

[1] Oracle® Communications WebRTC Session
Controller
Security Guide

Release 7.2

E69516-01

May 2016

Oracle Communications WebRTC Session Controller Security Guide, Release 7.2

E69516-01

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Related Documents ... v
Documentation Accessibility ... v

1 WebRTC Session Controller Security Overview

Basic Security Considerations ... 1-1
Overview of WebRTC Session Controller Security .. 1-1
Understanding the WebRTC Session Controller Environment.. 1-1

2 Performing a Secure WebRTC Session Controller Installation

Installing WebRTC Session Controller Securely... 2-1
About Access to Files Created During Installation ... 2-2
About Password Policies... 2-2

Post-Installation Configuration... 2-2
Setting Up User Accounts to Lock and Expire .. 2-2
Enabling SSL for LDAP Authentication Providers ... 2-2

3 Implementing WebRTC Session Controller Security

About WebRTC Session Controller Security ... 3-1
Default and Optional Security Settings... 3-1

Enabling TLS (SSL)... 3-2
Handling Wildcard SSL Certificates ... 3-2

Client to WebRTC Session Controller Authentication... 3-2
Form-Based Authentication.. 3-2
Basic Authentication .. 3-2
HTTP Authentication .. 3-3
Digest Authentication.. 3-3
OAuth Providers ... 3-3

Logging in with an OAuth Token .. 3-4
Logging into a REST Provider with a Token ... 3-4
Two-way SSL Authentication... 3-5
Guest Access ... 3-5
Redirecting to a Different URL after Authentication.. 3-5

Internal Security ... 3-5

iv

Securing Coherence ... 3-6
Securing Ports ... 3-6
Signaling and Media DoS Protection .. 3-6

WebRTC Session Controller to SIP Security .. 3-7
Securing SIP .. 3-7
Handling Challenges from the IMS Core ... 3-7

4 Deploying WebRTC Session Controller in a Demilitarized Zone

Overview and Recommended Configurations ... 4-1
WebRTC Session Controller Network Sources, Destinations, Protocols, and Ports Reference
4-4
Securing WebRTC Session Controller Components in the DMZ .. 4-5
Securing Traffic Between the Internet and WebRTC Session Controller 4-5

Configure a Firewall to Protect WebRTC Session Controller.. 4-6
Securing Traffic between the WebRTC Session Controller and the SIP Core 4-7

Configuring a Firewall Between WebRTC Session Controller and the SIP Core 4-7
General Hardening Instructions for SE and ME Installations .. 4-8

Oracle Linux Security Hardening Information.. 4-9
SE Specific Security Tasks.. 4-9

Securing the Signaling Engine Administration Server... 4-9
Encrypt SE RMI Traffic Between SE and the SE Administration Server 4-10
Securing the SE Administration Network Channel.. 4-11
Configuring the SE Admin Server to Use a Non-standard Context Path........................ 4-12
Restricting the SE Administration Server to SSL .. 4-12

Securing Node Manager Access to SE ... 4-13
Configuring Connection Filters for SE Components Instead of a Firewall 4-13

ME Specific Security Tasks ... 4-14

v

Preface

This document describes security features and configuration for Oracle
Communications WebRTC Session Controller.

Audience
This document is intended for administrators who configure security for WebRTC
Session Controller.

Related Documents
For more information, see the following documents:

■ Oracle Communications WebRTC Session Controller Concepts

■ Oracle Communications WebRTC Session Controller Configuration API Reference

■ Oracle Fusion Middleware Securing Oracle WebLogic Server in the Oracle WebLogic
Server 12c documentation

■ Oracle Fusion Middleware Application Security Guide in the Oracle WebLogic Server
12c documentation

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

vi

1

WebRTC Session Controller Security Overview 1-1

1WebRTC Session Controller Security Overview

This chapter describes the Oracle Communications WebRTC Session Controller
security features.

Basic Security Considerations
The following principles are fundamental to using any application securely:

■ Keep software up to date. This includes the latest product release and any patches
that apply to it.

■ Limit privileges as much as possible. Users should be given only the access
necessary to perform their work. User privileges should be reviewed periodically
to determine relevance to current work requirements.

■ Monitor system activity. Establish who should access which system components,
and how often, and monitor those components.

■ Install software securely. For example, use firewalls, secure protocols using TLS
(SSL) and secure passwords.

■ Learn about and use the WebRTC Session Controller security. See
"Implementing WebRTC Session Controller Security" for more information.

■ Keep up to date on security information. Oracle regularly issues security-related
patch updates and security alerts. You must install all security patches as soon as
possible. See the “Critical Patch Updates and Security Alerts” website:

http://www.oracle.com/technetwork/topics/security/alerts-086861.html

Overview of WebRTC Session Controller Security
WebRTC Session Controller relies on and benefits from the security features of the
underlying WebLogic Server platform, including security realms, security monitoring
features, and more.

This guide describes the security features of the WebRTC Session Controller. For
WebLogic Server information, including information about implementing application
security, see the Oracle WebLogic Server 11g documentation.

Understanding the WebRTC Session Controller Environment
When planning your WebRTC Session Controller implementation, consider the
following:

■ Which resources need to be protected?

Understanding the WebRTC Session Controller Environment

1-2 WebRTC Session Controller Security Guide

– You need to protect customer data, such as IP addresses.

– You need to protect internal data, such as proprietary source code.

– You need to protect system components from being disabled by external
attacks or intentional system overloads.

■ Who are you protecting data from?

For example, you need to protect your subscribers’ data from other subscribers,
but someone in your organization might need to access that data to manage it. You
can analyze your workflows to determine who needs access to the data; for
example, it is possible that a system administrator can manage your system
components without needing to access the system data.

■ What will happen if protections on a strategic resource fails?

In some cases, a fault in your security scheme is nothing more than an
inconvenience. In other cases, a fault might cause great damage to you or your
customers. Understanding the security ramifications of each resource will help
you protect it properly.

2

Performing a Secure WebRTC Session Controller Installation 2-1

2Performing a Secure WebRTC Session
Controller Installation

This chapter presents planning information for your Oracle Communications WebRTC
Session Controller system and describes recommended deployment topologies that
enhance security.

For more information about installing WebRTC Session Controller, see WebRTC Session
Controller Installation Guide.

Installing WebRTC Session Controller Securely
When installing WebRTC Session Controller, do the following when you create the
WebLogic Server domain for WebRTC Session Controller:

■ Disable all non-SSL ports to secure all communication between components, and
JCA and JMS collection, over SSL ports.

