

[1] Oracle® Communications WebRTC Session
Controller
System Administrator's Guide

Release 7.2

E69506-01

May 2016

Oracle Communications WebRTC Session Controller System Administrator's Guide, Release 7.2

E69506-01

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. xvii

Audience.. xvii
Related Documents .. xvii
Documentation Accessibility .. xvii

Part I Configuring WebRTC Session Controller

1 WebRTC Session Controller Configuration Overview

About the Oracle WebLogic Platform .. 1-1
Overview of Configuration and Administration Tools.. 1-1

Administration Console .. 1-1
WebLogic Scripting Tool... 1-2
WebRTC Session Controller Console .. 1-2
Additional Configuration Methods... 1-2

Editing Configuration Files ... 1-2
Custom JMX Applications ... 1-3

Common Configuration Tasks .. 1-3

2 Configuring WebRTC Session Controller

About Multitenancy... 2-1
About Tenants .. 2-1

About the Tenant Key .. 2-2
About Managing Tenant and Application Profiles.. 2-2

How Multitenancy Works .. 2-2
About Service Level Agreements ... 2-2

About Managing Tenant and Application Profiles... 2-3
About Secure Connections ... 2-3

About Security for Connections Between the Signaling and Media Engine 2-3
Storing and Managing Certificates in WebLogic Server ... 2-3
Disabling the HTTPS Setting in WebLogic Server ... 2-3

About Security for Connections to Cloud Messaging Providers .. 2-3
About Security for WebRTC Application Features... 2-4

RTCDataChannel Interface.. 2-4
Device Handover .. 2-4
TURN Authorization.. 2-4

iv

About WebRTC Session Controller Console Configuration... 2-4
About the Administration Console Configuration Process ... 2-4
Accessing the WebRTC Session Controller Console Configuration Tabs 2-5

About Templates for Message Notifications .. 2-5
About the Push Payload Construction for Android Notifications ... 2-6
About the Push Payload Construction for iOS Notifications .. 2-7
Handling Silent Notifications... 2-8

Configuring Default Parameters for WebRTC Session Controller Applications 2-8
Configuring Global Properties for the Signaling Engine ... 2-8

Global Integration Parameters of the Signaling Engine.. 2-9
Global Runtime Parameters of the Signaling Engine ... 2-10
Global Resource Limit Parameters of the Signaling Engine.. 2-10
Configuring the Default Logging Level for the Signaling Engine.................................... 2-11
Logging for Single Engines in a Cluster ... 2-12

Managing Media Engine Nodes Configuration and Status.. 2-13
Configuring the Media Engine .. 2-13
Providing Credentials for the Media Server .. 2-14
Adding Media Engine Nodes .. 2-14
Blocking and Unblocking Media Node Traffic.. 2-15
Removing Media Engine Nodes.. 2-15
Refreshing Media Node Information.. 2-15

Managing WebRTC Session Controller Notification Service ... 2-15
Configuring WebRTC Session Controller Notification Service .. 2-16
Creating Applications for the Notification Service... 2-16
Client Application Configuration settings ... 2-18
Updating an Application in the Notification Service ... 2-18
Removing Applications from the Notification Service .. 2-19
Deleting an SSL Certificate ... 2-19

Configuring Messaging Packages.. 2-19
About the Global Packages Tab .. 2-20
Creating Packages ... 2-21
Managing Package Criteria.. 2-21

Configuring Package Criteria... 2-21
Updating Package Criteria ... 2-22
Deleting a Criteria.. 2-23

About the WebRTC Session Controller Global Script Library.. 2-23
Managing WebRTC Session Controller Application Profiles ... 2-23

About the Application Profiles Tab.. 2-24
Managing Application Profiles ... 2-24

Creating Your Application Profile... 2-24
Providing the Profile Information for the Application .. 2-25
Managing Packages in Your Application Profile .. 2-27
Managing the Groovy Script for the Application Profile... 2-27

Exporting and Importing a Configuration ... 2-28
Debugging Groovy Script Run Time Errors .. 2-29
About the WebRTC Session Controller Console Validation Tests... 2-30

v

3 Using the Administration Console and WLST

Accessing the Administration Console.. 3-1
Locking and Persisting the Configuration ... 3-2

Using WLST (JMX) to Configure WebRTC Session Controller.. 3-3
Configuring the SIP Container with WLST.. 3-3

Managing Configuration Locks .. 3-3
Configuration MBeans for the SIP Servlet Container.. 3-4
Locating the SIP Container MBeans... 3-5

Configuring the WebRTC Session Controller Application with WLST..................................... 3-6
Managing Configuration Locks .. 3-6
Configuration MBeans for WebRTC Session Controller... 3-6
Accessing WebRTC Session Controller Application MBeans .. 3-8

Managing Application and Tenant Profiles Using WebLogic Scripting Tool........................... 3-8
WLST Configuration Examples... 3-9

Invoking WLST... 3-9
WLST Template for Configuring Container Attributes ... 3-9
Creating and Deleting MBeans ... 3-10
WebRTC Session Controller Code Sample.. 3-10

Setting Logging Levels ... 3-11
Startup Sequence for a WebRTC Session Controller Domain... 3-12
Startup Command Options ... 3-13

Supporting Session Rehydration for Device Handover Scenarios .. 3-13
Reverting to the Original Boot Configuration... 3-14

4 Configuring WebRTC Session Controller Authentication

About WebRTC Session Controller Security Schemes .. 4-1
About Provisioning WebRTC Session Controller Guest Access .. 4-1

Configuring the WebLogic Server Guest Access Provider .. 4-1
Configuring the WebRTC Session Controller Guest Access Application.................................. 4-2

About Provisioning WebRTC Session Controller HTTP Access.. 4-2
Configuring the WebLogic Server HTTP Authentication Provider ... 4-2
Configuring the WebRTC Session Controller HTTP Access Application 4-4

About Provisioning WebRTC Session Controller OAuth Access .. 4-4
Configuring the WebLogic Server OAuth Access Provider .. 4-5
Configuring the WebRTC Session Controller OAuth Access Application................................ 4-6

How Authentication Schemes Work in Multitenancy Scenarios ... 4-7
About the Default REST Request Format ... 4-7
Working with Custom and WebLogic LDAP Security Providers .. 4-8

Example: Configuring Facebook OAuth Authentication ... 4-9
Configure a Facebook Authentication App ... 4-9
Configure the Facebook WebRTC Session Controller OAuth Authentication Provider......... 4-9

Example: Configuring Google OAuth Authentication .. 4-11
Configure a Google Authentication Project .. 4-11
Configure the Google WebRTC Session Controller OAuth Authentication Provider.......... 4-11

About Post-Authentication Redirection ... 4-13
About the validateAuthenticatedUser Function .. 4-13

vi

Syntax .. 4-14
Example ... 4-14

Editing validateAuthenticatedUser.. 4-14

5 Configuring WebRTC Session Controller Diameter Rx to PCRF Integration

About the WebRTC Session Controller Rx Interface.. 5-1
Overview of Diameter Rx Protocol Configuration .. 5-1
Installing the Diameter Domain Template ... 5-1
Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol 5-2

Configuring Two-Way SSL for Diameter TLS Channels.. 5-4
Configuring and Using SCTP for Diameter Messaging ... 5-4

Configuring Diameter Nodes .. 5-5
Creating a New Node Configuration (General Node Configuration) 5-5
Configuring Diameter Applications.. 5-7

Configuring the Rx Client Application.. 5-7
Configuring Peer Nodes.. 5-7
Configuring Routes.. 5-8

Troubleshooting Diameter Configurations .. 5-9

6 Configuring WebRTC Session Controller Container Properties

Configure General SIP Application Server Properties ... 6-1
Adding Servers to the WebRTC Session Controller Cluster ... 6-2
Configuring Timer Processing... 6-2

Configuring Timer Affinity (Optional) ... 6-2
Configuring NTP for Accurate SIP Timers... 6-3

7 Using the Lightweight Proxy Registrar

About the Lightweight Proxy Registrar ... 7-1
About SIP Registration Modes ... 7-1
About Proxy Forking Modes .. 7-2
About Lightweight Proxy Registrar Components .. 7-2

About the Lightweight Registrar.. 7-2
About the Lightweight Proxy ... 7-3
About the Location Service.. 7-3
Handling Multitenancy.. 7-4
About the Custom Application Router.. 7-4

About Multiple Identity Support... 7-4
Configuring the Lightweight Proxy Registrar .. 7-4

Configuring Registration Mode ... 7-4
Configuring Forking Mode... 7-5

8 Configuring Network Connection Settings

Overview of Network Configuration ... 8-1
Configuring External IP Addresses in Network Channels .. 8-2
About IPv4 and IPv6 Support .. 8-2
Enabling DNS Support ... 8-3

vii

Configuring Network Channels for SIP or SIPS ... 8-3
Reconfiguring an Existing Channel... 8-3
Creating a New SIP or SIPS Channel .. 8-4

Configuring Custom Timeout, MTU, and Other Properties ... 8-5
Configuring SIP Channels for Multihomed Machines .. 8-6
Configuring Engine Servers to Listen on Any IP Interface ... 8-7
Configuring Static Source Port for Outbound UDP Packets ... 8-7
Configuring Listen Addresses for Servers .. 8-8
Configuring Coherence Cluster Addressing .. 8-8

9 Configuring Server Failure Detection

Overview of Failover Detection .. 9-1
Coherence Cluster Overview ... 9-1
Split-Brain Handling.. 9-2

Coherence Configuration.. 9-2
Cluster Configuration File .. 9-2

10 Using the Engine Cache

Overview of Engine Caching .. 10-1
Configuring Engine Caching .. 10-1
Monitoring and Tuning Cache Performance ... 10-2

11 Configuring Coherence

About Coherence Engine Communication and State Management.. 11-1
Configuring Coherence for Engine Communication and State Management 11-1

About Call-State Storage and Management for SIP Calls... 11-2
Configuring Coherence Call-State Storage.. 11-3

Modifying the Call-State Storage Configuration... 11-3
Monitoring Coherence Call-State Storage ... 11-4

Part II Monitoring and Troubleshooting

12 Logging SIP Requests and Responses and EDRs

Overview of SIP Logging... 12-1
Configuring the Logging Level and Destination .. 12-2
Specifying the Criteria for Logging Messages .. 12-2

Using XML Documents to Specify Logging Criteria ... 12-2
Specifying Content Types for Unencrypted Logging .. 12-3
Enabling Log Rotation and Viewing Log Files ... 12-3
trace-pattern.dtd Reference ... 12-4
Adding Tracing Functionality to SIP Servlet Code .. 12-5
Order of Startup for Listeners and Logging Servlets ... 12-6
Accessing Event Detail Records ... 12-6
Managing EDRs in a Multitenancy Scenario... 12-8

viii

13 Monitoring Statistics and Resource Limits

About WebRTC Session Controller Statistics ... 13-1
About the Monitoring of Licenses .. 13-1
About Resource Limits ... 13-2

About the default Resource Limit Entry .. 13-2
About Statistics Counters... 13-2

Configuring Resource Limits .. 13-3
Configuring Resource Limits in the Signaling Engine .. 13-3
Configuring Resource Limits for Applications... 13-4

Monitoring the Metrics .. 13-4
Monitoring the System at RunTime ... 13-4

About StatisticsRuntimeMBean... 13-4
Monitoring SIP Counters at Runtime .. 13-5

About the SipRuntimeMBean .. 13-5
Monitoring High Watermark Log Messages .. 13-5
Disabling the Monitoring of System Statistics .. 13-6

14 Avoiding and Recovering From Server Failures

Failure Prevention and Automatic Recovery Features... 14-1
High Availability... 14-1
Overload Protection.. 14-2
Redundancy and Failover for Clustered Services .. 14-3
Automatic Restart for Failed Server Instances.. 14-3
Managed Server Independence Mode ... 14-3
Automatic Migration of Failed Managed Servers .. 14-3
Geographic Redundancy for Regional Site Failures .. 14-4

Directory and File Backups for Failure Recovery ... 14-4
Enabling Automatic Configuration Backups .. 14-4
Storing the Domain Configuration Offline.. 14-5
Backing Up Logging Servlet Applications .. 14-6
Backing Up Security Data .. 14-6

Backing Up the WebLogic LDAP Repository .. 14-6
Backing Up Additional Operating System Configuration Files... 14-7

Restarting a Failed Administration Server... 14-7
Restarting an Administration Server on the Same System ... 14-7
Restarting an Administration Server on Another System .. 14-8

Restarting Failed Managed Servers ... 14-8

15 Tuning JVM Garbage Collection for Production Deployments

Goals for Tuning Garbage Collection Performance... 15-1
Modifying JVM Parameters in Server Start Scripts ... 15-1
Tuning Garbage Collection with Oracle JDK ... 15-2

16 Avoiding JVM Delays Caused By Random Number Generation

Avoiding JVM Delays Caused by Random Number Generation ... 16-1

ix

Part III Reference

17 Engine Server Configuration Reference (sipserver.xml)

Overview of sipserver.xml... 17-1
Editing sipserver.xml.. 17-1

Steps for Editing sipserver.xml ... 17-1
XML Schema... 17-2
Example sipserver.xml File.. 17-2
XML Element Description ... 17-2

enable-timer-affinity ... 17-2
overload.. 17-2

Selecting an Appropriate Overload Policy... 17-4
Overload Control Based on Session Generation Rate .. 17-4
Overload Control Based on Capacity Constraints .. 17-5
Two Levels of Overload Protection... 17-5

message-debug .. 17-5
proxy—Setting Up an Outbound Proxy Server.. 17-5
t1-timeout-interval .. 17-7
t2-timeout-interval .. 17-7
t4-timeout-interval .. 17-7
timer-b-timeout-interval .. 17-7
timer-f-timeout-interval ... 17-7
max-application-session-lifetime .. 17-8
enable-local-dispatch .. 17-8
cluster-loadbalancer-map .. 17-8
default-behavior .. 17-9
default-servlet-name... 17-9
retry-after-value... 17-10
sip-security ... 17-10
route-header... 17-10
engine-call-state-cache-enabled .. 17-10
server-header ... 17-11
server-header-value .. 17-11
persistence .. 17-11
use-header-form .. 17-12
enable-dns-srv-lookup.. 17-13
connection-reuse-pool .. 17-13
globally-routable-uri... 17-14
domain-alias-name.. 17-14
enable-rport.. 17-15
image-dump-level ... 17-15
stale-session-handling .. 17-16
enable-contact-provisional-response.. 17-16

18 SIP Coherence Configuration Reference (coherence.xml)

Overview of coherence.xml ... 18-1

x

Editing coherence.xml .. 18-1
XML Schema... 18-1

Example coherence.xml File .. 18-1
XML Element Description.. 18-2

19 Diameter Configuration Reference (diameter.xml)

Overview of diameter.xml ... 19-1
Graphical Representation .. 19-1
Editing diameter.xml .. 19-2

Steps for Editing diameter.xml ... 19-3
XML Schema... 19-3
Example diameter.xml File .. 19-3
XML Element Description ... 19-3

configuration.. 19-3
target ... 19-3
host .. 19-4
realm ... 19-4
address.. 19-4
port .. 19-4
tls-enabled .. 19-4
sctp-enabled ... 19-4
debug-enabled ... 19-5
message-debug-enabled... 19-5
application.. 19-5

class-name ... 19-5
param* ... 19-5

name ... 19-5
value.. 19-5

peer-retry-delay... 19-5
allow-dynamic-peers .. 19-5
request-timeout ... 19-5
watchdog-timeout ... 19-5
include-origin-state-id .. 19-5
supported-vendor-id+.. 19-6
peer+ ... 19-6

host ... 19-6
address... 19-6
port ... 19-6
protocol.. 19-6

route .. 19-6
realm .. 19-6
application-id.. 19-6
action.. 19-6
server+ ... 19-7

default-route .. 19-7
action.. 19-7
server+ ... 19-7

xi

Part IV WebRTC Session Controller Media Engine Administration

20 Managing and Administering ME Systems

References ... 20-1
Administrator and User Roles .. 20-1
Enabling Management Access .. 20-1

CLI Session ... 20-1
Configuring Management Options ... 20-2

Local Console... 20-2
CLI Session.. 20-2

Telnet... 20-2
CLI Session.. 20-3

Secure Shell (SSH) ... 20-3
CLI Session.. 20-3

Web/HTTP .. 20-3
CLI Session.. 20-4

SNMP .. 20-4
CLI Session.. 20-4

HTTP\SOAP\WSDL Interface ... 20-4
Working with the ME Configuration File .. 20-5

Building the Configuration File Using the CLI... 20-5
CLI Session.. 20-5

Removing Objects From the Configuration File Using the CLI ... 20-6
CLI Session.. 20-6

Editing and Saving the Configuration File Using the CLI .. 20-6
Creating SIP Users and Passwords .. 20-6

CLI Session ... 20-7
Customizing the CLI .. 20-7

CLI Session ... 20-7
Setting ME Global Properties ... 20-7

CLI Session ... 20-8
ME Virtual System Partitions ... 20-8
IPMI Support ... 20-8
Specifying Management Preferences .. 20-8
Specifying DOS Query Preferences .. 20-9
Restarting and Shutting Down the System.. 20-9

CLI Session ... 20-10
Monitoring the ME.. 20-10

SNMP MIB OIDs ... 20-10
Process Restarts .. 20-10
Active Calls ... 20-11
CPU Usage .. 20-11
Database Maintenance Status... 20-12
Fault Groups ... 20-12
Location Cache ... 20-12
Memory Failures .. 20-12

xii

Hardware Faults .. 20-13
SIP Status... 20-13

SNMP Traps... 20-14
CLI Commands ... 20-15
Other Monitoring Tools ... 20-16

Syslog... 20-16
CMS Web... 20-16
Web Services Description Languages (WSDL) API.. 20-17
Accounting CDRs... 20-17

21 Configuring Permissions, Users, and Authorization

Configuring Permissions ... 21-1
Configuring Users ... 21-2
Configuring Action and Config Filters ... 21-3

Configuring Config-Filters .. 21-3
Configuring Action-Filters... 21-4
Applying Filters to Permissions Sets.. 21-5

Configuring Authorization ... 21-6
Configuring Default Grants... 21-8
Configuring Attribute Grants.. 21-9
Configuring Group Grants .. 21-10
Viewing User Privilege Information .. 21-10

22 Enabling ME Interfaces and Protocols

ME Sample Networks... 22-1
Configuring ME IP Interfaces... 22-2

CLI Session for Eth0.. 22-3
CLI Session for Eth1.. 22-3
CLI Session for Eth2.. 22-4

Creating VLANs .. 22-4
CLI Session ... 22-4

Configuring Media Engine Static Routes... 22-5
Applying Routing and Classification Tags.. 22-5

CLI Sessions for “IP A” and “IP B” Ingress Networks on Eth3 ... 22-7
Notes on Routing and Classification Tags... 22-9
Related Commands... 22-10

Configuring Overlapping IP Networks and Tag Routing .. 22-10
CLI Session for Ethernet Public and Private Sides of Network ... 22-10
CLI Sessions for Customer-A and Customer-B Networks.. 22-11
CLI Session for the Internal Private Network .. 22-12
CLI Session for the session-config-pool ... 22-12

Configuring VRRP .. 22-12
CLI Session ... 22-13

Configuring Signaling Failover.. 22-15
CLI Session ... 22-15

Configuring Web Interface Settings.. 22-16
CLI Session ... 22-16

xiii

Configuring Web Services... 22-16
CLI Session ... 22-16

Enabling ICMP and Setting Rate Limits .. 22-16
CLI session ... 22-17

Enabling NTP and BOOTP Servers ... 22-17
CLI Session ... 22-17

Configuring the Network Time Protocol (NTP) Clients ... 22-17
CLI Session ... 22-18

Configuring the Bootstrap Protocol (BOOTP) Clients... 22-18
CLI Session ... 22-18

Configuring Session Initiation Protocol... 22-18
CLI Session ... 22-19

Load Balancing Across Media Engine Interfaces.. 22-19
CLI Session ... 22-20

Configuring Media Port Pools .. 22-20
CLI Session ... 22-20

Supported WebRTC Protocols.. 22-20
What is Interactive Connectivity Establishment?... 22-21
What is Session Traversal Utilities for NAT?.. 22-21
What is Traversal Using Relay NAT? .. 22-21

Session Traversal Utilities for NAT Required Methods... 22-21
Session Traversal Utilities for NAT Required Attributes .. 22-21
Non-Session Traversal Utilities for NAT Traversal Using Relays NAT Message........ 22-22
TURN Server Long Term Credentials... 22-22
Purging Traversal Using Relays Around the NAT Allocations...................................... 22-23

Media Engine Encryption .. 22-23
Data Channel Support .. 22-23
Configuring Interactive Connectivity Establishment .. 22-24

Configuring Augmented Interactive Connectivity Establishment................................. 22-25
Configuring Trickle Interactive Connectivity Establishment.. 22-25

Configuring Session Traversal Utilities For the NAT.. 22-28
Configuring Traversal Using Relay NAT.. 22-28
Configuring Static Datagram Transport Layer Security Certificates 22-31
Configuring Encryption ... 22-32

Disabling the Datagram Transport Layer Security Cookie Exchange 22-34
Real-Time Transport Protocol/Real-Time Control Protocol Multiplexing 22-34
Configuring SDP Regeneration.. 22-35

Media Steering For Unknown Endpoints .. 22-36
Configuring a Browser to SIP Call.. 22-36
Configuring a SIP to Browser Call.. 22-37
Configuring a Browser to Browser Call... 22-38

Message Session Relay Protocol Interworking ... 22-38
Configuring MSRP Interworking ... 22-38

Configuring Kernel Filtering .. 22-42
CLI Session ... 22-42

Configuring Messaging ... 22-42
CLI Session ... 22-42

xiv

23 Enabling ME Services

Enabling Services on the ME Master... 23-1
Cluster-Master Services.. 23-1

CLI Session.. 23-1
Accounting Services.. 23-2

CLI Session.. 23-2
ME Database .. 23-2

CLI Session.. 23-2
Server Load .. 23-2

CLI Session.. 23-2
Call Failover (Signaling and Media)... 23-3

CLI Session.. 23-3
Load-Balancing.. 23-3

CLI Session.. 23-4
Sampling... 23-4

CLI Session.. 23-4
Enabling Event Logging Services... 23-5

CLI Session ... 23-5
Configuring Threshold Monitors .. 23-5

CLI Session ... 23-5
Configuring Data and Archiving Locations... 23-6

CLI Session ... 23-6
Configuring an External Database... 23-7

CLI Session ... 23-7
Setting ME Disk Thresholds... 23-7

CLI Session ... 23-8
Scheduling Regularly Performed Tasks ... 23-8

CLI Session ... 23-8
Performing Database Maintenance ... 23-8

Setting Normal Database Maintenance Time-of-Day.. 23-9
CLI Session.. 23-9

Verifying Normal Database Maintenance ... 23-9
Scheduling Periodic Database Maintenance ... 23-9

CLI Session.. 23-9
Forcing Database Maintenance ... 23-9
Performing Database Vacuum-Full ... 23-10
Performing Other Database Maintenance Tasks .. 23-10

Managing Oracle Communications 2600 Database Size ... 23-11
Disabling REGISTER Message Logging .. 23-11
Preventing NOTIFY Message Logging .. 23-11

Backing Up the Database... 23-13
CLI Session ... 23-14

Restoring a Database ... 23-14
Enabling and Configuring Local Archiving .. 23-14

CLI Session ... 23-15
Media Loss Detection ... 23-15

Configuring Media Loss Detection... 23-16

xv

Configuring Media Detection Loss for a Session-config.. 23-16
Initiating and Terminating On-Demand Media Loss Detection 23-16

24 Configuring ME Accounting and Archiving

Accounting System Overview .. 24-1
Configuring the Accounting Settings ... 24-2
Configuring RADIUS Groups .. 24-2

CLI Session ... 24-3
Configuring the RADIUS Servers... 24-4

CLI Session.. 24-4
Including the RADIUS Group... 24-4

CLI Session.. 24-4
Configuring the Accounting Database ... 24-5

CLI Session ... 24-6
Configuring Syslog ... 24-6

CLI Session ... 24-7
Configuring the File System ... 24-8

CLI Session ... 24-8
Configuring an External File System Target.. 24-9

CLI Session ... 24-10
Configuring Diameter .. 24-10

Creating the Diameter Accounting Group .. 24-10
CLI Session.. 24-10

Configuring Diameter Servers .. 24-11
CLI session .. 24-11

Configuring Diameter Interfaces and Ports .. 24-11
CLI Session.. 24-12

Configuring Archiving... 24-12
CLI Session ... 24-13
Free-Form Accounting for CDRs .. 24-16

Using the ME Archive Viewer .. 24-17
Call Detail Record Field Descriptions and Data Types... 24-18

25 Configuring Domain Name Systems (DNS)

Domain Name System (DNS) Overview .. 25-1
Configuring the DNS Resolver .. 25-2

CLI Session ... 25-2
Configuring DNS Hosts and IPs .. 25-3

CLI Session ... 25-3
Mapping SIP Services .. 25-3

CLI Session ... 25-4
Configuring NAPTR... 25-4

CLI Session ... 25-4
Configuring DNS Rejections .. 25-4

CLI Session ... 25-5

xvi

xvii

Preface

This book describes system administration tasks for Oracle Communications WebRTC
Session Controller.

Audience
This book is intended for system administrators who configure and manage WebRTC
Session Controller implementations. Service providers use WebRTC Session Controller
to make their communications services available to WebRTC-enabled web browsers
and applications.

Related Documents
For more information, see the following documents in:

■ Oracle Communications WebRTC Session Controller Concepts

■ Oracle Communications WebRTC Session Controller Installation Guide

■ Oracle Communications WebRTC Session Controller Security Guide

■ Oracle Communications WebRTC Session Controller Extension Developer's Guide

■ Oracle Communications WebRTC Session Controller Application Developer's Guide

■ Oracle Communications WebRTC Session Controller Media Engine Object Reference

■ Oracle Communications WebRTC Session Controller Release Notes

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xviii

Part I
Part I Configuring WebRTC Session Controller

This part provides information on configuring the Oracle Communications WebRTC
Session Controller Signaling Engine properties, Media Engine nodes, Diameter Rx to
PCRF integration, and the Media Engine.

This part contains the following chapters:

■ WebRTC Session Controller Configuration Overview

■ Configuring WebRTC Session Controller

■ Using the Administration Console and WLST

■ Configuring WebRTC Session Controller Authentication

■ Configuring WebRTC Session Controller Diameter Rx to PCRF Integration

■ Configuring WebRTC Session Controller Container Properties

■ Using the Lightweight Proxy Registrar

■ Configuring Network Connection Settings

■ Configuring Server Failure Detection

■ Using the Engine Cache

■ Configuring Coherence

1

WebRTC Session Controller Configuration Overview 1-1

1WebRTC Session Controller Configuration
Overview

This chapter introduces Oracle Communications WebRTC Session Controller
configuration and administration.

About the Oracle WebLogic Platform
WebRTC Session Controller is based on Oracle WebLogic Server. Many system-level
configuration tasks are the same for both products. This guide addresses system-level
configuration tasks that are unique to WebRTC Session Controller, such as tasks
related to network and security configuration and cluster configuration for the engine
and SIP state storage.

WebLogic server configuration and other basic configuration tasks such as logging are
addressed in the WebLogic Server documentation. This guide will refer you to the
WebLogic documentation for information where appropriate rather than repeat that
information here.

Overview of Configuration and Administration Tools
You configure the WebRTC Session Controller domain using the Administration
Console or the command-line using the WebLogic Scripting Tool (WLST). Changes to
certain SIP Servlet container properties require a restart of the engine server for the
change to take effect. Configuration for SIP state-storage nodes cannot be changed
dynamically, so you must restart SIP Coherence servers to change the number of
partitions.

You configure WebRTC application behavior properties in the WebRTC Session
Controller console, which is separate from the Administration Console.

Administration Console
The WebRTC Session Controller extends the WebLogic Administration Console with
additional configuration and monitoring pages. The Administration Console interface
for WebRTC Session Controller settings are similar to the core console available in
Oracle WebLogic Server.

All WebRTC Session Controller configuration and monitoring is provided through
these nodes in the left pane of the console:

■ SipServer: presents SIP Servlet container properties and other engine
functionality. This extension also enables you to access SIP state storage properties
and runtime statistics.

Overview of Configuration and Administration Tools

1-2 WebRTC Session Controller System Administrator's Guide

■ Converged Load Balancer: presents configuration settings and monitoring pages
for the activities of the converged load balancers in the implementation.

See "Accessing the Administration Console" for more information about using the
console.

WebLogic Scripting Tool
The WebLogic Scripting Tool enables you to perform interactive or automated (batch)
configuration operations using a command-line interface. View and manipulate the
MBeans available in a running WebRTC Session Controller domain using the WLST.

See "Using WLST (JMX) to Configure WebRTC Session Controller" for more
information about modifying SIP Servlet container properties using WLST.

For general WLST information, including information about WLST commands, see
Oracle Fusion Middleware WebLogic Scripting Tool documentation.

WebRTC Session Controller Console
You configure Signaling Engine and Media Engine parameters and entries in the
WebRTC Session Controller console. Signaling Engine parameters include time limit
parameters for SIP sessions and WebSocket connections. Media Engine entries
represent media hosts that you use with WebRTC Session Controller.

See "Configuring WebRTC Session Controller" for more information on the WebRTC
Session Controller console.

Additional Configuration Methods
Most WebRTC Session Controller configuration is performed using the interfaces
above. The methods described in the following sections may also be used for certain
configuration tasks.

Editing Configuration Files
You may also modify the configuration by editing configuration files.

The WebRTC Session Controller custom resources use the basic domain resources
defined in config.xml, such as network channels, cluster and server configuration, and
Java EE resources. The config.xml file applies to all managed servers in the domain.
However, standalone WebRTC Session Controller components are configured in
separate configuration files based on functionality:

■ sipserver.xml contains general SIP container properties and engine configuration
settings.

■ coherence.xml identifies servers that participate in SIP state storage, and also
defines the number of threads and partitions available in the state storage service.

■ diameter.xml defines Diameter nodes and Diameter protocol applications used in
the domain.

The component configuration files determine the role of each server instance, such as
whether they behave as SIP state-storage nodes or engine nodes.

See Part III, "Reference" for more information on the configuration files.

If you edit configuration files manually, you must restart all servers to apply the
configuration changes.

Common Configuration Tasks

WebRTC Session Controller Configuration Overview 1-3

Custom JMX Applications
You configure WebRTC Session Controller properties using JMX-compliant MBeans.
You can program JMX applications for configuring SIP container properties using the
appropriate WebRTC Session Controller MBeans.

See "Using WLST (JMX) to Configure WebRTC Session Controller" for the general
procedure for modifying WebRTC Session Controller MBean properties using JMX.
For more information about the individual MBeans used to manage SIP container
properties, see WebRTC Session Controller JavaScript API Reference.

Common Configuration Tasks
General administration and maintenance of WebRTC Session Controller requires that
you manage both WebLogic Server configuration properties and WebRTC Session
Controller container properties.

Common configuration tasks include:

■ Configure SIP Container Properties using the Administration Console or using
WLST to perform batch configuration. See "Configuring WebRTC Session
Controller Container Properties" for more information.

■ Configure Coherence call-state storage servers and specify distributed cache
service parameters. See "Configuring Coherence" for more information.

■ Configure WebLogic Server network channels to handle SIP and HTTP traffic. See
"Configuring Network Connection Settings" for more information.

■ Configure WebRTC Session Controller Signaling and Media Engine properties. See
"Configuring WebRTC Session Controller" for more information.

■ Create and deploy logging Servlets to record SIP requests and responses and
manage log records. See "Logging SIP Requests and Responses and EDRs" for
more information.

Common Configuration Tasks

1-4 WebRTC Session Controller System Administrator's Guide

2

Configuring WebRTC Session Controller 2-1

2Configuring WebRTC Session Controller

This chapter describes how to configure application profiles, the Signaling Engine, the
Media Engine, and the Notification Service for multitenancy in the WebRTC Session
Controller web console.

About Multitenancy
WebRTC Session Controller 7.2 is a platform that can support multi-tenant Software as
a service (SaaS) applications that you host elsewhere. An in-premise installation of
WebRTC Session Controller enables multiple departments of a customer to use
WebRTC Session Controller for their specific applications. The main benefits of
multi-tenancy in WebRTC Session Controller are increased density, tenant isolation,
and simplified cloud configuration and management.

In your WebRTC Session Controller installation, a tenant represents a configuration
scope for a customer or a department that is authenticated to use its services. Multiple
tenants can access a single WebRTC Session Controller installation or it can be
configured as a single tenant installation. A tenant is associated with a tenant key that
allows you to manage and track all usage of the installation by that customer or
department. Every user account that is authenticated to access WebRTC Session
Controller is associated with a tenant.

About Tenants
As the administrator of WebRTC Session Controller, you set up and manage the
configuration for one or more tenants. These configurations allow the tenants to utilize
the WebRTC Session Controller installation for their users. WebRTC Session Controller
establishes the tenant profile with some default resource limits and allots an equal slice
of the available resource limits to the tenant profile. In a multitenancy scenario, the
tenant profile configuration WebRTC Session Controller enables a partitioning that
isolate each tenant.

As a system administrator for the tenant, you set up the global configuration of the
runtime environment for the tenant. To do so, you first review these default resource
limits and usage parameters at the global level and update them for your
environment. WebRTC Session Controller displays these global settings as selections
for configuring the profiles for applications that you own in the environment.

When you have configured the global settings for your WebRTC Session Controller
environment you register the individual applications for your customers to use. You
create application profiles to associate with each tenant. To create the application
profile, you can select from the available (global) values and enter others specific to the
application.

About Multitenancy

2-2 WebRTC Session Controller System Administrator's Guide

About the Tenant Key
 When a tenant profile is created, WebRTC Session Controller generates a key as an
identifier for the tenant. WebRTC Session Controller uses this key to associate the
request with a tenant and identify the tenant profile. It is recommended that key is not
hard coded in the applications. For example, SaaS application could store this key in a
database as a way for the application to access the key.

About Managing Tenant and Application Profiles
Tenants are registered with specific SaaS applications using the tools within the SaaS
applications or in the cloud infrastructure. Both application profiles and tenant profiles
contain the following information:

■ Security realm to which the tenant or application belongs.

■ Resource limits.

■ Statistics to collect on the tenant or application.

■ Groovy properties defined for the use of that tenant.

Application profiles contain in addition, information on any packages and scripts that
are defined for them.

How Multitenancy Works
A websocket connection belongs to a tenant profile. WebRTC Session Controller
associates the HTTP request that is used for the login and the request used for the
websocket handshake with the tenant profile.

Web and mobile applications include the tenant key as the HTTP request parameter
named tenant_profile_key. When a single user identity is associated with multiple
tenant profiles, a request from each tenant can reach different SIP proxy registrars.
WebRTC Session Controller Signaling engine stores the tenant key as the value of the
tenantToken parameter in the SipURI of the contact header in the requests it sends to
lightweight proxy registrar. In turn, the lightweight proxy registrar incorporates this
information in its decision making process and sends each request from a tenant to the
corresponding proxies.

In the runtime environment, WebRTC Session Controller gathers and stores the
statistics for each tenant profile and each application profile. Any notification
configuration contains the associated tenant identification information. And the
resource limit profiles contains the resource limit for maximum number of
notifications.

WebRTC Session Controller allows traffic to domains for a tenant based on the
domains configured in the tenant profile. If your installation supports SaaS
applications, configure the domain name in the tenant profile. Doing so enables your
SaaS applications to provide cross-domain access.

About Service Level Agreements
Service level agreements (SLAs) are set between a SaaS application and its tenant.
These SLAs translate the defined quantities of resources within the services used by
the SaaS application. For example, an SLA may specify usage parameters for services
such as the database or messaging server. In addition, where necessary, SaaS
applications can allot resources to their tenants and monitor those resources within
WebRTC Session Controller. The users of the tenants use a "slice" of the SaaS
application.

About Secure Connections

Configuring WebRTC Session Controller 2-3

About Managing Tenant and Application Profiles
The following sections in this chapter describe how you configure tenant profiles and
manage global- and application-level configurations in WebRTC Session Controller
Administration Console.

You can also use MBeans to create and remove tenant profiles, configure and manage
application profiles in the runtime environment using MBeans. See "Managing
Application and Tenant Profiles Using WebLogic Scripting Tool".

WebRTC Session Controller provides application level statistics for each tenant. For
information on monitoring the tenancy and applications, see "Monitoring Statistics
and Resource Limits". For an explanation on the MBeans, see WebRTC Session
Controller Configuration API Reference.

About Secure Connections
This section describes some of the security-related features in WebRTC Session
Controller.

About Security for Connections Between the Signaling and Media Engine
All communication between the WebRTC Signaling Engine and any Media engine uses
the HTTPS protocol. For all media engines that you add to WebRTC Session Controller,
ensure that the required SSL certificates are configured and stored in WebLogic Server.

Storing and Managing Certificates in WebLogic Server
When you configure SSL, Oracle recommends using separate keystores for both
identity and trust because the identity keystore (holding the private key and
associated digital certificate) and the trust keystore (trusted CA certificates) may have
different security requirements. It also provides separate tools and procedures for
using keystores and certificates in a development environment and a production
environment. For more information, see the description about "Configuring Keystores"
in Oracle Fusion Middleware Administering Security for Oracle WebLogic Server.

For information about managing a new WebRTC Session Controller Media Engine
(ME) system, see "Managing and Administering ME Systems".

Disabling the HTTPS Setting in WebLogic Server
If your installation uses a hardened network configuration and need to disable the
HTTPS protocol setting, then, use the following system property when you start the
WebLogic server, -Doracle.wsc.se-me-http=true.

About Security for Connections to Cloud Messaging Providers
WebRTC Session Controller connects to Google Cloud Messaging and Apple Push
Notification Service over secure channels.

If you are providing services using APNS, ensure that you access Apple Development
Center to create appropriate certificates and install them for use in your WebRTC
Session Controller system. The APNS certificates are stored in the wsc-config.xml file
using Base64 encoding. Passphrases are encrypted and stored in this file using
Weblogic encryption mechanism.

When you register your applications, you enter these certificates in WebRTC Session
Controller. See "Creating Applications for the Notification Service".

About WebRTC Session Controller Console Configuration

2-4 WebRTC Session Controller System Administrator's Guide

About Security for WebRTC Application Features
This section describes some of the security features in the WebRTC-enabled
applications.

RTCDataChannel Interface
The RTCDataChannel interface in WebRTC-enabled applications is secured with
Datagram Transport Layer Security (DTLS). DTLS is a derivation of SSL protocol and
used to provide communications privacy for datagram protocols and is built-in
element of WebRTC Session Controller.

Device Handover
By default, WebRTC Session Controller does not allow session transfers. To support
device handovers in your applications, you should enable session transfer validation
when starting the WebRTC Session Controller server. Your application must be in
charge of session transfer information security, because this data is transmitted
between customer application network.

TURN Authorization
The Signaling Engine stores the secret key provisioned on the media engine in the
wsc-config file using Weblogic encryption mechanism. The credentials are passed to
the client over WebSocket. Use Web Services Security (wss) so that these credentials
are not sniffed on the network.

About WebRTC Session Controller Console Configuration
The Home, Packages, and Script Library tabs provide access to the configuration
settings at the global level. As Table 2–1 shows, the Home tab enables you to configure
the Signaling Engine, Media Engine, and the Notification Service for WebRTC
Session Controller.

Figure 2–1 WebRTC Session Controller Administration Console Configuration Tabs

The values configured in the Home and Packages tab become the default settings for
the individual applications you create in the Application Profiles tab.

You can also configure WebRTC Session Controller console options using
configuration Mbeans. See the oracle.wsc.core.configuration.admin.mbean package
page for more information about using these MBeans in WebRTC Session Controller
Configuration API Reference.

About the Administration Console Configuration Process
To manage WebRTC Session Controller for messaging applications associated with an
access account, do the following:

About Templates for Message Notifications

Configuring WebRTC Session Controller 2-5

1. Access the configuration tabs in WebRTC Session Controller administration
console. See "Accessing the WebRTC Session Controller Console Configuration
Tabs".

2. Configure and update the general parameters for WebRTC Session Controller
described in each of the following sections:

■ Configuring Default Parameters for WebRTC Session Controller Applications.

■ Configuring Messaging Packages.

■ About the WebRTC Session Controller Global Script Library.

3. Configure and update the specific parameters for each application your account
creates, as described in "Managing WebRTC Session Controller Application
Profiles".

Accessing the WebRTC Session Controller Console Configuration Tabs
The WebRTC Session Controller console resides in the same domain as your WebRTC
Session Controller installation. When you start your domain, both the Oracle
WebLogic administration console and the WebRTC Session Controller console become
available.

The following procedure requires a running WebLogic server, and that you know the
WebLogic user name and password that you created for the domain. See the
discussion about "creating and starting a WebLogic domain" in WebRTC Session
Controller Installation Guide.

To access the WebRTC Session Controller console configuration tabs:

1. Start the WebRTC Session Controller domain server.

2. Open a web browser.

3. Access one of the following URLs, as appropriate.

■ http://localhost:port/wsc-console

■ If HTTP security is configured:

https://localhost:port/wsc-console

■ To start the WebRTC Session Controller console on a local system using the
default port:

http://localhost:7001/wsc-console

localhost is the IP address of the system running the WebLogic domain or the value
localhost and port is the port of the domain. The default port is 7001.

4. The WebLogic user login screen appears. Enter the Username and Password you
set when creating the WebLogic domain.

5. Click Login.

The WebRTC Session Controller console window appears. It displays the Home,
Packages, Script Library, and Application Profiles configuration tabs as seen in
Figure 2–1.

About Templates for Message Notifications
Review this section before you configure the notification service supported in your
WebRTC Session Controller installation.

About Templates for Message Notifications

2-6 WebRTC Session Controller System Administrator's Guide

As a WebRTC Session Controller system administrator, you can configure
application-specific templates that specify the default parameters for the push
notification payload for each application. The push notification is made up by
combining the message payload provided with the application settings with the
message payload received from the application.

A template entry allows WebRTC Session Controller to construct the message correctly
based on the cloud messaging provider that the message is targeted for. WebRTC
Session Controller determines the format based on the application-id that the browser
application sends along with the message.

In the WebRTC Session Controller administration console, there is a Template entry for
each application profile configured in the Notification Service tab. Provide a JSON
message as a template for the push payloads, by using this entry.

About the Push Payload Construction for Android Notifications
Example 2–1 shows the contents of the Template field for an Android application with
the application ID oracle.mywsc.myandroidapp:

Example 2–1 Application Template Entry for Android Notification

{
 "collapse_key" : "app1",
 "delay_while_idle" : true,
 "time_to_live" : 60,
 "data" : {
 "wsc_time": "$data.time$",
 "wsc_from": "from $data.from$",
 "wsc_event": "Got $data.message$"
 }
}

Example 2–2 shows an example message payload that the GCM server sends for the
Android application with that application ID oracle.mywsc.myandroidapp:

Example 2–2 The Message Payload Received from WebRTC Session Controller

{
 "data" : {
 "time": "15:16.2342",
 "from": "alice@example.com",
 "message": "Incoming Call"
 }
}

The runtime message payload received from WebRTC Session Controller contains the
values for the time (15:16.2342), the calling party information (alice@example.com), and
the event (Incoming Call). Any payload from the Groovy layer is only used for merging
with the template if any dynamic parameters are specified.

The resulting payload in the push notification received by the called party shows the
information merged in the following way:

Example 2–3 The Merged Push Notification (Android)

{
 "collapse_key" : "app1",
 "delay_while_idle" : true,
 "to" : "APA91bHun4MxP5egoKMwt2KZFBaFUH-1RYqx...",

About Templates for Message Notifications

Configuring WebRTC Session Controller 2-7

 "time_to_live" : 3,
 "data" : {
 "wsc_time": "15:16.2342",
 "wsc_from": "alice@example.com",
 "wsc_message": "Incoming Call"
 }
}

The value for the "to" : attribute can be the registration ID or the device token that
receives the notification. In Example 2–3, the value for the "to" : attribute is the
registration ID of the application that was sent to the application when it registered
with the GCM server.

About the Push Payload Construction for iOS Notifications
Example 2–4 shows the contents of the Template field for an iOS application with the
application ID oracle.mywsc.myiOSapp:

Example 2–4 Application Template Entry for iOS Notification

{"aps" : {
 "alert" : "$data.message$ from $data.from$",
 "badge" : 1,
 "sound" : "chime.aiff"
 }
 }

Example 2–5 shows an example message payload that APNs server sends for the iOS
application with that application ID oracle.mywsc.myiOSapp:

Example 2–5 Message Payload Received from WebRTC Session Controller

{
 "data" : {
 "time": "15:16.2342",
 "from": "alice@example.com",
 "message": "Incoming Call"
 }
}

The runtime message payload received from WebRTC Session Controller contains the
values for the time (15:16.2342), the calling party information (alice@example.com), and
the event (Incoming Call). Any payload from the Groovy layer is only used for merging
with the template if any dynamic parameters are specified.

Example 2–6 shows the resulting payload in the push notification received by the
called party:

Example 2–6 The Merged Push Notification (iOS)

"aps" : {
 "alert" : "Incoming Call from alice@example.com"
 "badge" : 1,
 "sound" : "chime.aiff"
 },
 "data" : {
 "time": "15:16.2342",
 "from": "alice@example.com",
 "message": "Incoming Call"
 }

Configuring Default Parameters for WebRTC Session Controller Applications

2-8 WebRTC Session Controller System Administrator's Guide

Handling Silent Notifications
iOS7.0 and later versions support silent remote notifications where the silent
notification wakes up the application in the background so that the application can get
new data from the server.

Configuring Default Parameters for WebRTC Session Controller
Applications

Configure the global (default) parameters for WebRTC Session Controller through the
Home tab seen in Figure 2–1. The Home tab contains three sub tabs, Signaling
Engine, Media Engine, and Notification Service.

You can override these defaults when you register your applications using the
Application Profile tab and configure the application profiles for your Web, Android of
iOS applications.

To configure the default parameters for all the applications, complete the following
tasks:

1. Configuring Global Properties for the Signaling Engine.

2. Managing Media Engine Nodes Configuration and Status.

3. Managing WebRTC Session Controller Notification Service.

Configuring Global Properties for the Signaling Engine
The Signaling Engine tab displays configuration parameters grouped under
Integration Parameters, Runtime Parameters, Resource Limits, and Log Settings
headings.

To configure signaling engine parameters:

1. If you are not already viewing the Signaling Engine tab, access the Home tab. See
"Accessing the WebRTC Session Controller Console Configuration Tabs".

By default, Signaling Engine is the selected tab.

2. Click Edit in the upper right corner of the screen.

3. Alter the contents of each of the following as needed for your environment:

a. Integration Parameters. For a description of the integration parameters, see
Table 2–1.

b. Runtime parameters. For a description of the runtime parameters, see
Table 2–8.

c. Resource Limits. For a description of the resource limits, see Table 2–3.

d. Default Log levels. For a description of the default log levels, see "Configuring
the Default Logging Level for the Signaling Engine".

e. Logging levels for a signaling engines in a cluster. For a description of the
fields, see "Logging for Single Engines in a Cluster".

Tip: Use a template that contains application-specific data only. Do
not set sound, badge, or alert in the template if you require silent
notifications.

Configuring Default Parameters for WebRTC Session Controller Applications

Configuring WebRTC Session Controller 2-9

4. Click Save.

Global Integration Parameters of the Signaling Engine
Table 2–1 describes the signaling engine parameters for integration with the Media
Engine.

Table 2–1 Configurable Signaling Engine Integration Parameters

Parameter Description

Proxy Registrar URI Enter a SIP proxy server/Registrar URI. The value you enter in
this field becomes the default SIP proxy server/Registrar URI
for any new application you create.

 Access this parameter in Groovy as
context.properties.proxyRegistrar using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Dynamic Media
Anchoring Type

Select a media anchoring option supported by WebRTC Session
Controller. The possible selections are:

■ Disabled

The application should not connect to the Media Engine.

■ web-to-web-anchor-conditional

web to web conditional anchoring is used in a session when
WebRTC-enabled browsers are allowed to communicate
directly. If for some reason the browsers cannot
communicate directly, they can communicate through
WebRTC Session Controller.

■ web-to-web-anchored

web to web forced anchoring is used in a session when all
media flows through Media Engine.

The supported Media Engine session type, is assigned to the
Groovy constant ME_CONFIG_NAME_DMA, in the Groovy
library

Media Engine MSRP Select a message Session Relay Protocol (MSRP) to Media
Engine from Signaling Engine. The possible selections are:

■ msrpwss-to-msrptcp

■ msrpws-to-msrptcp

Access this parameter in Groovy as
context.properties.webMSRP using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Signaling Engine MSRP Select an MSRP to Signaling Engine from Media Engine.

■ msrptcp-to-msrpwss

■ msrptcp-to-msrpws

Access this parameter in Groovy as
context.properties.netMSRP using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

File Transfer Enter a pattern for resolving file_transfer packages by SDP.

Access this parameter in Groovy as
context.properties.fileTransferPattern using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Configuring Default Parameters for WebRTC Session Controller Applications

2-10 WebRTC Session Controller System Administrator's Guide

For information about accessing the parameters in Groovy scripts, see "Accessing
Integration Parameters and Package Filters Using Groovy Scripts" in WebRTC Session
Controller Extension Developer’s Guide.

Global Runtime Parameters of the Signaling Engine
Table 2–2 describes the configurable signaling engine runtime parameters.

Global Resource Limit Parameters of the Signaling Engine
Set the global resource limits for the resource parameters you include in the Signaling
Engine.

First, add a resource limit entry for the signaling engine:

1. Click Edit in the upper right corner of the screen.

2. In the Resource Limits section of the Signaling Engine tab, click Create.

3. In the entry field within the Create a resource limit dialog, enter a resource name.

4. Click OK.

5. Click Save.

Then, update the resource limit entry for the signaling engine:

1. Click Edit in the upper right corner of the screen.

MSRP Enter a pattern for resolving MSRP packages by the Session
Description Protocol (SDP).

MSRP signaling is carried in SIP INVITE requests. When
WebRTC Session Controller receives a SIP INVITE, it determines
whether the request should be processed as a call, msrp chat or
msrp file transfer. To do so, it looks at these regex expressions.

Access this parameter in Groovy as
context.properties.msrpPattern using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Table 2–2 Configurable Signaling Engine Runtime Parameters

Parameter Description

Glare Handling By default, glare handling is selected and enabled.

To avoid race conditions that arise when a caller and callee send
simultaneous invitations, reinvitations, or session update, select
glare handling for the signaling engine.

Sip Session Default Time Enter the default SIP session time (in seconds). The default
value is 3600 seconds.

Sip Session Minimum
Time

Enter the minimum SIP session time (in seconds). The default
value is 90 seconds.

WebSocket Disconnect
Time Limit

Enter the time interval after which the WebSocket times out (in
milliseconds). The default value is 60,000 milliseconds.

WebSocket Idle Time
Limit

Enter the idle time interval after which the WebSocket times out
(in seconds). The default value is 30 seconds.

WebSocket Maximum
Connections

Enter the maximum number of WebSocket connections allowed.
The default value is -1, allowing unlimited connections.

Table 2–1 (Cont.) Configurable Signaling Engine Integration Parameters

Parameter Description

Configuring Default Parameters for WebRTC Session Controller Applications

Configuring WebRTC Session Controller 2-11

2. In the Resource Limits table of the Signaling Engine tab, select the row entry for
the required resource name.

3. Update the row as described in Table 2–3.

The numeric entries seen in this table represent the maximum values for each
resource limit parameter. The default value is -1, indicating that the entry does not
have an upper limit.

4. Click Save.

To delete a resource limit entry for the signaling engine:

1. Click Edit in the upper right corner of the screen.

2. In the Resource Limits table of the Signaling Engine tab, select the row entry for
the required resource name.

3. Click Delete.

4. Click Save.

Configuring the Default Logging Level for the Signaling Engine
You can specify the default logging level for each of the following logging components
of the Signalling Engine: Diameter protocol, Groovy scripts, HTTP/WebSocket, JSON,
Media, Others, Security, and SIP.

Table 2–4 lists the output associated with each logging level.

Table 2–3 Configurable Signaling Engine Resource Limit Entry Parameters

Resource Parameter Description

Name Enter the name of the resource limit.

Sessions Enter the maximum number of sessions for this resource limit.

SessPerUser Enter the maximum number of sessions per user for this
resource limit.

SubSessPerSess Enter the maximum number of sub sessions per session for this
resource limit.

SubSessPerUser Enter the maximum number of sub sessions per user for this
resource limit.

Note: The default entry cannot be deleted.

Table 2–4 Logging Levels for Signaling Engine Components

Logging Level Output

Trace Logs fine-grained events that are useful for tracing the actions
of the application.

Debug Logs fine-grained events that would be useful for debugging
the application.

Info Logs high-level information that indicates the progress of the
application.

Warn Logs messages that describe situations that are potentially
harmful.

Configuring Default Parameters for WebRTC Session Controller Applications

2-12 WebRTC Session Controller System Administrator's Guide

Signaling Engine writes the log records to the domain_home/servers/server_
name/logs/wsc.log file. Here, domain_home is the name of the WebRTC Session
Controller domain and server_name is the name of the service.

When you select a level heading, all the sliders move to that heading indicating that
WebRTC Session Controller logs all the components at that level. To set the logging
output for any individual component, move the corresponding slider to the required
level. Select from one of the following levels:

To set default logging levels for each of the logging components of an engine, use the
Default log level pane. The engine log settings pane allows you to set the log level for
each of its logging components.

To set the logging level for an engine logging component:

1. Click Edit in the upper right corner of the screen.

2. In the enginename panel, move the slider for the logging component to one of the
logging levels listed in Table 2–4.

Repeat this step for each logging component that you wish to set.

3. Click Save.

Logging for Single Engines in a Cluster
When signaling engines are in a cluster, the administration console displays the log for
each signalling engine adjacent to the Default log level pane. Figure 2–2 shows the
default logging level as the selection for all the components of engine1.

In the enginename panel, move the slider for the logging component to one of the
logging levels listed in Table 2–4. The Refresh button refreshes the engine status for
each engine in the cluster.

Default Assigns the default log level for the component that is specified
in the Default log level panel.

For example, you set the log level for Groovy to Default. If the
default log level for Groovy is Info, the log level for Groovy is
set to Info.

Table 2–4 (Cont.) Logging Levels for Signaling Engine Components

Logging Level Output

Configuring Default Parameters for WebRTC Session Controller Applications

Configuring WebRTC Session Controller 2-13

Figure 2–2 Log Settings Pane

Managing Media Engine Nodes Configuration and Status
Managing Media Engine nodes consists of configuring the media nodes, blocking and
unblocking WebRTC network traffic to media nodes, monitoring their availability, and
ensuring that their load factor remains within accepted limits. And removing a media
node after blocking all traffic to the node.

The Media Engine tab displays the Credentials section followed by Cluster Nodes.
Each row in the Cluster Nodes table displays the settings of a Media Engine node
currently configured in WebRTC Session Controller. The row entries for a Media
Engine node display the engine access details, whether it is enabled or not, its running
status, and the load factor. An upward-pointing green arrow indicates that the engine
is in a running state and a downward-pointing red arrow indicates that it is not.

Configuring the Media Engine
To configure Media Engine parameters:

1. If you are not already viewing the Home tab, access the Home tab. See "Accessing
the WebRTC Session Controller Console Configuration Tabs".

2. Click Media Engine.

3. Click Edit in the upper right corner of the screen.

4. In the Credentials section of the Media Engine tab, enter the information for the
account authorized to connect to the Media Engine server:

a. In the User field, enter the user name for the account.

b. In the Password field, enter the password for the account.

c. Click Save.

5. In the Credentials section of the Media Engine window, manage the Media
Engine by doing the following:

Configuring Default Parameters for WebRTC Session Controller Applications

2-14 WebRTC Session Controller System Administrator's Guide

a. Adding Media Engine Nodes

b. Blocking and Unblocking Media Node Traffic

c. Removing Media Engine Nodes

d. Refreshing Media Node Information

6. Click Save.

Providing Credentials for the Media Server
In the Credentials section of the Media Engine window, enter the user name and
password for accessing the Media Engine server. Click Save.

Adding Media Engine Nodes
To add a Media Engine node:

1. Click the Home tab.

2. Click the Media Engine tab.

3. Click Edit in the upper right corner of the screen.

4. In the Credentials section of the Media Engine tab, enter the information for the
account authorized to connect to the Media Engine server:

a. In the User field, enter the user name for the account.

b. In the Password field, enter the password for the account.

c. Click Save.

5. In the Cluster Nodes section, click Add.

6. In the Add a Media Engine dialog:

a. In the Address field, enter the address of the media server node.

b. In the Port field, enter the port number.

c. Click OK.

The Cluster Nodes table displays a row with the address and port you
provided.

7. In that row, configure the Media Engine with the information required.

See Table 2–5 for a description of the configurable and viewable media node
properties.

8. Click Save.

Table 2–5 Media Node Properties

Property Description

User Enter the user name required to connect to the Media Engine
server.

Password Enter the password require to connect to the Media Engine
server.

Address Enter the IP address of the node associated with the Media
Engine.

Port Enter the port number of the node connection.

Configuring Default Parameters for WebRTC Session Controller Applications

Configuring WebRTC Session Controller 2-15

Blocking and Unblocking Media Node Traffic
To block or unblock traffic to a media node:

1. Go to the Media Engine tab.

2. Click Edit in the upper right corner of the screen.

3. In the Cluster Nodes section, select the row with the media node you wish to
block or unblock traffic to.

4. Click Unblock Traffic or Block Traffic.

The traffic to the node opens or closes accordingly. The command button you
selected continues to stay selected until you change the setting.

5. Click Save.

Removing Media Engine Nodes
Block the traffic for a media node before removing the node. To remove a media node:

1. Go to the Media Engine tab.

2. Click Edit in the upper right corner of the screen.

3. In the Cluster Nodes section, select the row with the media node you wish to
block or unblock traffic to.

4. Click Block Traffic.

5. Click Remove.

The Remove Media Node window appears.

6. Click OK.

7. Click Save.

Refreshing Media Node Information
To refresh media node information:

1. Click Refresh in the Media Engine window.

For information about configuring the nodes of a Media Engine server, see "Managing
Media Engine Nodes Configuration and Status".

Managing WebRTC Session Controller Notification Service
WebRTC Session Controller Notification Service implements the protocol specific to
the selected cloud messaging provider, such as Google Cloud Messaging system

Media Node Traffic
Enabled

Specify whether traffic is enabled to the node associated with
the Media Engine.

Media Node Status Specify whether a connection to the node is active.

Load Factor The load percentage on a node controlled by the internal load
balancer that attempts to distribute load evenly to available
media server nodes. WebRTC Session Controller stops sending
requests to media nodes with a Load Factor of 100%.

Table 2–5 (Cont.) Media Node Properties

Property Description

Configuring Default Parameters for WebRTC Session Controller Applications

2-16 WebRTC Session Controller System Administrator's Guide

(GCM), Apple Push Notification System (APNS). This notification service is available
on all engine nodes.

You can configure multiple client applications for various client platforms on the
Notification Service and activate them at the same time. If your installation supports
multi-tenancy, each tenant can configure multiple applications on the various client
platforms using same or different credentials on the cloud messaging provider.

Manage the notification service by defining and updating the properties of your client
applications in the Notification Service tab. This tab displays a table of the client
applications currently configured for the notification service.

Configuring WebRTC Session Controller Notification Service
To configure the notification service for WebRTC Session Controller:

1. If you are not already viewing the Home tab, access the Home tab. See "Accessing
the WebRTC Session Controller Console Configuration Tabs".

2. Click Notification Service.

3. Click Edit in the upper right corner of the screen.

4. In the Notification Service tab, manage the notification service by completing the
following tasks.

a. Creating Applications for the Notification Service

b. Updating an Application in the Notification Service

c. Removing Applications from the Notification Service

5. Click Save.

Creating Applications for the Notification Service
Manage an application that uses the Notification Service by adding your applications
and entering their configuration parameters. See Table 2–6 for a description of the
parameters. You should have the JSON message to enter as template entry for an
application as described in About Templates for Message Notifications.

Do the following:

Add the Application to the Client Applications Table

1. Go to the Notification Service tab.

2. Click Edit in the upper right corner of the screen.

3. In the Client Applications window, click Create.

4. In the Add an Application window:

a. Enter an application ID and a unique name for the application. See Table 2–6
for details.

b. Click OK.

5. To save your updates thus far, click Save.

Configure the JSON Message as a Template

1. If you are not in the Edit mode, click Edit in the upper right corner of the screen.

2. From the list of application entries, select the row for the application.

3. In the Template field:

Configuring Default Parameters for WebRTC Session Controller Applications

Configuring WebRTC Session Controller 2-17

a. Click the Add link.

The Enter JSON Template window is displayed.

b. Copy your JSON message and paste it in this window.

c. Click OK.

4. To save your updates thus far, click Save.

Enable Traffic to Access the Application

1. If you are not in the Edit mode, click Edit in the upper right corner of the screen.

2. From the list of application entries, select the row for the application.

3. In the Enable field for the selected application entry, select the check box, to allow
traffic.

4. To save your updates thus far, click Save.

Configure the Cloud Providers

1. If you are not in the Edit mode, click Edit in the upper right corner of the screen.

2. From the list of application entries, select the row for the application.

3. In the Cloud Providers field, click the Add link.

A list of supported cloud providers is displayed.

4. From the list of cloud providers, select the cloud provider.

5. Click OK.

6. To save your updates thus far, click Save.

Provide the API Key for Non-iOS Applications

1. If you are not in the Edit mode, click Edit in the upper right corner of the screen.

2. From the list of application entries, select the row for the application.

3. Place your cursor over the API Key entry field and double-click.

The cursor is active in the field.

4. Enter the API key you obtained from the Google Developers console.

5. To save your updates thus far, click Save.

Add an SSL Certificate

1. If you are not in the Edit mode, click Edit in the upper right corner of the screen.

2. From the list of application entries, select the row for the application.

3. In the Certificate field for the application entry, click the Add sign.

4. In the Certificate window, click Create.

5. In the Add certificate window, click Browse.

6. In the File Upload window, locate the certificate and click Open.

7. In the Certificate Name field, enter the name for the certificate.

8. In the Certificate Password field, enter the certificate password.

9. Click OK.

10. Click Save in the upper right corner of the screen.

Configuring Default Parameters for WebRTC Session Controller Applications

2-18 WebRTC Session Controller System Administrator's Guide

When the application data is saved successfully, the Client Applications window
becomes disabled and the Edit button is enabled.

Client Application Configuration settings
Table 2–6 describes the properties for the client applications you define in the WebRTC
Session Controller console.

Updating an Application in the Notification Service
To update an application listed in the Notification service:

1. Go to the Notification Service tab.

2. Click Edit in the upper right corner of the screen.

3. In the Client Applications table, select the row with the application entry you
wish to update.

4. Click Edit in the upper right corner of the screen.

5. Edit the contents of that row. For information about how to delete an SSL
certificate, see "Deleting an SSL Certificate".

6. Do one of the following:

■ To save your edits, click Save in the upper right corner of the screen.

Table 2–6 Configuring Support for Notification Service

Property Description

Application ID The unique identifier for the Android or iOS application
registering to receive messages.

Enter the identifier in the format appropriate for the application.

For example, the naming convention for an entry could be:

■ com.android.hello for an Android application

■ com.ios.hello for an iOS application

Name Name of the application. Enter a unique name.

Template JSON message to be used as a template. The WebRTC Session
Controller server combines this message with the message
payload received from the application to create the push
notification. See "About Templates for Message Notifications".

Enable The API service is disabled, by default.

To enable this API, select the check box.

Cloud Providers The cloud provider for the API service. Click the down arrow
and select the required cloud provider.

API Key The API Key you obtained from the Credentials page of the
Google Developers console.

Note: This entry is not required for iOS applications.

Certificate Add an SSL certificate for Apple Push Notification Server. See
"About Secure Connections".

Note: This entry is optional for Android applications.

Note: You cannot update the entry in the Application ID field.

Configuring Messaging Packages

Configuring WebRTC Session Controller 2-19

■ To discard your edits, click Cancel in the upper right corner of the screen.

Removing Applications from the Notification Service
To remove an application from the displayed table:

1. Go to the Notification Service tab.

2. Click Edit in the upper right corner of the screen.

3. In the Client Applications table, select the row with the application entry you
wish to delete.

4. Click Edit in the upper right corner of the screen.

5. Click Delete.

6. In the Delete an application window, click OK.

7. Click Save in the upper right corner of the screen.

Deleting an SSL Certificate
To delete a certificate for an application:

1. If you are not already viewing the Home tab, access the Home tab. See "Accessing
the WebRTC Session Controller Console Configuration Tabs".

2. Click Notification Service.

3. In the Client Applications table, select the row with the application entry from
which to delete the SSL certificate.

4. Click Edit in the upper right corner of the screen.

5. In the Certificate field for the application entry, click the Add sign.

6. In the Certificate window, select the certificate to delete.

7. Click Delete.

8. To save your changes, click Save.

Configuring Messaging Packages
A package is a collection of all the criteria (Groovy scripts) necessary to translate the
telecom messages in a session between JSON to SIP protocols. The Packages tab at the
global level enables you to configure the messaging packages that WebRTC Session
Controller installation supports. Figure 2–3 shows an example.

Configuring Messaging Packages

2-20 WebRTC Session Controller System Administrator's Guide

Figure 2–3 Global Configuration for Supported Messaging Packages

In this figure, the Search field contains the entry "sipRequest". The display shows the
result of the filter "sipRequest". The table under Package Name lists the packages that
contain this string. The Criteria table lists the criteria configured for the selected
package, call. The Groovy Script section displays the content of the criteria row entry
selected in the Criteria table for the selected package.

About the Global Packages Tab
The Packages Tab at the global level is made up of three panes:

■ Packages

The Packages pane in the Packages tab displays three icons and a table below
them. The table displays the names of the default packages that are currently in
the database and created by the current user account. The three icons are used to
create, delete, and clone a package.

The packages that you create at this level display as selections when you create an
application profile (accessed through the Application Profiles tab).

■ Criteria

The Criteria pane displays the possible message criteria defined for the selected
package.

