIM Manual 3-15

Using Variables

Chapter 4

Using Variables

In This Chapter

For those users who are new to script writing, or need to familiarize
themselves with script writing conventions, this chapter discusses some
basic script writing concepts to apply when creating scripts.

Variables and ISL........cooiiiiiiii e 4-2
DAt TYPES. e uteeeniieeiee ettt ettt ettt ettt e st e et esaee s e eaeeens 4-3
Relational and Logical Operatorsccceeeveerirerieenieecieeeieeieeenns 4-5
USET Variablesocuviriierieriieiieiieie ettt eseense e eens 4-9
Simphony SIM Manual 4-1

Using Variables
Variables and ISL

Variables and ISL

As in other programming languages, the ISL supports the use of variables for
holding information, such as integers or character strings, that may change from
one ISL event to another.

Typically, variable results are stored in expressions like the following example:

variable name = expression

An expression is a combination of variables and operators. Expressions may also
include constants and functions.

For example, in the expression below, the size of a window is computed from the
number of elements in a list:

window length = ListSize + 2

The user variable window length has a unique name defined by the user. This
variable is compared, using the operator “equal to”, or =, to the expression on the
right. The expression on the right contains a user variable called ListSize, which is
added to the integer 2. The result of the expression on the right will be the value
assigned to the user variable window_length: the ListSize plus 2.

This chapter describes how to use the language elements that allow variable
information to be held and evaluate expressions of variables.

This chapter contains the following:
* A listing of the different kinds of data types variables can be in ISL

* A discussion of the mathematical operators used to evaluate expressions
containing variables

* A discussion of the type of user variables supported by the ISL

4-2

Using Variables
Data Types

Data Types

The ISL supports several kinds of data types, including numeric, decimal,
alphanumeric, and key data types, to specify different kinds of variables and
constants.

When a variable is declared using the var! command, its data type and size must

also be declared. The type and size are referred to as the variable_specifier and
type_specifier, respectively.
var message text[8] : A32

variable_specifier type_specifier

The table below lists the different kinds of data types and provides the
abbreviations that must be used when declaring them.

Data Type | Abbreviation Description Example
Numeric Nx The maximum size can be | If the variable
32768 (N32768). were defined as

However, only the first test:N12 =
nine digits are significant | 12345678901

when any arithmetic 2,then test+1

operation is performed. would not
evaluate
correctly due to
truncation.

1. For complete description of the var command, refer to page 7-184.

Simphony SIM Manual 4-3

Using Variables
Data Types

Data Type

Abbreviation

Description

Example

Decimal

$x

These variables are used
for decimal amounts.
Operator entries will
assume a decimal place
according to the
currency's default setting,
as specified in the
Currency file; i.e.,
entering 1234 in the US
will result in an amount of
12.34. They may comprise
x digits, e.g., $4 in the US
will support -99.99 to
99.99.

The maximum size can be
32768 (N32768).
However, only the first
sixteen digits are
significant when any
arithmetic operation is
performed.

If the variable
were defined as
test:518 =
12345678901
2345678, then
test+1 would
not evaluate
correctly due to
truncation.

Alpha-
numeric

These variables may
include any non-control
character, including
punctuation marks. They
may comprise x
characters.

var name : a20

Key

key

This system variable is
used for key press
variables.

var keypressed :
key

Example

The example below declare a 32-character alphanumeric variable and a four-digit
room number variable, respectively.

event :

1

var message_ text[8]
var room num : N4

: A32

4-4

Using Variables
Relational and Logical Operators

Relational and Logical Operators

The mathematical operators described in this section are supported by the ISL.
Before using these operators in a script, review each description carefully, as well
as the “Operator Rules” on page 4-6.

For an explanation of the operand types (Nx, $x, Ax, and Key), please see “Data
Types” on page 4-3.

Unary Operators

There are two unary operators:

Operator Description Example
Negation operator (a minus -3
sign). This is used to negate an
) expression. -count

-((count+5) * -index)

Will negate the result of the -3
expression. The NOT operator
NOT can be applied to expressions | -count

in the same way as the unary

minus operator. -((count+5) * -index)

Given that ISL expressions are true if they evaluate to a non-zero value and false
if they are zero, the NOT operator will change non-zero values to 0 and 0 values
to non-zero. The expression NOT 3 is valid and will evaluate to a 0.

The NOT operator is generally used in If, Elself, and While statements to control
program flow.

The following is an example of a loop that looks for the end of a file:

while NOT feof(fn)

endwhile

Simphony SIM Manual 4-5

Using Variables
Relational and Logical Operators

Binary Operators

The following table lists the available binary and logical operators in order of
precedence (highest to lowest). AND and OR, the logical operators, have a lower
precedence than all the binary operators.

Operation Operator | Allowable Operand Types:
Nx, $x, Ax, and Key

multiplication * Nx, $x
division / Nx, $x
modulus % Nx, $x

plus + Nx, $x

minus - Nx, $x
bit-wise and & Nx

bit-wise or | Nx

equality = Nx, $x Ax, Key
greater than or equal >= Nx, $x Ax, Key
greater than > Nx, $x Ax, Key
less than or equal <= Nx, $x Ax, Key
inequality <> Nx, $x Ax, Key
less than < Nx, $x, Ax, Key
logical and AND Nx

logical or OR Nx

Operator Rules

Relational Operators

All relational operators produce a non-zero value if they are true, and 0 if they are
false. For example:

result

2 //true, result will be non-zero
result <

=1
=1 4 //false, result will zero

<
00

Using Variables
Relational and Logical Operators

Logical (Boolean) Operators

The logical (Boolean) AND and OR operators treat their operand as either true
(non-zero) or false (zero) values.

For example:

result = 5 AND 6

//true, since 5 and 6 are both non-zero
result = 5 AND 0

//false, since 0 is false
result = 0 OR O

//false, since neither one is true
result = 0 OR 5

//true, at least one value is non-zero

Precedence

* ISL expression operands are evaluated from left to right until the end of the
expression is reached. For example, in the following expression, 1 + 5 + 2,
the 1 is added to the 5, equaling 6, then 2 is added to 6, resulting in 8.

* When expressions mix operators (i.e., + and *), then ISL will use the
precedence table to determine which subexpression within the expression will
evaluate first. In the following example, the * operator has higher precedence
then the + operator, therefore, the last two operands will be combined first,
even though they are not the first in the expression: 1 + 5 * 2

The result is 11 (1 + 10), rather than 12 (6 * 2). The precedence rules are used
for all operators. Since the < operator has greater precedence than the OR
operator, then in the following expression:a < 1 OR b > 3

a < 1 and b > 3 are evaluated first, and both results are combined with
the OR operator.

Overriding and Clarifying Precedence

The parentheses can be used to override the default precedence rules.
Parentheses are used for two reasons:

* To override the default expression evaluation
* To clarify the expression

Subexpressions enclosed in parentheses always override the operator
evaluation. For example, in the following expression:

(1 +5) *2

the 1 + 5 is evaluated first since it is within parentheses, even though the
multiplier * has higher precedence.

Simphony SIM Manual 4-7

Using Variables

Relational and Logical Operators

The following expression:
a<1O0ORDb<3

can be rewritten as:
(a < 1) OR (b < 3)

It is good practice to always place parentheses around subexpressions, to
reduce programming errors and to make scripts more easily understood and
maintained.

For example, the following expression:

offset + width * 2 <= w_width / stlen + 1

is equivalent to:

(offset + (width * 2)) <=((w width / stlen) + 1)

The second expression is clearer in its intent.

4-8

Using Variables
User Variables

User Variables

User variables are defined by the interface designer and may be used to get
operator input, such as customer name and address information, a room number,
etc. They can also reference an entry in a message received over a SIM Interface.

Declaring User Variables

Declare variables just as is in C, but in this case, use the var command to do this.
These variables are given a value by an operator, or by the interface, in a response
message. Example:

event ing : 5

var rowcnt : n3

Guidelines

* The variable name must begin with a letter A-Z, a-z, or the underline
character ().

* The first character cannot be a number. It may subsequently include any
character in the range A-Z, a-z, 0-9, or the underscore _ character.

¢ Initially, numeric variables should always be set equal to 0.

nn

* String variables should initially equal a null string

Remember that when declaring SIM numeric or decimal variables, large variables
used in mathematical operations may be truncated. All operations involving
numeric variables use only the first nine digits, and decimal variables use only the
first sixteen digits.

The scriptwriter can still declare and assign large variables. For example, it is still
valid to create an N10 variable that will hold a telephone number, or an N16
variable that will hold an access code. However, any non-relational expressions
may cause truncation and yield the wrong answer.

Simphony SIM Manual 4-9

Using Variables

User Variables

Local and Global Variables

Variables can be declared either globally or locally.

Global Variables

If a variable is declared outside of an Event procedure, it is considered global. The
variable is called global because it can be referenced by any event or subroutine in
the script. As a result, the ISL must maintain the contents of the variable the
duration of a script. The variable is then reset at the start of a new transaction (i.e.,
when tendering a check). Also, since the variable will be used by other events and
subroutines in the script, a global variable needs to be declared only once at the
top of the script before any events or subroutines.

Local Variables

Conversely, a variable is considered local when it is declared inside an event
procedure. Local variables are only maintained while the event procedure is being
executed; executing the EndEvent command, or any other command that stops
the script, purges the local variable from the event procedure. Thus, local
variables must be declared within event procedures.

Local Variables Used by Subroutines

Local variables declared by a parent event procedure are visible within a child
subroutine. This functionality is possible because a local variable is accessible
to the event in which it is included, and to any child subroutine called by the
parent event. Moreover, the contents of a local variable, declared in the parent
event, can be changed by the operation of a subroutine called by the same
parent event. Consequently, the new contents of the local variable are retained
when the subroutine is complete.

4-10

Using Variables
User Variables

Array Variables

Arrays of variables can also be declared by including an array size with the
declaration. The syntax for an array variable is:

Var variable name[array size]:variable specifier

The example below declares an array of strings named message_text, containing
eight elements, each 32 characters in length.

var message text[8]:A32

Note: The use of brackets in the example above does not
“7 denote an optional entry, but is actually part of the syntax.

For more information on the var command, please see page 7-184.

Variable Size Variables

It is possible to declare a variable with a size that is defined by an expression,
rather than a hard-coded number. If the SIM encounters an open parenthesis
immediately following the type of the variable, it will assume that an expression
follows, defining the variable’s size. For example, the following commands have
the same effect:

var window _width : N30
var window width : N(15 + 15)

This feature is useful for declaring variables whose size is not known until run-
time. Example:

var longest str : A(max_ str len)

Using List Arrays and Records

The application data message contains the information that the SIM sends to and
receives from an interface. The message consists of a set of ASCII fields,
separated by the ASCII field separator (1CH).

In many cases, the number of variables to be sent by the SIM or the interface is
not known until run-time. For example, a script may query the PMS for a list of
guests whose last name starts with “SMITH.” The PMS may respond with two
names, or with ten names, depending on who is in the hotel at the time.

Simphony SIM Manual 4-11

Using Variables
User Variables

In order to send and receive variable amounts of data, ISL uses two methods: list
arrays and records.

List Arrays

The SIM provides more than one method for sending and receiving variable
amounts of data within one message. The simplest method is to send a list. A list
consists of a /ist size and the array variable that contains the list. The list size is
any user-defined integer variable. The array variable is any user-defined array, as
shown on page 4-11.

Specifying a List Array

A list is specified for an RxMsg or TxMsg command by using empty array
brackets ([]) after the array name.

Example: Rxmsg list size, list[]

When specifying a list array, follow these guidelines:
* The variables used for the list size and the list are user-defined.
* The list size variable should always precede the list array variable.

* Array system variables (e.g., @DTL OBJNUM) cannot be used as
list arrays.

* The values in the list[] should be formatted into as many lines as are
specified in /list_size. In the example below, list size is 5, thus five
values from the list[] will be formatted if these ISL statements are
executed.

var list size : N5
var list[10] : A20
txmsg list size, list[]

Using the same example, if the [fs] symbol stands for the field separator, then
the following lines will create these messages:

list[1] = "L1"

list[2] = "L2"

list[3] = "L3"

list[4 1 = "L4"

list[5] = "L5"

txmsg 3, list[] //3[fs]L1[fs]L2[£fs]L3

txmsg 5, listl[] //5[fs]L1[fs]L2[fs]L3[fs]L4[£fs]L5
txmsg 0, list[] //0

® The PMS should read the first value in the message and receive that
many elements from the rest of the message. The RxMsg command

4-12

Using Variables
User Variables

reads the data from the message in a similar manner. Example:

var listsize : N5
var list[10] : A20

//If message from PMS is: 2[fs]L1[fs]L2, then
//listsize = 2

//1list[1] = "L1"

//1list[2] = "L2"

rxmsg listsize, list[]

//If message from PMS is: 4[fs]L1[fs]L2[fs]L3[fs]L4, then
//listsize = 4

//1list[1]
//1ist[2]
//1list[3]
//1list[4]

LAl
wyomn
ny3n
= "p4"

rxmsg listsize, list[]

In another example, the script collects a guest name from the operator,
transmits the guest name to the PMS, receives a list of names from the PMS,
and displays the list in a window:

event ing : 1

var name : A20

input name, "Enter guest name"
txmsg "GST INQ", guest
waitforrxmsg

endevent

event rxmsg : GST RSP

var guest count : N5 //declare list size

var guest name[10] : A20 //declare list

rxmsg guest count, guest namel[]
//receive up to 10 names
//open up window

window guest count, 25, "Guest List"
listdisplay 1, 1, guest name //display names
waitforclear

endevent
Lists can be intermingled with other non-list variables, as well as
other lists. In the following example, one single variable and two lists,

each with its size variable, are received from the PMS:

rxmsg status, guest count, guest name[], action count,\
action list[]

For each list, only one array may be assigned. It is possible, for

Simphony SIM Manual

4-13

Using Variables

User Variables

example, for the PMS to send not only the guest name, but also the
room number. One way to handle this would be to receive two lists
within one message:

event rxmsg : GST RSP
var guest count : N5

var guest name[10] : A20h
var guest room[10] : N5
rxmsg guest count, guest name[], guest count,\

guest room[]

endevent

Implicit List_Sizes

There are occasions where the script writer may desire to use lists, but does not
want to actually specify the /ist_size, since the /ist_size is not specified in the data.
For example, assume that each line in a file contains 20 fields. In order for the ISL

to read each line, a separate variable must be specified in the Fread command for
each field.

var n[20]

fread fn, n[l], n[2], n[4], n[5], n[6], n[7], n[8],\
n[9], n[10], n[11l], n[12], n[13], n[1l4], n[15], n[l6],\
n(1l7], n[18], n[19], n[20]

The ISL provides a method for specifying list sizes implicitly for those cases
when the data does not contain a list_size. An implicit list_size is identified by a
pound symbol (#) placed before the list size. Alternatively, the example above
could be written as:

var n[20]
fread fn, #20, n[]

Only integer expressions may be placed in the implicit /ist_size field. Integer
variables may also be used.

var n[20]
var size : N5 = 20
fread fn, #size, n[]

Implicit /ist_sizes may be used anywhere standard /ist sizes may be used.

Records

ISL also provides a more powerful, yet more complicated, syntax for specifying
variable amounts of data called records. In this format, the variables following
the list size are considered to be in groups of records.

The syntax for receiving this type of information is:

listsize, 1listl[] : 1list2[] : 1list3[]

4-14

Using Variables
User Variables

The colon separates fields within a record and must be used when specifying
records.

For example, if the PMS received an inquire on SMITH, then it may want to
group the data as follows:

3[fs]Smith[fs]1423[fs]Smithers[fs]1827[fs]Smithson[fs]1887

Note that each record consists of a name followed by a room number.
To receive the message above, use the following statement:

rxmsg count, name[] : room[]
In this case, the variables would be set as follows:

count = 3

name[1l] = "Smith"
name[2] = "Smithers"
name[3] = "Smithson"
room[1l] = 1423
room[2] = 1827
room[3] = 1887

The same format would be used for transmitting data.

A list specification is a special case of a record format, where each record consists
of one element.

Promotion

ISL allows the programmer to freely combine and assign variables of the different
types. For example, it is possible to add a string and an integer, and assign it to a
decimal value.

var amt : $10 = 12 + "25" + 100.45
Whenever two variables and/or constants are operated upon with an operator, and
they are not the same types, one will be “promoted” (have its type changed)
before the operation takes place.

Strings promote to integers and integers promote to decimal values. A final
promotion occurs when the expression is assigned to a variable. Therefore, the
expression is promoted (or demoted) to the variable type.

Simphony SIM Manual 4-15

Using Variables
User Variables

For example, if the following variables are declared:

var string : A20
var integer : N10
var decimal : $10

Then the following statements are assigned within an Event procedure, the
statements would be equivalent to:

Assignment Equivalent To
string = "12" + 35 string = "47"
string ="14.15" + 2 string ="16"
string ="14.15" + 2.00 string ="16.15"
integer ="14" + 12.5 integer =26
integer = "14.5" + 12.5 integer = 27

expression was real, and then
demoted to integer

decimal = 12.23 + 1 decimal = 13.23

decimal ="12.23" + 1 decimal = 13.00
"12.23" + 1 yields an integer 13,
which is then assigned to decimal

Strings are converted to integers by using the first digits in the string field.
“12.35” converts to an integer 12, since “.” does not belong in an integer.
“12NUM?” also converts to 12. Therefore, it is legal to write:

integer = "ABC123" // integer = 0

Only relational operators are allowed between strings; see “Relational and Logical
Operators” on page 4-5.

Correct:

integer = "12" > "35"
Incorrect:

integer = "12" + "35"

4-16

ISL Printing

Chapter 5

ISL Printing

In This Chapter

This chapter contains an introduction to the ISL command and system
variables that facilitate output to print devices.

Getting Started with ISL Printingcccceevevvvieciencienieniere e, 5-2
Starting an ISL Print JObccooiiiiiiiiiiiecccee 5-3
USINg Print DIr€CtiVES......cccveeierieriienieieeieereereseeseeeseeseeesreesseesne e 5-6
Using Print DIr€CtiVes.....c..coererierieninenieienieeeeieeteteie e 5-6
Backup Printingccccceevvierienieniiiiieie e 5-9
Reference SIringscoeevevereninieierenecteee et 5-10
Simphony SIM Manual 5-1

ISL Printing
Getting Started with ISL Printing

Getting Started with ISL Printing

Printing in ISL is accomplished using the StartPrint, PrintLine, and EndPrint
directives (or their variants).

* Backup printers may be specified;
* Printouts can end with Form Feeds or not; and
* Printing text in double-wide characters and red ink is also supported.

This chapter focuses on how to start and direct print jobs to printers. And in
performing these tasks, the other options available are covered as well, including
detecting the status of print jobs, redirecting print jobs to ISL-defined backup
printers, and defining a reference line for print error messages.

ISL Print Commands and System Variables

All of the commands and system variables associated with ISL printing are
discussed. For complete descriptions, including syntax and examples of all
commands discussed in this section, refer to “ISL Commands” on page 7-1. For
more information about system variables and their use, refer to “ISL System
Variables” on page 6-1.

ISL Printing
Starting an ISL Print Job

Starting an ISL Print Job

Print jobs include guest checks, customer receipts, validation chits, local backup
printing, remote order printing, as well as journal printing.

These types of print jobs are initiated by variations of the StartPrint command
described in this section. These variations are designed to accommodate the
ability to detect whether a print job completed successfully by using the
@PRINTSTATUS system variable.

ISL StartPrint Commands

Printing in ISL is started using the command in the table below. The StartPrint
command is used to print to a standard remote printer. These printers will print a
maximum of 32 characters per line and understand special formatting,.

Command

Sets
@PRINTSTATUS
Form Feed

Backup Printer
Reference Line

—_

StartPrint...EndPrint[FF/NOFF]

*

I Always set to Y.

Extended Printing and Printing Binary Data

Extended and Binary printing is possible using a certain set of ISL command and
system variables. See the following:

* Print_Header Event
* Print_Trailer Event
* (@HEADER System Variable
* @TRAILER System Variable

¢ PrintLine Command

Simphony SIM Manual 5-3

ISL Printing

Starting an ISL Print Job

Form Feeds

The EndPrint command can issue three types of form feeds:
¢ EndPrint

* EndPrintNOFF

* EndPrintFF

The EndPrint command is used when the default behavior for formfeeding at the
end of a print session should be used. For journal printers, there is no formfeed.
For all other printers a form feed is used.

The EndPrintNOFF command is used to prevent a formfeed being sent at the end
of a print job.

The EndPrintFF command is used to always force a formfeed at the end of a print
job.

Backup Printing and Reference Lines

The commands used for print jobs also allow for the specification of a backup
printer in case the print job fails. This backup printer overrides any backup printer
already programmed in the database for the specified printer. In addition, the text
can be specified, called a reference line, to appear in printer error messages
returned when print jobs fail.

Specifying an ISL Printer

When specifying a StartPrint command, there are two options for defining a
printer: the object number or a system variable.

Using DTENs

All printing requires that a printer be specified by the StartPrint command. A
printer can be identified either by its device table entry number (DTEN), which is
the device’s object number, or by a system variable. For example, if the print job
goes to device 8 in the Printers module, using the object number, the StartPrint
command would be written as follows:

StartPrint 8

ISL Printing
Starting an ISL Print Job

Although using this method is valid, it has a primary disadvantage. For instance,
the destination printer for ISL print jobs may differ for each workstation. So if the
object number had to be hardcoded, as it is in the example above, then a different
script would be required for each workstation. Thus, each script would need to
specify the printer to which each workstation must print, limiting the flexibility of
the script.

Considerations

* Although it is legal to specify a printer object number of 0, all print jobs
printing to 0 will not print—anywhere.

* Aninvalid object number value (-1) will generate an ISL error.

Using System Variables

A more efficient method of specifying printers is through the use of system
variables. These system variables return the value of the object number of the
printer. For example, the @CHK system variable will return the object number of
the printer defined as the Check Printer for that workstation in the database.

Since each workstation will have a different entry for its Check Printer, the ISL
command “startprint @chk” will specify a different printer for each UWS. For

example, on Workstation #1, @CHK is 8 but, on Workstation #2, @CHK is 12.
Using a system variable instead of the object number to specify a printer, means
that each workstation can use the same script, yet still print to different printers.

ISL Printer System Variables

The printer system variables available in ISL include the following:

System Variable Description
@CHK Guest Check Printer
@RCPT Customer Receipt Printer
@ORDR[1...15] Remote Order or Local Backup Printer
@VALD Validation Printer

A table describing all options available with each valid ISL printer is provided
with the detail description of the StartPrint command. See
“StartPrint...EndPrint[FF/NOFF]” on page 7-163.

Simphony SIM Manual 5-5

ISL Printing
Using Print Directives

Using Print Directives

The ISL Print Directives consist of one-byte values sent to the printer, defined by
the StartPrint command, to change the print type of the expression that follows it.
These directives are similar in function to standard parallel printer escape
sequences: Each print directive is a non-printable character and is included in the
print data sent to the printer.

The Printline Command

Print Directives are actually system variables, and are arguments of the Printline
command. This command allows the ISL to print information provided as a text
string or variable.

The Printline command prints a line on the selected printer defined by the
StartPrint command, which must be issued before Printline. Depending on the
print directives specified in the Printline statement, the expression will print in
double-wide characters or red ink.

Print Type System Variables

Several system variables that evaluate to these print directives are provided by the
ISL to facilitate printing expressions in double-wide characters and in red ink.
These directives are described in the table that follows.

Print Directive Description

@DWON Prints the following text or variable fields
double-wide. Single- and double-wide
characters may be mixed on the same line.

@DWOFF Prints the following text or variable fields
double-wide. Single- and double-wide
characters may be mixed on the same line.

@REDON Prints an entire line in red. It is not possible
to mix red and black characters on the same
line. All new lines default to black.

@REDOFF Returns printing to default ink (blue, black,
etc.) All new lines default to black.

ISL Printing
Using Print Directives

Considerations

¢ Print directives (@DWON and @DWOFF) may be inserted between
expressions, but only affect the expression to the right.

* The print directives are reinitialized at the end of each printed line.

* Ifno print directives are specified, then printing will be in black and single-

wide.

Example

The following example illustrates how the same expression can be printed in four
different ways by using a combination of these print directives:

Printline “Print line” //prints in black
Printline @redon, “Print line” //prints in red
Printline @dwon, “Print line” //prints in black,
// double-wide
Printline @dwon, @redon, “Print line” //prints double-wide

// in red ink

Print Directives and Subroutines

Since the print directives are normal ISL strings, they can be passed as arguments
to subroutines. The following example prints an array of data and displays a
header using a print directive passed in as a parameter to the subroutine:

sub print_list(var printer

: N9, var listsize : N5,\

ref list[], ref header string, wvar directive : Al)
if printer = 0
errormessage “Printer dten is 0. Cannot print.”
exitcancel
endif

startprint printer

printline

printline directive, header string

printline
listprint
endprint

endsub

W ”

listsize,

Simphony SIM Manual

ISL Printing
Using Print Directives

The subroutine could be invoked in the following fashion:

event ing : 1
print_list(@chk, sz, data[], “NORMAL HEADER”, Q@redoff)

print_list(@rcpt, sz, datal[], “RED HEADER”, Q@redon)
endevent

5-8

ISL Printing
Backup Printing

Backup Printing

Whenever the StartPrint command is issued, a print job will occur. If the print
job is unable to complete successfully, it will go to the backup printer defined in
the Simphony database for each printer type (i.e., @chk, @rcpt, ...).

However, there are instances when a backup printer different from the one defined
in Simphony should be specified. To accommodate these instances, the StartPrint
command accepts an optional second argument. This optional argument specifies
the object number of the backup printer, overriding the backup printer
programmed in the Simphony database.

For example, if the Check Printer is normally backed up by the Customer Receipt
Printer but the script requires that a print job to the Check Printer back up to the
Order Printer, the following command should be issued:

STARTPRINT @chk, @ordr[1] // back up to @ordr[1] instead of @rcpt

Considerations

The SIM will only route the print job to the backup printer defined in the
command syntax if the primary printer specified is a system variable. Otherwise,
the ISL does not know to which printer type the job should be re-routed. For
example, assume that the @CHK system variable equals 2.

STARTPRINT Q@chk // ISL can determine backup printer
STARTPRINT 2 // ISL cannot determine backup printer

In the first line, the SIM will correctly determine the backup for the Check Printer,
since “@chk” is explicitly specified. In the second line, the number 2 is used
instead, and ISL cannot correctly determine the backup printer, and so, no backup
is used.

Simphony SIM Manual 5-9

ISL Printing

Reference Strings

Reference Strings

Whenever the SIM is performing a print job and an error occurs during printing
(paper out, door open), an error message will appear on the display of the
workstation explaining the error. Included in this error message is a line of text
identifying the print job.

Normally, ISL will leave this line blank. However, this reference line can be
specified in both the StartPrint commands.

STARTPRINT Q@chk // use default backup
STARTPRINT @chk, @rcpt // no reference line

STARTPRINT (@chk, @rcpt, "Printing Customer Coupon"//ref line

5-10

ISL System Variables

Chapter 6

ISL System Variables

In This Chapter

This chapter summarizes all ISL system variables in an A-Z reference
format.

System Variablesccvevuierierieniierieeieerieie e ere e ere e s resene e 6-2
Specifying System Variables.........cccccoeveivienininiiiininenceicceeene 6-3
System Variable SUMMATYccceevveeiieeveeciiiieieeseeseeseesieereereesnes 6-7
ISL System Variable Referenceccocovevvevenininiencnincniecnnn 6-15
Simphony SIM Manual 6-1

ISL System Variables
System Variables

System Variables

System variables return status information from Simphony, Windows® Status
flags, or the PMS System, etc., as well as provide access to transaction totals and
other transaction parameters.

The following can be accomplished using the system variables that the ISL
supports:

* Access the system transaction variables and totals information and
* Set certain operational parameters.

This chapter contains a detail description of each system variable.

System Variable Summary

For quick reference, a summary of system variables in alphabetical order and in
order by category of function begins on page 6-7.

Specifying System Variables

Review this section to determine the guidelines to follow when specifying system
variables.

ISL System Variables
Specifying System Variables

Specifying System Variables

This section contains quidelines that should be followed when specifying system
variables in ISL statements.

Guidelines for Specifying System Variables

Follow the guidelines below when specifying system variables:

¢ Since the names for system variables are reserved, do not declare other user
variables using the same name.

The example below is incorrect because the local variable ccnumber has the
same name as the system variable @ CCNUMBER, which returns a credit

card account number.

event : 1
var ccnumber : Al6

This problem can be corrected by replacing ccnumber
with account num, which is a user variable that
represents the credit card account number, but is
not a system variable.

event : 1
var account num : Al6

* Always precede each system variable with an At @ character. Example:
@SI[1]

* Never put spaces between the At @ and the system variable name.
Correct: @ST[1]

Incorrect: @ SI[1]

Simphony SIM Manual 6-3

ISL System Variables
Specifying System Variables

* Before using a system variable, review the detail description carefully for any
special considerations, such as:

* The majority of system variables must be used in conjunction with
other commands, functions, or other system variables. For instance,
the @DWON system variable can only be used with the Printline
command.

* Some system variables are only valid within a certain event. For
example, @CCNUMBER and @CCDATE will only return valid
values if issued from within a tender/media event referencing a credit
card tender type.

* A strategically placed system variable may or may not be required
within the script. For example, the @ WARNINGS ARE FATAL
system variable must be placed at the top of the script. But the
@LINES_EXECUTED system variable can be placed anywhere in a
script.

* Just as there are user variables that can be specified as arrays, there are array
system variables. Array system variables require a reference to an array index.
“Using an Index to Specify System Variables” below describes how to issue
these types of system variables.

Using an Index to Specify System Variables

Specifying array system variables is the same as specifying user-declared array
variables. Array references in ISL take the form:

<array name> [<expression>]

where <array name> can be either a user or system array variable, and
<expression> (i.e., the index) can be a user variable, another system variable, a
constant, a string, a function, or an equation.

As long as the array index evaluates to an expression within the array limits for
the system variable, the index can be specified as a user variable, another system
variable, a constant, a string, a function, or an equation. In the following
examples, three different references evaluate to 3:

@sil 3 1 // constant

@si[6 - 3] // equation

@si[(index * 2) - 1] // equation using user variable,
// where index = 2

6-4

ISL System Variables
Specifying System Variables

Array Subscripts

The difference between system array variables and user-declared array variables,
is that system array variables already have been declared and filled with the
corresponding information. Consequently, there is no need to declare the
subscripts of the array.

For example, the user-declared array variable must be declared as follows:

var myarray[5] : A20
myarray[l] = “mytest”
myarray[2] = “mytest”
myarray[3] = “mytest”
myarray[4] = “mystes”
myarray[5] = “mytest”

But a system array variable can be specified as:

@si[3]

For a system array variable, the variable data type and size, and subscript are
assumed by the ISL to reference Sale Itemizer #3. If executed by a script, this
system array variable would return the totals posted to this sales itemizer on the
current guest check.

Array Index Limits

The array index limits are included for system variables with the detail description
of each system array variable. These limits vary depending on the system variable.

If the array index exceeds the limit when referencing the system variable, an error
will occur. For example, below are invalid limits for the @SI system array
variable:

@si[10] //incorrect
@si[-10] //incorrect

The array index for @SI must evaluate to an index between 1 and 16.

All array indices start at 1, and not 0. For example, @si [0] will generate an
error.

Simphony SIM Manual 6-5

ISL System Variables
Specifying System Variables

Embedded Index vs Array-Index

System variables that require an index (e.g., DTL_*, @SI, etc.) can be referenced
in two ways: by an embedded index or array-index. Both of these methods enable
older versions of SIM scripts to maintain compatibility with the ISL. In early
versions of the ISL, there was support only for the embedded index method.

If using the embedded index to maintain older SIM scripts (Version 1.01S or
earlier), the desired index is placed immediately after the system variable.

Example:

@SI2, QTAX1l, QTXBL1l, @DTL_STATUS9

In scripts compatible with Version 1.01T or higher of the ISL, the array-index
method is the preferred way to specify system array variables. The array-index
requires a to reference the index as an array.

Example:

@sI[2], @TAX[1], @TXBL[1], @DTL STATUS[9]

Note: The embedded-index method remains in ISL to retain
“V compatibility with older scripts and should not be used with
new scripts.

A

ISL System Variables
System Variable Summary

System Variable Summary

For quick reference, this section contains an alphabetical summary of all ISL

system variables.

o,

Note: ISL variables are listed by category in Appendix C.

Variable Name

Field/Parameter

@ACTIVE_LANGID

ID Number of Currently Selected Language

@ADDXFER_CHK_FROM

Check Number of the Check Being
Transferred From

@ADDXFER_CHK_TO

Check Number of the Check Being
Transferred To

@ADDXFER_GRP_FROM

Table Group Number of the Check Being
Transferred From

@ADDXFER_GRP TO

Table Group Number of the Check Being
Transferred To

@ADDXFER_RVC_FROM

Rev. Center Number of the Check Being
Transferred From

@ADDXFER_RVC_TO

Rev. Center Number of the Check Being
Transferred To

@ADDXFER_TBL FROM

Table Number of the Check Being
Transferred From

@ADDXFER_TBL_TO

Table Number of the Check Being
Transferred To

@ALPHASCREEN Alpha Touchscreen

@AUTOSVC Auto Service Charge

@BEVERAGE REQD Prompt User For Beverages
@CCDATE Credit Card Expiration Date
@CCNUMBER Credit Card Account Number
@CENTER Center Column in ISL-defined Window
@CHANGE Change Due

@CHECKDATA Facsimile of Check

@CHGTIP Charged Tip

@CHK Guest Check Printer

Simphony SIM Manual

6-7

ISL System Variables
System Variable Summary

Variable Name

Field/Parameter

@CHK_OPEN TIME

Date and Time Check Opened

@CHK_OPEN_TIME_T

Current Check Open Time

@CHK_PAYMNT TTL

Current Check Payment Total

@CHK TTL Current Check Total
@CKCSHR Guest Check Cashier Number
@CKCSHR_NAME Guest Check Cashier’s Name
@CKEMP Check Employee

@CKEMP_CHKNAME

Check Employee’s Check Name

@CKEMP_FNAME

Check Employee’s First Name

@CKEMP_LNAME

Check Employee’s Last Name

@CKID Guest Check ID

@CKNUM Check Number

@CLIENT ONLINE Determine if SAR Workstation is Online
@DAY Current Day of Month

@DBVERSION Current Database Version
@DETAILSORTED Detail Sorting Status

@DSC Discount Total

@DSC_OVERRIDE

When a manual discount is entered, a SIM
‘Discount’ script can decrease the amount
of the discount by setting this variable to
the desired discount amount

@DSCI

Discount Itemizer Value

@DTL_CAACCTINFO[]

Credit Authorization Account Information

@DTL_CABASETTL]]

Credit Authorization Base Total

@DTL_CAEXPDATE]]

Credit Authorization Expiration Date

@DTL_CATIPTTL[]

Credit Authorization Tip Total

@DTL_CATMEDOBINUM][]

Credit Authorization Tender/Media Object
Number

@DTL_DEFSEQ

Definition Sequence of Detail Item

@DTL_DSC_EMPL]]

Employee who is getting the employee
meal discount for the specified detail entry

@DTL_DSCI[]

Menu Item Detail Class Discount Itemizer
Value

@DTL_FAMGRPJ]

Menu Item Family Group

ISL System Variables
System Variable Summary

Variable Name

Field/Parameter

@DTL_INDEX

Index of the detail which fired the SIM
event

@DTL_IS_CONDIi]

Determines if a Guest Check Menu Item is
a Condiment

@DTL_IS_VOID[i]

When set (non-zero), the specified detail is
a Voided Item

@DTL_MAIJGRP[]

Menu Item Major Group

@DTL_MLVL]]

Main Menu Level of Detail Item

@DTL_NAME]]

Name of Detail Item

@DTL_OBINUM][]

Object Number of Detail Item

@DTL_PLVL][]

Price Level of Detail Item

@DTL_PMSLINK]]

PMS Link of Detail Item

@DTL _PRICESEQ]]

Price Sequence Number of Detail Item

@DTL_QTY[] Quantity of Detail Item
@DTL_SEATJ] Seat Number of Detail Item
@DTL_SLSI[] Menu Item Detail Class Sales Itemizer

Value

@DTL _SLVL][]

Sub-menu Level of Detail Item

@DTL_STATUS[]

Status of Detail Item

@DTL_SVC _LINK]]

Stored Value Card Link

@DTL_SVC_TYPE]]

Stored Value Card Type

@DTL_SVCI[]

Menu Item Detail Class Service Charge
Itemizer

@DTL_TAXTTL[]

Returns the Total Tax Amount for the
Detail

@DTL_TAXTYPE] |

Active Tax Types

@DTL_TTL[]

Total of Detail Item

@DTL_TYPEJ]

Type of Detail Item

@DTL_TYPEDEF[]

Returns the Detail Item Type Definition

@DWOFF Double-wide Characters OFF
@DWON Double-wide Characters ON
@EMPLDISCOUNT In a discount event, this variable is the

number of the employee discount

Simphony SIM Manual

6-9

ISL System Variables
System Variable Summary

Variable Name

Field/Parameter

@EMPLDISCOUNTEMPL In a discount event, this variable is the
employee number of the discount receiving
the employee discount

@EMPLOPT] | SIM Employee Options #1-#8

@EPOCH EPOCH Time

@EVENTID String that represents the event ID

@EVENTTYPE String that represents the event type

@FIELDSTATUS Data Entry Field Status Flag

@FILE_BFRSIZE

User Definable Variable

@FILE_ERRNO

Standard Error Number Value

@FILE_ERRSTR

Standard Error String based on
@FILE_ERRNO

@FILE_SEPARATOR

Field Separator for File I/O Operations

@FILTER_ACTIVE

Seat Filter Active

@FILTER_MASK

Current Seat Filter Mask

@GRPNUM Table Group Number

@GST Guest Count

@GSTRMNG Guests Remaining after Proration

@GSTTHISTENDER Guest Count Associated with Split Tender

@GUID The GUID of the Current Check

@HEADER Print Header from Print Header Event

@HOUR Current Hour of Day

@IGNOREPRMT Bypass general operator prompts with the
Enter key

@INEDITCLOSEDCHECK Edit Closed Check Entry

@INPUTSTATUS User Input Status Flag

@INREOPENCLOSEDCHECK | Reopen Closed Check Entry

@INSTANDALONEMODE Determine if SAR Workstation is Offline

@ISUNICODE Determines if Unicode Characters are
Supported

@KEY CANCEL Cancel Key

@KEY CLEAR Clear Key

@KEY_DOWN_ARROW

Arrow Down Key

6-10

ISL System Variables
System Variable Summary

Variable Name Field/Parameter

@KEY_END End Key

@KEY_ ENTER Enter Key

@KEY_EXIT Exit Key

@KEY_HOME Home Key

@KEY_LEFT ARROW Arrow Left Key

@KEY_PAGE_DOWN Page Down key

@KEY PAGE UP Page Up key

@KEY RIGHT ARROW Arrow Right key

@KEY_UP_ARROW Arrow Up key

@LANG ID[] ID Numbers of Defined Languages

@LANG_NAME]] Language Names for Defined Languages

@LASTCKNUM Last Check Number Assigned to Guest
Check

@LINE Current Line Executed in Script

@LINE_EXECUTED Lines Executed in Script

@MAGSTATUS Magnetic Card Entry Status Flag

@MAXDTLR Maximum Size of @TRDTLR

@MAXDTLT Maximum Size of @ TRDTLT

@MAX_LINES TO RUN Maximum Lines of Script to Execute

@MINUTE Current Minute

@MONTH Current Month

@NUL A binary 0 should be sent when printing
binary data

@NUMOPNCHK The count of Open Checks per Revenue
Center

@NUMDSC Active Discounts

@NUMDTLR Number of Detail Entries this Service
Round

@NUMDTLT Number of Detail Entries for Entire
Transaction

@NUMERICSCREEN Numeric Touchscreen

@NUMLANGS Number of Languages

@NUMSI Active Sales Itemizers

Simphony SIM Manual

6-11

ISL System Variables
System Variable Summary

Variable Name

Field/Parameter

@NUMSVC Active Service Charges
@NUMTAX Active Tax Rates
OBJ Object number of the detail item for the
]
event
@OFFLINELINK Used to link to an offline PMS system

@OPENCHECK_EMPOWNER

Object Number of the employee that owns
the Open Check

@OPENCHECK_GUID

Open Check GUID (unique identifier)

@OPENCHECK NUMBER

Open Check Number

@OPENCHECK_ OPENTIME

Open Check Date and Time that the check
was begun

@OPENCHECK_ORDERTYPE

Open Check Order Type ID number

@OPENCHECK TOTAL

Open Check Total Amount

@OPENCHECK_WSOWNER

Object Number of the Workstation that
currently owns the Open Check

@ORDERTYPE Order Type
@ORDERTYPENAME Active Order Type Name
@ORDR]] Remote Order or Local Order Printer

@OS_PLATFORM

1 - Windows® CE

3 - Win 32
@PICKUPLOAN Value of the pickup or loan amount
@PLATFORM Hardware Platform
@PMSBUFFER PMS Message
@PMSLINK Revenue Center PMS Link
@PMSNUMBER Object Number of PMS
@PREVPAY Previous Payment
@PRINTSTATUS Print Status Flag
@PROPERTY The Property Number of the Workstation
@PRORATETND Calculate prorated values
@QTY Quantity of the detail item for the event
@RANDOM Returns a random value between 0 and 232-
1
@RCPT Customer Receipt Printer

6-12

ISL System Variables
System Variable Summary

Variable Name Field/Parameter
@REDOFF Red Ink OFF
@REDON Red Ink ON
@RETURNSTATUS Transaction Item Return Indicator
@RVC Revenue Center Number
@RVC_NAME Current Revenue Center Name
@RVCSERIALNUM] | Revenue Center Sequence Number
@RXMSG Name of Return Message
@SEAT Active Seat Number
@SECOND Current Second
@SHOW_PMS MESSAGES PMS Status Flag
@SI[] Sales Itemizers
@SIGCAPDATA Signature Capture Data
@SIMDBLINK Links to the SIMDB DLL to the database
@SRVPRD Serving Period
@STRICT_ARGS Strict Arguments
@SVC Service Charges
@SVCI Service Charge Itemizer Value
@SYSSERIALNUM]J] System Sequence Number
@SYSTEM_STATUS Shell Return Status
@TAX][] Tax Collected
@TAXRATE]] Tax Rate
@TAXVAT[] Returns the Value Added Tax Amount for

Tax Rate “X”

@TBLID Table ID
@TBLNUM Table Sequence Number
@TMDNUM Tender/Media Number
@TNDTTL Tender Total
@TRACE Output Line of Script to 8700d.log
@TRAILER Print Trailer from Print Trailer Event
@TRAININGMODE Training Mode Status Flag
@TRCSHR Transaction Cashier Number

Simphony SIM Manual

6-13

ISL System Variables
System Variable Summary

Variable Name

Field/Parameter

@TRDTLR Transaction Detail of Current Service
Round

@TRDTLT Transaction Detail of Entire Check

@TREMP Transaction Employee

@TREMP_CHKNAME

Transaction Employee’s Check Name

@TREMP_FNAME

Transaction Employee’s First Name

@TREMP LNAME

Transaction Employee’s Last Name

@TTL Amount of the detail item for the event
@TTLDUE Total Due
@TXBL[] Taxable Sales Itemizers

@TXEX_ACTIVE]]

Checks if the Tax is Exempt at the
Specified Level

@USERENTRY Data Entered Before SIM Inquiry Key
Activated

@VALD Validation Chit Printer

@VARUSED Used Variable Space

@VERSION SIM Version Number

@VOIDSTATUS Transaction Item Void Indicator

@WARNINGS ARE FATAL Strong Checking

@WCOLS Number of Columns in ISL-defined
window

@WEEKDAY Day of Week

@WROWS Number of Rows in ISL-defined window

@WSID User Workstation ID number

@WSTYPE User Workstation Type

@YEAR Current Year

@YEARDAY Current Day of Year

6-14

ISL System Variables
ISL System Variable Reference

ISL System Variable Reference

This section is an A-Z reference of the system variables supported by the ISL.
Each system variable includes the following information:

* Description: Summarizes the function of the system variable.

* Type/Size: Contains the symbol that represents the data type and size of the
field or total returned.

¢ Syntax: Provides the proper way to specify the system variable and any
arguments, as well as a description of each argument.

¢ Remarks: Gives more detailed information of the system variable, its
arguments, and how the system variable is used.

¢ Example: Includes an example of the system variable being used in a script.
This section may not appear in the detail description of each system variable.

* See Also: Names related system variables, commands, functions, other
documentation to consult, etc.

Simphony SIM Manual 6-15

ISL System Variables
ISL System Variable Reference

ACTIVE_LANGID

Description

This system variable holds the ID number of the currently selected language.

Type/Size
N9

Syntax
@ACTIVE _LANGID

Remarks

® This system variable is Read-Only.

® This system variable is only available on SAR Ops.

6-16

ISL System Variables
ISL System Variable Reference

ADDXFER_CHK_FROM

Description

This system variable returns the check number of the check being transferred from
when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the check number
of the check being added to the current check.

Type/Size
N9

Syntax
@ADDXFER_CHK_FROM

Remarks
® This system variable is Read-Only.

* This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

Simphony SIM Manual 6-17

ISL System Variables
ISL System Variable Reference

ADDXFER_CHK_TO

Description

This system variable returns the check number of the new check being transferred
to (if the check number is changed) when called inside an XFER CHECK event.

Inside the ADD CHECK event, this system variable will return the check number
of the check that is receiving the newly added check.

Type/Size
N9

Syntax
@ADDXFER_CHK_TO

Remarks
® This system variable is Read-Only.

® This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

6-18

ISL System Variables
ISL System Variable Reference

ADDXFER_GRP_FROM

Description

This system variable returns the table group number of the check being transferred
from when called inside an XFER CHECK event.

Inside the ADD CHECK event, this system variable will return the table group
number of the check being added to the current check.

Type/Size
N9

Syntax
@ADDXFER_GRP_FROM

Remarks
® This system variable is Read-Only.

* This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

Simphony SIM Manual 6-19

ISL System Variables
ISL System Variable Reference

ADDXFER_GRP_TO

Description

This system variable returns the table group number of the new check being
transferred to (if the check number is changed) when called inside an
XFER_CHECK event.

Inside the ADD CHECK event, this system variable will return the table group
number of the check that is receiving the newly added check.

Type/Size
N9

Syntax
@ADDXFER_GRP_TO

Remarks
® This system variable is Read-Only.

® This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

6-20

ISL System Variables
ISL System Variable Reference

ADDXFER_RVC_FROM

Description

This system variable returns the Revenue Center number of the check being
transferred from when called inside an XFER CHECK event.

Inside the ADD CHECK event, this system variable will return the Revenue
Center number of the check being added to the current check.

Type/Size
N3

Syntax
@ADDXFER_RVC_FROM

Remarks
® This system variable is Read-Only.

* This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

Simphony SIM Manual 6-21

ISL System Variables
ISL System Variable Reference

ADDXFER_RVC_TO

Description

This system variable returns the Revenue Center number of the new check being
transferred to (if the check number is changed) when called inside an
XFER_CHECK event.

Inside the ADD CHECK event, this system variable will return the Revenue
Center number of the check that is receiving the newly added check.

Type/Size
N3

Syntax
@ADDXFER_RVC TO

Remarks
® This system variable is Read-Only.

® This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

6-22

ISL System Variables
ISL System Variable Reference

ADDXFER_TBL_FROM

Description

This system variable returns the table number of the check being transferred from
when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the table number
of the check being added to the current check.

Type/Size
N9

Syntax
@ADDXFER_TBL_FROM

Remarks
® This system variable is Read-Only.

* This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

Simphony SIM Manual 6-23

ISL System Variables
ISL System Variable Reference

ADDXFER_TBL_TO

Description

This system variable returns the table number of the new check being transferred
to (if the check number is changed) when called inside an XFER CHECK event.

Inside the ADD_CHECK event, this system variable will return the table number
of the check that is receiving the newly added check.

Type/Size
N9

Syntax
@ADDXFER_TBL_TO

Remarks
® This system variable is Read-Only.

® This system variable is only valid in ADD CHECK or XFER CHECK SIM
events.

6-24

ISL System Variables
ISL System Variable Reference

ALPHASCREEN

Description

This system variable contains the number of the default alpha touchscreen defined
for a Revenue Center.

Type/Size
N5

Syntax
@ALPHASCREEN

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-25

ISL System Variables
ISL System Variable Reference

AUTOSVC

Description

This system variable contains the sum of all auto service charges posted to the
current guest check.

Type/Size
$12

Syntax
@AUTOSVC

Remarks
This system variable is Read-Only.

6-26

ISL System Variables
ISL System Variable Reference

BEVERAGE_REQD

Description

This system variable determines whether or not POS Operations should prompt
the user for beverages in accordance with the Beverage Control feature. During
“normal transaction processing,” POS Operations checks the items in the
transaction to determine if user prompting is appropriate.

Since it is not possible for POS Operations to be in this same state when calling
the beverage reqd variable, the following logic is used internally to determine the
value of the @beverage reqd variable. This should help the SIM developer to
understand when POS Operations set the variable to true.

Set @beverage reqd = FALSE
If Beverage Control is on in the Revenue Center then
Get the Number of Beverages on the check
If Beverages are being controlled by Guest Count then
If the Guest Count is greater than zero AND there
are no beverages, OR the Guest Count is greater than the
number of beverages then
Set @beverage reqd = TRUE
EndIf
Else if there are no beverages on the check then
Set @beverage reqd = TRUE
EndIf
EndIf

Type/Size
N9

Syntax
@BEVERAGE_REQD

Remarks
This system variable is Read-Only.

Example

event ing : 1
Errormessage “Beverage Control state is ”, @beverage reqd
endevent

Simphony SIM Manual 6-27

ISL System Variables
ISL System Variable Reference

CCDATE

Description

This system variable contains the expiration date of a credit card that has been
read from track data by a magnetic card reader, or has been manually entered.

Type/Size
A4

Syntax
@CCDATE

Remarks
® This system variable is Read-Only.

e This system variable must be accessed within a tender/media event procedure
that references a credit card tender type.

See Also
@CCNUMBER system variable

6-28

ISL System Variables
ISL System Variable Reference

CCNUMBER

Description

This system variable contains the account number of a credit card that has been
read from track data by a magnetic card reader, or that has been manually entered.

Type/Size
A30

Syntax
@CCNUMBER

Remarks
* This system variable is Read-Only.

¢ This system variable must be accessed within a tender/media event procedure
that references a credit card tender type.

See Also
@CCDATE system variable

Simphony SIM Manual 6-29

ISL System Variables
ISL System Variable Reference

CENTER

Description

This system variable contains the column number that is required to center text in
an ISL-defined window.

Type/Size
N9

Syntax
@CENTER

Remarks
® This system variable is Read-Only.
* @CENTER evaluates to -1.

* This system variable can be used as the column argument when specifying the
Display command.

Example

The following event procedure centers the text within an ISL-defined window:

event ing : 1
window 4, 40
display 1, @center, “In this window, all lines have
display 2, @center, “been centered to give it “
display 3, @center, “that professional “
display 4, @center, “look.”
waitforclear

endevent

”

See Also

Display command

6-30

ISL System Variables
ISL System Variable Reference

CHANGE

Description

This system variable is the amount of change due for an overtender.

Type/Size
$12

Syntax
@CHANGE

Remarks

® This system variable is Read-Only.

¢ This system variable is valid under only two conditions:
* Ifin the TMED event

* Ifthe @TTLDUE system variable equals $0.00

See Also
@TTLDUE system variable

Simphony SIM Manual 6-31

ISL System Variables
ISL System Variable Reference

CHECKDATA

Description

This system variable returns a string that contains a facsimile of a guest check
created by the current transaction.

Type/Size

String; size depends on data

Syntax

@CHECKDATA

Remarks

* This data is Read-Only.

® The string may consist of zero or more lines that are separated by ASCII
newlines, including print formatting characters specifying red ink or double-

wide characters.

* The MakeAscii command can be used to strip out the print formatting
characters in the string.

* This variable should only be accessed in a final tender event.

See Also

MakeAscii command

6-32

ISL System Variables
ISL System Variable Reference

CHGTIP

Description

This system variable contains the charged tip for the associated tender in a TMED
event.

Type/Size
$12

Syntax

@CHGTIP

Remarks

* This system variable is Read-Only.
* Valid only in a TMED event.

¢ The @CHGTIP amount is included in the @SVC system variable.

Simphony SIM Manual 6-33

ISL System Variables
ISL System Variable Reference

CHK

Description
This system variable contains the object number of the Guest Check Printer
assigned to the workstation.

Type/Size
N9

Syntax
@CHK

Remarks
® This system variable is Read-Only.

* This system variable can be used as an argument to the StartPrint command.

Example

The event procedure below starts a print job at the Guest Check Printer.

event ing : 1

startprint @chk

printline “this is a line”
endprint
if @printstatus = “Y”

waitforclear “Print successful”
else

waitforclear “Print failed”
endif

See Also
e StartPrint command

* ISL Printing

6-34

ISL System Variables
ISL System Variable Reference

CHK_OPEN_TIME

Description

This system variable returns a string containing the date and time that the current
guest check was opened.

Type/Size
A17

Syntax
@CHK_OPEN_TIME

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-35

ISL System Variables
ISL System Variable Reference

CHK_OPEN_TIME_T

Description

This system variable returns the date and time that the current guest check was
opened seconds since midnight January 1, 1970.

Type/Size
N9

Syntax
@CHK_OPEN_TIME_T

Remarks
This system variable is Read-Only.

6-36

ISL System Variables
ISL System Variable Reference

CHK_PAYMNT_TTL

Description

This system variable returns the current payment total.

Type/Size
$12

Syntax
@CHK_PAYMNT TTL

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-37

ISL System Variables
ISL System Variable Reference

CHK_TTL

Description

This system variable returns the current check total.

Type/Size
$12

Syntax
@CHK_TTL

Remarks
This system variable is Read-Only.

6-38

ISL System Variables
ISL System Variable Reference

CKCSHR

Description

This system variable contains the guest check cashier number.

Type/Size
N9

Syntax
@CKCSHR

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-39

ISL System Variables
ISL System Variable Reference

CKCSHR_NAME

Description

This system variable contains the guest check cashier’s check name.

Type/Size
A16

Syntax
@CKCSHR_NAME

Remarks
This system variable is Read-Only.

6-40

ISL System Variables
ISL System Variable Reference

CKEMP

Description

This system variable contains the number of the Check Employee, the operator
who owns the current guest check.

Type/Size
N9

Syntax
@CKEMP

Remarks
This system variable is Read-Only.

Example
The following example is a standard message exchange between Simphony and a
PMS:
event ing : 1
var room num : a4

input room num, “Enter Room Number”
txmsg “charge ing”, @CKEMP, @CKNUM, @TNDTTL, room num
// The first field
(charge_ing) is an
// example of an identifying

string
// that the POS might use to
process
// messsage from the POS.
waitforrxmsg
endevent
event rxmsg : charge declined // This is one of the PMS
response
// possibilities
var room num : a4

rxmsg room_num
exitwitherror “Charge for room
endevent

w

room_num,” declined”

Simphony SIM Manual 6-41

ISL System Variables
ISL System Variable Reference

CKEMP_CHKNAME

Description

This system variable contains the check employee’s check name, the operator who
owns the current guest check.

Type/Size
Al6

Syntax
@CKEMP CHKNAME

Remarks
This system variable is Read-Only.

