

[1] Oracle® Communications WebRTC Session
Controller
Extension Developer's Guide

Release 7.2

E69518-01

May 2016

Oracle Communications WebRTC Session Controller Extension Developer's Guide, Release 7.2

E69518-01

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Related Documents .. vii
Documentation Accessibility .. vii

1 About Extending WebRTC Session Controller

About Extending WebRTC Session Controller Functionality .. 1-1
About the WebRTC Session Controller Console Components... 1-3
About the WebRTC Session Controller Groovy Scripts ... 1-5
About Creating Client Applications Using the JavaScript API .. 1-5
About Translating Calls Using the Configuration API .. 1-5
About Extending WebRTC Session Controller Using the JSONRTC Protocol 1-6
WebRTC Session Controller Software and Protocol Conformance ... 1-6
Prerequisites for Extending WebRTC Session Controller Functionality...................................... 1-7

2 About Building JSON to SIP Communication

About Building JSON to SIP Communication ... 2-1
Securing Signaling Engine Connections ... 2-1
About Connecting to a Client Application... 2-2
About Sessions and Subsessions.. 2-2
About JSON to SIP Communication ... 2-3
About SIP to Client Communication... 2-4
About Storing Data Within Sessions ... 2-5

Understanding the WebRTC Session Controller Components .. 2-5
About Applications.. 2-5
About Packages .. 2-5
About Criteria ... 2-6

About the WebRTC Session Controller Console ... 2-7
About the Groovy Scripts ... 2-8
About Accessing the Parameters Using Groovy Scripts... 2-9

About the Contexts ... 2-11
About the Script Library .. 2-12
About the Normalized Data Format .. 2-12

iv

3 Creating WebRTC Session Controller Applications, Packages, and Criteria

Creating Criteria ... 3-1
Creating Packages .. 3-2
Creating Applications.. 3-2
Exporting and Importing a Configuration .. 3-2
Debugging Groovy Script Run Time Errors ... 3-2
About the WebRTC Session Controller Console Validation Tests.. 3-2

4 Customizing Messages for New SIP or JSON Data

Processing Messages With Custom SIP Data ... 4-1
Example SIP Request Variable ... 4-1
Propagating Custom Headers to SIP and Browser Endpoints.. 4-1
Extending SIP Messages with New Headers ... 4-2
Protecting System Performance by Removing SIP Messages.. 4-2
Removing a SIP Header in a Message... 4-2
Replacing a SIP Header in a Message ... 4-2
Conditionally Passing SIP Headers in Messages... 4-3

Changing JSON Data to Support Protocol Changes .. 4-3
Retrieving Session Addressing Information from Groovy.. 4-3
Initiating REST Calls from Groovy .. 4-4

Adding a REST URI Endpoint Constant... 4-4
Creating a REST Request in Groovy.. 4-5
Configuring the REST Request... 4-5
Sending the REST Request.. 4-6
Handling REST Responses.. 4-7
REST Authentication ... 4-8
Useful XML Groovy Utilities for REST Calls ... 4-8

Extending WebRTC Session Controller Functionality ... 4-8

5 Using Policy Data in Messages

About Using Policy Control Data with Signaling Engine ... 5-1
Creating and Sending Diameter Rx Request messages .. 5-2
Accepting and Using Diameter Rx Answer Messages ... 5-4

6 Anchoring Media Sessions

About the WebRTC Session Controller Media Server ... 6-1
About Media Engine Sessions .. 6-3
About Using createSdpOffer to Modify INVITE SDP Data... 6-4
About Using createSdpAnswer to Process 200 Message SDP Data.. 6-4
About Using createReleaseRequest to Explicitly Release Media .. 6-4

A JSONRTC Protocol Reference

About the JSONRTC Protocol .. A-1
Initiating a HTTP/HTTPS Handshake with Signaling Engine .. A-1
Closing a JSONRTC Session .. A-2

v

About JSONRTC Sessions and SubSessions.. A-2
About Message Reliability ... A-2

About the JSONRTC Session Controller Messages ... A-2
About Messages... A-3
About Acknowledgements and Error Messages .. A-3
About the Message Components .. A-3

Control Headers... A-4
General Headers .. A-6
Message Payloads.. A-9

Providing Client Information as a Payload... A-10
Notification Payloads ... A-11

Example Message Bodies ... A-12

vi

vii

Preface

This document describes the developer extensions for Oracle Communications
WebRTC Session Controller product.

Audience
This document is intended for developers who use WebRTC Session Controller to
make their SIP-based services available to users using WebRTC-enabled web browsers.
WebRTC Session Controller does this by making your web-based JSON messages
understandable to a SIP network, and your SIP messages understandable to
JSON-based browsers and applications. This document also explains the points where
the SIP to JSON translation is extendable to add new features and incorporate other
features and technologies. This document further explains how to take advantage of
the WebRTC Session Controller Media Engine media anchoring features, and how to
incorporate WebRTC Session Controller Quality of Service (QoS) restrictions in your
implementation.

Related Documents
For more information, see the following documents in the Oracle Communications
WebRTC Session Controller documentation set:

■ Oracle Communications WebRTC Session Controller Concepts

■ Oracle Communications WebRTC Session Controller System Administrator’s Guide

■ Oracle Communications WebRTC Session Controller Security Guide

■ Oracle Communications WebRTC Session Controller Application Developer’s Guide

■ Oracle Communications WebRTC Session Controller Configuration API Reference

■ Oracle Communications WebRTC Session Controller JavaScript API Reference

■ Oracle Fusion Middleware Securing Resources and Policies for Oracle Weblogic Server

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

About Extending WebRTC Session Controller 1-1

1About Extending WebRTC Session Controller

This chapter introduces the Oracle Communications WebRTC Session Controller
Signaling Engine (Signaling Engine) and WebRTC Session Controller Media Engine
(Media Engine) features that you use to establish communication between
WebRTC-enabled browsers and SIP-based network services.

In order to use WebRTC Session Controller functionality, you must be familiar with

■ The Session Initiation Protocol (SIP) transport protocol, and how it builds up and
tears down calls.

■ The JavaScript Object Notation (JSON) data format.

■ JavaScript (JS), and how it communicates with web servers.

■ The Java and Groovy Programming Languages that you use to create scripts that
perform JSON to SIP and SIP to JSON translations within Signaling Engine.

About Extending WebRTC Session Controller Functionality
WebRTC Session Controller builds up and tears down real-time multimedia calls
between client applications on WebRTC-enabled web browsers, and your SIP
multimedia services. WebRTC Session Controller does this by translating telecom
messages between the JSON data structure used by the client applications and the SIP
protocol used by your IMS core.

See "WebRTC Session Controller Software and Protocol Conformance" for details on
the protocol levels this release uses.

Figure 1–1 illustrates the WebRTC Session Controller architecture, lists the developer
extension points you use to customize the JSON to SIP communication, and shows
how JSON messages are translated to SIP and SIP messages to JSON.

Client applications send JSON messages to Signaling Engine, which uses Groovy
scripts to process them and translate them to SIP messages and send them on to your
SIP servers and IMS core. During Groovy processing you can use interact with a Policy
Control and Rules Function (PCRF) to include policy (QoS) information, and Media
Engine to manage the call’s media session.

About Extending WebRTC Session Controller Functionality

1-2 WebRTC Session Controller Extension Developer's Guide

Figure 1–1 WebRTC Session Controller Components and Developer Extension Points

This guide explains how to customize Signaling Engine Groovy scripts to:

■ Change the JSON data used in messages. For example, to modify your JSON data
if the JSON specifications change.

■ Change the SIP data used in messages. You can then add any additional SIP
header data that your SIP implementation requires.

■ Use Media Engine to affect the media parameters (SDP data) of media sessions.
For example, you can use Media Engine to negotiate a codec supported by both
call parties.

■ Send and receive policy information from your PCRF. You can exchange
information with a PCRF and affect the call (or the subscriber’s account) either
before or after the call’s media session.

■ Streamline communication between client applications and WebRTC Session
Controller to provide a more lightweight and efficient protocol. You can tune the
network traffic by filtering or aggregating messages to limit the call flow. For
example, you could remove some or all of the SIP 1xx informational messages
from the call flow as they arrive at WebRTC Session Controller. Or you could
aggregate related SIP messages and forward them to the client application as a
single combined message once WebRTC Session Controller has received them all.
This reduces the amount of traffic that the client application must process,
enabling you to simplify the client applications logic.

The WebRTC Session Controller Application Developer’s Guide explains the extension
points not covered in this document, including:

■ How to extend the default WebRTC Session Controller JavaScript API package

■ How to create a WebRTC Session Controller JavaScript API package

During the JSON to SIP translation you have a lot of flexibility in what you can do
with individual messages. You can manipulate messages:

■ At the field level, by adding new fields, creating a new field layout, adding
optional data, and creating a new data representation.

About the WebRTC Session Controller Console Components

About Extending WebRTC Session Controller 1-3

■ At the header level, by separating a SIP message header from the message content,
and pass on one or the other in a new message (for a different service). You can
then pass one or both to a new service.

As shown in Figure 1–1, calls can originate either from a WebRTC-enabled web
browser (client application), or from the SIP IMS core itself. Browser-originating
messages are first translated from JSON to a normalized format by Signaling Engine.
Then the normalized message is translated to the SIP protocol by Signaling Engine
Groovy scripts calling methods from the WebRTC Session Controller API.

Signaling Engine processes SIP server-originated messages in the opposite direction.
They are first translated from SIP to a normalized format using your Groovy scripts.
Then Signaling Engine translates them again from the normalized format to the JSON
format that your web browser can parse.

Figure 1–2 shows the WebRTC Session Controller console graphical interface that you
use to create, select, and modify the Groovy scripts that translate and customize
messages. In it, the Packages tab is selected, showing one of the default Groovy scripts
provided with this release.

Figure 1–2 The WebRTC Session Controller Window

See "Customizing Messages for New SIP or JSON Data" for details on how to use the
WebRTC Session Controller console.

About the WebRTC Session Controller Console Components
WebRTC Session Controller uses these concepts and components:

■ WebRTC Session Controller applications - Each application represents a single
WebRTC-enabled client application and all of its capabilities. For example, an
application could be a website that offers a video and audio chat capabilities. Each
application uses a set of WebRTC Session Controller packages.

See "About Applications" for more details and "Creating Applications" for
instructions on how to create them.

About the WebRTC Session Controller Console Components

1-4 WebRTC Session Controller Extension Developer's Guide

■ WebRTC Session Controller packages - Each WebRTC Session Controller package
is a unit of real time communication capability that WebRTC Session Controller
supports. Each package is a collection of the individual Groovy scripts (criteria)
that actually do the message processing and translation from SIP to JSON and
back. Each JavaScript client application must reference the packages that it is
allowed to use.

Each package typically includes the logical set of message processing behaviors for
an application. For example you might put all message translation scripts for
video chat calls between a web browser and a SIP phone in one package. You
would probably define a separate package for audio chat calls, and another for a
sending SMSs, and another for file transfers.

See "About Packages" for more details and "Creating Packages" for details on how
to create one.

■ WebRTC Session Controller criteria - Each criteria includes information to identify
a SIP or JSON message to translate, and a Groovy script to do the translation. The
translation can be from SIP to JSON or JSON to SIP. For example one criteria
accepts the BYE message from a SIP phone to stop a media stream, and translates
it to a JSON shutdown message.

You use one criteria for each type of message that you expect to receive during the
process of setting up or tearing down the WebRTC multimedia calls that WebRTC
Session Controller processes. The Groovy scripts that you create and use are where
you add code to process any new or custom SIP or JSON data that your
implementation requires.

See "About Criteria" for more details on WebRTC Session Controller criteria, and
"Creating Criteria" for details on creating criteria.

■ Script Library - The script library is a collection of useful groovy code and
examples that you can use or reuse in any of the criteria Groovy scripts that you
create.

See "About the Groovy Scripts" for details on using the script library.

■ WebRTC Session Controller console - A Graphical User Interface (GUI) that you
use to create WebRTC Session Controller applications, packages, and criteria. This
GUI also contains the Script Library, and a Configuration tab that use to configure
Signaling Engine and Media Engine.