Each signaling engine criterion forms a single Groovy script that performs the
translation and processing tasks for a single type of JSON or SIP message. Create
separate criteria for all possible JSON or SIP message that your signaling engine
implementation processes. In synchronous request/response communication,
create a separate criteria for each request and response message.

Criteria are applied to messages based on this information included in each
criteria. Table 2–7 describes the properties for the request and response messages
you define in the WebRTC Session Controller administration console.

■ Groovy Script

When you select a row in the Criteria table, WebRTC Session Controller displays
the Groovy version of this message criteria. Depending on your browser

Configuring Messaging Packages

Configuring WebRTC Session Controller 2-21

allowance, the Groovy Script pane displays to the right of or below the Criteria
table.

To validate the displayed Groovy script, undo, or redo your last action, use the
Validate, Undo, Redo command buttons respectively. To maximize or minimize
the viewing of this pane, use the Maximize or Minimize command buttons.

Creating Packages
When you create a new package WebRTC Session Controller just creates a shell that
you fill with criteria. This procedure assumes that you have already created the criteria
required.

To create a package:

1. If you are at the Packages tab of the WebRTC Session Controller administration
console:

a. Access the administration console configuration tabs. See "Accessing the
WebRTC Session Controller Console Configuration Tabs".

b. Click the Packages tab.

2. In the Packages pane of the Packages tab, click the Add icon.

3. Click Edit in the upper right corner of the screen.

4. In the Create a package dialog box:

a. Enter a name for the new package.

Package names must be unique in the list. A package name must begin with
an alphabet (a - z) or a number (0 - 9).

b. Click OK.

Your new package now appears in the package table which is arranged
alphabetically.

5. To make your changes take effect, click Save.

You are now ready to configure and manage the package.

Managing Package Criteria
To manage the package criteria for an existing package:

1. Go to the Packages tab.

2. From the list of packages under Package Name, select the package.

3. Click Edit in the upper right corner of the screen.

4. In the Packages tab, manage the package by doing the following:

a. Configuring Package Criteria.

b. Updating Package Criteria.

c. Deleting a Criteria.

5. Click Save.

Configuring Package Criteria
To create a signaling engine criteria for a selected package:

Configuring Messaging Packages

2-22 WebRTC Session Controller System Administrator's Guide

1. Click Edit in the upper right corner of the screen.

2. Click Create Criteria.

A row appears at the top of the criteria table. A Groovy script pane appears next to
or below the criteria table, depending on the browser size.

3. Provide the values for the Direction, Verb, Type, and Network fields for this
criteria. See Table 2–7 for a description of the fields.

4. In the Groovy Script window, enter a Groovy script as appropriate for this criteria.

The Groovy script defines all actions for this criteria. See "About the Groovy
Scripts" in WebRTC Session Controller Extension Developer’s Guide.

5. To ensure that your Groovy script meets the signaling engine validation
requirements, click Validate. Fix all errors.

See "About the WebRTC Session Controller Console Validation Tests" for a list of
the validation tests and error messages.

6. To save your new criteria, click Save. For details, see "About the Groovy Scripts" in
WebRTC Session Controller Extension Developer’s Guide.

Updating Package Criteria
To update the contents of a package criteria:

1. Go to the Packages tab in the administration console.

2. From the list of packages under Package Name, select the package.

Table 2–7 Configuring Support for Notification Service

Property Description

Direction This entry indicates the message origin. Select from one of the
following:

■ FROM_APP for messages that originate from a
WebRTC-enabled browser.

■ FROM_NET for messages originating from your IMS core
(SIP server or proxy).

■ SYSTEM for messages that originated in a WebRTC Session
Controller server

Verb A verb matching the type of JSON or SIP request or response.
For example, an UPDATE verb matches SIP UPDATE requests
and response messages, and a complete verb matches a JSON
complete request or response message.

Enter the verb that identifies the message action verb (SIP
method or JSON action) that the criteria matches. For example,
REGISTER, PUT, GET, ACK, BYE, CANCEL, INVITE, complete,
shutdown,

Type The type of message; can be one of:

■ request

■ response

■ message

■ error

■ acknowledgment

Network Identifies the application that the message is being used for.

Managing WebRTC Session Controller Application Profiles

Configuring WebRTC Session Controller 2-23

3. Click Edit in the upper right corner of the screen.

4. From the Criteria table, select the row entry for the criteria.

5. Do one or both of the following, as required:

■ Update the Direction, Verb, Type, and Network fields for this criteria. See
Table 2–7 for a description of the fields.

■ Update the Groovy Script.

6. To verify the signaling engine validation requirements, click Validate. Fix all
errors.

7. To save the updated criteria, click Save.

Deleting a Criteria
To delete a package criteria:

1. Go to the Packages tab in the administration console.

2. From the list of packages under Package Name, select the package.

3. From the Criteria table, select the row entry for the criteria.

4. Click Edit in the upper right corner of the screen.

5. Click Delete Criteria.

6. To save your updates, click Save.

About the WebRTC Session Controller Global Script Library
The Script Library tab displays the contents of the mandatory WebRTC Session
Controller functions that are required to handle message processing.

In the Edit mode, use the Validate, Undo, Redo command buttons to validate the
displayed Groovy script, undo, or redo your last action in this pane.

Managing WebRTC Session Controller Application Profiles
An application profile that you create in WebRTC Session Controller is a collection of
packages. Each package contains criteria that translate (and probably change) WebRTC
application to SIP network communication for a single program.

In the WebRTC Session Controller administration console, set up the application
profile by selecting the packages from the set of globally defined packages. Provide
information to identify the application profile and by defining other parameters such
as a security group, domains, and resource limits.

Each application profile contains its set of Groovy scripts. After you change the
configuration and save the changes, the modified Groovy is saved in the configuration
file. At runtime, WebRTC Session Controller generates a copy of the complete
configuration containing each profile data combined with the common Groovy script
(packages and script library) data.

Important: The signature of these methods must not be changed, but
the implementation can be modified according to your requirements.

Managing WebRTC Session Controller Application Profiles

2-24 WebRTC Session Controller System Administrator's Guide

About the Application Profiles Tab
The Application Profiles tab enables you to configure the application profiles that
your WebRTC Session Controller installation supports. Figure 2–4 displays the
contents of this tab.

Figure 2–4 Application Profiles Tab

When you select the Application Profiles tab, it displays two panes. To the left, a
navigation pane lists the names of the currently created application profiles. To the
right is a larger pane with three tabs, Profile, Packages, and Library. These tabs
display the general profile information, the Groovy scripts for the packages selected
for this application profile and the general script library, respectively.

Managing Application Profiles
The application profile navigation pane consists of a table of application profile names
currently configured in WebRTC Session Controller. Three icons above the Name table
allow you to add, delete, or clone an application.

Creating Your Application Profile
To create an application profile:

1. If you are not logged in to WebRTC Session Controller, access the administration
console configuration tabs. See "Accessing the WebRTC Session Controller Console
Configuration Tabs".

2. Click Application Profiles.

3. Click Edit in the upper right corner of the screen.

4. In the navigation panel to the left, click the Add link.

5. In the Create an application profile dialog window, enter a name for the
application profile.

Application profile names must unique, begin with an alphabet character, and
contain alphanumeric characters only (a-z, A-Z, and 0-9).

Click OK.

6. Complete the configuration for the application profile by completing the following
tasks:

Managing WebRTC Session Controller Application Profiles

Configuring WebRTC Session Controller 2-25

■ Providing the Profile Information for the Application

■ Managing the Groovy Script for the Application Profile

7. Click Save.

Providing the Profile Information for the Application
Some fields in the Profile tab display the default values defined earlier in the Home
tab. Fields marked with asterisks require a valid entry. You can modify the default
values also.

Enter or update the following information associated with the selected application:

1. General runtime parameters to associate with your application profile, described
in Table 2–8.

2. System properties to associate with your application profile, described in
Table 2–9.

Table 2–8 Configurable Signaling Engine Runtime Parameters

Parameter Description

Security Group A required field. Enter the name of the security group for this
application.

WebLogic Server contains some default security groups that you
can use. For details about using security groups, see the
discussion on users, groups, and security roles in Oracle Fusion
Middleware Securing Resources and Policies for Oracle WebLogic
Server.

Allowed Domains A required field containing a list of allowed domains that serve
as a white list of domains the application is allowed to contact.
Enter all domains to allow cross-origin resources sharing
(CORS) with this application.

Enter the names of the allowed domains. For a tenant of a SaaS
application, a specific web domain name.

To support cross domain access, configure the domain name in
the tenant profile. WebRTC Session Controller would apply this
setting on a per tenant profile basis.

Resource Limits Select the resource limits that allow you to protect system
performance by limiting the impact on Signaling Engine. These
resource limits can also serve as application white- and
black-lists for individual applications.

To view the configured parameters for each resource limit, select
the Signaling Engine tab under the Home tab.

Description Enter a short description of the application profile.

Packages The messaging packages this application supports. See
"Managing Packages in Your Application Profile".

Request URI Enter the URI endpoint that you want WebRTC applications to
use to access WebRTC Session Controller.

This entry is the value configured for the Guest URl Match
Pattern field located on the Provider Specific tab for the
associated authentication provider in WebLogic Server
Administration Console.

Active The application setting. Active, by default. To deactivate the
application, clear the check box.

Debug To run the application in a debug mode, select this check box.

Managing WebRTC Session Controller Application Profiles

2-26 WebRTC Session Controller System Administrator's Guide

3. Click Save.

Note: The values you assign to a system property on the Application
Profile tab overrides the value assigned to that property on the Home
tab.

Table 2–9 Configurable Signaling Engine System Properties

Parameter Description

Proxy Registrar URI The default SIP proxy server/Registrar URI.

The value you enter in this field becomes the default for any
new application you create.

 Access this parameter in Groovy as
context.properties.proxyRegistrar using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Dynamic Media
Anchoring Type

Select a media anchoring option supported by WebRTC Session
Controller. The possible selections are:

■ Disabled

The application cannot connect to the Media Engine.

■ web-to-web-anchor-conditional

web to web conditional anchoring is used in a session when
WebRTC-enabled browsers are allowed to communicate
directly. If for some reason the browsers cannot
communicate directly, they can communicate through
WebRTC Session Controller.

■ web-to-web-anchored

web to web forced anchoring is used in a session when all
media flows through Media Engine.

The supported Media Engine session type, is assigned to the
Groovy constant ME_CONFIG_NAME_DMA, in the Groovy
library

File Transfer Filter Pattern for resolving file_transfer packages by SDP.

Access this parameter in Groovy as
context.properties.fileTransferPattern using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Net MSRP A required field. The WebLogic Server contains some default
security groups that you can use. For details about using
security groups, see the discussion on users, groups, and
security roles in Oracle Fusion Middleware Securing Resources and
Policies for Oracle WebLogic Server.

Web MSRP A required field. A list of allowed domains that serve as a white
list of domains the application is allowed to contact.

MSRP Select the pattern for resolving MSRP packages by the Session
Description Protocol (SDP).

MSRP signaling is carried in SIP INVITE requests. When
WebRTC Session Controller receives a SIP INVITE, it determines
whether the request should be processed as a call, msrp chat or
msrp file transfer. To do so, it looks at these regex expressions.

Access this parameter in Groovy as
context.properties.msrpPattern using SipContext,
AuthenticationContext, TemplateContext, or WebContext.

Managing WebRTC Session Controller Application Profiles

Configuring WebRTC Session Controller 2-27

Managing Packages in Your Application Profile
To map messaging packages to your application profile:

Mapping Packages

1. If you are not in the Profile tab under for the application entry:

a. Access the administration console configuration tabs. See "Accessing the
WebRTC Session Controller Console Configuration Tabs".

b. Click Application Profiles.

c. Select the application name.

2. Click Edit in the upper right corner of the screen.

3. For the Packages field, click the Add sign next to the field.

The Package mapping dialog displays the names of the available packages.

4. In the Package mapping dialog, do the following for each package your
application is to support:

a. To include a package, select the check box next to its name.

b. If using an alias, then, in the Alias column, enter an alias.

For example, an alias entry myFam for a call package call displays as
call:myFam.

c. Click OK.

5. Click Save.

Removing a Package from the Mapped List

1. Go to the Profile tab for the application entry,

2. Click Edit in the upper right corner of the screen.

3. Click the Add sign next to the Packages field for your application profile.

The Package mapping dialog displays the names of the available packages.

4. To delete the package, clear the check box.

5. Click OK.

6. Click Save.

Managing the Groovy Script for the Application Profile
Manage the Groovy script for the application profiles using the Package tab associated
with each application profile entry.

Note: The alias name can be mapped to a different package without
a need for any change to the internal code of the client. For example:

You have a client names Aimee.com that uses the call package named
call. You create a special package for Aimee.com, named as callAmee. In
this step, you use this alias entry to create a map between call and
callAmee.

In the run environment, for all the call packages of Aimee.com, the
signaling engine will use the package callAmee.

Exporting and Importing a Configuration

2-28 WebRTC Session Controller System Administrator's Guide

Validating the Scripts for the Selected Packages

1. If you are not in the Profile tab under for the application entry:

a. Access the administration console configuration tabs. See "Accessing the
WebRTC Session Controller Console Configuration Tabs".

b. Click Application Profiles.

c. Select the application profile name entry.

2. Click Edit in the upper right corner of the screen.

3. Click Packages.

4. To view the scripts, click Populate.

WebRTC Session Controller displays all the default functionality in the Groovy
scripts associated with the selected packages. The selected criteria are displayed in
the form of methods. You can uncomment an entry and enter the specific
overriding functionality and save the changes.

At runtime, the signaling engine calls the updates package script.

5. Update the script as appropriate.

6. Click Validate. Fix all errors using the Undo and Redo buttons in this pane.

7. Click Save.

Validating the Global Library Information for the Application Profile

1. If you are not in the Profile tab under for the application entry:

a. Access the administration console configuration tabs. See "Accessing the
WebRTC Session Controller Console Configuration Tabs".

b. Click Application Profiles.

c. Select the application profile name entry.

2. Click Edit in the upper right corner of the screen.

3. Click Library.

4. To view the global scripts, click Populate.

The Library tab displays the default functionality of the WebRTC Session
Controller library. These library methods are required to handle message
processing for the packages associated with this application profile. They are
displayed as commented methods. You can uncomment an entry and enter the
specific overriding functionality and save the changes.

At runtime, the signaling engine calls the updates package script.

5. Update the script as appropriate.

6. Click Validate. Fix all errors using the Undo and Redo buttons in this pane.

7. Click Save.

Exporting and Importing a Configuration
You can export your current configuration settings to a file or import a set of
configuration settings from a file to which a configuration instance was previously
saved.

To export a configuration:

Debugging Groovy Script Run Time Errors

Configuring WebRTC Session Controller 2-29

1. Click Edit in the upper right corner of the screen.

2. Click Export.

The configuration is exported to the wsc-config.xml file in your system directory
for downloads.

To import a saved configuration:

1. Click Edit in the upper right corner of the screen.

2. Click Import.

3. In the Import dialog, choose the XML file that contains the configuration that you
wish to import.

4. Click OK.

Debugging Groovy Script Run Time Errors
You can diagnose Groovy script problems using the stack trace in the domain_
home/wsc.log file, which contains Signaling Engine stack trace messages. You identify
the individual Groovy script by searching for the individual criteria method name that
contains the criteria information. See "About the Groovy Scripts" for details about the
signature that each script uses, and the method it calls.

Figure 2–5 shows an illustration of a formatting problem in the register package, in the
FROM_APP/connect/request/default criteria shown highlighted. The red arrows
show the problem, the sipReq variable is used before it is declared.

Figure 2–5 Groovy Script With a Syntax Error

This is a violation of Java syntax, and as you would expect, the operation failed and
these debugging messages were written to the wsc.log file:

Caused by: groovy.lang.MissingPropertyException: No such property: sipReq for
class: Script2
 at
org.codehaus.groovy.runtime.ScriptBytecodeAdapter.unwrap(ScriptBytecodeAdapter.jav
a:50)
 at
org.codehaus.groovy.runtime.callsite.PogoGetPropertySite.getProperty(PogoGetProper

About the WebRTC Session Controller Console Validation Tests

2-30 WebRTC Session Controller System Administrator's Guide

tySite.java:49)
 at
org.codehaus.groovy.runtime.callsite.AbstractCallSite.callGroovyObjectGetProperty(
AbstractCallSite.java:231)
 at Script2.pkg_register_dir_FROM_APP_typ_request_verb_connect_netsvc_
default(Script2.groovy:705)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.codehaus.groovy.reflection.CachedMethod.invoke(CachedMethod.java:90)
 at groovy.lang.MetaMethod.doMethodInvoke(MetaMethod.java:233)
 at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:1085)
 at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:952)
 at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:909)
 at groovy.lang.Closure.call(Closure.java:411)
 at
org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.callGlobal(GroovyScriptEngineImp
l.java:411)
 at
org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.callGlobal(GroovyScriptEngineImp
l.java:405)
 at
org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.invokeImpl(GroovyScriptEngineImp
l.java:394)
 ...

The package and criteria values of the offending Groovy script are identified in this
line from wsc.log:

Script2.pkg_register_dir_FROM_APP_typ_request_verb_connect_netsvc_
default(Script2.groovy:705)

This message shows the method name that Signaling Engine creates from each
criteria’s package name and criteria values (highlighted).

In this example, the criteria with the syntax error is in the register package. Within that
package the criteria with the problem has a FROM_APP direction; a request type; a
connect verb; and a default network service. This matches the syntax error of the
FROM_APP/connect/request/default criteria shown in Figure 2–5.

In addition, as you are developing your Groovy scripts, you can validate the scripts by
clicking the Validate button in the Groovy Script editor pane. Syntax errors and other
issues are reported in the console. Figure 2–5 shows the validation error message.

About the WebRTC Session Controller Console Validation Tests
The WebRTC Session Controller console runs validation tests to confirm that your
Groovy scripts, Groovy library, packages, and applications are all valid. It runs the
validation tests each time you commit changes to an application, package, or criteria,
or click the Validate button.

Table 2–10 lists the validation error types and their error messages.

About the WebRTC Session Controller Console Validation Tests

Configuring WebRTC Session Controller 2-31

Table 2–10 WebRTC Session Controller Groovy Script Validity Tests

Error Type Error Message

APPLICATION_NAME_NOT_UNIQUE Application name application_name is not unique.

DUPLICATE_CRITERIA Duplicate criteria found for criteria direction, verb, type, network_
service in package package_name.

DUPLICATE_LWNG_APPLICATION_ID Notification Service Application Id app_id is not unique.

DUPLICATE_LWNG_APPLICATION_NAME Notification Service Application name app_name is not unique.

DUPLICATE_LWNG_CERTIFICATE_NAME Certificate name cert_name is not unique.

DUPLICATE_PACKAGE_NAME_IN_APP Package name package_name is not unique in application profile
application_name.

DUPLICATE_TENANT_NAME_IN_APP Tenant name tenant_name is not unique in application profile
app_name.

EMPTY_LWNG_API_KEY API KEY should be defined for Notification Service Application
with id app_id.

EMPTY_LWNG_APPLICATION_ID Notification Service Application Id should be defined for
Notification Service Application with name app_name.

EMPTY_LWNG_APPLICATION_NAME Notification Service Application name should be defined for
Notification Service Application with Id app_id.

EMPTY_LWNG_CERTIFICATE Name should be defined for Notification Service Certificate.

EMPTY_LWNG_CERTIFICATE_CONTENT Certificate Content should be defined for Notification Service
certificate with name certificate_name.

EMPTY_LWNG_CERTIFICATE_NAME Certificate name should be defined for Notification Service
Application with Id app_id.

EMPTY_LWNG_CERTIFICATE_
PASSPHRASE

Passphrase should be defined for Notification Service certificate
with name certificate_name.

EMPTY_LWNG_PROVIDER Provider name should be defined for Notification Service
Application with Id app_id.

EMPTY_LWNG_TEMPLATE Template should be defined for Notification Service Application
with is app_id.

GROOVY_APPLICATION_LIBRARY_
COMPILATION_ERRORS

Application Library validation error, reason for the application
profile application_name at line line_number.

GROOVY_APPLICATION_PROFILE_PKG_
COMPILATION_ERRORS

Application profile validation error, reason for the application
profile application_name, method method_name, error reason at line
line_number.

GROOVY_APPLICATION_PROFILE_
RESTRICTIONS

Error occurred in application profile application_name.

GROOVY_COMPILATION_ERRORS Error is reason, at line number line_number.

GROOVY_SCRIPT_LIBRARY_
COMPILATION_ERRORS

Script Library validation error, reason at line line_number.

GROOVY_SCRIPT_LIBRARY_
RESTRICTIONS

Error occurred in script library scriptlibrary_name.

GROOVY_SCRIPT_RESTRICTIONS Error message is reason.

GROOVYALL_COMPILATION_ERRORS Error occurred for the criteria direction, verb, type, network_service
in the packagepackage_name and the error message is reason at
line line_number.

GROOVYALL_SCRIPT_RESTRICTIONS Error occurred for the criteria direction, verb, type, network_service
in the packagepackage_name and the error message is reason.

About the WebRTC Session Controller Console Validation Tests

2-32 WebRTC Session Controller System Administrator's Guide

INVALID_ALLOWED_DOMAINS_
EXPRESSION

Allowed domain contains invalid characters domains_expression.

INVALID_APP_NAME Application profile name contains invalid characters, application_
profile_name.

INVALID_CRITERIA_NETWORK The package package_name network contains invalid characters.

INVALID_CRITERIA_TYPE The package package_name type contains invalid characters.

INVALID_CRITERIA_VERB The package package_name verb contains invalid characters.

INVALID_LWNG_APPLICATION_ID Notification Service Application Id should be in a valid Android
Package or Apple Bundle format for Notification Service
Application with Id app_id.

INVALID_LWNG_CERTIFICATE_CONTENT Notification Service Certificate content is not a valid p12 file or
the password is incorrect for certificate with name cert_name.

INVALID_LWNG_CERTIFICATE_NAME Certificate name certificate_name is referenced from application
with Id app_id, but it does not exist.

INVALID_LWNG_DELETE_CERT_CMD Notification Service Certificate cert_name is being used by app_
name. Please update these apps before deleting the Certificate.

INVALID_LWNG_PROXY_IP Notification Service Proxy IP proxy_ip_address should be in the
format 001.001.001.

INVALID_LWNG_PROXY_PORT Notification Service Proxy Port port_number should be in the
range of 1 to 65535.

INVALID_LWNG_TEMPLATE Template template_name is not a valid JSON formatted string for
application with Id app_id.

INVALID_MODULE_NAME The module_name module contains invalid characters.

INVALID_MODULE_REFERENCE Nonexistent module module_name is referenced from application
profile application_name.

INVALID_NETWORK The network_name network contains invalid characters.

INVALID_PACKAGE_REFERENCE Package name package_name is referenced from application
profile application_name but it does not exist.

INVALID_PKG_NAME The package_name package contains invalid characters.

INVALID_PROXY_URI_PATTERN Invalid proxy registrar URI uri.

INVALID_REQUEST_URI The request URI contains invalid characters request_uri for the
application profile, application_name.

INVALID_RESOURCE_LIMITS_NAME Invalid resource name resource_name in application_name
application application profile.

INVALID_RESOURCE_NAME Resource contains invalid characters, resource_name.

INVALID_SCRIPT_TYPE The script script_name contains an error of type error_type.

INVALID_SECURITY_EXPRESSION Security group contains invalid characters security_expression.

INVALID_TENANT_PROFILE_NAME Tenant profile name contains invalid characters tenant_name.

INVALID_TENANT_PROFILE_REFERENCE Tenant name tenant_name is referenced from application profile
app_name but it does not exist.

INVALID_TYPE The package package_name type contains invalid characters type.

INVALID_VERB The package package_name verb contains invalid characters verb.

ME_ADDRESS_IS_NOT_UNIQUE Media Engine address address is not unique.

Table 2–10 (Cont.) WebRTC Session Controller Groovy Script Validity Tests

Error Type Error Message

About the WebRTC Session Controller Console Validation Tests

Configuring WebRTC Session Controller 2-33

ME_INVALID_LOGIN Invalid credentials found, for the Media Engine.

ME_LIFE_CYCLE_ERROR Media Engine life cycle is not initiated for the server server_name
and port port_number.

ME_NODE_NOT_REACHABLE Server not reachable with address address and port port_number.

ME_PORT_IS_INVALID Invalid media engine port port_number.

MODULE_NAME_NOT_UNIQUE Module name module_name is not unique.

PACKAGE_NAME_NOT_UNIQUE Package name package_name is not unique.

PKG_REQUIRED At least one package is required for the application profile
application_name.

REQUEST_URI_UNIQUE Request URI request_uri is not unique in application profile
application_profile_name.

RESOURCE_LIMITS_PROFILE_NAME_IS_
CANNOT_DELETE

Cannot delete resource limits resource_limit_profile_name, as it is
used by application profile(s) application_name.

RESOURCE_LIMITS_PROFILE_NAME_IS_
NOT_UNIQUE

Resource limits profile name resource_limit_profile_name is not
unique.

RESTRICTED_GROOVY Error occurred in restricted groovy script at line line_number.

SCRIPT_NAME_NOT_UNIQUE Script name script_name is not unique for the package_name
package.

TENANT_PROFILE_NAME_NOT_UNIQUE Tenant profile name tenant_name is not unique.

Table 2–10 (Cont.) WebRTC Session Controller Groovy Script Validity Tests

Error Type Error Message

About the WebRTC Session Controller Console Validation Tests

2-34 WebRTC Session Controller System Administrator's Guide

3

Using the Administration Console and WLST 3-1

3Using the Administration Console and WLST

This chapter describes managing Oracle Communications WebRTC Session Controller
domain services using the Administration Console and WebLogic Scripting Tool
(WLST).

Accessing the Administration Console
The Administration Console enables you to configure and monitor core Oracle
WebLogic Server functionality and the SIP Servlet container functionality provided
with WebRTC Session Controller.

See Oracle WebLogic Server Administration Console Online Help for more information
about the Administration Console.

To configure or monitor SIP Servlet features using the Administration Console:

1. Ensure that your WebLogic Administration Server is running.

2. Use your browser to access the URL:

http://address:port/console

where address is the Administration Server's listen address and port is the listen
port.

3. Select the SipServer node in the left pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring WebRTC Session Controller. Table 3–1 summarizes the
available pages and provides links to additional information about configuring
SIP container properties.

Table 3–1 WebRTC Session Controller Configuration and Monitoring Pages

Tab Sub Tab Function

Configuration General Configure SIP timer values, session timeout duration, default WebRTC
Session Controller behavior (proxy or user agent), server header format,
call state caching, DNS name resolution, timer affinity, domain aliases,
report support, diagnostic image format, and stale session handling.

Configuration Application
Router

WebRTC Session Controller does not use this configuration tab.

Configuration Proxy Configure proxy routing URIs and proxy policies.

Configuration Overload
Protection

Configure the conditions for enabling and disabling automatic overload
controls.

Configuration Message Debug Enable or disable SIP message logging on a development system.

Accessing the Administration Console

3-2 WebRTC Session Controller System Administrator's Guide

Locking and Persisting the Configuration
The Administration Console Change Center provides a way to lock a domain
configuration allowing configuration changes while preventing other administrators
from making changes during your edit session. You can enable or disable this feature
in development domains. It is disabled by default when you create a development
domain.

See "Enable and disable the domain configuration lock" in the Oracle WebLogic Server
Administration Console Online Help for more information on the domain configuration
lock.

Some changes you make in the Administration Console take place immediately when
you activate them. Other changes require you to restart the server or module affected
by the change. These latter changes are called non-dynamic changes. Non-dynamic
changes are indicated in the Administration Console with a warning icon containing
an exclamation point. If an edit is made to a non-dynamic configuration setting, no
edits to dynamic configuration settings will take effect until after you restart the
server.

To make changes to your WebRTC Session Controller domain when domain
configuration lock is enabled:

1. Locate the Change Center in the upper left corner of the Administration Console.

2. Click Lock & Edit to lock the editable configuration hierarchy for the domain.

3. Make the changes you want on the relevant page of the console and click Save on
each page where you make a change.

Configuration SIP Security Identify trusted hosts for which authentication is not performed.

Configuration Persistence Configure persistence options for storing long-lived session data in an
RDBMS, or for replicating long-lived session data to a remote,
geographically-redundant site.

Configuration Call State Storage View call state Coherence cache service configuration settings supported
by the Sip Server. You can specify the number of worker threads and the
number of partitions used in the call-state Coherence cache service by the
Sip Server.

Configuration LoadBalancer
Map

Configure the mapping of multiple clusters to internal virtual IP
addresses during a software upgrade.

Configuration Targets Configure the list of servers or clusters that receive the engine
configuration. The target server list determines which servers and
clusters provide SIP Servlet container functionality.

Configuration Connection Pools Configure connection reuse pools to minimize communication overhead
with a Session Border Control (SBC) function or Serving Call Session
Control Function (S-CSCF).

Monitoring General View run-time information about messages and sessions processed in
engine servers.

Monitoring SIP Performance View run-time performance information on SIP traffic throughput and
number of successful and failed transactions.

Monitoring SIP Applications View run-time session information for deployed SIP applications.

Monitoring Call State Storage View run-time state and statistics information about call-state service, the
call-state cache, and the call-state metadata cache used by the SIP server.

Table 3–1 (Cont.) WebRTC Session Controller Configuration and Monitoring Pages

Tab Sub Tab Function

Using WLST (JMX) to Configure WebRTC Session Controller

Using the Administration Console and WLST 3-3

4. When you have finished making all the changes, click Activate Changes in the
Change Center.

Using WLST (JMX) to Configure WebRTC Session Controller
The WebLogic Scripting Tool (WLST) is a utility that you can use to monitor or modify
JMX MBeans available on a WebLogic Server or WebRTC Session Controller instance.
You use WLST to configure both the WebRTC Session Controller SIP container and
application. The following sections describe configuring WebRTC Session Controller
with WLST:

■ Configuring the SIP Container with WLST

■ Configuring the WebRTC Session Controller Application with WLST

For more information on using the WLST, see "Using the WebLogic Scripting Tool" in
the Oracle WebLogic Scripting Tool documentation.

Before using WLST to configure a WebRTC Session Controller domain, set your
environment to add required WebRTC Session Controller classes to your classpath.
Use either a domain environment script or the setWLSEnv.sh script located in WL_
home/server/bin, where WL_home is the directory where WebLogic Server is installed.

Configuring the SIP Container with WLST
This section provides information on configuring the WebRTC Session Controller SIP
container using WLST.

Managing Configuration Locks
Table 3–2 summarizes the WLST methods used to lock a SIP container configuration
and apply changes.

Note:

■ You can instead discard your current changes by clicking Undo
All Changes. This deletes any temporary configuration files that
were written with previous Save operations.

■ If you need to discard all configuration changes made since the
server was started, you can revert to the original boot
configuration file. See "Reverting to the Original Boot
Configuration" for more information.

Table 3–2 SIP Container ConfigManagerRuntimeMBean Method Summary

Method Description

activate() Writes the current configuration MBean attributes (the current SIP
Servlet container configuration) to the sipserver.xml configuration file
and applies changes to the running servers.

cancelEdit() Cancels an edit session, releasing the edit lock, and discarding all
unsaved changes. This operation can be called by any user with
administrator privileges, even if the user did not start the edit session.

cd Navigate the hierarchy of configuration or run-time beans.

connect Connect WLST to a WebLogic Server instance.

edit() Starts an edit session.

Using WLST (JMX) to Configure WebRTC Session Controller

3-4 WebRTC Session Controller System Administrator's Guide

A typical configuration session using WLST involves the following tasks:

1. Call startEdit() to obtain a lock on the active configuration.

2. Modify existing SIP Servlet container configuration MBean attributes (or create or
delete configuration MBeans) to modify the active configuration. See
"Configuration MBeans for the SIP Servlet Container" for a summary of the
configuration MBeans.

3. Do one of the following:

■ Call save() to persist all changes to a temporary configuration file named
sipserver.xml.saved

■ Call activate() to persist changes to the sipserver.xml.saved file, rename
sipserver.xml.saved to sipserver.xml (copying over the existing file), and
apply changes to the running engine server nodes.

Configuration MBeans for the SIP Servlet Container
ConfigManagerRuntimeMBean manages access to and persists the configuration
MBean attributes described in Table 3–3. Although you can modify other configuration
MBeans, such as WebLogic Server MBeans that manage resources such as network
channels and other server properties, those MBeans are not managed by
ConfigManagerRuntimeMBean.

See "Configuring the WebRTC Session Controller Application with WLST" for
information on MBeans used to configure WebRTC Session Controller application
properties.

save() Writes the current configuration MBean attributes (the current SIP
Servlet container configuration) to a temporary configuration file.

startEdit() Locks changes to the SIP Servlet container configuration. Other JMX
applications cannot alter the configuration until you explicitly call
stopEdit(), or until your edit session is terminated.

If you attempt to call startEdit() when another user has obtained
the lock, you receive an error message that states the user who owns
the lock.

set Set the specified attribute value for the current configuration bean.

stopEdit() Releases the lock obtained for modifying SIP container properties and
rolls back any pending MBean changes, discarding any temporary
files.

Note: When you start the Administration Server for a WebRTC
Session Controller domain, the server parses the current container
configuration in sipserver.xml and creates a copy of the initial
configuration in a file named sipserver.xml.booted. You can use this
copy to revert to the booted configuration, as described in "Reverting
to the Original Boot Configuration".

Table 3–2 (Cont.) SIP Container ConfigManagerRuntimeMBean Method Summary

Method Description

Using WLST (JMX) to Configure WebRTC Session Controller

Using the Administration Console and WLST 3-5

Locating the SIP Container MBeans
All SIP Servlet container configuration MBeans are located in the serverConfig MBean
tree, accessed using the serverConfig() command in WLST. Within this bean tree,
individual configuration MBeans can be accessed using the path:

CustomResources/sipserver/Resource/sipserver

For example, to browse the default Proxy MBean for a WebRTC Session Controller
domain you would enter these WLST commands:

serverConfig()
cd('CustomResources/sipserver/Resource/sipserver/Proxy')
ls()

Run-time MBeans, such as ConfigManagerRuntime, are accessed in the custom
MBean tree, accessed using the custom() command in WLST. Run-time MBeans use
the path:

mydomain:Location=myserver,Name=myserver,Type=mbeantype

Table 3–3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description

ClusterToLoadBalancerMap ClusterName,
LoadBalancerSipURI

Manages the mapping of multiple
clusters to internal virtual IP addresses
during a software upgrade. This
attribute is not used during normal
operations.

OverloadProtection RegulationPolicy,
ThresholdValue,
ReleaseValue

Manages overload settings for
throttling incoming SIP requests.

See also "overload".

Proxy ProxyURIs,
RoutingPolicy

Manages the URIs routing policies for
proxy servers. See also "proxy—Setting
Up an Outbound Proxy Server".

SipSecurity TrustedAuthenticationHosts Defines trusted hosts for which
authentication is not performed. See
also "sip-security".

SipServer DefaultBehavior,
EnableLocalDispatch,
MaxApplicationSessionLifeTime,
OverloadProtectionMBean,
ProxyMBean,
T1TimeoutInterval,
T2TimeoutInterval,
T4TimeoutInterval,
TimerBTimeoutInterval,
TimerFTimeoutInterval

SipServer also has several helper
methods:

createProxy(),
destroyProxy(),
createOverloadProtection(),
destroyOverloadProtection(),
createClusterToLoadBalancerMap()
destroyClusterToLoadBalancerMap(
)

Configuration MBean that represents
the entire sipserver.xml configuration
file. You can use this MBean to obtain
and manage each of the individual
MBeans described in this table, or to
set SIP timer or SIP Session timeout
values. See also:

■ Creating and Deleting MBeans

■ default-behavior

■ enable-local-dispatch

■ max-application-session-lifetime

■ t1-timeout-interval

■ t2-timeout-interval

■ t4-timeout-interval

■ timer-b-timeout-interval

■ timer-f-timeout-interval

Using WLST (JMX) to Configure WebRTC Session Controller

3-6 WebRTC Session Controller System Administrator's Guide

Certain configuration settings, such as proxy and overload protection settings, are
defined by default in sipserver.xml. Starting an associated server generates
Configuration MBeans for these settings. You can immediately browse the Proxy and
OverloadProtection MBeans. Other configuration settings are not configured by
default and you will need to create the associated MBeans before they can be accessed.
See "Creating and Deleting MBeans" for more information.

Configuring the WebRTC Session Controller Application with WLST
This section provides information on configuring the WebRTC Session Controller
application using WLST.

Managing Configuration Locks
Table 3–4 summarizes the WebRTC Session Controller methods included in
ConfigAdminMBean.

Configuration MBeans for WebRTC Session Controller
Table 3–5 lists the configuration MBeans for WebRTC Session Controller.

Table 3–4 WebRTC Session Controller ConfigAdminMBean Method Summary

Method Name Description

commit Commits a configuration update transaction.

exportConfiguration Exports the whole wsc configuration, to a specified path.

getCurrentLock Gets current lock if one exist. The request fails if the lock is
owned by another user.

importConfiguration Imports the whole wsc configuration from the specified path.

isLocked Checks if the configuration is locked (by any user).

lockAndEdit Begins the configuration update transaction.

revert Reverts a configuration update transaction.

validate Validates the transaction.

validateAllScripts Validates all the scripts.

validateMediaEngines Validates all the Media Engines and checks to see if they are
reachable from the Signaling Engine.

validateScript Validates a particular script.

validateScriptLibrary Validates the script libraries.

Using WLST (JMX) to Configure WebRTC Session Controller

Using the Administration Console and WLST 3-7

Table 3–5 WebRTC Session Controller Configuration MBeans

MBean Description

ApplicationMBean WebRTC Session Controller application configuration MBean.

This MBean allows you to do the following for an application profile: add a
library, add or clone a package, add package methods; get and set parameters in
the application profile, such as the name, description, request URI.

AscMBean Media Engine configuration MBean.

This MBean provides access to the address, port, and state of the Media Engine.

AscMBeans Media Engine configuration MBean.

This MBean provides access to the media agent notifications, user name,
password.

ClientApplicationsMBean Client applications MBean.

This MBean is used to create an application, delete an application given its
appId, and retrieve an array of applications.

ClientApplicationMBean Client application settings configuration MBean

This MBean is used to access to the parameters displayed for a specific
application.

ConfigAdminMBean WebRTC Session Controller configuration administration MBean.

This MBean is used to access to the general administration configuration
parameters.

NotificationPropertiesMBean Notification Service Configuration MBean

This MBean is used to get and set the proxy IP address and proxy port of the
notification service entry.

PackageMBean WebRTC Session Controller package configuration MBean.

This MBean is used to create and remove a script configuration, retrieve
package name, and all scripts.

ProviderCertificatesMBean Cloud Messaging provider Certificate Configuration MBean

This MBean is used to create a provider certificate, delete a provider certificate
given its name, and retrieve an array of provider certificates.

ProviderCertificateMBean Cloud Messaging provider Certificate MBean

This MBean is used to set or retrieve the content, name and pass phrase of a
provider certificate.

ResourceLimitsProfileMBean WebRTC Session Controller resource limits configuration MBean.

This MBean is used to set or retrieve the resource limits for the resource
parameters of a resource limit entry.

ScriptLibraryMBean WebRTC Session Controller script library configuration MBean.

This MBean is used to set or retrieve the script library macros and retrieve the
type of a script library.

ScriptMBean WebRTC Session Controller script configuration MBean.

This MBean is used to get the name, content, criteria, type, and method name of
a script; and set the script content and criteria.

StatisticsRuntimeMBean WebRTC Session Controller application configuration MBean.

This MBean is used to retrieve the runtime session statistics and watermarks.

SystemConfigurationsMBean WebRTC Session Controller application configuration MBean.

This MBean is used get and set the system integration parameters and media
engine configurations

Using WLST (JMX) to Configure WebRTC Session Controller

3-8 WebRTC Session Controller System Administrator's Guide

See the oracle.wsc.core.configuration.admin.mbean package in WebRTC Session
Controller Configuration API Reference for detailed information about each MBean.

See "Accessing WebRTC Session Controller Application MBeans" for information on
how to access and use the WebRTC Session Controller MBeans.

Accessing WebRTC Session Controller Application MBeans
You configure the WebRTC Session Controller MBeans using the Java
MbeanServerConnection interface. Use the mbs variable at the WLST interface
prompt to access the MBeans.

See the "WLST Variable Reference" in WLST Command Reference for WebLogic Server for
information about the mbs variable.

To configure the WebRTC Session Controller MBeans using mbs:

1. Connect to the WebLogic instance using WLST.

2. Use the MBeanServerConnection to interact with the WebRTC Session Controller
MBean server. See the following link for more information, including available
methods, about MBeanServerConnection:

http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerCo
nnection.html

3. Access the WebRTC Session Controller administration MBean, which is the root of
all WebRTC Session Controller MBeans, using the following object name:

oracle.wsc:Location=AdminServer,Type=ConfigAdminMBean

4. Use the getAttribute, setAttribute, and invoke operations to interact with the
MBeans and configure the WebRTC Session Controller.

See "WebRTC Session Controller Code Sample" for an example showing how to use
the MBeanServerConnection method to perform common configuration tasks.

Managing Application and Tenant Profiles Using WebLogic Scripting Tool
Manage the tenant profile using WebLogic Scripting Tool:

■ WscConfigMbean

Use the following methods:

– To create a tenant profile, use the createTenantProfile method. This method
returns an ObjectName. A JMX client can access the TenantProfileMBean
with this name entry.

TenantProfileMBean WebRTC Session Controller application configuration MBean.

This MBean is used get and set the parameters of a tenant profile.

WebSocketMBean WebRTC Session Controller WebSocket configuration MBean.

This MBean is used get and set the maximum allowed connections and the idle
time out (in seconds).

WscConfigMBean WebRTC Session Controller main configuration MBean.

This MBean is used create and delete the main configuration settings in
WebRTC Session Controller.

Table 3–5 (Cont.) WebRTC Session Controller Configuration MBeans

MBean Description

WLST Configuration Examples

Using the Administration Console and WLST 3-9

– To remove the tenant profile, use the removeTenantProfile method

■ ApplicationMbean:

Use the following methods:

– To assign one or more tenant profiles to an application profile, call the
setTenantProfile method.

– To get a list of the tenant profiles assigned to the application profile, use the
getTenantProfile method.

To assign one or more tenant profiles to an application profile, call the
setTenantProfile method. The getTenantProfile method of the ApplicationMbean
MBean returns the tenant profile.

■ To administer a tenant profile, access the TenantProfileMBean. You can get and
set its elements such as the name, key, resource limits and the groovy properties
associated with the tenant profile.

■ To generate the statistics for monitoring at system, application profile, and tenant
profile levels, use the methods in the StatisticsRuntimeMBean.

For more information on accessing these MBeans, see WebRTC Session Controller
Configuration API Reference.

WLST Configuration Examples
The following sections provide example WLST scripts and commands for configuring
SIP Servlet container properties.

Invoking WLST
To use WLST with WebRTC Session Controller, you must ensure that all WebRTC
Session Controller JAR files are included in your classpath. Follow these steps:

1. Set your WebRTC Session Controller environment:

cd ~/domain_home/bin
./setDomainEnv.sh

where domain_home is the path to the domain's home directory.

2. Start WLST:

java weblogic.WLST

3. Connect to the Administration Server for your WebRTC Session Controller
domain:

connect('system','weblogic','t3://myadminserver:port_number')

WLST Template for Configuring Container Attributes
Because a typical configuration session involves accessing
ConfigManagerRuntimeMBean twice—once for obtaining a lock on the
configuration, and once for persisting or applying changes—JMX applications that
manage container attributes generally have a similar structure.

Example 3–1 shows a WLST script that contains the common commands needed to
access ConfigManagerRuntimeMBean. The example script modifies the proxy
RoutingPolicy attribute, which is set to supplemental by default in new WebRTC

WLST Configuration Examples

3-10 WebRTC Session Controller System Administrator's Guide

Session Controller domains. You can use this listing as a basic template, modifying
commands to access and modify the configuration MBeans as necessary.

Example 3–1 Template WLST Script for Accessing ConfigManagerRuntimeMBean

Connect to the Administration Server
connect('username','password','t3://localhost:7001')
Start an edit session
edit()
startEdit()
--MODIFY THIS SECTION AS NECESSARY--
Edit SIP Servlet container configuration MBeans
cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,SipServer=myser
ver,Type=Proxy')
set('RoutingPolicy','domain')
Commit changes
save()
activate()

Creating and Deleting MBeans
The SipServer MBean represents the entire contents of the sipserver.xml configuration
file. In addition to having several attributes for configuring SIP timers and SIP
application session timeouts, SipServer provides helper methods to help you create or
delete MBeans representing proxy settings and overload protection controls.

Example 3–2 shows an example of how to use the helper commands to create and
delete configuration MBeans that configuration elements in sipserver.xml. See also
WebRTC Session Controller JavaScript API Reference for more information.

Example 3–2 WLST Commands for Creating and Deleting MBeans

connect('username','password','t3://localhost:7001')
edit()
startEdit()
cd('CustomResources/sipserver/Resource/sipserver')
cmo.destroyOverload()
cmo.createProxy()
save()
activate()

WebRTC Session Controller Code Sample
Oracle recommends using MBeanServerConnection (mbs) methods when using
WLST to perform WebRTC Session Controller configuration instead of the built-in
WLST operations. Example 3–3 provides sample code including how to connect to an
administration server, lock configuration, retrieve and modify attributes, create test
packages, and commit configurations using the mbs variable.

See "Accessing WebRTC Session Controller Application MBeans" for more information
on using MBeanServerConnection.

Example 3–3 Connecting and Performing MBean Operations with mbs

Connect to Admin Server
connect('username', 'password', 't3://127.0.0.1:7001')

Lock configuration
noObjs = jarray.array([],java.lang.Object)
noStrs = jarray.array([],java.lang.String)

Setting Logging Levels

Using the Administration Console and WLST 3-11

admin = ObjectName('oracle.wsc:Location=AdminServer,Type=ConfigAdminMBean')
myLock = mbs.invoke(admin, 'lockAndEdit', noObjs, noStrs)

Get some attribute
mbs.getAttribute(myLock, 'Packages')

Change some attributes
myApp=ObjectName('oracle.wsc:Type=ApplicationMBean,Location=AdminServer,Name=unsec
ure,User=weblogic')
activeAttr=Attribute('Active', Boolean('false'))
mbs.setAttribute(myApp, activeAttr)
descAttr=Attribute('Description', 'Disabled this app')
mbs.setAttribute(myApp, descAttr)

Create test package
packageObjs = jarray.array(['test-package'], java.lang.Object)
packageStrs = jarray.array(['java.lang.String'], java.lang.String)
myPackage = mbs.invoke(myLock, 'createPackage', packageObjs, packageStrs)

Commit configuration
commitObjs = jarray.array([myLock], java.lang.Object)
commitStrs = jarray.array(['javax.management.ObjectName'], java.lang.String)
mbs.invoke(admin, 'commit', commitObjs, commitStrs)

Setting Logging Levels
The WebRTC Session Controller is subject to the common configuration settings
defined for WebLogic servers. To modify the logging settings for a WebRTC Session
Controller in the Administration Console, access the logging configuration settings
page as follows:

1. Expand the Environment node in the Domain Structure tree.

2. Click Servers.

3. Click the name of the server you want to configure logging for in the
Configuration tab.

4. In the right pane, click the Logging tab.

5. Modify the default logging settings and then click Save to commit your changes.

Alternatively, use the logging.xml WebLogic file to manually configure logging
properties for the servers.

WebRTC Session Controller supports additional logging features that provide for SIP
message logging. SIP message logging should be enabled in development
environments only. It is not intended for production environments.

To configure SIP message logging:

1. Expand the SipServer node in the Domain Structure tree.

2. In the Configuration tab, click the Message Debug subtab.

3. Select the Enable Debug check box.

4. Configure other message logging settings as needed. Other settings include the
logging verbosity level, the log entry pattern, and the target log file name. See the
on-screen field description for more information.

5. Click Save to commit your changes.

6. Restart the WebLogic server.

Startup Sequence for a WebRTC Session Controller Domain

3-12 WebRTC Session Controller System Administrator's Guide

See "Logging SIP Requests and Responses and EDRs" for information about creating
custom log listeners and more information about logging settings.

Startup Sequence for a WebRTC Session Controller Domain
WebRTC Session Controller start scripts use default values for many JVM parameters
that affect performance. For example, JVM garbage collection and heap size
parameters may be omitted, or may use values that are acceptable only for evaluation
or development purposes.

In a production system, you must rigorously profile your applications with different
heap size and garbage collection settings to realize adequate performance. See
"Modifying JVM Parameters in Server Start Scripts" in the chapter for suggestions
about maximizing JVM performance in a production domain.

Because a typical WebRTC Session Controller domain contains numerous Signaling
Engine and SIP call-state storage servers, with dependencies between the different
server types, you should generally follow this sequence when starting up a domain:

1. Start the Administration Server for the domain.

Start the Administration Server to provide the initial configuration to engine
servers in the domain. The Administration Server can also be used to monitor the
startup/shutdown status of each Managed Server.

You generally start the Administration Server by using the startWebLogic.sh or
startWebLogic.cmd script (depending on your operating system) installed with
the Configuration Wizard, or a custom startup script.

2. Start SIP Coherence servers in each partition.

The engine server cannot function until SIP Coherence servers are available to
manage call state data. Although all replicas in each partition need not be available
to begin processing requests, at least one replica in each configured partition must
be available to manage the concurrent call state. All replicas should be started and
available before opening the system to production network traffic.

You generally start each SIP Coherence server by using either the
startManagedWebLogic.cmd script installed with the Configuration Wizard, or a
custom startup script. The startManagedWebLogic.cmd script requires that you
specify the name of the server to start up and the URL of the Administration
Server for the domain. For example:

startManagedWebLogic.cmd datanode0-0 t3://adminhost:7001

3. Start engine servers.

Start Signaling Engine servers and begin processing client requests. Signaling
engine servers are generally started using the startManagedWebLogic.cmd script
or a custom startup script.

Caution: When you configure a domain with multiple Signaling
Engine servers, you must accurately synchronize all system clocks to a
common time source (to within one or two milliseconds) in order for
the SIP protocol stack to function properly. See "Configuring NTP for
Accurate SIP Timers" for more information.

Startup Command Options

Using the Administration Console and WLST 3-13

Following the above startup sequence ensures that all Managed Servers use the latest
SIP Servlet container and SIP Coherence configuration. This sequence also avoids
engine error messages that are generated when SIP call-state storage is unavailable.

Startup Command Options
Table 3–6 lists startup options available to WebRTC Session Controller. For more
information about these and other options, see "WebLogic Server Command-Line
Reference" in the Command Reference for Oracle Weblogic Server documentation.

Supporting Session Rehydration for Device Handover Scenarios
Your customer who is logged in to your application on one device (a cellphone) may
move to another device (a laptop softphone) to continue the same activity in the same
application. The shift of the application session from one device to another occurs due
to the customer’s actions in the personal, local, or wide area network.

The application Session (along with its subsessions) currently active in your
application on one device belonging to your customer becomes active on your
application on another device belonging to the same customer. In order to allow the
same user or tenant to connect with the WSC server using the same WebSocket session
Id, set the startup option allowSessionTransfer to true:

./startWeblogic.sh -DallowSessionTransfer=true

Table 3–6 Startup Command Options

Application Startup Option For More Information

WebRTC Session Controller -Dwlss.udp.listen.on.ephemeral See information about single network
adapter card configurations with TCP
and UDP channels in Oracle WebLogic
Server SIP Container Administrator's
Guide.

WebRTC Session Controller -Dwlss.udp.lb.masquerade See information about single network
adapter card configurations with TCP
and UDP channels in Oracle WebLogic
Server SIP Container Administrator's
Guide.

WebRTC Session Controller -Dweblogic.management.discover See "Restarting an Administration
Server on the Same System" for more
information.

WebRTC Session Controller -Dweblogic.RootDirectory See "Restarting an Administration
Server on Another System" for more
information.

WebRTC Session Controller -DallowSessionTransfer See "Supporting Session Rehydration
for Device Handover Scenarios" for
more information.

WebRTC Session Controller -Doracle.wsc.stats=false See "Monitoring Statistics and
Resource Limits" for more
information.

WebRTC Session Controller -Doracle.wsc.se-me-http=true See "Disabling the HTTPS Setting in
WebLogic Server" for more
information.

Installer -Djava.io.tmpdir See the discussion on temporary disk
space requirements in Installation
Guide for Oracle WebLogic Server in the
WebLogic Server documentation.

Reverting to the Original Boot Configuration

3-14 WebRTC Session Controller System Administrator's Guide

By default, this option is set to false and prevents the WSC server from rehydrating
your application on the target device with the active session transferred from the
original device.

For information about how the application session state information is transferred to
another device, see "Handling Session Rehydration When the User Moves to Another
Device" in WebRTC Session Controller Application Developer’s Guide.

Reverting to the Original Boot Configuration
When you start the Administration Server for a WebRTC Session Controller domain,
the server creates parses the current container configuration in sipserver.xml, and
generates a copy of the initial configuration in a file named sipserver.xml.booted in
the config/custom subdirectory of the domain directory. This backup copy of the
initial configuration is preserved until you next start the server; modifying the
configuration using JMX does not affect the backup copy.

If you modify the SIP Servlet container configuration and later decide to roll back the
changes, copy the sipserver.xml.booted file over the current sipserver.xml file. Then
restart the server to apply the new configuration.

4

Configuring WebRTC Session Controller Authentication 4-1

4Configuring WebRTC Session Controller
Authentication

This chapter describes WebRTC Session Controller authentication schemes and the
steps to configure them.

About WebRTC Session Controller Security Schemes
Before WebRTC Session Controller can process any signaling traffic, you must
configure an authentication scheme.

WebRTC Session Controller provides out of the box support for these authentication
schemes:

■ Guest authentication

This scheme allows anonymous guest access to WebRTC Session Controller.

■ HTTP authentication

This provider sends a HTTP GET request to a remote HTTP endpoint (for instance,
a Representational State Transformation (REST) endpoint) using HTTP BASIC
authentication headers or token-based authentication. A return code of 200
indicates that authentication was successful.

■ OAuth 2.0 authentication

This scheme lets you leverage OAuth 2.0 authentication support provided by
companies such as Facebook or Google, and lets WebRTC Session Controller
retrieve user information such as an email address or phone number, with the
consent of that user.

The following sections describe the configuration steps for each of these authentication
schemes.

About Provisioning WebRTC Session Controller Guest Access
To provision guest access for WebRTC Session Controller, you must configure settings
in the WebLogic Administration Console and then define a new WebRTC Session
Controller application in the WebRTC Session Controller console.

Configuring the WebLogic Server Guest Access Provider
To configure the WebLogic Server guest access provider:

1. Start your Signaling Engine administration server if it is not already running. See
WebRTC Session Controller Installation Guide for more information.

About Provisioning WebRTC Session Controller HTTP Access

4-2 WebRTC Session Controller System Administrator's Guide

2. Navigate to the WebLogic Server Administration Console and log in with your
administrator user name and password:

http://hostname:port/console

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

3. In the Domain Structure pane, select Security Realms.

4. Select myrealm in the Realms table.

5. Select the Providers tab and then click New.

6. Enter a name in the Name text box, in the Type drop down list, select
WscServletAuthenticator, and click OK.

7. Select the newly created authentication provider in the list of Authentication
Providers, and select the Provider Specific tab.

8. Make a note of the Guest Uri Match Pattern. The default is /ws/webrtc/guest.

9. Navigate back to the myrealm Providers tab, and in the list of Authentication
Providers, select DefaultAuthenticator.

10. Select the Common tab and choose a value for the Control Flag.

For information on Control Flag settings, see "Setting the JAAS Control Flag
Option" in Administering Security for Oracle WebLogic Server.

11. Click Save.

12. Log out of the WebLogic administration interface and restart WebRTC Session
Controller.

Continue to "Configuring the WebRTC Session Controller Guest Access Application".

Configuring the WebRTC Session Controller Guest Access Application
In WebRTC Session Controller Administration Console, configure and manage the
tenant application profile for each tenant through the Application Profiles tab.

See "Managing WebRTC Session Controller Application Profiles".

About Provisioning WebRTC Session Controller HTTP Access
To provision HTTP access for WebRTC Session Controller, you must configure settings
in the WebLogic Administration Console and then define a new WebRTC Session
Controller application in the WebRTC Session Controller console.

In addition you must have your own HTTP endpoints defined to handle
authentication and identity assertion requests.

Configuring the WebLogic Server HTTP Authentication Provider
To configure the WebLogic Server HTTP access provider:

Create an entry for the Security provider

Note: The default Administration Console port is 7001.

About Provisioning WebRTC Session Controller HTTP Access

Configuring WebRTC Session Controller Authentication 4-3

1. Start your Signaling Engine servers if they are not already running. See WebRTC
Session Controller Installation Guide for more information.

2. Navigate to the WebLogic Server Administration Console and log in with your
administrator user name and password:

http://hostname:port/console

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

3. In the Domain Structure pane, select Security Realms.

4. Select myrealm in the Realms table.

5. Select the Providers tab and then click New.

6. Enter a name in the Name text box, in the Type drop down list, select
WscRestAuthenticator.

7. Click OK.

Choose a value for the Control Flag

1. From the list of Authentication Providers, select the newly created authentication
provider.

2. Select the Common tab.

3. Choose a value for the Control Flag.

For information on Control Flag settings, see "Setting the JAAS Control Flag
Option" in Administering Security for Oracle WebLogic Server.

Enter the provider-specific configuration values

1. Select the Provider Specific tab.

2. Enter a Group Name to associate a group with authentication requests rather than
individual user names. Make a note of this group name.

3. Enter a Token Name. The token name must match the name of the authentication
token that is sent in the HTTP request parameter.

4. Enter an Authentication End Point Url. A REST endpoint URL that handles
authentication.

5. To enable authentication over http, check Allow Http.

6. In the Forward Header Prefix field, enter the prefix to prepend on header names
when forwarded to the REST service.

7. In the Forward Parameter Names field, enter the HTTP parameters to extract from
HTTP requests and send as query parameters with authenticate and identity
assertion REST requests.

For multitenancy scenarios, enter the tenant key for this tenant. The default
configuration entry is tenant_profile_key. It is included by default in HTTP
requests.

8. In the Identity Asserter End Point Url field, enter a REST endpoint URL that
handles matching the authentication token to a user.

Note: The default Administration Console port is 7001.

About Provisioning WebRTC Session Controller OAuth Access

4-4 WebRTC Session Controller System Administrator's Guide

If a user is found, a JSON string is returned by the REST endpoint with the user’s
credentials. Otherwise an HTTP 401 Forbidden error is returned.

9. In the Forward Header Names field, enter the HTTP headers to extract from HTTP
request and send as headers with authenticate and identity assertion REST
requests.

The extracted header name is prefixed with the value from the Forward Header
Prefix.

Save your configuration and restart WebRTC Session Controller

1. Click Save.

2. Log out of the WebLogic administration interface.

3. Restart WebRTC Session Controller.

Continue to "Configuring the WebRTC Session Controller HTTP Access Application".

Configuring the WebRTC Session Controller HTTP Access Application
In WebRTC Session Controller Administration Console, configure and manage the
tenant application profile for each tenant through the Application Profiles tab.

See "Managing WebRTC Session Controller Application Profiles".

About Provisioning WebRTC Session Controller OAuth Access
To provision OAuth access for WebRTC Session Controller, you must configure
settings in the WebLogic Administration Console and then define a new WebRTC
Session Controller application in the WebRTC Session Controller console.

In addition you must procure a developer's account from the provider from whom you
want to leverage OAuth authentication services and obtain the following information:

■ The OAuth service provider's OAuth user information URL

■ An OAuth client ID supplied to you by the OAuth service provider

■ The service provider's OAuth server URL

■ Your OAuth client secret, defined when you create your account with your OAuth
service provider

Following the general OAuth configuration steps, two specific OAuth configuration
examples are provided:

■ Example: Configuring Facebook OAuth Authentication

■ Example: Configuring Google OAuth Authentication

Note: If authentication is successful, and if the response body
returned by the remote HTTP endpoint is valid JSON formatted data,
WebRTC Session Controller normalizes the JSON data as a Java Map
and embeds this normalized data as credential information in the
authenticated subject. That credential information is accessible in the
groovy layer, enabling you to use it to build a credential map for the
SIP Register request.

About Provisioning WebRTC Session Controller OAuth Access

Configuring WebRTC Session Controller Authentication 4-5

Configuring the WebLogic Server OAuth Access Provider
To configure the WebLogic Server OAuth access provider:

Create an entry for the OAuth Security provider

1. Start your Signaling Engine servers if they are not already running. See WebRTC
Session Controller Installation Guide for more information.

2. Navigate to the WebLogic Server Administration Console and log in with your
administrator user name and password:

http://hostname:port/console

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

3. In the Domain Structure pane, select Security Realms.

4. Select myrealm in the Realms table.

5. Select the Providers tab and then click New.

6. Enter a name in the Name text box, in the Type drop down list, select
WscServletAuthenticator, and click OK.

The console creates the new provider and returns to the Authentication Providers
table.

7. Click New.

8. Enter a name in the Name text box, in the Type drop down list, select
WscOAuthIdentityAsserter, and click OK.

9. Click OK.

Enter the Access Token for the Provider

1. From the list of Authentication Providers, select the newly created authentication
provider.

2. From the set of Available tokens under Active Types, select an authentication
token to assign as access token to the provider in Active Types and click Save.

a. From the set of Available tokens under Active Types, select the authentication
token.

b. To move the selected token to the Chosen field, click the double arrow
pointing to that field.

Note: The default Administration Console port is 7001.

Note: The WscServletAuthenticator must be deployed to enable
OAuth security authentication, but it requires no further
configuration.

WARNING: The user interface will let you select multiple OAuth
tokens for a single provider. Only select a single token for each
OAuth provider you provision.

About Provisioning WebRTC Session Controller OAuth Access

4-6 WebRTC Session Controller System Administrator's Guide

3. Click Save.

(If you are provisioning multiple OAuth authentication sources, for example,
Facebook, Google, and Microsoft, you should select a different OAuth token for each
authentication source from the Active Types list.)

Enter the provider-specific configuration values

1. Select the Provider Specific tab.

2. Enter the information specific to this provider, as described in Table 4–1.

Save your configuration and restart WebRTC Session Controller

1. Click Save.

2. Log out of the WebLogic administration interface.

3. Restart WebRTC Session Controller.

Continue to "Configuring the WebRTC Session Controller OAuth Access Application".

Configuring the WebRTC Session Controller OAuth Access Application
In WebRTC Session Controller Administration Console, configure and manage the
tenant application profile for each tenant through the Application Profiles tab.

See "Managing WebRTC Session Controller Application Profiles".

Table 4–1 OAuth Provider Specific Attributes

Attribute Name Attribute Description

Group Name Required. A group name used to associate a group with
authentication requests. Specifying a group name allows
both the user name and group name to be available in the
authenticated subject. Make a note of this group name.

Fields As User Name Required. Determines which OAuth provider resources are
used as principal names. Multiple entries are separated by
commas. If the first entry returns nothing, then the second
entry is used, continuing down the list.

OAuth Redirect Url Optional. The URI to which the browser is re-directed after
successful authentication by the OAuth provider.

Proxy Server Optional. The proxy URI used to connect to the OAuth
server.

OAuth Client Secret Required. The OAuth client secret provided to you by your
OAuth provider.

OAuth Client ID Required. The OAuth client ID provided to you by your
OAuth service provider.

Proxy Port Optional. The proxy port used to connect to the OAuth
server.

OAuth Server Url Required. The URI of your OAuth service provider's OAuth
server which issues access tokens.

OAuth User Info Url Required. The OAuth providers URI that provides user
information.

How Authentication Schemes Work in Multitenancy Scenarios

Configuring WebRTC Session Controller Authentication 4-7

How Authentication Schemes Work in Multitenancy Scenarios
Before you proceed, please review the description about multitenancy in WebRTC
Session Controller in the section, "About Multitenancy".

In general, your SaaS applications authenticate the users of a tenant according to their
proprietary mechanisms. After a user is successfully authenticated, the SaaS
application generates a token for the authenticated user. The user presents the token
(using the client SDKs) to access WebRTC Session Controller resources. To validate the
token, WebRTC Session Controller accesses a REST service.

WebRTC Session Controller does the following:

■ Basic Authentication HTTP request

When a Basic Authentication HTTP request arrives, WebRTC Session Controller
extracts the user name, password, any optional query parameters and headers
enabled for forwarding in Forward Header Names and Forward Parameter
Names fields. (The tenant key is the value entered in the Forward Parameter
Names field).

WscRestAuthenticator makes a REST request to the URL specified in the
Authentication End Point Url field by using:

– The enabled forward parameters as query parameters

– The enabled forward headers as HTTP headers with the header name prefixed
with the value from forward header prefix field

– The user name and password as basic authentication credentials

■ HTTP request with a query parameter

When an HTTP request with a query parameter arrives with the name specified in
the Token Name field, this parameter is inserted by a servlet filter in the provider
as HTTP header under the name RestAccessAuthToken to have identity assertion
invoked.

■ When an HTTP request arrives with an HTTP header named
RestAccessAuthToken, WebRTC Session Controller extracts the user name,
password, any optional query parameters and headers enabled for forwarding in
Forward Header Names and Forward Parameter Names fields. (The tenant key is
the value entered in the Forward Parameter Names field).

WscRestAuthenticatorl makes a REST request to the URL specified in the Identity
Asserter End Point Url field by using:

– The enabled forward headers as HTTP headers with the header name prefixed
with the value from the Forward Header Prefix field.

– The enabled forward parameters as query parameters together with a "token"
parameter with the value from the RestAccessAuthToken header

■ When either authentication request or identity assertion REST request completes
successfully, principals with the value from the Group Name field are added to
the subject together with a public credential map object containing the credentials
returned by the REST server as a JSON formatted response. For authentication
requests, the user name is also added as a subject principal.

About the Default REST Request Format
Example 4–1 shows a Basic authenticated HTTP request for user "wsc1" and with and
without tenant profile key parameter included:

How Authentication Schemes Work in Multitenancy Scenarios

4-8 WebRTC Session Controller System Administrator's Guide

Example 4–1 Basic Authenticated HTTP Request

For a user "wsc1" and no tenant profile key parameter included:

GET /authenticate/basic HTTP/1.1\r\n
Content-Type: application/json\r\n
Accept: application/json\r\n
Authorization: Basic wsc1:d2VsY29tZTE=\r\n
Host: localhost:8190\r\n
...