■ Make sure that SSL ports are being used on the administration server and all
managed servers.

■ If installing WebRTC Session Controller on a cluster of servers, configure the
cluster addresses to use SSL ports.

■ When creating a cluster, the following file should be copied from the
administration server to the following location on each server in the cluster:

WSC_HOME/user_projects/domains/DOMAIN_NAME/
security/SerializedSystemIni.dat

■ After you have created the WebLogic Server domain for WebRTC Session
Controller, start the administration server. Then, use t3s to start the managed
servers:

startManagerServer.sh ManagedServer_1 t3s://host_name

where ManagedServer_1 is the name of the first managed server, and host_name is
the host name of the administration server.

■ Using the WebLogic Administration Console, configure certificate identity and
trust store to use SSL. Do not use the default, demonstration certificate that comes
with WebLogic Server. See the WebLogic Server security and system
administration documentation for more information.

Post-Installation Configuration

2-2 WebRTC Session Controller Security Guide

About Access to Files Created During Installation
Access to files created during the installation is limited. The user who performs the
installation will have write access to those files created during installation.

About Password Policies
Oracle recommends having strong password policies for WebRTC Session Controller.
Consider enforcing the following password policies:

■ Passwords should have a minimum of eight characters.

■ Passwords must contain at least one digit, one capital letter, and one special
character.

■ The user name must not be part of the password.

Stricter rules can be set for the authentication provider using the WebLogic
Administration Console. For details on authentication providers and their
configuration, refer to the discussion on securing Oracle WebLogic Server in the
WebLogic Server documentation.

See WebRTC Session Controller System Administrator’s Guide for information about
changing and setting WebRTC Session Controller passwords.

Post-Installation Configuration
This section explains security configurations to complete after WebRTC Session
Controller is installed.

Setting Up User Accounts to Lock and Expire
Create WebRTC Session Controller user accounts and configure them to lock after a
certain number of failed login attempts, and to expire after a certain period of idle
time.

See WebRTC Session Controller System Administrator’s Guide for information about
changing and setting WebRTC Session Controller passwords.

Enabling SSL for LDAP Authentication Providers
For secure communication between WebLogic Server and an external LDAP, enable
SSL on both the external LDAP authentication provider and the corresponding
WebLogic Security Provider. SSL on the WebLogic security provider is enabled from
the WebLogic Administration Console.

For information about secure communication between WebLogic Server and an
external LDAP authentication provider, see Oracle Fusion Middleware Securing Oracle
WebLogic Server.

3

Implementing WebRTC Session Controller Security 3-1

3Implementing WebRTC Session Controller
Security

This chapter describes the specific security mechanisms provided by Oracle
Communications WebRTC Session Controller.

About WebRTC Session Controller Security
WebRTC Session Controller is built upon the framework of WebLogic Server. In
addition to the authentication methods WebLogic Server provides (HTTP basic,
form-based, and client certificate), WebRTC Session Controller supports the following:

■ Identity Asserter: This will validate tokens from OAuth providers (such as
Facebook and Google). For information about configuring an OAuth access
provider, see "About Provisioning WebRTC Session Controller OAuth Access" in
the WebRTC Session Controller System Administrator’s Guide.

■ HTTP authentication provider: HTTP authentication validates the supplied user
name and password against an HTTP endpoint such as a REST endpoint. For
information about configuring an HTTP authentication provider, see "About
Provisioning WebRTC Session Controller HTTP Access" in the WebRTC Session
Controller System Administrator’s Guide.

For information on configuring WebLogic guest access, see "About Provisioning
WebRTC Session Controller Guest Access" in the WebRTC Session Controller System
Administrator’s Guide.

Authentication of the browser application occurs when the WebRTC Session
Controller JavaScript library establishes a WebSocket connection with the server.
Depending on the configuration, the server enforces an appropriate HTTP
authentication (for example, form-based or OAuth). Once the authentication is
successful, WebRTC Session Controller can obtain account credentials from the SIP
network and communicate with the SIP network using the account credentials.

WebRTC Session Controller obtains credentials for authentication by establishing web
to SIP identity mapping. WebRTC Session Controller can retrieve IMS credentials
(public and private identities or passwords) for a user who has completed web
authentication challenges directed at WebRTC Session Controller by the IMS network.
Stored credentials may be needed in another node in the WebRTC Session Controller
cluster as part of mapping JSON to SIP, for example.

Default and Optional Security Settings
By default, WebRTC Session Controller configuration settings prompt users for a user
name and password, using the basic authentication method. JavaScript resources are

Client to WebRTC Session Controller Authentication

3-2 WebRTC Session Controller Security Guide

not protected. The application can be made less or more secure by enabling guest
access or necessitating secure access through a TLS (SSL) port respectively.

Enabling TLS (SSL)
Web browsers can connect to WebRTC Session Controller over an HTTP port or an
HTTP with a TLS (SSL) port. The benefits of using an HTTPS port versus an HTTP
port are two-fold. With TLS (SSL) connections:

■ All communication on the network between the web browser and the server is
encrypted. Because it is encrypted, sensitive information will never be in clear text.

■ As a minimum authentication requirement, the server is required to present a
digital certificate to the web browser client to prove its identity.

You can enable TLS (SSL) by using the WebLogic Server Administration Console. See
the discussion on configuring TLS in the chapter about configuring diameter client
nodes and relay agents in Oracle WebLogic Server SIP Container Administrator’s Guide.

Handling Wildcard SSL Certificates
Facebook and Google OAuth URLs present wildcard certificates. By default, WebRTC
Session Controller does not allow these certificates. Therefore, it is necessary to
override the default SSL settings so that wildcard certificates can be handled. For more
information, see the discussion on handling wildcard SSL certificates in WebRTC
Session Controller System Administrator’s Guide.

Client to WebRTC Session Controller Authentication
To secure client to WebRTC Session Controller interactions, you can use one of the
following methods described in this section.

Form-Based Authentication
Form-based authentication uses a custom login and error windows that you create. A
client requests access to a protected resource. If the client is unauthenticated, the server
redirects the client to a login page. The client then submits the login form to the server.
If the login succeeds, the server redirects the client to the resource. If the login fails, the
client is redirected to an error page.

The benefit of form-based login is that you have complete control over login and error
screens so that you can design them to meet the requirements of your application or
enterprise policy. However, WebRTC Session Controller does not offer form-based
authentication by default. To enable form-based authentication, create a web
application using form-based authentication methods. Deploy that web application on
the WebLogic server. This allows users who authenticate with the WebLogic server to
already be authenticated when they access the client application interface.