See "About the WebRTC Session Controller Console" for information about this
GUI. See the WebRTC Session Controller System Administrator's Guide for
information on the configuration settings.

■ Web RTC Session Controller console configuration settings - Used to set
performance limits for each Signaling Controller implementation. You use these
settings to balance WebRTC Session Controller capabilities with your network
load and hardware capabilities. For example you use this tab to enable/disable
glare handling (avoiding race conditions caused by concurrent requests), and set a
maximum number of WebSocket connections.

WebSocket is a protocol that provides bidirectional communication between a web
client and a server over a Transmission Control Protocol (TCP) connection. RFC
6455 describes the protocol in detail. The World Wide Web Consortium (W3C)
defines the WebSocket API.

About Translating Calls Using the Configuration API

About Extending WebRTC Session Controller 1-5

About the WebRTC Session Controller Groovy Scripts
The WebRTC Signaling Controller Groovy scripts translate WebRTC messages between
JSON messages to SIP, and also serve as extension points that you use to customize
behavior during the translation. During the translation process you can:

■ Make your WebRTC-based client web applications communicate with your SIP
servers and IMS core.

■ Make the client-to-SIP communication more efficient by removing unimportant
messages. For example, your IMS core probably includes media servers, which
send status messages that may by unimportant to a client application. You can add
instructions to the Groovy scripts to remove any unnecessary messages from
traffic, to save bandwidth.

■ Redirect the messages to different SIP services. For example, during a shopping
session, offer a video chat with a customer representative. As the chat session is
being set up, you can automatically provision the chat session with subscriber
information.

■ Intercept, modify, or replace individual messages as they are being processed,
within the same session. For example, you could modify or replace functionality
based on the values included in the message parameters. If your message includes
subscriber information, you could apply a special deal to all residents of a specific
city; or shut off service to all residents of a city; or redirect suspicious messages to
a quarantine area. You can make these decisions based on any information
contained in the messages from your SIP servers or client application. You are only
limited by the information in your JSON and SIP messages and the capabilities of
the Groovy scripting language.

■ Use policy control and charging rules function (PCRF) information to affect the
call or the subscriber’s account. You can use policy information to affect the call
either before the media stream is set up or afterward.

■ Use Media Engine data to change the call’s Session Description Protocol (SDP)
parameters. for example, to negotiate a codec that two web browsers support.

■ Make arbitrary Representational State Transformation (REST) calls to remote REST
endpoints.

■ Add other features or behaviors that your implementation requires.

About Creating Client Applications Using the JavaScript API
You use the WebRTC Session Controller JavaScript API library to create multimedia
applications that run on WebRTC-enabled browsers. These client applications use this
API to communicate with the Signaling Engine, and Signaling Engine, in turn,
translates the JSON data format to one the SIP nodes can use.

See WebRTC Session Controller Application Developer’s Guide for details on how to use
this API to create client applications.

About Translating Calls Using the Configuration API
You use the WebRTC Session Controller Configuration API, documented in the
WebRTC Session Controller Configuration API Reference and WebRTC Session Controller
JavaScript API Reference documents to translate call messages between the JSON data
format that the client application uses, and the SIP language that your IMS core
understands. It contains separate packages for:

About Extending WebRTC Session Controller Using the JSONRTC Protocol

1-6 WebRTC Session Controller Extension Developer's Guide

■ Creating, sending, and receiving SIP messages

■ Creating, sending, and receiving JSON messages

■ Sending and receiving policy (Diameter Rx) messages

■ Creating and using Java Future interface objects to delay processing until
computations by Media Engine or a PCRF are complete. For example you can
delay establishing a media session until your PCRF confirms that the subscriber is
entitled to the resources.

■ Using Media Engine to translate between WebRTC-enabled browsers and entities
that do not support the same codecs. These entities can be SIP nodes, or web
browsers that do not support the codec sent in the call request.

■ Administering Signaling Engine. WebRTC Session Controller API contains a
configuration MBean. See WebRTC Session Controller System Administrator’s Guide
for details on using this MBean.

About Extending WebRTC Session Controller Using the JSONRTC
Protocol

WebRTC Session Controller includes the JSONRTC WebSocket subprotocol that it uses
to communicate with client applications and extend the default JavaScript capabilities.
JSONRTC uses the JSON data interchange format and the MBWS subprotocol as the
basis for message reliability.

If you use the WebRTC Session Controller console to create applications and packages,
then you do not need to understand this protocol. However, if your implementation
requires that you extend WebRTC Session Controller with new software packages, you
use this protocol to do so.

You can use this protocol to change the extend the JSON and SIP data structures and
add new fields and headers as necessary using the optional fields in the JSONRTC
protocol. However, you must use a Groovy script to validate and use the data as
necessary. WebRTC Session Controller accepts new data freely, but ignores if you do
not process it in your Groovy scripts.

See "Extending WebRTC Session Controller Functionality" for guidelines for creating a
custom package, and "JSONRTC Protocol Reference" for details on the WebRTC
Session Controller JSONRTC Protocol.

WebRTC Session Controller Software and Protocol Conformance
WebRTC Session Controller uses the following revision levels of the software tools and
protocols:

■ The JSON data format for communicating with web browsers and other HTTP
nodes.

■ Session Description Protocol (SDP) RFC 4566 for communicating information
about message media streams. The specification is available at the SDP
specification website: http://tools.ietf.org/html/rfc4566

■ The default JDK version - 1.7 plus any security updates.

■ The Groovy scripting engine version 2.1.3.

■ The SIP protocol RFC 3261 for building up, tearing down calls.

Prerequisites for Extending WebRTC Session Controller Functionality

About Extending WebRTC Session Controller 1-7

■ A Groovy scripting language. See this Groovy website for information and
documentation:

http://groovy.codehaus.org/JSR+223+Scripting+with+Groovy

Prerequisites for Extending WebRTC Session Controller Functionality
Before using the instructions in this guide to configure and customize your WebRTC to
SIP communication, you need to know:

■ How to program in the Groovy scripting language. This Groovy website can get
you started: http://groovy.codehaus.org. There are also third party tutorials and
books available.

■ Details of your WebRTC client application message requirements.

■ Details of your SIP message requirements.

■ Details of any policy information that you provide to a PCRF to affect subscriber
profiles or accounts, and any policy information that you intend to use to affect
calls.

■ Details of the security groups that your WebLogic server uses. For details on using
security roles, see the discussion on users, groups, and security roles in Oracle
Fusion Middleware Securing Resources and Policies for Oracle Weblogic Server.

■ Details on the other security considerations that your network requires. See
WebRTC Session Controller Security Guide for information about setting up a secure
WebRTC Session Controller implementation.

Prerequisites for Extending WebRTC Session Controller Functionality

1-8 WebRTC Session Controller Extension Developer's Guide

2

About Building JSON to SIP Communication 2-1

2About Building JSON to SIP Communication

This chapter explains how you use WebRTC Session Controller Signaling Engine
(Signaling Engine) to build up and tear down calls, and translate them between the
JavaScript Object Notation (JSON) data format and the Session Initiation Protocol (SIP)
protocol.

About Building JSON to SIP Communication
Figure 2–1 shows the sessions and subsessions used in making a simple JSON to SIP
call flow. Client applications first set up JSON sessions that include WebSocket
connections to start communicating with Signaling Engine. Signaling Engine then
starts subsessions to communicate with the client application, and SIP sessions to
communicate with your IP Multimedia Subsystem (IMS) core. The sections that follow
explain information you need to know to set up this communication.

Figure 2–1 Signaling Engine Call Flow Overview

Securing Signaling Engine Connections
See the WebRTC Session Controller Security Guide for information on securing:

■ Signaling Engine-SIP connections.

About Building JSON to SIP Communication

2-2 WebRTC Session Controller Extension Developer’s Guide

■ Client application to Signaling Engine connections.

■ Internal Signaling Engine internal components and processes.

■ WebRTC to SIP connections.

About Connecting to a Client Application
Signaling Engine uses the JSONRTC protocol to communicate between client
applications and the WebRTC Session Controller console. Signaling Engine establishes
communication using an HTTP/HTTPS handshake message using a value of
webrtc.oracle.com for Sec-WebSocket-Protocol.

See "JSONRTC Protocol Reference" and WebRTC Session Controller Application
Developer’s Guide for details on this protocol and how to use it to develop client
applications.

About Sessions and Subsessions
Figure 2–1 shows an overview of how Signaling Engine handles JSON sessions,
WebSockets, and subsessions, and how they relate to SIP sessions. First, Signaling
Engine opens a protocol session using the WebRTC Session Controller Configuration
API, and within that session Signaling Engine then opens a WebSocket connection.
Inside the WebSocket connection, Signaling Engine uses the JSONRTC protocol to
open a subsession to pass messages between the browser and the Signaling Engine.
Finally Signaling Engine opens a SIP session to communicate with your IMS core.

There is one WebSocket connection for one WSCSession/WebRTC JSON session.
However if a network problem interrupts the WebRTC session, the WebSocket
connection can be reestablished with session information (rehydrated) if the problem
is fixed before the connection timeout limit is reached. If the time limit is reached, the
WebRTC session exits. See WebRTC Session Controller System Administrator’s Guide for
details.

Each subsession is associated with a WebRTC Session Controller package, which
defines the allowable actions for the WebSocket and its subsessions. A subsession is
the scope in which a particular package operates. There are generally several
subsessions in a session.

Each subsession is responsible for maintaining the media session between the client
application and the peer (media server, SIP phone, web client, and so on). When call is
torn down, the media stream and the subsession are closed.

Usually each Signaling Engine subsession has one corresponding SIP session.
However, a SIP session may not always required. If for example, a SubSession that just
sends a SIP MESSAGE outside of a dialog would not create a media session or require
a SIP session.

If a WebSocket is disconnected unexpectedly, Signaling Engine can start a new one to
continue using the existing subsessions. This enables you to continue sessions if a
WebSocket connection is unexpectedly terminated by a network failure, HTML
refresh, or other service interruption.

A session has several states from INITIAL to TERMINATED. When the client sets up
the WebSocket session with the server, the session is in an ESTABLISHED state. When
the session is closed, it is in a TERMINATED state.

About Building JSON to SIP Communication

About Building JSON to SIP Communication 2-3

About JSON to SIP Communication
Figure 2–2 shows the JSON and SIP message flow for a call originating from the client
application and how the messages relate to JSON sessions, WebSocket connections,
subsessions, and SIP sessions.

Figure 2–2 Default WebRTC Session Controller FROM_APP Call Flow Detail

The client application initiates communication with Signaling Engine by sending a
wsc.session object (not shown), which includes the handshake and connect message.

The call shown in Figure 2–2 originates from a client application (WebRTC-enabled
browser) using the RFC WebSocket protocol. In this case Signaling Engine translates
the JSON data into SIP protocol messages for the SIP server to respond do. The call
recipient (not shown) may be a SIP device served by the SIP server itself, or another
WebRTC browser using another Signaling Engine implementation.

As Figure 2–2 shows, Signaling Engine translates the JSON messages to SIP and passes
them to the SIP server, and translates the SIP messages to JSON and passes them back
to the client. Signaling Engine groups the Groovy-based translation code segments
into applications, packages, and criteria. Each application represents all JSON to SIP
communication for a collection of related Signaling Engine features. Each of the

About Building JSON to SIP Communication

2-4 WebRTC Session Controller Extension Developer’s Guide

features is composed of a package, which is a collection of individual criteria that each
perform a single translation action. These criteria contain the individual Groovy
scripts that perform each action.

See "About SIP to Client Communication" for a description of how Signaling Engine
processes messages that originate in your IMS core.

About SIP to Client Communication
This section explains how Signaling Engine processes messages what originate from
your IMS core. For example, if a subscriber using a SIP phone attempts to
communicate with a Signaling Engine client application. The call could originate from
any SIP device or another Signaling Engine implementation. From the Signaling
Engine perspective, these calls originate from a SIP server.

Figure 2–3 shows a sample call flow initiated by a SIP phone and how Signaling
Engine translates the SIP messages from the phone’s SIP server to the JSON data
format that the client application can use for communication.