For a user "wsc1token" with "tenant1" as the tenant profile key parameter:

GET /authenticate/basic?tenant_profile_key=tenant1 HTTP/1.1\r\n
Content-Type: application/json\r\n
Accept: application/json\r\n
Authorization: Basic wsc1:d2VsY29tZTE=\r\n
Host: localhost:8190\r\n
...

Example 4–2 shows an Identity asserted HTTP request for user "wsc1" and no tenant
profile key parameter included:

Example 4–2 Identity Asserted HTTP Request

For user "wsc1" and no tenant profile key parameter included:

GET /authenticate/basic?token=wsc1token HTTP/1.1\r\n
Content-Type: application/json\r\n
Accept: application/json\r\n
Host: localhost:8190\r\n
...

For user "wsc1token" with "tenant1" as the tenant profile key parameter:

GET /authenticate/token?token=wsc1token&tenant_profile_key=tenant1 HTTP/1.1\r\n
Content-Type: application/json\r\n
Accept: application/json\r\n
Host: localhost:8190\r\n

Working with Custom and WebLogic LDAP Security Providers
If you employ a custom security provider, ensure that you provide the tenant key and
the necessary logic to process the requests. You can also make use of
ServletAuthenticationFilter to perform pre- and post-processing for authentication
functions, including identity assertion.

For more information on ServletAuthenticationFilter, see the description about
"Servlet Authentication Filters" in Fusion Middleware Developing Security Providers for
Oracle WebLogic Server.

If you employ the WebLogic LDAP security provider, ensure that your implementation
isolates the stores for each tenant. To do so, use the following workarounds:

■ Configure multiple authentication providers. Additionally configure the control
flag as sufficient in the WebLogic Admin Server.

■ Create a separate domain for each tenant.

Example: Configuring Facebook OAuth Authentication

Configuring WebRTC Session Controller Authentication 4-9

Example: Configuring Facebook OAuth Authentication
This example outlines the steps to follow to configure OAuth authentication using
Facebook as an OAuth authentication provider.

Configure a Facebook Authentication App
To configure a Facebook authentication app:

1. Login to http://developers.facebook.com.

2. Click the Apps menu and then click Add a New App.

3. Choose a platform.

4. Enter a name for your app.

5. Click Create New Facebook App ID.

6. Choose a category from the Category drop down list and click Create App ID.

7. Click Skip Quick Start.

8. Click the Settings in the left panel and copy the App ID and the App Secret to a
scratch file for future reference.

9. Add a Contact Email and click Save Changes.

10. Click Add Platform then click Website, enter the URL and port for your site, and
click Save Changes.

11. Click Status & Review in the left panel, and in the Status tab set the switch
adjacent the label Do you want to make this app and all its live features available to the
general public? to YES. Click the Confirm button when prompted.

Configure the Facebook WebRTC Session Controller OAuth Authentication Provider
To configure a Facebook WebRTC Session Controller OAuth authentication provider:

1. Start your Signaling Engine servers if they are not already running. See WebRTC
Session Controller Installation Guide for more information.

2. Navigate to the WebLogic Server Administration Console and log in with your
administrator user name and password:

http://hostname:port/console

Note: You must have a Facebook and be registered a Facebook or
application developer before you can configure OAuth authentication
as described in this example.

Note: You must authenticate your Facebook account to display the
App Secret.

Note: Facebook does not accept IP addresses. You must use a
domain name.

Example: Configuring Facebook OAuth Authentication

4-10 WebRTC Session Controller System Administrator's Guide

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

3. In the Domain Structure pane, select Security Realms.

4. Select myrealm in the Realms table.

5. Select the Providers tab and then click New.

6. Enter a name in the Name text box, in the Type drop down list, select
WscServletAuthenticator, and click OK.

The console creates the new provider and returns to the Authentication Providers
table.

7. Click New.

8. Enter a name for the provider in the Name text box, in the Type drop down list,
select WscOAuthIdentityAsserter, and click OK.

9. Select the newly created authentication provider in the list of Authentication
Providers.

10. Assign an access token to the provider in Active Types and click Save.

11. Select the Provider Specific tab and enter the following information as described in
Table 4–2.

Note: The default Administration Console port is 7001.

Note: The WscServletAuthenticator must be deployed to enable
OAuth security authentication, but it requires no further
configuration.

WARNING: The user interface will let you select multiple OAuth
tokens for a single provider. Only select a single token for the
Facebook OAuth provider. Note that each OAuth provider you
provision must have a separate and distinct OAuth token.

Table 4–2 OAuth Provider Specific Attributes

Attribute Name Attribute Description

Group Name This should be set to the value you entered in step 8.

OAuth User Info Url Leave this set to the default,
https://graph.facebook.com/me?.

Proxy Port Set the Proxy Port to 80.

OAuth Client ID Enter the App ID from your Facebook App configuration.

OAuth Server Url Leave this set to the default,
https://graph.facebook.com/oauth/access_token.

OAuth Redirect Url Set this to the redirect URL you provided when creating
your Facebook App.

Fields As User Name Leave this set to the default.

Example: Configuring Google OAuth Authentication

Configuring WebRTC Session Controller Authentication 4-11

12. Click Save.

13. Log out of the WebLogic administration interface and restart WebRTC Session
Controller.

Continue to "Configuring the WebRTC Session Controller OAuth Access Application".

Example: Configuring Google OAuth Authentication
This example outlines the steps to follow to configure OAuth authentication using
Google as an OAuth authentication provider.

Configure a Google Authentication Project
To configure a Google authentication project:

1. Login to https://console.developers.google.com/project.

2. Click the Create Project.

3. Enter a Project Name and a Project ID, and click Create.

4. Click APIs & auth in the left panel and then click Credentials.

5. In the right panel, click Create new Client ID and then click Configure consent
screen.

6. Choose an email address and enter a Product Name. Fill in any other information
you require and click Save.

7. In the Create Client ID dialog, choose Web application for the Application Type.

8. In Authorized JavaScript Origins, enter the URI and port for your WebRTC Session
Controller application, and in Authorized Redirect URI enter the URI to use for
authentication redirects.

9. Click Create Client ID.

10. Once the Client ID is created, copy the Client ID and the Client Secret to a scratch
file for future reference

Configure the Google WebRTC Session Controller OAuth Authentication Provider
To configure a Google WebRTC Session Controller OAuth authentication provider:

OAuth Client Secret Enter the App Secret from your Facebook App
configuration.

Proxy Server Enter the URI of your proxy server.

Note: You must have a Google Gmail account and be registered as a
Google application developer before you can configure OAuth
authentication as described in this example.

Note: Google does not accept IP addresses. You must use a domain
name.

Table 4–2 (Cont.) OAuth Provider Specific Attributes

Attribute Name Attribute Description

Example: Configuring Google OAuth Authentication

4-12 WebRTC Session Controller System Administrator's Guide

1. Start your Signaling Engine servers if they are not already running. See WebRTC
Session Controller Installation Guide for more information.

2. Navigate to the WebLogic Server Administration Console and log in with your
administrator user name and password:

http://hostname:port/console

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

3. In the Domain Structure pane, select Security Realms.

4. Select myrealm in the Realms table.

5. Select the Providers tab and then click New.

6. Enter a name in the Name text box, in the Type drop down list, select
WscServletAuthenticator, and click OK.

The console creates the new provider and returns to the Authentication Providers
table.

7. Click New.

8. Enter a name for the provider in the Name text box, in the Type drop down list,
select WscOAuthIdentityAsserter, and click OK.

9. Select the newly created authentication provider in the list of Authentication
Providers.

10. Assign an access token to the provider in Active Types and click Save.

11. Select the Provider Specific tab and enter the following information as described in
Table 4–3.

Note: The default Administration Console port is 7001.

Note: The WscServletAuthenticator must be deployed to enable
OAuth security authentication, but it requires no further
configuration.

WARNING: The user interface will let you select multiple OAuth
tokens for a single provider. Only select a single token for the
Facebook OAuth provider. Note that each OAuth provider you
provision must have a separate and distinct OAuth token.

Table 4–3 OAuth Provider Specific Attributes

Attribute Name Attribute Description

Group Name This should be set to the value you entered in step 8.

OAuth User Info Url Set this to
https://www.googleapis.com/oauth2/v1/userinfo.

Proxy Port Set this to 80.

OAuth Client ID Enter the Client ID from your Google project configuration.

About Post-Authentication Redirection

Configuring WebRTC Session Controller Authentication 4-13

12. Click Save.

13. Log out of the WebLogic administration interface and restart WebRTC Session
Controller.

Continue to "Configuring the WebRTC Session Controller OAuth Access Application".

About Post-Authentication Redirection
In certain cases, you may want to implement a two stage authentication workflow for
your WebRTC Session Controller application. In a two stage authentication workflow,
once a user has been authenticated by a standard authentication method (HTTP,
OAuth or WebLogic in the case of WebRTC Session Controller), an additional separate
authentication method is invoked. That separate authentication method usually takes
the form of a one-time password which is delivered to the user either by email or short
message (SMS). Once the one-time password is dispatched to the user, the user is
redirected to a separate authentication web page where the one-time password is
validated. After validation, the second stage authentication is usually skipped on
subsequent logins.

In order to support two stage authentication, WebRTC Session Controller provides a
Groovy script library function, validateAuthenticatedUser.

About the validateAuthenticatedUser Function
The validateAuthenticatedUser function lets you evaluate a user’s HTTP request
details such as request parameters and cookies, and provide redirection to a web page
if required based upon those details.

See "Editing validateAuthenticatedUser" for details on accessing and updating the
validateAuthenticatedUser function.

OAuth Server Url Set this to https://accounts.google.com/o/oauth2/token.

OAuth Redirect Url Set this to the redirect URL you provided when creating
your Google project.

Fields As User Name Leave this set to the default.

OAuth Client Secret Enter the Client Secret from your Google project
configuration.

Proxy Server Enter the URI of your proxy server.

Note: WebRTC Session Controller does not provide facilities for
one-time password generation and authentication. Such a system
must be implemented by you according to your requirements.

Note: While the validateAuthenticatedUser function is defined in
the WebRTC Session Controller Script Library it must be implemented
as per your system requirements. The default function logic is only for
purposes of illustration.

Table 4–3 (Cont.) OAuth Provider Specific Attributes

Attribute Name Attribute Description

About Post-Authentication Redirection

4-14 WebRTC Session Controller System Administrator's Guide

Syntax
The validateAuthenticatedUser function has the following syntax:

void validateAuthenticatedUser(final HttpFilterContext httpFilterContext)

The HttpFilterContext class includes methods that return: parts of the request URL,
the client’s IP address, the authenticated subject, a Map of HTTP request parameters,
and a Map of request cookies. It also has methods that redirect the client to a specified
URL, log out of the current session, and so on. For a complete description of the
HttpFilterContext class, see the Oracle Communications WebRTC Session Controller
Configuration API Reference.

Example
Example 4–3 illustrates a simple validateAuthenticatedUser implementation as well
as the use of some HttpFilterContext methods.

Example 4–3 validateAuthenticatedUser

void validateAuthenticatedUser(final HttpFilterContext httpFilterContext) {

 def loginCookie = httpFilterContext.cookies.WSC_LOGIN_COOKIE
 def tempCookieValue = "temp_session_cookie";
 if (tempCookieValue != loginCookie) {
 httpFilterContext.redirect('/test/sample');
 httpFilterContext.logOut('/test/newpage');
 httpFilterContext.addCookie(loginCookie, tempCookieValue);
 }

The function executes in the following manner:

1. The login cookie is retrieved from the httpFilterContext.cookies.WSC_LOGIN_
COOKIE and stored in loginCookie.

2. An additional cookie is defined for the current session.

3. The cookie created for the current session is compared to the login cookie.

4. If the cookies match, no redirection occurs.

5. If the cookies do not match, the function sets the redirect and logout URLs and
copies the session’s cookie value to the login cookie.

6. Upon the user’s second access attempt, the session cookie and the login cookie
will match, and no redirection will occur.

That example uses custom cookies to track if this is the first login for a specific user.
The cookie is reset when the browser restarts, which means that the user’s next login
will trigger a new redirect. To prevent continual redirects, you will need to flag a user
as successfully authenticated in a persistent manner. For example, you can base the
decision to redirect on an additional metadata comparison against the
AUTHENTICATED_SUBJECT.

Editing validateAuthenticatedUser
To edit the validAuthenticatedUser function:

Note: Such support requires additional custom integration with the
security provider.

About Post-Authentication Redirection

Configuring WebRTC Session Controller Authentication 4-15

1. Navigate to the WebRTC Session Controller console and log in with your
administrator user name and password:

http://hostname:port/wsc-console

where hostname is the name of your WebRTC Session Controller server and port is
the Administration Console access port.

2. Select the Script Library tab.

3. Click Edit.

4. Edit the function validateAuthenticatedUser as required for your needs.

5. Click Validate Library to make sure you have not introduced any errors.

6. Click Save to save your changes to the Script Library.

Note: The default Signaling Engine console port is 7001.

About Post-Authentication Redirection

4-16 WebRTC Session Controller System Administrator's Guide

5

Configuring WebRTC Session Controller Diameter Rx to PCRF Integration 5-1

5Configuring WebRTC Session Controller
Diameter Rx to PCRF Integration

This chapter describes how to integrate Oracle Communications WebRTC Session
Controller with a Diameter Rx Policy Control and Charging Rules Function (PCRF)
server.

About the WebRTC Session Controller Rx Interface
You can use WebRTC Session Controller to enforce media and Quality of Service (QoS)
policies by integrating with a PCRF using the Diameter Rx interface. The Diameter Rx
interface includes session information and access charging identifiers that both your
PCRF and WebRTC Session Controller implementation can use to enforce QoS limits.

See the chapter on using policy data in messages and the appendix section on
Diameter Rx Protocol support in WebRTC Session Controller Extension Developer's Guide
for more information on supported commands, requests and answers.

Overview of Diameter Rx Protocol Configuration
WebRTC Session Controller domain includes support for the Diameter base protocol
and the IMS Diameter Rx interface deployed to engine servers that act as Diameter
client nodes. SIP Servlets deployed on the engines can use the available Diameter
application to initiate requests for PCRF functions.

Installing the Diameter Domain Template
You enable Diameter Rx functionality by extending an existing WebRTC Session
Controller domain with the appropriate WebRTC Session Controller Diameter domain
template JAR file located in:

Middleware_Home/wlserver/common/templates/wls directory

where Middleware_Home is the directory where you installed WebRTC Session
Controller.

Domain template files are provided for both basic domain and replicated domain
configurations. Use the wsc_diameter_basicdomain.jar when updating basic domains
and the wsc_diameter_replicateddomain.jar when updating replicated domains.

To upgrade an existing domain with the Diameter Domain template:

1. Log on to the host where you installed WebRTC Session Controller.

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol

5-2 WebRTC Session Controller System Administrator's Guide

2. Navigate to the Middleware_Home/common/bin directory where Middleware_Home
is the location where you installed WebRTC Session Controller.

3. Start the Fusion Middleware Configuration Wizard with ./config.sh.

4. On the Configuration Type wizard screen, select Update an existing domain.

5. In the Domain Location, enter the path to the domain directory of the domain you
are updating. Alternatively, click Browse to browse to and select the location.

6. Click Next.

7. In the Templates wizard screen, select Update Domain Using Custom Template.

8. Click Browse.

9. Browse to and select the Middleware_Home/wlserver/common/templates/wls
directory.

10. Click Open.

11. Select either the wsc_diameter_basicdomain.jar or wsc_diameter_
replicateddomain.jar template file corresponding to your domain.

12. Click OK.

13. Click Next.

14. Adjust any properties in the Advance Configuration wizard screen if needed.

15. Click Next.

16. In the Configuration Summary wizard screen click Update.

17. Click Next when the update is done.

18. Click Finish to exit the wizard.

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol
The WebRTC Session Controller Diameter implementation supports the Diameter
protocol over the TCP, TLS, and SCTP transport protocols. (SCTP transport is provided
with certain restrictions as described in "Configuring and Using SCTP for Diameter
Messaging".)

To enable incoming Diameter connections on a server, you must configure a dedicated
network channel of the appropriate protocol type:

■ diameter channels use TCP transport

■ diameters channels use TCP/TLS transport

■ diameter-sctp channels use TCP/SCTP transport.

Servers that use a TCP/TLS channel for Diameter (diameters channels) must also
enable two-way SSL. WebRTC Session Controller may automatically upgrade
Diameter TCP connections to use TLS as described in the Diameter specification (RFC
3558).

To configure a TCP or TCP/TLS channel for use with the Diameter provider:

1. Access the Administration Console for the WebRTC Session Controller domain.

2. Click Lock & Edit to obtain a configuration lock.

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol

Configuring WebRTC Session Controller Diameter Rx to PCRF Integration 5-3

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in
the Administration Console Online Help for more information.

3. In the Domain Structure tree, expand Environment.

4. Click Servers.

5. In the Servers table, select the server to configure.

6. Select the Protocols tab, and then select the Channels subtab to display the
configured channels.

7. Click New to configure a new channel.

8. Fill in the fields of the Identity Properties page as follows:

■ Name: Enter an administrative name for this channel, such as "Diameter
TCP/TLS Channel."

■ Protocol: Select diameter to support the TCP transport, diameters to support
both TCP and TLS transports, or diameter-sctp to support TCP transport.

9. Click Next to continue.

10. Fill in the fields of the Network Channel Addressing page as follows:

■ Listen Address: Enter the IP address or DNS name for this channel. On a
multi-homed system, enter the exact IP address of the interface you want to
configure, or a DNS name that maps to the exact IP address.

■ Listen Port: Enter the port number used to communication through this
channel. Diameter nodes conventionally use port 3868 for incoming
connections.

■ External Listen Address: The external IP address or DNS name for this
channel.

■ External Listen Port: Re-enter the Listen Port value.

11. Click Next to continue.

12. Chose attributes in the Network Channel Properties page as follows:

■ Enabled: Select this attribute to ensure that the new channel accepts network
traffic.

■ Tunneling Enabled: Un-check this attribute for Diameter channels.

■ HTTP Enabled for this Protocol: Un-check this attribute for Diameter
channels.

■ Outbound Enabled: Select this attribute to ensure that the node can initiate
Diameter messages using the channel.

13. Click Next to continue.

14. For diameters channels, select the following two attributes:

■ Two Way SSL Enabled: Two-way SSL is required for TLS transport.

Note: If a server configures at least one TLS channel, the server
operates in TLS mode and will reject peer connections from nodes that
do not support TLS (as indicated in their capabilities exchange).

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol

5-4 WebRTC Session Controller System Administrator's Guide

■ Client Certificate Enforced: Select this attribute to honor available client
certificates for secure communication.

15. Click Finish to create the new channel.

16. Select the name of the newly-created channel in the Network Channels table.

17. Display the advanced configuration items for the newly-created channel by
expanding the Advanced link.

18. Change the Idle Connection Timeout value from the default (65 seconds) to a
larger value that will ensure the Diameter connection remains consistently
available.

19. Click Save.

20. Click Activate Changes.

Configuring Two-Way SSL for Diameter TLS Channels
Diameter channels that use TLS (diameters channels) require that you also enable
two-way SSL, which is disabled by default. If you have not already configured
Two-Way SSL, see "Configuring SSL" in Administering Security for Oracle WebLogic
Server for more information.

Configuring and Using SCTP for Diameter Messaging
SCTP is a reliable, message-based transport protocol that is designed for use in
telephony networks. SCTP provides several benefits over TCP:

■ SCTP preserves the internal structure of messages when transmitting data to an
endpoint, whereas TCP transmits raw bytes that must be received in order.

■ SCTP supports multihoming, where each endpoint may have multiple IP
addresses. The SCTP protocol can transparently failover to another IP address
should a connection fail.

■ SCTP provides multistreaming capabilities, where multiple streams in a
connection transmit data independently of one another.

WebRTC Session Controller supports SCTP for Diameter network traffic, with several
limitations:

■ Only 1 stream per connection is currently supported.

■ Use SCTP only for Diameter network traffic; SIP traffic cannot use a configured
SCTP channel.

■ TLS is not supported over SCTP.

SCTP channels can operate on either IPv4 or IPv6 networks. "Creating TCP, TLS, and
SCTP Network Channels for the Diameter Protocol" describes how to create a SCTP
channel. To enable multihoming capabilities for an existing SCTP channel, specify the
IPv4 address 0.0.0.0 as the listen address for the channel (or use the :: address for IPv6
networks).

Note: If you do not change the default value, the Diameter
connection will be dropped and recreated every 65 seconds with idle
traffic.

Configuring Diameter Nodes

Configuring WebRTC Session Controller Diameter Rx to PCRF Integration 5-5

Configuring Diameter Nodes
The Diameter node configuration for WebRTC Session Controller engines is specified
in the diameter.xml configuration file, which is located in the directory: Middleware_
Home/user_projects/domains/domain_name/config/custom

Where Middleware_Home is the directory in which the WebRTC Session Controller
software is installed (the installation program used to install WebRTC Session
Controller refers to this as Middleware Home), and domain_name is the name of the
Diameter domain.

To provide diameter services on an engine server, you must create a Diameter node
configuration and target the configuration to an existing engine server instance.

Diameter node configurations are divided into several categories:

■ General configuration defines the host identity and realm for the node, and basic
connection information and default routing behavior.

■ Application configuration defines the Diameter application(s) that run on the
node, and any optional configuration parameters passed to those applications.

■ Peer configuration defines the other Diameter nodes with which this node
operates.

■ Routes configuration defines realm-based routes that the node can use when
resolving messages.

The sections that follow describe how to configure each aspect of a Diameter node.

Creating a New Node Configuration (General Node Configuration)
Follow these steps to create a Diameter node configuration and target it to an existing
WebRTC Session Controller engine instance:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in
the Administration Console Online Help for more information.

3. In the Domain Structure tree, select Diameter.

4. Click New in the right pane to create a Diameter configuration.

5. Fill in the fields of the Create a New Configuration page as described in Table 5–1,
then click Finish.

Table 5–1 Diameter Node General Configuration Properties

Property
Name Description

Name Enter the administrative name for this Diameter node configuration.

Configuring Diameter Nodes

5-6 WebRTC Session Controller System Administrator's Guide

Host Enter the host identity of this Diameter node, or leave the field blank to
automatically assign the host name of the target engine server as the
Diameter node's host identity. The host identity may or may not match the
DNS name.

When configuring Diameter support for multiple client nodes, it is best to
omit the host element from the diameter.xml file. This omission enables you
to deploy the same Diameter web Application to all servers in the engine
cluster, and the host name is dynamically obtained for each server instance.

Realm Enter the realm name for which this node has responsibility, or leave the field
blank to use the domain name portion of the target engine server's
fully-qualified host name (for example, host@oracle.com).

You can run multiple Diameter nodes on a single host using different realms
and listen port numbers.

Note: An HSS, Application Server, and relay agents must all agree on a realm
name or names. The realm name for the HSS and Application Server need not
match.

Address Enter the listen address for this Diameter node, using either the DNS name or
IP address, or leave the field blank to use the host identity as the listen
address.

Note: The host identity may or may not match the DNS name of the Diameter
node. Oracle recommends configuring the Address property with an explicit
DNS name or IP address to avoid configuration errors.

TLS Select this option if the Diameter node is configured with support for TLS
(diameters network channels). This field advertises TLS capabilities when the
node is interrogated by another Diameter node.

Debug Select this option to enable debug message output. Debug messages are
disabled by default.

Dynamic
Peers Allowed

Select this option to allow dynamic discovery of Diameter peer nodes.
Dynamic peer support is disabled by default. Oracle recommends enabling
dynamic peers only when using the TLS transport, because no access control
mechanism is available to restrict hosts from becoming peers.

Peer Retry
Delay

Enter the amount of time, in seconds, this node waits before retrying a
request to a Diameter peer. The default value is 30 seconds.

Request
Timeout

Enter the amount of time, in milliseconds, this node waits for an answer
message before timing out.

Watchdog
Timeout

Enter the number of seconds this node uses for the value of the Diameter Tw
watchdog timer interval.

Targets Enter one or more target engine server names. The Diameter node
configuration only applies to servers listed in this field.

Default Route
Action

Specify an action type that describes the role of this Diameter node when
using a default route. The value of this element can be one of the following:

■ none

■ local

■ relay

■ proxy

■ redirect

Default Route
Servers

Specifies one or more target servers for the default route. Any server you
include in this element must also be defined as a peer to this Diameter node,
or dynamic peer support must be enabled.

Table 5–1 (Cont.) Diameter Node General Configuration Properties

Property
Name Description

Configuring Diameter Nodes

Configuring WebRTC Session Controller Diameter Rx to PCRF Integration 5-7

6. Click Finish.

7. Click Activate Changes to apply the configuration to target servers.

After creating a general node configuration, the configuration name appears in the list
of Diameter nodes. You can select the node to configure Diameter applications, peers,
and routes, as described in the sections that follow.

Configuring Diameter Applications
Each Diameter node can deploy one or more applications. To configure Diameter Rx
applications:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in
Administration Console Online Help for more information.

3. In the Domain Structure tree, select Diameter.

4. In the Diameter Configurations table, select the name of a Diameter node
configuration.

5. Select the Applications tab.

6. Click New to configure a new Diameter application, or select an existing
application configuration from the table.

7. Fill in the application properties as follows:

■ Application Name: Enter a name for the application configuration.

■ Class Name: Enter the classname of the application to deploy on this node.

■ Parameters: Enter optional parameters to pass to the application upon startup.

8. Click Finish to create the new application configuration.

9. Click Activate Changes to apply the configuration to the Diameter node.

Configuring the Rx Client Application
The WebRTC Session Controller Rx client application enables SIP Servlets to issue
PCRF messages using the IMS Rx interface. To configure the Rx application, specify
the class com.bea.wcp.diameter.charging.RxApplication.

See the chapter on using policy data in messages in WebRTC Session Controller
Extension Developer's Guide for more information about using the Rx application API in
deployed applications.

Configuring Peer Nodes
A Diameter node should define peer connection information for each other Diameter
node in the realm, or enable dynamic peers in combination with TLS transport to
allow peers to be recognized automatically.

To configure Diameter Peer Nodes:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

Configuring Diameter Nodes

5-8 WebRTC Session Controller System Administrator's Guide

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in
Administration Console Online Help for more information.

3. In the Domain Structure tree, select Diameter.

4. In the Diameter Configurations table, select the name of a Diameter node
configuration you want to add a peer to.

5. Select the Peers tab.

6. Click New to define a new peer entry.

7. Fill in the fields of the Create a New Peer page as follows:

■ Host: Enter the peer node's host identity.

■ Address: Enter the peer node's address (DNS name or IP address).

■ Port Number: Enter the listen port number of the peer node.

■ Protocol: Select the protocol used to communicate with the peer (TCP or
SCTP).

■ Watchdog: Indicate whether the peer supports the Diameter Tw watchdog
timer interval.

8. Click Finish to create the new peer entry.

9. Click Activate Changes to apply the configuration.

Configuring Routes
Certain Diameter nodes, such as relays, should configure realm-based routes for use
when resolving Diameter messages. You configure Diameter routes in the
Administration Console.

To configure Diameter routes:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in
the Administration Console Online Help for more information.

3. In the Domain Structure tree, select Diameter.

4. In the Diameter Configurations table, select the name of a Diameter node you
want to configure a route for.

5. Select the Routes tab.

6. Click New to configure a new Route.

Note: WebRTC Session Controller attempts to connect to the peer
using only the protocol you specify (TCP or SCTP). The other protocol
is not used, even if a connection fails using the selected protocol. TCP
is used as by default if you do not specify a protocol.

Troubleshooting Diameter Configurations

Configuring WebRTC Session Controller Diameter Rx to PCRF Integration 5-9

7. Fill in the fields of the Create a New Route page as follows:

■ Name: Enter an administrative name for the route.

■ Realm: Enter the target realm for this route.

■ Application ID: Enter the target Diameter application ID for this route.

■ Action: Select an action that this node performs when using the configured
route. The action type may be one of: none, local, relay, proxy, or redirect.

■ Server Names: Enter the names of target servers that will use the route.

8. Click Finish to create the new route entry.

9. Click Activate Changes to apply the configuration.

Troubleshooting Diameter Configurations
SIP Servlets deployed on WebRTC Session Controller use the available Diameter
applications to initiate requests for PCRF information. If a SIP Servlet performing these
requests generates an error similar to:

Failed to dispatch Sip message to servlet ServletName
java.lang.IllegalArgumentException: No registered provider for protocol: Protocol

The message may indicate that you have not properly configured the associated
Diameter application for the protocol. See "Configuring Diameter Applications" for
more information.

If you experience problems connecting to a Diameter peer node, verify that you have
configured the correct protocol for communicating with the peer in "Configuring Peer
Nodes". Be aware that WebRTC Session Controller tries only the protocol you specify
for the peer configuration (or TCP if you do not specify a protocol).

Troubleshooting Diameter Configurations

5-10 WebRTC Session Controller System Administrator's Guide

6

Configuring WebRTC Session Controller Container Properties 6-1

6Configuring WebRTC Session Controller
Container Properties

This chapter describes how to configure SIP container features in the engine of an
Oracle Communications WebRTC Session Controller deployment.

Configure General SIP Application Server Properties
Loading SIP applications to the WebRTC Session Controller in the Administration
Console is similar to loading any application to WebLogic server. You use the
Deployments page in the Administration Console to load, update, or remove an
application or module.

The WebRTC Session Controller defines general settings that apply to all SIP
applications. Before deploying applications to the WebRTC Session Controller, you
should verify and modify the default values for the general settings. You can configure
the general settings in the SIP Server page of the Administration Console.

To configure general SIP application server properties:

1. Open the Administration Console for your domain.

2. Click the SipServer link in the Domain Structure pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring WebRTC Session Controller. By default, the General
configuration page appears.

3. Use the fields in the General sub tab of the Configuration tab to configure the
general settings applicable to serving SIP applications.

Among the settings that determine common application handling are:

■ The default servlet invoked if a specific servlet is not identified for a request
based on the servlet mapping rules.

■ Timer values. See "Configuring Timer Processing" for more information.

■ Header handling settings.

■ Application session settings.

For details, see the on-screen field descriptions in the Administration Console.

4. Click Save to save your configuration changes.

5. Click Activate Changes to apply your changes to the engine servers.

Adding Servers to the WebRTC Session Controller Cluster

6-2 WebRTC Session Controller System Administrator's Guide

Adding Servers to the WebRTC Session Controller Cluster
WebRTC Session Controller instances configured as replicated domains include the
default BEA_ENGINE_TIER_CLUST cluster for the signaling engine servers. You can
assign additional managed servers to each cluster as needed when performance
requirements in your environment require them.

See WebLogic Server Administration Console Online Help for information on how to
"Assign servers to clusters".

For more information on clustering, see "Understanding WebLogic Server Clustering"
in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Configuring Timer Processing
As engine servers add new call state data to the SIP call-state store, they maintain data
structures to track the SIP protocol timers and application timers associated with each
call. Engine servers periodically poll the SIP Coherence call-state store to determine
which timers have expired, given the current time. By default, multiple engine server
poll to the call-state store are staggered to avoid contention on the timer tables. Engine
servers then process all expired timers using threads allocated in the wlss.timer work
manager.

Configuring Timer Affinity (Optional)
With the default timer processing mechanism, a given engine server processes all
timers that are currently due to fire, regardless of whether that engine was involved in
processing the calls associated with those timers. However, some deployment
scenarios require that a timer is processed on the same engine server that last modified
the call associated with that timer. One example of this scenario is a hot standby
system that maintains a secondary engine that should not process any call data until
another engine fails. WebRTC Session Controller enables you to configure timer
affinity in such scenarios.

When you enable timer affinity, each engine server periodically polls the SIP call-state
store for processed timers. When polling the SIP call-state store, an engine processes
only those timers associated with calls that were last modified by that engine, or
timers for calls that have no owner.

To enable timer affinity:

1. Access the Administration Console for your domain.

2. Select the SipServer node in the left pane. The right pane of the console provides
two levels of tabbed pages that are used for configuring and monitoring WebRTC
Session Controller.

3. Select the Configuration, then General tab in the right pane.

4. Select the box for Enable Timer Affinity.

5. Click Save to save your configuration changes.

Note: When an engine server fails, any call states that were last
modified by that engine no longer have an owner. Expired timers that
have no owner are processed by the next engine server that polls the
SIP call-state store.

Configuring Timer Processing

Configuring WebRTC Session Controller Container Properties 6-3

6. Click Activate Changes to apply your changes to the engine servers.

The Enable Timer Affinity setting is persisted in sipserver.xml in the
enable-timer-affinity element.

Configuring NTP for Accurate SIP Timers
In order for the SIP protocol stack to function properly, all engine servers must
accurately synchronize their system clocks to a common time source, to within one or
two milliseconds. Large differences in system clocks cause severe problems such as:

■ SIP timers firing prematurely on servers with fast clock settings.

■ Poor distribution of timer processing among engine servers. For example, one
engine server might process all expired timers, whereas other engine servers
process no timers.

Oracle recommends using a Network Time Protocol (NTP) client or daemon on each
WebRTC Session Controller instance and synchronizing to a common NTP server.

Caution: You must accurately synchronize server system clocks to a
common time source (to within one or two milliseconds) in order for
the SIP protocol stack to function properly. Because the initial T1 timer
value of 500 milliseconds controls the retransmission interval for
INVITE request and responses, and also sets the initial values of other
timers, even small differences in system clock settings can cause
improper SIP protocol behavior. For example, an engine server with a
system clock 250 milliseconds faster than other servers will process
more expired timers than other engine servers, will cause retransmits
to begin in half the allotted time, and may force messages to time out
prematurely.

Configuring Timer Processing

6-4 WebRTC Session Controller System Administrator's Guide

7

Using the Lightweight Proxy Registrar 7-1

7Using the Lightweight Proxy Registrar

This chapter describes the Oracle Communications WebRTC Session Controller
Lightweight Proxy Registrar and how to configure it.

You need to perform the tasks in this chapter only if you intend to use the Lightweight
Proxy Registrar. If you will not use the Lightweight Proxy Registrar, you can skip this
chapter.

About the Lightweight Proxy Registrar
The Lightweight Proxy Registrar introduces a layer between the WebRTC Session
Controller Signaling Engine and the Proxy Registrar. The Lightweight Proxy Registrar
reduces resources consumed in the Proxy Registrar, which reduces overall cost.

WebRTC-based clients come and go as people open and close their browsers. Each
WebSocket connection to WebRTC Session Controller triggers a SIP registration. A
single user often has multiple devices, which equates to multiple endpoints and
requires more register and unregister requests. These factors make the number of
registrations at any time difficult to predict, making it harder to plan needed resources.
Any cost associated with registration might not be well known and could be
problematic.

 The Lightweight Proxy Register addresses these problems in one of two ways:

■ Multiplexing registration requests from many WebRTC endpoints into a single SIP
registration per user

■ Managing all registrations, leaving no registrations for the Proxy Registrar. In this
case, an external system must route inbound calls to WebRTC Session Controller,
for example, by using static routes based on the domain.

Customers who do not want or need a SIP or IMS integration do not need to use them
This case is suitable for an enterprise that only wants to connect WebRTC endpoints.

The Lightweight Proxy Registrar forks inbound and outbound calls, or SIP INVITE
messages, to multiple connections.

About SIP Registration Modes
WebRTC Session Controller operates in three modes:

■ Normal: The Lightweight Proxy Registrar is not part of the call flow, which means
that every WebRTC endpoint will trigger a unique SIP registration towards the
proxy registrar. This is the default behavior.

■ Single: The WebRTC Session Controller Signaling Engine sends REGISTER
requests to the Lightweight Proxy Registrar, which tracks and forwards only the

About the Lightweight Proxy Registrar

7-2 WebRTC Session Controller System Administrator’s Guide

first registration per user to the Proxy Registrar. Likewise, the Signaling Engine
sends a de-registration message to the Proxy Registrar when the last registration
for a user is removed.

■ Static: The same as Single mode except that no registrations are sent to the Proxy
Registrar. You can use this mode when IP Multimedia Subsystem (IMS) integration
is not required, although you can use this mode with an IMS integration. Two
possible cases for using this mode are:

■ You do not want or need SIP or IMS integration, such that only WebRTC
endpoints can communicate.

■ You want to completely off load all registrations, but still be able to route calls
to and from WSC using, for example, static configured routes.

About Proxy Forking Modes
For requests that originate from WebRTC endpoints, you can configure the WebRTC
Session Controller to operate in one of the following modes:

■ Always: WebRTC Session Controller forwards outbound requests to a remote
proxy and does not use the Lightweight Proxy Registrar

■ Conditional: if one or more WebRTC endpoints exist in the registrar repository,
the Lightweight Proxy forks the request locally. If no endpoint exists, the request is
routed to a remote proxy.

■ Never: The Lightweight Proxy handles all requests internally and WebRTC Session
Controller never routes requests to a remote proxy. If no endpoints exist in the
registrar repository, the Lightweight Proxy Registrar responds with the error: 404
Not Found.

About Lightweight Proxy Registrar Components
The Lightweight Proxy Registrar consists of the following components:

■ Lightweight Registrar

The Lightweight Registrar maintains the list of active bindings in the Location
Service, propagates requests from WebRTC endpoints, propagates REGISTER
requests or responses to and from the external registrar, and determines the
registration mode based on the registration mode configuration.

■ Lightweight Proxy

The Lightweight Proxy processes both inbound and outbound call setup attempts
by forwarding and, optionally, forking SIP INVITE requests.

■ Location Service

The Location Service maintains information about the location of the called party.

■ Custom Application Router

The Custom Application Router is called by the container to select which SIP
servlet application will service each initial request.

About the Lightweight Registrar
The Lightweight Registrar is triggered by SIP REGISTER requests and responses. It
takes the following actions:

About the Lightweight Proxy Registrar

Using the Lightweight Proxy Registrar 7-3

■ Maintains the list of active bindings per Addresses-of-Record in the Location
Service, based on the Contact headers and expiration intervals in the requests or
responses from the external registrar.

■ Only propagates requests received from WebRTC endpoints based on the
registration modes. It does not generate any re-register requests or maintain any
timers.

■ Propagates REGISTER requests or responses, without modifying them, to or from
the external registrar. Transparently forwards any authentication or authorization
headers between the external Proxy Registrar and the WebRTC Session Controller
Signaling Engine. The last REGISTER request in Single mode, however, is changed
by the Lightweight Proxy Registrar to include exactly the same Contact header(s)
as the first REGISTER request for the sake of removing the bindings correctly in
the external Proxy Registrar.

■ Determines the registration mode based on the registration mode configuration.

About the Lightweight Proxy
The Lightweight Proxy is triggered by both inbound and outbound SIP INVITE
requests.The Lightweight Proxy sets up both inbound and outbound calls by
forwarding and, optionally, forking the SIP INVITE requests.

The Lightweight Proxy takes the following actions:

■ Forks INVITE requests to multiple WebRTC endpoints based on the bindings
information in the Location Service. The called party address-of-record for the
subscriber lookup is based on the To header of the INVITE request.

■ Forks the call in parallel if it finds one or more bindings. Otherwise, it forks the
call to the outbound Proxy or responds with an error, depending on the forking
mode. If no WebRTC endpoint for the called party corresponds to the
address-of-record, the Lightweight Proxy responds with the error: 404 Not Found.

■ Determines the forking mode based on the Forking Mode Configuration. In
Always mode, the Custom Application Router filters out requests.

About the Location Service
The Lightweight Proxy uses the Location Service to obtain information about the
possible location of the called party. The Lightweight Registrar maintains the
information as a result of processing the REGISTER message.

The Location Service contains a lookup table of the bindings between the
address-of-record keys and registration records. Each record represents one or more
contact header addresses, which have been received from prior registration requests
from WebRTC endpoints. Data is kept in memory, replicated across the WebRTC
Session Controller servers, but is not written to disk. This means that a full cluster
restart clears all data because a cluster restart means all WebRTC sessions are gone.

Table 7–1 represents an example of a lookup table that contains three records.

Table 7–1 Example Lookup Table

Address-of-Record Registration Record

alice@example.com <instance-id1, reg-id1> = <alice-contact1, expires=t1>

<instance-id2, reg-id2> = <alice-contact2, expires=t2>

Configuring the Lightweight Proxy Registrar

7-4 WebRTC Session Controller System Administrator’s Guide

Handling Multitenancy
In a service as a software (SaaS) environment, a single user identity may be associated
with multiple tenant profiles and each of them may reach different SIP proxy
registrars.

To handle this scenario, the Signaling Engine inserts a tenantToken to the SipURI of
the contact header in requests sent to the Lightweight Proxy Registrar. In turn, the
Lightweight Proxy Registrar employs this token in its decision -making process and
routes the request to the corresponding proxies.

A record in the lookup table uses three entries:

About the Custom Application Router
The custom SIP application router is used to route traffic between various WebRTC
Session Controller components (SIP servlets). The container calls the application router
to select the servlet application that will service each initial request.

About Multiple Identity Support
The Lightweight Proxy Registrar supports the association of multiple subscriber
identities with a registered address-of-record. For example, subscriber Maria could
have identities of maria-home, maria-work, and maria-mobile. If she connects as both
maria-home and maria-mobile, each with different SIP contact addresses, the
Lightweight Proxy Registrar stores these relationships and associates them with
subscriber Maria. If an inbound call generates an INVITE message for maria-home, the
Lightweight Proxy Registrar retrieves all of Maria’s registered identities and forks an
INVITE to maria-mobile as well.

Configuring the Lightweight Proxy Registrar
To configure the Lightweight Proxy Registrar, you set the SIP registration mode and
the proxy forking mode through existing Groovy scripts. Beyond that, the Lightweight
Proxy Registrar acts appropriately based on the SIP messages it receives.

Configuring Registration Mode
The default registration mode is Normal, which indicates the Lightweight Registrar is
not used and all registration requests are sent to an external registrar. You set the

bob@example.com <instance-id3, reg-id3> = <alice-contact3, expires=t3>

<instance-id4, reg-id4> = <alice-contact4, expires=t4>

<instance-id5, reg-id5> = <alice-contact5, expires=t5>

alice@otherdomain.com <instance-id1, reg-id1> = <alice-contact6, expires=t6>

Table 7–2 Example Lookup Table for Multitenancy

TenantToken Address-of-Record Address-of-Record

tenant1 alice@example.com <instance-id1, reg-id1> = <alice-contact1, expires=t1>

<instance-id2, reg-id2> = <alice-contact2, expires=t2>

tenant2 alice@example.com <instance-id1, reg-id1> = <alice-contact6, expires=t6>

Table 7–1 (Cont.) Example Lookup Table

Address-of-Record Registration Record

Configuring the Lightweight Proxy Registrar

Using the Lightweight Proxy Registrar 7-5

registration mode only if you want to change the default mode or change the
registration mode you previously set.

To configure the registration mode:

1. Log in to the WebRTC Session Controller console using your user name and
password.

2. Select the Packages tab.

3. Under Package Name, select register.

4. Select the row with these values:

■ Direction: FROM_APP

■ Verb: connect

■ Type: request

5. Click the Edit button.

6. In the Groovy Script section, locate the line that begins with the following text:

sipReq.requestURI = context.sipFactory.createSipAddress(Constants.PROXY_SIP_
URI).URI

7. Modify the value of sipReq.requestURI as follows, based on the mode that you
want to use:

Static mode:

Replace the Request-URI with a URI corresponding to one of the local SIP listening
interfaces. For example:

sipReq.requestURI =
context.sipFactory.createSipAddress("sip:127.0.0.1:5060").URI

Single mode:

Specify the outbound proxy in the Request-URI and push an additional Route
header by adding the def route entry to specify one of the local SIP listening
interfaces. This header indicates that the Lightweight Proxy Registrar should be
visited prior to the outbound proxy, depending on the forwarding decision by the
Lightweight Proxy Registrar:

sipReq.requestURI = context.sipFactory.createSipAddress(Constant.PROXY_SIP_
URI).URI
def route = context.sipFactory.createSipAddress("sip:127.0.0.1:5060;lr")
sipReq.pushRoute(route)

Normal mode:

No changes are required for Normal mode.

Configuring Forking Mode
The default forking mode is Always, which indicates the Lightweight Proxy is not
used and all requests are sent to an external proxy. Set the forking mode only if you
want to change the default mode or change the forking mode you previously set.

To configure the forking mode:

1. Log in to the WebRTC Session Controller console using your user name and
password.

Configuring the Lightweight Proxy Registrar

7-6 WebRTC Session Controller System Administrator’s Guide

2. Select the Packages tab.

3. Under Package Name, select call.

4. Select the row with these values:

■ Direction: FROM_APP

■ Verb: start

■ Type: request

5. In the Groovy Script section, locate the following lines:

def route = context.sipFactory.createSipAddress(Constants.PROXY_SIP_URI +
";lr")
sipRequest.pushRoute(route)

6. Modify the lines as follows, based on the mode that you want to use:

Conditional mode:

Specify the outbound proxy route and push an additional Route header that
contains one of the local SIP listening interfaces. The header indicates that the
Lightweight Proxy Registrar should be visited prior to the outbound Proxy, based
on the forwarding decision made by the Lightweight Proxy Registrar.

def route = context.sipFactory.createSipAddress(Constants.PROXY_SIP_URI +
";lr")
sipRequest.pushRoute(route)
def localroute = context.sipFactory.createSipAddress("sip:127.0.0.1:5060;lr")
sipRequest.pushRoute(localRoute)

Never mode:

Replace the route header contents with an address corresponding to one of the
local SIP listening interfaces.

def localroute = context.sipFactory.createSipAddress("sip:127.0.0.1:5060;lr")
sipRequest.pushRoute(localRoute)

Always mode:

No changes are required for Always mode.

8

Configuring Network Connection Settings 8-1

8Configuring Network Connection Settings

This chapter describes how to configure network resources for use with Oracle
Communications WebRTC Session Controller.

Overview of Network Configuration
The default HTTP network configuration for each WebRTC Session Controller instance
is determined from the Listen Address and Listen Port setting for each server.
However, WebRTC Session Controller does not support the SIP protocol over HTTP.
The SIP protocol is supported over the UDP and TCP transport protocols. SIPS is also
supported using the TLS transport protocol.

To enable UDP, TCP, or TLS transports, you configure one or more network channels
for a WebRTC Session Controller instance. A network channel is a configurable Oracle
WebLogic Server resource that defines the attributes of a specific network connection
to the server instance. Basic channel attributes include:

■ The protocols supported by the connection

■ The listen address (DNS name or IP address) of the connection

■ The port number used by the connection

■ (optional) The port number used by outgoing UDP packets

■ The public listen address to embed in SIP headers when the channel is used for an
outbound connection. This is typically the IP address presented by the IP sprayer
or external load balancer as the virtual IP (VIP) for the telecommunication
services.

You can assign multiple channels to a single WebRTC Session Controller instance to
support multiple protocols or to use multiple interfaces available with multihomed
server hardware. You cannot assign the same channel to multiple server instances.

When you configure a new network channel for the SIP protocol, both the UDP and
TCP transport protocols are enabled on the specified port. You cannot create a SIP
channel that supports only UDP transport or only TCP transport. When you configure
a network channel for the SIPS protocol, the server uses the TLS transport protocol for
the connection.

As you configure a new SIP Server domain, you will generally create multiple SIP
channels for communication to each engine server in your system. Engine servers
access the SIP call-state store using the Coherence cluster configured in the domain.

Configuring External IP Addresses in Network Channels

8-2 WebRTC Session Controller System Administrator’s Guide

Configuring External IP Addresses in Network Channels
When you set up a network channel for your WebRTC Session Controller instance, you
must specify the public IP address that external clients use to address the instance. In
most cases, this address is presented by an IP sprayer or external load balancer or
other network element capable of exposing a virtual IP (VIP) on behalf of the WebRTC
Session Controller to the external network.

You configure the client-facing address as the external listen address. When a SIP
channel has an external listen address that differs from the channel's primary listen
address, WebRTC Session Controller embeds the host and port number of the external
address in SIP headers, such as in the Response header. This causes subsequent
messages from external clients to be directed to the public address rather than the local
engine server address (which may not be accessible to clients).

If an external listen address is not specified for the network channel, the WebRTC
Session Controller embeds the primary listen address for the channel in the headers.

If you have more than one IP sprayer or load balancer that may receive external traffic
addressed to the WebRTC Session Controller servers, you must define a channel on
each engine server for each one. When a particular network interface on the engine
server is selected for outbound traffic, the network channel associated with the
network interface card's (NIC's) address is examined to determine the external listen
address to embed in SIP headers.

If your system uses a multihomed IP sprayer or load balancer having two public
addresses, you must also define a pair of channels to configure both public addresses.
If the engine server has only one NIC, you must define a second, logical address on the
NIC to configure a dedicated channel for the second public address. In addition, you
must configure your IP routing policies to define which logical address is associated
with each public address.

About IPv4 and IPv6 Support
If your operating system and hardware support IPv6, you can also configure WebRTC
Session Controller to use IPv6 for network communication. Enable IPv6 for SIP traffic
by configuring a network channel with an IPv6 address. You must configure an IPv6
SIP channel on each engine server that will support IPv6 traffic.

Each SIP network channel configured on an engine supports either IPv6 or IPv4 traffic.
You cannot mix IPv4 and IPv6 traffic on a single channel. You can configure a single
engine with both an IPv4 and IPv6 channel to support multiple, separate networks.

It is also possible for WebRTC Session Controller engine nodes to communicate within
the cluster on IPv4 (or IPv6) while supporting the other protocol version for external
SIP traffic. To configure engine nodes on an IPv6 network, simply specify IPv6 listen
addresses for each server instance and, if desired, for the Coherence cluster
communication.

Note: If you configure the Coherence cluster to use Unicast
addressing, you must configure the engines to use either explicit listen
addresses or explicit well-known addresses to allow all cluster domain
servers to locate each other.

Configuring Network Channels for SIP or SIPS

Configuring Network Connection Settings 8-3

Enabling DNS Support
WebRTC Session Controller supports DNS for resolving the transport, IP address and
port number of a proxy required to send a SIP message. This matches the behavior
described in RFC 3263 (http://www.ietf.org/rfc/rfc3263.txt). DNS may also be
used when routing responses to resolve the IP address and port number of a
destination.

To configure DNS support:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. Select the SipServer node in the left pane of the Console.

3. Select the Configuration, and then select the General tab in the right pane.

4. Select the option for Enable DNS Server Lookup.

5. Click Save to save your changes.

When you enable DNS lookup, the server can use DNS to:

■ Discover a proxy server's transport, IP address, and port number when a request is
sent to a SIP URI.

■ Resolve an IP address and port number during response routing, depending on
the contents of the Sent-by field.

For proxy discovery, WebRTC Session Controller uses DNS resolution only once per
SIP transaction to determine transport, IP, and port number information. All
retransmissions, ACKs, or CANCEL requests are delivered to the same address and
port using the same transport. For details about how DNS resolution takes place, see
RFC 3263 (http://www.ietf.org/rfc/rfc3263.txt).

When a proxy is required to send a response message, WebRTC Session Controller
uses DNS lookup to determine the IP address and port number of the destination,
using the information provided in the sent-by field and the Via the header.

Configuring Network Channels for SIP or SIPS
When you create a domain using the Configuration Wizard, WebRTC Session
Controller instances are configured with a default network channel supporting the SIP
protocol over UDP and TCP. This default channel is configured to use Listen Port 5060,
but specifies no Listen Address. Follow the instructions in "Reconfiguring an Existing
Channel" to change the default channel's listen address or listen port settings. See
"Creating a New SIP or SIPS Channel" for information on creating a new channel
resource to support additional protocols or additional network interfaces.

Reconfiguring an Existing Channel
You cannot change the protocol supported by an existing channel. To reconfigure an
existing listen address/port combination to use a different network protocol, you must

Caution: Because multihome resolution is performed within the
context of SIP message processing, any multihome performance
problems result in increased latency performance. Oracle recommends
using a caching multihome server in a production environment to
minimize potential performance problems.

Configuring Network Channels for SIP or SIPS

8-4 WebRTC Session Controller System Administrator’s Guide

delete the existing channel and create a channel using the instructions in "Creating a
New SIP or SIPS Channel".

To reconfigure a channel:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. In the left pane, select the Environment entry to display its contents. Select
Servers from the displayed entries.

3. In the right pane, select the name of the server you want to configure.

4. Select Protocols, then select the Channels tab to display the configured channels.

5. To delete an existing channel, select it in the table and click Delete.

6. To reconfigure an existing channel:

a. Select the channel's link from Name column of the channel list (for example,
the default SIP channel).

b. Edit the Listen Address or Listen Port fields to correspond to the address of a
NIC or logical address on the associated engine server.

c. Set the External Listen Address or External Listen Port fields to the destination
address and port addressed by external clients. This is typically the VIP
address presented by an external load balancer or IP sprayer in your system.

d. Edit the advanced channel attributes as necessary (see "Creating a New SIP or
SIPS Channel" for details.)

7. Click Save.

Creating a New SIP or SIPS Channel
To add a new SIP or SIPS channel to the configuration of a WebRTC Session Controller
instance:

1. Log in to the Administration Console for the WebRTC Session Controller domain
you want to configure.

2. In the left pane, select the Environment node, and then select the Servers tab.

3. In the right pane, select the name of the server you want to configure.

4. Select the Protocols tab, then select the Channels tab to display the configured
channels.

5. Click New to configure a new channel.

6. Fill in the new channel fields as follows:

■ Name: Enter an administrative name for this channel, such as
SIPS-Channel-eth0.

■ Protocol: Select either sip to support UDP and TCP transport, or sips to
support TLS transport. A SIP channel cannot support only UDP or only TCP
transport on the configured port.

Note: The channel must be disabled before you can modify the listen
address or listen port. Disable the channel by deselecting the Enabled
check box.

Configuring Custom Timeout, MTU, and Other Properties

Configuring Network Connection Settings 8-5

7. Click Next.

8. Fill in the new channel's addressing fields as follows:

■ Listen Address: Enter the IP address or DNS name for this channel. On a DNS
server, enter the exact IP address of the interface you want to configure, or a
multihome name that maps to the exact IP address.

■ Listen Port: Enter the port number used to communication through this
channel. The combination of Listen Address and Listen Port must be unique
across all channels configured for the server. SIP channels support both UDP
and TCP transport on the configured port.

■ External Listen Address and External Listen Port: Edit these fields to match
the external address and port used by clients to address the system. This is
typically a virtual IP address presented by an external load balancer or IP
sprayer.

If this value differs from the Listen Address value, the WebRTC Session
Controller embeds this value in SIP message headers for further call traffic.

9. Click Next.

10. Set the additional channel properties listed below if required:

■ Enabled: This attribute specifies whether to start the new channel.

■ Tunneling Enabled: This attribute specifies whether tunneling through HTTP
should be enabled for this network channel. This value is not inherited from
the server's configuration.

■ HTTP Enabled for This Protocol: This attribute cannot be selected for SIP and
SIPS channels, because WebRTC Session Controller does not support HTTP
transport SIP protocols.

■ Outbound Enabled: This attribute cannot be unchecked, because all SIP and
SIPS channels can originate network connections.

11. Click Finish.

Configuring Custom Timeout, MTU, and Other Properties
SIP channels can be further configured using one or more custom channel properties.
The custom properties cannot be set using the Administration Console. Instead, you
must use a text editor to add the properties to a single, custom-property stanza in the
channel configuration portion of the config.xml file for the domain.

WebRTC Session Controller provides the following custom properties that affect the
transport protocol of SIP channels:

■ TcpConnectTimeoutMillis: Specifies the amount of time WebRTC Session
Controller waits before it declares a destination address (for an outbound TCP
connection) as unreachable. The property is applicable only to SIP channels;
WebRTC Session Controller ignores this attribute value for SIPS channels. A value
of 0 disables the timeout completely. A default value of 3000 milliseconds is used if
you do not specify the custom property.

■ SctpConnectTimeoutMillis: Specifies the amount of time WebRTC Session
Controller waits before it declares a destination address (for an outbound SCTP
connection) as unreachable. The property is applicable only to SCTP channels (for
Diameter traffic). A value of 0 disables the timeout completely. A default value of
3000 milliseconds is used if you do not specify the custom property. See

Configuring SIP Channels for Multihomed Machines

8-6 WebRTC Session Controller System Administrator’s Guide

"Configuring Static Source Port for Outbound UDP Packets" for information about
creating SCTP channels for Diameter.

■ SourcePorts: Configures one or more static port numbers that a server uses for
originating UDP packets.

■ Mtu: Specifies the Maximum Transmission Unit (MTU) value for this channel. A
value of -1 uses the default MTU size for the transport.

■ EnabledProtocolVersions: Specifies the version of the SSL protocol to use with
this channel when WebRTC Session Controller acts as an SSL client. When acting
as an SSL client, by default the channel requires TLS V1.0 as the supported
protocol.

Oracle recommends the TLS V.1.0 protocol for the best security. TLS1 configures
the channel to send and accept only TLS V1.0 messages. Peers must respond with
a TLS V1.0 message or the SSL connection is dropped.

To configure a custom property, use a text editor to modify the config.xml file directly,
or use a JMX client such as WLST to add the custom property. When editing
config.xml directly, ensure that you add only one custom-properties element to the
end of a channel's configuration stanza. Separate multiple custom properties within
the same element using semicolons (;) as shown in Example 8–1.

Example 8–1 Setting Custom Properties

<network-access-point>
 <name>sip</name>
 <protocol>sip</protocol>
 <listen-port>5060</listen-port>
 <public-port>5060</public-port>
 <http-enabled-for-this-protocol>false</http-enabled-for-this-protocol>
 <tunneling-enabled>false</tunneling-enabled>
 <outbound-enabled>true</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>

<custom-properties>EnabledProtocolVersions=ALL;Mtu=1000;SourcePorts=5060</custom-p
roperties>
</network-access-point>

Configuring SIP Channels for Multihomed Machines
If you are configuring a server that has multiple network interfaces (a "multihomed"
server), you must configure a separate network channel for each IP address used by
WebRTC Session Controller. WebRTC Session Controller uses the listen address and
listen port values for each channel when embedding routing information into SIP
message system headers.

Caution: Oracle does not recommend using the SourcePorts custom
property in most configurations because it degrades performance.
Configure the property only in cases where you must specify the exact
ports that WebRTC Session Controller uses to originate UDP packets.

Configuring Static Source Port for Outbound UDP Packets

Configuring Network Connection Settings 8-7

Configuring Engine Servers to Listen on Any IP Interface
To configure WebRTC Session Controller to listen for UDP traffic on any available IP
interface, create a SIP channel and specify 0.0.0.0 (or :: for IPv6 networks) as the listen
address. You must still configure at least one additional channel with an explicit IP
address to use for outgoing SIP messages. (For multihomed machines, each interface
used for outgoing messages must have a configured channel.)

Configuring Static Source Port for Outbound UDP Packets
You can optionally use a static port rather than a dynamically assigned ephemeral port
as the source port for outgoing UDP datagrams. WebRTC Session Controller network
channels provide a SourcePorts attribute that you can use to configure one or more
static ports that a server uses for originating UDP packets.

You can identify the ephemeral port currently used by the WebRTC Session Controller
by examining the server log file. A log entry appears as follows:

<Nov 30, 2005 12:00:00 AM PDT> <Notice> <WebLogicServer> <BEA-000202> <Thread "SIP
Message Processor (Transport UDP)" listening on port 35993.>

To use a static port for outgoing UDP datagrams, first disable use of the ephemeral
port by specifying the following server start-up option:

-Dwlss.udp.listen.on.ephemeral=false

To configure the SourcePorts property, use a JMX client such as WLST or directly
modify a network channel configuration in config.xml to include the custom property.

Note: If you do not configure a channel for a particular IP address on
a multihomed system, that IP address cannot be used when
populating Via, Contact, and Record-Route headers.

Note: You must configure the 0.0.0.0 address directly on the server's
network channel. If you configure a SIP channel without specifying
the channel listen address, but you do configure a listen address for
the server itself, then the SIP channel inherits the server listen address.
In this case the SIP channel does not listen on IP_ANY.

Note: Using the 0.0.0.0 configuration affects only UDP traffic on
Linux platforms. WebRTC Session Controller only creates TCP and
HTTP listen threads corresponding to the configured host name of the
server, and localhost. If multiple addresses are mapped to the host
name, WebRTC Session Controller displays warning messages upon
startup. To avoid this problem and listen on all addresses, specify the
:: address, which encompasses all available addresses for both IPv6
and IPv4 for HTTP and TCP traffic as well.

Caution: Oracle does not recommend using the SourcePorts custom
property in most configurations because it degrades performance.
Configure the property only in cases where you must specify the exact
ports that WebRTC Session Controller uses to originate UDP packets.

Configuring Listen Addresses for Servers

8-8 WebRTC Session Controller System Administrator’s Guide

SourcePorts defines an array of port numbers or port number ranges. Do not include
spaces in the SourcePorts definition; use only port numbers, hyphens ("-") to designate
ranges of ports, and commas (",") to separate ranges or individual ports. See
Example 8–2 for an example configuration.

Example 8–2 Static Port Configuration for Outgoing UDP Packets

<network-access-point>
 <name>sip</name>
 <protocol>sip</protocol>
 <listen-port>5060</listen-port>
 <public-port>5060</public-port>
 <http-enabled-for-this-protocol>false</http-enabled-for-this-protocol>
 <tunneling-enabled>false</tunneling-enabled>
 <outbound-enabled>true</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>
 <custom-properties>SourcePorts=5060</custom-properties>
</network-access-point>

Configuring Listen Addresses for Servers
Each server in the domain is a member in the Coherence cluster, and the default
Coherence configuration uses a generated well-known address list based on server
listen addresses. You must use explicit listen addresses with the domain servers for
Coherence to correctly form a cluster.

You can set up explicit listen addresses using the domain creation wizard or, after
creating a domain, by using the Administration console and following these
instructions:

1. Access the Administration Console for the WebRTC Session Controller domain.

2. Select Environment, then select Servers from the left pane.

3. In the right pane, select the name of the server to configure.

4. Select Configuration, then select the General tab.

5. Enter a unique DNS name or IP address in the Listen Address field.

6. Click Save.

Configuring Coherence Cluster Addressing
If you do not want to use explicit listen addresses with domain servers or want to
isolate Coherence cluster communication to its own network, you can configure
Coherence cluster addressing to use it's own addressing scheme, using one of the
following cluster modes.

■ Multicast with multicast address, port and time to live. Multicast communication
can make more efficient use of the network in some circumstances, but also might
not work in all environments.

■ Unicast addressing, specifying explicit well-known addresses (WKAs) and explicit
Unicast listen ports for servers.

The default setting is Unicast addressing together with a well-known address list
generated from the domain server listen addresses

Configuring Coherence Cluster Addressing

Configuring Network Connection Settings 8-9

For more details, see "Configuring and Managing Coherence Clusters" in Administering
Clusters for Oracle WebLogic Server.

Configuring Coherence Cluster Addressing

8-10 WebRTC Session Controller System Administrator’s Guide

9

Configuring Server Failure Detection 9-1

9Configuring Server Failure Detection

This chapter describes how to configure Oracle Communications WebRTC Session
Controller to improve failover performance when a server becomes physically
disconnected from the network.

Overview of Failover Detection
To achieve a highly-available production system, the WebRTC Session Controller uses
the Oracle Coherence distributed cache service to retrieve and write call-state data.
The cache service consists of a number of partitions that are spread across the servers
that are running in the cluster. Each partition has a primary copy of call-state storage
assigned to one server in the cluster, and a backup copy assigned to another server in
the cluster. This means that a call state that is required to process a request may reside
on a remote server and possibly even a remote machine.

The WebRTC Session Controller architecture depends on the Coherence cache service
to detect when a server has failed or becomes disconnected. When an engine cannot
access or write call-state data because a server is unavailable, the Coherence cache
service detects this and reassigns the lost server’s partitions to another server in the
cluster and ensures a new backup copy is made available on a different server, if one is
running.

Coherence Cluster Overview
The Coherence cache service uses its own cluster communication protocol, known as
Tangosol Cluster Management Protocol (TCMP), to invoke remote servers, detect
server failure and achieve high availability. This protocol uses an optimized algorithm
to quickly detect that a server has become physically disconnected from the network.
This algorithm, and the configuration options that are available to modify its behavior,
are described in detail in the Oracle Coherence documentation. See the following
documentation for more information on Coherence and its distributed cache service.

■ "Introduction to Coherence Clusters" in Developing Applications with Oracle
Coherence

■ "Understanding Distributed Caches" in Developing Applications with Oracle
Coherence

See "Configuring Coherence" and "SIP Coherence Configuration Reference
(coherence.xml)" for additional information on configuring Coherence for the WebRTC
Session Controller.

Coherence Configuration

9-2 WebRTC Session Controller System Administrator's Guide

Split-Brain Handling
The WebRTC Session Controller relies to a large extent on Oracle Coherence to detect
and handle a split-brain condition. A split-brain condition can occur, for example,
when connectivity is restored between two or more parts of a cluster that had been
isolated from each other. When the WebRTC Session Controller detects such a
condition, it attempts to recover by shutting down part of the cluster and expecting the
affected servers to restart and join the surviving cluster as new members.

When Coherence detects a split-brain condition, its behavior is controlled primarily
through the options related to death detection in the cluster-related configuration.

Coherence Configuration
You can use the following three mechanisms to modify Coherence configuration
options:

■ The default Coherence cluster configuration file

■ The system properties

■ The tangosol-coherence-override.xml file

Cluster Configuration File
The default Coherence cluster configuration file, Custom-Default.xml, resides in the
following location:

$DOMAIN_HOME/config/coherence/Coherence-Default/

where $DOMAIN_HOME is the root directory for the domain.

Table 9–1 describes the default configuration options that you can specify.

You can override these default configuration options either by modifying the
corresponding system properties or creating an override configuration file, called
tangosol-coherence-override.xml, which you add to the system CLASSPATH variable
on all servers.

WARNING: No servers in the domain can be running when you
make changes to the Coherence configuration. Also, the
configuration must be the same for all servers in the domain or
unexpected behavior can result.