Form-based authentication is not particularly secure. In form-based authentication, the
content of the user dialog box is sent as plain text, and the target server is not
authenticated. This form of authentication can expose your user names and passwords
unless all connections are over SSL. If someone can intercept the transmission, the user
name and password information can easily be decoded.

Basic Authentication
Basic authentication is provided by default. Basic authentication uses HTTP headers to
transmit the user name and password to WebRTC Session Controller. Basic

Client to WebRTC Session Controller Authentication

Implementing WebRTC Session Controller Security 3-3

authentication is not recommended for production systems unless you can ensure that
all connections between clients and the WebLogic SIP server instance are secure.

With basic authentication, a client requests access to a protected resource. The web
server displays a login screen that requests the user name and password. The client
then submits the user name and password to the server. The server validates the
credentials and, if successful, returns the requested resource.

HTTP basic authentication is not particularly secure. Basic authentication sends user
names and passwords over the Internet as text that is uu-encoded (Unix-to-Unix
encoded) but not encrypted. This form of authentication, which uses Base64 encoding,
can expose your user names and passwords unless all connections are over SSL. If
someone can intercept the transmission, the user name and password information can
easily be decoded.

HTTP Authentication
HTTP authentication validates the supplied user name and password against an HTTP
endpoint (for example, a REST endpoint). The HTTP authentication provider will also
support fetching the user’s SIP identity information from the remote end point.

By default, WebRTC Session Controller has an HTTP authentication provider, but it
needs to be added to the list of security providers in WebRTC Session Controller. The
HTTP authentication provider is invoked whenever a user submits a user name and
password to log in to WebRTC Session Controller (using the basic authentication
dialog or a form-based login page). This provider sends a request to a configured web
service end point with the user name and password in the basic authentication header.
If the response from the HTTP end point is 200/OK, the authentication is considered
successful. Any other response code indicates that the authentication failed.

Note: If authentication is successful, and if the response body
returned by the remote HTTP endpoint is valid JSON formatted data,
WebRTC Session Controller normalizes the JSON data as a Java Map
and embeds this normalized data as credential information in the
authenticated subject. That credential information is accessible in the
groovy layer, enabling you to use it to build a credential map for the
SIP Register request.

For information about configuring HTTP authentication, see WebRTC Session Controller
System Administrator’s Guide.

Digest Authentication
Digest authentication is not supported in WebRTC Session Controller. You can
implement your own digest authentication provider by using a separate web
application to authenticate users. After the login process is complete, requests can be
made to the application that manages WebSocket connections. For more information,
see the discussion on configuring digest authentication in Oracle Fusion Middleware
Securing Web Services and Managing Policies with Oracle Web Services Manager, Release
12c.

OAuth Providers
OAuth 2.0 enables a third party application (such as WebRTC Session Controller) to
obtain limited access to protected resources (such as the end user’s email address,
Facebook friends’ list stored in resource servers such as Google and Facebook) with

Client to WebRTC Session Controller Authentication

3-4 WebRTC Session Controller Security Guide

the end user’s consent. An access token is given after a request for access is made, and
is used to access the protected resources hosted by WebRTC Session Controller.

WebRTC Session Controller provides two components to help customers integrate
their login mechanism with OAuth providers. These components are the WebRTC
Session Controller Servlet Authenticator, and the WebRTC Session Controller OAuth
Identity Asserter. Both these modules are installed by default, but they need to be
added to the list of security providers in WebRTC Session Controller.

For information about configuring signaling engine parameters such as client ID, client
secret, and OAuth server URL, see WebRTC Session Controller System Administrator’s
Guide.

Logging in with an OAuth Token
A client application can implicitly authorize a user and provide an OAuth token. The
client application can use the OAuth token to log in to WSC by passing the token in a
query string to the configured OAuth login URL, for example: /login/google or
/login/facebook.

WSC expects the OAuth token to be in the query string with a parameter name of
oauth_token. The following example shows a sample of such a login URL, with
carriage returns added for readability:

http://sasantha-e6420.us.abcxyz.com:7001/login/google?oauth_token=ya29.1.AADtN_W5_
Ir6Wb-Mcbhng0SRlRMpUukhumnuuYsLWniooOTe50Y9i1b77GpBEesgVA&final_redirect_
uri=http://sasantha-e6420.us.abcxyz.com:7001/wscsample/loginRedirect.html&wsc_app_
uri=/ws/webrtc/facebook

Note: The domain specified by redirect_uri must match a domain
specified in the allowed domains configuration

Logging into a REST Provider with a Token
A REST security provider can login a user based on a token that is sent as an HTTP
request parameter with the login request. The REST provider sends the parameter to a
configured REST end point URL. The user is authenticated upon receipt of a success
response and the HTTP response body, which is typically a JSON message, is stored as
a credential in the authenticated subject. The group name that is associated with the
REST provider configuration is stored as a principal in the subject. The subject is
represented by the Java class javax.security.auth.Subject and the principal is an
implementation of the interface java.security.Principal.

The following client login request, for example, includes a REST token, with carriage
returns added for readability:

http://www.example.com/login?RestAccessAuthToken=myToken&wsc_app_
uri=/ws/webrtc/restauth&redirect_uri=http://www.example.com/call.html

Note: The domain specified by redirect_uri must match a domain
specified in the allowed domains configuration

The client must put the RestAccessAuthToken parameter in the HTTP request with a
valid value that the server will accept. WscRestAuthenticator provides the default
token name RestAccessAuthToken; however, you can configure your own token. The
REST server validates the token provided.

Internal Security

Implementing WebRTC Session Controller Security 3-5

Two-way SSL Authentication
Two-way SSL is a more secure method of authentication than either basic or
form-based authentication. It uses HTTP over SSL, in which the server and the client
authenticate one another using public key certificates. SSL provides data encryption,
server authentication, message integrity, and optional client authentication for a
TCP/IP connection. You can think of a public key certificate as the digital equivalent
of a passport. It is issued by a trusted organization, which is called a certificate
authority (CA), and provides identification for the bearer.

If you specify two-way SSL (client certificate) authentication, the web server will
authenticate the client using the client's X.509 certificate, a public key certificate that
conforms to a standard that is defined by X.509 Public Key Infrastructure (PKI). Before
running an application that uses SSL, you must configure SSL support on the server
and set up the public key certificate. For more information about configuring SSL, see
Oracle WebLogic Server 12c documentation.