Figure 2–3 Default Signaling Engine FROM_NET Call Flow Detail

Understanding the WebRTC Session Controller Components

About Building JSON to SIP Communication 2-5

About Storing Data Within Sessions
As you are building up and tearing down calls, you will probably need to store data
within Signaling Engine for different messages to use, such as customer subscriber
data. Signaling Engine provides an attribute store to hold data that you use within
sessions. You use the getSessionStore() class in the
oracle.wsc.feature.webrtc.template package (TemplateContext interface) to retrieve
data from the attribute store. The attribute store is created when a WebSocket session
or SIP session is created within Signaling Engine, and is persistent until that session is
torn down.

Understanding the WebRTC Session Controller Components
Using the WebRTC Session Controller console, you equate one WebRTC-enabled client
application to a WebRTC Session Controller application. Each Signaling Engine
application in turn, is a collection of WebRTC Session Controller packages that each
roughly equate to a single real time WebRTC feature. Each package contains any
number of Groovy scripts, called criteria, that each perform a single translation
function on a single type of call message. The sections below provide more detail on
applications, packages, and criteria.

About Applications
A WebRTC Session Controller application represents a single client application or
service that sends messages between a browser and a SIP server through WebRTC
Session Controller. Each application must have at least two packages, one for
translating from the SIP server to the application and one for translating from the
application to the SIP server. Each application has:

■ An informal name.

■ An active/inactive setting.

■ An informal description.

■ References to the WebRTC Session Controller packages that contain the Groovy
scripts that performs message processing and translation.

■ A Request URI that the application uses to communicate with a SIP server or
proxy.

■ The WebLogic security group. The security groups is required, and the Weblogic
Server contains some default security groups that you can use. For details on using
security groups, see the discussion on users, groups, and security roles in Oracle
Fusion Middleware Securing Resources and Policies for Oracle Weblogic Server.

■ A list of Allowed Domains that serve as a white list of domains the application is
allowed to contact.

■ Resource limits that allow you to protect system performance by limiting an
application’s impact on Signaling Engine. These resource limits can also serve as
application white- and black-lists for individual applications.

See "About Packages" for details on the packages that comprise an application.

About Packages
A package defines a service provided by the JSONRTC protocol. It consists of a group
of messages such as requests and responses that are sent between the client and the
server. Table 2–1 lists the packages that are available through the WebRTC Session

Understanding the WebRTC Session Controller Components

2-6 WebRTC Session Controller Extension Developer’s Guide

Controller console on the Packages tab.

Table 2–1 WebRTC Session Controller Packages

Package Description

call Provides the ability to start a voice or video call, upgrade from a
voice to a video call, establish a DataChannel.

capability Provides exchange capability such as file transfer or video
sharing.

chat Provides one-to-one and group chat service.

file_transfer Provides the ability to transmit files, share images, and so on.

message_notification Provides the ability to notify the client of information such as
pending voice mails, fax messages, and so on.

messaging Provides a standalone message capability.

register Registers a SIP session request.

Each WebRTC Session Controller package contains a group of criteria that contain the
Groovy scripts to translate a logical group of messages from JSON to SIP or SIP to
JSON. For example, Signaling Engine provides an example call package that includes
all of the JSON (FROM_APP) and SIP (FROM_NET) criteria to build up and tear down
a JSON to SIP call, including:

■ JSON start messages (request, response, and error)

■ JSON complete message

■ JSON prack message

■ JSON shutdown message

■ SIP INVITE messages (request and response)

■ SIP CANCEL message

■ SIP ACK messages (request and response)

■ SIP UPDATE messages (request and response)

■ SIP PRACK message

■ SIP BYE messages (request and response)

A package generally contains criteria for a single client application. Each package can
be used by any number of Signaling Engine applications.

See the WebRTC Session Controller console to inspect the default packages provided,
and "About Criteria" for details about the criteria that comprise a package.

About Criteria
Each WebRTC Session Controller criteria matches one kind of JSON or SIP message
and runs the code in a Groovy script against it. For example, one criteria translates an
INVITE request message from SIP to JSON, and another translates the response back
from JSON to your SIP format.

Each criteria uses this information to identify the messages it translates:

■ A FROM_APP or FROM_NET direction that specifies whether the message
originated in a WebRTC-enabled browser, or your SIP IMS core.

About the WebRTC Session Controller Console

About Building JSON to SIP Communication 2-7

■ A verb matching the type of JSON or SIP request or response. For example, an
UPDATE verb matches SIP UPDATE requests and response messages, and a
complete verb matches a JSON complete request or response message.

■ A type of message for the criteria to match. For example request or response. See
"JSONRTC Protocol Reference" for the list of supported type values.

■ A Network Service name. Each default criteria uses a Script Library call to return
the network service of the call. A default network service name is the default.

See "About the Groovy Scripts" for details on the Groovy scripts.

By default, WebRTC Session Controller contains useful criteria that you can use to
build and tear down calls, and use as stubs to add functionality that your
implementation requires. You can use these default criteria as provided but you will
probably modify them to fit your implementation’s needs.

This is the default FROM_NET/INVITE/request/default criteria Groovy script:

def sipRequest = context.originatingSipMessage
def webMessage = context.webFactory.createWebRequest("start")
webMessage.header = [
 initiator : sipAddressToString(sipRequest.from),
 target : sipAddressToString(sipRequest.to)
]
// SDP
if (sipRequest.sdp) {
 webMessage.payload = [sdp : sipRequest.sdp]
}
def sdpString = sipRequest.sdp

if(context.mediaFactory.isAvailable() && sdpString!=null) {
 def sdpOffer = context.mediaFactory.createSdpOffer("1", sdpString,
Constants.ME_CONFIG_NAME, null, sipAddressToString(sipRequest.to),
sipAddressToString(sipRequest.from));
 def ascFuture = sdpOffer.send()
 context.getTaskBuilder("processMediaResponseToSendWebMsg").withArg("ascFuture",
ascFuture).withArg("webMessage",webMessage).onSuccess(ascFuture).build();
}
else{
 webMessage.send()
}

About the WebRTC Session Controller Console
You use the WebRTC Session Controller console to create, organize, use, and extend
the applications, packages, and criteria for your implementation.

At the highest level, you use the Applications tab to create and manage applications,
that roughly equate to a single web client application. See "Creating Applications" for
details on creating applications.

Figure 2–4 shows the WebRTC Session Controller console with the Packages tab
exposed. Each package is listed with its direction, verb, type, and network service. The
Groovy script used in each criteria is shown on the bottom right of the pane. You enter
or change the Groovy script for each package in this pane. You can also reference any
existing Groovy code stored in the Script Library tab. See "Creating Packages" for
details on creating packages for your applications.

About the Groovy Scripts

2-8 WebRTC Session Controller Extension Developer’s Guide

Figure 2–4 WebRTC Session Controller Console Packages Tab

The Script Library tab is a repository of validated Groovy scripting code that you can
reference in any of your packages.

About the Groovy Scripts
Groovy is a scripting languages based on, and very similar to the Java programming
language. Each Signaling Engine package contains its own individual Groovy scripts
that translate messages matching its criteria specifications. The translation is either
from WebRTC Session Controller’s normalized format to SIP, or SIP to the normalized
format depending on the direction you set. Packages require that you set up one
criteria for translating in one direction, and a corresponding criteria for translating
messages in the other direction. Signaling Engine then translates the normalized
format to a format that your browser/application uses and back again.

Most packages use synchronous communication, so most criteria are created in pairs;
one that translates messages from the client application (JSON) to SIP, and the other to
translate from SIP to JSON. However the traffic can be asynchronous, as with Short
Message Service (SMS) messages for example.

Figure 2–5 shows how criteria use Signaling Engine components to translate messages.
The register package shown contains two criteria, one for FROM_NET messages and
the other for FROM_APP messages.

About Accessing the Parameters Using Groovy Scripts

About Building JSON to SIP Communication 2-9

Figure 2–5 Signaling Engine Criteria Components

At run time, Signaling Engine converts the criteria identifying information (FROM_
APP or FROM_NET, the verb, message type, and network service) to a method name.
The TemplateContext interface of the oracle.wsc.feature.webrtc.template package in
the WebRTC Session Controller JSONRTC protocol is called to act on the Groovy
script. This interface includes all of the other JSONRTC protocol interfaces that specify
the specific Java methods that you can use to get information from or set information
to a message.

See WebRTC Session Controller Configuration API Reference for details on this API.

Finally, every criteria contains a Groovy script that acts on the information obtained
from the context. It is in these scripts that you add any new functionality or redirection
instructions that change the behavior or destination of the message. In addition to
simple translation, you can add any other processing that your implementation
requires to each message. For example, you could:

■ Map JSON information to SIP fields so that your SIP server accepts it.

■ Map SIP header information to a form that your web application can use.

■ Route the message to a specific URL based on its JSON information.

■ Route the message to a specific URL based on its SIP information.

■ Incorporate features such as redirecting a message to a different URL for example,
to prevent bill shock.

See WebRTC Session Controller Configuration API Reference for details on the packages
and methods of the API.

About Accessing the Parameters Using Groovy Scripts
This section describes the integration parameters associated with the Signaling Engine
that are configured through the WebRTC Session. Table 2–2 shows the system
integration parameters that you can access from your Groovy scripts.

About Accessing the Parameters Using Groovy Scripts

2-10 WebRTC Session Controller Extension Developer’s Guide

Table 2–2 Accessing Integration and Package Filter Parameters

Parameter Description

Proxy Registrar URI Enter a SIP proxy server/Registrar URI. The value you enter in this
field becomes the default SIP proxy server/Registrar URI for any new
application you create.

 Access this parameter in Groovy as context.properties.proxyRegistrar
using SipContext, AuthenticationContext, TemplateContext, or
WebContext.

Dynamic Media Anchoring Type Select a media anchoring option supported by WebRTC Session
Controller. The possible selections are:

■ Disabled

The application should not connect to the Media Engine.

■ web-to-web-anchor-conditional

web to web conditional anchoring is used in a session when
WebRTC-enabled browsers are allowed to communicate directly. If
for some reason the browsers cannot communicate directly, they
can communicate through WebRTC Session Controller.

■ web-to-web-anchored

web to web forced anchoring is used in a session when all media
flows through Media Engine.

The supported Media Engine session type, is assigned to the Groovy
constant ME_CONFIG_NAME_DMA, in the Groovy library

Media Engine MSRP Select a message Session Relay Protocol (MSRP) to Media Engine from
Signaling Engine. The possible selections are:

■ msrpwss-to-msrptcp

■ msrpws-to-msrptcp

Access this parameter in Groovy as context.properties.webMSRP
using SipContext, AuthenticationContext, TemplateContext, or
WebContext.

About Accessing the Parameters Using Groovy Scripts

About Building JSON to SIP Communication 2-11

For a description about configuring these parameters through the Administration
console, see "Global Integration Parameters of the Signaling Engine" in WebRTC Session
Controller System Administrator’s Guide.

About the Contexts
You can access the parameters listed in through a number of contexts. In the access
strings, the context entry can be SipContext, AuthenticationContext,
TemplateContext, or WebContext interface. The code sample in Example 2–1 accesses
a SIP package using the SipContext Interface.

Example 2–1 Accessing SipContext Interface of the SIP Package

@groovy.transform.CompileStatic
Map<String, Object> resolveProcessingParameters(final SipContext sipContext) {
 final WscSipMessage sipMessage = sipContext.wscSipMessage
 final def proxy = sipContext.properties.proxyRegistrar
 return [
 package_type : resolvePackageType(sipMessage),
 network_service : resolveNetworkService(sipMessage)

}

For a description about these WSC API interfaces, see WebRTC Session Controller
Configuration API Reference.

Signaling Engine MSRP Select an MSRP to Signaling Engine from Media Engine.

■ msrptcp-to-msrpwss

This denotes the media engine configuration for MSRP to the
WebRTC side.

■ msrptcp-to-msrpws

This denotes the media engine configuration for MSRP from the
WebRTC side.

Access this parameter in Groovy as context.properties.netMSRP using
SipContext, AuthenticationContext, TemplateContext, or
WebContext.