Table 9–1 Coherence Cluster Configuration File Options

Option Element Name System Property Name
Default
Value

TCP-ring IP-timeout <tcp-ring-listener><pin
gtimeout>

tangosol.coherence.ipmonitor.ping
timeout

5

TCP-ring
IP-attempts

<tcp-ring-listener><pin
gattempts

tangosol.coherence.ipmonitor.ping
tattempts

2

Service Guardian
Timeout

<service-guardian><ti
meout-milliseconds>

tangosol.coherence.guard.timeout 305000

Packet Delivery
Timeout

<packet-delivery><tim
eout-milliseconds>

tangosol.coherence.packet.timeout 300000

Coherence Configuration

Configuring Server Failure Detection 9-3

See the following Coherence documentation for information on which configuration
options you can override and for information on how to use the override configuration
option:

■ "Configuring a Coherence Cluster" in Administering Clusters for Oracle WebLogic
Server

■ "Death Detection Recommendations" in Administering Oracle Coherence

■ "Configuring Death Detection" in Developing Applications with Oracle Coherence

■ "Understanding the XML Overrride Feature" in Developing Applications with Oracle
Coherence

■ "Coherence Operational Configuration Reference" in Developing Applications with
Oracle Coherence

Coherence Configuration

9-4 WebRTC Session Controller System Administrator's Guide

10

Using the Engine Cache 10-1

10Using the Engine Cache

This chapter describes how to enable the Oracle Communications WebRTC Session
Controller Signaling Engine cache for improved performance with SIP-aware load
balancers.

Overview of Engine Caching
A WebRTC Session Controller Signaling Engine cluster manages call-state data in
several partitions in the memory of each engine server. Each call-state entry resides in
one such partition on a specific engine server in the cluster. In many cases the engine
server requesting the call-state entry is not the same engine server where it is stored.
Engine servers fetch and write data in the SIP call-state store as necessary. Each call
state data partition can have one or more backup copies in another server to provide
automatic failover in the event that a SIP call-state store server fails or shuts down for
some reason.

WebRTC Session Controller also provides the option for engine servers to cache a
portion of the call-state data locally. When a local cache is used, an engine server first
checks its local cache. If the cache contains the required data, and the local copy of the
data is up-to-date (compared to the SIP call-state store copy), the engine locks the call
state in the SIP call-state store but reads directly from its cache. This improves
response time performance for the request, because the engine does not have to
retrieve the call state data from a SIP call-state store.

The engine cache stores only the call state data that has been most recently used by
engine servers. Call state data is moved into an engine's local cache as necessary to
respond to client requests or to refresh out-of-date data. If the cache is full when a new
call state must be written to the cache, the least-recently accessed call state entry is first
removed from the cache. The size of the engine cache is not configurable.

Using a local cache is most beneficial when a SIP-aware load balancer manages
requests to the engine cluster. With a SIP-aware load balancer, all of the requests for an
established call are directed to the same engine server, which improves the
effectiveness of the cache. If you do not use a SIP-aware load balancer, the
effectiveness of the cache is limited, because subsequent requests for the same call may
be distributed to different engine severs (having different cache contents).

Configuring Engine Caching
By default, engine caching is enabled. To disable partial caching of call state data in the
engine, specify the engine-call-state-cache-enabled element in sipserver.xml:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

Monitoring and Tuning Cache Performance

10-2 WebRTC Session Controller System Administrator's Guide

When enabled, the cache size is fixed at a maximum of 250 call states. The size of the
engine cache is not configurable.

Monitoring and Tuning Cache Performance
The SipPerformanceRuntime MBean monitors the behavior of the engine cache.
Table 10–1 describes the MBean attributes.

When enabled, the size of the cache is fixed at 250 call states. Because the cache
consumes memory, you may need to modify the JVM settings used to run engine
servers to meet your performance goals. Cached call states are maintained in the
tenured store of the garbage collector. Try reducing the fixed NewSize value when the
cache is enabled (for example, -XX:MaxNewSize=32m -XX:NewSize=32m). The actual
value depends on the call state size used by applications and the size of the
applications themselves.

Table 10–1 SipPerformanceRuntime Attribute Summary

Attribute Description

cacheRequests Tracks the total number of requests for session data items.

cacheHits The server increments this attribute each time a request for session
data results in a version of that data being found in the engine server's
local cache. It increments this attribute even if the cached data is
out-of-date and requires updating with data from the SIP call-state
store.

cacheValidHits The server increments this attribute each time a request for session
data is fully satisfied by a cached version of the data.

11

Configuring Coherence 11-1

11Configuring Coherence

This chapter describes the implementation and configuration of Oracle Coherence in
Oracle WebRTC Session Controller.

WebRTC Session Controller uses Coherence for the following purposes:

■ Cluster-wide engine communication and state management

■ Application call-state storage and management for concurrent SIP calls

About Coherence Engine Communication and State Management
The Domain Creation Wizard automatically creates a default Coherence cluster for
managing WebRTC Session Controller information when it sets up new domains. The
default cluster includes the engine servers and the administrative server in your
environment.

Configuring Coherence for Engine Communication and State Management
You configure the WebRTC Session Controller Coherence implementation using the
Oracle WebLogic Administration Console. See the chapter on "Configuring and
Managing Coherence Clusters" in Administering Clusters for Oracle WebLogic Server for
more information on the parameters that can be set in the Administration Console.

To configure the default Coherence cluster installed with WebRTC Session Controller:

1. Log in to the Administration Console for the WebRTC Session Controller
Administration Server.

2. In the Domain Structure tree, expand Environment.

3. Select Coherence Clusters.

4. In the Coherence Clusters table, select Coherence-Default.

5. Configure the parameters for the Coherence cluster as needed.

6. Click Save.

Each engine server and the Administration server acts as a managed Coherence server.
See "Configuring Managed Coherence Servers" in Administering Clusters for Oracle
WebLogic Server for more information about managed Coherence servers.

To configure Coherence settings for individual engine servers and the Administration
Server:

1. Log in to the Administration Console for the WebRTC Session Controller
Administration Server.

About Call-State Storage and Management for SIP Calls

11-2 WebRTC Session Controller System Administrator's Guide

2. In the Domain Structure tree, expand Environment.

3. Select Servers.

The Administration Console displays a list of servers included in your WebRTC
Session Controller installation.

4. From the Servers table, select the engine server or the Administration Server for
which you want to configure Coherence settings.

5. In the Configuration tab, select Coherence.

6. Configure the Coherence parameters for the server.

7. Click Save.

About Call-State Storage and Management for SIP Calls
The Coherence call-state storage facility for WebRTC Session Controller is built on the
distributed cache service of WebLogic Server 12.1.3. In each managed server in the
domain cluster, Coherence combines logic and processing with state-storage data.
Coherence writes data to the primary partition cache-storage server and it, in turn,
writes a backup copy to the configured number of backup copies.

See "Understanding Distributed Caches" in Developing Applications with Oracle
Coherence for an explanation of Coherence distributed caches.

Figure 11–1 illustrates an administration server with a Coherence cluster for call-state
storage:

Figure 11–1 Coherence Cluster for Call-State Storage

The Coherence call-state storage facility includes the following features:

■ Built-in support for dynamically adding or removing nodes

About Call-State Storage and Management for SIP Calls

Configuring Coherence 11-3

■ Partitions that migrate dynamically, eliminating the need to configure replica
servers and their partitions

■ Enhanced data serialization with Portable Object Format (PoF)

■ Proven node death detection for fail-over and split brain handling

■ Flexible configuration

■ Advanced network protocol that leverages UDP and supports multi-cast to
optimize network usage

■ Graceful migration of partitions from one node to another during startup and
shutdown, limiting the impact on ongoing traffic and reducing the risk of overload

Configuring Coherence Call-State Storage
The coherence.xml custom resource file specifies a subset of the configuration options
that control call-state storage. The config.xml file specifies the custom resource file as
$domain_home/config/custom/coherence.xml. The entry in the config.xml file looks
like this:

<custom-resource>
 <name>coherence</name>
 <target>BEA_ENGINE_TIER_CLUST</target>
 <descriptor-file-name>custom/coherence.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.sip.management.descriptor.
 resource.CoherenceStorageResource</resource-class>
 <resource-class>com.bea.wcp.sip.management.descriptor.resource.
 CoherenceStorageResource</resource-class>
 <descriptor-bean-class>oracle.occas.management.descriptor.beans.
 storage.CoherenceStorageBean</descriptor-bean-class>
</custom-resource>

The following parameters describe the coherence.xml file. They define a default
call-state storage domain.

<?xml version='1.0' encoding='UTF-8'?>
<coherence-storage>
 <cache-config>
 <thread-count>20</thread-count>
 <partition-count>257</partition-count>
 </cache-config>
</coherence-storage>

Modifying the Call-State Storage Configuration

To view and modify SIP call-state storage parameters:

1. Log in to the Administration Console for the WebRTC Session Controller
administration server.

2. In the Domain Structure tree, click the SipServer node.

3. Click the Configuration tab.

4. Click the Call State Storage tab.

Note: You cannot modify the configuration when servers in the
domain are running.

About Call-State Storage and Management for SIP Calls

11-4 WebRTC Session Controller System Administrator's Guide

5. Enter values for Thread Count or Partition Count or both.

6. Click Save.

Table 11–1 describes the rules that apply to the Thread Count and Partition Count
parameters:

The values are saved in the domain_home/config/custom/coherence.xml file, where
domain_home is the root directory of the WebRTC Session Controller domain.

You can also set call-state storage parameters using WLST. See "Using WLST (JMX) to
Configure WebRTC Session Controller" for more information.

Monitoring Coherence Call-State Storage
To monitor SIP call-state storage:

1. Log in to the Administration Console for the WebRTC Session Controller
administration server.

2. In the Domain Structure tree, click SipServer.

3. Click the Monitoring tab.

4. Click the Call State Storage tab.

5. Click one of the following tabs, depending on the parameters you want to
monitor:

■ Call State Service

■ Call State Cache

■ Call State Metadata Cache

■ Call State Index Cache

Tables 11-2 through 11-5 describe the parameters that you can monitor on these
tabs.

Table 11–2 describes the parameters that you can monitor on the Service tab for each
server:

Table 11–1 Call State Storage Configuration Parameters

Parameter Type Validation Rule Restart Server? Notes

Thread Count integer -1 to 32767 Yes -1 = caller thread; 0 = service
thread; otherwise, thread pool

Partition Count integer 1 to 32767 Yes (all at the same
time)

Must be prime number

Table 11–2 Call State Service Monitoring Parameters

Column
Name MBean Attribute Description

Local
Messages

MessagesLocal The total number of self-addressed messages since
the last time the statistics were reset. These
messages service process-local requests and do not
have an associated network cost.

Received
Messages

MessagesReceived The total number of messages received by this
service since the last time statistics were reset. This
value accounts for messages received by any local,
dedicated, or shared transport.

About Call-State Storage and Management for SIP Calls

Configuring Coherence 11-5

Table 11–3 describes the parameters that you can monitor on the Call State Cache tab
for each server. The cache name is CallState.

Sent
Messages

MessagesSent The number of messages sent by this service since
the last time statistics were reset. This value
accounts for any messages sent by local,
dedicated, or shared transport.

Owned
Backup
Partitions

OwnedPartitionsBackup The number of partitions that this member backs
up (responsible for the backup storage).

Owned
Primary
Partitions

OwnedPartitionsPrimary The number of partitions that this member owns
(responsible for the primary storage).

Endangered
Partitions

PartitionsEndangered The total number of partitions that are not backed
up.

Unbalanced
Partitions

PartitionsUnbalanced The total number of primary and backup
partitions that remain to be transferred until the
distribution across storage-enabled service
members is fully balanced.

Vulnerable
Partitions

PartitionsVulnerable The total number of partitions that are backed up
on the same machine where the primary partition
owner resides.

Average
Request
Duration

RequestAverageDuration The average duration in milliseconds of an
individual synchronous request issued by the
service.

Max Request
Duration

RequestMaxDuration The maximum duration in milliseconds of a
synchronous request issued by the service.

Pending
Request
Count

RequestPendingCount The number of pending synchronous requests
issued by the service.

Average
Task
Duration

TaskAverageDuration The average duration in milliseconds of an
individual task execution.

Task Backlog TaskBacklog The size of the backlog queue that holds tasks
scheduled to be executed by one of the service
threads

Max Task
Backlog

TaskMaxBacklog The maximum size of the backlog queue.

Idle Thread
Count

ThreadIdleCount The number of currently idle threads in the service
thread pool.

Table 11–3 Call State Cache Monitoring Parameters

Column Name

MBean
Attribute
Name Description

Entry Count Size The number of call-state objects currently stored.

Data Size Units The total number of bytes of call-state objects used for call-state
objects currently stored.

Table 11–2 (Cont.) Call State Service Monitoring Parameters

Column
Name MBean Attribute Description

About Call-State Storage and Management for SIP Calls

11-6 WebRTC Session Controller System Administrator's Guide

Table 11–4 describes the parameters that you can monitor on the Call State Metadata
Cache tab for each server. The cache name is CallState.meta. These are call-state lock
and timer entries.

Table 11–5 describes the parameters that you can monitor on the Call State Index
Cache tab for each server. The cache name is CallState.idx. These are call-state
secondary index entries.

You can monitor all parameters by connecting directly to the servers using JConsole.

Table 11–4 Call State Cache Metadata Monitoring Parameters

Column
Name

MBean
Attribute
Name Description

Entry
Count

Size The number of call-state meta data objects.

Data Size Units The total number of bytes used for call-state meta data objects.

Table 11–5 Call State Index Cache Monitoring Parameters

Column
Name

MBean
Attribute
Name Description

Entry Count Size The number of call-state secondary index entries currently
stored.

Data Size Units The total number of bytes of call-state secondary index entries
currently stored.

Part II
Part II Monitoring and Troubleshooting

This part provides information on operating and maintaining Oracle Communications
WebRTC Session Controller. It includes information on starting and stopping servers,
logging, diagnostics, SNMP traps, upgrading WebRTC Session Controller software
and deployed SIP applications, and avoiding and recovering from server failure.

This part contains the following chapters:

■ Logging SIP Requests and Responses and EDRs

■ Monitoring Statistics and Resource Limits

■ Avoiding and Recovering From Server Failures

■ Tuning JVM Garbage Collection for Production Deployments

■ Avoiding JVM Delays Caused By Random Number Generation

12

Logging SIP Requests and Responses and EDRs 12-1

12Logging SIP Requests and Responses and
EDRs

This chapter describes how to configure and manage logging for SIP requests and
responses that Oracle Communications WebRTC Session Controller processes.

Overview of SIP Logging
WebRTC Session Controller enables you to perform Protocol Data Unit (PDU) logging
for the SIP requests and responses it processes. Logged SIP messages are placed either
in the domain-wide log file for WebRTC Session Controller, or in the log files for
individual Managed Server instances. Because SIP messages share the same log files as
WebRTC Session Controller instances, you can use advanced server logging features
such as log rotation, domain log filtering, and maximum log size configuration when
managing logged SIP messages.

Administrators configure SIP PDU logging by defining one or more SIP servlets using
the com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl class.
Logging criteria are then configured either as parameters to the defined servlet, or in
separate XML files packaged with the application.

As SIP requests are processed or SIP responses generated, the logging servlet
compares the message with the filtering patterns defined in a standalone XML
configuration file or servlet parameter. WebRTC Session Controller writes SIP requests
and responses that match the specified pattern to the log file along with the name of
the logging servlet, the configured logging level, and other details. To avoid
unnecessary pattern matching, the servlet marks new SIP Sessions when an initial
pattern is matched and then logs subsequent requests and responses for that session
automatically.

Logging criteria are defined either directly in sip.xml as parameters to a logging
servlet, or in external XML configuration files. See "Specifying the Criteria for Logging
Messages".

Note: Engineers can implement PDU logging functionality in their
servlets either by creating a delegate with the
TraceMessageListenerFactory in the servlet's init() method, or by
using the tracing class in deployed Java applications. Using the
delegate enables you to perform custom logging or manipulate
incoming SIP messages using the default trace message listener
implementation. See "Adding Tracing Functionality to SIP Servlet
Code" for an example of using the factory in a servlet's init()
method.

Configuring the Logging Level and Destination

12-2 WebRTC Session Controller System Administrator’s Guide

In addition, for each engine you can enable logging of event detail records to the
oracle.wsc.core.edr file. See "Accessing Event Detail Records" for more information.

Configuring the Logging Level and Destination
Logging attributes such as the level of logging detail and the destination log file for
SIP messages are passed as initialization parameters to the logging servlet. Table 12–1,
" Pattern-matching Variables and Sample Values" lists the parameters and parameter
values that you can specify as init-param entries.

Specifying the Criteria for Logging Messages
The criteria for selecting SIP messages to log can be defined either in XML files that are
packaged with the logging servlet's application, or as initialization parameters in the
servlet's sip.xml deployment descriptor. The sections that follow describe each
method.

Using XML Documents to Specify Logging Criteria
If you do not specify logging criteria as an initialization parameter to the logging
servlet, the servlet looks for logging criteria in a pair of XML descriptor files in the top
level of the logging application. These descriptor files, named request-pattern.xml and
response-pattern.xml, define patterns that WebRTC Session Controller uses for
selecting SIP requests and responses to place in the log file.

A typical pattern definition defines a condition for matching a particular value in a SIP
message header. For example, the sample response-pattern.xml used by the
msgTraceLogger servlet matches all MESSAGE requests. The contents of this
descriptor are shown in Example 12–1.

Example 12–1 Sample response-pattern.xml for msgTraceLogger Servlet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pattern
 PUBLIC "Registration//Organization//Type Label//Definition Language"
 "trace-pattern.dtd">
<pattern>
 <equal>
 <var>response.method</var>
 <value>MESSAGE</value>
 </equal>
</pattern>

See "trace-pattern.dtd Reference" for descriptions of additional operators and
conditions used for matching SIP messages. Most conditions, such as the equal
condition shown in Example 12–1, require a variable (var element) that identifies the
portion of the SIP message to evaluate. Table 12–1 lists some common variables and
sample values. For additional variable names and examples, see Section 16: Mapping
Requests to Servlets in the SIP servlet API 1.1 specification; WebRTC Session Controller
enables mapping of both request and response variables to logging servlets.

Note: By default WebRTC Session Controller logs both requests and
responses. If you do not want to log responses, you must define a
response-pattern.xml file with empty matching criteria.

Enabling Log Rotation and Viewing Log Files

Logging SIP Requests and Responses and EDRs 12-3

Both request-pattern.xml and response-pattern.xm use the same Document Type
Definition (DTD). See "trace-pattern.dtd Reference" for more information.

Specifying Content Types for Unencrypted Logging
By default WebRTC Session Controller uses String format (UTF-8 encoding) to log the
content of SIP messages having a text or application/sdp Content-Type value. For all
other Content-Type values, WebRTC Session Controller attempts to log the message
content using the character set specified in the charset parameter of the message, if one
is specified. If no charset parameter is specified, or if the charset value is invalid or
unsupported, WebRTC Session Controller uses Base-64 encoding to encrypt the
message content before logging the message.

To avoid encrypting the content of messages under these circumstances, specify a list
of String-representable Content-Type values using the string-rep element in
sipserver.xml. The string-rep element can contain one or more content-type elements
to match. If a logged message matches one of the configured content-type elements,
WebRTC Session Controller logs the content in String format using UTF-8 encoding,
regardless of whether a charset parameter is included.

Example 12–2 shows a sample message-debug configuration that logs String content
for three additional Content-Type values, in addition to text/* and application/sdp
content.

Example 12–2 Logging String Content for Additional Content Types

 <message-debug>
 <level>full</level>
 <string-rep>
 <content-type>application/msml+xml</content-type>
 <content-type>application/media_control+xml</content-type>
 <content-type>application/media_control</content-type>
 </string-rep>
 </message-debug>

Enabling Log Rotation and Viewing Log Files
The WebRTC Session Controller logging infrastructure enables you to automatically
write to a new log file when the existing log file reaches a specified size. You can also
view log contents using the Administration Console or configure additional
server-level events that are written to the log.

Table 12–1 Pattern-matching Variables and Sample Values

Variable Sample Values

request.method, response.method MESSAGE, INVITE, ACK, BYE, CANCEL

request.uri.user, response.uri.user guest, admin, joe

request.to.host, response.to.host server.mydomain.com

Note: You do not need to specify text/* or application/sdp content
types as these are logged in String format by default.

trace-pattern.dtd Reference

12-4 WebRTC Session Controller System Administrator’s Guide

trace-pattern.dtd Reference
trace-pattern.dtd defines the required contents of the request-pattern.xml and
response-pattern.xml, documents and the values for the request-pattern-string and
response-pattern-string servlet init-param variables.

Example 12–3 trace-pattern.dtd

<!--
The different types of conditions supported.
- >

<!ENTITY % condition "and | or | not |
 equal | contains | exists | subdomain-of">

<!--
A pattern is a condition: a predicate over the set of SIP requests.
- >

<!ELEMENT pattern (%condition;)>

<!--
An "and" condition is true if and only if all its constituent conditions
are true.
- >

<!ELEMENT and (%condition;)+>

<!--
An "or" condition is true if at least one of its constituent conditions
is true.
- >

<!ELEMENT or (%condition;)+>

<!--
Negates the value of the contained condition.
- >

<!ELEMENT not (%condition;)>

<!--
True if the value of the variable equals the specified literal value.
- >

<!ELEMENT equal (var, value)>

<!--
True if the value of the variable contains the specified literal value.
- >

<!ELEMENT contains (var, value)>

<!--
True if the specified variable exists.
- >

<!ELEMENT exists (var)>

<!--

Adding Tracing Functionality to SIP Servlet Code

Logging SIP Requests and Responses and EDRs 12-5

- >

<!ELEMENT subdomain-of (var, value)>

<!--
Specifies a variable. Example:
 <var>request.uri.user</var>
- >

<!ELEMENT var (#PCDATA)>

<!--
Specifies a literal string value that is used to specify rules.
- >

<!ELEMENT value (#PCDATA)>

<!--
Specifies whether the "equal" test is case sensitive or not.
- >

<!ATTLIST equal ignore-case (true|false) "false">

<!--
Specifies whether the "contains" test is case sensitive or not.
- >

<!ATTLIST contains ignore-case (true|false) "false">

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e information
beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard sip-app
deployment descriptor.
- >

<!ATTLIST pattern id ID #IMPLIED>
<!ATTLIST and id ID #IMPLIED>
<!ATTLIST or id ID #IMPLIED>
<!ATTLIST not id ID #IMPLIED>
<!ATTLIST equal id ID #IMPLIED>
<!ATTLIST contains id ID #IMPLIED>
<!ATTLIST exists id ID #IMPLIED>
<!ATTLIST subdomain-of id ID #IMPLIED>
<!ATTLIST var id ID #IMPLIED>
<!ATTLIST value id ID #IMPLIED>

Adding Tracing Functionality to SIP Servlet Code
Tracing functionality can be added to your own servlets or to Java code by using the
TraceMessageListenerFactory. TraceMessageListenerFactory enables clients to reuse
the default trace message listener implementation behaviors by creating an instance
and then delegating to it. The factory implementation instance can be found in the
servlet context for SIP servlets by looking up the value of the
TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY attribute.

Order of Startup for Listeners and Logging Servlets

12-6 WebRTC Session Controller System Administrator’s Guide

To implement tracing in a servlet, you use the factory class to create a delegate in the
servlet's init() method as shown in Example 12–4.

Example 12–4 Using the TraceMessageListenerFactory

public final class TraceMessageListenerImpl extends SipServlet implements
MessageListener {
 private MessageListener delegate;

 public void init() throws ServletException {
 ServletContext sc = (ServletContext) getServletContext();
 TraceMessageListenerFactory factory = (TraceMessageListenerFactory)
sc.getAttribute(TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY);
 delegate = factory.createTraceMessageListener(getServletConfig());
 }
 public final void onRequest(SipServletRequest req, boolean incoming) {
 delegate.onRequest(req,incoming);
 }
 public final void onResponse(SipServletResponse resp, boolean incoming) {
 delegate.onResponse(resp,incoming);
 }
}

Order of Startup for Listeners and Logging Servlets
If you deploy both listeners and logging servlets, the listener classes are loaded first,
followed by the servlets. Logging servlets are deployed in order according to the load
order specified in their web application deployment descriptor.

Accessing Event Detail Records
The Signalling Engine collects data in an event detail record (EDR) for each event that
occurs in a subsession for the Call, Chat, and File Transfer packages. Each engine
creates event detail records and writes them to a file, oracle.wsc.core.edr, for the
sessions that it owns.

An event detail record consists of a number of attributes whose values are written to
the file, separated by commas. The following example shows the format of a call event
detail record:

"call", "Event Data Record for call", "guest",
"wlss-ffc87c6f-03a1b947a75bee7641d1e6caa71af17e@127.0.0.1", "alice@example.com",
"bob@example.com", "guest481739666754963347", "0", "Mon Aug 04 22:25:44 IST 2014",
"603"

Table 12–2 shows the supported list of attributes in the order in which they appear in
an EDR:

Note: Instances created by the factory are not registered with
WebRTC Session Controller to receive callbacks upon SIP message
arrival and departure.

Accessing Event Detail Records

Logging SIP Requests and Responses and EDRs 12-7

You enable EDR logging in the administration console.

You can specify additional configuration options in the edr-log4j2-conf.xml file. In this
file is missing, EDRs are logged to the WSC.log file by default.

Table 12–5 lists the contents of a sample edr-log4j2-conf.xml file:

Example 12–5 EDR Logging Configuration Options in the edr-log4j2-conf.xml File

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Appenders>
 <RollingFile name="file"
fileName="servers/${sys:weblogic.Name}/logs/wsc.log"
filePattern="servers/${sys:weblogic.Name}/logs/wsc-%d{yyyyMM}-%i.log">
 <PatternLayout pattern="%5p %d [%-15.15t] (%-25.25c:%4L) - %m%n"
/>
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>

 <RollingFile name="edr.file"
fileName="servers/${sys:weblogic.Name}/logs/edr.log"
filePattern="servers/${sys:weblogic.Name}/logs/edr-%d{yyyyMM}-%i.log">

Table 12–2 EDR Attributes

Attribute Value Description
Data
Type Example

EVENT_NAME call/chat/file_transfer String "call"

DESCRIPTION Description String "Event Data Record for call"

APPLICATION Application for which EDR
is generated

String "guest"

SESSION_ID Unique subsession ID
(call-id)

String "wlss-ffc87c6f-03a1b947a75bee7641d1e6caa71af17e@
127.0.0.1"

INITIATOR Initiator of subsession String "alice@example.com"

TARGET Target of the subsession String "bob@example.com"

USER_ID Web user ID String "alice@web.net"

SESSION_
DURATION

Duration of the subsession
in seconds

long 61

START_TIME Start time for the subsession Date Mon Aug 04 22:25:44 IST 2014

FAILURE_
REASON

Reason for the failure. Int 603

Note: The actual start time of the call might be perceived differently
by the user. The Signalling Engine cannot identify the time that the
media packets are sent between two users because RTP packets are
not routed through it. With WebRTC, packets can go directly between
the browsers. Consequently, the session duration time is based on the
Signaling Engine's perception of the session, not the exact duration of
the media packet flow.

Managing EDRs in a Multitenancy Scenario

12-8 WebRTC Session Controller System Administrator’s Guide

 <PatternLayout pattern="%m%n" />
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>
 </Appenders>

 <Loggers>
 <Logger name="oracle.wsc.core.edr.EventDataRecorder" level="debug"
additivity="false">
 <AppenderRef ref="edr.file"/>
 </Logger>
 <Root level="info">
 <AppenderRef ref="file" />
 </Root>
 </Loggers>

</Configuration>

You provide the name of the log4j file as part of configuration. For information on
log4j configuration, see

http://logging.apache.org/log4j/2.x/faq.html#config_location.

For information about the log4j file, see

http://logging.apache.org/log4j/2.x/manual/configuration.html.

Managing EDRs in a Multitenancy Scenario
WebRTC Session Controller stores the tenant information in log files named with the
tenant name. For example, the EDR of tenant A whose tenant name is tenantA is
recorded in file named edr-tenantA.log.

WebRTC Session Controller RoutingAppender to route EDRs of tenants to the
appropriate log file associated with each tenant. Example 12–6 shows an example of an
appender configuration.

Example 12–6 An example Appender Configuration

<Routing name="edr.file">
 <Routes pattern="$${ctx:tenantName}">
 <!-- This route is chosen if ThreadContext has no value for key
tenantName. -->
 <Route key="$${ctx:tenantName}">
 <RollingFile name="edr-default"
fileName="servers/${sys:weblogic.Name}/logs/edr.log"

filePattern="servers/${sys:weblogic.Name}/logs/edr-%d{yyyyMM}-%i.log">
 <PatternLayout pattern="%m%n" />
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>
 </Route>

 <!-- This route is chosen if ThreadContext has a value for tenantName
 The value dynamically determines the name of the log file. -->
 <Route>

Managing EDRs in a Multitenancy Scenario

Logging SIP Requests and Responses and EDRs 12-9

 <RollingFile name="Rolling-${ctx:tenantName}"
fileName="servers/${sys:weblogic.Name}/logs/edr-${ctx:tenantName}.log"

filePattern="servers/${sys:weblogic.Name}/logs/edr-${ctx:tenantName}-%d{yyyyMM}-%i
.log">
 <PatternLayout pattern="%m%n" />
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>
 </Route>
 </Routes>
 </Routing>

Table 12–7 lists the contents of a sample edr-log4j2-conf.xml file configured to support
multitenancy:

Example 12–7 Sample edr-log4j2-conf.xml File (Multitenancy)

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">

 <Appenders>
 <RollingFile
 name="file"
 fileName="servers/${sys:weblogic.Name}/logs/wsc.log"
 filePattern="servers/${sys:weblogic.Name}/logs/wsc.log-%d{yyyy-MM-dd}-%i"
 immediateFlush="true"
 append="true">

 <PatternLayout pattern="%5p %d [%-15.15t] (%-25.25c:%4L) - %m%n" />
 <Policies>
 <OnStartupTriggeringPolicy />
 <TimeBasedTriggeringPolicy interval="24" modulate="true" />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 <DefaultRolloverStrategy max="10"/>
 </RollingFile>
 <RollingFile
 name="threat"
 fileName="servers/${sys:weblogic.Name}/logs/wsc-threat.log"
 filePattern="servers/${sys:weblogic.Name}/logs/wsc-threat.log-%d{yyyy-MM-dd}-%i"
 immediateFlush="true"
 append="true">

 <PatternLayout pattern="%d %m%n" />
 <Policies>
 <OnStartupTriggeringPolicy />
 <TimeBasedTriggeringPolicy interval="24" modulate="true" />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 <DefaultRolloverStrategy max="10"/>
 </RollingFile>

 <RollingFile
 name="debug"
 fileName="servers/${sys:weblogic.Name}/logs/wsc-debug-server.log"

filePattern="servers/${sys:weblogic.Name}/logs/wsc-debug-server.log-%d{yyyy-MM-dd}-%i"

Managing EDRs in a Multitenancy Scenario

12-10 WebRTC Session Controller System Administrator’s Guide

 immediateFlush="true"
 append="true">

 <PatternLayout pattern="%5p %d [%-15.15t] (%-25.25c:%4L) - %m%n" />
 <Policies>
 <OnStartupTriggeringPolicy />
 <TimeBasedTriggeringPolicy interval="24" modulate="true" />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 <DefaultRolloverStrategy max="10"/>
 </RollingFile>

 <RollingFile
 name="clientDebug"
 fileName="servers/${sys:weblogic.Name}/logs/wsc-debug-client.log"

filePattern="servers/${sys:weblogic.Name}/logs/wsc-debug-client.log-%d{yyyy-MM-dd}-%i"
 immediateFlush="true"
 append="true">

 <PatternLayout pattern="%5p %d [%-15.15t] (%-25.25c:%4L) - %m%n" />
 <Policies>
 <OnStartupTriggeringPolicy />
 <TimeBasedTriggeringPolicy interval="24" modulate="true" />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 <DefaultRolloverStrategy max="10"/>
 </RollingFile>

 <Routing name="edr.file">
 <Routes pattern="$${ctx:tenantName}">
 <!-- This route is chosen if ThreadContext has no value for key tenatName. -->
 <Route key="$${ctx:tenantName}">
 <RollingFile name="edr-default" fileame="servers/${sys:weblogic.Name}/logs/edr.log"
filePattern="servers/${sys:weblogic.Name}/logs/edr-%d{yyyyMM}-%i.log">
 <PatternLayout pattern="%m%n" />
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>
 </Route>

 <!-- This route is chosen if ThreadContext has a value for tenantName
 The value dynamically determines the name of the log file. -->
 <Route>
 <RollingFile name="Rolling-${ctx:tenantName}"
fileName="servers/${sys:weblogic.Name}/logs/edr-${ctx:tenantName}.log"

filePattern="servers/${sys:weblogic.Name}/logs/edr-${ctx:tenantName}-%d{yyyyMM}-%i.log">
 <PatternLayout pattern="%m%n" />
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="100 MB"/>
 </Policies>
 </RollingFile>
 </Route>
 </Routes>
 </Routing>
 </Appenders>

Managing EDRs in a Multitenancy Scenario

Logging SIP Requests and Responses and EDRs 12-11

 <Loggers>
 <Logger name="oracle.wsc.core.edr.EventDataRecorder" level="debug" additivity="false">
 <AppenderRef ref="edr.file"/>
 </Logger>
 <Logger name="oracle.wsc.core.threat.log" level="info" additivity="false">
 <AppenderRef ref="threat"/>
 </Logger>
 <Logger name="oracle.wsc.core.debug" level="debug" additivity="false">
 <AppenderRef ref="debug"/>
 </Logger>
 <Logger name="oracle.wsc.core.clientdebug" level="debug" additivity="false">
 <AppenderRef ref="clientDebug"/>
 </Logger>
 <Root level="warn">
 <AppenderRef ref="file" />
 </Root>
 </Loggers>

 </Configuration>

Managing EDRs in a Multitenancy Scenario

12-12 WebRTC Session Controller System Administrator’s Guide

13

Monitoring Statistics and Resource Limits 13-1

13Monitoring Statistics and Resource Limits

This chapter describes the implementation and management of statistics and resource
limits in Oracle WebRTC Session Controller.

About WebRTC Session Controller Statistics
You configure your WebRTC Session Controller installation with license requirements,
resource limits for the system and the application or tenant accessing the system and
its services.

At runtime, when your customers access and use your WebRTC Session Controller
system and the services you provide, you can access and monitor the following in
WebRTC Session Controller:

■ Licenses. See "About the Monitoring of Licenses".

■ Resource limits. See "About Resource Limits".

■ Counters. See "About Statistics Counters".

About the Monitoring of Licenses
As a system administrator, you can ensure that WebRTC Session Controller is not
exceeding the licensing limit for concurrent sessions and/or named users by
monitoring the total number of concurrent sessions and/or named users in the system
at any time.

In WebRTC Session Controller, concurrent sessions are the aggregate number of
established virtual connections between two endpoints represented by subscriber
devices or network switching equipment and traversing the licensed software at any
one time.

A named user is an individual authorized by you to use the programs which are
installed on a single server or multiple servers. This definition of a named user is valid
regardless of whether the individual is actively using the programs at any given time.
Additionally, WebRTC Session Controller counts a non human operated device that
can access the programs as a named user in addition to all individuals authorized to
use the programs.

WebRTC Session Controller supports the following licensing metrics at the system
level:

■ Total number of active sessions

■ Total number of sub-sessions

■ Total number of uniquely-named users

About WebRTC Session Controller Statistics

13-2 WebRTC Session Controller System Administrator’s Guide

■ High watermark for active sessions, sub sessions and named users

To monitor these metrics, see "Monitoring the Metrics".

About Resource Limits
WebRTC Session Controller Administration Console supports the configuration of
resource limit entries, where each entry is given a unique name. Each resource limit
entry consists of the following resource parameters to which limits can be set:

■ Number of active sessions allowed.

■ Number of sessions allowed per user.

■ Number of sub sessions allowed per session.

■ Number of sub sessions allowed per user.

Each tenant of an WebRTC Session Controller installation can configure and store a set
of resource limit entries in the Signaling Engine. At the time that a tenant creates an
entry for an application and configures the application profile for the application, the
tenant selects a resource limit entry to associate with each application.

WebRTC Session Controller provides a default resource limit selection entry called,
default. Use this resource limit entry to provide resource limits as a default selection
for the applications a tenant configures in the application profile.

About the default Resource Limit Entry
When WebRTC Session Controller is installed, the four resource parameters for the
default entry have their limits set to -1. A value of -1 for a resource entry parameter
indicates that the resource parameter is allowed unlimited resource. WebRTC Session
Controller does not track any resource parameter with its maximum limit set to -1.

You can edit the limits set for the default resource limit entry. When you do so,
WebRTC Session Controller enforces the updated resource limits.

About Statistics Counters
Table 13–1 lists the available WebRTC Session Controller statistics counters, including
information on each statistic’s type as well as in which statistics set each is available.

Note: If you do not edit the installation configuration for default
(with unlimited resources for all the parameters) as one of the resource
limit entries and an application uses this default, then, none of the
resource parameters use is tracked for the application.

Table 13–1 WebRTC Session Controller Statistics Counters

Name Levels Where Applied Description

SESSION_COUNT System, Application,
Tenant, Application User,
Tenant user

Number of active WebRTC Session Controller
sessions

SESSION_PEAK System Maximum number of active WebRTC Session
Controller sessions

SUB_SESSION_COUNT System Number of active sub sessions, for example
SIP sessions.

Configuring Resource Limits

Monitoring Statistics and Resource Limits 13-3

For a description about the MBeans employed to monitor these counters, see "About
StatisticsRuntimeMBean" and "About the SipRuntimeMBean".

Configuring Resource Limits
You can configure resource limits for applications and for tenants in the Signaling
Engine.

Configuring Resource Limits in the Signaling Engine
In the Signaling Engine tab of WebRTC Session Controller Administration Console,
you create a set of resource limit entries, with each entry given a unique name. For
each resource limit entry, you provide limits to the resource parameters.

For information on how to provide resource limit entries for the Signaling engine, see
"Global Resource Limit Parameters of the Signaling Engine".

SUB_SESSION_PEAK System Max number of active sub sessions, for
example, SIP sessions.

SUB_SESSION_ATTEMPT_COUNT System The number of SIP session creation attempts
where SipSession == INITIAL.

SUB_SESSION_SUCCESS_COUNT System The number of SIP sessions successfully
created where SipSession == CONFIRMED.

SUB_SESSION_TERMINATE_
COUNT

System The number of SIP sessions terminated where
SipSession == TERMINATED.

REGISTRATION_SUCCESS_COUNT System Number of successful registrations.

REGISTRATION_UNSUCCESS_
COUNT

System Number of unsuccessful registrations.

MEDIA_SESSION_COUNT System The number of active media sessions.

ACTIVE_USERS_COUNT System Number of active users

ACTIVE_USERS_PEAK System Maximum number of active users

SIP_MESSAGE_SEND_COUNT System The number of SIP messages sent by WebRTC
Session Controller.

SIP_MESSAGE_RECV_COUNT System The number of SIP messages received by
WebRTC Session Controller.

SIP_(method)_REQUEST_SEND_
COUNT

System The number of SIP requests for each method
sent by WebRTC Session Controller.

SIP_(method)_REQUEST_RECV_
COUNT

System The number of SIP requests for each method
received by WebRTC Session Controller.

SIP_(status)_RESPONSE_SEND_
COUNT

System The number of SIP responses of each status
(1xx, 2xx, 3xx, 4xx, 5xx and 6xx) sent by
WebRTC Session Controller.

SIP_(status)_RESPONSE_RECV_
COUNT

System The number of SIP responses of each status
1xx, 2xx, 3xx, 4xx, 5xx and 6xx) received by
WebRTC Session Controller.

Table 13–1 (Cont.) WebRTC Session Controller Statistics Counters

Name Levels Where Applied Description

Monitoring the Metrics

13-4 WebRTC Session Controller System Administrator’s Guide

Configuring Resource Limits for Applications
The Resource Limits field in the Application Profiles tab of WebRTC Session
Controller Administration Console, displays the set of saved resource limit entries that
you created in the Signaling Engine tab. When you create the application profile for
an application, you select the resource limit entry that best suits your application.

 For information on how to assign a resource limit entry to your application, see
"Providing the Profile Information for the Application".

Monitoring the Metrics
You can monitor these metrics:

■ System usage. See "Monitoring the System at RunTime".

■ Sip Server usage. See "Monitoring SIP Counters at Runtime".

■ High watermark log messages. See "Monitoring High Watermark Log Messages".

Monitoring the System at RunTime
At runtime, you can get the statistics for:

■ Usage:

– SESSION_COUNT

– SESSION_PEAK

– SUB_SESSION_COUNT

– SUB_SESSION_PEAK

– SUB_SESSION_ATTEMPT_COUNT

– SUB_SESSION_SUCCESS_COUNT

– SUB_SESSION_TERMINATE_COUNT

– REGISTRATION_SUCCESS_COUNT

– REGISTRATION_UNSUCCESS_COUNT

– MEDIA_SESSION_COUNT

– ACTIVE_USERS_COUNT

– ACTIVE_USERS_PEAK

 See Table 13–1 for a description of the counters.

■ High Watermark counts for:

– Active named users

– Active sessions

– Active sub sessions

 To retrieve the above statistics, you use the StatisticsRuntimeMBean.

About StatisticsRuntimeMBean
As its name suggests, StatisticsRuntimeMBean is a runtime MBean that provides
statistics. The following MBeans are available at runtime:

■ System level

Monitoring the Metrics

Monitoring Statistics and Resource Limits 13-5

A single MBean instance that reports counters from the SYSTEM statistics set with
the object name:

oracle.wsc:Type=StatisticsRuntimeMBean,Location=[ServerName]]

■ Application level

One mbean per application that reports counters from the Application statistics set
with the Object name

oracle.wsc:Type=StatisticsRuntimeMBean,Location=[ServerName],scope=application,
application=[ApplicationName]]

■ Tenant level

One mbean per tenant that reports counters from the TENANT statistics set with
the Object name:

oracle.wsc:Type=StatisticsRuntimeMBean,Location=[ServerName],scope=tenant,tenan
tProfile=[TenantProfileName]]]

You can access WebRTC Session Controller statistics counters and operations using
JMX or the JConsole utility through this MBean.

For information on the methods of the StatisticsRunTimeMBean, see WebRTC Session
Controller JavaScript API Reference.

Monitoring SIP Counters at Runtime
At runtime, SipRunTimeMBean enables you can retrieve the number for following:

■ SIP_MESSAGE_SEND_COUNT

■ SIP_MESSAGE_RECV_COUNT

■ SIP_(method)_REQUEST_SEND_COUNT

■ SIP_(method)_REQUEST_RECV_COUNT

■ SIP_(status)_RESPONSE_SEND_COUNT

■ SIP_(status)_RESPONSE_RECV_COUNT

About the SipRuntimeMBean
SipRuntimeMBean is a single mbean instance reflects SIP counters from the SYSTEM
statistics set with the Object name

oracle.wsc:Type=SipRuntimeMBean,Location=[ServerName]]]]

For information on the methods of the SipRuntimeMBean, see WebRTC Session
Controller JavaScript API Reference.

Monitoring High Watermark Log Messages
The High Watermark is the indicator which represents the highest value seen until
now for a monitored entry. Suppose that the total count stored for a monitored entry
goes from 1 to 10 to 5. The high watermark value for this entry is 10.

WebRTC Session Controller logs a high watermark message for the following:

■ Active sessions

■ Active sub sessions

Monitoring the Metrics

13-6 WebRTC Session Controller System Administrator’s Guide

■ Active named users

Example 13–1 lists some warning messages in a sample wsc.log file:

Example 13–1 Example High Watermark messages in the wsc.log file

WARN 2014-03-28 13:00:31,452 [pool-4-thread-1] (ats.StatsServiceImpl: 96) - New high watermark for
active named user count: 42
WARN 2014-03-25 16:18:55,816 [pool-4-thread-1] (ats.StatsServiceImpl: 125) - New high watermark for
active session count: 99

When the system reaches a new all time high value for any of the licence metrics,
WebRTC Session Controller logs high watermark messages in the wsc.log file on the
engine servers. The complete path to this file is domain_name/servers/server_
name/logs/wsc.log file, where domain_name is the name of the WebRTC Session
Controller domain and server_name is the name of the server.

You can audit the log files at a later time to see the maximum values that have been
reached.

Disabling the Monitoring of System Statistics
WebRTC Session Controller collects statistics associated with licensing, by default. To
disable the monitoring of system statistics, use the following system property when
you start WebLogic server:

-Doracle.wsc.stats=false

For information about startup command options, see Table 3–6.

Note: In a cluster configuration, WebRTC Session Controller resets
the watermark values on a restart of the servers.

14

Avoiding and Recovering From Server Failures 14-1

14Avoiding and Recovering From Server Failures

This chapter describes the Oracle Communications WebRTC Session Controller failure
prevention and recovery features, and includes the configuration artifacts that are
required to restore different portions of a WebRTC Session Controller domain.

Failure Prevention and Automatic Recovery Features
A variety of events can lead to the failure of a server instance. Often one failure
condition leads to another. Loss of power, hardware malfunction, operating system
malfunctions, network partitions, or unexpected application behavior may each
contribute to the failure of a server instance.

WebRTC Session Controller uses a highly clustered architecture as the basis for
minimizing the impact of failure events. However, even in a clustered environment it
is important to prepare for a sound recovery process if an individual server fails.

WebRTC Session Controller, and the underlying WebLogic Server platform, provide
many features that protect against server failures. In a production system, use all
available features to ensure uninterrupted service.

High Availability
High availability refers to a system design that eliminates or minimizes the amount of
time that a system is inaccessible due to some type of system failure.

WebRTC Session Controller achieves high availability primarily due to the features of
the underlying Weblogic Server platform. These features include:

■ WebLogic Server clusters that distribute the work load among the multiple
instances of WebLogic Server running on the nodes in the cluster. In the event of
failure, the session state of the failed WebLogic Server is available to other node
that can continue the work. If the cluster is configured correctly, services can also
migrate to another node in the event of failure. See "Understanding Weblogic
Server Clustering" in Administering Clusters for Oracle WebLogic Server for more
information.

■ Coherence clusters that distribute data across members to ensure that data is
always available. See "Configuring and Managing Coherence Clusters" in
Administering Clusters for Oracle WebLogic Server for more information.

■ Overload protection that enables WebLogic Server to detect and recover from
overload conditions. See "Avoiding and Managing Overload" in Administering
Server Environments for more information.

Failure Prevention and Automatic Recovery Features

14-2 WebRTC Session Controller System Administrator's Guide

■ Network channels that segregate traffic by type to use resources effectively. See
"Configuring Network Resources" in Administering Server Environments for more
information

■ Work Managers that optimize and prioritize work based on rules and performance
statistics. See "Using Work Managers to Optimize Scheduled Work" in
Administering Server Environments for more information.

You can also use virtual machines (VMs) to mitigate system failure. An individual
server has multiple points of potential failure, including CPU, RAM, network ports,
and disk drives. A virtual machine, on the other hand, can satisfy its resource
requirements from a pool of hardware resources so that a physical disk failure does
not result in a failure of the virtual disk. The virtual machine simply employs another
available disk drive to compensate for the one that failed. A balanced deployment of
VMs running separate Signalling Engines and Media Engines on different hosts can
take full advantage of cross-host high availability for both Signalling Engine and
Media Engine clusters.

For information on installing a Media Engine cluster to support redundancy and
failover, high-availability, and load balancing, see the sections on installing media
engine clusters in the WebRTC Session Controller Installation Guide.

Overload Protection
There are two sets of tuning parameters related to overload protection, one set for the
SIP side and another set for the HTTP or WebSocket side. For WebRTC Session
Controller, the greater threats are from the HTTP (Internet) side.

WebRTC Session Controller detects increases in system load that could affect the
performance and stability of deployed SIP Servlets, and automatically throttles
message processing at predefined load thresholds.

Using overload protection helps you avoid failures that could result from
unanticipated levels of application traffic or resource utilization.

WebRTC Session Controller attempts to avoid failure when certain conditions occur:

■ The rate at which SIP sessions are created reaches a configured value, or

■ The size of the SIP timer and SIP request-processing execute queues reaches a
configured length.

See "Engine Server Configuration Reference (sipserver.xml)" for more information.

The underlying WebLogic Server platform also detects increases in system load that
can affect deployed application performance and stability. WebLogic Server allows
administrators to configure failure prevention actions that occur automatically at
predefined load thresholds. Automatic overload protection helps you avoid failures
that result from unanticipated levels of application traffic or resource utilization as
indicated by:

■ A workload manager's capacity being exceeded

■ The HTTP session count increasing to a predefined threshold value

■ Impending out of memory conditions

See "Avoiding and Managing Overload" in Administering Server Environments for Oracle
WebLogic Server for more information.

Failure Prevention and Automatic Recovery Features

Avoiding and Recovering From Server Failures 14-3

Redundancy and Failover for Clustered Services
You can increase the reliability and availability of your applications by using multiple
servers and partitions in a dedicated cluster.

Server partitions store redundant copies of call state information, and automatically
failover to one another should a partition or server fail.

See WebRTC Session Controller Concepts for more information.

Automatic Restart for Failed Server Instances
WebLogic Server self-health monitoring features improve the reliability and
availability of server instances in a domain. Selected subsystems within each server
instance monitor their health status based on criteria specific to the subsystem. (For
example, the JMS subsystem monitors the condition of the JMS thread pool while the
core server subsystem monitors default and user-defined execute queue statistics.) If
an individual subsystem determines that it can no longer operate in a consistent and
reliable manner, it registers its health state as failed with the host server.

Each WebLogic Server instance, in turn, checks the health state of its registered
subsystems to determine its overall viability. If one or more of its critical subsystems
have reached the FAILED state, the server instance marks its own health state FAILED
to indicate that it cannot reliably host an application.

When used in combination with Node Manager, server self-health monitoring enables
you to automatically restart servers that have failed. This improves the overall
reliability of a domain, and requires no direct intervention from an administrator. For
more information, see "Using Node Manager to Control Servers" in the Administering
Node Manager for Oracle WebLogic Server.

Managed Server Independence Mode
Managed Servers maintain a local copy of the domain configuration. When a Managed
Server starts, it contacts its Administration Server to retrieve any changes to the
domain configuration that were made since the Managed Server was last shut down. If
a Managed Server cannot connect to the Administration Server during startup, it can
use its locally-cached configuration information—this is the configuration that was
current at the time of the Managed Server's most recent shutdown. A Managed Server
that starts without contacting its Administration Server to check for configuration
updates is running in Managed Server Independence (MSI) mode. By default, MSI
mode is enabled. See "Replicate domain config files for Managed Server
Independence" in the Administration Console Online Help for more information.

Automatic Migration of Failed Managed Servers
When using Linux or UNIX operating systems, you can use WebLogic Server's server
migration feature to automatically start a candidate (backup) server if a Network tier
server fails or becomes partitioned from the network. The server migration feature
uses node manager, with the wlsifconfig.sh script, to automatically start candidate
servers using a floating IP address. Candidate servers are started only if the primary
server hosting a Network tier instance becomes unreachable. See the discussion on
"Whole Server Migration" in Administering Clusters for Oracle WebLogic Server for more
information about using the server migration feature.

Directory and File Backups for Failure Recovery

14-4 WebRTC Session Controller System Administrator's Guide

Geographic Redundancy for Regional Site Failures
In addition to server-level redundancy and failover capabilities, you can configure
peer sites to protect against catastrophic failures, such as power outages, that can affect
an entire domain. This configuration enables you to failover from one geographical
site to another, avoiding complete service outages.

There is no specific configuration in WebRTC Session Controller to support redundant
sites. They are two independent sites that are not aware of each other, which means
that you need to configure and provision each site manually.

Directory and File Backups for Failure Recovery
Recovery from the failure of a server instance requires access to the domain's
configuration data. By default, the Administration Server stores a domain's primary
configuration data in a file called domain_home/config/config.xml, where domain_home
is the root directory of the domain.

The primary configuration file may reference additional configuration files for specific
WebLogic Server services, such as JDBC and JMS, and for WebRTC Session Controller
services, such as SIP container properties and SIP call-state storage configuration. The
configuration for specific services are stored in additional XML files in subdirectories
of the domain_home/config directory, such as domain_home/config/jms, domain_
home/config/jdbc, and domain_home/config/custom for WebRTC Session Controller
configuration files.

The Administration Server can automatically archive multiple versions of the domain
configuration (the entire domain_home/config directory). Use the configuration
archives for system restoration in cases where accidental configuration changes need
to be reversed. For example, if an administrator accidentally removes a configured
resource, the prior configuration can be restored by using the last automated backup.

The Administration Server stores only a finite number of automated backups locally in
domain_home/config. For this reason, automated domain backups are limited in their
ability to guard against data corruption, such as a failed hard disk. Automated
backups also do not preserve certain configuration data that are required for full
domain restoration, such as LDAP repository data and server start-up scripts. Oracle
recommends that you also maintain multiple backup copies of the configuration and
security offline, in a source control system.

This section describes file backups that WebRTC Session Controller performs
automatically and manual backup procedures that an administrator should perform
periodically.

Enabling Automatic Configuration Backups
Follow these steps to enable automatic domain configuration backups on the
Administration Server for your domain:

1. Access the Administration Console for your domain.

2. In the left pane of the Administration Console, select the name of the domain.

3. In the right pane, click Configuration, and then select the General tab.

4. Select Advanced to display advanced options.

5. Select Configuration Archive Enabled.

6. In the Archive Configuration Count box, enter the maximum number of
configuration file revisions to save.

Directory and File Backups for Failure Recovery

Avoiding and Recovering From Server Failures 14-5

7. Click Save.

When you enable configuration archiving, the Administration Server automatically
creates a configuration JAR file archive. The JAR file contains a complete copy of the
previous configuration (the complete contents of the domain_home\config directory).
JAR file archive files are stored in the domain_home\configArchive directory. The files
use the naming convention config-number.jar, where number is the sequential
number of the archive.

When you save a change to a domain's configuration, the Administration Server saves
the previous configuration in domain_home\configArchive\config.xml#n. Each time
the Administration Server saves a file in the configArchive directory, it increments the
value of the #n suffix, up to a configurable number of copies—5 by default. Thereafter,
each time you change the domain configuration:

■ The archived files are rotated so that the newest file has a suffix with the highest
number,

■ The previous archived files are renamed with a lower number, and

■ The oldest file is deleted.

Be aware that configuration archives are stored locally within the domain directory,
and they may be overwritten according to the maximum number of revisions you
selected. For these reasons, you must also create your own off-line archives of the
domain configuration, as described in "Storing the Domain Configuration Offline".

Storing the Domain Configuration Offline
Although automatic backups protect against accidental configuration changes, they do
not protect against data loss caused by a failure of the hard disk that stores the domain
configuration, or accidental deletion of the domain directory. To protect against these
failures, you must also store a complete copy of the domain configuration offline,
preferably in a source control system.

Oracle recommends creating a full snapshot of the domain at regular intervals. For
example, you might want to create a snapshot when the following events occur:

■ You first deploy the production system

■ You add or remove deployed applications

■ The configuration is tuned for performance

■ Any other permanent change is made.

The WebLogic pack command creates a template archive file (.jar) based on an existing
WebLogic domain. For example, the following command creates a template file called
C:\oracle\user_templates\mydomain.jar.

pack -domain=C:\oracle\user_projects\domains\mydomain -template=C:\oracle\user_
templates\mydomain.jar -template_name="My WebLogic Domain"

The name of the template is My WebLogic Domain.

Note: The domain directory is present on the Administration Server
and each Managed Server but the Administration Server has the
master copy, which you must back up. You do not need to back up
any files on a Managed Server.

Directory and File Backups for Failure Recovery

14-6 WebRTC Session Controller System Administrator's Guide

See Creating Templates and Domains Using the Pack and Unpack Commands for
information on using the pack and unpack commands.

Store the new archive in a source control system, preserving earlier versions should
you need to restore the domain to an earlier point in time.

Backing Up Logging Servlet Applications
If you use WebRTC Session Controller logging Servlets (see "Logging SIP Requests and
Responses and EDRs") to perform regular logging or auditing of SIP messages, backup
the complete application source files so that you can easily redeploy the applications
should the staging server fail or the original deployment directory becomes corrupted.

Backing Up Security Data
The WebLogic Security service stores its configuration data config.xml file, and also in
an LDAP repository and other files.

Backing Up the WebLogic LDAP Repository
The default Authentication, Authorization, Role Mapper, and Credential Mapper
providers that are installed with WebRTC Session Controller store their data in an
LDAP server. Each WebRTC Session Controller contains an embedded LDAP server.
The Administration Server contains the master LDAP server, which is replicated on all
Managed Servers. If any of your security realms use these installed providers, you
should maintain an up-to-date backup of the following directory tree:

domain_home\servers\AdminServer\data\ldap

where domain_home is the domain's root directory and
servers\AdminServer\data\ldap is the directory in which the Administration Server
stores run-time and security data.

Each WebRTC Session Controller has an LDAP directory, but you only need to back up
the LDAP data on the Administration Server—the master LDAP server replicates the
LDAP data from each Managed Server when updates to security data are made.
WebLogic security providers cannot modify security data while the domain's
Administration Server is unavailable. The LDAP repositories on Managed Servers are
replicas and cannot be modified.

The ldap\ldapfiles subdirectory contains the data files for the LDAP server. The files
in this directory contain user, group, group membership, policies, and role
information. Other subdirectories under the ldap directory contain LDAP server
message logs and data about replicated LDAP servers.

Do not update the configuration of a security provider while a backup of LDAP data is
in progress. If a change is made—for instance, if an administrator adds a user—while
you are backing up the ldap directory tree, the backups in the ldapfiles subdirectory
could become inconsistent. If this does occur, consistent, but potentially out-of-date,
LDAP backups are available.

Once a day, a server suspends write operations and creates its own backup of the
LDAP data. It archives this backup in a ZIP file below the ldap\backup directory and
then resumes write operations. This backup is guaranteed to be consistent, but it might
not contain the latest security data.

For information about configuring the LDAP backup, see the "Back Up LDAP
Repository" section in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

Restarting a Failed Administration Server

Avoiding and Recovering From Server Failures 14-7

Backing Up Additional Operating System Configuration Files
Certain files maintained at the operating system level are also critical in helping you
recover from system failures. Consider backing up the following information as
necessary for your system:

■ Load Balancer configuration scripts. For example, any automated scripts used to
configure load balancer pools and virtual IP addresses for the engine tier cluster
and NAT configuration settings.

■ NTP client configuration scripts used to synchronize the system clocks of engine
servers.

■ Host configuration files for each WebRTC Session Controller system (host names,
virtual and real IP addresses for multi-homed machines, IP routing table
information).

Restarting a Failed Administration Server
If an Administration Server fails, only configuration, deployment, and monitoring
features are affected, but Managed Servers continue to operate and process client
requests. Potential losses incurred due to an Administration Server failure include:

■ Loss of in-progress management and deployment operations.

■ Loss of ongoing logging functionality.

■ Loss of SNMP trap generation for WebLogic Server instances (as opposed to
WebRTC Session Controller instances). On Managed Servers, WebRTC Session
Controller traps are generated even without the Administration Server.

To resume normal management activities, restart the failed Administration Server
instance as soon as possible.

When you restart a failed Administration Server, no special steps are required. Start
the Administration Server as you normally would.

If the Administration Server shuts down while Managed Servers continue to run, you
do not need to restart the Managed Servers that are already running to recover
management of the domain. The procedure for recovering management of an active
domain depends upon whether you can restart the Administration Server on the same
system it was running on when the domain was started.

Restarting an Administration Server on the Same System
If you restart the WebLogic Administration Server while Managed Servers continue to
run, by default the Administration Server can discover the presence of the running
Managed Servers.

The root directory for the domain contains a file, running-managed-servers.xml,
which contains a list of the Managed Servers in the domain and describes their
running state. When the Administration Server restarts, it checks this file to determine
which Managed Servers were under its control before it stopped running.

Note: Ensure that the startup command or startup script does not
include -Dweblogic.management.discover=false, which disables an
Administration Server from discovering its running Managed Servers.

Restarting Failed Managed Servers

14-8 WebRTC Session Controller System Administrator's Guide

When a Managed Server is gracefully or forcefully shut down, its status in
running-managed-servers.xml is updated to "not-running." When an Administration
Server restarts, it does not try to discover Managed Servers with the "not-running"
status. A Managed Server that stops running because of a system malfunction, or that
was stopped by killing the JVM or the command prompt (shell) in which it was
running, will still have the status "running" in running-managed-servers.xml. The
Administration Server will attempt to discover them, and will throw an exception
when it determines that the Managed Server is no longer running.

Restarting the Administration Server does not cause Managed Servers to update the
configuration of static attributes. Static attributes are those that a server refers to only
during its startup process. Servers instances must be restarted to take account of
changes to static configuration attributes. Discovery of the Managed Servers only
enables the Administration Server to monitor the Managed Servers or make run-time
changes to attributes configurable while a server is running (dynamic attributes).

Restarting an Administration Server on Another System
If a system malfunction prevents you from restarting the Administration Server on the
same system, you can recover management of the running Managed Servers as
follows:

1. Install the WebRTC Session Controller software on the new system (if this has not
already been done).apply any patches that had been applied to the failed server.

2. Apply any patches that had been applied to the failed server.

3. Use the unpack command to create a WebLogic domain from the template that you
created when you backed up the domain. See "Storing the Domain Configuration
Offline" for more information. See Creating Templates and Domains Using the Pack
and Unpack Commands for more information on the pack and unpack commands.

Your application files should be available in the same relative location on the new
file system as on the file system of the original Administration Server.

4. Make your configuration and security data available to the new administration
system by copying them from backups or by using a shared disk. For more
information, refer to "Storing the Domain Configuration Offline" and "Backing Up
Security Data".

5. Restart the Administration Server on the new system.

Ensure that the startup command or startup script does not include
-Dweblogic.management.discover=false, which disables an Administration
Server from discovering its running Managed Servers.

When the Administration Server starts, it communicates with the Managed Servers
and informs them that the Administration Server is now running on a different IP
address.

Restarting Failed Managed Servers
If the system on which the failed Managed Server runs can contact the Administration
Server for the domain, simply restart the Managed Server manually or automatically
using Node Manager. You must configure Node Manager and the Managed Server to
support automated restarts, as described in the discussion on "How Node Manager
Restarts a Managed Server" in the Administering Node Manager for Oracle WebLogic
Server.

Restarting Failed Managed Servers

Avoiding and Recovering From Server Failures 14-9

If the Managed Server cannot connect to the Administration Server during startup, it
can retrieve its configuration by reading locally-cached configuration data. A Managed
Server that starts in this way is running in Managed Server Independence (MSI) mode.

For a description of MSI mode, and the files that a Managed Server must access to start
in MSI mode, see "Replicate domain config files for Managed Server independence" in
Administration Console Online Help.

To start a Managed Server in MSI mode:

1. Ensure that the following files are available in the Managed Server's root directory:

– msi-config.xml

– SerializedSystemIni.dat

– boot.properties

If these files are not in the Managed Server's root directory:

a. Copy the config.xml and SerializedSystemIni.dat file from the
Administration Server's root directory (or from a backup) to the Managed
Server's root directory.

b. Rename the configuration file to msi-config.xml. When you start the server, it
will use the copied configuration files.

2. Start the Managed Server at the command-line or using a script.

The Managed Server will run in MSI mode until it is contacted by its
Administration Server. For information about restarting the Administration Server
in this scenario, see "Restarting a Failed Administration Server".

Note: Alternatively, use the -Dweblogic.RootDirectory=path
startup option to specify a root directory that already contains these
files.

Restarting Failed Managed Servers

14-10 WebRTC Session Controller System Administrator's Guide

15

Tuning JVM Garbage Collection for Production Deployments 15-1

15Tuning JVM Garbage Collection for Production
Deployments

This chapter describes how to tune Java Virtual Machine (JVM) garbage collection
performance for Oracle Communications WebRTC Session Controller engine servers.

Goals for Tuning Garbage Collection Performance
Production installations of WebRTC Session Controller generally require extremely
small response times (under 50 milliseconds) for clients even under peak server loads.
A key factor in maintaining brief response times is the proper selection and tuning of
the JVM's Garbage Collection (GC) algorithm for WebRTC Session Controller
instances.

Whereas certain tuning strategies are designed to yield the lowest average garbage
collection times or to minimize the frequency of full GCs, those strategies can
sometimes result in one or more very long periods of garbage collection (often several
seconds long) that are offset by shorter GC intervals. With a production WebRTC
Session Controller installation, all long GC intervals must be avoided to maintain
response time goals.

The sections that follow describe GC tuning strategies for Oracle's JVM that generally
result in best response time performance.

Modifying JVM Parameters in Server Start Scripts
If you use custom startup scripts to start WebRTC Session Controller engines and
replicas, simply edit those scripts to include the recommended JVM options described
in the sections that follow.

The Configuration Wizard also installs default startup scripts when you configure a
new domain. by default, these scripts are installed in the Middleware_Home/user_
projects/domains/domain_name/bin directory, where Middleware_Home is where you
installed the WebRTC Session Controller software and domain_name is the name of the
domain's directory. The /bin directory includes:

■ startWebLogic.cmd, startWebLogic.sh: These scripts start the Administration
Server for the domain.

■ startManagedWebLogic.cmd, startManagedWebLogic.sh: These scripts start
managed engines and replicas in the domain.

If you use the Oracle-installed scripts to start engines and replicas, you can override
JVM memory arguments by first setting the USER_MEM_ARGS environment
variable in your command shell.

Tuning Garbage Collection with Oracle JDK

15-2 WebRTC Session Controller System Administrator's Guide

Tuning Garbage Collection with Oracle JDK
When using Oracle's JDK, the goal in tuning garbage collection performance is to
reduce the time required to perform a full garbage collection cycle. You should not
attempt to tune the JVM to minimize the frequency of full garbage collections, because
this generally results in an eventual forced garbage collection cycle that may take up to
several full seconds to complete.

The simplest and most reliable way to achieve short garbage collection times over the
lifetime of a production server is to use a fixed heap size with the collector and the
parallel young generation collector, restricting the new generation size to at most one
third of the overall heap.

Oracle recommends using the Garbage-First (G1) garbage collector. See "Getting
Started with the G1 Garbage Collector" for more information on using the
Garbage-First collector.