Guest Access
Anonymous guest access can be granted to any application in WebRTC Session
Controller. When a user initiates guest access, a WebLogic Server servlet
authentication filter inspects the request before the authentication providers are
invoked. If the incoming request matches a WebRTC Session Controller application
URL pattern (which is configured for insecure access), and if there are no other
authorization headers in the request, then the servlet adds an authorization header.
The request goes through the provider chain and the authentication grants the user
guest access.

For more information about configuring guest access, see WebRTC Session Controller
System Administrator’s Guide.

Redirecting to a Different URL after Authentication
When a user attempts to log in using a request URI that matches the pattern
/login/<any>, you can redirect the browser to a different URL using Groovy. This
enables you to perform a two-stage authentication as illustrated by the following
scenario:

■ The user logs in using any configured security provider such as an OAuth
provider or a REST provider or a default WebLogic provider.

■ After authenticating the user, the security provider sends the user a one-time
access code through email or a text message (SMS). Generally, the security
provider does this for a first-time user or a user who is using a device for the first
time.

■ The user is authenticated but must enter the one-time access code to login to
WebRTC Session Controller. At this point, you must redirect the user to a
secondary URL to enter the access code.

For information on enabling redirection after authentication, see "About Post
Authentication Redirection" in the WebRTC Session Controller System Administrator’s
Guide.

Internal Security
You can strengthen internal security by securing Oracle Coherence and ports.

Internal Security

3-6 WebRTC Session Controller Security Guide

Securing Coherence
WebRTC Session Controller and its nodes use Oracle Coherence internally and enable
the Coherence security framework by default. The security framework is enabled by
checking the Security Framework Enabled checkbox through the WebLogic console. If
you do not want the Coherence security framework enabled, see "Enabling the Oracle
Coherence Security Framework" in Securing Oracle Coherence and uncheck the Security
Framework Enabled checkbox.

Coherence security includes securing both cluster members and extend clients. You
enable security as required, based on your application or cluster implementation and
your organization's security concerns and security tolerances.

For a brief discussion of each security feature, see Oracle Coherence Security Guide.

Securing Ports
Configure firewalls to restrict access internally. Oracle recommends that port 7001 on
the managed servers be disabled and 7002 over SSL be used instead. Enabling 7002 can
be done during domain installation; however you must remove the non-SSL port by
using the WebOracle Communications WebRTC Session ControllerLogic Server
Administration Console. For information about configuring port 7002, see WebRTC
Session Controller Configuration API Reference.

Table 3–1 lists the default ports, their names, and security considerations:

Table 3–1 WebRTC Session Controller Default Ports

Value Description Security

7001 The administration
HTTP port

Allow this port external access for the managed
servers, but not for the administration server. It is
recommended that you disable this port and use an
SSL port instead.

8088 The Coherence port Restrict access from outside of the WSC network for
this port.

5060 The SIP port Allow access to the IMS network from this port.

5061 The SIPS port Allow access to the IMS network from this port.

4057 WebRTC Session
Controller Media
Engine HTTP callback
port

Restrict access to this port except between WebRTC
Session Controller Media Engine and WebRTC
Session Controller Signaling Engine.

7002 SSL port for
admin/http/t3

7002 over SSL is recommended over 7001. Enable
7002 during domain installation. Remove the
non-SSL port by using the WebLogic Server
Administration Console.

Signaling and Media DoS Protection
WebRTC Session Controller offers denial of service (DoS) protection (against message
floods, malformed requests, and so on) at signaling and media levels.

Media DoS protection includes the following:

■ Pools of media ports are provisioned by port ranges on each IP interface (thus
giving operators full control over the available port range).

■ All media ports are closed when inactive.

WebRTC Session Controller to SIP Security

Implementing WebRTC Session Controller Security 3-7

■ When a signaling (SIP or web-associated) session requires media ports, they are
allocated from the appropriate pool.

■ The allocated media ports are owned by and dedicated to the signaling session.

■ Media ports attach to a specific remote peer address and are closed to other IP
addresses.

■ When Secure Real-Time Transport Protocol (SRTP) is used (for example, with
WebRTC media), additional authentication steps are used to verify the
authentication trailer for each SRTP packet.

■ When released, media ports are returned to the pool and are monitored to ensure
that the media ports are fully quiesced (any inactive media ports that continue to
receive media traffic are put into quarantine until fully quiesced.)

■ Media can be monitored to ensure that the actual received codec matches the
signaled codec.

■ Real-time Transport Protocol (RTP) sequence integrity can be checked and invalid
packets can be discarded.

On the signaling side, WebRTC Session Controller DoS protection applies to all
types of WebRTC signaling methods. Among other measures, you can set the
limits for maximum incoming message size, complete message timeout period,
and number of file descriptors to help prevent denial-of-service attacks. The
separation of signaling and media contributes to the overall security because a
DoS attack on the signaling side does not affect the media side, and vice versa.

For more information about DoS protection, maximum incoming message size, and
complete message timeout period, see the discussion on reducing the potential for
denial of service attacks in Oracle WebLogic Server 12c documentation.

WebRTC Session Controller to SIP Security
Other ways of improving security for WebRTC Session Controller include securing SIP
and handling challenges from the IMS Core.

Securing SIP
WebRTC Session Controller offers secure SIP (SIPS) connections, using TLS to secure
signalling. WebRTC Session Controller also uses two-way SSL to verify the digital
certificate supplied by the client. You must ensure that a SIPS transport (SSL) has been
configured in order to use client-certificate authentication. For more information about
configuring SSL, see Oracle Database Advanced Security Administrator’s Guide.

Handling Challenges from the IMS Core
When you receive a challenge from the IMS core, you can handle it in the client (on the
home page) because challenges are propagated to the client side. WebRTC Session
Controller propagates the challenge to the client side only if there is no private identity
and private password in the security context. No challenges will be made to WebRTC
Session Controller if you set up the IMS network so that WebRTC Session Controller is
seen as a trusted entity.