File Transfer Enter a pattern for resolving file_transfer packages by SDP. The default
pattern is:

a.*=.*file-selector

Access this parameter in Groovy as
context.properties.fileTransferPattern using SipContext,
AuthenticationContext, TemplateContext, or WebContext

MSRP Enter a pattern for resolving MSRP packages by the Session Description
Protocol (SDP). The default pattern is:

m.*=.*message.*MSRP

MSRP signaling is carried in SIP INVITE requests. When WebRTC
Session Controller receives a SIP INVITE, it determines whether the
request should be processed as a call, msrp chat or msrp file transfer. To
do so, it looks at these regex expressions.

Access this parameter in Groovy as context.properties.msrpPattern
using SipContext, AuthenticationContext, TemplateContext, or
WebContext.

Table 2–2 (Cont.) Accessing Integration and Package Filter Parameters

Parameter Description

About the Script Library

2-12 WebRTC Session Controller Extension Developer’s Guide

About the Script Library
The Groovy scripts you create for a package will probably use some functionality
provided in the script library. The script library contains a set of useful methods that
you can add to as required by your implementation. To use one of these methods,
select the Script Library tab, click Edit, make your changes, then click Save. Example
methods in the Script Library include code to:

■ Return a user address based on the characteristics of a SIP string.

■ Set the SIP routing URI.

■ Set the SIP message contact parameter.

■ Copy SDP data to a SIP header.

The Groovy code that you create in a package’s criteria is appended to the code in the
script library at run time. So you can reuse any of the library code in the scripts that
you create for each individual package. You can also add more code to the library as
needed, and use it in other individual packages.

After changing the code in either a package or the library, you need to validate it to
ensure that it compiles correctly. You use the Validate button on the Package and
Script Library tabs to validate individual package scripts or the script library.

Note: WebRTC Session Controller does not support global variables
in the Groovy script library.

About the Normalized Data Format
As pictured in Figure 1–1 Signaling Engine converts messages into a normalized data
format in the process of translating them between SIP and JSON. All messages are
converted to the normalized format, regardless of whether they originated in a
WebRTC client application, or from your IMS core.

The syntax for the normalized format is straightforward:

Map<String, Object>

For example, this JSON data format message:

{
"age":25,
"name":{
"first":"joe",
"last":"smith"
},
"messages":["msg 1","msg 2","msg 3"]
}

Is translated to this normalized message format, which is a hash map representation of
the message:

{"age"=25,
{"name"={"first"="joe","last"="smith"}},
{"messages"=["msg1","msg2","msg3"]}}

Notice that the messages array is a nested hash map of its own.

Table 2–3 lists a variety of actions that you might perform while creating a Groovy
translation script and the Groovy code that performs the action.

Table 2–3 Java and Groovy Actions on the Normalized Format

Translation Action Groovy Code

Get the age def age = map.age

Get the first name def firstName = map.name.first

Get the list of messages def messages = map.messages

Get message 2 from the list def message2 = messages[1]

Modify the last name map.name.last = "doe"

Add a middle name map.name.middle = "bob"

About the Normalized Data Format

About Building JSON to SIP Communication 2-13

About the Normalized Data Format

2-14 WebRTC Session Controller Extension Developer’s Guide

3

Creating WebRTC Session Controller Applications, Packages, and Criteria 3-1

3Creating WebRTC Session Controller
Applications, Packages, and Criteria

This chapter explains how to create the applications, packages, and criteria that
WebRTC Session Controller Signaling Engine (Signaling Engine) uses to establish and
modify communication between your client applications and IMS core.

You use the WebRTC Session Controller console graphical user interface (GUI) to
create and manage the applications, packages, and criteria that Signaling Controller
uses to translate and modify messages between client applications and your IP
Multimedia Subsystem (IMS) core.

This procedure requires a running WebLogic server, and that you know the WebLogic
username and password that you created for the domain. See the discussion on getting
started in WebRTC Session Controller System Administrator's Guide for instructions on
creating and starting a WebLogic domain.

To establish and modify communication between your client applications and IMS
core, you do the following:

■ Create the signaling engine criteria. See "Creating Criteria."

Creating Criteria
Each Signaling Engine criteria contains a single Groovy script that performs all
translation and processing tasks for a single type of JavaScript Object Notation (JSON)
or Session Initiation Protocol (SIP) message. You must create separate criteria for all
possible JSON or SIP message that your Signaling Engine implementation processes.
In synchronous request/response communication, you must create a separate criteria
for each request and response message.

Before creating a new criteria, look through the Groovy code in the default packages,
and in the Script Library to see whether there is already some code that accomplishes
what your message requires.

Criteria are applied to messages based on this information included in each criteria,
such as the direction from which a message originates, the SIP method or JSON action
that the criteria matches, the type of message, and an identifier for the application that
the message is associated with.

To create the criteria and Groovy script processing necessary to implement your new
package, access the WebRTC Session Controller console. For details on creating
criteria, see the description about "Managing Package Criteria" in WebRTC Session
Controller System Administrator’s Guide.

Creating Packages

3-2 WebRTC Session Controller Extension Developer's Guide

Creating Packages
A package is a collection of all the criteria (Groovy scripts) necessary to translate the
telecom messages in a session from JSON to SIP and back. So creating a new package
really just creates a shell that you fill with criteria. This procedure assumes that you
have already created the criteria required.

To create the new package, access the WebRTC Session Controller console. For details
on creating criteria, see the description about "Configuring Messaging Packages" in
WebRTC Session Controller System Administrator’s Guide.

Creating Applications
Each application is a collection of packages that contain the criteria that translate (and
probably change) WebRTC application to SIP network communication for a single
program. This procedure assumes that you have already created the criteria and
packages required.

Applications reference your WebLogic security groups. Create any security groups
your implementation requires before following this procedure.

To create applications, access Application Profiles tab in the WebRTC Session
Controller console. For details on creating and registering applications, see the
description about "Managing WebRTC Session Controller Application Profiles" in
WebRTC Session Controller System Administrator’s Guide.

Exporting and Importing a Configuration
You can export your current configuration settings to a file or import a set of
configuration settings from a file to which a configuration instance was previously
saved. For details on creating and registering applications, see the description about
"Exporting and Importing a Configuration" in WebRTC Session Controller System
Administrator’s Guide.

Debugging Groovy Script Run Time Errors
You can diagnose Groovy script problems using the stack trace in the domain_
home/wsc.log file, where domain_home is the name of the WebRTC Session Controller
domain. This file contains the Signaling Engine stack trace messages. You identify the
individual Groovy script by searching for the individual criteria method name that
contains the criteria information.

For details on debugging your groovy scripts, see the description about "Debugging
Groovy Script Run Time Errors" in WebRTC Session Controller System Administrator’s
Guide.

About the WebRTC Session Controller Console Validation Tests
The WebRTC Session Controller console runs validation tests to confirm that your
Groovy scripts, Groovy library, packages, and applications are all valid. It runs the
validation tests each time you commit changes to an application, package, or criteria,
or click the Validate button.

For the complete list of the error types and the messages, see "About the WebRTC
Session Controller Console Validation Tests" in WebRTC Session Controller System
Administrator’s Guide.

4

Customizing Messages for New SIP or JSON Data 4-1

4Customizing Messages for New SIP or JSON
Data

This chapter contains examples of how to use Oracle Communications WebRTC
Session Controller Signaling Engine (Signaling Engine) to process customized Session
Initiation Protocol (SIP) data in messages, and add new JavaScript Object Notation
(JSON) data to support protocol changes.

Processing Messages With Custom SIP Data
This section provides some examples for how to translate SIP messages which contain
custom SIP data.

Example SIP Request Variable
The examples in this chapter assume that you have created a custom sipReq variable
as shown in this example:

// Create REGISTER request
def from = getFromAddress(context)
def to = getToAddress(context)
def sipReq = context.sipFactory.createSipRequest("REGISTER", from, to)

// Set request URI
sipReq.requestURI = context.sipFactory.createSipAddress(Constants.PROXY_SIP_
URI).URI

// Set contact user
if (from.URI?.user) {
 sipReq.setContactUser(from.URI.user)
}

// Set sip.instance to allow container to use SIP Outbound
// for routing purposes as defined in RFC 5626
def sipInstance = "\"<urn:uuid:" + java.util.UUID.randomUUID() + ">\""
sipReq.setSipContactParameter("+sip.instance", sipInstance)
sipReq.setSipContactParameter("reg-id", "1")
context.subSessionStore.put("sip.instance", sipInstance)

sipReq.send()

Propagating Custom Headers to SIP and Browser Endpoints
To propagate custom headers to SIP or Browser endpoints, you need to implement the
following additional logic in the WSC groovy scripts:

Processing Messages With Custom SIP Data

4-2 WebRTC Session Controller Extension Developer’s Guide

■ Adding the Custom Header to the SIP endpoint

Retrieve the extra header from the JSON message and add it as a SIP header. To do
so, modify the FROM_APP_START_REQUEST, as shown here:

 if(context.webMessage.header?.NAME_OF_THE_HEADER) {
 sipRequest.setHeader(NAME_OF_THE_HEADER,context.webMessage.header.NAME_OF_
THE_HEADER)
}

■ Adding the Custom Header to the Browser endpoint

Retrieve the extra header from the SIP INVITE message and add it to the JSON
message. To do so, modify the FROM_NET_INVITE_REQUEST, as shown here:

webMessage.header = [
 initiator : sipAddressToString(sipRequest.from),
 target : sipAddressToString(sipRequest.to),
 test : sipRequest.getHeader(NAME_OF_THE_HEADER)
]

Extending SIP Messages with New Headers
This Groovy code snippet from the default register package, in the FROM_
APP/connect/request/default criteria (commented out) adds support for a Globally
Routable User agent URI (GRUU).

sipReq.setHeader("Supported", "gruu")
// P-Charging-Vector example
def icidValue = context.uniqueId
def myIp = java.net.InetAddress.localHost.hostAddress
sipReq.setHeader("P-Charging-Vector", "icid-value=" + icidValue +
";icid-generated-at=" + myIp)

Protecting System Performance by Removing SIP Messages
You can save network bandwidth by removing unimportant messages during
processing. For example, you would use this code snippet to remove provisional SIP
responses (the 1xx SIP messages). You would put this in the Groovy script for the
FROM_NET/INVITE/response criteria:

if (sipResponse.status < 200) {
 // Ignore provisional responses
} else if (sipResponse.status < 300)
 // Proceed with processing
}
{...
}

Removing a SIP Header in a Message
Use this Groovy code snippet to remove a header. Headers cannot be renamed.

sipReq.removeHeader("headername")

Replacing a SIP Header in a Message
You use the setHeader method to replace a header in a SIP message. Setting a header
overwrites its value.

Retrieving Session Addressing Information from Groovy

Customizing Messages for New SIP or JSON Data 4-3

Conditionally Passing SIP Headers in Messages
This example Groovy code snippet probes for a JSON parameter called
myWebParmeter and if present it copies the value to a SIP header.

def myWebParameter = context.webMessage?.header.?myParameter
if (myWebParameter) {
 sipRequest.setHeader("MyHeader", myWebParameter)
}

You pass SIP headers as extension headers (extHeader) in the JSON API. See WebRTC
Session Controller Application Developer’s Guide for examples of using extension headers.

Changing JSON Data to Support Protocol Changes
If the JSON protocol specification changes, you can add processing for additional data
in your Groovy scripts. WebRTC Session Controller ignores new JSON data if you do
not use it in processing.

Retrieving Session Addressing Information from Groovy
In certain instances, you may need to retrieve connection information from a particular
WebRTC Session Controller session, in order, for instance, to provide media service
route lookups to a WebRTC Session Controller Media Engine. To facilitate such
communication, an authenticationContext object is passed to the
buildSecurityContext method of the Groovy script library. Table 4–1 lists the
properties of the authenticationContext object.