6-42

ISL System Variables
ISL System Variable Reference

CKEMP_FNAME

Description

This system variable contains the check employee’s first name, the operator who
owns the current guest check.

Type/Size
A8

Syntax
@CKEMP_FNAME

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-43

ISL System Variables
ISL System Variable Reference

CKEMP_CHKNAME

Description

This system variable contains the check employee’s last name, the operator who
owns the current guest check.

Type/Size
Al6

Syntax
@CKEMP LNAME

Remarks
This system variable is Read-Only.

6-44

ISL System Variables
ISL System Variable Reference

CKID

Description

This system variable contains the current guest check ID.

Type/Size
A32

Syntax
@CKID

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-45

ISL System Variables
ISL System Variable Reference

CKNUM

Description

This system variable contains the number assigned to the current guest check.

Type/Size
N9

Syntax
@CKNUM

Remarks
This system variable is Read-Only.

Example
See example of @CKEMP on page 6-41.

6-46

ISL System Variables
ISL System Variable Reference

CLIENT_ONLINE

Description

This system variable determines if a workstation is online.

Type/Size
N1

Syntax
@CLIENT_ONLINE

Remarks
This system variable is Read-Only.

Example

Event Ing : 2
if @client online <> 0
window 1,60
display 1,2, "@client online variable value is ",
@client_online,". SAR Client is online!"
waitforclear
else
window 1,60
display 1,2, "@client online variable value is ",
@client online,". SAR Client is offline!"
waitforclear
endif
EndEvent

Simphony SIM Manual 6-47

ISL System Variables
ISL System Variable Reference

DAY

Description

This system variable contains the current date.

Type/Size
N2

Syntax
@DAY

Remarks

This system variable is Read-Only.

Example

The following script will construct a string_variable containing the current date in

the form dd-mm-yy:

event ing : 1

var date : a9

call get date string

endevent

sub get date string
var month arr[12]

//Listing of all the months

month arr[l] = “JAN”

month arr([2] “FEB”

month arr[3] “MAR"”

month arr[4] “APR”

month arr[5] “MAY”

month arr[6] “JUN”

month arr[7] “JuL”

month arr([8] “AUG”

month arr[9] “SEP”

month arr[10] = “OCT”

month arr[11] = “NOV”

month arr[12] = “DEC”

format date as @DAY, “-”, month arr[@MONTH], “-”, QYEAR

// i.e., 10-NOV-01

endsub
See Also

@MONTH and @YEAR system variables

6-48

ISL System Variables
ISL System Variable Reference

DBVERSION

Description

The current database version. For example, if a customer wants to take advantage
of all elements in a variable-sized array, the customer may have to specify a more
recent @DBVERSION value in the SIM script

Type/Size
N5

Syntax
@DBVERSION

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-49

ISL System Variables
ISL System Variable Reference

DETAILSORTED

Description

This system variable contains a “1” value if detail sorting is enabled or a “0” value
if sorting is disabled.

Type/Size
N9

Syntax
@DETAILSORTED

Remarks
This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands

6-50

ISL System Variables
ISL System Variable Reference

DSC

Description

This system variable contains the total amount of discounts applied to the current
guest check. This total is the sum of all percentage and amount discounts on the
guest check.

Type/Size
$12

Syntax
@DSC

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-51

ISL System Variables
ISL System Variable Reference

DSC_OVERRIDE

Description

When a manual discount is entered, a SIM ‘Discount’ script can decrease the
amount of the discount by setting this variable to the desired discount amount.

Type/Size
$12

Syntax
@DSC_OVERRIDE

Remarks
This system variable is Read-Only.

6-52

ISL System Variables
ISL System Variable Reference

DSCI

Description

This system variable is an array that contains the discount itemizer totals posted to
the current guest check.

Type/Size
$12

Syntax

@DSCl[expression]

Remarks

* This system variable is Read-Only.

¢ The array limits of the expression are from 1 to 16.

* This variable will return totals posted to the discount itemizer specified by the
array index.

* This variable is similar to the @SI variable.

Simphony SIM Manual 6-53

ISL System Variables
ISL System Variable Reference

DTL_CAACCTINFO

Description

This system variable is an array containing the credit authorization account
information of a detail item on the current guest check.

Type/Size
A20

Syntax
@DTL_CAACCTINFO[expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

6-54

ISL System Variables
ISL System Variable Reference

DTL_CABASETTL

Description

This system variable is an array containing the credit authorization base total of a
detail item on the current guest check.

Type/Size
$12

Syntax
@DTL_CABASETTL[expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

Simphony SIM Manual 6-55

ISL System Variables
ISL System Variable Reference

DTL_CAEXPDATE

Description

This system variable is an array containing the credit authorization expiration date
of a detail item on the current guest check.

Type/Size
A4

Syntax
@DTL_CAEXPDATE|expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

6-56

ISL System Variables
ISL System Variable Reference

DTL_CATIPTTL

Description

This system variable is an array containing the credit authorization tip total of a
detail item on the current guest check.

Type/Size
$12

Syntax
@DTL_CATIPTTL[expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

Simphony SIM Manual 6-57

ISL System Variables
ISL System Variable Reference

DTL_CATMEDOBINUM

Description
This system variable is an array containing the credit authorization tender/media
object number of a detail item on the current guest check.

Type/Size
N9

Syntax
@DTL_CATMEDOBINUM[expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

6-58

ISL System Variables
ISL System Variable Reference

DTL_DEFSEQ

Description

This system variable contains the definition sequence number of a detail item.

Type/Size
N3

Syntax
@DTL_ DEFSEQ[expression]

Remarks
® This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-59

ISL System Variables
ISL System Variable Reference

DTL_DSC_EMPL

Description

This system variable contains the employee number who is getting the employee
meal discount for the specified detail entry.

Type/Size
N9

Syntax
@DTL_DSC_EMPL[expression]

Remarks

® This system variable is Read-Only.
® The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-60

ISL System Variables
ISL System Variable Reference

DTL_DSCI

Description

This system variable contains the discount itemizer value for the menu item detail
class.

Type Size
N9

Syntax
@DTL_DSCl[expression]

Remarks
This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

Simphony SIM Manual 6-61

ISL System Variables
ISL System Variable Reference

DTL_FAMGRP

Description

This system variable is an array containing the family group of a menu item that is
listed in the current guest check detail.

Type/Size
N9

Syntax
@DTL_FMGRP[expression]

Remarks

® The expression following the system variable is the menu item’s detail
number.

® The array limits are 1 to @NUMDTLT.
® This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-62

ISL System Variables
ISL System Variable Reference

DTL_INDEX

Description

Index of the detail which fired the SIM event; applicable to the following SIM
events:

e EMON MI

¢ EMON_MI_VOID

e EMON MI RETURN
e EMON DSC

¢ EMON_DSC_VOID

« EMON SVC

e EMON SVC VOID

« EMON_TNDR

e EMON _TNDR VOID

Type/Size
N9

Syntax
@DTL_INDEX

Remarks
® The array limits are 1 to @NUMDTLT.

* This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-63

ISL System Variables
ISL System Variable Reference

DTL_IS_CONDIi]

Description
This system variable is an array that determines if a Guest Check Menu Item is a
condiment.

Type/Size
N1

Syntax

@DTL_IS_COND[expression]

Remarks

® The array limits are 1 to @NUMDTLT.

® This system variable is Read-Only.

6-64

ISL System Variables
ISL System Variable Reference

DTL_IS_VOIDJ[i]

Description

This system variable is set to “Y” if this detail item is a void entry. Otherwise, the
variable is set to “N.”

Type/Size
N1

Syntax
@DTL_IS_VOID

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-65

ISL System Variables
ISL System Variable Reference

DTL_MAJGRP

Description

This system variable is an array containing the major group of a menu item that is
listed in the current guest check detail.

Type/Size
N9

Syntax
@DTL_MAIJGRP[expression]

Remarks

® The expression following the system variable is the menu item’s detail
number.

® The array limits are 1 to @NUMDTLT.
® This system variable is Read-Only.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-66

ISL System Variables
ISL System Variable Reference

DTL_MLVL

Description

This system variable is an array containing the Main Menu Level (1-8) of a detail
item on the current guest check.

Type/Size
N1

Syntax
@DTL_MLVL[expression]

Remarks
* This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-67

ISL System Variables
ISL System Variable Reference

DTL_NAME

Description

This system variable is an array containing the name of a detail item on the current
guest check.

Type/Size
A20

Syntax

@DTL_NAME] expression]

Remarks

® This system variable is Read-Only.

® The array limits for the expression are 1 to @NUMDTLT.

¢ The first name of menu items will be returned.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-68

ISL System Variables
ISL System Variable Reference

DTL_OBIJNUM

Description

This system variable is an array containing the object number of a detail item on
the current guest check.

Type/Size
N9

Syntax
@DTL_OBINUM]|expression]

Remarks
* This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.

Example
See the example for @DTL_MLVL on page 6-67.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-69

ISL System Variables
ISL System Variable Reference

DTL_PLVL

Description

This system variable is an array containing the price level (1-8) of a menu item on
the current guest check.

Type/Size
N1

Syntax
@DTL_PLVL|[expression]

Remarks
® This system variable is Read-Only.

® The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-70

ISL System Variables
ISL System Variable Reference

DTL_PMSLINK

Description

This system variable is an array containing the PMS link (1-4) assigned to a detail
item on the current guest check.

Type/Size
N2

Syntax

@DTL_PMSLINK][expression]

Remarks

* This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.
® The PMS Link is defined in the RVC Parameters module.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-71

ISL System Variables
ISL System Variable Reference

DTL_PRICESEQ

Description

This system variable is an array containing the price sequence number (0-64) of a
detail item on the current guest check.

Type/Size
N3

Syntax
@DTL_PRICESEQ|expression]

Remarks

® This system variable is Read-Only.
® The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-72

ISL System Variables
ISL System Variable Reference

DTL_QTY

Description

This system variable is an array containing the quantity of a detail item on the
current guest check.

Type/Size
N5

Syntax

@DTL_QTY|expression]
Remarks

* This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-73

ISL System Variables
ISL System Variable Reference

DTL_SEAT

Description

This system variable is an array containing the object number of the detail item
assigned to a seat number.

Type/Size
N5

Syntax
@DTL_SEAT([expression]

Remarks

® This system variable is Read-Only.
® The array limits for the expression are 1 to @NUMDTLT.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-74

ISL System Variables
ISL System Variable Reference

DTL_SLSI

Description

This system variable contains the sales itemizer value for the menu item detail
class.

Type/Size
N9

Syntax
@DTL_SLSlI[expression]

Remarks
This system variable is Read-Only.

See also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

Simphony SIM Manual 6-75

ISL System Variables
ISL System Variable Reference

DTL_SLVL

Description

This system variable is an array containing the Sub Menu Level (1-8) of a detail
item on the current guest check.

Type/Size
N1

Syntax
@DTL_SLVL[expression]

Remarks

® This system variable is Read-Only.
® The array limits for the expression are 1 to @NUMDTLT.

Example
See the example for @DTL_MLVL on page 6-67.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-76

ISL System Variables
ISL System Variable Reference

DTL_STATUS

Description

This system variable is an array containing the status of a detail item on the
current guest check.

Type/Size
Al12

Syntax
@DTL_STATUS|expression]

Remarks
* This system variable is Read-Only.
* The array limits for the expression are 1 to @NUMDTLT.

* The value returned is formatted in hexadecimal digits.

See Also

¢ UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-77

ISL System Variables
ISL System Variable Reference

DTL_SVC_LINK

Description

This system variable is the current detail’s stored value card link, as stored in the
check detail.

Type/Size
N9

Syntax
@DTL_SVC_LINK]expression]

Remarks
® This system variable is Read-Only.

® The array limits for the expression are 1 to @NUMDTLT.

See Also

* UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

6-78

ISL System Variables
ISL System Variable Reference

DTL_SVC_TYPE

Description

This system variable is the current detail’s stored value card type, as stored in the
check detail.

Type/Size
N9

Syntax
@DTL_SVC _TYPE[expression]

Remarks
* This system variable is Read-Only.

* The array limits for the expression are 1 to @NUMDTLT.

See Also

¢ UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

Simphony SIM Manual 6-79

ISL System Variables
ISL System Variable Reference

DTL_SVCI

Description
This system variable contains the service charge itemizer value for the menu item
detail class.

Type/Size
N9

Syntax
@DTL_SVCl[expression]

Remarks
This system variable is Read-Only.

See also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

6-80

ISL System Variables
ISL System Variable Reference

items

items

DTL_TAXTTL

Description

This system variable returns the total amount of tax for the detail.

Type/Size
$12

Syntax
@DTL_TAXTTL[expression)

Remarks
This system variable is Read-Only.

Example

The following script will print out a line for every item whose tax is greater than

1.00.

event ing:1
var count:N5 = 1
var 1:N5

if @numdtlt = 0 // if no detail items, quit
waitforclear "No detail items"
exitcancel
endif
window 10, 50 // generate window to display at most ten
for i = 1 to @numdtlt // loop through detail looking for detail

if @dtl_taxttl[i] > 1.00

display count, 1, "Detail ", @dtl name[i], " tax total is

@dtl_taxttl[i]
count = count + 1
endif

if count > 10 // make sure there aren’t too many items

break;
endif
endfor
waitforclear
endevent

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system

variable

Simphony SIM Manual

6-81

ISL System Variables
ISL System Variable Reference

DTL_TAXTYPE

Description

This system variable contains the tax types that were active when the
corresponding menu item, service charge, or discount detail item was ordered.

Type/Size
A2

Syntax
@DTL_TAXTYPE[expression]

Remarks

® This system variable is Read-Write.

* This system variable is represented as a two-digit hex field, ranging from 00
to FF. Each bit corresponds to the tax type. For example, 80 corresponds to
tax type 1.

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system
variable

6-82

ISL System Variables
ISL System Variable Reference

DTL_TTL

Description

This system variable is an array containing the total of a detail item on the current
guest check.

Type/Size
$12

Syntax
@DTL _TTL[expression]

Remarks
® This system variable is Read-Only.

® The array limits for the expression are 1 to @NUMDTLT.

Example

This example is part of a script that checks a current guest check for a certain
number of menu items. If four menu items are found, the script will call a
subroutine that prints a coupon (call print coupon) and a subroutine that
determines how many items are on the check (call check grill list(
objnum)); these subroutine scripts are not shown.

event tmed : *
var dtl_cnt : n3
var num _grill items : n3 = 6
var grill item[num grill items] : n5
var grill hit : n3
var objnum : nb5
grill item[1] = 1501
grill item[2] = 1510
grill item[3] = 1520
grill item[4] = 1530
grill item[5] = 1540
grill item[6] = 1550

// look through the check, have we ordered 4 grill items
for dtl cnt = 1 to @numdtlt
if @dtl_type[dtl_cnt] = “M” AND @dtl_ttl[dtl _cnt] > O
objnum = @dtl objnum[dtl cnt]
call check grill list(objnum)
endif
if grill hit >= 4
call print coupon
endif
endevent

Simphony SIM Manual 6-83

ISL System Variables
ISL System Variable Reference

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_TYPE

Description

This system variable is an array containing the detail type of an item on the
current guest check.

Type/Size
Al

Syntax
@DTL _TYPE|[expression]

Remarks
* This system variable is Read-Only.
* The array limits for the expression are 1 to @NUMDTLT.

® The detail type will be one of the following:

Type Description

I Check Information Detail

Menu Item

Discount

Service Charge
Tender/Media

Reference Number

CA Detail

Q| ® 1| »n|l gl Z

Example
See the example for @DTL_MLVL on page 6-67.

6-84

ISL System Variables
ISL System Variable Reference

See also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_TYPEDEF

Description

This system variable returns the detail item type definition for discounts (D),
menu items (M), service charges (S), and tenders (T).

Type/Size

Size depends on the detail type:

Detail Type Size

Discount A6

Menu Item Al2
Service Charge | Al12
Tender A22

CA A2
Syntax

@DTL_TYPEDEF[expression]

Description

® This system variable is Read-Only.

* The type definition is returned as a hex string. If the discount type definition is
E78D, then @dtl typedef]] for that discount will be “E78D,” or an A4.

¢ For menu items, this variable returns the type definition field from the
revenue center (RVC) level menu item class module associated with that

menu item.

* For discounts, service charges, and tender media detail items, this variable
returns the type definition field from the property level modules.

* For CA detail, this variable returns the type definition from the Check Detail.

Simphony SIM Manual 6-85

ISL System Variables
ISL System Variable Reference

all detail

Example

This piece of ISL code will scan the detail and display any open-priced menu
items or open discount items.

event ing:1

var 1:N5
for i = 1 to @numdtlt // loop through
if @dtl_type[i] = "M" AND bit(@dtl_typedef[i], 1) <> 0 // check if M and
bit 1 are set in the M class typedef
waitforclear "Item ", i, " is open priced MI" // check if D and
bit 1 are set in the D typedef
elseif @dtl_type[i] = "D" AND bit(@dtl_ typedef[i], 1) <> 0
waitforclear "Item ", i, " is open DSC"
endif
endfor
endevent
See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@DTL_TYPE system variables

6-86

ISL System Variables
ISL System Variable Reference

DWOFF

Description

This system variable returns printed text to single-wide characters (default) if the
@DWON system variable was used to switch text to double-wide characters.

Type/Size
Al

Syntax
@DWOFF

Remarks

* This system variable is Read-Only.

* @DWON is also known as a print directive and can be an argument of the
Printline command.

* All new lines of text print as single-wide characters.

Example

The ISL statement below prints “Print line” in double-wide characters and red ink,
then turns off these print directives.

startprint printer
printline N ”
printline @dwon, @redon, “chit”
printline Mmoo
@dwoff, @redoff

endprint

See Also
* (@DWON system variable; Printline command

* “ISL Printing”

Simphony SIM Manual 6-87

ISL System Variables
ISL System Variable Reference

ink

DWON

Description

This system variable prints the expression that follows it in double-wide
characters.

Type/Size
Al

Syntax
@DWON

Remarks

® This system variable is Read-Only.

* @DWON is also known as a print directive and can be an argument of the
Printline command.

* Double- and single-wide characters may be mixed on the same line.

Example

The ISL statement below will print “Print line” in double-wide characters and red
ink.

Printline @dwon, @redon, “Print line” //prints double-wide in red

See Also
* @DWON system variable; Printline command

* “ISL Printing”

6-88

ISL System Variables
ISL System Variable Reference

EMPLDISCOUNT

Description

In a discount event, this variable is the number of the employee discount.

Type/Size
N9

Syntax
@EMPLDISCOUNT

Remarks

® This system variable is Read-Only.

Simphony SIM Manual 6-89

ISL System Variables
ISL System Variable Reference

EMPLDISCOUNTEMPL

Description
In a discount event, this variable is the employee number of the discount receiving
the employee discount.

Type/Size
N9

Syntax
@EMPLDISCOUNTEMPL

Remarks

® This system variable is Read-Only.

6-90

ISL System Variables
ISL System Variable Reference

EMPLOPT

Description

This system variable is an array containing the setting of SIM Employee Options
#1 through #8, which are defined for the employee who initiated the event.

Type/Size
N1

Syntax
@EMPLOPT[expression]

Remarks
* This system variable is Read-Only.
* The array limits for the expression are from 1 to 8.

* The value returned by the system variable will be the setting of the privilege
option code: “0” for OFF, or “1” for ON.

® These values correspond to ISL Employee Options #1 - #8 in Employee
Classes | Privileges.

¢ This system variable can be used to control access to specific events in scripts.
For example, to prevent certain employees from initiating a particular event,
disable one of the eight available privilege option codes. Within the event,
include an ISL statement in which the setting of the corresponding privilege
option code is checked. Thus, if the setting is disabled, for example, at this
point in the script, an error message is issued, or the employee is directed to
take some other action instead of performing the task.

Simphony SIM Manual 6-91

ISL System Variables
ISL System Variable Reference

EPOCH

Description

This system variable contains the number of seconds that have expired since
midnight January 1, 1970, the EPOCH Time.

Type/Size
N9

Syntax
@EPOCH

Remarks
This system variable is Read-Only.

6-92

ISL System Variables
ISL System Variable Reference

EVENTID

Description

This system variable is the string that represents the ID of the event being raised.
The text is the same as the second parameter in an EVENT statement.

Type/Size
A32

Syntax
@EVENTID

Simphony SIM Manual 6-93

ISL System Variables
ISL System Variable Reference

EVENTTYPE

Description

This system variable is the string that represents the type of event being raised (an
inquire event is “INQ”). The text is the same as the first parameter in an EVENT
statement.

Type/Size
A32

Syntax
@EVENTTYPE

6-94

ISL System Variables
ISL System Variable Reference

FIELDSTATUS

Description

This system variable contains the Input Status Flag, which is set automatically by
the ISL after any of the WindowEdit or WindowInput command is issued in an
event procedure.

Type/Size

Al

Syntax

@FIELDSTATUS

Remarks

* This system variable is Read-Only.

* The Input Status Flag will be either of the following settings:

Flag Description
Y indicates that all fields were entered by the
operator
N indicates that some, not all, of the fields were
entered by the operator

* This system variable will be set to “Y” if each Displaylnput variable has

been entered using the WindowEdit or WindowInput command; otherwise
the system variable will be set to “N”.

Simphony SIM Manual

6-95

ISL System Variables
ISL System Variable Reference

Example

In the example below, three variables have been defined for the Displaylnput
command, and all have been set by the user; consequently, @FIELDSTATUS is
set to “Y”. If the user entered data for only two of the three fields,
@FIELDSTATUS would be set to “N”. Thus, accessing this system variable is
most logical after issuing either the WindowEdit or WindowInput command.

event ing : 1
var data[3] : a20
window 3, 40
displayinput 1, 1, data[l], “Enter data 1”
displayinput 2, 1, data[2], “Enter data 2”
displayinput 3, 1, data[3], “Enter data 3”
windowinput
windowclear
if @fieldstatus = “Y”
display 2, @center, “All fields entered”
else
display 2, @center, “Some fields not entered”
endif
waitforclear
endevent

See Also
WindowEdit[WithSave] and WindowInput[WithSave] commands

6-96

ISL System Variables
ISL System Variable Reference

FILE_BFRSIZE

Description

This system variable is a user-definable variable that the ISL sets when it expects
to read lines greater than 2048 bytes in an open file.

Type/Size
N9

Syntax
@FILE_BFRSIZE

Remarks
This user-definable variable has Read-Write attributes.

Example

If the script is reading lines from a file which is 4K in length, for example, then
the script should execute the following line:

@FILE BFRSIZE = 4096

See Also
“ISL File Input/Output Commands” on page 7-3

Simphony SIM Manual 6-97

ISL System Variables
ISL System Variable Reference

FILE_ ERRNO

Description

This system variable is where a Standard Error Number value is saved after every
file input/output operation initiated during an event procedure.

Type/Size
N6

Syntax
@FILE_ERRNO

Remarks

This system variable has Read-Write attributes.

* The value will either be 0 or non-zero: 0 means no error occurred, and non-
zero indicates an error has occurred. The following table contains the more
common non-zero error code values that may be returned by the ISL File I/0

commands:
Error Name | Error Number Description
Value
EACCES 13 Permission denied
EAGAIN 11 No more processes
EDEADLK 45 Deadlock condition
EFBIG 27 File too large
EIO 5 1/O error
EISDIR 21 Is a directory
ENOLINK 67 The link has been saved
ENXIO 6 No such device or address
EROFS 30 Read only file system
ESPIPE 29 Illegal seek

6-98

ISL System Variables
ISL System Variable Reference

The following table lists the possible errors that the File I/O commands may

receive:

File Commands Error Names

FOpen EACCES, EAGAIN, EISDIR,
ENXIO, and EROFS

FClose ENOLINK

FLock EACCES, EDEADLK, and
ENOLINK

FRead, FReadBfr, and FReadLn EIO and ENOLINK

FSeek ESPIPE

FUnlock EACCES and ENOLINK

FWrite, FWriteBfr, and FWriteL.n EFBIG and ENOLINK

The @FILE_ERRSTR system variable contains the error message text
corresponding to the Error Code. This system variable can be used to display

that text if the error occurs.

See Also

@FILE ERRSTR system variable

“ISL File Input/Output Commands” on page 7-3

Simphony SIM Manual

6-99

ISL System Variables
ISL System Variable Reference

FILE_ ERRSTR

Description
This system variable returns a string containing the Standard Error that occurred

during a file input/output operation. The string corresponds to the error code
saved in the @FILE_ERRNO system variable.

Type/Size
A80

Syntax
@FILE_ERRSTR

Remarks

* This system variable is Read-Only.

* This string can be used to display the actual error message text, based on the
number value saved in the @FILE_ERRNO system variable. Displaying this
error message can make it easier to troubleshoot problems with file I/0
operations and to verify whether the script was successful in executing a file
I/0O operation. For example, assume an attempt is made to write to a file with
the FWrite command and the error code 5 is saved in @FILE_ERRNO. If
this file I/O operation is unsuccessful, specifying the @FILE ERRSTR
system variable will allow the string “I/O error” to be displayed.

* To determine the string that will be displayed, refer to the table on page 6-99.

Example

The following script opens a file. If the operation is unsuccessful, an error
message will display the cause of the error.

event ing : 1
var fn : N5
fopen fn, "myfile.dat", read
if fn = 0
errormessage @FILE_ERRSTR
exitcontinue
endif
endevent

See Also
@FILE _ERRNO system variable

6-100

ISL System Variables
ISL System Variable Reference

FILE_SEPARATOR

Description

This system variable stores the user-defined field separator to be used in all file
input/ouput operations.

Type/Size
Al

Syntax
@FILE_SEPARATOR

Remarks

* This system variable has Read-Write attributes.

¢ Innormal ISL File I/O operations, ISL assumes the comma (,) character is the
field separator. But if a different field separator is needed, the script must
change the @FILE_SEPARATOR system variable.

* Ifa string with more than one character is assigned to the variable, then only
the first character will be used.

¢ When @FILE SEPARATOR changes the field separator, all subsequent field
operations will use the new field separator until the @FILE_SEPARATOR
variable is changed.

Simphony SIM Manual 6-101

ISL System Variables
ISL System Variable Reference

FILTER_ACTIVE

Description
This system variable is set to “Y” if seat filtering is active. Otherwise, the variable
is set to “N.”

Type/Size
Al

Syntax
@FILTER_ACTIVE

Remarks
This system variable is Read-Only.

6-102

ISL System Variables
ISL System Variable Reference

FILTER_MASK

Description

This system variable is the current seat filter mask.

Type/Size
A8

Syntax
@FILTER_MASK

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-103

ISL System Variables
ISL System Variable Reference

GRPNUM

Description

This system variable contains the table ID group number assigned to the current
guest check.

Type/Size
N9

Syntax
@GRPNUM

Remarks
This system variable is Read-Only.

6-104

ISL System Variables
ISL System Variable Reference

GST

Description

This system variable contains the number of guests assigned to the current guest
check.

Type/Size
N5

Syntax
@GST

Remarks
This system variable is Read-Only.

See Also
@GSTRMNG system variable

Simphony SIM Manual 6-105

ISL System Variables
ISL System Variable Reference

GSTRMNG

Description

This system variable contains the number of guests remaining on the current guest
check after it has been prorated.

Type/Size

N5

Syntax
@GSTRMNG

Remarks

This system variable is Read-Only.
This system variable must be used within an Event Tmed only.

This system variable should be used in tandem with the
@GSTTHISTENDER system variable and the Prorate command to
determine the remaining guest count on a prorated guest check. In a PMS
environment, the PMS may require that the guest count on a check be
prorated. For example, if five guests are on a $100 check, and $60 ($20 * 3 =
$60) is tendered, the PMS assumes that three of the guests have settled. A
typical PMS posting scenario will include a step for prompting the operator to
enter the number of guests for the current posting, to associate the guests with
the tender.

ISL provides the same capability. However, implementing this function via a
SIM Interface requires 1) knowing the number of guests remaining on the
check, and 2) informing Simphony of the number of guests to associate with a
tender. Use @GSTRMNG to get the number of guests remaining, then use
this value as a condition for requiring an operator to enter the number of
guests during a tendering transaction before posting to the PMS. See the
example below.

When the Prorate command is active and a tender/media event occurs,
@GSTRMNG will contain the number of guests yet to post. When the first
tender is posted, @GSTRMNG will be equal to all of the guests on the check.
When posting subsequent tenders, @ GSTRMNG will be the number of guests
remaining. For example, if there are five guests on a check, @ GSTRMNG
will be five. But if three are prorated with the first tender, @GSTRMNG will
be two upon the second round of proration.

6-106

ISL System Variables
ISL System Variable Reference

Example

The following subroutine implements guest count proration:

sub prorate guests
var num_guests : nb
prorate

// If there are still guests left on this check to be prorated,
// ask the user how many guests this check.
if @gstrmng > O
forever
input number guests, “Number of guests this tender?”

if number guests > (@gstrmng
errormessage “Max guests is %, (@gstrmng
else
break
endif
endfor

// Prorate this many many guests for this tender. Next time around,
// this many guests will be subtracted from @gstrmng.

@gstthistender = num guests
endif
endsub

See Also
* @GST and @GSTTHISTENDER system variables

®* Prorate command

Simphony SIM Manual 6-107

ISL System Variables
ISL System Variable Reference

GSTTHISTENDER

Description

This system variable contains the number of guests on the current guest check
associated with a split tender when proration is active.

Type/Size
N5

Syntax
@GSTTHISTENDER

Remarks

* This system variable has Read-Write attributes.

* This system variable must be used within an Event Tmed only.

* Use this system variable in tandem with the @GSTRMNG system variable
and Prorate command to properly prorate guest count for a PMS via a SIM
Interface. When set, @GSTTHISTENDER will define the number of guests
that are prorated during a tendering transaction. For explanation, see the detail

description of @GSTRMNG.

e [fthe PMS requires prorated guest counts when posting tenders, the SIM
script must set @GSTTHISTENDER.

Example
See example for @GSTRMNG on page 6-106.

See Also
* @GST and @GSTRMNG system variables

* Prorate command

6-108

ISL System Variables
ISL System Variable Reference

GUID

Description

This system variable returns a string array with the GUID of the current check.

Type/Size
A40

Syntax
@GUID

Remarks

® This system variable is Read-Only.

Simphony SIM Manual 6-109

ISL System Variables
ISL System Variable Reference

HEADER

Description

This system variable is string array with 48 elements. The @HEADER([] array is
unique to each event. This means that each event can begin writing to the array
starting at index 1, rather than at the next available index.

Type/Size
A32

Syntax
@HEADER [expression]

Remarks

* This system variable is Read-Write.

® This system variable is only used with the Print_Header Event. All
transaction system variables are still valid in this event. User input is still
allowed, as are file operations and display manipulation. See page 7-62.

See Also
Print_Header and Print_Trailer events and @ TRAILER system variable.

6-110

ISL System Variables
ISL System Variable Reference

HOUR

Description

This system variable contains the current hour of the day.

Type/Size
N2

Syntax
@HOUR

Remarks
® This system variable is Read-Only.
® The value returned will be from 0 to 23.

® The hour will be in Military Time format. For example, 2 pm will be returned
as “14.”

Simphony SIM Manual 6-111

ISL System Variables
ISL System Variable Reference

IGNORE_PRMT

Description

This system variable must be set to a non-zero value to enable the keyboard macro
command to pass the [Enter| key to general operator prompts.

Type/Size
N5

Syntax
@IGNORE_PRMT=integer

Remarks
This system variable has Read-Write attributes.

6-112

ISL System Variables
ISL System Variable Reference

INEDITCLOSEDCHECK

Description

This system variable is set to “1” if this is an edit closed check entry. Otherwise,
the variable is set to “0.”

Type/Size
N1

Syntax
@INEDITCLOSEDCHECK

Remarks

This system variable is Read-Only, and is related to the Simphony function
“Adjust Closed Check”.

Simphony SIM Manual 6-113

ISL System Variables
ISL System Variable Reference

INPUTSTATUS

Description
This system variable sets the User Input Status Flag if the ContinueOnCancel
command is executed.

Type/Size
N9

Syntax
@INPUTSTATUS

Remarks
® This system variable is Read-Only.

® The User Input Status Flag will be set to one of the following:

Flag Description

0 indicates that the user canceled any input by
pressing [Cancel]

1 indicates that the user entered all valid data

See Also

ContinueOnCancel command

6-114

ISL System Variables
ISL System Variable Reference

INREOPENCLOSEDCHECK

Description

This system variable is set to “1” if this is reopen closed check entry. Otherwise,
the variable is set to “0.”

Type/Size
N1

Syntax
@INREOPENCLOSEDCHECK

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-115

ISL System Variables
ISL System Variable Reference

INSTANDALONEMODE

Description

This system variable determines if the workstation is offline.

Type/Size
N1

Syntax
@INSTANDALONEMODE

Remarks
This system variable is Read-Only.

Example

Event Ing : 2
if @InStandaloneMode <> 0
window 1,65

display 1,2, "@InStandaloneMode variable value is ",
@InStandaloneMode,". SAR Client is offline!"
waitforclear

else

window 1,65
display 1,2, "@InStandaloneMode variable value is ",
@InStandaloneMode,". SAR Client is online!"
waitforclear
endif
EndEvent

6-116

ISL System Variables
ISL System Variable Reference

ISUNICODE

Description

This system variable is set to “Y” if Unicode characters are supported. Otherwise,
the variable is set to “N.”

Type/Size
N1

Syntax
@ISUNICODE

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-117

ISL System Variables
ISL System Variable Reference

KEY_CANCEL

Description

This system variable contains the [Cancel] key.

Type/Size
Key

Syntax
@KEY_CANCEL

Remarks

® This system variable is Read-Only.

e This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

Example

The script below tests that the [Cancel] key was pressed by using

@KEY_ CANCEL. The operator is prompted to enter a number between 1 and 9.
However, if either the [Clear] or [Cancel] key is pressed instead, the script will
terminate.

event ing : 4

var key pressed : key // Hold the function key pressed
var data : al0 // Hold the number chosen
forever

inputkey key pressed, data, “Type a Number then Enter, Clear to Exit”
if key pressed = @KEY_CLEAR
exitcontinue
elseif key pressed = QKEY_CANCEL
exitcontinue
elseif key pressed = QKEY_ENTER
if data < 0 and data <=10

waitforclear “You chose “, data, “. Press Clear.”
else
errormessage “Choose a number between 1 and 10, then press Enter.”
endif
endif
endfor
endevent
See Also

InputKey command

6-118

ISL System Variables
ISL System Variable Reference

KEY_CLEAR

Description

This system variable contains the [Clear] key.

Type/Size
Key

Syntax
@KEY_CLEAR

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

Example
See the example for @KEY CANCEL on page 6-118.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-119

ISL System Variables
ISL System Variable Reference

KEY_DOWN_ARROW

Description

This system variable contains the [Down Arrow] key.

Type/Size
Key

Syntax
@KEY DOWN_ARROW

Remarks
® This system variable is Read-Only.
e This system variable is designed for checking keystrokes from the InputKey

command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

6-120

ISL System Variables
ISL System Variable Reference

KEY_END

Description
This system variable contains the [End] key.

Type/Size
Key

Syntax
@KEY_END

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-121

ISL System Variables
ISL System Variable Reference

KEY_ENTER

Description

This system variable contains the [Enter] key.

Type/Size
Key

Syntax
@KEY_ENTER

Remarks

® This system variable is Read-Only.

e This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

Example
See the example for @KEY CANCEL on page 6-118.

See Also
InputKey and LoadKyBdMacro commands

6-122

ISL System Variables
ISL System Variable Reference

KEY_EXIT

Description

This system variable contains the [Exit] key.

Type/Size
Key

Syntax
@KEY_EXIT

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-123

ISL System Variables
ISL System Variable Reference

KEY_HOME

Description

This system variable contains the [Home] key.

Type/Size
Key

Syntax
@KEY_HOME

Remarks
® This system variable is Read-Only.
e This system variable is designed for checking keystrokes from the InputKey

command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

6-124

ISL System Variables
ISL System Variable Reference

KEY_LEFT_ARROW

Description

This system variable contains the [Left Arrow] key.

Type/Size
Key

Syntax
@KEY_LEFT_ARROW

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-125

ISL System Variables
ISL System Variable Reference

KEY_PAGE_DOWN

Description

This system variable contains the [Page Down] key.

Type/Size
Key

Syntax
@KEY_PAGE_DOWN

Remarks
® This system variable is Read-Only.
e This system variable is designed for checking keystrokes from the InputKey

command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

6-126

ISL System Variables
ISL System Variable Reference

KEY_PAGE_UP

Description
This system variable contains the [Page Up] key.

Type/Size
Key

Syntax
@KEY_PAGE_UP

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-127

ISL System Variables
ISL System Variable Reference

KEY_RIGHT_ARROW

Description
This system variable contains the [Right Arrow] key.

Type/Size
Key

Syntax
@KEY_RIGHT ARROW

Remarks
® This system variable is Read-Only.
e This system variable is designed for checking keystrokes from the InputKey

command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

6-128

ISL System Variables
ISL System Variable Reference

KEY_UP_ARROW

Description

This system variable contains the [Up Arrow] key.

Type/Size
Key

Syntax
@KEY_UP_ARROW

Remarks

® This system variable is Read-Only.

¢ This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro
command.

See Also
InputKey and LoadKyBdMacro commands

Simphony SIM Manual 6-129

ISL System Variables
ISL System Variable Reference

LANG_ID

Description

This system variable is an array that contains the ID numbers of all defined
languages.

Type/Size
N9

Syntax
@LANG _ID

Remarks

® This system variable is Read-Only.

® This system variable is only available on SAR Ops.

6-130

ISL System Variables
ISL System Variable Reference

LANG_NAME

Description

This system variable is an array that contains the language names for all defined
languages. The indexing is the same as @lang_id, therefore @lang_name[1] is the
name of the language associated with @lang_id[1].

Type/Size
A20

Syntax
@LANG_NAME

Remarks

* This system variable is Read-Only.

* This system variable is only available on SAR Ops.

Simphony SIM Manual 6-131

ISL System Variables
ISL System Variable Reference

LASTCKNUM

Description

This system variable contains the previous check number that was assigned to the
current guest check.

Type/Size
N9

Syntax
@LASTCKNUM

Remarks

® This system variable is Read-Only.

¢ A last check number value of 0 indicates that the check number has not
changed.

6-132

ISL System Variables
ISL System Variable Reference

LINE

Description

This system variable contains the number of the current line in the script that is
being executed.

Type/Size
N5

Syntax
@LINE

Remarks
* This system variable is Read-Only.

* Use this system variable as a debugging tool.

See Also
@LINE_EXECUTED system variable

Simphony SIM Manual 6-133

ISL System Variables
ISL System Variable Reference

LINE_EXECUTED

Description

This system variable contains the number of lines executed since the script began
running.

Type/Size
N5

Syntax
@LINE_EXECUTED

Remarks

® This system variable is Read-Only.

* Use this system variable as a debugging tool.

See Also
@LINE system variable

6-134

ISL System Variables
ISL System Variable Reference

MAGSTATUS

Description

This system variable contains the Magnetic Card Entry Status Flag. The flag
indicates whether data was input by swiping a card through a magnetic card

reader.

Type/Size

Al

Syntax

@MAGSTATUS

Remarks

* This system variable is Read-Only.

* The Magnetic Card Entry Status Flag will be either of the following settings:

Flag Description
Y indicates that data was input by swiping a
card through a magnetic card reader
N indicates that data was input by

means other than a
magnetic card

reader, such as via
keyboard entry

* @MAGSTATUS is best used after issuing an Input or WindowInput/Edit

command.

Simphony SIM Manual

6-135

ISL System Variables
ISL System Variable Reference

Example

This event captures credit card information, entered manually from a keyboard or
electronically from a magnetic card reader. The script uses the @MAGSTATUS
system variable to determine the source from which the information is captured.

event : 1
var cardholder name : a20
var account_num : al9
var expire_date : n4
var trackl data : a79
var track2 data : a79

window 3, 78

touchscreen 16

displayMSinput 1, 2, cardholder name{m2, 2, 1, *}, \
“Read Credit Card or Enter Guest Name”, \
2, 2, account num{m2, 1, 1, *}, “Enter Account Number”, \
3, 2, expire date{m2, 3, 1, 4}, “Enter Expiration Date (YYMM)”, \
0, 0, trackl data{ml, *}, ™ %

windowinput

waitforclear

window 4, 40

display 1, 2, “Cardholder: “, cardholder name

if @MAGSTATUS = “Y”
display 2, 2, “As read from credit card.”
else
display 2, 2, “As entered from keyboard.”
endif
waitforclear
endevent

See Also
DisplayMSInput command

6-136

ISL System Variables
ISL System Variable Reference

MAXDTLR

Description

This system variable contains the maximum size string required to format the
transaction detail held in the @ TRDTLR system variable.

Type/Size
N9

Syntax
@MAXDTLR

Remarks
This system variable is Read-Only.

See Also
@DTL_*, @MAXDTLT, and @ TRDTLR system variables

Simphony SIM Manual 6-137

ISL System Variables
ISL System Variable Reference

MAXDTLT

Description

This system variable contains the maximum size string required to format the
transaction detail held in the @ TRDTLT system variable.

Type/Size
N9

Syntax
@MAXDTLT

Remarks
This system variable is Read-Only.

See Also
@DTL_*, @MAXDTLR and @TRDTLT system variables

6-138

ISL System Variables
ISL System Variable Reference

MAX_LINES_TO_RUN

Description

This system variable is a debugging tool that can be set to the maximum number
of lines in the script to run.

Type/Size
N5

Syntax

@MAX_LINES _TO_RUN = # of lines
Remarks

* This system variable has Read-Write attributes.

¢ This system variable should be set before the lines in the script that are being
debugged.

Simphony SIM Manual 6-139

ISL System Variables
ISL System Variable Reference

MINUTE

Description

This system variable contains the current minute of the current hour.

Type/Size
N2

Syntax
@MINUTE

Remarks
® This system variable is Read-Only.

¢ A value returned will be from 0 to 59.

6-140

ISL System Variables
ISL System Variable Reference

MONTH

Description

This system variable contains the current month of the current year.

Type/Size
N2

Syntax
@MONTH

Remarks

® This system variable is Read-Only.

® The value returned will be from 1 to 12.

Example
See the example for @DAY on page 6-48.

See Also
@DAY and @YEAR system variables

Simphony SIM Manual 6-141

ISL System Variables
ISL System Variable Reference

NUL

Description

This system variable specifies that a binary 0 should be sent when printing binary
data to a printer. The @nu/ variable is useful only on the PrintLine command.

Type/Size
A2

Syntax
@NUL

Remarks

This system variable is used to escape the NUL character.

6-142

ISL System Variables
ISL System Variable Reference

NUMOPNCHK

Description

This system variable returns the count of Open Checks per Revenue Center.

Type/Size
N5

Syntax
@NUMOPNCHK

Remarks

This system variable MUST be called first to return data when using any of the
other OPNCHK_* System Variables.

Example

event ing:1
var num openchecks N9 = 0
var opencheck empowner :N9
var opencheck guid :A50
var opencheck number :N9
var opencheck opentime :Al7

var opencheck ordertype :N5

var opencheck total tA7
var opencheck wsowner :N9
var count :N9

var row :N9

var chknum :N9

var Linel :A400
var Line2 :A200

// Get open checks count

// This will generate the open check data in the opnchk *
variables

num_openchecks = @numopnchk

// Create a window to show open checks

window 12,112, "Open Checks"

Simphony SIM Manual 6-143

ISL System Variables
ISL System Variable Reference

// Display label

display 1,1, "Check# | EmpOwner | Guid
| OrderType"
display 1,85, "| Total | WSOwner | OpenTime"

// show all open checks in the window

count = 0

row = 1

while count < num openchecks
opencheck empowner = @opnchk empowner [count]
opencheck guid = Qopnchk guid[count]
opencheck number = @opnchk number [count]
opencheck opentime = @opnchk opentime[count]
opencheck ordertype = Qopnchk ordertype[count]

opencheck total = @opnchk total[count]

opencheck_wsowner = @opnchk wsowner [count]

count = count + 1

row = row + 1

format Linel as opencheck number," ",
opencheck empowner," | ", opencheck guid," | ",
opencheck ordertype," "

format Line2 as " ",opencheck total, " ",
opencheck wsowner," | ",opencheck opentime

display row, 1, Linel
display row, 70, Line2

// Window shows 12 rows at a time . press enter
to continue . then show next 12 rows by replacing the first 12 rows

if row = 12

waitforenter
row = 1
endif
endwhile
endevent
See Also

@OPNCHK_EMPOWNER, @OPNCHK _GUID, @OPNCHK NUMBER,
@OPNCHK_OPENTIME, @OPNCHK_ORDERTYPE, @OPNCHK_TOTAL
and @OPNCHK_ WSOWNER system variables.

6-144

ISL System Variables
ISL System Variable Reference

NUMDSC

Description

This system variable contains the number of active discounts posted to the current
guest check.

Type/Size
N1

Syntax
@NUMDSC

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-145

ISL System Variables
ISL System Variable Reference

NUMDTLR

Description

This system variable contains the number of transaction detail entries posted
during the current service round on the guest check.

Type/Size
N5

Syntax
@NUMDTLR

Remarks
This system variable is Read-Only.

6-146

ISL System Variables
ISL System Variable Reference

NUMDTLT

Description

This system variable contains the number of transaction detail entries posted to
the current guest check.

Type/Size
N5

Syntax
@NUMDTLT

Remarks
* This system variable is Read-Only.

* This system variable is used to provide the maximum array limit for the
@DTL_* system variables.

Example
See the example for @DTL _MLVL on page 6-67.

See Also
@DTL_* and @NUMDTLR system variables

Simphony SIM Manual 6-147

ISL System Variables
ISL System Variable Reference

NUMERICSCREEN

Description
This system variable contains the default numeric entry touchscreen defined for
the Revenue Center.

Type/Size
N5

Syntax
@NUMERICSCREEN

Remarks
This system variable is Read-Only.

6-148

ISL System Variables
ISL System Variable Reference

NUMLANGS

Description

This system variable holds the number of languages in the @lang_id and
@lang_name arrays.

Type/Size
N9

Syntax
@NUMLANGS

Remarks
* This system variable is Read-Only.

* This system variable is only available on SAR Ops.

Simphony SIM Manual 6-149

ISL System Variables
ISL System Variable Reference

NUMSI

Description

This system variable contains the number of active sales itemizers defined in the
RVC Descriptors module.

Type/Size
N9

Syntax
@NUMSI

Remarks
This system variable is Read-Only.

6-150

ISL System Variables
ISL System Variable Reference

NUMSVC

Description

This system variable contains the number of active service charge itemizers
defined for the Revenue Center.

Type/Size
N1

Syntax
@NUMSVC

Remarks
* This system variable is Read-Only.

¢ This system variable will always returns the value 1.

Simphony SIM Manual 6-151

ISL System Variables
ISL System Variable Reference

NUMTAX

Description

This system variable contains the number of active tax rates.

Type/Size
N1

Syntax
@NUMTAX

Remarks
This system variable is Read-Only.

6-152

ISL System Variables
ISL System Variable Reference

OBJ

Description

This system variable is the object number of the detail item for the event.

Type/Size
N9

Syntax
@OBJ

Remarks
This system variable is only valid in the MI*, DSC*, SVC*, and TNDR* events.

Simphony SIM Manual 6-153

ISL System Variables
ISL System Variable Reference

OFFLINE LINK

Description

This system variable is used to link to an offline PMS system. For example when
the PMS is down, Ops can query the local guest database for account information
and post the transaction offline.

Type/Size
N12

Syntax
@OFFLINE LINK

6-154

ISL System Variables
ISL System Variable Reference

OPNCHK_EMPOWNER

Description

This system variable contains the Object Number of the employee that owns the
Open Check.

Type/Size
N9

Syntax
@OPNCHK_EMPOWNER [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK_* system variables.

® This system variable is Read-Only.

® The array limits of the expression are from 1 to the count return from
@NUMOPNCHK.

See Also
NUMOPNCHK system variable

Simphony SIM Manual 6-155

ISL System Variables
ISL System Variable Reference

OPNCHK_GUID

Description
This system variable contains the Open Check GUID (unique identifier).

Type/Size
A40

Syntax
@OPNCHK_ GUID [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK * system variables.

® This system variable is Read-Only.

* The array limits of the expression are from 1 to the count return from
@NUMOPNCHK.

See Also
NUMOPNCHK system variable

6-156

ISL System Variables
ISL System Variable Reference

OPNCHK_NUMBER

Description

This system variable contains the Open Check Number.

Type/Size
N9

Syntax
@OPNCHK NUMBER [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK * system variables.

* This system variable is Read-Only.

® The array limits of the expression are from 1 to the count return from
@NUMOPNCHK

See Also
NUMOPNCHK system variable

Simphony SIM Manual 6-157

ISL System Variables
ISL System Variable Reference

OPNCHK_OPENTIME

Description

This system variable contains the Date and Time that the Open Check was begun.
This variable will return the Local Time in 24 hour format.

Date and Time format: MM/dd/yyyy HH:MM:SS

Type/Size
Al7

Syntax
@OPNCHK OPENTIME [expression]

Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK _* system variables.

® This system variable is Read-Only.

* The array limits of the expression are from 1 to the count return from
@NUMOPNCHK

See Also
NUMOPNCHK system variable

6-158

ISL System Variables
ISL System Variable Reference

OPNCHK_ORDERTYPE

Description
This system variable contains the Open Check Order Type ID.

Type/Size
N9

Syntax
@OPNCHK ORDERTYPE [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK * system variables.

* This system variable is Read-Only.

® The array limits of the expression are from 1 to the count return from
@NUMOPNCHK

See Also
NUMOPNCHK system variable

Simphony SIM Manual 6-159

ISL System Variables
ISL System Variable Reference

OPNCHK_TOTAL

Description

This system variable contains the Open Check Total Amount.

Type/Size
$12 (Monetary)

Syntax
@OPNCHK TOTAL [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK * system variables.

® This system variable is Read-Only.

* The array limits of the expression are from 1 to the count return from
@NUMOPNCHK

See Also
NUMOPNCHK system variable

6-160

ISL System Variables
ISL System Variable Reference

OPNCHK_WSOWNER

Description

This system variable contains the Object Number of the Workstation that
currently owns the Open Check

Type/Size
N9

Syntax
@OPNCHK_ WSOWNER [expression]
Remarks

* The @NUMOPNCHK system variable must be called first to return data
using any of the available @OPNCHK_* system variables.

® This system variable is Read-Only.

® The array limits of the expression are from 1 to the count return from
@NUMOPNCHK

See Also
NUMOPNCHK system variable

Simphony SIM Manual 6-161

ISL System Variables
ISL System Variable Reference

ORDERTYPE

Description

This system variable contains the active order type on the current guest check.

Type/Size
N9

Syntax
@ORDERTYPE

Remarks
This system variable is Read-Only.

6-162

ISL System Variables
ISL System Variable Reference

ORDERTYPE_NAME

Description

This system variable contains the active order type’s name.

Type/Size
Al6

Syntax
@ORDERTYPE_NAME

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-163

ISL System Variables
ISL System Variable Reference

ORDR

Description

This system variable is an array containing the object number of a Remote Order
or Local Backup Printer defined for Simphony.

Type/Size
N9

Syntax
@ORDR[expression]

Remarks
® This system variable is Read-Only.
® The array limits for the expression are from 1 to 15.

* This system variable can be used as an argument to the StartPrint command.

Example

The example below starts a print job at a remote order printer.

sub print message
startprint Qordrl

printline ™ 4
printline “Message from “, sender name
printline “==== 4
for rowcnt = 1 to 136
if len(kitchen msg[rowcnt]) > “%
printline kitchen msg[rowcnt]
endif
endfor
printline “======= END MESSAGE ========"
endprint
endsu
See Also

e StartPrint command

e “ISL Printing”

6-164

ISL System Variables
ISL System Variable Reference

OS_PLATFORM

Description

This system variable is the value of the operating system platform

Value

Description

1

Windows® CE

3

Win 32

Type/Size

N1

Syntax

@OS_PLATFORM

Remarks

This system variable is Read-Only.

Simphony SIM Manual

6-165

ISL System Variables
ISL System Variable Reference

PICKUPLOAN

Description

This system variable is the value of the pickup or loan amount.

Type/Size
$4

Syntax
@PICKUPLOAN

Remarks
This system variable is only valid in the PICKUP LOAN event.

6-166

ISL System Variables
ISL System Variable Reference

PLATFORM

Description

This system variable contains a character string identifying the hardware platform
on which the script is running.

Type/Size
A4

Syntax
@PLATFORM

Remarks
* This system variable is Read-Only.

* The string returned is “Simphony.”

Simphony SIM Manual 6-167

ISL System Variables
ISL System Variable Reference

PMSBUFFER

Description

This system variable contains a string that points to the entire message received
from the third-party system communicating with Simphony.

Type/Size

String; size depends on the data returned from the third-party system (e.g., PMS)

Syntax
@PMSBUFFER

Remarks

* This system variable has Read-Write attributes.

* The size of data in the PMS buffer is formatted as a string, which can be up to
32,768 bytes in length.

* This system variable is a debugging tool. For example, if the PMS message
received by Simphony is suspected of being formatted incorrectly, using
@PMSBUFFER the message can be displayed in an ISL-defined window as it
is being received.

* Issuing @PMSBUFFER is valid only after a message has been received from
the third-party system (e.g., PMS).

See Also
@SHOW_PMS MESSAGES system variable

6-168

ISL System Variables
ISL System Variable Reference

PMSLINK

Description

This system variable contains the PMS Link defined in the RVC Parameters
module.

Type/Size
N2

Syntax
@PMSLINK

Remarks

* This system variable is Read-Only.

* The value returned by @PMSLINK will be the PMS defined in the RVC
Parameters module to which the script is linked. For example, if
@PMSLINK is executed by pmsl.isl, which is linked to PMS Link #2 “1
Fidelio,” then @PMSLINK will be set to “2.”

——pms1.isl
Interface File
»| 1 Fidelio
2
RVC Parameters File
PMS Link
1
»| 2 1 Fidelio
L »@PMSLINK =2
See Also

@PMSNUMBER system variable

Simphony SIM Manual 6-169

ISL System Variables
ISL System Variable Reference

PMSNUMBER

Description

This system variable contains the PMS object number, defined in the Interfaces
module, to which the script is linked.

Type/Size
N3

Syntax
@PMSNUMBER

Remarks
* This system variable has Read-Write attributes.
* In order to link the script file to a PMS, this object number is contained in the

name of the script file. Thus, if running the script pmsl.isl, then
@PMSNUMBER will be set to 1.

——pms1.isl

Interface File
1 Fidelio
2

v

—>@PMSNUMBER = 1

See Also
@PMSLINK system variable

6-170

ISL System Variables
ISL System Variable Reference

PREVPAY

Description

This system variable contains the total amount tendered thus far on the current
guest check.

Type/Size
$12

Syntax
@PREVPAY

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-171

ISL System Variables
ISL System Variable Reference

PRINTSTATUS

Description

This system variable sets the Print Status Flag to indicate whether a print job has
completed successfully or failed.

Type/Size
Al

Syntax
@PRINTSTATUS

Remarks

® This system variable is Read-Only.

* The Print Status Flag will be either of the following settings:

Flag Description
Y indicates that a print job completed successfully
N indicates that a print job failed
Example

The event procedure below uses the setting of @PRINTSTATUS to determine
which message to display after issuing the Printline command.

event ing : 1

startprint @chk

printline “this is a line”

endprint
if @printstatus = “Y”

waitforclear “Print successful”
else

waitforclear “Print failed”
endif

See Also
¢ Printline command

* “ISL Printing”

6-172

ISL System Variables
ISL System Variable Reference

PROPERTY

Description
This system variable returns the Property Number of the Workstation.