You write your own WebRTC Session Controller authentication module that handles
the web user authentication. This authentication module can be a Groovy script that
sets up a security context to be used when receiving challenges. The Groovy script
fetches the IP Multimedia Public Identity (IMPU) or IP Multimedia Private Identity

WebRTC Session Controller to SIP Security

3-8 WebRTC Session Controller Security Guide

(IMPI) and the secret key information, which is needed to fill in the SecurityContext
object, and adds that information to the public credential set of the security context
subject. When a user logs in to the web application page, this Groovy script is invoked
and is passed the authenticated subject. The authentication provider populates
credential information (web ID, SIP public ID, SIP private ID, SIP private password,
and so on) into the authenticated subject. This security context is used towards the IMS
network. The Groovy script is used to build the security context information from the
authenticated subject. It then fetches the IMPU, IMPI, and secret key information.

Alternatively, you can configure the P-Asserted-Identity header in the groovy script.
For example, if the login identity of the web application user is configured as the
subscriber's IMPU, then the IMPU can be used in the P-Asserted-Identity header.

4

Deploying WebRTC Session Controller in a Demilitarized Zone 4-1

4Deploying WebRTC Session Controller in a
Demilitarized Zone

This chapter explains how to deploy Oracle Communications WebRTC Session
Controller in an semi-secured environment. This chapter refers to this type of
deployment as a demilitarized zone (DMZ) deployment.

Overview and Recommended Configurations
A WebRTC Session Controller DMZ deployment should include multiple networks
configured for access on separate networks cards. Access points on each host shield
back-end systems such as administration servers, media servers, and the Session
Initiation Protocol (SIP) core from DMZ/Internet traffic. In particular, consider hosting
WebRTC Session Controller administration servers on a separate network to isolate
administration traffic from application traffic.

If your WebRTC Session Controller installation must be deployed in the DMZ, Oracle
recommends that you use one of the multi-tier WebRTC Session Controller
implementations shown in Figure 4–1, or Figure 4–2 to protect its components. These
implementations take advantage of technologies that WebRTC Session Controller uses
to protect itself:

■ A design that incorporates network layer access control so you can give individual
WebRTC Session Controller components the level of protection they require. This
modular design enables you to restrict access to WebRTC Session Controller from
the Internet using firewalls, and restrict access within WebRTC Session Controller
using WebLogic connection filters.

■ The ability to require Secure Sockets Layer (SSL) communication between
WebRTC Session Controller components.

■ Using operating system hardening to protect specific sensitive files and programs.

Note: Figure 4–1 and Figure 4–2 are only intended to show a high
level overview of possible WebRTC Session Controller networking
configurations.

For explicit routing details, see the following sections:

■ Securing Traffic Between the Internet and WebRTC Session
Controller

■ Securing Traffic between the WebRTC Session Controller and the
SIP Core

Overview and Recommended Configurations

4-2 WebRTC Session Controller Security Guide

Figure 4–1 shows the most exposed WebRTC Session Controller components, the
WebRTC clients, outside firewall protection in the Internet, with the traffic being
filtered by a firewall before being passed through to WebRTC Session Controller. The
WebRTC Session Controller Signaling Engine (SE) and Media Engine (ME) instances
are deployed in the DMZ behind a firewall as well as a suitable load balancing device
for the SE instances.

Note: To provide an additional layer of security, the SE
administration server can be a separate server deployed behind an
additional firewall on its own separate VLAN (not pictured). Traffic to
the SE administration server endpoint (default port 7001/7002) should
be disallowed from the Internet.

Suitable load balancing devices include the Apache Software Foundation HTTP web
server using mod_wl, the F5 Networks 5 load balancer, or the Oracle HTTP Web
Server using mod_wl_ohs. Oracle recommends that you obtain and install a
component with proxy capability to limit traffic between the firewall WebRTC Session
Controller as well.

The SIP core itself sits behind a firewall on yet another separate VLAN and traffic from
WebRTC Session Controller is routed through a SIP-aware load balancer.

Note: The load balancer serving the SE instances, if SIP-aware, can
also be used to balance traffic to the SIP core.

See "Securing WebRTC Session Controller Components in the DMZ" for the list of
tasks required to implement this deployment.

Overview and Recommended Configurations

Deploying WebRTC Session Controller in a Demilitarized Zone 4-3

Figure 4–1 WebRTC Session Controller DMZ Deployment

Figure 4–2 shows a WebRTC Session Controller DMZ deployment with an additional
firewall separating customer systems such as database servers, media servers, and
others. In this deployment, the customer systems are on a separate private VLAN
behind a firewall which can only connect to WebRTC Session Controller.

Note: For an additional layer of protection, you can use a VPN
tunnel as an access gateway to the customer systems as well (not
pictured).

WebRTC Session Controller Network Sources, Destinations, Protocols, and Ports Reference

4-4 WebRTC Session Controller Security Guide

Figure 4–2 WebRTC Session Controller Interfaced with Customer Systems

WebRTC Session Controller Network Sources, Destinations, Protocols,
and Ports Reference

Table 4–1 lists the various sources, destinations, protocols and ports which may be
used in a WebRTC Session Controller DMZ deployment.

Note: Not all of these source/destination combinations and devices
are described in the diagrams and descriptions used in this chapter.

Table 4–1 SE and ME Ports, Source, Destination, and Protocols

Source Destination Level 4 Protocol Level 5-7 Protocol Default Dest. Ports

Internet Browsers SE Access IP TCP HTTP(S): HTML,
JavaScript, WebSockets

7001 for HTTP, and
7002 and/or 443 for
HTTPS/WSS

Internet Browsers ME Access IP UDP STUN1/TURN2,
DTLS3-SRT[C]P4

3478 for STUN/TURN
over UDP;
Configurable range for
DTLS-SRT[C]P media,
for example, 20000 to
250005

Internet Browsers ME Access IP TCP TURN 3478 for plain TCP,
5349 for TLS

SE Core IP SBC6 Signaling IP UDP and TCP SIP 5060, 5061

Signaling Core IP SE Core IP UDP and TCP SIP 5060, 5061

Securing Traffic Between the Internet and WebRTC Session Controller

Deploying WebRTC Session Controller in a Demilitarized Zone 4-5

Securing WebRTC Session Controller Components in the DMZ
Complete these tasks to implement a DMZ deployment as shown in Figure 4–1:

■ Securing Traffic Between the Internet and WebRTC Session Controller

■ Securing Traffic between the WebRTC Session Controller and the SIP Core

Complete all of the tasks in this section and add a firewall and optional VPN between
your customer systems and the WebRTC Session Controller to implement a DMZ
deployment as shown in Figure 4–2.

Securing Traffic Between the Internet and WebRTC Session Controller
You secure traffic between the Internet and WebRTC Session Controller by:

■ Configuring a firewall between WebRTC Session Controller and the Internet. See
"Configure a Firewall to Protect WebRTC Session Controller" for details.