Table 4–1 authenticationContext Properties

Property Description

authContext.properties.connection.remote_ip Returns the Internet Protocol (IP) address
of the client or the last proxy that sent the
request.

authContext.properties.connection.remote_port Returns the IP source port number of the
client or the last proxy that sent the
request.

authContext.properties.connection.local_ip Returns the IP address of the interface on
which the request was received.

authContext.properties.connection.local_port Returns the IP port number of the
interface on which the request was
received.

authContext.properties.connection.server_name Returns the host name of the server to
which the request was sent.

authContext.properties.connection.headers Returns the Websocket headers such as
origin, host and others. For a complete
listing, see

https://tools.ietf.org/html/rfc6455#
page-25

The authenticationContext properties are initiated during the session handshake upon
client connection and are available to all WebRTC Session Controller Groovy packages.

Example 4–1 shows how to retrieve the authenticationContext properties from
Groovy.

Initiating REST Calls from Groovy

4-4 WebRTC Session Controller Extension Developer’s Guide

Example 4–1 Retrieving authenticationContext Properties

// Retrieve the properties from the authenticationContext...
def properties = authContext.properties
// Retrieve the connection associated with the properties...
def connection = properties.connection

// Print the properties to the WebLogic console...
println "Remote IP address: "+connection.remote_ip
println "Remote port: "+connection.remote_port
println "Local IP address: "+connection.local_ip
println "Local port "+connection.local_port
println "Server name: "+connection.server_name
println "Websocket headers "+connection.headers

Initiating REST Calls from Groovy
This section describes how you can initiate arbitrary Representational State
Transformation (REST) calls to external network endpoints.

The WebRTC Session Controller REST call functionality supports the following
features:

■ Asynchronous and synchronous callback responses

■ Support for HTTP and HTTPS

■ Support for all standard REST methods:

– GET

– POST

– PUT

– DELETE

– HEAD

– OPTIONS

■ Support for REST calls during message processing or WebSocket connection
establishment

For complete details on the Groovy REST API, see WebRTC Session Controller
Configuration API Reference.

Adding a REST URI Endpoint Constant
As a matter of convenience and to simplify maintenance, you should define a Groovy
constant for your REST endpoint URI. In the global constants block of the WebRTC
Session Controller Groovy script library, add a line similar to Example 4–2, replacing
server, port and rest_endpoint with the correct values for your configuration.

Example 4–2 Defining a REST URL Endpoint Constant

public static final MY_REST_URL = "http://server:port/rest_endpoint"

With the constant defined, you can reference from the script library or WebRTC
Session Controller packages similar to Example 4–3.

Example 4–3 Referencing the URL Constant

def restRequest = context.restClient.createRequest(Constants.MY_REST_URL...);

Initiating REST Calls from Groovy

Customizing Messages for New SIP or JSON Data 4-5

Creating a REST Request in Groovy
To create a REST request in Groovy, you use the WebRTC Session Controller restClient
object’s createRequest method:

def restRequest = context.restClient.createRequest(rest_url[, http_method][, synchronous]);

The rest_url parameter is required and represents a valid REST endpoint. The http_
method parameter is a valid REST HTTP method, while the synchronous parameter is a
boolean value indicating, if true, that the REST invocation is synchronous. Both the
http_method and synchronous parameters are optional, and, if omitted, a REST request is
created using the provided rest_url and the HTTP GET method by default.

Note: REST requests created in WebRTC Session Controller packages
must always be asynchronous. If you initiate REST calls from the
buildSecurityContext Groovy library script, they must be
synchronous.

In Example 4–4, an asynchronous REST request is created using the REST endpoint
constant from Example 4–2 and the HTTP PUT method.

Example 4–4 Creating a REST Request

def myRestRequest = context.restClient.createRequest(Constants.MY_REST_URL, "PUT");

Configuring the REST Request
Once the REST request is created, you can customize it using the following methods:

■ addHeader(string name, string value): add an arbitrary header to the REST request

■ setAccept(RestMediaType mediatypes): define the data types the REST endpoint
accepts, defined as a RestMediaType enum:

– APPLICATION_JSON: an application/json content type

– APPLICATION_XML: an application/xml content type

– TEXT_PLAIN: a text/plain content type

■ setAcceptLanguage(string locales): a string defining the acceptable locales

■ setEntity(object entity, RestMediaType mediatype): set the request entity for REST
POST and PUT methods

Note: Depending upon the RestMediaType, the following
requirements apply to the setEntity method:

■ APPLICATION_JSON: the entity object should be an object
expected by the call method of groovy.json.JsonBuilder, or a
groovy.json.JsonBuilder object which is a groovy.lang.Writable.

■ APPLICATION_XML: the entity object should be a
groovy.lang.Closure object as expected by the bind method of
groovyl.xml.StreamingMarkupBuilder or a groovy.lang.Writable
object obtained from groovy.xml.StreamingMarkupBuilder.

■ TEXT_PLAIN: the entity object should be a java.lang.string.

For more details on Groovy objects and data types, see the Groovy
documentation at http://groovy-lang.org/documentation.html.

Initiating REST Calls from Groovy

4-6 WebRTC Session Controller Extension Developer’s Guide

■ setStackConfiguration(string name, object value): adds a property supported by
the underlying REST stack implementation

Example 4–5 configures some basic parameters for the REST request object created in
Example 4–4.

Example 4–5 Configuring a REST Request Object

myRestRequest.setAccept(APPLICATION_XML);
myRestRequest.setAcceptLanguage("en-us", "de-de", "fr-fr");
myRestRequest.addHeader("My Key", "My Value");

Sending the REST Request
In Example 4–6, using the REST request created Example 4–4, you use the request
object’s send method to send the REST request. Example 4–6 provides as arguments to
the send method an optional entity, in this case an XML snippet, and also provides the
RestMediaType of the entity. The send method may also be called with no arguments,
and returns the future of the REST invocation, here stored in the variable
myRestFuture.

Example 4–6 Sending the REST Request

def xml = {
 mkp.xmlDeclaration()
 fish {
 name("salmon")
 price("10")
 }
};

def myRestFuture = myRestRequest.send(xml, APPLICATION_XML);

Note: Specifying the entity and RestMediaType arguments for the
send method is equivalent to using the setEntity method described in
"Configuring the REST Request."

Initiating REST Calls from Groovy

Customizing Messages for New SIP or JSON Data 4-7

Handling REST Responses
In order to handle REST responses from asynchronous REST requests, using the
context object’s taskBuilder method, you bind the restClient context to a Groovy
callback function that will handle the REST response.

In Example 4–7, myRestFuture from Example 4–6 is bound to the Groovy function
processResponse for getTaskBuilder’s onSuccess and onError methods.

Example 4–7 Binding the REST Response to a Groovy Callback

context.getTaskBuilder("processResponse").withArg("myRestFuture", restFuture)
 .onSuccess(restFuture).build();
context.getTaskBuilder("processResponse").withArg("myRestFuture", restFuture)
 .onError(restFuture).build();

Note: While the onError and onSuccess methods in Example 4–7,
are bound to the same processResponse function, you can choose
different functions for each depending upon your requirements.

The processResponse Groovy function referenced in Example 4–7 can be defined in
the WebRTC Session Controller script library to process the REST response.
Example 4–8 shows a basic example using the XML document defined in Example 4–6.

Example 4–8 REST Response Handler

void processResponse(TemplateContext context) {
 def result = context.taskArgs.restFuture.get()
 if (result.status == 200) {
 def fish = result.value()
 if (fish.name.text() == "salmon") {
 // Continue processing...
 }
 } else {
 // Handle any errors...
 }
}

The RestResult variable, resp, itself provides the following utility methods that you
can use when processing the REST response:

■ getAllow

■ getCookies

■ getEntityTag

■ getHeaders

■ getLanguage

■ getLastModified

■ getLength

■ getLocation

■ getResponseData

■ getStatus

■ hasEntity

Extending WebRTC Session Controller Functionality

4-8 WebRTC Session Controller Extension Developer’s Guide

■ value

For details on those methods, see WebRTC Session Controller Configuration API
Reference.

REST Authentication
The WebRTC Session Controller REST API supports basic and digest authentication
schemes. You use the methods setCredentials and setDigestCredentials to specify
username and password for basic and digest authentication respectively:

■ setCredentials(string username, byte[] password)

■ setDigestCredentials(string username, byte[] password)

Note: The API accepts encrypted passwords that you can retrieve
using the weblogic.security.Encrypt utility.

In Example 4–9, a synchronous REST request is created, myRestAuthRequest, and the
setCredentials method is used to initialize a username and password.

Example 4–9 Creating a Basic Authentication REST Request

def myRestAuthRequest = context.restClient.createRequest(Constants.MY_REST_URL, "PUT", true);
def username = "myuserid";
def password = [231, 245, 675, 232, 123] as byte[];
myRestAuthRequest.setCredentials(username, password);

Useful XML Groovy Utilities for REST Calls
If you are using XML markup in your REST requests and responses, there are Groovy
utilities that can streamline much of your work:

■ StreamingMarkupBuilder: a utility that simplifies building XML documents

■ XmlSlurper: a utility that simplifies reading and formatting XML documents

For more details on those and other Groovy utilities, see
http://groovy-lang.org/documentation.html#apidocumentation.

Extending WebRTC Session Controller Functionality
If your implementation requires client application logic that WebRTC Session
Controller or Javascript does not support by default, you need to create new software
packages to implement it. The procedure below offers guidelines for creating a new
package. The exact steps and sequence depend on your requirements.

See "JSONRTC Protocol Reference" for details on the JSONRTC protocol that WebRTC
uses to communicate with client applications. Also, see "Prerequisites for Extending
WebRTC Session Controller Functionality" for information on other protocols you may
need to understand.

To create a new package:

1. Design your new package.

Include the new JSON to SIP message mapping and any new JSON and SIP data,
formats, and headers.

Extending WebRTC Session Controller Functionality

Customizing Messages for New SIP or JSON Data 4-9

2. To create the criteria and Groovy script processing necessary to implement your
new package, access the WebRTC Session Controller console.

For details on creating criteria, see the description about "Configuring Package
Criteria" in WebRTC Session Controller System Administrator’s Guide.

3. Create or extend the tools necessary to use the package with a client application.

■ If you use the JavaScript Development Environment client operating system,
see the WebRTC Session Controller Application Developer’s Guide for more
information.

■ If you use a different client operating system, see that operating system
documentation for details. You may also find the WebRTC Session Controller
Application Developer’s Guide helpful.

4. Write the client application.

■ To develop JavaScript client applications see the WebRTC Session Controller
Application Developer’s Guide for more information.

■ To develop client applications in another operating system, see that operating
system documentation for information on how to communicate with WebRTC
Session Controller.

Extending WebRTC Session Controller Functionality

4-10 WebRTC Session Controller Extension Developer’s Guide

5

Using Policy Data in Messages 5-1

5Using Policy Data in Messages

This chapter explains how Oracle Communications WebRTC Session Controller
Signaling Engine (Signaling Engine) uses policy data from policy charging rule
functions (PCRFs) to affect subscriber calls and profiles.

About Using Policy Control Data with Signaling Engine
Signaling Engine supports using its Groovy script translation capability to make policy
(QoS) decisions by using the policy information contained in Diameter Rx interface
messages. Signaling Engine acts as a Diameter application function (AF) by
exchanging Diameter Rx messages with your policy control and charging rules
function (PCRF) in a 3GPP architecture.

Signaling Engine supports sending AA Request (AAR) and Session Termination
Request (STR) Diameter Rx messages from Signaling Engine to your PCRF, and using
the data from AA Answer (AAA) and Session Termination Answer (STA) messages
that it receives in return.

The Diameter Rx messages and their responses are frequently used with the
pcrfFuture interface that enables you to delay processing until a later message arrives.
Oracle expects that most implementations will send Diameter AAR requests and then
delay the media session until they receive an AAA confirming that the subscriber is
entitled to the service.

The AAR and AAA messages can be exchanged any time before a call’s media stream,
and the STR and STA messages are exchanged after the stream. So you can affect your
PCRF and PCEF affect the subscriber profile before the media stream resources are
used, update the subscriber’s profile after the media stream resources have been
consumed, or both.

See WebRTC Session Controller Statement of Compliance for the complete list of Diameter
Rx commands and AVPs that Signaling Engine Supports.

Before the AAR and STR messages can be useful, you must configure your PCRF to
accept and make policy decisions based on the AVPs that you send them. If your
implementation requires it, you must also configure a PCEF to enforce those decisions.