The following example JVM settings are recommended for most production engine
servers:

-server -Xms24G -Xmx24G -XX:PermSize=512m -XX:+UseG1GC -XX:MaxGCPauseMillis=200
-XX:ParallelGCThreads=20 -XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70

For production replica servers, use the example settings:

-server -Xms4G -Xmx4G -XX:PermSize=512m -XX:+UseG1GC -XX:MaxGCPauseMillis=200
-XX:ParallelGCThreads=20 -XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70

For standalone installations, use the example settings:

-server -Xms32G -Xmx32G -XX:PermSize=512m -XX:+UseG1GC -XX:MaxGCPauseMillis=200
-XX:ParallelGCThreads=20 -XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70

The above options have the following effect:

■ -Xms, -Xmx: Places boundaries on the heap size to increase the predictability of
garbage collection. The heap size is limited in replica servers so that even Full GCs
do not trigger SIP retransmissions. -Xms sets the starting size to prevent pauses
caused by heap expansion.

■ -XX:+UseG1GC: Use the Garbage First (G1) Collector.

■ -XX:MaxGCPauseMillis: Sets a target for the maximum GC pause time. This is a
soft goal, and the JVM will make its best effort to achieve it.

■ -XX:ParallelGCThreads: Sets the number of threads used during parallel phases
of the garbage collectors. The default value varies with the platform on which the
JVM is running.

■ -XX:ConcGCThreads: Number of threads concurrent garbage collectors will use.
The default value varies with the platform on which the JVM is running.

Note: Setting the USER_MEM_ARGS environment variable
overrides all default JVM memory arguments specified in the
Oracle-installed scripts. Always set USER_MEM_ARGS to the full list
of JVM memory arguments you intend to use. For example, when
using the Sun JVM, always add -XX:MaxPermSize=128m to the
USER_MEM_ARGS value, even if you only intend to change the
default heap space (-Xms, -Xmx) parameters.

Tuning Garbage Collection with Oracle JDK

Tuning JVM Garbage Collection for Production Deployments 15-3

■ -XX:InitiatingHeapOccupancyPercent: Percentage of the (entire) heap occupancy
to start a concurrent GC cycle. GCs that trigger a concurrent GC cycle based on the
occupancy of the entire heap and not just one of the generations, including G1, use
this option. A value of 0 denotes 'do constant GC cycles'. The default value is 45.

Tuning Garbage Collection with Oracle JDK

15-4 WebRTC Session Controller System Administrator's Guide

16

Avoiding JVM Delays Caused By Random Number Generation 16-1

16Avoiding JVM Delays Caused By Random
Number Generation

This chapter describes how to avoid Java Virtual Machine (JVM) delays in Oracle
Communications WebRTC Session Controller processes caused by random number
generation.

Avoiding JVM Delays Caused by Random Number Generation
The library used for random number generation in Oracle's JVM relies on
/dev/random by default for UNIX platforms. This can potentially block the WebRTC
Session Controller process because on some operating systems /dev/random waits for
a certain amount of "noise" to be generated on the host system before returning a
result. Although /dev/random is more secure, Oracle recommends using
/dev/urandom if the default JVM configuration delays WebRTC Session Controller
startup.

To determine if your operating system exhibits this behavior, try displaying a portion
of the file from a shell prompt:

head -n 1 /dev/random

If the command returns immediately, you can use /dev/random as the default
generator for Oracle's JVM. If the command does not return immediately, use these
steps to configure the JVM to use /dev/urandom:

1. Open the JAVA_HOME/jre/lib/security/java.security file in a text editor, where
JAVA_HOME is the location of your java installation.

2. Change the line:

securerandom.source=file:/dev/random

to read:

securerandom.source=file:/dev/urandom

3. Save your change and exit the text editor.

Avoiding JVM Delays Caused by Random Number Generation

16-2 WebRTC Session Controller System Administrator's Guide

Part III
Part III Reference

This part provides reference information on Oracle Communications WebRTC Session
Controller XML configuration files and their entries. It also provides a list of startup
configuration options.

This part contains the following chapters:

■ Engine Server Configuration Reference (sipserver.xml)

■ SIP Coherence Configuration Reference (coherence.xml)

■ Diameter Configuration Reference (diameter.xml)

17

Engine Server Configuration Reference (sipserver.xml) 17-1

17Engine Server Configuration Reference
(sipserver.xml)

This chapter describes the Oracle Communications WebRTC Session Controller engine
server configuration file, sipserver.xml.

Overview of sipserver.xml
The sipserver.xml file is an XML document that configures the SIP container features
provided by a WebRTC Session Controller instance in a server installation. The
sipserver.xml file is stored in the domain_home/config/custom subdirectory where
domain_home is the root directory of the WebRTC Session Controller domain.

Editing sipserver.xml
You should never move, modify, or delete the sipserver.xml file during normal
operations.

Oracle recommends using the Administration Console to modify sipserver.xml
indirectly, rather than editing the file manually with a text editor. Using the
Administration Console ensures that the sipserver.xml document always contains
valid XML.

You may need to manually view or edit sipserver.xml to troubleshoot problem
configurations, repair corrupted files, or to roll out custom configurations to many
systems when installing or upgrading WebRTC Session Controller. When you
manually edit sipserver.xml, you must restart WebRTC Session Controller instances to
apply your changes.

Steps for Editing sipserver.xml
If you need to modify sipserver.xml on a production system, follow these steps:

1. Use a text editor to open the domain_home/config/custom/sipserver.xml file, where
domain_home is the root directory of the WebRTC Session Controller domain.

2. Modify the sipserver.xml file as necessary. See "XML Schema" for a full
description of the XML elements.

Caution: Always use the SipServer node in the Administration
Console or the WLST utility to make changes to a running WebRTC
Session Controller deployment. See Chapter 6, "Configuring WebRTC
Session Controller Container Properties".

XML Schema

17-2 WebRTC Session Controller System Administrator's Guide

3. Save your changes and exit the text editor.

4. Restart or start servers to have your changes take effect:

5. Test the updated system to validate the configuration.

XML Schema
The schema file for sipserver.xml (wcp-sipserver.xsd) is installed inside the
wlss-descriptor-binding.jar library, located in WL_home/wlserver/sip/server/lib,
where WL_home is the path to the directory where WebLogic Server is installed.

Example sipserver.xml File
The following shows a simple example of a sipserver.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300">
 <overload>
 <threshold-policy>queue-length</threshold-policy>
 <threshold-value>200</threshold-value>
 <release-value>150</release-value>
 </overload>
</sip-server>

XML Element Description
The following sections describe each element used in the sipserver.xml configuration
file. Each section describes an XML element that is contained within the main
sip-server element.

enable-timer-affinity
The enable-timer-affinity element determines the way in which engine servers
process expired timers. By default (when enable-timer-affinity is omitted from
sipserver.xml, or is set to false), an engine server that polls the SIP call-state store for
expired timers might process all available expired timers. When enable-timer-affinity
is set to true, engine servers polling the SIP call-state store process only those expired
timers that are associated with call states that the engine last modified (or expired
timers for call states that have no owner).

See "Configuring Timer Processing" for more information.

overload
The overload element enables you to throttle incoming SIP requests according to a
configured overload condition. When an overload condition occurs, WebRTC Session
Controller destroys new SIP requests by responding with 503 Service Unavailable
until the configured release value is observed, or until the size of the server's capacity
constraints is reduced (see "Overload Control Based on Capacity Constraints").

Caution: Always use the SipServer node in the Administration
Console or the WLST utility to make changes to a running WebRTC
Session Controller deployment. See Chapter 6, "Configuring WebRTC
Session Controller Container Properties" for more information.

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-3

User-configured overload controls are applied only to initial SIP requests; SIP
dialogues that are already active when an overload condition occurs may generate
additional SIP requests that are not throttled.

To configure an overload control, you define the three elements described in
Table 17–1.

Table 17–1 Nested overload Elements

Element Description

threshold-policy A String value that identifies the type of measurement used to
monitor overload conditions:

■ session-rate measures the rate at which new SIP requests are
generated. WebRTC Session Controller determines the session
rate by calculating the number of new SIP application
connections that were created in the last 5 seconds of operation.
See "Overload Control Based on Session Generation Rate".

■ queue-length measures the sum of the sizes of the capacity
constraint work manager components that processes SIP
requests and SIP timers. See "Overload Control Based on
Capacity Constraints".

Note: Execute queues are deprecated and no longer used in
WebRTC Session Controller. Capacity constraints are used for
execute queues. The policy name queue-length was kept for
backward compatibility.

You must use only one of the above policies to define an overload
control. See "Selecting an Appropriate Overload Policy" for more
information.

threshold-value Specifies the measured value that causes WebRTC Session Controller
to recognize an overload condition and start throttling new SIP
requests:

■ When using the session-rate threshold policy, threshold-value
specifies the number of new SIP requests per second that trigger
an overload condition. See "Overload Control Based on Session
Generation Rate".

■ When using the queue-length threshold policy,
threshold-value specifies the size of the combined number of
requests in the SIP transport and SIP timer capacity constraint
components that triggers an overload condition. See "Overload
Control Based on Capacity Constraints".

■ After the threshold-value is observed, WebRTC Session
Controller recognizes an overload condition for a minimum of
512 milliseconds during which time new SIP requests are
throttled. If multiple overloads occur over a short period, the
minimum overload of 512 ms is dynamically increased to avoid
repeated overloads.

■ After the minimum overload recognition period expires, the
overload condition is terminated only after the configured
release-value is observed.

XML Element Description

17-4 WebRTC Session Controller System Administrator's Guide

Selecting an Appropriate Overload Policy
WebRTC Session Controller provides two different policies for throttling SIP requests:

■ The session-rate policy throttles sessions when the volume new SIP sessions
reaches a configured rate (a specified number of sessions per second).

■ The queue-length policy throttles requests after the sum of the requests in the
wlss.trasnport work manager and wlss.timer.capacity capacity constraint
components reaches a configured size.

You must select only one of the available overload policies. You cannot use both
policies simultaneously.

The session-rate policy is generally used when a back-end resource having a known
maximum throughput (for example, an RDBMS) is used when setting up SIP calls. In
this case, the session-rate policy enables you to tie the WebRTC Session Controller
overload policy to the known throughput capabilities of the back-end resource.

With the queue-length policy, WebRTC Session Controller monitors both CPU and
I/O bottlenecks to diagnose an overload condition. The queue-length policy is
generally used with CPU-intensive SIP applications in systems that have no
predictable upper bound associated with the call rate.

The following sections describe each policy in detail.

Overload Control Based on Session Generation Rate
WebRTC Session Controller calculates the session generation rate (sessions per second)
by monitoring the number of application sessions created in the last 5 seconds. When
the session generation rate exceeds the rate specified in the threshold-value element,
WebRTC Session Controller throttles initial SIP requests until the session generation
rate becomes smaller than the configured release-value.

The following example configures WebRTC Session Controller to begin throttling SIP
requests when the new sessions are created at a rate higher than 50 sessions per
second. Throttling is discontinued when the session rate drops to 40 sessions per
second:

<overload>
 <threshold-policy>session-rate</threshold-policy>
 <threshold-value>50</threshold-value>
 <release-value>40</release-value>
</overload>

release-value Specifies the measured value that causes WebRTC Session Controller
to end an overload condition and stop throttling new SIP requests:

■ When using the session-rate threshold policy, release-value
specifies the number of new SIP requests per second that
terminates session throttling. See "Overload Control Based on
Session Generation Rate".

■ When using the queue-length threshold policy, release-value
specifies the combined number of requests in the capacity
constraints that terminates session throttling. See "Overload
Control Based on Capacity Constraints".

Table 17–1 (Cont.) Nested overload Elements

Element Description

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-5

Overload Control Based on Capacity Constraints
By default, SIP messages are handled by a work manager named wlss.transport and
SIP timers are processed by a work manager named wlss.timer. Each work manager
has an associated capacity constraint component that sets the number of requests
allotted for SIP message handling and timer processing. Work managers are
configured in the config.xml file for your WebRTC Session Controller. Work managers
allocate threads automatically, as described in the Oracle WebLogic Server
documentation. You can also allocate additional threads to the server at start time
using the startup option -Dweblogic.threadpool.MinPoolSize=number_of_threads.

WebRTC Session Controller performs queue-length overload control by monitoring
the combined lengths of the configured capacity constraints. When the sum of the
requests in the two constraints exceeds the length specified in the threshold-value
element, WebRTC Session Controller throttles initial SIP requests until the total
requests are reduced to the configured release-value.

Example 17–1 shows a sample overload configuration from sipserver.xml. Here,
WebRTC Session Controller begins throttling SIP requests when the combined size of
the constraints exceeds 200 requests. Throttling is discontinued when the combined
length returns to 200 or fewer simultaneous requests.

Example 17–1 Sample overload Definition

<overload>
 <threshold-policy>queue-length</threshold-policy>
 <threshold-value>200</threshold-value>
 <release-value>150</release-value>
</overload>

Two Levels of Overload Protection
User-configured overload controls (defined in sipserver.xml) represent the first level
of overload protection provided by WebRTC Session Controller. They mark the onset
of an overload condition and initiate simple measures to avoid dropped calls
(generating 503 responses for new requests).

If the condition that caused the overload persists or worsens, then the work manager
component used to perform work in the SIP Servlet container may itself become
overloaded. At this point, the server no longer uses threads to generate 503 responses,
but instead begins to drop messages. In this way, the configured size of the SIP
container's work manager components represent the second and final level of overload
protection employed by the server.

Always configure overload controls in sipserver.xml conservatively, and resolve the
circumstances that caused the overload in a timely fashion.

message-debug
The message-debug element enables and configures access logging with log rotation
for WebRTC Session Controller. Use this element only in a development environment,
because access logging logs all SIP requests and responses.

To perform more selective logging in a production environment, see Chapter 12,
"Logging SIP Requests and Responses and EDRs".

proxy—Setting Up an Outbound Proxy Server
RFC 3261 defines an outbound proxy as "A proxy that receives requests from a client,
even though it may not be the server resolved by the Request-URI. Typically, a UA is

XML Element Description

17-6 WebRTC Session Controller System Administrator's Guide

manually configured with an outbound proxy, or can learn about one through
auto-configuration protocols."

In WebRTC Session Controller an outbound proxy server is specified using the proxy
element in sipserver.xml. The proxy element defines one or more proxy server URIs.
You can change the behavior of the proxy process by setting a proxy policy with the
proxy-policy tag. Table 17–2, " Nested proxy Elements" describes the possible values
for the proxy elements.

The default behavior is as if proxy policy is in effect. The proxy policy means that the
request is sent out to the configured outbound Proxy and the Route headers in the
request preserving any routing decision taken by WebRTC Session Controller. This
configuration enables the outbound proxy to send the request over to the intended
recipient after it has performed its actions on the request. The proxy policy comes into
effect only for the initial requests. As for the subsequent request the Route Set takes
precedence over any policy in a dialog. (If the outbound proxy wants to be in the
Route Set it can turn record routing on).

Also if a proxy application written on WebRTC Session Controller wishes to override
the configured behavior of outbound proxy traversal, then it can add a special header
with name X-BEA-Proxy-Policy with the value domain. This header is stripped from
the request while sending, but the effect is to ignore the configured outbound proxy.
Applications use the X-BEA-Proxy-Policy custom header to override the configured
policy on a request-by-request basis. The value of the header can be domain or proxy.
Note, however, that if the policy is overridden to proxy, the configuration must still
have the outbound proxy URIs to route to the outbound proxy.

Example 17–2 shows the default proxy configuration for WebRTC Session Controller
domains. The request in this case is created in accordance with the SIP routing rules,
and finally the request is sent to the outbound proxy sipoutbound.oracle.com.

Example 17–2 Sample proxy Definition

<proxy>
 <routing-policy>proxy</routing-policy>
 <uri>sip:sipoutbound.oracle.com:5060</uri>
 <!-- Other proxy uri tags can be added. - >
</proxy>

Table 17–2 Nested proxy Elements

Element Description

routing-policy An optional element that configures the behavior of the proxy. Valid
values are:

■ domain: Proxies messages using the routing rule defined by RFC
3261, ignoring any outbound proxy that is specified.

■ proxy: Sends the message to the downstream proxy specified in the
default proxy URI. If there are multiple proxy specifications they are
tried in the order in which they are specified. However, if the
transport tries a UDP proxy, the settings for subsequent proxies are
ignored.

uri The TCP or UDP URI of the proxy server. You must specify at least one
URI for a proxy element. Place multiple URIs in multiple uri elements
within the proxy element.

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-7

t1-timeout-interval
This element sets the value of the SIP protocol T1 timer, in milliseconds. Timer T1 also
specifies the initial values of Timers A, E, and G, which control the retransmit interval
for INVITE requests and responses over UDP.

Timer T1 also affects the values of timers F, H, and J, which control retransmit intervals
for INVITE responses and requests; these timers are set to a value of 64*T1
milliseconds. See the Session Initiation Protocol for more information about SIP timers.
See also "Configuring NTP for Accurate SIP Timers" for more information.

If t1-timeout-interval is not configured, WebRTC Session Controller uses the SIP
protocol default value of 500 milliseconds.

t2-timeout-interval
This elements sets the value of the SIP protocol T2 timer, in milliseconds. Timer T2
defines the retransmit interval for INVITE responses and non-INVITE requests. See the
Session Initiation Protocol for more information about SIP timers. See also
"Configuring NTP for Accurate SIP Timers" for more information.

If t2-timeout-interval is not configured, WebRTC Session Controller uses the SIP
protocol default value of 4 seconds.

t4-timeout-interval
This elements sets the value of the SIP protocol T4 timer, in milliseconds. Timer T4
specifies the maximum length of time that a message remains in the network. Timer T4
also specifies the initial values of Timers I and K, which control the wait times for
retransmitting ACKs and responses over UDP. See the Session Initiation Protocol for
more information about SIP timers. See also "Configuring NTP for Accurate SIP
Timers" for more information.

If t4-timeout-interval is not configured, WebRTC Session Controller uses the SIP
protocol default value of 5 seconds.

timer-b-timeout-interval
This elements sets the value of the SIP protocol Timer B, in milliseconds. Timer B
specifies the length of time a client transaction attempts to retry sending a request. See
the Session Initiation Protocol for more information about SIP timers. See also
"Configuring NTP for Accurate SIP Timers" for more information.

If timer-b-timeout-interval is not configured, the Timer B value is derived from timer
T1 (64*T1, or 32000 milliseconds by default).

timer-f-timeout-interval
This elements sets the value of the SIP protocol Timer F, in milliseconds. Timer F
specifies the timeout interval for retransmitting non-INVITE requests. See the Session
Initiation Protocol for more information about SIP timers. See also "Configuring NTP
for Accurate SIP Timers" for more information.

If timer-f-timeout-interval is not configured, the Timer F value is derived from timer
T1 (64*T1, or 32000 milliseconds by default).

XML Element Description

17-8 WebRTC Session Controller System Administrator's Guide

max-application-session-lifetime
This element sets the maximum amount of time, in minutes, that a SIP application
session can exist before WebRTC Session Controller invalidates the session.
max-application-session-lifetime acts as an upper bound for any timeout value
specified using the session-timeout element in a sip.xml file, or using the setExpires
API.

A value of -1 (the default) specifies that there is no upper bound to
application-configured timeout values.

enable-local-dispatch
enable-local-dispatch is a server optimization that helps avoid unnecessary network
traffic when sending and forwarding messages. You enable the optimization by setting
this element true. When enable-local-dispatch enabled, if a server instance needs to
send or forward a message and the message destination is the engine’s cluster address
or the local server address, then the message is routed internally to the local server
instead of being sent through the network.

You may want to disable this optimization if you feel that routing internal messages
could skew the load on engine servers, and you prefer to route all requests through a
configured load balancer.

By default enable-local-dispatch is set to false.

cluster-loadbalancer-map
The cluster-loadbalancer-map element is used only when upgrading WebRTC Session
Controller software, or when upgrading a production SIP Servlet to a new version. It is
not required or used during normal server operations.

During a software upgrade, multiple engine clusters are defined to host the older and
newer software versions. A cluster-loadbalancer-map defines the virtual IP address
(defined on your load balancer) that correspond to an engine cluster configured for an
upgrade. WebRTC Session Controller uses this mapping to ensure that engine requests
for timers and call state data are received from the correct "version" of the cluster. If a
request comes from an incorrect version of the software, WebRTC Session Controller
uses the cluster-loadbalancer-map to forward the request to the correct cluster.

Each cluster-loadbalancer-map entry contains the two elements described in
Table 17–3.

Example 17–3 shows a sample cluster-loadbalancer-map entry used during an
upgrade.

Example 17–3 Sample cluster-loadbalancer-map Entry

<cluster-loadbalancer-map>
 <cluster-name>EngineCluster</cluster-name>

Table 17–3 Nested cluster-loadbalancer-map Elements

Element Description

cluster-name The configured name of an engine cluster.

sip-uri The internal SIP URI that maps to the engine cluster. This corresponds to
a virtual IP address that you have configured in your load balancer. The
internal URI forwards requests to the correct cluster version during an
upgrade.

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-9

 <sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>
 <cluster-name>EngineCluster2</cluster-name>
 <sip-uri>sip:172.17.0.2:5060</sip-uri>
</cluster-loadbalancer-map>

See the section on upgrading production WebRTC Session Controller software in the
WSC Installation Guide for more information.

default-behavior
This element defines the default behavior of the WebRTC Session Controller instance if
the server cannot match an incoming SIP request to a deployed SIP Servlet (or if the
matching application has been invalidated or timed out). Valid values are:

■ proxy: Act as a proxy server.

■ ua: Act as a User Agent.

proxy is used as the default if you do not specify a value.

When acting as a User Agent (UA), WebRTC Session Controller acts in the following
way in response to SIP requests:

■ ACK requests are discarded without notice.

■ CANCEL or BYE requests receive response code 481 - Transaction does not exist.

■ All other requests receive response code 500 - Internal server error.

When acting as a proxy requests are automatically forwarded to an outbound proxy
(see "proxy—Setting Up an Outbound Proxy Server") if one is configured. If no proxy
is defined, WebRTC Session Controller proxies to a specified Request URI only if the
Request URI does not match the IP and port number of a known local address for a
SIP Servlet container, or a load balancer address configured for the server. This ensures
that the request does not constantly loop to the same servers. When the Request URI
matches a local container address or load balancer address, WebRTC Session
Controller instead acts as a UA.

default-servlet-name
This element specifies the name of a default SIP Servlet to call if an incoming initial
request cannot be matched to a deployed Servlet (using standard servlet-mapping
definitions in sip.xml). The name specified in the default-servlet-name element must
match the servlet-name value of a deployed SIP Servlet. For example:

<default-servlet-name>myServlet</default-servlet-name>

If the name defined in default-servlet-name does not match a deployed Servlet, or no
value is supplied (the default configuration), WebRTC Session Controller registers the
name com.bea.wcp.sip.engine.BlankServlet as the default Servlet. The
BlankServlet name is also used if a deployed Servlet registered as the
default-servlet-name is undeployed from the container.

BlankServlet's behavior is configured with the default-behavior element. By default
the Servlet proxies all unmatched requests. However, if the default-behavior element
is set to ua mode, BlankServlet is responsible for returning 481 responses for
CANCEL and BYE requests, and 500/416 responses in all other cases. BlankServlet
does not respond to ACK, and it always invalidates the application session.

XML Element Description

17-10 WebRTC Session Controller System Administrator's Guide

retry-after-value
Specifies the number of seconds used in the Retry-After header for 5xx response
codes. This value can also include a parameter or a reason code, such as "Retry-After:
18000;duration=3600" or "Retry-After: 120 (I'm in a meeting)."

If the this value is not configured, WebRTC Session Controller uses the default value of
180 seconds.

sip-security
WebRTC Session Controller enables you to configure one or more trusted hosts for
which authentication is not performed. When WebRTC Session Controller receives a
SIP message, it calls getRemoteAddress() on the SIP Servlet message. If this address
matches an address defined in the server's trusted host list, no further authentication is
performed for the message.

The sip-security element defines one or more trusted hosts, for which authentication is
not performed. The sip-security element contains one or more
trusted-authentication-host or trusted-charging-host elements, each of which
contains a trusted host definition. A trusted host definition can consist of an IP address
(with or without wildcard placeholders) or a DNS name. Example 17–4 shows a
sample sip-security configuration.

Example 17–4 Sample Trusted Host Configuration

<sip-security>

<trusted-authentication-host>myhost1.mycompany.com</trusted-authentication-host>
 <trusted-authentication-host>172.*</trusted-authentication-host>
</sip-security>

route-header
3GPP TS 24.229 Version 7.0.0:

http://www.3gpp.org/ftp/Specs/archive/24_series/24.229/24229-700.zip
requires that IMS Application Servers generating new requests (for example, as a
B2BUA) include the S-CSCF route header. In WebRTC Session Controller, the S-CSCF
route header must be statically defined as the value of the route-header element in
sipserver.xml. For example:

<route-header>
 <uri>Route: sip:wlss1.bea.com</uri>
</route-header>

engine-call-state-cache-enabled
WebRTC Session Controller provides the option for engine servers to cache a portion
of the call-state data locally, to improve performance with SIP-aware load balancers.
When a local cache is used, an engine server first checks its local cache for existing call
state data. If the cache contains the required data, and the local copy of the data is
up-to-date (compared to the SIP call-state store), the engine locks the call state in the
SIP call-state store but reads directly from its cache.

By default the engine cache is enabled. To disable caching, set
engine-call-state-cache-enabled to false:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-11

See Chapter 10, "Using the Engine Cache" for more information.

server-header
WebRTC Session Controller enables you to control when a Server header is inserted
into SIP messages. You can use this functionality to limit or eliminate Server headers to
reduce the message size for wireless networks, or to increase security.

By default, WebRTC Session Controller inserts no Server header into SIP messages. Set
the server-header to one of the following string values to configure this behavior:

■ none (the default) inserts no Server header.

■ request inserts the Server header only for SIP requests generated by the server.

■ response inserts the Server header only for SIP responses generated by the server.

■ all inserts the Server header for all SIP requests and responses.

For example, the following element configures WebRTC Session Controller to insert a
Server header for all generated SIP messages:

<server-header>all</server-header>

See also "server-header-value".

server-header-value
WebRTC Session Controller enables you to control the text that is inserted into the
Server header of generated messages. This provides additional control over the size of
SIP messages and also enables you to mask the server entity for security purposes. By
default, WebRTC Session Controller does not insert a Server header into generated SIP
messages (see "server-header"). If Server header insertion is enabled but no
server-header-value is specified, WebRTC Session Controller inserts the value
WebLogic SIP Server. To configure the header contents, enter a string value. For
example:

<server-header-value>MyCompany Application Server</server-header-value>

persistence
The persistence element enables or disables writing call state data to an RDBMS, or to
a remote, geographically-redundant WebRTC Session Controller installation. For sites
that use geographically-redundant replication features, the persistence element also
defines the site ID and the URL at which to persist call state data.

The persistence element contains the sub-elements described in Table 17–4.

XML Element Description

17-12 WebRTC Session Controller System Administrator's Guide

Example 17–5 shows a sample configuration that uses RDBMS storage for long-lived
call state and geographically-redundant replication. Call states are replicated to two
engine servers in a remote location.

Example 17–5 Sample persistence Configuration

<persistence>
 <default-handling>all</default-handling>
 <geo-site-id>1</geo-site-id>

<geo-remote-t3-url>t3://remoteEngine1:7050,t3://remoteEngine2:7051</geo-remote-t3-
url>
</persistence>

use-header-form
This element configures the server-wide, default behavior for using or preserving
compact headers in SIP messages. You can set this element to one of the following
values:

■ compact: WebRTC Session Controller uses the compact form for all
system-generated headers. However, any headers that are copied from an
originating message (rather than generated) use their original form.

■ force compact: WebRTC Session Controller uses the compact form for all headers,
converting long headers in existing messages into compact headers as necessary.

■ long: WebRTC Session Controller uses the long form for all system-generated
headers. However, any headers that are copied from an originating message
(rather than generated) use their original form.

Table 17–4 Nested persistence Elements

Element Description

default-handling Determines whether WebRTC Session Controller observes persistence
hints for RDBMS persistence or geographical-redundancy. This element
can have one of the following values:

■ all: Specifies that call state data may be persisted to both an RDBMS
store and to a geographically-redundant WebRTC Session Controller
installation. This is the default behavior. Replication to either
destination also requires that the available resources (JDBC
datasource and remote JMS queue) are available.

■ db: Specifies that long-lived call state data is replicated to an RDBMS
if the required JDBC datasource and schema are available.

■ geo: Specifies that call state data is persisted to a remote,
geographically-redundant site if the configured site URL contains
the necessary JMS resources.

■ none: Specifies that only in-memory replication is performed to
other replicas in the SIP call-state store. Call state data is not
persisted in an RDBMS or to an external site.

geo-site-id Specifies the site ID of this installation. All installations that participate in
geographically-redundant replication require a unique site ID.

geo-remote-t3-url Specifies the remote WebRTC Session Controller installation to which this
site replicates call state data. You can specify a single URL corresponding
to the engine cluster of the remote installation. You can also specify a
comma-delimited list of addresses corresponding to each engine server.
The URLs must specify the t3 protocol.

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-13

■ force long: WebRTC Session Controller uses the long form for all headers,
converting compact headers in existing messages into long headers as necessary.

enable-dns-srv-lookup
This element enables or disables WebRTC Session Controller DNS lookup capabilities.
If you set the element to true, then the server can use DNS to:

■ Discover a proxy server's transport, IP address, and port number when a request is
sent to a SIP URI.

■ Resolve an IP address and port number during response routing, depending on
the contents of the Sent-by field.

For proxy discovery, WebRTC Session Controller uses DNS resolution only once per
SIP transaction to determine transport, IP, and port number information. All
retransmissions, ACKs, or CANCEL requests are delivered to the same address and
port using the same transport. For details about how DNS resolution takes place, see
RFC 3263: Session Initiation Protocol (SIP): Locating SIP Servers
(http://www.ietf.org/rfc/rfc3263.txt).

When a proxy needs to send a response message, WebRTC Session Controller uses
DNS lookup to determine the IP address and port number of the destination,
depending on the information provided in the sent-by field and Via header.

By default, DNS resolution is not used (false).

connection-reuse-pool
WebRTC Session Controller includes a connection pooling mechanism that minimizes
communication overhead with a Session Border Control (SBC) function or Serving Call
Session Control Function (S-CSCF). You can configure multiple, fixed pools of
connections to different addresses.

WebRTC Session Controller opens new connections from the connection pool on
demand as the server makes requests to a configured address. The server then
multiplexes new SIP requests to the address using the already-opened connections,
rather than repeatedly terminating and re-creating new connections. Opened
connections are reused in a round-robin fashion. Opened connections remain open
until they are explicitly closed by the remote address.

Connection reuse pools are not used for incoming requests from a configured address.

To configure a connection reuse pool, you define the four nested elements described in
Table 17–5.

Note: Because DNS resolution is performed within the context of SIP
message processing, any DNS performance problems result in
increased latency performance. Oracle recommends using a caching
DNS server in a production environment to minimize potential
performance problems.

Table 17–5 Nested connection-reuse-pool Elements

Element Description

pool-name A String value that identifies the name of this pool. All configured
pool-name elements must be unique to the domain.

XML Element Description

17-14 WebRTC Session Controller System Administrator's Guide

Example 17–6 shows a sample connection-reuse-pool configuration having two pools.

Example 17–6 Sample connection-reuse-pool Configuration

<connection-reuse-pool>
 <pool-name>SBCPool</pool-name>
 <destination>MySBC</destination>
 <destination-port>7070</destination-port>
 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>
<connection-reuse-pool>
 <pool-name>SCSFPool</pool-name>
 <destination>192.168.1.6</destination>
 <destination-port>7071</destination-port>
 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>

globally-routable-uri
This element enables you to specify a Globally-Routable User Agent URI (GRUU) that
WebRTC Session Controller automatically inserts into Contact and Route-Set headers
when communicating with network elements. The URI specified in this element
should be the GRUU for the entire WebRTC Session Controller cluster. (In a
single-server domain, use a GRUU for the server itself.)

User Agents (UAs) deployed on WebRTC Session Controller typically obtain GRUUs
through a registration request. In this case, the application code is responsible both for
requesting and subsequently handling the GRUU. To request a GRUU, the UA
includes the +sip.instance field parameter in the Contact header in each Contact for
which GRUU is required. Upon receiving a GRUU, the UA uses the GRUU as the URI
for the Contact header field when generating new requests.

domain-alias-name
This element defines one or more domains for which WebRTC Session Controller is
responsible. If a message has a destination domain that matches a domain specified
with a domain-alias-name element, WebRTC Session Controller processes the message
locally, rather than forwarding it.

The sipserver.xml configuration file can have multiple main-alias-name elements.
Each element can specify either:

■ an individual, fully-qualified domain name, such as myserver.mycompany.com,
or

■ a domain name starting with an initial wildcard character, such as
*.mycompany.com, used to represent all matching domains. Only a single

destination Specifies the IP address or host name of the destination SBC or
S-CSCF. WebRTC Session Controller opens or reuses connection in
this pool only when making requests to the configured address.

destination-port Specifies the port number of the destination SBC or S-CSCF.

maximum-connections Specifies the maximum number of opened connections to maintain
in this pool.

Table 17–5 (Cont.) Nested connection-reuse-pool Elements

Element Description

XML Element Description

Engine Server Configuration Reference (sipserver.xml) 17-15

wildcard character is supported, and it must be used as the first element of the
domain name.

enable-rport
This element determines whether WebRTC Session Controller automatically adds an
rport parameter to Via headers when acting as a UAC. By default, the server does not
add the rport parameter; set the element to true to automatically add rport to requests
generated by the server.

The rport parameter is used for symmetric response routing as described in RFC 3581
(http://www.ietf.org/rfc/rfc3581.txt). When a message is received by an RFC
3581-compliant server, such as WebRTC Session Controller, the server responds using
the remote UDP port number from which the message was received, rather than the
port number specified in the Via header. This behavior is frequently used when
servers reside behind gateway devices that perform Network Address Translation
(NAT). The NAT devices maintain a binding between the internal and external port
numbers, and all communication must be initiated through the gateway port.

WebRTC Session Controller is compliant with RFC 3581, and will honor the rport
parameter even if you set the enable-rport element to false. The enable-rport element
only specifies whether the server automatically adds rport to the requests it generates
when acting as a UAC. To disable rport handling completely (disable RFC 3581
support), you must start the server with the command-line option,
-Dwlss.udp.uas.rport=false.

image-dump-level
This element specifies the level of detail to record in WebRTC Session Controller
diagnostic image files. You can set this element to one of two values:

■ basic: Records all diagnostic data except for call state data.

■ full: Records all diagnostic data including call state data.

Note: You can also identify these domain names using the Domain
Aliases field in the Configuration > General tab of the SipServer
Administration Console extension.

Note: You can also set this parameter to true by selecting the
Symmetric Response Routing option in the Administration Console.
In the Administration Console, select Configuration, then select the
General tab of the SipServer Administration console extension.

Note: rport support as described in RFC 3581 requires that SIP
responses include the source port of the original SIP request. Because
source port information is frequently treated as sensitive data, Oracle
recommends using the TLS transport.

XML Element Description

17-16 WebRTC Session Controller System Administrator's Guide

stale-session-handling
WebRTC Session Controller uses encoded URIs to identify the call states and
application sessions associated with a message. When an application is undeployed or
upgraded to a new version, incoming requests may have encoded URIs that specify
"stale" or nonexistent call or session IDs. The stale-session-handling element enables
you to configure the action that WebRTC Session Controller takes when it encounters
stale session data in a request. The following actions are possible:

■ drop: Drops the message without logging an error. This setting is desirable for
systems that frequently upgrade applications using WebRTC Session Controller's
in-place upgrade feature. Using the drop action ensures that messages intended
for older, incompatible versions of a deployed application are dropped.

■ error: Responds with an error, so that a UAC might correct the problem. This is the
default action. Messages having a To: tag cause a 481 Call/Transaction Does Not
Exist error, while those without the tag cause a 404 Not Found error.

■ continue: Ignores the stale session data and continues processing the request.

enable-contact-provisional-response
By default WebRTC Session Controller does not place a Contact header in non-reliable
provisional (1xx) responses that have a To header. If you deploy applications that
expect the Contact header to be present in such 1xx responses, set this element to true:

<enable-contact-provisional-response>true</enable-contact-provisional-response>

Setting this element to true does not affect 100 Trying responses.

Note: Recording call state data in the image file can be time
consuming. By default, image dump files are recorded using the basic
option.

You can also set this parameter using the Configuration > General tab
of the SipServer Administration Console extension.

Note: When it encounters stale session data, WebRTC Session
Controller applies the action specified by stale-session-handling
before considering the value of the default-behavior element. The
default-behavior is performed only when you have configured
stale-session-handling to perform the continue action.

18

SIP Coherence Configuration Reference (coherence.xml) 18-1

18SIP Coherence Configuration Reference
(coherence.xml)

[2] This chapter describes the Coherence configuration file, coherence.xml, for Oracle
Communications WebRTC Session Controller.

Overview of coherence.xml
The coherence.xml configuration file identifies servers that manage the concurrent call
state for SIP applications, and specifies distributed cache settings. See "Configuring
Coherence" for information on configuring Coherence.

The coherence.xml file resides in the domain_home/config/custom subdirectory where
domain_home is the root directory of WebRTC Session Controller domain.

Editing coherence.xml
You can edit coherence.xml using either the Administration Console or a text editor.
Changes to the configuration cannot be applied to servers dynamically; you must
restart servers to change the SIP server configuration.

XML Schema
The schema file is bundled within the wlss-descriptor-binding.jar library, installed in
the Middleware_Home/wlserver/sip/server/lib directory where Middleware_Home is the
path to the directory where WebLogic Server is installed.

Example coherence.xml File
Example 18–1 shows the default coherence.xml file.

Example 18–1 Default coherence.xml File

<?xml version='1.0' encoding='UTF-8'?>
<coherence-storage>
 <cache-config>
 <thread-count>20</thread-count>
 <partition-count>257</partition-count>
 </cache-config>
</coherence-storage>

XML Schema

18-2 WebRTC Session Controller System Administrator's Guide

XML Element Description
Table 18–1 describes the elements in the coherence.xml file that govern the Coherence
distributed cache service.

Table 18–1 coherence.xml File Elements

Element Description

thread-count Specifies the number of threads used in the call-state Coherence
cache service used by the SIP server. Oracle recommends that
this value be a positive integer but you can specify 0 or -1 to
obtain specific behaviors. See the thread-count element
description in "Cache Configuration Elements" in Developing
Applications with Oracle Coherence for more information.

partition-count Specifies the number of partitions used in the call-state
Coherence cache service used by the SIP server. You must
specify a positive integer and should specify a prime number.
See the partition-count element description in "Cache
Configuration Elements" in Developing Applications with Oracle
Coherence for more information.

19

Diameter Configuration Reference (diameter.xml) 19-1

19Diameter Configuration Reference
(diameter.xml)

This chapter describes the Oracle Communications WebRTC Session Controller
Diameter configuration file, diameter.xml.

Overview of diameter.xml
The diameter.xml file configures attributes of a Diameter node, such as:

■ The host identity of the Diameter node

■ The Diameter applications that are deployed on the node

■ Connection information for Diameter peer nodes

■ Routing information and default routes for handling Diameter messages.

The Diameter protocol implementation reads the configuration file at start time.
diameter.xml is stored in the domain_home/config/custom subdirectory where domain_
home is the root directory of the WebRTC Session Controller domain.

Graphical Representation
Figure 19–1 shows the element hierarchy of the diameter.xml file.

Editing diameter.xml

19-2 WebRTC Session Controller System Administrator's Guide

Figure 19–1 Element Hierarchy of diameter.xml

Editing diameter.xml

WARNING: You should never move, modify, or delete the
diameter.xml file during normal operations.

XML Element Description

Diameter Configuration Reference (diameter.xml) 19-3

Oracle recommends using the Administration Console to modify diameter.xml
indirectly, rather than editing the manually with a text editor. Using the
Administration Console ensures that the diameter.xml document always contains
valid XML.

You may need to manually view or edit diameter.xml to troubleshoot problem
configurations, repair corrupted files, or to roll out custom Diameter node
configurations to a large number of machines when installing or upgrading WebRTC
Session Controller. When you manually edit diameter.xml, you must restart Diameter
nodes to apply your changes.

Steps for Editing diameter.xml
If you need to modify diameter.xml on a production system, follow these steps:

1. Use a text editor to open the WSC_home/config/custom/diameter.xml file, where
WSC_home is the root directory of the WebRTC Session Controller domain.

2. Modify the diameter.xml file as necessary. See "XML Element Description" for a
full description of the XML elements.

3. Restart or start servers to have your changes take effect.

4. Test the updated system to validate the configuration.

XML Schema
The XML schema file (wcp-diameter.xsd) is bundled within the wlssdiameter.jar
library, installed in WL_home/wlserver/sip/server/lib, where WL_home is the path to
the directory where WebLogic Server is installed.

Example diameter.xml File
See Chapter 5, "Configuring WebRTC Session Controller Diameter Rx to PCRF
Integration" for examples of diameter.xml configuration files.

XML Element Description
The following sections describe each XML element in diameter.xml.

configuration
The top level configuration element contains the entire diameter node configuration.

target
Specifies one or more target WebRTC Session Controller instances to which the node
configuration is applied. The target servers must be defined in the config.xml file for
your domain.

Caution: Always use the Diameter node in the Administration
Console or the WLST utility, as described in Chapter 6, "Configuring
WebRTC Session Controller Container Properties" to make changes to
a running WebRTC Session Controller deployment.

XML Element Description

19-4 WebRTC Session Controller System Administrator's Guide

host
Specifies the host identity for this Diameter node. If no host element is specified, the
identity is taken from the local server's host name. The host identity may or may not
match the DNS name.

realm
Specifies the realm name for which this Diameter node has responsibility. You can run
multiple Diameter nodes on a single host using different realms and listen port
numbers. The HSS, Application Server, and relay agents must all agree on a realm
name or names. The realm name for the HSS and Application Server need not match.

If you omit the realm element, the realm named is derived using the domain name
portion of the host name, if the host name is fully-qualified (for example,
host@oracle.com).

address
Specifies the listen address for this Diameter node, using either the DNS name or IP
address. If you do not specify an address, the node uses the host identity as the listen
address.

port
Specifies the TCP or TLS listen port for this Diameter node. The default port is 3868.

tls-enabled
This element is used only for standalone node operation to advertise TLS capabilities.

WebRTC Session Controller ignores the tls-enabled element for nodes running within
a server instance. Instead, TLS transport is reported as enabled if the server instance
has configured a Network Channel having TLS support (a diameters channel). See
"Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol".

sctp-enabled
This element is used only for standalone node operation to advertise SCTP
capabilities.

WebRTC Session Controller ignores the sctp-enabled element for nodes running
within a server instance. Instead, SCTP transport is reported as enabled if the server
instance has configured a Network Channel having SCTP support (a diameter-sctp
channel). See "Creating TCP, TLS, and SCTP Network Channels for the Diameter

Note: When configuring Diameter support for multiple Sh client
nodes, it is best to omit the host element from the diameter.xml file.
This omission enables you to deploy the same Diameter web
application to all servers in the engine cluster, and the host name is
dynamically obtained for each server instance.

Note: The host identity may or may not match the DNS name of the
Diameter node. Oracle recommends configuring the address element
with an explicit DNS name or IP address to avoid configuration
errors.

XML Element Description

Diameter Configuration Reference (diameter.xml) 19-5

Protocol".

debug-enabled
Specifies a boolean value to enable or disable debug message output. Debug messages
are disabled by default.

message-debug-enabled
Specifies a boolean value to enable or disable tracing of Diameter messages. This
element is disabled by default.

application
Configures a particular Diameter application to run on the selected node. WebRTC
Session Controller includes applications to support nodes that act as Diameter Rx
clients, Diameter relay agents, or Home Subscriber Servers (HSS). The HSS application
is a simulator that is provided only for development or testing purposes.

class-name
Specifies the application class file to load.

param*
Specifies one or more optional parameters to pass to the application class.

name Specifies the name of the application parameter.

value Specifies the value of the parameter.

peer-retry-delay
Specifies the number of seconds this node waits between retries to Diameter peers. The
default value is 30 seconds.

allow-dynamic-peers
Specifies a boolean value that enables or disables dynamic peer configuration.
Dynamic peer support is disabled by default. Oracle recommends enabling dynamic
peers only when using the TLS transport, because no access control mechanism is
available to restrict hosts from becoming peers.

request-timeout
Specifies the number of milliseconds to wait for an answer from a peer before timing
out.

watchdog-timeout
Specifies the number of seconds used for the Diameter Tw watchdog timer.

include-origin-state-id
Specifies whether the node should include the origin state AVP in requests and
answers.

XML Element Description

19-6 WebRTC Session Controller System Administrator's Guide

supported-vendor-id+
Specifies one or more vendor IDs to be added to the Supported-Version-Ids AVP in
the capabilities exchange.

peer+
Specifies connection information for an individual Diameter peer. You can choose to
configure connection information for individual peer nodes, or allow any node to be
dynamically added as a peer. Oracle recommends using dynamic peers only if you are
using the TLS transport, because there is no way to filter or restrict hosts from
becoming peers when dynamic peers are enabled.

When configuring Sh client nodes, the peers element should contain peer definitions
for each Diameter relay agent deployed to your system. If your system does not use
relay agents, you must include a peer entry for the Home Subscriber Server (HSS) in
the system and for all other engine nodes that act as Sh client nodes.

When configuring Diameter relay agent nodes, the peers element should contain peer
entries for all Diameter client nodes that access the peer and the HSS.

host
Specifies the host identity for a Diameter peer.

address
Specifies the listen address for a Diameter peer. If you do not specify an address, the
host identity is used.

port
Specifies the TCP or TLS port number for this Diameter peer. The default port is 3868.

protocol
Specifies the protocol used by the peer. This element may be one of tcp or sctp.

route
Defines a realm-based route that this node uses when resolving messages.

When configuring Sh client nodes, you should specify a route to each Diameter relay
agent node deployed in the system and a default-route to a selected relay. If your
system does not use relay agents, simply configure a single default-route to the HSS.

When configuring Diameter relay agent nodes, specify a single default-route to the
HSS.

realm
The target realm used by this route.

application-id
The target application ID for the route.

action
An action type that describes the role of the Diameter node when using this route. The
value of this element can be one of the following:

XML Element Description

Diameter Configuration Reference (diameter.xml) 19-7

■ none

■ local

■ relay

■ proxy

■ redirect

server+
Specifies one or more target servers for this route. Any server specified in the server
element must also be defined as a peer to this Diameter node, or dynamic peer
support must be enabled.

default-route
Defines a default route to use when a request cannot be matched to a configured route.

action
Specifies the default routing action for the Diameter node. See "route" for more
information.

server+
Specifies one or more target servers for the default route. Any server you include in
this element must also be defined as a peer to this Diameter node, or dynamic peer
support must be enabled.

XML Element Description

19-8 WebRTC Session Controller System Administrator's Guide

Part IV
Part IV WebRTC Session Controller Media Engine

Administration

This part provides administration information for Oracle Communications WebRTC
Session Controller Media Engine.

This part contains the following chapters:

■ Managing and Administering ME Systems

■ Configuring Permissions, Users, and Authorization

■ Enabling ME Interfaces and Protocols

■ Enabling ME Services

■ Configuring ME Accounting and Archiving

■ Configuring Domain Name Systems (DNS)

20

Managing and Administering ME Systems 20-1

20Managing and Administering ME Systems

The chapter describes the administrator tasks that you can perform when managing a
new WebRTC Session Controller Media Engine (ME) system. Before using the
information in this guide, be sure that you have properly installed the ME, as covered
in the WebRTC Session Controller Installation Guide.

References
For detailed descriptions of the commands that you can use for administrative tasks,
as well as instructions for using the management interfaces, refer to the Oracle
Communications WebRTC Session Controller Media Engine Object Reference.

For information on configuring policies, refer to the Oracle Communications OS-E
Session Services Configuration Guide.

Administrator and User Roles
The administrator is any person who configures and manages the ME system in the
network.

The user is a SIP client, usually a VoIP call sender or receiver, of SIP messages that are
transmitted to, and over the ME system to a destination. A SIP user may have one or
more SIP URIs in SIP sessions that traverse the platform between the user’s originating
SIP application or device and the SIP server endpoint (such as Microsoft LCS, IBM
Sametime, Avaya, etc.). SIP clients who establish SIP sessions are subject to SIP policies
that are configured by the ME administrator.

Enabling Management Access
When you create one or more administrative users, the ME prompts for a username
and password when anyone attempts to log in. Administrative users have read/write
management access to the ME configuration file. Editing and saving the configuration
file updates the ME configuration file named cxc.cfg. If desired, administrators can
commit the configuration changes to the running ME configuration.

CLI Session
The following CLI session creates a user and password (with permissions) for
management access across the entire ME system.

NNOS-E> config access
config access> config users
Creating ‘users’

Configuring Management Options

20-2 WebRTC Session Controller System Administrator’s Guide

config users> config user “jane doe”
Creating ‘user “jane doe”’
config user “jane doe”> set password abcXYZ
confirm:*******************
config user “jane doe”> set permissions access permissions grant
Creating ‘access\permissions grant’
config user “jane doe”> return
config users> return
config access> config permissions grant
Creating ‘permissions grant’
config permissions grant> set ftp enabled
config permissions grant> set cms enabled-web-only
config permissions grant> set cli normal
config permissions grant> set config enabled
config permissions grant> set call-logs enabled
config permissions grant> set actions enabled
config permissions grant> set status enabled
config permissions grant> set user-portal enabled
config permissions grant> set web-services enabled
If you are using the CMS to configure administrative users and permissions, use the
CMS Access tab.

For more information on the access configuration object and the other properties that
you can configure, refer to the WebRTC Session Controller Media Engine Objects and
Properties Reference Guide.

Configuring Management Options
This section shows you how to set up the management options that allow you to
configure the ME system.

Local Console
If you are using a directly-attached local console or terminal to configure the ME for
the first time, use a terminal emulation program such as HyperTerminal to set the
console parameters.

The following CLI session configures the console settings for communicating with the
ME system. The example session shows the console default settings.

CLI Session
config> config box
config box> config console
config box> set rate 115200
config box> set data-bits 8
config box> set parity none
config box> set stop-bits 1
config box> set flow-control none

Telnet
Telnet is a standard TCP/IP-based terminal emulation protocol defined in RFC 854,
Telnet Protocol Specification. Telnet allows a remote user to establish a terminal
connection to the ME system over an IP network. By default, the Telnet protocol is
enabled at installation time. To allow connections over Telnet, you must configure
those users who are allowed access to the ME over Telnet.

Configuring Management Options

Managing and Administering ME Systems 20-3

The following CLI session configures the Telnet protocol on the local ME system,
including the maximum number of concurrent Telnet sessions, the idle timeout period
(in seconds) that ends a Telnet session due to inactivity, and the known TCP port for
inbound and outbound Telnet messages.

CLI Session
config box> config interface eth0
config interface eth0> config ip local
config ip local> config telnet
config telnet> set admin enabled
config telnet> set max-sessions 10
config telnet> set idle-timeout 600
config telnet> set port 23

Secure Shell (SSH)
Secure Shell (SSH) Server Version 2 on the ME system provides secure client/server
communications, remote logins, and file transfers using encryption and public-key
authentication. To establish a secure connection and communications session, SSH
uses a key pair that you generate or receive from a valid certificate authority (CA). By
default, SSH is enabled at installation time.

An SSH session allows you to transfer files with Secure Shell File Transfer Protocol
(SFTP), providing more secure transfers than FTP and an easy-to-use interface. SSH
uses counters that record SFTP activity over the SSH connection.

When running SSH on the ME system, the SSH session is transparent and the CLI
appears just as it would if you were connecting from a console or over Telnet. The ME
implementation of SSH does not support all the user-configurable parameters
typically supported by SSH workstations. If you try to change a parameter that the ME
does not support, you will receive a notification that the parameter setting failed.

CLI Session
The following CLI session configures the SSH protocol on the local ME system,
including the maximum number of concurrent SSH sessions, the idle timeout period
(in seconds) that ends an SSH session due to inactivity, and the known TCP port for
inbound and outbound SSH messages.

config box> config interface eth0
config interface eth0> config ip local
config ip 1ocal> config ssh
config ssh> set admin enabled
config ssh> set max-sessions 10
config ssh> set idle-timeout 600
config ssh> set port 22

Web/HTTP
The ME Management System allows you to configure and manage the ME system
remotely using your web browser.

The ME interface supports all management capabilities provided by the CLI. Instead
of entering information on a command line, you navigate menus and supply
information in menu fields.

To manage the ME system over the Web, enter the IP address of the management IP
interface in the Internet Explorer File/Open command window and log in. For
example:

Configuring Management Options

20-4 WebRTC Session Controller System Administrator’s Guide

http://192.168.124.1/

CLI Session
The following CLI session enables Web access to the local ME and specifies the TCP
port over which HTTPS traffic is sent and received on the IP interface.

config box> config interface eth0
config interface eth0> config ip local
config ip local> config web
config web> set admin enabled
config web> set protocol https 443

For detailed on using the CMS, refer to the SIP Security and Management Solutions –
System Management Reference.

SNMP
The Simple Network Management Protocol (SNMP) allows you to communicate with
the SNMP agent on the ME system from a remote management station. SNMP allows
you to retrieve information about managed objects on the platform as well as initiate
actions using the standard and enterprise Management Information Base (MIB) files
that Oracle makes available with the product software.

The ME supports the SNMP versions SNMP v1 and SNMP v2c.

CLI Session
The following CLI session enables SNMP access to the local ME system, specifies the
TCP port over which SNMP traffic is sent and received on the management interface,
sets the SNMP community string, the SNMP version, and the target system IP address
to which SNMP trap messages are forwarded.

config box> config interface eth0
config interface eth0> config ip local
config ip local> config snmp
config snmp> set admin enabled
config snmp> set port 161
config snmp> set version 2c
config snmp> set community private
config snmp> set trap-target 192.168.124.10

HTTP\SOAP\WSDL Interface
The ME software includes a software development kit (SDK) to provide Web Services
Description Language (WSDL) accessibility to the ME.

WSDL is an XML-based language for describing Web services, and how to access
them, in a platform-independent manner. Simple Object Access Protocol (SOAP) is a
communication protocol for communication between applications, based on XML.

A WSDL document is a set of definitions that describe how to access a web service and
what operations it will perform. The ME uses it in combination with SOAP and an
XML Schema to allow a client program connecting to a web service to determine
available server functions. The actions and data types required are embedded in the
WSDL file, which then may be enclosed in a SOAP envelope. The SOAP protocol
supports the exchange of XML-based messages, with the ME using HTTPS.

The ME performs the role of a web service server in the WSDL exchange, where an
external client can make web service requests on the ME system.

Working with the ME Configuration File

Managing and Administering ME Systems 20-5

The WSDL document (and its imported schema files, such as cxc.xsd) define every
possible request and response provided for the service, including error responses.
Depending on how you choose to integrate with the ME system, you can use the ME
SDK (using Java) or you can simply take the WSDL document and generate tools in
your desired language. Because web services are language independent, you can use
virtually any modern language to generate the requests and the WSDL document
defines what those requests need to look like for the receiving component.

For complete information on the WSDL interface, refer to the Net-Net OS-E –
Management Tools.

Working with the ME Configuration File
All ME systems use the startup configuration file named cxc.cfg. This file defines all
aspects of the ME system and its configuration in the network.

■ Ethernet interfaces (and their IP addresses) connecting the platform to the Ethernet
switches and the Internet

■ Configured protocols, services, accounting and logging

■ Policies that define the rules and conditions to match with SIP enterprise the
carrier traffic requests.

Building the Configuration File Using the CLI
The ME configuration file (cxc.cfg) is made up of configuration objects and property
settings that control how the system processes and manages SIP traffic. As you open
these objects and set properties using the CLI (or the CMS), the ME builds a
configuration hierarchy of objects that are applied to SIP sessions. You can display this
configuration hierarchy using the show and show -v commands.

For new users, as well as for users who are adding functionality to their configuration,
you will need to open configuration objects using the config command to enable the
default settings for those objects, even if you choose not to edit any of their associated
properties. For example, if you need to enable the ICMP protocol and its default
settings, you simply open the object and execute return, as shown in the session below.
Notice that the ICMP object has been added to the configuration hierarchy at the end
of the session on the eth4 interface.

CLI Session
config> config box interface eth4
config interface eth4> config ip 172.26.2.14
config ip 172.26.2.14> config icmp
config ip 172.26.2.14> return
config interface eth4> return
config box> return
config> show -v
interface eth4
 admin enabled
 mtu 1500
 arp enabled
 speed 1Gb
 duplex full
 autoneg enabled
 ip 172.26.2.14
 admin enabled
 ip-address dhcp

Creating SIP Users and Passwords

20-6 WebRTC Session Controller System Administrator’s Guide

 geolocation 0
 metric 1
 classification-tag
 security-domain
 address-scope
 filter-intf disabled
 icmp
 admin enabled
 limit 10 5

Removing Objects From the Configuration File Using the CLI
To remove an object from the configuration hierarchy, use the CLI or CMS delete
command. For example, the CLI session below deletes the IP interface 172.26.1.14 from
the configuration hierarchy:

CLI Session
config> config box interface eth4
config interface eth4> delete ip 172.26.1.14

Editing and Saving the Configuration File Using the CLI
There are three levels of configuration: the working config which keeps a record of
configuration edits, the running configuration which is used by the system, and the
startup configuration file from which the system boots.

1. The startup, or default, config is saved to the /cxc/cxc.cfg file. When the ME
starts, it loads the startup config into the running config. Use the save command,
either at the config prompt (config>) or at the top–level prompt Net-Net>) by
default), to save the running config to the startup config.

2. The running config is the current operational configuration. You can display the
running config using the following command:

Net-Net> config show -v

Edit the running config using the CLI config command, or ME Management
application. You can save the running config to a file (either the startup config file
or a different file) using the config save command.

3. When you edit a configuration object, you get a working copy of that object. The
working config maintains a record of all configuration changes you have made
since the last save to the running config. However, your changes are not applied to
the running config until you explicitly commit them. While you’re editing an
object, the show command displays your working copy. Use the commit command,
or exit from config mode and answer yes to the prompt, to save changes from the
working configuration to the running configuration.

For detailed information on using the CLI and other management services that allow
you to edit the config file, refer to the WebRTC Session Controller Media Engine Object
Reference.

Creating SIP Users and Passwords
The user configuration object allows you to define the users who can pass SIP traffic
on this virtual system partition (VSP). (Refer to the ME Virtual System Partitions for
more information about ME VSPs). The users object only applies if your SIP
configuration requires local authentication in the default-session-configuration object

Setting ME Global Properties

Managing and Administering ME Systems 20-7

under VSP, or in the session-configuration object under the policy configuration
object.

When you enable the local authentication file, you configure the ME to prompt those
users that are passing SIP traffic to log in. The user name and password tag they enter
must match the entries in this file. However, you can also create policy that, for
example, does not attempt to authenticate users listed in the Active Directory.

CLI Session
The following CLI session creates a locally authenticated SIP user.

NNOS-E> config vsp
config vsp> config user bob-pc@companySierra.com
Creating ‘user bob-pc@companySierra.com’
config user bob-pc@companySierra.com> set admin enabled
config user bob-pc@companySierra.com> set password-tag abcXYZ
Unlike ME administrative users, SIP users who log in with a valid user name and
password do not have read/write access to the ME configuration file.

Customizing the CLI
The ME software allows you to customize the CLI to accommodate the type of display
you are using, as well as change the default ME that is pre-configured with the
platform.

CLI Session
The following CLI session sets the number of rows that the CLI displays in a single
page to 24 lines, and resets the default top-level prompt from Net-Net> to boston1>,
and sets an optional text banner to appear when you start the CLI.

config box> config cli
config cli> set display paged 24
config cli> set prompt boston1>
config cli> set banner text
To temporarily change the CLI display mode with changing the default configuration,
use the display command at the top level of the CLI.

NNOS-E> display paged 24
Whenever you use paged output, the --More-- prompt accepts the following
keystrokes:

■ [Enter]: Displays the next line of text

■ [Tab]: Displays the remainder of the text

■ [Esc], Q, or q: No more text

■ Any keystroke: Displays the next page of text

To change from paged output to continuous scrolled output, enter the following
command:

config cli> set display scrolled

Setting ME Global Properties
You can configure global text properties associated with each ME system in the
network. These global text properties include:

ME Virtual System Partitions

20-8 WebRTC Session Controller System Administrator’s Guide

■ hostname

■ name

■ description

■ contact

■ location

■ timezone

CLI Session
The following CLI session enables the ME administrative state, and sets the optional
text descriptions associated with this ME system.

NNOS-E> config box
config box> set admin enabled
config box> set hostname company.boston1.companySierra.com
config box> set name boston1
config box> set description Net-NetMasterBoston
config box> set contact adminFred
config box> set location corpDataCenter
config box> set timezone Pacific

ME Virtual System Partitions
ME’s virtual system partition (VSP) is the part of the system that holds the
comprehensive customer-defined configuration that controls how the system
processes, stores, directs, and routes SIP traffic. The VSP is where you can create
session configurations, registration and dial plans, and policies that handle SIP
REGISTER and SIP INVITE traffic (and other SIP methods) that ME will receive and
forward to a SIP call destination, authentication and accounting database, VoIP service
provider or carrier, enterprise server, and so on.

The VSP configuration uses objects and properties that control the majority of the ME
functionality.

IPMI Support
Intelligent Platform Management Interface (IPMI) is supported on the NN2600 series
hardware only. Oracle cannot guarantee it will function properly on any other
third-party hardware.

For more information about configuring IPMI on the ME, see the Oracle
Communications OS-E System Operations and Troubleshooting Guide.

Specifying Management Preferences
The cms-preferences object allows you to configure enumeration text strings to
network, database, and SIP objects that support extensions, as well as preferences for
reverse DNS, trap polling intervals, phone path mapping, and the cluster and box
summary information to include on the Status summary page.

CLI Session

The following CLI session configures the securityDomain and the sipHeaderNameEnum
strings, how frequently (in seconds) to check for SNMP traps

Restarting and Shutting Down the System

Managing and Administering ME Systems 20-9

NNOS-E> config preferences
config preferences> config cms-preferences
config cms-preferences> set enum-strings securityDomain untrusted
config cms-preferences> set enum-strings sipHeaderNameEnum accept-encoding
config cms preferences> set trap-poll-interval 60

For more information on configuring the optional enumeration strings, refer to Net-Net
OS-E – Objects and Properties Reference.

Specifying DOS Query Preferences
Denial of service (DOS) attacks are designed to disable networks by flooding them
with useless traffic. The ME provides transport-layer and SIP-layer query and policy
capabilities to manage DOS attacks. Queries allow you to sort and view incoming and
outgoing traffic in an effort to better define policies. You can use policies to determine
if a packet is attacking the box, and configure the responding action. These tools
quickly identify and shutout dubious traffic, thereby limiting the damage caused by
DOS attacks.

CLI Session

The following CLI session opens the dos-queries object and a named sip-query
(companySierra), followed by the sip-query options that control how the query
displays and sorts DOS traffic:

NNOS-E> config preferences
config preferences> config dos-queries
config dos-queries> config sip-query companySierra
Creating ‘sip-query companySierra’
config sip-query companySierra> set description “SIP-layer queries”
config sip-query companySierra> set admin enabled
config sip-query companySierra> set select content-type
config sip-query companySierra> set group session-id
config sip-query companySierra> set sort timestamp
config sip-query companySierra> set order ascending
For more information on configuring the DOS query preferences, refer to the Net-Net
OS-E – Session Services Configuration Guide and the Net-Net OS-E – Objects and Properties
Reference.

Restarting and Shutting Down the System
At times, you may need to shut down or restart the system.

■ To shut down the system completely, press the On/Off button on the chassis to
OFF.

■ To perform a warm or cold restart or a system halt, use the restart command. A
restart warm resets the ME application software; a restart cold reboots the
platform, restart halt suspends ME operation without rebooting or restarting.

■ To simultaneously warm restart all systems in the network cluster, use the restart
cluster command.

Caution: Always save your configuration before you shut down or
restart the system. When you restart the ME system, the system uses
the latest saved configuration file. If you do not save a configuration
prior to a reboot or shutdown, you lose any changes you made since
you last saved the configuration file.

Monitoring the ME

20-10 WebRTC Session Controller System Administrator’s Guide

CLI Session
The following session performs an ME warm restart:

NNOS-E> restart warm

Monitoring the ME
This section describes SNMP OIDs to poll and trap, CLI commands, and other features
Oracle recommends for monitoring the ME.

SNMP MIB OIDs
SNMP MIB browsers and network management applications can be used to monitor
the ME. The SNMP agent allows users to access management information from the
MIBs and perform SNMP queries (GETs and GET NEXTs) for information contained in
the MIBs.

The SNMP agent supports SNMP V1 and V2c.

Process Restarts
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on system processes.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.processTable.processEntry
(.1.3.6.1.4.1.21798.1.1.214.1)

The following table shows the relevant system process OIDs.

Table 20–1 System Process OIDs

OID (text) OID Description

processStarts.1(monitor) .1.3.6.1.4.1.21798.1.1.214.1.6.1 The number of times the
monitor process has (re)started.

processStarts.2(manager) .1.3.6.1.4.1.21798.1.1.214.1.6.2 The number of times the
manager process has (re)started.

processStarts.3(sip) .1.3.6.1.4.1.21798.1.1.214.1.6.3 The number of times the sip
process has (re)started

processStarts.4(media) .1.3.6.1.4.1.21798.1.1.214.1.6.4 The number of times the media
process has (re)started

processStarts.5(auth) .1.3.6.1.4.1.21798.1.1.214.1.6.5 .1.3.6.1.4.1.21798.1.1.214.1.6.5
The number of times the auth
process has (re)started

processStarts.6(reg) .1.3.6.1.4.1.21798.1.1.214.1.6.6 The number of times the reg
process has (re)started

processStarts.7(h323) .1.3.6.1.4.1.21798.1.1.214.1.6.7 The number of times the h323
process has (re)started

processStarts.8(dir) .1.3.6.1.4.1.21798.1.1.214.1.6.8 The number of times the dir
process has (re)started

processStarts.9(web) .1.3.6.1.4.1.21798.1.1.214.1.6.9 The number of times the web
process has (re)started

processStarts.10(ws) .1.3.6.1.4.1.21798.1.1.214.1.6.10 The number of times the web
services process has (re)started

processStarts.11(acct) .1.3.6.1.4.1.21798.1.1.214.1.6.11 The number of times the acct
services process has (re)started

Monitoring the ME

Managing and Administering ME Systems 20-11

Active Calls
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on system active calls.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.sipStackTable.sipStackEntry
(.1.3.6.1.4.1.21798.1.1.294.1)

The following table shows relevant active call OIDs.