■ Configuring WebRTC Session Controller ME specific security measures. See "ME
Specific Security Tasks" for details.

■ Hardening the underlying operating system components for all SE and ME
engines. See "General Hardening Instructions for SE and ME Installations" for
details.

■ Make sure all of your SE and ME instances are fully patched.

■ Optionally, for SE engines, configuring connection filters. See "Configuring
Connection Filters for SE Components Instead of a Firewall" for details.

The following sections provides details.

SE Management Nodes SE Management IP TCP HTTP(S), SSH 7000/7001, 22

ME Management Nodes ME Management IP TCP HTTP(S), SSH 80/443, 22

SE Internal IP ME Internal IP TCP SOAP/HTTP Load
Factor

8080

ME Internal IP SE Internal IP TCP SOAP/HTTP Event
Callbacks

4057

ME Access IP Internet Browsers UDP STUN, DTLS-SRT[C]P 3478 for STUN over
UDP, Configurable
range for
DTLS-SRT[C]P media,
for example, 20000 to
25000

ME Core IP SBC Media IP UDP RTP, RTCP Configurable range,
for example, 20000 to
25000

SBC Media IP ME Core IP UDP RTP, RTCP Configurable range,
for example, 20000 to
25000

1 Simple Traversal of User Datagram Protocol (UDP) through Network Address Translators (NATs)
2 Traversal Using Relays around NAT
3 Datagram Transport Layer Security
4 The Secure Real-time Transport Protocol
5 The number of media ports to open, in this case, the default 5000, depends upon your requirements for the number of

concurrent media sessions.
6 Session Border Controller

Table 4–1 (Cont.) SE and ME Ports, Source, Destination, and Protocols

Source Destination Level 4 Protocol Level 5-7 Protocol Default Dest. Ports

Securing Traffic Between the Internet and WebRTC Session Controller

4-6 WebRTC Session Controller Security Guide

Configure a Firewall to Protect WebRTC Session Controller
Configure a firewall as described in Table 4–2. This example uses the sample
components and IP addresses/ports shown in Figure 4–1.

Note: The IP addresses and ports in Table 4–2 are only examples.
Yours will be different.

Table 4–2 Configuring a Firewall Between the Internet and WebRTC Session Controller Access Tiers

Specifically Allow
Traffic From:

To The Component/IP
Address:Port Notes

WebRTC Clients Signaling Engine 1
(192.168.10.1:7002)

Allow WebRTC API traffic to SE 1 via a load
balancer.

WebRTC Clients Signaling Engine 2
(192.168.10.2:8002)

Allow WebRTC API traffic to SE 2 via a load
balancer.

WebRTC Clients Media Engine 1
(192.168.10.3:20000-25000)

Allow WebRTC API traffic (DTLS-SRT[C]P) to
ME 1 with the appropriate number of media
ports open for your requirements, in this case
20000 to 25000.1

1 The number of media ports to open, in this case, the default 5000, depends upon your requirements for the number of
concurrent media sessions.

WebRTC Clients Media Engine 2
(192.168.10.4:20000-25000)

Allow WebRTC API traffic (DTLS-SRT[C]P) to
ME 2 with the appropriate number of media
ports open for your requirements, in this case
20000 to 25000.

WebRTC Clients Media Engine 1 and 2
(192.168.10.3:3478/5349, and
192.168.10.4:3478/5349)

Allow WebRTC API traffic to ME using TURN
with ME acting as a TURN server. These ports
are not in the diagram.

Signaling Engine 1 and 2 Media Engine 1 and 2
(192.168.10.5:8080, and
192.168.10.6:8080)

SOAP and the HTTP load factor application.
These IP addresses are not in the diagram.

Media Engine 1 and 2 Signaling Engine 1 and 2
(192.168.10.7:4057, and
192.168.10.8:4057)

SOAP and HTTP event callbacks. These IP
addresses are not in the diagram.

Figure 4–3 illustrates the configuration in Table 4–2.

Securing Traffic between the WebRTC Session Controller and the SIP Core

Deploying WebRTC Session Controller in a Demilitarized Zone 4-7

Figure 4–3 Firewall Configuration: Internet to WebRTC Session Controller

Securing Traffic between the WebRTC Session Controller and the SIP
Core

To secure traffic between WebRTC Session Controller and the SIP Core:

■ Obtain and configure a firewall between the WebRTC Session Controller and the
SIP Core so that it allows only RTCP traffic between the SIP Core and the ME
engines.

See "Configuring a Firewall Between WebRTC Session Controller and the SIP
Core" for more information.

■ Follow the instructions for hardening SE administration servers in "Securing the
Signaling Engine Administration Server".

■ Secure Node Manager access to SE engines as described in "Securing Node
Manager Access to SE".

■ Make sure all of your ME and SE servers are fully patched.

Configuring a Firewall Between WebRTC Session Controller and the SIP Core
This example uses the sample components and IP addresses/ports shown in
Figure 4–1.

Note: The IP addresses and ports in Table 4–3 are only examples.
Yours will be different.

Table 4–3 Configuring a Firewall Between WebRTC Session Controller and the SIP Core

Specifically Allow Traffic From: To The Component/IP Address:Port Notes

Signaling Engine 1 SIP Core (10.168.10.1:5061) SIP traffic flows from SE 1to the
SIP core and back through a
SIP-aware load balancer.

Signaling Engine 2 SIP Core (10.168.10.1:5061), SE Admin
Server (10.168.20.1:7002)

SIP traffic flows from SE 1to the
SIP core and back through a
SIP-aware load balancer. Access
to the SE Admin server hosted
on SE 1.

Media Engine 1 SIP Core (10.168.10.1:5061) RTP and RTCP traffic flows
from ME 1 to the SIP core and
back.

Media Engine 2 SIP Core (10.168.10.1:5061) RTP and RTCP traffic flows
from ME 2 to the SIP core and
back.

SIP Core SE 1 (192.168.20.1:5060/5061), SE 2
(192.168.20.2:5060/5061), ME 1
(192.168.30.1:20000-25000), ME 2
(192.168.30.2:20000-25000)

N/A

General Hardening Instructions for SE and ME Installations

4-8 WebRTC Session Controller Security Guide

Figure 4–4 illustrates the configuration in Table 4–3.

Figure 4–4 Firewall Configuration: WebRTC Session Controller to the SIP Core

General Hardening Instructions for SE and ME Installations
Keep these operating system level security considerations in mind:

■ Confirm that the SE and ME binaries are owned by the WebRTC Session
Controller installation user.