Figure 5–1 shows an example call flow in which Signaling Engine exchanges messages
with a PCRF both before and after the call’s multimedia stream. Diameter Rx AAR,
AAA, STR, and STA messages are shown in red in the call flow.

About Using Policy Control Data with Signaling Engine

5-2 WebRTC Session Controller Extension Developer's Guide

Figure 5–1 Signaling Engine Call Flow with PCRF Support

Creating and Sending Diameter Rx Request messages
You use the createRxAAR and createRxSTR methods in the WscDiameterFactory
interface of the oracle.wsc.feature.webrtc.template.diameter package to create AAR
and STR messages. These methods accept a map of AVPs that you create, and adds
them to a Diameter Rx message that your PCRF can parse. Your PCRF then accepts the
AVPs and take whatever action that you have configured it.

These AVPs are automatically added to each outgoing request and need not be
specified in a Groovy script:

■ Session-Id

■ Origin-Host

■ Origin-Realm

About Using Policy Control Data with Signaling Engine

Using Policy Data in Messages 5-3

■ Auth-Application-Id

■ Destination-Realm

You must specify any other AVPs that your implementation requires in your Groovy
scripts. See WebRTC Session Controller Statement of Compliance for details on the AVPs
supported.

This example defines an AAR message and specifically defines the AVPs used (for
example: Subscription-Id, Subscription-Id-Type, and Subscription-Id-Data):

 def avps = [
 'Subscription-Id':[
 'Subscription-Id-Type':2, //END_USER_SIP_URI
 'Subscription-Id-Data':"bob@example.com"
],
 'Framed-IP-Address':[
 0x84,
 0x08,
 0x88,
 0x65] as byte[],
 'AF-Application-Identifier':"WSE".getBytes("utf-8"),
 'Media-Type':0, //Audio
 'AF-Charging-Identifier':'charing-id-55'.getBytes("utf-8"), //Audio
 'Media-Component-Description':[
 'Media-Component-Number':[0, 1],
 'Media-Sub-Component': [
 [
 'Flow-Number':1,
 'Flow-Description':'permit out 8001 from assigned 34 to 24.2.1.6/18
8000'
],
 [
 'Flow-Number':1,
 'Flow-Description':'permit out 8005 from assigned 36 to 24.2.1.6/18
8001'
]
],
 'Flow-Status':2
]
]

 def aar = context.diameterFactory.createRxAAR(avps)

After creating a Diameter request message, you must explicitly send it using a send
method call. send is a method in the WscDiameterRequest interface in the
oracle.wsc.feature.webrtc.template.diameter package. This example sends an AAR
message, and provides example success and error conditions:

def pcrfFuture = aar.send();

//success
context.getTaskBuilder("processSuccessFromPcrf").withArg("sipRequest",sipRequest)
 .withArg("pcrfFuture", pcrfFuture).onSuccess(pcrfFuture).build();

//error
context.getTaskBuilder("processErrorFromPcrf").withArg("sipRequest",sipRequest)
 .withArg("pcrfFuture", pcrfFuture).onError(pcrfFuture).build();

This example lists the pcrfSuccessHandler and pcrfErrorHandler methods that you
would define to handle the success and failure conditions.

About Using Policy Control Data with Signaling Engine

5-4 WebRTC Session Controller Extension Developer's Guide

You use the methods in the PcrfFuture interface in the
oracle.wscfeature.webrtc.template.diameter package to determine if any future
objects are ready for use by your Groovy scripts. This interface extends the
oracle.wsc.feature.webrtc.template.future interface.

This example checks the AVP values in the response to confirm that the subscriber
bob@example.com uses a media type of 0.

def avps = context.taskArgs.pcrfFuture.get().getAvps()

if(avps.'Subscription-Id'?.'Subscription-Id-Data'=='bob@example.com"){
 //add logic here.
}else if(avps.'Media-Type'==0){
//provide alternative
}

Accepting and Using Diameter Rx Answer Messages
You use the getAvps, getCommandCode, and getResultCode methods in the
WscDiameterResponse interface of the oracle.wscfeature.webrtc.template.diameter
package to process the Diameter Rx AAA and STA messages returned by your PCRF.
getCommandCode, returns the command code identifying the type of message (265
for AAR and AAA, and 275 for STR and STA). getResultCode returns the integer
values for the Result-Code AVP. getAvps returns a map of all the AVPs in the AAA or
STA message. You use this method in groovy scripts you create to obtain the data
necessary to perform policy actions, and take those actions.

6

Anchoring Media Sessions 6-1

6Anchoring Media Sessions

This chapter explains how to use the Oracle Communications WebRTC Session
Controller Media Engine (Media Engine) features to anchor media sessions.

About the WebRTC Session Controller Media Server
You use Media Engine to:

■ Establish communication between a WebRTC-enabled browser and a Session
Initiation Protocol (SIP) or a public switched telephone network (PSTN) device.

■ Establish communication between two end points (WebRTC-enabled browsers, or
SIP or PSTN based devices) that do not share a common codec they can use to
communicate directly.

■ Enable a content service provider to forcibly anchor a call for example, to lawfully
intercept it.

In the WebRTC Session Controller JsonRTC protocol, you use the WscMediaFactory
interface in the oracle.wsc.feature.webrtc.template.media package to interact with
Media Engine. It includes these methods:

■ createSdpOffer - Can contain the media session ID, SDP data,
fromMediaConfigName, and toMediaConfigName to use, and the From and To
URLs to use for communication. See "About Media Engine Sessions" for details on
the supported sessions.

■ createSdpAnswer - Contains the media session ID and SDP data.

■ createReleaseRequest - Contains the media session ID to release. This method
releases the media or resources currently being used by the callee.

■ isAvailable - Confirms that a Media Engine can be used. This is useful in cases
where your Groovy script uses the Media Engine functionality if one is available,
or does its own internal processing (attempts to connect the two client directly) if
not.

See WebRTC Session Controller Configuration API Reference for details on this interface
and these methods.

Figure 6–1 shows a flow of SDP data between two clients, in this case a
WebRTC-enabled browser and a SIP endpoint. The two Signaling Engines may be
different nodes in a clustered implementation, or they may be the same instance. This
flow also shows where the processSdpOffer, processSdpAnswer, and
createReleaseRequest actions occur.

About the WebRTC Session Controller Media Server

6-2 WebRTC Session Controller Extension Developer’s Guide

Figure 6–1 Media Engine SDP Flow

In a typical scenario, Signaling Engine sends a createSdpOffer message to the Media
Engine that includes all possible codecs that the caller supports. The Media Engine
then returns modified SDP data including a list of the codecs that it supports and
allows.

Further, the callee’s SDP data, including a list of supported codecs, is sent from the SIP
proxy to Signaling Engine in a 200/OK message, as shown in Figure 6–1. Signaling
Engine then sends a createSdpAnswer to Media Engine with the list of codecs. If any
codecs sent by Signaling Engine match the codecs supported by the Media Engine, the
Media Engine returns the codecs it supports. Or, if Media Engine is configured to do
so, it may attempt to convert the media stream to a alternate codec that the callee can
use.

About the WebRTC Session Controller Media Server

Anchoring Media Sessions 6-3

Once the media session has terminated, you send a createReleaseRequest message to
the media server to release any resources the media server has allocated.

This code snippet from the Signaling Engine default call package, FROM_
NET/INVITE/request criteria shows how to set up media anchoring:

if(Constants.ME_CONFIG_NAME_NET && sdpString!=null) {
 def sdpOffer = context.mediaFactory.createSdpOffer("1", sdpString, Constants.ME_
CONFIG_NAME_NET, null, sipAddressToString(sipRequest.to),
sipAddressToString(sipRequest.from));
 def ascFuture = sdpOffer.send()
 context.getTaskBuilder("processMediaResponseToSendWebMsg").withArg("ascFuture",
ascFuture).withArg("webMessage",webMessage).onSuccess(ascFuture).build();
}
else{
 webMessage.send()
}

This Groovy code tests whether a Media Engine is available, and if so sends a
createSdpOffer request to the Media Engine with SDP data. If no Media Engine is
available sends a webMessage.

This code snippet from the Script Library shows one example of handling a reply from
Media Engine:

void processMediaResponseToSendWebMsg(TemplateContext context) {
 def resp = context.taskArgs.ascFuture.get();
 def newSdp = resp.getSdp();
 def webMessage = context.taskArgs.webMessage
 if (webMessage.payload) {
 webMessage.payload.sdp = newSdp
 } else {
 webMessage.payload = [sdp : newSdp]
 }
 webMessage.send()
}

It processes the response and sends the new SDP data back to the original caller.

About Media Engine Sessions
Table 6–1 lists the supported Media Engine session types, as assigned to the Groovy
constant, ME_CONFIG_NAME_DMA, in the Groovy library, lists their Media Engine
config names, and describes how they are used.

Table 6–1 Media Engine Session Types

Session Type Config Name Description

Web to Web
Conditional
Anchoring

web-to-web-anchor-co
nditional

Used when WebRTC-enabled browsers are
allowed to communicate directly. If for some
reason they cannot communicate directly, they
can communicate through WebRTC Session
Controller

Web to Web
Forced
Anchoring

web-to-web-anchored Forces all media flows through Media Engine.

About the WebRTC Session Controller Media Server

6-4 WebRTC Session Controller Extension Developer’s Guide

About Using createSdpOffer to Modify INVITE SDP Data
You use the createSdpOffer method to direct Media Engine to process SDP data sent
by the calling end point. You either send SDP data with this method for Media Engine
to process, or send the name of a media configuration that the node uses to determine
for itself which SDP data to use. The Media Engine replies to Signaling Engine with
the new or modified SDP data. Signaling Engine then uses the SDP data returned in
the call’s media session.

createSdpOffer includes these parameters:

■ A set of SDP data to use.

■ A media configuration name. The Media Engine uses the media configuration to
select SDP data to return to the Signaling Engine. Media configuration names
must be preconfigured on the Media Engine. See "About Media Engine Sessions"
for details.

■ A fromURI.

■ A toURI.

You can send a session_id value with createSdpOffer to identify a specific media
session. For example, createSdpAnswer requires a session_id to function.

You use the send() method from the oracle.wsc.feature.webrtc.template interface,
WscMessage package to send createSdpOffer. See WebRTC Session Controller
Configuration API Reference for details on send().

About Using createSdpAnswer to Process 200 Message SDP Data
A SIP 200/OK message that accepts a session invitation contains SDP data to use in
that session. You use the createSdpAnswer method in a Groovy script to accept and
process that SDP.

About Using createReleaseRequest to Explicitly Release Media
All media sessions are released automatically when the call terminates. You can also
force Media Engine to release all media for a session immediately by sending the
session ID to the createReleaseRequest method in a Groovy script.

A

JSONRTC Protocol Reference A-1

AJSONRTC Protocol Reference

This appendix provides reference information for the WebRTC Session Controller
JSONRTC Protocol used by WebRTC Session Controller Signaling Engine (Signaling
Engine).

About the JSONRTC Protocol
WebRTC Session Controller uses this protocol to communicate with WebRTC-enabled
browser client applications. It establishes the sessions and subsessions that you use to
pass messages between WebRTC Session Controller and its client applications inside
WebSocket connections.

You can also use this protocol to create new WebRTC Session Controller packages for
your WebRTC Session Controller implementation.

See "About Building JSON to SIP Communication" for more information about how
WebRTC Session Controller handles WebSocket connections, sessions, and
subsessions.

While WebRTC Session Controller uses this protocol to communicate with
JavaScript-based applications by default, this protocol also communicates with client
applications based on different operating systems. Your client application opens the
WebSockets necessary for the JSONRTC protocol subsessions to communicate with.

The JSON protocol operates between a WebRTC client and WebRTC server which can
be an application server or a gateway. The WebRTC client can be a WebRTC-enabled
browser (Chrome and Firefox), Android or iOS native applications.