Type/Size
N9

Syntax
@PROPERTY

Remarks

® This system variable is Read-Only.

Simphony SIM Manual 6-173

ISL System Variables
ISL System Variable Reference

PRORATETND

Description

This system variable is used in conjunction with the ProRate ISL command to
calculate prorated values, and only when the ProRate command is used outside
a SIM Tender Media event.

Type/Size
N9

Syntax
@PRORATETND

Remarks

® The default for this variable is 0 (will not override the tender media record).

* This variable is reset to its default value at the beginning of every event.

See Also

ProRate command

6-174

ISL System Variables
ISL System Variable Reference

QTY

Description

This system variable is the quantity of the detail item for the event.

Type/Size
N9

Syntax
@QTY

Remarks
This system variable is only valid in the MI*, DSC*, SVC*, and TNDR* events.

Simphony SIM Manual 6-175

ISL System Variables
ISL System Variable Reference

RANDOM

Description

This system variable returns a random value between 0 and 2°2-1.

Type/Size
N9

Syntax
@RANDOM

6-176

ISL System Variables
ISL System Variable Reference

RCPT

Description

This system variable contains the object number of the Customer Receipt Printer
defined for the System Unit.

Type/Size
N9

Syntax
@RCPT

Remarks

* This system variable is Read-Only.

* This system variable can be used as an argument to the StartPrint command.

See Also
e StartPrint command

e “ISL Printing”

Simphony SIM Manual 6-177

ISL System Variables
ISL System Variable Reference

REDOFF

Description
This system variable contains printed text to black ink (or default ink, e.g., blue).

Type/Size
Al

Syntax
@REDOFF

Remarks

® This system variable is Read-Only.

* @REDOFF is also known as a print directive and can be an argument of the
Printline command.

* All new lines of text print default ink (i.e., black, blue, etc.).

Note: The Citizen autocut roll printer does not recognize the
“— first occurrence of this variable after a printline command. The
- second occurrence, and all succeeded occurrences of this
&% variable, are recognized by the Citizen autocut roll printer:

This situation does NOT occur with standard MICROS roll
printers.

Example

The ISL statement below prints “Print line” in double-wide characters and red ink,
then turns off these print directives.

startprint printer
printline = @ Memmmmmmmm e
printline @dwon, @redon, “chit”
printline = = @ Yemmmmmmmmm
@dwoff, Q@redoff

endprint

See Also

* @REDON system variable; Printline command

6-178

ISL System Variables
ISL System Variable Reference

ink

e “ISL Printing”

REDON

Description
This system variable prints the expression that follows it in red ink.

Type/Size
Al

Syntax
@REDON

Remarks

* This system variable is Read-Only.

* (@REDON is also known as a print directive and can be an argument of the
Printline command.

® Characters in red and black ink can print on the same line.

Note: The Citizen autocut roll printer does not recognize the
“,. first occurrence of this variable after a printline command. The
- second occurrence, and all succeeded occurrences of this
&% variable, are recognized by the Citizen autocut roll printer:

This situation does NOT occur with standard MICROS roll
printers.

Example

The ISL statement below will print “Print line” in double-wide characters and red
ink.
Printline @dwon, @redon, “Print line” //prints double-wide in red

See Also

* @REDOFF system variable; Printline command

Simphony SIM Manual 6-179

ISL System Variables
ISL System Variable Reference

e “ISL Printing”

RETURNSTATUS

Description

This system variable is set to “Y” when the Return and Transaction Return
functions are active; otherwise, the variable is set to “N.”

Type/Size
Al

Syntax
@RETURNSTATUS

Remarks
This system variable is Read-Only.

6-180

ISL System Variables
ISL System Variable Reference

RVC

Description

This system variable contains the number of the Revenue Center to which the
script is linked by its Revenue Center PMS Link.

Type/Size
N3

Syntax

@RVC

Remarks

* This system variable is Read-Only.

* This system variable will be set to the object number of the Revenue Center in

which the script is running. For instance, if the PMS Link for pms]1.isl is
defined in Revenue Center #4, then the system variable will be set to 4.

Simphony SIM Manual 6-181

ISL System Variables
ISL System Variable Reference

RVC_NAME

Description

This system variable contains the current Revenue Center’s name.
Y

Type/Size
A16

Syntax
@RVC_NAME

Remarks

® This system variable is Read-Only.

6-182

ISL System Variables
ISL System Variable Reference

RVCSERIALNUM

Description

This system variable is an array of two serial numbers that provides an
incrementing serial number at the Revenue Center level. This serial number is
known as a Revenue Center Sequence Number.

Type/Size
N9

Syntax
@RVCSERIALNUM|expression]

Remarks

* This system variable is Read-Only.
® The array limits for the expression are from 1 to 2.

* Every instance that @RVCSERIALNUM]J] is accessed results in its value
being incremented by 1, providing a unique Revenue Center Sequence
Number each time the system variable is accessed. For example,
@RVCSERIALNUM][1] provides one sequence number, and
@RVCSERIALNUM[2] provides a second sequence number.

* The sequence numbers returned by the array are independent of each other;
consequently, the operation of one sequence number does not affect the other.

Example

The script below will access the sequence number three times, and three unique
sequence numbers will be displayed in the ISL-defined window.

event ing : 1
window 3, 40
display 1, 1, Q@rvcserialnum([1l]
display 2, 1, Q@rvcserialnum([1l]
display 3, 1, @rvcserialnum[1l]
waitforclear

endevent

See Also
@GUINUM, @GUINUMRVC, and @SYSSERIALNUM][] system variables

Simphony SIM Manual 6-183

ISL System Variables
ISL System Variable Reference

RXMSG

Description

This system variable contains the Event ID assigned to the response message sent
by a third-party system to Simphony.

Type/Size
A32

Syntax
@RXMSG

Remarks

® This system variable is Read-Only.
® This command is not available on SAR Ops.

* When either the WaitForRxMsg or GetRxMsg commands are executed, the
ISL waits for a return event. The first field of the Application Data segment
of the response message is assumed to be the Event ID of the return event.
The @RXMSG system variable contains that Event ID.

Example

In the event below, the @RXMSG system variable is used to verify that the Event
ID in the returned message is the correct one.

event ing : 1

txmsg "ver req" // Transmit string requesting
// version of system software
getrxmsg // Wait for response
if Qrxmsg = "ver rsp"
rxmsg version_ s // Format message received
waitforclear version s // Display it
elseif Qrxmsg = "ver err"
errormessage "Version number invalid"
exitcancel
endif
endevent

6-184

ISL System Variables
ISL System Variable Reference

See Also
* GetRxMsg and WaitforRxMsg commands

* “Application_Data” on page 2-5

SEAT

Description

This system variable contains the number of the active seat on the current guest
check.

Type/Size
N5

Syntax
@SEAT

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-185

ISL System Variables
ISL System Variable Reference

SECOND

Description

This system variable contains the current second of the current minute.

Type/Size
N2

Syntax
@SECOND

Remarks
® This system variable is Read-Only.

e A value from 0 to 59 is valid.

See Also
@MINUTE system variable

6-186

ISL System Variables
ISL System Variable Reference

SHOW_PMS_MESSAGES

Description

This system variable, when set to a non-zero value, outputs all PMS messages to
the 8700d.1log file, a file that contains debugging messages from all of the
Simphony processes.

Type/Size
N5

Syntax
@SHOW_PMS MESSAGES = integer

Remarks
* This system variable has Read-Write attributes.

* @SHOW_PMS MESSAGES can be set to any integer. However, setting the
system variable to 0, will disable its function.

* This system variable can be placed anywhere in a script.

¢ Using @SHOW_PMS MESSAGES is another method of debugging PMS
messages received by Simphony. @PMSBUFFER is also useful for
debugging PMS messages; this system variable contains the actual PMS
message received by Simphony.

See Also
@PMSBUFFER system variable

Simphony SIM Manual 6-187

ISL System Variables
ISL System Variable Reference

SI

Description

This system variable is an array containing the sales itemizer totals posted to the
current guest check.

Type/Size
$12

Syntax

@Sl[expression]

Remarks

® This system variable is Read-Only.

* The array limits of the expression are from 1 to 16.

* This system variable will return the totals posted to the sales itemizer

specified by the array index. For example, if the array index references
@SI[1], any totals posted to Sales Itemizer #1 will be returned.

6-188

ISL System Variables
ISL System Variable Reference

SIGCAPDATA

Description

This system variable returns a string that contains the PNG (Portable Network
Graphics) data, base64 encoded, of a capture signature image from a Mobile
MICROS hand-held terminal.

If used on a WinStation or SAR client, the variable will return No SIGCAP
DATA.

Type/Size

String; size depends on data

Syntax
@SIGCAPDATA

Remarks
* This variable is read-only.
¢ This variable should only be accessed in a tender event.

* This variable should only be used in conjunction with the TxMsg command.

Example
event tmed : 1
var room num : a4

input room num, "Enter Room Number"
txmsg "charge", @CHKEMP, @CHKNUM, @TNDTTL, room num, @SIGCAPDATA
waitforrxmsg

endevent

Simphony SIM Manual 6-189

ISL System Variables
ISL System Variable Reference

SIMDBLINK

Description

This system variable links to the SIMDB DLL to the database. For example, if a
property has a PMS System which has two connections—one for live postings and
another for room updates to the SIMDB DLL—the two systems can be linked
with the @SIMBLINK system variable in SIM

Type/Size
N12

Syntax
@SIMDBLINK

6-190

ISL System Variables
ISL System Variable Reference

SRVPRD

Description

This system variable contains the active serving period.

Type/Size
N9

Syntax
@SRVPRD

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-191

ISL System Variables
ISL System Variable Reference

STRICT_ARGS

Description

This system variable, when set to a non-zero value, will check whether the
minimum or maximum number of variables is specified if the RxMsg, Fread,
Split, and SplitQ commands are used.

Type/Size
N9

Syntax
@STRICT_ARGS

Remarks
This system variable has Read-Write attributes.

See Also
Fread, RxMsg, Split, and SplitQ commands

6-192

ISL System Variables
ISL System Variable Reference

SVC

Description

This system variable contains the total amount of service charges posted to the
current guest check.

Type/Size
$12

Syntax
@SVC

Remarks
* This system variable is Read-Only.

* The @CHGTIP amount is included in the @SVC system variable.

Simphony SIM Manual 6-193

ISL System Variables
ISL System Variable Reference

SVCI

Description

This system variable is an array that contains the service charge itemizer totals
posted to the current guest check.

Type/Size
$12

Syntax
@SV Cl|expression]

Remarks

® This system variable is Read-Only.
* The array limits of the expression are from 1 to 16.

¢ This variable will return totals posted to the service charge itemizer specified
by the array index.

® This variable is similar to the @SI variable.

6-194

ISL System Variables
ISL System Variable Reference

SYSSERIALNUM

Description

This system variable is an array of two serial numbers that provides an
incrementing serial number at the property level. This serial number is known as a
System Sequence Number.

Type/Size
N9

Syntax
@SYSSERIALNUM]|expression]

Remarks

* This system variable is Read-Only.
® The array limits for the expression are from 1 to 2.

* Every instance that @SYSSERIALNUM][] is accessed results in its value
being incremented by 1, providing a unique System Sequence Number each
time the system variable is accessed. For example, @SYSSERIALNUM][1]
provides one sequence number, and @SYSSERIALNUM]|2] provides a
second sequence number.

* The sequence numbers returned by the array are independent of each other;
consequently, the operation of one sequence number does not affect the other.

Example

The script below will access the sequence number three times, and three unique
sequence numbers will be displayed in the ISL-defined window.

event ing : 1
window 3, 40
display 1, 1, @sysserialnum([1l]
display 2, 1, @sysserialnum([1l]
display 3, 1, @sysserialnum[1]
waitforclear

endevent

See Also
@GUINUM, @GUINUMRVC, and @RVCSERIALNUM][] system variables

Simphony SIM Manual 6-195

ISL System Variables
ISL System Variable Reference

SYSTEM_STATUS

Description

This system variable contains the shell return status after the System command is
executed.

Type/Size
N6

Syntax
@SYSTEM_STATUS

Remarks
This system variable is Read-Only.

6-196

ISL System Variables
ISL System Variable Reference

TAX

Description

This system variable is an array containing the totals posted to the active tax rate
on the current guest check.

Type/Size
$12

Syntax
@TAX[expression]

Remarks

* This system variable is Read-Only.

* The array limits for the expression are from 1 to 8.

See Also
@TAXRATE][] system variable

Simphony SIM Manual 6-197

ISL System Variables
ISL System Variable Reference

TAXRATE

Description

This system variable is an array containing the tax rate defined for the specified
Taxes module.

Type/Size
A6

Syntax
@TAXRATE[expression]

Remarks
® This system variable is Read-Only.
® The array limits for the expression are from 1 to 8.

* The value returned is a string instead of an amount, since the percentage may
be any number of decimal digits (i.e., 5.1265).

See Also
@TAX][] system variable

6-198

ISL System Variables
ISL System Variable Reference

TAXVAT

Description

This system variable returns the Value Added Tax amount for Tax Rate “X”.

Type/Size
$12

Syntax
@TAXVAT[expression]

Remarks

® This system variable is Read-Only.

See Also
@TAX]] system variable

Simphony SIM Manual 6-199

ISL System Variables
ISL System Variable Reference

TBLID

Description

This system variable contains the sequence number of the table ID assigned to the
current guest check.

Type/Size
A4

Syntax
@TBLID

Remarks
This system variable is Read-Only.

See Also
@TBLNUM system variable

6-200

ISL System Variables
ISL System Variable Reference

TBLNUM

Description

This system variable contains the sequence number of the table ID assigned to the
current guest check.

Type/Size
N9

Syntax
@TBLNUM

Remarks
This system variable is Read-Only.

Example

This event is used to send to the PMS a message indicating which table has just
paid its check.

event final tender
txmsg "CHECK PAID", @cknum, @tblnum
// Here we do a ’'getrxmsg’ to receive the message to fulfill the
// requirements of the protocol, but do not process any data
// associated with the message.

getrxmsg

endevent

Simphony SIM Manual 6-201

ISL System Variables
ISL System Variable Reference

TMDNUM

Description

This system variable contains the number assigned to the tender/media associated
with this posting.

Type/Size
N9

Syntax
@TMDNUM

Remarks
This system variable is Read-Only.

6-202

ISL System Variables
ISL System Variable Reference

TNDTTL

Description

This system variable contains the total for this posting, which can be reduced.

Type/Size
$12

Syntax
@TNDTTL

Remarks
* This system variable has Read-Write attributes.
¢ This system variable must be accessed within a tender/media event.

* The purpose of this system variable is to allow the total due on a check to be
updated if necessary. This system variable is best used in an environment
where some form of credit limit is applied to purchases, such as in a student
meal plan or a frequent diner program for hotel patrons. In a student meal
plan, students may have a set amount of credit applied to each meal. For
example, assume that each student meal credit limit is $4.50 per meal. If a
student surpasses this amount with a purchase of $6.00, the @ TNDTTL
($6.00) can be overwritten with the credit limit of $4.50. Then the student can
cover the difference of $1.50 with cash, for example.

Example

In the example that follows, the tender total is reduced from $6.00 to $4.50, the
allowable student meal credit.

event tmed : 1
txmsg “POST”, @tndttl // send over $6.00
waitforrxmsg

endevent

event rxmsg: POST
var new_tnddtl : $10
rxmsg new_tnddtl // receive $4.50
if new _tnddtl > 0
@tndttl = new_tnddtl
exitcontinue
else
exitcancel // cancel
endevent

Simphony SIM Manual 6-203

ISL System Variables
ISL System Variable Reference

TRACE

Description

This system variable must be set to a non-zero value in order to output each
executed ISL statement to the 8700d.log file.

Type/Size
N5

Syntax
@TRACE = integer

Remarks

* This system variable has Read-Write attributes.

* The primary usage of this feature is debugging.

6-204

ISL System Variables
ISL System Variable Reference

TRAILER

Description

This system variable is string array with 32 elements. The @ TRAILER[] array is
unique to each event. This means that each event can begin writing to the array
starting at index 1, rather than at the next available index.

Type/Size
A32

Syntax
@TRAILER[expression]

Remarks

* This system variable is Read-Write.

* This system variable is only used with the Print_Header event. All
transaction system variables are still valid in this event. User input is still
allowed, as are file operations and display manipulation. See page 7-62.

See Also
Print_Header and Print_Trailer events and @ HEADER system variable.

Simphony SIM Manual 6-205

ISL System Variables
ISL System Variable Reference

TRAININGMODE

Description

This system variable contains the Training Mode Status of an employee.

Type/Size
N1

Syntax
@TRAININGMODE

Remarks

® This system variable is Read-Only.

* The Training Mode Status will be either of the following settings:

Status Description

Zero indicates that the employee is not in training
mode

Non-zero | indicates that the employee is in training
mode

6-206

ISL System Variables
ISL System Variable Reference

TRCSHR

Description

This system variable contains the Transaction Cashier number of the current guest
check.

Type/Size
N9

Syntax
@TRCSHR

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-207

ISL System Variables
ISL System Variable Reference

TRDTLR

Description

This system variable contains transaction detail posted to the current guest check
during this service round.

Type/Size

Various (see Remarks)

Syntax

@TRDTLR

Remarks

® This system variable is Read-Only.

* The transaction detail information is designed to provide enough detail, to
display or print a basic guest check. If more information is required, it should
be exported from the appropriate database files with the Simphony SQL

module.

* Each transaction detail entry comprises the following fields:

Field Type and Description
Size

Detail Type | Al Indicates type of detail entry:

I = Check Information Detail
M = Menu Item

D = Discount

S = Service Charge

T = Tender/Media

R = Reference Number

Status A6 Check Detail Status Flag

Number N9 Object number; set to 0 for reference numbers
and check information detail.

Quantity N5 Quantity; set to 0 for reference numbers and
check information detail.

6-208

ISL System Variables
ISL System Variable Reference

Field Type and Description
Size

Main Sales | N1 Main sales level (between 1 and 8); set to 0 for

Level reference numbers and check information
detail.

Sub Sales | N1 Sub sales level (between 1 and 8); set to 0 for

Level reference numbers and check information
detail.

Total $12 Total; set to 0 for reference numbers and check
information detail.

Name A22 Contains the detail’s name (menu item,
discount, etc.). For reference numbers; this
contains the actual reference number.

The transaction detail will be preceded by a Number of Detail Entries field.
This field is of the type and size N3, and indicates how many detail entries

follow.

When partial payments are posted to a PMS using prorated itemizers, all the
detail on the guest check will be transferred, not just the detail associated with
this partial payment. If selective detail is required, the guest check should be

split at the POS prior to being posted to the PMS.

See Also
@DTL_*, @MAXDTLR, and @TRDTLT system variables

Simphony SIM Manual 6-209

ISL System Variables
ISL System Variable Reference

TRDTLT

Description

This system variable contains all the transaction detail from the current guest
check.

Type/Size

Various (see Remarks)

Syntax
@TRDTLT

Remarks

® This system variable is Read-Only.

* The transaction detail information is designed to provide enough detail, to
display or print a basic guest check. If more information is required, it should
be exported from the appropriate database files with the Simphony SQL
module.

* Each transaction detail entry comprises the fields described in the table on
page 6-208.

* The transaction detail will be preceded by a Number of Detail Entries field.
This field is of the type and size N3, and indicates how many detail entries
follow.

* When partial payments are posted to a PMS using prorated itemizers, all the
detail on the guest check will be transferred, not just the detail associated with
this partial payment. If selective detail is required, the guest check should be
split at the POS prior to being posted to the PMS.

See Also
@MAXDTLT and @TRDTLR system variables

6-210

ISL System Variables
ISL System Variable Reference

TREMP

Description

This system variable contains the number of the Transaction Employee, the
employee posting sales to the current guest check.

Type/Size
N9

Syntax
@TREMP

Remarks

* This system variable is Read-Only.

* Typically, the Transaction Employee is also the Check Employee, or the
person who originally began the check. However, managers and cashiers may
be privileged to be the Transaction Employee if they must post sales to
another employee’s check. Depending on the Revenue Center Options
enabled, sales totals and tender totals will post to either the Check Employee
or the Transaction Employee and to their corresponding Cashier Totals, if
there is a link.

See Also
@CKEMP system variable

Simphony SIM Manual 6-211

ISL System Variables
ISL System Variable Reference

TREMP_CHKNAME

Description

This system variable contains the Transaction Employee’s check name, the
employee posting sales to the current guest check.

Type/Size
Al6

Syntax
@TREMP_CHKNAME

Remarks
This system variable is Read-Only.

6-212

ISL System Variables
ISL System Variable Reference

TREMP_FNAME

Description

This system variable contains the Transaction Employee’s first name, the
employee posting sales to the current guest check.

Type/Size
A8

Syntax
@TREMP_FNAME

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-213

ISL System Variables
ISL System Variable Reference

TREMP_LNAME

Description

This system variable contains the Transaction Employee’s last name, the
employee posting sales to the current guest check.

Type/Size
Al6

Syntax
@TREMP_LNAME

Remarks
This system variable is Read-Only.

6-214

ISL System Variables
ISL System Variable Reference

TTL

Description

This system variable is the amount of the detail item for the event.

Type/Size
$12

Syntax
@TTL

Remarks
This system variable is only valid in the MI*, DSC*, SVC*, and TNDR* events.

Simphony SIM Manual 6-215

ISL System Variables
ISL System Variable Reference

TTLDUE

Description

This system variable contains the total due for the current guest check.

Type/Size
$12

Syntax
@TTLDUE

Remarks
This system variable is Read-Only.

6-216

ISL System Variables
ISL System Variable Reference

TXBL

Description

This system variable is an array containing the taxable sales itemizer on the
current guest check.

Type/Size
$12

Syntax
@TXBL[expression]

Remarks

* This system variable is Read-Only.

* The array limits of the expression are from 1 to 8.

Simphony SIM Manual 6-217

ISL System Variables
ISL System Variable Reference

TXEX_ACTIVE

Description

This system variable checks if the Tax is exempt at the specified level.

Type/Size
N1

Syntax
@TXEX_ACTIVE[expression]

Remarks

® This system variable is Read-Only.

6-218

ISL System Variables
ISL System Variable Reference

USERENTRY

Description

This system variable contains the data entered by an operator prior to pressing the
SIM Inquiry key.

Type/Size
A20

Syntax
@USERENTRY

Remarks
* This system variable is Read-Only.
* @USERENTRY will contain the data entered prior to pressing the SIM

Inquiry key. For example, if an operator enters “123” then presses the SIM
Inquiry key, @USERENTRY will contain “123.”

Simphony SIM Manual 6-219

ISL System Variables
ISL System Variable Reference

VALD

Description

This system variable contains the object number of the Validation Chit Printer
assigned to the workstation.

Type/Size
N9

Syntax
@VALD

Remarks

® This system variable is Read-Only.

* This system variable can be used as an argument to the StartPrint command.

See Also
e StartPrint command

e “ISL Printing”

6-220

ISL System Variables
ISL System Variable Reference

VARUSED

Description

This system variable contains the number of bytes of variable space used by the
script at the points where variables are referenced.

Type/Size
N5

Syntax
@VARUSED

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-221

ISL System Variables
ISL System Variable Reference

VERSION

Description

This system variable contains the version designation of the SIM.

Type/Size

Various (see Remarks)

Syntax
@VERSION

Remarks

® This system variable is Read-Only.

e This system variable returns text of varying lengths.

Example
The event below draws a window and displays the SIM version number.
event ing : 1

window 1, 30

display 1, @center, “The SIM Ver is: %, Q@version
endevent

6-222

ISL System Variables
ISL System Variable Reference

VOIDSTATUS

Description

This system variable is set to “Y”” when the Void and Transaction Void functions
are active; otherwise, the variable is set to “N.”

Type/Size
Al

Syntax
@VOIDSTATUS

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-223

ISL System Variables
ISL System Variable Reference

WARNINGS_ARE_FATAL

Description

This system variable interrupts script processing with a fatal error if variable
overflow occurs.

Type/Size
N5

Syntax
@WARNINGS_ARE_FATAL

Remarks

* This system variable has Read-Write attributes.

* By default, no error is reported when strings, reals, or integers overflow the
variables to which they are assigned; the values are truncated to fit the
variables. The @ WARNINGS_ARE_FATAL system variable can be set to
handle the instance when the script writer wants the ISL to report a fatal error
if a variable overflow occurs. If @ WARNINGS ARE FATAL is set equal to
1, variable overflow will cause a fatal error, thereby interrupting script
processing.

* Specify @WARNINGS ARE FATAL at the top of the script.

Example

@WARNINGS_ARE FATAL = 1

event tmed : 9

var room : a6

var guest name : a20
window 4, 22, "Room Charge"

6-224

ISL System Variables
ISL System Variable Reference

WCOLS

Description

This system variable contains the number of columns in the ISL-defined window
currently displayed.

Type/Size
N9

Syntax
@WCOLS

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-225

ISL System Variables
ISL System Variable Reference

WEEKDAY

Description

This system variable contains the day of the week.

Type/Size
N1

Syntax
@WEEKDAY

Remarks

® This system variable is Read-Only.

* Valid values range from 0 - 6, where 0 is Sunday.

6-226

ISL System Variables
ISL System Variable Reference

WROWS

Description

This system variable contains the number of rows in the ISL-defined window
currently displayed.

Type/Size
N9

Syntax
@WROWS

Remarks
This system variable is Read-Only.

Simphony SIM Manual 6-227

ISL System Variables
ISL System Variable Reference

WSID

Description

This system variable contains the workstation ID number.

Type/Size
N9

Syntax
@WSID

Remarks
This system variable is Read-Only.

6-228

ISL System Variables
ISL System Variable Reference

WSTYPE

Description

This system variable is the User Workstation type, such as SAR Client of Mobile
MICROS.

Type/Size
N9

Syntax
@WSTYPE

Remarks

* This system variable is Read-Only.

* The workstation types correspond to the type field in the workstation
defintition and are as follows:

1 =Mobile MICROS
2 =SAR Client
3=KWS$4

4 =POSAPI

Simphony SIM Manual 6-229

ISL System Variables
ISL System Variable Reference

YEAR

Description

This system variable is at least a two-digit number that contains the number of
years since 1900.

Type/Size
N2 or N3. This will be a two-digit number up until the year 2000, when it
becomes a three-digit number.

Syntax
@YEAR

Remarks
This system variable is Read-Only.

Example

The year 1999 would be 99 (i.e., 1999-1900), the year 2000 would be 100 (2000-
1900), and the year 2015 would be 115 (2015-1900).

See Also
@DAY and @MONTH system variables

6-230

ISL System Variables
ISL System Variable Reference

YEARDAY

Description

This system variable contains the number representing the current day of the year.

Type/Size
N3

Syntax
@YEARDAY

Remarks
® This system variable is Read-Only.

* A valid value will be from 0 to 365.

Simphony SIM Manual 6-231

ISL Commands

Chapter /

ISL. Commands

In This Chapter

This chapter contains a summary and an A-Z reference of all ISL
commands, as well as a discussion of format specifiers used in command
syntax.

COMMANGS ..tiiiieiieie ettt ettt et s saeas 7-2
ISL File Input/Output Commandscecveeveeereecrereresieenvereeneeeenns 7-3
Using Format SPeCifierscccvveviiiriiiiiiiecciee et 7-5
Command SUMMATYcceevveerirerieeririeriereereeseesseesseesseesessesssesnnes 7-16
ISL Command Reference...........cccoecerienieniinieiieeeeeee e 7-22

Simphony SIM Manual

7-1

ISL Commands

Commands

Commands

The Interface Script Language (ISL) provides commands to display information,
get operator entries, display touchscreens, execute keyboard macros, as well as
transmit and receive messages over the interface. This chapter contains a detail
description of each ISL command.

Command Summary

For quick reference, a summary of commands in alphabetical order and in order
by category of function begins on page 7-16.

File I/0 Operations

A brief introduction and discussion of file I/O commands and system variables is
also included in this chapter. Before attempting any file I/O operations for the first
time, review this discussion and the detail descriptions of the applicable file I/O
commands.

Format Specifiers

This language element can be part of the syntax of certain commands. Format
specifiers can be used to change the format of both input and output data. Review
“Using Format Specifiers” on page 7-5 to learn the ways in which this language
element can be used in command syntax.

ISL Commands
ISL File Input/Output Commands

ISL File Input/Output Commands

The ISL interpreter includes commands for file operations similar to those offered
by languages such as C and BASIC. Anyone familiar with these languages should
be comfortable with the ISL file I/O commands.

All file processing involves the following three steps in the order listed:
* open the file
¢ perform all read and write operations

* close the file

The FOpen Command

When a file in ISL is opened using the FOpen command, it is assigned a file
number between 1 and 10. While no other file commands can modify this value,
this file number is required with all the ISL File Input/Output commands. Since
this value is a normal ISL integer, it can be passed into subroutines. The file
number’s value, when the FOpen command is called, will be ignored.

Since ISL is intended to run in a multiprocessing environment, it also has
commands for “locking files.” This means that if a script has to read a file, it has
the capability to prevent other programs from changing the file while it is being
read.

File I/O System Variables

All file operations affect two system variables: @FILE ERRNO and

@FILE _ERRSTR. Programmers will recognize these two variables as
corresponding to the C “errno” variable and the C “strerror()” function. If an error
has been detected, then @FILE _ERRNO will be set to a non-zero value, and
@FILE_ERRSTR will be the readable string describing the condition.

ISL maintains a temporary internal buffer for reading and writing data to and from
a file. This buffer is normally set at 2048 bytes. The size of this buffer is available
in the system variable @FILE BFRSIZE.

If a script’s file operations require reading or writing data lines greater than 2K,
then the script should change the size of the buffer by directly changing the value
of @FILE BFRSIZE. The file buffer size applies to all files used in the script.

Simphony SIM Manual 7-3

ISL Commands
ISL File Input/Output Commands

For example, if the script is reading lines from a file which is 4K in length, then it
should execute the following line:

@FILE BFRSIZE = 4096

Input/Output File Format

In general, ISL file handling is geared for reading and writing ASCII files,
specifically, comma-separated files (i.e., the files exported and imported via the
Simphony Data Access Service). In this format, integers and real values appear
without quotes, and non-numeric values appear within quotes.

For example, an employee file may look like this:

134,"Tooher", "Daniel",100.00,"12FE"
156,"Collins", "Michael",150.00, "12FF"
179,"Blaine", "Richard",125.00, "56BB"

ISL has commands for automatically breaking these comma-separated fields into
variables, and writing variables as comma-separated lines. If the format of each
line is not a list of fields, then commands exist to read an individual line into a
string, as well as writing an individual string to a file.

7-4

ISL Commands
Using Format Specifiers

Using Format Specifiers

In general, the default behavior for entering data and displaying data in ISL is
sufficient for most needs. However, it is necessary sometimes to change the
default behavior to suit the application at hand. For example, one might want to
allow magnetic card data entry, to pad displayed data with Os instead of spaces, or
to center data within a display area.

A variety of ISL commands can be used to accomplish this type of formatting,
using a language element called a format specifier. To know if the command takes
a format specifier as an argument, look at the syntax for the command in the ISL
Command Reference.

What is a Format Specifier?

A format specifier is text enclosed in braces and appears directly after the variable
or constant whose input/output behavior is affected. When defined, a format
specifier changes the way that the variable or constant is input or output.

For example, the following command will display the contents of the user variable
guest name in the prompt area. The format specifier appears directly after the
guest name variable.

PROMPT guest name{ 20" }

Note: The meaning of the data within the braces will be

“— explained later.

Simphony SIM Manual 7-5

ISL Commands
Using Format Specifiers

Types of Format Specifiers

There are two types of specifiers: input and output. Input specifiers are placed
after input variables in commands that get data from a user: Display,
DisplayMSInput, Input, and InputKey. Output specifiers are placed after
variables and expressions that are being converted to ASCII for outputting data to
the screen, printer, or a message to a PMS.

Specifier Attributes

The general layout of a format specifier is:
{ [input_specifier]| [output specifer] }

* The input_specifier and output _specifier consists of individual specifiers,
which are usually one character.

* Spaces and tabs may be used in a format specifier for clarity. The following
two format specifiers are equivalent:

{-=08}
{-=028}

* Input and output specifiers can appear within one format specifier. However,
not all of the individual specifiers may have meaning. For example, it is
possible to put input specifiers after a variable that is going to be displayed,
but since data is not being entered into the variable, the input specifiers are
meaningless and will be ignored.

Input Specifiers

The input specifiers only have meaning for commands that receive input from the
user. They will be ignored if they appear in commands that only output data (for
example, the Display command).

All input specifiers must be placed before any output specifiers. If they are
present, they must also be placed in the order listed in the following table:

Input Description
Specifier
- Data being typed in by the operator should not be echoed back
to the display
Mn Specify the track number (n = 1 or 2) and what data to read

from the magnetic card. For use with the Input, InputKey,
DisplayInput, and DisplayMSInput commands only. The M
character is case-insensitive

ISL Commands
Using Format Specifiers

Input Specifier

The - specifier is used to hide data being entered by the operator. For example,
authorization codes or passwords should not be echoed to the display as the
operator types them in. The following command prompts the operator for an
authorization code, but echoes it back to the display as it is being typed:

Input auth code, “Enter authorization code”

It can be rewritten so that no data is echoed:

Input auth code{-}, “Enter authorization code”

If the - specifier is used in commands that require both operator input and the
data to be displayed, then not only will the data not be echoed, it will also not
be displayed in the window after it is entered. Instead, the field will contain
asterisks where data is expected.

M Input Specifier

The M specifier is used when magnetic card data may be entered in lieu of the
operator typing the data in. The M specifier defines whether the data is on a
mag card, and which track and field the data should be read from. For
example, it is possible to use the M specifier to get an authorization code from
track 2, field 1, starting offset 3, and copy in 10 characters.

There are two M formats:
¢ Format 1 Syntax: Mn,*
* Format 2 Syntax: Mn, field, start, count | *

These fields are defined as follows:

Field Description

Mn: The track number (M1 or M2). This can be followed by a star

(*) to specify all fields on the track, or use the remaining fields
in this table to read specific information.

field:

The field position within the specified track. This is a positive
integer.

start:.

The starting offset (character) within the field. For example, if
the last four characters of the “Blaine Richard” string needed
to be removed, start the offset at 11.

count:

Number of characters to be read from the start (first character)
to the end of the field (place an asterisk * to include all
characters).

Simphony SIM Manual

7-7

ISL Commands

Using Format Specifiers

Format One

In format 1, the data from the entire track (1 or 2) will be placed into the
variable when the mag card is swiped. The following command allows the
user to enter a code or swipe a magnetic card:

Input auth code{ M2,* }, “Enter authorization code”

If the mag card is swiped, then all the data from track 2 (M2) will be placed
into the variable auth code.

Format Two

Format 2 defines exactly where the data in the track occurs. If the
authorization code appears in field 1 of track 2, and furthermore, starts at
character 3 in the field and consists of 10 characters, then the command can be
rewritten as:

Input auth code{ M2,1,3,10 }, “Enter authorization code”

If the operator swipes the card, the appropriate data will be extracted from the
field and placed into auth code.

Note: A * can be substituted for count, to specify ALL data

“— from the start offset in the field.

7-8

ISL Commands
Using Format Specifiers

Field Positions for Credit Cards

The following is an illustration of the standard field positions for credit cards:

Track 1:

Field # 1 2 3
Data 16/19 Digit Account |26 Alpha Character |YY MM
Number Account Name

Track 2:
Field # 1 2
Data 16/19 Digit Account Number YYMM

The following Input command allows the operator to enter the credit card
name or swipe the card and have the name transferred from track 1, field 2.

Input card name{ M1,2,1,* }, “Enter cardholder name”

The following is an illustration of the standard field position for the MICROS
Employee Card (Note: this card is Track 2 only):

Field # 1

Data 10 Digit Employee Number

The following Input command will get the employee number from the
operator or the mag card and will not echo the data as it is being entered:

Input empl num{ - M2,1,1,10 }, “Enter employee number”

Using Both Input Specifiers

Both input specifiers may be used. This command uses both the - and the M
specifiers:

Input auth code{ - M2,1,3,10 }, “Enter authorization code”

Simphony SIM Manual 7-9

ISL Commands
Using Format Specifiers

Output Specifiers

Output specifiers are used after variables and expressions that are being converted
to ASCII. The output specifiers are similar to the C language printf() specifiers.
The following table lists some representative commands for each of these output

types:
Commands Output Type
Display, WaitForConfirm, and Window | Screen
PrintLine Printing
FWrite File I/O
TxMsg PMS
Syntax

The proper syntax for using the output_specifiers is as follows:
[<[=>1*] [+][0] [size] [DIX|O[B] ["] ["] [:format_string]

Output specifiers must also be placed in the order listed in the following table:

Output Specifier

Description

<

Left justification; the size specifier may be used to specify
the size of the field.

Center justification; the size specifier may be used to
specify the size of the field.

Right justification; the size specifier may be used to
specify the size of the field.

Trim leading and trailing spaces; the size specifier may be
used to specify the size of the field.

Place the sign at the start of field.

Place the sign at the start of field.

size

Where size is the number of the characters in the required
field. The size must be a positive integer or an expression
that is a positive integer.

Decimal (Default); display numerics in decimal format.

Hexadecimal; display numerics in hexadecimal format.

Octal; display numerics in octal format.

Wl O X| T

Binary; display numerics in binary format.

>

Place a space on each side of the data to be displayed.

7-10

ISL Commands
Using Format Specifiers

Name”, \

Output Specifier Description

" Place double quotes around the data to be displayed.

Similar to the BASIC language PRINT USING
command. All characters will be displayed except for the
character, which will be replaced by characters from the
variable or expression preceding the format specifier.

:format_string

Examples of Specifiers

The following are examples of how Input and Output Specifiers may be used. For
complete examples and explanations of the ISL commands, please see the “ISL
Command Reference” on page 7-22.

Input Specifier

The following lines would read data from a Credit Card:
displaymsinput 1, 2, cardholder name{ml, 2, 1, *}, “Enter Guest

2, 2, account num{ml, 1, 1, *}, “Enter Account Number”,

3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”

Output Specifiers

Justification Specifiers

The justification specifiers <, =, and > are only meaningful when the size of
the expression being formatted is greater than the size of the variable itself.

All integers and decimal expressions are right justified, and all string
expressions are left justified, by default. The following section gives
examples and shows how these specifiers can be used to justify data:

Expression Output
125 {8} 125
125 { <8 } 125
125 {=8 } 125
125 {>8 } 125
“abc” { 8 } abc
“abc” { =8 } abc

Simphony SIM Manual

7-11

ISL Commands
Using Format Specifiers

* Specifier
The * specifier is used when the expression should be displayed with leading
and trailing spaces removed.

Expression Output
“125” {*} 125
“ 125 7 {*} 125
“ word 1 and word 2 ” {*} | word 1 and word 2

+ Specifier
The + specifier is used to override the default behavior of displaying negative
numbers with the - sign to the right of the number by causing the - to appear

on the left.
Expression Output
-891 891-
-891 {+} -891

If the SetSignOnLeft command is executed, then the sign will always appear
on the left side of the number. The + specification in this case will be

superfluous.

0 Specifier
The 0 specifier is used to pad the data being displayed with ASCII Os instead
of spaces. The 0 specifier is only meaningful if the size specifier is also used:

Expression Output
199 {0 } 199
199 {5} 199
199 {05} 199
199 { <05 } 19900
size Specifier

The size specifier defines the width of the expression being displayed. If no
size specifier is present, then the width of the data formatted will be equal to

the number of characters in the data.

7-12

ISL Commands
Using Format Specifiers

If the size specifier is 8, then 8 characters will be displayed, irrespective of the
width of the actual data being displayed. The output data will be padded with
spaces (unless the 0 specifier is used) or truncated if the size specifier is less
than the length of the data to be displayed.

There are two types of size specifiers: absolute and expression. All size
specifiers must evaluate to positive integers. Negative numbers and/or
decimal values are not allowed.

Absolute specifiers are an integer value, for example, 5. The size specified
must not begin with a 0, since the 0 will be mistaken for the 0 specifier.

Expression sizes use standard ISL expressions to specify the size. However,
the expression must be enclosed in parentheses, or an error will be displayed.

(In the following example, the value of width is assumed to be 3.)

Expression Output
“fred” fred
“fred” { 8 } fred
“fred” { =8 } fred
“fred” { (width*2) } fred
“fred” { width+2 } ERROR: not enclosed in ()

D, X,0, and B Specifiers

The radix specifiers (D, X, O, and B) determine the numeric base of the
integer expression being displayed. They have no meaning for decimal and
string data. The default is base 10 (D).

Expression Output
100 100
100 {H} 64
100 {B} 1100100
100 {08B} 01100100

Simphony SIM Manual 7-13

ISL Commands

Using Format Specifiers

:format_string Specifier

The format_string is the data that follows the colon : specifier. The
format_string consists of ASCII characters and the # character.

Format strings are used when the data displayed should be interspersed with
spaces and/or other characters to fit conventional display methods. For
example, a 10-digit phone number should be displayed as:

(nnn) nnn—-nnnn

When the SIM encounters a format string, all # characters will be replaced
with data from the preceding expression. All other characters will be output
as-is. Characters are replaced starting from the right side of the format string.

Output format specifiers may be used in a format specifier along with the
format string specifier. Any # characters in excess of the expression being
formatted will be replaced with spaces, unless the 0 output specifier is used.

For example, to display a U.S phone number, assume that the variable
phone num contains the phone number and is equal to 3012108000. Also
assume that room num contains a room number and is equal to 17031.

Expression

Output

phone num

4432858000

phone num {:###-#H1-Hi##

443-285-8000

phone num {:(###) #HH#-HiHH# |

(443) 285-8000

room_num

17031

room_num {:##-###}

17-031

room_num {:Floor ## room ###}

Floor 17 room 031

It may be necessary sometimes to display the # character and not have it
replaced with a character from the output expression. In this case, precede the
character with a single quote.

Expression
phone_num {:Phone ‘# ##-###-HHHE}

Output
Phone # 443-285-8000

It is possible to include format specifiers after each expression being
formatted in one command. For example:

TXMSG room number { 04 }, guest name { <24 }, Qcknum

7-14

ISL Commands
Using Format Specifiers

Using Input and Output Specifiers Together

Input and output specifiers may be used within the same syntax in the
DisplayInput and DisplayMSInput commands only.

Simphony SIM Manual 7-15

ISL Commands
Command Summary

Command Summary

For quick reference, this section contains an alphabetical listing and brief
description of all ISL commands.

Note: ISL commands are listed by category in Appendix C.

o,

REMEMBER, the commands that require either the StartPrint command or
Window command in order to operate correctly are listed in the table below with
the following designation:

e (P) for StartPrint

or

e (W) for Window

Command Description
Beep Sound the beeper.
Break Break out of the current ‘For’ loop.
Call Call a subroutine procedure.
ClearArray Clear an array.
ClearChkInfo Clears check information detail lines in buffer.
ClearlsITs Clear any previously defined touchscreen keys.
ClearKybdMacro Clear macro key definitions.
ClearRearArea Clears the contents of the customer display.
ContinueOnCancel Continue processing script even if the [Cancel] or

[Clear] key is pressed after an Input command has
been issued.

Display Display text or a field at a defined place within a

(W) window.

Displaylnput Display an input field within a window.

(W)

Displaylnverse Display input field in inverse video.

DisplaylsITs Display an ISL-defined touchscreen.

DisplayKBArea Display data in the keyboard entry area of a
Keyboard Workstation.

7-16

ISL Commands
Command Summary

Command Description
DisplayMSInput Display an input field within a window and allow
W) magnetic card swipe to satisfy field entry.
DisplayRearArea Display up to 20 characters on the POS

workstation customer display.
DisplayTouchscreen Displays a workstation touchscreen after a SIM
event exits.
DLLCall Calls a function contained in the DLL. Refer to
page F-5.
DLLCall_STDCall Calls a function contained in the DLL using the
STDCall convention. Refer to page F-5.
DLLCallW Calls a function contained in the DLL with
Unicode. Refer to page F-5.
DLLFree Frees a loaded DLL. Refer to page F-5.
DLLLoad Loads an external DLL. Refer to page F-5.
ErrorBeep Sound an error beep.
ErrorMessage Display an error message and continue.
Event...EndEvent Indicate the start and end of an Event procedure.

The following events are supported:

Inq

Tmed
RxMsg
Final_Tender
Print Header
Print_Trailer

ExitCancel Exit a script and cancel the current tendering
operation.

ExitContinue Exit a script and continue the current tendering
operation.

ExitOnCancel Exit a script when the [Cancel] or [Clear] key is
pressed after an Input command has been issued.

ExitWithError Display a defined error message and exit the
script.

FClose Close a file.

FGetFile Gets a file from the SIM file service:

FLock Lock a file.

FOpen Open a file.

Simphony SIM Manual 7-17

ISL Commands
Command Summary

Command

Description

For...EndFor

Perform commands a specified number of times.

ForEver...EndFor

Perform commands an indefinite number of
times.

Format Concatenate one or more variables into a string.

FormatBuffer Format a non-printable string into a printable
string.

FormatQ Concatenate one or more variables into a string
and enclose the string in quotes.

FormatRaw This command allows a SIM script to send up to 2

19 Kilobytes of raw (un-altered) data to only IDN,
Serial, IP, and Bluetooth printers.

FPutFile Puts a file into the SIM file service server

FRead Split the next line read from a file into the
variables specified in the statement.

FReadBfr Read the number of bytes specified in the
command.

FReadLn Read the entire line into a string variable.

FSeek Go to a specified position in an open file.

FUnLock Unlock a locked file.

FWrite Write to a formatted file.

FWriteBfr Write a specified number of bytes.

FWriteLn Write an entire line.

GetEnterOrClear Wait for the [Enter] or [Clear] key to be pressed.

GetTime Retrieve current time.

If...Else[If]...EndIf

Execute commands if the specified condition is
met.

InfoMessage Display an informational message and continue.

Input Capture operator entry for a single field or
prompt.

Inputkey Capture operator entry and a key for a single field
or prompt.

LabelFeedToPeel Feeds printed labels to the label peeling position.

19 Only works on the Epson L90 label printer.

LineFeed Linefeed one or multiple lines.

(P)

7-18

ISL Commands

Command Summary

Command Description

ListDisplay Display a list.

(W)

ListInput Display a list and get an operator selection.

(W)

ListInputEx Display a list and get an operator selection. Does
not provide a WROW or WCOL variable.

ListPrint Print a list.

(P)

LoadDbKybdMacro Load a pre-defined keyboard macro so that it may
be executed upon successful completion of a
script.

LoadKybdMacro Load a user-defined keyboard macro so that it
may be executed upon successful completion of a
script.

LowerCase Convert a string to lower-case.

MakeAscii Remove any non-ASCII or non-printable
characters from a string.

MakeUnicode Remove any non-printable characters from a
string.

Mid Set one portion of a string equal to another string.

MSleep Sleep for the requested number of milliseconds.

PopUplsITs Display a touchscreen as a pop-up.

PrintLine Print specified text and/or fields.

(P)

Prompt Display an operator prompt.

ProRate Prorate the itemizers for charge posting.

QueueMsg Hold the PMS message in the Simphony database

queue until the PMS is online.

[Retain/Discard]Global Var

Retain or discard global variables between
transactions.

Return Return from a subroutine.

ReTxMsg Retransmit a message.

RxMsg Define the format of a message received over the
interface.

SaveChkInfo Insert check information detail into the check.

Simphony SIM Manual

7-19

ISL Commands
Command Summary

Command Description

SaveRefInfo Save information as tender/media reference
detail.

SaveRefInfox Save information as tender/media reference detail
with reference type.

ScanBarcode Used by SIM to Scan Barcodes that contain more
than 40 characters (e.g., QR codes).

SetlslTsKey Define a touchscreen key.

SetReRead Re-read the ISL script for new or changed ISL

scripts.

SetSignOn| Left/Right]

The minus sign will go on the left or right side,
respectively, when formatting numbers.

SetString Replace all or a specific number of characters in a
string with a particular character.

SimDB Used by SIM to send a request to the SIMDB
DLL and then receive a response.

Split Break a string into separate fields.

SplitQ Break a string into separate fields and enclose the

string in quotes.

StartPrint...\
EndPrint[FF/NOFF] (P)

Print information on a specified printer, with or
without a form feed.

Sub...EndSub Indicate the start and end of a subroutine
procedure.

System Execute a Windows command.

Touchscreen Activate a touchscreen for the duration of this
operation.

UpperCase Convert a string to upper-case.

UseBackupTender Use backup tender programmed in the Simphony
database.

Use[Compat/ISL]Format | Use Simphony-standard or ISL message format.

Use[ISL/STD]TimeOuts Use ISL time outs or the standard Simphony error
messaging when there is no response from the
PMS System.

UseSortedDetail Consolidated detail is accessible.

UseStdDetail Raw detail is accessible.

UseTMSFormat Format messages using the TMS message format.

7-20

ISL Commands

Command Summary

Command

Description

Var

Declare a variable field of specified type that will
be used for input and/or used in an interface
message.

WaitForClear

Wait for the [Clear] key before continuing. If no
prompt text is supplied, “Press Clear to Continue”
is the default.

WaitForConfirm

Wait for an operator confirmation. If no prompt
text is supplied, “Press Enter to Continue” is the
default.

WaitForEnter

Wait for the [Enter] key before continuing. If no
prompt text is supplied, “Press Enter to Continue”
is the default.

WaitForRxMsg

Wait for an interface message to be received after
a TxMsg has been sent. If no prompt text is
supplied, “Please Wait--Sending Message” is the
default.

While...EndWhile

Execute a loop structure until an expression
becomes FALSE.

Window Create a window of specified size and optionally
display a window title.

WindowClear Clear a display window.

(W)

WindowClose Close the current window.

(W)

WindowEdit[WithSave] Display the current contents of specified variables

(W) within a window and allow them to be edited;

optionally require the [Save] key to save entries
and exit.

WindowInput[WithSave]

Display the specified fields within a window,

(W) without the present contents; optionally require
the [Save] key to save entries and exit.

WindowScrollDown Scroll the current window down one line.

WindowScrollUp Scroll the current window up one line.

Simphony SIM Manual

7-21

ISL Commands
ISL Command Reference

ISL Command Reference

This section is an A-Z reference of ISL commands. The information for each
command is organized into the following categories:

* Description: Summarizes the function of the command.

* Syntax: Provides the proper way to specify the command and any arguments,
as well as a description of each argument.

* Remarks: Gives more detailed information of the command, its arguments,
and how the command is used.

* POS Setup: Provides any Simphony database programming required to issue
the command successfully.

¢ Example: Includes an example of the command being used in a script.

* See Also: Names related commands, functions, system variables, other
documentation to consult, etc.

7-22

ISL Commands
ISL Command Reference

Beep

Description

This command can be used to sound the beeper at a workstation. It should be used
for operator confirmation or notification. Note that a separate ErrorBeep
command is provided to notify the operator of errors.

Note: The Beep command currently does not cause the
“7 workstation to beep in Simphony as the “Enable Error Beeper”
wy

option is not available in the Enterprise Management Console

(EMC).

The command remains so that scripts written for legacy
MICROS products using the Beep command will still function
in Simphony.

Syntax
Beep

See Also

ErrorBeep command

Simphony SIM Manual 7-23

ISL Commands
ISL Command Reference

Break

Description

This is used to break out from a For or Forever loop. This is especially useful
when a ForEver loop is executed.

Syntax
Break

Remarks

* The Break command will only break out of the For or Forever loop it is
currently in. If the loops are nested, then multiple breaks are required:

forever
forever
break //break out of inner loop
endfor
break //break out of outer loop
endfor

e I[fthe ability to break out of a nested For is required, then use a subroutine and
Return out of the loop instead:

sub break out

forever
for i = 1 to 10
for num = i to count
if...
return
endif
endfor
endfor
endfor
endsub

7-24

ISL Commands
ISL Command Reference

Example

The following script provides an example of how to break out of a Forever loop:

event ing : 1
var user input : N6
forever
input user input, “Enter a number and press [ENTER]”
if user input > 0 AND user input <99999
break
else
errormessage “Value outside valid range”
endif
endfor
errormessage “Well done”
endevent

See Also

For and ForEver command

Simphony SIM Manual 7-25

ISL Commands
ISL Command Reference

Call

Description

This command is used to call a subroutine defined by the Sub command.

Syntax
Call name
Argument Description
name the name of the subroutine defined by the Sub
command
Remarks

* The subroutine has access to all the local variables within the Event that
called the subroutine, and all global variables in the script file, so these
variables may be used to pass parameters. In addition, local variables may be

declared in the subroutine.

* When a Call is made, ISL will start searching for the subroutine from the top
of the program. Therefore, if there are two subroutines with the same name,
only the first one will ever get called:

event ing:1
call mysub
endevent

sub mysub

endsub

sub mysub

endsub

//this one will get called

//this one will not
// because it is
// preceded by a
// subroutine of
// the same name

7-26

ISL Commands
ISL Command Reference

¢ Upto 32 calls can be nested within a subroutine. If there are anymore, an error
will occur.

sub mysub
call mysub //this will occur 32 times
endsub

Example
The following script will call a subroutine to build a window:

event ing : 1
var win string : a40 = “This window was built in a subroutine!”

call msg window
waitforclear
endevent

sub msg_window
window 1, len(win string) + 2
display 1, 2, win string
endsub

See Also

Sub command

Simphony SIM Manual 7-27

ISL Commands
ISL Command Reference

ClearArray

Description

This command sets all elements of the specified array equal to zero if the array is
numeric, or null if alphanumeric. By default, arrays are initialized in this way

when declared.

Syntax

ClearArray array variable

Argument

Description

array _variable

the name of the array to clear, based on the
name of a user variable

Example

The following script allows the user to send up to a 13 line message to the kitchen
printer. Before actually sending to the printer, it allows the user the opportunity to
edit their work. If the user presses clear when prompted, the array variable is
cleared and the user can retype a message.

event ing : 1
var kitchen msg[13]: a20
var sender_name: a20
var rowcnt : n3
var term key : key
var data_entered: a20

forever
call get_message
window 1, 66

display 1, 2, “PAGE UP=edit, CLEAR=retype, ENTER=send, CANCEL=“quit”

inputkey term key, data_entered,
if term key = QKEY ENTER

break

ww

elseif term key = @KEY_ CLEAR
cleararray kitchen msg
elseif term key = QKEY CANCEL

exitcontinue
endif
endfor
call print_message
endevent
sub get message
window 14, 22

displayinput 1, 2, sender name, “Enter your name”

for rowcnt = 1 to 13

displayinput rowecnt + 1,

endfor
windoweditwithsave
endsub

2, kitchen_msg[rowcnt], “Enter kitchen message”

7-28

ISL Commands
ISL Command Reference

(continued from previous page)

sub print message
startprint @ordrl
printline “ "
printline “Message from “, sender name
printline “ ”
for rowcnt = 1 to 136
if len(kitchen msg[rowcnt]) > ™%
printline kitchen msg[rowcnt]

endif
endfor
printline “======= END MESSAGE ========"
endprint
endsub

Simphony SIM Manual 7-29

ISL Commands
ISL Command Reference

ClearChkInfo

Description

This command clears any check information detail lines that have not been written
to the Guest Check files and are stored in the guest check information buffer.
Normally, this command is used if the script added information to the buffer but,
at a later time, decides that the information should not be saved in the Guest
Check Files.

Syntax
ClearChklInfo

Remarks

* Check information detail is a type of check detail that can be stored in the
Guest Check files via the SaveChkInfo command. Typically check
information detail lines are used to store customer information, such as name
and address, so that it can print on a guest check or a remote order device.