Note: File permissions and ownership are set correctly by the
WebRTC Session Controller installer, but you should verify that they
have not been modified before deployment.

SE Specific Security Tasks

Deploying WebRTC Session Controller in a Demilitarized Zone 4-9

■ For SE, lock down access to everything except:

– Read/write access to the file system below the WebLogic domain directory

– Access to the Java Virtual Machine (JVM)

– Access to the RMI, and HTTP/HTTPS ports.

■ Periodically audit the operating system file system file to notify administrators of
unauthorized system binary changes.

Oracle Linux Security Hardening Information
For detailed hardening instructions pertinent to Oracle Linux, see the following
sections in the Oracle Linux Security Guide:

■ Pre-Installation Tasks which includes information on physical security, BIOS
passwords and other system level considerations.

■ Installing Oracle Linux which includes information on configuring shadow
passwords and hashing, disk partition encryption, software selection and network
time services.

■ Implementing Oracle Linux Security which includes information on topics including:

– Configuring and Using Data Encryption

– Configuring and Using Access Control Lists

– Configuring and Using SELinux

– Configuring and Using Auditing

– Configuring and Using System Logging

– Configuring and Using Process Accounting

– Configuring Access to Network Services

– Configuring and Using Chroot Jails

SE Specific Security Tasks
This section provides details on security tasks that are specific to WebRTC Session
Controller Signaling Engine.

Securing the Signaling Engine Administration Server
Securing the administration server involves these tasks:

■ Encrypting the RMI traffic between the SE engines and the SE administration
server. See "Encrypt SE RMI Traffic Between SE and the SE Administration Server"
for details.

■ Configuring the WebRTC Session Controller SE and ME administration servers to
use a nonstandard port so that you can use customized firewall rules as well as
encryption (HTTPS, IIOPS, or T3S). See "Securing the SE Administration Network
Channel" for details.

SE Specific Security Tasks

4-10 WebRTC Session Controller Security Guide

■ Changing the SE administration server context path from the default of /console to
something else, for example, /adminconsole. See "Configuring the SE Admin
Server to Use a Non-standard Context Path" for details.

■ Configuring WebRTC Session Controller to only allow SSL traffic to the
administration server. See "Restricting the SE Administration Server to SSL" for
details.

Encrypt SE RMI Traffic Between SE and the SE Administration Server
To encrypt RMI traffic between SE and the SE administration server, for each SE
server:

1. Open the Administration Console for your domain.

2. Click the Lock & Edit button.

3. Expand the Environments node in the Domain Structure pane and click the
Servers node.

4. Click the Configuration tab in the Summary of Servers pane and click the name of
the server in the Servers table that you want to configure.

5. Check SSL Listen Port Enabled.

Note: Weblogic server uses the default JKS file store (Demo Identity
and Demo Trust) for SSL configuration. However, you could specify a
custom trust Keystore. See the Oracle WebLogic Server 12c: Configuring
Managed Servers document for details.

6. Enter a numeric port number in the SSL Listen Port edit box.

7. Click Save to save your configuration changes.

8. Expand the Environments node in the Domain Structure pane if it is not already
expanded and click Clusters.

9. Click the Signaling Engine cluster and then click the General tab.

10. Replace the port in the Cluster Address edit box with the SSL port you configured
in step 6.

11. Click the Configuration tab, then the Replication tab.

12. Check Secure Replication Enabled.

13. Repeat steps 9 through 12 for the remaining SE servers.

14. Click Save to save your configuration changes.

15. Click Activate Changes to apply your changes to the SE servers.

16. To enable a secure channel for Java Message Service (JMS) add the
-Dweblogic.DefaultProtocol=t3s flag to JAVA_OPTIONS in the middleware_
home/bin/setDomainEnv.sh script:

JAVA_OPTIONS="${JAVA_OPTIONS} -Dweblogic.DefaultProtocol=t3s"
export JAVA_OPTIONS

17. Change the ADMIN_URL item in the domain_home/bin/startManagedWeblogic.sh
script to https://IP_address:port_number

18. Restart each Signaling Engine server with this command:

SE Specific Security Tasks

Deploying WebRTC Session Controller in a Demilitarized Zone 4-11

startManagedManaged.sh server_name https://IP_address:port_number

Note: Make sure you enable SSL on your administration server as
well to ensure that SSL is used throughout the cluster.

Network traffic between SEs and the SE administration server is now encrypted.

Securing the SE Administration Network Channel
In a DMZ deployment you should configure Signaling Engine servers to use custom
ports as well as HTTPS, and certificates if required.

To secure the network channels:

1. Set your Signaling Engine environment:

cd ~/domain_home/bin
. ./setDomainEnv.sh

where domain_home is the path to the domain’s home directory.

2. Start WLST:

java weblogic.WLST

3. Connect to the server using the username and password you configured during
installation:

connect('username','password','t3://myserver:port_number')

4. Switch to the server:

cd('/Servers/myserverendpoint')

5. Create a new network channel:

cmo.createNetworkAccessPoint('MyChannelName')

6. Switch to the new network channel:

cd('/Servers/MyDomain/NetworkAccessPoints/MyChannelName')

7. Configure the network channel port:

cmo.setProtocol('https')
cmo.setListenPort(nnnn)
cmo.setEnabled(true)
cmo.setHttpEnabledForThisProtocol(true)
cmo.setTunnelingEnabled(false)
cmo.setOutboundEnabled(false)

8. Configure certificate usage and HTTPs for the network channel:

cmo.setClientCertificateEnforced(true)
cmo.setTwoWaySSLEnabled(true)

IMPORTANT: The default channel settings remain stored in
ServerMBean and SSLMBean, and are used if necessary to provide
connections to a server instance. Make sure you explicitly specify
the secure channel as the communications path between access and
network tiers.

SE Specific Security Tasks

4-12 WebRTC Session Controller Security Guide

Configuring the SE Admin Server to Use a Non-standard Context Path
Oracle recommends changing the administration server context path from the default
of /console to something like /adminportal.

To change the SE admin context path:

1. Set your SE environment:

cd ~/domain_home/bin
. ./setDomainEnv.sh

where domain_home is the path to the domain’s home directory.