Initiating a HTTP/HTTPS Handshake with Signaling Engine
The JSONRTC protocol is a sub protocol of the WebSocket protocol. You establish a
handshake with a WebSocket protocol to initiate communication between the two. The
handshake establishes a connection between the client (usually an application in a
browser) and the Signaling Engine server inside HTTP/HTTPS. Once the client
receives the handshake response, communication can proceed. The handshake is an
HTTP GET /chat message using webrtc.oracle.com as the value for
Sec-WebSocket-Protocol. For Example:

GET /chat HTTP/1.1
Host: server.wsc_IP.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://client_IP.com
Sec-WebSocket-Protocol: webrtc.oracle.com
Sec-WebSocket-Version: 13

About the JSONRTC Session Controller Messages

A-2 WebRTC Session Controller Extension Developer’s Guide

Where:

wsc_IP is the domain name of the Signaling Engine server.

client_IP is the domain name of the client.

The handshake includes a 101 Switching Protocols entry to allow the connection, as
shown in this example handshake reply:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: webrtc.oracle.com

Once the client receives the handshake response, the client and Signaling Engine
server can communicate further.

Immediately after establishing a WebSocket connection, the client sends a JSONRTC
connect message to establish the WebRTC Session Controller JSONRTC session. Once
WebRTC Signaling Controller accepts the connect message, it responds by sending
back a session_id. If the WebSocket connection is broken unexpectedly, for example by
a network problem, the client can re-establish the session by starting a new websocket
connection with the original session_id in a connect message.

Closing a JSONRTC Session
You close a JSONRTC session by invoking the session.close() function.

About JSONRTC Sessions and SubSessions
See "About Sessions and Subsessions" for details on how this protocol establishes and
manipulates sessions and subsessions.

JSONRTC uses a session_id field instead of a Message Broker WebSocket Subprotocol
(MBWS) connection_name to identify the WebSocket session. The session_id field
value must be unique across time and space to work with geographically redundant
clusters.

The subsession_id is the session_id value with a c or s prefix added to it.

Also see "Initiating a HTTP/HTTPS Handshake with Signaling Engine" for more
information about using session_id to reconnect a session.

About Message Reliability
This protocol uses the MessageBroker WebSocket Subprotocol (MBWS) as basis for
message reliability. For more information on MBWS, see the MBWS specification:

http://tools.ietf.org/html/draft-hapner-hybi-messagebroker-subprotocol-03

About the JSONRTC Session Controller Messages
The basic communication unit used between a WebRTC-enabled client application and
the WebRTC Session Controller JSONRTC protocol is a message. Signaling Engine
communication can be synchronous or asynchronous.

About the JSONRTC Session Controller Messages

JSONRTC Protocol Reference A-3

About Messages
Each message executes a part of the whole message flow in a package. The action
header defines the specific action each message carries out in a subsession in a specific
package. For example, a "START" action will start a "call" or start a
"message-notification". A SHUTDOWN action will end a "call" subsession or
"messageNotification" subsession. The client and server do not make any assumptions
of a particular action outside the defined behavior of the package.

All messages with type=message are asynchronous in nature and do not expect to
receive a response message. Such messages are acknowledged. In case of an error, you
receive an error message.

If you want to cancel a START message, send the CANCEL message before sending
the START final response.

The CONNECT action is not associated with any package. CONNECT represents
establishing a logical session. All other actions are specific to subsessions.

About Acknowledgements and Error Messages
An Acknowledgement message indicates that the message (and all the messages lower
than the sequence) has reached the other side. An Error Message indicates that the
message with the specified sequence met with an error.

Acknowledgement and error messages are applicable for requests, responses and
messages. One side receives an acknowledgement with a sequence that is higher than
a particular message and has not received an error message yet. This sequence
indicates that the message sent has been received successfully by the other side. You
can configure your applications to receive acknowledgement messages for every
message.

About the Message Components
Each messages includes these components:

■ Control Headers

■ General Headers

■ Message Payloads

This section also includes "Example Message Bodies" that you can use for reference.

Control Headers

A-4 WebRTC Session Controller Extension Developer’s Guide

Control Headers

The control header specifies information that the client and server use to handle
(control) the message. It includes information required for WebSocket reconnect
reliability, error, the message type, session ID, message state, and so on. Typically
Signaling Engine uses this information itself, not applications or Groovy scripts.

type
The control type of JSON message. Can be one of:

request
A message, such as an offer message, that requires a response. A protocol frame
with control type request may also contain a payload header.

response
This message is a response to a request message. For example, an answer or a
provisional answer, pranswer in JavaScript Session Establishment Protocol (JSEP).
A protocol frame with control type request may also contain a payload header.

message
A message that does not require a response. For example notification, or publish.
A protocol frame with control type request may also contain a payload header.

acknowledgement
A message that acknowledges another message. Cannot contain a payload header.

error
Indicates that an error has arrived. Cannot contain a payload header.

package_type
Optional. The package is the type of service or functionality that the message handles
and identifies the Signaling Engine package that the message applies to. The register,
call, flash, message_notification, capability, messaging, chat, and file_transfer types
are defined by default. If no package_type is specified, Signaling Engine assumes that
the default call package is used for all messages except messages with a connect
action. The connect action messages attempt to establish a session and are not
associated with a package. See "Creating Packages" for details about the Signaling
Engine packages.

session_id
Identifies a WebSocket session. The server creates the session ID and returns it to the
client in the CONNECT response. A CONNECT message containing a session ID
reestablishes a JSONRTC session. This value must be completely unique so that it may
be used across redundant clusters. A session ID has the same role as the
MessageBroker WebSocket Subprotocol (MBWS) connection-name.

sequence
A serial number that uniquely identifies a message in a JSONRTC session. Each side of
the WebSocket connection maintains its own serial number counts, starting with 1.

Note the following exceptions for the sequence header:

■ If a message is for WebSocket re-connection, the sequence number will not be set
in the message.

■ In an acknowledge message, this header indicates the specific message that came
from the peer and does not indicate the serial number of this message.

Control Headers

JSONRTC Protocol Reference A-5

ack_sequence
Optional. It identifies a particular message within a JSONRTC session. This header
acknowledges that a specified server message has been received by the client or,
likewise, that a specified client message has been received by the server. For example,
if a client receives a message with ack_sequence=2, it means that the server has
received the second message sent by the client. All messages with a lower value than
specified by ack_sequence are also considered acknowledged.

If the sender has not received any message from its peer, the value of ack_sequence is
0.

Note: Do not set the ack_sqeuence header for an acknowledgement
message. An acknowledgement message uses the sequence header to
confirm the peer side.

subsession_id
Identifies a subsession within a session. The sequence numbers are incremented each
time a new session is started. The client and server keep separate subsession ID
counts. The subsession ID typically includes a c prefix if the subsession originated
with the client and an s prefix if it originated with the server. An implementation can
also choose to use a globally unique identifier as the subsession ID.

For example, the second client-originated subsession has the value "subsession_
id":"c2". The seventh server-originated session uses the value "subsession_id":"s7".

correlation_id
A string that identifies a specific message within a session. It can simply be a sequence
number incremented each time a new message is sent. When the control header type is
response, acknowledge, or error, the correlation_id associates it with the actual
message.

The client and server keep separate message counts. When a client request does not
have a correlation_id, server may assign one for response. Messages from the client
have a “c” suffix and messages from the server have an “s" suffix. For example, the
third client-originated message has the value “correlation_id”:"c3". The sixth
server-originated message has the value "correlation_id":"s6".

When a client request does not have a correlation_id, the server assigns one for its
response.

message_state
Identifies the message state as subsequent, or final. Only subsequent or final response
messages need specify the message_state.

For example: "message_state":"final"

version
Identifies the JSONRTC protocol version that message sender supports (client or
server). If none is present in the message version, it is assumed to be "3.0".

General Headers

A-6 WebRTC Session Controller Extension Developer’s Guide

General Headers

The general header contains information related to the specific action involved in the
message. For example, for a START request, such information would contain who
initiated the request, for whom it is intended, and so on.

The general header includes fields that Signaling Engine uses to build up and tear
down calls. These fields are specific to one or more packages and are available to use
in both client applications and Groovy scripts. Your application can add additional
headers to this section. Such headers may be mapped by a gateway server to a SIP
header or a parameter.

action
The purpose of the message. Can be one of:

connect
Establishes a session with the server. These general headers are only used with the
CONNECT action.

cslr
Optional. Sent with the session_id of a session to reconnect. Uses the sequence
number of the last message received from the client to identify the session.

cslw
Optional. Sent with the session_id of a session to reconnect. Uses the lower
bound of the messages in the client’s retained window to identify the session.

csuw
Optional. Sent with the session_id of a session to reconnect. Uses the upper
bound of the messages in the client’s retained window to identify the session.

sslr
Optional. Sent with the session_id of a session to reconnect. Uses the sequence
number of the last message received by the server to identify the session.

start
Starts a session with a specific package.

complete
Announces that the media session has been established.

hibernate
Announces that the session is going to hibernate. Hibernates a protocol level
session with the server.

notify
Equivalent to Notification of Notification Server.

shutdown
Shuts down a session opened by a specific request.

prack
Pre-acknowledges provisional responses.

enquiry
Queries information (about capabilities) from the peer side.

General Headers

JSONRTC Protocol Reference A-7

send
Sends out data.

trickle
Sends out ICE candidates. Trickle SDP candidate information from the peer.

initiator
Optional. Identifies the URI of the user initiating the HTTP request. If this value exists,
it may be set by the client or the HTTP session. In certain cases, a value may not even
exist (such as when a random user clicks on a web page to talk with customer care).

target
Optional. Identifies the URI of the Signaling Engine server that is targeted by the
message. Can be obtained from the HTTP session.

error_code
Optional. In error type messages, lists the error message.

reason
Optional. The description of the error.

response_code
Optional. Specifies the result for a response message, especially in the call package.
For example, "180", "200", and so on.

enquiry_data
Optional. This is the enquiry data that is the result of an enquiry action. In most cases
it is for the capability package.

wsc_id
Optional. Used in a re-connect response message only. It identifies the server id with
which WebSocket is connecting.

APackage-Specific General Headers
Some headers are specified only for certain packages.

message_notification, expiry (xp)
Optional. Represents the subscription’s expiration time for receiving
message-summary notifications.

AAuthentication-Specific General Headers
The authentication headers are specific to client authentication and authorization.

authenticate
Optional. Represents authentication information from the server. If the server
leverages DIGEST for authentication, this header contains {scheme, username, realm,
qop, opaque, nonce, cnonce, ha1, challenge_code, algorithm}.

authorization
Optional. This header represents the authorization response to the server. If DIGEST is
leveraged, this header contains {scheme, username, realm, qop, opaque, nonce,
cnonce, ha1, challenge_code, algorithm}. For more details on this header, see
https://www.ietf.org/rfc/rfc2617.txt.

The ha1 value is calculated with the following steps:

1. A1 calculation:

General Headers

A-8 WebRTC Session Controller Extension Developer’s Guide

■ If algorithm=MD5 or is unspecified

A1 = username-value ":" realm-value ":" password

■ If algorithm=MD5-sess

A1 = H(username-value ":" realm-value ":" password) ":" nonce-value ":"
cnonce-value

2. ha1=H(A1)

Where username-value, realm-value, nonce-value, and cnonce-value are strings
without quote marks. H means the string obtained by applying the checksum
algorithm to A1.

Message Payloads

JSONRTC Protocol Reference A-9

Message Payloads

The message payload is specific to the Signaling Engine package for which the
message is used.

For:

■ The call, chat, and file_transfer packages, the default payload is an SDP offer or
answer.

■ The messaging package, the payload is content that represents the text message.

■ The message-notification or a register with the hibernate action, the payload is
JSON data with the exact message alerts.

Providing Client Information as a Payload

A-10 WebRTC Session Controller Extension Developer’s Guide

Providing Client Information as a Payload

The mechanism to register with the Cloud Notification system is entirely up to your
(Android or iOS) application and should follow the Android or iOS guidelines or the
Customer's own notification registration APIs. For more information on the
registration step, see the Android or iOS reference documents, as appropriate.