* This command is executed upon exiting the script.

¢ Keep in mind that, like other types of guest check detail, i.e., totals and
definitions, guest check information detail lines are only stored in the Guest
Check files temporarily and cleared upon closing a guest check.

POS Setup

Refer to the detail description of SaveChkInfo for a brief discussion of the usage
of check information detail.

7-30

ISL Commands
ISL Command Reference

Example

The subroutine below requires that the operator input a string five times, then
prompts the operator to confirm saving the information. If the operator responds
by pressing the [Clear] key, the check information detail is discarded; otherwise,
the information is saved.

sub get info

var string : A20
var answer : N5
var 1 : N5

for i =1 to 5
input string, “Enter string %, i

savechkinfo
endfor
getenterorclear answer, “Save information?”
if answer = 0
clearchkinfo
endif
endsub
See Also

SaveChkInfo command

Simphony SIM Manual 7-31

ISL Commands
ISL Command Reference

ClearlsiTs

Description

This command clears any touchscreen keys that have been defined using the
SetIslTsKey command.

Syntax
ClearlIsITs

Remarks
All previously defined keys are cleared each time a script executes.

After a touchscreen has been displayed, its keys remain defined, thus, MICROS
Systems, Inc. recommends using the ClearIslTs command to clear previously
defined touchscreen keys when building two or more touchscreens in the same
event.

Example

The following example is a subroutine (create ts) that clears previously defined
touchscreen keys before calling another subroutine (set_keys), one that will build
a new touchscreen.

sub create ts

clearislts //Clear out any previously
// defined touchscreen keys

call set keys //Build the keys needed

endsub

See Also

DisplaylIslTs, PopUplIslTs, and SetIsITsKey commands

7-32

ISL Commands
ISL Command Reference

ClearKybdMacro

Description

This command will clear out any macro keys that have been defined by the
LoadKybdMacro or LoadDbKybdMacro commands since the script started.

Syntax
ClearKybdMacro

Remarks
All macro keys are cleared out when the script is started.

Example

For example, this command may be used if the LoadKybdMacro command were
issued, but the response from the PMS system was incorrect; the
ClearKybdMacro would be used to clear the macro in preparation for a
rebroadcast or transaction cancel.

event ing:1
loadkybdmacro 11:841 //Load PMS 1 Inquiry Key
txmsg "ing 1 request"
waitforrxmsg

endevent

event rxmsg : ing 1 reply
var status : nb
rxmsg status
if status = 0
errormessage “No Response from PMS “
clearkybdmacro
else
waitforclear “Press Enter to Continue
endif
endevent

w

See Also
LoadKybdMacro and LoadDbKybdMacro command

Simphony SIM Manual 7-33

ISL Commands
ISL Command Reference

ClearRearArea

Description

This command will clear the contents of the customer display.

Syntax

ClearRearArea

Example

event ing:1
DisplayRearArea “Hello”
WaitForClear “Press clear to clear display”
clearreararea

end event

See Also

DisplayRearArea command

7-34

ISL Commands
ISL Command Reference

ContinueOnCancel

Description

This command will continue processing the script even if the [Cancel] or [Clear]
key is pressed after an Input command is issued.

Syntax

ContinueOnCancel

Remarks

¢ In normal operations, when ISL is waiting for user data after an Input
command is issued (i.e., Input, WindowInput, WindowEdit,...) and the user
presses the [Cancel] key or the [Clear] key at the input prompt, the script will
terminate. It may be necessary for the script to continue even if the user has
cancelled the entry. If the ContinueOnCancel command is executed, then the
Input commands will not terminate the script if the [Cancel] key or the
[Clear] key is pressed. Instead, they will return to the line after the Input
command. The @INPUTSTATUS system variable will be set to 0 if the user
cancelled the input, or 1 if valid data was entered.

¢ Ifthe ContinueOnCancel is used, the script should check all Input
commands to determine if the user cancelled the input or not.

See Also
ExitCancel, ExitOnCancel, Input, WindowEdit, and WindowInput commands

Simphony SIM Manual 7-35

ISL Commands
ISL Command Reference

Display

Description

This command can be used to display a message in a window.

Syntax

Display row, column, expression[{output specifier}]\
[, expression| {output_specifier}]...]

Argument Description

row the integer expression specifying the screen
row within the defined window where the
message will be displayed

column the integer expression specifying the screen
column within the defined window where the
message will be displayed

expression an expression to be displayed; it may be one of
the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} the integer expression specifying the screen
column within the defined window where the
message will be displayed

Remarks

* Since this command provides information about where to locate the text or
fields within the window, a Window command must have been executed prior
to this command

* The Display row and column must fall within the boundaries of the defined
window.

7-36

ISL Commands
ISL Command Reference

An error will occur if the data to be displayed extends past the end of the
window:

window 10, 10, “10 columns”
//ERROR!

display 1, 1, “this line is greater than 10 columns”

Example

The following script will display a guest room number and name in a window:

event rxmsg : room info
var room num : ab
var guest name : a20
rxmsg room_num,
window 1, 40
display 1, 2, “The guest in room ”, room num, “ is ”, guest name
waitforclear

endevent

guest name

See Also
Window command; Chr function

7-37

Simphony SIM Manual

ISL Commands
ISL Command Reference

DisplayInput

Description

This command defines an input field within a window. thus, a Window command
must have been executed prior to this command. In addition, a WindowEdit or
WindowInput must follow it, or the grouping of DisplayInput commands to

which it belongs.

Syntax

Displaylnput row, column, input_variable[{input/output specifier}],\
prompt_expression|, prompt_expression,...]

Argument Description
row the integer expression specifying the screen
row within the defined window where the
input variable will be displayed
column the integer expression specifying the screen

column within the defined window where the
input variable will be displayed

input_variable

an array_variable or user_variable that allows
user input

{input/output_specifier}

one or more of the input and output specifiers
that determine the format of all input and
output fields; see full definition on pages 7-6
through 7-10

prompt_expression

an expression displayed on the prompt line,
usually to instruct the user what toenter; it may
be one of the following:

user_variable
system_variable
constant

string

Sfunction
equation

7-38

ISL Commands
ISL Command Reference

Remarks

* The DisplayInput row and column must fall within the boundaries of the
defined window.

* The prompt_expression is required.

* Displaylnput can be used with the WindowEdit\Input commands to build a
screen of input fields in order to accept input from the user. Navigating among
the input fields is achieved with the movement keys: up arrow, down arrow,
home, and end. [Enter] can also be used to navigate, which moves the focus to
the next field, and [Clear], which moves the focus to the previous field.

* When a WindowEdit or WindowInput command is executed, each field
displayed using the DisplayInput command will be edited in turn.

* The DisplayInput, DisplayMSInput, Input, and InputKey commands are
the only commands that act on both the Input and Output Specifiers.

* The maximum number of window input entries allowed is 64.
for i = 1 to 65
displayinput 1, i, a[i], "Enter ", i

// error when i is 65
endfor

e Ifthe input variable to be displayed extends past the end of the window, then
an error will occur on the WindowEdit or WindowInput command, and not
the DisplayInput command.

* WindowInput fields can be edited using the in-place keyboard entry editing
feature. The following Type 9 (Keypad) keycodes assign commands to
specific keys in the keyboard or touchscreen files:

* #19—Edit
* #20—Edit Delete
e #21—Edit Insert Tggl

* A keyboard entry field can be greater than the 40 characters allowed in a
displayed entry field.

Simphony SIM Manual 7-39

ISL Commands
ISL Command Reference

Example

The following script will allow input of customer information in a window:

event ing : 1
var rowcnt: n3

var field name[5] : al5

var customer info[5]: a20

field name[l] = “Customer name:”
field name([2] = “Company:”

field name[3] = “Address:”

field name[4] = “City:”

field name[5] = “Phone:”

window 5, 36
for rowcnt = 1 to 5
display rowcnt, 2,
field name[rowcnt]
displayinput rowcnt, 16, customer info[rowcnt],\
“Enter ”, field name[rowcnt]
endfor
windowedit
endevent

See Also
Window, WindowEdit, and WindowInput commands

7-40

ISL Commands
ISL Command Reference

Displaylnverse

Description

This command can be used to display a message in a window in inverse video.
Since this command provides information about where to locate the text or fields
within the window, a Window command must have been executed prior to this
command.

Syntax

DisplayInverse row, column, expression| {output_specifier}]\
[, expression|{output_specifier}]...]

Argument Description

row the integer expression specifying the screen
row within the defined window where the
message will be displayed

column the integer expression specifying the screen
column within the defined window where the
message will be displayed

expression an expression to be displayed; it may be one of
the following:

user variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

* The DisplayInverse row and column must fall within the boundaries of the
defined window.

* An error will occur if the data to be displayed extends past the end of the

window:
window 10, 10, “10 columns”
//ERROR!
displayinverse 1, 1, “this line is greater than 10 columns”

Simphony SIM Manual 7-41

ISL Commands
ISL Command Reference

Example
The following script will display a guest room number and name in a window:

event rxmsg : room_info
var room num : a5
var guest_name : a20
rxmsg room_num, guest_name
window 1, 40
displayinverse 1, 2, “The guest in room ”, room num, “ is ”, guest_name
waitforclear
endevent

See Also

Display and Window commands

7-42

ISL Commands
ISL Command Reference

DisplaylsITs

Description
This command displays a touchscreen defined by the SetIsITsKey command.

Syntax
DisplayIslTs

Remarks

* After a touchscreen has been displayed, its keys remain defined until cleared
by the ClearIslTs command or until the script terminates

* Sixty temporary touchscreen keys are available.

Example

The subroutine below first clears any previously defined touchscreen keys and
displays two touchscreen keys, [YES] and [NO], using the DisplaylIslTs
command. This subroutine displays these keys as the operator is issued a prompt
by the system and captures the operator’s input.

sub get yes or no(ref answer, var prompt s:A38)
var keypress : key
var data : A20

clearislts

setisltskey 2, 2, 4, 4, 3, QKEY ENTER, "YES"
setisltskey 2, 6, 4, 4, 3, @KEY CLEAR, "NO"
displayislts

inputkey keypress, data, prompt s
if keypress = (@KEY ENTER

answer = 1
else
answer = 0
endif
endsub
See Also

ClearIsITs, PopUplslTs, and SetlsITsKey commands

Simphony SIM Manual 7-43

ISL Commands
ISL Command Reference

DisplayKBArea

Description

This display keyboard area command displays data in the keyboard entry area of a
MICROS Keyboard Workstation (KBWS). Since there are limited display
capabilities on the KBWS, this command allows the SIM script writer to display
more information on the KBWS display than was normally allowed using the
current SIM display commands.

Syntax
DisplayKBArea prompt expression

Remarks

The DisplayKBArea accepts a set of display data in a format similar to the
Prompt command’s.

Example

The following script will display a line of data, and then wait for the operator to
press clear.

event ing:1
var data:N5

displaykbarea "Enter a number"
input data, "Press CLEAR to stop"
displaykbarea "You entered ", data
waitforclear "Press CLEAR"

endevent

7-44

ISL Commands
ISL Command Reference

DisplayMSInput

Description

This command defines an input field within a window; therefore, a Window
command must have been executed prior to this command, and a WindowEdit or
WindowInput must follow it. This command defines an input field within a
window that may be entered through the keyboard or touchscreen, or by swiping a
magnetic card through the magnetic card reader on the workstation.

Syntax

DisplayMSInput row, column, input_variable\
[{input/output_specifier}], prompt_expression|, row, column,\
input variable{input/output specifier}, prompt_expression,...]

Argument Description
row the integer expression specifying the screen
row within the defined window where the
input_variable will be displayed
column the integer expression specitying the screen

column within the defined window where the
input_variable will be displayed

input variable

an array_variable or user_variable that allows
user input

{input/output specifier}

one or more of the input and output specifiers
that determine the format of all input and
output fields; see full definition on pages 7-6
through 7-10

prompt_expression

an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

Simphony SIM Manual

7-45

ISL Commands

ISL Command Reference

Remarks

This command allows the designer to specify the fields that the operator can
enter manually, fields that may be entered from a magnetic card swipe, or
fields that may be entered in both fashions. In addition, the location and
length of the data to be used on the magnetic card stripe may also be defined.

After the WindowInput command is executed, the system variable
@MAGSTATUS will be set to Y if the magnetic card was swiped during the
WindowlInput. It will be set to N if a magnetic card was not swiped. To use
@MAGSTATUS in this way, use only one DisplayMSInput command with
each WindowInput entry (otherwise, @MAGSTATUS will be undefined). If
more than one DisplayMSInput command is needed, use the Len function to
check if the input string is set to zero (see “ISL Functions” for an explanation
of the Len function).

The prompt_expression is required.

DisplayMSInput can be used with the WindowEdit\Input commands to
build a screen of input fields in order to accept input from the user. Navigating
among the input fields is achieved with the movement keys: up arrow, down
arrow, home, and end. [Enter] can also be used to navigate, which moves the
focus to the next field, and [Clear], which moves the focus to the previous
field.

The DisplayInput, DisplayMSInput, Input, and InputKey commands are
the only commands which act on both the Input and Output Specifiers (please
see page 7-5 for more information).

The maximum window input entries allowed is 64.

for i = 1 to 65
displayinput 1, i, afli], "Enter ", 1

// error when 1 is 65
endfor

If the input variable to be displayed extends past the end of the window, then
an error will occur on the WindowInput command, and not the DisplayInput
command.

7-46

ISL Commands
ISL Command Reference

* In the case where row and column is 0, the input field (e.g.,
cardholder name) is considered hidden and will not be displayed;
additionally, it can only be satisfied with a magnetic card, which means no
keyboard input is allowed.

displaymsinput 0, 0, cardholder name{ml, 2, 1, *},\
“Enter Guest Name”, ...

There can be more than one hidden field in a DisplayMSInput command. In
most cases, the input specification for this field will contain magnetic stripe
information.

* The prompt expression for all hidden field(s) will be ignored.

Example

The following script will read the information from Track 1 of a credit card:

event ing : 1
var cardholder name: a26
var account num: nl9
var expiration date: n4
var trackl data: a79

window 3, 78
displaymsinput 1, 2, cardholder name{ml, 2, 1, *}, “Enter Guest Name”, \

2, 2, account num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”
windowinput
waitforclear
endevent
See Also

Window, WindowEdit, and WindowInput commands; Len function

Simphony SIM Manual 7-47

ISL Commands
ISL Command Reference

DisplayRearArea

Description
This command will display up to 20 characters on the POS workstation customer
display (rear display).

This command works on 20-character displays only—8-character displays are
ignored.

Syntax

DisplayRearArea expression[{output _specifier}] [, expression[{output_specifier}]...]

Example

event ing:1l
var text:80
input text, “Enter data”
displayreararea “Data:”, text
end event

See Also

ClearRearArea command

7-48

ISL Commands
ISL Command Reference

DisplayTouchscreen

Description

This command will display a workstation touchscreen after a SIM event exits.

Syntax

DisplayTouchscreen

Simphony SIM Manual 7-49

ISL Commands
ISL Command Reference

DLLCall

Description

This command will call a function contained in the DLL.

Syntax
DLLCall handle, dll name([parml [parm?2 [parm3...]]])

See Also
e DLLCallW, DLLFree, and DLLLoad commands

* Appendix F—Windows DLL Access

7-50

ISL Commands
ISL Command Reference

DLLCall_STDCall

Description

This command will call a function contained in the DLL using the STDCall
convention.

Syntax
DLLCall_STDCall handle, dil name([parml [parm?2 [parm3...]]])

See Also
¢ DLLCallW, DLLFree, and DLLLoad commands

* Appendix F—Windows DLL Access

Simphony SIM Manual 7-51

ISL Commands
ISL Command Reference

DLLCallw

Description

This command will call a function contained in the DLL with Unicode.

Syntax
DLLCallW handle, dll name([parml [parm?2 [parm3...]]])

See Also
¢ DLLCall, DLLFree, and DLLLoad commands

* Appendix F—Windows DLL Access

7-52

ISL Commands
ISL Command Reference

DLLFree

Description
This command will free a loaded DLL.

Syntax
DLLFree handle

See Also
¢ DLLCall, DLLCallW, and DLLLoad commands

* Appendix F—Windows DLL Access

Simphony SIM Manual 7-53

ISL Commands
ISL Command Reference

DLLLoad

Description
This command will load the external DLL. The d111oad command needs to be
called only once during the lifetime of the SIM script.

Syntax
DLLLoad handle, name

Example

event ing:1

var dll handle:N9

dllload dll handle, “myops.dll”
end event

See Also
¢ DLLCall, DLLCallW, and DLLFree commands

* Appendix F—Windows DLL Access

7-54

ISL Commands
ISL Command Reference

ErrorBeep

Description

This command can be used to sound the error beeper at the workstation.

Note: The ErrorBeep command currently does not cause the

“7 workstation to beep in Simphony as the “Enable Error Beeper”
option is not available in the Enterprise Management Console

oy (EMC).

The command remains so that scripts written for legacy
MICROS products using the ErrorBeep command will still
function in Simphony.

Syntax
ErrorBeep

See Also

Beep command

Simphony SIM Manual 7-55

ISL Commands
ISL Command Reference

ErrorMessage

Description
This command can be used to display an error message at the workstation when an
incorrect entry is made by the operator.

Syntax
ErrorMessage expression[{output_specifier}][, expression|
[{output_specifier}]...]

Argument Description

expression an expression to be displayed; it may be one of
the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

The ErrorMessage command expects one error line to be displayed. However,
the UWS displays two lines. The error line to be displayed is broken up between
the two logical lines. If the line is too long to be displayed, it will be truncated.

See Also
InfoMessage

7-56

ISL Commands
ISL Command Reference

Example
The following script will display a message indicating that an entry is invalid:

event ing : 1
var menu_choice: n3

window 3, 23
display 1, 2, “[1] Edit member info”
display 2, 2, “[2] Add new member”
display 3, 2, “[3] Exit”
forever
input menu choice, “Choose a number and press [ENTER].”
if menu choice < 1 OR menu choice > 3
errormessage “Choice [” , menu choice, “]is outside the valid”,\
“ range”
else
break
endif
endfor
endevent

Simphony SIM Manual 7-57

ISL Commands
ISL Command Reference

Event...EndEvent

Description

The Event command indicates the start of a procedure associated with an operator
inquiry, payment, an interface response message or printing addition information
on the check header or trailer lines. The EndEvent indicates the end of the event

procedure.

e Ifthe * specifier is present in an Event line, in the Event ID field, then the
Event will be executed if the Event types match, regardless of the Event ID.
The * specifier affects the following events: Inq, Tmed, RxMsg, and
Final_Tender. For example, the following Event will catch all Inquire
Events:

event ing : *

endevent

* Itis possible to write an Event Inq or Event Tmed as an expression.
Example:

event ing : 5
can be defined as:
event inq : (2 + 3)

In addition, variables may also be used, but must be defined as global
variables. Example:

var guest ing number : N5 = 5

event ing : guest ing number

¢ The EndEvent command cannot be used within a subroutine.

Syntax 1
Event Inq : number
Argument Description
number corresponds to a pre-defined SIM Inquiry key

programmed in the Simphony database, or * to
execute the Event whenever it is encountered

7-58

ISL Commands
ISL Command Reference

Remarks 1

¢ The Event Inq command is executed when a SIM Inquiry key is used at a
workstation.

* The valid entry for number is 1 through 20.

Example 1

This is an example of a standard Inquiry event:

event inq : 1
var menu choice: n3
window 3, 23

endevent

Syntax 2

Event Tmed : rnumber

Argument Description

number corresponds to a pre-defined SIM Inquiry key
programmed in the Simphony database, or * to
execute the Event whenever it is encountered

Remarks 2

¢ The Event Tmed command is executed when an ISL Tender key is used at
the workstation.

* The Tender number must be an object number in the Tender Media module. It
is required that the Tender Media PMS Option, Use ISL TMED Procedure
Instead of PMS Interface is enabled, and the workstation must be within a
transaction for this Event to work. For a complete explanation, please see
“Create a SIM Tender Key” on page 2-14.

Simphony SIM Manual 7-59

ISL Commands
ISL Command Reference

Example 2

This is an example of a standard Tender/Media event:

event tmed : 10
var rowcnt : n3
var deliv desc[6] : alb
deliv desc[l] = “Name:”
window 6, 43

endevent

Syntax 3

Event RxMsg : event ID

Argument Description
event 1D the first field in the response message that

identifies the event that is expecting that
response

Remarks 3

® The first field in a response message is always the event ID and should not be
used in any successive RxMsg variable.The event ID must begin with a letter
A -Z,a-z,or the underline character (), and it can be up to 255 characters in
length.

* When a message has been received from the PMS, the ISL will search the
script for an RxMsg event whose event type matches the first field in the
application_data segment of the message. If ISL encounters a message of the
form: Event RxMsg : * it will automatically run that event without regard to
the PMS message’s first field value. This feature is useful for debugging ISL
scripts when the message from the PMS may not be correct.

* The Event RxMsg command is executed when SIM has been instructed to
wait for a response and a response is received from the interfaced system.
This event requires that both the TxMsg and WaitForRxMsg commands be
used in another event, in the script file, for the RxMsg command to work.

¢ [fthe UseISLTimeOuts command is used and the PMS does not respond to
an ISL message within the timeout period, the ISL will search the script for an
RxMsg event with an event ID of Timeout (Event RxMsg : Timeout). If
_Timeout is found, ISL will bypass the standard Simphony error messaging
and process a user-defined ISL instruction in its place.

7-60

ISL Commands
ISL Command Reference

is an
string

process

response

* The interface application data message fields are always separated by an
ASCII field separator character (1CH).

Example 3a
This is an example of a standard response message event:

event ing : 1
var room num : a4
input room num, “Enter Room Number”
txmsg “charge_ing”, @CKEMP, @CKNUM, @TNDTTL, room_num
//The first field (charge inq)

// example of an identifying
// that the POS might use to

// messsage from the POS.

waitforrxmsg
endevent
event rxmsg : charge declined //This is one of the PMS

// possibilities
var room num : a4
rxmsqg roomﬁnum
exitwitherror “Charge for room
endevent

w

, room_num,” declined”

Example 3b

This is an example of an event that is run when the response message is not
received within the ISL timeout period:

useisltimeouts
event tmed : 10

var room : N5
input room, “Enter room number”
txmsg “CHARGE”, room, @tndttl
waitforrxmsg
endevent
event rxmsg : charge response
waitforclear “Posting successful”
endevent
event rxmsg : _timeout
window 4, 30
display 2, @center, “PMS is down.”
display 3, @center, “Post to alternate tender?”
waitforconfirm
usebackuptender
endevent

Syntax 4

Event Final Tender

Simphony SIM Manual 7-61

ISL Commands

ISL Command Reference

Remarks 4

This event is called after the last tender has occurred, but just before the check
is closed. This event is a separate event from the Event Tmed event. An
Event Tmed event is used to post the tender, while the Event Final Tender
is used when the check has been completely tendered.

For example, one could use the Event Final Tender to implement the
following features with the ISL:

* creating a specialized printout of a guest check for which neither the
Event Inq or Tmed can be called when all the check detail is in the
check

* sending log information to a PMS containing all of the check
information

If the Event Final Tender is not present in the script, no error will occur.
Unlike the Event Tmed, when using the Event Final_Tender command, a
tender does not need to be linked to a PMS by Tender Media PMS Option,
Use ISL TMED Procedure Instead of PMS Interface.

When the Event Final_Tender is executed, the ISL will execute the event for
each script linked to a PMS Computer. For example, if pms1.isl and pms2.isl

both include an Event Final_Tender, the ISL will process both scripts.

There is no event ID field for the Event Final Tender.

The Print_Header and Print_Trailer events, along with the some new SIM
system variables (see 6-110 and 6-205) and a specific set of control characters are
used to print information on checks and receipts. This information can be printed
in the header and/or trailer of Customer Receipts, Guest Checks, and Credit Card
Vouchers. This information can include text, bar codes, estimated tip amounts, or
any function a SIM script is capable of performing.

Syntax 5

Event Print_Header : <alpha/numeric >
Event Print_Trailer : <alpha/numeric >

Argument Description

alphanumeric corresponds to an entry in the RVC Descriptors

module in the Enterprise Management Console
(EMC)

7-62

ISL Commands
ISL Command Reference

Remarks

* Control Characters:

@@<event ID argument>

Control characters and SIM event(s) are programmed in the RVC Descriptors
module. The combination of the control characters and the SIM event will call
a SIM script, and the additional text or bar code is printed on either the header
or trailer.

Example 1

For example, using the event called “est tip_amt” the Credit Card Voucher
Header lines in the RVC Descriptors module will be programmed something like
this:

1 Tip Amount

2 Estimated Tip Amount:
3 @@est_tip_amt

4

5 Total

6

7
8
9 Signature

When POS Operations starts printing the credit card voucher trailer, it will print

line 1 and 2 as the part of the header, when the event argument (@@est_tip_amt)
at line 3 is recognized, POS Operations will call the SIM script.

Example 2

For example, the following portion of a SIM script will be called by the credit
card voucher trailer, and will printout the estimated tip amount on the credit card
voucher:

event print trailer : est tip_amt

format @trailer[l] as "EST TIP AMT $", (@ttldue
* 15) / 100
format @trailer[2] as

endevent

After the SIM script is finished, POS Operations will continue printing the
remaining lines on the credit card voucher.

Once the SIM script is called, the script will instruct POS Operation what to print
and how to format it. The system variables, @HEADER (see page 6-110) and
@TRAILER (see page 6-205), support this function.

Simphony SIM Manual 7-63

ISL Commands

ISL Command Reference

The maximum number of SIM events available is the same as the number
descriptor lines available in the header and trailer fields. If there are 6 header
lines available, then 6 SIM events can be used.

For example, if printing a CA voucher header (a total of 6 lines) which
contained text on line number 1 and 2, then called a SIM event on line 3, that
would leave 3 lines available to print information from within the SIM script.
For example, one cannot print 5 of 6 lines of a header, then on the 6th line call
a SIM script which prints 5 more lines of text. If the SIM script calls for 5
lines, only 1 line will print, as 5 of the 6 lines have already printed.

The event argument should consist of only letters, numbers, and an
underscore (no spaces or punctuation). Also, the first character must be a
letter. For example: @@voucher is a valid entry, @@S5voucher would be an
invalid entry. Maximum length of the descriptor is 30 characters, plus 2
control characters, which is a total of 32.

More than one event argument (@@) can be embedded in a trailer.

The @HEADER[] and @ TRAILER([] arrays are unique to each event. This
means that each event can begin writing to the array starting at index 1, rather
than at the next available index. In the example above, both events started
formatting at index 1.

All transaction system variables are still valid in these events. User input is
still allowed, as are file operations and display manipulation.

The events are called when POS Operations is formatting the print data, and
not printing it. Therefore, startprint and other SIM commands can be used to
generate printouts while the formatting process takes place.

If the event is not found in the SIM script, then no error is given. The @@ line
is ignored.

See Also

Format, RxMsg, TxMsg, UseBackupTender, UseISLTimeOuts,
UseSTDTimeOuts, Var, and WaitForRxMsg commands

7-64

ISL Commands
ISL Command Reference

ExitCancel

Description

This command should be used to exit the current script and cancel the current POS
tendering operation.

Syntax
ExitCancel

Remarks
This command might be useful if charge posting was denied.

Example

The following example will either allow a check to be tendered to a room charge
or prevent the room charge from being posted:

event tmed : 9
var room : ab
var guest name : a20

window 4, 22, "Room Charge"
displayinput 2, 2, room, "Enter room number"
displayinput 3, 2, guest name, "Enter guest name"
windowinput
txmsg "room charge", room, guest name
waitforrxmsg

endevent

event rxmsg : post response

var status : al0
var room : ab
var guest name : a40

rxmsg status, room, guest name
if status = "accept"
exitcontinue
elseif status = "deny"
errormessage "Room charge denied"
exitcancel
else
call get more info(room, guest name)
endif
endevent

Simphony SIM Manual 7-65

ISL Commands
ISL Command Reference

ExitContinue

Description
This command should be used to end the current script and continue processing
the POS tendering operation.

Syntax

ExitContinue

Remarks

* This might be useful if tendering should continue after a guest charge is
approved.

* Do not confuse the ExitContinue command with the EndEvent command.
EndEvent acts as both an Event procedure delimiter and an implicit

ExitContinue.

* Do not use the EndEvent command instead of the ExitContinue command.

7-66

ISL Commands
ISL Command Reference

Example
The following example will either allow a check to be tendered to a room charge
or prevent the room charge from being posted:

event tmed : 9
var room : ab
var guest name : a20

window 4, 22, "Room Charge"
displayinput 2, 2, room, "Enter room number"
displayinput 3, 2, guest name, "Enter guest name"
windowinput
txmsg "room charge", room, guest name
waitforrxmsg

endevent

event rxmsg : post response

var status : alo0
var room : ab
var guest name : a40

rxmsg status, room, guest name
if status = "accept"
exitcontinue
elseif status = "deny"
errormessage "Room charge denied"
exitcancel
else
call get more info(room, guest name)
endif
endevent

Simphony SIM Manual 7-67

ISL Commands
ISL Command Reference

ExitOnCancel

Description
This command will exit the script when the [Cancel] key or the [Clear] key is
pressed after an Input command has been issued.

Syntax
ExitOnCancel

See Also
ContinueOnCancel, ExitCancel, and ExitContinue commands

7-68

ISL Commands
ISL Command Reference

ExitWithError

Description

This command is used to display an error message and cancel the current POS

tendering operation.

Syntax

ExitWithError error_message[{output_specifier}] [, error_message\

[{output_specifier}]...]

Argument

Description

error_message

an expression displayed in the error banner,
usually to instruct the user of a problem; it may
be one of the following:

user variable
system_variable
constant

string

function
equation

{output_specifier}

one or more of the output specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

The error_message is required.

Example

The following script illustrates how this command will display an error if a charge

is denied:

event rxmsg : charge declined

var room num

rxmsg room_ num

: a4

exitwitherror “Charge for room %, room num,” declined”

endevent

Simphony SIM Manual

7-69

ISL Commands
ISL Command Reference

FClose

Description

This command closes a file that was previously opened by the FOpen command.

Syntax
FClose file number
Argument Description
file number an integer variable which was assigned in the

FOpen statement when the file was opened

Remarks

® The file number specified must be a valid file number. That is, it must
correspond to a file already opened. Otherwise, an error message will be
generated.

* All files are automatically closed at the end of a script.

Example

The following example would open a file, read from it, and then close it:
event ing: 1

var fn : nb
fopen fn, "/micros/simphony/data/emplist.dat", read

fclose fn

endevent

See Also

FOpen command

7-70

ISL Commands
ISL Command Reference

FGetFile

Description

This command gets a file from the SIM file service:

Syntax
FGetFile RemoteFileName, LocalFileName, Status

Argument Description
RemoteFileName relative to “SimDataFiles” directory in

\MICROS\Simphony\EGatewayService

LocalFileName relative to the location of SarOps.exe
(...\PosClient\bin) directory on the workstation

Status will contain result of operation after completion

a status of “0” (zero) indicates the file retrieval
was successful

a status of any non-zero value indicates the file
retrieval failed

Remarks

* All files are automatically closed at the end of a script.

See Also

FPutFile command

Simphony SIM Manual 7-71

ISL Commands
ISL Command Reference

FLock

Description

This command locks a file to prevent other processes from writing to the file,
usually while it is open.

Syntax

FLock file_ number, [Preventwrite] [And] [Preventread] [and]\
[Nonblock]

Argument Description

file_ number identifies the file to be locked; an integer
variable which was assigned in the FOpen
statement when the file was opened

Preventwrite a mode separator that prevents others from
writing to the specified file, while the lock is in
place

And required by syntax if more then one mode

separator is issued

Preventread required by syntax if more then one mode
separator is issued

Nonblock the FLock command will return immediately,
whether the lock was successful or not

Remarks

® The purpose of this command is to implement cooperative file locking among
processes. Since ISL scripts execute in a multiprocessing environment, it may
be necessary for one script to write to a file at the same time another needs to
read from it. Without any type of synchronization, corrupted data may be read
from or written to the file. (Within this explanation, the terms script and
process both refer to the POS Operation process which executes the script.)

* The ISL file locking model is based on the file locking model of the

underlying Windows operating system. Files can be locked so that other
processes cannot read or write that file until a previous lock has been
removed.

* Aswith Windows, file locking can only be used if all processes accessing the

file implement file locking. If one script locks a file, but another chooses to
ignore this lock, then the benefits of the lock are lost.

7-72

ISL Commands
ISL Command Reference

¢ Ifthe Preventread mode is specified with the FLock command, all processes
which try to lock the file for reading must also wait until the lock is released.

¢ If the Preventwrite mode is specified with the FLock command, all other
processes which try to lock the file for writing must wait until the current
process has released the lock. However, other processes can read the file.

¢ Ifthe Nonblock mode is specified, the script must check system variable
@FILE _ERRNO to determine if the lock was successful or unsuccessful.
Please see “FILE_ ERRNO” on page 6-98 for the File Access Error Codes.

* Itis not possible to lock portions of a file. The entire file must be locked.
* All locks on files are released automatically when the file is closed.

¢ Ifthe call to FLock is executed and another process is busy writing to the file,
the command will wait until the lock is released by the other process. For
example, assume that there is a file which all ISL scripts need to read. There is
also a procedure inside the ISL script, which every so often, needs to update
the file (to add new records, for example).

* Locks should be placed on files for only short periods of time. Keeping a file
locked for a long time prevents other processes from accessing the file.

Example 1

The following script shows how to lock a file for reading only:
event ing : 1

var fn : N5

fopen fn, "/micros/simphony/etc/custlist.dat", read
flock fn, preventwrite

call read from file(fn)

funlock fn

fclose fn

endevent

Simphony SIM Manual 7-73

ISL Commands
ISL Command Reference

Example 2

The following script shows how to lock a file for reading and writing;:

event ing : 2
var fn : N5
fopen fn, "/micros/simphony/etc/custlist.dat", append
flock fn, preventwrite and preventread
call write to file(fn)

funlock fn
fclose fn

endevent

The call to FLock will wait until all files are done reading.

Example 3

The following script gives an example of the incorrect way of using the FLock
command; the file is locked while the script waits for input from the user:

event ing : 3

var fn : N5, data : A20
fopen fn, "/micros/simphony/etc/custlist.dat", append
flock fn, preventwrite and preventread

input data, "Enter customer id"

call write to file(fn, data)
funlock fn
fclose fn

endevent

Example 4

The proper way to implement the script in example 3 would be:

event ing : 1

var fn : N5, data : A20
input data, "Enter customer ID#"

fopen fn, "/micros/simphony/etc/custlist.dat", append
flock fn, preventwrite and preventread

call write to file(fn, data)

funlock fn

fclose fn

endevent

See Also
FClose, FOpen, and FUnLock commands

7-74

ISL Commands
ISL Command Reference

FOpen

Description

This command opens a file for reading or writing.

Syntax

FOpen file number, file name, [Append] [And] [Read] [And] [Write],
[Local],[Unicode]

Argument Description

file number an integer variable which will be assigned a file
number to identify the file

file_name a string which identifies the file to be opened

Append a mode separator that appends to an open file

And required by syntax if more then one mode
separator is issued

Read a mode separator that reads from an open file

Write a mode separator that writes to an open file

Local a mode separator that indicates the file is
located on the local client workstation
(available in SAR only)

Unicode a mode separator that identifies the file as

Unicode (available in SAR only)

Remarks

® The variable file number will be assigned a value of 0 if the operation was
unsuccessful. This could occur if the file was opened for reading and did not
exist, or the permissions of the file were not set correctly.

® The variable file_name must use Windows naming conventions and
pathnames. If a file is written to, and does not exist, the file will be created.

* The system variable @FILE ERRNUM will contain the operating system
error code corresponding to the error which occurred when FOpen was
executed.

* The Unicode keyword can be used with, without, before, or after the Local
keyword. If used without, do not include an extra comma separator where the
Local keyword would have been.

Simphony SIM Manual 7-75

ISL Commands
ISL Command Reference

Example 1

The following statements would open a file and read it:

var fn : N5
//open a file for reading
fopen fn, "/micros/simphony/data/emplist.dat", read

Example 2

The following statement would open a file and append to it:

var fn : N5
//open a file for appending
fopen fn, "/micros/simphony/log/transact.log", append

Example 3
The following statement would open a file and write to it:
var fn : N5

//create a file for writing
fopen fn, "/micros/simphony/log/ws.log", write

Example 4

The following statement would open a file then read and write to it:

var fn : N5
//open a file for reading and writing
fopen fn, "/micros/simphony/data/emplist.dat", read and write

endevent

Example 5

The following script will open a file. If the open was unsuccessful, an error
message will display the cause of the error.

event ing : 1
var fn : N5
fopen fn, "myfile.dat", read
if fn = 0
errormessage @FILE ERRSTR
exitcontinue
endif

endevent

See Also
FClose command

7-76

ISL Commands
ISL Command Reference

For...EndFor

Description

These commands are used to implement an iterative loop. The EndFor command
should always be used to terminate the loop.

Syntax

For counter = start _expression To end_expression [Step increment]

EndFor

Argument

Description

counter

a variable that is incremented by the For
command

start_expression

the first variable in the counter; separated from
counter by = sign; it can be one of the
following:

user variable

system_variable (N or $ format)
constant

function

...=...To ...[Step...]

required by syntax

end_expression

the last variable in the counter; separated from
the start expression by the reserved word To;
it can be one of the following:

user variable
system_variable (N or $format)

constant
function
increment used with the reserved word Step to increase or
decrease the value of the counter; use a
negative value to decrease the counter
Remarks

¢ Normally, the variable in the For loop will be incremented by one. If required,
the Step feature may be used to override this so that the variable may be
incremented or decremented by any integer value.

Simphony SIM Manual

7-77

ISL Commands
ISL Command Reference

* For loops work similar to C and Basic; the For loop counter will always
increment to the end expression + 1. A For loop will execute when the
following conditions are met:

If Step > 0 and counter <= end_expression
If Step < 0 and counter >= end_expression

Sample For commands:

for i = 1 to 10 // execute 10 times

for i = 1 to 10 step 5 // execute 2 times (i=1,6)

for i = 1 to 10 step -5 // will not execute

for i = 10 to 1 // will not execute

for i = 10 to 1 step -1 // execute 10 times

for i = 10 to 1 step -5 // execute 2 times (1i=10,5)
Example

The following script will display the current occupant(s) of a room:

event rxmsg : display occupants
var row_cnt : n3, room num : a4, number occupants : n3,
occupant 1list[8] : a30
rxmsg room num, number occupants, occupant list
if number occupants > 14

number occupants = 14
endif
window number occupants, 38
for row cnt = 1 to number occupants
display row cnt, 2, occupant list[row cnt]
endfor
waitforclear
endevent

//For example, this subroutine will reverse a string
// using the Step feature
sub reverse string
var cnt : n3, char : al, reversed string : a78
window 2, len(string 2 reverse) + 2
display 1, 2, string 2 reverse
for cnt = len(string 2 reverse) to 1 step -1
char = mid(string 2 reverse, cnt, 1)
format reversed string as reversed string, char
display 2, 2, reversed string
endfor
endsub

See Also

Break and Forever commands

7-78

ISL Commands
ISL Command Reference

ForEver...EndFor

The ForEver command provides continuous looping capabilities in a script. The
ForEver command is generally used when the conditions for terminating the loop
are too complex for a For command, or may not be known ahead of time. This
loop may be broken by executing a Break command or by exiting the script (e.g.,
ExitCancel or ExitContinue).

Syntax

ForEver

EndFor

Example
The following script will wait for a magnetic card swipe:

event ing : 1
var mag card track2 data : a79

window 1, 28 // build the window

forever // loop until the user swipes a
// card or presses clear
displaymsinput 1, 0, mag card track2 data{m2, 1, 4, *}, " "
display 1, 2, “Please swipe your ID card.”

windowinput
if @MAGSTATUS = “Y” // we got a swipe
windowclose // close the window
break // and exit the loop
endif
errormessage “Swipe card or press clear twice”
endfor
endevent
See Also

Break, ExitCancel, ExitContinue, and Return commands

Simphony SIM Manual 7-79

ISL Commands
ISL Command Reference

Format

Description

This command is used to concatenate expressions into a string variable.

Syntax

Format string variable [, field sep char] As
expression[{output _specifier}], expression| {output_specifier}]
[, expression| {output_specifier}],...]

Argument Description

string variable a place holder for text characters such as a
user_variable (string)

field sep char the character used to separate fields; use the
Chr function to define the character required

As required by syntax

expression an expression to be concatenated; it may be one

of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output _specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

* If'the field separator character is specified, then the first character in the string
is used to separate variables within the string.

format string as 1, 2, 3 // will create '123'
format string, "," as 1, 2, 3 // will create '1,2,3"

* The Format command is also used to print information to guest checks,

receipts, and credit card vouchers. Two events: Print Header and
Print_Trailer (see page 7-62) are used to support this function.

7-80

ISL Commands
ISL Command Reference

Example

The following script will construct a string variable containing the current date in

the form dd-mm-yy:

event ing : 1

var date : a9

call get date string

//Listing of all the months

endevent
sub get date string
var month arr([12] : a3
month arr[1] “JAN”
month arr[2] “FEB”
month arr[3] “MAR”
month arr([4] “APR”
month arr[5] “MAY”
month arr[6] “JUN”
month arr[7] “JuL”
month arr[8] “AUG”
month arr[9] “SEP”
month arr[10] = “OCT”
month arr[11] = “NOV”
month arr[12] = “DEC”
format date as @DAY, “-”, month arr[@MONTH], “-",
// i.e., 10-NOV-93
endsub
See Also

FormatQ and Split commands

QRYEAR

Simphony SIM Manual

7-81

ISL Commands
ISL Command Reference

after’

FormatBuffer

Description
This command will format a string containing non-printable characters into a
string that is printable.

Syntax
FormatBuffer source string, destination string
Argument Description
source_string a string variable containing non-printable
characters
destination_string a place holder for the string variable
containing the printable characters

Remarks

* All printable characters will display as-is. All non-printable characters will be
formatted as a two-digit hexadecimal number surrounded by angle brackets.

* This function is generally used to look at data from the PMS.

Example
The following script will convert a string containing a non-printable character into
a string that can be displayed:

event ing : 1
var source s : A30, dest s : A30

format source s as “before %, chr(27), “ after”
formatbuffer source s, dest s
waitforclear dest s //displays ‘before <1B>
endevent
See Also

Format and Format(Q commands

7-82

ISL Commands
ISL Command Reference

FormatQ

Description

This command is used to concatenate variables into a string. String variables are
automatically surrounded by quotes. This feature can be used to create comma-
separated lines in ASCII files.

Syntax

FormatQ string variable [, field sep char] As

expression[{output_specifier}], expression|{output_specifier}]...]
[, expression| {output_specifier}],...]

Argument Description
string variable a place holder for text characters such as a
user variable (string)
field sep char the character used to separate fields; use the
Chr function to define the character required
As required by syntax
expression an expression to be concatenated; it may be one

of the following:

user_variable
system_variable
constant

string

function
equation

{output specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

¢ Ifthe field separator character is specified, then the first character in the string
is used to separate variables within the string.

¢ The FormatQ command operates in the same way as the Format command,
except that all strings are automatically quoted. This command is generally
used to format lines to a file.

See Also

Format and Split commands

Simphony SIM Manual 7-83

ISL Commands
ISL Command Reference

FormatRaw

Description

This command allows a SIM script to send up to 2 Kilobytes of raw (un-altered)
data to only IDN, Serial, IP, and Bluetooth printers.

Examples of raw data include:

* Barcodes

* QR codes

* Simple text (alphanumeric characters)
* URLS or e-mail addresses

The raw data can be added to appear on guest checks or customer receipts Headers
or Trailers.

Syntax

FormatRaw argument, max_size, data

Argument Description

argument The argument which replaces the correspond-
ing data in a print command, printer header, or
print trailer

max_size The maximum length of the data to be stored in
the argument (up to 2 Kilobytes)

data The un-altered raw data that is sent directly to
the printer

Example

event INQ : 1
var grCodeData: A255
var grCodeDatalen : N3

var rawDatalen: N3

startprint QCHK

7-84

ISL Commands
ISL Command Reference

www.helloworld.com/index.php,

format grCodeData as "This is QR Code data!
complete our survey and you will get

the next meal free."

grCodeDatalen = len(grCodeData) + 3
rawDatalLen = len (grCodeData) + 48
FORMATRAW "ABC", 200, chr(127), rawDatalLen, ";", \

chr (13), chr(10), \
chr (27), chr(97), chr(l), \
chr(29), chr(40), chr(107), chr(4), chr(0), chr(49), chr(65),
chr (50), chr(0), \
chr (29), chr(40), chr(107), chr(3), chr(0), chr(49), chr(e7),
chr(5), \
chr(29), chr(40), chr(107), chr(3), chr(0), chr(49), chr(69),
chr (48), \
chr (29), chr(40), chr(107), chr(grCodeDatalen), chr(0), chr(49),
chr (80), chr(48), grCodeData, \
chr(29), chr(40), chr(107), chr(3), chr(0), chr(49), chr(81),
chr (48), \
chr (27), chr(64)

printline "QE@ABCE@QR"

endprint
endevent
See Also
PrintLine command and the @Header and @Trailer system variables

Simphony SIM Manual 7-85

ISL Commands
ISL Command Reference

FPutFile

Description

This command puts a file from the SIM file service:

Syntax
FPutFile RemoteFileName, LocalFileName, Status
Argument Description

RemoteFileName relative to “SimDataFiles” directory in
\MICROS\Simphony\EGatewayService

LocalFileName relative to the location of SarOps.exe
(...\PosClient\bin) directory on the workstation

Status will contain result of operation after completion
a status of “0” (zero) indicates the file retrieval
was successful
a status of any non-zero value indicates the file
retrieval failed

Remarks

* All files are automatically closed at the end of a script.

See Also

FGetFile command

7-86

ISL Commands
ISL Command Reference

FRead

Description
This command reads formatted data from a file.

Syntax

FRead file number, user variable or list spec[, user variable \
or list_spec...]

Argument Description

file number identifies the file to be read; an integer variable
which was assigned in the FOpen statement
when the file was opened

user_variable a user variable which will be assigned the data
from the file

list_spec is defined as:

number_records auser_variable (integer) containing the number
of records to be built from this string

field array/:field array) an array_variable that will hold one field per
record; a field can be split into more than one
array by separating the array variables using a
colon ()

Remarks

* The file must have been opened in Read mode in order to execute this
command.

* Ifthe System Variable @STRICT ARGS is set to 1, then ISL will ensure that
the variable count in the FRead command line matches the number of fields
in the file record. If an incorrect number of fields is specified in the statement
or the file is corrupted, then an error message will be generated.

Simphony SIM Manual 7-87

ISL Commands
ISL Command Reference

e [tis possible to skip over fields in a line by not specifying the variables. For
example the third field in the line below would be ignored:

fread file number, variablel, variableZ2, , variabled

If a script needs to read only the first few fields in a file, but wishes to ignore
the rest of the fields, then it should specify a * in the statement to indicate that
no more variables should be assigned to that line. For example, if each line in
a file has 20 fields, but only the first three need to be read, the following line
will only read the first three. All fields are assigned in the order they occur.
The * must be the last element on the FRead line.

fread file number, variablel, variable2, variable3, *

This command will assign data to the variables a line at a time. If the line in
the file has 10 variables and only 7 variables are specified, then the last 3 are
thrown away. They are not read on the next FRead.

Example
If a file contains this line:

145, "Tooher", "Dan"

An ISL script uses the following lines to read the file:

event ing : 1

var num:N5, last name:A20, first name:A20
fread file number, num, last name, first name

//num will be 145
//last _name will be "Tooher"

//first name will be "Dan"

endevent

See Also
FClose, FOpen, FReadBfr, and FReadL.Ln commands

7-88

ISL Commands
ISL Command Reference

FReadBfr

Description
This command reads a block of data from a file.

Syntax
FReadBfr file number, data, count to read, count read
Argument Description
file_number identifies the file to be read; an integer variable

which was assigned in the FOpen statement
when the file was opened

data string variable the data block will read into
count to_read how much data to read

count _read how much data was actually read
Remarks

* The file must have been opened in read mode in order to execute this
command.

* This command will read data across lines. This command is equivalent to a
raw read from a file.

Example

The following script will attempt to read 100 characters:
event ing : 1

var fn : nb5
var data:A100, linesread:N5

fopen fn, “/micros/simphony/etc/script.isl”, linesread
freadbfr fn, data, 100, linesread
if linesread <> 100
errormessage "Tried to read 100 and read ", linesread
exitcancel
endif
endevent

See Also
FClose, FOpen, FRead, and FReadLLn commands

Simphony SIM Manual 7-89

ISL Commands
ISL Command Reference

FReadLn

Description

This command reads a line of data from a file.

Syntax
FReadLn file number, line
Argument Description
file_ number identifies the file to be read; an integer variable

which was assigned in the FOpen statement
when the file was opened

line string variable where the line will read into

Remarks

* The file must have been opened in Read mode in order to execute this
command.

* This command may be useful if the file being Read does not store its data in
comma-separated format. For example, the Windows system variable,
$PATHS, stores its data separated by the (;) character. A script could read the
variable and use the Split command to access the individual path components.

Example

The following statements would search for a certain line in the /etc/passwd
directory:

fopen fn, "/etc/passwd", read
while not feof(fn)
freadln fn, line
split line, ":", name,, user_ id, group_ id, *
endwhile
fclose fn

See Also
FClose, FOpen, FRead, and FReadBfr commands

7-90

ISL Commands
ISL Command Reference

FSeek

Description
This command goes to a specified position in the file.

Syntax
FSeek file number, seek_position
Argument Description
file_number an integer variable which was assigned in the

FOpen statement when the file was opened

seek_position where to position the file pointer (specify the
offset of the byte the programmer wants to
position to)

Remarks

* Whenever a file is opened, the file pointer is positioned at the start of the file.
When data (a line or number of characters) is read or written, the file pointer
is positioned at the end of the data that was read or written. The FSeek
command allows the user to position the file pointer to an arbitrary point in
the file so that the next read or write statement will act on the data or position
following the new location of the file pointer.

* Ifaseek position of -1 is specified, the file pointer will be positioned to the
end of the file.

Simphony SIM Manual 7-91

ISL Commands
ISL Command Reference

Example

The following example gets a number from user, then uses FReadLn to read the
first field from each line, testing it against the number the user entered. Once the
number is found using FSeek, the file pointer is positioned at the beginning of the
line where the number was found. Then the entire line is read and the first 77
characters displayed for the user.

event ing : 1
var fn : n3

var fname : a30 = "/micros/simphony/sqgl.out"

var line : a200

var objnum : n6

fopen fn, fname, read //Open the file
forever

input objnum, "Enter number to search for"//Get number to search
// for from user

fseek fn, 1 // move file pointer
// to beginning of file
call find obj(fn, objnum) //Call the subroutine
if objnum = 0 // if 0, no match was
// found, break out
break
endif
freadln fn, line //Read the line where
// match found
window 1, 78 //Open window
display 1, 2, mid(line, 1, 77) //Display the line
waitforclear
windowclose //Close the window
endfor
endevent
sub find obj(ref fn, ref objnum)
var current position : né6
var found num : né6
prompt "Searching, please wait..."
while not feof(fn) //Loop until end of
//file encountered
current position = ftell(fn) //Get the current file
// pointer position
fread fn, found num, * //Fread the first field
// only from the file
if found num = objnum //If it matches
//what user entered
fseek fn, current position //Fseek to the beginning
// of the line
return //Exit the subroutine
endif
endwhile
errormessage "Can't find that number" //1f end of file is
// encountered then
objnum = 0 // we didn't find a
// match, tell user, set
endsub // objnum = 0, and return
See Also

FClose and FOpen commands

7-92

ISL Commands
ISL Command Reference

FUnLock

Description

This command releases any previous locks on a file.

Syntax
FUnLock file number
Argument Description
file_number an integer variable which was assigned in the

FOpen statement when the file was opened

Remarks

Closing a file automatically releases any locks on a file.

Example

The following example will lock and unlock one file within an Event procedure,
while another Event procedure attempts to access it.

event ing : 1

var fn : n3

var fname : a30 = "/micros/simphony/etc/preventread"
var rite : n5 = 30

var rote : nbS

var data : a30 = "Some data to write to file"

fopen fn, fname, read and write

prompt "Waiting for write access..."

flock fn, preventread

fwritebfr fn, data, rite, rote

waitforclear "File read lock in progress..."

funlock fn

waitforclear "File should be unlocked..."
endevent

(continued)

Simphony SIM Manual 7-93

ISL Commands
ISL Command Reference

event ing : 2
var fn : n3

var fname : a30 = "/micros/simphony/etc/preventread"
var reed : n6 = 30
var red : né6

var data : a30

fopen fn, fname, read

prompt "Waiting for read access..."

flock fn, preventwrite

freadbfr fn, data, reed, red

window 1, 32

display 1, 2, data

waitforclear "File write lock in progress..."
endevent

See Also
FClose, FLock, and FOpen commands

7-94

ISL Commands
ISL Command Reference

FWrite

Description
This command writes formatted data to a file.

Syntax
FWrite file number, variablel [, variable?][, variable3...]
Argument Description
file_ number an integer variable which was assigned in the

FOpen statement when the file was opened

variable n variables which will be written to the file,
where n is the number of variables to write

Remarks

* The file must have been opened in Write mode in order to execute this
command.

* All strings on the FWrite line will be enclosed in quotes.

e This function will write one line of data to the file. The line will be terminated
with the standard new line character.

Example

The following statements will write a single line of data to 3 different lines:

fwrite fn, 1, 500, "line 1"
fwrite fn, 2, 501, "line 2"
fwrite fn, 3, 502, "line 3"

The above statements will produce the lines below in the data file:

1,500,"1line 1"
2,501,"1line 2"
3,502,"1line 3"

See Also
FClose, FOpen, FWriteBfr, and FWriteLn commands

Simphony SIM Manual 7-95

ISL Commands
ISL Command Reference

FWriteBfr

Description

This command writes formatted data to a file.

Syntax
FWriteBfr file number, data, count to write, count_written
Argument Description
file number an integer variable which was assigned in the

FOpen statement when the file was opened

data string variable to write

count_to_write how much data to write

count_written how much data was actually written
Remarks

® The file must have been opened in Write mode in order to execute this
command.

¢ This command will write data across lines.

Example

This example reads from a file one character at a time, capitalizes the character as
long as it is not in a quoted string, and, if the character was changed, writes the
new character back to the position in the file where its lowercase counterpart was

found.
event ing : 1
var fn : n3 = 1
var fname : a40 = "/micros/simphony/etc/templ.dat"
var ritecnt : n5 =1
var rotecnt : nb
var char : a20
var fpos : né6
var aschar : n3
var inquotes : n3
var changed : n3
fopen fn, fname, read and write //Open the file for
// read and write
if fn = 0 //1f fn = 0, file
// couldn't be opened
(continued)

7-96

ISL Commands
ISL Command Reference

call ferr (fname)
endif

while not feof(fn)

fpos = ftell(fn)

freadbfr fn, char, 1, rotecnt

aschar = asc(char)
if aschar = 34
if inquotes = 1
inquotes = 0
else
quote
inquotes =1
endif
endif
if not inquotes
call capitalize(char, changed)
endif
if changed = 1
fseek fn, fpos
character
fwritebfr fn, char, ritecnt,
changed = 0
endif
endwhile
fclose fn
endevent
sub ferr(ref fname)
exitwitherror "Can't open file ", fname
endsub
sub capitalize(ref achar, ref changed)
var aschar n3 = asc(achar)
fun
if aschar > 96 and aschar < 123
aschar = aschar - 32
equivalent
achar = chr(aschar)
changed = 1
endif

endsub

See Also

//Loop until the end

// of file is encountered
//Store the current

// file pointer position
//Read 1 character

//Get the ascii number

// for the character

// if the character

// is a quotation mark

// and if it is a

// closing quote

//Set inquotes flag to 0
// But if it's an opening

//Set inquotes flag to 1

//If this character
// 1s not in quotes
//Pass it to the subroutine

//I1f the character was changed
//Fseek back to position
// where we found the

rotecnt// and write the character

// to the file
//Reset the changed flag

//We could also use the

// UpperCase command

// but we'll take the

// slow difficult route for

//1f the character

// is a lower case alpha
// get its upper case

// and set the changed flag

FClose, FOpen, FWrite, and FWriteLn commands

Simphony SIM Manual

7-97

ISL Commands
ISL Command Reference

FWritelLn

Description
This command writes a line of data to a file.