CPU Usage
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on system CPU usage at various
intervals.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.cpuUsage
(.1.3.6.1.4.1.21798.1.1.55)

The following table shows relevant CPU usage OIDs.

processStarts.12(dos) .1.3.6.1.4.1.21798.1.1.214.1.6.12 The number of times the dos
services process has (re)started

processStarts.17(ssh) .1.3.6.1.4.1.21798.1.1.214.1.6.17 The number of times the ssh
services process has (re)started

processsStarts.20(lcr) .1.3.6.1.4.1.21798.1.1.214.1.6.20 The number of times the lcr
services process has (re)started

processStarts.21(sampling) .1.3.6.1.4.1.21798.1.1.214.1.6.22 The number of times the
sampling services process has
(re)started

processStarts.22(presence) .1.3.6.1.4.1.21798.1.1.214.1.6.22 The number of times the
presence services process has
(re)started

Table 20–2 Active Call OIDs

OID (text) OID Description

sipStackActiveCalls .1.3.6.1.4.1.21798.1.1.294.1.5.10
0.101.102.97.117.108.116

The number of active
calls

Table 20–3 CPU Usage OIDs

OID (text) (OID) Description

cpuUsageOneSecond.0 .1.3.6.1.4.1.21798.1.1.55.1.0 1 second sample of CPU
usage %

cpuUsageTenSecond.0 .1.3.6.1.4.1.21798.1.1.55.2.0 10 second sample of
CPU usage %

cpuUsageOneMinute.0 .1.3.6.1.4.1.21798.1.1.55.3.0 1 minute sample of CPU
usage %

cpuUsageTenMinute.0 .1.3.6.1.4.1.21798.1.1.55.4.0 10 minute sample of
CPU usage %

cpuUsageOneHour.0 .1.3.6.1.4.1.21798.1.1.55.5.0 1 hour sample of CPU
usage %

Table 20–1 (Cont.) System Process OIDs

OID (text) OID Description

Monitoring the ME

20-12 WebRTC Session Controller System Administrator’s Guide

Database Maintenance Status
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on database maintenance.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.databaseMaintenanceStatus
(.1.3.6.1.4.1.21798.1.1.58)

The following table shows relevant database maintenance OIDs.

Fault Groups
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on fault groups.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.groupsTable.groupsEntry
(.1.3.6.1.4.1.21798.1.1.112.1)

The following table shows relevant fault group OIDs.

Location Cache
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on location cache.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.locationSummary
(.1.3.6.1.4.1.21798.1.1.158) OID (text) OID

The following table shows relevant location cache OIDs.

Memory Failures
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on memory failures.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.memory
(.1.3.6.1.4.1.21798.1.1.182)

The following table shows relevant memory failure OIDs.

Table 20–4 Database Maintenance OIDs

OID (text) OID Description

databaseMaintenanceStatusStatus
.0

.1.3.6.1.4.1.21798.1.1.58.1.0 Current database
maintenance status

databasemaintenanceStatusResult
.0

.1.3.6.1.4.1.21798.1.1.58.5.0 The result of the last
database maintenance
job

Table 20–5 Fault Group OIDs

OID (text) OID Description

groupsActive.<#> .1.3.6.1.4.1.21798.1.1.112.1.5.<#
>

Status of group number.

Table 20–6 Location Cache OIDs

OID (text) OID Description

locationSummaryTotalAO
Rs.0

.1.3.6.1.4.1.21798.1.1.158.1.0 The number of Cache entries on
the system

Monitoring the ME

Managing and Administering ME Systems 20-13

Hardware Faults
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on hardware faults.

iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.sensorInfo
(.1.3.6.1.4.1.21798.1.1.263)

The following table shows relevant hardware fault OIDs.

SIP Status
Oracle recommends the following list of SNMP OIDs to GET every five minutes from
the CXC MIB (cxc.mib) to obtain information on the SIP stack.

.iso.org.dod.internet.private.enterprises.covergence.cxc.cxcStatus.sipStackTable.sipStackEntry
(.1.3.6.1.4.1.21798.1.1.294.1)

The following table shows relevant SIP status OIDs.

Table 20–7 Memory Failure OIDs

OID (text) OID Description

memorySystemHeapAllocFailures.0 .1.3.6.1.4.1.21798.1.1.182.19.0 The number of System Heap

Allocation Failures

memoryMallocHeapAllocFailures.0 .1.3.6.1.4.1.21798.1.1.182.20.0 The number of Malloc Heap Allocation
Failures

memoryOpenSSLAllocFailures.0 .1.3.6.1.4.1.21798.1.1.182.21.0 The number of OpenSSL Heap Allocation
Failures

memoryRVHeapAllocFailures.0 .1.3.6.1.4.1.21798.1.1.182.22.0 The number of RV (SIP Stack Library)
Heap Allocation Failures

memoryOtherHeapAllocFailures.0 memoryOtherHeapAllocFailur
es.0.1.3.6.1.4.1.21798.1.1.182.23.
0.

The number of other Heap

Allocation Failures

memoryPoolAllocFailures.0 .1.3.6.1.4.1.21798.1.1.182.24.0 The number of Pool Allocation

Failures

Table 20–8 Hardware Fault OIDs

OID (text) OID Description

sensorInfoFaults.0 .1.3.6.1.4.1.21798.1.1.263.3.0 The number of Faults
reported by the onboard
hardware monitoring
module.

Table 20–9 SIP Status OIDs

OID (text) OID Description

sipStackStatus .1.3.6.1.4.1.21798.1.1.294.1.3.100
.101.102.97.117.108.116

State of the SIP stack

sipStackActiveCalls .1.3.6.1.4.1.21798.1.1.294.1.5.100
.101.102.97.117.108.116

.1.3.6.1.4.1.21798.1.1.294.
1.5.100.101.102.97.117.10
8.116 Active SIP calls

sipStackFailedCalls .1.3.6.1.4.1.21798.1.1.294.1.12.10
0.101.102.97.117.108.116

Failed SIP calls

Monitoring the ME

20-14 WebRTC Session Controller System Administrator’s Guide

SNMP Traps
The ME can be configured to send out SNMP traps to a configured SNMP trap
receiver. This is timely data to alert the user to issues with the system.

Table 20–10 lists the SNMP traps Oracle recommends to investigate further.

Table 20–10 SNMP Traps

OID (text) OID Description

cAMissing .1.3.6.1.4.1.21798.1.4.7 Indicates that a CA file specified in a TLS
certificate configuration entry cannot be
found

certDecryptError .1.3.6.1.4.1.21798.1.4.8 Indicates that a certificate file specified in a
certificate configuration could not be
decrypted, probably due to an incorrect or
missing passphrase

certExpired .1.3.6.1.4.1.21798.1.4.9 Indicates that a certificate file specified in a
certificate configuration is no longer valid,
as specified in the certificate's 'notAfter'
extension

certExpiring .1.3.6.1.4.1.21798.1.4.10 Indicates that a certificate file specified in a
certificate configuration will expire shortly
(within the next 7 days), as specified in the
certificate's 'notAfter' extension

certFormat .1.3.6.1.4.1.21798.1.4.11 Indicates that a certificate file specified in a
TLS certificate configuration entry is not of
a supported format (PEM or PKCS#12)

certMissing .1.3.6.1.4.1.21798.1.4.12 Indicates that a certificate file specified in a
TLS certificate configuration entry cannot be
found or opened

certNoPrivateKey .1.3.6.1.4.1.21798.1.4.13 Indicates that a certificate file specified in a
TLS certificate configuration entry does not
have a valid private key; this could be due
to an incorrect passphrase.

certNotYetValid .1.3.6.1.4.1.21798.1.4.14 Indicates that a certificate file specified in a
certificate configuration is not yet valid, as
specified in the certificate's 'notBefore'
extension

cRLMissing .1.3.6.1.4.1.21798.1.4.15 Indicates that a CRL file specified in a TLS
certificate configuration entry cannot be
found

dosSIPPolicyTrap .1.3.6.1.4.1.21798.1.4.17 Indicates that a dynamic policy rule is
instituted in response to a SIP Policy
threshold being crossed

dosTransportPolicyTrap .1.3.6.1.4.1.21798.1.4.18 Indicates that a dynamic policy rule is
instituted in response to a Transport Policy
threshold being crossed

dosUrlPolicyTrap .1.3.6.1.4.1.21798.1.4.19 Indicates that a dynamic policy rule is
instituted in response to a URL Policy

headEndUndersubscribed .1.3.6.1.4.1.21798.1.4.22 A head-end interface is undersubscribed,
and therefore SIP messages are being
dropped

lBConfiguredAsBoth .1.3.6.1.4.1.21798.1.4.24 An interface has been configured as both a
head-end and a backing, and therefore SIP
load-balancing will not function

Monitoring the ME

Managing and Administering ME Systems 20-15

CLI Commands
The following list of show status commands can be used to provide information on
overall system performance.

■ show processes

■ show active-call-summary

■ show cpu-usage

■ show database-maintenance-status

■ show groups

■ show location-cache

■ show memory failures

■ show sensor-info

■ show sensor-events

■ show login-sessions

■ show sip-stack

licenseExpiring .1.3.6.1.4.1.21798.1.4.25 Report the imminent expiration of a license

licenseExpiring .1.3.6.1.4.1.21798.1.4.25 Report the imminent expiration of a license

mediaSessionDroppedPackets .1.3.6.1.4.1.21798.1.4.26 Indicates the dropped media packets for a
session exceeded the threshold specified

mediaVerificationFail .1.3.6.1.4.1.21798.1.4.27 Indicates a media stream within a call
exceeds the expected parameters

monitorAlert .1.3.6.1.4.1.21798.1.4.28 Report that a monitor parameter has
crossed the configured threshold

processDown .1.3.6.1.4.1.21798.1.4.30 Report that a process has gone down

raidEventTrap 1.3.6.1.4.1.21798.1.4.31 Indicates the RAID controller has generated
an event

sensorEvents 1.3.6.1.4.1.21798.1.4.33 Report that a sensor event has occurred

sipParseErrorsTrap .1.3.6.1.4.1.21798.1.4.35 The number of parse errors in received SIP
messages has exceeded the configured
threshold.

sipServerEvent .1.3.6.1.4.1.21798.1.4.36 Report on state of SIP server

storageDeviceFull .1.3.6.1.4.1.21798.1.4.37 The CXC attempted to record media but the
free space is less than the configured
threshold

synCookiesTrap .1.3.6.1.4.1.21798.1.4.38 An increase in the TcpSynCookiesSent
counter indicates a possible TCP SYN flood
attack

systemHalt .1.3.6.1.4.1.21798.1.4.39 Report that a system halt has been initiated

masterServiceChange .1.3.6.1.4.1.21798.1.4.53 Report a master service state change

masterServiceHostChange .1.3.6.1.4.1.21798.1.4.54 Report a master service host box state
change

Table 20–10 (Cont.) SNMP Traps

OID (text) OID Description

Monitoring the ME

20-16 WebRTC Session Controller System Administrator’s Guide

■ show faults

■ show interfaces

■ show master-services

■ show vrrp-hosts

■ show media-ports-summary

■ show mounts

The following list of show status commands can be used to provide information on
general web services.

■ show dynamic-event-services

■ show web-services-callout-detail

■ show web-services-callout-status

■ show web-services-client-status

■ show web-services-fault-status

■ show web-services-ports

■ show web-services-request-status

■ show web-services-status

The following list of show status commands can be used to provide information if you
have a virtual host application running on the ME.

■ show web-services-virtual-host-application-parameters

■ show web-services-virtual-host-application-servlet-parameters

■ show web-services-virtual-host-application-servlets

■ show web-services-virtual-host-applications

■ show web-services-virtual-hosts

For more information on these show commands, see the WebRTC Session Controller
Media Engine Object Reference.

Other Monitoring Tools
This section describes several other tools you can use to monitor the ME.

Syslog
By configuring the ME to send out system messages to a configured Syslog server, you
can obtain data useful for historical logging and detailed troubleshooting.

CMS Web
You can monitor various system data on the ME via the CMS Web graphical interface
using a standard HTTP secure browser.

Note: Enable only filters that specify events to monitor to avoid
alarming on many irrelevant events.

Monitoring the ME

Managing and Administering ME Systems 20-17

Web Services Description Languages (WSDL) API
The WSDL/SOAP (Simple Object Access Protocol) management interface on the ME
allows you to monitor status, execute actions, and read and write the configuration. It
also provides special-purpose functionality to support integration of location
information, event, and policy services with external services.

Accounting CDRs
You can configure the ME to create and send Accounting Call Detail Records (CDR).
CDRs can be written to .csv files, RADIUS servers, and external databases (i.e. MySQL,
Postgres, Microsoft SQL, etc.). This data can be farmed for monitoring purposes as
well as traditional billing uses. For example, determining call completion rates at
various high and low points during the day.

Monitoring the ME

20-18 WebRTC Session Controller System Administrator’s Guide

21

Configuring Permissions, Users, and Authorization 21-1

21Configuring Permissions, Users, and
Authorization

This chapter describes configuring and managing permissions, users, and
authorization under the ME’s Access tab.

Configuring Permissions
Under the Access tab you can configure permissions. From this object you can enable
or disable access to a variety of ME services. Once a permission set is created, it can be
applied to configured users.

To create a permission set:

1. Select the Access tab and click Access.

2. Click Add permissions.

3. Enter the name you want to give this permission set and select Create.

The permissions object appears. For more information on the permissions object and
properties, see the WebRTC Session Controller Media Engine Object Reference.

Figure 21–1 shows a permission set named admin.

Configuring Users

21-2 WebRTC Session Controller System Administrator’s Guide

Figure 21–1

Configuring Users
Configure ME users using the Access tab’s users object.

When creating a user, you assign them a name, a password, and apply to them a
configured permissions set.

To create a user:

1. Select the Access tab and click users.

2. admin: Set to enabled to allow configured users access to the ME.

3. Click Add user. The user object appears.

Note: To edit an existing permission set, click Edit beside that
permission and the permissions object. To delete a permission set
click Delete.

Configuring Action and Config Filters

Configuring Permissions, Users, and Authorization 21-3

4. name: Enter a name to give this user.

5. password: Enter a password for this user.

6. confirm: Reenter the password.

7. permissions: Select a pre-configured permissions set to apply to this user from the
drop-down list. If you have not configured permissions yet, click Create.

8. Click Create.

9. Click Set. Update and save the configuration.

Configuring Action and Config Filters
The ME supports filtering mechanisms which control which users have access to
specific actions and configuration objects and properties. These filters are configured
under the access > permissions object.

The three permission filters are:

■ Config-filter

■ Action-filter-blacklist

■ Action-filter-whitelist

There are three steps necessary to assign action and configuration filters to configured
users. You must create the filters, assign filters to permissions set, then assign each
user a permission set.

Configuring Config-Filters
Via the config-filter property, you can select a config-filter containing a list of
configuration objects and properties you want to restrict certain users from being able
to access.

Config-filters have three permission levels.

■ read-write: Users can modify the configuration

■ read-only: Users can view the configuration but cannot modify it

■ none: Users can neither view nor modify the configuration

Note: Via the password-policy object, you can specify password
requirements for configured users. For more information on the
password-policy object, see the WebRTC Session Controller Media
Engine Object Reference.

Configuring Action and Config Filters

21-4 WebRTC Session Controller System Administrator’s Guide

By default, child objects and properties inherit permissions from their parent classes,
however, a user may apply a lesser permission to a child object or property. The
following table lists the inheritance of permissions for the configuration.

To configure a config-filter:

1. Select the Access tab and click Access.

2. Click Configure next to permission-filters.

3. Click Add config-filter.

4. name: Specify a name to give this config-filter.

5. Click Create. The filter object appears.

6. admin: Set to enabled to enable this config-filter.

7. Click Add filter.

8. filter: Specify a configuration object by entering the class, object, and property in
free form, separating each with a back slash “\”.

9. Click Create.

10. Repeat Steps 7 and 8 for as many configuration objects you want to apply to this
filter.

11. Click Set. Update and save the configuration.

To specify a filter permission:

1. Click Edit next to the filter.

2. permission: Select the permission level for this filter from the drop-down list. This
is set to none by default.

3. Repeat this for each filter.

4. Click Set. Update and save the configuration.

Configuring Action-Filters
Via the action-filter-blacklist property, you can select an action-filter containing a list
of actions you want to restrict certain users from using. When a user attempts to
execute a restricted action, he gets the following error message:

Insufficient permissions for user

Via the action-filter-whitelist property, you can select an action-filter containing a list
of actions you want to allow certain users to use.

Table 21–1 Configuration Permissions Inheritance

Inherited
Permission

Child Object/Property
Permission

Effective Permission of Child
Object/Property Permission

read-write read-write read-write

read-write read-only read-only

read-write none none

read-only read-only read-only

read-only none none

none none none

Configuring Action and Config Filters

Configuring Permissions, Users, and Authorization 21-5

The action-filter-whitelist property supports the use of a wildcard. The wildcard is an
asterisk (*) that can be located at the end of a string only. For example, to create an
action-filter for all call-control actions, enter call-control-*.

When action-filters are configured on the ME, the ME always checks the
action-filter-blacklist settings first. If the action is found on the blacklist, the user is
not allowed to use it.

If both the action-filter-blacklist and action-filter-whitelist are configured and an
action does not appear on either list, the user is restricted from using the action.

If an action is not found on the action-filter-blacklist and action-filter-whitelist is not
configured, the user is allowed to use it.

To configure an action-filter:

1. Select the Access tab and click Access.

2. Click Configure next to permission-filters.

3. Click Add action-filter.

4. name: Specify a name to give this action-filter.

5. Click Create. The filter object appears.

6. admin: Set to enabled to enable this action-filter.

7. Click Add filter.

8. filter: Specify an action, without any arguments, to be applied to this filter.

9. Repeat Steps 7 and 8 for as many actions you want to apply to this filter.

10. Click Set. Update and save the configuration.

Applying Filters to Permissions Sets
Once you have created config-filters and action-filters, you must apply them to a
permission set.

To apply config-filters and action-filters to a permissions set:

1. Select the Access tab and click Access.

2. Click Add permissions to create a new permissions set or click Edit next to an
existing permissions set.

3. config-filter: Select a config-filter from the drop-down list whose configuration
objects you want to restrict users with this permissions set from using. If you have
not yet created a config-filter, click Create next to this property.

Note: You must enter actions into the action-filter-blacklist and
action-filter-whitelist properties without any arguments. When
anything more than an action name is specified, the ME ignores the
filter.

Note: If you enter an action with arguments, the action is ignored.

Configuring Authorization

21-6 WebRTC Session Controller System Administrator’s Guide

4. action-filter-blacklist: Select an action-filter from the drop-down list whose
actions you want to restrict users with this permissions set from using. If you have
not yet created an action-filter, click Create next to this property.

5. action-filter-whitelist: Select an action-filter from the drop-down list whose
actions you want to allow users with this permissions set to use. If you have not
yet created an action-filter, click Create next to this property.

6. Click Set. Update and save the configuration.

Once you have configured config-filters and action-filters and applied them to a
permissions set, you can assign the permissions set to users. For more information on
applying permissions set to users, see Configuring Users.

Configuring Authorization
Once you have configured permission sets and users, you can further define user
access by configuring authorization. Authorization consists of creating specific grants,
or privileges.

There are three types of grants you can create:

■ default-grants: Applies to all configured ME users

■ attribute-grants: Applies to configured ME users based on values extracted from
their attributes.

■ group-grants: Applies to configured ME users based on group membership

The grants you can create apply to just a small segment of actions, which are divided
into groups called resource-types. A resource-type is the ME function on which you
are setting permissions.

The following table lists the resource types along with their corresponding actions.

Table 21–2 Resource Types

Resource-Type Associated Actions CRUD Privileges

call call-control-accept N/A

N/A call-control-annotate N/A

N/A call-control-attach CU

N/A call-control-call C

N/A call-control-call-to-session CU

N/A call-control-connect N/A

N/A call-control-create-session C

N/A call-control-destroy-session D

N/A call-control-detach D

N/A call-control-disconnect D

N/A call-control-fork U

N/A call-control-get-annotation U

N/A call-control-hold U

N/A call-control-info-request U

N/A call-control-intercept U

Configuring Authorization

Configuring Permissions, Users, and Authorization 21-7

N/A call-control-join U

N/A call-control-message-request U

N/A call-control-modify U

N/A call-control-mute-off U

N/A call-control-mute-on U

N/A call-control-notify U

N/A call-control-notify-request U

N/A call-control-options-request U

N/A call-control-park CU

N/A call-control-park-to-session CU

N/A call-control-persistence U

N/A call-control-record-stop C

N/A call-control-redirect U

N/A call-control-reject U

N/A call-control-retrieve U

N/A call-control-ringing U

N/A call-control-send-message U

N/A call-control-subscribe-request U

N/A call-control-terminate D

N/A call-control-transfer U

call-recording call-control-record-start C

N/A call-control-record-stop C

call-monitor call-control-monitor-file CU

N/A call-control-monitor-session CU

call-media-insertion call-control-drop-file CU

N/A call-control-insert-dtmf U

N/A call-control-media-pause CU

N/A call-control-media-resume CU

N/A call-control-media-scanner-start CU

N/A call-control-media-scanner-stop CU

N/A call-control-media-seek CU

N/A call-control-media-stop CU

N/A call-control-memo-begin CU

N/A call-control-memo-end CU

N/A call-control-play U

sip-request sip-send-message CU

N/A sip-send-notify CU

Table 21–2 (Cont.) Resource Types

Resource-Type Associated Actions CRUD Privileges

Configuring Authorization

21-8 WebRTC Session Controller System Administrator’s Guide

In cases where an action has required either <handle> or <session ID> arguments, the
ME extracts the To and From URI identities from each call leg, matches them against
the resource-identity specified in a user’s privileges, and determines whether that user
is authorized to perform an operation.

When configuring a grant, you must define privileges for that resource-type.
Privileges specify what a user can or cannot do with that resource-type.

Privileges on the ME follow the standard CRUD model:

■ create

■ retrieve

■ update

■ delete

Configuring Default Grants
Configure grants under the Access tab’s authorization object.

Default grants are one of three types of grants you can configure on the ME. Default
grants are grants that apply to all ME users matching the specified resource identity.

To configure default grants:

1. Select the Access tab and click authorization.

2. Set admin to enabled to enable authorization.

3. Click Add default-grant. The default-grant object appears.

4. name: Enter a name to give this grant.

5. resource-identity: Select the type of matching to use to identify a resource-type.
The following are valid values:

■ equals <value>: The value that a user provides during an authorization request
must be exactly the same as the resulting resource-identity. This is the default
setting.

■ matches <expression>: The value that a user provides during an authorization
request is matched against the resource-identity using a regular expression
match.

N/A sip-send-options CU

N/A sip-send-other CU

N/A sip-send-subscribe CU

N/A sip-send-unsubscribe CU

registration register C

N/A unregister D

event-channel dynamic-event-service register CR

N/A dynamic-event-service keepalive U

N/A dynamic-event-service unregister D

Table 21–2 (Cont.) Resource Types

Resource-Type Associated Actions CRUD Privileges

Configuring Authorization

Configuring Permissions, Users, and Authorization 21-9

■ any: Any value a user provides during an authorization request matches.

6. resource-type: Select the resource-type for this grant from the drop-down list.

7. privileges: Check the CRUD privileges to allow for this resource-type. By default,
they are all selected.

8. Click Create.

9. Click Set. Update and save the configuration.

Configuring Attribute Grants
Attribute grants are grants that apply to all ME users that have the attribute and match
the specified resource-identity.

To configure attribute-grants:

1. Select the Access tab and click authorization.

2. name: Enter the name of the attribute for which you are creating this grant.

3. Click Create. The attribute-grant object appears.

4. Click Add grant-pattern.

5. name: Enter a descriptive name to give this grant.

6. pattern: Enter the regular expression pattern to use to define the attribute.

7. resource-identity: Select the type of matching to use to identify a resource-type.
The following are valid values:

■ equals <value>: The value that a user provides during an authorization request
must be exactly the same as the resulting resource-identity. This is the default
setting.

■ matches <expression>: The value that a user provides during an authorization
request is matched against the resource-identity using a regular expression
match.

■ any: Any value a user provides during an authorization request matches.

8. resource-type: Select the resource-type that this extracted value represents from
the drop-down list.

9. privileges: Check the CRUD privileges to allow for this resource-type. By default,
they are all selected.

10. Click Create.

Note: For more information on using Regular Expressions, see the
WebRTC Session Controller Media Engine Object Reference.

Note: The name you provide must be the name of an actual attribute
used within the directory.

Note: For more information on using Regular Expressions, see the
WebRTC Session Controller Media Engine Object Reference.

Configuring Authorization

21-10 WebRTC Session Controller System Administrator’s Guide

11. Click Set. Update and save the configuration.

Configuring Group Grants
Under the group-grant object, you can configure default and attribute grants for
specific groups. Group grants apply to users belonging to these groups and matching
the resource-identity.

To add a group-grant:

1. Select the Access tab and click authorization.

2. Click Add group-grant.

3. name: Enter the name of the group for which you are configuring this grant.

4. Click Create. The group-grant object appears.

5. Click Add default-grant to configure a default grant for this group or click Add
attribute-grant to configure an attribute grant for this group.

6. Configure the default or attribute grant as described above.

7. Click Set. Update and save the configuration.

Viewing User Privilege Information
There are three show commands which allow you to view information on your grant
configuration: show authorized-user-privileges, show authorized-user-attributes,
and show authorized-user-groups.

The show authorized-user-privileges action displays information about users’
authorization privileges from the user cache.

NNOS-E>show authorized-user-privileges

username resource-type privilege identity-type resource-identity
-------- ------------- --------- ------------- -----------------
admin event-channel C+R+U+D equals /system/*

The following table lists and describes the properties associated with the show
authorized-user-privileges show command.

Note: For more information on configuring default-grants see
Configuring Default Grants. For more information on configuring
attribute-grants see Configuring Attribute grants.

Note: If a user has never logged into the ME, their name does not
appear in the cache and, therefore, is not displayed in the show
authorized-user-privileges command output.

Table 21–3 Show Authorized-User-Privileges Properties

Field Description

username The name of the configured ME user.

resource-type The resource-type of the grant configured for this user.

Configuring Authorization

Configuring Permissions, Users, and Authorization 21-11

The show authorized-user-attributes action displays information about configured
ME users and their attributes and values.

NNOS-E>show authorized-user-attributes

username attribute value
-------- --------- -----
sjones mail sjones@acmepacket.com
sjones msrtcsip-primaryuseraddress sip:sjones@acmepacket.com
sjones cn Sam Jones
sjones samaccountname sjones
sjones msrtcsip-line tel:+17815557256
sjones st MA
sjones telephonenumber +1 (781) 555-4839

The following table lists and describes the properties associated with the show
authorized-user-attributes show command.

The show authorized-user-groups action displays the configured users and the
groups to which they belong from the user cache.

NNOS-E>show authorized-user-groups

username group
-------- -----
sjones eng
sjones software
sjones dev
sjones ct
sjones engineering
sjones deliveries
sjones funcspec

The following table lists and describes the properties associated with the show
authorized-user-group show command.

privilege The CRUD privileges of the of the resource-type
configured for this user.

identity-type The method in which the ME matches the users’
resource-identity.

resource-identity The value or regular expression the ME uses to check
users’ authorization privileges.

Table 21–4 Show Authorized-User-Attributes Properties

Field Description

username The configured ME user.

attribute The attribute name.

value The value of the attribute for that user.

Table 21–3 (Cont.) Show Authorized-User-Privileges Properties

Field Description

Configuring Authorization

21-12 WebRTC Session Controller System Administrator’s Guide

The show authorized-user-summary action displays an abbreviated version of users’
authorization privileges from the user cache.

NNOS-E>show authorized-user-summary

username resource-types
-------- --------------
admin event-channel
test_user event-channel

The following table lists and describes the properties associated with the show
authorized-user-summary show command.

Table 21–5 Show Authorized-User-Group Properties

Field Description

username The configured ME user.

group The group to which the user belongs.

Table 21–6 Show Authorized-User-Summary Properties

Field Description

username The name of the configured ME user.

resource-type The resource-type of the grant configured for this user.

22

Enabling ME Interfaces and Protocols 22-1

22Enabling ME Interfaces and Protocols

This chapter describes network interfaces and the protocols that you can enable on ME
systems.

ME Sample Networks
Figure 22–1 illustrates a sample enterprise network with a single ME system.

Figure 22–1 A Sample Enterprise Network with a Single ME System

Figure 22–2 illustrates a sample enterprise that uses an ME cluster.

Configuring ME IP Interfaces

22-2 WebRTC Session Controller System Administrator's Guide

Figure 22–2 A Sample Enterprise that Uses an ME Cluster

Configuring ME IP Interfaces
ME physical interfaces include multiple Ethernet 1000 Mbps auto-negotiation
interfaces, such as eth0, eth1, eth2, and eth3. The number of interfaces depends on the
specific platform you are using.

ME software uses IP objects, which are assigned a name by the system administrator,
to uniquely identify IP connections. Each physical Ethernet interface can contain up to
255 uniquely named IP objects. Figure 22–3 illustrates a sample network with one
named IP object on each physical Ethernet interface.

Configuring ME IP Interfaces

Enabling ME Interfaces and Protocols 22-3

Figure 22–3 Sample Network with One Named IP Object on Each Ethernet Interface

CLI Session for Eth0
The network on physical interface eth0 uses the IP object that the system administrator
named internet. The internet object specifies the IP address that connects to the external
Internet local gateway using a default route.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip internet
Creating ‘ip internet’
config ip internet>set ip-address static 192.168.124.1/24
config ip internet>return

config interface eth0>config ip internet
config ip internet>set ip-address static 192.168.124.2/24
config ip internet>config routing
config routing>config route internetGateway
config route internetGateway>set destination default
config route internetGateway>set gateway 192.168.124.3

CLI Session for Eth1
The network on physical interface eth1 uses the IP object named servers. The static IP
address points to the SIP destination servers on the same network subnet, connected
over Ethernet switch.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth1

Creating VLANs

22-4 WebRTC Session Controller System Administrator's Guide

config interface eth1>config ip servers
config ip servers>set ip-address static 192.168.215.1/24
config ip servers>return

CLI Session for Eth2
The network on physical interface eth2 uses the defined IP object named management.
The management object specifies the IP address over which management traffic is
carried, such as remote CLI session over Telnet, or a ME Management System session.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth2
config interface eth2>config ip management
config ip internet>set ip-address static 192.168.27.1/24

Creating VLANs
ME virtual LANs (VLANs) provide Layer 2 partitions to the communications servers.
Creating one or more VLANs allows you to group LAN segments so that they appear
to be on the same Layer 2 network. Each VLAN is identified by a VLAN ID, and ID
must be unique within the physical ME system. This means that multiple logical ME
systems (called VSPs) cannot use the same VLAN IDs. VLAN IDs can be in the range 1
to 4096.

Figure 22–4 illustrates a sample VLAN configuration.

Figure 22–4 A Sample VLAN Configuration

CLI Session
The following CLI session configures the VLAN 10 network. VLAN 10 supports three
separate physical IP networks, and all appearing as if they are on the same Layer2
network.

SIP>config cluster

Applying Routing and Classification Tags

Enabling ME Interfaces and Protocols 22-5

config cluster>config box 1
config box 1>config interface eth1
config interface eth1>config vlan 10
Creating ‘vlan10’
config vlan 10>config ip servers
Creating ‘ip servers’
config ip servers>set ip-address static 192.168.215.1/24
config ip servers>return

Configuring Media Engine Static Routes
On the ME IP interface, you can configure the following three static route types:

■ host route: The route to a specific host.

■ network route: The route to a specific network.

■ default route: The default route to use when there is not a more specific route table
match.

In the following example, the ME has an IP interface called "core" configured on
network "10.33.4.22/24." This network has a gateway with IP "10.33.4.1".

The example shows a default route, network route to reach "10.44.1.0/24", and a host
route to reach "10.55.1.122."

config ip core
set ip-address static 10.33.4.22/24
config routing
config route default
set destination default
set gateway 10.33.4.1
return
config route network
set destination network 10.44.1.0/24
set gateway 10.33.4.1
return
config route host
set destination host 10.55.1.122
set gateway 10.33.4.1
return
return
return

Applying Routing and Classification Tags
The system uses classification tags to classify incoming traffic and routing tags to
control the egress route for a specific service type. Tags allow the IP routing table in
Session Manger to be segmented into multiple routing tables. Once an interface has a
configured routing tag, the interface is removed from the “null” (or system routing
table).

You can create multiple routing tags on the same named IP interface. However, only
one classification tag is allowed per IP interface. Both routing and classification tags
are case sensitive with the following configuration properties:

■ routing-tag: Associates all the routes configured on an interface with this
routing-tag and creates a service route table based on the routing-tag for each
service enabled on this interface. The routing-tag applies to the egress interface
over which the ME forwards service traffic. Once a routing-tag is configured for

Applying Routing and Classification Tags

22-6 WebRTC Session Controller System Administrator's Guide

an interface, the service routes associated with that interface are installed in the
service route table associated with the routing-tag(s).

If you create an additional routing-tag for the interface with the name “null,” the
system installs the route in both the default service route table and the tag-specific
service route table.

■ classification-tag: Creates a tag associated with inbound traffic on this interface.
This means that you must configure a classification-tag on the ingress interface
over which the ME domain initially receives the traffic, matching the routing-tag.
(Classification tags in the session configuration routing-settings object also must
match this routing tag set in the ip object.

Figure 22–5 illustrates a sample network where routing and classification tags are
configured on the ingress and egress ME interfaces, followed by sample configuration
sessions for ingress and egress IP instances.

Note: You can also configure ingress or egress classification tags
through the session-config routing-settings object. If this property is
configured in both places, the routing-settings configuration takes
precedence.

Applying Routing and Classification Tags

Enabling ME Interfaces and Protocols 22-7

Figure 22–5 Tags Configured on Ingress and Egress ME Interfaces with Sample
Sessions

CLI Sessions for “IP A” and “IP B” Ingress Networks on Eth3
The following CLI sessions create the ingress side of the network illustrated in the
image above, including the IP addresses, routing and classification tags, SIP settings,
and a route to the IP using the gateways at IP addresses at 10.0.20.2 and 10.0.40.2. The
ME uses classification tags to classify incoming traffic and routing tags to control the
egress route. Configure a classification-tag on the incoming interface that matches the
routing-tag on the egress interface.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth3
Creating ‘interface eth3’
config interface eth3>config ip A
Creating ‘ip A’

Note: Routing and classification tags are not required for basic ME
functionality.

Applying Routing and Classification Tags

22-8 WebRTC Session Controller System Administrator's Guide

config ip A>set ip-address static 10.0.20.1/24
config ip A>set classification-tag CustomerA
config ip A>set routing-tag CustomerA
config ip A>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip A>config icmp
config icmp>return
config ip A>config routing
config routing>config route default
Creating ‘route default’
config route default>set gateway 10.0.20.2
config route default>return
config routing>return
config ip A>return

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth3
Creating ‘interface eth3’
config interface eth3>config ip B
Creating ‘ip B’
config ip B>set ip-address static 10.0.40.1/24
config ip B>set classification-tag CustomerB
config ip B>set routing-tag CustomerB
config ip B>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip B>config icmp
config icmp>return
config ip B>config routing
config routing>config route default
Creating ‘route default’
config route default>set gateway 10.0.40.2
config route default>return
config routing>return
config ip B>return

CLI Sessions for “IP C” and “IP D” Egress Networks on Eth4

The following CLI sessions create the egress side of the network illustrated in the
image above, including the IP addresses, routing and classification tags, SIP settings,
and a default route. The ME uses classification tags to classify incoming traffic and
routing tags to control the egress route. Configure a classification-tag on the incoming
interface that matches the routing-tag on the egress interface.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth4
Creating ‘interface eth4’
config interface eth4>config ip C
Creating ‘ip C’
config ip C>set ip-address static 10.0.50.1/24
config ip C>set classification-tag CustomerA
config ip C>set routing-tag CustomerA

Applying Routing and Classification Tags

Enabling ME Interfaces and Protocols 22-9

config ip C>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip C>config icmp
config icmp>return
config ip C>config routing
config routing>config route default
Creating ‘route default’
config route default>set destination default
config route default>return

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth4
Creating ‘interface eth4’
config interface eth4>config ip D
Creating ‘ip D’
config ip D>set ip-address static 10.0.60.1/24
config ip D>set classification-tag CustomerB
config ip D>set routing-tag CustomerB
config ip D>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip D>config icmp
config icmp>return
config ip D>config routing
config routing>config route default
Creating ‘route default’
config route default>set destination default
config route default>return

Notes on Routing and Classification Tags
■ Separate routing tables are maintained for the SIP and media service.

■ IP interfaces without SIP ports enabled will not appear in the SIP table.

■ IP interfaces without media ports enabled will not appear in the media table.

■ SIP or media traffic that is classified by a tag will only use the routing information
and interfaces that have been configured with that routing tag.

■ An address of record (AOR) will be assigned an ingress tag IF the REGISTER for
that AOR ingresses on an IP interface with a configured classification-tag.

■ Matches a policy or registration-plan that applies a session configuration that has
the ingress-classification-tag property configured. This overwrites the IP interface
classification-tag, if configured.

■ Matches a calling-group. The classification-tag for the calling-group is only
applied if a tag has not been assigned using the IP or session configuration.

■ Traffic can be assigned an egress tag as follows:

– From an ingress tag.

Configuring Overlapping IP Networks and Tag Routing

22-10 WebRTC Session Controller System Administrator's Guide

– From a matching policy or dial-plan that applies a session configuration that
has the egress-classification-tag configured. This overwrites the
classification-tag configured on the interface.

– From a server or carrier with the routing-tag configured, overwriting all other
tags.

Related Commands
To assist troubleshooting, use the following commands from the ME prompt to display
information about tag-routing.

■ show services-routing: Displays routing tables for all tags.

■ show services-routing-tables: Displays all configured tags.

■ service-route-lookup: To view the destination where the ME routed a call.

Configuring Overlapping IP Networks and Tag Routing
A preferred method for creating networks, with overlapping IPs is to configure
VLANs with routing tags. A routing tag associates all the routes configured on an
interface and creates a service route table based on the tag for each service enabled the
interface. Routing tags apply to the egress interface over which the ME forwards
service traffic.

To perform tag routing, do the following:

1. Configure a classification-tag on the ingress interface over which the ME initially
receives service traffic. The classification tag must match the configured
routing-tag; each IP interface can have multiple routing tags.

2. Set the egress-classification-tag property under the
session-config/routing-settings when sending service traffic to servers and
carriers.

CLI Session for Ethernet Public and Private Sides of Network
The following CLI session configures the ME public IP Ethernet interface and SIP
settings.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth3
Creating ‘interface eth3’
config interface eth3>config ip public
Creating ‘ip public’
config ip public>set ip-address static 10.0.10.1/24
config ip public>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>return

The following CLI session configures the ME private IP Ethernet interface and SIP
settings.

SIP>config cluster

Note: Overlapping IP networks and tag routing are not required for
basic ME functionality.

Configuring Overlapping IP Networks and Tag Routing

Enabling ME Interfaces and Protocols 22-11

config cluster>config box 1
config box 1>config interface eth4
Creating ‘interface eth4’
config interface eth4>config ip private
Creating ‘ip private’
config ip private>set ip-address static 10.0.20.1/24
config ip private>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>return

CLI Sessions for Customer-A and Customer-B Networks
The following CLI sessions create the VLANs to the Customer-A and Customer-B
networks, including the IP addresses, routing and classification tags, SIP settings, and
a route to the IP using the gateways at IP addresses at 10.0.1.50 and 10.0.1.60. The ME
uses classification tags to classify incoming traffic and routing tags to control the
egress route. Configure a classification-tag on the incoming interface that matches the
routing-tag on the egress interface.

config interface eth3>config vlan 10
Creating ‘vlan 10’
config vlan 10>config ip 10.0.1.1
Creating ‘10.0.1.1’
config ip 10.0.1.l>set ip-address static 10.0.1.1/24
config ip 10.0.1.l>set classification-tag vlan10
config ip 10.0.1.1>set routing-tag vlan10
config ip 10.0.1.1>config sip
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip 10.0.1.1>config icmp
config icmp>return
config ip 10.0.1.1>config routing
config routing>config route default
Creating ‘route default’
config route default>set gateway 10.0.1.50
config route default>return
config routing>return
config ip 10.0.1.1>return

config interface eth3>config vlan 20
Creating ‘vlan 20’
config vlan 20>config ip 10.0.1.1
Creating ‘10.0.1.1’
config ip 10.0.1.l>set ip-address static 10.0.1.1/24
config ip 10.0.1.l>set classification-tag vlan20
config ip 10.0.1.1>set routing-tag vlan20
config ip 10.0.1.1>config sip
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip 10.0.1.1>config icmp
config icmp>return
config ip 10.0.1.1>config routing
config routing>config route default
Creating ‘route default’
config route default>set gateway 10.0.1.60

Configuring VRRP

22-12 WebRTC Session Controller System Administrator's Guide

config route default>return
config routing>return
config ip 10.0.1.1>return

CLI Session for the Internal Private Network
The following CLI session creates the VLAN to the internal private network, including
the private IP address, routing and classification tags, SIP settings, and a default route
to the public IP interface at 10.0.20.1. The ME uses classification tags to classify
incoming traffic and routing tags to control the egress route. Configure a
classification-tag on the incoming interface that matches the routing-tag on the egress
interface.

config interface eth4>config vlan 30
Creating ‘vlan 30’
config vlan 10>config ip 10.0.20.1
Creating ‘10.0.20.1’
config ip 10.0.20.l>set ip-address static 10.0.20.1/24
config ip 10.0.20.l>set classification-tag MAIN
config ip 10.0.20.1>set routing-tag MAIN
config ip 10.0.20.1>config sip
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>return
config ip 10.0.20.1>config icmp
config icmp>return
config ip 10.0.20.1>config routing
config routing>config route default
Creating ‘route default’
config route default>set destination default
config route default>return
config routing>return
config ip 10.0.1.1>return

CLI Session for the session-config-pool
The following CLI session creates two session configuration entries for handling egress
traffic from Customer-A and Customer-B to the ME. The session-config-pool is for any
traffic routed to the private network. The egress-classification-tag property, which
needs to match the appropriate VLAN routing-tag on VLAN 30, selects the interface to
the private network.

config>config vsp session-config-pool
config session-config-pool>config entry "Customer-A"
Creating entry “Customer A”
config entry “Custom A”>config routing-settings
config routing-settings>set egress-classification-tag MAIN
config routing-settings>return
config entry “Custom A”>return
config session-config-pool>config entry "Customer-B"
Creating entry “Customer B”
config entry “Custom B”>config routing-settings
config routing-settings>set egress-classification-tag MAIN

Configuring VRRP
The Virtual Router Redundancy Protocol (VRRP) provides redundancy of IP interfaces
within an ME cluster. The configuration for IP interfaces includes a list of

Configuring VRRP

Enabling ME Interfaces and Protocols 22-13

box/interface pairs. The first pair in this list is the primary interface. The second pair in
the list is the backup interface and will take over if the primary goes down. You can
configure additional levels of redundancy by specifying more box/interface pairs of
lower priority. Priority is based on the positioning of the set host-interface command.

VRRP also provides redundancy of master services within a cluster. Each master
service, including directory, database, and accounting, can be configured with a list of
locations (box numbers within the cluster). The first location, such as box 1, is the
primary; the second location (box 2) takes over if the primary fails. Specifying more
locations in the list creates additional levels of redundancy.

The following image illustrates a sample network where VRRP reroutes traffic around
a failed interface.

Figure 22–6 VRRP Rerouting Traffic Around a Failed Interface

If the master VRRP interface becomes unavailable, the VRRP election protocol enables
a backup VRRP interface to assume mastership using the next prioritized interface in
the list. However, if the original master VRRP interface (the interface with the highest
priority) should once again become available, VRRP returns mastership to that
interface.

See RFC 2338, Virtual Router Redundancy Protocol, for detailed information about this
protocol.

CLI Session
The following CLI session creates two VRRP virtual interfaces (vx0 and vx1), and
configures the physical host interfaces associated with each vinterface. On the vx0
interface, physical interface eth0 on box 1 will failover to eth0 on box 2, and then to
eth0 on box 3. Note that each VRRP interface has its own IP (or VLAN) configuration.

SIP>config cluster
config cluster>config vrrp
config vrrp>config vinterface vx0
config vinterface vx0>set host-interface cluster box 1 interface eth0
config vinterface vx0>set host-interface cluster box 2 interface eth0

Configuring VRRP

22-14 WebRTC Session Controller System Administrator's Guide

config vinterface vx0>set host-interface cluster box 3 interface eth0
config vinterface vx0>config ip name
Creating ‘ip name’
config ip name>set ip-address static 1.1.1.1/24
config ip name>return
config vinterface vx0>return

config vrrp>config vinterface vx1
config vinterface vx1>set host-interface cluster box 3 interface eth1
config vinterface vx1>set host-interface cluster box 4 interface eth1
config vinterface vx1>config ip name
Creating ‘ip name’
config ip name>set ip-address static 1.1.1.2/24
config ip name>return
config vinterface vx0>return

See RFC 2338, Virtual Router Redundancy Protocol, for detailed information about VRRP.

When configuring VRRP backing interfaces, Oracle recommends you have no more
than two different MEs on the host list. You can, however, have more than one
interface configured per box without any problems.

Here are some examples to illustrate acceptable and not acceptable configurations.

Not acceptable: There are interfaces from three different MEs listed for this VX
interface. Oracle recommends you only have two MEs backing a VX.

config vrrp
 config vinterface vx10
 set group 1
 set host-interface cluster\box 1\interface eth1
 set host-interface cluster\box 2\interface eth1
 set host-interface cluster\box 3\interface eth1
 config ip 10.1.1.1
 return
 return
return

Not acceptable: There are interfaces from three different MEs listed for this VX
interface and preempt=true is configured. This configuration is not supported at this
time and will result in inconsistent behavior for the VX interface.

config vrrp
 config vinterface vx10
 set group 1
 set preempt true
 set host-interface cluster\box 1\interface eth1
 set host-interface cluster\box 2\interface eth1
 set host-interface cluster\box 3\interface eth1
 config ip 10.1.1.1
 return
 return
return

Acceptable: There are only two MEs listed as hosts for this VX.

config vrrp
 config vinterface vx10
 set group 1
 set host-interface cluster\box 1\interface eth1
 set host-interface cluster\box 2\interface eth1
 config ip 10.1.1.1

Configuring Signaling Failover

Enabling ME Interfaces and Protocols 22-15

 return
 return
return

Acceptable: There are only two MEs listed as hosts for this VX, but each ME has two
host interfaces configured on it.

config vrrp
 config vinterface vx10
 set group 1
 set host-interface cluster\box 1\interface eth1
 set host-interface cluster\box 1\interface eth2
 set host-interface cluster\box 2\interface eth1
 set host-interface cluster\box 2\interface eth2
 config ip 10.1.1.1
 return
 return
return

In either of these last two acceptable examples, it is okay to configure preempt=true.

Configuring Signaling Failover
The ME systems use signaling failover to preserve signaling sessions in a
high-availability cluster. The cluster master-service maintains the signaling state of
connections cluster-wide. With signaling failover, the signaling state information is
transferred to the ME system taking over the signaling stream.

Signaling information is maintained so that accurate call logs are recorded at the end
of the call.

Use the ME show signaling-sessions command to display failover state information.

CLI Session
SIP>config cluster
config cluster>set share-signaling-entries true
The share-signaling-entries property specifies whether or not all ME systems in a
cluster exchange active SIP session information. When set to true, the ME systems
exchange data. If the primary link then goes down, a backup link can use SIP session
information from the primary device to handle existing calls.

Note: The call must be connected (at the SIP level) in order for
signaling failover to take place. Signaling states prior to the
“connected” state are not maintained in the cluster wide state table.
Additionally, for TCP and TLS connections, the user agent must
re-establish the connection once the failover has occurred. Since
TCP/TLS are connection-oriented protocols, signaling state
information is not maintained across failover. If TLS is used, the
appropriate certificate must be loaded on the ME systems in the
cluster.

Note: If there is a failure at the ME system holding the call log
database, information will be lost.

Configuring Web Interface Settings

22-16 WebRTC Session Controller System Administrator's Guide

The share-signaling-entries property should be set to true if you have configured
VRRP (to provide the redundancy support). If you have VRRP enabled and
configured, and if share-signaling-entries is set to true, signaling failover can take
place.

Configuring Web Interface Settings
The Web object enables the Web server, providing access to the ME Management
System graphical user interface. If you want to view SNMP traps through the GUI,
you must also enable the server as a trap target. You enable and configure Web
services on Ethernet and VLAN interfaces.

CLI Session
SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
config ip boston1>config web
config web>set admin enabled
config web>set protocol https 443 0 “vsp tls certificate OS-E.cert.com”
config web>set trap-target enabled

Configuring Web Services
The web-service object enables the Web Services Definition Language (WSDL). WSDL
is an XML-based language for describing Web services, and how to access them, in a
platform-independent manner. Simple Object Access Protocol (SOAP) is the
communication protocol used for communication between applications, based on
XML.

A WSDL document is a set of definitions that describe how to access a web service and
what operations it will perform. The ME uses it in combination with SOAP and XML
Schema to allow a client program connecting to a web service to determine available
server functions. The actions and data types required are embedded in the WSDL file,
which then may be enclosed in a SOAP envelope. The SOAP protocol supports the
exchange of XML-based messages with the ME system using HTTPS.

CLI Session
SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
config ip boston1>config web-service
config web-service>set admin enabled
config web-service>set protocol https 443 0 “vsp tls certificate OS-E.company.com”

For detailed information on WSDL, refer to the Net-Net OS-E – Management Tools.

Enabling ICMP and Setting Rate Limits
The Internet Control Message Protocol (ICMP), defined in

RFC 792, is a TCP/IP protocol that determines whether a destination is unreachable.
Using error and control messages between an host and an Internet gateway, ICMP
verifies the validity of an IP address.

Configuring the Network Time Protocol (NTP) Clients

Enabling ME Interfaces and Protocols 22-17

You can limit the rate at which ICMP messages are received on the ME system by
setting ICMP rate and burst limits that prevent flooding of ICMP messages on the
network. The rate setting is the maximum number of ICMP destination unreachable
messages that the device can receive per second; the burst setting is the rate by which
the number of ICMP messages that are discarded per second. Configuring the burst
setting to a number lower than the rate setting will prevent ICMP message flooding.

CLI session
The following CLI session enables ICMP on the specified interface and sets ICMP rate
and burst limits.

SIP>config cluster box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
Creating ‘ip boston1’
config ip boston1>config icmp
config icmp>set admin enabled
config icmp>set limit 12 6

Enabling NTP and BOOTP Servers
By default, Network Time Protocol (NTP) and BOOTP services are enabled. The ME
system uses NTP to synchronize time with external and local clocks using an NTP
server, and the BOOTP protocol to allow an ME network client to learn its own IP
address and boot information from a BOOTP server.

If addition to configuring NTP and BOOTP clients, you need to ensure that the NTP
and BOOTP services are enabled on ME IP interfaces.

CLI Session
The following session enables BOOTP services on the specified ME IP interface and
port number.

SIP>config cluster box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
Creating ‘ip boston1’
config ip boston1>config bootp-server
config bootp-server>set admin enabled
config bootp-server>set port 67
The following session enables NTP services on the specified ME IP interface.

SIP>config cluster box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
Creating ‘ip boston1’
config ip boston1>config ntp-server
config ntp-server>set admin enabled

Configuring the Network Time Protocol (NTP) Clients
The ME system uses the Network Time Protocol (NTP) to synchronize time with
external and local clocks. Synchronized time across a network is important for critical
functions such as packet and event time stamps or certificate validation.

Configuring the Bootstrap Protocol (BOOTP) Clients

22-18 WebRTC Session Controller System Administrator's Guide

You can configure an external NTP server to synchronize network time on the ME
system. When you configure NTP, the system receives packets from the external NTP
server that updates the local ME clock at specified NTP poll intervals.

CLI Session
The following session configures an external NTP server on the local ME NTP client.
The session enables the ME NTP client, specifies the IP address of the remote NTP
server, and the sets the poll-interval (in minutes) between network time updates from
the NTP server.

config box>config ntp-client
config ntp-client>set admin enabled
config ntp-client>set server 192.168.23.76
config ntp-client>set poll-interval 5

Configuring the Bootstrap Protocol (BOOTP) Clients
The BOOTP commands allow you to configure the Bootstrap Protocol (BOOTP) client
and server settings in an ME network cluster. BOOTP, described in RFC 951, is the
Internet protocol that allows a network client to learn its own IP address and boot
information from a BOOTP server.

In a network cluster, a BOOTP client requests its own IP address from the ME BOOTP
server, as well as the IP address of the BOOTP server itself using the hardware MAC
address. The BOOTP server responds to BOOTP client requests over the configured
server port.

If a BOOTP session cannot be established between the ME client and server, BOOTP
closes the session across the BOOTP interfaces after 60 seconds.

CLI Session
The following session configures a bootp client on the ME system. The session enables
the bootp client, and sets the known bootp client and server ports for bootp requests
and responses. UDP port 68 is the known bootp client port; UDP port 67 is the known
bootp server port.

config box>config bootp-client
config bootp-client>set admin enabled
config bootp-client>set client-port eth1 68
config bootp-client>set server-port eth0 67

Configuring Session Initiation Protocol
For SIP applications running over Oracle networks, you need to enable the Session
Initiation Protocol (SIP) on the ME IP interfaces. By default, the SIP protocol is
enabled. However, you do need to configure the SIP operation mode, set the UDP,
TCP, and TLS ports to use when listening for SIP messages, and include any
certificates (generated and imported from a certificate authority) to be associated with
the SIP interface.

■ In proxy mode, the ME system only participates in SIP messages. Once the call is
established, the phones send their voice traffic directly to each other without
involving the proxy. SIP proxies offload tasks and simplify the implementation of
end station telephones.

Load Balancing Across Media Engine Interfaces

Enabling ME Interfaces and Protocols 22-19

■ The B2BUA is a SIP-based logical entity that receives and processes INVITE
messages as a SIP User Agent Server (UAS). It also acts as a SIP User Agent Client
(UAC) that determines how the request should be answered and how to initiate
outbound calls. Unlike SIP proxy mode, the B2BUA maintains the call state and
participates in all call requests.

■ A stateless proxy forwards every request it receives and discards information about
the request message once the message has been forwarded.

CLI Session
The following CLI session sets the SIP operation mode to “proxy.”

SIP>config vsp
config vsp>config default-session-config
config default-session-config>config sip-settings
config sip-settings>set mode proxy

The following CLI session enables the SIP protocol on the specified IP interface,
specifies the TCP, UDP and TLS ports to use when listening for SIP messages, and
includes a certificate from an authorized certificate authority (CA).

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
Creating ‘ip boston1’
config ip boston1>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set nat-add-received-from enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>set tls-port 5061
config sip>set certificate vsp tls certificate os-e.net.com

Load Balancing Across Media Engine Interfaces
Load balancing of SIP processing across interfaces requires both headed and backing
interfaces.

The headend interface is the central distribution point. It does not perform SIP
processing, it only forwards the calls to its configured backing interfaces. When you
configure a SIP phone, configure the phone directly to the headend interface. To
configure an IP interface as a headend interface, configure the sip object with backing
interfaces. An interface is considered a headend interface if it has configured backing
interfaces.

The backing-interfaces are identified within this sip object. In the backing-interface
property, you reference previously configured IP interfaces. The backing interface is
the location at which the ME terminates TCP and TLS connections (and where UDP
transport messages arrive) and handles SIP processing. The ME uses round-robin
load-balancing to distribute message across the configured backing interfaces.

To correctly configure load-balancing for SIP processing, you must do the following:

1. Configure the IP interfaces that will be used for both the headend and backing
interfaces.

Configuring Media Port Pools

22-20 WebRTC Session Controller System Administrator's Guide

2. The SIP properties of the backing interfaces must match those of the head
interface. For example, the interfaces must all use the same port assignments, and
if you are using TLS, they must all use the same certificate.

3. You must enable the master services registration object so that the interfaces can
share the registration database.

To verify your configuration, first ensure that all SIP properties match. From the CLI at
the ME system that hosts the headend, execute the show load-balance command. This
lists all associated backing interfaces (and statistics). From each box hosting a backing
interface, execute show backing-interface to display configuration and statistics
information.

CLI Session
SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
config ip boston1>config sip
config sip>set admin enabled
config sip>set nat-translation enabled
config sip>set udp-port 5060
config sip>set tcp-port 5060
config sip>set tls-port 5061
config sip>set certificate “vsp tls certificate os-e.companyA.com”
config sip>set backing-interface “cluster box 1 interface eth0 ip backing1”
config sip>set backing-interface “cluster box 1 interface eth1 ip backing2”
config sip>set backing-interface “cluster box 2 interface eth0 ip

Configuring Media Port Pools
The media-ports object defines the ports and port ranges to assign to media streams
on an Ethernet interface, such as NAT, media anchoring, and media recording.

CLI Session
The following CLI session enables the media-ports object, sets the starting port
number, sets the total number of ports available for media streams, and enables the
monitoring of idle ports (so that no traffic is sent to idle ports that are part of the media
pool).

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
Creating ‘ip boston1’
config ip boston1>config media-ports
config media-ports>set admin enabled
config media-ports>set base-port 20000
config media-ports>set count 5000
config media-ports>set idle-monitor enabled

Supported WebRTC Protocols
This section describes how to configure the Interactive Connectivity Establishment
(ICE), Session Traversal Utilities for NAT (STUN), and Traversal Using Relay NAT
(TURN) protocols in a WebRTC implementation.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-21

What is Interactive Connectivity Establishment?
ICE is a protocol that establishes network paths for UDP-based media streams. It is an
extension of the SDP offer/answer model and works by discovering and including all
possible media transport addresses (known as candidates) in the SDP. Once SDPs are
exchanged, ICE tests all possible media paths using the Session Traversal Utilities for
the NAT (STUN) protocol as connectivity checks. Once the connectivity checking
completes, the ICE agents settle on a final candidate pair to use for media
transmission. The ME supports ICE on a per call-leg basis, meaning it can act as both
the offering and answering ICE agent to satisfy this WebRTC requirement.

In addition to ICE, the ME also supports augmented ICE. In ICE the ME strips the
candidates from the SDP while in augmented ICE the ME preserves all candidates
received from a WebRTC endpoint. This provides the WebRTC endpoints the option to
either anchor media on the ME or not.

For more information on ICE, visit http://tools.ietf.org/html/rfc5245.

What is Session Traversal Utilities for NAT?
In addition to connectivity checking, ICE relies heavily on STUN to discover all
possible media candidates. During this candidate gathering phase, ICE agents perform
STUN requests to discover their public IP addresses when behind a NAT device. The
ME can be configured as a STUN server to satisfy these initial STUN requests.

For more information on STUN, visit http://www.ietf.org/rfc/rfc3489.

What is Traversal Using Relay NAT?
The TURN protocol assists clients located behind NAT devices to reach peers. In cases
where clients and peers cannot create a direct communication path (for example, if
both endpoints are behind individual NATs), it is necessary for an intermediate
network device to relay data. The ME TURN Server acts as a communication-enabling
alternative for such cases, relaying data between the NAT-hidden clients. When used
with ICE, the ME TURN Server relay transport addresses are included in SDP ICE
candidates received from clients. For more information on TURN, visit
http://tools.ietf.org/search/rfc5766.

Session Traversal Utilities for NAT Required Methods
The following STUN methods are required for the ME's TURN Support:

■ Allocate

■ Refresh

■ Send

■ Data

■ CreatePermission

■ ChannelBind

Session Traversal Utilities for NAT Required Attributes
■ CHANNEL-NUMBER

■ LIFETIME

■ XOR-PEER-ADDRESS

■ DATA

Supported WebRTC Protocols

22-22 WebRTC Session Controller System Administrator's Guide

■ XOR-RELAYED-ADDRESS

■ EVEN-PORT

■ REQUESTED-TRANSPORT

■ DONT-FRAGMENT

■ RESERVATION-TOKEN

Non-Session Traversal Utilities for NAT Traversal Using Relays NAT Message
The ME supports the non-STUN ChannelData TURN message. This message carries
application data between the TURN client and the server. Use of this message is
optional for the client but required for the server if a channel has been bound to a
remote peer.

TURN Server Long Term Credentials
The ME supports TURN server Long Term Credentials (LTC). You can configure one of
the following three types of LTC:

■ original: LTC authentication with username and password statically configured on
the ME. These credentials are manually configured in the WebRTC browser.

■ uberti: Follows the “draft-uberti-behave-turn-rest-00” document which uses a
standard REST API for obtaining access to TURN services via ephemeral
credentials. For more information on the “draft-uberti-behave-turn-rest-00”, see

https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00.

■ SDKv1: Follows the RFC 7635 document which uses OAuth 2.0 to obtain and
validate ephemeral tokens that can be used for authentication. By using ephemeral
tokens, you can ensure that access to a STUN server can be controlled even if the
tokens are compromised. For more information on RFC 7635, see

https://tools.ietf.org/html/rfc7635.

When you configure either the uberti or SDKv1 LTC types, you must configure a secret
password. For increased security, ME uses a two-part password mechanism for
passwords shared with other devices (also known as shared secrets). You must
configure both a password and a tag. An enterprise or RADIUS server, for example,
probably has a configured password that ME must use to access the server. This
shared secret is the password. The tag is not the password itself, but rather a
user-configurable name used to access the real password. By managing shared secrets,
you can maintain the secrecy of the other passwords on other devices. An
administrator can set up the tags and passwords; end users can work with the
configuration files and use the password tag, without having access to the password
itself.

Note: For security reasons, Oracle does not recommend setting this
value to original, as credentials can be extracted from the WebRTC
browser.

Note: SDKv1 is not completely RFC 7635 compliant due to the fact
that WebRTC browser support is required and does not exist.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-23

ME uses a password store to maintain the actual password known to the other device.
Using a password store allows the shared passwords to be stored outside of, and not
displayed in, the configuration file. Password tags are stored in the ME configuration.

This password mechanism applies only to cases of ME using a shared secret. It does
not apply to passwords created for users under the access object. (These are stored as
hashed data, never as plaintext.)

Purging Traversal Using Relays Around the NAT Allocations
The turn-allocation-purge action allows you to manually remove TURN Allocations.
Per RFC5766, TURN clients that no longer want to use an Allocation are encouraged to
delete the Allocation via a TURN Refresh request with a requested lifetime of 0.
However, some TURN clients currently do not remove Allocations and these remain in
the ME until they expire.

Syntax

turn-allocation-purge [turn-client]

Arguments

■ [turn-client]: The TURN client's IP address and port.

Media Engine Encryption
Secure Real-Time Transport Protocol (SRTP) is secure Real-Time Transport Protocol
(RTP) designed to provide encryption, authentication, and integrity to RTP streams.
Used along with Source Description RTCP (SDES), encryption keys are exchanged in
the SDP offer and answer using the crypto attribute. The ME supports SDES-SRTP
encryption and decryption on a per call-leg basis to satisfy this WebRTC requirement.

For more information on SDES, visit http://tools.ietf.org/html/rfc4568.

In addition to SDES-SRTP, the ME also supports Datagram Transport Layer Security
(DTLS) as a method for encryption. DTLS works similarly to SDES-SRTP in that
encryption keys are exchanged in the SDP offer and answer using the crypto attribute
and the ME supports DTLS on a per call-leg basis.

For more information on DTLS, visit http://tools.ietf.org/html/rfc4347.

Data Channel Support
The ME supports data channels for anchored media.

Data channels use the SCTP protocol as a generic transport service which allows web
browsers and native mobile applications to exchange non-media data between peers.
For more information on data channels, visit

https://tools.ietf.org/html/draft-ietf-rtcweb-data-channel-11.

Note: Ensure you remove only unused Allocations. Removing valid
and in-use Allocations disrupts a WebRTC call using the ME's TURN
server.

Note: By default, the turn-allocation-purge action purges all TURN
Allocations, unless otherwise specified.

Supported WebRTC Protocols

22-24 WebRTC Session Controller System Administrator's Guide

Configuring Interactive Connectivity Establishment
To configure ICE on the ME, you must enable session-wide media anchoring.

You must also enable symmetric RTP, which returns RTP based on the source IP
address and UDP port in the received RTP. NAT modifies data in the IP header only
and the SDP payload is left unchanged. By using the source IP address and UDP port
from the received RTP, the ME sends traffic back to the NAT device instead of the
untranslated addresses in the SDP.

In addition to these session-wide settings, you must also configure ICE for incoming
and outgoing WebRTC sessions.

To enable system-wide media anchoring and symmetric RTP:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to media.

3. anchor: Set to enabled to enable media anchoring for this media session. Media
anchoring forces the SIP media session to traverse the ME.

4. Click Configure next to nat-traversal.

5. symmetricRTP: Set to true to enable symmetric RTP for this media session. When
enabled, symmetric RTP returns RTP based on the source IP address and UDP port
in the received RTP. NAT modifies data in the IP header only and the SDP payload
is left unchanged.

6. Click Set. You are returned to the media object.

7. Click Set. Update and save the configuration.

To enable ICE for incoming WebRTC sessions:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-ice-settings.

3. admin: Set to enabled to enable ICE on this call leg.

4. connectivity-check-max-retransmits: Specify the number of times the ME
retransmits ICE STUN connectivity checks before labeling a candidate pair as
Failed. To achieve maximum interoperability with Chrome, set this value to no less
than 200.

5. Click Set. Update and save the configuration.

To enable ICE for outgoing WebRTC sessions:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-ice-settings.

3. admin: Set to enabled to enable ICE on this call leg.

4. delay-stun-responses: (Advanced) Set to enabled so that the ME does not respond
to STUN until the 200 OK is received.