The WSC Client SDK captures the information required to identify the client and its
capability as shown in the following table:

Table A–1 Client Capability Identification Data

Parameter Value Description

family android/iOS/Chrome/Firefox Device family

version 41/37/21/8.1 Current version of the Client

appid com.enterprise.enterpriseId.wsc Unique application Id. For example,

com.enterprise.xyz.wsc

appversion 3.1 Application version

When the SDK sends it initial registration request, it sends this client identification
information to the WSC server as part of that register request.

Here is an example used by a sample Android application:

Example A–1 Payload Data Sent in the Initial Register Request (Android)

{
 "control": {
 "type": "request",
 "package_type": "register",
 "sequence": 1,
 "version": "1.0"
 },
 "header": {
 "action": "connect"
 },
 "payload": {
 "capability": {
 "family": "android",
 "version": 21,
 "appid": "com.enterprise.xyz.wsc"
 "appversion": "3.1"
 },
 "devicetoken": "APA91bFlmPxDGNWp42wCJE8_r09YECG-dEWtzNU1DXACl1IaqFSJdOlxCvO_
4K-mkiQO6CS-jVnVxDVXiCQwK5F0dosPMa2bZpiBc6vo";
 }
}

As shown in Example A–1, the device token identifying the client device is sent. This
value stored as part of the Session data in the Cluster state and is used later for
sending notifications.

Message Payloads

JSONRTC Protocol Reference A-11

Notification Payloads

The notification sent to the client mobile device contains user parameters and is
limited by the cloud notification system.

Add custom data in JSON format. For example:

 "data": {
 "time": "15:16.2342",
 "message": "Incoming Call"
 }

WebRTC Session Controller server converts the message data to suit the cloud
messaging system. For the Google cloud messaging system (GCM), this notification
contains the registration id for the device as shown here:

Example A–2 Notification Payload (for GCM)

{
 "collapse_key": "wsc_notify",
 "time_to_live": 300,
 "delay_while_idle": true,
 "data": {
 "time": "15:16.2342",
 "message": "Incoming Call"
 },
 "registration_ids":["APA91bFlmPxDGNWp42wCJE8_
r09YECG-dEWtzNU1DXACl1IaqFSJdOlxCvO_4K-mkiQO6CS"]
}

Note: The additional custom data is passed along without any
changes.

Example Message Bodies

A-12 WebRTC Session Controller Extension Developer’s Guide

Example Message Bodies

The following sections show message body examples.

Connect Request Message

{
 "control": {
 "type":"request",
 "sequence":"1"
 },
 "header": {
 "action":"connect",
 "initator":"bob@example.com",
 }
}

CONNECT Response Message

{
 "control": {
 "type":"response",
 "sequence":"1",
 "correlation_id":"c1",
 "subsession_id":"c1",
 "session_id":"Hyi89JUThhjjR"
 },
 "header": {
 "action":"connect"
 }
}

CONNECT Request with Device Token

{
 "control":{
 "type":"request",
 "package_type":"register",
 "sequence":1,
 "version":"3.0"
 },

 "header":{
 "action":"connect",
 "initiator":"alice@example.com",
 "target":"alice@example.com"
 },

 "payload":{
 "capability":{
 "appid":"oracle.wsc.samples.web",
 "appversion":"0.1",
 "family":"Chrome",
 "version":"45.0.2454.101"
 },

"devicetoken":"APA91bHIx2iEtOjulPrVQxDQPIwwHscTXRpkzTJZJoYr7ajWH0XPglQ10Y8J7pNn3Sh
8RnchKNno-BhmfvJqrO_8EFx-AGilpG8YlV9wbI2C9OlOmw5jAstOtpxkuj0IMBHViX4y3uQaRAqFB_

Example Message Bodies

JSONRTC Protocol Reference A-13

YvprHBHqRzBTZ6hvqaDwN1OXiyANk-LYTIVWXKep-Hp03K-5VpFEY3zbBg"
 }
}

START Request Message (with initiator/target)

{
 "control": {
 "package_type": "call",
 "type":"request",
 "sequence":"2",
 },
 "header": {
 "action":"start",
 "initator":"bob@example.com",
 "target":"alice@example.com",
 },
 "payload": {
 "<offer_sdp>"
 }
}

START Response Message (with initiator/target)

{
 "control": {
 "package_type": "call",
 "type":"response",
 "message_state":"final",
 "sequence":"2",
 "correlation_id":"c2"
 "subsession_id":"c2"
 },
 "header": {
 "action":"start"
 "initator":"bob@att.com",
 "target":"alice@att.com",
 },
 "payload": {
 "<answer_sdp>"
 }
}

START Request Message (without initiator/target)

{
"control": {
 "package_type": "call",
 "type":"request",
 "sequence":"2"
 },
 "header": {
 "action":"start"
 },
 "payload": {
 "<offer_sdp>"
 }
}

Example Message Bodies

A-14 WebRTC Session Controller Extension Developer’s Guide

START Request Message (without initiator/target)

{
 "control": {
 "package_type": "call",
 "type":"response"
 "message_state":"final"
 "sequence":"2",
 "correlation_id":"c2"
 "subsession_id":"c2"
 },
 "header": {
 "action":"start"
 },
 "payload": {
 "<pranswer_sdp>"
 }
}

START Offer with Changed Media

{
"control": {
 "package_type": "call",
 "type":"request",
 "sequence":"3",
 "subsession_id":"c2"
 },
 "header": {
 "action":"start"
 },
 "payload": {}
 "<offer_sdp>"
 }
}

HIBERNATE Request Message

{
"control": {
 "type": "request",
 "package_type": "register",
 "session_id": "pQAAAVBltniS54z1CuCiXp9AffIAAAAD_23",
 "subsession_id": "50d890f2-d357-4847-9278-442d5964fc32",
 "correlation_id": "c2",
 "version": "1.0"
 },
 "header": {
 "action": "hibernate",
 "ttl": 3600
 },
 "payload": {}
}

HIBERNATE Response Message

{
"header": {
 "response_code": 200,
 "action": "hibernate"

Example Message Bodies

JSONRTC Protocol Reference A-15

 },
 "control": {
 "sequence": 2,
 "subsession_id": "50d890f2-d357-4847-9278-442d5964fc32",
 "message_state": "final",
 "session_id": "pQAAAVBltniS54z1CuCiXp9AffIAAAAD_23",
 "correlation_id": "c2",
 "type": "response",
 "package_type": "register",
 "version": "1.0"
 }
}

Note that:

■ The response_code indicates if the other side accepted or rejected the request.

■ The ttl parameter in the Hibernate response contains the value the WSC server
finally chose for the Session-Alive interval. The WSC server maintains a maximum
interval depending on the policy set for each type of client device.

If the requested value was more than the accepted maximum for the server, the
value will revert to the server's maximum value. If the value is too lower than the
default value for the server, the server reverts to its default value.

SHUTDOWN Message

{
 "control": {
 "package_type": "call",
 "type":"message"
 "sequence":"4",
 "subsession_id":"c2"
 },
 "header": {
 "action":"shutdown"
 }
}

ACKNOWLEGEMENT Message

{
"control": {
 "type":"acknowledgement"
 "sequence":"5"
 }
}

ERROR Message

{
 "control": {
 "package_type": "call"
 "type":"error"
 "sequence":"6",
 "correlation_id":"c2"
 "subsession_id":"c2"
 "error_code":"480"
 }
}

Example Message Bodies

A-16 WebRTC Session Controller Extension Developer’s Guide

ENQUIRY Request Message

{
 "package_type": "capability"
 "type":"request",
 "sequence":"1",
 "correlation_id":"c1"
 "subsession_id":"c1"
 }
 "header": {
 "action":"enquiry",
 "enquiry_data":"IM/CHAT,VS",
 "initiator":"bob@att.com",
 "target":"alice@att.com",
 }
}

Enquiry Response Message

{
 "control": {
 "package_type": "capability",
 "type":"response",
 "message_state":"final",
 "sequence":"1",
 "correlation_id":"c1"
 "subsession_id":"c1"
 }
 "header": {
 "action":"enquiry",
 "enquiry_data""IM/CHAT, FT",
 "initator":"bob@att.com",
 "target":"alice@att.com",
 }
}

SEND Message

{
 "control": {
 "package_type": "messaging"
 "type":"message"
 "sequence":"1",
 "correlation_id":"c1"
 "subsession_id":"c1"
 }
 "header": {
 "action":"send"
 "initiator":"bob@att.com",
 "target":"alice@att.com",
 }
 "payload": {
 "content": <message content>
 }
}

TRICKLE Message

{
 "control": {

Example Message Bodies

JSONRTC Protocol Reference A-17

 "type": "message",
 "package_type": "call",
 "session_id": "pQAAAVBlDjliO2V9HrgoM9QDd4EAAAAF_255",
 "subsession_id": "9356a8a5-8b48-4b8d-9355-0c43315114d3",
 "sequence": 4,
 "ack_sequence": 3,
 "version": "3.0"
 },
 "header": {
 "action": "trickle",
 "initiator": "alice@example.com",
 "target": "bob@example.com"
 },
 "payload": {
 "candidates": "a=mid:audio\r\na=candidate:134500521 1 ..."
 }
}

Example Message Bodies

A-18 WebRTC Session Controller Extension Developer’s Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 About Extending WebRTC Session Controller
	About Extending WebRTC Session Controller Functionality
	About the WebRTC Session Controller Console Components
	About the WebRTC Session Controller Groovy Scripts
	About Creating Client Applications Using the JavaScript API
	About Translating Calls Using the Configuration API
	About Extending WebRTC Session Controller Using the JSONRTC Protocol
	WebRTC Session Controller Software and Protocol Conformance
	Prerequisites for Extending WebRTC Session Controller Functionality

	2 About Building JSON to SIP Communication
	About Building JSON to SIP Communication
	Securing Signaling Engine Connections
	About Connecting to a Client Application
	About Sessions and Subsessions
	About JSON to SIP Communication
	About SIP to Client Communication
	About Storing Data Within Sessions

	Understanding the WebRTC Session Controller Components
	About Applications
	About Packages
	About Criteria

	About the WebRTC Session Controller Console
	About the Groovy Scripts
	About Accessing the Parameters Using Groovy Scripts
	About the Contexts

	About the Script Library
	About the Normalized Data Format

	3 Creating WebRTC Session Controller Applications, Packages, and Criteria
	Creating Criteria
	Creating Packages
	Creating Applications
	Exporting and Importing a Configuration
	Debugging Groovy Script Run Time Errors
	About the WebRTC Session Controller Console Validation Tests

	4 Customizing Messages for New SIP or JSON Data
	Processing Messages With Custom SIP Data
	Example SIP Request Variable
	Propagating Custom Headers to SIP and Browser Endpoints
	Extending SIP Messages with New Headers
	Protecting System Performance by Removing SIP Messages
	Removing a SIP Header in a Message
	Replacing a SIP Header in a Message
	Conditionally Passing SIP Headers in Messages

	Changing JSON Data to Support Protocol Changes
	Retrieving Session Addressing Information from Groovy
	Initiating REST Calls from Groovy
	Adding a REST URI Endpoint Constant
	Creating a REST Request in Groovy
	Configuring the REST Request
	Sending the REST Request
	Handling REST Responses
	REST Authentication
	Useful XML Groovy Utilities for REST Calls

	Extending WebRTC Session Controller Functionality

	5 Using Policy Data in Messages
	About Using Policy Control Data with Signaling Engine
	Creating and Sending Diameter Rx Request messages
	Accepting and Using Diameter Rx Answer Messages

	6 Anchoring Media Sessions
	About the WebRTC Session Controller Media Server
	About Media Engine Sessions
	About Using createSdpOffer to Modify INVITE SDP Data
	About Using createSdpAnswer to Process 200 Message SDP Data
	About Using createReleaseRequest to Explicitly Release Media

	A JSONRTC Protocol Reference
	About the JSONRTC Protocol
	Initiating a HTTP/HTTPS Handshake with Signaling Engine
	Closing a JSONRTC Session
	About JSONRTC Sessions and SubSessions
	About Message Reliability

	About the JSONRTC Session Controller Messages
	About Messages
	About Acknowledgements and Error Messages
	About the Message Components

	Control Headers
	General Headers
	Message Payloads
	Providing Client Information as a Payload
	Notification Payloads

	Example Message Bodies