Syntax
FWriteLn file number, line
Argument Description
file_ number an integer variable which was assigned in the
FOpen statement when the file was opened
line a string variable to write to the file
Remarks

® The file must have been opened in Write mode in order to execute this
command.

* No quotes will be removed from the string that is written.

See Also
FClose, FOpen, FWrite, and FWriteBfr commands

7-98

ISL Commands
ISL Command Reference

GetEnterOrClear

Description

This command waits for the operator to press the [Enter] key or the [Clear]| key
and reports which key was pressed.

Syntax

GetEnterOrClear input variable, prompt_expression \
[{output_specifier}][, prompt_expression[{output_specifier}]...]

Argument Description
input_variable an user_variable that accepts user input
prompt_expression an expression displayed on the prompt line,

usually to instruct the user what to enter; it may
be one of the following:

user variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

* Avalueof 0 or 1 is placed in the input variable, depending upon which key is
pressed; 0 is placed in the variable if the [Clear] key is used and 1 if the
[Enter] key is used.

* The combined length of all prompt expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

* The prompt_expression is required.

Simphony SIM Manual 7-99

ISL Commands
ISL Command Reference

Example
The following script will wait for either the [Enter] key or the [Clear] key:

event ing : 1
var ent or clr : nl
var ENTER : nl =1

getenterorclear ent or clr, “Press ENTER to Inquire, CLEAR to end”
if ent_or_ clr = ENTER
txmsg “inquiry 1”
waitforrxmsg
else
exitcontinue
endif
endevent

7-100

ISL Commands
ISL Command Reference

GetTime

Description

This command reads the current time atomically, allowing the script to read all of
the time and date value, which guarantees that the values will be correct.

Syntax
GetTime [year], [month], [day],\ [hour], [minute], [second],\ [day of week],
[day_of year]

Remarks

* Each variable on the command line corresponds to the time value to read.
* It is not necessary to include each value in the command.

Example 1
gettime year, month, day// Get only the date

Example 2

gettime ,,, hour, minute, second// Get only the time

Example 3

gettime year, month, day, hour, minute, second// Get
everything but last two

Simphony SIM Manual 7-101

ISL Commands
ISL Command Reference

If...Else[If]...EndIf

Description

These commands allow conditional execution. The If command may be used to
compare one expression to another. The Else command is used to execute a group
of commands when the If command’s condition is not met. The Elself command
can be used to execute commands when the If command’s condition is not met
and another condition needs to be tested.

Syntax

If expression [operator expression][And | Or expression operator \
expression...]

Else
or

Elself expression [operator expression][And | Or expression |
operator expression...|

EndIf

Argument Description

expression one of the following:

user_variable
system_variable
constant

string

function
equation

operator can be one or more Relational Operator

And | Or Relational Operators used to provide additional
or alternative conditions

7-102

ISL Commands
ISL Command Reference

Remarks

* Numeric, currency, alphanumeric, and key variables may be compared. For
example, the following usages are valid:

if counter < 20
if name = “Richard”
if keyname > @KEY CLEAR

* The expression will always be evaluated as true or false; i.e., anything that
evaluates to 0 is false and anything that evaluates to non-0 (including a
negative) is true. If the operator and second expression are left off, the
remaining expression will still be evaluated in this way.

if counter //This will be true as long
//as the counter is not 0

* Please see “ISL System Variables” on page 6-1.

* Itis not considered a fatal error if an Else command appears without an If
command preceding it. An error will occur if a corresponding EndIf
command is not found.

* The text “Then” is allowed after an If or Elself statement, but it is not
required. Although this syntax is legal, it conveys no additional meaning to

the If or Elself statement in which it used. Example:

If i < 4 then //Correct

ElseIf i > 10 then //Correct

Simphony SIM Manual 7-103

ISL Commands
ISL Command Reference

Example

The following script will wait for a number entry between 1 and 10:

event ing : 9
var key pressed : key //Hold the function key user presses
var data : al0 //Hold the number user chooses
forever

inputkey key pressed, data, “Number then Enter, Clear to Exit ™

if key pressed = @KEY CLEAR
exitcontinue
elseif key pressed = @KEY_ CANCEL
exitcontinue
elseif key pressed = @KEY ENTER
if data > 0 and data <= 10
waitforclear “You chose” , data, “. Press clear. “
else
errormessage “Choose a number between 1”7 , \
“ and 10, then press enter”
endif
endif
endfor
endevent

See Also

For, ForEver, and While commands

7-104

ISL Commands
ISL Command Reference

Input

Description

This command accepts an entry from the operator.

Syntax

Input input variable[{input/output specifier}], prompt_expression\
[{input/output _specifier}][, prompt_expression,...]

Argument

Description

input variable

a user_variable that will store the user’s input

{input/output_specifier}

one or more of the input and output_specifiers
that determine the format of all input and output
fields; see full definition on pages 7-6 through
7-10

prompt_expression

an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

Remarks

* Prior to changing the input variable, the user’s entry will be validated against
the field type and optional format definition.

* The combined length of all prompt expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

* The prompt_expression is required.

* Magnetic card entry input formats are allowed with the Input command.

Simphony SIM Manual

7-105

ISL Commands
ISL Command Reference

¢ Ifthe [Clear] key is pressed during execution of the Input command, the
script will terminate unsuccessfully. This can have undesired side effects. If a
script transacts a successful posting and then uses the Input command to get
reference information on the posting from the user, the [Clear] key will
perform an implicit ExitCancel, even though the posting was successful. The
following code ensures that the script will not terminate while data is being
entered:

var user entry : A20, key press : key
forever

inputkey keypress, user entry, "Enter ref info"
if keypress = QKEY ENTER
break
//only terminate if ENTER pressed
endif
endfor

Example

The following script accepts a patron number from the user, then transmits it to
the PMS for further action:

event ing : 1
var ptrn no : a8

input ptrn no,“Enter Patron Number” //Get patron number

txmsg “Inquire 1”, ptrn no //Send to PMS
waitforrxmsg //Wait for reply
endevent
See Also

InputKey command

7-106

ISL Commands
ISL Command Reference

InputKey

Description

This command accepts an alphanumeric entry from the operator, then stores the
entry and the terminating key stroke in separate variables.

Syntax

InputKey key variable, input _variable, prompt _expression)
{input/output _specifier}|, prompt_expression[{input\

Joutput_specifier}]...]

Argument

Description

key variable

a user_variable key type

input _variable

a user_variable that will store the user’s input

{input/output _specifier}

one or more of the input and output specifiers
that determine the format of all input and output
fields; see full definition on pages 7-6 through
7-10

prompt_expression

an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user variable
system_variable
constant

string

function
equation

Remarks

* The key variable will be set equal to the terminating key press. In this way,
the script can compare the value held by key variable to the @KEY... System
Variables, to test for the terminating keystroke the user pressed. See “ISL
System Variables” on page 6-1 for more information about the @KEY...

System Variables.

* The prompt_expression is required.

Simphony SIM Manual

7-107

ISL Commands
ISL Command Reference

Example

The following script waits for a number entry between 1 and 9 followed by the
[Enter] key. If the [Clear] or [Cancel] key is pressed, it exits the script:

event ing : 9
var key pressed : key //Hold the function key user presses
var data : alo0 //Hold the number user chooses
forever

inputkey key pressed, data, “Number then Enter, Clear to Exit “

if key pressed = QKEY_ CLEAR
exitcontinue

elseif key pressed = @KEY CANCEL
exitcontinue

elseif key pressed = QKEY_ ENTER
if data > 0 AND data <= 10

waitforclear “You chose “, data, “. Press clear.

else
errormessage “Choose a number between 1 %, \
“and 10, then press enter”
endif
endif
endfor
endevent

See Also

Input command

W

7-108

ISL Commands
ISL Command Reference

InfoMessage

Description
This command will display an informational message and continue.

Syntax
InfoMessage expression[{output specifier}][, expression\
[{output_specifier}]...]

Argument Description

expression an expression to be displayed; it may be one of
the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output_specifiers that
determine the format of the output fields; see
full definition on pages 7-6 through 7-10

Remarks

The InfoMessage command expects one message line to be displayed. However,
the workstation displays two lines. The message line to be displayed is broken up
between the two logical lines. If the line is too long to be displayed, it will be
truncated.

See Also

ErrorMessage

Simphony SIM Manual 7-109

ISL Commands
ISL Command Reference

LabelFeedToPeel

Description

This command feeds printed labels to the label peeling position. This only works
on the Epson L90 label printer.

Syntax
LabelFeedToPeel

Remarks

* Prior to the LabelFeedToPeel command, the printer must be activated within
the script using the StartPrint command.

* Printing will not begin until the EndPrint command is executed.

Example

event ing : 1
var before : A500
var after : A500

format before as
chr (&62),chr (&65) ,chr(&66),chr (&6f),chr (&72),chr (&65),chr (&0A)

format after as
chr (&61),chr (&66) ,chr(&74),chr (&65),chr (&72),chr (&0R)

startprint QORDRI[7]
printline before
labelfeedtopeel
printline after
endprint

endevent

7-110

ISL Commands
ISL Command Reference

LineFeed

Description

This command will line feed the selected printer. The number of line feeds is

optional.

Syntax

LineFeed [number of line feeds]

Argument

Description

number_of line_feeds

an expression which defines the number of line
feeds

Remarks

¢ Prior to the LineFeed command, the printer must be activated within the

script using the StartPrint command. To determine the line feeds required for
the printer, refer to the table that defines ISL Printers on page 7-163.

Printing will not begin until the EndPrint command is executed.

A line feed is automatically executed after the PrintLine command is issued.

Example

event ing : 1
var kitchen _msg[13] : a20
var sender_name : a20
var rowcnt : n3
window 14, 22
displayinput 1, 2, sender_ name,
for rowent = 1 to 13
displayinput rowcnt + 1,
endfor
windowedit 1

2,

startprint Qordrl

printline “
printline “Message from “, sender_ name
printline “ "
for rowcnt = 1 to 13

if len(kitchen_msg[rowcnt]) > ™%

printline kitchen msg[rowcnt]

endif
endfor
printline
linefeed 5

endprint
endevent

w

kitchen_msg[rowcnt],

//Display the window

“Enter your name”

//Accept users name
//Have user input the message
“Enter kitchen message”

//Only save or cancel will
// end input

//Start the print job at
// remote printerl

Simphony SIM Manual

7-111

ISL Commands
ISL Command Reference

See Also

EndPrint, Printline, and StartPrint commands

ListDisplay

Description

This command is used to display a list (array) variable within a window. This
command is useful when displaying the contents of an array variable that contains
data received from a PMS, such as a list of names.

Syntax
ListDisplay row, column, list_size, array variable
Argument Description
row the integer expression specifying the screen row
within the defined window where the first
array variable entry will be displayed
column the integer expression specifying the screen
column within the defined window where the
first array _variable entry will be displayed
list size the number of array variable entries to display

array variable

the name of the user variable that holds the
matrix of values to be displayed

Remarks

* The Window command must precede this command.

e [tis acceptable to set list size equal to 0, but if this is done, nothing will
display. If the /ist_size is less than zero, an error will occur.

* Each entry will be placed on a separate line directly beneath the previous.

7-112

ISL Commands
ISL Command Reference

Example
The following script will display an employee list:

event rxmsg : emp list
var emp list size : n3
var emp list array[14] : a40

rxmsg emp_list size, emp list array|]
window 14, 42
listdisplay 1, 2, emp list size, emp list array
waitforclear
endevent

See Also

Window command

Simphony SIM Manual 7-113

ISL Commands
ISL Command Reference

ListInput

Description

This command is used to display a list (array) variable within a window at the
workstation, then waits for the operator to select an item from the list.

Syntax

ListInput row, column, list size, array variable, input_variable, |
prompt_expression[{output_specifier}]

Argument

Description

row

the integer expression specifying the screen row
within the defined window where the first
array variable entry will be displayed

column

the integer expression specifying the screen
column within the defined window where the
first array variable entry will be displayed

list size

the number of array variable entries to display

array_variable

the name of the user variable that holds the
matrix of values to be displayed

input variable

an array_variable or user_variable that accepts
user input

prompt_expression

an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier}

one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-11

7-114

ISL Commands
ISL Command Reference

Remarks
¢ The Window command must precede this command.

¢ Each list entry is displayed with a selection number starting at 1. The selection
numbers 1 to 9 are preceded by a space. Selection numbers are followed by a
period, then a space, then the list entry. For this reason, the window drawn
must be at least four columns wider than the longest item in the list. Each list
entry is placed on a separate line. The user’s entry is placed in the
input _variable and is validated against the number of items in the list.

* The prompt_expression is required.

* Itis acceptable to set list_size equal to 0, but if this is done, nothing will
display. If the /ist _size is less than zero, an error will occur.

Example

The following script receives and displays a list of guests from the PMS, allows
the user to choose one from the list, and then transmits the user’s choice to the
PMS for further processing:

event rxmsg : room inquire

var rm guest[14] : a20 //Quest names array

var rm num : a6 //Room number

var list size : n3 //Number of array items

var user_choice : n3 //Quest number user chooses
rxmsg rm num, list size, rm guest[] // receive message from POS

window list size, 24, “Guests- Room #”, rm num
listinput 1, 1, list size, rm guest, user choice, “Choose a guest”

txmsg “guest inquiry”, rm num, user choice
//Ask for info from PMS
waitforrxmsg // on guest user chooses
endevent

See Also
Window command

Simphony SIM Manual 7-115

ISL Commands
ISL Command Reference

ListInputEx

Description

This command is used to display a list and get an operator selection. This
command is the same as ListInput, but it does not provide a WROW or WCOL
variable.

Syntax

ListInputEx row, column, list_size, array variable, input variable,\
prompt_expression| {output_specifier}]

Remarks

* The Window command must precede this command.

* Each list entry is displayed with a selection number starting at 1. The selection
numbers 1 to 9 are preceded by a space. Selection numbers are followed by a
period, then a space, then the list entry. For this reason, the window drawn
must be at least four columns wider than the longest item in the list. Each list
entry is placed on a separate line. The user’s entry is placed in the
input variable and is validated against the number of items in the list.

* The prompt_expression is required.

* Itis acceptable to set /ist_size equal to 0, but if this is done, nothing will
display. If the list _size is less than zero, an error will occur.

Example

The following script receives and displays a list of guests from the PMS, allows
the user to choose one from the list, and then transmits the user’s choice to the
PMS for further processing:

event rxmsg : room inquire
var rm_guest[14] : a20 //Quest names array
var rm num : a6 //Room number
var list_size : n3 //Number of array items
var user choice : n3 //Quest number user chooses
rxmsg rm num, list size, rm guest[] // receive message from POS
window list size, 24, “Guests- Room #”, rm num

listinputex 1, 1, list size, rm guest, user choice, “Choose a guest”

txmsg “guest inquiry”, rm num, user choice
//Ask for info from PMS
waitforrxmsg // on guest user chooses
endevent

7-116

ISL Commands
ISL Command Reference

See Also

ListInput and Window command

ListPrint

Description
This command will print a list on the selected printer.

Syntax
ListPrint /ist_size, array
Argument Description
list size the number of array variable entries to be
printed
array variable the name of the user variable that holds the
matrix of values to be printed

Remarks

* The StartPrint and EndPrint commands are required when using the
ListPrint command.

* tis acceptable to set list size equal to 0, but if this is done, nothing will
display. If the /ist_size is less than zero, an error will occur.

Example

The following script receives a list of directions from the PMS that describes how
to get from the property to another location and prints them at the UWS’s check
printer:

event rxmsg : directions

var directions[50] : a35 //Our direction array
var list size : n3 //Number of array items
rxmsg list size, directions[] //Here’s the message from PMS
startprint Q@CHK //Print at the check printer
listprint list size, directions //Print the list
endprint
endevent

Simphony SIM Manual 7-117

ISL Commands
ISL Command Reference

See Also

StartPrint and EndPrint commands

LoadDbKybdMacro

Description

This command loads a keyboard macro that is pre-defined in the Simphony
database. The macro will execute when transaction processing successfully
resumes.

There is another keyboard macro command available: LoadKybdMacro, which
uses a script-defined keyboard macro.

Syntax
LoadDbKybdMacro numeric_expression
Argument Description
numeric_expression an expression that requires a number; it may be

one of the following:

user_variable
system_variable
constant

string

function
equation

Remarks
* The macro is referenced by its object number.
* Only integer variables can be used to run a pre-defined macro.

* Ifmore than one LoadDbKybdMacro command is used in the same event,
only the last command will be used when transaction processing resumes.

7-118

ISL Commands
ISL Command Reference

Example
The following script will load a macro from the Simphony database that will add
two menu items to a guest check currently open at the workstation:

event ing : 1
loaddbkybdmacro 1

endevent

See Also
LoadKybdMacro command

Simphony SIM Manual 7-119

ISL Commands
ISL Command Reference

LoadKybdMacro

Description

This command passes keystrokes to the workstation; these keystrokes will be
executed when the script event terminates. There are a variety of ways to specify
script-defined macros, as listed and described below.

Syntax
LoadKybdMacro key expression|, key expression,...]
Argument Description
key expression an expression that can be one of the following:

key type:key number
Key function

Remarks
* For pre-defined database macros, see LoadDbKybdMacro.

* A script-defined macro is one that the script writer constructs using key
function codes. These key function codes can be represented by any
combination of the following methods:

* Key pairs—A key pair in Simphony is designated by the key type and a
key number separated by a colon. For example, the number 1 on the numeric
keypad is represented by the key pair 9 : 1, where 9 (the key type) represents
the Keypad and where 1 (the key number) represents Numeric 1. Therefore,
one way to load 123 and the [Enter] key would be:

loadkybdmacro 9:1, 9:2, 9:3, 9:12

7-120

ISL Commands
ISL Command Reference

¢ The Key function takes as its argument a key_pair separated by a comma and
returns a key function code. This comma-separated key pair could be
represented by two comma-separated variables. Key function - The Key
function takes as its argument a key pair separated by a comma and returns a
key function code. This comma-separated key pair could be represented by
two comma-separated variables.

For example:

var key type : Key = 9
loadkybdmacro key(key type, 1), key(key type, 2),\
key (key type, 3), 9:12

* @KEY... System Variables—System Variables that begin with @KEY... are
special key type variables. These keys can be used to test for and represent
movement keys and keys like [Enter] and [Clear]. The @KEY... System
Variables can also be used in the LoadKybdMacro command.

To continue the example:

loadkybdmacro 9:1, 9:2, 9:3, @KEY ENTER

* User-defined variables with the type Key—User-defined variables with the
type Key can be assigned key function codes using the Key function or with
@KEY... System Variables. Another way to load the keyboard macro:

var key 1 : Key //Declare variables as
//Key types

var key 2 : Key

var key 3 : Key

var Enter : Key

key 1

key (9,1) //Assign them with
//key () function

key 2 = key(9,2)

key 3 key (9, 3)

Enter @KEY ENTER // and system variable

loadkybdmacro key 1, key 2, key 3, Enter

* If more than one LoadKybdMacro command is used in the same event, they
will be run in order of appearance when transaction processing resumes, as if
they were one large macro.

* Macro keys will remain defined during script processing and will execute
once a script is complete, not when an event is complete.

Simphony SIM Manual 7-121

ISL Commands
ISL Command Reference

Example 1

In the following script, there will be three [Enter] keys that will be run once the

script completes:

event ing:1
loadkybdmacro @KEY_ ENTER
txmsg "ing 1 request"
waitforrxmsg

endevent

event rxmsg : ing 1 reply
loadkybdmacro @KEY_ ENTER
txmsg "ing 2 request"
waitforrxmsg

endevent

event rxmsg : ing 2 reply

loadkybdmacro @KEY_ ENTER
endevent

See Also

//first enter key

//second enter key

//third enter key

* LoadDbKybdMacro command; Key function

* “Key Types, Codes, and Names”

7-122

ISL Commands
ISL Command Reference

LowerCase

Description

This command is used to convert a string variable to lower-case.

Syntax
LowerCase string variable
Argument Description
string variable the string that will be changed; can be any

user variable (string)

See Also

UpperCase command

Simphony SIM Manual 7-123

ISL Commands
ISL Command Reference

MakeAscii

Description

This command will transfer the data from a source_string into a
destination_string, stripping out any non-ASCII or non-printable characters from

the source_string.

Syntax

MakeAscii source_string, destination_string

Argument

Description

source_string

a string_variable containing both ASCII and
non-ASCII characters

destination_string

a place holder for the string variable
containing only ASCII characters

Example

The following script will convert a string containing both ASCII and non-
printable characters into a string that contains only ASCII characters:

event ing : 1

var stringl : A20
var string2 : A20

format stringl as “ABC”, chr(l), “DEF”

makeascii stringl,

string2 //string2 will be “ABCDEF”

7-124

ISL Commands
ISL Command Reference

MakeUnicode

Description

This command will transfer the data from a source string into a
destination_string, stripping out any non-printable characters from the

source_string.

Syntax
MakeUnicode source_string, destination_string
Argument Description
source_string a string_variable containing non-printable
characters
destination_string a place holder for the string variable
containing only non-printable characters

Example

The following script will convert a string containing non-printable characters into
a string that contains only printable characters:

event ing : 1

var stringl : A20
var string2 : A20

”

format stringl as “Luxp
makeunicode stringl, string2 //string2 will be “MAP”

Remarks

This command is only available on SAR Ops.

Simphony SIM Manual 7-125

ISL Commands
ISL Command Reference

Mid

Description

This command is used to set all or some part of one string variable equal to
another string variable.

Syntax
Mid (string variable, start, length) = replacement string
Argument Description
string variable the string that will be changed; can be any

user_variable (string)

start the character position within the
string variable, where the replacement string
will begin to overwrite

length the number of characters in the string variable
that will be changed using the
replacement _string to the right of the equal sign

= required by syntax

replacement_string the string containing the characters used for the
replacement can be any user_variable (string)

Remarks

® The parentheses are required.

® The first character in the string is always 1. If the start or length is less the 0,
then an error will occur.

7-126

ISL Commands
ISL Command Reference

* Ifthe start is greater than the string variable itself, no data will be assigned.
If the length is greater than the room left to assign the string variable, then
the data will be truncated.

var string : AlO

string = “this short”

// In this command, the length exceeds room left.

// Only first 5 letters of (“long string”) are used,
// overwriting the last five characters of string.

// In this operation, string would become “this long”.

mid(string, 6, 10) = "long string"

// In this command, this starting position is greater
// than length of string.

// 0 characters are overwritten.

mid(string, 25, 10) = "long string"

* Do not confuse this command with the Mid function.

Example

The following script will replace the first three letters of the variable “string” with
the string “NEW”’:

event ing : 1
var string: al0 = “OLD STRING”
waitforclear string //Prompt will show “OLD STRING”
mid(string, 1, 3) = “NEW” //Change OLD to NEW
waitforclear string //Prompt will show “NEW STRING”
endevent

Simphony SIM Manual 7-127

ISL Commands
ISL Command Reference

MSleep

Description

This command tells the script to sleep for the requested number of milliseconds.

Syntax
MSleep milliseconds

Example

event inqg:2
var seconds:N5
input seconds, "Enter number of seconds to sleep"
prompt "Sleeping"
msleep seconds*1000
waitforenter "Done waiting ", seconds*1000, " seconds."

endevent

7-128

ISL Commands
ISL Command Reference

PopUpIsITs

Description

This command displays a pop-up touchscreen defined by the SetIsITsKey
command.

Syntax
PopUpIsITs

Remarks

After a touchscreen has been displayed, its keys remain defined until cleared by
the ClearlIslTs command.

Example

The subroutine below first clears any previously defined touchscreen keys and
displays two touchscreen keys, [YES] and [NO], which are defined by the
SetIslTsKey command. This subroutine displays these keys using the
PopUplIslTs command, as the operator is issued a prompt by the system, and
captures the operator’s input.

sub get yes or no(ref answer, var prompt s:A38)
var keypress : key
var data : A20

clearislts

setisltskey 2, 2, 4, 4, 3, @KEY_ENTER, "YES"
setisltskey 2, 6, 4, 4, 3, @KEY CLEAR, "NO"
popupislts

inputkey keypress, data, prompt s
if keypress = (@KEY ENTER

answer = 1
else
answer = 0
endif
endsub
See Also

ClearIslTs, DisplayIslTs, and SetIsITsKey commands

Simphony SIM Manual 7-129

ISL Commands
ISL Command Reference

PrintLine

Description

This command prints a line on the selected printer defined in the StartPrint
command. The print information can be provided as text or by referencing a
variable field.

This command may also be used to print Binary Data (used to output information
such as barcodes, rotated text, emphasized print, etc.) from within a SIM Script.

Syntax

PrintLine expression[{output specifier}] or directive\
[, expression| {output_specifier}] or directive]...]

Argument Description

expression an expression that represents the string to be
printed: it may one of the following:

user_variable
system_variable
constant

string

function
equation

directive specific instructions that affect the color, width,
and justification of the printed characters; see
full definition on page 5-7

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-11

Remarks

* This command will affect the printer selected using the StartPrint command.
For a complete list of available printers, see the table provided in the detail
description of the StartPrint command.

* If printing was started using the StartPrint command, then only the first 32
characters in the PrintLine command are significant.

* The PrintLine command sends a carriage return/line feed to the printer after
every line.

7-130

ISL Commands
ISL Command Reference

* The PrintLine command may be used to format characters to a certain
position (i.e., left, right, or center justified, etc.). Please see “Using Format
Specifiers” on page 7-5.

* Control characters can be printed on the PrintLine using the Chr function.
For example, one can send a command to print a section of a line in
emphasized style. The IBM proportional control code ESC 69 turns
emphasized print on, and ESC 70 turns emphasized print off:

printline “A line with “, chr(27), chr(69), “emphasized”\
“print”, chr(27), chr(70), ™ on it.”

The only control code not printable using the Chr function is the ASCII 0
(NUL). To print a NUL, use the following sequence:

chr(16), chr(48)

* For example to output Binary Data, the following script sends 3 lines of text
to the printer connected to the PCWS, and will send the proper control codes
for turning on emphasized print for the 2nd line. Note that the emphasize on/
off codes are on the same line.

startprint @chk
printline "This is a normal line"

printline chr(27), "E1", "This is emphasized", chr(27), "EO"
printline "This is back to normal"
endprint

¢ The workstation application will decode the binary data, and pass it through to
the printer.

* ‘Binary data’ or ‘control codes’ are all ASCII characters below 32 (20 hex).
For example, chr(31) is a control code, but chr(32) is not a control code. All
characters from 32 to 255 are considered printable characters.

One exception to the control code format is that ASCII NULs cannot be
printed using chr(0). If a chr(0) needs to be printed, then the system variable
@nul should be used instead. For example:

printline chr(27), "E", @nul, "Normal print"

Only 32 printable characters can be sent on one line. However, 48 characters
can be placed on the line. Each control character requires 2 characters.
Therefore, only 24 control codes can be placed on one printline (24 x 2 => 48).
However, non-control codes require only one character. Since not all printer
commands are all composed of binary data, this limitation should not present a
problem.

Simphony SIM Manual 7-131

ISL Commands
ISL Command Reference

* When using the SIM Print_Header or Print_Trailer commands (see page 7-62,
the control codes will also be formatted properly to the printer when SIM
provides the data using the @header[] and @trailer[] system variables.
Though each line is supposed to have 32 characters of data, up to 48
characters can be formatted. However, the rule that each control code requires
two characters is still in effect.

Example

The following script constructs and prints a date string bordered by hash marks at
the workstation’s check printer:

sub print date

var date : a9
var hash mark : a24 //Use format to build a date
// string
format date as @DAY, “-”, month arr[@MONTH], “-", QYEAR
setstring hash mark, “="
startprint QCHK //Print what follows at this UWS
// check printer
printline hash mark //Print the date string
printline @DWON, @REDON, date{=16}// double-wide, in red
printline hash mark // and centered between
// hash marks
endprint
endsub
See Also

StartPrint command and the Chr function

7-132

ISL Commands
ISL Command Reference

Prompt

Description
This command is used to display an operator prompt on the prompt line at the
workstation.
Syntax
Prompt expression[{output _specifier}] [, expression\ [{output_specifier}]...]
Argument Description
expression an expression that represents the prompt for the

user: it may one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output_specifiers that
determine the format of the output fields; see
full definition beginning on page 7-11

Remarks

* The combined length of all expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

¢ The Prompt command should only be used when a time-consuming piece of
code is to be executed. This command will inform the user that the UWS is
busy. All commands that require user input display their own prompts.

prompt "Posting unsuccessful"

// displayed but erased immediately
waitforclear

// "Press clear to continue" will display

Simphony SIM Manual 7-133

ISL Commands
ISL Command Reference

Example

The following script receives a list of guests from the PMS, calls a subroutine that
sorts the list, then calls another that displays the list:

event rxmsg : guest list

var num_guests : n3
var guest 1ist[100] : a20
rxmsg num guests, guest list[] //Get the guest array
from PMS
prompt “Sorting guest list - please wait...”//Tell the user
call sort list //Call routine that
sorts the
// list
call display guests //Call routine that
displays
// the list
endevent

7-134

ISL Commands
ISL Command Reference

ProRate

Description

This command is used to indicate to the system that prorated itemizers are to be
used. Prorated itemizers are required for some Property Management Systems.

Syntax
ProRate

Remarks

¢ Ifthe ProRate command is encountered either inside or outside an Event
procedure, all itemizers will be prorated for the duration of the ISL script. The
following system variables are prorated:

@SI[]
@DSC
@SVC
@AUTOSVC
@TAX[]

Please refer to “ISL System Variables” for more information.

* Prorated itemizers are useful if the PMS is posting sales, discounts, tax, etc.
during the charge posting operation. When prorated totals are used, the totals
reflect the Current Payment’s share of a guest check. If the Current Payment is
voided, the totals will have the reversed polarity to reflect this. The only
exception (i.e., the total that is not prorated) is a charged tip, which will
always be completely attributed to its associated payment. This mode is
supported by Simphony.

Simphony SIM Manual 7-135

ISL Commands
ISL Command Reference

The following equations can be used by the PMS PC to determine the Current
Payment Total of the prorated transaction being posted:

Current Payment Total = + (+) Sales 1 Total
+ (+) Sales 2 Total

+ (+) Sales 3 Total

+ (+) Sales 4 Total

+ (+) Sales 5 Total

+ (+) Sales 6 Total

+ (+) Sales 7 Total

+ (+) Sales 8 Total

+ (+) Sales 9 Total

+ (+) Sales 10 Total

+ (+) Sales 11 Total

+ (+) Sales 12 Total

+ (+) Sales 13 Total

+ (+) Sales 14 Total

+ (+) Sales 15 Total

+ (+) Sales 16 Total

+ (-) Discount Total

+ (+) Service Charge Total (kybd)
+ (+) Service Charge Total (auto)
+ (+) Tax 1 Total (if non-VAT)

+ (+) Tax 2 Total (if non-VAT)

+ (+) Tax 3 Total (if non-VAT)

+ (+) Tax 4 Total (if non-VAT)

+ (+) Tax 5 Total (if non-VAT)

+ (+) Tax 6 Total (if non-VAT)

+ (+) Tax 7 Total (if non-VAT)

+ (+) Tax 8 Total (if non-VAT)

The Previous Payment Total is also provided.

In some jurisdictions, the prorated calculations will result in inexact tax totals.
This occurs because of rounding errors associated with proration and the
methods required to compute tax. As an example, consider three guests paying
a $10.00 check which includes $1.00 tax. The first two guests will be charged
$0.33 tax and the third $0.34 tax (the rounding adjustment is included in the
last total). These situations are unavoidable; if complete accuracy is required, a
Split Check operation should be performed and the remaining checks (after the
Split Check) should be individually posted to the PMS.

See Also
@PRORATETND system variable

7-136

ISL Commands
ISL Command Reference

Notes

* In the formulas on the previous page, the first arithmetic operator indicates the
operation that the PMS should perform on the total field. The second
arithmetic operator (in parentheses) indicates the normal sign of the total field
as presented in the message data block by the POS system.

* If Value Added Tax (VAT) is used, the tax totals represent the total sales
amounts (inclusive of VAT) for each of the VAT tax types and must not be
included in the Transaction Total or Current Payment Total equations.

* In non-prorated mode, if the Current Payment Amount field in the message
data block is less than the computed Transaction Total (above), then a partial

amount has been tendered.

e IfU.S. inclusive tax is used, the tax total associated with this rate will be zero.

Simphony SIM Manual 7-137

ISL Commands
ISL Command Reference

QueueMsg

Description

This command holds PMS messages in the Simphony database queue until the

PMS is online.

Syntax

QueueMsg pms_number, expression[{output_specifier}]
[, expression| {output_specifier}]\...]

Argument

Description

expression

an expression that will be queued; it may be one
of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier}

one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

7-138

ISL Commands
ISL Command Reference

[Retain/Discard]GlobalVar

Description

These commands instruct the ISL to save all global variable values in between
transactions, or to discard them.

Syntax
RetainGlobalVar

or

DiscardGlobalVar

Remarks

* These commands are global, which means they remain in affect until the
alternative command is used or until the script file has been changed (i.e.,
until the script file is opened for edit and closed).

* The default action is to discard the global variable values after each event.

Example

The following example could be used to count the number of times Tender #1 has
been used. This value will be retained and incremented until the script is changed.

retainglobalvar

var numtnd : n5 //Numtnd is retained until POS
// Operations is Shut Down or
// Reloaded.

event tmed : 1

numtnd = numtnd + 1

endevent

Simphony SIM Manual 7-139

ISL Commands
ISL Command Reference

Return

Description

This command is used to return from a subroutine procedure prior to reaching the
end of the routine (EndSub). It is provided as a means of breaking out of the
subroutine under certain conditions.

Syntax

Return

Remarks

The Return command is not allowed in an Event procedure.

Example

The following example shows a subroutine that takes as arguments the file
number of an open file and a search number. It tests the first field in each line for a
number that matches the search number. If a match is found, the subroutine
Returns without executing the rest of the commands in the subroutine. If no
match is found before the end of file is encountered, the subroutine exits normally.

sub finfnd obj(ref fn, ref search num)
var current position : né6
var found num : né6
prompt "Searching, please wait..."

while not feof(fn) //Loop until end
// of file encountered
current position = ftell(fn) //Get the current
// file pointer position
fread fn, found num, * //Fread the first field
// only from the file
if found num = search num // if it matches
// what user entered
fseek fn, current position //Fseek to the beginning
// of the line
return // exit the subroutine
endif
endwhile

errormessage "Can't find that number"//If end of file
// is encountered then

search num = 0 // we didn't find a
// match, tell user, set
endsub // search_num = 0,

// and return

See Also
If, Sub, and While commands

7-140

ISL Commands
ISL Command Reference

ReTxMsg

Description

This command retransmits a message. When used in place of the TxMsg
command, the retransmit flag is set to “R” and the sequence number is not
incremented.

Syntax
ReTxMsg

Remarks

This command should only be used with the UseISLTimeOuts command.

See Also
UseISLTimeOuts command

Simphony SIM Manual 7-141

ISL Commands

ISL Command Reference

RxMsg

Description

This command defines the format of the data segment of an interface response
message by specifying a variable name for each piece of data it receives. The
RxMsg command will assign the values in the Applications Data Segment of the
variables specified in the RxMsg statement.

Syntax

RxMsg user variable or list_spec|, user_variable or list spec...]

or

RxMsg _Timeout

Argument Description

user_variable a user_variable which will be assigned data

list_spec is defined as: a user integer variable containing the number

number_records of records to be built from this string

field array|:field array] an array_variable that will hold one field per
record; field can be split into more than one
array by separating the array variables using a
colon (©)

Remarks

The Event RxMsg command is executed when a response is received from
the interfaced system. The Event must contain an RxMsg command. The first
field in a response message is always the Event ID and should not be declared
using this command. The RxMsg command defines all the fields (and their
order) following the Event ID field. The interface message fields are always
separated by an ASCII field separator character (ASCII 1CH). The variable
fields must have been previously declared using the Var command.

The user variable can be up to 255 characters in length and must begin with a
letter A - Z, a - z, or the underscore character (). It may include any character
in the range A - Z, 0 - 9, and the underscore character.

If the System Variable @STRICT ARGS is set to 1, then ISL will ensure that
the variable count in the RxMsg command matches the number of fields in
the file record. If an incorrect number of fields is specified in the statement or
the file is corrupted, an error message will be generated.

7-142

ISL Commands
ISL Command Reference

¢ This Event requires that both the TxMsg and WaitForRxMsg commands be
used in another event in the script for the RxMsg command to work.

¢ Ifthe UseISLTimeOuts command is used and the PMS does not respond to
an ISL message within the timeout period, the ISL will search the script for an
RxMsg event with an Event ID of _Timeout. If _Timeout is found, ISL will
bypass the standard Simphony error messaging and process a user-defined
ISL instruction in its place.

¢ If the RxMsg command specifies more variables than are present in the
applications data segment, no error will occur. The extraneous variables on
the command will retain their previous value. If the number of fields in the
Applications Data Segment exceeds the number of variables in the RxMsg
command, no error will occur. The command will execute successfully and
the extraneous data in the message will be thrown away.

* It is not possible to execute an RxMsg if no message has been received. It is
also not possible to execute multiple RxMsg commands within one RxMsg
Event. Once the first RxMsg command executes, any subsequent RxMsg
command will cause an error.

* This command is related to the Split command. While the Split command
works with any string buffer and any field separator, the RxMsg command
assumes the PMS message and the ASCII field separator character.

Example

event ing : 1

var room num : a4

input room num, “Enter Room Number”

waitforrxmsg

txmsg @CKEMP, @CKNUM, @TNDTTL, room num
endevent
event rxmsg : charge declined

var room num : a4

rxXmsg room num

exitwitherror “Charge for room “
endevent

, room num,” declined”

See Also
Event, Split, TxMsg, UseISLTimeOuts, Var, and WaitForRxMsg commands

Simphony SIM Manual 7-143

ISL Commands
ISL Command Reference

SaveChklInfo

Description

This command saves a type of check detail known as check information detail
lines in the Guest Check files.

Syntax
SaveChklInfo expression[{output specifier}][, expression\
[{output_specifier}]]...]

Argument Description

expression an expression that represents the information to
be saved; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

* Like other types of guest check detail, i.e., totals and definitions, guest check
information detail lines are only stored in the Guest Check files (stored in
workstations) temporarily and cleared upon closing a guest check. As a
consequence, this detail only has short-term value unless it is also written to a
third-party database or to Closed Check files.

* Closed Check Files—Once stored in these files, guest check
information detail can be exported to an ASCII comma-separated file
using the Simphony Data Access Service or check detail can be
written to a file using the ISL file I/O operations. Then, an external
program can be created to extract this information from these files
and manipulate the information for a variety of purposes.

* Third-party System—If this information is captured by a third-party
system, like a delivery system, accessing the information depends on
the resources of that particular system.

7-144

ISL Commands
ISL Command Reference

* The SaveChkInfo command is issued once for each line of check information
detail written to the check. The process goes like this:

® The first occurrence of SaveChkInfo in an event writes to the first
check information detail line.

* Each subsequent call to SaveChkInfo writes to the next check
information detail line.

* Check information detail is not actually written to the check detail until the
script terminates.

* Check information detail can be overwritten by using SaveChklInfo in
another event.

How to Capture and Print Check Information Detail

Introduction

Both SIM and Simphony must be used in the following ways to accomplish
these tasks:

¢ A SIM script must be designed to collect and save the check
information detail, and

* Specific Simphony programming must be enabled to print and
display the check information detail to the specifications of the
establishment.

Designing the SIM Script

The SIM must be used to capture and save check information detail. That is,
the script must be designed so that an operator can input check information
detail and save it, if necessary, from the System Unit.

When designing the script, keep the following rules in mind:
* Rule: Do not issue SaveChkInfo in a single event more times than
the number of allocated check information detail lines; doing so will

result in an error.

* Rule: Only 24 characters per check information detail line may be
written with SaveChklInfo.

The following steps are the sequence of events that the script might
execute in order to capture and save check information detail:

1. Begin a check.

Simphony SIM Manual 7-145

ISL Commands

ISL Command Reference

2. Draw a window.
3. Prompt the operator to enter name and address information.

4. Issue the SaveChkInfo command to save the input data.

Programming the Simphony Database

Whether check information detail lines will print and where they will print on
guest checks and remote output is determined by specific Simphony database
programming, not the script. In order to print this detail and save it in the
Guest Check file:

* check information detail lines must be allocated in Simphony

* programmed to print
For example, one can program the Simphony to print the check information
detail captured above or after the guest check header, or after the guest check

trailer. In the example of the delivery system, the restaurant programmed the
check information detail lines to print before the guest check header.

Operational Considerations

Voiding Check Information Detail

Unlike other types of check detail, check information detail cannot be voided
from a check using any Simphony void procedures or modified using the Edit
Closed Check function.

7-146

ISL Commands
ISL Command Reference

Example

The ISL event below initiates a procedure for collecting and saving the following
customer information for a fictional delivery system at a restaurant: last and first
name, telephone number, street address, and up to four lines for directions.

event ing : 1

var field name[8] : a24

var customer info[8] : a24
field name[l] = "Last: "
field name[2] = "First: "
field name[3] = "Phone: "
field name[4] = "Addr: "

1
1
1
field name[5] = “Dl1: ™
]
1
1

field name[6] = “D2: ™
field name[7] = “D3: ™
field name[8] = “D4: ™

var rowcnt : n3

window 8, 40

touchscreen 13

for rowcnt = 1 to 8
display rowcnt, 2, field name[rowcnt]
displayinput rowcnt, 10, customer info[rowcnt],\
"Enter ", field name[rowcnt]

endfor

windowedit

for rowcnt = 1 to 8

savechkinfo customer info[rowcnt]

endfor

waitforclear

windowclose

touchscreen 3

endevent

See Also
ClearChkInfo command

Simphony SIM Manual 7-147

ISL Commands
ISL Command Reference

SaveRefInfo

Description

This command is used to save the contents of an expression as part of tender
reference information.

Syntax
SaveRefInfo expression[{output_specifier}][, expression\
[{output_specifier}]]...]

Argument Description

expression an expression that represents the information to
be saved; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks
* The SaveRefInfo command will only work with the Event Tmed procedure.
* Every time this command is used, a new reference line is created.

* Up to eight references may be saved with each tender and each may be up to
19 characters long. Text or fields greater than 19 characters will be truncated.

7-148

ISL Commands
ISL Command Reference

Example

The following script allows a user to enter delivery information on a To Go check:

event tmed : 10
var rowcnt n3
var deliv_desc[6] als
var deliv_info[6] az20
var cnt n3
deliv_desc[1l] = “Name:”
deliv_desc[2] = “Company:”
deliv_desc[3] = “Address 1:”
deliv_desc[4] = “Address 2:”
deliv _desc[5] = “City:”
deliv_desc[6] = “Phone:”
window 6, 43
for rowcnt = 1 to 6

display rowcnt, 2,

displayinput rowcnt,
endfor
windoweditwithsave

13,

saverefinfo “DELIVER TO:”
for cnt 1 to 6

if len(deliv_info[cnt])

//Display a window with address
// prompts, and accept delivery
// info from user

deliv_desc[rowcnt]

“Enter “,

deliv_info[rowent], deliv_desc[rowcnt]
//Input can only be terminated

// by cancel or save

//Save this line to check detail
//I1f user made an entry on a

// line, save

// the entry to check detail

> 0 AND deliv_info[cnt] <> ™ ”

saverefinfo deliv_info[cnt]

endif
endfor
endevent

See Also

Event and SaveRefInfox commands

Simphony SIM Manual

7-149

ISL Commands
ISL Command Reference

SaveRefInfox

Description

This command is used to save both the type and the contents of an expression as
part of tender reference information. SaveRefInfox requires the reference type as
an argument so that different types of reference detail can be distinguished if
exported later.

Syntax

SaveRefInfox ref type, expression|{output specifier}][, expression\
[{output specifier}]]...]

Argument Description

ref type a type N3 integer that represents the reference
type; specify 0-255; 0 denotes no reference
type, as with SaveRefInfo

expression an expression that represents the information to
be saved; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see

full definition beginning on page 7-10

Remarks

* The SaveRefInfox command will only work with the Event Tmed
procedure.

* Every time this command is used, a new reference line is created.

* Up to eight references may be saved with each tender and each may be up to
19 characters long. Text or fields greater than 19 characters will be truncated.

7-150

ISL Commands
ISL Command Reference

Example
The following script allows a user to enter delivery information on a To Go check:
event tmed : 10

var rowcnt : n3

var deliv desc[6] : al5

var deliv _info[6] : a20

var cnt : n3

deliv desc[l] = “Name:”
deliv desc[2] = “Company:”
deliv desc[3] = “Address 1:”
deliv desc([4] “Address 2:”
deliv desc[5] = “City:”
deliv _desc[6] = “Phone:”

//Display a window with address
// prompts, and accept delivery
// info from user
window 6, 43
for rowcnt = 1 to 6
display rowcnt, 2, deliv desc[rowcnt]
displayinput rowcnt, 13, deliv_info[rowcnt], “Enter %,
deliv desc[rowcnt]
endfor
windoweditwithsave //Input can only be terminated

// by cancel or save

“DELIVER TO:” //Save this line to check detail
//1f user made an entry on a
// line, save
// the entry to check detail

saverefinfox 15,
for cnt = 1 to 6

if len(deliv_info[cnt]) > 0 AND deliv info[cnt] <> ™ 7~
saverefinfox 15, deliv info[cnt]
endif
endfor

endevent

See Also

Event and SaveRefInfo commands

Simphony SIM Manual 7-151

ISL Commands
ISL Command Reference

ScanBarcode

Description

This command is used to scan barcodes that contain data larger than 40 characters
(e.g., QR barcodes).

Syntax

ScanBarcode returned data, message

Remarks

* The message “Scan your Barcode” will be displayed in the “Yellow Object
Bar” (YOB) on the Workstation display to prompt the user to perform the
operation.

* No Alpha Keyboard entry screen will be displayed.

Example
This example will scan a barcode and save it to a file.
event ing:1l
var couponCode : A512
var fn :N2
scanbarcode couponCode ,"Scan your Barcode"

fopen fn,"\store\posclient\sim\barcode.txt", append , local

if fn = 0
errormessage "File already open or missing:
\POSClient\SIM\barcode.txt" // QFILE ERRSTR
exitcontinue
else

fwrite fn, 1, couponcode

fclose fn

errormessage "Barcode saved to file"
exitCancel

endif

endevent

7-152

ISL Commands
ISL Command Reference

SetlIsiTsKey

Description

This command defines a key to be displayed on a touchscreen, allowing one to
define a key that normally would be programmed in the Touchscreens module.

Syntax

SetIsITsKey row, col, num_rows, num_cols, font, \

key expression, expression

Argument Description

row integer expression defining row coordinate of
key (1-6)

col integer expression defining column coordinate
of key (1-10)

num_rows integer expression defining the key height in
rows (1-6)

num_cols integer expression defining the key width in
columns (1-10)

font font size integer expression (1-3)

key expression

key value to be returned when this key is
pressed; it may be one of the following:

Key function
user variable (type Key only)
system_variable (@KEYS only)

expression

descriptor to appear on the key as it is

displayed; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

Simphony SIM Manual

7-153

ISL Commands

ISL Command Reference

Remarks

Up to nine keys may be defined with the SetIslTsKey.

Any previously defined touchscreen keys are automatically cleared each time
a script executes. However, if two or more touchscreens are defined within an
event, the ClearIslTs command must be used to clear the touchscreen keys.

Example
The subroutine below first clears any previously defined touchscreen keys and
displays two touchscreen keys, [YES] and [NO], which are defined by the
SetIslTsKey command. This subroutine displays these keys as the operator is
issued a prompt by the system and captures the operator’s input.

sub get yes or no(ref answer, var prompt s:A38)

var keypress : key
var data : A20

clearislts

setisltskey 2, 2, 4, 4, 3, QKEY ENTER,
setisltskey 2, 6, 4, 4, 3, QKEY CLEAR,
displayislts

inputkey keypress, data, prompt s
if keypress = QKEY ENTER

answer = 1
else
answer = 0
endif
endsub
See Also

"YES"
"NO"

ClearIslTs, DisplaylslTs, and PopUplsITs commands

7-154

ISL Commands
ISL Command Reference

SetReRead

Description

This command allows OPS to re-read the ISL script for new or changed ISL
scripts.

Syntax
SetReRead

Remarks

* Previously, OPS would always check if an ISL script had changed before
processing the event. Now that many more events have been added,
continuously checking file status would be an unnecessary strain on system
resources, especially since this feature is used only for debugging scripts.

* The ISL script will also be reread if /micros/simphony/etc/isl.reread is
present when POS Operations is started.

Simphony SIM Manual 7-155

ISL Commands
ISL Command Reference

SetSignOn[Left/Right]

Description

These commands determine where ISL places the minus sign when formatting
numbers.

Syntax
SetSignOnLeft

or

SetSignOnRight

Remarks

® This is a global command.

e By default, ISL puts the minus sign to the right of the number being displayed
(for example, -45 will display as “45-"). If this is not acceptable, then
executing the SetSignOnLeft command will cause ISL to format a/l numbers
with the minus sign on the left.

REMEMBER: Using the SetSignOnRight or SetSignOnLeft command does
NOT change the way ISL reads input data. Any external data read and
interpreted by ISL, such as received messages, file read operations, and
operator input, must have the negative sign on the left-hand sign of the value.

For example, if the ISL script prompted for an amount entry, and the operator
entered 1.23-, the value would not be accepted as positive. Any negative PMS
entries must have the sign on the left side of the field.

Example

event ing : 1

waitforclear -123 //will display ‘123-’ by default
setsignonleft

waitforclear -123 //will display ‘-123’
setsignonright

waitforclear -123 //will display ‘123-7

endevent

7-156

ISL Commands
ISL Command Reference

SetString

Description

This command will replace all, or a specific number of, characters in a string with

a particular character.

Syntax

SetString main_string, character_string[, count]

Argument

Description

main_string

the string in which characters will be replaced;
it can be any string variable

character_string

a string whose first character will be used to
replace characters in main_string; it may be one
of the following:

user variable
system_variable
constant

string

function
equation

count

optional count of characters to set the
main_string to. If not specified, the entire
main_string will be replaced with the first
character of the character string

Example

The following script constructs and prints a date string bordered by hash marks at

the workstation’s check printer:

sub print date
var date : a9
var hash mark : a24

format date as @DAY,

setstring hash mark,
startprint QCHK

printline hash mark

//Use format to build a date
// string

“-”, month arr[@MONTH], “-", QYEAR

//Print what follows at this UWS
// check printer
//Print the date string

printline @DWON, QREDON, date{=16}// double-wide, in red

printline hash mark

endprint
endsub

// and centered between
// hash marks

Simphony SIM Manual

7-157

ISL Commands
ISL Command Reference

SimDB

Description

This command is used by the SIM to send a request to the SIMDB DLL and then
receive a response.

Syntax
SimDB interface number, request_msg, response_message
Argument Description
interface_number the interface definition object number
request msg the request message
response_message the response message
Remarks

If the SIM script is linked directly to the SIMDB interface, then @PMSNUMBER
should be used. If the SIM script is linked to a standard PMS interface, then the
object number of the SIMDB interface must be specified. If the standard PMS
interface has a value in the SIMDB Link field in Interfaces | General tab within
the Enterprise Management Console (EMC), then the @SIMBLINK system
variable can be used.

Example 1
// Use the PMS number linked to this script

Simdb @pmsnumber, req, resp

// Use PMS number 15
Simdb 15, req, resp

// Use the SIMDB link from the PMS linked to this script
Simdb @simdlink, req, rsp

* request msg is the string to be sent to the SIMDB DLL.

* response msg is the string which will be filled with the response from the
SIMDB DLL request.

7-158

ISL Commands
ISL Command Reference

Example 2

event ing:1

var req:A80
var rsp:A80

req = "name| fred"
simdb @pmsnumber, req, rsp
waitforclear "rsp=", rsp
endevent
See Also

@PMSNUMBER and @SIMDBLINK variables

Simphony SIM Manual 7-159

ISL Commands
ISL Command Reference

Split

Description

This command is used to split a field-separated string into separate variables.

Syntax

Split string to split, field sep char, user variable or list spec \

[, user_variable or list spec...]

Argument

Description

string to_split

the field-separated string to split

field sep char

the character used to the separate fields in the
string_to_split; use the Chr function to define
the character required

user_variable

a user_variable which will be assigned one of
the individual fields from the string to split

list spec is defined as:
number_records

a user integer variable containing the number of
records to be built from the string to split

field arrayl: field array]

an array_variable that will hold one field per
record; a field can be split into more than one
array by separating the array variables using a
colon (©)

Remarks

If the system variable @STRICT ARGS is set to 1, ISL will ensure that the
variable count in the Split command matches the number of fields in the file
record. If an incorrect number of fields is specified in the statement or the file is
corrupted, an error message will be generated.

7-160

ISL Commands
ISL Command Reference

Example

The following example will assume the PMS has sent the guest name and room
number as one field. The name is separated by the room number with the [fs]
character. Without the Split command, the script would have to search through the
field one character at a time until the [fs] character was found. The Split
command, however, will automatically split the data into fields:

event rxmsg : guest

var name_and _room : a25

var name : a20
var room number : nb
//Get the data as one field, and
//split it into 2 fields
name and room, “[fs]”, name, room number

//Display data in window
window 5, 30, “Guest Inquiry”
display 2, @CENTER, name
display 4, QCENTER, room number
waitforclear
endevent

See Also

Format and SplitQ commands; Chr function

Simphony SIM Manual 7-161

ISL Commands
ISL Command Reference

SplitQ

Description
This command is used to split a field-separated string into separate variables and
strips the quotes from the quoted string.

Syntax
SplitQ string to_split, field sep char, user variable or list_spec \
[, user_variable or list spec...]

Argument Description
string to_split the field-separated string to split
field sep char the character used to the separate fields in the

string to_split; use the Chr function to define
the character required

user_variable a user_variable which will be assigned one of
the individual fields from the string to split

list_spec is defined as: auser integer variable containing the number of
number_records records to be built from the string to split
field arrayl: field array] an array variable that will hold one field per

record; a field can be split into more than one
array by separating the array variables using a
colon ()

Remarks

* The SplitQ command operates in the same way as the Split command, except
that it will strip quotes from quoted strings. The SplitQ command is generally
used to split lines from a file, where strings are usually quoted.

* If the system variable @STRICT_ARGS is set to 1, ISL will ensure that the
variable count in the SplitQ command matches the number of fields in the file
record. If an incorrect number of fields is specified in the statement or the file
is corrupted, an error message will be generated.