Note: You must have the session-config > media > anchor property
set to enabled for data channels to work.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-25

5. suppress-re-invites: (Advanced) Set to enabled. When enabled so that the ME does
not send a re-INVITE when ICE completes successfully.

6. Click Set. Update and save the configuration.

Configuring Augmented Interactive Connectivity Establishment
The ME supports augmented ICE. In ICE the ME strips the candidates from the SDP
while in augmented ICE the ME preserves all candidates received from a WebRTC
endpoint. This provides the WebRTC endpoints the option to either anchor media on
the ME or not.

If you are configuring the ME for augmented ICE you must complete the
configuration procedure for ICE plus some additional configuration. For details on
configuring ICE, see "Configuring Interactive Connectivity Establishment".

To configure augmented ICE:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to media.

3. augmented-ice: Set to enabled to enable augmented ICE.

4. Click Set. You are returned to the media object.

5. Click Configure next to in-encryption.

6. mode: Select pass-thru from the drop-down list.

7. Click Set. You are returned to the media object.

8. Click Configure next to out-encryption.

9. mode: Select pass-thru from the drop-down list.

10. Click Set. Update and save the configuration.

Configuring Trickle Interactive Connectivity Establishment
The ME supports trickle ICE, a draft extension to RFC 5245 that allows ICE agents to
incrementally exchange remote candidate information. Trickle ICE support
considerably reduces call setup time by allowing ICE to run before the candidate
harvesting phase has completed by sending empty or partial media candidate lists in
the SDP.

To configure trickle ICE:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

Note: To view Advanced properties, click the Show advanced
button.

Note: By default, augmented ICE is disabled on the ME. If you are
using augmented ICE for a particular session, enable it on that named
session-config-pool > entry only. Leave the default-session-config
object’s augmented ICE setting disabled so as not to affect all named
sessions, which can cause an adverse negative impact.

Supported WebRTC Protocols

22-26 WebRTC Session Controller System Administrator's Guide

2. Click Configure next to in-ice-settings.

3. trickle-ice: Set to enabled or disabled to determine if trickle ICE is offered and
supported on each call leg.

4. Click Configure next to out-ice-settings.

5. trickle-ice: Set to enabled or disabled to determine if trickle ICE is offered and
supported on each call leg.

6. Click Set. Update and save the configuration.

Three show commands allow you to view trickle ICE information: show
ice-local-candidates, show ice-remote-candidates, show ice-candidate-pair-status.

show ice-local-candidates

Displays ICE information for the local candidates used by each state machine.

Sample Output

SIP>show ice-local-candidates
session-id leg checklist transport componentID type priority foundation
----------- --- --------- --------- ----------- ---- -------- -----------
0x8c4ef6081de8c26 1 172.44.10.55:20676 UDP 1 host 2130706431 1172.44.10.55:20677

Properties

■ session-id: The ID of the session that owns the ICE state machine.

■ leg: The call-leg on which the ICE state machine is running.

■ checklist: The checklist number that owns the candidate. This is also known as the
media description index.

■ transport: The IP, port, and transport protocol of the candidate.

■ componentID: The ICE component ID. This value is an integer.

■ type: The ICE candidate type. This can be either host, srflx, prflx, or relay.

■ priority: The candidate priority.

■ foundation: The foundation string.

show ice-remote-candidates

Displays ICE information for the remote candidates received from the remote peer.

Sample Output

SIP>show ice-remote-candidates
session-id leg checklist transport componentID type priority foundation
---------- --- --------- --------- --------------- -------- ----------
0x8c4ef6081de8c26 1 0 172.44.10.57:22656 UDP 1 host 2130706431 1
172.44.10.57:22657 UDP 2

Properties

■ session-id: The ID of the session that owns the ICE state machine.

■ leg: The call-leg on which the ICE state machine is running.

■ checklist: The checklist number that owns the candidate. This is also known as the
media description index.

■ transport: The IP, port, and transport protocol of the candidate.

■ componentID: The ICE component ID. This value is an integer.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-27

■ type: The ICE candidate type. This can be either host, srflx, prflx, or relay.

■ priority: The candidate priority.

■ foundation: The foundation string.

show ice-candidate-pair-status

Displays information and state for each ICE candidate pair.

Sample Output

SIP>show ice-remomte-candidates
session-id leg checklist transport componentID type priority foundation
---------- --- --------- --------- ----------- ---- -------- ----------
0x8c4ef6081de8c26 1 0 172.44.10.57:22656 UDP 1 host 2130706431 1

Properties

■ session-id: The ID of the session that owns the ICE state machine.

■ leg: The call-leg on which the ICE state machine is running.

■ checklist: The checklist number that owns the candidate. This is also known as the
media description index.

■ transport: The IP, port, and transport protocol of the candidate.

■ componentID: The ICE component ID. This value is an integer.

■ type: The ICE candidate type. This can be either host, srflx, prflx, or relay.

■ priority: The candidate priority.

■ foundation: The foundation string.

show ice-candidate-pair-status

Displays information and state for each ICE candidate pair.

Sample Output

SIP>show ice-candidate-pair-status
session-id leg checklist local remote state componentID nominated
---------- --- --------- ----- ------ ----- ----------- ---------
0x8c4ef6081de8c26 10 172.44.10.55:20676 UDP 172.44.10.57:22656 UDP Succeeded1 true

Properties

■ session-id: The session ID on which ICE is running.

■ leg: The call leg on which ICE is running.

■ checklist: The checklist that owns the candidate pair. This is also known as the
media description index.

■ local: The local candidate in the pair.

■ remote: The remote candidate in the pair.

■ state: The pair state. This can be either Frozen, Waiting, Succeeded, or Failed.

■ componentID: The componentID of the pair. This value is an integer.

■ nominated: Specifies whether or not this pair has been nominated for media
transmission.

Supported WebRTC Protocols

22-28 WebRTC Session Controller System Administrator's Guide

Configuring Session Traversal Utilities For the NAT
In addition to an ICE server, the ME can also be configured as a STUN server.

To configure the ME as a STUN server:

1. Click the Configuration tab and select the cluster > box > interface > ip object.

2. Click Configure next to stun-server.

3. admin: Set to enabled to enable the ME as a STUN server.

4. Click Add port to configure a port for the STUN server.

5. transport: Select from the drop-down list the transport protocol over which STUN
messages are exchanged between a SIP endpoint and the ME STUN server. Valid
values UDP, TCP, and TLS. The default value is UDP.

6. port: Specify the port over which STUN messages are exchanged between a SIP
endpoint and the ME STUN server. The default value is 3478.

7. Click Create. You are returned to the stun-server object.

8. Click Set. Update and save the configuration.

For more information on the stun-server object, see the WebRTC Session Controller
Media Engine Object Reference.

Configuring Traversal Using Relay NAT
To enable the TURN server on the ME, you must enable STUN and configure several
properties within stun-server object.

To enable TURN:

1. Click the Configuration tab and select the cluster > box > interface > ip object on
which you are configuring TURN.

2. Click Configure next to stun-server.

3. admin: Set to enabled to enable STUN.

4. allow-turn: Set to enabled.

5. relay-interface: Select an interface provisioned with media ports.

6. type: Specifies the type of LTC authentication to use. The ME supports the
following three types of LTC authentication:

■ original: LTC authentication with username and password statically
configured on the ME. These credentials are manually configured in the
WebRTC browser.

■ uberti: Follows the "draft-uberti-behave-turn-rest-00" document which uses a
standard REST API for obtaining access to TURN services via ephemeral
credentials. For more information on "draft-uberti-behave-turn-rest-00", see
https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00.

Note: For security reasons, Oracle does not recommend setting this
value to original, as credentials can be extracted from the WebRTC
browser.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-29

■ SDKv1: Follows the RFC 7635 document which uses OAuth 2.0 to obtain and
validate ephemeral tokens that can be used for authentication. By using
ephemeral tokens, you can ensure that access to a STUN server can be
controlled even if the tokens are compromised. For more information on RFC
7635, see https://tools.ietf.org/html/rfc7635.

7. ltc-authentication-realm: Specify the realm to use for STUN LTC authentication.

8. ltc-auth-provider-shared-secret: Enter the shared secret with the TURN LTC
Authentication Provider.

9. ltc-auth-provider-pw-ttl: Specify the lifetime length for the shared password.

10. Click Set. Update and save the configuration.

Three show commands allow you to view TURN server information: show
turn-allocations, show turn-destinations, show turn-server.

show turn-allocations

Provides information for each TURN client allocated server relay port. WebRTC
endpoints typically allocate a relay port for each media stream.

Sample Output

SIP>show turn-allocations
server-port: 172.44.10.60:3478
user: TurnMike@TurnRealm
client: 10.1.26.32:56863
client-transport: UDP
relay-port: 172.44.10.60:20975
relay-transport: UDP
destination-count: 1
client-to-peer-packets: 61489
client-to-peer-bytes: 5822176
peer-to-client-packets: 61585
peer-to-client-bytes: 5512977
bandwidth-max: 150 kbits-per-second
allocation-time: 07:12:02.147705 Tue 2014-01-21
duration: 1177 seconds
remaining: 503 seconds

Properties

■ server-port: The IP and port of the TURN server listener.

■ user: The user and realm of TURN LTC.

■ client: The IP and port of the TURN client.

■ client-transport: The transport method used for client/server communication.

■ relay-port: The IP and port of the TURN relay for this Allocation.

■ relay-transport: The transport method used for server/peer communication.

■ destination-count: The number of TURN destinations for this Allocation.

■ client-to-peer-packets: The number of packets relayed from client to peer for this
Allocation.

Note: SDKv1 is not completely RFC 7635 compliant due to the fact
that WebRTC browser support is required and does not exist.

Supported WebRTC Protocols

22-30 WebRTC Session Controller System Administrator's Guide

■ client-to-peer-bytes: The number of bytes relayed from client to peer for this
Allocation.

■ peer-to-client-packets: The number of packets relayed from peer to client for this
Allocation.

■ peer-to-client-bytes: The number of bytes relayed from peer to client for this
Allocation.

■ bandwidth-max: Currently not supported.

■ allocation-time: The time the Allocation was created and/or refreshed.

■ duration: The duration of the TURN Allocation.

■ remaining: The time remaining for the TURN Allocation.

show turn-destinations

Provides information for each TURN peer associated with a TURN client.

Sample Output

SIP>show turn-destinations
index: 1
turn-client: 10.1.26.32:56864
turn-allocation: 0xd1c27f75
turn-relay: 172.44.10.60:20927
relay-transport: UDP
turn-peer: 172.44.10.60:20972
channel-number: 16384
chan-expire-time: 07:32:02.972915 Tue 2014-01-21
chanRemaining: 561 seconds
dest-permissions: Allowed
perm-expire-time: 07:32:02.972915 Tue 2014-01-21
permRemaining: 261 seconds
dest-anchored: true

Properties

■ index: The index of this Destination. An Allocation can have multiple destinations.

■ turn-client: The IP and port of the TURN client.

■ turn-allocation: The handle of the Allocation owning this Destination.

■ turn-relay: The IP and port of the TURN relay for this Destination.

■ relay-transport: The transport used for server/peer communication.

■ turn-peer: The IP and port of the TURN relay for this Destination.

■ channel-number: The TURN channel number for this Destination (a value of 0
means unused).

■ chan-expire-time: The time the TURN channel expires.

■ chanRemaining: The time remaining before the TURN channel expires.

■ dest-permissions: Permissions installed by the TURN client for this Destination.

■ perm-expire-time: The time Permissions expire.

■ permRemaining: The time remaining before Permissions expire.

■ dest-anchored: Indicates if media is anchored for this TURN relay.

show turn-server

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-31

Provides information regarding the configured TURN server.

Sample Output

NNOS-E>show turn-server
 index: 0
 ifindex: 1
 transport: UDP
 ip-address: 10.138.236.34
 port: 3478
 turn-server: enabled
 relay-ifindex: 0
 relay-address: 10.138.236.34
relay-allocation-count: 0
 rx-requests: 0
 tx-responses: 0
 tx-error-responses: 0
 discards: 0
 ltcAuthType: sdkv1
 ltcSecretTag: diwakarExample
 ltcPwTtl: 3600
Properties

■ index: This index of this TURN server.

■ ifindex: The interface index used for this TURN server.

■ transport: The transport method used for this TURN server.

■ ip-address: The IP address used for this TURN server listener.

■ port: The port used for this TURN server listener.

■ turn-server: The name of the server.

■ relay-ifindex: The interface index used for the TURN server relay.

■ relay-address: The TURN server address.

■ relay-allocation-count: The number of TURN Allocations in use by the TURN
server.

■ rx-requests: The number of STUN/TURN requests received.

■ tx-responses: The number of STUN/TURN success responses sent.

■ tx-error-responses: The number of STUN/TURN error responses.

■ discards: The number of STUN/TURN messages discarded.

■ ltcAuthType: The ME LTC Authentication type for this server.

■ ltcSecretTag: The tag that references the ME’s LTC provisioned secret.

■ ltcPwTtl: The configured lifetime of the LTC provisioned secret.

Configuring Static Datagram Transport Layer Security Certificates
When using DTLS in a WebRTC implementation, you must configure a static
certificate via the default-dtls-settings configuration object.

To configure a static DTLS certificate:

1. Click the Configuration tab and select the vsp > tls object.

2. Click Configure next to default-dtls-settings.

Supported WebRTC Protocols

22-32 WebRTC Session Controller System Administrator's Guide

3. certificate-file: Specify the name of the certificate file used to establish connections
made with this object. The ME supports the following certificate formats:
PKCS#12: Public Key Cryptography Standard #12 format, often from Microsoft IIS
Version 5 (binary), PEM: Privacy Enhanced Mail format, from any Open SSL-based
web server (ASCII).

4. passphrase-tag: Specify the passphrase associated with the certificate file. Use this
property if the certificate file is encrypted to have its private key information
protected. This passphrase must match the string that the certificate was
encrypted with.

5. Click Set. Update and save the configuration.

Execute the show certificates -v action to verify that the certificate is working.

Configuring Encryption
Although the ME supports encryption, it does not require it from WebRTC endpoints.
If an endpoint does not support encryption, it does not include a crypto key in its
answer SDP and RTP is automatically used to transport media.

Because the ME always sends media encrypted out, you must configure the in-leg to
allow encryption and the out-leg to require it.

You can configure the ME to use SDES-SRTP, DTLS, or specify multiple and let the
WebRTC endpoint decide which type of encryption to use.

To configure in-leg encryption:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-encryption.

3. mode: Select allow from the drop-down list. This allows the ME to receive
encryption on the in-leg.

4. type: Select the type of encryption you want to use from the drop-down list.

■ RFC3711: Use the SDES-SRTP protocol for encryption.

■ DTLS: Use the DTLS protocol for encryption.

■ multiple: Both SDES-SRTP and DTLS are offered for encryption. Using the
encryption-preferences property, assign each protocol a priority and the type
of encryption used depends upon the WebRTC endpoint.

5. If you set type to multiple, click Add encryption-preferences and click Edit.

6. priority: Set to 1.

7. type: Select DTLS from the drop-down list and click Set.

Note: For more information on configuring certificates and viewing
certificate statistics, see the WebRTC Session Controller Media Engine
Object Reference.

Note: If you configure encryption-preferences but do not have type
set to multiple, it does not work. If you specify multiple but do not
configure encryption-preferences, you receive an error.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-33

8. CLick Add encryption-preferences and click Edit.

9. priority: Set to 2.

10. type: Select RFC3711 from the drop-down list.

11. Click Set. Update and save the configuration.

To configure out-leg encryption:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to out-encryption.

3. mode: Select require from the drop-down list. This allows the ME to offer
encryption.

4. type: Select the type of encryption you want to use from the drop-down list.

■ RFC3711: Use the SDES-SRTP protocol for encryption.

■ DTLS: Use the DTLS protocol for encryption.

■ multiple: Both SDES-SRTP and DTLS are offered for encryption. Using the
encryption-preferences property, assign each protocol a priority and the type
of encryption used depends upon the WebRTC endpoint.

5. If you set type to multiple, click Add encryption-preferences and click Edit.

6. priority: Set to 1.

7. type: Select DTLS from the drop-down list and click Set.

8. CLick Add encryption-preferences and click Edit.

9. priority: Set to 2.

10. type: Select RFC3711 from the drop-down list.

11. Click Set. Update and save the configuration.

The show ice-dtls-status show command provides information per call-leg for
sessions using DTLS encryption.

SIP>show ice-dtls-status
 session-id: 0x4c40106b423123b
 leg: 1
 stream: 0
 address: 172.30.12.82:24472
 remote: 172.30.12.82:24352
 type: 1-RTP
 role: Passive
 state: Succeed

Properties:

■ session-id: The unique ID of the ME session.

■ leg: Specifies in-leg (0) or out-leg (1).

Note: Always give DTLS a priority of 1 and RFC-3711 a priority of 2.

Note: Always give DTLS a priority of 1 and RFC-3711 a priority of 2.

Supported WebRTC Protocols

22-34 WebRTC Session Controller System Administrator's Guide

■ stream: The media stream index, either audio (0) or video (1).

■ address: The local ME IP and port for this DTLS socket.

■ remote: The remote peer IP and port for this DTLS socket.

■ type: Specifies the type of ICE port, either RTP (1) or RTCP (2).

■ role: Specifies the DTLS role, either Passive or Active.

■ state: The state of the DTLS socket, either Connected, Listening, Succeeded, or
Closed.

Disabling the Datagram Transport Layer Security Cookie Exchange
For the ME to work properly in a WebRTC environment, you must configure it to stop
exchanging cookies during the DTLS negotiation.

To stop the DTLS cookie exchange:

1. Click the Configuration tab and select the vsp > tls object.

2. Click Configure next to default-dtls-settings.

3. dtls-cookie-exchange: Set to disabled to stop exchanging cookies during the DTLS
negotiation.

4. Click Set. Update and save the configuration.

Real-Time Transport Protocol/Real-Time Control Protocol Multiplexing
The ME supports RTP/RTCP Multiplexing which, when enabled, bundles all of the
RTP and RTCP media through the same port.

When initiating a bundled call, the ME inserts the necessary information into the
INVITE message’s SDP in the following format:

m=RTP <Port>
a=rtcp=<RTCP Port>
a=rtcp-mux

If the recipient supports RTP/RTCP multiplexing, it returns the following in the SDP
of its 200 OK response:

m=RTP/RTCP <Port>
a=rtcp-mux

If the recipient does not support RTP/RTCP multiplexing, it returns its own RTO and
RTCP port numbers in the SDP without a=rtcp-mux and multiplexing is not used.

The ME does not support audio and video multiplexing, audio and video streams
bundled to the same port. To ensure the recipient that the ME is talking to knows this,
you must strip out any Synchronization Source (SSRC) information from the SDP.

To configure RTP/RTCP multiplexing for incoming WebRTC calls:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-sdp-attribute-settings.

3. rtcp-mux: Enables or disabled RTP/RTCP multiplexing. By default this property is
disabled.

4. ssrc-in-sdp: Set to strip to strip out any SSRC information from the SDP.

Supported WebRTC Protocols

Enabling ME Interfaces and Protocols 22-35

5. patch-audio-group: (Advanced) Set to enabled. When the ME receives an offer SDP
with both audio and video and the line a=group BUNDLE audio video and a
response with only audio, it must perform certain functions in order to get the
audio to work.

When enabled, the ME performs the following modifications:

■ The ME performs RTP/RTCP multiplexing on the in-leg, regardless of the user
configuration.

■ The ME adds bundling information by adding the following to the SDP.

a=group BUNDLE audio
a=mid:audio

■ The ME generates WebRTC-style SSRC values and adds them to the SDP as
well as the RTP/RTCP stream.

6. Click Set. Update and save the configuration.

To configure RTP/RTCP multiplexing for outgoing WebRTC calls:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to out-sdp-attribute-settings.

3. rtcp-mux: Enables or disabled RTP/RTCP multiplexing. By default this property is
disabled.

4. ssrc-in-sdp: Set to strip to strip out any SSRC information from the SDP.

5. Click Set. Update and save the configuration.

Configuring SDP Regeneration
To ensure the ME represents itself properly in the SDP, it must regenerate incoming
SDPs to list the attributes it supports and strip out unsupported attributes. To do this,
you must configure the sdp-regeneration object.

To configure SDP regeneration:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to sdp-regeneration.

3. regenerate: Set to enabled to regenerate the SDP, with the configured settings,
before forwarding it along.

4. add-rtpmaps: Set to enabled so the ME includes rtpmap attributes for well-known
CODECs when the rtpmap is not included in the SDP by the original endpoint.

5. pass-attributes: Click Edit pass-attribute.

Note: To view Advanced properties, click the Show advanced
button.

Note: If the ME forwards an SDP containing attributes it does not
support, the WebRTC call does not work.

Media Steering For Unknown Endpoints

22-36 WebRTC Session Controller System Administrator's Guide

6. Enter the attributes to be included in the SDP. The following attributes must be
added:

■ ice-ufrag

■ ice-pwd

■ candidate

■ remote-candidates

■ rtcp

■ rtcp-mux

■ You must enter attributes one at a time. After entering an attribute and clicking
Add, a new field to enter the next attribute appears.

Media Steering For Unknown Endpoints
When the SE creates an ME session to anchor media, the network on which the two
endpoints (caller and callee) reside may not be known by the ME. In these cases,
nominal network addresses can be used to steer media correctly through the ME by
performing media service route lookups. This ensures that the media resources are
allocated from a media interface that can reach the endpoint.

The following named variables can be used to configure the nominal network
addresses (and optionally ports) used to steer media through the ME.

■ inleg.source.ip

■ inleg.source.port

■ outleg.source.ip

■ outleg.source.port

These named variables are used to steer media through the ME by providing nominal
network addresses to perform a media service route lookup, allocating media
resources on an interface that can reach the remote endpoint. The inleg.source.ip and
outleg.source.ip values can be set to the IP address of the ME media interface to force
media resource allocation from that specific interface. These values can also be used to
specify a network IP address (for example, 1.1.1.1) for cases where the ME has multiple
media interfaces on the same subnet for load balancing purposes.

Configuring a Browser to SIP Call
When an Internet browser makes a call to a SIP phone residing on the customer core
network, the ME uses the "web-to-sip" session-config call flow. Adding these named
variables to the existing "web-to-sip" session-config steers the media from the access to
the core networks.

Note: These attributes do not appear in the drop-down list and must
be entered into the provided blank field.

Note: For information on configuring named variables, see Using
Regular Expressions in the WebRTC Session Controller Media Engine
Objects and Properties Reference guide.

Media Steering For Unknown Endpoints

Enabling ME Interfaces and Protocols 22-37

To steer the media correctly for this call flow, the inleg.source.ip can be configured as
1.1.1.1 and the outleg.source.ip can be configured as 2.2.2.2. Configuring the named
variables this way forces the allocation of media resources from the access interface
(1.1.1.1) to reach the browser, and the core interface (2.2.2.2) to reach the SIP phone.

Example 22–1 shows how to add named variables to an existing "web-to-sip"
session-config.

Example 22–1 Web-to-SIP

config vsp
 config session-config-pool
 config entry web-to-sip
 config named-variables
 config named-variable inleg.source.ip
 set value 1.1.1.1
 return
 config named-variable outleg.source.ip
 set value 2.2.2.2
 return

Configuring a SIP to Browser Call
When a SIP phone makes a call to an Internet browser residing on the customer core
network, the ME uses the "sip-to-web" session-config call flow. Adding these named
variables to the existing "sip-to-web" session-config steers the media from the core to
the "access" networks.

To steer media correctly for this call flow, the inleg.source.ip can be configured as
2.2.2.2 and the outleg.source.ip can be configured as 1.1.1.1. Configuring the named
variables this way forces the allocation of media resources from the core interface
(2.2.2.2) to reach the SIP phone, and the access interface (1.1.1.1) to reach the browser.

Example 22–2 shows how to add named variables to an existing "sip-to-web"
session-config.

Example 22–2 SIP-to-Web

config vsp
 config session-config-pool
 config entry sip-to-web
 config named-variables
 config named-variable inleg.source.ip
 set value 2.2.2.2
 return
 config named-variable outleg.source.ip
 set value 1.1.1.1
 return

Note: The endpoint initiating the call resides on the "inleg" and the
endpoint receiving the call is on the "outleg".

Note: The endpoint initiating the call resides on the "inleg" and the
endpoint receiving the call is on the "outleg".

Message Session Relay Protocol Interworking

22-38 WebRTC Session Controller System Administrator's Guide

Configuring a Browser to Browser Call
When an Internet browser makes a call to another Internet browser, the ME uses either
the "web-to-web-anchored" or "web-to-web-anchored-conditional" session-config call
flow. If you require media steering for these calls, use the inleg.source.ip and
outleg.source.ip named variables.

Since both endpoints in this call flow reside on the Internet, specify the ME’s access
interface (1.1.1.1) for both the inleg.source.ip and outleg.source.ip.

Example 22–3 shows how to add named variables to an existing
"web-to-web-anchored" session-config call flow.

Example 22–3 ’Web-to-Web-Anchored’

config vsp
 config session-config-pool
 config entry web-to-web-anchored
 config named-variables
 config named-variable inleg.source.ip
 set value 1.1.1.1
 return
 config named-variable outleg.source.ip
 set value 1.1.1.1
 return

Message Session Relay Protocol Interworking
The ME supports the Message Session Relay Protocol (MSRP) interworking. MSRP
interworking allows communication between WebRTC and Rich Communication Suite
(RCS) endpoints. This protocol is used for transmitting a series of instant message
chats and file transfers within the context of a session.

For more information on MSRP, see https://tools.ietf.org/html/rfc4975.

Configuring MSRP Interworking
To enable MSRP interworking on the ME, you must configure the in-msrp-session-leg
and out-msrp-session-leg objects.

To configure in-leg MSRP interworking:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-msrp-session-leg.

3. admin—Set to enabled to enable MSRP interworking.

4. msrp-leg-transport—Specify the MSRP transport method for WebRTC or RCS.

5. default-media-interface—Specify the local media interface to use for MSRP if
svc-routing fails to locate the appropriate interface.

6. Click Set. Update and save the configuration.

To configure out-leg MSRP interworking:

Note: The endpoint initiating the call resides on the "inleg" and the
endpoint receiving the call is on the "outleg".

Message Session Relay Protocol Interworking

Enabling ME Interfaces and Protocols 22-39

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to out-msrp-session-leg.

3. admin: Set to enabled to enable MSRP interworking.

4. msrp-leg-transport: Specify the MSRP transport method for WebRTC or RCS.

5. default-media-interface: Specify the local media interface to use for MSRP if
svc-routing fails to locate the appropriate interface.

6. Click Set. Update and save the configuration.

The ME allows you to choose the criteria on which to validate received MSRP
messages. When the ME receives a MSRP message, the MSRP session manager checks
the configured match criteria to verify the message belongs to the MSRP session
associated with the connection transporting the MSRP message.

You can choose to match on the following criteria.

■ scheme

■ host

■ port

■ transport

■ sessionId

To configure flexible MSRP message matching:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to either in-msrp-session-config or out-msrp-session-leg.

3. message-match-criteria: Select the criteria on which you want to match MSRP
messages.

4. Click Set. Update and save the configuration.

There are four show commands that allow you to view MSRP interworking statistics:
show active-msrp-sessions, show msrp-connections, show msrp-listeners, and show
msrp-stats.

The show active-msrp-sessions command displays information regarding active
MSRP session statistics.

SIP>show active-msrp-sessions
Active MSRP Sessions:

session-handle: 0xC7C634F3
inleg-type: Msrp
inleg-state: CONNECTED
outleg-type: Msrp
outleg-state: CONNECTED
caller-session-id: mhnb1ad02f
caller-path: msrp://wscAddress.invalid:2855/mhnb1ad02f;ws
called-session-id: 2511644601
called-path: msrp://10.138.238.49:53847/2511644601;tcp
create-time: 12:09:59.163681 Thu 2014-10-30
duration: 24 seconds
Total Active MSRP Sessions: 1
Properties

Message Session Relay Protocol Interworking

22-40 WebRTC Session Controller System Administrator's Guide

■ session-handle: The handle for this session.

■ inleg-type: The type of endpoint of the in-leg session.

■ inleg-state: The state of the in-leg session endpoint.

■ outleg-type: The type of endpoint of the out-leg session.

■ outleg-state: The state of the out-leg session endpoint.

■ caller-session-id: The session ID of the calling endpoint.

■ caller-path: The path of the calling endpoint.

■ called-session-id: The session ID of the called endpoint.

■ called-path: The path of the called endpoint.

■ create-time: The time this session was created.

■ duration: The length, in seconds, of this session.

The show msrp-connections command displays statistics regarding all of the
connections used by the current MSRP sessions.

SIP>show msrp-connections
--
Process Proto LocalAddress RemoteAddress State Direction RefCount
--
SIP TCP 10.138.236.35:23365 10.138.238.49:53847 Connected Answer 1
SIP WS 10.138.236.35:23385 10.138.238.49:53848 Connected Originate 1
Properties

■ Process: The signaling process being used for this connection.

■ Proto: The media transport protocol being used for this connection.

■ LocalAddress: The local IP address and port.

■ RemoteAddress: The remote IP address and port.

■ State: The state of the connection.

■ Direction: The current direction of media transfer.

■ RefCount: Not currently supported. This value should always be 1.

The show msrp-listeners command displays information listing all ports on the ME
interface that are waiting for MSRP connections.

SIP>show msrp-listeners
--
Process Proto Address Connections Rejected Current Timeouts
--
SIP WS 10.138.236.35:23385 0 0 1 0
Properties

■ Process: The signaling process being used for this port.

■ Proto: The media transport protocol being used for this port.

■ Address: The IP address for this port.

■ Connections: The number of connections available on this port.

■ Rejected: The number of connections rejected by this port.

■ Current: The number of current connections on this port.

■ Timeouts: The number of timeouts that have occurred on this port.

Message Session Relay Protocol Interworking

Enabling ME Interfaces and Protocols 22-41

The show msrp-stats command displays information regarding MSRP interworking
statistics.

SIP>show msrp-stats
totalSessions: 4
totalConnections: 2
totalActiveConnections: 1
totalPassiveConnections: 1
RxRequests: 4
RxResponses: 4
TxRequests: 4
TxResponses: 4
RxMessagesDiscarded: 0
RxMessagesPartialRead: 0
RxMessagesFailed: 0
TxMessageRetries: 0
TxTcpWriteErrors: 0
TxMessagesFailed: 0
ListenerErrors: 0
SessionEstTimeouts: 0
UserMsgsExpired: 0
Properties

■ totalSessions: The total number of MSRP sessions since the system was last started.

■ totalConnections: The total number of connections since the system was last
started.

■ totalActiveConnections: The total number of connections created by the ME.

■ totalPassiveConnections: The total number of connections initiated by MSRP.

■ RxRequests: The total number of MSRP request messages received by the ME.

■ RxResponses: The total number of MSRP response messages received by the ME.

■ TxRequests: The total number of MSRP request messages forwarded by the ME.

■ TxResponses: The total number of MSRP response messages forwarded by the ME.

■ RxMessagesDiscarded: The total number of MSRP messages discarded by the ME
regardless of reason.

■ RxMessagesPartialRead: The total number of partial MSRP messages read. If this
value is anything but zero, the ME is using partial-forwarding.

■ RxMessagesFailed: The total number of MSRP messages the ME has been unable
to read.

■ TxMessageRetries: The total number of attempts to forward MSRP messages
(usually due to slow connection establishment).

■ TxTcpWriteErrors: The total number of times the ME encountered an error while
attempting to forward an MSRP message.

■ TxMessagesFailed: The total number of MSRP messages not forwarded by the ME
due to an error condition.

■ ListenerErrors: The total number of MSRP listener-related errors.

■ SessionEstTimeouts: The total number of times an MSRP session failed to be
established.

■ UserMsgsExpired: Not currently supported.

Configuring Kernel Filtering

22-42 WebRTC Session Controller System Administrator's Guide

Configuring Kernel Filtering
Kernel filter rules provide a security mechanism that allows or denies inbound traffic
on ME IP interfaces. The filter controls access to resources on the enterprise servers
based on source IP address and/or subnet, source port, and protocol. When the ME
processes kernel rules, it first interprets deny rules, then allow rules. In this way, you
can deny a subnet access, and then allow specific endpoints.

The ME acts on kernel rules before the other, higher level rules such as DOS policy
rules. This stops traffic from known problems early, tying up fewer processing
resources.

CLI Session
The following CLI session creates and enables a deny rule named evil-badguy from
source IP address 215.200.40.8, source port 56, over UDP.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
config ip boston1>config kernel-filter
config kernel-filter>config deny-rule rule1
Creating ‘deny-rule rule1’
config deny-rule evil-badguy>set admin enabled
config deny-rule evil-badguy>set source-address/mask 215.200.40.8/24
config deny-rule evil-badguy>set source-port 56
config deny-rule evil-badguy>set protocol udp

Configuring Messaging
Messaging is the mechanism from which the ME system communicates with other
systems in the cluster. Messaging sets up a listening socket on an interface, enabling
the interface to receive messaging traffic and participate in clustering and media
partnering.

In a cluster, the master looks through the configurations of all ME systems to find out
which interface is used for messaging. (If multiple interfaces are configured, the
master only communicates with one: the first it finds.) The master then communicates
with the identified interface to share configuration and data.

In media partnering, you configure a specific IP address (on a different box) as a
partner. On the box that owns that IP address, you need to configure and enable
messaging for media partnering to operate.

CLI Session
The following CLI session configures messaging on box 1, interface eth0.

SIP>config cluster
config cluster>config box 1
config box 1>config interface eth0
config interface eth0>config ip boston1
config ip boston1>config messaging
config messaging>set admin enabled
config messaging>set certificate vsp tls certificate name
config messaging>set port 13002
config messaging>set protocol tls

Configuring Messaging

Enabling ME Interfaces and Protocols 22-43

For detailed information on ME clusters and media partnering, refer to the WebRTC
Session Controller Installation Guide.

Configuring Messaging

22-44 WebRTC Session Controller System Administrator's Guide

23

Enabling ME Services 23-1

23Enabling ME Services

This chapter describes the services that you can enable on the ME platforms.

Enabling Services on the ME Master
There are administrative services available on the ME master that are enabled by
default. These master services are:

■ Cluster-Master Services

■ Directory Services

■ Accounting Services

■ Authentication Services

■ ME Database

■ Registration Services

■ Server Load

■ Call Failover (Signaling and Media)

■ Load-Balancing

■ File-Mirror

■ Route Server

■ Sampling

■ Third-Party-Call-Control (3PCC)

If you are not using any of these services, you can globally disable them to conserve
memory and system resources on the ME master.

Cluster-Master Services
The cluster-master services object configures the ME system that maintains the master
configuration for the cluster. The master is responsible for providing configuration
changes and updates to other devices in the cluster. If a different device becomes the
cluster-master during a failover, this device then sends out its configuration to the
other devices in the cluster.

CLI Session
NNOS-E> config
config> config master-services
config master-services> config cluster-master

Enabling Services on the ME Master

23-2 WebRTC Session Controller System Administrator's Guide

config cluster-master> set admin enabled
config cluster-master> set host-box cluster box 2
config cluster-master> set host-box cluster box 1

Accounting Services
When enabled, accounting services supports RADIUS accounting, system logging
(syslog), DIAMETER protocol services, the accounting database, archiving, and the
accounting file-system.

You can configure one or more of these accounting mechanisms for capturing the ME
network accounting activity and SIP call detail records under the VSP (Virtual System
Partition) configuration object.

CLI Session
The following session enables the ME global accounting services on the master.

NNOS-E> config master-services
config master-services> config accounting
config accounting> set admin enabled
config accounting> set host-box cluster box 3
config accounting> set host-box cluster box 1
config accounting> set group 1

ME Database
The master-services database object allows you to configure maintenance and other
settings for the ME system database. The database is the local repository for call
accounting records and media files.

CLI Session
The following session enables ME database maintenance and sets the local
maintenance time at 6 a.m. daily.

NNOS-E> config master-services
config master-services> config database
config database> set admin enabled
config database> set maintenance time-of-day 06:00

Server Load
The master-services server-load object configures the ME to calculate server load. This
object must be enabled if your dial plan arbiter settings use least-load as the routing
algorithm option. (The arbiter rules property sets the criteria by which the ME selects
the server to which it forwards calls.)

CLI Session
The following session enables the server load functionality on the ME master.

NNOS-E> config master-services
config master-services> config server-load
config server-load> set admin enabled
config server-load> set host-box “cluster box 2”
config server-load> set host-box “cluster box 3”

Enabling Services on the ME Master

Enabling ME Services 23-3

Call Failover (Signaling and Media)
The master-services call-failover object configures failover for both the media and
signaling streams across an ME cluster. Enabling call-failover ensures that there is an
active copy of the database on another box in the cluster in the event of a failure. The
first host-box property defines the primary ME system. Configure backup boxes in the
event of primary failure by re-executing the host-box property.

CLI Session
The following session enables call-failover of the media and signaling streams.

NNOS-E> config master-services
config master-services> config call-failover
config call-failover> set admin enabled
config call-failover> set host-box cluster box 1
config call-failover> set host-box cluster box 2

The call must be connected at the SIP level for signaling failover to succeed. States
prior to the “connected” state are not maintained in the cluster-wide state table. For
TCP and TLS connections, the user agent (UA) must reestablish the connection after
the failover, since TCP and TLS are connection-oriented protocols that do not maintain
state information. If TLS is used, the appropriate certificate must be loaded on both
devices in the cluster.

Accurate call logs are recorded at the end of the call. However, if the ME system
maintaining the call log database fails over to the other ME system in the cluster, call
information will not be recorded.

Use the ME show signaling-sessions action to view cluster-wide signaling state
information.

NNOS-E> show signaling-sessions

session-id: 342946641025485482
fromURI: <sip:1234@dial-plan.com>
toURI: <sip:5678@dial-plan.com>
inLegCallID: 3c2a54ca1fbd-7intxouoq8zo@172-30-0-176
inLegFromTag: xqkhmbwmiv
inLegToTag: b432a8c0-13c4-454a1124-102dd42a-164adf67
outLegCallID:
CXC-279-61b29378-b432a8c0-13c4-454a1124-102dd42b-7023adbd@dial-plan.com
outLegFromTag: b432a8c0-13c4-454a1124-102dd42b-749c0b03
outLegToTag: 152jkzyt73
origInFromURI:
origInToURI:
origOutFromURI:
origOutToURI:
vthreadID: 278
initialMethod: 0
Box: 0.0.0.0

Load-Balancing
The master-services load-balancing object configures the ME systems to host the
load-balancing master service. These devices (boxes) are responsible for keeping the
rule database up to date. They do not need to be the same devices that host the
head-end interfaces, although it is common to do so. (You can, for example, configure
devices in the cluster that only serve as host devices without any head-end interfaces
or backing interfaces.)

Enabling Services on the ME Master

23-4 WebRTC Session Controller System Administrator's Guide

For more information on the load-balancing object, refer to the WebRTC Session
Controller Media Engine Object Reference. For more information on configuring
load-balancing across ME interfaces, see Load Balancing Across ME Interfaces.

CLI Session
The following CLI session enables load balancing on the master, specifies box 1 as the
master box on which the rule database runs (subsequent host boxes 2 and 3 serve as
backup) and associates the load balancing service with preconfigured VRRP group 1.

NNOS-E> config master-services
config master-services> config load balancing
config load-balancing> set host-box cluster box 1
config load-balancing> set host-box cluster box 2
config load-balancing> set host-box cluster box 3
config load-balancing> set group 1

Sampling
The master-services sampling object opens the mechanism for setting the interval at
which the ME samples operational aspects of the system for either:

■ Display in the ME Management System, or

■ For sending to an IBM Tivoli server.

By setting sampling for a status provider, you can view data for that provider over a
specified period of time. The ME supports two sampling targets: a Postgres SQL
database and an IBM Tivoli server. (Set the provider data sent to the target using the
status and provider objects. See WebRTC Session Controller Media Engine Object
Reference for more information on configuring these objects.)

When you execute a status-provider command from the CLI, the system just displays
the results of the request at the time it was issued.

Once you have enabled sampling, the master service stores the samples in its local
database. You can select a status provider underneath Trends in the Status tab of the
ME Management System. The GUI trends graphs pull data from the database on the
sampling master service box to display a time series graph of the results. Changes to
the interval setting in the sampling subobjects do not effect the CLI results.

CLI Session
The following CLI session enables sampling services on the ME master:

NNOS-E> config master-services
config master-services> config sampling
config sampling> set admin enabled
config sampling> set host-box cluster box 1
config sampling> set host-box cluster box 2
config sampling> set host-box cluster box 3
config sampling> set group 1
config sampling> return
config master-services> return
config>

Note: If you have limited storage space, and are not using this
feature, disable it. Otherwise, polling data is continuously written to
the status database.

Configuring Threshold Monitors

Enabling ME Services 23-5

Enabling Event Logging Services
The ME event logger allows you to configure how event messages are filtered and
captured. You can direct event messages to a remote syslog server (by IP address), to a
named event log file stored on the ME system, or to the local ME database.

CLI Session
The following session configures the event logger to direct event messages to a remote
syslog server.

NNOS-E> config services
config services> config event-log
config event-log> config syslog 192.168.124.89
The following session configures the event logger to direct event messages to a named
file and sets the event log operational parameters: direct all messages to the file, limit
the event log file size to 20 Mbytes, and set the maximum number of event log files to
create when log files reaches the maximum size in megabytes.

NNOS-E> config services
config services> config event-log
config event-log> config file eventfile1
config file eventfile1> set admin enabled
config file eventfile1> set filter all error
config file eventfile1> set size 20
config file eventfile1> set count 5
The following session configures the event logger to direct event messages to the local
ME database and sets the event log operational parameters: direct only SIP messages
to the local database, and set the maximum number of days over which event
messages are logged to the local database before the database is cleared and restarted.

NNOS-E> config services
config services> config event-log
config event-log> config local-database
config local-database> set admin enabled
config local-database> set filter sip error
config local-database> set history 50

Configuring Threshold Monitors
The services/monitors configuration object allows you to monitor the following
statistics and thresholds for logging and SNMP trap generation:

■ CPU usage

■ Memory usage

■ TLS connections statistics

Polling intervals are in minutes, memory and CPU usage in percent, and TLS
connections and failures in actual numbers. At the specified polling interval(s), the ME
checks memory and CPU usage, and TLS statistics. If a parameter setting is exceeded,
the ME logs an event and an SNMP trap.

CLI Session
NNOS-E> config services
config services> config monitors
config monitors> config monitor usage
Creating ‘monitor usage’

Configuring Data and Archiving Locations

23-6 WebRTC Session Controller System Administrator's Guide

config monitor usage> set interval 60
config monitor usage> set parameter cpu-usage 90
config monitor usage> set parameter memory-usage 95
config monitor usage> return
config monitors> config monitor tls
Creating 'monitor tls'
config monitor tls> set interval 30
config monitor tls> set parameter tls-connections 1000
config monitor tls> set parameter tls-failures 10

Configuring Data and Archiving Locations
The services/data-locations configuration object allows you to specify the directory
and path locations on the ME system where you are to save certain types of
information. This information includes:

■ RTP media (for call recording). Use the rtp-recorded property to select a location
on the system disk for local archiving of call detail records and call recordings.

■ RTP mixed (for playback of recorded calls). Use the rtp-mixed property to set the
location for playback of recorded calls.

■ File transfer. Use the file-transfer-recorded property to set the location for file
transfer records.

■ Log files. Use the log property to set the location for log files.

If you choose not to create specific locations for saved files, the ME provides default
directory path locations. For example, the directory path /cxc_common on hard-drive-1
is the default location for recorded RTP files and file transfers. You can display the
default directory file paths using the show command.

CLI Session
config> config services data-locations
config data-locations> show

services
 data-locations
 rtp-recorded[1] /cxc_common/rtp_recorded
 rtp-recorded[2] /cxc/recorded
 rtp-mixed[1] /cxc_common/rtp_mixed
 rtp-mixed[2] /cxc/mixed
 rtp-mixed[3] /cxc/admin/archives
 file-transfer-recorded[1] /cxc_common/ft_recorded
 file-transfer-recorded[2] /cxc/recorded
 log /cxc_common/log
The following CLI session changes the default logging path from /cxc_common/log to
/cxc/admin/logfiles.

config> config services data-locations
config data-locations> set log /cxc/admin/logfiles
The following CLI session sets the location for “mixed” RTP files to the directory
/cxc/admin/RTPmixed; the location for storing file transfer records is set to
/cxc/admin/FTrecords.

config> config services data-locations
config data-locations> set rtp-mixed /cxc/admin/RTPmixed
config data-locations> set file-transfer-recorded /cxc/admin/FTrecords

Setting ME Disk Thresholds

Enabling ME Services 23-7

Configuring an External Database
If you want to use a database other than the one that is provided with the ME system,
you can configure the ME to use an external database to store event logs, call detail
records, and other accounting data. Depending on your network remote SQL server
databases, for example, can provide large storage and resource capabilities.

To configure an external database, you will need the Open Database Connectivity
(ODBC) driver name associated with the database, as well the user name and secret
tags (and password) needed for the ME to access the database. Consult your database
administrator for this information before configuring the remote database on the ME
system.

The following CLI session configures the database driver named “My SQL Server”
and sets the username, secret-tag, and password/password confirmation for this
database.

CLI Session
config> config services database external
config database external> set driver “My SQL Server”
config database external> set username cxc
config database external> set secret-tag 123
password: *********
 confirm: *********
config database external>
The following CLI session configures the event log to direct snmp events with the
severity warning to the SQL database named corpDatabase for a period of 150 days. The
ME automatically associates the external database name to the services/database
configuration.

config services> config event-log
config event-log> config external-database corpDatabase
config corpDatabase> set admin enabled
config corpDatabase> set filter snmp warning
config corpDatabase> set history 150
For more information on the services/database object, refer to the Net-Net OS-E –
Objects and Properties Reference.

Setting ME Disk Thresholds
The storage-device object allows you to set warning and failure thresholds for
remaining disk space on ME hard drives. When a disk drive reaches the configured
fail-threshold property setting, the ME begins WRITE operations to the next available
disk drive. Warning messages are logged (in minutes) whenever disk threshold
settings are matched.

The storage-device object operates on all installed disk drives. If all disk drives match
the configured thresholds, media call recording, file transfers, and log files will no
longer be written to the ME disks.

The following CLI session sets the fail thresholds for all installed disk drives. Writing
to that disk fails when the remaining disk space drops to 20 GB.

Note: Currently, the ME systems support two 250GB internal disk
drives.

Scheduling Regularly Performed Tasks

23-8 WebRTC Session Controller System Administrator's Guide

CLI Session
config> config services
config services> config storage-device
config storage-device> set fail-threshold 20000

Scheduling Regularly Performed Tasks
The ME can automatically perform tasks on a configured schedule. This means that
you do not have to physically execute an action at a specific time; the ME does it for
you. Use the set action? command to display the current list of tasks from which you
can choose.

The following CLI session configures a directory reset for the Boston1 enterprise
directory at 3 pm.

CLI Session
config> config services
config services> config tasks
config tasks> config task directoryReset
config task 1> set action ?
archive Run the archiving task for a given vsp
 directory-reset Reset an enterprise directory

config task 1> set action directory-reset
config task 1> set schedule time-of-day 15:00:00

Performing Database Maintenance
The ME automatically runs a database maintenance script daily, at 3:00 A.M. This
“normal” database maintenance purges (removes old files preventing ME disks from
becoming too full), “vacuums” (reclaims unused disk space), reindexes, and analyzes
the database. You can also selectively schedule periodic database maintenance or force
database maintenance at any time.

Along with normal daily database maintenance, Oracle recommends that you perform
a “vacuum-full” on the database monthly to reclaim unused disk space.

This section describes how to do the following database maintenance tasks:

■ Set normal maintenance time-of-day.

■ Schedule periodic database maintenance.

■ Force manual database maintenance.

■ Perform the database “vacuum-full” process (recommended monthly, in addition
to normal maintenance).

Note: As a guideline, Oracle recommends that you perform database
archiving more frequently than database maintenance. For example,
archiving on a daily basis and performing maintenance every 7-days
allows records in the database to age without the risk of removing
records before those records are archived. See Enabling and
Configuring Local Archiving for information.

Performing Database Maintenance

Enabling ME Services 23-9

Setting Normal Database Maintenance Time-of-Day
The ME automatically runs database maintenance daily, at 3:00 A.M.

If you want to change the actual time-of-day when the ME runs normal database
maintenance, use the master-services database object. If old records are found, the ME
purges those records from the database. Optionally, you can configure a time period in
hours, such as every 3 hours, if you want run maintenance at multiple time periods
during a 24-hour day.

CLI Session
config> config master-services
config> config database
config database> set maintenance time-of-day 02:00:00

Verifying Normal Database Maintenance
To verify that normal maintenance has successfully completed, and that a table has
been vacuumed automatically, view the system log file. The log file should display a
message similar to the one shown below:

2008-04-16T05:39:45+12:00[notice] 1:SIP[system] An automatic VACUUM FULL
was performed on database table SipMessage to reclaim 895300 unused
pointers

Scheduling Periodic Database Maintenance
The VSP database object allows you to configure the number of days to elapse before
the ME purges old records from the database. You can selectively configure the
number of days for each of the following database records:

■ accounting

■ call details

■ media

■ file transfer

■ instant messages

Whenever records in the database become older than the configured number of days,
the next maintenance natively purges the old files. The following CLI session
configures the number of days to elapse for each database record type before the ME
deletes the old records from the system disk.

CLI Session
config> config vsp
config> config database
config database> set accounting-history 7 days
config database> set call-details 10 days
config database> set media-history 10 days
config database> set file-transfer-history 3 days
config database> set im-history 2 days

Forcing Database Maintenance
Use the database-maintenance normal command to run a specific database
maintenance operation at any time. This forces a database cleanup of any old database

Performing Database Maintenance

23-10 WebRTC Session Controller System Administrator's Guide

entries if you did not previously configure the VSP database settings. Use the show
database-tables command to display the database contents after the cleanup.

CLI Session

NNOS-E> database-maintenance normal

Starting database maintenance as a background operation.

 -- this may take a very long time --

Please check database-maintenance-status for notification when this
operation is complete.

Performing Database Vacuum-Full
The normal (daily) vacuum process attempts to reclaim any unused space in the
database (this is analogous to a hard drive defragmentation process, but on the
database files) without locking any of the tables.

The database vacuum-full process locks each table, one at a time, and reclaims all
possible disk space. Note that a table lock prevents the table in question from being
written to by an application; i.e. the ME.

Oracle recommends performing a database vacuum-full on a monthly basis by
scheduling a “maintenance/outage window.” You should only run the process during
a maintenance window because the process will lock tables, preventing them from
being written to by the ME. This can affect the ability of a DOS rule from being
triggered, and at the same time, affecting call-logs, recording of accounting data, and
any other data that is written to the database. (However, running database
vacuum-full will not affect the ability of the ME to pass sip/media traffic,
accept/delegate registrations, route calls, and perform other directly service-related
tasks).

If your site is logging a large volume of data, you may wish to perform a vacuum-full
on a more frequent (e.g. weekly) basis.

Note the following database vacuum-full implementation tips:

■ You perform a vacuum-full on the entire database (global) using the database
vacuum-full system command.

■ You vacuum a specific table using the database vacuum-full system
<table-name> command. For example, you may wish to use this process if the ME
logs a message stating that a specific table needs to be vacuumed.

Performing Other Database Maintenance Tasks
You use the VSP database object to perform other database maintenance tasks, as
described below:

■ delete: Purges the database of entries contained in the specified database, or
entries in the table within the database. The database delete action (without
qualifiers) deletes all rows in all tables in the database.

■ vacuum: Based on SQL’s VACUUM command, reclaims storage occupied by
deleted entries and makes it available for re-use. The system can read and write to
the table while the process is occurring (versus more extensive vacuum-full
process during which the table is not available for read/write operations during
the process).

Managing Oracle Communications 2600 Database Size

Enabling ME Services 23-11

■ drop: Deletes all data stored in the specified table and removes the table definition
from the database schema.

■ repair: Initiates database repair options. If you select the data-recovery option, the
system recovers data that was removed by the ME when it corrected a corrupted
database. The translate option migrates earlier databases to a format compatible
with ME Release 3.2 and later.

■ initialize: Deletes all data and reinitializes the database.

■ snapshot: Captures an archive of the database at a certain point(s) in time.

Refer to the Net-Net OS-E – Objects and Properties Referencefor full description of how to
use each of these database objects.

Managing Oracle Communications 2600 Database Size
This section describes ways to manage the size of the ME database. That is, it describes
ways to reduce the amount of data that is being written to the database. You may wish
to try one of these procedures if your database is growing too large, or if it is
responding too slowly:

■ Disable the logging of REGISTER messages.

■ Configure a policy to prevent logging of NOTIFY messages.

Disabling REGISTER Message Logging
To disable the logging of REGISTER messages in order to reduce the amount of data
store in the database, do the following steps:

1. From the ME Management System, select vsp->default-session-config-> log-alert.

2. Set message-logging to no-registers, then click Set to save your changes. This
change will take effect immediately.

3. Repeat Step 1 for any session-configs that have a log-alert configured (e.g. in
session-config-pool entries, policies, dial/registration-plans, etc.).

To verify that REGISTER messages are no longer being logged, do the following steps:

1. From the ME Management System, click on the Call Logs tab.

2. From the left side of the window, click SIP Messages.

3. Click on Advanced Search.

4. Enter in REGISTER in the Request Message field.

The ME searches for messages of type REGISTER. None should be found.

Preventing NOTIFY Message Logging
If you want to further reduce the amount of data that is being logged to the database,
you can configure a policy to prevent logging of specific message types. For example,
you may want to prevent the logging of NOTIFY messages that are received from
phones (i.e. being received on the public IP interface). These messages are often used
as “keep-alive” messages from the end device.

Note: Backup the current ME configuration before attempting any of
the procedures described in this section.

Managing Oracle Communications 2600 Database Size

23-12 WebRTC Session Controller System Administrator's Guide

To configure a policy to prevent logging of NOTIFY messages from phones, do the
following steps:

1. From the ME Management System, select vsp->policies.

2. Scroll to session-policies, then click Add policy.

3. Name the new policy “default” and then click Create.

If there is already a default-policy configured under vsp->policies skip to step 4,
keeping in mind that in this example the default-policy is named “default.”

4. Specify the “default” policy as your default-policy under vsp->policies->
session-policies.

5. Under vsp->policies-> session-policies->policy default, add a new rule. Name
the new rule something obvious, for example, “NoLog-NOTIFY.”

6. Under vsp->policies-> session-policies->policy default->rule-> NoLog-NOTIFY,
configure the condition-list as follows:

■ Set the default operation to AND

■ Set the mode to evaluate

7. Under vsp->policies-> session-policies->policy default->rule->
NoLog-NOTIFY->condition list, add a sip-message-condition, as follows:

■ Set an attribute of request-method

■ Set the match to match

■ For the request-method, select NOTIFY (You could also select other SIP
message types.)

8. Under vsp->policies-> session-policies->policy default->rule->
NoLog-NOTIFY->condition list, add a sip-message-condition, as follows:

■ Set an attribute of local-ip

■ Set the match to match

■ For the local-ip, enter the IP Address of the ME public interface, including the
“slash” subnet mask notation. For example: 1.1.1.1/32.

9. Under vsp->policies->session-policies->policy default->rule->
NoLog-NOTIFY->condition list, add a sip-message-condition, as follows:

■ Set an attribute of direction

■ Set the match to match

■ For the value, select RX

10. Under vsp->policies-> session-policies->policy default->rule-> NoLog-NOTIFY,
create a session-config container.

11. Under vsp->policies-> session-policies->policy default->rule->
NoLog-NOTIFY->session-config, configure a log-alert container, then set
message-logging to disabled.

To check to see if the rule is being enforced, perform a “show rules” from the CLI. For
example:

NNOS-E> show rules
name: policy default/rule NOTIFY
admin: enabled
evaluations: 10008082

Backing Up the Database

Enabling ME Services 23-13

successes: 8336316

NNOS-E> show rules
name: policy default/rule NOTIFY
admin: enabled
evaluations: 10008127
successes: 8336356
If the number of “successes” is increasing, then the condition-list “entry criteria” are
causing SIP messages to be affected by the rule’s session-config.

Backing Up the Database
The database-backup backup command allows you to create a backup file of the
database, and save it to the ME.

The database backup file is saved in /cxc/pg_dump/name, where name is the file
name that you specify. When you enter the name for the backup database file, make
certain to specify a path that begins with /cxc/pg_dump/.

For example, /cxc/pg_dump/database1 is correct. However, if you specify
/cxc/database1, the operation will fail.

Note that by default the ME uses BZIP2 compression. This format is optimized for
size, but can take longer to produce. If you would prefer to use GZIP compression,
which is faster but results in a 30-40% larger archive, you can do so by supplying the
gz suffix when you initiate the action. The following table provides examples of using
the gz suffix:

To create a database backup file and store it on the ME, perform the following steps:

1. Use the show mounts command and shell command to verify that you have
enough storage space on the disk (preferably /mnt/hd2), as shown in the
following sample CLI session:

NNOS-E> show mounts
device device-name mount-point filesystem disk-size percent-free
------ ----------- ----------- ---------- --------- ------------
cdrom /dev/cdrom 0 0
usb /dev/usb1 0 0
hard-drive-1 /dev/root / reiserfs 234448 96
hard-drive-2 /dev/sdb 0 0
hard-drive-3

NNOS-E> shell
bash-3.00# du -sh /var/lib/pgsql
296M /var/lib/pgsql

Note: Performing the database backup procedure increases the load
on the ME, slowing down the device. Therefore, Oracle recommends
performing this task for debugging purposes only.

Table 23–1 Archive Types

Enter this filename at the
command line Get an archive of this type

DBbackup DBbackup.bz2

DBbackup.gz DBbackup.gz

Restoring a Database

23-14 WebRTC Session Controller System Administrator's Guide

bash-3.00# exit
exit

2. You must create the /cxc/pg_dump directory due to the fact that this procedure is
used most often as a debugging tool and is not present during the initial ME
installation. Use the mkdir command as shown in the following CLI session:

CLI Session
NNOS-E> shell
bash-3.00# mkdir pg_dump
bash-3.00# exit
exit
NNOS-E>
1. Execute the database-backup backup command, specifying a filename for the

database backup file.

For example, the following CLI session creates a database backup file named
DBbackup.bz2 where system is the system database where call logs and
accounting records are stored:

NNOS-E> database-backup backup system /cxc/pg_dump/DBbackup
Are you sure (y or n)?
Starting database backup as a background operation.
 -- this may take a very long time --
Please check database-maintenance-status for notification when this operation is
complete.

Restoring a Database
Use the database-backup restore command to restore a saved database backup file
from the /cxc/pg_dump directory to the ME system.

Any restore action adds entries from that file to the database. If your goal is to
overwrite the database, then you should first use the database delete action, and then
use the database-backup restore action.

The following CLI session restores the backup file backup.bz2.

CLI Session

NNOS-E> database-backup restore system /cxc/pg_dump/backup
Are you sure (y or n)? y
Starting database restore as a background operation.
-- this may take a very long time --
Please check database-maintenance-status for notification when this operation is
complete.

Enabling and Configuring Local Archiving
Local archiving allows you to store call accounting records and media files at regular
intervals on the ME platform before the records are removed by the database
maintenance interval, as described in the previous section. Other archiving options
“push” the data to alternate locations.

You can specify the types of information to store with the include- properties. If you do
not include any of the message types, the archive will contain just the meta data (To,
From, setup/connect/disconnect times, and call ID). All message types are included
by default.

Media Loss Detection

Enabling ME Services 23-15

When archiving, the ME creates both a .zip file and an XML file of the archive
contents. The XML file contains all of the XML data for the call except for the SIP
messages. The .zip file contains the XML file and an additional file called
sip.xml,which contains the SIP messages.

You enable local archiving using the vsp\accounting\archiving object. In addition,
you must configure a server in one of the archiving sub-objects for the archiving
mechanism to work.

• windows-share

• ftp-server

• smtp-server

• db-server

• local

The following CLI session enables archiving on the ftp server named ftp1.

CLI Session
NNOS-E> config vsp
config vsp> config accounting
config accounting> config archiving
config archiving> config ftp-server ftp1
config ftp-server ftp1> set admin enabled
config ftp-server ftp1> set username admin
config ftp-server ftp1> set password-tag xyz123abc
password: ************
confirm: ************
config ftp-server ftp1> set directory /archives
config ftp-server ftp1> set server 192.168.10.10
config ftp-server ftp1> set port 1998
config ftp-server ftp1> set timeout 100000
To locally archive on a scheduled basis, you need to schedule the archiving task.

config> config services
config services> config tasks
config tasks> config task archive
config task archive> set action archive
config task archive> set schedule time-of-day 15:00:00

For more information on archiving and archiving to multiple server locations away
from the ME system, refer to Chapter 5, “Configuring ME Accounting and Archiving,”
and the WebRTC Session Controller Media Engine Object Reference.

Media Loss Detection
The ME supports media loss detection, which determines when there is a loss of media
on a session call-leg. When enabled, all relevant media sessions anchored on the ME
are monitored for media activity at a configured interval. When the ME detects a loss
of media, an event is generated indicating the session-id, call-leg, media stream index,
type of media stream, and the timestamp of the last RTP packet received. An
additional event is generated once media has resumed.

Media loss is assumed when there is no change to the Rx packet count during a media
monitor interval.

Media Loss Detection

23-16 WebRTC Session Controller System Administrator's Guide

You can either configure media loss detection on a per-session basis or on-demand via
the call-control-media-loss-start and call-control-media-loss-stop actions.

Configuring Media Loss Detection
You can configure media loss detection for a session via the session-config >
in-media-loss-detection and out-media-loss-detection properties. You can also use
on-demand media loss detection using the call-control-media-loss-start and
call-control-media-loss-stop actions.

Configuring Media Detection Loss for a Session-config
The session-config > in-media-loss-detection and out-media-loss-detection objects
configure call-leg media loss monitoring. When these properties are enabled for a
session, any media session call-legs matching this session-config are monitored for a
loss of media.

A session's media must be anchored on the ME for media loss detection to work.

To enable in-leg and out-leg media detection loss:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click Configure next to in-media-loss-detection.

3. admin: Set to enabled to enable in-leg media loss detection. The default value is
disabled.

4. interval: Set the interval, in seconds, to monitor for a loss of media on the in-leg.
This value dictates how quickly the loss-of-media or resumption-of-media is
detected and an event is generated. The default interval is 5 seconds.

5. Click Set. You are returned to the session-config object.

6. Click Configure next to out-media-loss-detection.

7. admin: Set to enabled to enable out-leg media loss detection. The default value is
disabled.

8. interval: Set the interval, in seconds, to monitor for a loss of media on the out-leg.
This value dictates how quickly the loss-of-media or resumption-of-media is
detected and an event is generated. The default interval is 5 seconds.

9. Click Set. Update and save the configuration.

Initiating and Terminating On-Demand Media Loss Detection
You can initiate and terminate on-demand media loss detection via the
call-control-media-loss-start and call-control-media-loss-stop actions.

call-control-media-loss-start

Initiates on-demand media loss detection for the call-leg of a specified session.

Note: Media streams placed on hold are not monitored for the
duration that they are on hold. Monitoring resumes once the session is
taken off hold.

Note: The call-control-media-loss-start action takes precedence over
the session-config media loss detection configuration.

Media Loss Detection

Enabling ME Services 23-17

Syntax

call-control-media-loss-start <handle> [interval]
Arguments

■ <handle>: Specify the call-leg handle on which to start monitoring for a loss of
media.

■ [interval]: Specify the interval, in seconds, to monitor for a loss of media. This
value indicates how quickly the loss of media or resumption of media is detected
and an event generated. The default value is 5 seconds.

call-control-media-loss-stop

Terminates the on-demand monitoring of a specified call-leg for the loss of media.

Syntax

call-control-media-loss-stop <handle>
Arguments:

■ <handle>: Specify the call-leg handle on which to stop monitoring for a loss of
media.

Media Loss Detection

23-18 WebRTC Session Controller System Administrator's Guide

24

Configuring ME Accounting and Archiving 24-1

24Configuring ME Accounting and Archiving

This chapter describes the ME methods for capturing SIP call detail records (CDRs)
and other accounting records associated with SIP sessions

Accounting System Overview
The ME system uses industry-standard accounting targets where SIP call detail records
are forwarded. The supported accounting targets are:

■ RADIUS

■ Database

■ Syslog

■ File system

■ DIAMETER

■ Archiving

Accounting records are written to directories on the file system, providing a large
storage queue for call records as they are written. The accounting software then reads
and distributes the call records to the configured accounting target destination(s).

In the event that an accounting target is unable, call records are automatically resent
when the accounting target destination(s) become available and when all targets have
been updated successfully. Use the accounting reapply action to resend call records in
the file-system that met the date range to the target regardless if they previously were
sent to the target successfully (or not).

The following directory structure store accounting records prior to their distribution to
the various accounting targets.

/cxc/accounting/

Subdirectories: #

Files: #-sessionid

Base directory: The root location on the ME system for storing CDRs, such as
/cxc/accounting.

Subdirectories: A series of numbered subdirectories each containing the number of
files specified by accounting subdirectory-size property. The naming convention is # -
sequential value.

Files: Each entry is a discrete CDR record. The naming convention is # - sequential value
followed by the session identifier.

Configuring the Accounting Settings

24-2 WebRTC Session Controller System Administrator’s Guide

As the accounting software reads and processes files in the subdirectories, it creates,
updates and deletes the following status markers:

■ complete: Indicates that the directory has been fully populated and that all of the
files in the directory have been successfully processed.

■ lastprocessed: Indicates that the directory is currently being populated and that all
of the files have been processed successfully.

■ pending: Indicates that the accounting software has selected the directory for
processing and that processing has not yet begun.

■ inprogress: Indicates the files in the directory are currently being processed.

■ reapply: Indicates that the directory is currently being evaluated by the
accounting reapply action.

The services\data-locations object contains the accounting-root-directory property to
specify the directory where accounting records will be placed prior to being sent to the
various accounting targets. The default location is the /cxc_common/accounting
directory.

Configuring the Accounting Settings
General accounting settings are available under the vsp\accounting configuration
object.

■ admin: Enables or disables all configured accounting targets.