2. Start the WebLogic Scripting Tool (WLST):

java weblogic.WLST

3. Connect to the administration server for your WebRTC Session Controller domain
using the username and password you configured during installation:

connect('username','password','t3://myadminserver:port_number')

4. Switch to the administration server:

cd('/Servers/AdminServer')

5. Create a new network channel:

cmo.createNetworkAccessPoint('MyAdminServer')

6. Switch to the new network channel:

cd('/Servers/AdminServer/NetworkAccessPoints/MyAdminServer')

7. Set the network channel’s protocol to admin:

cmo.setProtocol('admin')

8. Configure the administration server port:

cmo.setListenPort(nnnn)
cmo.setEnabled(true)
cmo.setHttpEnabledForThisProtocol(true)
cmo.setTunnelingEnabled(false)
cmo.setOutboundEnabled(false)

9. Enable bidirectional SSL:

cmo.setTwoWaySSLEnabled(true)

10. Disable client side certificates if they are not in use:

cmo.setClientCertificateEnforced(false)

11. Set the listen addresses for the new administration channel:

cmo.setPublicAddress('nnn.nnn.nnn.nnn’)
cmo.setListenAddress('nnn.nnn.nnn.nnn')

Restricting the SE Administration Server to SSL
To configure the SE administration server to allow only SSL:

1. Open the Administration Console for your domain.

2. Click Lock & Edit.

SE Specific Security Tasks

Deploying WebRTC Session Controller in a Demilitarized Zone 4-13

3. Expand the Environments node in the Domain Structure pane and click the
Servers node.

4. Click AdminServer(Admin).

5. Click Configuration in the Summary of Servers pane and click the name of the
server in the Servers table to configure.

6. Click General.

7. Check SSL Listen Port Enabled.

Note: Weblogic server uses the default JKS file store (Demo Identity
and Demo Trust) for SSL configuration. However, you should specify
a custom trust Keystore. See the Oracle WebLogic Server 12c:
Configuring Managed Servers document for details.

8. Enter a numeric port number in the SSL Listen Port edit box.

9. Uncheck the Listen Port Enabled box.

10. Click Save.

11. Click Activate Changes to apply your changes to the engine servers.

Securing Node Manager Access to SE
You can control WebRTC Session Controller by using Oracle WebLogic Node Manager
(Node Manager) features. Node Manager relies on a one-way SSL connection for
security. See “Configuring Java-based Node Manager Security” and “Using SSL with
Java-Based Node Manager” in Fusion Middleware Node Manager Administrator's Guide
for Oracle WebLogic Server 12c for details.

Configuring Connection Filters for SE Components Instead of a Firewall
In cases where WebRTC Session Controller SE components are not separated by
firewalls, for instance between an SE server and an SE administration server, you can
use WebLogic connection filters to provide network layer access control and block
unwanted intrusions.

To configure a WebLogic connection filter:

1. Set your SE environment:

cd ~/domain_home/bin
. ./setDomainEnv.sh

where domain_home is the path to the domain’s home directory.

2. Start WLST:

java weblogic.WLST

3. Connect to the server using the username and password you configured during
installation:

connect('username','password','t3://myserver:port_number')

4. Switch to the domain security MBean:

cd('/SecurityConfiguration/'+domainName)

ME Specific Security Tasks

4-14 WebRTC Session Controller Security Guide

5. Enable a connection filter:

cmo.setConnectionLoggerEnabled(true)

6. Define the connection filter implementation:

cmo.setConnectionFilter('weblogic.security.net.ConnectionFilterImpl')

Note: The example above uses the default connection filter
implementation. For information on creating custom connection filters
see "Developing Custom Filters" in Fusion Middleware Programming
Security for Oracle WebLogic Server.

7. Configure the rules as a string array:

set('ConnectionFilterRules',jarray.array
([String('myserver ip_address port allow t3s https'),
String('ip_address/subnet_mask ip_address port allow'),
String('ip_address ip_address port deny t3 http')],
String))

ME Specific Security Tasks
After installing ME instances:

■ Configure user accounts and restrict access to the ME instances as described in
"Configuring Permissions, Users, and Authorization" in Oracle Communications
WebRTC Session Controller System Administrator’s Guide.

■ Configure Secure Real-time Transport Protocol (SRTP) sessions as described in
"Configuring Secure Media (SRTP) Sessions" in Oracle Communications WebRTC
Session Controller Installation Guide.

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 WebRTC Session Controller Security Overview
	Basic Security Considerations
	Overview of WebRTC Session Controller Security
	Understanding the WebRTC Session Controller Environment

	2 Performing a Secure WebRTC Session Controller Installation
	Installing WebRTC Session Controller Securely
	About Access to Files Created During Installation
	About Password Policies

	Post-Installation Configuration
	Setting Up User Accounts to Lock and Expire
	Enabling SSL for LDAP Authentication Providers

	3 Implementing WebRTC Session Controller Security
	About WebRTC Session Controller Security
	Default and Optional Security Settings
	Enabling TLS (SSL)
	Handling Wildcard SSL Certificates

	Client to WebRTC Session Controller Authentication
	Form-Based Authentication
	Basic Authentication
	HTTP Authentication
	Digest Authentication
	OAuth Providers
	Logging in with an OAuth Token

	Logging into a REST Provider with a Token
	Two-way SSL Authentication
	Guest Access
	Redirecting to a Different URL after Authentication

	Internal Security
	Securing Coherence
	Securing Ports
	Signaling and Media DoS Protection

	WebRTC Session Controller to SIP Security
	Securing SIP
	Handling Challenges from the IMS Core

	4 Deploying WebRTC Session Controller in a Demilitarized Zone
	Overview and Recommended Configurations
	WebRTC Session Controller Network Sources, Destinations, Protocols, and Ports Reference
	Securing WebRTC Session Controller Components in the DMZ
	Securing Traffic Between the Internet and WebRTC Session Controller
	Configure a Firewall to Protect WebRTC Session Controller

	Securing Traffic between the WebRTC Session Controller and the SIP Core
	Configuring a Firewall Between WebRTC Session Controller and the SIP Core

	General Hardening Instructions for SE and ME Installations
	Oracle Linux Security Hardening Information

	SE Specific Security Tasks
	Securing the Signaling Engine Administration Server
	Encrypt SE RMI Traffic Between SE and the SE Administration Server
	Securing the SE Administration Network Channel
	Configuring the SE Admin Server to Use a Non-standard Context Path
	Restricting the SE Administration Server to SSL

	Securing Node Manager Access to SE
	Configuring Connection Filters for SE Components Instead of a Firewall

	ME Specific Security Tasks