See Also

Format and Split commands; Chr function

7-162

ISL Commands
ISL Command Reference

StartPrint...EndPrint[FF/NOFF]

Description

These commands are used to start and end a print session on any MICROS printer
(as opposed to a line printer). The StartPrint command is used to select the
printer and start the print session and the EndPrint command ends the print
session. The Form Feed [FF] and No Form Feed [NOFF] may also be used with
the EndPrint command, depending on the needs of the application and printer
default.

Syntax

StartPrint printer namelexpression [, backup_dten [, reference_line]]

EndPrint [or EndPrintFF or EndPrintNOFF]

Argument Description

printer_name the object number of the printer

expression any variable that contains the object number of
a printer in the system

backup dten the object number for the backup printer that
overrides the backup printer programmed in the
database

reference_line the text string to be displayed in the printer

error window if an error occurs during printing

Remarks
* The expression is defined using one of the ISL Printer system variables in the
table below.
ISL Printer Printer Valid # of # of char Red FF Extended
Name Assignement | Printer char DW Default Print
in Types SW
Workstations
| Printers
@RCPT Customer Roll 32 16 Optional | Yes Yes
Receipt
@CHK Guest Check | Roll 32 16 Optional | Yes Yes

Simphony SIM Manual 7-163

ISL Commands
ISL Command Reference

ISL Printer Printer Valid # of # of char Red FF Extended
Name Assignement | Printer char DW Default Print
in Types SW
Workstations
| Printers

@ORDR# Order (local | Roll 32 16 Optional | Yes Yes

or remote)
(where #is 1 KDS 19 No No No No
-15
referring to
the
appropriate
order device)
@VALD Validation Roll 32 16 Optional | Yes Yes

* The physical printer is selected based on the workstation printer assignments
in the Simphony database. For example, when @CHK is selected, the ISL
will pass along the information to the Check Printer defined for the
workstation, from which the Event was initiated.

* In the case where a printer fails and a backup printer is programmed, the
printing session will notify the operator at the workstation that the printing
session has failed and the print session has been sent to the backup printer.

* Printing will not begin until the EndPrint command is executed. Each printer
will FormFeed or not, depending on its default characteristic (see table);
EndPrint will follow the printer’s default. Use either EndPrintFF or
EndPrintNOFF to force the opposite action.

e If single-wide printing is used, anything over 32 characters will be truncated.
If the @DWON Print Directive is used, anything over 16 characters will be
truncated.

* Ifthe @REDON Print Directive is used with the @KDS device, the output
will be Bright. If the @REDON Print Directive is used with a printer, the

correct type of ribbon is required (black/red) for output to print in red.

* Note that only one print session may be active at any one time from the same
workstation.

POS Setup
To enable the printer, enter the Simphony database and verify that the printer:

e is entered as a device in the Workstations module

* has its object number entered as one of the printers in the Workstations
module

7-164

ISL Commands
ISL Command Reference

Example

The following script allows a user to enter a 13 line message and print it at the
kitchen printer:

event ing : 1

var kitchen msg[13] : a20

var sender_name : a20

var rowcnt : n3

var hash _mark : a24

window 14, 22 //Display the window

displayinput 1, 2, sender_ name, “Enter your name”
//Accept users name

//Have user input the message

for rowcnt = 1 to 13

displayinput rowcnt + 1, 2, kitchen_msg[rowcnt], “Enter kitchen message”
endfor
windowedit //Only save or cancel will
setstring hash_mark, “=" // end input
startprint @ordrl //Start the print job at

// remote printerl
printline hash_mark

printline “Message from “, sender_name

printline hash_mark

for rowent = 1 to 13
if len(kitchen msg[rowcnt]) > ™%

printline kitchen msg[rowcnt]

endif

endfor

printline “======= END MESSAGE ====

endprint
endevent

See Also
* PrintLine command

* “ISL Printing”

Simphony SIM Manual 7-165

ISL Commands
ISL Command Reference

Sub... EndSub

Description

These commands are used to declare the start and end of a subroutine. A
subroutine may be used by an event or another subroutine by using the Call

command.

Syntax

Sub name [(Ref | Var parameter [, Ref | Var parameter]...)]

EndSub
Argument Description
name the subroutine name
Ref ISL keyword
Var Var command, see page 7-184
parameter a variable or expression passed from the

associated Call command; it may be one of the
following:

variable by reference

array by reference

expression by value, i.e.,

local variable name : [A, $, N]
Size, or Key

7-166

ISL Commands
ISL Command Reference

Remarks

¢ Each Sub command defines the number and type of parameters that can be
passed in. If the Call command has the incorrect number of arguments or the
incorrect type of arguments, an error will display.

¢ Sub commands are not allowed within an event.

event ing : 1
sub // will display error

endsub
endevent

¢ Each subroutine has access to the calling event’s variables, all global
variables, and may declare their own local variables.

® The name may be any length up to 255 characters and must begin with a letter
A -Z, a-z, or the underscore character (_). It may include any character in the
range A - Z, 0 - 9, and the underscore character.

Using Subroutines

ISL subroutines can be passed parameters in the same way as C, BASIC, or Pascal
subroutines. Data can be passed in by two methods: value or reference.

By Value

* A parameter in a Sub command is considered to be by value if
declared as a normal ISL variable. Example:

sub get name(var target name:A20, var target id:N5)

Both target name and target_id are local variables which are assigned the
value passed in with the Call command. A Call command to call this
subroutine could be:

call get name("Smith", 145)

Any type of ISL expression can be passed in. Example:

call get name("Smith", 145 + offset)
call get name(user input, elist[25])

Simphony SIM Manual 7-167

ISL Commands
ISL Command Reference

call

The expression type (string, numeric,...) can be different from the one
declared in the Sub command. Example:

get name("Smith", "45")

The assignment of the expression to the subroutine parameter follows
the same rules when setting a variable in a normal assignment
expression.

Arrays cannot be passed in by value.

When a variable is passed in by value (using the Var command in the
Sub statement), a copy is made of the variable and given the name
specified in the Sub statement. Any change made to a variable passed
by value in a subroutine does not affect the original value of the
variable.

event ing : 1
var 1 : n5 = 10 //Set 1 to 10
call mysub (1) //Pass in 1 by value
waitforclear “i = %, i //1i is still equal
// to 10
endevent
sub mysub (var j : n5)
J =20 //Change local copy,
// not the original
endsub
By Reference

There are two types of data that can be passed in by reference:
variables and arrays. To pass either, the Ref variable is used in the
Sub statement. No type information is specified for the referenced
variable.

For example, in the following line status is passed by reference, and

prompt

_string is passed by value.

sub mysub (ref status, var prompt string:A20)

7-168

ISL Commands
ISL Command Reference

The following example shows correct and incorrect ways to invoke mysub:

var result:N5
call mysub(result, "Enter data") // Correct
call mysub(result+l, "Enter data")

// Incorrect: 'result+l' is not a variable.
call mysub((result), "Enter data")

// Incorrect: '(result)' is considered an
// expression

* To pass an array, empty brackets must be placed after the array name
both in the Sub and the Call commands. Example:

sub mysub (ref data[], wvar prompt string:A30)

The following example passes an array to mysub:

var array|[10]:A20

call mysub(array[], "Enter data") // Correct
call mysub(array, "Enter data")
// Incorrect. Need [] after array

* When a variable is passed in by reference, any change in the
subroutine to the variable affects the original value of the variable.
The name after the Ref variable can be thought of as being another
name for the variable passed in.

event ing : 1

var 1 : n5 = 10 //Set 1 to 10
call mysub (i) //Pass in i by
//reference
waitforclear “i = %, i //1i is now equal
//to 20
endevent

sub mysub (ref j)

j =20 //Change original
//value of i and j
//to 20
endsub

Simphony SIM Manual 7-169

ISL Commands
ISL Command Reference

Example

The event below calls a subroutine, format data, that formats the current date as
follows: dd-mmm-yyyy.

event ing : 1
var date : all

call format date(date, @day, @month, R@year)
waitforclear date
endevent

sub format date(ref date, var day : n5, var month : n5, var year : n5)
var month arr[12] : a3

month _arr([1l] = "JAN"
month_arr([2] = "FEB"
month arr([3] = "MAR"
month _arr([4] = "APR"
month_arr[5] = "MAY"
month arr([6] = "JUN"
month arr([7] = "JUL"
month_arr([8] = "AUG"
month arr([9] = "SEP"
month _arr([10] = "OCT"
month _arr([11] = "NOV"
month arr([12] = "DEC"
format date as day, "-", month arr[month], "-", year

endsub

See Also

Call and Var commands

7-170

ISL Commands
ISL Command Reference

System

Description
This command allows the user to execute a Windows batch or executable file.

Syntax
System command][{output specifier}]
Argument Description
command a properly formatted Windows batch or

executable file, surrounded by quotes, or a
string variable that contains a command

{output_specifier} one or more of the output_specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

The command may be a comma-separated series of strings and string variables.

Forward slashes (/) should be used instead of Windows backslashes (\) when
specifying a path.

If a directory is not specified, SIM will default to MICROS\Simphony\Etc. Any
command that is not in the user’s PATH or in the Etc directory should be relative
to Etc. Refer to the examples on page 7-171.

Example 1
This is a valid example because the bootptab file is in the Etc directory.

event ing : 10

var scriptname : a40 = “script.save”
system “cp bootptab”, scriptname
endevent
Example 2

Since the Export directory is not in the user’s PATH, the user was required to
specify the location of script.sh relative to Etc.

event ing : 10

var scriptname : a40 = “script.save”
system “cp ../export/script.sh ..export/”,scriptname
endevent

Simphony SIM Manual 7-171

ISL Commands
ISL Command Reference

Example 3

If commands are in the user’s PATH, then the location of the executable file is not
needed.

In this example, Notepad® will be launched on the server. Although Notepad® is
not in the default directory, it is located in a directory which is defined in the
user’s PATH.

event ing : 10
var scriptname : a40 = “notepad.exe”
system scriptname

endevent

Note: These examples are provided to give a general idea of
“,. how the System command works. They do not provide all of its

_ possibilities or limitations.

7-172

ISL Commands
ISL Command Reference

Touchscreen

Description

This command allows the system to display a pop-up touchscreen. This feature
improves operator prompting, making the system easier to use.

Syntax
Touchscreen numeric_expression

Argument Description
numeric_expression the object number of a pre-defined touchscreen,

programmed in the Simphony database

Remarks

* The command references a touchscreen within the Touchscreen module. This
Touchscreen number must already be setup within the Simphony database.

® The Touchscreen will disappear when this interface session is complete. As an
example, when prompting for the guest’s room number, the Touchscreen
could display a numeric keypad. Touchscreen 0 will cause the default
touchscreen to be used.

* This command is used only with the WS4(+) and the PCWS.

Simphony SIM Manual 7-173

ISL Commands
ISL Command Reference

TxMsg

Description

This command defines the applications data segment of a message that will be
transmitted over the interface.

Syntax
TxMsg expression| {output_specifier}][, expression[{output_specifier}]\...]
Argument Description
expression an expression that will be transmitted over the

interface; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks
* The TxMsg command must be followed by the WaitForRxMsg command.

* Ifmore than one field is required, multiple expressions must be separated by
commas. These commas will be replaced in the message received by the
interfaced system by field separator characters (ASCII 1CH).

* A statement may continue over multiple lines by including the line
continuation character (\) at the end of each line. The line continuation
character is very useful as TxMsg commands tend to be very lengthy.

7-174

ISL Commands
ISL Command Reference

an
string

process

Example

A transmission message that includes the check employee number, the check
number, tendered total, and a declared room number field could be defined as
follows:

event ing : 1
var room num : a4
input room num, “Enter Room Number”
txmsg “charge ing”, @CHKEMP, @CHKNUM, @TNDTTL, room num
//The first field (charge inqg) is

// example of an identifying
// that the PMS might use to

// messsage from the POS.
waitforrxmsg
endevent
event rxmsg : charge declined //This is one of the PMS response
// possibilities
var room num : a4
rxXmsg room num
exitwitherror “Charge for room %, room num,” declined”
endevent

See Also
Event, RxMsg, TxMsgOnly, and WaitForRxMsg commands

Simphony SIM Manual 7-175

ISL Commands
ISL Command Reference

TxMsgOnly

Description
This command sends a message to a PMS without waiting for a response.

Syntax
TxMsgOnly expression[{output_specifier}][, expression[{output_specifier}]\...]
Argument Description
expression an expression that will be transmitted over the

interface; it may be one of the following:

user_variable
system_variable
constant

string

function
equation

{output specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Example

A transmission message that includes the check employee number, the check
number, tendered total, and a declared room number field could be defined as
follows:
event ing : 1

var room num : a4

input room num, “Enter Room Number”
txmsgonly “charge post”, @CHKEMP, @CHKNUM, @TNDTTL, room num

//No message will be received. If the PMS responds, it will
// be ignored.

endevent

See Also

TxMsg command

7-176

ISL Commands
ISL Command Reference

UpperCase

Description

This command is used to convert a string variable to uppercase.

Syntax

UpperCase string variable

Argument

Description

string_variable

the string that will be changed to an uppercase

user variable (string)

See Also

LowerCase command

Simphony SIM Manual

7-177

ISL Commands
ISL Command Reference

UseBackupTender

Description

This command instructs the ISL to switch to the programmed backup Tender.

Syntax

UseBackupTender

Remarks

* Tender Media PMS Option Switch to Alternate Tenders if PMS Timeout
must be enabled. If backup tender is not programmed, this command has no

effect.

* This is useful for posting to other tenders when the primary PMS is not active.

Example

event rxmsg : Timeout
waitforconfirm “Post to backup tender”
usebackuptender
exitcontinue

endevent

See Also

Event Tmed command

7-178

ISL Commands
ISL Command Reference

Use[Compat/ISL]Format

Description

These commands are used to instruct ISL to use the ISL message format or the
Simphony-standard message format.

Syntax

UseCompatFormat
or

UselSLFormat

Remarks

* These commands are global.

¢ Ifthe Simphony-standard message format is selected, the Application Data
Segment will not contain the two-byte sequence number or the retransmission
flag, or the FS after the STX. For more information, please see “Message
Formats” on page 2-3.

Simphony SIM Manual 7-179

ISL Commands
ISL Command Reference

Use[ISL/STD]TimeOuts

Description

These commands instruct ISL how to process a PMS timeout. UseISLTimeQuts
will search the script file for an RxMsg Event with an Event ID of _Timeout.
UseSTDTimeOuts will use the standard Simphony error messaging for a PMS
timeout.

Syntax
UseISLTimeOuts

or

UseSTDTimeOuts

Remarks

* The Event ID _Timeout will bypass the standard Simphony error messaging
for a PMS timeout and process instructions from the ISL script file.

* For example, if the UseISLTimeQuts command is used and the PMS does not
respond to an ISL message within the timeout period, the ISL script may then
ask the user if the processing should be cancelled, or if a backup tender should
be used.

See Also
Event, TxMsg, and RxMsg commands

7-180

ISL Commands
ISL Command Reference

UseSortedDetail

Description

This command causes detail system variables to access consolidated detail.

Syntax
UseSortedDetail

Remarks

This command applies to the detail system variables only.

Example

The following example, which assumes that check information lines are equal to
one, displays the name, tax amount, and quantity for each line of detail. Use this
event to see how UseSortedDetail changes the detail output format for
consolidated menu items.

event ing : 1
var chk line =1
UseSortedDetail
while chk line <= @numdtlt
call display dtl
chk line = chk line + 1
endwhile
endevent

sub display dtl
window 5,40

display 2,5, “Menu Item Name = " , @dtl name[chk line]
display 3,5, “Tax Amount =" , @dtl taxttl[chk line]
display 4,5, “Quantity = " , @dtl gtyl[chk line]

if @detailsorted = 1
display 5,5 “Detail Is Consolidated”
else
display 5,5 “Detail Is Not Consolidated”
endif
waitforclear

endsub

See Also
UseStdDetail command and @DETAILSORTED system variable

Simphony SIM Manual 7-181

ISL Commands
ISL Command Reference

UseStdDetail

Description

This command causes the detail system variables to access raw detail.

Syntax
UseStdDetail

Remarks

This command applies to the detail system variables only.

See Also
UseSortedDetail command and @DETAILSORTED system variable

7-182

ISL Commands
ISL Command Reference

UseTMSFormat

Description

This command is used to format messages using the TMS message format.

Syntax
UseTMSFormat

Remarks

This command is global.

Simphony SIM Manual 7-183

ISL Commands
ISL Command Reference

Var

Description

This command is used to declare user variables. When it is used outside an event
or subroutine, the user variable will be accessible globally. When it is used inside
an event or subroutine, the variable is considered “local” and is only allowed to be
used by that event or any subroutine called by the event.

Syntax
Var user variable : variable specifier
Argument Description
user_variable a user-defined name for a variable. If an

array variable is being declared, the
user_variable must be followed immediately
by brackets containing the maximum number of
items the array variable may contain, e.g.,
name[100]

variable specifier made up of a type and a size specifier. The
type_specifier can be an N, $, or A. The size
specifier can be either a number (i.e., 12) or an
integer expression enclosed in parentheses, i.e.,
12 + 15). If the Key #ype_specifier is used, the
size should not be included. The
variable_specifier is concatenated together, and
defines whether the variable is alphanumeric,
numeric (integer), a decimal, or a key, and, if its
one of the first three, how many characters/
digits it contains

Example
var guest name : AZ20
var guests[max guests] : A(max name length)

7-184

ISL Commands
ISL Command Reference

Remarks

* The user variable name can be up to 255 characters in length and must begin
with a letter A - Z, a - z, or the underscore character (). It may include any
character in the range A - Z, 0 - 9, and the underscore character. Case is
insignificant and the name must not contain spaces.

¢ Itis possible to declare a variable with a size that is defined by an expression,
rather than a hard-coded number. These are known as variable-size variables.
If the ISL encounters a left parentheses immediately following the type of the
variable, it will assume that an expression follows, which defines the
variable’s size. Variable-size variables can be declared as follows:

var i : n3 = 15
var window width : n(i + 15)

If i = 15, then the line shown above would be the same as:

var window width : N30

* If'the size of the variable is not known when the variable is being defined,
then the variable size may be placed within parentheses.

var string : Al0

var string : A(7 + 3) //Same as Al0

var string : A(num guests * 2) //Depends on value
// num_guests

Simphony SIM Manual 7-185

ISL Commands

ISL Command Reference

The type _specifier is different for each of the four types of user-defined
variables. Note that no size is specified when declaring a key variable.

Field Type Type Specifier Example
Numeric nor N n3
Decimal $ $6
Alphanumeric aorA a25
Key key key

For more detail about variable specifiers, refer to “Data Types” on page 4-3.
The declaration of a four digit room number would be defined as:

var room num:N4

An array with six elements may also be defined as:

var message text[6]:A32

More than one variable can be declared on the same line, as long as they are
separated by commas:

var room num : a5, guest count : n3

Variables can be declared and defined on the same line:

var city name : al0 = “Charleston”
Zero-length arrays and zero-size variables are allowed.

All variables are cleared when a new Event is executed, unless the
RetainGlobalVar command is used (which only affects global variables).

See Also
[Retain/Discard]GlobalVar command

7-186

ISL Commands
ISL Command Reference

WaitForClear

Description

This command requires the operator to press the [Clear] key before proceeding. It
is often used after the Display command.

Syntax

WaitForClear [prompt_expression[{output specifier}]|\
[, prompt_expression[{output_specifier}]...]

Argument Description

prompt_expression an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

{output _specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

* The default prompt, “Press Clear to continue”, will appear on the prompt line
of the workstation. This may be overridden by providing a prompt_expression
with the command.

* The combined length of all prompt expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Simphony SIM Manual 7-187

ISL Commands
ISL Command Reference

Example
The following script would display some text, then require the operator to press
the [Clear] key before continuing:

event ing : 1
window 1, 14

display 1, 2, “Hello” //”You say Hello”
waitforclear
display 1, 2, “Goodbye” // "and I say Goodbye”
waitforclear

endevent

See Also

Display, WaitForConfirm, WaitForEnter, and WaitForRxMsg commands

7-188

ISL Commands
ISL Command Reference

WaitForConfirm

Description
This command requires the operator to press the [Enter]| key or the [Clear] key.

Syntax

WaitForConfirm [prompt_expression[{output_specifier}]]\
[, prompt_expression[{output_specifier}]...]

Argument Description

prompt_expression an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output_specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks
* Ifthe operator presses the [Enter] key, the script will continue.

¢ Ifthe operator presses the [Clear] key, the operation will be cancelled and the
script will be exited. The default prompt, “Press [Enter] to continue”, will
appear on the prompt line of the workstation. This may be overridden by
providing a prompt_expression with the command.

* The combined length of all prompt expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Simphony SIM Manual 7-189

ISL Commands
ISL Command Reference

is an
string

process

Example

The following script is a transmission message that includes the check employee
number, the check number, tendered total, and a declared room number field.
After the room num is displayed, the script will wait for the [Enter] key or the
[Clear] key:

event ing : 1
var room num : a4
input room num, “Enter Room Number”
waitforconfirm
txmsg “charge ing”, @CHKEMP, @CHKNUM, @TNDTTL, room num
//The first field (charge inq)

// example of an identifying
// that the POS might use to

// message from the POS.

waitforrxmsg
endevent
event rxmsg : charge declined //This is one of the PMS response
// possibilities
var room num : a4

rxmsg room_num
exitwitherror “Charge for room “, room num,” declined”
endevent

See Also
Display, WaitForClear, WaitForEnter, and WaitForRxMsg commands

7-190

ISL Commands
ISL Command Reference

WaitForEnter

Description
This command requires the operator to press the [Enter] key before proceeding.

Syntax

WaitForEnter [prompt expression[{output specifier}]]\
[, prompt_expression[{output_specifier}]...]

Argument Description

prompt_expression an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output_specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

* The default prompt, “Press Enter to continue,” will appear on the prompt line
of the workstation. This may be overridden by providing a prompt _expression
with the command.

* The combined length of all prompt expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Example

The following script would display the guest’s name and require the operator to
press the [Enter] key before continuing:

event rxmsg : guest
var name : a20
rxmsg name
waitforenter “guest is
endevent

w

, name

Simphony SIM Manual 7-191

ISL Commands
ISL Command Reference

See Also
Display, WaitForClear, WaitForConfirm, and WaitForRxMsg commands

WaitForRxMsg

Description

This command is used after a message has been transmitted over the interface so
that the system waits for a response.

Syntax

WaitForRxMsg [prompt _expression[{output_specifier}]]\
[, prompt_expression| {output_specifier}]...]

Argument Description

prompt_expression an expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following:

user_variable
system_variable
constant

string

function
equation

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

® The default prompt, “Please Wait--Sending Message,” will appear on the
prompt line of the workstation. The default may be overridden by providing a
prompt_expression with the command.

* The WaitForRxMsg is not a stand-alone command; the TxMsg command
must precede the WaitForRxMsg. The WaitForRxMsg command is an
implicit return.

* When a TxMsg statement is followed by a WaitForRxMsg statement and a
response message is received from the interfaced system, it will assume that
there is a return event (Event Rxmsg) that corresponds to the message from
the interfaced system.

7-192

ISL Commands
ISL Command Reference

Example

A transmission message that includes the employee check number, the check
number, tendered total, and a declared room number field could be defined as
follows:

event ing : 1
var room : nb
input room, “Room? “

txmsg “room ing”, room
waitforrxmsg //Script stops here
waitforclear //Not executed because
// waitforrxmsg has
// terminated event
endevent
See Also

Event RxMsg, RxMsg, TxMsg, WaitForClear, WaitForConfirm, and
WaitForEnter commands

Simphony SIM Manual 7-193

ISL Commands
ISL Command Reference

While...EndWhile

Description

The While command is used to implement a loop structure. The EndWhile is

used to end the loop.

Syntax

While expression

EndWhile

Argument Description

expression the loop condition expression to be evaluated; it
may be one of the following:
user_variable
system_variable
constant
string
function
equation

Remarks

* When ISL encounters a While statement, it will execute all statements within
the While and its corresponding EndWhile command until the expression in
the While command becomes FALSE. If the expression is not initially true,
then the statements within the While block are not executed.

while not feof(fn)

call process data(fn)

endwhile

The While example shown above is the standard method of using the Feof
function to test for the end of the file being processed.

endsub

* The While command can be nested within other While commands.

7-194

ISL Commands
ISL Command Reference

® The expression in the While command is similar to the conditional expression
within the If command.

Example

event ing : 1
while data ok =1
max data = 10
while i < max data
call get next line
i=1i+1
endwhile
endwhile
endevent

See Also

For, ForEver, and If commands; Feof function

Simphony SIM Manual 7-195

ISL Commands
ISL Command Reference

Window

Description

This command will draw a window on the operator display and is required in
order to display information referenced by the various Display commands.

Syntax
Window row, column|, expression[{output_specifier}]...]
Argument Description
row the number of rows the window should contain;

valid entries are 1 to 14

column the number of columns the window should
contain; valid entries are 1 to 78

expression an expression that represents the title of the
window, which will appear centered in the top
line of the window itself (above the first row); it
may be on of the following:

user_variable
string

{output_specifier} one or more of the output specifiers that
determine the format of the output fields; see
full definition beginning on page 7-10

Remarks

* The row and column values in the window are a function of how much the
programmer needs to display. Refer to the Display commands to determine
these requirements.

* The optional window title may be a text string or a combination of
user_variables and string variables.

* The maximum number of characters that will be displayed in the Window title
is the number of columns minus 1; extra characters will be truncated.

7-196

ISL Commands
ISL Command Reference

Example

The following script will read the information from Track 1 of a credit card and
display it in a window:

event ing : 1
var cardholder name: aZ26
var account num: nl9
var expiration date: n4
var trackl data: a79
window 3, 78
displaymsinput 1, 2, cardholder name{ml, 2, 1, *}, “Enter Guest Name”, \
2, 2, account num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”
windowinput
waitforclear
endevent

See Also

Display, Displaylnput, DisplayMSInput, WaitForClear, WaitForConfirm,
WaitForEnter, WindowClear, and WindowClose commands

Simphony SIM Manual 7-197

ISL Commands
ISL Command Reference

WindowClear

Description

This command clears the contents of a currently displayed window.

Syntax
WindowClear

Example

The following script builds a window, displays some text, clears the text from the
window (after the operator presses [Clear]), then displays some more text:

event ing : 1
window 1, 14
display 1, 2, “Hello” //”You say Hello”
waitforclear
windowclear
display 1, 2, “Goodbye” // "and I say Goodbye”
waitforclear

endevent

See Also

Window command

7-198

ISL Commands
ISL Command Reference

WindowClose

Description

This command closes a currently displayed window.

Syntax
WindowClose

Remarks

Windows close automatically when a script is exited, or when a new window is
built with the Window command. The WindowClose command allows the script
writer to close a window before either of these events has occurred.

Example

The following script builds a window, displays some text, then closes the window
(after the operator presses [Clear]):

event ing : 1
window 1, 14

display 1, 2, “Hello” //”You say Hello”
waitforclear
windowclose
display 1, 2, “Goodbye” // "and I say Goodbye”
waitforclear

endevent

See Also

Window command

Simphony SIM Manual 7-199

ISL Commands
ISL Command Reference

Window[Edit/Input][WithSave]

Description

One of these commands is required any time the DisplayInput and
DisplayMSInput commands are used. The WindowEdit and WindowInput
determine whether or not the contents of the variables are cleared before being
displayed. The [WithSave] option, with either command, determines how the
input session will be terminated.

Syntax 1
WindowEdit[WithSave]

Syntax 2
WindowlInput[WithSave]

Remarks

* When one of the WindowEdit or WindowInput commands is found, the

SIM will look for the first and subsequent DisplayInput or DisplayMSInput,
since the window was drawn and executes it. Therefore, the WindowEdit and
WindowInput command must be preceded by both a Window command and

at least one DisplayInput or DisplayMSInput command.

¢ The WindowEdit and WindowEditWithSave commands do not clear the

variables. If the input_variables contain data, the contents will be displayed in
the input window. These commands are useful when the operator must change

only a few fields or characters of a record. The WindowInput and

WindowInputWithSave commands clear the variables before they are
displayed. All previous information in the fields is lost after the command is
executed. These commands are useful for entering new information.

* WindowEdit\Input can be used with the Display[MS]Input commands to

build a screen of input fields in order to accept input from the user. Navigating

among the input fields is achieved with the movement keys: up arrow, down
arrow, home, and end. [Enter] can also be used to navigate, which moves the
focus to the next field, and [Clear], which moves the focus to the previous
field.

7-200

ISL Commands
ISL Command Reference

¢ The WindowInput and WindowEdit commands complete the Input session
when the cursor is on the last field and the user presses the [Enter] key or the
[Down Arrow] key. The Input session is cancelled if the cursor is on the:

¢ first field and the user presses the [Clear] key or the [Up Arrow] key.
¢ last field and the user presses [Enter] or [Down Arrow].

* The WindowInputWithSave and WindowEditWithSave commands require
the operator to either press the [Save] key to complete the Input session, or
press the [Cancel] key to cancel it. If the cursor is on the last edit field and
either the [Enter] key or the [Down Arrow] key is pressed, the cursor will roll
to the first field. Likewise, if the cursor is on the first edit field and either the
[Clear] key or the [Up Arrow] key is pressed, the cursor will roll to the last
field.

Example 1

The following script will read the information from Track 1 of a credit card:

event ing : 1
var cardholder name: a26
var account num: nl9
var expiration date: n4
var trackl data: a79

window 3, 78

displaymsinput 1, 2, cardholder name{ml, 2, 1, *}, “Enter Guest Name”, \
2, 2, account num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”
windowinput
waitforclear
endevent

Simphony SIM Manual 7-201

ISL Commands
ISL Command Reference

Example 2
The following script will allow input of customer information in a window:
event ing : 1
var name : az20
var addressl : a20
var address?2 : az0
var city : a20
var state a2
var zip : alo
var tel : alz
window 7, 33
display 1, 2, “ Name:”
display 2, 2, “ Addressl:”
display 3, 2, “ Address2:”
display 4, 2, City:”
display 5, 2, “ State:”
display 6, 2, “ Zip:”
display 7, 2, “Telephone:”
displayinput 1, 13, name, “Enter name”
displayinput 2, 13, addressl, “Enter addressl”
displayinput 3, 13, address2, “Enter address2”
displayinput 4, 13, city, “Enter city”
displayinput 5, 13, state, “Enter state”
displayinput 6, 13, zip, “Enter zip”

displayinput 7, 13, tel, “Enter telephone number”
windoweditwithsave

txmsg “new member”, name, addressl, address2, city, state, zip, tel
waitforrxmsg

endevent

See Also
DisplayInput, DisplayMSInput, and Window commands

7-202

ISL Commands
ISL Command Reference

WindowScrollDown

Description

This command is used to scroll all lines in the current window down one line.

Syntax

WindowScrollDown

Remarks

* A Window command must have been executed prior to this command.

* The first line in the window is cleared to all spaces.

See Also

WindowScrollUp command

Simphony SIM Manual 7-203

ISL Commands
ISL Command Reference

line

WindowScrollUp

Description

This command is used to scroll all lines in the current window up one line.

Syntax
WindowScrollUp

Remarks

* A Window command must have been executed prior to this command.

* The last line in the window is cleared to all spaces.

Example

The following example opens a file and reads from it one line at a time, displaying
each line in a window. After the window is filled, for each line read from the file,
previous lines in the window are scrolled up one row and the new line is displayed
on the bottom row of the window.

event ing : 1
var fn : n3
var fname : a40 = "/micros/simphony/etc/script.isl"
var line : a’78
var max row : n3 = 14
var row : n3
fopen fn, fname, read //Open the file
if fn = 0 // if file can't be opened
call ferr(fname) // let the use know
endif
window max row, 78 //Draw the window
while not feof(fn) //Loop until the end
// of file is encountered
freadln fn, line // read a line from
// the file
call display line(line) //Call the display
// subroutine, pass it the
endwhile
waitforclear
(continued)

7-204

ISL Commands
ISL Command Reference

endevent
sub display line(ref line)
var col : n3 =1
if row < max_row //1f row < max row, the
// window is not filled
row = row + 1 // increment the row
//Counter so the following
else // display command will
// move to next row
windowscrollup // otherwise, window's
// full, scroll up
endif
display row, col, line //Display the line
endsub

sub ferr(ref fname)
exitwitherror "Can't open file ", fname
endsub

See Also

WindowScrollDown command

Simphony SIM Manual 7-205

ISL Functions

Chapter 8

IS[Functions

In This Chapter

This chapter summarizes all ISL Functions in and A-to-Z reference.

Simphony SIM Manual

FUNCHIONS ..ot e e e e s e eaaeeeeeesssnnnes 8-2

Function SUMMATYcccveiiiiiiiieeiie et eveesreesreesree e 8-3

ISL Function REfEreNnCeoovouveiviiiiiieiieee e 8-4
8-1

ISL Functions
Functions

Functions

In addition to commands, ISL provides a variety of functions to enhance text
handling and formatting facilities. Each function returns a value which may be
useful for certain applications.

All function arguments must be enclosed in parentheses.

ISL Functions
Function Summary

Function Summary

Below is a list of function names, a brief description, and the function type of the
returned integer/character/key.

Function Description Function Type
Abs() Returns the absolute value of the integer or decimal | Integer
ArraySize() Returns the declared size of the array Integer
Asc() Returns the ASCII integer value of the first Integer

character of the string
Bit() Returns the value of a bit in a hexadecimal string Integer
Chr() Returns a one-character string that is the character | Character
representation of an integer
Env() Returns a value of a shell environment variable Integer
Feof() Determines if the file pointer is at the end of the file | Integer
FTell() Gets the file position in a file Integer
GetHex() Converts a hex string to an integer Integer
Instr() Returns the index of the first occurrence of a Character
character string
Key() Returns the key variable associated with the key Key
pair
KeyNumber() Returns the number portion of the key variable Integer
KeyType() Returns the type portion of the key variable Integer
Len() Returns the length of a string Integer
Mid() Extracts part of a string to a string field Character
Tolnteger() Returns an integer from a decimal value Integer
Trim() Returns a string trimmed of leading and trailing Character
spaces
VarSize() Returns the declared size of a variable Integer
Simphony SIM Manual 8-3

ISL Functions
ISL Function Reference

ISL Function Reference

This section includes all functions supported by the ISL in an A-Z reference
format, which includes the following information for each function:

Description: summarizes the function’s purpose.

Syntax: provides the proper way to specify the function and any arguments,
as well as a description of each argument.

Remarks: gives more detailed information of the function, its arguments, and
how the function is used.

POS Setup: provides any Simphony database programming required to issue
the function successfully.

Example: includes an example of the function being used in a script.

See Also: names related functions, commands, system variables, and other
documentation worth consulting.

ISL Functions
ISL Function Reference

Abs Function

Description
This function returns the absolute value of the integer or decimal value.

Syntax
Abs (integer or decimal)

Argument Description
integer an integer expression to be converted
decimal a decimal expression to be converted

Example
event ing : 1
var int : N5 = -145
var mon : $8 = -12.35
waitforclear abs(int) //will display ‘145’
waitforclear abs(mon) //will display ‘12.35'
waitforclear abs(“-34") //will display error
endevent

Simphony SIM Manual 8-5

ISL Functions
ISL Function Reference

of

100"

ArraySize Function

Description

This function returns the size (number of elements) of the array passed in.

Syntax
ArraySize (array_name)
Argument Description
array_name the name of the array
Remarks

The array name must be placed between the parentheses without brackets. For
example, the following references are illegal:

arraysize (list [1)
arraysize (list [2])

The following entry is correct:

arraysize (list)

Example
The following subroutine returns the declared size (number of elements) of an
array.

sub array size
var array test[100] : a50
waitforclear "Size of array test is ", arraysize(array test)
//Would prompt "Size

// array test is

endsub

8-6

ISL Functions
ISL Function Reference

Asc Function

Description

This function returns the ASCII integer value of the first character of the string
passed in.

Syntax
Asc (string_expression)
Argument Description
string_expression a place holder for text characters such as a

user_variable (string)

Remarks

The process of returning a value with the Asc function works opposite of the Chr
function.

Example

The following subroutine displays the ASCII value of the first character of a
string:

sub asc_value

var asc val : n3
asc_val = asc("MICROS")
waitforclear "The ascii value of M = ", asc val
//Would prompt "The ascii
// value of M = 77"
endevent
See Also
Chr function

Simphony SIM Manual 8-7

ISL Functions
ISL Function Reference

Bit Function

Description

This function will return the value (0 or 1) of a bit in a hexadecimal string.

Syntax
Bit (hex_string, bit_position)
Argument Description
hex_string a place holder for the hexadecimal string that
will be examined
bit_position the index of the bit whose value is desired
Remarks

The Bit function will generate an error if the string passed in contains non-hex
characters. For example, the following statement will generate an error since
the = character is not a hex digit:

i = gethex("12AB=")

Valid hex digits are 0-9, A-F, and a-f.

The bit_positions are numbered consecutively from 1. In the example below, a
four-digit hexadecimal number would have bits numbered from 1 to 16. The
digit values are determined by the standard hexadecimal assignment of bit
values, i.e., within each digit, bit 1 =8, bit2=4,bit 3 =2, bit4 = 1.

Digit
Position

1 2 3 4

bit_position

digit value

bit value

ISL Functions
ISL Function Reference

Example

In the above example, the following command would result in i being set to 1.

i = bit(“12FE”, 7) //1 will be set to 1

Thus in all hex_strings, bit_position 1 corresponds to the highest bit value in the
first of the string.

Simphony SIM Manual 8-9

ISL Functions
ISL Function Reference

Chr Function

Description

This function returns a one-character string that is the character representation of
the integer passed in.

Syntax
Chr (integer)

Argument Description
integer an integer in the range from 32 to 255
Remarks

The process of returning a value with the Chr function is the opposite of the Abs
function.

Example

The following subroutine constructs the name of a POS company using ASCII
values:

sub make name

var ascii array[6] : n3
var pos_king : a6
var arr_cnt : n3
ascii array[1l] = 77
ascii array([2] = 73
ascii array([3] = 67
ascii array[4] = 82
ascii array[5] = 79
ascii array[6] = 83
for arr cnt = 1 to 6 //Count through the array
format pos_king as pos_king, chr(ascii arrayl[arr cnt])
endfor
waitforclear "The POS king is ", pos_king
endsub
See Also

Display command

8-10

ISL Functions
ISL Function Reference

Env Function

Description

This function returns the value of a shell environment variable.

Syntax
Env (environment variable)
Argument Description
environment_variable the environment variable to return
Remarks

An empty string will be returned if the environment variable does not exist.

Example

Assume that the environment variable “Term” is “ansi’:

var term : a20 = env("Term") //term will be "ansi"

Simphony SIM Manual 8-11

ISL Functions
ISL Function Reference

Feof Function

Description

This function tests whether the file pointer is at the end of the file.

Syntax
Feof (file_number)
Argument Description
file_ number an integer variable which was assigned in the
FOpen statement when the file was opened
Remarks

A 1 is returned if there is no more data left to read, and a O is returned if there is

more data left to be read.

Example

The following example shows how to use the Feof function as the condition of a

While command:

while not feof(fn)
call process data(fn)

endwhile

See Also
FClose, FOpen, and While commands

8-12

ISL Functions
ISL Function Reference

FTell Function

Description

This function returns the file position in a file.

Syntax
FTell (file_ number)
Argument Description
file_number an integer variable which was assigned in the

FOpen statement when the file was opened

Example

The following example will read a certain field position:

sub find emp

while not feof(fn)

current position = ftell(fn) //Remember this position.
fread fn, emp number, * //Read first field.
if emp number = target emp number //If match, reposition back
fseek fn, current position // to original position and
return // let calling function
endif // reread data.
endwhile
endsub
See Also

FClose, FOpen, FRead, FSeek, and While commands

Simphony SIM Manual 8-13

ISL Functions
ISL Function Reference

GetHex Function

Description

This function will convert a Hex string to a decimal integer.

Syntax
GetHex (hex_string)

Argument Description
hex_string the string to be converted
Remarks

* The GetHex function will generate an error if the string passed in contains
non-hex characters. The following statement will generate an error since the =
character is not a hex digit, for example:

i = gethex("12AB=")
* A string should be made up of any combination of the following characters 0-

9,a-f,orA-F

Example

The following subroutine converts a hex string to its decimal equivalent:

sub hex 2 dec

var hex str : a4 = "FFFE"
waitforclear "The decimal equiv of 'FFFF' is ", gethex(hex str)
endsub

8-14

ISL Functions
ISL Function Reference

Instr Function

Description

This function will return the index of the first occurrence of a character in a string.

Syntax

Instr (index, string_expression, character)

Argument

Description

index

starting position of the search for the specified
character

string_expression

the string expression to be searched; can be
one of the following:

user_variable
system_variable
constant

string

function
equation

character

character to search for

Example

The following statement will set i equal to 5, since “E” is the 5th character in the

string:

i = instr(2, “ABCDEFGHIJ”,

“E) //i will be set to 5

Simphony SIM Manual

8-15

ISL Functions
ISL Function Reference

Items

Key Function

Description

This function will execute the key function code defined.

Syntax
Key (key_pair)
Argument Description
key pair a link to a specific workstation key in the form
of: key type : key number
Remarks

* The key type determines the type of key (e.g., Function, Keypad); the
key number designates the specific Key Code.

* For a list of key codes and names, see “Key Types, Codes, and Names” on
page D-1.

Example

The following script begins a check by number, then orders several menu items
and prints the check:

event ing : 1

loadkybdmacrokey (11,400), \ //Begin check
key (1, 552), key(1l,554), key (1,555),\ //Order Menu
key (7, 101) //Service Total
// check
endevent
See Also

KeyNumber and KeyType functions

8-16

ISL Functions

ISL Function Reference

KeyNumber Function

Description

This function will return the key number (integer) portion of a key expression.

Syntax
KeyNumber (key expression)

Argument

Description

key expression

an expression that can be one of the following:

@KEY ...system variable
user_variable (KeyType)
Key function

Example

The following script reports the number and type of the [Enter] key:

event ing : 1
var key var : a20 = "9,12"

window 3, 26

display 1, 2, “Enter key’s key pair is”, key var
display 1, 2, “Enter key’s key type is”, keytype(key var)
display 1, 2, “Enter key’s key number is”, keynumber(key var) //keynumber = 12

waitforclear
endevent

See Also
Key and KeyType functions

Simphony SIM Manual

8-17

ISL Functions
ISL Function Reference

KeyType Function

Description

This function will return the key type (integer) portion of a key expression.

Syntax
KeyType (key expression)

Argument

Description

key expression

an expression that can be one of the following:

@KEY ...system_variable
user_variable (KeyType)
Key function

Example

The following script reports the number and type of the [Enter] key:

event ing : 1

var key var : a20 = "9,12"

window 3, 26
display 1, 2, “Enter key’s

display 1, 2, “Enter key’s key type is”, keytype (key var)//key type

display 1, 2, “Enter key’s
waitforclear
endevent

See Also
Key and KeyNumber functions

key pair is”, key var

key number is”, keynumber (key var)

9

8-18

ISL Functions
ISL Function Reference

Len Function

Description

This function is used to determine the length of a string or string variable.

Syntax

Len (string_expression)

Argument

Description

string _expression

the string length to be returned

Example

The following script takes a list of names from the PMS and tests each name for

its length. It then builds a window and displays the names. The longest string

determines the width of the window.

event rxmsg : guest list

var guest_list_size : n3

var guest_list[14] : a78
var arrcnt : n3
var longestr : n3

rxmsg guest list size, guest list[]

for arrcnt = 1 to guest_list size
if longestr < len(guest list[arrcnt])
longestr = len(guest_list[arrcnt])
endif
endfor

window guest list size, longestr + 2
for arrcnt = 1 to guest list size
display arrcnt, 2, guest_ list[arrcnt]
endfor
waitforclear

endevent

//Receive size and list from PMS

//Count through the array to

// find the longest member.

//If this member is longer than
// the longest so far, set

// longestr equal to its length.

//Build the window as high as
// the number of guests in the
// list and as wide as the

// longest guest name + 2.
//Display the names and wait

// for user to press clear.

Simphony SIM Manual

8-19

ISL Functions
ISL Function Reference

search_char,

charpos

Mid Function

Description

This function is used to extract text from a string. This function is not to be
confused with the Mid command.

Syntax
Mid (string _expression, start, count)
Argument Description
string_expression a string or user variable (string)
start the starting offset (character) within the field
count the number of characters to be read
Remarks

This command is similar to the BASIC language “mid$” function.

Example

The following subroutine searches a string for a specified character, starting at a
specified place in the string, then returns the location of the character. The
extracted text is compared to the desired characters. This example assumes that
the calling routine declares the following four variables, and defines the first
three:

//start: n3 position in string to start search, 1 if not defined
// string ta?? string to search

// search char ral character to search for

// charpos :n3 the subroutine will set this variable equal to the
// location where the search char is found in the

// string; it will be 0 if search char is not found

sub instr
if start <= 0 //If user didn't define start
// set it =1
start = 1
endif

for charpos = start to len(string)
if search char = mid(string, charpos, 1) //1f we find the

// return the

return
endif
endfor
charpos = 0 //If not found, set charpos = 0
endsub

8-20

ISL Functions
ISL Function Reference

See Also

Mid command

TolInteger Function

Description

This function returns an integer from a decimal value by removing the decimal
point. This assumes that the new value will be interpreted correctly; i.e., the PMS
will know where the decimal is placed.

Syntax
Tolnteger (decimal)
Argument Description
decimal a decimal expression to be converted
Remarks

The decimal point will be removed when returned.

Example

event ing : 1
var n : N5

n = 12.45 //n will equal ‘12’
n = tointeger(12.45) //n will equal ‘1245’
endevent

Simphony SIM Manual 8-21

ISL Functions
ISL Function Reference

Trim Function

Description

This function is used to remove leading and trailing spaces from text or variable
fields.

Syntax
Trim (string_expression)

Argument Description
string_expression a string or user variable (string)
Example

The following subroutine trims leading and trailing spaces from a string:

sub trim spaces

var string : a32 =" many spaces ”

var trimmed str : all

trimmed str = trim(string) //Result would be “many spaces”
endsub

8-22

ISL Functions
ISL Function Reference

VarSize Function

Description

This function returns the declared size of a variable.

Syntax

VarSize (user variable)

Argument Description

user_variable the name of the user variable to be “sized”

Example
The following script displays the declared size of a very large string:

event ing : 12

var big string : a200

waitforclear “BIG STRING’S size is ", varsize(big string)
//would prompt “BIG STRING’S size is 200”
endevent

Simphony SIM Manual 8-23

ISL Error Messages

Appendix A

ISL Error Messages

In This Chapter

This chapter explains the error messages returned by the ISL.

Error Message FOrmatccooovveciieiiieeiieeieceeeee e A-2
EITOT MESSAZESveneeiiieiieeie ettt A-5

Simphony SIM Manual

A-1

ISL Error Messages
Error Message Format

Error Message Format

Error messages will appear in the center of the workstation, in one of the formats
described below. An explanation of the variable information referenced in the
format syntax follows.

Variable Descriptions

<error text>: specifies a detailed explanation of what the error condition or syntax
error may be.

<line>: specifies the line number where the error occurred.
<column>: specifies the column number where the error occurred.

<error text ()>: specifies a detailed explanation, including the specific erroneous
data, enclosed in parentheses.

ISL Error Messages
Error Message Format

Format 1
ISL error
<error text>
Example
ISL error
No match for event
Format 2
ISL error on line </ine>
<error text>
Example
ISL error on line 102
Command outside procedure
Format 3
ISL error on line </ine>:<column>
<error text>
Example

ISL error on line 174: 12
Expected end of line (i)

Simphony SIM Manual

ISL Error Messages
Error Message Format

Format 4

Another type of error occurs when the ISL expected specific text, but encountered
different text. This error is displayed as:

ISL error on line </ine>
expected <text>, encountered <text>

For example, if the Format command is issued, and the as (which is required as
part of the syntax) is missing, the following error would display:

ISL error on line 170
expected ‘AS’ , encountered ¢ date’

Format 5
Format 5 is for the KWS (Keyboard Workstation) only.

ISL error:<line number>
<error text>

Example

ISL error :102

Command outside procedure

ISL Error Messages
Error Messages

Error Messages

Array Index Out Of Range

This message occurs if an index number used to access a list_array is invalid.
var array[10] : N5
array([1l2] = 1 //Valid range is 1-10
array[-2] = 4 //No negative numbers

Bad sys var index

This message occurs if a system_variable size was out of range.

txmsg “MSG”, @SI34 //Valid @SI range is 1-16

Break with too many endfor
This message occurs if too many EndFor commands occurred within a script
without a corresponding For command.

for i = 1 to 10
ali]l] =0
endfor
endfor //No corresponding
//for command

Break without endfor

This message occurs if a Break command is issued within a For loop, but there is
no EndFor command to complete the loop.

Call has no arguments

This message occurs if the subroutine called by the Call command has arguments,
but no arguments were specified in the Call command.

event ing:1
call mysub //Mysub has no arguments
endevent

sub mysub(var 1:N5)

endsub

Simphony SIM Manual A-5

ISL Error Messages
Error Messages

Can not evaluate

This message occurs if invalid text was encountered when trying to read an
expression.

display 3, *, “Test”

Cannot access ISL script file

This message occurs if the script file was not found, or its permissions were not
set correctly.

Command outside procedure

This message occurs if certain commands are issued outside an Event
procedure.

window 10,20 //This must be within the
// event procedure.
event ing:1l

endevent
The following commands are allowed outside an Event procedure:

ContinueOnCancel
DiscardGlobalVar
ExitOnCancel
Prorate
RetainGlobalVar
SetSignOnLeft
SetSignOnRight
UseBackUpTender
UseCompatFormat
UseISLFormat
UseISLTimeOuts
UseSTDTimeOuts
Var

Decimal overflow

This message occurs if an attempt to assign a value to a real exceeded the real’s
storage size.

var n : $3
n = 123.45 //n only holds 3 digits

ISL Error Messages
Error Messages

Display column or row out of range

This message occurs if the row and/or column declared with the Display
command is outside the range declared by the Window command.

window 10, 20

display 11, 1, “Line” //Row range is 1-10
display 1, 40, “Line” //Column range is 1-20

Divide by zero

This message occurs if an attempt was made to divide a numeric value by 0.

i=a/0

Duplicate variable def

This message occurs if an attempt is made to declare the same variable either
within or outside an Event procedure.

event ing : 1

var i : N5 //First declaration OK.
var i : A20 //Redeclaration error.
endevent

Encountered non-hex data

This message occurs if Hexadecimal data was expected and the string contained
non-hex data.

i = gethex(“145B*”) //* 1s not a hex character

Endsub nesting mismatch

This message occurs if an Endsub occurred within an Event command without its
corresponding Sub command.

event ing : 1

endsub
endevent

Evaluation nesting

This message occurs if an overly complex expression was specified on the
command line.

1= (eeeeeeeeeeeeecccca +59)))))9)))9)))))

Simphony SIM Manual A-7

ISL Error Messages
Error Messages

Event inside procedure

This message occurs if an Event command was encountered within a subroutine.

sub check message
event ing : 1 //Event within subroutine

endsub

Event type must be word

This message occurs if an invalid Event type was specified in the Event line.
There are four types of Events: Inquire, Tmed, RxMsg, and Final Tender.

event 123 : 377 //No such event type as
// 123

Exceeded max array or variable size

This message occurs if the array size or variable size exceeded the system
maximum size of 32768 bytes.

var array[100000] : N5

Expected array in call

This message occurs if the Sub command had an array argument, but the Call
command tried to pass a normal variable.

event ing:1l

var 1:N5

call mysub(i) //Has a normal variable
endevent
sub mysub(ref arr[]) //Has an array

expected ..., encountered...

This message occurs when ISL receives unexpected text as part of the command
syntax.

format date @DAY, “-” , month arr[@MONTH], “-", @YEAR
//”As” is missing after
// the format command

ISL Error Messages
Error Messages

Expected decimal

There are places in ISL where the script writer must specify a decimal number
(and not an integer or a string). Using any expression other than a decimal
expression results in this error.

For example: the function tointeger() expects a decimal number as its argument.

i:N5

i = tointeger(12.34) / /0K

i = tointeger(1234) //Not ok. 1234 is not
// decimal.

i = tointeger("12.34") //Not ok. "12.34" is

// not decimal.

Expected end of line
This message occurs if extraneous data was found at the end of a command line.

startprint 12 i // Data after 12 is an
// error

Expected format token

This message occurs if a variable was specified with the Display command that
did not have a comma after it.

display 1, 2, i 123

Expected operand

This message occurs if an invalid expression was encountered.

var i : nb
i=5+ //Invalid expression

Expected string
This message occurs if a command or function expected a string as one of its

arguments, and a non-string expression was encountered.

var i : nb
setstring i, “a” //n : 5 is a non-string
// expression

File buffer overflow

This message occurs if an attempt was made to read or write a line to a file, which
exceeded the current @FILE BFRSIZE.

@FILE BFRSIZE = 10
fwrite fn, “This string is longer than 10 bytes”

Simphony SIM Manual A-9

ISL Error Messages
Error Messages

File is read only

This message occurs if an attempt was made to write to a file opened for read
access only.

File is write only

This message occurs if an attempt was made to read from a file opened for write
access only.

File name too long

This message occurs if the file name in the FOpen command is greater than 128
characters.

Format needs string
This message occurs if the Format command requires a string variable as its first
argument.

var line : AlS5
format as “This is a line” //Missing the variable
// after format command

Format too long

This message occurs if the allocated size of the variable to be formatted is smaller
than the total length of the expressions to be included.

var line : AlO
format line as “This line is greater than 10 characters”

Integer overflow

This message occurs if an attempt to assign a value to an integer exceeded the
integer’s storage size.

var n : N3
n = 12345 // n only holds 3 digits.

Invalid decimal operation

This message occurs if the operation is not allowed on real numbers. Real
numbers are amounts, currencies, and decimals.

var a : $5, b : $5, ¢ : S5
a=>b % c

A-10

ISL Error Messages
Error Messages

Invalid file buffer size

This message occurs if an attempt was made to assign the system variable
@FILE BFRSIZE to an illegal value. An illegal value would be a value less than
or equal to 0.

@FILE BFRSIZE = -20

Invalid file mode

This message occurs if an invalid mode was specified on the FOpen command.

fopen fn, “test.log”, read and wirte
//The write mode is
// misspelled

Invalid file number

This message occurs if a file number was passed to a File /O command which
was not previously opened.

event ing:1
var fn:N5 = -4
//No fopen declared
fwrite fn, “hello”
endevent

Invalid first token
This message occurs if the start of a line contained invalid text.

display 2, 3, “Line”
waitclear // is invalid

Invalid input fmt spec

This message occurs if the input format specification contained invalid data.

input name{;}

Invalid list size

This message occurs if a command which required a list value encountered a list
value of 0 or below.

Invalid locking mode

This message occurs if an invalid locking mode was specified in the FLock
command.

flock fn, preventread and write //Should be preventwrite
// not write

Simphony SIM Manual A-11

ISL Error Messages
Error Messages

Invalid output format

This message occurs if the output format specification contained invalid data.

txmsg name{;}

Invalid pms send
This message occurs if the system was unable to send the PMS message.

Length invalid

This message occurs if the third argument in the Mid command and/or function
was less than 0.

List value too big
This message occurs if the list value in the command exceeded the array which it
referenced.

var 1list[10] : A20
txmsg 21, list[] // Valid range is 1-10

Loop variable constant
This message occurs if the For loop variable was not a variable.

for 10 = 1 to 20

Loop variable not int

This message occurs if the For loop variable was not an integer.

var i : $10
for i = 1 to 10

Max files open

This message occurs if an attempt was made to open more than 10 files in a single
Event.