■ retention-period: Specifies how many days the accounting records should be
retained before being purged from the file system. The default setting is 7. The
range is 0 to 21 days.

■ subdirectory-size: Specifies the number of records to be recorded in each of the
sub-directories. The default is 1000. The range is 100 to 2000.

■ purge-criteria: Specifies he criteria to be used when deleting records from the file
system. The purge-always setting indicated that records should be deleted even if
they have not been saved to all of the defined enabled targets. The
purge-only-when-complete setting indicates that even expired CDRs should be
retained if they have not been sent to all of the defined targets.

■ report: Creates a named CDR summary report containing the specified field,
match, and category criteria.

The accounting purge action forces an immediate purge and clears all CDRs on the file
system that are eligible for deletion.

The accounting reapply action accepts a date range and selected groups and marks
qualifying records on the file system back to an unprocessed state. The records are
picked up and reapplied (resubmitted) to the configured accounting targets. Use this
action if CDR data is lost for a selected target and the data needs to be recovered. This
action is limited to data within the current retention period.

The show accounting-status command provides a summary of current accounting and
processing information for existing targets, including any target exceptions.

Configuring RADIUS Groups
The Remote Authentication Dial In User Service (RADIUS) implementation allows the
ME system to operate as a RADIUS client that directs SIP call detail records to a
RADIUS accounting server. The RADIUS accounting server receives the accounting

Configuring RADIUS Groups

Configuring ME Accounting and Archiving 24-3

request and returns a response to the client indicating that it has successfully received
the request.

A RADIUS group is a uniquely named object that defines the authentication and
accounting services associated with a group of RADIUS servers. Including a RADIUS
group in one or more VSP configurations allows the ME system (the RADIUS client) to
perform user authentication and forward accounting and SIP call detail records to
RADIUS servers.This means that you have flexibility to create as many unique
RADIUS groups as you need, and include them with the VSPs of your choice.

Within a RADIUS group, you set the RADIUS authentication and accounting modes
that you are using, the type of RADIUS accounting format, and whether the RADIUS
group is to be included as a default authentication and accounting group for SIP traffic
that is not governed by configured authentication and accounting policies.

The following image illustrates a sample network using a RADIUS accounting group.

CLI Session
The following CLI session creates the RADIUS accounting group named aaaGroup1
and sets the group operational properties.

NNOS-E> config vsp
config vsp> config radius-group aaaGroup1
Creating ‘radius-group aaaGroup1’
config radius-group aaaGroup1> set admin enabled
config radius-group aaaGroup1> set accounting-mode duplicate
config radius-group aaaGroup1> set authentication-mode failover 3
config radius-group aaaGroup1> set type Cisco

In this session, the authentication and accounting modes are RADIUS operational
algorithms. The duplicate algorithm issues multiple duplicate accounting requests to

Configuring RADIUS Groups

24-4 WebRTC Session Controller System Administrator’s Guide

all servers in the RADIUS accounting group. A duplicate accounting request uses the
same client source IP address and source UDP port. If you configure multiple
authentication servers in the RADIUS group, the failover algorithm forwards
authentication requests to secondary servers should the current authentication session
fail. You can specify up to 256 failover attempts to other servers.

The default accounting method is cisco accounting, and the aaaGroup1 RADIUS group
is a default group for all non-policy governed RADIUS requests between the ME
system and the RADIUS servers.

Configuring the RADIUS Servers
You can configure multiple RADIUS servers in the RADIUS group, and you identify
each server using a unique number and IP address, authentication port, accounting
port, and other operational settings.

CLI Session
The following CLI session creates two numbered RADIUS servers and sets the
operational properties for RADIUS requests and responses between the ME system
and the RADIUS servers.

NNOS-E> config vsp
config vsp> config radius-group aaaGroup1
config radius-group aaaGroup1> config server 192.168.147.6
config server 192.168.147.6> set admin enabled
config server 192.168.147.6> set authentication-port 1800
config server 192.168.147.6> set accounting-port 1801
config server 192.168.147.6> set secret-tag abc123xyz
config server 192.168.147.6> set timeout 1500
config server 192.168.147.6> set retries 3
config server 192.168.147.6> set window 255
config server 192.168.147.6> set priority 2
config server 192.168.147.6> return

config vsp> config radius-group aaaGroup1
config radius-group aaaGroup1> config server 192.168.147.7
config server 192.168.147.7> set admin enabled
config server 192.168.147.7> set authentication-port 1800
config server 192.168.147.7> set accounting-port 1801
config server 192.168.147.7> set secret-tag abcXYZ123
config server 192.168.147.7> set timeout 1500
config server 192.168.147.7> set retries 3
config server 192.168.147.7> set window 255
config server 192.168.147.7> set priority 2
config server 192.168.147.7> return
For additional information on configuring RADIUS groups and servers, refer to the
Net-Net OS-E – Objects and Properties Reference.

Including the RADIUS Group
When you configure RADIUS groups, you include one or more groups with the VSP
RADIUS accounting configuration. This tells the VSP what RADIUS servers to use
when forwarding RADIUS accounting requests.

CLI Session
The following CLI session includes the RADIUS groups named aaaGroup1 and
aaaGroup2 with the VSP RADIUS accounting configuration.

Configuring the Accounting Database

Configuring ME Accounting and Archiving 24-5

NNOS-E> config vsp
config vsp> config accounting
config accounting> config radius
config radius> set admin enabled
config radius> set group vsp radius-group aaaGroup1
config radius> set group vsp radius-group aaaGroup2
config radius> show

vsp
 accounting
 radius
 admin enabled
 group vsp\radius-group aaaGroup1
 group vsp\radius-group aaaGroup2
When using the set group command, specify the CLI path where you created the
Radius group.

Configuring the Accounting Database
The ME accounting database is a subsystem that captures and stores SIP call detail
records. If configured, these records can be forwarded to remote SQL database servers
such as Oracle and Postgres where the call detail records are used with other
accounting and billing applications. Access to a remote database group and server is
restricted by configured user names and passwords.

Accounting policies direct SIP call detail records to specific accounting groups and
servers. If you do not configure one or more remote database groups and servers, the
SIP call detail records are stored in the ME accounting database only. The following
image illustrates a sample network with a database server group.

Configuring Syslog

24-6 WebRTC Session Controller System Administrator’s Guide

CLI Session
The following CLI session creates the accounting database group named
databaseGroup1, creates the associated server named dbServer1, and sets the group
and server operating properties.

NNOS-E> config vsp
config vsp> config accounting
config accounting> config database
config accounting> set admin enabled
config database> config group databaseGroup1
Creating ‘group databaseGroup1’
config group databaseGroup1> set admin enabled
config group databaseGroup1> set mode duplicate

config group databaseGroup1> config server dbServer1
Creating ‘server dbServer1’
config group databaseGroup1> set admin enabled
config group databaseGroup1> set type sqlserver 192.124.65.3 24 srvr1
config group databaseGroup1> set username frank
config group databaseGroup1> set password-tag kj3k2
In this session, the duplicate mode algorithm issues a duplicate accounting request to
all servers in the accounting group. A duplicate accounting request uses the same
client source IP address and source UDP port. If you configure multiple database
servers in the database group, the fail-over algorithm forwards one accounting request
to each secondary servers should the current session fail.

The databaseGroup1 accounting group is a default group for all non-policy governed
accounting database requests between the ME system and the database servers.

For additional information on configuring accounting database groups and servers,
refer to the WebRTC Session Controller Media Engine Object Reference.

Configuring Syslog
Syslog allows you to log accounting information to a remote server using the
configured syslog format: Oracle, CSV, tabular, or XML format. When enabled, SIP call
detail records are forwarded to the specified syslog accounting group and server. The
following image illustrates a sample network.

Note: If you set the server type to local while using the local
database as the accounting target, set the username and the
password-tag to postgres. If you edit the username and password-tag
properties to anything other than postgres, data will not be written to
the database.

Configuring Syslog

Configuring ME Accounting and Archiving 24-7

CLI Session
The following CLI session creates the syslog accounting group named syslogGroup1,
specifies the associated syslog server at 192.167.43.12 on port 514, and sets the syslog
group and server operating properties.

NNOS-E> config vsp
config vsp> config accounting
config accounting> config syslog
config syslog> set admin enabled
config syslog> config group syslogGroup1
Creating ‘group syslogGroup1’
config group syslogGroup1> set admin enabled
config group syslogGroup1> set format csv

config group syslogGroup1> config server 192.167.43.12:514
Creating ‘server 192.167.43.12:514’
config server 192.167.43.12:514> set admin enabled
config server 192.167.43.12:514> set name syslogserver1
config server 192.167.43.12:514> set facility local0
config server 192.167.43.12:514> set priority info
config server 192.167.43.12:514> set include-timestamp true
In this session, syslogGroup1 uses Comma-Separated Values (CSV) format. CSV
format is a generic file format used for importing data into databases or spreadsheets,
such as Microsoft Access or Excel (or several other database systems). CSV uses the
.CSV file extension. The syslogGroup1 accounting group is a default group for all
non-policy governed accounting database requests between the ME and the syslog
servers.

The syslog server at IP address and port 192.67.43.12:514 is enabled with the
operator-defined name syslogserver1. The facility (local0 to local7) specifies where SIP
call detail records are logged. Syslog facilities help isolate the origin of messages
written to the syslog server. The syslog priority (info, emergency, alert, etc.) sets the

Configuring the File System

24-8 WebRTC Session Controller System Administrator’s Guide

message priority to be associated SIP call detail records. All ME accounting and SIP
call detail records are assigned this priority before they are forwarded to the syslog
server. A time stamp can also be applied to each accounting record.

For additional information on configuring accounting database groups and servers,
refer to the WebRTC Session Controller Media Engine Object Reference.

Configuring the File System
The accounting file system allows you to direct SIP call detail records to a named
directory path and file using a specified format: CSV, tabular., Oracle text file format,
or to a temporary output file in the case of postgres format.

There are two states that the file system cycles through as it processes raw CDRs and
writes to the output file.

■ Clear: The target is ready to write.

■ Writing: The target is writing to the output file.

The following image illustrates a sample network.

CLI Session
The following CLI session creates the file system group named filePath1, specifies
the format, file path, and target file name, and sets the file system operational
properties.

NNOS-E> config vsp
config vsp> config accounting
config accounting> config file-system
config file-system> set admin enabled
config file-system> config path filePath1

Configuring an External File System Target

Configuring ME Accounting and Archiving 24-9

Creating ‘path filePath1’
config path> set admin enabled
config path> set format csv
config path> set call-field-filter recorded
config path> set file-path \cxc\logfile1.csv
config path> set roll-over never
config path> set purge-old-logs true
config path> set retention-period 1 days
In this session, filePath1 uses Comma-Separated Values (CSV) format. CSV format is a
generic file format used for importing data into databases or spreadsheets, such as
Microsoft Access or Excel (or several other database systems). CSV uses the .CSV file
extension. The ME target file path is \cxc\logfile1.csv, where logfile1.csv is the name
of the file to which SIP call detail records are forwarded.

The roll-over property maintains and keeps the original time as it was first applied to
the log file. The log file will continue to build under this time stamp. The filePath1 file
system accounting group is a default target group for capturing all non-policy
governed SIP call detail records.

For additional information on configuring accounting database groups and servers,
refer to the WebRTC Session Controller Media Engine Object Reference.

Configuring an External File System Target
The external-file-system target allows you to send accounting records from the ME to a
remote system. The target is able to read raw CDRs and write this information to a
temporary output file in the format you specify during configuration.

There are four states that the external target cycles through as it processes raw CDRs,
writes to the output file, and sends it to the remote system.

■ Clear: The target is ready to write.

■ Writing: The target is currently writing to the temporary file.

■ Sending: The target is sending a file. At this time, the file can also be writing to a
temporary file that will become the next file to send once the current file is
successfully sent.

■ Blocked: The target has one file in the middle of sending and another one ready to
send. The target will not process anymore requests from the accounting server, but
will send retries to the server giving retry interval based on its best estimate of
when the retry can work.

If the configuration is modified or deleted, any files currently being processed are sent
immediately and without retries. If the target is in the blocked state, there are two files
immediately sent and if the target is in the sending or writing states, one file is sent.
The modification or deleted is applied only after the send completes, successfully or
not.

If there is a failure when sending a file to the external target, the send is retried every
30 seconds for an hour. After an hour, the send is retried once every hour until it
succeeds.

The following is the format of the output file:

<target-name>-<yyyy-mm-dd-hh-mm>-<processingtype>-<seq-no>.<xtn>
■ target-name: Name specified in the configuration.

■ yyyy-mm-dd-hh-mm: The timestamp when the output file is created.

■ processingtype: Hourly, daily, never.

Configuring Diameter

24-10 WebRTC Session Controller System Administrator’s Guide

■ xtn: .csv, .tab, .cov, or .pg

CLI Session
The following CLI session creates the external file system target, sets the target format,
URL address, and CDR processing.

NNOS-E>config vsp
config vsp>config accounting
config accounting>config external-file-system
config external-file-system>config url 7
Creating 'url test'
config url 7>
config url test>set admin enabled
config url test>set format csv
config url test>set url ftp://lalenchery:BillGates#1@10.33.5.10:/acct/test/
config url test>set cdr-processing batch 10
config url test>
For additional information on configuring external file system targets, refer to the
WebRTC Session Controller Media Engine Object Reference.

Configuring Diameter
The Diameter protocol, as described in RFC 3588, provides Authentication,
Authorization and Accounting (AAA) services for applications such as IP mobility and
SIP multimedia communications sessions. An ME system (SIP proxy), operating as
Diameter client, sends an accounting request to the Diameter server where the
Diameter server returns an accounting response to the Diameter client indicating that
it has received and processed the accounting request.

Diameter is also an essential component for the Oracle route-server functionality.

Creating the Diameter Accounting Group
Like RADIUS, a Diameter group is a uniquely named object that defines the
authentication and accounting services associated with a group of Diameter servers.
Including a Diameter group in one or more VSP configurations allows the ME system
(the Diameter client) to perform user authentication and forward SIP call detail records
to Diameter servers.This means that you have flexibility to create as many unique
Diameter groups as you need, and include them with the VSPs of your choice.

CLI Session
The following CLI session creates the Diameter accounting group named
diameterGroup1 and sets the group operational properties.

NNOS-E> config vsp
config vsp> config diameter-group 1
Creating ‘diameter-group 1’
config diameterGroup1> set admin enabled
config diameterGroup1> set authentication-mode round-robin
config diameterGroup1> set application sip
config diameterGroup1> set origin-host text
config diameterGroup1> set origin-realm text
config diameterGroup1> set default-destination-realm text
In this session, the authentication-mode, sets the Diameter group authentication
operational algorithm. This example allows continued authentication requests to
primary and secondary servers until a valid authentication response is received
(round-robin).

Configuring Diameter

Configuring ME Accounting and Archiving 24-11

The application setting specifies the target application for the servers in this Diameter
group. Choose SIP for standard AAA activities, 3GPPRx for inter-operation with the
Camiant policy server (enabled with the Rx object), and Routing for least-cost-routing
between clusters.

The origin-host specifies the text written to the Origin-Host attribute field in any
Diameter requests it sends. This should be the ME domain name.

The origin-realm specifies the text written to the Origin-Realm attribute field in any
Diameter requests it sends. This should be the ME domain name.

The default-destination-realm specifies the text written to the Destination-Realm
attribute field in any Diameter responses it sends. This setting operates with the 3Gpp
Rx application.

Configuring Diameter Servers
You can configure multiple Diameter servers in the Diameter group, and you identify
each server using a unique name, authentication port, and other operational settings.

CLI session
The following CLI session creates two numbered Diameter servers and sets the
operational properties for Diameter requests and responses between the ME system
and the Diameter peers.

NNOS-E> config vsp
config vsp> config diameter-group 1
Creating ‘diameter-group 1’
config diameterGroup1> set admin enabled
config group diameterGroup1> config server diameterServer1
Creating ‘server diameterServer1>
config diameterServer 1> set admin enabled
config diameterServer 1> set port 3868
config diameterServer 1> set transport tcp
config diameterServer 1> set authentication-port 3868
config diameterServer 1> set request-timeout 2
config diameterServer 1> set window 8
config diameterServer 1> set priority 1

NNOS-E> config vsp
config vsp> config diameter-group 1
Creating ‘diameter-group 1’
config diameterGroup1> set admin enabled
config group diameterGroup1> config server diameterServer2
Creating ‘server diameterServer2>
config diameterServer 2> set admin enabled
config diameterServer 2> set port 3868
config diameterServer 2> set transport tcp
config diameterServer 2> set authentication-port 3868
config diameterServer 2> set request-timeout 2
config diameterServer 2> set window 8
config diameterServer 2> set priority 1
For additional information on configuring Diameter groups and servers, refer to the
WebRTC Session Controller Media Engine Object Reference.

Configuring Diameter Interfaces and Ports
The diameter configuration object under the box\interface\ip object identifies the IP
interface on which the Diameter server application resides. This is the ME interface

Configuring Archiving

24-12 WebRTC Session Controller System Administrator’s Guide

that listens for incoming Diameter connections. This interface must be configured on
each ME domain that is referenced by a server in a Diameter group.

CLI Session
config box> config interface eth3
config interface eth3> config ip A

config ip A> config diameter
config diameter> set admin enabled
config diameter> set origin-host text
config diameter> set origin-realm text

config diameter> config port 3868
Creating ‘port 3868’
config port 3868> set admin enabled
config port 3868> set transport tcp
config port 3868> set application sip
config port 3868> set peer-access-control transport
config port 3868> set peer ipaddress
The origin-host setting specifies the text written to the Origin-Host attribute field in
any Diameter responses it sends. This should be the DNS name of the ME domain you
are configuring.

The origin-realm specifies the text written to the Origin-Realm attribute field in any
Diameter responses it sends. This should be the ME domain name.

The port configuration specifies properties for incoming Diameter connections. The
application setting sets the application that the incoming connection must be running
to use this port.

Choose SIP for standard AAA activities, 3GPPRx for inter-operation with the Camiant
policy server (enabled with the Rx object), and Routing for least-cost-routing between
clusters.

The peer-access-control setting specifies how the ME controls incoming peer
connections. You can select to allow incoming connection from all peers or from peers
on a configured list based on address or Host-IP-Address AVP.

The peer setting specifies the list of peers that are allowed to connect to this port. This
property is not applied if the peer-access-control property is set to none. Indicate the
peer by specifying the peer IP address.

Configuring Archiving
The accounting/archiving object allows you to configure an archiving location for SIP
call detail records. Archiving is the persistent storage of the contents of the call (as
opposed to the database or syslog server, which just records the placement of the call).

You must configure an archiving server in one of the archiving sub-objects for the
archiving mechanism to work:

■ windows-share: Archiving of accounting and SIP call records to a selected
Windows server partition

■ ftp-server: Archiving of accounting and SIP call records to a selected FTP server

■ http-server: Archiving of accounting and SIP call records to a selected HTTP
server

Configuring Archiving

Configuring ME Accounting and Archiving 24-13

■ smtp-server: Enables archiving of accounting and SIP call records to a selected
Simple Mail Transfer Protocol (SMTP) server. When enabled, the ME sends out the
archives in the form of an email attachment to the specified destination mailbox.

■ db-server: Archiving of accounting and SIP call records to a selected database
server

■ local: Archiving of accounting and SIP call records to a location on the ME system

The following CLI session configures a remote database server for archiving of SIP call
detail records.

CLI Session
NNOS-E> config vsp
config vsp> config accounting
config accounting> config archiving
config archiving> config db-server database1
Creating ‘db-server database1’
config db-server database1> set admin enabled
config db-server database1> set username admin
config db-server database1> set password-tag xyz123abc
config db-server database1> set server 192.168.10.10
config db-server database1> set url www.companyABC.com
config db-server database1> set driver-class com.oracle.jdbc.Driver
If you are archiving using the http-server method, a server-side script designed to be
run with Apache 2.0 and perl 5.8.5 on Linux is needed to handle the POST requests
that are sent from the ME to transfer the archive zip files to the server. The following is
an example:

#!/usr/bin/perl
#---Modify the above line to match the location of perl on your system---

#---This script has been tested running with OS-E software version 3.5.2 sending
#to Apache 2.0.52 running on Redhat EL4 Linux with perl 5.8.5---

#---Make sure to modify file permissions for this script so that it can
#be executed by the user running the httpd daemon.---

#---Note this script is provided as an example, which makes no attempt to validate
#the values pulled from the HTTP POST to ensure execution security---

#---Require strict syntax---
use strict;
use warnings;

#---Use the CGI library provided with perl - CGI.pm---
use CGI;
#---The below lines are an example of code, provided as-is, used to take
#the multipart/form-data from an HTTP POST to this script, which
#apache presents on STDIN and write it out to the disk in the
#directory specified in the variable above, using the same filename
#presented in the HTTP POST---

#---Instantiate CGI object---
my $cgi = new CGI;
my %params = $cgi->Vars;

#---Get proper filehandle from unknown file param name---
my $filehandle;
my $anon_param;

Configuring Archiving

24-14 WebRTC Session Controller System Administrator’s Guide

foreach my $param (keys %params) {
$anon_param = "$params{$param}" if (("$param" ne "name") && ("$param" ne "path"))
};

$filehandle = $cgi->param($anon_param);

#---Pull target directory from "path" cgi variable; this comes from the
"directory"
#in the OS-E config. Note: leave off the trailing slash------

#---Make sure to modify file permissions for target directory so that it can
#be executed and written to by the user running the httpd daemon.---
my $dir = $cgi->param('path');
#---Pull target filename from "name" cgi variable
#---Assemble directory and filename---
my $name = $cgi->param('name');
my $fullname = "$dir/$name";

#---Write out the file from the HTTP POST---
open(LOCAL, ">$fullname") or die $!;
binmode LOCAL;
while(<$filehandle>) { print LOCAL $_; }
close(LOCAL);

#---Needed for 200OK response---
print $cgi->header("text/plain"), "File received.";
The following example displays the way the ME must be configured for the
http-server archiving to work:

config archiving> config http-server server1
config http-server server1> set admin enabled
config http-server server1> set directory /tmp/archives
config http-server server1> set url http://10.0.0.1/cgi-bin/archive_http_upload_
example.pl
config http-server server1> set timeout 60000
■ The server needs to be configured to allow CGI scripts.

■ The script needs to be placed in the “cgi-bin” directory and given execute
permission for the user running the server.

■ The URL needs to include the name of the script.

■ The directory needs to have “write” permissions for the user running Apache.
This argument gets passed through the HTTP POST to the scripted. It is used to
determine to which directory on the server the archive file is written.

For additional information on archiving accounting records, refer to the Net-Net OS-E
– Objects and Properties Reference.

The ME also supports archiving as an accounting target, configured under the
accounting object. Archiving targets can be configured as either archive-local or
archive-external.

Once the archiving functionality is enabled and configured on the ME, the archiver
listens for requests from the accounting server. A request from the server tells the
archiver that there are calls that needs to be archived. The archiver creates a task for
each CDR. This task gathers data to put in the archive by executing actions and status
requests and querying databases.

The archiving target cycles through two states:

■ Clear: The target is ready to handle requests.

Configuring Archiving

Configuring ME Accounting and Archiving 24-15

■ Blocked: The target has reached the maximum number of files it can save. You
must remove saved archives to enable the target to start processing again.

When the ME sends an archive to a remote location and the send fails, the ME retries
sending the archive as many times as it is configured to do so. If all retries fail, the ME
saves the archive in the archive-save-folder and logs a message similar to the
following.

Warning: “Target archive-test, saved 1234.zip containing records 1000 to 1000 as
/cxc_common/archive/saved/1234.zip (failure was: Connect timed out)”
You can configure the number of archives that can be saved in the archive-save-folder
via the max-saved-on-send-failure property under the archive-external and
archive-local objects. Once the ME hits this threshold, the target enters the “Blocked”
state and stops processing any more CDRs until the saved archives are removed from
the folder. When this condition is reached, the ME logs a message similar to the
following:

Critical: “Target archive-test cannot process any more CDRs because the maximum of
200 archives that can be saved locally on failure is met or exceeded. Delete saved
archives to enable further processing.
Note that the number of saved archives may be slightly higher than the configured
number. This is because archives are not created in order and it is possible that some
newer CDRs finished processing earlier than the archive that finally blocked the target.

Due to accounting server purges, there may be missing CDRs. The ME handles
missing records by skipping over them and continuing the process. Missing records
are logged and can be viewed in the status provider.

During an HA failover, the target on the new master ME picks up from where the
previous master ME left off.

You configure the archiving targets under the vsp > accounting object.

vsp
 accounting
 admin enabled
 duration-type default
 retention-period 0 days 00:01:00
 subdirectory-size 100 records
 purge-criteria purge-always
 radius
 database
 syslog
 file-system
 external-file-system
 archiving
 purge-check-interval 0 days 01:00:00
 purge-disk-utilization-percent 90 %
 archive-local
 archive-external
archive-worker-threads automatic
 archive-max-inprogress 120
 archive-tries 2
 archive-name-format[1] recordID
 compatible-archives false
 server-idle-timeout 300
For more information on the new archiving configuration properties, see the WebRTC
Session Controller Media Engine Object Reference.

The target can then be applied to a session-config via the session-config > accounting
object.

Configuring Archiving

24-16 WebRTC Session Controller System Administrator’s Guide

config vsp>config default-session-config
config default-session-config>config accounting
config accounting>set target archive-external-file-system
"vsp\accounting\archive-external\url""archivetest""
You can view information regarding archive targets using the following status
providers.

The show accounting-targets action is a previously existing status provider that
displays summary data from all accounting targets. This status action now includes
archiving targets.

NNOS-E>show accounting-targets

 type: archive-external
 name: url archive-day1
 received: 641 CDRs
 processed: 641 CDRs
 failures: 0
 missing-records: 0
 last-acked-record: 1495276
 acked-pending-record: 1495276
average-processing-time: 2278 milliseconds/CDR
The show accounting-targets-archive-tasks action displays information about
currently running archiving tasks on the ME.

NNOS-E>show accounting-targets-archive-tasks

name record errors in-progress
------ ------ -----------
nnose-backup 1170995 2 (send)
nnose-backup 1171000 2 (send)
nnose-backup 1171001 2 (send)
For more information on these status providers, see the Webrtc Session Controller Media
Engine Object Reference.

Free-Form Accounting for CDRs
The ME supports free-form accounting for CDRs, meaning you have the ability to
completely customize the list of columns created in CDRs by using the session-config’s
named variable table. These custom CDRs are supported for all accounting target
types except internal database.

You still have the ability to use the pre-existing (default) accounting record columns.
This is the ME’s default behavior. Each target type supports both forms of accounting,
but each individual target can have only one or the other. A target can have either the
default accounting fields or custom accounting fields.

This feature differs from the existing CDR custom data fields because you create all of
the columns yourself. In releases previous to 3.6.0m5, you could only get existing
fields and filter those that you did not want. There also existed one column named
custom-field that contained user-specified data.

To enable free-form accounting for CDRs:

1. Select the Configuration tab and click the vsp > accounting object.

2. Click Configure next to the type of target for which you want to create free-form
accounting.

3. admin: Set to enabled and provide either a group or a path for the target
(depending on which type of target you are configuring).

Using the ME Archive Viewer

Configuring ME Accounting and Archiving 24-17

4. custom-accounting: Set to enabled.

5. Click Set. Update and save the configuration.

To create free-form CDRs, one mechanism to populate free-form CDRs is to use named
variables in the session-config. Named variables can be added to sessions on the ME in
multiple ways. They can be added via the session-config > named-variables object.
For more information on configuring named-variables in the session-config, see
Configuring Session Configuration Objects in the WebRTC Session Controller Media
Engine Object Reference.

Named-variables can also be added via the named-variable-add action. For more
information on this action, see the Named Variable Actions section of this guide.

The ME offers a list of pre-defined variables for you to use in free-form CDRs. These
can be broken down into three types: acct, cdr, and session.

The acct class of named variables is derived from items that are already available
through the accounting-data > custom-data-field.

For a complete list of named variables available on the ME, see the WebRTC Session
Controller Media Engine Objects and Properties Reference guide.

Once you have the named-variables configured in the session-config, you can add
them to your free-form CDRs. You can add named-variables to free-form CDRs via the
accounting > targets > named-variable-entries property.

To add named-variables to free-form CDRs:

1. Access the vsp > accounting > <target> > named-variable-entries object where you
have the custom-accounting property set to enabled. Click Configure next to
named-variable-entries.

Or, access the vsp > session-config-pool > entry > accounting-data object and
click Add named-variable-entry.

2. Click Add entry.

3. From the variable-name drop-down list, select the named-variable to include.

4. display-name: Enter the name you want to be displayed for this column. This
value is required if the accounting target is a database and the display-name
complies with the column name rule of the corresponding database.

5. Click Create. Repeat this process for as many named-variables as you want to
include.

6. Click Set. Update and save the configuration.

Using the ME Archive Viewer
The archive viewer is a standalone utility that displays information and plays video
recordings from archive files that have been stored locally on a client PC. The viewer
allows you to see the call diagram and message details without having to run the ME
Management System.

The following image illustrates a sample Archive Viewer display.

Note: The custom-accounting property overrides the call-field-filter
property, where you configure the default accounting records.

Call Detail Record Field Descriptions and Data Types

24-18 WebRTC Session Controller System Administrator’s Guide

The Archive Viewer is contained in a ZIP file included with the ME release software.
The file is named nnSE360-av.zip.

Perform the following steps on a Windows PC, which is the only supported platform
for the Archive Viewer:

1. Download the nnSE360-av.zip file to a location on your PC. The file is available
from the Oracle support site.

2. Double-click the .ZIP file, then select Extract All. A separate folder will be created
using the same name, minus the .ZIP extension.

3. Open the folder that you just created, then double-click the nnSE360-av.exe file.
This will launch the Archive Viewer.

4. Select File->Open Archive, or File->Stream Viewer to browse for the archived
file. The Stream Viewer replays and mixes the two audio streams (one in each
direction) with the video streams (one in each direction).

Call Detail Record Field Descriptions and Data Types
The following table lists and describes the fields and data types that make up detail
record.

Note: You must configure the ME with both accounting and media
recording enabled. You can enable archiving to periodically send the
recorded files to a workstation, or you can create individual session
archives on demand from the ME Management System Call Logs
screen.

Call Detail Record Field Descriptions and Data Types

Configuring ME Accounting and Archiving 24-19

Table 24–1 CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

ani type="String" type="name" VARCHAR2
(256)

The caller ID for the ANI
after any manipulation is
done by the ME.

call-dest-cr-name type="String" type="name" VARCHAR2
(256)

The name of the dial plan
that forwarded the call.

call-dest-realm-name type="String" type="name" VARCHAR2
(256)

The destination domain
name to which the call
was forwarded.

call-dest-regid type="String" type="name" VARCHAR2
(256)

The server name if
available, or user portion
of the To: URI.

call-id type="String" type="name" VARCHAR2
(256)

The unique call identifier
of the inbound call leg.

call-id-2 type="String" type="name" VARCHAR2
(256)

The secondary call
identifier for the outgoing
leg.

call-pdd type="uint32" type="int4" NUMBER The post dial delay
between the initial INVITE
and the 180/183
RINGING.; calculated in
msec.

call-source-realm-name type="String" type="name" VARCHAR2
(256)

The source domain name
from which the call was
received.

call-source-regid type="String" type="name" VARCHAR2
(256)

The server name if
available, or user portion
of the From: URI.

call-type type="String" type="name" VARCHAR2
(256)

The type of call, such as IV
for Inbound Voice.

called-party-after-src-call
ing-plan

type="String" type="namev" VARCHAR2
(256)

The called party number
after any manipulation on
leg 1, but before any
manipulation on leg 2.

cdr-type type="String" type="name" VARCHAR2
(256)

The call record type, either
START or STOP.

codec-on-dest-leg type="String" type="name" VARCHAR2
(256)

The CODEC associated
with the outbound call leg.

codec-on-src-leg type="String" type="name" VARCHAR2
(256)

The CODEC associated
with the inbound call leg.

connect-time type="Time" type="timestamp
"

TIMESTAMP The time at which the SIP
was connected to the SIP
call destination in the
format
hour:minutes:seconds.mill
iseconds: weekday
year-month-day.

creation-timestamp type= "Time" type="timestamp
"

TIMESTAMP The time the accounting
record was written to the
accounting target.

Call Detail Record Field Descriptions and Data Types

24-20 WebRTC Session Controller System Administrator’s Guide

custom-data type="String" type="name" VARCHAR2
(256)

Custom data field as
defined by the
accounting-data object.

disconnect-cause type="Disconnect
Type"

type="int4" NUMBER The reason for the call
disconnection, such as
BYE.

disconnect-error-type type="String" type="name" VARCHAR2
(256)

The type of error that
caused the disconnection.

disconnect-time type="Time" type="timestamp
"

TIMESTAMP The time at which the SIP
was disconnected from the
SIP call destination in the
format
hour:minutes:seconds.mill
iseconds: weekday
year-month-day.

dnis type="String" type="name" VARCHAR2
(256)

Dialed Number
Identification Service

duration type="uint32" type="int4" NUMBER Duration of the call in
seconds.

from type="String" type="name" VARCHAR2
(256)

The string in the From
URI:field of SIP header.

header type="String" type="name" VARCHAR2
(256)

An arbitrary header
associated with the SIP
call.

hunting-attempts type="uint32" type="int4" NUMBER The number of times the
ME used the arbiter to
select a dial-plan and a
failure occurred (including
subsequent attempts).

in_anchor_dst type="IPPort" type="name" VARCHAR2
(256)

The IP address and port at
the ME where the inbound
call leg was received from
the source peer.

in_anchor_src type="IPPort" type="name" VARCHAR2
(256)

The IP address and port at
the ME where the inbound
call leg was forwarded to
the destination peer.

in_peer_dest type="IPPort" type="name" VARCHAR2
(256)

The IP address and port of
the destination phone to
which the ME forwarded
the inbound call leg.

in_peer_src type="IPPort" type="name" VARCHAR2
(256)

The IP address and port of
the source phone that
contacted the ME over an
inbound call leg.

incoming-request-uri type="String type="name" VARCHAR2
(256)

The Request URI on the
inbound call leg.

incoming-uri-stripped type="String" type="name" VARCHAR2
(256)

The stripped down
version of the incoming
request URI.

Table 24–1 (Cont.) CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

Call Detail Record Field Descriptions and Data Types

Configuring ME Accounting and Archiving 24-21

last-pkt-timestamp-on-d
est-leg

type="Time" type="timestamp
"

TIMESTAMP The time of the last media
packet on the destination
leg.

last-pkt-timestamp-on-sr
c-leg

type="Time" type="timestamp
"

TIMESTAMP The time of the last media
packet on the source leg.

last-status-message type="uint16" type="int4" NUMBER An integer indicating SIP
message type last status
message (omitting “200
OK”) and therefore call
progress.

latency-on-dest-leg type="uint32" type="int4" NUMBER The total processing time
of the outbound call leg.

latency-on-src-leg type="uint32" type="int4" NUMBER The total processing time
of the inbound call leg.

max-jitter-on-dst-leg type="uint32" type="int4" NUMBER The maximum jitter on the
destination leg.

max-jitter-on-src-leg type="uint32" type="int4" NUMBER The maximum jitter on the
source leg.

max-latency-on-dst-leg type="uint32" type="int4" NUMBER The maximum latency on
the destination leg.

max-latency-on-src-leg type="uint32" type="int4" NUMBER The maximum latency on
the inbound call leg.

method type="String" type="name" VARCHAR2
(256)

The SIP method, such as
INVITE or REGISTER, that
initiated the call session.

mimetype-on-dest-leg type="String" type="name" VARCHAR2
(256)

The MIME type associated
with the outbound call leg,
such as audio/pcmu.

mimetype-on-src-leg type="String" type="name" VARCHAR2
(256)

The MIME type associated
with the inbound call leg,
such as audio/pcmu.

mos-fmt-dest-leg type="String" type="name" VARCHAR2
(256)

The formatted MOS
calculation on the
oubound call leg.

mos-fmt-on-src-leg type="String" type="name" VARCHAR2
(256)

The formatted MOS
calculation on the inbound
call leg.

mos-on-dest-leg type="uint32" type="int4" NUMBER The MOS calculation *
1000 on the oubound call
leg.

mos-on-src-leg type="uint32" type="int4" NUMBER The MOS calculation *
1000 on the inbound call
leg.

new-ani type="String" type="name" VARCHAR2
(256)

The caller ID for the ANI
after any manipulation is
done by the ME.

newDnis type="String" type="name" VARCHAR2
(256)

New Dialed Number
Identification Service

Table 24–1 (Cont.) CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

Call Detail Record Field Descriptions and Data Types

24-22 WebRTC Session Controller System Administrator’s Guide

next-hop-dn type="String" type="name" VARCHAR2
(256)

The fully qualified domain
name (FQDN) or IP
address of the next
network node handling
the call forwarded by the
ME.

next-hop-ip type="IPHost" type="int4" NUMBER The IP address of the next
hop; the next network
node handling the call
forwarded by the ME
device.

origGW type="String" type="name" VARCHAR2
(256)

The name of the
originating gateway
associated with the call.

origin type="String" type="name" VARCHAR2
(256)

The ORIGIN header
associated with the SIP
call.

out_anchor_dst type="IPPort" type="namev" VARCHAR2
(256)

The IP address and port at
the ME where the
outbound (responding)
call leg was received from
the destination peer.

out_anchor_src type="IPPort" type="name" VARCHAR2
(256)

The IP address and port at
the ME where the
outbound call leg was
forwarded back to the
source peer.

out_peer_dst type="IPPort" type="name" VARCHAR2
(256)

The IP address and port of
the destination phone to
which the ME forwarded
the outbound (return) call
leg.

out_peer_src type="IPPort" type="name" VARCHAR2
(256)

The IP address and port of
the responding destination
phone from which an
outbound call leg was
returned to the ME.

outgoing-request-uri type="String" type="name" VARCHAR2
(256)

The Request URI on the
outbound leg.

packets-discarded-on-de
st-leg

type="uint32" type="int4" NUMBER The total number of
packets discarded on the
outbound call leg.

packets-discarded-on-src
-leg

type="uint32" type="int4" NUMBER The total number of
packets discarded on the
inbound call leg.

packets-lost-on-dest-leg type="uint32" type="int4" NUMBER The total number of
packets lost on the
outbound call leg.

packets-lost-on-src-leg type="uint32" type="int4" NUMBER The total number of
packets lost on the
inbound call leg.

Table 24–1 (Cont.) CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

Call Detail Record Field Descriptions and Data Types

Configuring ME Accounting and Archiving 24-23

packets-received-on-dest
-leg

type="uint32" type="int4" NUMBER The total number of
packets received on the
outbound call leg.

packets-received-on-src-l
eg

type="uint32" type="int4" NUMBER The total number of
packets received on the
inbound call leg.

previous-hop-ip type="IPHost" type="int4" NUMBER The IP address of the
previous hop; the last
network node handling
the call before received at
the ME device.

previous-hop-via type="String" type="name" VARCHAR2
(256)

The VIA header from the
previous hop.

pvd-on-dest-leg type="uint32" type="int4" NUMBER The packet delay variation
(jitter) associated with the
call on the outbound call
leg.

pvd-on-src-leg type="uint32" type="int4" NUMBER The packet delay variation
(jitter) associated with the
call on the inbound call
leg.

recorded type="Boolean" type="int4" NUMBER The true or false indication
as to whether the SIP call
was recorded.

rfactor-on-dest-leg type="uint16" type="int4" NUMBER The R-factor integer used
in the MOS score
compilation on the
destination call leg.

rfactor-on-dest-leg-times
-1000

type="uint32" type="int4" NUMBER The R-factor integer * 1000
this is used in the MOS
score compilation on the
destination call leg.

rfactor-on-src-leg type="uint16" or
type="uint32"

type="int4" NUMBER The R-factor integer used
in the MOS score
compilation on the
inbound call leg.

rfactor-on-src-leg-times-1
000

type="uint32" type="int4" NUMBER The R-factor integer * 1000
this is used in the MOS
score compilation on the
inbound call leg.

scp-name type="String" type="name" VARCHAR2
(256)

The ME virtual system
partition (VSP) that
handled the call.

session-id type="uint64"

format="hex"

key="index"

type="int8" NUMBER The unique session
identifier in hexadecimal
format, unassigned 64-bit
integer.

Table 24–1 (Cont.) CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

Call Detail Record Field Descriptions and Data Types

24-24 WebRTC Session Controller System Administrator’s Guide

setup-time type="Time"

key="index"

type=

"timestamp"

TIMESTAMP The time at which the SIP
was set up at the ME in
the format
hour:minutes:seconds.mill
iseconds: weekday
year-month-day.

setup-time-integer type="uint64" type="int8" NUMBER The call setup time
indicated as an integer.

termGW type="String" type="name" VARCHAR2
(256)

The name of the gateway
where the call was
terminated.

to type="String" type="name" VARCHAR2
(256)

The string in the To URI:
field of the SIP header.

Table 24–1 (Cont.) CDR Field Descriptions and Data Types

CDR Field
MS-SQL Data
Types

PostgreSQL
Data Types

Oracle Data
Types Description

25

Configuring Domain Name Systems (DNS) 25-1

25Configuring Domain Name Systems (DNS)

This chapter covers DNS configurations on the ME system.

Domain Name System (DNS) Overview
Domain Name System (DNS) servers are responsible for translating Internet domain
and host names to IP addresses. DNS converts the name entered on a Web browser
address bar to the IP address of the Web server that hosts that particular Web site. DNS
uses a distributed database to store this name and address information for all public
hosts on the Internet.

When an Internet client issues a request that involves an Internet host name, a DNS
server determines the host's IP address. If the DNS server cannot service the request, it
forwards the request to other DNS servers until the IP address is resolved, completing
the Internet client request.

The ME maintains a cache of query responses: positive responses were successful and
negative (reject) responses failed. This response is the DNS resource record, allowing
the ME to consult its cache for mapping information before querying a server.

RADIUS and Diameter group accounting configurations, for example, require that you
configure DNS to resolve the IP addresses associated with RADIUS and Diameter
servers being used to capture call detail records.

The following image illustrates a sample network with a DNS server that resolves
RADIUS server IP addresses using the domain name.

Configuring the DNS Resolver

25-2 WebRTC Session Controller System Administrator’s Guide

Configuring the DNS Resolver
The ME system functions as a DNS client (resolver) that forwards requests for IP
address resolutions, but does not act as a server in accepting requests. As a resolver,
the ME obtains resource records from DNS servers on behalf of resident or requesting
applications. You must configure the resolver function before other objects within the
DNS configuration object.

The DNS object configures the ME domain name, one or more DNS servers, and static
mapping between host names and addresses. You can also configure static service
locations, naming authority pointers, and how to resolve negative entries.

CLI Session
The following CLI session configures and enables the DNS resolver, sets the domain
name to be used for DNS mappings, sets the DNS server IP address, port number and
transport protocol, and the DNS query properties.

NNOS-E> config vsp
config vsp> config dns
config dns> config resolver
config resolver> set admin enabled

Note: You must configure the settings of the resolver object before
setting other objects under DNS.

Mapping SIP Services

Configuring Domain Name Systems (DNS) 25-3

config resolver> set server 192.168.10.10 UDP 54
config resolver> set query-timeout 10
config resolver> set query-retries 5
config resolver> set cache-poll-interval 60

The query-timeout property specifies the time, in seconds (between 1 to 10), that a
DNS lookup can go unanswered before it times out. The query-retries property
specifies the number of DNS query (lookup) retries to execute if a DNS query times
out. Enter a number of retries between 0 to 5, where 0 indicates no retries.

The cache-poll-interval property specifies the number of seconds that the ME waits
between refreshing the cache. The interval controls the rate at which the ME polls the
location-cache to purge stale location bindings.

Configure as many DNS servers as you need. Refer to the WebRTC Session Controller
Media Engine Object Reference for information on additional settings.

Configuring DNS Hosts and IPs
For each host in your network domain, you need to statically map IP addresses to host
names. The host object requires that you supply a name variable. This is the name of
an Internet node, for example, a SIP server, a RADIUS server, or a PC in your network.

You can enter:

■ An existing name and new address; the corresponding address is mapped to the
name for use in DNS lookups, or

■ A new name and existing address; the system creates a named entry for DNS use.

CLI Session
The following DNS session configures the DNS host name for the RADIUS server
named radServer1 and sets the IP address to be returned in DNS lookups.

NNOS-E> config vsp
config vsp> config dns
config dns> config host radServer1
Creating ‘host radServer1’
config host radServer1> set address 192.168.124.6
The following DNS session configures the DNS host name for the SIP server named
lcsServer1 and sets the IP address to be returned in DNS lookups.

NNOS-E> config vsp
config vsp> config dns
config dns> config host lcsServer1
Creating ‘host lcsServer1
config host lcsServer1> set address 192.168.125.3

Mapping SIP Services
The DNS service object allows you to statically map SIP services to specific SIP
servers. Using a configured rule, DNS resolves the SIP service and maps the service to
a specific SIP server. By adding DNS server resource (SRV) records for each SIP
service, SRV records provide contacts for the specific DNS servers.

The rule property establishes the preference level for selecting a named SIP service if
you configure multiple SIP service mappings. Configuring the service object for each
SIP service establishes the sequence to use when contacting the configured SIP servers.

Configuring NAPTR

25-4 WebRTC Session Controller System Administrator’s Guide

CLI Session
The following CLI session maps the TLS service on the company.com domain. DNS
resolves the TLS service to lcsServer1 using the configured rule (port, priority, and
weight settings).

NNOS-E> config vsp
config vsp> config dns
config dns> config service company.com tls
Creating ‘service company.com tls’
config service company.com> set rule lcsServer1.company.com
5001 10 5

Configuring NAPTR
The Naming-authority pointer (called NAPTR) creates a static mapping of service
information to a specific server or domain name. This mapping performs DNS lookups
for requests in cases where the ME system cannot determine either the protocol or port
of the destination.

Naming-authority pointer (NAPTR) records contain rules for converting each request
to the correct configured service. Because each transport service over SIP is viewed as
a different service (TCP, UDP, or TLS), they establish three different NAPTR records.
This object configures the preference for use of an appropriate service for each domain.

Set one rule for each protocol: UDP, TCP, and TLS. Before a request can be forwarded
on, the system must know the protocol and the port for the destination.

CLI Session
The following CLI session sets the NAPTR rules (protocol, order, preference) for SIP
TLS, TCP and UDP services on the company.com domain. DNS uses the configured
SIP services (TLS, TCP, UDP) to resolve the destination SIP server, using exact
matching of the company.com domain name.

NNOS-E> config vsp
config vsp> config dns
config dns> config naptr company.com
Creating ‘naptr company.com’
config naptr company.com> set match exact
config naptr company.com> set rule TLS 1 10
config naptr company.com> set rule TCP 2 10
config naptr company.com> set rule UDP 3 10
For more information on NAPTR and DNS on the ME system, refer to the WebRTC
Session Controller Media Engine Object Reference.

Configuring DNS Rejections
You can instruct DNS to ignore lookups that involve certain domain names. The DNS
reject object requires that you supply a host name, service name, domain name, or IP
address. Any request containing the specified name will be rejected.

Set the type property to identify which record type you are entering:

■ A: IPv4 address

■ AAAA: IPv6 address

■ PTR: Address to name mapping

■ NAPTR: NAPR rule

Configuring DNS Rejections

Configuring Domain Name Systems (DNS) 25-5

CLI Session
The following CLI session rejects DNS lookups that involve the domain named
evilBadGuy.com., using the IPv4 address, matching the exact domain name as
entered.

NNOS-E> config vsp
config vsp> config dns
config dns> config reject badNetwork.com naptr
Creating ‘reject badNetwork.com naptr’
config reject badNetwork.com> set match exact
For more information on DNS rejections on the ME system, refer to the WebRTC Session
Controller Media Engine Object Reference.

Configuring DNS Rejections

25-6 WebRTC Session Controller System Administrator’s Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	Part I Configuring WebRTC Session Controller
	1 WebRTC Session Controller Configuration Overview
	About the Oracle WebLogic Platform
	Overview of Configuration and Administration Tools
	Administration Console
	WebLogic Scripting Tool
	WebRTC Session Controller Console
	Additional Configuration Methods
	Editing Configuration Files
	Custom JMX Applications

	Common Configuration Tasks

	2 Configuring WebRTC Session Controller
	About Multitenancy
	About Tenants
	About the Tenant Key
	About Managing Tenant and Application Profiles

	How Multitenancy Works
	About Service Level Agreements

	About Managing Tenant and Application Profiles

	About Secure Connections
	About Security for Connections Between the Signaling and Media Engine
	Storing and Managing Certificates in WebLogic Server
	Disabling the HTTPS Setting in WebLogic Server

	About Security for Connections to Cloud Messaging Providers
	About Security for WebRTC Application Features
	RTCDataChannel Interface
	Device Handover
	TURN Authorization

	About WebRTC Session Controller Console Configuration
	About the Administration Console Configuration Process
	Accessing the WebRTC Session Controller Console Configuration Tabs

	About Templates for Message Notifications
	About the Push Payload Construction for Android Notifications
	About the Push Payload Construction for iOS Notifications
	Handling Silent Notifications

	Configuring Default Parameters for WebRTC Session Controller Applications
	Configuring Global Properties for the Signaling Engine
	Global Integration Parameters of the Signaling Engine
	Global Runtime Parameters of the Signaling Engine
	Global Resource Limit Parameters of the Signaling Engine
	Configuring the Default Logging Level for the Signaling Engine
	Logging for Single Engines in a Cluster

	Managing Media Engine Nodes Configuration and Status
	Configuring the Media Engine
	Providing Credentials for the Media Server
	Adding Media Engine Nodes
	Blocking and Unblocking Media Node Traffic
	Removing Media Engine Nodes
	Refreshing Media Node Information

	Managing WebRTC Session Controller Notification Service
	Configuring WebRTC Session Controller Notification Service
	Creating Applications for the Notification Service
	Client Application Configuration settings
	Updating an Application in the Notification Service
	Removing Applications from the Notification Service
	Deleting an SSL Certificate

	Configuring Messaging Packages
	About the Global Packages Tab
	Creating Packages
	Managing Package Criteria
	Configuring Package Criteria
	Updating Package Criteria
	Deleting a Criteria

	About the WebRTC Session Controller Global Script Library
	Managing WebRTC Session Controller Application Profiles
	About the Application Profiles Tab
	Managing Application Profiles
	Creating Your Application Profile
	Providing the Profile Information for the Application
	Managing Packages in Your Application Profile
	Managing the Groovy Script for the Application Profile

	Exporting and Importing a Configuration
	Debugging Groovy Script Run Time Errors
	About the WebRTC Session Controller Console Validation Tests

	3 Using the Administration Console and WLST
	Accessing the Administration Console
	Locking and Persisting the Configuration

	Using WLST (JMX) to Configure WebRTC Session Controller
	Configuring the SIP Container with WLST
	Managing Configuration Locks
	Configuration MBeans for the SIP Servlet Container
	Locating the SIP Container MBeans

	Configuring the WebRTC Session Controller Application with WLST
	Managing Configuration Locks
	Configuration MBeans for WebRTC Session Controller
	Accessing WebRTC Session Controller Application MBeans

	Managing Application and Tenant Profiles Using WebLogic Scripting Tool

	WLST Configuration Examples
	Invoking WLST
	WLST Template for Configuring Container Attributes
	Creating and Deleting MBeans
	WebRTC Session Controller Code Sample

	Setting Logging Levels
	Startup Sequence for a WebRTC Session Controller Domain
	Startup Command Options
	Supporting Session Rehydration for Device Handover Scenarios

	Reverting to the Original Boot Configuration

	4 Configuring WebRTC Session Controller Authentication
	About WebRTC Session Controller Security Schemes
	About Provisioning WebRTC Session Controller Guest Access
	Configuring the WebLogic Server Guest Access Provider
	Configuring the WebRTC Session Controller Guest Access Application

	About Provisioning WebRTC Session Controller HTTP Access
	Configuring the WebLogic Server HTTP Authentication Provider
	Configuring the WebRTC Session Controller HTTP Access Application

	About Provisioning WebRTC Session Controller OAuth Access
	Configuring the WebLogic Server OAuth Access Provider
	Configuring the WebRTC Session Controller OAuth Access Application

	How Authentication Schemes Work in Multitenancy Scenarios
	About the Default REST Request Format
	Working with Custom and WebLogic LDAP Security Providers

	Example: Configuring Facebook OAuth Authentication
	Configure a Facebook Authentication App
	Configure the Facebook WebRTC Session Controller OAuth Authentication Provider

	Example: Configuring Google OAuth Authentication
	Configure a Google Authentication Project
	Configure the Google WebRTC Session Controller OAuth Authentication Provider

	About Post-Authentication Redirection
	About the validateAuthenticatedUser Function
	Syntax
	Example

	Editing validateAuthenticatedUser

	5 Configuring WebRTC Session Controller Diameter Rx to PCRF Integration
	About the WebRTC Session Controller Rx Interface
	Overview of Diameter Rx Protocol Configuration
	Installing the Diameter Domain Template
	Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol
	Configuring Two-Way SSL for Diameter TLS Channels
	Configuring and Using SCTP for Diameter Messaging

	Configuring Diameter Nodes
	Creating a New Node Configuration (General Node Configuration)
	Configuring Diameter Applications
	Configuring the Rx Client Application

	Configuring Peer Nodes
	Configuring Routes

	Troubleshooting Diameter Configurations

	6 Configuring WebRTC Session Controller Container Properties
	Configure General SIP Application Server Properties
	Adding Servers to the WebRTC Session Controller Cluster
	Configuring Timer Processing
	Configuring Timer Affinity (Optional)
	Configuring NTP for Accurate SIP Timers

	7 Using the Lightweight Proxy Registrar
	About the Lightweight Proxy Registrar
	About SIP Registration Modes
	About Proxy Forking Modes
	About Lightweight Proxy Registrar Components
	About the Lightweight Registrar
	About the Lightweight Proxy
	About the Location Service
	Handling Multitenancy
	About the Custom Application Router

	About Multiple Identity Support

	Configuring the Lightweight Proxy Registrar
	Configuring Registration Mode
	Configuring Forking Mode

	8 Configuring Network Connection Settings
	Overview of Network Configuration
	Configuring External IP Addresses in Network Channels
	About IPv4 and IPv6 Support
	Enabling DNS Support
	Configuring Network Channels for SIP or SIPS
	Reconfiguring an Existing Channel
	Creating a New SIP or SIPS Channel

	Configuring Custom Timeout, MTU, and Other Properties
	Configuring SIP Channels for Multihomed Machines
	Configuring Engine Servers to Listen on Any IP Interface
	Configuring Static Source Port for Outbound UDP Packets
	Configuring Listen Addresses for Servers
	Configuring Coherence Cluster Addressing

	9 Configuring Server Failure Detection
	Overview of Failover Detection
	Coherence Cluster Overview
	Split-Brain Handling

	Coherence Configuration
	Cluster Configuration File

	10 Using the Engine Cache
	Overview of Engine Caching
	Configuring Engine Caching
	Monitoring and Tuning Cache Performance

	11 Configuring Coherence
	About Coherence Engine Communication and State Management
	Configuring Coherence for Engine Communication and State Management

	About Call-State Storage and Management for SIP Calls
	Configuring Coherence Call-State Storage
	Modifying the Call-State Storage Configuration

	Monitoring Coherence Call-State Storage

	Part II Monitoring and Troubleshooting
	12 Logging SIP Requests and Responses and EDRs
	Overview of SIP Logging
	Configuring the Logging Level and Destination
	Specifying the Criteria for Logging Messages
	Using XML Documents to Specify Logging Criteria

	Specifying Content Types for Unencrypted Logging
	Enabling Log Rotation and Viewing Log Files
	trace-pattern.dtd Reference
	Adding Tracing Functionality to SIP Servlet Code
	Order of Startup for Listeners and Logging Servlets
	Accessing Event Detail Records
	Managing EDRs in a Multitenancy Scenario

	13 Monitoring Statistics and Resource Limits
	About WebRTC Session Controller Statistics
	About the Monitoring of Licenses
	About Resource Limits
	About the default Resource Limit Entry

	About Statistics Counters

	Configuring Resource Limits
	Configuring Resource Limits in the Signaling Engine
	Configuring Resource Limits for Applications

	Monitoring the Metrics
	Monitoring the System at RunTime
	About StatisticsRuntimeMBean

	Monitoring SIP Counters at Runtime
	About the SipRuntimeMBean

	Monitoring High Watermark Log Messages
	Disabling the Monitoring of System Statistics

	14 Avoiding and Recovering From Server Failures
	Failure Prevention and Automatic Recovery Features
	High Availability
	Overload Protection
	Redundancy and Failover for Clustered Services
	Automatic Restart for Failed Server Instances
	Managed Server Independence Mode
	Automatic Migration of Failed Managed Servers
	Geographic Redundancy for Regional Site Failures

	Directory and File Backups for Failure Recovery
	Enabling Automatic Configuration Backups
	Storing the Domain Configuration Offline
	Backing Up Logging Servlet Applications
	Backing Up Security Data
	Backing Up the WebLogic LDAP Repository

	Backing Up Additional Operating System Configuration Files

	Restarting a Failed Administration Server
	Restarting an Administration Server on the Same System
	Restarting an Administration Server on Another System

	Restarting Failed Managed Servers

	15 Tuning JVM Garbage Collection for Production Deployments
	Goals for Tuning Garbage Collection Performance
	Modifying JVM Parameters in Server Start Scripts
	Tuning Garbage Collection with Oracle JDK

	16 Avoiding JVM Delays Caused By Random Number Generation
	Avoiding JVM Delays Caused by Random Number Generation

	Part III Reference
	17 Engine Server Configuration Reference (sipserver.xml)
	Overview of sipserver.xml
	Editing sipserver.xml
	Steps for Editing sipserver.xml

	XML Schema
	Example sipserver.xml File
	XML Element Description
	enable-timer-affinity
	overload
	Selecting an Appropriate Overload Policy
	Overload Control Based on Session Generation Rate
	Overload Control Based on Capacity Constraints
	Two Levels of Overload Protection

	message-debug
	proxy—Setting Up an Outbound Proxy Server
	t1-timeout-interval
	t2-timeout-interval
	t4-timeout-interval
	timer-b-timeout-interval
	timer-f-timeout-interval
	max-application-session-lifetime
	enable-local-dispatch
	cluster-loadbalancer-map
	default-behavior
	default-servlet-name
	retry-after-value
	sip-security
	route-header
	engine-call-state-cache-enabled
	server-header
	server-header-value
	persistence
	use-header-form
	enable-dns-srv-lookup
	connection-reuse-pool
	globally-routable-uri
	domain-alias-name
	enable-rport
	image-dump-level
	stale-session-handling
	enable-contact-provisional-response

	18 SIP Coherence Configuration Reference (coherence.xml)
	Overview of coherence.xml
	Editing coherence.xml
	XML Schema
	Example coherence.xml File
	XML Element Description

	19 Diameter Configuration Reference (diameter.xml)
	Overview of diameter.xml
	Graphical Representation
	Editing diameter.xml
	Steps for Editing diameter.xml

	XML Schema
	Example diameter.xml File
	XML Element Description
	configuration
	target
	host
	realm
	address
	port
	tls-enabled
	sctp-enabled
	debug-enabled
	message-debug-enabled
	application
	class-name
	param*

	peer-retry-delay
	allow-dynamic-peers
	request-timeout
	watchdog-timeout
	include-origin-state-id
	supported-vendor-id+
	peer+
	host
	address
	port
	protocol

	route
	realm
	application-id
	action
	server+

	default-route
	action
	server+

	Part IV WebRTC Session Controller Media Engine Administration
	20 Managing and Administering ME Systems
	References
	Administrator and User Roles
	Enabling Management Access
	CLI Session

	Configuring Management Options
	Local Console
	CLI Session

	Telnet
	CLI Session

	Secure Shell (SSH)
	CLI Session

	Web/HTTP
	CLI Session

	SNMP
	CLI Session

	HTTP\SOAP\WSDL Interface

	Working with the ME Configuration File
	Building the Configuration File Using the CLI
	CLI Session

	Removing Objects From the Configuration File Using the CLI
	CLI Session

	Editing and Saving the Configuration File Using the CLI

	Creating SIP Users and Passwords
	CLI Session

	Customizing the CLI
	CLI Session

	Setting ME Global Properties
	CLI Session

	ME Virtual System Partitions
	IPMI Support
	Specifying Management Preferences
	Specifying DOS Query Preferences
	Restarting and Shutting Down the System
	CLI Session

	Monitoring the ME
	SNMP MIB OIDs
	Process Restarts
	Active Calls
	CPU Usage
	Database Maintenance Status
	Fault Groups
	Location Cache
	Memory Failures
	Hardware Faults
	SIP Status

	SNMP Traps
	CLI Commands
	Other Monitoring Tools
	Syslog
	CMS Web
	Web Services Description Languages (WSDL) API
	Accounting CDRs

	21 Configuring Permissions, Users, and Authorization
	Configuring Permissions
	Configuring Users
	Configuring Action and Config Filters
	Configuring Config-Filters
	Configuring Action-Filters
	Applying Filters to Permissions Sets

	Configuring Authorization
	Configuring Default Grants
	Configuring Attribute Grants
	Configuring Group Grants
	Viewing User Privilege Information

	22 Enabling ME Interfaces and Protocols
	ME Sample Networks
	Configuring ME IP Interfaces
	CLI Session for Eth0
	CLI Session for Eth1
	CLI Session for Eth2

	Creating VLANs
	CLI Session

	Configuring Media Engine Static Routes
	Applying Routing and Classification Tags
	CLI Sessions for “IP A” and “IP B” Ingress Networks on Eth3
	Notes on Routing and Classification Tags
	Related Commands

	Configuring Overlapping IP Networks and Tag Routing
	CLI Session for Ethernet Public and Private Sides of Network
	CLI Sessions for Customer-A and Customer-B Networks
	CLI Session for the Internal Private Network
	CLI Session for the session-config-pool

	Configuring VRRP
	CLI Session

	Configuring Signaling Failover
	CLI Session

	Configuring Web Interface Settings
	CLI Session

	Configuring Web Services
	CLI Session

	Enabling ICMP and Setting Rate Limits
	CLI session

	Enabling NTP and BOOTP Servers
	CLI Session

	Configuring the Network Time Protocol (NTP) Clients
	CLI Session

	Configuring the Bootstrap Protocol (BOOTP) Clients
	CLI Session

	Configuring Session Initiation Protocol
	CLI Session

	Load Balancing Across Media Engine Interfaces
	CLI Session

	Configuring Media Port Pools
	CLI Session

	Supported WebRTC Protocols
	What is Interactive Connectivity Establishment?
	What is Session Traversal Utilities for NAT?
	What is Traversal Using Relay NAT?
	Session Traversal Utilities for NAT Required Methods
	Session Traversal Utilities for NAT Required Attributes
	Non-Session Traversal Utilities for NAT Traversal Using Relays NAT Message
	TURN Server Long Term Credentials
	Purging Traversal Using Relays Around the NAT Allocations

	Media Engine Encryption
	Data Channel Support
	Configuring Interactive Connectivity Establishment
	Configuring Augmented Interactive Connectivity Establishment
	Configuring Trickle Interactive Connectivity Establishment

	Configuring Session Traversal Utilities For the NAT
	Configuring Traversal Using Relay NAT
	Configuring Static Datagram Transport Layer Security Certificates
	Configuring Encryption
	Disabling the Datagram Transport Layer Security Cookie Exchange
	Real-Time Transport Protocol/Real-Time Control Protocol Multiplexing
	Configuring SDP Regeneration

	Media Steering For Unknown Endpoints
	Configuring a Browser to SIP Call
	Configuring a SIP to Browser Call
	Configuring a Browser to Browser Call

	Message Session Relay Protocol Interworking
	Configuring MSRP Interworking

	Configuring Kernel Filtering
	CLI Session

	Configuring Messaging
	CLI Session

	23 Enabling ME Services
	Enabling Services on the ME Master
	Cluster-Master Services
	CLI Session

	Accounting Services
	CLI Session

	ME Database
	CLI Session

	Server Load
	CLI Session

	Call Failover (Signaling and Media)
	CLI Session

	Load-Balancing
	CLI Session

	Sampling
	CLI Session

	Enabling Event Logging Services
	CLI Session

	Configuring Threshold Monitors
	CLI Session

	Configuring Data and Archiving Locations
	CLI Session

	Configuring an External Database
	CLI Session

	Setting ME Disk Thresholds
	CLI Session

	Scheduling Regularly Performed Tasks
	CLI Session

	Performing Database Maintenance
	Setting Normal Database Maintenance Time-of-Day
	CLI Session

	Verifying Normal Database Maintenance
	Scheduling Periodic Database Maintenance
	CLI Session

	Forcing Database Maintenance
	Performing Database Vacuum-Full
	Performing Other Database Maintenance Tasks

	Managing Oracle Communications 2600 Database Size
	Disabling REGISTER Message Logging
	Preventing NOTIFY Message Logging

	Backing Up the Database
	CLI Session

	Restoring a Database
	Enabling and Configuring Local Archiving
	CLI Session

	Media Loss Detection
	Configuring Media Loss Detection
	Configuring Media Detection Loss for a Session-config
	Initiating and Terminating On-Demand Media Loss Detection

	24 Configuring ME Accounting and Archiving
	Accounting System Overview
	Configuring the Accounting Settings
	Configuring RADIUS Groups
	CLI Session
	Configuring the RADIUS Servers
	CLI Session

	Including the RADIUS Group
	CLI Session

	Configuring the Accounting Database
	CLI Session

	Configuring Syslog
	CLI Session

	Configuring the File System
	CLI Session

	Configuring an External File System Target
	CLI Session

	Configuring Diameter
	Creating the Diameter Accounting Group
	CLI Session

	Configuring Diameter Servers
	CLI session

	Configuring Diameter Interfaces and Ports
	CLI Session

	Configuring Archiving
	CLI Session
	Free-Form Accounting for CDRs

	Using the ME Archive Viewer
	Call Detail Record Field Descriptions and Data Types

	25 Configuring Domain Name Systems (DNS)
	Domain Name System (DNS) Overview
	Configuring the DNS Resolver
	CLI Session

	Configuring DNS Hosts and IPs
	CLI Session

	Mapping SIP Services
	CLI Session

	Configuring NAPTR
	CLI Session

	Configuring DNS Rejections
	CLI Session