Max include nesting

This error occurs when include files become nested too deeply. Include files
become nested when include files include other include files. For example,
script.isl may include filel.isl, which may include file2.isl, and so forth. There is a
limit to the depth of files that may be included.

This error can also occur when a file tries to include itself. In this case, the ISL
interpreter keeps rereading the file at the point of inclusion, and continues until
the file is read in 10 times. At this point, an error will be generated before the
script has run.

A-12

ISL Error Messages
Error Messages

Max lines executed

This message occurs if the system variable @MAX _LINES TO EXECUTE was
set to a non-zero value and @MAX LINES TO EXECUTE command lines were
executed.

Max macro keys

This message occurs if the maximum number of defined macro keys was
encountered.

for i = 1 to 1000
loadkybdmacro 1 = i
endfor

Max ref info

This message occurs if the maximum number of reference lines were issued by the
SaveRefInfo command. The maximum number of lines is 8.

Max window input entries

This message occurs if too many Displaylnput entries were specified. The
maximum number of Displaylnput entries is 64.

Memory allocation

This message occurs if an internal memory error has occurred.

Must have list var

This message occurs if ISL encountered a list specification without a list value.

txmsg list[]

Name is a reserved word

This message occurs if an attempt was made to declare a variable with the same
name as a reserved word.

var display : n4

New tndttl exceeds original

This message occurs if an attempt was made to increase the system variable
@TNDTTL value, but the value can only be decreased.

Simphony SIM Manual A-13

ISL Error Messages
Error Messages

No arrays in sub var
This message occurs if a Sub command tried to declare an array variable in the
argument list.

sub mysub(var i[10] : N5)

No isl file

This message occurs if the script was not found or did not exist.

No match for endfor

This message occurs if no corresponding EndFor command exists for a For

command.
event ing : 1
for row cnt = 1 to number occupants
display row _cnt, 2, occupant list[row cnt]
//Missing endfor command
endevent

No match for endwhile

This message occurs if no corresponding EndWhile command exists for a
While command.

event ing:1

while 1 < 10

//No endwhile declared
endevent

No match for event
This message occurs if the SIM Inquiry and/or SIM Tender key had no
corresponding Event Inq or Event Tmed.

For example, if the SIM Inquiry Key #920 (SIM Key 1 : Inq 1) is pressed, and
Event Inq : 1 does not exist, this message will display.

A-14

ISL Error Messages
Error Messages

No number in sys var

This message occurs if a system variable requires a number entry after it and no
number was entered.

For example, system_variable @S] must have a number 1 - 16 after it.

No ops on strings

This message occurs if the declared string operation is not allowed.

a = “1237” — “gbc”

No pms message received

This message occurs if no response was received from the PMS system after the
RxMsg command was executed.

No touchscreen keys defined

If the script executes a ClearIslTs command to clear the ISL-defined touchscreen,
then immediately tries to display the ISL-defined touchscreen using DisplayIsITs
or PopUplIslTs, the ISL cannot display the touchscreen because there are no keys

to display.
event ing:1
clearislts //Remove any defined keys.
displayislts //No keys, error occurs
// here.
endevent

Not a variable

This message occurs if a variable was expected but not encountered.

input 123, “Enter value” //123 not variable

Not enough input data

This message occurs if the @STRICT ARGS variable is set and there were too
many variables specified in the RxMsg, Split, SplitQ, or FRead command.

Assume the following data was received in a PMS message: Dan|Tooher. The
message has two fields. The following example expects three fields and would
generate the above error:

var fname : A20, lname : A20, status : N3

rxmsg fname, lname, status

Simphony SIM Manual A-15

ISL Error Messages
Error Messages

Not enough list data

This message occurs if the @STRICT ARGS variable is set to a non-zero value,
but the input data did not have enough values to assign the specified list.

Assume the following data was received in a PMS message: 3|Smith|Jones. The 3
signifies that three fields follow, and only two fields are present. The following
would generate the above error:

var size : N3
var 1list[10] : A20

rxmsg size, list][]

Not enough variables

This message occurs if the @STRICT ARGS variable is set to a non-zero value,
but there were not enough variables specified in the RxMsg, Split, SplitQ, or
FRead command.

Assume the following data was received in a PMS message: DanTooher. The
message has two fields. The following example expects one field and would
generate the above error:

var fname : A20, lname : A20, status : N3

rxmsg fname

Numeric entry required

This message occurs if non-numeric data was entered for a numeric variable.

Print already started

This message occurs if a StartPrint command was encountered while print was
still active (i.e., prior to a corresponding EndPrint).

startprint @RCPT
printline ...
startprint QCUST

endprint

Print not started

This message occurs if a PrintLine or EndPrint command was encountered
without a corresponding StartPrint command.

A-16

ISL Error Messages
Error Messages

Reading ord dvc table

This message occurs if an error occurred while reading the Order Devices module
in the Enterprise Management Console (EMC).

Reading tbl def

This message occurs if an error occurred while reading the 7ables module in the
EMC.

Require array for list

This message occurs if an array was expected but a non-array variable was

encountered.
var i : N5
listdisplay 1, 2, 3, i //i is not an array

Script memory allocation error

This message occurs if an internal error is encountered.

Start position invalid

This message occurs if the start_position parameter in the Mid command and/or
function is invalid.

str = mid(“abc”, -2, 3) //-2 1is invalid

String overflow

This message occurs if an attempt to assign a value to a string exceeded the
string’s storage size.

var n : A3
n = “message” //n only holds 3 characters

Sub array ref invalid

This message occurs if a Sub command had an invalid array declaration for an
array _variable.

sub mysub(ref array[) //0Only one bracket
//Should be []

Simphony SIM Manual A-17

ISL Error Messages
Error Messages

Sub has no arguments

This message occurs if a Call command was made with arguments, and the
subroutine called had no arguments.

event ing:1

call mysub(1, 2, 3)
endevent

sub mysub //Mysub missing (1, 2, 3)

endsub

Sub statement in procedure

This message occurs if a Sub command was encountered while inside an Event.

event ing:1l
sub mysub

endsub
endevent

System variable declaration

This message occurs if an attempt was made to declare a system variable (i.e.,
any variable name that begins with the @ character).

var @chk : N3

Sys var not assignable

This message occurs if an attempt was made to assign a value to a read-only
system_variable.

Too few args in call
This message occurs if the Call command did not have enough arguments.

event ing:1l
call mysub(1)
endevent

sub mysub(var i:n5, var j:N5)

endsub

A-18

ISL Error Messages
Error Messages

Too few arguments
This message occurs if there were not enough arguments specified for a function.

Too many args in call
This message occurs if the Call command had too many arguments.
event ing:1

call mysub(1, 2)
endevent

sub mysub(var i:nb5)

endsub

Too many arguments
This message occurs if too many arguments were specified for a function.

Too many nested calls

This message occurs if too many subroutines were nested within each other.

Too many touchscreen keys

The ISL-defined touchscreen will hold a finite number of keys (i.e, nine). If the
user tries to define too many keys, this error will occur.

event ing:1
var i:n5

clearislts // Remove any defined keys.
for i = 1 to 100 // Loop will generate an error.
setisltskey 1, 1, 2, 1, 1, @Gkey clear, "CLEAR"
endfor
displayislts // No keys, error occurs here.
endevent

Too many PMS definitions active. Start new
transaction

This message occurs if the following condition occurs: the Revenue Center PMS
link database file must have changed while the User Workstation was in a
transaction. To clear this condition, cancel the current transaction.

Undefined call

This message occurs if a Call was made to a subroutine that did not exist within
the script.

Simphony SIM Manual A-19

ISL Error Messages
Error Messages

Undefined function

This message occurs if an undefined function was called.

Undisplayable variable

This message occurs if the variable cannot be displayed.

display 2, 3, QTRDTL //Q@TRDTL can not be
// displayed

Unexpected data after call

This message occurs if the Call command is invalid.

call mysub + 3

Unexpected data after sub
This message occurs if the Sub command is invalid.

sub mysub - 4

Unexpected data in sub

This message occurs if the parameter list in the Sub command is invalid.

sub mysub (var fred:N5, i : N5)

Unexpected end of line

This message occurs if not enough data was specified on the command line.

display 2, 2, //should be data after 2,

Unexpected token type

This message occurs if invalid text is encountered when trying to read a command
or function.

Unknown command
This message occurs if an unknown command is specified.

dsplay 2, 2, “Line” //display is misspelled

Unknown system variable
This message occurs if an unknown system_variable is referenced.

display 2, 2, @RVVC

A-20

ISL Error Messages
Error Messages

Unmatched endevent

This message occurs if an Endevent was encountered without a corresponding
Event command.

Unmatched endfor
This message occurs if a For/EndFor nesting error occurred.

Unmatched if

This message occurs if an If, Elself, Else, or EndIf nesting error occurred.

Value not key definition

This message occurs if an attempt to use a non-key variable in an expression
which required a key variable was encountered.

loadkybdmacro 12.47

Variable undefined

This message occurs if an undefined variable was referenced.

Window columns out of range

This message occurs if an attempt was made to declare a Window that was too
wide.

window 4, 1000

Window has not been defined

This message occurs if an attempt to display text within a Window occurred
without a Window first being declared.

Window rows out of range

This message occurs if an attempt was made to declare a Window that was too
tall.

window 1000, 10

Simphony SIM Manual A-21

TCP Interface Code

Appendix B
TCP Interface Code

In This Chapter

This chapter includes sample code for MICROS SIM TCP Server, Sample
SIM Server, and a sample makefile.

MICROS SIM TCP Server

... B-2
Sample SIM SETVET......c.cooiriririiiienineeteene et B-10
Sample MaKefile......cccevviriiiieiieiciecieercere e B-11

Simphony SIM Manual

TCP Interface Code
MICROS SIM TCP Server

M

L S R S S . S TS .

#in
#in
#in
#in
#in

#in
#in
#in
#in
#in
#in

ext

/*
#de

/*
#de
#de
#de

#de
#de

/*

ext

/*

sta

voi

ICROS SIM TCP Server

MICROS SIM TCP Server

This code implements a server process which accepts SIM messages
from an Oracle MICROS POS client process over a TCP link.

This sample code is written for UNIX System V using the AT&T SVID
Transport Layer Interface (TLI) API. It should be easily portable
to the X/Open Transport Interface (XTI). Porting to a
Berkeley-style socket library is left as an exercise for the
reader.

clude <stdio.h>
clude <fcntl.h>
clude <signal.h>
clude <sysexits.h>
clude <sys/types.h>

clude <netdb.h>

clude <tiuser.h>

clude <stropts.h>

clude <arpa/inet.h>
clude <sys/socket.h>
clude <sys/netinet/in.h>

ern int t errno;

operating-system specific device name: */
fine TCP_DEVICE NAME “/dev/inet/tcp”

define SIM TCP service: */
fine SIM SERVICE NAME “micros-sim”
fine SIM SERVICE TYPE “tcp”

fine DEFAULT SIM PORT 5009
fine SIM MAX MSG 32767
fine SIM MAX MSG_BODY (32767 - 25 - 4 - 4)

supplied by SIM vendor: */
ern void process pos_request (const char *header,
const char *body,
char reply body[SIM MAX MSG BODY]) ;

supplied below: */
tic void transfer pos messages(int fd);

d run_sim server (void)

TCP Interface Code
MICROS SIM TCP Server

int listen fd, conn_ fd;
struct sockaddr in *sin;
struct servent *servp;
struct t bind *bind;
struct t call *call;
u_short serviceport;

int retries;

/* Open a TCP server endpoint in order to listen for
* requests from POS client processes.
*
* If the requested address is in use, retry up to 10 times.
* This can occur if another server was running on the same
* address, and the TCP port has not yet completed its shutdown
* processing.
*/
if ((servp = getservbyname (SIM SERVICE NAME, SIM SERVICE TYPE)) ==
NULL)
serviceport = htons (DEFAULT SIM PORT) ;
else
serviceport = (u_short) servp->s port;
retries = 10;
while (retries--) {

if ((listen fd = t open(TCP _DEVICE NAME, O RDWR, NULL)) < 0) {
t _error (“run sim server: t open”);
exit (EX OSFILE);

if ((bind = (struct t bind *)t alloc(listen fd, T BIND, T ALL))
== NULL) {
t _error (“run_sim server: t alloc(T BIND)”);
t close(listen fd);
exit (EX OSERR);

sin = (struct sockaddr in *) bind->addr.buf;
sin->sin family = AF INET;

sin->sin addr.s_addr = INADDR ANY;

sin->sin port = serviceport;
bind->addr.len = sizeof *sin;
bind->glen = 1;

if (t _bind(listen_ fd, bind, bind) < 0) {
t _error (“run_sim server: t bind”);
t close(listen fd);
exit (EX OSERR);

Simphony SIM Manual B-3

TCP Interface Code
MICROS SIM TCP Server

if (sin->sin port != serviceport) {
fprintf (stderr,
“run server: wanted port %d, got port %d, retrying\n”,
ntohs (serviceport), ntohs(sin->sin port));
t close(listen fd);
t free((char *)bind, T BIND);
sleep(10);
}
else
break;

if (retries == 0) {
fprintf (stderr, “run sim server: could not get port %$d\n”,
ntohs (serviceport));
t close(listen fd);
exit (EX TEMPFAIL);

if ((call = (struct t call *)t alloc(listen fd, T CALL, T ALL)) ==
NULL) {
t error (“run sim server: t alloc(T CALL)”");
t close(listen fd);
exit (EX OSERR);

/* For simplicity, we ignore SIGCLD, which allows the exiting
* child processes to clean up after themselves, without
* requiring the parent (this process) to call wait().

*/
sigignore (SIGCLD) ;

/* We now have the desired TCP port open.
* Accept connections, and for each connection accepted,
* start a server process.

*/
while (1) {

/* Listen for incoming connections.

* This process will typically spend 99.9% of its time
* blocked in this t listen() call.

*/

if (t_listen(listen fd, call) < 0) {
t error (“run sim server: t listen”);
t close(listen fd);
exit (EX OSERR);

TCP Interface Code
MICROS SIM TCP Server

/* Open a new endpoint and accept the connection
* on this new endpoint (freeing the listen fd
* to accept further connections).

*/

if ((conn fd = t open(TCP_DEVICE NAME, O RDWR, NULL)) < 0) {
t _error (“run sim server: t open”);
t close(listen fd);
exit (EX OSFILE);

if (t_bind(conn_ fd, NULL, NULL) < 0) {
t _error (“run _sim server: t bind”);
t close(conn_fd);
t close(listen fd);

exit (EX OSERR) ;

if (t_accept(listen fd, conn fd, call) < 0) {
if (t_errno == TLOOK) ({
/* retrieve disconnect indication, if any, and continue */
t rcvdis(listen fd, NULL);
t close(conn_fd);
}
else {
t _error (“run_sim server: t accept”);
t close(conn_fd);
t close(listen fd);
exit (EX OSERR);

}

else {

/* Push the “tirdwr” module onto the connection, establishing
* the “read/write” interface. This is so the rest of this
process

*

does not have to understand the more complicated TLI scheme
for pushing messages, and can treat this connection just like

*

* a tty. (Let the streams module do the work.)

*

* After this succeeds, no TLI calls can be made on conn_ fd,
* only read(), write(), and close().

*/

if (ioctl(conn fd, I PUSH, “tirdwr”) < 0) {
perror (“run_sim server: ioctl (I _PUSH, tirdwr)”);
t close(conn_fd);
t close(listen fd);
exit (EX OSERR);

/* Start a child process, which will use conn_ fd.

Simphony SIM Manual B-5

TCP Interface Code
MICROS SIM TCP Server

* The parent will close conn_ fd and return to

* listening. If the fork fails, we will discard
* this connection, but continue to listen,

* since the situation should clear up eventually.
*/

switch (fork()) {

case -1: /* error */

perror (“run_sim server: fork”);
close (conn_fd);
break;

default: /* parent */
close (conn_fd);
break;

case 0: /* child */
t close(listen fd);
transfer pos messages (conn_fd);
exit (EX OK) ;
break;

#define SOH
#define STX
#define ETX
#define EOT
#define ACK
#define NAK 2

R o b w N

enum SIM Link State { sim msg begin, sim msg id, sim msg data,
sim msg cksum };

static void transfer pos messages (int fd)
{

int i, n;

int msg buf len;

char *header, *body;

enum SIM Link State state;

char msg buf[SIM MAX MSG + 1];

char recv _buf[SIM MAX MSG + 1];

char reply buf[SIM MAX MSG + 1];

char reply body[SIM MAX MSG BODY];

/* Handle input from POS system, implementing the network protocol:

TCP Interface Code
MICROS SIM TCP Server

N

process pos_request,
passing the received header,
and a buffer for the reply.

P A T T 2

state = sim msg begin;
msg_buf len = 0;

1. Attempt to read bytes from POS connection,
If an invalid message is received, discard it.
3. When a complete message is available,

4. When process pos_request returns,
connection with a copy of the received header and
the reply buffer returned from process pos request.

blocking.
call
the received body,

reply to the POS

#define NEXT STATE (prev,next) (state == (prev) \
? (state = (next), 1) \
(state = sim msg begin, 0))
#define STATE ERROR { msg buf len = 0; state = sim msg begin; }
while (1) {
n = read(fd, recv_buf, SIM MAX MSG);
if (n < 0 && errno == EINTR)
continue; /* ignore interrupts, read again */
if (n < 0) {
perror (“transfer pos messages: read”);
close(fd); /* this connection is finished */
return;
}
if (n == 0) {
fprintf (stderr, “transfer pos messages: connection closed\n”);
close(fd); /* this connection is finished */
return;
}
for(i = 0; 1 < n; i++) {
switch (recv_buf[i]) {
case SOH:

if (NEXT STATE (sim msg_begin,

/* Restart message, and,

* remember the position of the

* byte of the header.
*/
msg_buf len = 0;
header =

sim msg _id)) {
for clarity,

(upcoming) first

&msg_buf [msg buf len];

Simphony SIM Manual

B-7

TCP Interface Code
MICROS SIM TCP Server

else
STATE ERROR
break;

case STX:
if (NEXT STATE (sim msg_id, sim msg data)) {
/* NUL-terminate header, and remember the position
* of the (upcoming) first byte of the body
*/
msg_buf [msg buf len++] = ‘\0’;
body = &msg_buf[msg buf len];
}
else
STATE ERROR
break;

case ETX:

if (NEXT_ STATE (sim msg data, sim msg cksum)) {
/* NUL-terminate the body. */
msg_buf [msg buf len++] = ‘\0’;

}

else
STATE ERROR

break;

case EOT:
if (NEXT STATE (sim msg cksum, sim msg begin)) {

int reply len;

reply body[0] = *\0’;

/* If body exists,

* send request to SIM-specific code.

* header[0] through NUL is the header.
* body[0] through NUL is the request body.
* reply body[0] through NUL will be the reply body.
* (If body is empty, return empty response to POS.)
*/

if (body[0] != *\0’")

process pos_request (header, body, reply body);

/* Frame original header and reply body,
* and respond to the POS system.
*/
sprintf (reply buf, “%c%s%c%s%c%c”,
SOH, header, STX, reply body, ETX, EOT);
reply len = strlen(reply buf);
if (write(fd, reply buf, reply len) != reply len) {

B-8

TCP Interface Code
MICROS SIM TCP Server

perror (“transfer pos messages:

close (fd) ;
return;

}

else
STATE ERROR
break;

case ACK:
case NAK:
/* Ignore ACKs and NAKs */

break;

default:
switch (state) {
case sim msg begin:
case sim msg cksum:
default:
break;
case sim msg id:
case sim msg data:

write”);

msg _buf[msg buf len++] = recv buf[i];

break;
break;

}

break;

Simphony SIM Manual

TCP Interface Code
Sample SIM Server

Sample SIM Server

This code is a complete implementation of a SIM server,
demonstrating the functions which must be provided by
the server application.

L S R

This example sends valid responses to Simphony-standard format POS
messages.

*/
extern void run_sim server (void);

main ()
{
run_sim server();

}

void process pos_ request (const char *header,
const char *body,
char reply bodyl[])

printf (YHeader = %s\n”, header);
printf (“Body = %$s\n”, body);
if (body[0] == ' ' && body[l] == ‘17)
strcpy (reply body, “ 1ABCDEFGHIJKLMNOP”) ;
else if (body[0] == ' ' && body[l] == ‘2')
strcpy (reply body, “ 2ZYXWVUTSRQPONMLK”) ;
else
strcpy (reply body, “///UNKNOWN REQUEST”) ;

printf (“Reply Body = %s\n”, reply body);

B-10

TCP Interface Code
Sample Makefile

Sample Makefile

Simtest: Simtest.o Simsrv.o
cc -o simtest simtest.o simsrv.o -lsocket -Ilnsl s -lc_s

simtest.o: simtest.c
cc -c -W2 -strict -g simtest.c

simsrv.o: simsrv.c
cc -c¢c -W2 -strict -g simsrv.c

Simphony SIM Manual B-11

ISL Quick Reference

Appendix C

ISI Quick Reference

In This Chapter

This chapter is a quick reference guide to the syntax of all ISL language

elements, including data types, operators, system variables, format
specifiers, commands, and functions.

DAt TYPES ceouvvieeiieiie ettt ettt ettt esre e veesereesreesebeesnnae e C-2
Relational and Logical Operators..........ccccevververeesieenieeniencieenennnn C-3
System Variablescccveviieiiieiiieciiecieeee e e s C-5
Format Specifiers.......cccvecvieeiiriiieieeieeieeese e C-12
COMMANS ...ttt e et C-14
FUNCHIONS ..o C-22
Simphony SIM Manual C-1

ISL Quick Reference

Data Types

Data Types

Data Type | Abbreviation Description Example
Numeric Nx These variables are used for numeric | var rowcnt : n3
information and may comprise x digits
(integers, not decimal), e.g., N4
supports -9999 to 9999.
Decimal $x These variables are used for decimal | var new ttl : $12
amounts. Operator entries will assume
a decimal place according to the
currency's default setting, as specified
in the Currency module; i.e., entering
1234 in the US will result in an amount
of 12.34. They may comprise x digits,
e.g., $4 in the US will support -99.99
t0 99.99.
Alphanumeric | Returns the These variables may include any non- | var name : a20
ASCII integer | control character, including
value of the punctuation marks. They may
first character | comprise x characters.
of the string
Key key This system variable is used for key var keypressed :

press variables.

key

ISL Quick Reference

Relational and Logical Operators

Relational and Logical Operators

Unary Operators
Operator Description Example
Negation operator (a minus -3
sign). This is used to negate an
- -count

expression.

-((count+5) * -index)

Will negate the result of the
expression. The NOT operator
can be applied to expressions
in the same way as the unary
minus operator.

The NOT operator will negate
the result of the expression.
For example, the following
expression is always TRUE:

NOT (3<4)

The NOT operator will negate
the sense of the above
expression; thus the following
expression is always FALSE:
NOT (3<4)

Binary Operators

Operation Operator Allowable Operand
Types: Nx, $x, and Ax

multiplication * Nx, $x Ax, Key

division / Nx, $x

modulus % Nx, $x

plus + Nx, $x

minus - Nx, $x

bit-wise and & Nx

bit-wise or | Nx

Simphony SIM Manual

C-3

ISL Quick Reference
Relational and Logical Operators

Operation Operator Allowable Operand
Types: Nx, $x, and Ax

equality = Nx, $x Ax, Key
greater than or equal >= Nx, $x, Ax, Key
greater than > Nx, $x, Ax, Key
less than or equal <= Nx, $x, Ax, Key
inequality <> Nx, $x, Ax, Key
less than < Nx, $x, Ax, Key
logical and AND Nx

logical or OR Nx

ISL Quick Reference
System Variables

System Variables

Category Variable Name and Syntax Field/Parameter
Cover/Guest Count | @GST Guest Count
Credit Card @CCDATE Credit Card Expiration Date
@CCNUMBER Credit Card Account Number
Data Entry @FIELDSTATUS Data Entry Field Status Flag
@INPUTSTATUS User Input Status Flag
@MAGSTATUS Magnetic Card Entry Status Flag
@RETURNSTATUS Transaction Item Return Indicator
@USERENTRY Data Entered Before SIM Inquiry
Key Activated
@VOIDSTATUS Transaction Item Void Indicator
Date and Time @DAY Current Day of Month
@EPOCH EPOCH Time
@HOUR Current Hour of Day
@MINUTE Current Minute
@MONTH Current Month
@SECOND Current Second
@WEEKDAY Day of Week
@YEAR Current Year
@YEARDAY Current Day of Year

Simphony SIM Manual

C-5

ISL Quick Reference

System Variables

Category Variable Name and Syntax Field/Parameter
Discount/Service @AUTOSVC Auto Service Charge
Charge @CHGTIP Charged Tip
@DSC Discount Total
@DSC_OVERRIDE When a manual discount is entered, a
SIM ‘Discount’ script can decrease
the amount of the discount by setting
this variable to the desired discount
amount
@DSCI Discount Itemizer
@EMPLDISCOUNT In a discount event, this variable is
the number of the employee discount
@EMPLDISCOUNTEMPL In a discount event, this variable is
the employee number of the discount
receiving the employee discount
@NUMDSC Active Discounts
@NUMSVC Active Service Charges
@SVC Service Charges
@SVCI Service Charge Itemizer
Employee @CKEMP Check Employee
@EMPLOPT] SIM ISL Options #1-#8
@TRAININGMODE Training Mode Status Flag
@TREMP Transaction Employee
Event Data @EVENTID ID of event being raised
@EVENTTYPE Type of event being raised
@OBJ Object number of detail item
@PICKUPLOAN Value of pickup or loan amount
@QTY Quantity of detail item
@TTL Amount of detail item
File I/O @FILE _BFRSIZE User Definable Variable

@FILE_ERRNO

Standard Error Number Value

@FILE_ERRSTR

Standard Error String based on
@FILE_ERRNO

@FILE_SEPARATOR

Field Separator for File I/O
Operations

ISL Quick Reference
System Variables

Category Variable Name and Syntax Field/Parameter

Function Keys @KEY CANCEL Cancel Key
@KEY CLEAR Clear Key
@KEY DOWN_ARROW Arrow Down Key
@KEY_ END End Key
@KEY_ENTER Enter Key
@KEY_EXIT Exit Key
@KEY HOME Home Key
@KEY _LEFT ARROW Arrow Left Key
@KEY_ PAGE DOWN Page Down Key
@KEY_PAGE_UP Page Up Key
@KEY_RIGHT_ARROW Arrow Right Key
@KEY_UP_ARROW Arrow Up Key

Guest Check @CHK OPEN_ TIME Date and Time Check Opened
@CHK_OPEN TIME T Current Check Open Time
@CHK _PAYMNT TTL Current Check Payment Total
@CHK TTL Current Check Total
@CHECKDATA Facsimile of Check
@CKCSHR Cashier Number
@CKID Check ID
@CKNUM Check Number
@LASTCKNUM Last Check Number Assigned to
Guest Check
@TRCSHR Transaction Cashier Number
Open Check @NUM_OPENCHECKS Lists Open Checks per Revenue

Center

@OPENCHECK_EMPOWNER

Open Check Employee Object
Number

@OPENCHECK_GUID

Open Check GUID

@OPENCHECK NUMBER

Open Check Number

@OPENCHECK_OPENTIME

Open Check Date and Time that the

check was begun

@OPENCHECK_ ORDERTYPE

Open Check Order Type 1D

@OPENCHECK TOTAL

Open Check Total Amount

Simphony SIM Manual

C-7

ISL Quick Reference

System Variables

Category Variable Name and Syntax Field/Parameter
@OPENCHECK WSOWNER Open Check Workstation ID
Order Type @ORDERTYPE Order Type
Printing @CHK Guest Check Printer
@DWOFF Double-wide Characters OFF
@DWON Double-wide Characters ON
@HEADER Guest Check, Receipts, Credit Card
Vouchers
@NUL Specifies a binary 0 should be sent
@ORDRJ] Remote Order or Local Order Printer
@PRINTSTATUS Print Status Flag
@RCPT Customer Receipt Printer
@REDOFF Red Ink OFF
@REDON Red Ink ON
@TRAILER Guest Check, Receipts, Credit Card
Vouchers
@VALD Validation Chit Printer
Property @OFFLINELINK Used to link to an offline PMS
Management system
System (PMS) @PMSLINK Revenue Center PMS Link
@PMSNUMBER PMS Object Number
@RXMSG Name of PMS Response Message
@SIMDBLINK Links to the SIMDB DLL to the
database
Proration @GSTRMNG Guests Remaining after Proration
@GSTTHISTENDER Guest Count Associated with Split
Tender
Sales Itemizer @NUMSI Active Sales Itemizers
@SI[] Sales Itemizers
@TXBL[] Taxable Sales Itemizers
Sales Total @CHANGE Change Due
@PREVPAY Previous Payment
@TNDTTL Tender Total
@TTLDUE Total Due

ISL Quick Reference
System Variables

Category Variable Name and Syntax Field/Parameter
Script @RANDOM Returns a random value between 0
and 232-1

@RVC Revenue Center Number
@STRICT_ARGS Strict Arguments
@VARUSED Used Variable Space
@WARNINGS_ARE FATAL Strong Checking

Seat @SEAT Active Seat Number

Serving Period @SRVPRD Serving Period

System @DBVERSION Current Database Version
@GUID The GUID of the Current Check

@OS_PLATFORM

1 - Windows® CE

3 - Win 32
PLATFORM Hardware Platform
@
@PROPERTY The Property Number of the

Workstation

@SYSTEM_STATUS

Shell Return Status

@VERSION SIM Version Number

Table @GRPNUM Table Group Number
@TBLID Table ID
@TBLNUM Table Object Number

Tax @NUMTAX Active Tax Rates
@RVCSERIALNUMJ] Revenue Center Sequence Number
@SYSSERIALNUM[] System Sequence Number
@TAX]] Tax Collected
@TAXRATE]] Tax Rate
@TAXVAT(| Returns the Value Added Tax

Amount for Tax Rate “X”

@TXEX_ACTIVE]]

Checks if the Tax is Exempt at the
Specified Level

Tender/Media @SIGCAPDATA Signature Capture Data
@TMDNUM Tender/Media Number

Touchscreen @ALPHASCREEN Alpha Touchscreen
@NUMERICSCREEN Numeric Touchscreen

Simphony SIM Manual

C-9

ISL Quick Reference
System Variables

Category

Variable Name and Syntax

Field/Parameter

Transaction Detail

@DETAILSORTED

Detail Sorting Status

@DTL_CAACCTINFO[]

Credit Authorization Account
Information

@DTL_CABASETTL]]

Credit Authorization Base Total

@DTL_CAEXPDATE] |

Credit Authorization Expiration Date

@DTL_CATIPTTL[]

Credit Authorization Tip Total

@DTL_CATMEDOBINUM]]

Credit Authorization Tender/Media
Object Number

@DTL_DEFSEQ[]

Definition Sequence of Detail Item

@DTL_DSC_EMPL]]

Employee who is getting the
employee meal discount for the
specified detail entry

@DTL_DSCI[]

Menu Item Detail Class Discount
Itemizer Value

@DTL_FAMGRPJ[]

Menu Item’s Family Group

@DTL_INDEX

Index of the detail which fired the
SIM event

@DTL IS _CONDIi]

Determines if a Guest Check Menu
Item is a condiment

@DTL_MAJGRP[]

Menu Item’s Major Group

@DTL_MLVL[]

Main Menu Level of Detail Item

@DTL_NAME][]

Name of Detail Item

@DTL_OBJNUM][]

Object Number of Detail Item

@DTL_PLVL[]

Price Level of Detail Item

@DTL_PMSLINK]]

PMS Link of Detail Item

@DTL_PRICESEQ]

Price Sequence Number of Detail
Item

@DTL_QTY][]

Quantity of Detail Item

@DTL_SEATJ[]

Seat Number of Detail Item

@DTL _SLSI[]

Menu Item Detail Class Sales
Itemizer Value

@DTL_SLVL[]

Sub-menu Level of Detail Item

@DTL_STATUS[]

Status of Detail Item

@DTL_SVC_LINK]]

Stored Value Card Link

@DTL_SVC_TYPE[]

Stored Value Card Type

C-10

ISL Quick Reference
System Variables

Category

Variable Name and Syntax

Field/Parameter

Transaction Detail

@DTL TAXTTL]]

Returns the Total Tax Amount for the

continued Detail
@DTL_TAXTYPE[] Tax Types
@DTL_TTL[] Total of Detail Item
@DTL_TYPE[] Type of Detail Item
@DTL_TYPEDEF]] Returns the Detail Item Type
Definition
@MAXDTLR Maximum Size of @ TRDTLR
@MAXDTLT Maximum Size of @ TRDTLT
@NUMDTLR Number of Detail Entries this
Service Round
@NUMDTLT Number of Detail Entries for Entire
Transaction
Troubleshooting @LINE Current Line Executed in Script
@LINE_EXECUTED Lines Executed in Script
@MAX LINES TO RUN Maximum Lines of Script to Execute
@PMSBUFFER PMS Message
@SHOW_PMS MESSAGES PMS Status Flag
@TRACE Output Line of Script to 8700d.log
Window @CENTER Center Column in ISL-defined
Window
@WCOLS Number of Columns in ISL-defined
window
@WROWS Number of Rows in ISL-defined
window
Workstation @WSID Workstation ID number
@WSTYPE User Workstation Type
@WSSUBTYPE Use Workstation Subtype

Simphony SIM Manual

C-11

ISL Quick Reference
Format Specifiers

Format Specifiers

Input Specifiers

Input Specifier

Description

Data being typed in by the operator should not be
echoed back to the display

Example:

Input auth_code{-}, “Enter authorization code”

Specify the track number (z =1 or 2) and what data
to read from the magnetic card. For use with the
Input, InputKey, DisplayInput, and
DisplayMSInput commands only. The M character
is case-insensitive

Example:

Input auth_code{ M2,* }, “Enter authorization code”

Mn, field, start, count | *

Mun: the track number (M1 or M2); this can be
followed by a star (*) to specify all fields on the
track, or use the following fields to read specific
information:

field: the field position within the specified track;
this is a positive integer

start: starting offset (character) within the field;for
example, if one wants to take the lastfour characters
of the “Blaine Richard” string, the offset would start
at 11

count: number of characters to be read from the start
(first character) to the end of the field (place an
asterisk * to include all characters)

Example:

Input auth_code{ M2,1,3,10 },\
“Enter authorization code”

C-12

ISL Quick Reference
Format Specifiers

Output Specifiers

The proper syntax for using the output_specifiers is as follows:
[<[=>1*] [*+] [0] [size] [DIX|O[B] [*] ["] [:format_string]

Output specifiers must also be placed in the order listed in the following table:

Output Specifier Description

< Left justification; the size specifier may be used to
specify the size of the field.

= Center justification; the size specifier may be used to
specify the size of the field.

> Right justification; the size specifier may be used to
specify the size of the field.

* Trim leading and trailing spaces; the size specifier
may be used to specify the size of the field.

+ Place sign at the start of the field.

0 Pad with zeroes (as opposed to spaces).

size Where size is the number of the characters in the

required field. The size must be a positive integer or
an expression that is a positive integer.

D Decimal (Default); display numerics in decimal
format.

X Hexadecimal; display numerics in hexadecimal
format.

o Octal; display numerics in octal format.

B Binary; display numerics in binary format.

A Place a space on each side of the data to be
displayed.

n

Place double quotes around the data to be displayed.

format string Similar to the BASIC language PRINT USING
command. All characters will be displayed except for
the # character, which will be replaced by characters
from the variable or expression preceding the format
specifier.

Simphony SIM Manual C-13

ISL Quick Reference

Commands

Commands

o,

Note: All arguments enclosed in brackets [] are considered

optional.

Category

Command and Syntax

Description

Communications

QueueMsg pms_number,
expression[{output_specifier}][,
expression[{output_specifier}]...]

Hold PMS messages in the
Simphony database queue
until the PMS is online.

ReTxMsg

Retransmit a message.

RxMsg user_variable or list_spec|,
user_variable or list_spec...

Define the format of a message
received over the interface.

TxMsg expression[{output specifier}][,
expression[{output_specifier}]...]

Define the format and send an
interface message.

TxMsgOnly
expression[{output_specifier}][,
expression[{output_specifier}]\...]

Send a message to a PMS
without waiting for a response.

Use[Compat/ISL]Format

Use Simphony-standard or ISL
message format.

Use[ISL/STD]TimeOuts

UseTMSFormat

Use ISL time outs or the
standard Simphony error
messaging, when there is no
response from the PMS
System.

Format messages using the
TMS format.

WaitForRxMsg
[prompt_expression[{output_specifier} |\

[,

prompt_expression[{output_specifier}]...]

Wait for an interface message
to be received after a TxMsg
has been sent. If no prompt
text is supplied, Please Wait-
-Sending Message 1S the
default.

C-14

ISL Quick Reference
Commands

Category

Command and Syntax

Description

File I/O

FClose file number

Close a file.

FGetFile file number

Gets a file from the SIM file
service.

Flock file number, Preventwrite [And] | Lock a file.
[Preventread] [and] [Nonblock]
FOpen file_number, file_name, mode Open a file.

FPutFile file number

Puts a file into the SIM file
SEervice Sserver.

FRead file number, user variable or
list_spec[, user_variable or list_spec...]

Split the next line read from a
file into the variables specified
in the statement.

FReadBfr file number, data,
count to read, count read

Read the number of bytes
specified in the command.

FReadLn file number, line

Read the entire line into a
string variable.

FSeek file number, seek position

Go to a specified position in an
open file.

FunLock file number

Unlock a locked file.

FWrite file_ number, variablel [,
variable2][, variable3...]

Write to a formatted file.

FWriteBfr file number, data,
count_to write, count_written

Write a specified number of
bytes.

FWriteLn file_number, line

Write an entire line.

Simphony SIM Manual

C-15

ISL Quick Reference

Commands

Category

Command and Syntax

Description

Flow Control

Break

Break out of the current For
loop.

Call name

Call a subroutine procedure.

ContinueOnCancel

Continue processing the script
even if the [Cancel] or [Clear]
key is pressed after an Input
command has been issued.

Event Inq : number
¢ Tmed : number

* RxMsg : event ID

Final_Tender : no event_ID required

Print_Header : alpha/numeric

Print_Trailer : alpha/numeric

Indicate the start and end of an
event procedure.

... EndEvent

ExitCancel Exit a script and cancel the
current tendering operation.

ExitContinue Exit a script and continue the
current tendering operation.

ExitOnCancel Exit a script when the [Cancel]
or [Clear] key is pressed after
an Input command has been
issued.

ExitWithError Display a defined error

message and exit the script.

For... EndFor counter =
start_expression To end_expression
[Step increment]

Perform commands a specified
number of times.

ForEver...EndFor

Perform commands an
indefinite number of times.

If.. Else...EndIf expression [operator...]
expression [operator...]

Execute commands if the
specified condition is met.

Return

Return from a subroutine.

Sub...EndSub name
Sub...EndSub name (Ref | Var
parameter [, Ref | Var parameter]...)

Indicate the start and end of a
subroutine procedure.

C-16

ISL Quick Reference
Commands

Category

Command and Syntax

Description

Flow Control

While...EndWhile expression

Execute a loop structure until

continued an expression becomes
FALSE.
Input/Output Beep Sound the beeper.
ClearChkInfo Clear check information detail
lines in buffer.
ClearIslTs Clear any previously defined
touchscreen keys.
ClearKybdMacro Clear macro key definitions.
ClearRearArea Clear the contents of the

customer display.

Display row, column,
expression[{output_specifier}] [
expression [{output_specifier}]...]

Display text or a field at a
defined place within a
window.

DisplayInput row, column,
input_variable[{input/output_specifier}, \
prompt_expression][,
prompt_expression,...]

Display an input field within a
window.

Displaylnverse row, column,
expression[{output specifier}]}[,
expression\
[{output_specifier}]...]

Display input field in inverse
video.

DisplaylIslTs

Display an ISL-defined
touchscreen.

DisplayKBArea prompt_expression

Display data in the keyboard
entry area of a Keyboard
Workstation.

DisplayMSInput row, column,
input_variable}\ [{input/
output_specifier}], \ prompt expression[,
row, column,\ input_variable {input/
output_specifier},\ prompt _expression,...]

Display an input field within a
window and allow magnetic
card swipe to satisfy field
entry.

DisplayRearArea

Display up to 20 characters on
the POS workstation customer
display.

ErrorBeep expression{output_specifier}|,
expression[{output_specifier}],...]

Sound an error beep.

ErrorMessage

Display an error message and
continue.

Simphony SIM Manual

C-17

ISL Quick Reference

Commands

Category

Command and Syntax

Description

Input/Output
continued

GetEnterOrClear

Wait for the [Enter] or [Clear]
key to be pressed.

GetTime

Retrieve current time.

Input

Capture operator entry for a
single field or prompt.

Inputkey

Capture operator entry and a
key for a single field or
prompt.

ListDisplay (W)

Display a list.

ListInput (W)

Display a list and get an
operator selection.

ListInputEx

Display a list and get an
operator selection. Does not
provide a WROW or WCOL
variable.

LoadDbKybdMacro

Load a pre-defined keyboard
macro so that it may be
executed upon successful
completion of a script.

LoadKybdMacro

Load a user-defined keyboard
macro so that it may be
executed upon successful
completion of a script.

PopUpIsITs

Display a touchscreen as a
pop-up.

Prompt expression[{output_specifier} |
[, expression[{output_specifier}],...]

Display an operator prompt.

SaveChklInfo
expression[{output specifier} |
[, expression[{output_specifier}],...]

Insert check information detail
into the check.

ScanBarcode

Scan Barcodes that contain QR
codes (more than 40 chars).

SetlsITsKey row, col, num_rows,
num_cols, font, key expression,
expression

Define a touchscreen key.

Touchscreen numeric_expression

Activate a touchscreen for the
duration of this operation.

WaitForClear

[prompt_expression[{output_specifier}] [,
prompt_expression\
[{output_specifier}],...]

Wait for the [Clear] key before
continuing. If no prompt text is
supplied, “Press Clear to
Continue” is the default.

C-18

ISL Quick Reference

Commands
Category Command and Syntax Description
Input/Output WaitForConfirm Wait for an operator
continued [prompt_expression[{output_specifier}] [, | confirmation. If no prompt text
prompt_expression\ is supplied, “Press Enter to
[{output_specifier}],...] Continue” is the default.
WaitForEnter Wait for the [Enter] key before
[prompt_expression[{output_specifier}] [, | continuing. If no prompt text is
prompt_expression\ supplied, “Press Enter to
[{output_specifier}],...] Continue” is the default.
Window row, column Create a window of specified
[, expression[{output_specifier}],...] size and optionally display a
window title.
WindowClear Clear a display window.
WindowClose Close the current window.
WindowEdit[WithSave] Display the current contents of
specified variables within a
window and allow them to be
edited; optionally require the
[Save] key to save entries and
exit.
WindowlInput[WithSave] Display the specified fields
within a window, without the
present contents; optionally
require the [Save] key to save
entries and exit.
Miscellaneous LowerCase Convert a string to lower-case.
MSleep milliseconds Sleep for the requested number

of milliseconds.

SimDB interface number, request msg,
response_messag

Used by the SIM to send a
request to the SIMDB DLL
and then receive a response.

System Execute a command.

UpperCase Convert a string to upper-case.

UseBackupTender Use backup tender
programmed in the Simphony
database.

WindowScrollDown Scroll current window down
one line.

WindowScrollUp Scroll current window up one

line.

Simphony SIM Manual

C-19

ISL Quick Reference

Commands
Category Command and Syntax Description
Printing FormatRaw argument, max_size, data This command allows a SIM
script to send up to 2 Kilobytes
of raw (un-altered) data to only
IDN, Serial, IP, and Bluetooth
printers.

LabelFeedToPeel Feeds printed labels to the
label peeling position. Only
works on the Epson L90 label
printer.

LineFeed [number _of line feeds] Linefeed one or multiple lines.

ListPrint list_size, array Print a list.

PrintLine expression[{output_specifier}] | Print specified text and/or

or directive \ fields.

[, expression[{output_specifier}] or

directive...]

Variables ClearArray array_variable Clear an array

Format string_variable [, field sep char]
as expression[[{output_specifier}],\
expression[{output_specifier}],...]

Concatenate one or more
variables into a string.

FormatBuffer source_string,
destination_string

Format a non-printable string
into a printable string.

FormatQ string_variable [,
field sep char] as

expression[{output_specifier}],\
expression[{output_specifier}],...]

Concatenate one or more
variables into a string and
enclose the string in quotes.

MakeAscii source_string,
destination_string

Remove any non-ASCII
characters from a string.

Mid (string_variable, start, length) =
replacement_string

Set one portion of a string
equal to another string.

ProRate

Prorate itemizers for chg
posting.

[Retain/Discard]GlobalVar

Retain or discard global
variables between
transactions.

SaveRefInfo
expression[{output_specifier}]
[, expression\[{output_specifier}],...]

Save information as tender/
media reference detail.

SaveRefInfox ref type,
expression[{output_specifier}]
[, expression\ [{output_specifier}],...]

Save information as tender/
media reference detail with
reference type.

C-20

ISL Quick Reference
Commands

Category

Command and Syntax

Description

SetReRead

Re-read the ISL script for new
or changed ISL scripts.

SetSignOn[Left/Right]

The minus sign will go on the
left or right side, respectively,
when formatting numbers.

Variables
continued

SetString main_string, character_string],
count]

Replace all or a specific
number of characters in a
string with a particular
character.

Split string_to_split, field_sep_char,
user_variable or list_spec \
[, user variable or list spec...]

Break a string into separate
fields.

SplitQ Break a string into separate
fields and enclose the string in
quotes.

UseSortedDetail Consolidated detail is
accessible.

UseStdDetail Raw detail is accessible.

Var Declare a variable field of

specified type that will be used
for input and/or used in an
interface message.

Note: The meaning of the data within the braces will be

explained later.

o,

Simphony SIM Manual C-21

ISL Quick Reference
Functions

Functions

Command Name and Syntax

Abs (integer or decimal)

ArraySize (array_name)

Asc (string_expression)

Bit (hex_string, bit position)

Chr (integer)

Env (environment variable)

Feof (file_number)

FTell (file_ number)

GetHex (hex_string)

Instr (index, string expression, character)

Key (key_pair)

KeyNumber (key expression)

KeyType (key expression)

Len (string_expression)

Mid (string _expression, start, count)

Tolnteger (decimal)

Trim (string expression)

VarSize (user_variable)

C-22

Key Types, Codes, and Names

Appendix D

Key Types, Codes, and
Names

In This Chapter

This chapter lists the Key Types, Codes, and Names from Simphony.

Type 11 Function Key Categoriescoceevveverererienieneneneeiene. D-2
Type 9 Keypad KEYSccveeviiiiiiirieniieieeieerecre e D-10

Simphony SIM Manual

D-1

Key Types, Codes, and Names
Type 11 Function Key Categories

Type 11 Function Key Categories

Movement Keys

21 - End 26 - Right

22 - Down 27 - Home

23 - Page Down 28 - Up

24 - Left 29 - Page Up

NLU Keys

101 - NLU 141 - Course NLU

132 - NLU 172 - Course NLU
Sales NLU Keys

200 - Discount NLU

201 - Service Charge NLU

202 - Tender/Media NLU

General Keys
300 - Launch PMC 307 - Sign in UWS RVC 3 | 313 - Minimize
Application
301 - Help 308 - Sign in UWS RVC 4 | 314 - Close Application
302 - Help, Prompt 309 - Sign in UWS RVC 5 | 315 - Enter Offline
Number Mode

304 - Display Time

310 - Sign in UWS RVC 6

316 - Exit Offline
Mode

305 - Sign in UWS RVC 1

311 - Signin UWS RVC 7

306 - Sign in UWS RVC 2

312 - Sign in UWS RVC 8

320 - Reload
Workstation Database

Key Types, Codes, and Names
Type 11 Function Key Categories

Touchscreen Keys

350 - TS No Key Display

355 - TS Shift

360 - TS Next Screen

351 - TS SLU Page Up

356 - TS Pop-up

361 - TS Previous
Screen

352 - TS SLU Page Down

357 - TS Close Pop-up

362 - TS Staydown
Screen

353 - TS SLU Home

358 - TS Contrast Up

354 - TS SLU End

359 - TS Contrast Down

363 - TS Label Only

Mobile MICROS Key

382 - Select Printers

Check Begin/ Pickup Keys

399 - Begin Party Chk

414 - Pickup, Tbl #, Rvc 1

427 - Chg Trn Rvc, Rve 3

400 - Begin Chk by Num

415 - Pickup, Tbl #, Rvc 2

428 - Chg Trn Rvc, Rve 4

401 - Begin Chk by Table

416 - Pickup, Tbl #, Rvc 3

429 - Chg Trn Rvc, Rve 5

402 - Pickup by Number

417 - Pickup, Tbl #, Rvc 4

430 - Chg Trn Rvc, Rve 6

403 - Pickup, Chk #, Rvc ?

418 - Pickup, Tbl #, Rvc 5

431 - Chg Trn Rvc, Rve 7

404 - Pickup, Chk #, Rvc 1

419 - Pickup, Tbl #, Rvc 6

432 - Chg Trn Rvc, Rve 8

405 - Pickup, Chk #, Rvc 2

420 - Pickup, Tbl #, Rvc 7

435 - Begin Check by ID

406 - Pickup, Chk #, Rvc 3

421 - Pickup, Tbl #, Rvc 8

436 - Pickup Check by ID

407 - Pickup, Chk #, Rvc 4

422 - Adjust Closed
Check

437 - Transfr Check by ID

408 - Pickup, Chk #, Rvc 5

423 - Reopen Closed
Check

438 - Guest Check ID

409 - Pickup, Chk #, Rvc 6

442 - Adjust Closed
Check (Prev. Days)

439 - Pickup Check SLU

410 - Pickup, Chk #, Rvc 7

443 - Reopen Closed
Check (Prev. Days)

444 - Next Drive Thru
Order

411 - Pickup, Chk #, Rvc 8

424 - Chg Trn Rvc, Rve ?

445 - Insert Order

412 - Pickup by Table

425 - Chg Trn Rve, Rve 1

446 - Insert Order After
Last Paid

Simphony SIM Manual

D-3

Key Types, Codes, and Names
Type 11 Function Key Categories

Check Begin/ Pickup Keys

413 - Pickup, Tbl #, Rvc ?

426 - Chg Trn Rvc, Rve 2

447 - Suspended Check
SLU

Check Operations Keys

499 - Add/Xfr Check SLU

516 - Add/Xfr by Tbl,
RVCS5

548 - Edit DIt Xfr All

500 - Add/Xfr by #

517 - Add/Xfr by Tbl,
RVC 6

549 - Add Team Member

501 - Add/Xfr by #, RVC ?

518 - Add/Xfr by Tbl,
RVC 7

550 - Remove Team
Member

502 - Add/Xfr by #, RVC 1

519 - Add/Xfr by Tbl,
RVC 8

551 - TMS Bus Table

503 - Add/Xfr by #, RVC 2

522 - Table Number

552 - TMS Clear Table

504 - Add/Xfr by #, RVC 3

523 - Number of Guests

553 - TMS Close Table

505 - Add/Xfr by #, RVC 4

524 - Print Customer
Receipt

554 - TMS Xfr Tbl

506 - Add/Xfr by #, RVC 5

534 - Exempt Auto Svc
Chg

555 - TMS Xfr Tbl RVC

507 - Add/Xfr by #, RVC 6

535 - Split Check

556 - TouchEdit

508 - Add/Xfr by #, RVC 7

536 - Order Type 1

557 - TouchSplit

509 - Add/Xfr by #, RVC 8

537 - Order Type 2

560 - Edit Chk All

510 - Add/Xfr by Tbl

538 - Order Type 3

561 - Edit Chk One

511 - Add/Xfr by Tbl, RVC ? | 539 - Order Type 4

566 - Enter Guest Info

512 - Add/Xfr by Tbl, RVC 1 | 562 - Order Type 5

567 - Lock Guest Check

513 - Add/Xfr by Tbl, RVC 2 | 563 - Order Type 6

568 - Unlock Guest
Check

514 - Add/Xfr by Tbl, RVC 3 | 564 - Order Type 7

569 - Reprint SVC Chit

515 - Add/Xfr by Tbl, RVC 4 | 565 - Order Type 8

Transaction Keys

600 - @/For

620 - Sub-Menu Level 6

639 - Chg Price SLvl

601 - Void

621 - Sub-Menu Level 7

640 - Percent Tender

602 - Void Check

622 - Sub-Menu Level 8

641 - MI Price Override

Key Types, Codes, and Names
Type 11 Function Key Categories

Transaction Keys

603 - Transaction Void

623 - Main Menu Lvl NLU

642 - Transaction Return

604 - Return

624 - Sub-Menu Lvl NLU

643 - MI SKU Entry

605 - Transaction Cancel

625 - CCard Lookup

644 - Inquire Price

606 - Repeat Round

626 - CCard Lookup/Ask

645 - MajGroup Menu
Item

607 - Main Menu Level 1

627 - CCard Recall

646 - FamGroup Menu
Item

608 - Main Menu Level 2

628 - CCard Recall/Ask

647 - Hold Menu Item

609 - Main Menu Level 3

629 - CCard Authorize

648 - Dsply/Hide Cond

610 - Main Menu Level 4

630 - CCard Finalize

649 - Sign. Cap. Override

611 - Main Menu Level 5

631 - Initial Authorize

650 - KDS Rush Order

612 - Main Menu Level 6

632 - Manual Authorize

651 - KDS VIP Check

613 - Main Menu Level 7

633 - CCard Auth/Prompt

653 - Print Gift Receipt

614 - Main Menu Level 8

634 - CCard Fnlz/Prompt

654 - Inventory Inquire

615 - Sub-Menu Level 1

635 - Initl Auth/Prompt

655 - Auto Discount
Toggle

616 - Sub-Menu Level 2

636 - Mnual Auth/Prompt

656 - Auto Discount
Apply

617 - Sub-Menu Level 3

637 - Item Weight

657 - Auto Discount
Remove

618 - Sub-Menu Level 4

619 - Sub-Menu Level 5

638 - Chg Price MLvl

658 - Remove Coupon
Discounts

Seat Keys

700 - Seat # / Next Seat

702 - Filter Seat

704 - Add Seat to Filter

701 - View / Edit Seat

703 - Change Active Seat

707 - Toggle Seat View

Currency Keys

720 - Currency 1

740 - Currency 21

762 - Currency 11, Ask Amt

721 - Currency 2

741 - Currency 22

763 - Currency 12, Ask Amt

722 - Currency 3

742 - Currency 23

764 - Currency 13, Ask Amt

723 - Currency 4

743 - Currency 24

765 - Currency 14, Ask Amt

Simphony SIM Manual

D-5

Key Types, Codes, and Names
Type 11 Function Key Categories

Currency Keys

724 - Currency 5

744 - Currency 25

766 - Currency 15, Ask Amt

725 - Currency 6

745 - Currency 26

767 - Currency 16, Ask Amt

726 - Currency 7

746 - Currency 27

768 - Currency 17, Ask Amt

727 - Currency 8

747 - Currency 28

769 - Currency 18, Ask Amt

728 - Currency 9

748 - Currency 29

770 - Currency 19, Ask Amt

729 - Currency 10

749 - Currency 30

771 - Currency 20, Ask Amt

730 - Currency 11

752 - Currency 1, Ask Amt

772 - Currency 21, Ask Amt

731 - Currency 12

753 - Currency 2, Ask Amt

773 - Currency 22, Ask Amt

732 - Currency 13

754 - Currency 3, Ask Amt

774 - Currency 23, Ask Amt

733 - Currency 14

755 - Currency 4, Ask Amt

775 - Currency 24, Ask Amt

734 - Currency 15

756 - Currency 5, Ask Amt

776 - Currency 25, Ask Amt

735 - Currency 16

757 - Currency 6, Ask Amt

777 - Currency 26, Ask Amt

736 - Currency 17

758 - Currency 7, Ask Amt

778 - Currency 27, Ask Amt

737 - Currency 18

759 - Currency 8, Ask Amt

779 - Currency 28, Ask Amt

738 - Currency 19

760 - Currency 9, Ask Amt

780 - Currency 29, Ask Amt

739 - Currency 20

761 - Currency 10, Ask Amt

781 - Currency 30, Ask Amt

Non-Sales Operations Keys

830 - No Sale

839 - Assn Cash Drawr 1

842 - Inquire PMS2

833 - Clock In / Out

840 - Assn Cash Drawr 2

843 - Inquire PMS3

834 - Reprint Time Card

845 - Assign Cashier

844 - Inquire PMS4

835 - Direct Tips

846 - Download New RVC

850 - Inquire PMS5

836 - Direct Tips, Ask #

848 - Asgn Csh Drawr

851 - Inquire PMS6

837 - Indirect Tips

849 - Unasgn Csh Drawr

852 - Inquire PMS7

838 - Indirect Tips, Ask #

841 - Inquire PMS1

853 - Inquire PMS8

Key Types, Codes, and Names
Type 11 Function Key Categories

SIM Keys

920 -SIM 11Inq 1

939 - SIM 1 Inq 20

980 - SIM 4 Inq 1

999 - SIM 4 Inq 20

1040 - SIM 7 Inq 1

1059 - SIM 7 Inq 20

940 - SIM 2 Inq 1

959 - SIM 2 Inq 20

1000 - SIM 5 Inq 1

1019 - SIM 5 Inq 20

960 - SIM 3 Inq 1

979 - SIM 3 Inq 20

1020 - SIM 6 Inq 1

1039 - SIM 6 Inq 20

1060 - SIM 8 Inq 1

1079 - SIM 8 Inq 20

Multilingual Keys

1100 - Screen Lang 1

1104 - Screen Lang List

1107 - Print Lang 3

1101 - Screen Lang 2

1105 - Print Lang 1

1108 - Print Lang 4

1102 - Screen Lang 3

1106 - Print Lang 2

1103 - Screen Lang 4

1109 - Print Lang List

Stored Value Cards Keys

1200 - Issue 1

1250 - Redeem Auth 3

1306 - Issue Points 6

1201 - Activate 1

1251 - Manual
Redemption 3

1307 - Redeem Points 6

1202 - Reload 1

1252 - Issue Batch 3

1308 - Point Inquire 6

1203 - Cash Out 1

1253 - Activate Batch 3

1309 - Redeem 6

1204 - Balance Inquire 1

1254 - Coupon 3

1310 - Redeem Auth 6

1205 - Balance Transfer 1

1261 - Activate 4

1311 - Manual
Redemption 6

1206 - Issue Points 1

1262 - Reload 4

1312 - Issue Batch 6

1207 - Redeem Points 1

1263 - Cash Out 4

1313 - Activate Batch 6

Simphony SIM Manual

D-7

Key Types, Codes, and Names
Type 11 Function Key Categories

Stored Value Cards Keys

1208 - Point Inquire 1

1264 - Balance Inquire 4

1314 - Coupon 6

1209 - Redeem 1

1265 - Balance Transfer 4

1320 - Issue 7

1210 - Redeem Auth 1

1266 - Issue Points 4

1321 - Activate 7

1211 - Manual
Redemption 1

1267 - Redeem Points 4

1322 - Reload 7

1212 - Issue Batch 1

1268 - Point Inquire 4

1323 - Cash Out 7

1213 - Activate Batch 1

1269 - Redeem 4

1324 - Balance Inquire 7

1214 - Coupon 1

1270 - Redeem Auth 4

1325 - Balance Transfer 7

1220 - Issue 2

1271 - Manual
Redemption 4

1326 - Issue Points 7

1221 - Activate 2

1272 - Issue Batch 4

1327 - Redeem Points 7

1222 - Reload 2

1273 - Activate Batch 4

1328 - Point Inquire 7

1223 - Cash Out 2

1274 - Coupon 4

1329 - Redeem 7

1224 - Balance Inquire 2

1280 - Issue 5

1330 - Redeem Auth 7

1225 - Balance Transfer 2

1281 - Activate 5

1331 - Manual
Redemption 7

1226 - Issue Points 2

1282 - Reload 5

1332 - Issue Batch 7

1227 - Redeem Points 2

1283 - Cash Out 5

1333 - Activate Batch 7

1228 - Point Inquire 2

1284 - Balance Inquire 5

1334 - Coupon 7

1229 - Redeem 2

1285 - Balance Transfer 5

1340 - Issue &

1230 - Redeem Auth 2

1286 - Issue Points 5

1341 - Activate 8

1231 - Manual
Redemption 2

1287 - Redeem Points 5

1342 - Reload 8

1232 - Issue Batch 2

1288 - Point Inquire 5

1343 - Cash Out 8

1233 - Activate Batch 2

1289 - Redeem 5

1344 - Balance Inquire 8

1234 - Coupon 2

1290 - Redeem Auth 5

1345 - Balance Transfer 8

1240 - Issue 3

1291 - Manual
Redemption 5

1346 - Issue Points 8

1241 - Activate 3

1292 - Issue Batch 5

13047 - Redeem Points 8

1242 - Reload 3

1293 - Activate Batch 5

1348 - Point Inquire 8

1243 - Cash Out 3

1294 - Coupon 5

1349 - Redeem 8

1244 - Balance Inquire 3

1300 - Issue 6

1350 - Redeem Auth 8

1245 - Balance Transfer 3

1301 - Activate 6

1351 - Manual
Redemption 8

Key Types, Codes, and Names
Type 11 Function Key Categories

Stored Value Cards Keys

1246 - Issue Points 3

1302 - Reload 6

1352 - Issue Batch 8

1247 - Redeem Points 3

1303 - Cash Out 6

1353 - Activate Batch 8

1248 - Point Inquire 3

1304 - Balance Inquire 6

1249 - Redeem 3

1305 - Balance Transfer 6

1354 - Coupon 8

Tax Exempt/Shift Keys

525 - Exempt All Taxes

540 - Tax Shift Rate 1

526 - Exempt Tax Rate 1

533 - Exempt Tax Rate 8

547 - Tax Shift Rate 8

1411 - Tax Shift Rate 9

1466 - Tax Shift Rate 64

Simphony SIM Manual

D-9

Key Types, Codes, and Names
Type 9 Keypad Keys

Type 9 Keypad Keys

Keypad Keys

0 - Numeric “0” key

8 - Numeric “8” key

16 - Exit PCWS App

1 - Numeric “1” key

9 - Numeric “9” key

17 - Add

2 - Numeric “2” key

10 - Numeric “00” key

18 - Delete

3 - Numeric “3” key

11 - Decimal “.” key

19 - Edit

4 - Numeric “4” key

12 - Enter

20 - Edit Delete

5 - Numeric “5” key

13 - Clear

21 - Edit Insert Tggl

6 - Numeric “6” key

14 - Shift

7 - Numeric “7” key

15 - Backspace

22 - Current MMDDYY

D-10

sendsim

Appendix E

sendsim

In This Chapter

This chapter describes the sendsim program. Note that sendsim is not
currently supported in Simphony.

SEIMASIIM ..ttt ettt e et e e e e e e e e eeeeeeeesaaareeeeseeerraeeeesesaaas E-2

Simphony SIM Manual

E-1

sendsim
sendsim

sendsim

The sendsim program is the SIM utility that provides customized messaging and
paging services via MICROS workstations, including Mobile MICROS, from the
Windows® command line.

Note: sendsim is not currently supported in Simphony.

o,

The sendsim user should already be familiar with SIM concepts
and ISL programming.

Requirements
This SIM utility requires two parts:
* The sendsim program

* AnISL script, which responds to the messages generated by sendsim

Syntax

The following is the complete sendsim command line syntax:
sendsim ws# pms# msgtype [msg arg]l [msg argl [msg argl...

Each command line argument is described in the table below:

Argument Description Comment(s)
wsH# workstation number that | Use 0 if the message should go to
the message should be all workstations.
sent to
pms# PMS definition object Since SIM script files executed by
number associated with | OPS are associated with a PMS
this event record, the PMS number must be

specified so that OPS can
determine the script to execute
(this value must be non-0 to have
meaning).

msgtype message type® This corresponds to the RxMsg
event type in an ISL event.

E-2

sendsim

sendsim
Argument Description Comment(s)
[msg arg] optional message These can be read from ISL using
arguments the RxMsg command. Any

number of arguments can be sent,
and their contents are not
examined by sendsim.

a. The message type is not case-sensitive.

Operations

Each user workstation is controlled by an individual Windows process. If there are
20 terminals, then 20 processes (called OPS) are running on the Windows PC.
Whenever, an OPS process is waiting for input from the user, it will also wait for
data from the sendsim program.

When an OPS process receives a sendsim message, it will attempt to run an ISL
RxMsg event whose event ID corresponds to the msgtype parameter in the
command line. If the command line were:

sendsim 0 1 mymessage
OPS would try to run the ISL script event:
event RxMsg : mymessage

Once the event is found, normal ISL processing occurs. The RxMsg command
should be used to read any additional arguments into local variables.

Remember the following when running sendsim:
* The sendsim program sends the message, but does not wait for a response

from all OPS processes. There is no way to send data back to the sendsim
program.

¢ It is possible to run the sendsim program when OPS is not running, but all
messages are lost.

Simphony SIM Manual E-3

sendsim
sendsim

e Ifthe ISL script file is not present, or the message type is not present in the
ISL script file, no error is generated. Ops will throw away the message. In
Example 2 on page FE-5, if the first line was written as

event RxMsg : mymsg

then Ops would throw away the received message since there was no ISL
event for the mymessage event, only for the mymsg event.

e IfOPS is already processing a sendsim message, it will queue the message for
subsequent processing.

Examples

Example 1

The following example shows the sendsim program being used to send a message
to all OPS processes from the command line, and the ISL script file needed to
receive the data and display it on the workstation display.

COMMAND LINE:

sendsim 0 1 mymessage "We are out of broiled flounder"

Each command line argument is defined in the table below:

Argument Character(s) Comment(s)

ws# 0 Send message to all workstations.

pms# 1 A PMS link in the RVC
Parameters module must use this
object number.

msgtype mymessage Used by the ISL script event.

[msg arg] “We are out of broiled This message? MUST be enclosed

flounder” in quotes to be interpreted as one

argument. Without the quotes, each
word would become a separate
argument, for a total of six
arguments.

a. The message argument can be a text string or any command line entry compatible with the

user’s shell.

E-4

sendsim
sendsim

ISL SCRIPT:

Since the message is being sent to PMS number 1, the script file is named
pmsl.isl, and placed in the /micros/simphony/etc directory. The
script contents are:

event RxMsg : mymessage

var data:A60 // variable to contain message
RxMsg data // get first argument
window 3, len(data)+2 // create window
display 2, @center, data // display message
waitforclear // wait for clear key

endevent

Note: This event may pop up at any point in the workstation

“' transaction.

{///

et

Example 2

If adding the following event to the ISL script, any user at a terminal can
send a message to another terminal.

event ing:1
var msg:A40, ws:N9
input ws, "Enter workstation number"
input msg, "Enter message"
system "sendsim ", ws, " ", @pmsnumber, " mymessage ", msg{"}

endevent

Note: The use of the system command to run the sendsim

“' program.

Simphony SIM Manual

E-5

sendsim
sendsim

Troubleshooting

If the sendsim program is run, but the OPS process(es) does not receive the
message, then check the following:

Is the system up and OPS running? If no Ops processes are running, then no
one can receive the message.

Is the PMS object number valid? That is, does it exist in the database with
valid field information?

Is there a link to the PMS in the RVC Parameters module?

Is the command line syntax in the correct order? Type sendsim without any
arguments to view the command line syntax.

If the workstation number is not 0, does it refer to the number in the
workstation table and not the device table?

Is there a valid SIM script in the /micros/simphony/etc directory?
Does it have the proper EVENT RxMsg event?

Is a SIM script already running on the workstation that will be receiving the
message? If so, the message will be queued for later processing.

E-6

Windows DLL Access

Appendix F

Windows DLL Access

In This Chapter

This chapter describes Windows DLLs and how to access them using SIM.

WiIndows DLL ACCESS.....ceuiriiriiriieienierieriteteieste et F-2
DLL Error MESSAZES ...ceveeruieriieiiieniianiienieenieenieenieeieeeeeee e eee e F-13
Simphony SIM Manual F-1

Windows DLL Access
Windows DLL Access

Windows DLL Access

Overview

This document describes DLLs and how to access them using SIM. This
information is broken down into the following sections:

* WhatisaDLL?
e Using DLLs
* Simphony SIM DLL Support

* Using Simphony SIM DLL Commands

What is a DLL?

The Simphony System Interface Module (SIM) can use Windows® Dynamic
Link Libraries (DLLs). DLLs are modules that contain functions and data. They
provide a way of separating applications into small manageable pieces that can be
easily modified and reused.

Dynamic Linking
Dynamic linking provides a means of giving applications access to function

libraries at run-time. DLLs are not copied into an application’s executable files.
Instead, they are linked to an application when it is loaded and executed.

Dynamic link libraries reside in their own separate files. Applications load them
into memory when they are needed, and share a single copy of the DLL code in
physical memory. A single DLL can be used by several applications
simultaneously. This in turn saves memory and reduces swapping.

Windows allows only a single instance of a DLL to be loaded into memory at any
time. When a DLL is being loaded, Windows checks all the modules already in
memory. If it doesn’t find a match, then it loads the DLL. If it does find a match,
and the matching module is a DLL, it doesn’t load it again.

Windows DLL Access
Windows DLL Access

The following are steps that an application takes when calling a function in a
DLL:

® The application uses the LoadLibrary or LoadLibraryEx function to load
the DLL at run-time. This, for example, can be a .DLL or .EXE.

* The application calls the Get ProcAddress function to get the addresses of
the exported DLL functions and it is mapped into the address space of the
calling process.

* The application then calls the exported DLL functions using the function
pointers returned by Get ProcAddress.

DLLs can define two kinds of functions: exported and internal. The exported
functions can be called by other applications. Internal functions can only be called
from within the DLL where they are defined. DLLs can contain code, data, and
resources such as bitmaps, icons, and cursors. These are stored as executable
programs.

Using DLLs

DLLs are used for three general purposes:
* Sharing components

* Encapsulating (hiding) data and code
¢ Performing system-level operations

Sharing Components

DLLs provide an easy way for multiple applications to share components. These
components can be:

* Code: a DLL provides one copy of its code for all applications that need it.

¢ Data: by storing and retrieving data, applications can communicate with each
other. The DLL provides a function for applications to store and retrieve data
in its data segment.

¢ Custom Controls: these can be placed in DLLs for use by multiple
applications. They can be written by developers and marketed as separate
DLLs or used in applications.

* Resources: icons, bitmaps, fonts, and cursors can be placed in DLLs. Device
drivers are also DLLs that provide system resources.

Simphony SIM Manual F-3

Windows DLL Access
Windows DLL Access

Encapsulating (hiding) Data and Code

DLLs can be used to hide data and code. A DLL can implement an abstract data
type (ADT), which can be used by applications. The applications can use the ADT
without knowing anything about the actual implementation. When changes are
made to the data structures and internal code, the applications that use the DLL
don’t have to be modified or recompiled.

Performing System-level Operations

DLLs can be used to perform low-level operations. Operations such as interrupt
service routines can be placed in fixed-code segments of DLLs. If an application
needs to issue interrupts, the code can be placed in a DLL rather than in the
application. Also, a DLL can be written as a device driver for certain pieces of
hardware (e.g., a mouse or keyboard).

Simphony SIM DLL Support

The Simphony System Interface Module allows the programmer to reap the
benefits of DLLs. The programmer can write or use existing DLLs to further
enhance the capabilities of the Simphony POS Operations module. Using three
SIM commands, the programmer can create a SIM script to access an externally
created DLL. This functionality considerably broadens the scope of the Simphony
SIM feature. Some advantages of this feature are:

* The ability to write SIM scripts to customize the Simphony PMS interface.
* The opportunity to take advantage of third-party development.
* A wider range of creativity.

e Faster turn around time.

Customization

Using DLLs allows the flexibility of customization. Now the programmer is no
longer confined to the text based window that SIM uses for input and output. For
example, one could create a custom interface to a PMS that returns guest
information to the Simphony POS Operations module.

Third-party Development

If the programmer is not interested in writing DLLs, one can take advantage of
DLLs that can be, or already have been, written by a third party for Simphony
SIM.

Windows DLL Access
Windows DLL Access

Creativity

Using the resources available with DLLs, fonts, bitmaps, cursors, etc. can be used
to create appealing user interfaces.

Faster Turn Around Time

Using DLLs can increase the turn around time of certain system requests. For
example, a DLL could be created to connect to the Simphony database and
perform a custom query on guest check information.

DLLs allow virtually unlimited flexibility when creating scripts to enhance the
functionality of the POS Operations module.

Using Simphony SIM DLL Commands

Three commands allow SIM to access DLLs. They enable a SIM script to call an
externally created DLL. These three commands are:

¢ DLLLoad: loads the external DLL
e DLLCall: calls a function contained in the DLL
e DLLCallW: calls a function contained in the DLL with Unicode

e DLLFree: frees a loaded DLL

DLLLoad

The DLLLoad command is used to load the external DLL. It needs to be called
only once during the lifetime of the SIM script. The syntax is:

DLLLoad handle, name

where handle is a SIM N9 variable, and name is a SIM string expression. The
‘name’ parameter is used to identify the DLL, and the resulting handle is stored in
the ‘handle’ variable. An example of this would be:

var dll handle:N9
DLLLoad dll handle, “myops.dll”

If the command fails, then d11 handle will be 0. If not, then d11 handle is the
handle used for any further accesses for the other DLL functions.

This function is just a wrapper around the Windows LoadLibrary () function.
All the rules which apply to path settings apply here.

If the DLL is already loaded, then Windows will prevent it from being loaded
again.

Simphony SIM Manual F-5

Windows DLL Access
Windows DLL Access

DLLCall

The DLLCall command is used to call a function contained in the DLL. The
syntax for this command is:

DLLCall handle, dll name([parml [parm2 [parm3...]]])

where handle is the previously loaded library handle, d11 name is the name of
the function, and parm# are the optional parameters.

This command performs two tasks:

* Get the address of the function using the Windows GetProcAddress ()
function. If this function fails, then an ISL error is generated.

e (all the DLL function.

Since it is not possible for SIM to check the validity of the parameters, it is up to
the SIM script writer to ensure that the proper number and type is used.

Note: It is not possible for a DLL to return a value back to
“— SIM. More specifically, if one is returned, it is ignored. Passing

information back to the SIM script should be done using

references.Refer to the Parameter Passing section on page F-7.

DLLCallw

The DLLCallw command is used for string variables. The value is interpreted as
Unicode data when passed back into SIM. This command calls a function
contained in the DLL with Unicode. The syntax for this command is:

DLLCallW handle, dll name([parml [parm2 [parm3...]1]])
where handle is the previously loaded library handle, d11 name is the name of
the function, and parm# are the optional parameters.

This command performs the same tasks as DLLCall.

Since it is not possible for SIM to check the validity of the parameters, it is up to
the SIM script writer to ensure that the proper number and type is used.

DLLFree

The DLLFree command is used to free a loaded DLL. The syntax is:

DLLFree handle

where handle is the handle obtained in a DL.LLoad command. This function is
automatically called when OPS exits, or the SIM script is reread. It can be called
to free up resources loaded by the DLL.

F-6

Windows DLL Access
Windows DLL Access

Parameter Passing

There are three types of variables in SIM:
* integers

* strings

* monetary data

Only these types may be used as parameters to the DLL. However, each type may
be passed in by value or by reference, and each type may also be passed in as an
array. Therefore, there are 12 possible parameter types. Refer to the table on page
F-8.

To pass by reference, place the string “ref” before the parameter. For example:

// Pass by value

DLLCall handle, my function(count)

// Pass by reference

DLLCall handle, my function(ref count)

Only variables can be passed in by reference. Complex expressions must be
passed in by value.

// Will generate an error
DLLCall handle, my function(ref count + 1)
DLLCall handle, my function(ref (1 + 3))

When generating the parameter list, SIM will dynamically allocate data for each
parameter, and this allocated data (or a reference to it) will be passed to the DLL.
No references to the stored copy of the data will be passed. If by reference, SIM
will copy in the new values to the data variables once the function has completed.
Therefore, do not pass in huge arrays by reference when not needed, since SIM
will attempt to copy in each array element, even if it has not changed.

All pointers passed to the DLL are passed in as 32-bit pointers. All strings are C
nul-terminated strings. All integer values are signed. All arrays are passed as a
pointer to a list of pointers or integers. The length of the array must either be
passed in as an argument, or known prior by the DLL.

Simphony SIM Manual F-7

Windows DLL Access
Windows DLL Access

Though there are 12 ways of passing in parameters, there are only five separate

ways to declare them in C.

1 int a // integer
2 int *a // integer pointer
3 int af] // array of integers
4 char *a // string pointer
-or- -or-
wchar t *a // string pointers (use for Unicode)
5 | char *a[] // array of string pointers
-or- -or-
wchar t *a[] | // array of string pointers (use for Unicode)

The following table lists the different possibilities and how they map to the

parameter type.

SIM Type C Declaration Comments
integer inta
integer by reference int *a
integer array inta (]
integer array by intal] same as integer array
reference
string char *a
string reference char *a same as string
string array char *a []
string array by char *a [] same as string array
reference
amount char *a
amount by reference char *a same as amount
amount array char *a
amount array by char *a same as amount array
reference
integer array inta[]

F-8

Windows DLL Access
Windows DLL Access

Integers

By value
N1-N9 integers are passed in as 32-bit signed values. N10 and above are passed in
as pointers to a string which contains the numeric value expressed as a string.

For example, an N12 numeric variable whose value is 12345 will be passed in as
“12345.” If the number is negative, then a “-” will be the first character in the
string. (The reason for this is that a 32-bit integer can only have nine digits.)

By value examples

var a:N9 = 4
var b:N10 = 3012108000
DLLCall handle, my function(a, 10, (1 + a) * 10, b)

The DLL prototype should look as follows:

void my function(int pl, int p2, int p3, char *p4d);

The DLL function should expect these parameters:

4
10
50
“3012108000”

By reference
N1-N9 integers are passed in as pointers to a 32-bit value. The DLL can change
this value, and this change will be reflected in the variable.

N10 variables are passed in as strings. The length of the string is guaranteed to be
the length of the string variable.

An N12 variable with a value of “123” will be passed in as “123,” but the space
occupied by the string will be at least 13. This means that the DLL can safely copy
in a string longer than “123.”

By reference examples

var a:N9 = 12
var b:N12 = 3012108000
DLLCall handle, my function(ref a, ref b)

The DLL prototype should look like:

void my function(int *pl, char *p2)

Simphony SIM Manual F-9

Windows DLL Access
Windows DLL Access

The dll function should expect these parameters:

pointer to 12
“3012108000”

Strings

All string parameters are passed in as a pointer. When by reference, SIM will copy
the string data back into the original variable.

By value

The string parameter is passed in as a pointer to a nul-terminated string.

By value examples

var a:A20 = “12345”
DLLCall handle, my function(a, “hello”)

The DLL prototype should look like:

void my function(char *pl, char *p2)

The DLL function should expect these parameters:

“12345”
“hello”

By reference

The string parameter is passed in as a pointer to a nul-terminated string. However,
the memory reference will be guaranteed to have allocated enough space for the
declared string.

For example, if a string is declared as A20 but is set to “12345,” then the string
passed in will be “12345,” but will have 20 characters allocated (not including the
nul terminator) The DLL can then write up to 20 characters into the string.

By reference example

var a:A20
DLLCall handle, my function(ref a)

The DLL prototype should look as follows:

void my function(char *pl)

F-10

Windows DLL Access
Windows DLL Access

The DLL should expect these parameters:

(1113

The DLL could copy a string of up to 20 characters.

memset (pl, ‘-, 20)
pl[20] =0

Monetary Data

All SIM monetary data ($ variables) are kept as strings internally. Each string
consists of the digits which make up the value. There is no representational
difference between monetary amounts and numeric data N10 and greater.

The difference between the two is determined by the operations allowed on the
values. The operations involved are the assignment and arithmetic ones.
Therefore, monetary amounts are passed to the DLL as numeric strings. However,
they will have the decimal point inserted into the proper place.

By value

The string parameter is passed in as a pointer to a nul-terminated string. A ‘-’ will
be placed at the beginning of the string if it is negative.

By value example

var a:$12 = 12.34
DLLCall handle, my function(a, a + 1.11, 5.67)

The DLL prototype should look as follows:

void my function(char *pl, char *p2, char *p3)

The DLL should expect these parameters:

“12.34”
“13.45”
6‘5.6779

By reference

The string parameter is passed in as a pointer to a 0-padded nul-terminated string.
The string will be padded with as many zeroes to make it the same as its declared
length. A $12 variable string will have 12 digits and one decimal point. (The nul is
not included.)

Simphony SIM Manual F-11

Windows DLL Access
Windows DLL Access

By reference example

var a:$12 = 12.34
DLLCall handle, my function(ref a)

The DLL prototype should look like:

void my function(char *pl)

The DLL should expect these parameters:
“0000000012.34”

Array References

All arrays are passed in as an array of pointers or integers. As with SIM
subroutine calls, all arrays must have a [] following them.

Note that arrays and arrays by reference use the same declaration. The only
difference between the two is that the values are copied back to the variables when
the function is done.

N1-N9 numeric values are passed in as integers.

var array[20] : N9

// Passing in by value.
// DLL prototype should be: void my function(int arrayl[]);
DLLCall handle, my function(arrayl[])

// Passing in by reference.
// DLL prototype should be: void my function(int *array([]);
DLLCall handle, my function(ref arrayl[])

All other types are passed in as strings.

var arrayl[20] : $12
var array2[40] : A40

// Passing in by value

// DLL prototype should be:

// void my function(char *arrayl[], char *array2[]);
DLLCall handle, my function(arrayl[], array2[])

// Passing in by reference

// DLL prototype should be:

// void my function(char *arrayl[], char *array2[]);
DLLCall handle, my function(ref arrayl[], ref array2[])

F-12

Windows DLL Access
DLL Error Messages

DLL Error Messages

The following is a list of DLL error messages and an example of each.

Note: If the DLL itself has an error in the function, or the
‘— wrong values are passed into it, the Ops process of the
, workstation running the SIM application will fail, and a signal
///7 11 error will display on the server.

To correct this problem, restart the workstation from the
System/Control Workstations module within the Enterprise
Management Console (EMC).

General Error Messages

ISL error on line ###:## Can not evaluate (END
OF LINE)

This error occurs when the ISL script has no DLL handle in the call line.
(###:## represents line number:column number)

Example: DLLLoad (no handle specified)

ISL error on line ###:## Expected operand (END
OF LINE)

This error occurs when a file name is missing from the expression.
(###:## represents line number:column number)

Example: DLLLoad dll handle 1,

ISL error on line ###:## File name too long
This error occurs when the file name is too long.

(###:## represents the line number:column number)

Example: thisfilenameistoolong.dll

Simphony SIM Manual F-13

Windows DLL Access
DLL Error Messages

ISL error on line ###:## Not a variable
(“filename. dll")

This error occurs when a non-existant DLL is called.

(###### represents line number:column number)

Example: DLLLoad “filename.d11”

where “filename” is the name of the DLL to be loaded, and it cannot be found
-OR -

This error occurs when the arguments are reveresed.

(### represents the line number)

Incorrect—Example: DLLLoad “filename.dl1”,dll handle 1
Correct—Example: DLLoad dll handle 1, “filename.dll”

where “filename” is the name of the DLL

Maximum number of DLLs loaded

This error occurs when the maximum number of DLLSs is loaded. The maximum
of 20 DLLs is allowed per SIM interface.

DLLCall Error Messages

ISL error Expected Operand

This error occurs when a DLLCall is made without arguments.

Example: DLLCall

ISL error Variable undefined

This error occurs when a DLLCall is made without a function name.
Example: DLLCalldll handle 1
-OR -

This error occurs when a DLLCall is made with a non-existant function.

F-14

Windows DLL Access
DLL Error Messages

ISL error Undefined Function

This error occurs when a DLLCall is made without a handle name.
Example: DLLCall my function(3)

-OR-

This error occurs when a DLLCall is made with the arguments reverseds.

Example: DLLCall my function(3), dll handle 1

DLLFree Error Messages

ISL error Expected Operand

This error occurs when a DLLFree is made without arguments.

Example: DLLFree

ISL error Variable undefined

This error occurs when a DLLFree is made with an incorrect handle name.

Example: DLLFree wrong handle name

Simphony SIM Manual F-15

SIM Events

Appendix G
SIM Events

In This Chapter

This chapter provides a brief overview of SIM events and how they can be

used.
OVETVIEW ..ttt eeeeeeeeeee e e e e e et e e e e e ee et eeesesesaeeeessssaeaaeeeseenas G-2
Quick Reference Tablecccooeevieiiiiiiiiiice e G-4
SIM Confirm EVENLS ...evvviiiiiieeeeeee e eeeeeeeeeeeeeeans G-7

Simphony SIM Manual G-1

SIM Events
Overview

Overview

SIM events can be categorized as

Directly triggered by a keystroke (e.g., INQ and TMED)
Indirectly triggered by an event in Ops (e.g., SIGN_IN, FINAL TENDER)

Triggered by a SIM script (e.g., TIMER, RXMSGQG)

Events Directly Triggered by a Keystroke

Some characteristics of these types of events are:

The event must be defined in the script. If a SIM Inquire key is pressed, then
the corresponding “event inq:#” code must be in the SIM script. If the event is
not in the SIM script, an error is generated.

The event is specific to a PMS interface, and therefore, only one SIM event is
executed.

Events Indirectly Triggered by an Ops Event

Some characteristics of these types of events are:

The event doesn’t have to be defined in the script. For example, if the SIM
script has the FINAL TENDER event programmed, then it will be executed
whenever a check is completely tendered. If the event is not defined, then no
error will occur.

These events occur for all interfaces. When a check is completely tendered,
then there will be an attempt to run the FINAL TENDER in all SIM scripts.
Each script has the chance to “hook in” to the event.

Scripts are executed in the order that the PMS interface definitions appear in
the Remote Management Console, in RVC Information | RVC Parameters |
Interfaces. If the script file does not have the particular event, it is ignored—
the events cannot be cancelled. That is running the ExitCancel command
inside the script will not stop the operation from occurring.

Some events have two variations—a regular event and a confirm event. The
confirm event can optionally prevent the action from continuing, whereas the
regular SIM cannot. Refer to page G-7 for details on confirm events.

SIM Events
Overview

Event-Specific Variables

Many of the events have system variables (i.e., (@ variables) that are specific to
that event only.

Simphony SIM Manual G-3

SIM Events
Quick Reference Table

Quick Reference Table

The table below lists the events available in SIM, and the variables, if any, that
can be used. Each column is described as follows:

T - Identifies the type of event:
* K- keystroke event
* O-Opsevent
* S - SIM-triggered event

* (- Indicates the event can be a confirm event and the operation can be
cancelled by the script (Yes/No)

* Event - Identifies the name of the event in the SIM script
* Description - Describes what the event does

® Variables - Lists the specific variables (if any) that can be used with the event
type

T| C Event Description Variables

Y ADJUST _CHECK adjust closed check operation -

O |Y BEGIN CHECK check has been begun -
O |Y CLOCK IN employee is clocking in -
O |Y CLOCK OUT employee is clocking out -

O |Y CLOSE_CHECK check has been closed (paid in
full); functionality is equivalent -
to the FINAL TENDER event

O |Y CSH_DRWR_CLS Ops has just required the
operator to close the cash -—-
drawer on the workstation

O |Y CSH DRWR_OPN Ops is opening the cash drawer
on the workstation (this event is
NOT fired if the cash drawer is -
somehow opened on the
workstation)

G-4

SIM Events
Quick Reference Table

T| C Event Description Variables
O |Y DSC discount has been entered @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y DSC_VOID discount has been voided @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |N ERR_MSG error message has occurred (@errormessage - error message
O |N EXIT Ops has exited -
O |N FINAL TENDER check has been paid in full -
O |N INIT Ops has started -
K [N INQ inquire event triggered by an -
Inquire key
O |N LDS BPS _OFF LDS bypass has been -
deactivated at the workstation
(for North American LDS only)
O [N LDS BPS ON LDS bypass has been activated --
at the workstation (for North
American LDS only)
O |Y MGR_PROC employee is running a Manager | (@mngrprocnum - manager
Procedure procedure number
O |Y MI menu item has been ordered @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y MI_RETURN menu item has been returned @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y MI_VOID menu item has been voided @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y NO _SALE No Sale key has been pressed -
O |Y PICKUP_CHECK check has been picked up -
O |Y PICKUP_LOAN triggered when a Pickup or -
Loan is performed
O |Y REOPEN_CHECK check has been reopened --

Simphony SIM Manual

G-5

SIM Events
Quick Reference Table

T| C Event Description Variables
O |Y RPT_GEN employee is running a report (@autoseq
S [N RXMSG message has been received -
from the PMS system
O |Y SIGN_IN employee is signing in -
O |Y SIGN_OUT employee is signing out -
O |Y SRVC TOTAL transaction has been service ---
totalled
O |Y SvC service charge has been entered | @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y SVC _VOID service charge has been voided | @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y SYS AUTH authorization is required @authemp - authorizing employee
@authtype - authorization type
S [N TIMER an event programmed by a SIM -
script to fire periodically
K |N TMED tender media event triggered by -
a tender media key
O |Y TNDR tender has been entered @obj - object number of item
@qty - quantity of item
(@ttl - total amount of item
O |Y TNDR_VOID tender has been voided @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
O |Y TRANS CANCEL transaction has been cancelled ---
O |Y VOID CHECK check has been voided ---
O [N WS RESTART workstation has been restarted, ---
either due to a workstation
reboot or a NetCC restart
O [N WS_EXIT workstation is no longer active ---
(e.g., a workstation may have
exited to DOS)

G-6

SIM Events
SIM Confirm Events

SIM Confirm Events

The purpose of SIM confirm events is to allow script writers to stop certain POS
operations. For example, if a third-party inventory control system is used to count
menu items, then the SIM script could query the system when a menu item is
ordered, and “cancel” the operation if the item is out of stock.

All confirm events will be run before the operation takes place, and the normal
event will run after the operation takes place. Therefore, there could be two events
in the script: one confirm and one normal.

Consider the following script:

event mi : confirm
waitforconfirm “Press enter to order item”
endevent

event mi
waitforclear “You have entered menu item ” , Qobj
endevent

When a menu item key is first pressed, the confirm event will be run first. If the
user presses the Clear key, the ordering of the menu item will be cancelled. If
Enter is pressed, the item will be ordered, and the normal event will be run
afterwards.

Note: One important point about confirm events is that, like
“— the normal events, each SIM script will have a chance at

running it. That means that each SIM script will be able to
cancel the operation. It should not be assumed that allowing an
operation in a confirm event will result in the operation taking
place.

| §

In addition, a particular item cannot be specified. The events
occur for all items (menu items, discounts, tenders, etc.).

Simphony SIM Manual G-7

Glossary

Simphony SIM Manual Glossary-1

Argument

An argument is a generic term for an item or group of items that is used in the
syntax of a command, that refers to the information that is required by the
command. It may be an alphanumeric character, group of characters, or word(s)
that receive the action of a command or function. For example, the Call command
requires an argument (i.e., the variable name) in order to work.

Also see: Array, Constant, Equation, Expression, Function, Input Expression,
Prompt Expression, String Expression, Syntax, System Variable, and User
Variable

Array

An array is a set of values, based on the name of a User Variable. A User Variable
Array (or Array Variable) identifies each value by the variable name and the index
number, in brackets. For example, an Array called Rooms that has 20 values
would be identified from Rooms [1] to Rooms [20].

Also see: User Variable

Asynchronous Serial Interface

An asynchronous serial interface is a full duplex interface supporting
transmission speeds of 300 to 9600 baud.

Concatenate

Concatenate means to join two or more text strings together to form a single
contiguous string.

Constant

A constant is a value that does not change (the opposite of a variable). For
example, the Window command can use a constant (i.e., window 5, 36).

Also see: Expression and Variable

Glossary-2

Encryption

The ISL Encryption Program is a utility that converts a script into an encrypted
(hexadecimal) format. It is used as a security precaution for proprietary
information. See “The documentation should be located in an ASCII-formatted
file with the name x...x.doc, where X...x is the same as the script. For example, the
readme.doc file for pms1.isl should be named pms1.doc. The readme.doc file
should be placed in the \Micros\Simphony\etc directory.” on page 3-15 for a
complete description.

Equation

An equation is a mathematical formula. The ISL may use the following operators
within a formula: addition (+), subtraction (-), division (/), multiplications (*),
greater than (>), or less than (<). Parentheses may be used to isolate parts of the
equation, as necessary.

Also see: Expression, Formula, and Operator

Expression

An expression is a place holder argument that can be one of the following:

User Variable
System Variable
Constant

String

Function
Equation

Also see: Argument, Hex Expression, Input Expression, Numeric Expression, and
String Expression

Format Specifiers

See Operators

Simphony SIM Manual Glossary-3

Formula

A formula can be used to calculate numeric values, compare one value to another,
and select an action based on a comparison, and join multiple string expressions
into a single string. The ISL may use the following operators within a formula:
addition (+), subtraction (-), division (/), multiplications (*), greater than (>), or
less than (<). Parentheses may be used to isolate parts of the equation, as
necessary.

Also see: Equation and Operator

Function

A function is a built-in ISL procedure used to evaluate fields, make calculations,
or convert data.

Also see: Expression

Global Command

A global command is a command that is allowed outside of an event procedure.
They are initialized at the beginning of each script and then maintained for the
duration of that script. The following ISL commands are global:

ContinueOnCancel
DiscardGlobal Var
ExitOnCancel
Prorate
RetainGlobal Var
SetSignOnLeft
SetSignOnRight
UseBackUpTender
UseCompatFormat
UseISLFormat
UselISLTimeOuts
UseSTDTimeOuts
Var

Also see: Local Command

Glossary-4

Global Variable

A global variable is declared outside an event procedure, and usually initialized
at the beginning of each script. The value of each global variable is maintained
throughout all Events, unless the script is changed or the DiscardGlobalVar
command is used.

Also see: Local Command

Hex Expression

A hex expression is a variable or function whose value must be a hexadecimal
number. This variable is used with the GetHex and Bit functions.

Also see: Expression

Input Expression

An input expression is an Array or User Variable that requires user input. The
input expression is used by the Displaylnput, DisplayMS, Input, and InputKey
commands.

Also see: Array, Expression, and User Variable

Integer

An integer is a positive or negative whole number or a zero, always without
decimal places.

Interface Script Language (ISL)

The Interface Script Language (ISL) provides the facility to direct operator
prompting, message formats, printing, and subsequent POS processing. A script is
analyzed and executed by the System Interface Module (SIM).

Also see: ISL Script

Simphony SIM Manual Glossary-5

ISL

See Interface Script Language.

Language Element

Language Elements are indivisible pieces of information which, if broken apart
with whitespace, will generate an ISL error. The following items are considered
language elements:

Command Names

Function Names

System Variables

Relational and Boolean Operators

Input and Output Specifiers

Comment Symbols (//)

Continuation Line Symbol (\)

Commas

Any Word and/or Symbol required by the Syntax

Local Command

Most ISL commands are considered local commands, in that they must be placed
inside an Event procedure and only affect the processing within that event.

Also see: Global Command

Local Variable

A local variable must always be declared inside an event procedure, and will only
be used by the event and any subroutines called by that event. Local variables are
purged after each event is complete, (when an EndEvent is executed).

Also see: Global Variable

Glossary-6

Nesting

Nesting is the act of using an If, For, Forever, or While command inside another.
Since each of these commands is executed until its corresponding EndIf, EndFor,
or EndWhile command is found, the entire If...EndIf, For...EndFor,
ForEver...EndFor, or While... EndWhile nest must exist before the outer End...
command. Nesting also refers to the ability to call a subroutine from within
another subroutine.

Null String

A null string (" ") is a string expression that contains no characters. All string
variables are initially set to null at the beginning of each Event procedure.

Also see: Expression and Variable

Number of Records

Number of Records is used to send and receive variable amounts of data via a list
or a list array.

Numeric Expression

A numeric expression is a variable or function whose value must be a number. A
number expression is used when specifying a touchscreen number within the
Simphony database.

Also see: Expression

Offset

An offset is a decimal integer that is used to calculate a position of a field within a
string. For example, this may be used to extract certain field information from a
credit card.

Simphony SIM Manual Glossary-7

Operator

An operator is a mathematical symbol that determines what action is taken on
variables or constants in the equation. For a complete list of operators, please see
“Relational and Logical Operators” on page 4-5.

Also see: Expression and String Expression

Script

A Script contains a series of commands, functions, and arguments that perform a
particular task at the workstation and/or the PMS.

SIM

See System Interface Module.

String

A string is a series of connected characters (letters, numbers, symbols, spaces)
stored and used as text. In ISL, a string is always in quotes.

Also see: Subroutine and User Variable

String Expression

A string expression is a variable or function whose value must be a string.

Also see: Expression

Subexpression

A subexpression is an expression within an expression. Subexpressions are used
with binary operators. For example in the following expression: a+ (b+c)+d, (b
+ ¢) is a subexpression.

Also see: Expression and Operators

Glossary-8

Subroutine

A subroutine allows common code to be used by multiple events. Each
subroutine has a unique name which is used to define it within the script, outside
any event procedure. Use the Call command to execute a subroutine.

Syntax

A command or function syntax is used to show the proper usage and rules that are
required to execute it correctly within a script.

System Interface Module

The System Interface Module (SIM) is the component of Simphony that allows
the System to interface to a variety of other systems, or third-party systems. A
special script language known as the ISL provides access to the SIM.

System Variable

A system variable is a predefined name that identifies a value which contains
information from the Simphony database.

Also see: Argument and Expression

Token

A token can be any individual language element inside a script.

Also see: Language Element and Token Error

Token Error

A token error can occur any time an individual language element is used
incorrectly. For example, incorrect use of whitewashes, missing commas, or
erroneous data at the end of a command statement, etc. Please see Appendix A for
a complete list of error messages.

Also see: Language Element and Token

Simphony SIM Manual Glossary-9

See Asynchronous Serial Interface.

User Variable

A user variable is a user-defined name which is assigned a value within a script.
The value will remain the same until a newer value is assigned; if no newer value
is assigned, the original value is maintained.

Also see: Argument and Expression

Variable

A variable is a container whose value changes (the opposite of a constant).

Also see: Constant

Glossary-10

	Documentation
	Revision History
	Table of Contents
	Preface
	Audience
	What should the reader already know?

	Recognizing Abbreviations, Conventions, and Symbols
	Abbreviations
	Conventions
	Symbols

	Chapter 1
	Understanding the SIM and ISL
	Getting to Know the SIM and ISL
	What is the System Interface Module?
	What is the Interface Script Language?
	Script Writing
	How the ISL Accesses the SIM

	Features of the SIM
	Message Formats and Interface Methods
	Methods of Displaying, Capturing, and Printing Data
	Interfacing with Third-party Systems
	ISL File Handling

	Creating SIM Applications with the ISL
	Benefits of SIM Applications
	Types of SIM Applications
	Generating Coupons for Customers
	Interfacing with a Pizza Delivery System
	Collecting Customer Information for a Membership List
	Customizing Output

	Chapter 2
	Getting Started
	Getting Started with the ISL and SIM
	Message Formats and Interface Methods
	Message Formats
	Interface Methods

	Programming Simphony for SIM
	Prerequisites
	Database Programming Quick Reference
	Database Programming Action Steps

	Chapter 3
	Script Writing Basics
	Getting Started with Script Writing
	What is a Script?
	Structure of a Script

	Creating Scripts
	Guidelines for Creating Scripts
	Examples of Scripts

	Script Writing Style
	Case
	Length of Variables
	Comments (//)
	Continuation Lines (\)
	Whitespace

	Writing and Editing Scripts
	Avoiding Errors

	Testing Scripts
	Detecting Errors in Logic
	Stepping Through the Script

	Documenting Scripts
	README.DOC File Contents
	README.DOC File Name and Location

	Chapter 4
	Using Variables
	Variables and ISL
	Data Types
	Example

	Relational and Logical Operators
	Unary Operators
	Binary Operators
	Operator Rules

	User Variables
	Declaring User Variables
	Local and Global Variables
	Array Variables
	Variable Size Variables
	Using List Arrays and Records
	Promotion

	Chapter 5
	ISL Printing
	Getting Started with ISL Printing
	ISL Print Commands and System Variables

	Starting an ISL Print Job
	ISL StartPrint Commands
	Specifying an ISL Printer

	Using Print Directives
	The Printline Command
	Print Type System Variables
	Print Directives and Subroutines

	Backup Printing
	Considerations

	Reference Strings

	Chapter 6
	ISL System Variables
	System Variables
	System Variable Summary
	Specifying System Variables

	Specifying System Variables
	Guidelines for Specifying System Variables
	Using an Index to Specify System Variables

	System Variable Summary
	ISL System Variable Reference
	ACTIVE_LANGID
	ADDXFER_CHK_FROM
	ADDXFER_CHK_TO
	ADDXFER_GRP_FROM
	ADDXFER_GRP_TO
	ADDXFER_RVC_FROM
	ADDXFER_RVC_TO
	ADDXFER_TBL_FROM
	ADDXFER_TBL_TO
	ALPHASCREEN
	AUTOSVC
	BEVERAGE_REQD
	CCDATE
	CCNUMBER
	CENTER
	CHANGE
	CHECKDATA
	CHGTIP
	CHK
	CHK_OPEN_TIME
	CHK_OPEN_TIME_T
	CHK_PAYMNT_TTL
	CHK_TTL
	CKCSHR
	CKCSHR_NAME
	CKEMP
	CKEMP_CHKNAME
	CKEMP_FNAME
	CKEMP_CHKNAME
	CKID
	CKNUM
	CLIENT_ONLINE
	DAY
	DBVERSION
	DETAILSORTED
	DSC
	DSC_OVERRIDE
	DSCI
	DTL_CAACCTINFO
	DTL_CABASETTL
	DTL_CAEXPDATE
	DTL_CATIPTTL
	DTL_CATMEDOBJNUM
	DTL_DEFSEQ
	DTL_DSC_EMPL
	DTL_DSCI
	DTL_FAMGRP
	DTL_INDEX
	DTL_IS_COND[i]
	DTL_IS_VOID[i]
	DTL_MAJGRP
	DTL_MLVL
	DTL_NAME
	DTL_OBJNUM
	DTL_PLVL
	DTL_PMSLINK
	DTL_PRICESEQ
	DTL_QTY
	DTL_SEAT
	DTL_SLSI
	DTL_SLVL
	DTL_STATUS
	DTL_SVC_LINK
	DTL_SVC_TYPE
	DTL_SVCI
	DTL_TAXTTL
	DTL_TAXTYPE
	DTL_TTL
	DTL_TYPE
	DTL_TYPEDEF
	DWOFF
	DWON
	EMPLDISCOUNT
	EMPLDISCOUNTEMPL
	EMPLOPT
	EPOCH
	EVENTID
	EVENTTYPE
	FIELDSTATUS
	FILE_BFRSIZE
	FILE_ERRNO
	FILE_ERRSTR
	FILE_SEPARATOR
	FILTER_ACTIVE
	FILTER_MASK
	GRPNUM
	GST
	GSTRMNG
	GSTTHISTENDER
	GUID
	HEADER
	HOUR
	IGNORE_PRMT
	INEDITCLOSEDCHECK
	INPUTSTATUS
	INREOPENCLOSEDCHECK
	INSTANDALONEMODE
	ISUNICODE
	KEY_CANCEL
	KEY_CLEAR
	KEY_DOWN_ARROW
	KEY_END
	KEY_ENTER
	KEY_EXIT
	KEY_HOME
	KEY_LEFT_ARROW
	KEY_PAGE_DOWN
	KEY_PAGE_UP
	KEY_RIGHT_ARROW
	KEY_UP_ARROW
	LANG_ID
	LANG_NAME
	LASTCKNUM
	LINE
	LINE_EXECUTED
	MAGSTATUS
	MAXDTLR
	MAXDTLT
	MAX_LINES_TO_RUN
	MINUTE
	MONTH
	NUL
	NUMOPNCHK
	NUMDSC
	NUMDTLR
	NUMDTLT
	NUMERICSCREEN
	NUMLANGS
	NUMSI
	NUMSVC
	NUMTAX
	OBJ
	OFFLINE LINK
	OPNCHK_EMPOWNER
	OPNCHK_GUID
	OPNCHK_NUMBER
	OPNCHK_OPENTIME
	OPNCHK_ORDERTYPE
	OPNCHK_TOTAL
	OPNCHK_WSOWNER
	ORDERTYPE
	ORDERTYPE_NAME
	ORDR
	OS_PLATFORM
	PICKUPLOAN
	PLATFORM
	PMSBUFFER
	PMSLINK
	PMSNUMBER
	PREVPAY
	PRINTSTATUS
	PROPERTY
	PRORATETND
	QTY
	RANDOM
	RCPT
	REDOFF
	REDON
	RETURNSTATUS
	RVC
	RVC_NAME
	RVCSERIALNUM
	RXMSG
	SEAT
	SECOND
	SHOW_PMS_MESSAGES
	SI
	SIGCAPDATA
	SIMDBLINK
	SRVPRD
	STRICT_ARGS
	SVC
	SVCI
	SYSSERIALNUM
	SYSTEM_STATUS
	TAX
	TAXRATE
	TAXVAT
	TBLID
	TBLNUM
	TMDNUM
	TNDTTL
	TRACE
	TRAILER
	TRAININGMODE
	TRCSHR
	TRDTLR
	TRDTLT
	TREMP
	TREMP_CHKNAME
	TREMP_FNAME
	TREMP_LNAME
	TTL
	TTLDUE
	TXBL
	TXEX_ACTIVE
	USERENTRY
	VALD
	VARUSED
	VERSION
	VOIDSTATUS
	WARNINGS_ARE_FATAL
	WCOLS
	WEEKDAY
	WROWS
	WSID
	WSTYPE
	YEAR
	YEARDAY

	Chapter 7
	ISL Commands
	Commands
	ISL File Input/Output Commands
	The FOpen Command
	File I/O System Variables
	Input/Output File Format

	Using Format Specifiers
	What is a Format Specifier?
	Types of Format Specifiers
	Output Specifiers
	Examples of Specifiers
	Using Input and Output Specifiers Together

	Command Summary
	ISL Command Reference
	Beep
	Break
	Call
	ClearArray
	ClearChkInfo
	ClearIslTs
	ClearKybdMacro
	ClearRearArea
	ContinueOnCancel
	Display
	DisplayInput
	DisplayInverse
	DisplayIslTs
	DisplayKBArea
	DisplayMSInput
	DisplayRearArea
	DisplayTouchscreen
	DLLCall
	DLLCall_STDCall
	DLLCallW
	DLLFree
	DLLLoad
	ErrorBeep
	ErrorMessage
	Event...EndEvent
	ExitCancel
	ExitContinue
	ExitOnCancel
	ExitWithError
	FClose
	FGetFile
	FLock
	FOpen
	For...EndFor
	ForEver...EndFor
	Format
	FormatBuffer
	FormatQ
	FormatRaw
	FPutFile
	FRead
	FReadBfr
	FReadLn
	FSeek
	FUnLock
	FWrite
	FWriteBfr
	FWriteLn
	GetEnterOrClear
	GetTime
	If...Else[If]...EndIf
	Input
	InputKey
	InfoMessage
	LabelFeedToPeel
	LineFeed
	ListDisplay
	ListInput
	ListInputEx
	ListPrint
	LoadDbKybdMacro
	LoadKybdMacro
	LowerCase
	MakeAscii
	MakeUnicode
	Mid
	MSleep
	PopUpIslTs
	PrintLine
	Prompt
	ProRate
	QueueMsg
	[Retain/Discard]GlobalVar
	Return
	ReTxMsg
	RxMsg
	SaveChkInfo
	SaveRefInfo
	SaveRefInfox
	ScanBarcode
	SetIslTsKey
	SetReRead
	SetSignOn[Left/Right]
	SetString
	SimDB
	Split
	SplitQ
	StartPrint...EndPrint[FF/NOFF]
	Sub... EndSub
	System
	Touchscreen
	TxMsg
	TxMsgOnly
	UpperCase
	UseBackupTender
	Use[Compat/ISL]Format
	Use[ISL/STD]TimeOuts
	UseSortedDetail
	UseStdDetail
	UseTMSFormat
	Var
	WaitForClear
	WaitForConfirm
	WaitForEnter
	WaitForRxMsg
	While...EndWhile
	Window
	WindowClear
	WindowClose
	Window[Edit/Input][WithSave]
	WindowScrollDown
	WindowScrollUp

	Chapter 8
	ISL Functions
	Functions
	Function Summary
	ISL Function Reference
	Abs Function
	ArraySize Function
	Asc Function
	Bit Function
	Chr Function
	Env Function
	Feof Function
	FTell Function
	GetHex Function
	Instr Function
	Key Function
	KeyNumber Function
	KeyType Function
	Len Function
	Mid Function
	ToInteger Function
	Trim Function
	VarSize Function

	Appendix A
	ISL Error Messages
	Error Message Format
	Variable Descriptions
	Format 1
	Format 2
	Format 3
	Format 4
	Format 5

	Error Messages

	Appendix B
	TCP Interface Code
	MICROS SIM TCP Server
	Sample SIM Server
	Sample Makefile

	Appendix C
	ISL Quick Reference
	Data Types
	Relational and Logical Operators
	Unary Operators
	Binary Operators

	System Variables
	Format Specifiers
	Input Specifiers
	Output Specifiers

	Commands
	Functions

	Appendix D
	Key Types, Codes, and Names
	Type 11 Function Key Categories
	Type 9 Keypad Keys

	Appendix E
	sendsim
	sendsim
	Requirements
	Syntax
	Operations
	Examples
	Troubleshooting

	Appendix F
	Windows DLL Access
	Windows DLL Access
	Overview
	What is a DLL?
	Using DLLs
	Simphony SIM DLL Support
	Using Simphony SIM DLL Commands
	Parameter Passing
	Integers
	Strings
	Monetary Data
	Array References

	DLL Error Messages
	General Error Messages
	DLLCall Error Messages
	DLLFree Error Messages

	Appendix G
	SIM Events
	Overview
	Events Directly Triggered by a Keystroke
	Events Indirectly Triggered by an Ops Event
	Event-Specific Variables

	Quick Reference Table
	SIM Confirm Events

	Glossary
	Argument
	Array
	Asynchronous Serial Interface
	Concatenate
	Constant
	Encryption
	Equation
	Expression
	Format Specifiers
	Formula
	Function
	Global Command
	Global Variable
	Hex Expression
	Input Expression
	Integer
	Interface Script Language (ISL)
	ISL
	Language Element
	Local Command
	Local Variable
	Nesting
	Null String
	Number of Records
	Numeric Expression
	Offset
	Operator
	Script
	SIM
	String
	String Expression
	Subexpression
	Subroutine
	Syntax
	System Interface Module
	System Variable
	Token
	Token Error
	TTY
	User Variable
	Variable

